GEOLOGICAL, GEOCHEMICAL, AND GEOPHYSICAL REPORT

ON THE

NOOT CLAIM GROUP

SKEENA MINING DIVISION, BRITISH COLUMBIA

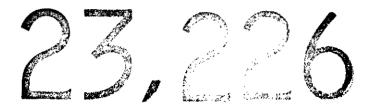
NTS: 104 B/9 AND 10

LOG NO:	[JAN 3 1 1994	RD.
ACTION.		
FILE NU:		

SJ3-RECORDER RECEIVED
JAN 10 1004
M.R. #

PREPARED BY: PERRY GRUNENBERG, P. GEO.

JANUARY, 1994


Location: 56°35' North Latitude; 130°30' West Longitude

Operator: Canamera Geological Ltd.

Owner: Tagish Resources Ltd. and Alex Briden

Approval #: SMI-93-0100522-217

GEOLOGICAL BRANCH ASSESSMENT REPORT

<u>SUMMARY</u>

The 95 unit Noot claim group is located adjacent to the Unuk River in northwestern British Columbia. The claims lay over favourable geologic terrains which host several mineral deposits regionally. The rich Au-Ag Eskay Creek deposits are within five kilometres of the Noot Group Claims.

In the fall of 1993, Canamera Geological Ltd. conducted geological, geochemical, and geophysical surveys over the claims.

Soil and rock chip sampling on the claims returned assay values of interest for precious metals. More detailed sampling and mapping of several areas on the claims would help detail metalliferous zones.

VLF-EM survey detected a group of moderate to strong conductors which may be related to the north trending argillite and siltstone sequence trending northerly along Coulter Creek. two strong, highly conductive features may be caused by sulphide mineralization. Magnetic association with two conductors on the southern two lines suggests pyrrhotite as a contributor to conductivity and provides support for the presence of sulphide mineralization within the conductive group.

Magnetic survey detected a few linear magnetic highs which do not seem to relate to conductivity and may represent more magnetic material within a volcanic sequence or a more basic intrusive rock in narrow dykes.

TABLE OF CONTENTS

SUM	MARY	i
TAB	LE OF CONTENTS	ii
1.0	INTRODUCTION 1.1 LOCATION AND ACCESS 1.2 TOPOGRAPHY, CLIMATE AND PHYSIOGRAPHY 1.3 PROPERTY STATUS 1.4 HISTORY AND PREVIOUS EXPLORATION 1.5 WORK COMPLETED ON THE CLAIM GROUP, 1993	1 1 2 3 3
2.0	GEOLOGY 2.1 REGIONAL GEOLOGY 2.2 PROPERTY GEOLOGY	5 5 6
3.0	GEOCHEMISTRY 3.1 SAMPLE PROCEDURE 3.2 SAMPLE RESULTS	7 7 7
4.0	GEOPHYSICS 4.1 PROCEDURE AND INSTRUMENTATION 4.2 VLF-EM RESULTS 4.3 MAGNETOMETER RESULTS	8 8 9 10
5.0	RECLAMATION	11
6.0	REFERENCES	12
7.0	COST STATEMENT	14
8.0	STATEMENT OF QUALIFICATIONS	15

APPENDIX I ~ CHEMEX LABS LTD. ASSAY CERTIFICATES

APPENDIX II - EQUIPMENT SPECIFICATIONS

APPENDIX III - DATA LISTING

FIGURES AND TABLES

FIGURE 1 - LOCATION MAP	after page 1
FIGURE 2 - CLAIM MAP	after page 2
FIGURE 3 - PROPERTY GEOLOGY MAP	after page 6
FIGURE 4 - SOIL GEOCHEMISTRY GRID LINES	after page 7
FIGURE 5 - SOIL GEOCHEMISTRY AU, AG RESULTS	after page 7
FIGURE 6 - GRID LOCATION MAP	after page 7
 FIGURE 7 - GEOPHYSICS MAPS 7 - 1 NLK, SEATTLE WA VLF-EM PROFILES 7 - 2 NSS, ANNAPOLIS, MD VLF-EM PROFILES 7 - 3 TOTAL FIELD MAGNETIC PROFILES 	Map Pocket Map Pocket Map Pocket
FIGURE 8 - RECLAMATION PHOTOS	after page 10
TABLE I - LIST OF CLAIMS	after page 2

