ARIS SUMMARY SHEET

District Geologist, Kamloops

Off Confidential: 94.12.14

ASSESSMENT REPORT 23223

MINING DIVISION: Osoyoos

PROPERTY:

Puma

LOCATION:

LAT 49 21 00

LONG 119 50 00

UTM 11 5470007 294224

NTS

082E05W

CAMP:

1

011

Hedley Camp

CLAIM(S):

Puma 3

OPERATOR(S):

Grand National Res. Topper Gold

AUTHOR(S):

Borovic, I.

REPORT YEAR:

1993, 28 Pages

COMMODITIES

SEARCHED FOR: Copper, Silver, Gold, Lead, Zinc

KEYWORDS:

Triassic, Old Tom Formation, Limestones, Andesites, Tuffs

WORK

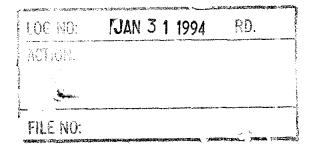
DONE:

Geophysical, Geochemical

EMGR 12.3 km; VLF

Map(s) - 1; Scale(s) - 1:5000

SOIL 260 sample(s);ME


Map(s) - 4; Scale(s) - 1:5000

RELATED

REPORTS: 18237,19643,20747,22107

REPORT

and

THE GEOCHEMICAL

0 N

GEOPHYSICAL SURVEY

of

THE LAREDO PROJECT

Puma Claims

Lat. 49 21'N; Long. 119 50'W

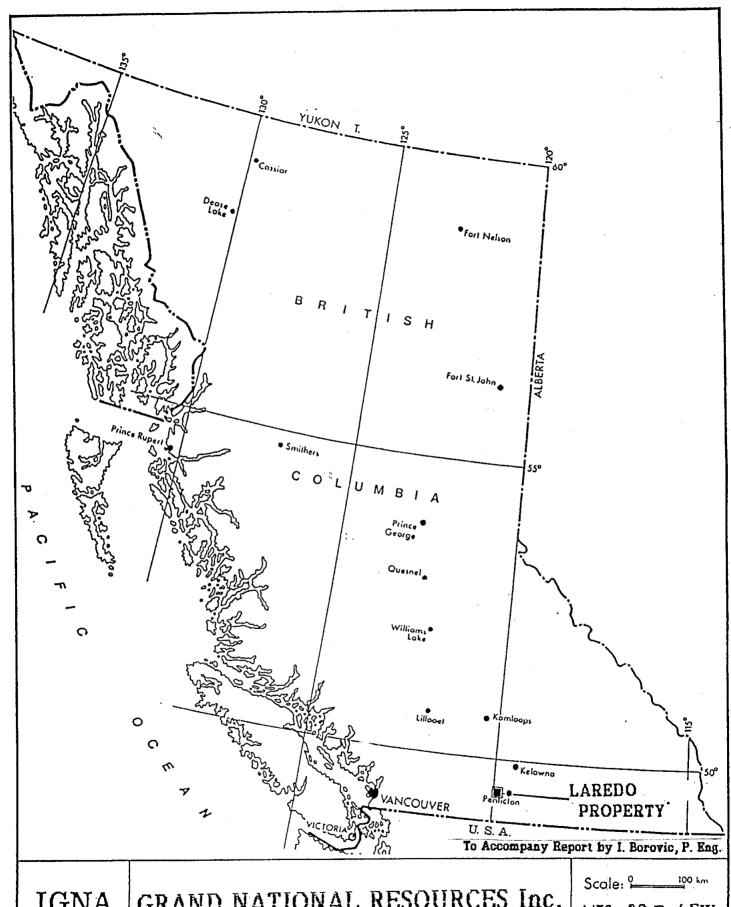
N.I.S. 82 E/5W

OSOYOOS M. D.

British Columbia

Owner-Operator:

GRAND NATIONAL RESOURCES Inc


by

I. BOROVIC, P. Eng. geologist

VANCOUVER, B. C. Jan 04, 1994

IGNA

engineering & consulting Itd.

GRAND NATIONAL RESOURCES Inc. LAREDO PROPERTY Location Map

NTS 82 E / 5W

Date: Dec 30 1993

Figure:

TABLE OF CONTENTS

pa _l	ge
INTRODUCTIONProperty	
GEOLOGY, STRUCTURE AND MINERALIZATION	.2
HISTORY OF EXPLORATION AND WORK DONE	.2
WORK DONE 1993 Geochemical soil survey	
CONCLUSIONS AND RECOMMENDATIONS	
BIBLIOGRAPHY	.7
STATEMENT OF EXPENSES	.8
CERTIFICATE	.9
APPENDIX: - Soil survey assay results - VLF-EM survey data	
List of illustrations following pa	.ge
Location map (Fig.1)fro Claim map (Fig.2) Regional Geology (Fig. 3)	. 1
Geochem Soil Survey: 'Cu' (Fig. 4)in pock 'Pb' (Fig. 5)in pock 'Zn' (Fig. 6)in pock 'Ag' (Fig. 7)in pock	et et et

INTRODUCTION

Geochemical soil and geophysical VLF-EM surveys of the PUMA 3 claim has been done from Dec 3 to Dec 14 1993. Three men field crew comprising field supervisor, VLF operator and a soil sampler-field assisstant was employed in the field. The results of the surveys were examined by the writer and findings are described in this Report.

PROPERTY

Location: Lat. 49o21' Long. 119o50' (N.T.S. 82E/5) (Fig.s 1&2)

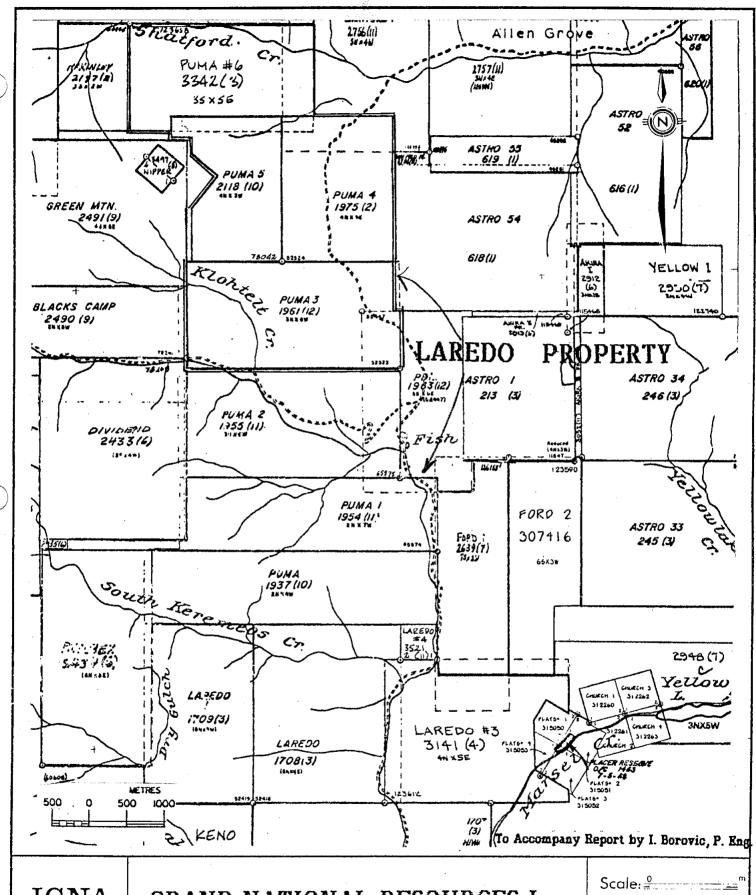
Puma Group of claims is located north of Keremeos Creek and on the road to Apex Ski Area, from about 12 to 19 km north of Keremeos.

Claims		No.	of	Un	iits	TE	enure	No.	Expi	ry	Date
PUMA	#1			14		e sac 1	2464	82	N	ov	25/2001
PUMA	#2			18			2464	83	N	Oν	25/2001
PUMA	#3			18			2464	84	D	ec	15/95
PUMA	#4			12			2464	90	F	eb	10/96
PUMA	#5			12			2465	26		ct	5/95
PUMA	\$6			15			2471	49	М	ar	2/96

Access

Via Hwy 3A about 6 km to the north from Olalla, a Green Mtn. road turns west through the Indian Reserve and crosses the Kero-Laredo-Puma property 3 km from the intersection. The road crosscuts the Puma group in the north south direction.

OWNER-OPERATOR


GRAND NATIONAL RESOURCES Inc. of #905-626 Pender St., Vancouver, B.C. V6B 1V9

Facilities and Services

The nearby settlement of Keremeos and Okanagan Falls have excellent room and board facilities for accommodating the exploration crew. Major socioeconomic centres with schools, hospitals and heavy-duty equipment are in Penticton about 25 km to the east; Princeton--some 80 km to the west, and Osoyoos, about 80 km to the southeast on Hwy 3.

Property Resources

There is ample timber available on the property, water for drilling is available from the Keremeos Creek.

IGNA

engineering & consulting Itd. GRAND NATIONAL RESOURCES Inc. LAREDO PROPERTY Claim Map

N.T.S.82 E / 5W Date: Dec 30 1993

Figure:

2 .

GEOLOGY, STRUCTURE AND MINERALIZATION

General Geology (Fig. 3)

The property is underlain by cherts, tuffs, and greenstones of the Shoemaker and Old Tom formations of the Triassic or earlier age. Jurassic limestones also outcrop on the property. All these rocks were intruded by the Cretaceous granites and granodiorites of the Nelson Plutonic complex.

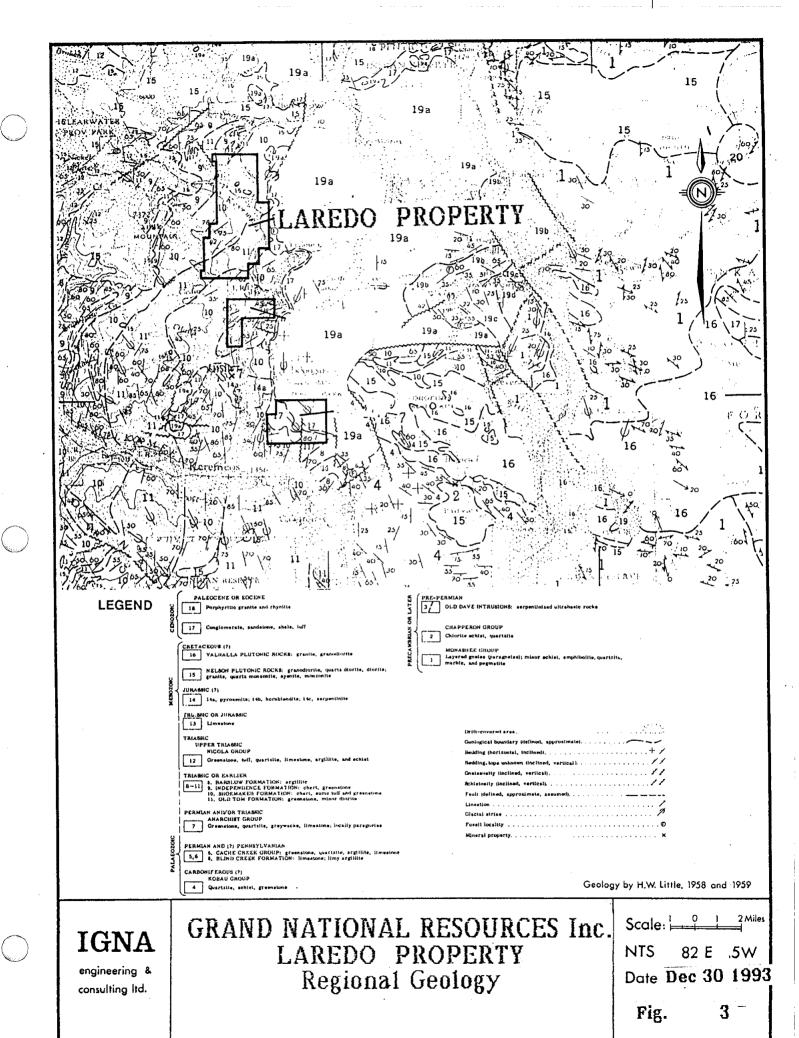
Bedding strikes NE-Sw with moderate to steep dips to SE, Paleocene sediments and Eocene volcanics are unconformably capping the older units.

Mineralized rocks carry copper, gold, silver, lead and zinc mineralization.

HISTORY OF EXPLORATION AND WORK DONE

The mineral exploration of the area of Kero property was described and results of the past exploration recorded in the Annual Reports of the Ministry of Mines (B.C.) for 1899-1904, 1906, 1908 and 1928. Most of the existing underground workings and surface development was done before 1908. Complex mineralization composed mainly of pyrite and chalcopyrite, gold, silver, lead and zinc occurs in scarns and what appears epithermal quartz veins.

1964


The Kero claims were staked in 1964 by M. Schram of Olalla some trenching on the vein structure was done.

1983

Grand National Resources Inc. became the owner of the Kero-Laredo-Puma claims.

