		· · · · · · · · · · · · · · · · · · ·	and the state of t
	-06 KC:	TJAN 07 1994	<u>KÐ.</u>
	ACTION.		
	FILE NO:		
ASSESSMENT R	EFORT		
ON			
DIAMOND DRILLI	NG WORK		

ON THE FOLLOWING CLAIM

TENNYSON 1.....#4102(9)

located

37 KM NORTH-NORTHWEST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 15 minutes latitude 130 degrees 10 minutes longitude

N.T.S. 104B/8E

PROJECT PERIOD:

Sept. 28 - Oct. 15, 199**2** P.C.

ON BEHALF OF TEUTON RESOURCES CORP. VANCOUVER, B.C.

REPORT BY

D. Cremonese, P. Eng. 509-675 W. Hastings Vancouver, B.C.

Date: Dec. 23, 1993

0

n

TABLE OF CONTENTS

1 1. INTRODUCTION A. Property, Location, Access and Physiography 1 B. Status of Property 1 1 C. History 3 D. References E. Summary of Work Done 4 2. TECHNICAL DATA AND INTERPRETATION 4 4 A. Regional Geology 6 B. Property Geology 7 C. Drill Hole - Geochemistry 7 a. Introduction Treatment of Data 7 b. Discussion of Results 7 c. 9 D. Field Procedure and Laboratory Analysis 9 E. Conclusions APPENDICES I Work Cost Statement Certificate II III Assay Certificates ILLUSTRATIONS Report Body Fig. 1 Location Map Report Body Fig. 2 Claims Map Report Body Fig. 3 Regional Geology Fig. 4 Alteration Map Also Showing 1992 Report Body Drill Hole Locations Map Pocket Vertical Section Hole TN92-02 Fig. 5

[With Gold and Copper Values]Fig. 6Vertical Section Hole TN92-03
[With Gold and Copper Values]Map PocketFig. 7Vertical Section Hole TN92-04
[With Gold and Copper Values]Map PocketFig. 8Vertical Section Hole TN92-05
[With Gold and Copper Values]Map Pocket

Page

1. INTRODUCTION

A. Property, Location, Access and Physiography

The Tennyson claims are situated 37 air-kilometers north-northwest of Stewart, British Columbia in an ice-sculptured upland at the head of the north arm of the Berendon Glacier. Elevations vary from 1400 to 1700m, slopes from gentle to moderate. Because much of the claim area has recently emerged from under snow and ice cover, vegetation is confined to mountain grasses and low-lying shrubs.

Climate is typical of the north coast mountains, frequent precipitation throughout the year with heavy snowfalls in winter.

Access to the property is by helicopter from either the main base at Stewart or the air-strip at Tide Lake flats (the latter approximately 6 kilometers east of the claims). Access by foot is also possible along the slopes north of the Berendon Glacier, however, no trail is in place at present.

Ice brackets the property on the west, north and south sides.

B. Status of Property

Relevant claim information is summarized below:

Name	Record No.	No. of Units	Record Date
Tennyson 1	4102	4	Sept. 27, 1983

The claim is shown on Fig. 2.

C. History

No references to the Tennyson property were uncovered during a review of government and private literature involving exploration in the Stewart area between 1900 and 1980. It is probable that most of the geologically interesting portions of the Tennyson property were still under ice and snow during this period.

In 1984, an exceptionally mild winter was followed by an unusually sunny summer, causing extensive retreat of permanent ice and snowfields at many locations in the general Stewart area. This ablation exposed a prominent gossan at the head of Berendon Glacier which was then staked as the Tennyson claims by the author on behalf of Teuton Resources Corp..

An airborne survey over the claims by Teuton Resources Corp. in 1984 disclosed a sharp, localized magnetic anomaly on the Tennyson

1 and 2 claims. Samples taken at that time showed copper values to 6% in the vicinity of the anomaly, and gold values to 0.35 oz gold per ton in bedded sulphides 100 m west of the anomaly.

A surface reconnaissance program carried out in August-October in 1985 defined several promising areas of gold mineralization within a large gossaned area 750m by 450m. Gold values were obtained primarily in association with pyritic bands, and were accompanied, variously, by values in silver, copper, lead, zinc, and molybdenum. Limited geochemical soil sampling of the overburden covered central portion of the gossan returned values from 105 to 2,320 ppb and averaging 628 ppb in gold.

Six holes drilled in 1986 by Consolidated BRX Mining and Petroleum Ltd., the original optionee of the property, tested various portions of the gossan. The fourth hole of this program intersected a high-grade section featuring pervasive clay alteration and hydrothermal brecciation, and assaying 1.2 oz/ton in gold over 2.1m. Other holes produced three intersections grading from 0.08 to 0.14 oz/ton in gold over widths of 1.6m. Anomalous gold values were also recorded over wide intervals in three of the holes. During the same period, minor surface sampling was undertaken. This work partially tested the "Camp Zone": 8 samples across 1m widths outlined 32.5m of strike averaging 0.235 oz/ton gold and 0.148 oz/ton silver. This zone appeared to be open along strike to the west, while continuity to the east was uncertain.

A further four holes were then drilled by the subsequent optionee, Westlake Resources Inc., to test the postulated southern strike extension of the Hole 86-4 high-grade mineralization. These did not encounter similar grades within the same horizon.

During 1988, Keylock Resources and Catear Resources, the next companies to option the property, conducted a rock geochemical and diamond drill program on the property. A total of 349 rock samples were collected and analyzed for gold and silver with values ranging from 5 ppb gold up to 0.442 oz/ton gold and nil to 14.95 oz/ton silver. A total of 8 short drill holes indicated gold values in four of the holes. Values ranged from 0.029 oz/ton gold across 0.15m up to 0.406 oz/ton gold across 3.1m.

In 1990, Keylock and Catear carried out another surface program consisting of prospecting, rock sampling, trenching and geological mapping. The rock sampling program indicated values ranging from 5 ppb up to 3.601 oz/ton gold, from 0.4 ppm to 7.88 oz/ton silver and from 0.05 to 3.09% copper. Compilation of the data indicated a definite increase in pyrite veining in the northern portion of the gossan area, accompanied by elevated values in copper and gold. Trenching in the southeast portion of the gossan returned values up to 0.42% copper over 12m.

A limited program of surface sampling and trenching was undertaken

in 1991 by owner Teuton Resources Corp. This resulted in the discovery of a zone of porphyry copper-gold type mineralization in a small outcrop at the northern end of the gossan (see Fig. 4) from which a 26 m trench returned a weighted average grade of 576 ppb in gold and 0.35% Cu in a porphyry copper environment. [The first three holes of the 1992 drill program tested this same area.] High grade gold values were also obtained in samples from a float boulder and two small vein structures located to the south.

D. References

1. ALLDRICK, D.J.(1984); Geological Setting of the Precious Metals Deposits in the Stewart Area, Paper 84-1, Geological Fieldwork 1983, B.C.M.E.M.P.R.

2. ALLDRICK, D.J. AND BRITTON, J.M. (1988); Geology and Mineral Deposits of the Sulphurets Area. BCEMPR, Open File 1988-4.

3. AWMACK, H., P.ENG., (1986); Summary Report, Tennyson Drill Program, Oct.-Nov. 1986. Prepared for Westlake Resources Inc.

4. BRITTON, J.W., WEBSTER, I.C.L. AND ALLDRICK, D.J. (1989); Unuk Map Area. BCEMPR, Geological Fieldwork, 1988, Paper 2989-1.

5. CREMONESE, D.M., P.ENG. (1985); Assessment Report on Geological and Geochemical Work on the Tennyson Claims. On File with BCEMPR.

6. CREMONESE, D.M., P.ENG. (1991); Assessment Report on Geological and Geochemical Work on the Tennyson Claims. On File with BCEMPR.

7. CREMONESE, D.M., P.ENG. (1992); Assessment Report on Diamond Drilling Work on the Tennyson 1 Claim. On File with BCEMPR.

8. GROVE, E.W. ET AL (1982); Unuk River-Salmon River-Anyox Area. Geological Mapping 1:1000000 BCMEMPR.

9. GROVE, E.W. (1971); Geology of Mineral Deposits of the Stewart Area. Bulletin 58, BCMEMPR.

10. GROVES, W.D., P.ENG. AND SHELDRAKE, R. (1984); Assessment Report on Geophysical Work (Airborne EM & Mag Survey) on the Tennyson Group, et al. On File with BCEMPR.

11. GROVES, W.D., P.ENG. (1987); Summary Report, 1986 Exploration Results on the Tennyson Property. Prepared for Westlake Resources.

12. GROVES, W.D., P.ENG. (1988); Geological Report on Tennyson Property. Prepared for Keylock Resources Ltd.

13. KRUCHKOWSKI, E.R., P.GEOL. (1990); Geological Report, 1989 Exploration Results on the Tennyson Property. Prepared for Keylock Resources Ltd. 14. KRUCHKOWSKI, E.R., P.GEOL. (1991); Private Report, On Tennyson Property, Stewart, B.C., for Teuton Resources Corp.

15. LOGAN, JAMES M., M.SC. (1986); Geological Report, Phase I Diamond Drilling Ten Mineral Claim Group. Prepared For Consolidated BRX Mining & Petroleum Ltd.

E. Summary of Work Done

[Author's Note: The diamond drilling work carried out on the property overlapped both the 1991/2 and 1992/3 anniversary periods for the Tennyson 1 claim. Details of the 1991/2 work are included in this report where necessary to provide context (for full details see Ref. 7). However, no costs incurred prior to Sept. 28, 1993 are included.].

Mobilization of materials and supplies for the diamond drilling camp on the Tennyson property began Sept. 11, 1992. An early snowfall hampered efforts to move in the diamond drill and ancillary equipment but this was finally completed Sept. 18, 1992. At the end of Sept. 27, the last day of the 1991/2 anniversary year, Hole TN92-02 had reached a core length of 82.9m.

Diamond drilling work carried out in the year commencing Sept. 28, 1992 (and which forms the subject of this report) included completion of Hole TN92-02 from 82.9 to 115.8m, Hole TN92-03 to 100.6m, Hole TN92-04 to 42.4m and Hole TN92-05 to 56.7m. Hole TN92-06 was collared but had to be abandoned before any core was obtained due to equipment breakdown and onset of severe winter storms.

Drill contractor was Cancor Drilling of Courtenay, B.C. Cancor used a Longyear 28 diamond drill and BDBGM core. Ken Konkin was the project geologist. Core was logged, split and stored on site.

2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology

The Tennyson claims lie in the Stewart area east of the Coast Crystalline Complex and within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Hazelton Group and have been intruded by plugs of both Cenozoic and Mesozoic age.

At the base of the Hazelton Group is the Lower Jurassic marine (submergent) and non-marine (emergent) volcaniclastic Unuk River Formation. This is overlain at steep discordant angles by a second, lithologically very similar, Middle Jurassic volcanic cycle (the Betty Creek Formation), in turn overlain by Middle and Upper Jurassic non-marine and marine sediments (with minor volcanics) of the Salmon River and Nass Formations.

The oldest rocks in the area belong to the Lower Jurassic Unuk River Formation which forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

In the study area the Unuk River Formation is unconformably overlain by Lower Middle and Middle Jurassic rocks from the Betty Creek and Salmon River Formations, respectively. The Betty Creek Formation is another cycle of trough-filling submarine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self erosional conglomerate, sandstone and siltstone, and minor crystal and lithic tuffs, chert, limestone and lava. The overlying Salmon River Formation is a late to post volcanic episode of banded, predominantly dark coloured, siltstone, greywacke, sandstone, intercalated calcarenite, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows.

According to Grove, the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcances subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone. D. Alldrick's work has shown several volcanic centres in the property area. Lower Jurassic volcanic centres in the Unuk River Formation are located in the Big Missouri-Premier area, and in the Brucejack Lake area. Volcanic centres within the Lower Jurassic Betty Creek Formation are in the Mitchell Glacier and Knipple Glacier areas.

The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrane to the west. East of these (in the study area), smaller intrusive plugs range from quartz monzonite to granite to highly felsic; some are, likely, related late phase offshoots of the Coast plutonism, others are synvolcanic or Tertiary.

Double plunging, northwesterly-trending synclinal folds of the Salmon River and underlying Betty Creek Formations dominate the structural setting of the area. These folds are locally disrupted by small east-overthrusts (Tippy Lake, Knipple Lake) on strikes parallel to the major fold axes, cross-axis steep wrench faults which locally turn beds, selective tectonization of tuff units, and major northwest faults which turn beds.

Regional geology in relation to claim area is shown in Fig. 3.

B. Property Geology

The area of interest on the Tennyson claims is a recently exposed gossanous outcrop, approximately 750 meters by 500 meters in dimension, bounded to the south, west and north by the Berendon Glacier and encircling icefield, and to the east by a steeply-dipping, northwest-southeast trending fault. Country rock consists of intercalated flows and sediments. Alteration, locally, is at chlorite-lower greenschist facies. It appears that solutions have been led, to an unknown extent, by shear texture of the regional tectonism.

