JAN 0 4 1994	:
	:
FILE NO:	

1992 SUMMARY REPORT

on the

Laferty Group

FILMED

Laferty #1-4, Orion #1-18, Molly Gibson (1990), Bonanza #1, Bonanza #2, Bonanza #10.

GREENWOOD and TRAIL CREEK MINING DIVISION British Columbia North Latitude 49 01, West Longitude 118 06 30" NTS 82E/01E UTM Zone 11

Prepared for

CROWN RESOURCES CORP. 1225 17th Street, Suite 1500 Denver, Colorado 80202

Prepared by

R.E. Miller B.Eng. Sci. TRANS.#.... Crownex Resources (Canada) Ltd. P.O. Box 2941 Grand Forks, B.C. VOH 1HO

> November GEOLOGICAL BRANCH ASSESSMENT REPORT

5

GOVERNMENT AGENT

NELSON

DEC 2 > 1993

TABLE OF CONTENTS

1.0 INTRODUCTION

.

- 1.1 Summary
- 1.2 Property and Ownership
- 1.3 Location, Access and Physiography
- 1.4 History

2.0 GENERAL GEOLOGY

- 2.1 Regional Geology
- 2.2 General Gold Mineralization
- 2.3 1991 Exploration Program
- 2.4 1992 Exploration Program
 - 2.4.1 Airborne Geophysics
 - 2.4.2 Ground Geophysics-Magnetometry
 - 2,4.3 Geochemistry
 - 2.4.4 Drilling

4.0 CONCLUSION

5.0 RECOMMENDATIONS

APPENDICES

Appendix	A	Statement of Qualifications
Appendix	В	Statement of Expenditures
Appendix	С	References
Appendix	D	Certificate of Analysis & Analytical Procedures
Appendix	E	Field Drill Logs

LIST OF ILLUSTRATIONS

Figure	1	Property Location Map
Figure	2	Claim Map
Figure	3	Historical Map
Figure	4a & 4b	Regional Geology Map
Figure	5	Property Geology Plan
Figure	6	Geophysical Airborne Survey Outline
Figure	7	Geophysics-Ground Magnetometer Grid
Figure	8a	Laferty rock chip location map
Figure	8b	Laferty rock sample sheet
Figure	8c	Laferty rock chip assay results
Figure	9	Molly Gibson summary map
Figure	10	Drill Hole location map

1.0 INTRODUCTION

This report describes the 1992 Laferty Claim Group mineral exploration program conducted by Crownex Resources Ltd., a wholly owned subsidiary of Crown Resources Corp., Seventeenth Street Plaza, 1225 17th street, Suite 1500 Denver, Colorado 80202. Field data was gathered from April 1991 through December 1992, over the Laferty claim block which is located 40 km east of Grand Forks, B.C.. (Figure #1) Exploration work consisted of airborne geophysics, ground magnetometry, gridding, rock chip sampling, underground sampling, and Reverse Circulation drilling.

1.1 SUMMARY

Literature search and reconnaissance geology, geochemistry, and ground geophysics in April and May 1991, prior to land acquisition, indicated geology possibly favorable to the development of bulk tonnage gold drill targets existed in the area around the old Canadian Pacific rail station at Paulson, some 40 km east of Grand Forks.

Minor high grade gold production west south west of Paulson, has been associated with sulfide and magnetite bearing, siliceous skarnification of select limestone beds. East of Paulson, gold silver ore has been obtained from

quartz monzonite hosted quartz veins.

The Dighems airborne geophysical survey was chosen as the most efficient initial exploration tool as steep, rugged terrain, abundant overburden, heavy vegetation, and difficult local access hampered the ground based gold exploration data collection.

A number of well mineralized gold and base metal occurrences fall within the Paulson survey block, producing a comparative data base aiding in the interpretation and extrapolations of the Airborne geophysical information.

The Laferty claims group lies within the boundaries of Crown Resources larger Paulson Airborne geophysical survey block, details of which are found in Crown's Bonanza and Orion Group B.C. Assessment Reports 1992.

1.2 PROPERTY AND OWNERSHIP

The Laferty properties are comprised of 22 two post claims and 4 M.G.S. claims totalling 82 units. Molly Gibson (1990) has been optioned from Herman Hoehn of Grand Forks, B.C. by Crownex Resources Ltd., a wholly owned subsidiary of Crown Resources Crop., 17th Street Plaza, 1225

Seventeenth Street, Suite 1500 Denver, Colorado 80202. The properties are located in the Greenwood and Trail Creek Mining Divisions. (Figure #2)

The following table summarizes the pertinent claim data.

LAFERTY GROUP

UNITS	CLAIM NAME	TENURE NUMBER	EXPIRY DATE*
16	Molly Gibson (1990)	6104	Nov 1996
1	Laferty #1	302804	Aug 8, 1994
1	Laferty #2	302805	**
1	Laferty #3	302806	**
1	Laferty #4	302807	
1	Orion #1	303096	Aug 8, 1994
1	Orion #2	303097	15
1	Orion #3	303098	84
1	Orion #4	303099	"
1	Orion #5	303100	Aug 9, 1994
1	Orion #6	303101	14
1	Orion #7	303102	"
1	Orion #8	303014	Aug 9, 1994
1	Orion #9	302925	Aug 11, 1994
1	Orion #10	302926	*1
1	Orion #11	302927	*1
1	Orion #12	302928	"
1	Orion #13	302929	.,
1	Orion #14	302932	51
1	Orion #15	302933	**
1	Orion #16	302934	**
1	Orion #17	302935	47
1	Orion #18	302936	

3

.

LAFERTY GROUP

CLAIM MAP

SCALE 1:50,000

Fig Z REM

12	Bonanza	#1	303108	Aug	9,	1994
12	Bonanza	#2	303109			
20	Bonanza	#10	303115	Aug	11,	1994

*Pending acceptance of this report

1.3 LOCATION, ACCESS AND PHYSIOGRAPHY The Laferty claim group is situated in the Greenwood and Trail Creek Mining Division of Southern British Columbia near Bonanza Pass on Highway #3, 7.0 km east of Paulson, an old Canadian Pacific rail station. Grand Forks is approximately 40 km to the west and Castlegar is about 35 km to the east. Granville Mountain is near the northeast side of the property at Latitude 49° 11' N Longitude 118° 4' W. McRae Creek bisects the property and Big Sheep Creek is near the east boundary edge.

Access is via a southerly trending, steady grade mine road that leaves the old Castlegar highway near its junction with Highway #3 at the south west end of the Paulson Bridge. Numerous logging, mining and bush roads provide excellent access to most of the interior part of the property.

Granville Mountain is the main topographical feature near

the east side of the property at a height of 1800+ meters (5838 feet). The topographical low point near the property is located south of Paulson by the old railroad stop at Coryell where the elevation is 1025 meters (3177 feet) for an approximate local relief of 675 meters. Mount St. Thomas, south east of the property, is some 2100+ meters (6500 +feet) in elevation and is the most prominent point in the immediate area.

Topography varies from gentle rolling hills in the central up-lands, to precipitous cliffs south along Coryell Creek, east along Big Sheep Creek, and centrally along McRae Creek.

Vegetation consists mainly of conifers and scrub bush. Numerous old clear cut logging areas are located within the group.

1.4 HISTORY

Most of the previous mineral work, near or within the Laferty Claim Group, has been associated with the Burnt Basin and Inland Empire mining camps of which Paulson was the jumping off point along the old railroad. (Figure #3) Historical mining efforts in the Burnt Basin Camp started

in the late 1890's centering around; lead, zinc, silver, copper "replacement bodies" in the central portion of the camp along with gold mineralization at the Molly Gibson and Motherlode claims south and northwest of the central base metal showings.

Base metal production in the camp has been sporadic and no production records are readily apparent until 1948 when the Minister of Mines report states that 14 tons of base metal ores were shipped from the Halifax claim to the smelter at Trail.

Direct shipments of mine run ore, mainly from the Eva Bell and Halifax claims were made from 1972-1977. Lack of concentration facilities on site to up-grade the mine run ore resulted in marginal economics and production ceased. The following table summarizes the recent base metal data. exploration efforts, and production history at Burnt Basin.

TABLE I

1927	Minister of Mines Report; per ton Silver 10.8 oz;
	Lead 17.8%; Zinc 20.5%.
1948	Minister of Mines Report: 14 tons shipped; Silver
	10.5 oz; Lead 18.1%; Zinc 18.3%, per ton.

- 1965 Christina Lake Mines geological, geochemical and magnetometer surveys were completed. Some diamond drilling - data not available.
- 1968 Dalex Mines an induced polarization survey, considerable stripping and trenching on Burnt Basin and Ajax claims. Geochemical survey, trenching and stripping and seven drill holes totalling 2,142 feet.
- 1972-75 Donna Mines, reports by E.O. Chisholm and H.H.Shear, line cutting and magnetometer surveys on the Eva Bell and Halifax, and five short diamond drill holes on the Eva Bell, cat trenching and percussion drilling. Shipped a total of 1,488 tons to Trail, H.B. Mines, Re=Mac Mines and Kam-Kotia.
- 1975-76 Alviija Mines Ltd produced 1,750 tons from the Eva Bell claim and shipped 535 tons yielding 3.1 oz. Ag/ton, 4.45% Pb, 6.75% Zn with 21.5% magnetite to the H.B. Mine at Salmo.
- 1977 Paulson Mines Ltd. completed 1,500 feet of diamond drilling on the Halifax claim and published intercepts of up to 6" grading 12.4 oz. Ag/ton, 19.7% Lead and 14.9% Zinc. (note: Details not available)
- 1978 Oliver Resources completed a vector Pulse E.M. Survey, I.P. Survey with about 10 km completed. Granges Exploration Ltd. completed 291 m of diamond drilling on the Eva Bell and BP No. 2 (adjoins Eva Bell to the east).
- 1986-87 West Rim Resources carried out extensive soil geochemical surveys in the Halifax-Eva Bell area.

The following Table II summarizes the gold exploration and production history at Burnt Basin.

TABLE II

1909 - 1933 Shafts, tunnels and trenches on the Molly

Gibson Group produced 260 tons containing 285 oz. gold and 119 oz. silver. 1909 - 1936 Molly Gibson Group an up-dated production total of 316 tons yielding 332 oz. gold.

- 1986 1987 West Rim Resources completed 420 meters of diamond drilling at the Motherlode prospect.
- 1988 John Worthing Salt Lake City, Utah drilled at least 4 core holes on the Molly Gibson. (data unavailable)
- 1991 Pan Orvana completed small geochemical grid on Molly Gibson.

Other gold claims in the Burnt Basin camp include the Kittie, Aldeen, Contact, Tammany and Tunnel group. Historically, production in the Inland Empire camp, east of Paulson near Granville Mountain has been from small scale shafts, tunnels and open cuts which have produced limited tonnages of gold and silver ore. The following table lists some of the more pertinent data by claim.

TABLE III

INLAND EMPIRE GROUP: Albion Claim

- 1950 shipped 25 tons containing 8 oz. gold and 38 oz. silver.
- 1962 shipped 152 tons containing 16 oz. gold, 147 oz. silver, 309 lbs. lead. and 309 lbs. zinc. 1964 shipped 25 tons containing 70 oz. gold. 23 oz. silver, 50 lbs. lead, and 50 lbs. zinc.

Alice L	/Berlin Claims
1917	59 tons valued @ \$90-100 in gold and silver.
1918	142 tons assaying 3.0 oz/ton gold, 15.0 oz/ton silver, and 0.6% copper.
1919	65 tons containing 26 oz. gold. 83 oz. of silver and 117 lbs. copper.
1938	541 tons shipped containing 121 oz. gold, 1,142 oz. silver.
1939	467 tons yielding 80 oz. of gold and 145 oz. silver.
Inland	(Inland Empire) Claim

infand (infand Empire) claim

1912 2,200 tons milled. 43 tons shipped.

Recent gold exploration efforts in the Laferty Claim Group area had centered around the gold bearing quartz veins until Prominent Resources Corp's more comprehensive exploration in 1985 which focused on the viability of gold targets adjacent to the traditional camp, as well as trying to evaluate the quartz vein targets within the intrusive.

2.0 GENERAL GEOLOGY

2.1 REGIONAL GEOLOGY

Carboniferous or older rocks, possibly equivalent in part to the Pennsylvanian-Permian Mt. Roberts Formation and

Lower Jurassic Elise Formation of the Rossland Group, have been intruded by Late Jurassic Early Cretaceous Nelson and Middle Eocene Coryell plutonic rocks. (Figure #4a & 4b).

Mt. Roberts Formation rocks form an elongated east west roof pendant in the central part of the project area. The pendant consists mainly of limestone, argillaceous limestone, chert, slate, pebble conglomerate and andesitic volcanics. Rocks within the pendant strike roughly north west 320 to 340 dipping 40 to 85 east and are cross cut by north trending shear zones.

Limestone and argillites are generally light gray to black in color and relatively unaltered except where skarned. Volcanic rocks are typically dark green and "intrusive dykes and sills" are typically light colored. Rocks equivalent? to the Rossland Group, consisting of flow breccias, volcanic breccias, andesites, basalts, agglomerates, tuffs, black laminated siltstones, and augite porphyry, outcrop throughout the property.

Biotite hornblende granodiorite of the Late Jurassic -Early Cretaceous Nelson intrusives cut both the Rossland Group and the Mt. Roberts Formation.

.

SOZOIC

Ψ

urren Trussuc ANDAN LOWER JANUSSIC NOSSA-NO MOD MODULA DRUMS WTrv of gransma tradinations and uran mor antrostotad messare incurse to anorgy QUATEHNARY P. LISTOCEME LAMELY CREEK BASALT HIGC DIACK beset, with HIGC LYSIS TO S mm in an aphar HIGC Rows, a ten metres buck 762 Ma demonstration MESOZOIC LANGLY CREEK BASALT ISSU INFINITE DIGETE AND DIVON DISCH MENA OCUT'S BS COUM ANOVE MESOLOG SHEET, K-AF B CHUCH 1001 OPI TEHTIAHY NOCENE PLATEAU BASA, 7 andeurs and basart with supers and hombands pre-scripts to 5 mm in a basic aphanec many forms measure flows to pre-scripts in the sim in a basic aphanec many forms the sime pre-scripts in the sime in a basic strate deader components and public sentistice if it is bey and Carrot Mountein and basicit (118 May Austy weathering, black p or "charty": minor quarter uTres ORDOVICIAN MESOZOIC EOCE Eor OLALLA RHYOLITE INVERSE 2 uTre MARHON GROUP Undrifteransated andesets, da Ema PALEOZOIC 1 breccased chert (S iCher Granite Es2 alcure the Write Las and Merenares pol and Ontrinadiy on 8 heterogeneous add And braccional gra ndreds of mares ac ping fauts includes Es AMATION messive to thick his with clasts of Trepaner I metions includes interpeod ne and ulayey sitetone min I volcanc braccus and and futay Lane and Sum and Swi bads of Discous Leans Trbe Ewi Dyrociesbic ruchs v Yelluw Law rurmal bruwn samisturie includes minur tra molicale a Mucule I MESOZORC MANAMA FURMATION medum brownen grey Bo subhelind unspociese nornbende and boese pre-an ananet, ground turns the top of Black Kingk I Bouchere Anness Bude Mount Law En t En MARAMA FORMATICA - MEMPIT LAKE MEMBER recessive redd actaliaring, amygualous, ir schijendesie with minor intercelat uprocessie deupunts includes indifferencesied melake acum R/LEY LAKE FORMATION massive yellower to burr sective to sectivenase in proposes and books powercurence rules to 3 on 10 ° 0 Per vice, is also creating powercures and use an ap-count form multiple acceleration and thereases multiple countered count formations acceleration and thereases multiple countered and the creation of the provider and thereases of a back CPat YELLOW LAKE FORMATION measure to show about hums of buff to Eyil systems run, manc phonose locary with inomb anotheruse premotivals will primary analose abundant requestions for create and ampliques involves unstrainerused driverse downermits. TREPANER INVICUTE: while and locally pris presents or light pris non-benued injuries with submedire quarts indiriblende and both phenocrysis is, 3 mm in an aphanetic native K-M ages of 47 and \$ 27 Mis evers celeminmed by Chart (1951) was of Trepaner PALEOZOIC Etr Сь INGRADOL FORMATION grown service massive to must bedden there class to burden and proble conjunctives. Class ID 30 cm workship to of the spheric dark and the class ID and the makers, grown and other profectione ruckus with these Marcine to class, many reader lates of deep formations in the Reach in this with com sch of make bight grow, mount booked in this with com sch of make bight grow, mount booked Esb ARBONNE CPa -41.1 CON CORTELL STEAML among to calcimate right layer process built synthe and querts monitones and excises processing and built summain requirement of the Marrial Group exactively the Lease uses institution requires and us for your close Angelyn uncessing returnes any uncertainteed in East her of map area por cated CPRO Ec ORDOVICI ODe ShanGLE Chttle POMPHYRY massive buit and pris, bee granes Loudy ist, grante and trube and subset a previous of it deal To 10 Cm 5-ross accurs as grant under and hedre to be rote under heine scussent of he Corpe Syenes includes mane prime here scussent of he Corpe Syenes includes mane Pgim Egn CnAAdLAR CALSS' missive meaning pay seathering resistor minitrande conter grandbark orthograsis senting based provide provides (priss) impose and baseling means and participate controller (priss) impose and baseling means and endoped controller (priss) and priss) estimate in an organ introller a succession to dig and grand the west of endoped as to the americal countered prission and and a person and countered of the function of the and and person americal counter by the succession and countered means americal counter by the succession of the succession and countered americal countered and the succession and countered means americal countered and the succession of the succession and countered americal countered and the succession of the succession and countered americal countered and the succession and countered means americal countered and the succession of the succession and countered means americal countered and the succession and countered means americal countered countered and the succession and countered means americal countered and the succession and countered and the succession and the succession and countered and the succession Pgto PALEOZOIC Pgfa Egng Messne light jrey workering cross preves greats and p . Nunthender granout onter massivel, resistant, grey weathering, coarse graned scurptender mesocraec with euredral heat bleck homben crystels, locate weathy following ade poorly constrement - **Pale** -CHETACEOUS AND OR JUHASSIC DRAMAGW BAIrOLIIn messis April per vestioning measure accuracy amed accuracy are paper processing and course of sende accuracy and participation and course of sende accuracy and participation and participation and the function law, app pooly conserved Pm OLNER PLUTON messive, unlocated, medium graned porphysics acan grane with insally located equiprender hombience granedicine along me southern border includes Jab. botte hombience occes agreese and Jag, messive gamet muscous grane, sep bordy consegned OSOTOOS GRANODIORTE recessive, pasty premish, homolende prenoutione pen striety seuscurdised, chloridaed, sheared and fractured, age uninoun DOLE JURASSIC ALLSON FLUTONC ROCKS massive, generally moderately foreed modum tray watering, modum: to course graned, equipander contunities builty paradicines, paints done and paras includes undificientiated boild praime of the Valmas sum age boohy OLALLA PYROXENTE Direct, heat, massive, medium- to coarse grained pyroxenter hornblendes, serpenente and perdose Interred Eccene normal fault, arole on downthrown side. KRUGER SYENTE mesave, mecuum grained, biose homblende granuchismu with a marginal zone of megecrysec, mesocraec operse grained humblenite syenite Side-interied fault in metamorphosed rocks, roughly parallel to fokelion.