1984

Work done in May and June 1984 (Kregosky, R., July 10, 1984) on the portion of Puma 3 and 4 claims consisted of geophysical VLF-EM and geochem soil survey and geological regional mapping. VLF-EM survey mapped strong NE-SW trending conductors coincident with lower positioned (slope effect) geochem, soil anomaly. Both anomalies are about 500 to 600 m , strong linear features open on both ends and very strong in the northern exploration area showing possibility of a close proximity of the mineralization to the surface.

To Accompany Report by I. Borovic P. Eng.

1985

Geological and Geochemical Investigations

The exploration on the Puma claims extended the existing geophysical and geochemical anomalies as outlined during the 1984 surveys. Additional information to aid in the interpretation of those anomalies was also obtained.

A comparison of the geochemical and the geological map indicates the close interrelationship between the diorite intrusion and gold trace elements in the soils. The gold geochemical values effectively trace out the observed outcropping of the diorite. This is, in part, substantiated by the lithogeochemical samples which indicate anomalous values are usually associated with the diorite. One anomalous sample was obtained from the quartzites which were in contact with the diorite. Another sample was obtained from the amygdaloidal basalts.

Soil survey delineated bifurcating geochemical anomaly with an apparent, discontinuous length of 1050 meters with a maximum width of 250 meters.

ULF-EM Survey

The VLF-EM survey has indicated a continuation to the anomaly outlined during the 1984 survey. This northerly trending westerly dipping anomaly has decreased considerably in magnitude except at L9+00N 1+25W which exhibits the strongest inflections. The prescence of a stuctural off-set of fault located at L5+00N 1+75W is supported by the VLF-EM data as well as the geological data which indicate a change in the bedding attitudes across this zone.

This extended VLF-EM anomaly has a length of 1400 meters. In addition, another secondary sub-parallel conductor has been located which extends from L7+00N 0+25E to L10+00N 1+25E for a length of 350 meters. These anomalies are open to the north with the main Puma anomaly also being open in a southerly direction.

Geochemical Soil Survey

A number of correlative anomalous zones were mapped by 1989 soil survey.

A large zone of anomalous coincidental copper, gold, arsenic, silver, zinc and lead values in the north and south grids was located and should be further explored by additional soil sampling to the north and east.

The reason for high spotty coincidental anomalies should be also found. In writer's opinion they are reflection of mineralized showings in the area.

The anomalies should be further investigated for possible disseminated sulfides by IP methods. Very high spotty anomalies should be examined for mineral showings.

1989

VLF-EM Survey

The survey successfully mapped possible expressions of the vein type mineralization and trenching is recommended for further examination of these areas.

The continuation of the geochemical survey supplemented by appropriate geophysical and physical methods of mineral exploration was strongly recommended.

1990

Geochemical Soil Survey

The soil survey was done in the northern and southern parts of the Puma 5 and 6 claims.

Two grids, composed of a total of 13.0 km/lines are extended from the old grid in the westerly direction for 500 to 1000 m. Lines are spaced at 100 m intervals and stations were marked at 25 m on the line.

Results

A number of significant copper, silver and zinc anomalies was mapped. Zinc anomalies located in the southern part show northerly trend.

VLF-EM Survey

The survey indicated three weak northeast trending crossovers. The anomalies are of the similar strength and probably reflection of either: mineralized veins or water filled open fractures and should be examined for possible mineralization.

1991

An exploration grid of just over 10.0 km/lines was established in continuo to the south end of the Puma Grid. Geochemical soil and geophysical VLF-EM surveys were done.

Results:

Geochemical soil survey

Significant copper, zinc (with some gold) anomalies were mapped. A northwest trending anomalous copper-zinc values should be further explored by additional soil sampling to the south.

VLF-EM Survey

The survey mapped two conductors. They could not be correlated with soil anomalies. The conductors should be trenched for possible mineralization.

WORK DONE 1993

Survey control

An exploration grid of over 12 km ($12\ 275 \text{ m/lines}$) was flagged in continuo of the 1990/91 Puma grid. It is located over the southeastern part of the Puma 3 claim (as shown on all survey maps).

Geochemical soil survey (Fig.s 4 to 8)

Sampling method

Samples were taken from the "B" horizon which is about 10 to 18 cm below surface. The soil material was collected with a spoon; cleaned of larger size particles and put in the standard soil sample envelope which was marked with coordinate location. Total of 260 samples was collected and assayed.

Analytical methods

Soil samples were dried, pulverized, screened to -80 mesh and subsequent analyses were done by Acme Analytical Laboratories Ltd. of Vancouver, B.C. ICP for 30 element were done on .500 g samples. (for details see Appendix: Geochem Analyses Certificate)

Discussion of Results

The results of the geochemical survey are presented in Figures No.4 to 7 of this report. These are contour maps, scale 1:5 000 showing copper, lead, zinc and silver content in parts per million (ppm).

Copper (Fig. 4)

Copper dispersion with background of less than 100 ppm is very high for the area. Anomalous values start at 100 ppm and values of 200 ppm and up are considered significantly anomalous. One significant anomaly is located on L12S St 750E and runs to L9S St 750E. The general trend appears to be north.

Lead (Fig. 5)

Assayed values of lead are very low. Values above 20 ppm are considered anomalous. One anomalous area is located on L1S to L3S Sts 800E to 1000E.

Zinc (Fig. 6)

Anomalous values start at 100 ppm and values of 200 ppm and over are considered significantly anomalous. Significant anomaly is located from L11S St 700E to L3S St 900E and in its southern part is coincidental with copper anomalous area.

Silver (Fig. 7)

Silver values are generally low in this area of the survey Anomalous values better than 1.00 ppm are located on lines 25 and 35 Sts 800 to 1000E.

Geophysical VLF-EM survey (Fig. 8)

The instrument used was a SABRE VLF-EM model 27 receiver. It was tuned to the Seattle, Washington transmitter station which operates at a frequency of 24.8 kHz.

Results

The VLF-EM survey has mapped a number of strong crossovers located on Lines 8S, 9S, 10S, 11S, 12S, 13S, 14S and 15S. The crossovers are runing north northwest.

CONCLUSIONS AND RECOMMENDATIONS

Soil Survey

The continuation of the geochemical survey supplemented by appropriate geophysical and physical methods of mineral exploration is recommended.

Estimated Budget

An estimated budget of \$ 60 000.00 is necessary to carry out small exploration program composed of geophysical IP survey, trenching, sampling and assaying and related geological work.

BIBLIOGRAPHY

- Borovic, I. (1984): Report on the mineral exploration of the Kero-Laredo-Puma, Buckshot, Daly and Cassel, Summary Report for Grand National Resources Inc.
 - (1987): Report on the mineral exploration of the Topper and Kero Projects, British Columbia, for Grand National Resources Inc. Aug. 18. 1987.
 - (1988): Report on Geochemical and Geophysical Exploration of the Buckshot Claims; for Grand National Resources Inc. Jan 25, 1988.
 - (1990): Report on Mineral Exploration of the Kero-Laredo-Puma Project. Laredo, Puma, Buckshot claims Summary and Evaluation. For Grand National Resources Inc April, 12 1990.
 - (1990): Report on the Geochemical and Geophysical Survey of the Kero Project, Puma Claima; for Grand National Resources Inc. Dec 20 1990.
 - (1992): Report on the Geochemical and Geophysical Survey of the Kero Project, Puma Claims: for Grand National Resources Inc. Jan 20, 1992.
- Bostock, H.S.(1927): GSC Map 628A, Olalla Sheet, 1927. (1929): GSC Paper Part A, 1929.
- Camsell, C., Memoir 2, G.S.C., 1910.
- Kregosky, R. (1984): Report on the Buckshot and Daly Properties (Files of Grand National Resources Inc.).
- Kregosky, R. (July 10, 1984): Geophysical and Geochemical Report on the Puma Group (for Grand National Resources Inc.)
- Kregosky, R. (August 1, 1984): Geophysical, Geochemical and Geological Report on the Daly property (unpublished report for Grand National Resources Inc.).
- Kregosky, R. (1985): Geophysical Report on the Kero-Laredo Group for Grand National Resources Inc.
- Little, H.W. Map 6 1957 Kettle River, B.C. (82 E/E 1/2), 1953-56.
- Little, H.W. Map 15 1961 Kettle River, B.C. (82 E/W 1/2), 1958 & 1959.
- Minister of Mines. Annual Reports for 1899, 1904, 1906, 1908, 1928, 1933.
- Pringle, D.W. Report on the Kero-Laredo Group, Keremeos Creek area, Cassel Group, South Rock Creek area and Jolly Jack group, Quesnel-Horsefly area (unpub. report), August 1983.

STATEMENT OF EXPENSES

The following is a breakdown of expenses incurred in carrying out the exploration work in the area of the PUMA claims during the month of December (Dec 3 to 14) 1993. Work was done on Puma 3 claim and is applied on Puma 3, 4, 5 and 6 mineral claims with tenure numbers: 246484, 246490, 246526 and 247149.

Personnel:

I. Borovic, P. Eng. consultant and manager L. M. Schram Field Supervisor Dennis Wager VLF-EM operator Gerard Gaalissant Field Assistant

Field and Office Work

Field Supervisor 6 days @ \$ 200/day\$ 1	200.00
VLF-EM operator 11 days @ \$ 150/day\$ 1	650.00
Assistant, 11 days @ \$ 100/day\$ 1	100.00
Truck 4/4 rental and expenes (two 4x4)17 days\$ 1	700.00
Room and Board 28 man/days @ \$ 70/day\$ 1	960.00
VLF rental\$	825.00
Freight and supplies\$	200.00
Assaying (Acme Analytical Labs Ltd)\$ 2	675 00
Cosultant-manager 6 days @ \$ 450/day (supervision,	
report, draughting and repro)\$ 2	700.00

TOTAL FIELD AND OFFICE WORK PAC Withdrawal	\$14	010.00 990.00
	 \$15	000.00

H

CERTIFICATE

- I, I. Borovic, of the city of Vancouver, B. C., do hereby certify that:
- 1. I have supervised the exploration program carried out in the area of PUMA claims Laredo (KERO) project of Grand National Resources Inc. located 23 km northwest of Ollala, B.C.
- 2 The expenditures claimed for the performance of the work are correct.

Respectfully submitted

T. Borovic P. Fog

Vancouver, Jan 04, 1994.

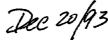
APPENDIX

) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Grand National Resources Inc. PROJECT PUMA File # 93-3598 905 + 626 W. Pender St., Vancouver BC V6B 1V9 Submitted by: L.M. Schram