Rocks on the eastern side of the fault consist of an unaltered cream white weathering breccia with predominantly light-coloured fragments varying in size from less than five mm to greater than Dark green augite porphyry flows were observed on the five cm. eastern side of the fault as well as in the southeast part of the gossanous area on the western side of the fault. Alteration in this area is restricted to minor chlorite. Fifty meters to the north, along the western side of the fault, are small outcrops and subcrops of a buff weathering, quartz carbonate altered rock with abundant randomly oriented quartz and calcite veins from less than five mm to ten cm in width. Rocks in the north central area of the gossan consist of sericite, chlorite, and pyrite altered semi-schists with localized zones of clay alteration and silicification.

Along the eastern margin and in the southwest section of the gossanous area, the level of alteration decreases to chlorite, minor sericite and pyrite. In the extreme southwest corner of this area, a sequence of unaltered tuffs, flows, cherts, siltstones and sandstones is exposed. A small outcrop of interbedded siltstones, sandstones and chert, beds to five cm thick, shows well-graded bedding, load and flame structures. There is evidence to suggest that the beds have been overturned and that the outcrop of sediments constitutes an isolated block rotated with the volcanic flows.

Structure on the property is dominated by a northwest southeast trending, steeply dipping fault. The warping of foliation from an almost east-west/flat trend in the southwest portion of the property, to northeast-southwest/steep in the northeast portion, suggests possible left lateral strike turn movement into the fault. It is also likely that there is some bed-turning movement in the vertical direction.

Fig. 4 is an alteration map of the gossan zone covering the central portion of the Tennyson 1-4 claims. It also shows the locations of the 1992 drill holes.

C. Drill Core Geochemistry

a. Introduction

Drill Holes TN92-01 to 03 were collared at elevation 1520m to explore a zone of surface copper-gold mineralization discovered in 1991 along baseline at the north end of the main gossan (see Fig. 4 for collar locations). Holes TN92-04 and 05 were collared at elevation 1560m, about 280 m to the southeast of the the first three holes. These tested a zone in the northeast portion of the gossan where a 1988 surface sample returned 1.0 g/ton over 3.0m. A summary of drill hole information follows:

Target	Azimuth (deg.)	Dip (deg.)	Length (m)
Cu/Au Porphyry	345	55	99.36
Cu/Au Porphyry	037	65	115.82
Cu/Au Porphyry	165	65	100.58
Epithermal/Vein	108	45	42.37
Epithermal/Vein	108	65	56.69
	Target Cu/Au Porphyry Cu/Au Porphyry Cu/Au Porphyry Epithermal/Vein Epithermal/Vein	TargetAzimuth (deg.)Cu/Au Porphyry345Cu/Au Porphyry037Cu/Au Porphyry165Epithermal/Vein108Epithermal/Vein108	TargetAzimuthDip (deg.)Cu/AuPorphyry34555Cu/AuPorphyry03765Cu/AuPorphyry16565Epithermal/Vein10845Epithermal/Vein10865

BDBGM core was used.

b. Treatment of Data

Core from the holes was logged by Ken Konkin, geologist. The most common assay interval was 1.52m, a few smaller or larger samples being taken where needed according to observed mineralization or structure. Detailed logs are presented in Appendix III.

The entire core for each hole was split and each sample run for gold content (ppb tolerance) and 30 element ICP.

Vertical sections for DDH TN92-02 to 05 are shown on Figs. 5 to 8, respectively. These sections include a brief description of geology as well as a graph showing variation in copper and gold content for each assay interval from hole top to bottom.

c. Discussion of Results

Porphyry Cu/Au Target

Hole TN92-02 intersected a grey-green, altered, crystal tuff from 0.91 to 71.62m. Mineralization was predominantly pyrite, varying from trace to 20%, accompanied by trace to circa 1% chalcopyrite. Copper and gold values ranged to a high of 0.59% and 1.82 gm/tonne, respectively. At 71.62 m the drill entered into a black schistose argillite wherein copper and gold values fell off sharply. From

73.76 to 90.83, rock type was a pale grey-green to charcoal grey lithic crystal tuff containing minor pyrite and little or no chalcopyrite. More or less the same unit continues on from 90.83 to 109.12 m. Chalcopyrite reappears in this interval as shown by the corresponding increase in copper values (assaying up to 0.32% copper), whereas gold values remain low to the end of the hole, a few meters along.

Significant intervals for Hole TN92-02 are as follows:

Interval (m)	Length (m)	Cu (%)	Au (g/t)
0.91 - 21.95	21.0	0.35	0.53
21.95 - 47.24	25.3	0.22	0.25
47.24 - 64.00	16.7	0.42	0.37

Hole TN92-03 was drilled in a southerly direction and intersected 99m of highly silicified, greenish-grey, crystal/ash tuff containing 7-10% quartz and calcite stringers, 5-7% disseminated and veinlet pyrite, and trace to 1% disseminated chalcopyrite.

Significant intervals for Hole TN92-03 are as follows:

Interval (m)	Length (m)	Cu (%)	Au (g/t)
1.52 - 44.19	42.7	0.30	0.28
44.19 - 78.03	33.8	0.40	0.51
78.03 -100.58	22.6	0.28	0.23

The middle interval of 33.8m contains the best combined grade of copper and gold obtained during the 1993 drilling. Significantly, the upper portion of this interval contained four 1.52m samples which reported gold assays better than 1.0 g/t (to a peak value of 1.80 g/t gold). From 44.19m to 50.29m, 6.1m ran 1.24 g/t gold.

Combining all of the sub-intervals shows a significant correlation in grade for both Holes TN92-02 and 03. The former returned a weighted average grade of 0.34% Cu and 0.28 g/t Au over 63.0m, the latter 0.33% Cu and 0.35 g/t Au over 99.1m.

Epithermal/Vein Target

Holes TN92-04 and 05 were put down to test for gold-bearing, epithermal mineralization of the type found during the 1986 drill program by Consolidated BRX (cf. section on "History"). Both holes were drilled in the same section but at different dips. Rock type encountered in both holes was a strongly leached, weakly to moderately silicified, ash flow tuff containing 5 to 7% disseminated plus veinlet pyrite, 3-5% calcite plus quartz sweats and veinlets, and featuring moderate to strong sericite talc alteration. Both holes returned moderately strong background gold values with sporadic spot highs. Best interval was in Hole TN92-04: 1.52 m from 16.76 to 18.28m returned 2.34 g/t Au. In general, background gold values obtained in these holes were quite similar to that from the 6th hole in the 1986 drilling by Consolidated BRX (collared about 100m to the west and drilled easterly).

Copper values were uniformly low throughout both of these holes.

D. Field Procedure and Labratory Analysis

Analysis of core specimens collected during the 1992 program was carried out both at the Eco-Tech Laboratories facility in Kamloops and at the Pioneer Laboratories facility in New Westminster.

After standard rock sample preparation, the 30 element Inductively Coupled Argon Plasma analysis was intiated by digesting a 0.5 gm sub-sample from each field specimen with 3ml 3-1-2 HC1-HNO3-H20 at 95 deg. C for one hour, followed by dilution to 10 ml with water. The Atomic Absorption measurement for ppb tolerance gold was preceded by subjecting 10 gram samples to standard fire-assay preconcentration techniques to produce silver beads which were subsequently dissolved. Where required, assays were subsequently performed to test for individual metals using standard analytical techniques.

E. Conclusions

Results from the first three holes of the 1992 drill program on the Tennyson property, and in particular the third hole, suggest good potential for the delineation of a porphyry copper-gold system. A review of drill log data suggests that this drilling may have been in the outer pyritic halo of a typical copper-gold porphyry system. If so, higher grades could be expected once within the actual core of the system. Holes TN92-04 and 05, put down to explore for epithermal-type mineralization such as was encountered in the 1986 drilling program, encountered anomalous but sub-ore grades of gold.

Further drilling is warranted to establish extent of the coppergold mineralization in the first target area with a view to establishing higher grade zones within the postulated porphyry system.

Respectfully submitted,

D. Cremonese, P.Eng. December 23, 1993

APPENDIX I -- WORK COST STATEMENT

Diamond Drilling ContractCancor Drilling	
232.6m of BDBGM core @ \$46.72/m	\$10867
Waterline/camp/reaming labour: 70.5 hrs @ \$26/hr.	1833
Machine time: 17.5 hrs @ \$24	420
core trays, bits, water line & pump repair	1696
Field Personnel (not including Drill Crew):	
Project Geologist (K. Konkin): Sept. 28-Oct. 13, 1992	
16 days @ \$200/day	3200
Geological Assistant (B. Morgan): Sept. 28-Oct. 12	2250
Cook (C. Konkin): Sent. 28-Oct. 13 1992	2250
16 days @ \$70/day	1120
Helicopter - Transport personnel, lumber, supplies, drill,	
waterline, gear, lood, explosives, samples, etc.	6010
VIII. 0.0 IIIB @ 3004.45	0910
Food - (including 4 man drill crew)	
111 man-days @ \$30/man-day	3330
Expresso Expediting - (haul supplies, etc. from Stewart to	
Tide Lake; diesel/fuel)	930
Smithers Expediting - Radio message rerouting/ordering	303
Supplies - camp frame wood materials etc · camp	
fuel; general supplies: gen set rental: etc.	820
Tents/plugger/radio rental: 16 days @ \$100/day	1600
Truck rentals: 2 trucks X 16 days @ \$20/day	640
Analyses	
Pioneer Labs. (New Westminster)	
62 Au Geochem/ICP/Sample Prep. @ \$14.25	884
Eco-Tech Labs. (Kamloops)	
65 Au Geochem/ICP/Sample Prep. @ \$16.00	1040
Report Costs:	
Preparation & compilation data, maps, report -	
D. Cremonese, P.Eng 4 days @ \$300/day	1200
Draughting Word program 4 bra 0 625 (bra	400
Noru processor, 4 nrs @ \$25/nr Conies, report mans tono blow-uns etc	100 100
TOTAL	\$39,596
	· · ·
Stat. of Expl \$36,000: please credit extra to Teuton PAC ac	ccount)

.

- I, Dino M. Cremonese, do hereby certify that:
- I am a mineral property consultant with an office at Suite 509

 675 W. Hastings, Vancouver, B.C.
- I am a graduate of the University of British Columbia (B.A.Sc. in Metallurgical Engineering, 1972, and L.L.B., 1979).
- 3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practiced my profession since 1979.
- 5. This report is based upon work carried out on the Tennyson mineral claims, Skeena Mining Division in September, 1992. Extensive use of fieldnotes and maps prepared by geologist, Ken Konkin, is acknowledged.
- 6. I am a principal of Teuton Resources Corp., owner of the Tennyson claims: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 23 day of December, 1993.

2. hermon

D. Cremonese, P.Eng.

APPENDIX III

DRILL LOGS

,

	TEUTON RES	SOURCES	CORP. DRILL LOGS TENNYSON PROJECT		
DRILL HO LOGGED E	DLE: TN92-02 By: Ken Konkin	1	AZIMUTH: 037 DEGREES DIP ANGLE: - LENGTH: 115.82 M DATE LOGGED: C	-65 DEGRE	ES 1992
Sample #	Sample Interval (metres)	Width (m)	Description	Cu	Au gm/t
	0.00-1.52		Casing; fractured outcrop, no overburden.		
	0.91-21.95		Medium grey-green, silicified crystal tuff, 3-5% qtz+cal stringers & veinlets, 5-7% diss.+bleb pyrite (py), tr to 1% diss. chalcopyrite (cp) often associated with chl, cal+qtz stringers. Moderate sericite+clay alteration, strong chl. alteration, stringers random orientation, foliation + pyrite mineralization generally 45 deg. to core axis (c.a.), minor faint altered plagioclase and hornblende phenocrysts.		
87115	0.91-3.05	2.13	vuggy limonitic fracture planes	0.31	0.38
116	3.05-4.57	1.52	n n	0.40	0.45
117	4.57-6.09	1.52	10-15% diss.+bleb veinlet py, 1-2% diss. cp	0.47	0.40
118	6.09-7.62	1.52	7-10% diss.+bleb veinlet py, tr-1% diss. cp	0.41	0.35
119	7.62-9.14	1.52	" ", tr-less than 1% diss. cp	0.21	0.40
120	9.14-10.66	1.52	20-25% diss.+bleb veinlet py, tr-less than 1% diss. cp	0.08	1.82
121	10.66-12.18	1.52	10-15% "	0.21	0.57
122	12.18-13.71	1.52	10-15% "	0.25	0.43
123	13.71-15.24	1.52	7-10% " ", 1-2% diss. cp	0.54	0.50
124	15.24-16.76	1.52	5-7% " ", tr-1% diss. cp	0.40	0.55
125	16.76-18.28	1.52	5-7% diss. py, 3-5% cal+qtz veinlets, tr to less than 1% cp	0.30	0.25
126	18.28-20.12	1.83		0.30	0.34
127	20.12-21.95	1.83		0.59	0.59
	21.95-71.62		Pale gray intense sericite altered crystal lithic tuff with chlorite altered hornblende phenocrysts; leached, fractured, strong clay alt., 3-5% cal. sweats, some qtz, locally brecciated, faulted; 5-7% diss., veinlet py; fault gouge @ 23.62m, 26.67m, 26.82-27.12m, 31.32m; foliation 45 deg. to c.a.		
128	21.95-23.78	1.83	2-3% cal+qtz sweats, 5-7% diss. py, bx	0.29	0.27
129	23.78-25.61	1.83	10-15% barren cal+qtz stringers, sweats, 7-10% diss. py	0.15	0.16
130	25.61-27.43	1.83	mostly fault gouge/clay 5-7% py	0.22	0.23