LEGEND

INDOVACIAN TO UPPER TRIASSIC UTrof UTrof Product Robit And Annual Index Annual Inde DEMARGE FORMATION : messive, gravité preux sécrieu i vou ann ble inducting "beleng" and and brecce includes institutionadau Issue gravitatione inter induction chieft generale Hackweis und Lr integuine fabroard adamtes may be largely the seched aquination (bit fam famous and the second adamtes) E AND LOWER TINABLE (F) BROOK WILL MERSTONE AND "SHARPSTONE CONCLONENTE units readown pick because later previous common with rounday is angular sense" (Sharf previous functions of the sharpstone resident, bracce with angular incompt square cause in the or a -0.5. In the state of the sta To under the second of the second sec US OR PERMIAN NOBINLL GROUP, massive "chert" (lergely suiched preenstore desistore and amphables, manor smessure or marker malor Registore", age antivolan CPA. ATTWOOD GROUP ----CARBONIFEROUS COC. Sector COLECT FORMATION medium bedded prey timestone and carcareous ergines, table persentative tebrics, tox greenschist facer meaning/finame AATION then beddeed, brown, silly state and arginacies renainsing features, low groenschus facies ROUG OR OLDER AssACHST GROUP der per waarenne recesses anphäanir pennisme austrichterte schal austriches schal minur anparented panalese "offen" brecch het resembes Tric is kulcan minurdet Char, pennisme als angeschned dounderts Char-KOBAU OPOUP undexted amphbalas greenschul que schat, greenstone maner marbe arongy tolated with pe faser befas, and unterent 17 TO DEVONIAN (7) Ichis: An bacead anglecoous imastone, slate and investore incluse nearroyhosod equivalants masty biose shopside quart seen and incluse as unnear PROTEROZOIC (1) AND PALEOZOIC (7) Myonec brank reveagrand-brank Press unit 3 Medium crystaline, wall folged b terhogness. Preto und M in. amphibolisc groups, minor marble. Press und IV Coarsely crysteline genet-bross schust, mertoliated quers marbie, abundent beginate and leucogness. Press unit al Pg1g Senanti-books quert paragness, emphobiles and emphotes: mess, marble, books schat and greas, generational quert schus microsous quertes: includes microsous querte schus MONASHEE GARISS gray measure access granadianas gravas gradastanal westwarel with Egn. but nor persprinted by the Ecocene svent that affected the rocks search the Guanagan Fault may be sourceword or method to Pigt may include sequencess at ODs. ago unmonim ble strakgraphic contact, location approxim Aed. ct. rela n. posaddy is nge of instition and minor folds. > A. age and disp Necement unknown. ** el fault, age unknown, gircle an downthrown aide.

merate and volcanic Drective tone classs, minor greywacht tees of shicked etcanarolis

and arguine locally secolar Id arguiaceous amessarie

..

Nelson intrusive rocks have been subsequently intruded by Middle Eocene Coryell, coarse grained syenite, and quartz monzonite. Granites and monzonites of Coryell age are also common along with numerous hypabyssal prophyritic phases.

2.2 GENERAL GOLD MINERALIZATION

Gold bearing fissure quartz veins have been found on the Burnt Basin side at the Motherlode, Kittie, Aldeen, Tammany and Tunnel group claims. Reported gold values have ranged from a trace to 22 grams per ton.

Most of the Burnt Basin (Figure #5) gold production has come from sulfide rich calc-silicate skarn bodies in a silicious limestone unit at the Molly Gibson group claims. Sulfides include pyrrhotite, pyrite and chalcopyrite. Magnetite is also present in the skarn aureole, but is usually a minor constituent except in the base metal "replacement" ore bodies where it forms bands of massive magnetite up to 2.0 meters thick.

East of Paulson the gold mineralization at the Inland Empire camp is related to north trending quartz veins cutting quartz monzonite and related intrusive bodies. These veins are usually: polymetallic, strike within 10

degrees of north, dip steeply, faulted, and discontinuous along strike.

Alteration halos associated with the veins tend to be narrow and either propylitic or argillic. Some quartz veins exhibit epithermal banding and/or mineralogy while others appear to have mesothermal characteristics. Sulfide pods and disseminations within the quartz vein or at its contact with the wall rock, consist of all or one of the following: pyrite, arsenopyrite, chalcopyrite galena. pyrhotite, and sphalerite. Magnetite bearing quartz veins have been found within the Rossland? volcanics.

Skarn hosted mineralization that occurs at the south end of the Laferty claim group and at the Enterprise group to the north east, is predominantly base metal enriched. However, selective sampling of the skarn can produce economic gold assays. Skarnification evidenced in the limestone of the Mt. Roberts Formation and Rossland volcanic units, appears to be intensely telescoped. It is common to go from coarse marble to garnetite within a few meters along strike of the altered beds and from clacite epidote skarn to garnet magnetite skarn in less than one meter within the highly fractured volcanics.

2.3 1991 EXPLORATION PROGRAM

Following a literature review in March-April 1991, area wide field work began in May with geologic orientation and rock chip sampling. Samples were collected from the Molly Gibson and Eva Bell claims on the Burnt Basin side and the Inland, Washington, Saginaw FR, and Amazon claims of Granville Mtn. on the Inland Empire side (See Orion and Bonanza Group Assessment Report).

Rock chip sampling, gridding, followed by wide spaced soil sampling was started on the Laferty claim group in July 1991.

2.4 1992 EXPLORATION PROGRAM

Work consisted of: literature review. airborne geophysics, magnetometery, geochemistry, and drilling.

2.4.1 AIRBORNE GEOPHYSICS

Dighem Surveys and Processing Inc. Mississauga, Ontario was contracted to conduct an airborne geophysical survey over Crown Resources Paulson Project in British Columbia which included the Laferty Claim Group. (Figure #6) This survey was carried out from May 5 to May 11, 1992 covering 288 line-km and has been reported on in Crown Resources Orion

ARBORNEGEOPHYSICAL AREA PAULSON PROSECT FIGURE 6 Group and Bonanza Group Assessment Reports 1992.

The survey, centered at approximately 49° 11 North Latitude and 118° 4 West Longitude, employed the Dighem electromagnetic system with support equipment consisting of: magnetometer, radar altimeter, video camera, analog and digital recorders, a V.L.F. receiver, and an electronic navigation system. Data developed from the airborne system, provided electromagnetic, resistivity, magnetic and V.L.F. coverage of the Paulson survey block, which includes the Laferty claim group.

2.4.2. GROUND GEOPHYSICS-MAGNETOMETRY

Total field magnetic readings were obtained with a Geometrics Proton Magnetometer Model Number G-846, in the hand held position, at each station on the Laferty-Molly Gibson grid. Stations are located every 50 meters along east-west lines that are 100 meters apart with one fill-in 50 meter line at 4650N. (Figure #7) Approximately 6.0 km of surveyed line was run during adverse winter snow conditions.

The most significant magnetic signature is an eliptically shaped magnetic low (approximately minus 1000-2000 gammas)

LEGEND Seno Contours 57700 Magnetics ni gammas of

CROWNEX SPRUCE GROUP Molly GIBSON CLAIM (1990) GROUND MAGNETOMETRY DR. 1992 Km Andy

FIGURE 7

in the area of the Purcell adit production stope. Positive changes were encountered and appear to be related to lithologic units and an increase in outcropping to the east as elevation is gained.

2.4.3 GEOCHEMISTRY

Surface rock chip sampling in the Laferty group was centered around the Molly Gibson claim and the Laferty 1, 2, 3, and 4 claims, all located west of McRae Creek near Burnt Basin.

Typical of earlier work, present sampling efforts returned gold grades of economic interest from the various cuts, pits, shafts and adits on the Molly Gibson 1990 claim. (Figure #8a, 8b, 8c)

In an attempt to gain additional data, the portals of the three main adits on the Molly Gibson were cleared and an underground sampling program was initiated. Approximately 75 samples were collected and assayed for gold.

Based on underground work (Figure #9 in pocket) it is postulated that a north trending steeply dipping structure helps to localize gold enriched sulfide lenses in the

Crees. N LAF-01-92 thm LAF-06-92 Crast ML S1. Thomas Rack Chip Samples - LAF0192 - LAF0692 LAFERTY GROUP - CONEN ADIT SEALE 1:30,000 MCROWN SUMMAN CROWN RESOURCES PAULSON PROJECT Fig 8a

ROCK SAMPLE SHEET

	0			ROC	K SAMPLE SHEET		•	
Sampler Date	K.M. J.Ke	ller mo		Property 7	ULSON - LAFERTY GROUD	NTS _		
		·····	DESCRIPT	ION		1975	ASS	AYS
NO.	Width	Rock Type	Alteration	Minera lization	ADDITIONAL OBSERVATIONS	Au		
LAF-01 92	G	Limy Availlita	oxidizied	Pirite, Galena. Sphalerite	Caleito Vaning dip As' NE	155		
LAF-02 92	G	Limy Avgille	Stlicens	Pyrito, galenc Siphaleat	@ intrusive Carted	195		
LAF-03 92	G	Int. 1.5. Contact	Silicons	Pyritic totgalana	mbruisie vory altonel Maybe clivite	8-		
LAF-04 92	G	bushte Schilt	oxidizied	Pyritic	after 1.5.	<5		
LAF-05 92	G	Magnetil Skan	Starn	Pyrite, Magudile Schuler, to	Seyentrinitic	62		
LAF-06 92	G	Volcanic	51 kafiente	Pyrit, pr, chales, galour	Very Silicous / Andritic greatine?	-25-		
				Sphalerck.				
•								
		1			· · · · · · · · · · · · · · · · · · ·			
•	N.							
					· · · · · · · · · · · · · · · · · · ·			
							-	

C-CHIP G-GRAB F-FLOAT

•."• ^{*}

CHEMEX LABS W.O. # : A9220450 client : CROWN RESOURCE CORPORATION # of samples = 6 received date = 28-AUG-92 project : LAFFERTY (PAULSON) : ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK comments Sample dag uA Al Ba Aα As Be Bì Ca Cr Cd Со Сц Fe Ga Ha K La Ma Mn Mo V P Pb Sb Τi Na Ni Sc Sr T1 U W Zn FA+AA % 2 description ppm ppm ppm ppm mqq ppm % % 2 mag ppm ppm ppm ppm ppm ppm % 2 mag mag ppm ppm ppm ppm ppm mag ppm ppm ppm ppm 80 <0.5 <2 96 155 10.0 2.83 3.49 LAF-01-92 <1 0.52 <10 0.90 5970 >100.0 102 31 9.39 10 13 Q 80 0.16 <10 <10 44 910 7150 <7 247 10 0.17 100 >10000 30 <0.5 <2 7.03 66 LAF-02-92 195 29.6 2.18 7 51 40 3.70 <10 <1 0.22 <10 0.37 2030 >100.0 19 720 >10000 <2 234 0.12 <10 13 0.13 3 <10 106 50 >10000
 46
 10
 <0.5</th>
 10
 3.16

 <1</td>
 0.10
 <10</td>
 0.35
 295
 LAF-03-92 -95 2.4 2.65 <0.5 38 88 275 14.10 10 7 0.22 40 600 102 3 159 0.08 <10 <10 50 4 20 242 <5 LAF-04-92 <0.2 2.66 56 50 <0.5 2 1.39 <0.5 14 33 <1 0.24 <10 1.15 74 2.62 10 170 950 4 11 170 0.23 <10 133 <1 0.29 14 46 <10 10 154 670<0.2</th>0.515830<0.5</th><2</th>0.382132>15.00<10</td>10.16<10</td>0.5769605003420<2</td>2270.04<10</td><10</td>2 LAF-05-92 >100.0 13 9 2 0.03 29 50 >10000 265 15.4 2.36 32 90 <0.5 <2 1.33 LAF-06-92
 75
 390
 10.25
 10
 <1</td>
 0.31
 10
 1.35
 7320

 1150
 >10000
 <2</td>
 8
 70
 0.17
 <10</td>
 <10</td>
 108
 13 >100.0 1150 >10000 <2 15 6 0.09 50 >10000

Figse

hanging wall of a limestone unit along its contact with an overlying intrusive sill.

Strong north trending structural control of the gold bearing mineralization is also supported by anomalous gold values from surface working that occur between the major adits, in association with intrusive sills?

2.4.4 DRILLING

Three Reverse Circulation drill holes were drilled on the Molly Gibson claim. (Figure #10) Engineering data is as follows:

HOLE #	BEARING	ANGLE	Ft/m Total Depth
92 MG #1	270°	-60°	260/79.2
92 MG #2	270°	-60°	285/86.9
92 MG #3	270°	-45°	340/103_6

Hole 92MG #1 was the only hole to intersect elevated gold at depth. The results are as follows: 875 ppb from 55-60 ft. and from 220-225 ft.

2.5 CONCLUSIONS

Elevated gold values along with the few high grade gold samples are found in siliceous sulfate bearing skarn zones in the hanging wall of altered limestone near the contact

with an overlying sill. The data suggests that the enrichment is more pronounced when the layered geology is cut by north trending shear zones.

2.6 RECOMMENDATION

Continue basic exploration north and west of the present Molly Gibson grid.

Drill three core holes from underground in the Bob Miller adit, down dip and along strike of the gold bearing structure located approximately 95 meters southerly from the adit portal.

Respectfully submitted

R.E.M. iller

R.E. Miller

APPENDIX A

.

.

COST ESTIMATES

LAFERTY CLAIMS

.

STATEMENT OF COST

Manpower

.

Bob Miller – geologist 15 days \$250.00 x 15	\$ 3750.00
John Kemp - prospector 3 days \$175.00 x 3	525.00
Kim Anschetz - helper 20 days \$100.00 x 20	2000.00
Stan Ruzicka - cat skinner 15 days \$110.00 x 15	1650.00

Vehicles

2 trucks x 20 x \$65.00	2640.00
Bulldozer rental 1/2 month	
@\$5000.00/month	2500.00
Fuel 150 gallons plus oil	450.00

Geophysics

Magnetometer	rental		
\$15.00/day x	5 days	\$ 75.0	0

Drilling 885 ft @\$12.50/ft \$11,062.50

Assays

99 rocks @\$14.00	\$ 1386.00
177 drill cuttings @\$14.00	2478.00

Report, shipping, office etc \$ 900.00

Total

\$26,466.50

APPENDIX B STATEMENT OF QUALIFICATIONS .

1

.

.

STATEMENT OF QUALIFICATIONS

I ROBERT E. MILLER, of Oroville, Washington U.S.A., DO HEREBY CERTIFY:

- THAT I am a geologist with Crown Resources Corporation, with a business address of Star Route 85, Oroville, Washington 98844.
- THAT I am a graduate from Brigham Young University with a Bachelor of Science degree in Geological Engineering (1969).
- 3. THAT I have practised my profession continuously since graduation.
- 4. THAT I personally conducted the 1992 exploration program discussed in this report.

DATED this 79th day of Mar, 1993.

2 En alie

Robert E. Miller Geological Engineer

REFERENCES

_

APPENDIX C

.

.

.