Page 1



															OB 14			ieu D												
SAMPLE#	Мо	Cu	Pb	Zn		Ni		Mn	Fe		U	Au	Th	Sr	Cd	Sb	Bi	V		P		Cr	Mg	Ba	Ti	_	ΑL	Na	K	W
	ppm	ppm	ppm	bbus	ppm	ppm	ppm	ppm	- 7 -	ppm	bbw	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	76	ppm	ppm	- %	ppm		ррп	%_	%	- 76	ppm
L1+00S 300E L1+00S 350E	2	99 89	7 8	114 122	.3 .3	52 53		831 : 911 :		19 16	<5 <5	<2 <2	3 3	37 43	.6 1.4	4 5	<2 <2		.68 .75		14 14	51 53	.77 .76	412 585	.16 .16			.04 .05	.56 .62	1 <1
L1+00S 400E	2	106	8	214	.2	52	23	903	4.24	20	<5	<2	2	54	2.7	<2	<2	66	.85	.151	15		.83	560	.15	7 1	.91		.70	<1
L1+00S 450E L1+00S 500E	2	96 299	7		.5	56		715		21	<5 <5	<2 <2	4	110	.8	<2	<2		2.37		16		1.08		.16	13 2			.88	<1
F1+002 200E	4	299	20	226	1.4	104	47	2750	7.33	229	<>>	₹2	4	28	1.0	<2	<2	97	.54	. 110	39	12	1.23	049	. 14	6 3	.01	.03 ′	1.00	<1
L1+00S 550E		230		177		77		1362			<5	<2	3	28	.3	<2	<2	91			28		1.22		. 15			.02	.87	<1
L1+00S 600E		168		141	.7	65		1081		98	<5	<2	4	28	.5	<2	<2		.35		26		1.22		.18			.02		<1
L1+00S 650E L1+00S 700E		140 164	17 16	204 146	.5	67 97		1864 ! 1908 (73 129	<5 <5	<2 <2	3 3	34 45	.6 4.2	2 <2	<2 <2	69 86	.40 1.30		22 30		.99 1.38		.15			.03	.72	<1 <1
L1+003 750E		182	14	166		100		2172			<5	<2	5	40	.7	<2	<2		.60		35		1.29		.18			.02		<1
	_																													
L1+00S 800E		240 197	29 23	191 152	.8 .6	96 65		4857			<5 <5	<2 <2	6 5	45 45	.3 <.2	2 <2	<2 <2	71 58			38 33		.77 .76		.11	<2 1		.03		<1 <1
L1+00S 850E L1+00S 900E		205		114	1.0	60		3598 † 1381 †			<5	<2	6	45	<.2	4	<2 <2		.61 .80		26		.40		.10			.02	.72 .45	<1
L1+00S 950E		346	12	183		107		3117			<5	<2	2	89	.8	<2		150			33			1169					.95	
L1+00S 1000E	2	156	22	143	.7	80	29	1968 !	5.62	82	<5	<2	4	35	.4	<2	<2	89	.79	.075	31	81	.84	461	.08	6 2	.00	.01	.75	<1
RE L1+00S 1000E	,	161	18	143	.7	77	28	1975 !	5 60	80	<5	<2	4	35	.7	<2	<2	80	.78	075	31	79	23	466	.08	6.2	.00	.01	78	<1
L2+00S 300E	1	103		170	.6	47		1125		21	< 5	<2	2		1.5	<2 <2	<2		1.04		13	49		576	.14	10 1			.66	<1
L2+00\$ 350E	_	103		149	.3	53		1260		15	<5	<2	2		1.3	<2	<2	61	.73	.073	14		.79		.16			.05		<1
L2+00S 400E L2+00S 450E	2	53 41	7 4	168 157	.1	33 29		900 3 502 3		7 6	<5 <5	<2 <2	2	42 40	1.1	<2 <2	<2 <2		.58 .54		12 10	45 43	.67		.14			.04 .05	.69 .62	<1
127005 4505	•	41	4	157	٠.	29	10	302 /	2.19	0	45	\ 2		40	1.1	~2	٧2	40	.94	.039	10	43	ره.	032	. 10	ויכ	.93	.05	.02	<1
L2+00S 500E `	1	72	28	84	.3	36		245		4	5	<2	<2		1.3	<2			1.05		10		.65		.14			.04		<1
L2+00\$ 550E	1	65	11	227	.4	46		638		12	<5 -E	<2	2		1.5	<2	<2		1.52		12		1.31		.13	10 2		.03		1
L2+00S 600E L2+00S 650E		183 185	15	154 154	.6 .3	84 96		2352 (2141 (95 116	<5 <5	<2 <2	5 4	42 47	1.3	<2 <2	<2 <2		.67 .97		33 33		1.29 1.38		.17	3 2		.03 1		<1 <1
L2+00\$ 700E		156	19	291	.7	70		4470		61	<5	<2	<2	107		2	<2		2.85		24		1.03		.09	17 1		.03		<1
					_	4-	_				_	_		4.0		_	_		40		40					_				
L2+00S 750E L2+00S 800E	1	55 113	10 17	57 108	.2 .5	15 27		811 7 1849 7		28 34	<5 <5	<2 <2	2 <2	10 71	.2 1.0	<2 3	<2 <2		.12 2.32		12 12		.18 .48		.03	16		.02	.23	<1 <1
L2+00S 850E		220	35	189	1.0	53		2561		96	<5	<2	4		1.1	8	<2		.77		30		.74		.11				.49	
L2+00S 900E		233		251	1.3	66		1791		157	<5	<2	4	66	2.5	2			.61				1.47		.22				.85	
L2+00\$ 950E	2	206	16	154	.6	58	22	1465	5.70	92	<5	<2	3	61	1.2	<2	<2	100	.62	.057	27	53	1.34	651	.21	3 3	.00	.04 1	1.06	<1
L2+00S 1000E	1	232	24	266	1.5	68	47	2910. 6	5.44	955	<5	<2	2	115	2.7	<2	<2	127	1.09	.064	15	43	1.92	655	.21	2.3	,70	.05	.70	<1
L3+00S 800E	-/1	178	13	333	1.0	80	35	3332	5.13	630	<5	<2	3	113	2.4	<2	<2	66	1.99	.240	34	52	1.12	1148	.11	11 2	.54	.03	.78	<1
L3+00S 850E		365		225	2.0	88				177*		<2	4		1.6	<2	<2		1.70		70			577		13 2		.02 1		<1
L3+00S 900E L3+00S 950E		244 281	22 54		1.0	85 120		3081 : 2112 <i>(</i>			<5 <5	<2 <2	4		3.0 1.5	<2 6	<2 <2	112	.64 .68		47 56		1.66	792 745	.17	<23		.03 1	1.13	<1 <1
F34009 A30E	4	201	74	101	1.3	120	5 0	£116 (J.J4	J41 "	43	~2	4	24	1.3	0	72	70	.00	.000	90	91	1.47	143	. 13	4 3	. 12	.03	1.07	\1
STANDARD C	17	64	38	122	6.9	69	29	1038 3	3.91	42	15	7	34	55	17.9	13	21	56	.49	.077	38	57	.89	197	.09	33 1	.89	.09	.17	11

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

- SAMPLE TYPE: SOIL Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: DEC 16 1993 DATE REPORT MAILED:

A.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Page 2

44

ACHE ANALYTICAL																													ACH	E AMALYTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm		Ni ppm	Co		Fe %	As ppm	D D	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	ppm B	Al %	Na %	K %	ppm P
L3+00S 1000E L4+00S 800E L4+00S 850E L4+00S 900E L4+00S 950E	3 3 3	171 157 153 252 133	20 11 10 14 14	164 192 192 314 175	.2 .4 .4 .6		36 36 38	2409 1617 1536 5774 1706	5.90 6.19 5.34	146 138 118 93 195	<5 <5 <5 <5 <5	\$\$ \$\$ \$\$	2 5 5 3 4	57 65 55 78 53	.6 1.3 1.4 2.5	4 4 4 <2 5	<2 <2 <2 <2 <2	97 99	1.00	.120 .124	28 30 30 37 27	90 94 50	1.11 1.33 1.48 .89 1.41	791 734 1098	.15 .12 .12 .11	6 2 4 2 4 2	2.44	.02 .01 .01 .02	.94 .89 .64	1 <1 <1 <1 <1
L4+00S 1000E L5+00S 800E L5+00S 850E L5+00S 900E L5+00S 950E		156 145 154 170 155	15 17 18 19	223 274 241 233 259	.2 .2 .5	123 107 113 118 116	37 39 45	1373 (2401 (1963 (2308 (2635 (6.42 6.15 6.81	132 85 84 132 94	<5 <5 <5 <5	\$ \$ \$ \$ \$ \$ \$	3 <2 <2 <2 <2	44 59 51 62 63	.8 1.2 1.3 1.1	3 4 4 4 5	<2 <2 <2 <2 <2		.95	.112	30 28 29 30 29	90 91 85	1.83 1.49 1.55 1.65 1.67	639 858 762 751 891	.16 .12 .12 .12	6 2 6 2	.58 .42 .57	.02 .01 .01 .01	.98 .90 1.00	<1 <1 <1 <1 <1
L5+00S 1000E L6+00S 800E L6+00S 850E L6+00S 900E L6+00S 950E	7	148 135 141 168 172	12 14 14 32 13	328 401 422 383 374	.3 .3	155 136 143 159 165	34 36 37	2037 (1655 (1798) 1642 (1682 (6.03 5.84 6.18	67 61 68 78 87	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 <2 2 <2	85 79 89 87 86	1.8 2.1 2.2 1.8 1.8	3 5 5 3 4	<2 2	136 148	1.02 1.23	.133 .167 .161	25 24 25	127 121 127	1.84 1.59 1.60 1.62 1.74	1354 1256 1246	.11 .10 .09 .09	4 2 8 2 7 2	2.63 2.58 2.42 2.64 2.68	.01 .02 .01 .02	.92 .98 1.01	<1 <1 <1 <1 <1
L6+00S 1000E L7+00S 800E L7+00S 850E L7+00S 900E L7+00S 950E	5	196 120 175 187 184	12	372 385 394 376 356		169 125 165 160 168	28 40 39	1575 (1599) 1659 (1810 (1730)	5.18 6.01 6.22	87 51 55 80 81	5 5 5 5 5 5	<2 <2 <2 <2 <2	3 2 2 3 3	93 78 95 93 80	2.2 2.4 2.3 2.2 2.2	7 3 5 5 3	<2 <2 <2 <2 <2	138 156 155	1.18 1.14 1.55 1.21 1.12	.107 .157 .162	21 25 27	126 135 135	1.87 1.65 1.83 1.74 2.18	1363 1385 1486	.11 .11 .10 .11	6 2 5 2 7 2		.02 .02 .02 .02	.87 1.05 1.10	1 <1 <1 <1 <1
L7+00S 1000E L8+00S 350W L8+00S 300W L8+00S 250W RE L8+00S 250W	10 1 1 1	203 158 29 38 37	10 4 7 10 7	325 151 107 78 74	.6 .1 .1 .1	174 53 36 37 37	21 12 12	1665 6 807 6 608 3 702 6 676 3	4.41 2.75 2.76	92 13 5 10 7	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 <2 3 <2 <2	77 39 32 47 45	1.9 .8 .7 .8	3 2 2 2 2 2	<2 <2 <2 <2 <2	171 82 50 55 53	.47 .84	.165 .049 .068 .048	31 9 8 8 8		1.88 1.15 .41 .48 .42		.10 .19 .14 .13	5 2 5 1 4 1	2.88 2.69 1.62 1.53 1.47	.01 .02 .03 .02	.96 .51	<1 <1 <1 <1 <1
L8+00S 200W L8+00S 150W L8+00S 100W L8+00S 50W L8+00S 00	2 3 1 1 5	68 85 60 54 99	2 6 4 8 5	106 98 77 104 95	.1 <.1 .1 .1	51 54 38 46 141	22 13 19	509 3 991 4 298 3 681 3 933 3	4.53 3.51 3.53	13 8 32 17 14	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 <2 <2 <2 <2	31 51 38 56 41	.7 .8 .4 .8	<2 2 2 4 <2	<2 <2 <2 <2 <2	54 62 58 55 75		.043	8 11 6 6 5	31 31 27 30 64	.37 .35 .40 .40	246 745 195 248 237	.15 .11 .11 .13	3 2 3 2 3 2		.03 .02 .02 .02	.27 .17 .24 .26	<1 <1 <1 <1 1
L8+00S 50E L8+00S 100E L8+00S 150E L8+00S 200E L8+00S 250E	1 1 1 2 1	85 77 45 57 41	9 12 5 10 7	203 144 134 111 85	<.1 .2 .1 <.1	47 40 53 44 42	18 20 17	3499 4 1844 3 795 3 2454 3 1290 2	3.82 3.60 3.60	37 22 9 20 17	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2	<2 <3 <3 <4	68 70 42 43 50	2.6 .9 .6 .8	<2 <2 2 2 2	2 <2 <2 <2 <2	54 52 62 62 46	1.10 .81 .50 .44 .70	.072 .032 .056	6 7 7 10 8	30 32 70 42 33	.41 .42 .86 .73	423 832 368 645 536	.12 .13 .18 .13	5 2 4 2	.55 .71 .63	.03 .04	.17 .24 .62 .43	<1 1 <1 <1 <1
STANDARD C	18	59	38	124	6.8	65	32	1067 3	3.96	41	15	8	37	57	16.5	14	20	56	.51	.078	40	57	.87	198	.08	34 1	.89	.06	.14	11