٠

	TEUTON RESOURCES CORP. DRILL LOGS TENNYSON PROJECT						
DRILL HO LOGGED I	DLE: TN92-02 BY: KEN KONKIN		AZIMUTH: 037 DEGREES DIP ANGLE: LENGTH: 115.82 M DATE LOGGED:	-65 DEGRI OCT. 1,	EES 1992		
Sample #	Sample Interval (metres)	Width (m)	Description	Curran X	Au gn/t		
131	27.43-28.96	1.52	5-7% diss.+bleb py	0.21	0.21		
132	28.96-30.48	1.52	7-10% " " + veinlet py	0.20	0.25		
133	30.48-32.00	1.52	" ", + tr. to less than 1% cp	0.26	0.33		
134	32.00-33.52	1.52	10-15% diss.+veinlet py, strong plag phenocrysts	0.14	0.20		
135	33.52-35.05	1.52	5-7% " ", tr. diss. cp	0.30	0.43		
136	36.58-36.58	1.52	7-10% "	0.34	0.36		
137	36.58-38.10	1.52	5-7% "	0.27	0.31		
138	38.10-39.62	1.52	5-7% diss.+veinlet py, fault at 39.32m, 50% recovery)	0.28	0.19		
139	39.62-41.15	1.52	" ", foliation 30 deg. to c.a.	0.29	0.25		
140	41.15-42.67	1.52	1) II	0.23	0.21		
141	42.67-44.19	1.52	" ", shattered core	0.21	0.20		
142	44.19-45.72	1.52	" ", tr. to less than 1% cp	0.15	0.19		
143	45.72-47.24	1.52	u II	0.12	0.21		
144	47.24-48.79	1.52	и и и	0.34	0.29		
145	48.79-50.29	1.52	" ", 7-10% qtz+cal stringers, 1- 2% diss. cp	0.45	0.39		
146	50.29-51.81	1.52	и и	0.41	0.49		
147	51.81-53.34	1.52	7-10% diss.+veinlet py, tr1% diss. cp	0.31	0.47		
148	53.34-54.86	1.52	5-7% " ", 3-5% qtz+cal stringers, tr. to less than 1% cp	0.38	0.39		
149	54.86-56.39	1.52	10-15% diss.+veinlet py, 7-10% qtz+cal stringers, 1- 2% diss. cp	0.49	0.30		
150	56.39-57.91	1.52	7-10% diss.+veinlet py, 5-7% qtz+cal stringers, tr- 1% cp	0.41	0.29		
151	57.91-59.44	1.52	5-7% """. Lithic tuff begins	0.50	0.34		
152	59.44-60.66	1.22	и в	0.46	0.28		
153	60.66-62.48	1.83	н	0.35	0.35		
154	62.48-64.00	1.52		0.48	0.51		
155	64.00-65.53	1.52	" ", fault gouge, clay	0.15	0.08		
156	65.53-67.05	1.52	" " fault gouge, clay	0.01	0.01		
157	67.05-68.58	1.52	", sheared 70 deg. to c.a., intense clay alt.	0.01	0.06		

	TEUTON RE	SOURCES	CORP. DRILL LOGS TENNYSON PROJECT		
DRILL HK	DLE: TN92-02 BY: KEN KONKIN		AZIMUTH: 037 DEGREES DIP ANGLE: LENGTH: 115.82 M DATE LOGGED:	-65 DEGRE	EES 1992
Sample #	Sample Interval (metres)	Width (m)	Description	Cu	Au ma/t
450	(8 58 70 10	4 50			3 -4 -
150		1.52		0.01	0.04
129	70.10-71.62	1.52	same as 8/15/, platey 80 deg. to c.a.	0.01	0.05
160	71.62-73.76	2.13	Black schistose argillite, decomposed to clay, intensely sheared to mud, 2-3% dis py	0.01	0.06
	73.76-85.04		Pale, grey-green to med. grey-green lithic crystal tuff; laminated, well-sheared, leached, intense seritcite, clay alteration; 5-7% cal+qtz sweats and stringers, gouge common; 3-5% pervasive diss. + veinlet pyrite		
161	73.76-75.59	1.83	Laminated 70-80 deg. to c.a., clay gouge.	0.01	0.01
162	75.59-77.42	1.83	Laminated 55-60 deg. to c.a., 7-10% diss. py	0.02	0.03
163	77.42-79.25	1.83	10-15% qtz cal stringers, 5-7% diss py, silicified	0.01	0.01
164	79.25-81.08	1.83	Barren of sulfide minerals	0.02	0.15
165	81.08-82.91	1.83	u u	0.01	tr
166	82.91-85.04	2.13	5-7% v.f.g diss py, shear zone	0.06	0.06
	85.04-90.83		Charcoal grey lithic tuff, v.f.g black vol. sed matrix with pale grey vol clasts, severely sheared, 15-20% calcite sweats and veinlets. Convoluted finely laminated texture, no visible sulfides.		
167	85.04-86.87	1.83	As described in general description immediately above	0.01	0.03
168	86.87-88.70	1.83	u u	0.02	0.01
169	88.70-90.83	2.13	n	0.02	0.02
	90.83-109.12		Pale grey-green lithic crystal tuff with 15-20% calcite sweats and veinlets, minor qtz stringers with diss cp, 2-3% diss pyrite, strong chl+clay alteration well-sheared, foliated 45 deg. to c.a.		
170	90.83-92.35	1.52	Strong ser alteration, 20-25% qtz stringers, 5-7% diss + veinlet py	0.07	0.08
171	92.35-93.88	1.52	3-5% diss py, 5-7% qtz veinlets & stringers	0.17	0.03
172	93.88-95.40	1.52	5-7% diss py, 3-5% "	0.15	0.03

TN 92-02 P. 3

•

	TEUTON RE	SOURCES	CORP.	DRILL LOGS	TENNYSON PROJECT		
DRILL HO LOGGED E	DLE: TN92-02 BY: KEN KONKIN		AZIMUTH: LENGTH:	037 DEGREES 115.82 M	DIP ANGLE: Date logged:	-65 DEGRI OCT. 1,	EES 1992
Sample #	Sample Interval (metres)	Width (m)	Descriptio	on		Cu and	Au gna/t
173	95.40-96.93	1.52	5-7% diss	ру, 5-7%	11 11	0.16	0.06
174	96.93-98.45	1.52	1-2% diss	ру		0.19	0.07
175	98.45-99.97	1.52	2-3% diss	py, 5-7% qtz strin	gers + veinlets	0.21	0.03
176	99.97-101.50	1.52	н	", 3-5% "	11	0.21	0.05
177	101.50-103.02	1.52	11		11	0.18	0.03
178	103.02-104.55	1.52	1-2% diss shattered	py, 3-5% " core	۳,	0.11	0.01
179	104.55-106.07	1.52	3-5% diss less than	ру, 5-7% " 1% ср	", tr to	0.32	.04
180	106.07-107.59	1.52	predomina veinlets	ntly gouge with 5-7	% qtz stringers +	0.31	0.03
181	107.59-109.12	1.52			u	0.13	0.03
	109.12-115.82		Medium gr deg. to c veinlets, alt, mode	ey-green lithic tur .a., weakly altered tr to less than 19 rate clay alteratio	f, finely laminated, 50 1, 3-5% calcite sweats & 6 diss py. Strong chl on		
					· · · · · · · · · · · · · · · · · · ·		
182	109.12-111.25	2.13	As in gen	eral description in	mediately above	0.01	tr
183	111.25-113.38	2.13	11		11	0.01	tr
184	113.38-115.82	2.44	" 4cm clay	qouqe.	", last END OF HOLE	0.05	0.03

TN 92-02 P. 4

	TEUTON	RESOURCE	S CORP. DRILL LOGS TENNYSON PROJE	ст	
DRILL HO LOGGED B	XLE: TN92-03 3Y: KEN KONK	IN	AZIMUTH: 165 DEGREES DIP ANGLE: LENGTH: 100.58 M DATE LOGGED:	-65 DEGREES SEPT. 26, 19	92
Sample #	Sample Interval (metres)	Width (m)	Description	Cu	Au gm/t
	0.00-1.52		Casing; fractured outcrop, no overburden.		
	1.52-100.5		Pale-medium greenish gray crystal/ash tuff, very we silicified; 7-10% qtz and calcite stringers and veinlets, 5-7% disseminated and veinlet pyrite, tra- to 1% disseminated chalcopyrite in qtz/cal/chl stringers and disseminated in host; strong sericite chlorite and clay alteration; blocky, but very competent core; schistose, locally porphyritic.	ll ce	
87185	1.52-3.05	1.52	vuggy limonitic fracture, bleached, 7-10% diss+vein py, tr diss cp	let 0.38	0.69
186	3.05-4.57	1.52	3-5% qtz+cal veinlets, stringers; 7-10% diss+veinle py, tr to less than 1% cp	t 0.32	0.41
187	4.57-6.09	1.52	vuggy limonitic fractures, bleached, 3-5% diss + veinlet py	0.39	0.37
188	6.09-7.62	1.52	" ", 5-7% diss + veinlet py, tr to 1% diss cp	0.32	0.23
189	7.62-9.14	1.52	7-10% qtz+cal stringers & veinlets, ""	0.30	0.27
190	9.14-10.66	1.52	", 7-10% diss + veinlet py, tr to less than 1% diss cp	0.35	0.32
191	10.66-12.18	1.52	5-7% " ", " ".	0.27	0.30
192	12.18-13.71	1.52	Blocky strong lim ox. on fracture planes, gouge at 42.5 deg.	0.37	0.27
193	13.71-15.24	1.52	Shattered core; 3-5% qtz+cal stringers, 5-7% diss p	y 0.35	0.25
194	15.24-16.76	1.52	Porphyritic, epiclastic, 3-5% veinlet py, 2-3% diss	py 0.54	0.44
195	16.76-18.28	1.52	н	" 0.19	0.14
196	18.28-19.81	1.52	2-3% qtz+cal stringers, porphyritic, 5-7% veinlet + diss py	0.23	0.21
197	19.81-21.33	1.52	3-5% " ", 7-10% veinlet+diss py, foliated 30 deg. to c.a.	0.38	0.27
198	21.33-22.86	1.52	u	0.44	0.39
199	22.86-24.38	1.52	5-7% qtz+cal stringers, well silicified, 7-10% veinlet, diss py.	0.35	0.31
200	24.38-25.90	1.52	10-15% qtz+cal stringers, random orientation, diss	ру 0.38	0.29
201	25.90-27.42	1.52	7-10% random qtz+cal stringers with 1-2% diss cp cutting host	0.18	0.13
202	27.42-28.96	1.52	3-5% qtz stringers along foliation 60 deg. to c.a., 10% diss+veinlet pyrite	7- 0.18	0.19

TN 92-i 3 p. ()