REFERENCES

- British Columbia Minister of Mines Annual Report, 1901; pg. 106, 1904; pg. 299.
- Crowe, Gregory G., M.Sc. P.Geol. and Forbes, Jonna R. B.Sc., 1985 Geological, Geochemical and Geophysical Report on the Granville Mountain Property of Prominent Resources Corporation B.C. Assessment Report 14733.
- Fox, M., B.Sc., F.G.A.C. Geological and Geochemical Report on the Molly Gibson Property owned by Herman Hoehn B.C. Assessment Report 11,989.
- Miller, R.E., 1992, Airborne Geophysical Survey on the Paulson Project, British Columbia, Assessment Report on the Bonanza Group.
- Miller, R.E., 1992, Airborne Geophysical Survey on the Paulson Project. British Columbia, Assessment Report on the Orion Group
- Ruzicka, Stan, Personal communication, Maps, and Records 1991.
- Shear. H.H., 1973 Progress Report on Donna Mines, November 1973.
- Templeman-Kluit, D.J., 1989: Geology, Penticton, British Columbia, Geological survey of Canada, Map 1736A. Scale 1:250,000.
- Von Einsiedel, C.A., 1989, Prospecting Report Josh Claim Group, Assessment Report 18560.

APPENDIX D ASSAYS ~

.

.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	CROWN RESOURCE CORPORATION
	1225 17TH ST STE 1500
	DENVER COLORADO
	80202

Page Number :1-A Total Pages :2 Certificate Date: 24-DEC-92 Invoice No. :19226453 P.O. Number : Account :JXX

Project : PAULSON V Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK $\mathbf{\nu}$

											С	ERTIF	TACI	E OF	YSIS		A922	6453			
SAMPLE	PREI	P E	ди ррб Уд+дд	Ag ppm	А1 _%	As ppm	Ba ppm	Ве рря	Bi ppn	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu	Fe %	Ga ppm	Hg ppm	x	La ppm	Mg %	Mn ppm
92MG #1 000-005 92MG #1 005-010 92MG #1 010-015 92MG #1 015-020 92MG #1 020-025	 205 2 205 2	 274 274	miss. miss. < 5 < 5 < 5	miss. miss. 1.0 0.4 1.0	miss. miss. 2.31 2.13 2.78	miss. miss. < 2 8 2	miss. miss. 280 70 210	miss. miss. < 0.5 < 0.5 < 0.5	miss. miss. < 2 < 2 < 2	miss. miss. 3.43 >15.00 8.34	miss. miss. 2.0 8.0 6.5	miss. miss. 11 6 10	miss. miss. 19 26 2	miss. miss. 18 30 21	miss. miss. 3.50 1.76 2.66	miss. miss. < 10 < 10 < 10	miss. miss. < 1 < 1 < 1	miss. miss. 0.90 0.23 0.58	miss. miss. < 10 10 < 10	miss. miss. 1.03 0.29 0.69	miss. miss. 475 320 330
92MG #1 025-030 92MG #1 030-035 92MG #1 035-040 92MG #1 040-045 92MG #1 045-050	205 205 205 205 205 205	274 274 274 274 274	<pre>< 5 < 5 < 5 < 5 < 5 < 115</pre>	0.8 < 0.2 0.2 < 0.2 < 0.2	2.02 2.69 2.60 2.11 2.48	2 < 2 2 14	240 120 40 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 < 2	2.25 12.70 >15.00 >15.00 3.53	1.0 12.0 12.5 13.0	15 9 6 4	30 54 38 28	12 35 38 32	3.25 2.25 1.45 1.34 3.97	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.86 0.43 0.14 0.04	10 10 < 10 < 10 < 10	1.20 0.48 0.25 0.07	300 205 140 185 310
92MG #1 050-055 92MG #1 055-060 92MG #1 060-065 92MG #1 065-070 92MG #1 070-075	205 205 205 205 205 205 205	274 274 274 274 274 274	50 875 190 40 35	1.2 1.8 0.8 0.2 0.2	2.88 3.65 3.01 1.39 0.63	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	140 60 80 20 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.62 1.73 1.23 >15.00 >15.00	< 0.5 < 0.5 < 0.5 8.0 1.0	13 34 21 6 3	28 32 78 24 19	157 428 345 44 23	4.75 9.10 6.93 1.84 2.69	< 10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.78 0.86 1.28 0.09 0.01	< 10 < 10 < 10 < 10 < 10 < 10	1.25 1.25 1.44 0.11 0.11	430 420 470 510 945
92MG #1 075-080 92MG #1 080-085 92MG #1 085-090 92MG #1 090-095 92MG #1 095-100	205 2 205 2 205 2 205 2 205 2	274 274 274 274 274	30 20 10 5 20	0.2 < 0.2 0.2 0.4 0.6	4.34 4.75 3.95 4.44 4.59	< 2 8 4 2 8	30 150 350 330 280	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	13.85 4.48 2.22 2.31 2.56	0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 15 12 18 17	32 40 61 50 49	123 58 24 92 122	2.87 2.69 3.50 4.27 4.43	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.19 0.80 1.24 1.19 1.36	< 10 < 10 < 10 < 10 < 10 < 10	0.27 1.05 1.76 1.74 1.66	340 260 275 340 305
92MG #1 100-105 92MG #1 105-110 92MG #1 110-115 92MG #1 110-115 92MG #1 115-120 92MG #1 120-125	205 2 205 2 205 2 205 2 205 2	274 274 274 274 274	< 5 < 5 < 5 < 5 < 5	0.2 0.2 < 0.2 0.2 < 0.2 < 0.2	3.34 2.10 1.57 1.36 1.15	< 2 8 4 6 < 2	160 170 100 60 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2.21 1.39 1.21 1.11 1.19	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 12 13 10 9	53 65 53 36 24	49 13 14 12 11	3.06 3.30 2.90 2.82 2.34	<pre>< 10 < 10</pre>	< 1 < 1 < 1 < 1 < 1 < 1	0.85 0.73 0.40 0.31 0.28	< 10 10 20 20 20	1.06 1.26 1.06 0.95 0.74	245 380 335 360 280
92MG #1 125-130 92MG #1 130-135 92MG #1 135-140 92MG #1 140-145 92MG #1 145-150	205 2 205 2 205 2 205 2 205 2	274 274 274 274 274 274	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.2 0.4 0.2 0.2	1.87 1.41 1.24 0.82 0.89	6 2 < 2 < 2 2 2	50 30 60 130 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.60 1.38 1.12 0.71 0.79	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 10 9 5 6	29 25 42 62 48	25 38 35 12 12	2.95 2.44 2.57 1.81 1.88	< 10 < 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.25 0.19 0.19 0.21 0.16	20 20 50 90 80	0.82 0.78 0.81 0.51 0.58	325 270 310 220 260
92MG #1 150-155 92MG #1 155-160 92MG #1 160-165 92MG #1 165-170 92MG #1 170-175	205 2 205 2 205 2 205 2 205 2	274 274 274 274 274	<pre>< 5 < 5</pre>	0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	1.08 1.39 1.46 1.08 1.53	2 18 8 2 4	80 80 90 120 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 < 2 < 2 < 2	0.91 1.20 1.26 0.92 0.89	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 7 7 11	43 58 64 60 51	15 16 16 14 30	1.98 2.04 2.17 1.94 2.58	20 20 20 20 20	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.13 0.14 0.18 0.40	70 80 80 90 50	0.50 0.46 0.51 0.59 1.06	305 300 325 260 295
92MG #1 175-180 92MG #1 180-185 92MG #1 185-190 92MG #1 190-195 92MG #1 195-200	205 2 205 2 205 2 205 2 205 2	274 274 274 274 274	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.57 1.79 0.85 3.11 2.59	12 6 2 14 10	150 140 180 170 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.83 1.37 0.63 1.60 2.17	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 21 6 17 18	38 43 51 51 62	26 153 13 81 106	2.51 3.81 2.04 4.09 3.99	< 10 < 10 20 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.53 0.57 0.24 0.90 0.62	< 10 < 10 80 < 10 < 10	1.12 1.15 0.55 1.74 1.52	225 260 230 370 325
L,	<u>L</u>							<u> </u>									μ.	hai	Ð	Ma	<u> </u>

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

Page Number :1-B Total Pages :2 Certificate Date: 24-DEC-92 Invoice No. : 19226453 P.O. Number : Account : JXX

Project : PAULSON

Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

,											LYSIS	A9226453				
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti X	T1 ppm	ט נוסקים וו	v ppm	N N DDI	í Zn I ppm	
92MG #1 000-005 92MG #1 005-010 92MG #1 010-015 92MG #1 015-020	 205 274 205 274	miss. mis#. < 1	miss. miss. 0.13	miss. miss. 7	miss. miss. 720	miss. miss. 8	miss. miss. 4	miss. miss. 6	miss. miss. 142	miss. miss. 0.22	miss. miss. 20	miss. miss. < 10	miss. miss. 133	miss. miss. < 10	miss. miss.) 138	
92MG #1 020-025	205 274	2	0.11	22	1400	< 2	ĩ	4	250	0.22	< 10	< 10	101	< 10	198	
92MG #1 025-030 92MG #1 030-035 92MG #1 035-040 92MG #1 040-045 92MG #1 045-050	205 274 205 274 205 274 205 274 205 274 205 274	< 1 10 12 12 < 1	0.07 0.07 0.08 0.02 0.15	9 35 38 37 12	850 1230 1000 940 1030	< 2 6 6 12 < 2	4 < 2 < 2 2 < 2	3 2 2 1 8	79 343 493 426 109	0.24 0.21 0.13 0.09 0.25	30 < 10 < 10 < 10 < 20	< 10 < 10 < 10 < 10 < 10 < 10	107 116 108 84 113	< 10 < 10 < 10 < 10 < 10 < 10) 84) 286) 278) 296) 72	
92MG #1 050-055 92MG #1 055-060 92MG #1 065-065 92MG #1 065-070 92MG #1 070-075	205 274 205 274 205 274 205 274 205 274 205 274	<pre> < 1 < 1 < 1 < 1 9 10</pre>	0.23 0.29 0.23 0.03 0.01	9 17 12 31 20	1080 1010 1090 610 380	< 2 < 2 8 6 4	2 < 2 < 2 < 2 < 2 2	9 10 13 2 1	87 99 69 381 308	0.31 0.31 0.38 0.07 0.02	20 20 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	130 130 155 77 23	< 10 < 10 < 10 < 10 < 10 < 10	72 68 76 234 96	· · · · · · · · · · · · · · · · · · ·
92MG #1 075-080 92MG #1 080-085 92MG #1 085-090 92MG #1 090-095 92MG #1 095-100	205 274 205 274 205 274 205 274 205 274 205 274	3 < 1 < 1 < 1 < 1 < 1 < 1	0.49 0.48 0.26 0.23 0.42	15 14 13 15 15	1480 940 1050 1050 980	4 16 12 10 14	< 2 2 2 2 4	4 8 15 17 16	276 193 278 297 229	0.20 0.29 0.33 0.34 0.36	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	87 131 179 200 184	< 10 < 10 < 10 < 10 < 10 < 10	34 48 68 66 64	
92MG #1 100-105 92MG #1 105-110 92MG #1 105-110 92MG #1 110-115 92MG #1 115-120 92MG #1 120-125	205 274 205 274 205 274 205 274 205 274 205 274	<pre> < 1 < 1 < 2 < 1 < 1 < 1</pre>	0.32 0.14 0.07 0.06 0.04	14 7 4 2 2	970 890 1090 1150 1230	16 12 14 12 10	4 2 2 2 2 2	7 6 3 3 2	173 98 77 46 56	0.30 0.25 0.17 0.16 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	137 114 77 74 65	< 10 < 10 < 10 < 10 < 10 < 10	50 58 50 44 36	· · · · · · · · · · · · · · · · · · ·
92MG #1 125-130 92MG #1 130-135 92MG #1 135-140 92MG #1 140-145 92MG #1 145-150	205 274 205 274 205 274 205 274 205 274 205 274	1 < 1 1 3 2	0.05 0.07 0.06 0.07 0.05	3 2 7 11 12	1630 1440 1260 740 890	10 12 14 16 18	4 2 2 < 2 < 2 < 2	3 3 3 2 2	132 129 75 68 77	0.18 0.13 0.14 0.13 0.12	< 10 < 10 10 20 20	< 10 < 10 < 10 < 10 < 10 < 10	78 56 51 29 28	< 10 < 10 < 10 < 10 < 10 < 10	48 44 48 32 36	
92MG #1 150-155 92MG #1 155-160 92MG #1 160-165 92MG #1 165-170 92MG #1 170-175	205 274 205 274 205 274 205 274 205 274 205 274	1 1 3 2	0.03 0.07 0.06 0.07 0.07	12 12 13 13 14	1090 1110 1150 950 840	16 14 14 12 6	< 2 2 2 < 2 < 2 < 2	3 5 6 3 7	99 137 131 97 113	0.11 0.15 0.16 0.15 0.20	< 10 < 10 < 10 < 10 < 10 < 10	20 20 10 20 10	31 41 42 32 85	< 10 < 10 < 10 < 10 < 10 < 10	44 46 46 38 50	
92MG #1 175-180 92MG #1 180-185 92MG #1 185-190 92MG #1 190-195 92MG #1 195-200	205 274 205 274 205 274 205 274 205 274 205 274	< 1 1 4 < 1 2	0.06 0.09 0.05 0.20 0.14	14 17 12 17 19	820 850 900 1110 800	6 8 16 6 10	4 2 2 2 2	7 7 2 11 8	135 153 52 121 114	0.20 0.22 0.15 0.30 0.31	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 20 < 10 < 10	111 103 32 150 128	< 10 < 10 < 10 < 10 < 10 < 10	44 46 34 66 64	
L		I												CEBTIE		Thai D'Ma

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

Page Number :2-A Total Pages :2 Certificate Date: 24-DEC-92 Invoice No. :19226453 P.O. Number : Account :JXX

Project : PAULSON

Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

										CE	RTIFI	CATE	OF A	NAL	rsis		49226	453		
SAMPLE	PREP CODE	ли ррb Fλ+λλ	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu	Fe %	Ga ppm	Hg ppm	R %	La ppm	Mg %	Ma ppm
92MG #1 200-205 92MG #1 205-210 92MG #1 210-215 92MG #1 215-220 92MG #1 220-225	205 27 205 27 205 27 205 27 205 27 205 27	4 < 5 4 < 5 4 < 5 4 115 4 1110	< 0.2 < 0.2 < 0.2 0.2 0.2	2.36 3.18 3.11 3.16 4.25	< 2 < 2 < 2 6 16	30 130 40 90 250	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 2 12 22	2.68 2.83 7.67 3.70 2.97	1.5 < 0.5 0.5 < 0.5 < 0.5	15 16 16 22 20	40 51 36 48 60	103 62 98 157 142	3.02 3.77 2.39 3.83 4.93	10 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.16 0.51 0.31 0.57 1.31	< 10 20 < 10 < 10 < 10	0.97 1.74 0.83 1.14 1.95	295 410 305 320 400
92MG #1 225-230 92MG #1 230-235 92MG #1 235-240 92MG #1 240-245 92MG #1 245-250	205 27 205 27 205 27 205 27 205 27 205 27	4 30 4 15 4 10 4 < 5 4 < 5	< 0.2 0.2 0.2 0.2 < 0.2 < 0.2	4.74 2.39 3.58 2.26 1.60	8 < 2 < 2 2 2 2	240 20 30 10 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 10 2 < 2 < 2 < 2	2.61 3.98 6.95 8.68 5.78	< 0.5 0.5 < 0.5 < 0.5 < 0.5 1.0	19 25 19 11 19	66 58 71 37 33	102 418 217 63 35	4.66 4.57 3.07 1.63 2.17	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	1.40 0.14 0.27 0.06 0.26	< 10 < 10 < 10 < 10 20	2.03 0.86 0.76 0.45 0.62	410 415 305 330 285
92MG #1 250-255 92MG #1 255-260	205 27 205 27	4 < 5 4 < 5	< 0.2 0.2	2.17 2.92	< 2 6	110 10	< 0.5 < 0.5	4 < 2	4.81 7.69	< 0.5 < 0.5	16 20	31 53	42 80	3.30 3.00	10 < 10	< 1 < 1	0.51 0.15	20 < 10	0.98 0.82	415 325
																				:
													<u></u>				a		<u></u>	
													c	ERTIFIC	ATION:_	Ht.	ai	<u>4)</u>	na	• F

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

Page Number :2-B Total Pages :2 Certificate Date: 24-DEC-92 Invoice No. : P.O. Number : :19226453 Account :JXX

Project : PAULSON Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

	•	_								CE	RTIF		NAL	rsis	A9226453	
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D D	V ppm	W	Zn ppm	
92MG #1 200-205 92MG #1 205-210 92MG #1 210-215 92MG #1 215-220 92MG #1 220-225	205 274 205 274 205 274 205 274 205 274 205 274	3 2 2 1 < 1	0.15 0.16 0.20 0.15 0.23	14 13 16 15 18	1050 1520 1300 1350 1530	16 < 2 < 2 4 < 2	< 2 < 2 2 < 2 2 2	6 9 7 10 19	119 181 216 120 182	0.20 0.25 0.27 0.28 0.37	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	87 131 105 138 212	< 10 < 10 < 10 < 10 < 10 < 10	120 74 50 54 88	
92MG #1 225-230 92MG #1 230-235 92MG #1 235-240 92MG #1 240-245 92MG #1 245-250	205 274 205 274 205 274 205 274 205 274 205 274	< 1 < 1 < 1 < 1 2	0.34 0.09 0.20 0.07 0.10	16 15 14 8 10	1470 1390 1400 1230 1760	< 2 10 < 2 < 2 4	< 2 < 2 < 2 < 2 < 2 < 2 < 2	18 8 7 4 2	232 91 192 208 152	0.35 0.29 0.27 0.16 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	192 101 96 59 55	< 10 < 10 30 10 60	72 66 50 26 74	
92MG #1 250-255 92MG #1 255-260	205 274 205 274	< 1 < 1	0.07	5 17	1890 1070	6 < 2	2 4	6 7	110 179	0.22	< 10 < 10	< 10 < 10	91 80	< 10 20	52 32	
													c	EBTIEIC		thai & Ma