_

_

·- · · · ·

- -

- -- ---

District Geol	ogist, Smithers Off Confidential: 94.	09.24
ASSESSMENT RE	PORT 23226 MINING DIVISION: Skeena	
PROPERTY: LOCATION:	Noot LAT 56 35 00 LONG 130 30 00 UTM 09 6271799 407863 NTS 104B09W 104B10W	
CAMP:	050 Stewart Camp	
REPORT YEAR: KEYWORDS: WORK DONE: Geo EMG GEO MAG REC SIL	Tagish Res. Grunenberg, P. 1994, 68 Pages Jurassic,Mount Dilworth Formation,Argillites,Siltstones,Tu Volcanic breccias Physical,Geochemical,Geological,Physical	ffs

,

.

1.0 INTRODUCTION

The Noot group claims overlay geologic terrains that locally hosts the Eskay Creek deposit. The Sib claims, immediately adjacent to the Noot claims, have returned intersections up to 0.4 oz./T gold from drilling in the early 1990's. The location of the Noot group claims makes them highly favourable for hosting precious and/or base metal mineralization.

In the fall of 1993, Canamera Geological Ltd. was contracted to conduct geological, geochemical, and geophysical surveys on the Noot group claims. This report summarizes that work.

1.1 LOCATION AND ACCESS

The property is located in western British Columbia near the Unuk and Iskut rivers, centred at 56°35′N, and 130°30′W (NTS 104B/9, 10), approximately 950 kilometres northwest of Vancouver and 80 kilometres northwest of the town of Stewart (Fig.1).

Scheduled flights from Vancouver to Smithers and Terrace are provided by Central Mountain Air and Canadian Regional airlines. A well maintained gravel airstrip is located near the town of Bob Quinn on the Stewart-Cassiar Highway (#37). Local fixed wing charters are available providing flights to this strip.

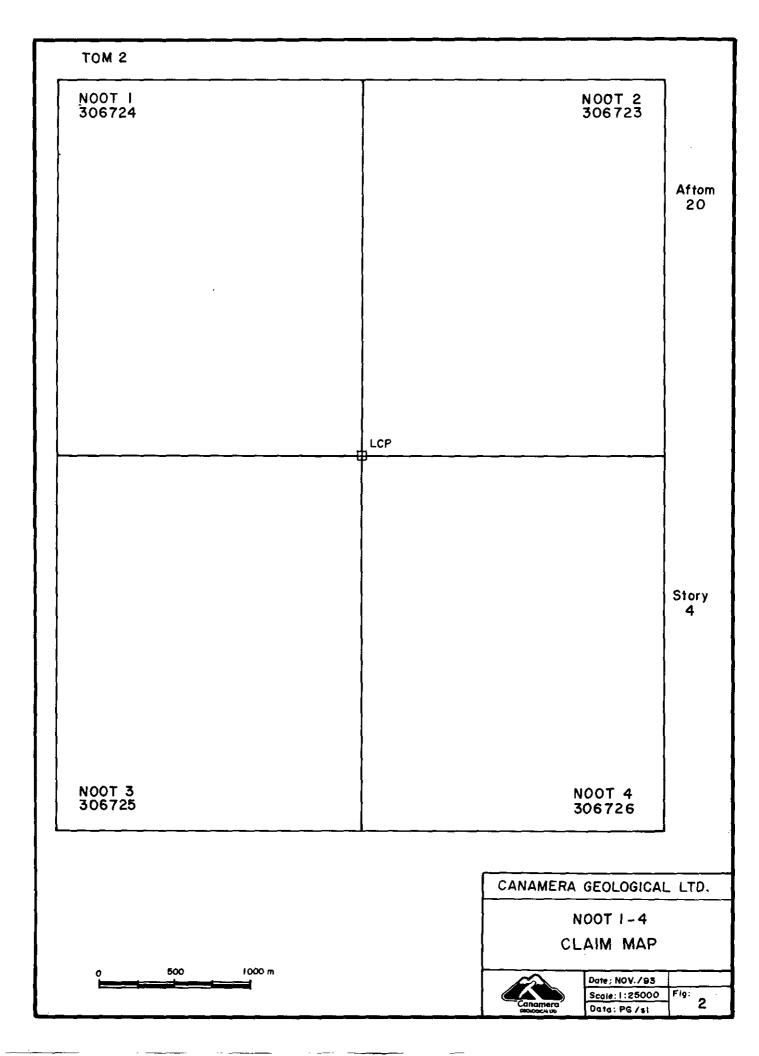
The property is most easily accessed by helicopter from the Stewart-Cassiar Highway which runs north-south roughly 25 km. east of the property. Northern Mountain Helicopters provides service from Bell II, and Vancouver Island Helicopters provides service from Bob Quinn, both situated along the highway east of the property.