`

	TEUTON	RESOURCE	S CORP. DRILL LOGS TENNYSON PROJECT		
DRILL HO LOGGED B	NLE: TN92-03 Y: Ken Konk	IN	AZIMUTH: 165 DEGREES DIP ANGLE: -65 D LENGTH: 100.58 M DATE LOGGED: SEPT.	EGREES	n
Sample #	Sample Interval (metres)	Width (m)	Description		Au gm/t
20 3	28.96-30.48	1.52	epiclastic, 7-10% diss+veinlet py, 3-5% qtz veinlets, stringers	0.23	0.21
204	30.48-32.00	1.52	" ", gouge at 31.85m	0.17	0.17
205	32.00-33.52	1.52	" ", intense clay alteration, sheared	0.26	0.32
206	33.52-35.05	1.52	и н	0.29	0.37
207	36.58-36.58	1.52	u n	0.23	0.29
208	36.58-38.10	1.52	" gouge at 37.50-38.10m	0.23	0.30
209	38.10-39.62	1.52	intensely sheared, clay/fault gouge, pale gray	0.33	0.35
210	39.62-41.15	1.52	и и	0.27	0.17
211	41.15-42.67	1.52	и и	0.20	0.19
212	42.67-44.19	1.52	", 75% recovery.	0.19	0.21
213	44.19-45.72	1.52	10-15% qtz+cal stringers, 7-10% diss+veinlet py	0.22	1.72
214	45.72-47.24	1.52	sheared, schistose and blocky	0.31	0.27
215	47.24-48.79	1.52	" ", schistosity 45 deg. to c.a.	0.31	1.80
216	48.79-50.29	1.52	3-5% qtz veinlet + stringers, 5-7% diss pyrite	0.33	1.17
217	50.29-51.81	1.52	as above, shattered core	0.23	0.17
218	51.81-53.34	1.52	as above, shattered core	0.27	0.27
219	53.34-54.86	1.52	shattered core, 5-7% diss + veinlet pyrite	0.27	0.32
220	54.86-56.39	1.52	" ", 3-5% qtz stringers	0.35	0.47
221	56.39-57.91	1.52	U II	0.29	0.23
222	57.91-59.44	1.52	strong clay, intense sericite alteration; laminated 65 deg. to core axis, 3-5% veinlet + diss pyrite, tr to 1% diss chalcopyrite	0.40	1.39
223	59.44-60.96	1.52	intense sericite alt., 3-5% diss py + veinlets, tr-1% diss cp	0.36	0.27
224	60.96-62.48	1.52	intense sericite alt., 5-7% diss + veinlet py, 1-2% diss cp	0.59	0.31
225	62.48-64.00	1.52	" ", tr-1% diss cp	0.38	0.19
226	64.00-65.53	1.52	silicified, strong ser. alt., 7-10% diss + veinlet py	0.54	0.29
227	65.53-67.05	1.52	intense clay + ser. alt., well-sheared, 5-7% diss _ veinlet py, tr to less than 1% diss cp	0.37	0.27
228	67.05-68.58	1.52	as above with 2-3% gtz + cal stringers	0.45	0.33

TN 92-03 P. (2)

•

	TEUTON	RESOURCE	S CORP.	DRILL LOGS	TENNYSON PROJECT		
DRILL HO LOGGED E	DLE: TN92-03 3Y: Ken Konk	IN	AZIMUTH: LENGTH:	165 DEGREES 100.58 M	DIP ANGLE: -65 DATE LOGGED: SEP	DEGREES 1. 26, 19	92
Sample	Sample	Width	Description			Cu	Au
	(metres)	(111)				X	gm/t
229	68.58-70.10	1.52	5-7% qtz + c less than 1%	al veinlets, 3-5% o cp.	diss + veinlet py, tr to	0.48	0.25
230	70.10-71.62	1.52	as above			0.48	0.23
231	71.62-73.15	1.52	as above			0.54	0.25
232	73.15-74.68	1.52	as above, sh	attered core, tr t	о 1% ср	0.68	0.40
233	74.68-76.20	1.52	as above, sh	attered core, goug	e	0.51	0.30
234	76.20-78.03	1.83			11	0.42	0.25
235	78.03-79.25	1.22	н		u	0.26	0.17
236	79.25-80.78	1.52	5-7% qtz cal	stringers, 3-5% d	iss py, tr diss cp	0.22	0.25
237	80.78-82.30	1.52	intense ser. 7% diss + ve	+ clay alt., 3-5% einlet py, tr diss	qtz + cal veinlets, 5- cp	0.19	0.38
238	82.30-83.82	1.52	11		u	0.21	0.17
239	83.82-85.35	1.52	н		и	0.42	0.32
240	85.35-86.87	1.52	u	", lamin	ated 50 deg. to c.a.	0.27	0.20
241	86.87-88.40	1.52	as above wit	h massive barren q	tz-cal stringer	0.27	0.29
242	88.40-89.92	1.52	as 87237			0.11	0.25
243	89.92-91.44	1.52	as 87237, tr	to 1% diss cp		0.46	0.27
244	91.44-92.97	1.52	11	11		0.26	0.14
245	92.97-94.49	1.52	н	н		0.35	0.25
246	94.49-96.02	1.52	as 87237			0.34	0.24
247	96.02-97.54	1.52	as 87237			0.28	0.15
248	97.54-99.06	1.52	as 87237			0.16	<u>0.37</u>
249	99.06-100.6	1.52	mottled blac (?), 3-5% qt gouge at enc	ck/pale lavender gr z + cal stringers, d of interval. EOH	ey granitized ash tuff 2-3% diss veinlet py, (due to hole collapse)	0.23	<u>0.17</u>

TN 92-33 P (3)

•

	TEUTON	RESOURCES	S CORP. DRILL LOGS TENNYSON PROJECT	_	
DRILL HO LOGGED B	LE: TN92-04 Y: KEN KONK	IN	AZIMUTH: 108 DEGREES DIP ANGLE: -45 D LENGTH: 42.37 M DATE LOGGED: OCT.	EGREES 8, 1997	2
Sample #	Sample Interval (metres)	Width (m)	Description	Cu X	Au gm/t
	0.00-3.05		Casing; fractured outcrop/subcrop, no overburden.		
	3.05-42.37		Pale-medium gray-green, mottled, ash flow tuff, strongly leached; finely laminated 70 deg. to core axis; strong chlorite alteration; 5-7% dissem + veinlet pyrite, 3-5% calcite + quartz sweats & veinlets; epiclastic, minor intercalated crystal tuff; moderate to strong sercitite talc alteration, weakly to moderately silicified.		
87250	3.05-4.57	1.52	Strong lim ox., intense ser alt, 2-3% diss pyrite	0.02	0.22
251	4.57-6.10	1.52	" , 3-5% diss + veinlet pyrite	0.06	1.46
252	6.10-7.62	1.52	mod lim ox. on fracture planes, 7-10% diss+veinlet py	0.03	0.10
253	7.62-9.14	1.52	" ", 5-7% diss+veinlet py	0.09	0.11
254	9.14-10.67	1.52	", 7-10% "	0.08	0.14
255	10.67-12.19	1.52	" ", 10-15% " "	0.01	0.13
256	12.19-13.71	1.52	", 7-10% "	0.02	0.08
257	13.71-15.24	1.52	",""," banded at 70 deg. to c.a.	0.05	0.28
258	15.24-16.76	1.52	As above, intense clay alteration, sheared.	0.04	0.35
259	16.76-18.28	1.52	As above with 10-15% diss+veinlet py	0.10	2.34
260	18.28-19.81	1.52	As above with 7-10% diss+veinlet py	0.02	0.19
261	19.81-21.33	1.52	As above with 10-15% diss+veinlet py	0.03	0.28
262	21.33-22.86	1.52	3-5% diss+veinlet py, mod-strong lim ox.	0.02	0.42
263	22.86-24.38	1.52	7-10% " " , banded 65 deg to c.a.	0.03	0.41
264	24.38-25.90	1.52	10-15% " " , interstitial	0.02	0.35
265	25.90-27.42	1.52	7-10% " "	0.02	0.16
266	27.42-28.96	1.52	10-15% " " , interstitial	0.02	0.73
267	28.96-30.48	1.52	7-10% " "	0.02	0.19
268	30.48-32.00	1.52	р п	0.01	0.30
269	32.00-33.52	1.52	й п	0.02	0.18
270	33.52-35.05	1.52	10-15% " " , with barren qtz+cal stringer at 70 deg. to c.a.	0.03	0.39
271	36.58-36.58	1.52	7-10% " "	0.02	0.22

•

TN 92-34 PC

	TEUTON	RESOURCES	CORP.	DRILL LOGS	TENNYSON PRO	JECT		
DRILL HU LOGGED	OLE: TN92-04 BY: KEN KONK	IN	AZIMUTH: LENGTH:	108 DEGREES 42.37 M	DIP ANGLE: DATE LOGGED:	-45 D OCT.	EGREES 8, 1997	2
Sample #	Sample Interval (metres)	Width (m)	Description					Au gw/t
272	36.58-38.10	1.52	11	11			0.03	0.24
273	38.10-39.62	1.52	10-15% "	11			0.02	0.17
274	39.62-41.15	1.52	7-10% "	11			0.01	0.09
275	41.15-42.39	1.24	5-7% "	", epiclastic			0.01	0.10
			END OF HOLE					

TN 92 -04 P. (2)

•

	TEUTON	RESOURCE	S CORP.	DRILL LOGS	TENNYSON PRO	JECT	
DRILL HO	LE: TN92-05 Y: KEN KONK	IN	AZIMUTH: LENGTH:	108 DEGREES 56.69 M	DIP ANGLE: DATE LOGGED:	-65 DEGREES OCT. 8, 1997	2
Sample #	Sample Interval (metres)	Width (m)	Description	· · · · · · · · · · · · · · · · · · ·		Cu	Au gm/t
	0.00-1.52		Casing; frac	ctured outcrop, no	overburden.		
	1.52-56.69		Pale-medium laminated ar intense chlo moderately s along foliar	gray-green, mottle nd intercalated wit prite-talc-sericite silicified; 3-5% di tion/banding at 55	d, ash flow tuff; f h minor crystal tuf alteration, weakly ssem + veinlet pyri deg to core axis.	inely f, to te	
87276	1.52-3.05	1.52	2-3% qtz ve	inlets/stringers, 3	-5% diss py, strong	lim 0.01	0.10
277	3.05-4.57	1.52	Intense lim	ox., 3-5% diss pyr	ite	0.02	0.14
278	4.57-6.10	1.52	" limonite	" , 5-7% diss + v	einlet pyrite, vugg	y 0.09	0.39
279	6.10-7.62	1.52	Strong lim	ox., 5-7% "	11	0.04	0.23
280	7.62-9.14	1.52	" "a	long fracture plane	s, 5-7% ""	0.04	0.16
281	9.14-10.67	1.52	As above			0.07	0.11
282	10.67-12.19	1.52	7-10% diss	+ veinlet py		0.06	0.10
283	12.19-13.71	1.52	5-7% "	11		0.01	0.13
284	13.71-15.24	1.52	7-10% "	11		0.01	0.10
285	15.24-16.76	1.52	3-5% "	II		0.02	0.14
286	16.76-18.28	1.52	7-10% "	łł		0.05	0.26
287	18.28-19.81	1.52	7-10% "	11		0.03	0.56
288	19.81-21.33	1.52	10-15% "	", minor	2-3% qtz stringers	0.03	0.39
289	21.33-22.86	1.52	7-10% "	" along	schistosity 55 to c	.a. 0.05	0.38
290	22.86-24.38	1.52	5-7% " planes	", lim	ox. along fracture	0.03	0.36
291	24.38-25.90	1.52	7-10% "	н		0.02	0.28
292	25.90-27.42	1.52	10-15% "	11		0.02	0.96
293	27.42-28.96	1.52	7-10% "	11		0.02	0.2
294	28.96-30.48	1.52	10-15% "	", with	qtz+cal veinlets	0.02	0.18
295	30.48-32.00	1.52	7-10% "			0.02	0.1

296

297

2**98**

32.00-33.52

33.52-35.05

35.05-36.58 1.52

1.52

1.52

5-7% "

5-7% "

7-10% "

", with qtz+cal veinlets

", "

•

н

11

0.02

0.01

0.01

0.14

0.19

0.17

•

TN 92-05 P ()

TN	92	-05
	P	2

	TEUTON	RESOURCE	S CORP.	DRILL LOGS	TENNYSON PRO	JECT		
DRILL HO LOGGED E	NLE: TN92-05 XY: KEN KONK	IN	AZIMUTH: LENGTH:	108 DEGREES 56.69 M	DIP ANGLE: DATE LOGGED:	-65 D OCT.	EGREES 8, 1997	2
Sample #	Sample Interval (metres)	Width (m)	Description				Cu X	Au gw/t
299	36.58-38.10	1.52	5-7% diss+ve	inlet py			0.02	0.56
300	38.10-39.62	1.52	3-5% "	11			0.02	0.17
301	39.62-41.15	1.52	5-7% "	", with qt:	z+cal veinlets, stri	ngers	0.02	0.18
302	41.15-42.67	1.52	7-10% " plus trace t	ہ , س o less than 1% cha	alcopyrite	۳,	0.03	0.46
303	42.67-44.19	1.52	10-15% "	", rest as a	above		0.02	0.58
304	44.19-45.72	1.52	7-10% "	<u>u, n</u>			0.02	0.16
305	45.72-47.24	1.52	7-10% "	и, и	11		0.02	0.10
306	47.24-48.77	1.52	5-7% "	", 5-7% bai	rren qtz stringers		0.02	0.06
307	48.77-50.29	1.52	7-10% "	11, 44	н		0.02	0.13
308	50.29-51.81	1.52	10-15% "	", <u>5</u> -7% ba	rren qtz stringer		0.02	0.14
309	51.81-53.34	1.52	7-10% "	", 10-15% "	ï		0.02	0.13
310	53.34-54.86	1.52	7-10% "	", 3-5% "	11		0.01	0.10
311	54.86-56.69	1.83	7-10% "	<u>", 7</u> -10% "	11		0.02	0.14
			END OF HOLE					

•

APPENDIX IV

ASSAY CERTIFICATES

.