Page 3

ACHE ANALYTICAL																													ACRI	E ANALYTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	D D	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb	8i ppm	V V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	ppm B	Al %	Na %	K %	W ppm
L8+00S 300E L8+00S 350E L8+00S 400E RE L8+00S 400E L8+00S 450E	1 1 2 2 2	72 72 90 91 102	10 7 9 7 8	80 71 104 104 116	<.1 <.1 <.1 <.1	46 24 51 54 46	13 28 28	1285 4 1237 4 1595 4 1610 4 1625 !	4.59 4.47 4.54	26 88 22 26 37	<5 <5 <5 <5	<2 <2 <2 <2	3 2 3 3 3	51 82 60 60	.4 .3 .3 .8	3 3 2 3 3	4 5 2 2 <2	71 72 63 64 68	.70 .51 .51	.071 .060 .068 .068 .109	12 9 14 14 15	51 35 46 46 47	.95 .91 .84 .85	987 779 635 651 778	.18 .17 .16 .16	2 2 <2 2 2 2 5 2 7 2	.43 .56 .58	.02 .03 .02 .02	.83 .71 .71	2 2 1 1 2
L8+00S 500E L8+00S 550E L8+00S 600E L8+00S 650E L8+00S 700E	2 2 3 3 3	103 114 77 74 92	10 2 11 6 9	94 136 114 74 90	.1 <.1 <.1 .1	35 35 29 23 34	22 15 11	1302 ! 1962 ! 1283 4 1027 4 1264 :	5.88 4.31 4.26	22 58 40 22 16	<5 <5 <5 <5	<2 <3 <3 <5 <5 <5	2 2 3 2 3	64 76 62 49 51	.6 1.3 .7 .3	2 <2 2 2 2	2 4 4 3 2	78 99 60 60	.56 .35 .33	.074 .053 .049 .031 .057	13 13 14 10 20		1.04 1.10 .68 .72 .93	565 399 426 261 321	.17 .16 .13 .13	2 2 <2 2 <2 2 4 1 3 2	.92 .15 .87	.03 .02 .02 .03		1 1 1 1
L8+00S 750E L8+00S 800E L8+00S 850E L8+00S 900E L8+00S 950E	2 4 5 4 5	170 93 121 144 163	6 11 8 14 12	370 324 314 363 356	.4	94 101 118 132 137	22 27 28	3725 4 1400 4 1499 5 1631 5 1634 5	4.82 5.40 5.34	25 44 65 66 65	<5 <5 <5 <5	<2 <3 <5 <5 <5 <5	2 2 3 2 2	97 69 71 84 85	3.9 2.1 1.9 2.7 2.5	2 4 4 5 6	<2 <2 <2 <2 <3	120 124 134	1.42 .97 1.07 1.10 1.14	.114 .123 .130	16 17 22 20 21	102 107 106	.72 1.30 1.41 1.29 1.32	1171 1194 1264	.10 .10 .11 .09	5 2 7 2 7 2	.52 .55	.02 .01 .01 .01	.42 .80 .95 .83 .92	1 <1 <1 <1 <1
L8+00S 1000E L9+00S 350W L9+00S 300W L9+00S 250W L9+00S 200W	6 1 1 1 2	192 77 55 66 65	14 7 13 7 6	341 124 98 134 152	.6 .1 .1 .1 <.1	155 45 39 40 46	15 13 15	1533 5 785 3 736 3 989 3 534 3	3.91 3.15 3.67	81 15 17 13 163	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 2 2 2 2	85 50 32 36 31	2.3 .3 .3 1.3	5 4 2 3 2	<2 <2 5 2 3	149 72 56 58 58	.58 .40 .42	.147 .072 .055 .050 .062	22 13 11 12 9	120 50 39 39 27	1.44 .72 .60 .67	1300 541 549 498 214	.10 .15 .15 .15	6 2 3 2 4 1 5 2 <2 2	.09 .85 .42	.01 .02 .02 .02	.61 .50 .50	<1 2 1 1
L9+00S 150W L9+00S 100W L9+00S 50W L9+00S 00 L9+00S 50E	5 1 1 2 2	99 33 39 84 52	8 8 13 5 13	77 104 90 128 75	.2 <.1 <.1 .1 <.1	40 53 32 74 45	14 12 35	522 4 352 2 345 2 1472 4 499 3	2.82 2.88 4.27	15 17 45 15 18	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2	2 2 <2 <2 3	48 27 34 67 25	.8 .4 .3 .3	2 3 2 2 4	<2 <2 3 <2 <2	61 47 44 54 66	.38 .36 .84	.048 .035 .039 .116 .024	10 6 5 9	30 25 19 41 42	.42 .44 .41 .67	668 246 181 331 322	.10 .13 .13 .17	3 2 2 1 3 2 2 2 2 2	.85 .29 .37	.01 .02 .03 .03		1 1 1 2 1
L9+00S 100E L9+00S 150E L9+00S 200E L9+00S 250E L9+00S 300E	1 1 1 2 3	59 37 43 98 143	8 9 6 10 11	111 193 106 179 109	<.1 <.1 .1 .1	63 56 34 52 73	22 10 26	885 3 2540 2 862 3 2715 4 2962 6	2.82 3.38 4.64	12 20 13 26 24	<5 <5 <5 <5	<2 <2 <2 <2	<2 <2 <2 <2 <2	45 56 41 71 47	.2 2.1 .5 .8	3 <2 2 <2 <2	6 2 <2 4 3	46 40 53 63 86	.75 .40 .82	.057 .059 .034 .103 .100	4 6 9 14 18	22 44 39 41 55	.62	277 574 484 902 2207	.14 .12 .15 .15	5 1 2 2 4 2 3 2 3 2	.48 .61	.03	.17 .28 .44 .69	1 1 <1 <1 <1
L9+00S 350E L9+00S 400E L9+00S 450E L9+00S 500E L9+00S 550E	2 3 3 3 2	108 118 109 105 78	9 4 5 6 9	200 124 146 145 178	.1 .1 .1	80 92 70 32 52	31 27 11	1959 5 2141 5 2505 4 1576 4 2891 4	.29 .43 67	33 35 31 48 78	<5 <5 <5 <5	<2 <2 <2 <2 <2	3 3 3 3 3	86 70 87 66 77	1.8 .5 .8 1.2 1.8	<2 <2 <2 <2 <2	5 2 4 3 2	77 68 63 65 66	.73 .68 .52	.063 .081 .069 .064 .078	20 22 23 17 14	77 49 32	1.08 1.24 1.02 .87 1.10	718 724 703 392 543	.21 .17 .14 .13 .14	<2 3 <2 2 5 2 <2 2 5 2	.99 .92 .53	.02 .01 .02 .02	1.03 .90 .82	2 <1 <1 1
STANDARD C	17	62	43	128	6.7	65	30	1074 3	3.94	41	19	7	37	54	18.0	14	23	54	.50	.'077	38	50	.90	194	.09	33 1	.88	.06	.14	11

Page 4

稅

																													HE ARALTIICA	
SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B A			ppm W	
L9+00S 600E L9+00S 650E L9+00S 700E L9+00S 750E L9+00S 800E	5 2 6 2 2	107 85 432 217 63	3 7 <2 13 <2	117 278 487 507 222	.3 .1 .3 .4	41 54 171 92 52	10 77 42	1375 7492 4295	5.61 4.71 7.20 4.89 3.70	141 18 25 29 8	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2	4 3 2 2 <2	81 41 112 112 73	.6 2.7 2.7 2.9	2 <2 <2 <2 <3	<2 <2 <2 <2 <2	44	.43 .51 1.50 1.47	.364 .259	17 19 34 16 9	44 41 49 40 43	.81 .71	403 435 1276 648 525	.15 .12 .10 .10	3 3.36 8 2.97 3 2.60 7 2.15 4 1.96	.03	.80 .48 .46	<1 <1	
L9+00S 850E L9+00S 900E L9+00S 950E L9+00S 1000E L10+00S 350W	3 3 6 5 3	69 86 161 171 183	5 <2 7 8 3	174 173 388 360 119	.1 .7 .5	37 32 128 115 39	11 28 26	2496 1617 1605	4.15 4.42 5.36 5.29 7.31	10 12 63 50 6	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 2 2 2 2	83 89 89 87 40	1.2 1.3 3.1 2.4 .6	<2 2 3 <2 <2	<2 <2 <2 <2 <2		.50 .50 1.08 1.12 .55	.070 .141 .121	9 11 20 20 12		.85 .88 1.28 1.31 .65	532 1408	.11 .11 .09 .10 .17	5 1.99 4 1.86 7 2.72 8 2.70 <2 2.16	.04	.80 .96 1.11	<1 <1 <1 <1 <1	
L10+00S 300W L10+00S 250W L10+00S 200W L10+00S 150W L10+00S 100W	1 16 1 3 1	74 166 42 86 33	<2 3 <2 7 2	42 90 34 89 114	<.1 .6 .2 .1	19 30 33 47 48	5 8	192 634 577	3.06 11.01 2.48 4.19 2.93	6 7 4 <2 5	<5 <5 <5 <5	<2 <2 <2 <2	<2 3 2 2 <2	17 31 34 66 40	<.2 .2 <.2 .4 .3	2 <2 <2 <2 <2	<2	66 128 30 65 40	.31 .11 .60 .45	.127 .021 .048	6 12 6 9 4	29 54 20 39 20	.53 .47 .32 .71 .34	221 465 304 301 200	.10 .12 .09 .17 .13	3 1.55 <2 2.00 3 1.44 2 2.99 3 2.15	.02	.18 .19	1 <1 <1 <1	
L10+00S 50W L10+00S 00 RE L10+00S 00 L10+00S 50E L10+00S 100E	2 4 4 2 2	46 139 145 78 67	5 <2 6 <2 3	68 84 88 210 143	.1 .3 .1 .2	30 45 46 75 53	24 24 26	1241	5.48 5.59 3.89	9 14 11 9 14	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 2 2 2 2	35 46 46 44 45	<.2 <.2 <.2 .6 .4	<2 3 <2 <2 <2 <2	<2 <2 <2 <2 <2	61 64 64 51 65	.28 .43 .44 .48	.098 .101 .104	5 7 6 8 10	38 42 43 40 59	.62 .60 .62 .61	182 287 298 648 598	.18 .17 .18 .16	2 2.67 3 2.74 <2 2.83 4 2.55 3 2.79	.03 .03	.20 .22 .30	<1 1 1 <1 <1	
L10+00S 150E L10+00S 200E L10+00S 250E L10+00S 300E L10+00S 350E	1 3 1 2 2	59 170 49 50 71	6 11 5 7 6	142 149 136 107 323	.2 .5 .2 .3	54 68 37 48 61	30 1 11 12	1856	5.88 3.06 3.11	9 19 7 8 10	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 2 2	53 43 50 33 80	.5 .9 .8 .4 1.7	<2 <2 <2 <2 <2	<2 <2 <3 <4		.50 .61 .68 .35	.146 .063 .052	10 12 10 9 11	51 61 33 32 32	.65 .49 .49		.17 .13 .13 .14	3 3.00 3 2.10 4 2.04 4 2.18 5 1.91	.03 .03	.38 .44 .38	<1 1 <1 <1 <1	
L10+00S 400E L10+00S 450E L10+00S 500E L10+00S 550E L10+00S 600E		109 299 142 132 118	5 6 2 3 3	100 233 105 636 110	.2 .9 .4 .5	52 91 60 109 59	36 20 23	73 57	5.06 4.86	5 15 17 7 12	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2	3 <2 4 4	57 135 93 76 96	.5 2.4 .6 5.5	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	71 44 66 59 72	.57 2.79 .49 .97	.154 .058 .109	16 18 21 25 22	34 66 46	1.22 .69 1.09 .80 1.25		.19 .08 .15 .12	2 3.05 8 1.55 3 2.67 10 2.39 4 3.22	.03 .03	.77	<1 <1 <1 <1	
L10+00S 650E L10+00S 700E L10+00S 750E L10+00S 800E L10+00S 850E	3 3 3	130 123 176 200 130	14 4 7	110 311 189 334 167	.5 .3 .3 .2	57 53 54 124 39	19 : 22 : 67 :	1749 3292 2180 3789 2889	4.57 6.47 5.54	9 14 15 11 12	<5 <5 <5 <5	<2 <2 <2 <2 <2	4 3 3 2 3	90 109 117 123 108	.5 1.9 .8 2.3 1.1	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	50 56 38	.54 1.09 .87 1.28 1.20	. 172 . 138 . 394	21 16 11 11	68 50 30 33 31	1.24 .80 .93 .71 .80	718 325	.16 .11 .11 .07	3 3.21 7 1.97 3 2.32 5 2.18 5 1.72	.03 .07 .04	.71	<1 <1 <1 <1 <1	
STANDARD C	17	61	37	123	6.7	69	28	1039	3.91	39	18	7	37	54	17.2	13	18	54	.49	.076	36	56	.88	193	.09	33 1.89	.09	.16	11	