Road construction is currently in progress to provide access to the Eskay Creek mine from the Stewart-Cassiar Highway near the town of Bob Quinn. When completed, this road will run down the west side of the Iskut River to Volcanoe Creek, up Volcanoe Creek past the foot of Mount Shirley to the north end of Tom Mackay Lake, then east into Eskay Creek. This road should be completed by the spring of 1994.

1.2 TOPOGRAPHY, PHYSIOGRAPHY AND CLIMATE

The property is situated on the western margin of the Coast Ranges of British Columbia. Climate is moderate, with cool wet summers and mild winters. Annual precipitation averages 250 cm., much of which falls as snow between the months of October and April. Temperature extremes range from -40 to 30 degrees centigrade, with mean average monthly temperatures ranging from 12 degrees in August, to -10 degrees centigrade in December.

The area has been glaciated and elevations on the property vary from 400 metres above sea level in the Unuk River valley, to 1800 metres above sea level on Mount Shirley. The area is deeply incised by rivers and steep sided river and stream canyons are common. Tree line is at approximately 1000 metres above sea level.


Vegetation in the area is variable. Coastal Western Hemlock forests extend along the Unuk River basin up to Storie Creek, changing to predominantly Mountain Hemlock forests that extend midway up Eskay and Ketchum Creeks. Steeper and less stable slopes host slide alder, devil's club, and wild raspberry. Remaining areas of Eskay, lower Argillite and mid Tom Mackay Creeks exhibit Englemann Spruce-Subalpine Fir zone characteristics. Upper sections of Argillite and Tom Mackay Creeks and the Mackay Lakes are alpine tundra and are essentially treeless with the exception of minor stunted growth. Vegetation consists mainly of lichen, mosses, sedges and alpine flowers.

1.3 PROPERTY STATUS

The property is composed of five modified grid claims totaling 95 units (Figure 2), covering an area of 20 square kilometres. The claims are owned by TAGISH RESOURCES LTD. and Alex Briden. The claim names, record number, size, anniversary dates and ownership's are listed in Table I.

TABLE I

CLAIM NAME	RECORD #	# OF UNITS	ANNIVERSARY DATE	OWNERSHIP
NOOT 1	306724	20	11-29-94	TAGISH
NOOT 2	306723	20	11-29-94	TAGISH
NOOT 3	306725	20	11-29-94	TAGISH
NOOT 4	306726	20	11-25-94	TAGISH
FRED 15	253295	15	10-11-94	ALEX BRIDEN

-

1.4 HISTORY AND PREVIOUS EXPLORATION

The area has a long history of exploration since the discovery of mineralized gossanous bluffs along Eskay Creek, first staked in 1932 by T.S. Mackay and W.A. Prout. Exploration has concentrated on delineating high grade precious metal mineralization. Work completed by the Premier Gold Mining Company from 1935 to 1938 discovered more than 30 mineralized zones along the gossanous bluffs of Coulter and Eskay Creeks. These were numbered in sequence of discovery as zones (e.g. #20 Zone). In 1934, the 84 metre Mackay adit was driven on workings three kilometres southwest of the current 21 zone deposits.

Exploration continued through the decades, with further underground work on the Mackay adit, and development of the Emma adit closer to the 21 Zone, abundant surface trenching, and drilling of 84 diamond drill holes totaling 3,950 metres. This work involved 11 different exploration companies.