																	6	7 CORE	SAMPLI	ES RECE	IVED C	CTOBER	10, 19	92								
RI.	DESCRIPTION	V) (bbp)	AG	AL(%)	AS	в	BA	BI	CA (%)	CD	00	CR	ເບ	PX(\$)	K(\$)	LA	HG(%)	ю	ю	NA(\$)	MI	P	PB	SB	5 H	SR	TI(%)	U	v	۷	Y	ZN
1	- 87098	580	2.6	.55	435	4	50	<5	2.53	1	21	76	6339	5.17	. 19	<10	.34	708	25	<.01	5	900	90	10	<20	207	<.01	<10	,	<10	4	321
2	- 87099	430	2.2	.52	430	4	60	<5	4.93	<1	20	64	3218	7.29	. 09	10	.86	1783	30	<.01	6	760	14	15	<20	379	<.01	10	,	<10	5	30
3	- 87100	385	2.2	.61	360	8	50	<5	2.68	5	19	70	3988	5.79	. 23	<10	. 33	806	302	<.01	3	920	168	115	<20	220	<.01	<10	10	<10	4	647
4	- 87101	325	1.2	.51	125	4	55	<5	2.83	<1	25	112	3860	4.37	. 25	<10	. 38	763	85	<.01	4	1190	10	5	<20	212	<.01	<10	8	<10	5	57
5	- 87102	350	1.2	.78	40	4	55	<5	2.65	<1	26	45	3697	4.69	. 38	<10	.37	528	24	<.01	2	1350	2	5	<20	172	<.01	<10	11	<10	5	25
6	- 87103	575	2.0	. 63	25	4	60	<5	3.70	<1	21	34	5960	4.02	. 27	<10	.60	781	35	<.01	3	1100	2	5	<20	252	<.01	<10	13	<10	5	45
7.	- 87104	390	1.2	. 77	20	4	60	<5	3.03	<1	24	42	4233	3.79	.40	<10	. 46	662	17	<.01	3	1310	2	5	<20	192	<.01	<10	15	<10	5	26
	- 87105	295	1.4	. 50	180	4	50	<5	1.31	<1	22	36	3754	4.28	. 27	<10	.11	221	21	<.01	2	1350	6	<5	<20	82	<.01	<10	7	<10	3	22
9 -	- 87106	565	1.8	.67	45	4	55	<5	2.30	<1	24	27	3905	4.08	. 34	<10	. 33	506	13	<.01	3	1390	<2	5	<20	133	<.01	<10	10	<10	5	46
10 -	- B7107	380	1.6	. 56	25	4	65	<5	2.96	<1	20	28	4459	3.69	. 26	<10	.42	479	25	<.01	3	1280	2	<5	<20	183	<.01	<10	10	<10	6	39
11 -	- 87108	200	1.2	. 69	30	4	65	<5	2.90	<1	22	19	3679	3.91	. 37	<10	. 38	464	16	<.01	2	1330	2	<5	<20	162	<.01	<10	11	<10	6	31
12 -	- 87109	175	.4	.80	25	2	65	<5	3.72	<1	19	45	1345	4.32	. 2 2	<10	. 56	388	13	<.01	14	1380	<2	5	<20	272	<.01	<10	17	<10	5	18
13 -	- 87110	395	1.8	.71	25	4	55	<5	2.81	<1	20	50	3711	4.02	.34	<10	. 29	477	31	<.01	3	1240	<2	<5	<20	177	<.01	<10	11	<10	5	30
14 -	- 87111	260	1.4	.63	95	2	60	<5	3.49	<1	21	41	3230	4.11	. 23	<10	.23	424	26	<.01	5	1240	6	5	<20	244	<.01	<10	11	<10	5	32
15 -	87112	15	<.2	1.37	20	2	75	<5	4.58	<1	14	48	163	3.51	.16	<10	1.11	929	10	.01	16	1270	4	5	<20	298	<.01	<10	48	<10	5	36
16 -	- 87113	90	. 2	.81	50	2	55	<5	2.51	<1	23	36	134	4.47	. 13	<10	. 59	418	12	<.01	32	1230	4	10	<20	144	<.01	<10	23	<10	2	40
17 -	- 87114	45	. 2	.78	180	2	50	<5	1.92	<1	24	30	114	5.42	. 1 2	<10	. 42	358	13	<.01	39	1370	6	25	<20	108	<.01	30	21	<10	2	19
10 -	- 87115	380	1.0	.89	30	4	55	<5	. 96	<1	17	47	3086	4.79	. 26	<10	.40	538	6	<.01	4	1240	6	5	<20	73	<.01	<10	26	<10	4	63
19 -	- 87116	450	2.0	. 91	15	2	55	<5	1.16	<1	20	24	4006	5.31	.23	<10	.51	536	6	<.01	4	1130	12	5	<20	107	<.01	<10	33	<10	4	84
20 -	- 87117	405	2.0	. 42	85	4	45	<5	. 75	<1	23	62	4725	6.38	.24	<10	.08	496	8	<.01	6	1100	28	10	<20	57	<.01	10	8	<10	2	78
21 -	- 87118	345	1.8	1.06	20	2	70	<5	2.01	1	19	136	4079	5.40	. 2 2	<10	.67	622	14	<.01	3	1270	52	5	<20	301	<.01	<10	50	<10	5	191
22 .	- 87119	400	2.4	.70	425	4	55	<5	3.16	<1	16	41	2089	6.70	. 22	10	. 57	1447	4	<.01	1	1140	32	25	<20	229	<.01	<10	17	<10	4	109
23 -	- 87120	>1000	7.2	. 21	1170	2	60	<5	2.88	2	11	38	779	11.56	<.01	10	.73	1755	3	<.01	2	470	136	255	<20	123	<.01	20	4	<10	1	345
24 -	- 87.121	575	5.2	. 30	225	2	30	<5	1.73	12	10	34	2069	4.08	.15	<10	.38	1522	4	<.01	2	660	416	280	<20	72	<.01	<10	6	<10	2	1869
25 ·	- 87122	425	4.6	. 51	155	<2	35	<5	. 6 4	50	19	37	2514	3.75	. 19	<10	.17	361	5	<.01	2	1010	2172	50	<20	53	<.01	<10	18	<10	4	5624

VALUES IN PPH UNLESS OTHERWISE REPORTED

ECO-TECH LABORATORIES LTD. 10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 OCTOBER 20, 1992 FAX - 604-573-4557

TEUTON RESOURCES CORP. - ETK 92-556 602 - 675 WEST HASTINGS STREET VANCOUVER, B.C. V6B 1N2

ATTENTION: DINO CREMONESE

PROJECT: NONE GIVEN

	Page 2 TRUT	ION RESOUR	CES I	TX 92-	556								OCTO	BER 20,	1992									-	-							
BT#	DESCRIPTIC	W W (bbp)	AG	AL(%)	AS	в	BA	BI	CA(1)	CD	000	CR	CU	FR(%)	K(%)	LA	HG(%)	HQI	н	D NA(\$)	MI	₽	PB	SB	SN	LABOR	TI(\$)	5 LTD. U	v		Y	Z 11

27	- 87123	505	1.0	1.10	15	2	55	<5	1.33	<1	38	29	5436	5.52	.11	<10	. 48	412	•	.01	1	800	42	<5	<20	194	<.01	<10	75	<10	2	158
20	- 67124	545	4.0		30	1	50	<5	1.89	1	18	37	3984	4.16	. 21	<10	. 31	715	4	<.01	2	1070	20	5	<20	168	<.01	<10	31	<10	3	250
20	- 8/125	255	1.4	.83	20	2	45	<5	1.01	<1	13	43	2980	3.47	. 31	<10	. 26	380	4	<.01	3	1060	4	5	<20	92	<.01	<10	21	<10	3	38
29	- 8/126	340	. 8	.87	10	2	50	<5	1.47	<1	11	32	2960	3.52	.19	<10	.45	381	3	<.01	1	860	<2	5	<20	152	<.01	<10	28	<10	3	42
30 .	- 8/12/	590	2.6	1.21	20	2	50	<5	1.66	<1	21	36	5890	5.78	. 21	<10	. 49	443	5	<.01	1	770	18	<5	<20	213	<.01	<10	41	10	2	100
31 -	- 87128	265	1.2	. 99	15	2	45	<5	3.21	<1	15	14	2923	4.35	.13	<10	. 65	935		< 01	,	990	,	10	< 30		< 01		24			
32 -	- 87129	160	. 6	. 79	25	2	70	<5	7.71	<1	10	18	1471	3.06	. 20	<10	1.29	1700	1	< 01		750	-1	10	<20	3/1	<.01	10	26	<10	•	
33 -	- 87130	230	. 8	.71	10	2	45	<5	2.62	<1	18	25	2216	3.94	. 26	<10	. 38	450	20	< . 01	,	1060		10	<20	334	< 01	<10	20	<10	10	12
34 -	- 87131	210	. 6	. 46	30	2	35	<5	1.72	<1	18	50	2135	3.80	. 25	<10	.14	338	29	<.01	;	1030	•		<20	120	< 01	<10	13	<10	1	14
35 -	- 87132	255	.6	. 41	40	2	35	<5	1.30	<1	23	38	2029	4.52	. 28	<10	.07	234	16	< 01		1030		3	<20	120	<.01	<10		<10	4	13
																						050	~*	•••	120	121	<.vi	410	•	<10	4	y
36 -	87133	325	. 8	. 34	60	2	40	<5	1.79	<1	18	32	2581	3.64	. 22	<10	.14	403	14	<.01	2	910	10	<5	<20	203	<.01	<10	5	<10	3	52
37 -	87134	200	.6	. 37	170	2	30	<5	.91	1	13	31	1443	3.34	. 22	<10	.04	194	7	<.01	2	1070	30	5	<20	82	<.01	<10	5	<10	,	272
38 -	87135	435	1.0	. 37	100	2	40	<5	1.01	<1	14	31	3042	3.69	. 22	<10	. 30	417	5	<.01	3	910	38	5	<20	146	<.01	<10		<10		172
39 -	• •7136	360	1.0	. 55	25	2	60	<5	2.71	<1	18	27	3394	4.48	. 29	<10	.67	374	5	<.01	1	1160	2	<5	<20	265	<.01	<10	17	<10	1	45
40 -	87137	315	. 8	. 46	345	2	60	<5	3.08	<1	18	44	2672	4.52	. 21	<10	.51	455	4	<.01	3	1260	2	5	<20	244	<.01	<10	13	<10		,,
																															•	••
41 -	87138	190	. 6	.98	100	2	70	<5	3.90	<1	21	52	2781	4.59	. 36	<10	. 43	757	11	<.01	5	1410	<2	10	<20	309	<.01	10	19	<10	7	24
42 -	87139	255	. 8	. 56	60	2	55	<5	2.39	<1	18	38	2947	4.38	. 27	<10	.43	340	6	<.01	3	1250	<2	<5	<20	173	<.01	<10	14	10		24
43 -	87140	215	.4	.65	50	2	60	<5	2.97	<1	18	26	2350	3.84	. 34	<10	.43	510	,	<.01	2	1140	6	5	<20	212	<.01	<10	16	<10		61
44 -	87141	200	. 6	. 52	350	2	45	<5	2.19	3	16	45	2121	3.67	. 23	<10	.17	368	6	<.01	2	1360	104	5	<20	152	<.01	<10	11	<10	;	594
45 -	87142	195	.4	. 79	120	2	60	<5	3.32	<1	17	37	1467	4.16	.40	<10	.37	488		.01	2	1450	<2	5	<20	248	<.01	<10	24	<10	3	37
46 -	87143	210	. 2	.81	30	2	70	<5	3.75	<1	14	15	1168	3.50	.25	<10	53	490														
47 -	87144	295	. 8	.75	60	2	65	<5	3.24	<1	18	36	3366	3.90		<10		450				1300	<2	~	<20	340	<.01	<10	27	<10	4	22
48 -	87145	385	1.6	. 88	65	2	50	< 5	1.81	<1	24	28	4553	5.40	. 23	<10		45.0		<.01		1150	4	2	<20	290	<.01	<10	19	<10	5	30
49 -	87146	490	1.8	.90	55	4	60	<5	2.19	<1	26	70	4130	\$ 32	35	<10		430	11	<.01	2	1080	<2	<5	<20	127	<.01	<10	23	<10	3	36
50 -	87147	475	1.8	. 91	40	2	60	<5	2.15	<1	21	27	3081	5 48		<10		333	20	<.01	5	1210	8	5	<20	212	<.01	10	19	<10	4	40
						-								5.40	. 30	10	. 34	•/•	13	<.01	3	1330	6	5	<20	150	<.01	<10	16	<10	4	46
51 -	87148	395	2.0	.73	55	2	55	<5	3.18	<1	25	26	3780	5.04	. 28	<10	. 58	989	21	<.01	3	1320	12	5	<20	242	<.01	<10	15	<10	5	0)
52 -	87149	305	2.2	.94	35	2	65	<5	3.56	<1	20	25	4850	5.15	. 2 3	<10	.81	777	14	<.01	4	1240	6	10	<20	304	<.01	<10	26	10	6	67
53 -	87150	295	2.2	.73	115	2	50	<5	2.21	20	26	30	4132	5.99	. 26	<10	. 36	620	14	<.01	5	1330	692	5	<20	166	<.01	<10	16	50	3	2688
54 -	87151	340	1.6	1.33	45	2	65	<5	2.76	<1	28	21	5045	5.94	. 33	<10	.73	644	7	<.01	4	1480	14	10	<20	208	<.01	<10	35	10	5	104
55 -	87152	280	1.4	. 98	40	2	65	<5	3.61	<1	27	16	4593	5.69	. 31	<10	.56	523	13	<.01	3	1660	6	5	<20	296	<.01	<10	26	10	6	43