Page 5

ACKE ANALYTICAL

ACHE ANALYTICAL																										 			CHE ANALYTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	-	Ni ppm			Fe %		U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B At			K ppm
L10+00S 900E L10+00S 950E L10+00S 1000E L11+00S 200W L11+00S 150W	4 4 5 5 10	105 101 121 36 111	7 10 10 10	108 117 219 68 82	.4 .5 .7 .2	27 33 65 22 59	10 17 9	1705 1818 1285 383 393	4.05 4.92 3.32	12 25 32 3 5	<5 <5 <5 <5 <5	\$\$ \$\$ \$\$	3 3 3 2 2	110 97 82 33 45	.9 .6 1.6 .2	<2 3 <2 <2 <2	<2 <2 <2 <2 <2	48 49 93 63 61	.78 .61 .25	.085 .068 .085 .033 .053	10 12 16 5 6	36 38 79 22 31	.77 1.06 .42	372 464 979 287 536	.10 .10 .10 .10	7 1.83 7 1.83 5 2.16 4 1.59 3 1.61	.03	3 .81 3 .91 2 .10	1 <1 1 1 0 <1
L11+00S 100W L11+00S 50W L11+00S 00 L11+00S 50E RE L11+00S 50E	2 3 3 2 2	60 103 162 105 102	8 11 11 11	38 101 158 187 185	.2 .4 .2 .4	24 53 56 70 68	21 27 16	253 1137 2186 1470 1450	5.58 5.30 4.14	6 <2 5 5 4	<5 <5 <5 <5	<2 <2 <2 <2 <2	3 2 <2 2 2	33 84 126 69 68	.2 .2 1.3 .5	<>> <> <> <> <> <> <> <>	2 2 <2 <2 <2	48 79 45 45 44	.48 1.32 .62		8 8 9 10 9	32 42 31 32 31	.52 .71 .47 .40	156 266 537 776 769	.16 .21 .11 .12 .12	3 1.60 4 3.21 5 1.75 5 2.09 5 2.09	.03	3 .30 3 .31 4 .25	0 1 1 5 5 3
L11+00S 100E L11+00S 150E L11+00S 200E L11+00S 250E L11+00S 300E	2 2 3 2 2	70 53 158 73 72	12 8 9 8 12	102 69 101 101 91	.4 .4 .3 .3	53 34 44 37 38	16 23 14	936 1027 1389 1461 1035	3.48 4.37 4.05	8 12 41 5 11	<5 <5 <5 <5	<2 <2 <2 <2	3 2 2 3 3	43 48 26 68 52	.2 .2 .2 .7	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	70 59 62 61 61	.47 .20 .51	.037 .052 .131 .058 .055	11 10 11 12 13	51 46 48 51 44	.72 .73 .62 .71	502 498 415 783 548	.19 .18 .14 .18 .17	3 2.97 4 2.14 3 2.85 4 2.68 3 2.44	.03	3 .71 3 .46 3 .72	1 1 5 <1 2 <1
L11+00S 350E L11+00S 400E L11+00S 450E L11+00S 500E L11+00S 550E	2 4 5 4 2	62 170 126 137 96	6 2 4 5 11	94 96 78 87 169	.3 .6 .4 .5	30 56 51 67 50	24 19 23	1185 1188 1321 1545 3716	4.25 5.67 5.66	8 11 5 4 6	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2	2 3 5 5 <2	57 124 87 106 64	.2 .4 <.2 .3 1.6	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	55 72 87 81 40	.39 .31	.069 .087	10 20 28 24 13	95 85	.68 1.05 1.55 1.57 .67	857 711 530 571 702	.15 .15 .19 .19	5 2.37 2 2.57 2 3.06 4 3.21 5 1.34	.0. .0.	2 .56 3 1.23 2 1.33	6 <1 3 <1 3 <1
L11+00S 600E L11+00S 650E L11+00S 700E L11+00S 750E L11+00S 800E	19 5 5	145 214 343 207 183	4 3 10 5 13	149 259 382 321 284	.2 .5 .9 .7	41 38 142 109 70	16 56 27	2145 1149 4278 3545 3313	8.09 6.22 5.66	9 <2 16 22 29	<5 <5 9 <5 <5	<2 <2 <3 <3 <4	2 4 7 4 4	137 54 56 74 81	.6 .6 3.1 2.4 2.9	<2 2 5 <2 <2	<2 <2 <2 <2	71	.84 .36 .77 1.18 1.10	.094 .205	11 14 54 39 39		.93 1.30 .66 .63 .89	345 299 606 803 663	.11 .17 .07 .07	5 2.15 7 2.43 10 2.73 12 1.95 9 2.20	.03	6 .84 2 .34 3 .37	4 9 4 <1 7 <1
L11+00S 850E L11+00S 900E L11+00S 950E L11+00S 1000E L12+00S 00	3 2	133 159 206 103 88	7 9 4 8 4		.5 .7 .6 .4	73 49 47 38 31	22 28 11	2496 2904 3212 1259 1204	3.75 4.14 4.51	11 31 21 28 10	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<	3 2 2 3 2	73 56 67 102 62	2.0 1.4 2.5 .8	<2 <2 <2 <2	<2 <2 <2 <2 <2	51 52	1.20 1.12 1.08 .61 .60	.102 .209	23 16 14 13 9	34 28 25 42 42	.58 .58 .63 .78	601 775 668 527 971	.09 .06 .06 .09	16 2.20 5 1.29 6 1.47 8 1.90 5 2.02	.04	2 .46 4 .53 4 .77	6 <1 3 2 7 <1
L12+00S 50E L12+00S 100E L12+00S 150E L12+00S 200E L12+00S 250E	2 2 2 2 2	86 94 88 99 96	10 5 3 7 4	75 80 89 112 80	.2 .3 .3 .4	30 36 43 51 41	17 19 18	1277 1067 1052 1404 1051	4.49 4.38 4.69	5 10 6 7 8	<5 <5 <5 <5 <5	<2 <2 <2 <2	2 3 3 2 3	69 67 57 69	.4 .6 .5 .5	<2 <2 <2 <2	4 <2 <2 <2 <2	69 74 75 73 74	.50 .54	.112	11 13 13 11 13	44 48 58 70 64		504 542 705	.17 .21 .22 .19	4 2.46 3 2.88 3 3.07 5 2.82 5 2.74	.03	3 .74 3 .90 3 .93	4 1 0 <1 3 <1
STANDARD C	18	63	38	126	6.8	67	31	1021	3.94	42	22	8	35	56	19.1	15	21	59	.51	.079	39	59	.90	197	.09	34 1.89	.09) .1 (6 10

Page 6

ACHE ANALYTICAL																														E AMALYTICAL
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Ų	Au	Th	Sr	Cd	Sb	Вi	٧	Ca	Р	La	Сr	Mg	Ba	Τi	В	Αl	Na	K	W
	ppm	ppm	ppm	ppm	ppm	ррп	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ррп	ррп	ppm	%	%	ppm	ppm	ž	ppm	%	ppm	%	%	%	ppm
		••	••															.,		·										
L12+00S 300E	2	63	4	102	.1	41	16	1273	3.70	24	<5	<2	2	57	<.2	<2	<2	54	.44	.057	11	41	.67	590	.16	2 2.	17	.02	.45	<1
L12+00S 350E	2	52	9	75	.1	42		648		14	<5	<2	2	49	<.2	<2	<2	52	.34		12	38	.67	492	.16	3 2.		.02	.46	<1
L12+00S 400E	2	121	ź	80	<.1	49		2200		14	< 5	<2	<2	107	.5	<2	<2	40		.041	9	33	.75	866	.10	<2 1.		.01	.55	<1
L12+00S 450E	2	144	8	56	.3	20		782		10	<5	<2	<2	173	<.2	<2	<2	74	.71		5		1.12	212	.15	<2 3.		.16	.49	<1
	4	151	4	91	.2	60				11	<5	<2	2	83	.5	<2	<2								-			-		
L12+00S 500E	4	101	4	91	.2	ΘU	20	2423	2.22	11	<>>	<2	2	03	. >	~2	< 2	42	./0	.100	16	35	.86	287	.10	5 1.	12	.02	.55	<1
147.000 FF0F	_		•	77				/00		_			-	.,										704		-0.4	04	00		
L12+00S 550E	5	73	8		.2	20		400			<5	<2	3	44	<.2	<2	<2	66		.046	14	37	.81	326	-11	<2 1.			.59	<1
L12+00S 600E	1	106	5	108	٠1	23		891		145	<5	<2	<2	45	.4	<2	4	67		.057	. 8		1.06	671	.13	<2 2.		.02	.77	<1
L12+00S 650E	4	149	3	105	.2	40		1041		49	<5	<2	3	60	<.2	<2	2	70		.066	26	35	.98	278	.11	5 2.		.03	.84	<1
L12+00S 700E	4	104	7		٠2	43		1460		18	<5	<2	4	54	.8	<2	<2	68		.040	20	37	.83	543	.11	3 2.		.02	.65	<1
L12+00S 750E	6	206	11	184	.5	87	28	2631	5.29	24	<5	<2	5	50	.8	<2	<2	88	.49	.080	38	50	.92	573	.10	4 2.	82	.02	.60	<1
L12+00S 800E	3	287	7	165	.4	70	32	3139	5.52	19	<5	<2	3	37	.8	<2	<2	76	.71	. 122	25	37	.90	756	.10	<2 2.	57	.02	.50	<1
L12+00S 850E	2	131	4	109	.3	42	10	1699	4.94	18	<5	<2	3	44	<.2	<2	<2	81	.48	.045	16	41	.91	477	.13	4 2.	85	.03	.57	<1
L12+00S 900E	2	157	6	168	.4	34	19	2817	3.65	17	<5	<2	<2	88	2.6	<2	<2	45	1.44		18	25	.61	678	.07	4 1.	45	.01	.35	<1
L12+00S 950E	2	264	5	310	.4	92		6334		19	<5	<2	2	50	2.8	<2	2		.92		19	38	.96		.11	6 2.		.01	.75	<1
L12+00S 1000E	2	182	4	66	.3	15		1152		10	< 5	<2	<2	23	.5	<2	<2	48		. 138	11	25	.66	417	.06	4 1.		.02	.54	i
E12:003 1000E	_	102	7	00		.,	+ 1	1176	+.50	10	٠,	``_	~_	2.3		~_	٠.	70	.47	. 130		رے	.00	411	.00	4 1.	20	.02		•
L12+50S 400E	2	50	7	105	. 1	33	17	1282	z 50	20	<5	<2	<2	54	.7	<2	<2	45	.46	170	9	31	.58	531	.12	2 2.	na	.03	.50	<1
													3	83									.73							-
L12+50S 450E	2	62	13	78	<.1	33		1093		19	<5	<2	_		<.2	2	<2	54	-38		13	37		503	.15	<2 2.		.03	.56	<1
RE L12+50S 450E	2	60	10	76	<.1	31		1062		16	<5	<2	3	82	.8	<2	2	53		.047	13	36	.72	507	.15	<2 2.		.03	.55	<1
L12+50S 500E	2	98	8	61	.1	30	13	878		24	<5	<2	3	90	.4	<2	3	65	.30		15	40	.86	474	.16	<2 2.		.03	.78	<1
L12+50S 550E	3	86	8	65	.1	26	12	961	4.88	20	<5	<2	3	79	<.2	<2	<2	60	.33	.051	15	37	.80	505	.14	<2 2.	07	.03	.81	<1
L12+50S 600E	4	90	3	72	٠1	24	9	951	4.76	20	<5	<2	``3	63	.6	2	2	61		.044	14	32	.80	520	. 13	2 1.		.02	.75	<1
L12+50S 650E	3	103	6	108	.1	35	14	1449	4.97	58	<5	<2	3	65	1.0	<2	<2	68	.36	.071	18	35	.79	592	. 13	4 2.			.75	<1
L12+50S 700E	3	112	8	148	.2	49	16	2245	5.25	33	<5	<2	3	70	.7	<2	<2	70	.52	.098	21	38	.83	678	.12	8 2.	51	.02	.83	<1
L12+50S 750E	3	104	11	118	.2	36	11	1855	4.60	19	<5	<2	3	52	.8	<2	3	70	.44	.045	19	39	.86	690	.13	<2 2.	42	.02	.53	<1
L12+50S 800E	2	133	12	117	.2	56	16	2314	4.49	19	<5	<2	3	57	.9	<2	<2	65	.59		23	36	.78	644	.11	3 2.	24	.02	.58	<1
1,	_										-	_	_	-		_	_												••	,
L12+50S 850E	2	116	13	149	.2	48	14	2337	4.43	22	<5	<2	3	52	.6	<2	<2	58	.48	.053	18	33	.68	584	.11	4 2.	02	.02	.54	1
L12+50S 900E		148	11	121	.1	49		1314		23	< 5	<2	3	54	.7	<2	5	73		.059	21	40	.74		.12	3 2.			.56	<1
L12+50S 950E		170	3	104	.3	28		2085		10	<5	<2 <2	3	35	.7	<2	<2	66	.41		17	35	.96	638	.10	2 2.		.01	.64	<1
L13+00S 00		100	10	98		37		1445			<5	<2		93		<2	5	64	.81		9	49	.88	424	.19	4 2.		.02	.73	1
		134	11	108	.2 .1			1703		19 16	<5	<2 <2	2	95 95	.7	<2 <2		72	.94		-		1.02	400				.03		1
L13+00S 50E	1	134	11	100	. 1	79	32	1705	.63	16	<>>	<2	2	90	.6	<2	<2	12	.94	.081	8	02	1.02	400	.24	<2 2.	09	.03	.68	1
147,000 4005	1	100		02	4	E 7	24	17/0	, ,,	17	-E	-2	3	93	E	-22	-27	41	77	040	•	/7	0/	704	24	5 2.	71	07	E/	2
L13+00S 100E	•	100	8	92	.1	53		1368		13	<5 -	<2	2		.5	<2	<2	64	.77		9	47	.84	396	.21			.03	.54	2
L13+00S 150E	1	68	13	84	.1	42		1366		19	<5	<2	2	67	.7	<2	3	55	.70		10	39	.69	487	-17	5 2.		.02	.58	2
L13+00S 200E	₹3	99	13	79	<.1	55		1236		22	<5	<2	2	74	.5	<2	2	76	.58		10		1.05	654	.24	4 2.		.03	.89	1
L13+00S 250E	2	84	7	95	.1	38		1459		9	<5	<2	<2	70	.8	<2	<2	48		. 103	9	41	.65	593	.14	2 2.			.45	<1
L13+00S 300E	2	59	8	76	<.1	39	12	1005	3.50	19	<5	<2	2	54	.7	<2	<2	50	٠45	.078	10	37	.63	537	. 15	5 2.	03	.02	.48	<1
STANDARD C	17	64	36	129	6.7	65	30	1078	3.96	43	18	7	34	54	18.6	14	20	54	.51	.078	37	50	.91	193	.09	34 1.	88	.06	.14	11