In November of 1988, Calpine Resources Inc. (now Prime Resources Ltd.) announced the discovery of high grade precious and base metal mineralization in the 21A Zone. Mineralization consisted of a combination of stockwork mineralization in rhyolite and massive sulfides at the contact of rhyolite with overlying andesite. Additional drilling resulted in the delineation of the 21A Zone and the discovery of the 21B and 21C Zones further to the north.

By the end of 1989, 205 diamond drill holes were completed on the Eskay property. Drilling has defined the 21B Zone as the principle target. This zone has recent published mining reserves of 1.08 million tons grading 65.6 g/t Au, and 2,930 g/t Ag. Substantial underground workings have been driven into this deposit, and exploration is continuing with the prospect of adding additional mining reserves.

In 1989, Swift minerals limited commissioned Aerodat Limited to carry out airborne geophysical surveys over areas now covered by the Noot claim group. This survey included 4 frequency electromagnetics, cesium vapour magnetics and 2 frequency VLF-EM geophysical equipment. A total of 200 kilometres of line was flown on E-W lines at 100 metre spacings covering an area between Coulter Creek and the Unuk River south of Tom Mackay Lake. Areas of Magnetic high (>5700 nT) were found to correlate to andesitic volcanics and/or sedimentary rocks. Faulting mapped by magnetic changes show that faults trend NW to NNW in addition to known faults trending north along Coulter Creek. A pronounced resistivity low was found trending N-S through the survey area parallel to Coulter Creek. This would likely reflect the presence of conductive argillites which exist in this area.

In August of 1989, prospecting was carried out for Paul Dupras on the Fred 16 claim now covered by parts of the Noot 1 and 2 claims. A total of 217 soil and 65 rock samples were taken during this work. Anomalous values for Pb, Cu, Ag, and Au were noted.

In August and September of 1989, a magnetometer and VLF-EM survey was completed on the Fred 16 claim by SJ Geophysics Ltd. for Silver Princess Resources Ins., at the request of Paul Dupras. A total of 9.5 kilometres of survey was completed. Several weak magnetic anomalies were recorded, interpreted to be due to local variations in magnetite content of the underlying rocks. A great number of the VLF-EM conductors were divided into five main zones. Insufficient data, and poor line survey control made interpretation of this data difficult as to determining whether the conductive bodies are related to sulphides or if they relate to conductive packages of carbonaceous shales.

1.5 WORK COMPLETED ON THE GROUP DURING 1993

In the fall of 1993, Canamera Geological Ltd. was contracted to complete geological, geochemical, and geophysical surveys on the NOOT claim group. This work was carried out from a five person camp located to the west of the group, from September 13 to 19, 1993.

Geologic mapping at a scale of 1:20,000 was completed along north-south trending regional geologic structures of interest on the claims, with total coverage approximating 30% of the claims. A total of nine reconnaissance style rock chip samples were taken during this mapping.