Page	3 TEUTON RI	SOURCES	ETK 9	2-556								00	TOBER	20, 199	2								EC.	0- TE C	H LABO	RATOR	IS LTD					
8T#	DESCRIPTION	NU(PPb)	AG	AL(%)	AS	В	BA	BI	CA(1)	CD	co	CR	CU	72(1)	K(%)	LA	HG(%)	Mai	ю	NA(∛)	MI	P	PB	88	SN	SR	TI(%)	U	v	W	Y	ZN
56 -	87153	345	1.2	.91	45	2	55	<5	4.01	<1	23	8	3453	5.21	. 26	<10	.55	564	24	<.01	2	1390	<2	5	<20	350	<.01	<10	23	<10	7	56
57 -	87154	510	2.0	1.13	60	2	60	<5	3.78	<1	30	7	4818	5.94	. 23	<10	.68	584	30	<.01	3	1470	6	5	<20	345	<.01	<10	35	40	7	120
58 -	87155	80	. 4	. 98	25	2	60	<5	4.01	<1	19	7	1518	4.07	.24	<10	.90	534	15	<.01	8	1450	<2	5	<20	278	<.01	<10	32	<10	6	29
59 -	87156	15	. 2	.88	30	2	60	<5	4.66	<1	17	14	123	3.79	. 24	<10	1.15	660	8	<.01	26	1270	<2	10	<20	217	<.01	<10	23	<10	3	43
60 -	87157	60	. 4	.88	115	2	65	<5	5.25	<1	17	10	109	4.89	.15	<10	1.11	1288	5	<.01	4	1780	8	10	<20	202	<.01	<10	21	<10	4	49
61 -	87158	40	. 2	1.17	20	2	80	<5	6.75	<1	15	13	65	4.71	. 21	<10	1.47	1241	3	<.01	13	1100	<2	10	<20	294	<.01	<10	21	<10	4	49
62 -	87159	55	<.2	1.76	85	2	75	<5	6.25	<1	17	23	86	6.54	.13	<10	2.07	1229	4	<.01	18	1480	<2	10	<20	296	<.01	<10	60	<10	4	49
63 -	87160	60	.4	1.00	95	<2	55	<5	6.51	<1	17	19	81	5.23	.12	<10	1.24	1444	4	<.01	15	1210	<2	10	<20	300	<.01	<10	23	<10	6	96
64 -	87161	5	.4	1.58	30	2	80	<5	5.11	<1	16	12	109	4.22	.14	<10	1.00	955	1	<.01	,	1720	4	5	<20	257	<.01	<10	37	<10	5	70
65 -	87162	35	. 6	1.03	40	2	65	<5	6.79	<1	15	17	152	4.55	.17	<10	.54	1101	1	<.01	4	1590	2	10	<20	318	<.01	<10	25	<10	5	53
66 -	87163	15	.4	1.61	25	2	95	<5	6.61	<1	14	10	84	4.14	.17	<10	1.03	1155	<1	<.01	3	1530	<2	5	<20	354	<.01	<10	40	<10	6	62
67 -	87164	155	1.0	1.14	60	2	65	<5	6.62	<1	14	17	174	4.01	.15	<10	. 69	895	5	<.01	4	1400	2	5	<20	269	<.01	<10	33	<10	4	60
68 -	87165	<5	<.2	2.53	15	2	160	<5	5.36	<1	26	93	92	5.05	.07	<10	2.09	1009	<1	<.01	35	1280	<2	5	<20	250	<.01	<10	138	<10	5	56
69 -	87166	60	1.8	1.75	110	2	60	<5	4.34	<1	36	50	607	8.50	. 17	<10	1.45	739	9	<.01	39	1090	<2	10	<20	271	<.01	10	68	<10	5	48
70 -	87167	30	.6	1.94	45	2	75	<5	5.79	<1	16	15	128	4.43	. 20	<10	1.36	1328	1	<.01	5	1640	12	10	<20	323	<.01	<10	53	<10	7	●7
71 -	87168	15	<.2	3.27	20	2	80	<5	6.25	<1	27	1 3 2	156	5.26	.06	<10	3.37	1167	1	<.01	44	1120	<2	10	<20	427	<.01	<10	144	<10	7	56
72 -	87169	20	. 2	3.39	35	2	60	<5	5.28	<1	30 1	.83	209	5.37	. 02	<10	3.78	1005	<1	<.01	61	960	<2	5	<20	335	<.01	<10	148	<10	6	55
73 -	87170	80	2.0	1.07	50	2	55	<5	3.24	<1	16	72	763	4.31	. 22	<10	1.11	510	5	<.01	10	1280	<2	<5	<20	220	<.01	<10	39	<10	5	23
74 -	87171	25	3.0	2.67	<5	<2	60	<5	5.85	<1	38 3	319	1655	5.98	.01	<10	3.75	860	6	<.01	50	1470	<2	<5	<20	449	<.01	<10	176	<10	2	29
75 -	\$7172	30	3.0	2.42	5	2	50	<5	5.01	<1	28 2	284	1478	5.47	<.01	<10	3.48	842	10	<.01	44	1330	<2	<5	<20	403	<.01	<10	160	<10	2	28
76 -	87173	60	4.0	2.53	<5	2	60	<5	4.93	<1	36 :	307	1641	5.72	<.01	<10	3.59	927	12	<.01	48	1490	<2	<5	<20	390	<.01	<10	168	<10	3	29
77 -	87174	65	4.2	2.97	15	2	65	<5	5.37	<1	36 3	320	1954	6.12	<.01	<10	4.46	1084	20	<.01	52	1530	<2	5	<20	447	<.01	<10	185	<10	3	30
78 -	87175	35	2.8	2.73	15	2	60	<5	6.96	<1	30 2	220	2143	5.44	.01	<10	3.95	1116	26	<.01	44	1300	<2	10	<20	535	<.01	<10	166	<10	6	26
79 -	87176	45	6.0	2.78	25	2	60	<5	3.94	<1	42 2	229	2097	6.53	.04	<10	3.66	701	12	<.01	50	1580	<2	10	<20	312	<.01	<10	172	<10	5	32
80 -	87177	25	5.0	2.45	10	2	55	<5	3.76	<1	34	94	1824	5.51	. 22	<10	2.56	654	18	<.01	35	1400	<2	10	<20	229	<.01	<10	86	<10	6	42
81 -	87178	10	3.6	2.23	10	2	65	<5	7.98	<1	24	158	1107	4.41	. 16	<10	2.56	1132	6	<.01	44	980	<2	10	<20	576	<.01	<10	69	<10	6	28
82 -	87179	40	8.0	2.34	40	2	60	<5	4.78	<1	44 :	161	3209	5.74	. 20	<10	2.58	799	12	<.01	44	1410	<2	15	<20	315	<.01	<10	85	<10	6	32
83 -	87180	35	8.2	.85	10	<2	55	<5	2.71	<1	28	25	3066	2.83	. 26	<10	. 88	491	16	<.01	12	1010	<2	<5	<20	166	<.01	<10	21	<10	5	14
84 -	87181	25	3.4	1.57	20	2	60	<5	3.08	<1	17	52	1 30 1	3.24	.17	<10	1.56	656	10	<.01	11	950	<2	10	<20	204	<.01	<10	46	<10	4	23
85 -	87182	5	. 4	2.13	35	2	90	<5	3.74	<1	15	14	154	4.49	.21	<10	1.52	912	2	<.01	3	1680	<2	10	<20	215	<.01	<10	66	<10	4	48
86 -	87183	5	. 2	2.21	20	2	125	<5	5.37	<1	15	7	149	4.55	.18	<10	1.37	1136	1	<.01	2	1770	<2	5	<20	293	<.01	<10	72	10	5	51
87 -	87184	30	1.2	2.55	35	2	115	<5	3.90	<1	21	98	511	4.96	-14	<10	2.25	854	3	<.01	22	1430	<2	10	<20	235	<.01	<10	102	<10	4	45

NOTE: < - LESS THAN

> - GREATER THAN

10 ECO-TECH LABORATORIES LTD.

RCO-TECH LABORATORIES LTD PRANE J.PESIOTTI B.C. Certified Assayer ECO-TECH LABORATORIES LTD. 10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 1992 FAX - 604-573-4557

PH UNLESS OTHERWISE REPORTED

TEUTON RESOURCES CORP. - ETK 92-563 602 - 675 WEST NASTINGS STREET VANCOUVER, B.C. V6B 1N2

ATTENTION: DINO CREMOWESE

PROJECT: NORE GIVEN 65 CORE SAMPLES RECEIVED OCTOBER 14, 1992

•

.

IPTION	AU(ppb)	AG	AL(%)	AS	в	BA	BI	CA(\$)	СФ	co	CR	CU	FE(%)	K(\$)	LA	MG(%)	KN	MO	RA(\$)	NI	Р	PB	SB	SM	SR	TI (\$)	U	v	۳	Ŧ	ZN
7185	685	2.4	.63	45	<2	30	<5	. 29	10	18	26	3813	5.35	.28	<10	. 21	239	6	<.01	6	1320	214	5	<20	26	<.01	10	21	20	2	1449
7186	405	2.2	.62	55	<2	30	<5	1.18	,	20	15	3236	4.88	.29	<10	. 25	789	7	<.01	3	1220	248	5	<20	83	<.01	<10	13	10	3	1191
7187	365	2.4	.43	45	2	30	<5	. 33	<1	18	17	3902	5.57	. 29	<10	.07	569	5	<.01	5	1220	18	5	<20	23	<.01	10	10	<10	2	142
7188	230	1.4	.75	25	2	35	<5	.56	<1	16	15	3160	4.85	. 22	<10	. 28	534	3	<.01	2	1200	48	<5	<20	44	<.01	<10	22	<10	3	125
7189	275	1.6	.73	25	<2	40	<5	2.71	<1	15	17	2990	4.08	.27	<10	. 49	1175	3	<.01	3	1220	34	5	<20	246	<.01	<10	19	<10	4	75
7190	370	1.6	. /8	30	<2	40	<5	2.37	<1	17	13	3560	4.55	. 29	<10	. 37	1042	4	<.01	2	1210	6	5	<20	233	<.01	<10	15	<10	3	38
7191	300	1.4	.72	40	2	35	<5	1.99	<1	17	21	2715	5.01	. 35	<10	. 30	829	4	<.01	3	1250	18	5	<20	155	<.01	<10	16	10	2	36
7192	270	1.6	.54	30	2	35	<5	2.37	<1	18	17	3693	4.98	. 28	<10	. 37	1196	4	<.01	2	1160	18	5	<20	196	<.01	<10	16	<10	3	78
7193	255	2.6	. 37	45	2	35	<5	2.09	3	17	17	3549	5.00	.28	<10	. 39	1085	3	<.01	3	1240	48	5	<20	135	<.01	<10	11	10	3	563
.7194	440	2.4	.54	70	2	35	<5	1.45	<1	16	21	5433	4.69	.34	<10	. 28	1554	2	<.01	5	1200	36	10	<20	75	<.01	<10	13	<10	3	60
-7195	140	1.4	. 39	75	2	45	<5	4.03	1	13	12	1926	4.20	. 30	<10	1.23	1939	4	<.01	5	1180	40	155	<20	208	<.01	<10	10	<10	4	150
+7196	210	1.4	. 44	55	2	35	<5	2.45	1	14	15	2268	4.14	. 32	<10	.41	1211	3	<.01	2	1200	54	15	<20	112	<.01	<10	12	<10	3	283
-7197	275	2.4	.57	30	<2	35	<5	2.49	1	15	19	3803	4.13	.28	<10	. 52	787	3	<.01	3	1060	52	10	<20	150	<.01	<10	16	10	2	230
37198	390	1.6	.73	35	2	30	<5	1.75	<1	18	27	4400	5.10	. 21	<10	. 35	553	7	<.01	3	870	8	5	< 20	142	<.01	20	19	<10	2	36
87199	310	1.4	.96	50	2	40	<5	2.25	<1	16	21	3540	5.32	. 28	<10	. 49	1033	4	<.01	4	1000	4	5	<20	275	<.01	<10	18	<10	4	34
87200	290	1.4	.66	40	2	35	<5	1.90	<1	14	36	3793	4.44	. 27	<10	. 37	849	3	<.01	3	880	2	5	< 20	186	<.01	<10	11	<10	2	2 1
87201	1 30	1.0	.47	45	< 2	35	<5	2.62	<1	14	16	1783	4.55	.24	<10	.63	1293	3	<.01	3	1120	4	5	<20	252	<.01	<10	10	<10	3	25
87202	195	1.2	. 71	40	<2	40	<5	2.47	<1	13	8	1849	5.01	. 28	<10	. 80	1142	4	<.01	1	1160	10	5	<20	268	<.01	10	20	<10	4	68
87203	205	1.2	.78	25	<2	40	<5	3.42	<1	13	14	2266	4.36	. 27	<10	. 81	1062	7	<.01	3	1120	4	5	<20	351	<.01	<10	19	<10	4	67
8720/	170	1.8	.67	50	<2	40	<5	3.13	<1	14	12	1710	4.27	. 26	<10	.78	1204	5	<.01	2	1200	8	5	<20	317	<.01	<10	13	<10	4	59