Page 7

TH AMALYTICAL

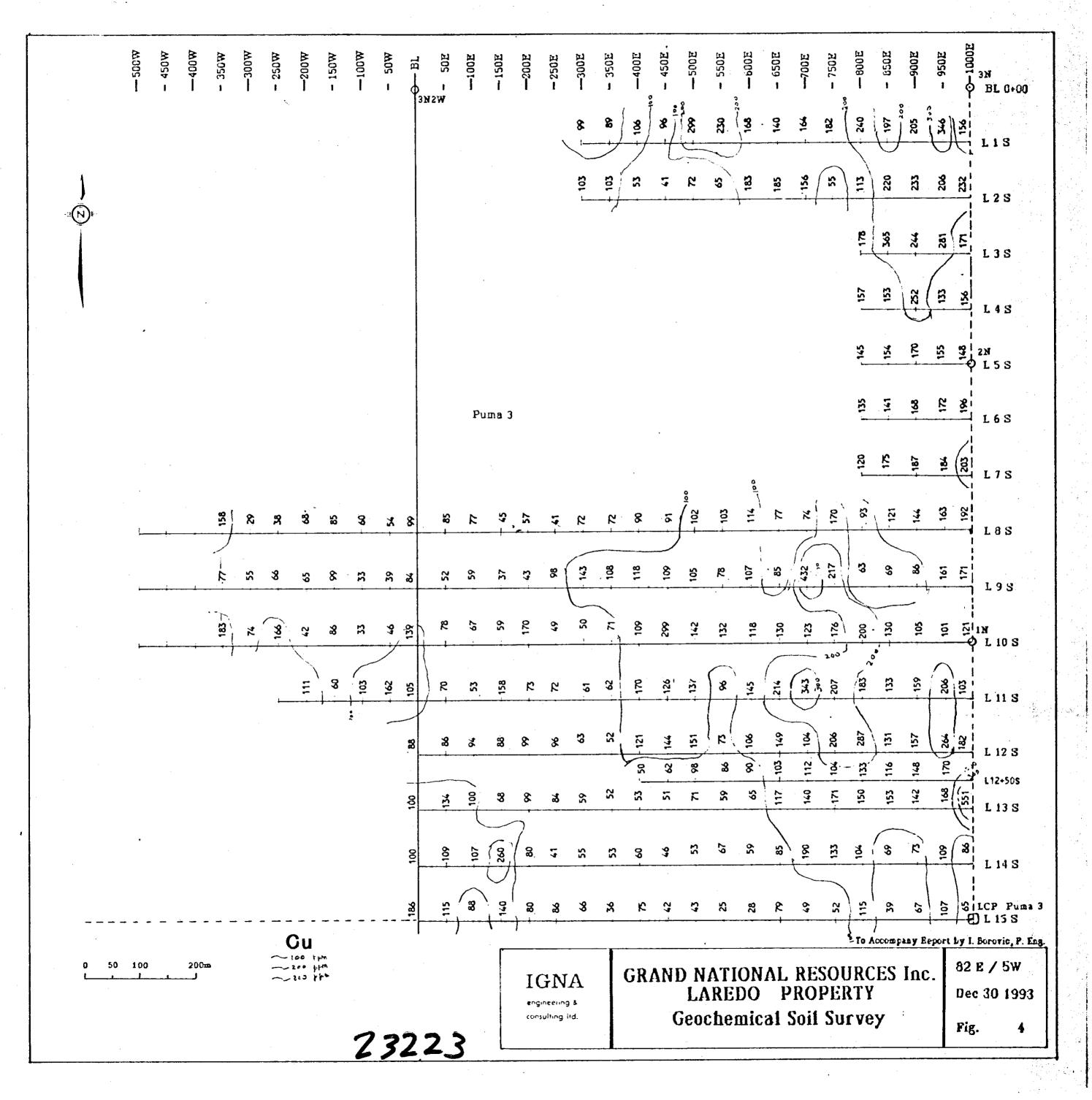
SAMPLE#	Мо	Cu	Pb	Žn	Ag	Ni	Co	N-	E 4	80	U	Au	Th	Sr	Cd	Sb	Bi	V	<u> </u>	P			W.a.		T:		A I	No	K	W
SAPIT ELIF	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Mn ppm	Fe %	As ppm	ppm	ppm	ppm	bbu 21.	ppm	ppm	ppm mqq	ppm	Ca %	۲ %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	ppm ppm	Al %	Na %	%	ppm
L13+00S 350E L13+00S 400E L13+00S 450E L13+00S 500E L13+00S 550E	2 2 2	52 53 51 71 59	13 12 9 7 14	105 88 74 86 115	.3 .3 .3 .3	34 29 35 36 32	10 13 15	1236 913 1098 931 1209	3.13 3.46 3.90	13 9 10 16 17	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2	56 54 54 49 66	.9 .2 .4 .4	<2 <2 <2 <2 <2 <4	<2 <2 <2 <2 <2 <2	48 41 50 62	.44 .40 .56 .50	.049	10 9 11 12 10	39 31 39 46 37	.59 .52 .61 .76	555 492 621 579 500	.14 .13 .15 .17	3 1 4 1 5 2 3 1 9 1	.99 .00 .85	.03 .04 .03 .04	.43 .41 .60 .74	1 <1 <1 <1 <1
L13+00S 600E L13+00S 650E RE L13+00S 650E L13+00S 700E L13+00S 750E	3	65 117 112 140 171	10 10 11 11 15	105 119 120 220 176	.3 .4 .5 .6	24 40 43 61 51	18 18 24	1073 : 1483 : 1472 : 2827 : 2866 :	4.51 4.44 5.17	10 60 62 19 14	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 3 3 3 3	56 70 68 73 79	.7 .8 .8 2.2	<2 <2 <2 <2	2 <2 <2 <2 <2	45 70 69 94 63	.77 .77 .79		11 15 15 22 21	34 48 48 78 45	.61 .90 .89 1.23 .84	545 593 574 724 725	.11 .15 .15 .15	3 1 7 2 9 2 7 3 4 2	.24 .19 .09	.03 .03 .03 .02	.58 .98 .90 1.15	<1 <1 <1 <1
L13+00S 800E L13+00S 850E L13+00S 900E L13+00S 950E L13+00S 1000E	5 4 5	150 153 142 168 551	13 14 13 12 14	280 113 124 118 395	.4 .5 .7 .7	76 56 39 35 105	21 15 26	2140 948 1156 1995 5387	5.38 5.47 6.28	13 17 17 5 12	<5 <5 <5 <5	<2 <2 <2 <2 <2	3 4 4 4 3	60 45 45 27 47	1.7 .6 .4 .5 5.0	<2 <2 <2 <2 <2	<2 <2 <2 2 3	61 75 79 82 72	.65 .35 .29 .12	.048	21 20 21 31 36		.79 .95 .93 1.45 1.29	543 400 498 438 469	.11 .14 .14 .13	2 2 3 2 2 2 <2 3 <2 2	.78 .83 .01	.03 .02 .03 .02	.52 .47 .76 .87	<1 <1 1 <1 2
L14+00S 00 L14+00S 50E L14+00S 100E L14+00S 150E L14+00S 200E	3 2 2 1 1	100 109 107 260 80	10 7 11 12 8	94 111 149 319 161	.4 .3 .2 .4	46 58 57 120 88	28 26 57	1500 : 1781 : 2312 : 5101 : 2547 :	4.06 4.16 4.63	5 4 5 11 8	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 <2 <2 <2	62 69 56 162 96	.8 .5 .6 1.4	<2 <2 <2 <2 <2	<2 <2 <2 2 <2	43	.62 .57 .57 2.21 1.17	.070 .070 .342	8 9 8 12 9	46 57 51 38 37	.70 .78 .67 .58	334 462 469 929 599	.17 .17 .17 .10	4 2 3 2 5 2 5 2 8 1	. 44 . 85 . 03	.04 .04 .05 .04	.49 .50 .43 .33	<1 <1 4 3 7
L14+00S 250E L14+00S 300E L14+00S 350E L14+00S 400E L14+00S 450E	1 2 2 3 2	41 55 53 60 46	3 11 9 7 3	105 104 130 65 89	.1 .1 .2 .1	43 41 26 31 27	12 10 9	1539 991 1535 875 1059	3.01 3.21 3.53	4 7 8 9 9	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	63 58 63 70 50	.3 .2 .4 .3	<2 <2 <2 <2 <2	\$\$ \$\$ \$\$ \$\$	29 38 42 53 38	.77 .48 .53 .38 .43	.131 .080 .049	6 8 8 13 9	26 32 35 42 29	.42 .50 .54 .68	457 488 673 496 505	.10 .13 .13 .15	5 1 5 1 4 1 3 2 4 1	.95 .99 .38	.04 .04 .03 .04	.32 .42 .47 .63 .39	<1 <1 <1 <1 <1
L14+00S 500E L14+00S 550E L14+00S 600E L14+00S 650E L14+00S 700E	2 2 2 2 4	53 67 59 85 190	7 6 10 12 14	73 120 89 174 408	.2 .3 .3 .3	26 43 27 48 121	17 12 20	813 3 1196 3 1126 3 1253 4 1452 6	3.46 3.14 4.62	11 18 15 18 10	\$ \$ \$ \$ \$	<2 <2 <2 <2 <2	2 2 2 <2 3	46 52 43 55 58	.3 .7 .6 1.1 2.9	<2 <2 <2 <2 <2	<2 <2 <2 <2 4	51 57 55 73 82	.34 .38 .45 .49	.066 .037 .071	10 12 12 14 23	38 38 41 60 59	.59 .60 .66 1.14	490 435 464 504 485	.16 .14 .15 .18	4 2 4 2 5 1 4 3 <2 3	.13 .60 .03	.04 .03 .03 .04	.58 .72 1.06	1 <1 <1 <1
L14+00S 750E L14+00S 800E L14+00S 850E L14+00S 900E L14+00S 950E	3 3 2 3 3	133 104 69 73 109	6 7 8 5 6	180 179 98 131 103	.7 .3 .2 .3 .4	60 38 26 31 32	16 12 11	1529 4 2081 4 1289 3 1851 4 751 4	4.13 3.55 4.01	20 18 21 14 19	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2	2 2 2 2 3	54 68 53 51 61	1.2 1.5 .7 1.1	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	75 56 55 58 64	.38 .54 .37 .28	.071 .048	18 19 14 17 20	44 38 38 41 44	.80 .66 .59 .67	685 622 494 463 492	.15 .13 .13 .12	<2 3 4 2 3 2 3 2 3 2	.66 .03 .19	.03 .03 .03 .03	.42 .49 .50 .48 .62	<1 <1 <1 1 <1
STANDARD C	18	65	39	125	6.7	69	30	1043 3	3.91	43	15	8	34	56	18.7	18	18	58	.49	.078	38	58	.88	198	.09	33 1	.89	.08	.16	11