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

Page Number :2-A Total Pages :2 Certificate Date: 26-DEC-92 Invoice No. : 19226454 P.O. Number : JXX Account

Project : PAULSON

Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

CERTIFICATION:

										CE	RTIFI	CATE	OF A	NAL	YSIS	/	49226	454		
SAMPLE	PREP CODE	Ац ррb Рд+дд	λg ppm	A1 %	λs ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Си ррт	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
2MG #2 200-205 2MG #2 205-210 2MG #2 210-215 2MG #2 215-220 2MG #2 220-225	205 274 205 274 205 274 205 274 205 274 205 274	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.2 0.2 0.2 0.2	1.72 1.25 0.95 0.97 0.68	6 2 < 2 < 2 < 2	10 10 10 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 2 2 2	14.15 >15.00 12.90 2.12 0.96	5.0 4.0 2.0 0.5 < 0.5	3 2 2 4 2	28 43 38 44 35	49 40 11 19 10	0.65 0.54 0.61 1.58 1.43	< 10 < 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1	0.05 0.07 0.04 0.09 0.09	< 10 < 10 10 70 40	0.04 0.13 0.18 0.53 0.34	115 145 205 235 200
22MG #2 225-230 22MG #2 230-235 22MG #2 235-240 22MG #2 240-245 22MG #2 245-250	205 274 205 274 205 274 205 274 205 274 205 274	5 5 5 5 5 < < < < <	0.2 0.2 0.2 0.4 < 0.2	0.70 0.60 0.60 1.17 0.65	< 2 < 2 < 2 4 < 2	30 20 20 130 70	< 0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 4	0.66 0.57 0.51 0.78 1.00	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 1 2 3 3	42 33 46 73 38	9 9 6 12 14	1.31 1.36 1.31 1.33 1.56	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1	0.09 0.07 0.08 0.40 0.15	40 40 40 50 50	0.27 0.28 0.28 0.28 0.38	175 180 180 195 210
21MG #2 250-255 21MG #2 255-260 21MG #2 260-265 21MG #2 265-270 21MG #2 270-275	205 274 205 274 205 274 205 274 205 274 205 274	5 5 5 5 5 7 7 7 7 7	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	0.64 0.68 1.14 0.66 0.23	< 2 < 2 < 2 < 2 < 2 < 2	120 160 90 90 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 6 2 < 2	1.08 0.72 0.60 0.59 >15.00	< 0.5 < 0.5 < 0.5 < 0.5 0.5	5 5 4 < 1	57 50 37 33 16	13 17 32 15 10	1.91 2.22 2.44 1.90 0.97	10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.23 0.39 0.70 0.30 0.06	60 50 30 40 10	0.48 0.63 0.89 0.50 0.17	210 290 340 255 485
2MG #2 275-280 2MG #2 280-285	205 274	< 5	0.2	3.74 4.55	< 2	10	< 0.5		8.14	0.5	8	21 23	121 164	1.53	< 10		0.04	< 10 < 10	0.10	140
													c	ERTIFIC	CATION:	Hh	ai	\mathcal{D}'	Ma	

-

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

Page Number :2-B Total Pages :2 Certificate Date: 26-DEC-92 Invoice No. : P.O. Number : :19226454 JXX Account

PAULSON Project : Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

										CE	RTIF	CATE		NALY	'SIS	A9226454
SAMPLE (PREP CODE	Mo ppm	Na %	Ni ppm	P P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U mqq	V mqq	W mqq	Zn ppm	
92MG #2 200-205 20 92MG #2 205-210 20 92MG #2 210-215 20 92MG #2 215-220 20 92MG #2 220-225 20	205 274 205 274 205 274 205 274 205 274 205 274	3 5 4 5 4	0.20 0.04 0.01 0.05 0.04	21 18 9 6 2	800 730 870 880 550	16 18 30 10 12	2 < 2 < 2 2 2 2	< 1 1 2 1	616 604 341 132 79	0.08 0.08 0.12 0.16 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	26 35 41 25 16	10 10 10 10 < 10	80 100 118 46 36	
92M3 #2 225-230 20 92M3 #2 230-235 20 92M3 #2 230-235 20 92M3 #2 235-240 20 92M3 #2 240-245 20 92M3 #2 245-250 20	205 274 205 274 205 274 205 274 205 274 205 274	3 2 3 3 2	0.05 0.06 0.06 0.29 0.06	3 2 2 3 8	390 410 380 410 1060	16 14 10 30 14	< 2 < 2 < 2 4 < 2	1 1 1 2 2	126 57 47 101 70	0.09 0.09 0.12 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	13 12 13 15 31	< 10 < 10 < 10 < 10 < 10 < 10	28 28 24 60 42	
92MG #2 250-255 20 92MG #2 255-260 20 92MG #2 260-265 20 92MG #2 265-270 20 92MG #2 270-275 20	205 274 205 274 205 274 205 274 205 274 205 274	1 1 4 5 3	0.08 0.07 0.10 0.07 0.02	12 11 4 7 2	1450 1250 690 870 280	8 9 2 8 4	< 2 < 2 < 2 < 2 < 2 < 2 2	1 1 6 1 < 1	100 62 33 38 170	0.15 0.18 0.24 0.15 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	50 52 76 36 16	< 10 10 10 < 10 20	30 36 42 32 34	,
92MG #2 275-280 20 92MG #2 280-285 20	205 274 205 274	1 < 1	0.40	8 8	980 1160	< 2 16	< 2 < 2	2 1	233 166	0.14 0.18	< 10 < 10	< 10 < 10	46 41	20 10	22 20	

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	CROWN RESOURCE CORPORATION
	1225 17TH ST., STE. 1500
	DENVER, COLORADO
	80202

Page Number :1-A Total Pages :2 Certificate Date: 26-DEC-92 Invoice No. :19226454 P.O. Number JXX Account

V Project : PAULSON Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

					CE	RTIF	CATE	OF	ANAL	YSIS		A9226	6454							
SAMPLE	PREP CODE	ли ppb Гл+лл	λg ppm	۸1 *	ls ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
92MG #2 000-005	205 274	20	0.4	3.01	4	160	0.5	4	1.08	1.0	10	79	38	3 28	10	/ 1	0.25	20	0.84	520
92MG #2 005-010	205 274	< 5	0.2	2.40	16	350	< 0.5	Ā	1.24	< 0.5	16	112	34	4.18	10	< 1	1.17	30	1.32	465
92MG #2 010-015	205 274	< 5	< 0.2	2.42	16	300	< 0.5	- 4	1.38	< 0.5	17	113	25	4.00	10	< 1	1.05	20	1.35	380
92MG #2 015-020	205 274	10	< 0.2	2.66	60	200	< 0.5	< 2	4.36	0.5	13	83	26	2.82	10	< 1	0.62	20	0.89	335
52MG #2 020-025	205 2/4	< 5	< 0.2	2.53	102	110	< 0.5	< 2	5.51	4.0	12	81	49	1.24	< 10	< 1	0.41	10	0.50	125
92MG #2 025-030	205 274	< 5	0.2	1.99	4	250	< 0.5	4	4.12	2.5	16	75	32	3.30	10	1	0.84	20	1.04	290
92MG #2 030-035	205 274	< 5	0.2	2.81	8	180	< 0.5	< 2	7.73	1.5	12	51	28	2.58	< 10	< 1	0.68	20	0.75	235
92MG #2 035-040	205 274	< 5	0.2	2.87	14	20	0.5	4	13.50	9.5	8	34	43	1.44	< 10	< 1	0.10	10	0.07	95
02M3 #2 040-045	205 274	< 5 / 5	0.4	2.23	6	60	0.5	< 2	>15.00	4.0	7	36	58	1.81	< 10	< 1	0.10	< 10	0.17	175
52MG #2 045-030	203 2/6	< 5	< U.X	1.54	< 2	70	< 0.5	2	>15.00	2.0	2	20	21	1.25	< 10	2	0.24	< 10	2.07	180
92NG #2 050-055	205 274	< 5	< 0.2	2.50	< 2	450	< 0.5	4	3.90	< 0.5	19	68	27	3.96	10	< 1	1.22	40	1.50	360
92MG #2 055-060	205 274	< 5	0.2	2.44	6	120	0.5	< 2	6.18	2.0	11	49	31	2.15	< 10	< 1	0.43	10	0.45	165
9486 #4 000-005	205 274	< 5	0.2	2.92	18	10	0.5	4	10.05	5.0	10	65	49	2.34	< 10	2	0.08	10	0.06	120
92MG #2 005-070	205 274	< 5	0.4	3.24	4	10	0.5	2	11.75	6.0	7	36	44	1.61	< 10	< 1	0.07	10	0.04	135
5245 #2 070-075	403 474	< >	0.4	3.17	< 2	10	0.5	< 2	13.15	7.5	7	44	41	1.43	< 10	< 1	0.07	10	0.10	135
92MG #2 075-080	205 274	< 5	0.2	2.72	14	150	0.5	2	8.11	3.0	12	61	40	1.96	< 10	< 1	0.47	20	0.59	220
92MG #2 080-085	205 274	< 5	< 0.2	2.26	4	190	< 0.5	2	3.37	0.5	8	74	29	2.13	10	1	0.68	10	0.83	280
9200 #2 085-090	205 274	20	< 0.2	1.91	< 2	300	< 0.5	< 2	1.68	0.5	18	97	38	3.23	10	< 1	1.12	40	1.49	360
92002 #2 090-095	205 274	< 2	< 0.2	2.34		340	< 0.5	6	2.82	0.5	18	96	20	2.89	10	1	1.16	40	1.27	325
				4.50		390	< 0.5	•	5.55	1.5	15	72	33	3.01	10	< 1	1.02	30	1.09	285
92MG #2 100-105	205 274	< 5	0.4	2.88	12	90	0.5	< 2	14.25	5.0	و	36	39	1.97	< 10	< 1	0.30	10	0.29	145
92103 #2 105-110	205 274	< 5	0.2	2.58	4	30	0.5	< 2	13.85	3.0	7	32	34	1.73	< 10	< 1	0.13	< 10	0.16	155
92MG #2 110-115	205 274	< 5	0.2	2.20	4	10	0.5	< 2 >	>15.00	4.5	26	28	37	1.49	< 10	< 1	0.05	< 10	0.04	125
928G #2 115-120	205 274	< 5	0.2	2.65	10	60	0.5	< 2 >	>15.00	2.0	8	47	37	1.43	< 10	< 1	0.21	10	0.32	165
928G #2 120-125	205 274	< 5	0.4	3.02	6	10	0.5	4 3	>15.00	4.5	7	26	39	1.51	< 10	< 1	0.13	< 10	0.06	225
92MG #2 125-130	205 274	< 5	< 0.2	3.01	< 2	20	< 0.5	< 2 >	15.00	1.5	243	88	31	0.97	< 10	2	0.14	< 10	0.04	420
92MG #2 130-135	205 274	< 5	0.4	1.97	< 2	10	< 0.5	< 2 >	15.00	2.0	6	20	24	1.10	< 10	1	0.11	< 10	0.09	235
92863 #2 135-140	205 274	< 5	0.2	2.07	< 2	220	< 0.5	2	7.80	2.0	12	60	37	2.74	< 10	< 1	0.77	30	0.88	300
92M3 #2 145-150	205 274	< 5	< 0.2	2.30	< 2	420	< 0.5	< 2	1.60	< 0.5	314	153	30	4.17	20	3	1.41	60	1.86	490
54MG #4 145~150	205 2/4	<u> </u>	0.2	4.04	< 4	320	< 0.5	2	6.11	0.5	14	59	23	2.90	10	< 1	1.01	30	1.16	350
92MG #2 150-155	205 274	< 5	0.2	1.11	4	60	< 0.5	< 2 >	15.00	1.5	6	24	14	1.25	< 10	1	0.22	< 10	0.32	260
92MG #2 155-160	205 274	< 5	0.2	0.78	4	10	< 0.5	< 2 >	15.00	3.5	1	14	13	0.76	< 10	ī	0.03	< 10	0.08	240
92MG #2 160-165	205 274	< 5	0.4	0.64	6	30	< 0.5	< 2 >	15.00	1.0	2	16	9	0.87	< 10	< 1	0.11	< 10	0.18	310
pr∡mG #2 165-170	205 274	< 5	< 0.2	1.60	< 2	390	< 0.5	4	7.79	1.0	12	72	16	2.60	< 10	< 1	0.88	20	1.08	275
54m3 ₩4 1/0-175	205 274	< 5	< 0.2	1.15	4	140	< 0.5	2 >	15.00	1.0	6	43	11	1.28	< 10	< 1	0.44	< 10	0.58	330
92MG #2 175-180	205 274	< 5	0.2	0.41	< 2	10	< 0.5	< 2 >	15.00	1.5	1	12	7	0.53	< 10	< 1	0.02	< 10	0.15	335
92MG #2 180-185	205 274	< 5	0.2	0.65	14	< 10	< 0.5	- 4 >	15.00	3.0	2	15	11	0.72	< 10	< 1	0.01	< 10	0.14	290
y∡ng #2 185-190	205 274	< 5	0.2	0.63	8	10	< 0.5	- 4 >	15.00	1.0	1	16	8	0.74	< 10	< 1	0.02	< 10	0.22	325
9489 #2 190-195	205 274	< 5	0.2	0.69	24	70	< 0.5	4 >	15.00	1.5	2	20	10	0.85	< 10	< 1	0.13	< 10	0.35	345
PARS #4 195-200	∡ 05 274	< 5	0.4	1.67	22	10	< 0.5	< 2 >	15.00	9.5	3	24	50	1.13	< 10	< 1	0.04	< 10	0.12	170

CERTIFICATION:

< 1

0.04

< 10

0.12

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	CROWN RESOURCE CORPORATION
	SEVENTEENTH STREET PLAZA
	1225 17TH ST., STE, 1500
	DENVER, COLORADO
	80202

Page Number :1-B Total Pages :2 Certificate Date: 26-DEC-92 Invoice No. :19226454 P.O. Number : Account :JXX

Project : PAULSON

Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

		.								CE	RTIF		OF A	YSIS	A9226454	
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	TI ppm	U ppm	V ppm	W DDm	Zn ppm	
92MG #2 000-005	205 274	1 1	0.11	22	1480	52	2	6	91	0.22	< 10	< 10	114	< 10	258	
92MG #2 005-010	205 27	2	0.21	8	910	20	< 2	7	130	0.25	< 10	< 10	130	< 10	108	
92MG #2 010-015	205 274		0.23	8	1300	26	< 2	6	143	0.31	< 10	< 10	124	10	88	
92MG #2 020-025	205 274	6	0.34	36	1060	28	4	2	249 346	0.22	< 10 < 10	< 10 < 10	87 54	10 10	70 90	
92MG #2 025-030	205 274	2	0.17	16	910	14	< 2	4	286	0.21	< 10	< 10	101	10	122	· · · · · · · · · · · · · · · · · · ·
92MG #2 030-035	205 274	4	0.40	24	1050	24	< 2	2	875	0.21	< 10	< 10	83	10	102	
92MG #2 035-040	205 274	6	0.39	43	790	< 2	< 2	1	1050	0.16	< 10	< 10	46	10	194	
92MG #2 040-045 92MG #2 045-050	205 274		0.18	31	820	34	< 2	2	1240	0.14	< 10	< 10	51	20	94	
			U.14		640	< 4	< 2 	1	1090	0.08	< 10	< 10	23	20	56	
92MG #2 050-055	205 274	1	0.17	12	930	2	< 2	4	326	0.18	< 10	< 10	116	10	94	
92MG #2 055-060 92MG #2 060-065	205 274		0.35	26	1150	4	2	2	362	0.16	< 10	< 10	56	10	78	·
92MG #2 060-005	205 274		0.31	50	990	2	< 2	1	391	0.17	< 10	< 10	43	10	106	
92MG #2 070-075	205 274	5	0.31	43	920	4	< 2	1	583	0.15	< 10	< 10 < 10	33 50	10 10	104	
92MG #2 075-080	205 274	3	0.28	31	1320		< 2	2	408	0.18	< 10	< 10		10	0.0	
92MG #2 080-085	205 274	1 1	0.26	9	1110	- Ă	2		253	0.19	< 10	< 10	67	< 10	56	
92MG #2 085-090	205 274	1	0.15	22	910	- 4	2	4	126	0.16	< 10	< 10	98	< 10	76	
92113 #2 090-095	205 274	3	0.25	19	880	6	- 4	4	255	0.17	< 10	< 10	101	20	96	
92MG #2 095-100	205 274	2	0.28	18	1010	6	2	3	456	0.18	< 10	< 10	92	10	88	
92MG #2 100-105	205 274	2	0.35	33	1110	2	< 2	1	1220	0.18	< 10	< 10	52	10	82	
92%3 #2 110-115	205 274		0.36	20	810	4	< 2	1	1200	0.15	< 10	< 10	41	10	50	
92MG #2 115-120	205 274	2	0.33	38	980	â	< 2	1	1370	0.13	< 10	< 10	36	200	64	
92MG #2 120-125	205 274	2	0.38	29	800	8	< 2	i	964	0.11	< 10	< 10	40	10	54 72	
92MG #2 125-130	205 274	< 1	0.31	16	610	< 2	6	1	336	0.10	< 10	< 10	24	1030	46	
92MG #2 130-135	205 274	3	0.29	17	770	6	< 2	1	896	0.08	< 10	< 10	23	50	52	
92MG #2 135-140	205 274	2	0.31	21	1150	4	< 2	3	474	0.17	< 10	< 10	76	10	74	
9289 #2 140-145 9283 #2 145-150	205 274		0.13	23	1400	< 2	6	4	150	0.16	< 10	< 10	113	2190	104	
	205 2/4	*			1020		< 2	3	293	0.14	< 10	< 10	82	20	74	
92MG #2 150-155	205 274	5	0.08	11	830	2	< 2	1	482	0.09	< 10	< 10	31	50	68	
92MG #2 155-160	205 274	4	0.04	10	430	< 2	2	< 1	473	0.02	< 10	< 10	16	20	106	
92MG #2 165-170	205 274	1	0.08	0	520 810	14	2	1	471	0.04	< 10	< 10	17	20	48	
92MG #2 170-175	205 274	2	0.12	8	680	6	< 2	1	390	0.10	< 10	< 10	74 35	20	66 52	
92MG #2 175-180	205 274	3	0.03	4	260	< 2	2	٢ 1	432	0.01	< 10	< 10	10	20	49	
92MG #2 180-185	205 274	- 4	0.03	8	370	2	86	1	488	0.02	< 10	< 10	20	20	90	
PZMG #2 185-190	205 274	3	0.04	6	340	4	4	1	478	0.02	< 10	< 10	18	20	38	
92MG #2 190-195	205 274	4	0.06	5	660	< 2	6	1	595	0.04	< 10	< 10	25	20	50	
******	AV3 2/4	•	0.10	22	650	< 2	4	1	794	0.07	< 10	< 10	33	20	300	