											~	-	1 1997								¥(O-TECH	LABOR	ATORIE	S LTD						
TEUTON R	SOURCES	ETR	92-563		р		D.T	CA(1)	CD	co	CR	CU .	FE(1)	K(\$)	LAI	G(1)	MN	MO N	A()	NI	P	РВ	5 B	SN	SR	TI (\$)	U	v	*	Y	2 N
SCRIPTION	AU(ppb)	AG	AL(\)	•••••																						< 0)	< 10	29	<10	5	2 -
87205	320	1.0	1.21	30	2	45	<5	3.39	<1	16	13	2573	5.02	. 23	<10	.72	1047	3	<.01	1	1100	2	5	<20	297	<.01	<10	21	20	4	5
87206	370	1.2	.95	60	<2	40	<5	2.35	<1	13	26	2871	5.25	.24	<10	. 59	959	7	<.01	3	1030	10	10	~20	260	< 01	<10	15	<10	4	3
87207	290	. 8	. 83	65	<2	40	<5	2.52	< 1	15	16	2264	4.86	.24	<10	.54	934	3	<.01	3	1190		15	< 20	200	<.01	<10	14	<10	3	71
87208	300	1.2	.68	70	<2	40	<5	2.13	<1	15	27	2 304	4.98	. 27	<10	. 44	1283	5	<.01	3	1030	: 4	10	< 20	302	< . 01	<10	13	<10	4	134
87209	350	1.2	.62	45	<2	40	<5	2.47	<1	15	30	3266	4.62	.16	<10	. 36	866	4	<.01	2	880	20	,	~20	302						
																								~ 20	207	<.01	<10	11	<10	4	14
87210	175	. 6	. 59	35	<2	35	<5	2.67	<1	13	25	2677	3.69	.25	<10	.25	779	5	<.01	3	1150	~	,	<20	212	<.01	<10	17	<10	4	32
87211	195	.4	.74	25	2	30	<5	2.43	<1	16	12	1983	3.61	.25	<10	. 35	521	2	<.01	2	1360			~ 20	309	<.01	<10	20	<10	5	186
87212	210	. 6	.83	25	<2	35	<5	4.03	1	13	14	1900	3.39	. 29	<10	.41	807	2	<.01	2	1330	• • • •	,0	~ 70	270	<.01	10	21	<10	3	331
87213	>1000	3.6	. 76	75	<2	35	<5	2.46	2	12	27	2247	5.43	. 21	<10	.57	977	4	<.01	2	920	142	10	~ 20	125	<.01	<10	15	<10	3	25
87214	265	1.4	. 71	35	<2	25	<5	1.95	<1	14	16	3089	3.48	. 31	<10	. 32	590	2	<.01	3	1480	0	,	~							
																							10	- 20	113	<.01	<10	10	30	3	23
87215	>1000	2.4	. 47	50	2	30	<5	1.97	<1	13	11	3110	3.95	.25	<10	. 28	808	1	<.01	2	1460	10	10	< 20	135	<.01	<10	15	<10	3	26
87216	>1000	1.4	. 56	50	2	30	<5	2.10	<1	13	21	3301	4.61	. 30	<10	. 42	1031	3	<.01	•	1070		5	-20	109	<.01	<10	17	20	3	37
87217	170	. 6	.64	20	2	25	<5	1.72	<1	17	17	2349	4.27	.24	<10	. 32	557	3	<.01	-	1170	202	55	< 20	133	<.01	<10	12	30	Э	1501
87218	270	2.8	. 47	90	2	30	<5	2.30	10	14	21	2717	3.60	. 24	<10	.37	1019	4	<.01		1270	20	10	<20	177	<.01	<10	9	10	3	29
87219	320	1.0	.36	50	2	30	<5	2.16	<1	14	22	2682	4.59	. 20	<10	. 26	924	8	<.01	,	1224	10									
																			< 01		1090	17	15	< 20	168	<.01	10	9	40	2	33
87220	465	1.6	. 49	55	<2	35	<5	2.20	<1	14	34	3485	4.93	. 26	<10		1022		< .01		1360	<2	5	<20	121	<.01	<10	9	<10	э	32
87223	230	1.6	.57	50	<2	30	<5	1.85	<1	13	19	2938	3.21	. 32	<10	. 30	804		< .01	;	1210	12	10	<20	247	<.01	<10	13	<10	5	70
87222	>1000	4.2	. 59	50	<2	40	<5	2.91	<1	14		4030	4.74	. 21	<10		1196		< 01	:	1200	< 2	5	< 20	230	<.01	<10	15	<10	4	20
87223	265	1.0	.59	20	<2	40	<5	3.32	<1	14	12	3578	3.39	. 27	10	. • 3	630	,	< 01	;	1220	< 2	5	<20	138	<.01	<10	8	<10	4	13
87224	310	1.2	. 40	35	<2	30	<5	2.57	<1	19	22	2825	4.14	. 28	<10	.•3	330	'	<. 01	,											
													3 65		<10	54	689	R	<.01	4	1 2 9 0	< 2	<5	<20	154	<.01	<10	8	10	4	12
87225	190	. 8	. 46	360	<2	40	<5	2.94	<1	19	36	5//3	3.95	. 21	<10	50	197	Š	<.01	4	1230	< 2	5	<20	172	<.01	<10	10	<10	2	19
87226	295	1.2	.43	35	<2	35	<5	3.33	<1	17	36	3734	4 76	19	<10	. 56	448	ŝ	<.01	4	1280	< 2	5	<20	168	<.01	<10	7	<10	2	14
87227	275	. 8	34	45	<2	40	<5	2.69	<1	11	24	3734	4.76	- 1 7	<10	. 50	514	2	<.01		1 3 2 0	< 2	5	<20	241	<.01	<10	25	<10	2	25
87228	335	1.0	.77	55	<2	40	<5	3.55	~1	10	18	4773	1 90	.25	<10	.40	525		<.01	3	1430	< 2	<5	<20	120	<.01	<10	13	<10	3	22
87229	255	1.4	.76	30	<2	35	< 5	2.09	~ 1	10	50	•///	5.70	,																	
							~*	2 50	~ 1	18	41	4855	4.19	. 29	<10	. 50	718	4	<.01	5	1350	< 2	5	<20	154	<.01	<10	14	<10	3	19
87230	235	1.4	1 .75	50	<2	35		2.50	~1	19	37	5403	4.13	.24	<10	. 56	428	5	<.01	4	1 3 0 0	< 2	<5	<20	172	<.01	<10	16	20	3	21
87231	245	1.4	64	30	<2	30	< 5	2.00	~	19	21	6796	4.86	.23	<10	.72	507	5	<.01	5	1130	<2	<5	<20	263	<.01	<10	38	20	4	30
87232	400	1.6	5 1.16	35	<2	30	~ ~	7 34	~	17	56	5129	4.54	. 31	<10	. 48	455	7	<.01	6	1330	< 2	5	<20	187	<.01	<10	21	20	4	23
87233	300	1.4	99	95	<2	30	~ ~ ~	2.39	1	16	18	4715	4.14	.17	<10	. 86	391	4	<.01	2	1160	< 2	< 5	< 20	298	<.01	<10	39	<10	4	25
877-	245	1.0	1.26	20	0	• 3	~ >																								
						40	~	1 04	<1	19	11	2608	4.55	. 20	<10	.74	358	7	<.01	3	1160	< 2	<5	<20	277	<.01	<10	28	<10	3	31
87	170		b 1.01	15	~2	26		2.14	<1	20	22	2214	5.03	. 21	<10	. 50	790	24	<.01	6	1340	4	< 5	<20	133	<.01	<10	9	<10	4	34
87236	250	1.0	u .59	35	-1	25		1.17	<1	22	17	1850	5.08	.24	<10	.27	329	24	<.01	4	1660	< 2	< 5	< 20	91	<.01	<10	7	<10	4	26
87237	380		• ./5	40	~ ~ ~	30	~	1.76	<1	20	44	2160	4.51	.25	<10	.25	641	9	<.01	5	1450	42	5	<20	133	<.01	<10	7	<10	1	174
87238	170		8 .66	35	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30		1.70	<1	23	25	4218	4.71	. 27	<10	. 34	680	13	<.01	4	1520	6	< 5	<20	104	<.01	<10	,	<10	4	7.
87239	320	1.	4 .62	30	• • •	50																									

,	TEUTON RE	SOURCES	ETK	92-	563								oc	TUBER	23, 1992								P.C	O-TECH	LABO	ATORI	S LTD						
D	SCRIPTION	AU(ppb)	AG	AL(•)	AS	в	BA	ы	CA(\$)	CD	C0	ĊR	ເບ	FE (\$)	K(%)	LA	MG(∖)	HN.	HO	NA(\$)	NI	P	РВ	SB	SN	SR	TI(%)	U		*	¥	
	87740	195	1 0					30	<5	2.22	< 1	22	32	2674	4.64	. 33	<10	. 49	968	31	<.01	5	1400	2	5	<20	115	<.01	<10	9	<10	4	
	87741	285	1.2		64	50	<2	40	<5	2.50	<1	26	26	2652	5.80	. 24	<10	.53	971	30	<.01	4	:410	6	< 5	<20	150	<.01	<10	8	<10	4	1
	87747	115	1.4		68	50	<2	30	<5	1.70	<1	26	26	2505	5.80	. 23	<10	. 44	1000	74	<.01	5	1530	12	5	<20	81	<.01	10	8	<10	4	
	87243	275	2.2		58	55	<2	30	<5	1.77	<1	26	18	4569	5.38	. 20	<10	.41	1039	77	<.01	5	1500	36	5	<20	75	<.01	<10	8	<10	4	1
	87244	140	. 8		57	45	<2	35	<5	3.04	<1	24	37	2586	5.43	. 24	<10	.86	1002	29	<.01	6	1450	6	10	<20	139	<.01	<10	12	<10	5	
	87746	260			50	45	~ 7	45	<5	4.29	< 1	21	16	3517	5.36	. 24	<10	. 83	851	10	<.01	4	1350	6	5	<20	205	<.01	10	16	<10	5	
	87245	250		•	48	45	~2	50	~ 5	4.94	<1	20	23	3389	4.82	.27	<10	. 77	786	11	<.01	5	1490	2	5	<20	283	<.01	<10	8	<10	6	
-	87747	155	. 0		59	30	<2	50	<5	4.46	<1	19	11	2837	4.58	. 28	<10	. 86	622	9	.01	3	1560	<2	5	<20	264	<.01	<10	13	<10	6	
-	87248	155	2.2		RA	30	<2	50	<5	3.91	1	20	28	1581	4.74	. 26	<10	.86	573	30	<.01	4	1530	14	5	<20	300	<.01	<10	17	<10	1	3.
	87249	175	.4	1.	.00	25	<2	40	<5	3.34	<1	20	17	2 307	4.60	. 26	<10	.94	444	28	.01	2	1410	4	5	<20	231	<.01	<10	29	<10	6	

.

.

< - LESS THAN > - GREATER THAN

ECO-TECH LOBORATORIES LTD. Prank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

270 LU. 1

PIONEER LABORATORIES INC.