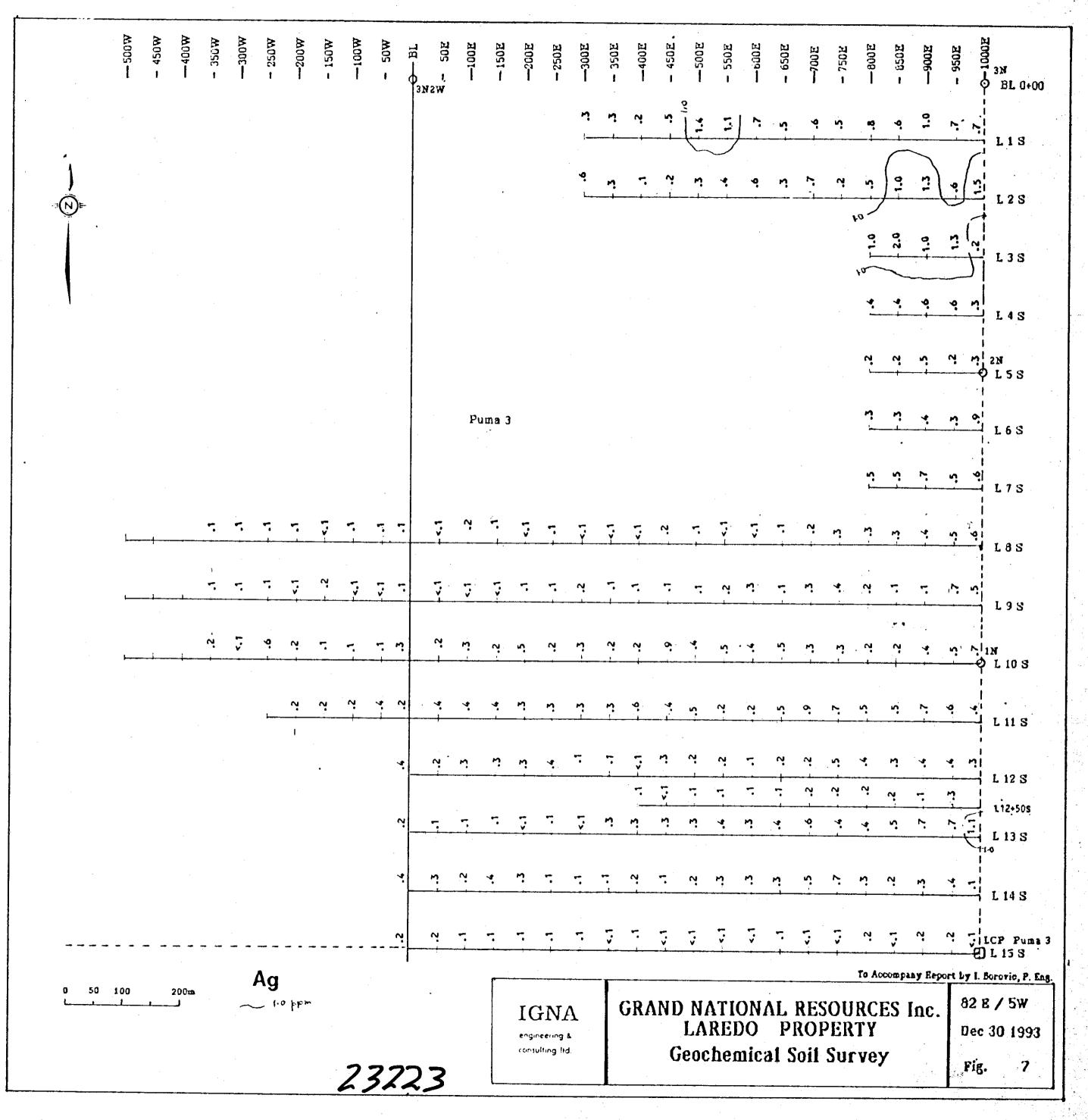
Page 8

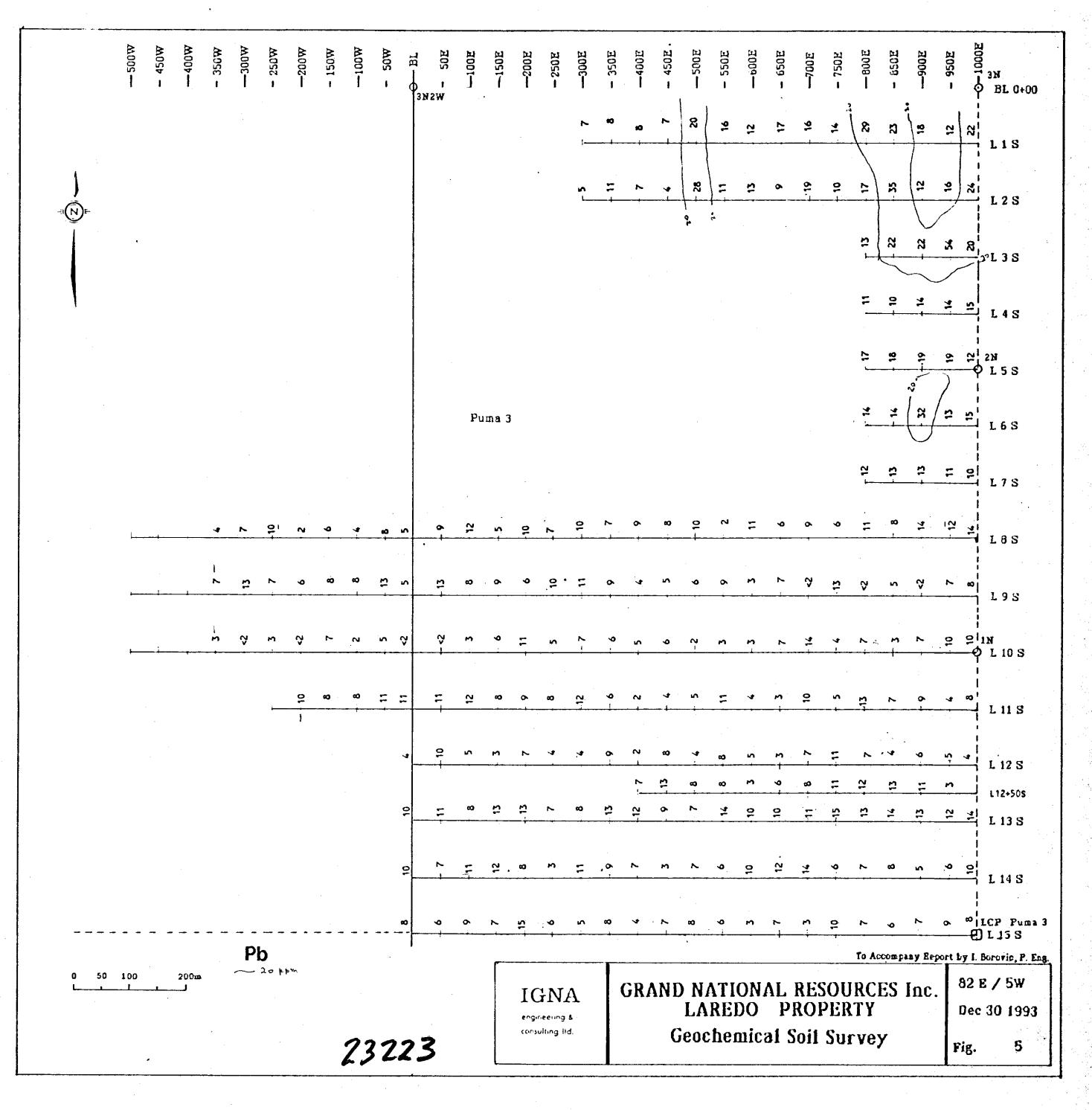
全全

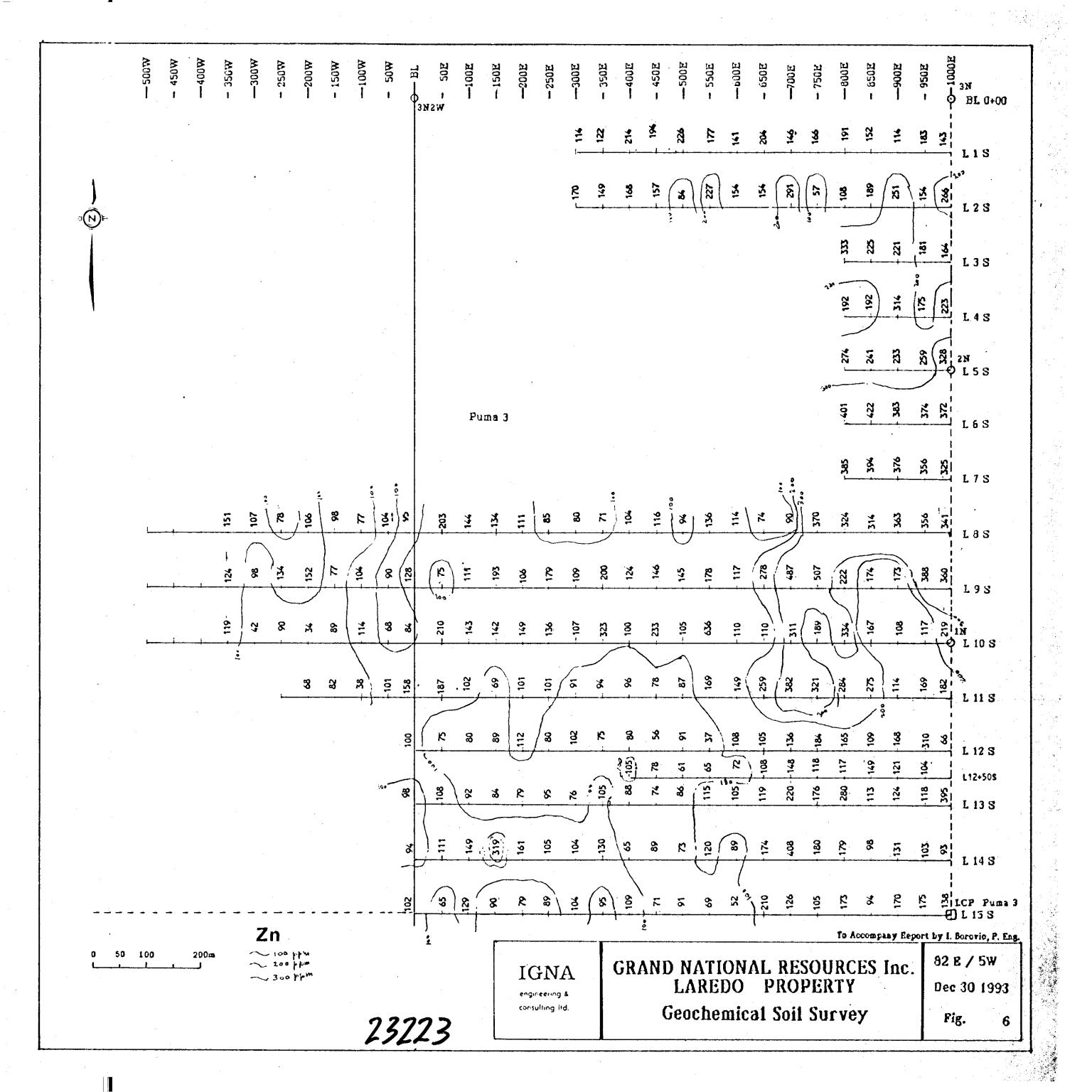
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe %	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P %	La	Cr	Mg %	Ba	Ti %	В	Al %	Na %	K %	W
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm	ppm	bbw	bbw	ppm	ppm	- 7	^	ppm	ppm	~	ppm	^	ppm		^		bbu
L14+00S 1000E	7	86	10	93	1	35	11	1023	4 25	17	<5	<2		53	.2	7	<2	52	.32	.051	14	30	.45	373	.09	٠2 -	1.43	.01	.37	1
L15+00S 1000E	3	186	8	102	.1	58		1445		9	<5	<2	<2	74	.3	2	<2	63	.67		7	71	1.02	424	.17	-	2.58	.03	.47	5
L15+00S 50E	5	115	2	65	.2	42		795		6	<5	<2	<2	61		7	<2	58		.055	5	42	.82	259	.21		2.49	.03	.49	3
L15+00S 100E	2	88	9	129		46		1951		8	<5	<2			.6 .2	2	<2	53	.49		7	44	.74	538	.18		2.41	.03	.24	1
L15+00S 150E	2	140	7	90	- 1	45		836		6	<5	<2	<2 2	64 44	<.2	<2	<2	81		.121	10	64	.81	667	-18		2.59	.02	.22	2
E13+008 130E)	140	- 1	90	- 1	40	12	000	0.79	0	\ 3	~2	2	44	۲.2	٩2	~2	01	.50	. 121	10	04	.01	001	. 10	12 (2.37	.02		2
L15+00S 200E	,	80	15	79	1	49	16	1267	7 22	6	<5	<2	<2	76	.3	<2	<2	55	65	.057	8	40	.71	603	.17	<2 :	2.17	.03	.41	1
RE L15+00S 200E	2	77	12	76	.1	47		1235		7	<5	<2	<2	75	<.2	2	<2	54		.056	8	39	.69	602	.17		2.11	.02	.41	1
L15+00S 250E	7	86	6	89	- 1	37		1022		6	<5	<2	2	89	٠.٢	<2	2	63		.054	10	37	.76		.16		2.64	.02	.36	3
L15+00S 300E	1	66	5	104	- 1	35		1813		12	<5	<2	<2	68	.6	<2	<2	45		.111	7	27	.64	492	.12		2.23	.02	.45	1
L15+00S 350E	4	36	2	95	<.1	43		1045		9	<5	<2	· <2	49	.5	<2	<2	31		.082	6	25	.45	402	.11		1.80	.03	.19	<1
£15.003 550E	'	30	•	7.7	· · ·	43	, ,	1043		,	٠,	~_	٧.	47		``	``	<i>3</i> i	.40	.002	U		.43	702	• • •	,	1.00	.03	. 17	~1
L15+00S 400E	5	75	4	109	.1	55	21	2136	3.89	6	<5	<2	2	80	.6	<2	<2	53	.63	.065	15	38	.71	498	.13	2 :	2.52	.02	.49	1
L15+00S 450E	2	42	7	71	<.1	24		1256		9	<5	<2	< <u>2</u>	54	.4	2	3	38	.47		8	26	.48	466	.11		1.74	.02	.33	<1
L15+00S 500E	2	43	ġ	91	<.1	28		1200		ģ	<5	<2	<2	43	.4	<2	<2	36		046	7	23	.45	558	.11		1.77	.02	.25	1
L15+00S 550E	1	25	6	69	<.1	26	8			14	<5	<2	<2	29	.2	<2	<2	35			6	23	.43	371	.11	_	1.51	.02	.24	i
L15+00S 600E	1	28	3	52	<.1	23	8			16	<5	<2	2	29	.4	<2	<2	38		.026	8	26	.48	354	.11		1.21	.02	.39	<1
21,51000 0002	,		•				•	0.0			-		_		• •		-				•					_				
L15+00S 650E	1	79	7	210	.1	39	16	2005	4.07	9	<5	<2	2	53	1.3	<2	2	65	.45	.051	13	38	.86	961	.14	3 8	2.45	.02	.74	<1
L15+00S 700E	2	49	3	126	<.1	31	14	1522	3.22	17	<5	<2	2	46	.9	<2	2	50	.50	.046	11	33	.60	543	.12	<2	1.91	.02	.42	<1
L15+00S 750E	1	52	10	105	<.1	31	12	1110	3.31	18	<5	<2	2	47	.5	2	<2	50	.38	.054	12	32	.57	446	. 12	<2	1.89	.02	.50	<1
L15+00S 800E	1	115	7	173	.2	30	11	1750	4.41	15	<5	<2	2	51	1.2	<2	<2	67	.69	.127	16	33	.73	962	.09	5	1.86	.01	.72	<1
L15+00S 850E	1	39	6	94	<.1	24	9	837	2.96	16	<5	<2	3	36	.5	<2	3	42		.045	10	26	.50	378	.11		1.82	.02	.37	<1
L15+00S 900E	2	67	7	170	.2	48	15	1920	3.78	24	<5	<2	3	58	1.4	2	<2	52	.50	.101	17	31	.58	631	.11	3 7	2.24	.02	.36	<1
L15+00S 950E	2	107	9	175	.2	44	17	2937	4.00	19	<5	<2	2	71	1.2	2	<2	61		.082	22	34	.55	711	.09	4	2.02	.02	.36	1
L15+00S 1000E	2	65	8	138	<.1	38	10	1357	3.04	26	<5	<2	2	48	1.3	2	<2	44	.35	.044	15	26	.45	416	.09	4	1.64	.02	.40	<1
STANDARD C	17	63	38	130	6.9	66		1073		42	17	7	35		17.3	14	20	55		.079	37	51	.90	194	.09		1.88		.14	11