Г

CERTIFICATION:_

a D'Ma

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

Page Number :1-A Total Pages :2 Certificate Date: 22-DEC-92 Invoice No. : 19226455 P.O. Number. : Account JXX

Project : PAULSON i Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

ſ <u></u>	·····	1								CE	RTIFI	CATE	OF A	NAL	YSIS	/	49226	5455		÷;
SAMPLE	PREP CODE	Ац ррб ГА+АА	Ag ppm	A1 %	λs ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm	Mg %	Mn ppm
92MG #3 000-005 92MG #3 005-010 92MG #3 015-010 92MG #3 015-020 92MG #3 020-025	205 274 205 274 205 274 205 274 205 274 205 274	<pre>< 5 < 5</pre>	0.2 0.2 < 0.2 < 0.2 < 0.2	3.33 3.00 2.96 2.18 2.36	62 110 12 8 6	40 40 90 60 30	< 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 6	7.81 10.20 3.86 8.50 7.66	7.5 6.5 1.5 2.0 3.0	8 7 13 11 4	53 46 32 51 58	47 41 31 23 33	1.62 1.21 3.79 2.90 1.43	< 10 < 10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.11 0.31 0.24 0.07	< 10 < 10 20 10 < 10	0.65 0.56 1.37 1.20 0.81	125 175 650 520 260
92MG #3 025-030 92MG #3 030-035 92MG #3 035-040 92MG #3 040-045 92MG #3 045-050	205 274 205 274 205 274 205 274 205 274 205 274	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.10 1.36 1.55 1.44 1.34	< 2 < 2 4 < 2 < 2 < 2	20 10 110 240 220	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 < 2 2 2 < 2 < 2	9.01 15.00 7.17 2.04 2.16	2.0 1.0 1.0 0.5 1.0	8 5 11 18 19	84 38 136 154 118	20 15 27 49 48	2.57 1.61 1.96 2.85 2.82	< 10 < 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.04 0.29 0.66 0.57	10 10 20 30 30	1.42 0.96 1.35 1.64 1.36	425 255 375 340 370
92MG #3 050-055 92MG #3 055-060 92MG #3 060-065 92MG #3 065-070 92MG #3 070-075	205 274 205 274 205 274 205 274 205 274 205 274	< 5 < 5 < 5 < 5 < 5 < 5	1.4 0.6 < 0.2 0.2 0.2	1.25 1.14 1.99 2.47 1.75	< 2 < 2 < 2 < 2 < 2 < 2 < 2	30 190 30 10 10	< 0.5 < 0.5 < 0.5 < 0.5 1.5	2 > < 2 2 > 2 > < 2	15.00 2.10 15.00 15.00 7.26	8.0 6.5 2.0 2.0 1.5	3 15 3 4 2	30 115 28 18 21	19 44 18 21 14	0.73 2.35 0.76 0.69 1.17	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.48 0.08 0.07 0.28	< 10 20 < 10 < 10 30	1.06 1.34 0.94 0.14 0.23	420 375 200 105 280
92M3 #3 075-080 92M3 #3 080-085 92M3 #3 085-090 92M3 #3 090-095 92M3 #3 095-100	205 274 205 274 205 274 205 274 205 274 205 274	<pre>< 5 < 5</pre>	< 0.2 < 0.2 0.2 0.2 0.2	1.49 1.16 0.73 2.01 1.75	2 < 2 4 8 56	10 10 90 40	2.5 2.0 < 0.5 0.5 < 0.5	2 4 2 2 < 2	0.97 1.12 1.19 9.88 14.30	< 0.5 < 0.5 < 0.5 1.5 0.5	1 1 3 10 6	14 33 37 141 55	4 6 7 31 20	1.45 1.48 1.57 2.04 0.87	10 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.39 0.29 0.09 0.44 0.18	60 60 50 20 10	0.21 0.23 0.36 1.23 0.40	430 410 375 390 155
92NG #3 100-105 92NG #3 105-110 92NG #3 110-115 92NG #3 115-120 92NG #3 120-125	205 274 205 274 205 274 205 274 205 274 205 274	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 0.2 < 0.2 < 0.2	0.91 1.24 1.70 1.56 1.62	2 8 < 2 8 < 2	< 10 < 10 10 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 > < 2 > 4 > 4 > 2 >	15.00 15.00 15.00 15.00	0.5 1.0 1.0 0.5 1.0	2 3 2 2 2	24 20 29 19 14	13 17 18 17 23	0.54 0.88 0.70 0.58 0.62	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.03 0.03 0.09 0.04 0.04	< 10 < 10 < 10 < 10 < 10	0.17 0.10 0.08 0.04 0.07	120 100 105 105 125
92NG #3 125-130 92NG #3 130-135 92NG #3 135-140 92NG #3 140-145 92NG #3 145-150	205 274 205 274 205 274 205 274 205 274 205 274	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.70 0.86 1.59 3.21 1.51	14 < 2 < 2 76 8	10 20 40 10 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 < 2 4	13.20 1.94 2.38 12.65 2.00	0.5 < 0.5 0.5 1.5 < 0.5	4 2 8 3 11	20 32 33 24 36	19 6 6 21 14	1.03 1.40 2.62 0.55 3.21	< 10 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.07 0.08 0.12 0.11 0.29	10 50 30 < 10 30	0.22 0.36 0.86 0.11 0.90	175 245 490 140 410
92MG #3 150-155 92MG #3 155-160 92MG #3 160-165 92MG #3 165-170 92MG #3 170-175	205 274 205 274 205 274 205 274 205 274 205 274	< 5 < 5 < 5 < 5 < 5	0.4 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.37 2.54 0.76 0.88 2.56	34 6 < 2 < 2 < 2 < 2	20 < 10 10 60 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 4 < 2 < 2 2	13.90 14.80 12.30 1.59 4.38	4.5 2.0 < 0.5 < 0.5 0.5	4 4 1 3 10	25 25 30 43 15	34 27 9 7 14	0.82 0.88 0.99 1.70 3.02	< 10 < 10 < 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.03 0.06 0.17 0.60	< 10 < 10 20 30 10	0.17 0.18 0.41 0.40 0.84	125 115 350 250 320
92MG #3 175-180 92MG #3 180-185 92MG #3 185-190 92MG #3 190-195 92MG #3 195-200	205 274 205 274 205 274 205 274 205 274 205 274	< 5 < 5 < 5 < 5 < 5 < 5	0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.47 3.43 3.07 1.13 1.99	4 74 16 2 10	30 10 40 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 > 2 < 2 > 2 >	14.90 15.00 9.76 15.00 15.00	0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	5 3 8 1 3	29 15 31 19 21	14 14 26 10 17	1.41 0.66 1.46 0.56 0.71	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.21 0.06 0.17 0.02 0.03	< 10 < 10 10 < 10 < 10	0.50 0.10 0.36 0.19 0.12	245 150 145 115 105
- <u> </u>					<u> </u>	<u></u>			<u> </u>		-					Yth	-di	BI	ha] #

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

Page Number :1-B Total Pages :2 Certificate Date: 22-DEC-92 Invoice No. : 19226455 P.O. Number JXX Account

Г

Project : PAULSON Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

SAMPLE PREP CODE No Na Ni P Pb Sb Sc Sr Ti TI U V N En D200 87 000-05 205 274 4 0.29 33 990 36 2 5 639 0.11 10 10 10 114 9200 9100-015 225 77 4 1 0.19 29 1760 30 < 2 10 244 0.19 <10 114 10 94 9200 9100-015 225 774 1 0.08 20 1280 16 4 9 10 0.10 <10 131 <10 10	
Denu #3 000-005 205 277 4 0.23 35 850 35 2 5 639 0.15 < 10 < 10 101 < 10 14 Denu #3 000-005 205 277 1 0.13 370 22 2 2 639 0.15 < 10 < 10 11 < 10 14 Denu #3 020-025 205 277 1 0.06 20 1280 16 4 9 434 0.15 < 10 < 10 1	
22200 43 025-030 205 274 1 0.08 22 970 40 2 10 398 0.09 <10	
92806 #3 050-055 205 274 1 0.06 14 530 604 <2	
9238G #3 075-080 205 274 1 0.47 1 240 30 < 2	·
92MG #3 100-105 205 274 1 0.08 12 < 2	
92MG #3 125-130 205 274 2 0.22 19 680 18 < 2	
92NG #3 150-155 205 274 6 0.31 33 840 24 2 1 1170 0.09 < 10 < 10 45 < 10 46 92NG #3 155-160 205 274 3 0.18 25 770 16 2 1 956 0.08 < 10 45 < 10 34 930G #3 155-160 205 274 3 0.18 25 770 16 2 1 956 0.08 < 10 < 33 < 10 34 930G #3 155 155 205 274 3 0.18 25 770 16 2 1 956 0.08 < 10 33< < 10 34 930G #3 155 155 205 274 3 0.18 25 770 16 2 1 956 0.08 < 10 33< 34 930G #3 155 155 155 155 155 155 155 155 155 155 155 155 155	
2xmg #3 165-170 205 274 1 0.07 2 620 18 < 2	
22NG #3 175-180 205 274 6 0.16 31 790 20 < 2	

a' E Ma

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA
	1225 17TH ST., STE, 1500
	DENVER, COLORADO
	80202

Page Number :2-A Total Pages :2 Certificate Date: 22-DEC-92 Invoice No. :19226455 P.O. Number : Account :JXX

Ama

Project : PAULSON

Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

	-	_								CE	RTIFI	CATE	OF A	NAL	YSIS	/	\9226	455		
SAMPLE	PREP CODE	ли ррв Рд+дд	Ag ppm	A1 %	λs ppm	Ba ppm	Be ppm	Bi ppm	Ca %	cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Ng %	Mn ppm
92MG #3 200-205 92MG #3 205-210 92MG #3 210-215 92MG #3 215-220 92MG #3 220-225	205 274 205 274 205 274 205 274 205 274 205 274	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 < 0.2 0.2 < 0.2 0.2	2.15 2.93 3.41 2.28 2.23	2 < 2 8 < 2 < 2	10 60 10 < 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 > < 2 1 < 2 1 < 2 5 < 2 5 < 2 5	15.00 10.15 14.90 15.00 15.00	1.0 2.0 1.5 2.0 2.0	3 7 5 3 3	26 39 28 24 18	23 30 34 29 23	1.00 1.76 1.40 0.99 0.94	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.21 0.05 0.02 0.02	< 10 10 < 10 < 10 < 10 < 10	0.16 0.41 0.06 0.02 0.04	135 150 75 80 75
92MG #3 225-230 92MG #3 230-235 92MG #3 235-240 92MG #3 240-245 92MG #3 245-250	205 274 205 274 205 274 205 274 205 274 205 274	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.07 2.23 2.36 2.52 2.05	2 < 2 14 6 10	10 10 80 160 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 >1 < 2 >1 < 2 1 < 2 < 2 < 2	15.00 15.00 11.75 7.70 15.00	4.0 1.0 1.0 0.5 1.0	6 4 9 11 3	24 27 36 43 29	29 26 31 29 17	1.22 1.08 2.03 2.47 1.03	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.04 0.27 0.55 0.07	< 10 < 10 10 20 < 10	0.09 0.16 0.56 0.80 0.28	75 115 285 310 110
92MG #3 250-255 92MG #3 255-260 92MG #3 260-265 92MG #3 265-270 92MG #3 270-275	205 274 205 274 205 274 205 274 205 274 205 274	< 5 < 5 < 5 < 5 < 5 < 5	0.2 0.2 < 0.2 0.2 < 0.2 < 0.2	2.56 2.77 2.02 2.46 2.22	< 2 4 6 2 2	20 10 50 20 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 >1 < 2 >1 < 2 >1 < 2 >1 < 2 >1 < 2 >1 < 2 >1	15.00 15.00 15.00 15.00 15.00	2.5 2.0 1.5 4.5 2.0	6 4 5 4	26 28 39 34 33	23 24 19 26 19	1.26 1.30 1.25 1.43 1.43	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.06 0.19 0.08 0.09	< 10 < 10 < 10 < 10 < 10 < 10	0.23 0.24 0.47 0.33 0.44	115 125 160 130 145
92MG #3 275-280 92MG #3 280-285 92MG #3 285-290 92MG #3 290-295 92MG #3 295-300	205 274 205 274 205 274 205 274 205 274 205 274	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.00 2.08 1.89 1.70 2.37	< 2 2 < 2 < 2 2 2	20 10 20 20 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 >1 < 2 >1 < 2 >1 < 2 >1 < 2 >1 < 2 >1 < 2 >1	15.00 15.00 15.00 15.00 15.00	2.0 4.0 2.0 1.5 1.5	4 5 3 3 6	34 29 24 32 36	17 20 18 16 22	1.34 1.34 1.46 1.25 1.75	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.06 0.08 0.04 0.08	< 10 < 10 < 10 < 10 < 10 10	0.47 0.42 0.47 0.39 0.57	145 140 175 160 225
92MG #3 300-305 92MG #3 305-310 92MG #3 310-315 92MG #3 315-320 92MG #3 320-325	205 274 205 274 205 274 205 274 205 274 205 274	<pre>< 5 < 5</pre>	0.2 0.2 < 0.2 < 0.2 < 0.2 0.2	2.50 3.26 3.24 3.00 2.23	< 2 4 2 4 4	50 30 40 40 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 >1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1	15.00 13.15 10.00 12.00 14.75	2.5 4.5 3.5 4.5 2.5	7 7 8 7 6	36 40 28 34 43	26 33 33 32 25	1.71 1.98 2.15 2.02 1.91	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 2 < 1 < 1	0.07 0.07 0.10 0.07 0.03	< 10 10 10 10 10	0.38 0.38 0.46 0.41 0.37	170 165 175 160 270
92MG #3 325-330 92MG #3 330-335 92MG #3 335-340	205 274 205 274 205 274	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2	1.87 2.63 2.54	28 12 20	40 40 140	< 0.5 < 0.5 < 0.5	< 2 1 6 1 < 2	12.85 11.55 7.36	3.0 6.0 2.0	9 7 12	46 53 56	28 34 32	2.34 2.37 2.62	< 10 < 10 < 10	< 1 < 1 < 1	0.08 0.03 0.23	10 10 20	0.63 0.68 0.94	295 275 340

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

Page Number :2-B Total Pages :2 Certificate Date: 22-DEC-92 Invoice No. : 19226455 P.O. Number : Account JXX

PAULSON Project :

Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

	_									CE	RTIF	CATE	OF A	NALY	SIS	A9226455
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	p ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U Dbw	V ppm	W	Zn ppm	
92MG #3 200-205 92MG #3 205-210 92MG #3 210-215 92MG #3 215-220 92MG #3 220-225	205 274 205 274 205 274 205 274 205 274 205 274	3 2 3 2	0.13 0.28 0.35 0.23 0.18	23 31 29 22 23	590 1520 800 570 650	8 14 12 4 8	4 2 4 4 2	1 1 < 1 < 1	1090 717 1215 1410 1355	0.08 0.16 0.12 0.07 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	28 48 30 17 20	< 10 < 10 < 10 < 10 < 10 < 10	34 58 38 24 40	
92MG #3 225-230 92MG #3 230-235 92MG #3 235-240 92MG #3 240-245 92MG #3 245-250	205 274 205 274 205 274 205 274 205 274 205 274	4 2 2 2 2	0.28 0.17 0.15 0.19 0.21	29 21 21 18 19	730 630 1390 1590 710	12 6 14 16 8	2 < 2 4 < 2 2 2	1 1 3 4 1	1215 1125 735 585 1470	0.10 0.09 0.14 0.18 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	26 32 56 69 37	< 10 < 10 < 10 < 10 < 10 < 10	74 34 76 72 38	
92MG #3 250-255 92MG #3 255-260 92MG #3 260-265 92MG #3 265-270 92MG #3 270-275	205 274 205 274 205 274 205 274 205 274 205 274	3 3 2 3 1	0.21 0.24 0.18 0.23 0.25	24 22 16 27 20	730 670 740 740 760	4 2 < 2 < 2 < 2 < 2	< 2 < 2 2 2 2 2	2 2 3 2 3	1395 1300 1150 1345 1510	0.10 0.10 0.10 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	40 35 52 47 52	< 10 < 10 < 10 < 10 < 10 < 10	52 60 60 116 54	
92MG #3 275-280 92MG #3 280-285 92MG #3 285-290 92MG #3 290-295 92MG #3 295-300	205 274 205 274 205 274 205 274 205 274 205 274	2 3 1 3 1	0.23 0.23 0.22 0.16 0.25	17 22 17 18 20	760 760 740 530 790	< 2 6 2 2 10	2 < 2 < 2 < 2 < 2 2	3 3 3 3 6	1425 1490 1515 1855 1415	0.08 0.08 0.09 0.07 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 57 54 54 77	< 10 < 10 < 10 < 10 < 10 < 10	58 102 56 42 66	
92MG #3 300-305 92MG #3 305-310 92MG #3 310-315 92MG #3 315-320 92MG #3 320-325	205 274 205 274 205 274 205 274 205 274 205 274	2 3 3 6 3	0.24 0.33 0.38 0.30 0.23	26 33 32 40 28	820 860 990 960 740	8 12 10 < 2 < 2	< 2 2 < 2 < 2 4	4 4 3 3 5	1600 1135 809 745 682	0.11 0.14 0.14 0.12 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	75 76 67 69 77	< 10 < 10 < 10 < 10 < 10 < 10	66 116 84 108 82	
92NG #3 325-330 92NG #3 330-335 92NG #3 335-340	205 274 205 274 205 274	2 6 4	0.13 0.19 0.24	36 43 28	920 850 1580	< 2 8 2	< 2 2 2	6 6 6	648 689 433	0.09 0.12 0.17	< 10 < 10 < 10	< 10 < 10 < 10	99 111 98	< 10 < 10 < 10	86 162 104	
						<u>. </u>										thai Ji Ma

CHEMEX client	LABS W	.0. # : CR	: A922 OWN RES	4012 OURCE CO	ORPORATI	ION			·		
# of sa	amples	:	20								
receive	ed date	: 02	-NOV-92								
project	t	: PAI	ULSON								
comment	t s	: AT	TN: C.	HERALD	CC: R.	MILLER	CC: J.	SHANNON	ICC: M.	SAWIUK	
Sample		1	Au ppb	Ag	Al	As	Ba	Be	Bi	Ca	
Cd	Со	Cr	Cu	Fe	Ga	Ha	К	La	Mg	Mn	Mo
Na	Ni	P	Pb	Sb	Sc	Sr	Τi	T1	U	V	W
Zn											
descrip	otion		FA+AA	mqq	%	maa	maq	maa	maa	%	
mag	maa	ppm	maa	%	ppm	maa	%	maa	%	maa	
maa	%	maa	noa	maa	naa	maa	maa	%	maa	maa	
maa	որա	maa	• •			•••					
92MG1U0)1R	(= <u> </u> =,	20	0.6	3.63	14	30	<0.5	<2	5.73	
<0.5	20	40	323	2.76	<10	< 1	0.08	<10	0.31	200	
1 0.4	46	16	1310	8	<2	2	180 0	1.18	<10	<10	81
10	20			~	- m.	-	100	•••			0.
92MG1U	128		<5	0 .8	2 36	2	30	<0.5	<7	4 27	
	15	30	670	1 94	2.50 <10	يد ح 1	0 06	<10	0 13	116	
2 0 3	21	10	710	4	2	2	112 0	ייי 10 ווי	~10	<10 <10	61
2 0.7 210	28	10	/10	-+	2	U.		J. 15	N10	×10	01
02MC111	20 120		15	n s	2 82	28	20	<0 5	17	4 46	
	20K 22	20	206	2 44	J.02 210	<u>د م</u>	0 02	<0.5	0 12	4.40	
<0.5 <1 0	40	12	1560 1560	2 · 44 7	< 2	1	104	0 12	U.10 210	00 210	69
10	10	10	1000	6	~ ~	ľ	194	0.12	<10	× 10	02
02MC1U	10		/ C	0 6	4 06	10	20	<0 E	10	12 20	
	יאית 10	27	162	1 22	4.00	10		NU.D Z10	N 26	10.20	
×0.5	20	 	1120	1.33	< 10		0.07	0.22	0.30	255	101
<1 U.	. 39	9	1120	4	4	5	235	U.Z4	<10	<10	104
10	14		15	1 C	1 1 3	5.05	2.2	40 F	2 m	0 00	
92116100	JOK	20	<5 340	1.0	4.41	10	20	<0.5	5.2	3.22	•
<u,5 <1 0</u,5 	50		- 712	5.74	< 10	<u>,</u> 3	0.04	< 10	0.37	80	c e .
	. 33	19	950	C.	4	3	125	0.22	< 10	< t U	65
40	78		- t ^m	1 0	1 15 M	~		- () F	,	C 10	
92MG IUU	JOK		. <5	₊ <u>∠</u>	4.03	2	U	<0.5	4	5.FU	
<0.5	35	53	600	5.95	<10	< 1	0.43	<10	1.08	205	
<1 U.	. 3	35	1060	4	2	13	204	0.32	<10	<10	215
40	50										
92MG100	J/R		<5	0.8	1.18	14	130	<0.5	<2	1.82	
<0.5	21	48	442	3.12	<10	<1	0.24	<10	0.27	125	
<1 0.	.05	18	1150	2	Zţ	4	39	0.27	<10	<10	89
<10	26								_		
92MG1U)8R		<5	<0.2	4.93	4	200	<0.5	2	0.86	
<0.5	26	. 97	82	7.23	30	< 1	2.81	<10	2.42	355	
<1 0.	. 19	31	270	8	4	38	49	0.54	<10	<10	280
20	78										
92MG1U0)9R		25	0.6	3.29	8	10	<0.5	<2	12.90	
<0.5	7	16	136	0.82	<10	<1	0.04	<10	0.07	220	
<1 0.	.33	8	870	<2	<2	1	192	0.16	<10	<10	37
10	14										
92MG1U	10R		<5	0.4	0.65	<2	10	0.5	<2	0.52	
<0.5	3	32	17	1.94	<10	1	0.17	40	0.33	475	
2 0.0	38	2	430	24	2	1	25 (0.11	<10	<10	31
<10	68										
92MG1U	11R		<5	0.2	0.72	<2	20	<0.5	<2	3.32	
<0.5	2	56	8	1.27	<10	1	0.08	30	0.29	255	
2 0.0)5	2	380	6	2	1	88 (0.07	< 10	< 10	13
<10	28										
0.2 MG 111	12P		< 5	0.6	0 22	6	30	<0.5	<2	0 51	

<pre>\U.5 2 2 0.07 <10 28 92MG1U13R </pre>	40 3 40	450 ×5	1.52 12 0.4	2 0.85	3 1 8 < 1	40	0.08 <0.5	<10 <2 0.30	<10 12 0.39
<0.5 I	40	Ç	1.55	< LO		0.12	. 30	0.30	195
3 0.09	3	410	12	2	1	55	0.08	<}0	<10 12
92MG1U14R		<5	0.4	1.30	б	110	0.5	2	1.69
<0.5 11	35	59	2.39	<10	<1	0.2	30	0.63	310
4 0.08	10 1	080	10	2	3	94	0.24	<10	<10 60
10 30									
92MG1U15R		<5	0.4	1.01	<2	210	<0.5	<2	0.86.
<0.5 4	84	7	1.92	10	<1	0.33	3 70	0.62	255
3 0.07	7	880	10	<2	2	101	0.18	<10	<10 30
<10 38									
92MG1U16R		35	0.8	2.09	6	180	<0.5	<2	4,87
<0.5 17	46	215	4.11	<10	<1	0.4	20	1.00	380
2 0.14	11	730	10	2	7	132	0.22	<10	<10 82
20 48									
92MG1U17R		<5	0.4	1.15	6	20	<0.5	<2 >	>15.00
1.0 6	25	31	1.46	<10	<1	0.17	<10	0.27	280
3 0.02	11	880	12	<2	1	443	0.10	<10	<10 31
20 76									
92MG1U18R		<5	0.2	1.17	8	10	<0.5	<2 >	>15.00
3.5 4	26	28	1.16	<10	<1	0.04	<10	0.07	80
4 0.18	29	660	б	2	<1	737	0.09	<10	<10 23
10 80									
92MG1U19R		<5	0.2	0.91	2	10	<0.5	<2 >	>15.00
1.5 2	21	16	0.41	<10	<1	0.02	<10	0.05	180
2 0.03	14	590	8	<2	<1	582	0.07	<10	<10 19
10 52								_	
92MG1U20R		135	0.4	0.86	6	60	<0.5	<2	1.39
<0.5 2	42	8	1.38	<10	<1	0.12	2 40	0.31	190
2 0.08	3	440	8	2	1	112	0.11	<10	<10 15
<10 30									

CHEMEX client	LABS	W.O. #	: A922 DWN RES	4188 OURCE C	ORPORAT	TON					
# of s	amples		22								
receiv	ed dat	e : 05-	-NÖV-92								
projec	t	: PAU	JLSON								
commen	its	: AT	TN: C.	HERALD	CC: R.	MILLER	CC: J. S	SHANNON	CC: M.	SAWIUK	
Sample	•	,	dag uA	AU FA	Aa	A1	As	Ba	Be	Bi	
Са	Cd	Со	Cr	Сц	Fe	Ga	На	К	La	Ma	Mn
Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Τi	τī	U	v
(J	7n		•	1				• •		<i>•</i>	•
" descri	ntion		FA+AA	07/T	nnm	%	nnm	nnm	nnm	որտ	
ucsori % n	n n n n n n n n n n n n n n n n n n n	nnm	nnm	0271 nnm	200m %	ຕ່ານກາດ	ກກຫ	2	2000 2000	γ. γ.	നന്ന
~∾ ⊬ ກກm	2011 12	nnm	nnm	ppm nnm	ກກຫ	2000 2020	2200 2000	9	00m 00m	າ ການ ກ	, nu
րերա հերա	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ppm	ppm	ppin	ppm	ppn	opin	10	ppm	երու	
oomene	מני מרי	nuqq	25		0 2	1 00		120	20 G	1.	
92 MGMU 0 C2	/1K /0 C	10	2 D 9 C	000	U.2 6 1.7	1,99	4 ~ 1	100	NU.5 210	4 1 9 9	
200	×0.5	0 12	20) 302 000	0.47	N 10 X	۲ م ۱۱	1.13	∧ 3€	1.30	
370 210	120	V.12 710	0	990	6	54	11	20	0.35	< TU	
5 I U 0 0 M 0 M 0	100	<10	44 E0		0.4	5 / 6	2	100	20 F		
92MGMC	- Z K - C C	10	50	010	0.4	2.40	L	160	<0.5	4	
0.79	<0.5		66	215	6.00	<10	<	0.82	<10	1.57	
480	< 1	0.15	10	1030	<.Z	4	10	51	0.36	<10	
<10	142	10	58			~ ~ ~ ~					
92MGMC	:3R	-	290		0.8	2.05	<2	180	<0.5	6	
0.66	<0.5	8	78	281	5.46	<10	< 1	1.14	<10	1.19	
350	<1	0.15	9	1000	<2	4	9	60	0.36	<10	
<10	139	<10	42								
92MGTT	′4R		3780		1.6	2.93	<2	140	<0.5	30	
0.69	<0.5	7	85	5 316	10.20	<10	<1	1.23	<10	1.34	
325	<1	0.11	3	690	<2	4	24	45	0.36	<10	
<10	136	20	44								
92MGTT	`5R		900		0.6	2.95	<2	240	<0.5	8	
1.38	<0.5	8	58	210	5.83	<10	< 1	0.84	<10	1.05	
235	<1	0.18	8	900	<2	6	17	69	0.31	<10	
<10	130	10	34								
92MGTT	6R		>10000	2.182	3.4	2.74	<2	120	<0.5	338	
0.87	<0.5	3	81	386	5.20	< 1.0	<1	0.76	<10	1.08	
205	<1	0.12	7	480	<2	4	15	51	0.27	<10	
<10	127	<10	28								
92MGBM	107R		450		0.2	1.18	<2	80	<0.5	4	
1.02	<0.5	3	47	13	2.19	10	< 1	0.15	60	0.58	
300	1	0.09	4	1060	14	2	2	78	0.13	<10	
<10	31	<10	46								
92MGBM	108R		270		0.4	0.14	<2	< 1.0	<0.5	<2	
>15.00	0.	5	1	11	5 0.	34 <1	0 <	1 0.0	1 <10	0.09	3
595	2	0.01	2	140	<2	2	< 1	278	<0.01	<10	
10	9	10	38								
92MGBM	109R		100		0.2	0.71	<2	<10	<0.5	<2	
>15.00	· <0.	5	2	15	8 0.	49 <1	n - <	1 0.0	3 <10	0.14	4
700	3	0.02	~ 4	340	2	2	2	208	0.02	<10	
10	22	10	22	010	E e.	Ber	Fac.				
02MGBM	1108	, 0	100		(0.2	2 63	б	<10	<05	<7	
>15 00) <∩.	c,	10	26	18 1	26 <1	in Ö	1 0 1	2 <10	0.26	ñ
590.00 690	, ्र, 1२	0 14	10	~~ ~~~	ιο τ. Λ	ພບ ∖∣ 2	. ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́	241	ົດ.ກາ້	<10	~
<10	70	20	1 /	000	4	<i>L</i> .	* *	<u>6.</u> 71	0.07	×10	
5 FU 0.2 Mc DM	47 1110	<u>د</u> 0	ייו סח		0 2	0 40	6	<10	<0 F	67	
>200000		5	2 00	12	Q 1	+ 27 ∠1	u v	1 0 0	2 210	<u>ካ</u> 1/	ח
×13.00 500) U. 1	പറ	د ع	10 200	0 I.	ו אוכ מ	1	r U₊U. 201	2 ΝΙU	210	J
ンラU イ10	1 1 1	0.02 20	ت د ت	290	2	۷.	F	in the F	0.01	N I U	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	14	ĽU	00		Ωο	0 0 7	2	<10	<0 K	12	
261001	፣ ፣ ፈ ቶ		~* _)						· · ·	-	

.

.

≥15.00 420 <10	10. 7 36	0.04 10	2	21 214	17	490	10	I	1. 4	UΙ	<2	τU	< 1	<u> </u>	υ. 328	0.0	< IU)4	υ. <10	. U D
92MGBM	13R			50				0	. 2	2	.24		6		<10	<0.	5	<2	
>15.00	10.	5	3		25		32		1.	64	<	10	-	1	0.	01	<10	0.	.04
315 <10	13	0.05	2	35		570			8		4		1		265	0.0	8	<10	,
02MGRM	140	10	Ζ.	.90 c				<0	0	~	~ ~								
>15 00	2 1	n	1	ç	0		0	<0	• 2	0	• 55	1 M	<2		<10	<0.	5	<2	
265	4	0 01	ſ	10	Э	260	9		U.	48	~ ~	ΤU		<]	0.0	91	<10	0.	.07
<10	22	10		00		200			2		2		<]		215	0.0) 1	<10	
92MGRM	158	10	1	20				0	2	1	20		~		• •		_		
>15.00	500	n	~ '	30	26		۳ ၁	U	• 2	- 	. 29	1.0	2		10	_<0.	5	<2	
260	30.0	0 06	1	22	20	520	53		<u>.</u> .	18	_<	10	~	< 1	0.	10	<10	0.	20
<10	50	10	1	23		550			8		Z		2		221	0.0	7	<10	
Q2MCRM	160	10	1	00 /E				~0	~	~	00								
1 87		16		\5 60		104		<0.	. 2	2.	. 39		<2		70	<0.	5	6	
180	2	0 24		10		104	•	3.	. 30		<10		< 1		0.63	<	10	1.11	
<10	190	10		20		800		<	~ _		b		10		94	0.3	7	<10	
Q2MCRM	170	10		20				0	~	~	س . س								
1 00	70 G	24		20		100		U.		2.	56		<2		120	<0.	5	8	
210	1	0 27		22		132		4			< 10		<1		0.72	<	10	1.25	5
<10	220	10		20		1230			< Z		4		15		90	0.3	3	<10	
92MGMGN	1100p	10		30 65				0	2	~	7 (*								
2.68	20 5	15		70		1 / 7		υ. Γ	2	р.	15		<2		150	<0.	5	4	
300	<0.5	0 60		20		147		э.	. 0.9		< 10		1		1.62	<	10	1.66)
<10	211	20		20	i	150			ъ		6		15		139	0.4	2	<10	
92MGMGN	11018	20	2	20				<0	2	c	00		0		() 4 0		~		
3.12	<0.5	1.8	ζ.	ະ ຊາ		01		νυ. α	21	ο.	00		8		210	<0.	5	12	
310	<1	0.44		22		21		ာ			< 10		12		2.04	<	10	1.79	
<10	238	20		54 54		440			-4		14		20		142	0.4	3	<10	
92MGMGM	1102R	£ (v)	97	20				Ω	Q	1	06		10		0.0	20	r		
1.22	<0.5	21	2.	71		547		6	84	١,	<pre>00</pre>		NL 21		0 40	<0.	5	128	
305	<1	n.10		່ຊ່		230		<u> </u>	104		<u> </u>		1 "7		0.49	< 0 1	10	0.89	
<10	125	10		42		200			· Z.,		4		17		51	0.1	1	<10	
92MGMGM	1103R			85				< n	2	4	66		12		170	<0	e		
3.44	<0.5	12		วัก		32		ς. Σ	12	-t •	210		×ζ ∠1		1 26	<u,< td=""><td>5</td><td><<u>Z</u></td><td></td></u,<>	5	< <u>Z</u>	
540	1	0.07		24		590			2		~ 10		21		1.20	~ ~	10	2.45	
<10	121	20		<u>د م</u>		550			· Z.		~ 2.		21		103	0.3	U	<10	
92MGMGM	1104R			35				n	2	6	4.4		12		20	20	c	,	
7.56	<0.5	23		77		146		6	00	υ.	₩4 ∠10		14		3U 0 20	<0.	5	4	
220	1	0.40		24		560		- f •	5 7 6		510		_ر د		U-35 210	~ ~	10	0.54	
<10	95	20		12		000			0		0		Ø		510	U.I.	9	<10	
				1 4.															