TEUTON RESOURCES CORP. Project: Sample Type: Cores 5-730 BATON WAY NEW WESLMINSTER, BC CAMADA V3N 6J9

GEOCHENICAL ANALYSIS CERTIPICATE Nulti-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. "Au Analysis- 10 gram sample is digested with aqua regia, NIBK extracted, graphite furnace AA finished to 1 ppb detection. TELEPHO. (604) 522-3830

Analyst _____ Report No. 9280432 Date: October 21, 1992

ELENENT	K	o Cu	РЬ	Zn	Ag	Ni	Co	Hin	Fe	As	U	Au	Th	Sr	Cď	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	ß	AL	Na	ĸ	¥	AL/
SAMPLE	P	ne ppe	ppe	pp	ppm	ppm	pp	a ppn	x	ppm	pp	a pp	n pp	a ppa	ppm	pp#	ppr	n pp	n X	x	pp	a ppa	x	ppm	x	pp	1 %	x	r	ppm	ppb
87 250	8	170	47	87	1.0	75	11	886	5.06	72	5	ND	1	103	.5	10	2	18	2.49	.060	2	46	.95	54	.01	2	.78	.01	.23	1	22
87251	18	3 565	296	326	4.2	60	11	261	9.25	473	5	ND	1	51	1.0	52	2	14	. 83	.091	2	30	.17	16	.01	2	.52	.01	.24	1	146
87252	3	266	23	109	.9	20	12	752	4.92	171	5	ND	1	60	.7	10	2	11	1.87	. 101	2	16	.74	50	.01	2	.71	.01	.30	1	10
87253	21	866	29	77	1.3	33	23	904	6.25	44	5	₩D	1	70	.6	4	2	12	2.12	.094	2	22	.72	42	.01	Ζ	.75	.01	.30	1	10
87254	26	81 8	157	657	2.8	46	19	1097	5.62	51	5	ND	1	124	2.9	14	2	13	3.59	.075	2	26	1.30	54	.01	2	.56	.01	.28	1	14
87255	2	140	11	119	.7	44	25	1488	5.58	40	5	ND	1	130	.5	5	2	19	3.41	.094	2	22	1.41	55	.01	2	.81	.01	.27	1	13
87256	1	194	3	65	.6	50	15	1101	4.78	13	5	ND	1	118	.3	2	2	15	2.75	.085	2	22	1.33	69	.01	2	.96	.01	.30	1	8
87257	3	547	7	152	1.6	43	13	1441	4.98	21	5	ND	t	142	.7	2	2	14	4.17	.078	Z	20	1.46	51	.01	2	.61	.01	.26	1	28
8725 8	2	361	10	222	1.4	74	16	948	5.57	32	5	ND	1	109	1.1	2	2	11	3.16	.063	2	28	1.41	43	.01	2	.47	.01	.23	1	35
872 59	2	1039	10	67	3.4	62	16	827	5.76	40	6	ND	1	106	.5	3	2	10	2.91	.061	2	25	1.34	42	.01	2	.49	.01	.24	1	234
87260	4	228	4	84	1.5	63	15	1120	3.98	15	5	ND	1	108	.6	Z	2	12	2.90	.077	2	23	1.35	65	.01	2	.74	.01	.25	ı	19
87261	2	341	8	71	1.7	76	14	1135	4.77	33	5	ND	1	135	.2	7	2	12	3.63	.069	2	24	1.67	59	.01	S	.59	.01	.27	1	28
87262	2	220	3	43	1.7	91	19	662	4.89	27	5	ND	1	81	.6	5	2	12	2.12	.077	2	21	.86	44	.01	3	.68	.01	.27	1	42
87263	1	336	6	70	1.3	88	15	898	4.27	36	5	ND	1	130	.5	13	2	13	3.14	.073	2	26	1.43	61	.01	2	.56	.01	.27	1	40
87264	2	228	7	63	1.1	59	21	728	6.35	52	5	ND	1	101	.3	2	2	11	2.46	.071	2	26	. 89	36	-01	2	.52	.01	.28	1	35
87265	4	212	3	68	.9	78	18	952	4.32	22	5	ND	1	105	.2	5	2	12	2.99	.077	2	25	1.27	52	.01	2	.63	.01	.28	1	15
87266	2	219	34	124	2.7	99	16	1153	5.58	65	5	ND	1	116	1.0	11	2	12	3.24	.060	2	37	1.45	22	.01	2	.55	.01	.24	1	73
87267	1	178	62	381	1.1	105	15	1210	4.53	62	5	ND	1	139	1.9	4	2	12	3.33	.061	2	38	1.62	47	.01	2	.55	.01	.24	1	15
87268	2	130	8	83	.8	118	18	935	5.19	41	5	ND	1	157	.4	2	2	11	3.36	-064	2	38	1.86	46	.01	2	.59	.01	.24	1	X
87269	1	176	47	302	2.3	100	19	982	5.13	26	5	NEC	1	147	1.9	4	2	19	2.97	.063	2	66	2.04	31	.01	2	.83	.02	.23	٢	18
57270	4	335	4	31	.7	97	18	543	4.82	28	5	ND	1	110	.5	2	2	10	2.41	.071	Z	34	1.35	37	.01	2	.52	.01	.22	1	39
37271	4	184	3	49	.5	98	18	864	4.87	18	5	ND	1	140	.6	2	Ζ	22	3.06	.072	2	49	2.23	51	.01	2	1.01	-02	.21	1	27
87272	5	293	2	28	.5	98	16	609	4.74	20	5	NO	1	102	.6	2	2	13	2.58	.069	2	40	1.42	48	.01	2	.64	.02	-21	1	24
87273	4	227	4	28	.4	82	20	628	4.91	21	5	ND	1	121	.2	7	2	10	3.07	.068	2	31	1.47	53	.01	2	.48	.01	. 2 2	1	16
87274	6	132	2	17	.2	83	17	500	4.45	26	5	ND	1	99	.4	4	2	10	2.67	.071	2	26	1.30	48	.01	2	.41	.01	.21	1	1
87275	5	100	2	11	.1	85	16	389	4.12	20	5	ND	1	95	.2	5	2	9	2.38	.071	2	27	.93	49	.01	2	.39	.01	.20	1	11
37276	4	115	12	60	.3	9 7	17	1302	5.43	18	5	ND	1	119	-6	2	2	25	2.46	.066	2	73	1.67	51	.01	2	1.14	.01	.24	1	1
37277	6	228	14	124	.6	85	15	1149	4.42	41	5	ND	1	63	.7	5	2	12	2.07	.063	4	24	.38	50	.01	2	.44	.01	.22	1	14
37278	18	893	114	378	2.3	93	17	666	6.71	128	5	ND	1	68	1.9	17	2	10	2.09	.060	2	28	.79	18	.01	2	.41	_01	.23	1	3'
17279	11	368	29	140	.8	9 2	20	652	6.03	121	5	ND	1	60	.8	9	2	15	1.84	.083	2	44	.80	30	.01	2	.72	.01	.23	1	2

ELENENT	Ж	o Cu	Pb	Zn	Ag	ĸi	Co	Hn	Fe	As	U	Au	Th		ы	Sb	Bi	۷	Ca	P	La	Cr	Ng	Ba	Ti	8	AL	t	κ	W	Au
SAMPLE	PF	n ppe	ppe	ppm	ppm	ppe	pp	n ppm	x	ppm	pp	n bb	n ppi	n ppe	ppm	ppe	pp	n ppe	n X	x	ppi	n ppm	*	ppm	x	ppm	2	x	X	ppm	ppb
87280	10	374	30	204	.9	20	13	829	5.73	311	5	ж	1	24	1.0	6	2	11	.80	.106	2	19	.23	15	.01	2	.71	-01	.ช	1	160
87281	24	721	36	138	1.1	13	18	652	5.98	54	5	ND	1	23	.9	4	2	11	.71	.111	2	11	.21	18	.01	2	.84	-01	.30	1	110
87282	12	586	36	212	1.5	62	19	922	5.97	44	5	ND	1	103	1.1	8	2	13	2.81	.084	2	19	.93	36	.01	2	.55	.01	.ઝ	1	100
87283	3	128	3	47	.9	40	13	1399	4.41	22	5	ND	1	219	.4	19	2	15	5.63	.050	2	22	2.41	44	-01	2	.29	201	.17	1	130
872 8 4	1	83	5	91	.4	73	14	1379	4.95	18	5	ND	1	123	.7	2	2	13	3.01	.076	2	28	1.38	62	.01	2	.92	.01	.25	1	100
87285	2	217	3	153	.9	69	11	1075	4.46	26	S	ND	1	100	.7	2	2	12	2.43	.073	2	22	1.08	65	.01	2	.80	-01	.25	1	140
87286	3	474	4	125	1.3	58	21	1338	5.73	21	5	ND	1	139	.8	2	2	14	3.71	.081	2	21	1.64	52	.01	2	.66	.01	.23	1	260
87287	3	324	2	123	.9	76	12	841	4.36	28	5	ND	1	114	.7	8	2	13	3.30	.065	2	18	1.41	53	-01	2	.43	.01	.21	1	560
87288	3	265	2	46	1.9	77	20	647	4.61	37	5	ND	1	97	.2	4	2	11	2.67	.070	2	22	1.29	50	-01	2	.50	.01	.23	1	390
87289	2	457	3	98	2.1	84	18	1522	5.27	17	5	ND	1	164	.6	2	5	13	4.48	.064	2	22	2.15	51	-01	2	.73	.01	.22	1	380
87290	2	256	2	t34	1.3	71	15	1178	4.72	25	5	ND	1	139	.8	3	2	12	3.83	.067	2	19	1.82	41	-01	2	.49	.01	.20	1	360
87291	3	167	4	59	.8	76	20	795	4.98	24	S	ND	1	114	.5	2	2	12	2.87	.072	2	23	1.44	51	-01	2	.60	.01	.23	1	275
87292	3	212	4	36	1.7	68	17	640	5.63	37	S	ND	1	114	.3	2	3	9	2.78	.067	2	16	1.36	43	.01	2	.41	.01	.22	1	960
87293	2	213	6	88	.6	82	13	819	3.66	27	5	ND	1	109	-4	12	2	8	2.85	-062	2	24	1.36	50	.01	2	.42	.01	-20	1	210
37294	3	162	6	77	.5	103	17	770	4.80	33	5	ND	1	89	.2	8	2	9	2.35	.070	2	29	.85	47	.01	2	.42	.01	.22	1	180
87295	2	164	8	52	.9	92	14	1266	5.27	36	5	ND	1	151	.9	8	2	12	4.18	.060	2	33	1.86	45	.01	2	.36	.01	.22	1	170
87296	1	194	95	259	1.3	102	13	1585	4.14	66	5	ND	1	164	1.4	9	2	11	3.97	.054	2	37	1.96	53	.01	2	.57	.01	.22	1	140
87297	1	140	38	201	.8	117	16	1144	4.60	49	s	NED	1	158	.8	23	2	13	3.79	.067	2	35	1.92	53	.01	2	.59	.01	.22	1	185
87298	3	128	11	33	.6	101	19	832	4.88	33	5	ND	1	152	.3	2	2	12	3.44	.067	2	33	1.95	55	-01	2	.61	.01	.22	1	165
87299	4	228	10	62	1.5	113	21	611	4.93	41	5	ND	1	103	.3	2	2	12	2.36	.067	2	32	1.36	25	.01	2	.65	.01	.21	1	560
37300	5	201	4	41	.4	105	19	699	4.97	18	5	ND	1	104	.3	2	2	୪	2.31	.067	2	68	1.77	53	.01	2	1.01	.02	. 19	1	170
87501	38	185	3	30	.4	94	13	762	4.55	13	5	ND	1	137	.2	2	2	15	3.24	.070	S	44	1.93	60	.01	2	.75	.02	.21	1	180
37302	17	316	3	21	.6	100	17	495	4.86	18	5	ND	1	111	.2	3	2	11	2.66	.064	2	34	1.45	52	.01	2	.55	.01	-22	1	460
87303	4	204	4	22	.4	9 5	19	419	5.38	18	5	ND	1	90	.4	4	2	10	2.29	,070	2	35	1.24	35	.01	2	.44	-02	. 20	1	580
37304	7	222	2	23	.3	107	17	553	4.91	23	5	ND	ĩ	107	.2	5	2	12	2.79	.068	2	39	1.48	54	-01	2	.54	-01	.21	1	160
87305	5	199	3	46	_4	113	18	619	4.25	28	5	ND	1	90	.4	19	2	11	2.50	.070	2	34	1.28	45	_01	2	.56	.02	.21	1	95
8 7306	4	164	7	46	.4	111	15	1028	4.79	22	5	NC	1	156	.2	8	2	11	4.22	-066	2	39	1.80	50	.01	2	.51	.01	.21	1	6(
8 7307	4	151	8	47	-4	88	22	1024	4.68	29	5	ND	1	145	.3	12	2	12	4.36	.060	2	34	1.90	41	.01	2	.34	.01	.20	1	13(
87308	4	178	14	46	.3	70	17	941	4.50	22	5	ND	1	125	.2	2	z	11	3.66	.062	2	29	1.70	50	.01	2	.37	.01	.21	1	14(
37309	3	221	16	62	.3	73	9	1194	3.59	23	5	ND	1	161	.2	8	2	10	4.48	.058	2	26	2.09	50	.01	2	.39	.01	.20	1	13(
37310	9	117	4	20	.5	89	7	702	4.15	26	5	ND	1	114	.2	5	2	10	3.21	.070	2	26	1.36	35	_01	2	.38	.01	.22	1	10(
37311	3	221	8	33	.7	83	12	683	4.14	32	5	ND	1	126	.3	3	2	9	3.08	.069	2	30	1.24	42	.01	2	.36	.01	.22	1	14(

~

•

PAGE

1