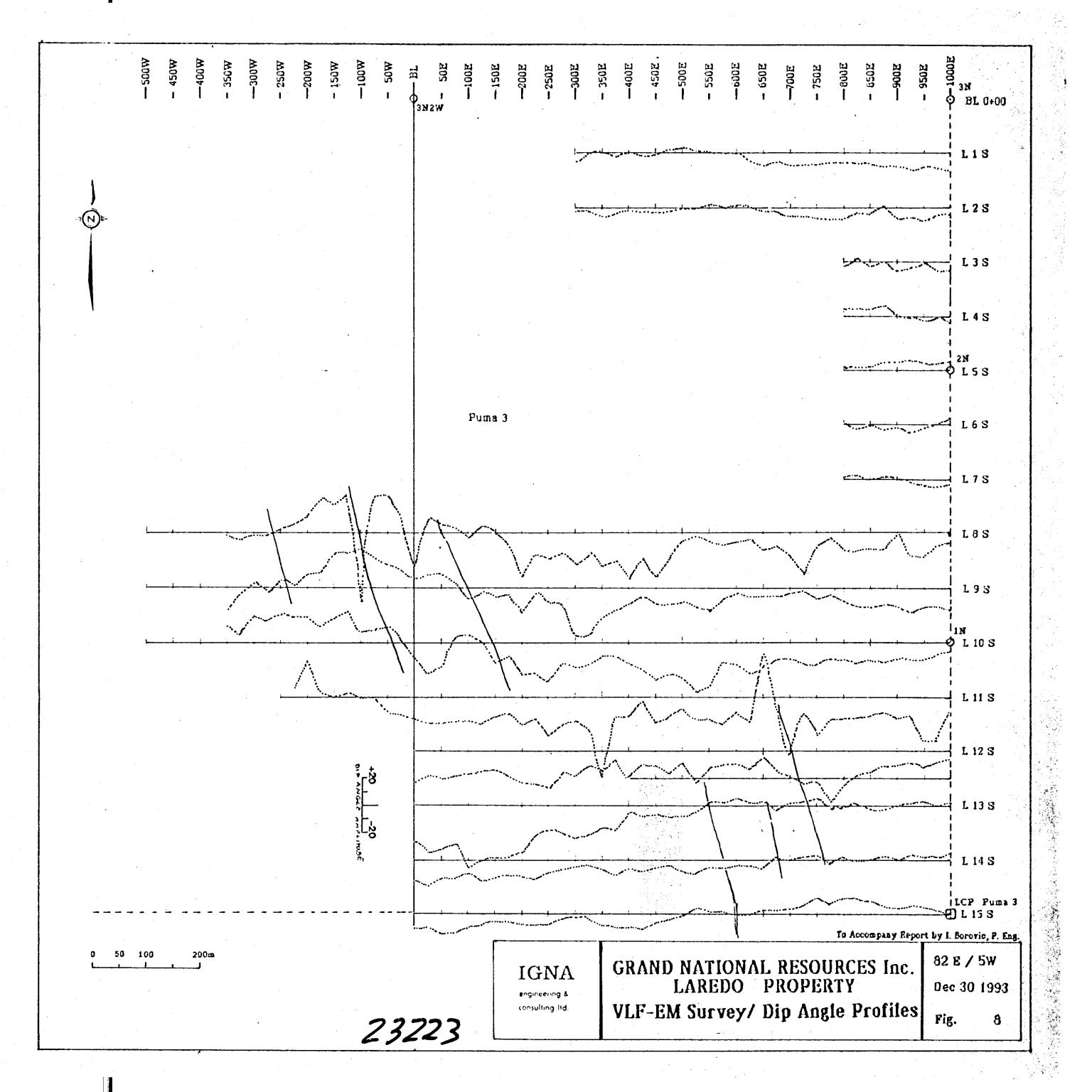
PUM SEATTLE GAIN 06.5 LINE I-S. DEC. 13/3	PUMA#3 SEATTLE GAINOG.S LINE 2-S. DEC. 13/93	PUMA 3 SEATTLE DEC. II	3
STA X ES Ø 300 E - 4 52		STA X F.S. Q 800E- 2 52	
325 E. 0 52 350 E 0 55 375 - 2 52 400 - 2 52 425 - 2 52 450 - 2 57 450 + 4 50 500 + 4 58	325 E - 2 38 350 E - 6 47 375 - 4 50 425 - 2 45 450 - 2 52 475 - 2 55 500 47	825 E. + 2 42 850 E - 2 33 875 0 25 900 - 6 25 925 - 4 32 950 0 33 975 - 6 32 1000 E - 6 30	
525 550 575 600 625 625 625 625 625 625 627 627 627 627 627 627 627 627	550 + 2 55 RMD 550 + 2 57 500 + 2 57 625 - 2 50 675 - 2 45 700 - 6 52		•
725 750 775 775 775 700 850 850 850 850 850 850 850 850 850 8	725 -68 -88 -875 -88 -875 -42 -42 -42 -42 -42 -42 -44 -45 -875 -875 -875 -875 -875 -875 -875 -875 -875 -875 -875 -975		
950 950 975 1000 E 12 52	925 925 935 935 935 1000 E. — 4		


PUMA SEATTLE DEC. 12/93	PUMA "3 SEATTLE GAIN 5.5	PUMA =3		E DECO	/93
L.4-S. GAIN 5.5	L. 6-5. DEC. 12/93				
STA 4 F.S. Q	57A 4 F.S. Q	STA	F. 3. Q	37A X	FS Q 34
800 F + 6 40	37A 4 F.S. 9 800 E. 0 42	350 W 2 325 W - 4	5 4 45	525W - 2 550W - 5	28
825 = + 6 43	820 E 2 38	300 W2	48	575 - 8	38
850 E. + 6 37	850 E. 0 33	275 - 2	42	600 - 6	18
8 75 + 8 35	875 - 4 32	250 +2	37	625 - 4	3 5
900 0 40 925 0 42	900 - 2 32	225 + 6	48	450 - 12	3.3
925 0 42	925 - 4 33	200 +12	38	675 - 8	3 2
975 0 53	950 - 2 37	175 + 26	32	700 - 14	2.5
1000 - 4 47	1000 + 2 42	150 + 12	30	750 - 8	32
				775 - 4	48
		75 + 28	230 93	800 -12	45
PUMA #3 SEATTLE GAINS.5	PUMA" SEATTLE GAIN 5.5	50 +28	25	825 - 12	34
		25 +10	18	850 - 10	3.2
	L.7-S. DEC. 12/93	0.0W 24	32 4		27
STA 4 F.S. 9	STA X F.S 9	25 E. + 10 50 E. + 4	30 53	900 0	36
800 E. + 2 52	57A A F.5 9 80B F. + 2 53	50 E. + 4	48	950 - 18	30 5
825 E. + 2 53	823 F. + 2 52	100 - 2	44	975 - 10	25
850 E. + 2 47	850 E. 0 55	125 + 6	40 2	1000 - 8	40
875 + 6 50	875 + 2 52		41N 44 55	12.7	
900 + 6 55 925 + 8 52	900 0 50		6		
950 + 6 47	925 - 2 50 950 - 4 50	200 - 32	25		
975 + 4 45	950 - 4 50	125 - 15 250 - 18	32 28		
1000 + 6 43	1000 - 2 45	275 - 14	36		
1		300 - 22	38		
		325 - 14	32		
		350 - 24	42 3		
		375 -20	33	:	: :
		400 - 32	42		
		425 - 18 450 - 32	27 43		
		450 - 32	36		
		500 - 4	35		
			1 		


STA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


	EATTLE DEC. 6/93	PUMA#3	SEATTLE DEC. 7/93 GAIN 10
350 W. 325 W	STA. X F.S. Q 525E-16 25 550E-16 22	STA. Z F.S 0.0 E - 22 67 25 E - 18 87	7 725 E - 24 87
300 W. 275 250 225 + 8 17	575 - 20 32 600 - 12 32 625 - 18 25	50 E 20 77 75 - 18 82 100 - 16 70	7 775 E 38 77 2 800 - 24 85 3 825 - 18 82
200 + 26 17 175 + 4 18 150 0 20	775 - 12 35 700 - 42 70 4 725 - 12 42	150 - 14 82 175 - 18 67 200 - 24 82	2 875 - 10 100+ 7 900 - 10 98 2 925 - 8 97
100 0 13 75 0 26 50 - 10 28	750 - 28 43 775 - 16 47 800 - 16 43 825 - 16 42	2 9 0 - 2 4 72 2 9 0 - 2 4 6 3 2 7 5 - 1 6 5 8 3 0 0 - 1 8 6 8	3 975 - 8 93 1000 - 6 53
25 - 12 38 0.0 W 14 32 25 E 18 35 50 F 18 38	850 - 14 38 875 - 12 38 900 - 14 50 925 - 14 52	325 - 12 62 356 - 14 70 375 - 6 68 460 - 20 72	
75 E 18 37 100 - 16 30 125 - 20 28 150 - 14 28	950 - 32 47 975 - 32 42 1000 - 11 52	425 -10 87 450 -10 87 475 -18 68 500 -8 70	
175 - 12 35 200 - 20 38 250 - 28 32		525 - 24 72 556 - 12 82 575 - 10 83	2 2 2 2
275 - 20 30 300 - 18 32 325 - 24 37	TOP OF BLUFFS	425 - 14 90 450 - 4 73 675 - 14 97	3
350? - 60 22 375 - 14 22 400 - 14 13 425 - 2 20		760 -18 98	
450 - 20 15 475 - 16 17 500 - 8 17			


F. 5377720328880750207227255 	4
45445555555655654333222XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	MA =
	SEA
	TTLE GAIN
	10/4
	73
5TA 0.5050505050505050505050505050505050505	
- 1/4 + + + + + - +	JNA #
75 5 5 5 5 7 3 7 8 5 2 7 2 7 3 7 8 8 8 8 2 7 7 8 5 5 4 5 5 4 4 4 3 7 6 8 6 8 6 8 6 5 5 4 4 4 3 7 6 8 6 8 6 8 6 8 6 7 7 8 5 5 4 4 3 7 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8	
5.5	
STA 725 E 750 E 750 825 825 825 825 825 825 995 907 907 900	TLE
	DE)
	. 10/9
•	13


	TTLE DEC. 10/9	PUMA #3 SEA	TTLE C. 10/93
STA. Z. F.S. Q 0.0 F 16 508 477 18 477 100 477 150 E 14 477 143 8 42 2 8 9 9 12 14 45 10 8 6 44 5 12 12 12 12 12 12 12 12 12 12 12 12 12	STA. Z F.S. Q 7.25 E + 2 30 7.50 E + 4 32 7.75 E + 2 30 7.75 + 2 30 7.75 + 2 30 7.75 + 2 30 7.75 + 4 32 7.75 + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5TA. F.S. Q F.S. Q F	3TA X F.S. Q 725E+ 6 82 750E+12 73 778 + 6 68 825 + 12 63 825 + 12 63 850 + 10 75 875 + 6 77 975 + 6 60 975 + 6 60 975 + 6 60 975 + 75 975 + 75
DEC. 11/93 GAIN 5.5 400 E - & 28 425 E - 425 475 - 48 475 - 48 475 - 64 475 - 64 475 - 44 5525 - 44 5525 - 44 62570 4055 - 44 700		4444 4444	