CHEMEX LABS W. client	0. # = CR0	: A922 DWN RES	24336 SOURCE CO	ORPORATI	ION					
# of samples	:	23	_							
received date	: 05	-NOV-92	2							
project	: PAL	JLSUN		00 0		00	CHANNES		© 1 1 2 1 1	
comments	: A I	IN: C.	HERALD	CC: R.	MILLER	CC: J.	SHANNON	ICC: Mi	. SAWIUK	•
Sampie	~~ /	add ne	AQ	A L	AS	ва	Re	81	Ca	b .d
	Ur D	CU Dh	Fe ch	ua Cr	HQ	К. Т :	La	MQ	Mn	MO
Nat Ni Zo	٢	PD	50	50	Sr	11	١T	U	v	W
<u>ZR</u>		<i>т</i> л		01			-	10 10 10 10 1	0.	
bom bom	nnm	г Ат АА р р р р	p Min M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mqq	MUU %	mqq	ppiii •	10	
ווקס ווקס חמים %	nnm	ppm ppm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ndd DDm	ppm ppm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	niqq v	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D D D D D D D	
ມາມ ທີ່ ທີ່ມີມີ ທີ່ມີມີ	ppm ppm	ppin	ppm	ppm	mqq	ppm	10	ppm	hhiii	
92MGRM18R	ppm	10	<0.2	3 0 1	17	70	<0 5	2	ን ሰፍ	
<0.5 12	38	01 18	2.85	<10	<1	0 62	<10	1 1 9	285	
<1 0 41	12	1160	12	6	8	189	0.25	<10	<10	127
20 42	16	1100	Γ ζ	U	Ų	102	0.25	×10	<10	12.1
92MGBM19R		15	5.8	2.14	2	<10	<0.5	14	8.28	
17.0 28	44	47	2,20	<10	< 1	0.01	<10	1.32	1625	
<1 <0.01	14	1020	1210	<2	10	140	0.13	< 10	<10	85
30 1700	••	1020	1210	71 Bas	• ***	110	0110	10		
92MGBM20R		<5	<0.2	1.74	<2	30	<0.5	<2	0.93	
<0.5 1	17	۲	3 2.01	10	<1	0.06	30	0.36	295	
2 0.07	1	450	24	<2	4	185	0.04	<10	<10	29
<10 40			· ·							F
92MGBM21R		<5	0.2	0.99	<2	30	<0.5	2	0.49	
<0.5 3	39	E	5 1.44	10	< 1	0.06	40	0.34	205	
<1 0.04	3	430	14	<2	1	74	<0.01	<10	<10	15
<10 30										
92MGBM22R		<5	0.2	1.18	<2	50	<0.5	<2	1.05	
<0.5 2	60	Ĺ	4 1.32	10	<1	0.13	40	0.37	225	
1 0.08	3	410	8	<2	2	47	0.01	<10	<10	14
<10 26										
92MGBM23R		10	<0.2	1.36	<2	30	<0.5	<2	0.86	
<0.5 2	34	Ę	5 1.54	10	<1	0.08	40	0,32	245	
2 0.06	3	420	8	2	2	204	0.01	<10	<10	16
<10 28										
92MGBM24R		15	0.2	1.09	<2	60	<0.5	2	0.79	
<0.5 3	62	e	5 1.50	10	< 1	0.14	50	0.35	235	
2 0.10	4	440	12	<2	2	81	0.06	<10	<10	19
<10 32										
92MGBM25R		50	0.4	0.96	<2	20	<0.5	2	0.78	
<0.5 2	38	30) 1.58	10	< 1	0.07	40	0.39	220	
3 0.04	4	560	18	2	2	111	0.08	<10	<10	21
<10 36					_					
92MGBM26R		100	<0.2	1.84	<2	130	<0.5	6	2.70	
<0.5 17	30	93	3 4.03	10	1	0.29	70	1.09	540	
1 0.12	7	2120	2	2	5	133	0.12	<10	<10	104
20 58										
92MGBM27R		135	0.2	0.84	4	10	<0.5	2	14.30	
<0.5 2	24	27	1.32	<10	< 1	0.04	10	0.31	440	
8 0.02	1	690	24	Z	2	185	0.06	<10	<10	36
10 50			~ ~	~ · · -		2 10 - 20		4 4%	1	
9ZMGBMZ8R		135	0.2	3.49	8	50	<0.5	18	1.79	
<0.5 59	105	12	13.25	<10	<1	1.25	0.24	1.07	275	4 ^1 #
SI U.3U	27	000	10	b	21	11	0.34	< I U	<1U	154
30 34 02MCDM200		<u>د</u> 0	<0.2	6 02	12	210	20 E	6	2 20	

<pre><0.5 20 <1 0.13 30 74</pre>	00 29	5+ 630	≎.40 2	<2	25	1.00 215	0.32	2.92 <10	490 <10	146
92MGBM30R <0.5 6	23	<5 60	<0.2 1.79	1.58 <10	<2 <1	20 0.09	<0.5 <10	4 > 0.34	>15.00 700	
1 0.03	8	350	2	<2	2	197	0.10	<10	10	30
92MGBM31R		<5	0.2	0.69	<2	20	<0.5	<2	1.54	
0.5 1	36	7	0.97	<10	<1	0.07	40	0.27	220	
2 0.04 10 64	5	490	22	2	1	46	0.09	<10	<10	21
92MGBM32R		<5	0.2	0.79	<2	30	<0.5	<2	0.57	
<0.5 2	45	13	1.34	10	<1	0.07	40	0.33	210	
3 0.05 <10 38	4	460	22	<2	2	104	0.11	<10	<10	15
92MGBM33R		<5	<0.2	1.99	<2	10	<0.5	6	3.52	
<0.5 45	53	91	4.32	<10	<1	0.11	<10	1.27	605	
<1 0.17 20 158	24 -	1270	26	4	9	115	0.21	<10	<10	126
92MGBM34R		<5	<0.2	1.75	<2	<10	<0.5	4	3.01	
<0.5 21	44	9	3.56	<10	<1	0.03	< 10	1.29	725	
2 0.06 10 94	17	1180	20	4	12	83	0.18	<10	<10	111
92MGBM35R		<5	<0.2	1.60	<2	10	<0.5	<2	4.06	
<0.5 13	45	39	3.47	<10	<1	0.07	<10	1,11	625	
<1 0.12 20 54	16	980	16	4	9	93	0.23	<10	<10	120
92MGBM36R		95	0.2	3.65	<2	60	<0.5	12	1.10	
<0.5 50	50	247	6.94	<10	<1	0.22	<10	2.54	660	
5 0.04 30 74	39	940	<2	4	15	496	0.25	<10	<10	197
92MGBM37R		25	<0.2	1.72	2	130	<0.5	12	2.02	
<0.5 22	45	255	5,31	<10]	0.46	<10	1.54	260	
<1 0.10 20 46	24	630	6	4	9	68	0.25	<10	<10	125
92MGBM38R		<5	<0.2	1.36	<2	90	<0.5	<2	1.10	
<0.5 12	38	66	2.57	<10	<1	0.29	<10	1.24	235	
1 0.09 10 36	17	680	12	Z	6	60	0.20	<10	<10	93
92MGBM39R		<5	<0.2	4.35	<2	40	<0.5	6	3.47	
<0.5 12	51	83	2.81	<10	1	0.57	<10	1.11	305	
<1 0.39 10 30	15	950	8	8	13	125	0.26	<10	<10	155
92MGBM40R		3620	0.4	3.59	<2	170	<0,5	46	5.02	
<0.5 25	60	314	6.18	<10	2	0.82	<10	1.10	270	
1 0.23	27	680	2	2	13	117	0.32	<10	<10	120
30 48										

APPENDIX E

•

•

.

FIELD DRILL LOGS

Loc		Burnt	C Gasis	RO	WN	I R	ES	SOU	RC	E			
Coor	ds			THOL	.OGY	f .		ALT	ERA	TION	(I-5) Total	2 <u>01 e</u> Depth	5 #/
	N		ECI	ASTI	С		ם	ज्ज CI	-AY		Coll	ar Elev	
Det	E			IMES	TON	Ε		토 SH	CARN	l	Angi	e	0
	llored				E	• • • • • •		2월 OX	IDAT	ION	Bear	ing	cr
Cor	noleter	 !		TANU	DIOH	(IIE		띡망니	EAC	HING	Logg	ed by	<u></u>
			<u>~</u> %	1%	1%	1%			<u> //</u>	8/5	Page	_/_ of	5
	ALTC	OLOR F		AsPy	Mag	CUPY	Cal Cite	Chips	Gnt	Ept	COMMENTS	Au Zit	offier
05									\mathbb{Z}				
10 X		wk			 			<u> </u>	\square	\square			
15	4K 3	- Kitun	I-T.				<u>T.+</u>	ļ .	1.	11	Skan	<u>k5</u> 营	Tr 10.
20	1.1:00/10		• 1				70:		K	K	Black bedder Fine.		1
25	54 b	r	<u></u>				<u>3</u> .°			K	Skann		77
30		light					, •			K.	weakly starmad,		10.5
35		<u> </u>					2a*				Alk grong finestic		
40 111							35.	· · · ·	K.	Ær.			
45	p? da	rkell r					80."			1.	Skarn hed		
50		~~~~~ /	• _ •				1.	<u>1r</u>	\R ■	13.	Cale Silicate Skan	1/5 2	<u>/s</u> .
55 下	9		<u>.0 5.</u>			~			/10*	17.1	<u>/</u> (507	17.
60	ot u		<u> </u>						/5			875	
	<u>C</u>	k g	· .				700		1.		black limestime	1/90124	
7.因	SK Sm	yish hite	·			·[70.			$\overline{\Lambda}$	coarse white pyrite markle		
	SK br		1 T.		-+	T.	12. 30.1		/.0	\mathbf{A}	30% 5A5	35	TFT
85	K W	nite II T				<u> </u>	7.++				Silvente Star		<u> 5</u>
	1 dar	k)) ,	» T.		-+		$\frac{1}{r}$		40				Tr.
		2.0	•				\downarrow	<u>د</u> ا		And A			Tr/
		1 4.0	• Tr+			īr	4		5	4		201	Te/
	1		-1	1	1	·			<u> /</u>		· · · · · · · · · · · · · · · · · · ·		<u>v /·</u>

•

					C	RO	WN	JF	RES	SOL	RC	F			
	LOC	ATIC	N:					•••				<u> </u>	DRILL HOLE	<u>m</u> g	<u>#1</u>
	Coor	ds.	·			HOL	-0G)	r .	r		ERAT	FION	(1-5) Total	Depth	
		- N		- 5	acr arr	ASTI		_		ET CI			Colla	r Elev	
	Dat	<u>د.</u>		- H	ארם ב	MES		E	L L		CARN		Angle		
	Co	s Jlare	e d					• •1TE	14 15			ION	Bearin	ng gr	
	Co	mole	ted]		DIUF		Li C	픽바	. E.A.L.		Logger	d by	<u> </u>
<u> </u>			1	1%	1%	7%	1%	1%			1/5	<u>8/65</u>	Page 4		
				<u>l py</u>	Po	AsPy	Mac	CuP	Cal YCite	Chip	Gnt	Ept	COMMENTS	Au Lith	offier
105	, 	8r.	green brown	2.0							15	/Tr	biolite Cale Siliente Skarn	15	3.
110		56	Poten /	3. •					1,		10.	Tr	}	一	3.
ļ15		su	(Tr	ļ						10	Tr.			1. 30
120	<u> </u>	SK		1							10	Te			1.0/30
125		SK								<u> </u>	15	A.	. (핀	1.
130	ļ.	54-	<u> </u>	1					<u> </u>	1.	2				5.0
135		Sk		7,+	Ti						Tr		+		Tc
140	x X X X	ox	orange										bradite hernblende	X X X Y	10.0
145	× × × ×		pale pale								\bigvee		for par phyry	XY	p.•
50	X X X X				·								alteration	X X X X	p.
55	×		orange									\square	fresh color is lightgray	X X X X X	10.
€Ο	X X X X		grant								\square	\square	motiles white	× X × x	10.
65	××× ××		Oran J									\land	()	X X X X	10,0
170	x x y x										\square	\square		X X X X	10.0
75	× × ×		, k								\square	\square		x x X x	5,0
са	-X X X		brown	Tr ⁺						1.0	Tr	\square		XXX	TT 10.0
185		445	· []	1rt							7.	\land	contractive biotive hornfels		Tr+ 20,0
-: 90-		d		5. °	Te+			1,			3.0	\land	minoglesilicate Skarn	I III	1+
95=		J.		3.	$\frac{1}{r}$						15.0			围	1,#
		1		ı.•	+				Ir	1r	10:	11/1	JI		3.0

.

.

	CROWN RESOURCE														
L	A DO.	TION	4:					, , ,					DRILL HOLE	$\frac{7}{2} \frac{MG}{MG} \frac{\#}{4}$	
	-001(0 	25. <u></u> N.		-		ASŤI	.001 C	•			AY		Colla	r Elev	
	E	Ξ			LIN	NES'	TONE	Ξ	S	SK/	ARN		Angle	- 4/5	
	Date	:	<u> </u>	-¥	DIC	RIT	E	•	0		DATI	ON	Bearin		
	Col	lore	db	- <u></u>	GR/	ANOI	DIOR	ITE		비망니티 기		ling Salat	Logged	1 by	
<u> </u>	Con	npiere		 %	%	%	1%	1%		*		8/6 ⁵ %	Page_	Let Robert	
	LITH	ALT	COLOR	Py	Po	AsPy	Mao	CuPy	Cal Cite	Otzyn Chips	Gnt	Ept	COMMENTS	Au Zith other	
205			Steer J			<u> </u>			Tr		5.0	\angle	Skarn W/Vary aman	15 三	
70									2.0		15		Carbonacca Line	圉/	
215	西			Tr	Tr				10.		10:	\land	Stara LS.	1 图/	
720	が			Tr	Tu				T		10.	\square		15 至	
			AK bri	1+	Tre	 	1		T_T		/s	\square	1 but schert	1110 署/	
~~>			Ato		0.5		İ –		10		1.		(Cantanti	2.雪/	
23 0			Alen		5				20				gzvu frag	-14	
235				1.0	0,-	·	<u> </u>		4	11	<u>/15.</u>			151三	
240				<u>T</u> ?	Tr				151		11.	\sim	+ prife Kispor?		
745				Tr	TF	<u>}`</u>			15,0		<u>/.°</u>				
<u>7</u> 50	114		1 1000	Tr++	11		<u> </u>		35°		17		+ brock 1- Selict		
255	Ŧ		gr.v Hakbry	Tr	TC	<u> </u>	 		2.0		K.	\angle			
250			$ \rangle$	Tr	Tr		<u> </u>		25.		<u>/.</u> °	\angle	¥		
265											\angle				
h 70						2	ЮH				\angle				
75													For that perfalls	have divider	
	•										∇	\checkmark	the % Strongton The	lou /	
	·														
50	·										7				
90		•			<u> </u>	<u> </u>		<u> </u> 		<u> </u>	/	17			
95		•		1	. 				 						
CO							 	<u> </u>	 						
					1	1	1 -		1	•	1	1		<u> </u>	

•													ana a gunannya mara any amin'ny fanisana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana T	and and the state of a second decision of the second second second second second second second second second se	
	1	e :			С	201	WN	R	FS		RC	F			1
	LÓCA		N:			. •	****			00			DRILL HOLE	2 MG #2	
	Coor	ds				HOL	.OGY	•		ALTI	ERAT	ION	(1-5) Total	Depth_285	
	*.	<u>N.</u>			JCL	ASTI	C			<u>х</u> сг	AY.		Colla	r Elev	
•	Dete	E		<u>Ы</u> П		MES				K SK	ARN		Angle	60	
		licre			אט נ בס ו			· ITE			IDAT		Beari	ng war	İ.
3	Cor	noiet	ed]			115		Щ SL			Logge	d by <u>ran</u>	
Γ	T		<u></u>	1%	1%	%	%	%				<u>47/82</u> %	Page_		نې شم
' —	LITH	ALT		<u>z py</u>	Po	AsPy	Maa	CuPy	Cite	Chips	Gnt	Ept	COMMENTS	Au 2.14 other	ſ
10:		or	brown		10		T.			Ì	\bigvee		calesilicate St.	20 图/	·
	<u>t</u> +1		94 1	10.							ľZ.	7	1. h be chuck		
ר <mark>ו</mark> 10		<u>5k</u>	boon	la.	1,t				 	<u> </u>	10.	Κ,	W/ SK	15 11	
15	-			,2.0	T,†						15.			1 王	
20			palegram de brown								1.		VV	10 = 1++++++++++++++++++++++++++++++++++	
25	E I		<u> </u>	4					1.		5	\checkmark	V V	25 = =	
3C			brown		1.				5.°		30.		V V		
35			brown						50°		1/30.		V	小	
-+C				1,+					60°		5.		ł	30	
15	E	24	torane	Tr					75.	Tr	1.		V	小小	
50	No.								80		Fr	Ĩ,+	V -	一種へ	
5		-	prom	Tr++					10		10.		1 mini butt	He so	
:0		5hr	tolive	1.					<i> .</i> •		5	Tr		EV	
6 5	Ŧ	WK4 STN	uery dx brown	1.					V			\square	minige bishits	画	•
.′0				1					10."		\angle	\square			
'5	R								30.		\square	\square	Manto		•
Ca	型	¥.	It gray cream	1.					50, [°]	Tr	<u>/;</u>	\square	25.	田田之	•
c 5	弦	sk	AK A						20.°		40.	Δ	Lis J game	1)建兴	
:	因	sk	dt trown	2.	11				Te+		160.	Δ	V	20 堂 2.	
95	羽	sk	ļ	1.++			1		V		10.	4.	V	15年代	
CO	些	か	dk brown It gray	4		1		ļ	50.°		10.	\square	Cale Start	↓買♪	
	· 1	Ţ													•

-	_															
					CI	ROI	WN		FS		RC	F]
1	-0CA	10ITA	V:		. U. J	. 🗸							DRILL HOLE P	A	MG	#2
	Coor	ds			LIT	HOL	.OGY	•		ALTI	ERAT	FION	(I-5) Total	Dept	h_2	85
	1	N		_ 💽]CL	ASŤI	С		ם	У CL	AY.		Colla	ir Eli	e v	
		E		- 22		MES	TON	Ε	S	k sk		1	Angle	·		
	Date	::		- 5		DRIT	E	•	<u>c</u>	<u>찌</u> -0x	IDAT	ION	Beari	ng		
			۵ <u></u>		JGR. 1	ANO	DIOR	ITE		ЩBL	EAC	HING	Logge	d by_		
		npieri	:0		<u> </u>	1 %					*/	<u>\$%</u>	Page_	<u>2</u>	of	3
	LITH	ALT	COLOF	R Py	Po	AsPy	Maa	CuP			Gnt	Ept	COMMENTS	Au	17-6- 2-11	offer
	12		dk 1	1.							7	17	the late Solice		H-	
105	$\frac{1}{\sqrt{7}}$		gray	1/.				 	30	<u> </u>	K.,	K,	St w/ botto Sel	25	茁	K
110				2.					50°		1/5.	10	q600 2.5.		1	TT
	5			1+						1		17		\square	IT	
115	<u> </u>			<u> </u>				· · ·	10		1/1/			+-		
120	5			Trtt					V	11	1.	1/Tr				
1.25	T			0.50								1/		Π		Tr
125		—	pale	1								K-/			╎╌┼╌	TI
130		<u> </u>	gray						20.		V_	K.				17.
135	77		ligh" gray	Tit					5				+ Marshe			
	741	Ī	dk			·					ĭ7					
140	74	<u> </u>	brown	2.					<u>5</u> .	-	<u> </u>	Τr				TT
145									T,++		1.	A *				Tr/H
	1	Ī		4	·						\overline{Z}					.05
150			V List I			<u> </u>			10		<i>[</i> ,	71				77
155	1-1		gray	$ 1_i $				i	70.		/Tr**	1	Many 1.5			7.++
	11								1				15€)			
.'60		—†											marl			ΤY
165	-121		V	0.5					V		A:#					TY
170	ᅯ		pronu	1,	İ				15 .		4					
	~+1	†	l: at t						<u>,,,</u>							
175	<u>+r' </u>		9101	T,+					70.°		/3:					1,+
1en	<u>}</u>			7,+					J		\bigwedge					
	スー									-				+		
185	<u>+</u>			0.5					Y.		\square	\angle				/Tr
	71			1.					1		K.	\land				
	77	•			<u> </u>		··	{	<u> </u>				— <u> </u>	╶┼╌┦	+	
(95 ⁻	<u>*~</u> !				.				V		K!					11
	<u>] [</u>			\mathbf{v}			1.		V		Λ	\bigwedge	V I		Ni	1
				<u> </u>			<u>י א ו</u> 		<u> </u>					<u> </u>	<u> </u>	
!		!	İ										I	1	ł	

CROWN RESOURCE																
Ċ	Coord	!s		_	LIT	HOL	OGY	•		ALTE	RAT	ION	(1-5) Total (Depth_	285	-
	1	۷		_ ⊡	CL	ASTI	C		<u>ا</u>		AY		Colla	r Elev	·	_
	E				LIN	IEST	ONE		S	R SK	ARN		Angle			-
1	Date	:		-년	DIC	RITI	E	•	0	시_OXI	DATI	ON	Bearin	פי		•
	Col	lare	d	_ <u>I</u>	GR	ANOE	DIOR	ITE		ᄖᆋᄔ		ling 1979	, Logged	1 by	3	-
<u>. </u>	Con	plete	ed		- 0 /	9 /	5 /	8/			15	\$%	Page_		- Bart	4
	LITH			Pv	Po	ΔsPy	به Maa	СиРу		Chips	Gnt	Ept	COMMENTS	Au Z	th other	2
			(ight)									\square	Carboarian 15	L/E	困く	1
205			3rm1	ļ					B		Κ,					H
210			gran	Trt					75"		A.	-TY	becomviete Starne		罚/1.	٥
215				Tr					60°	Tr	/# /*	R.			至了?]
220			pole in						Tv++				intrus ve	×		
225			torange						Tr		\angle	\angle	in Sier when black		× 7	
230								<u> </u>	¥		V,	\angle			**	
235					 				¥		\angle	\square				
240								 	V		K,	\square				
245				مر مرتحد ا	NO CLA		DEVA	64126		~	K,		ares & att whit			, N
කා			9:04	BUT	NE	int.	1,		3.•	-	K		Er Diotie, phale	1.9m-	rê p.	。 /
255			promu			-			2.°		Ľ,		homblande		Y 2 10	~
260							11		1,+		K		V stylving			
265				Trt					1r		5.	1.	J Ste			
270			llolue	Tr	 				<u> </u>		K	K	20% 812 P		×x 7	."
275			gray light 1	4				<u> </u>	70			K	80% LISU/WESE			
යා	·		olive pink	5.	2.			Tr	60.0		<u>/5</u> .	K?	Lis pink mineral atten			Ź
285	•		└ ↓	15	0.5				Tr		3.	6.5	Managenese?	↓⊧		
90	••	•									K,	K,				
95								·			K	K,	EOFI			$ \downarrow$
00											\mathbb{V}	\mathbb{Z}			-	_
			!		Į			<u> </u>			<u> </u>	[<u> </u>	-17	

Ι,	DC	NTIO			C.I	RO	WN	I R	ES	OU	RC	E			•		
	Coor	ds	IN:	— <u> </u>		HOL	.OGY	•		ALT	ERAT	TION	DRILL HO	LE <u>9</u> Total	<u>2 </u>	<u>M& *.</u> h <u>390</u>	<u>3</u>
		N				ASTI	C	_	2	지 Cr	.AY			Colla	r Ele	ev	
	Date	⊑ ≥:] DIQ	DRIT	ION) F	E	21 10					Angle			
	Co	llare	d] gr.	ANOI		ITE		<u>U</u> sl	EAC	HING	;	Loose	ng. <u> </u>		
ļ	Cor	nplet	ed] T 87	1 87					<u>r'/</u>	<u>\$/3</u>	۲ <u> </u>	Page_	<u> </u>	of <u>4</u>	
	<u>1171</u>	ALT	COLOF	<u>Py</u>	Po	AsPy	% <u>Mao</u>	V. CuPy	cal Cite	QUV Chips	Gnt	Ept	COMMENT	<u>s</u>	Au	Robs. Cyr 2. th Offic	
05			brown	ļ	 				60		\lor		Sed. WKI, 5 L.S. / Marsh	KARNE			15.
10			gray						70		1	1.					5.
15	7-	 		,					N	 	1.0						<u> </u>
zo		 	brown						l		1,*	1.					<u>5.</u>
25									J		13:0	1.	•	-		3.	<u>5.</u>
30	4	-							ł		T	1.				T	5.
35	1								80		Tr	1				Tet	/
40									20		1.0	11			.	3.	5.
45	<u></u>			1,*					V		10					/:	5.
50				<u>Te</u>					1.0		14	\angle	ZNTA	1 1 15:2		/i	5
55	剂		dkares		[5		\angle	1.					5.
εo			1+. 5ref						70		\angle	12.				2.	<u>·</u>
€5			[]	1,	Tit	-			60		4.	4			ľ	. /	
70		[70		\angle	$\langle \rangle$	into white to de	V			
75	<u>x</u> y								30	-		1.	gray er erine ; Porstin u/ fine	EU EU		1.	<u>.</u>
C3	XX		green				•		Tr			\triangleleft				- lö	2.
85	C Y	_	grand						V		$\langle \rangle$				1		<u>,</u>
200	-1	•	OF 1						V		\square	\square		<u> </u>		10	<u>,</u>]
95			troin pie are 1	1.0	1,++				10		<u>(,)</u>	4.	chillgou - has	41			
ᅇᄃ	77	 	ال ال ال	1 ₁					50		11		Sed while Strowm ?			12.	
<u> </u>		!		[_				<u> </u>		1.S. M	··			

-14

. •

Γ,	CROWN RESOURCE LOCATION: DRILL HOLE <u>92</u> <u>MZ</u> <u>43</u> COORDS LITHOLOGY ALTERATION (1-5) Total Depth 340															
	Coord	ds		 	LIT	ног	OGY			ALTE	RAT	ION	(1-5) Total	<u>Z</u> Depti	h_ <u>3</u>	40
	1	N		_ [::]CL	ASŤI	С		2	ערר צו כרי	AY		Colla	ir Ele	ev]
	1	Ē			LI	MES'		-	S	K SK	ARN		Angle	<u> </u>		
	Date	:		- 12			E	• 175					Beari	ng		
	. UU	noleti	u • d			ANUI	JIOR	115		บระเ	37		Logge			4
				- <u>-</u>	%	1%	%	%		~	7 2 %	47/6 ×	Puye_	T (les.	67.2
	LITH	ALT	COLOR	Рy	Po	AsPy	Maa	CuPy	Cite_	Chips	Gnt	Ept	COMMENTS	Au	2.24	offer
105	1-1-1-		Listary	Te++					70		\angle	Z	Sed. WKL Stend			3.
110	2		gray	Tr					80			\angle			ļ	1.
115	4		white	*					60		\angle	\square			<u> </u>	12.
120				V					50		4	\langle		 		2.
125			Srow	T.+*					80		Ζ,		white Felloper		1	3.
130	<u> </u>		otise	Tr		 			70		4	A.	green h blend. X1/2.	<u> </u>	 	3.
135	XX		green	-11		<u> </u>			Tr		Ζ.,	Z,		<u> </u>	<u> </u>	10.
140	XXX XX		green						7+		Ζ,	1.	Sed	<u> </u>	 	10.
45			Vorange	1++		 			↓		5.0			<u> </u>		3.
150	$\overline{1}$		green	1.		<u> </u>			30		K,	K,	·		<u> </u>	1
155	Ŧ		gion	V					40		\angle	\angle				Tri
160	논		green	\checkmark		[60			A.	whit with the			3.
165	<u>1</u>								50				124 - 139 4/ VSN green 2/6/012 ×116		 `•	1.7.
170			ovanae						Tr		5.0		48. Stars			7.
(75			gk	1v+t	1r				5		30.					2.
(80	-)*		dk	1,					15	·	π	\angle	Sed tint. mare see			2.
185			t brown	Tv++					50				sed.			T,+
(90	I	-		T.					V		3.0	K.	mark of LS			T'AT
195	붠			V	-				70		\angle					Æ
200	म्	-	v	Titt	11				88				×			\square
	1														!	

												<u> </u>	<u> </u>	
	.		C	CRO	WN	N R	ES	SOU	RC	Έ]
	LOCAT	10N:	———		00						DRILL HOLE	92	ME	**3
·	N N	·	ا ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔	L ACT		I.	7			TION	(1-5) Tot	al Dep	th <u>3</u>	40
	E.			IMES	TON	F	2	SKI SK	. A I ' A D A	3	Co	llar Ei	lev	
	Date:		_ 🗹 D	IORIT	Έ	•		DX OX	IDAT	N LION	An Rei	gie pring		——
	Colle	ired	GI	RANO	DIOF	RITE	[<u>ฏ</u> ายก	EAC	HING		ged by		
_	Comp	leted		1 87	-				<u>~/.</u>		Pag	e <u>3</u>	. of	4
		LTCOLO	R Py P		2 M 00	CuPy	Col Cite	QUY Chips	Gnt	Ept	COMMENTS	Au	Frob.	offer C
205	FX	dkgray	1.5 1				60			1/	Sed.]		$\overline{\mathbf{Z}}$
216	다		10 1	,					1/	17	Marke + L.C			
715			2004		+		<u> </u>			17		┽╉──		2.
				,	╁—		<u>70</u> J.	<u> </u>		\mathbf{k}	1		-	<u> </u>
20		- <u>-</u>					<u> </u>		\mathbb{Z}	$\left \right\rangle$		+		
225				<u>' </u>	 		<u>v</u>			$\not\vdash$	· · · · · · · · · · · · · · · · · · ·	┥┥		
230			1.0		<u> </u>		V			Ķ,	1			
235			0.5				↓		Z	\square				1.
40	++		2.0° Tr		<u> </u>		V		A.					Tr
245		biown	Tr++				40		15					A.T.
250			V				70		\mathbb{Z}	\bigtriangledown		11		
255		Whit	20				V		7			1		
1		01000	1/17	+			V		7			- <u>+</u> !		
1.00			05.1	1			zo				· · · · · · · · · · · · · · · · · · ·	$\frac{1}{1}$		
100-			0.1				<u> </u>					 	ř - 	4
270			2.0 14				101					<u>! </u> 		Tr.
275	++-	1.8	/.0				V		1."	Ki		<u> </u>	ļ	1.
280_	+	Jkon -	V 0.5				U I			\angle		<u> </u>		
,85	<u> </u>		V Tr				5		11		 			7,7
90_			V 1,+				J		T	\land				T.t.
195			5.00 0.5				W		4	\square				
	¥1 .		Tit 11		<u> </u>		vĪ				<u> </u>			
					·¦			¥		\sim				- 11
				<u>هــــــــــــــــــــــــــــــــــــ</u>								יש ויש	1	1

	1	000	1710			C.F	20	WN	I R	ES	OU	RC	E		On	Mr	# 2
		Coor	≺no ds	IN:		LIT	HOL	.0GY	1		ALTE	RAT	ION	DRILL HOLE	ial Dest	<u>///</u> 5 h ੋੋ	# <u>></u> \$90
		•	N		_ :::		ASTI	C			N CL	AY		Co	ollar El	ev	
		_	E		- 🖺] LII	MES	TON	E	S	k sk	ARN		An	igle		
		Date):	<u> </u>	- 논		DRIT	E	•		<u>≍</u> ox	IDAT	ION	Be	aring _	<u> </u>	
			llore	d		JGR/ 1	ANO	DIOF	RITE		비미	EACI		یما ہ	gged by.		
			nprei]		 %_	1%	1 %	1%				<u>\$%₹</u>	Po	<u>e 4</u>	of	
		LITH	ALT		Py	Po	AsPy	Mag	CuPy	cal Cite	O ^{ti} yn Chips	Gnt	Épt	COMMENTS	Au	ちょう.	offier
	205		+	Jok	1.0	1.		ļ		10		K	K.	Sed Meble	1		
	210	H		brown + gray	2.0	7.+				70		Z					
	215	4			30	7.				<u>,</u>) 						
	212	<u> </u>				4			· ·	J.				· · · · · · · · · · · · · · · · · · ·			7.
2 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	520											/		•	-+		Ti
	525 ·	Ш	1 					·		<i> </i> 2						1	
	530	14	! 		V.			 		60				·····		I	Tr
	35	<u> </u>	l		12.0	0.5			<u>1r</u>	50	·				_ <u>_</u>		TT
	40	H			3.0	Trtt				10		15	\angle			1	30
	45				[\angle	\square	EOM			
	50			1		•						\square					
	55													<u></u>			
	eo												\square				
	65		·									\square	\land			 	
	70											\land	\square				\square
	75											\land	\land				
	ca	-			4							\square					\mathbf{Z}
	85											Λ	\overline{A}	· <u>.</u>			\mathbf{Z}
-	:					•					ľ						
ŀ			•								بر ل	1					
	20 20				†	·		<u> </u>				\overline{A}	$\overline{\Lambda}$	<u> </u>			
1								<u> </u>		<u> </u>							

• • •

1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -1000 - 1000