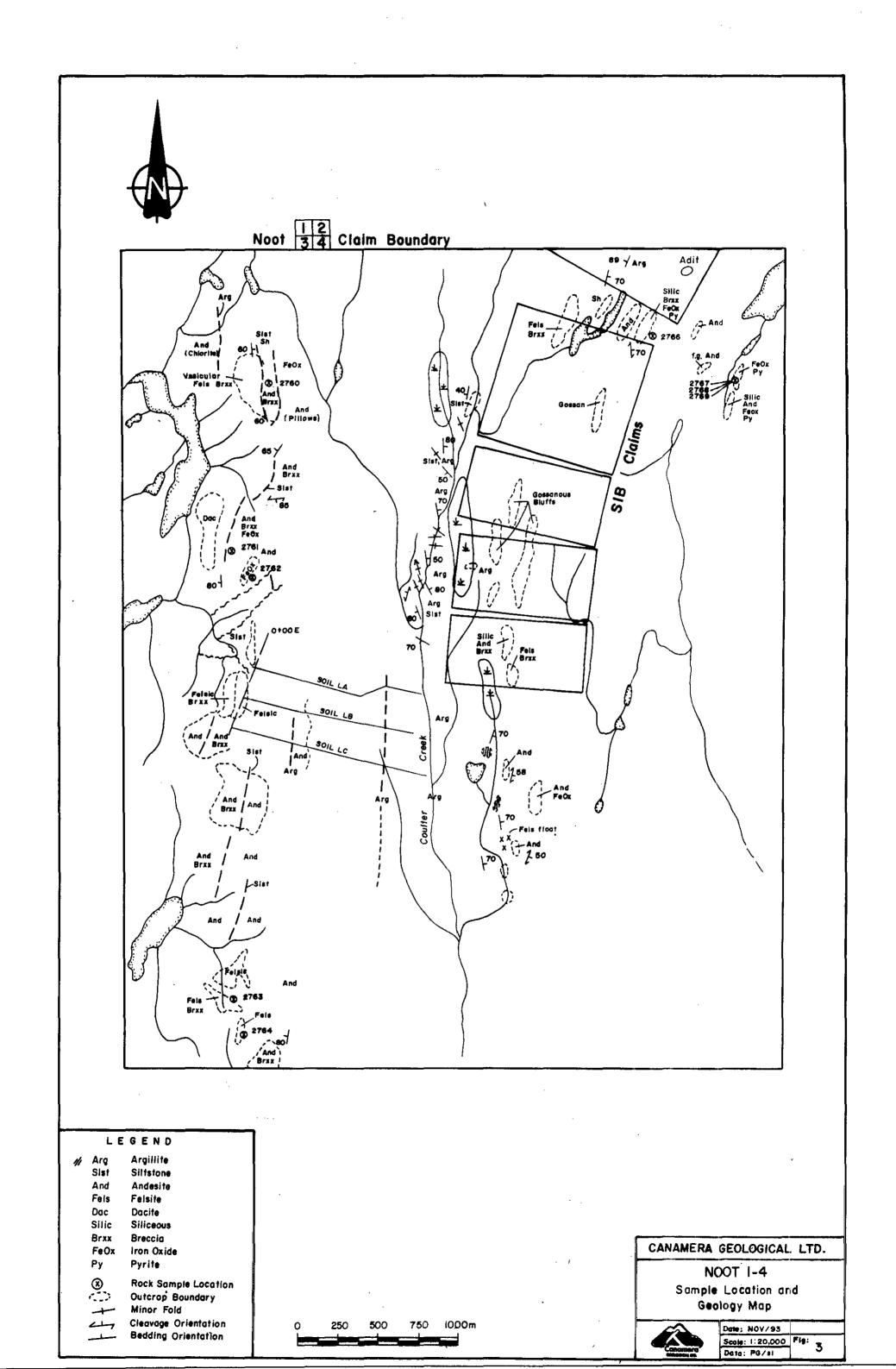
Three exploratory soil lines were surveyed near the north boundary of the Noot 3 claim. A total of 46 soil samples were collected along three E-W lines spaced at 200 metre intervals.

VLF-EM and magnetometer geophysical surveys were completed along compass and hip chain flagged survey lines from a north-south base line along Coulter Creek. A total of 10.65 km of surveyline were located, along which 10.65 km of magnetometer and 10.65 km of VLF electromagnetic surveys were completed.

2.0 GEOLOGY

2.1 REGIONAL GEOLOGY

On a broad scale, the property sits in the middle of the Iskut-Sulphurets gold camp. This area consists of four major tectonic assemblages which are bounded by unconformities. These are the Paleozoic Stikine assemblage, the Triassic to Jurassic arc complex rocks, the Jurassic Bowser Group, and the Tertiary Coast Plutonic complex.


Paleozoic Stikine assemblage rocks consist of fine to coarse grained sediments with plagioclaise porphyry, felsic tuff, and basaltic lavas. These rocks crop out to the northwest of the property along the Iskut River. Triassic to Jurassic arc complex rocks consist of clastic sediments with volcaniclastic interbeds. These rocks are regionally extensive. Jurassic Bowser Group rocks cover much of the area north of the Prout Plateau and are comprised of thick sequences of thinly bedded siltstone, shale and sandstone with thin lenses of conglomerate. Coast Plutonic rocks are present in the area as a series of plutons, sills, and dikes that range in age from late Triassic to Oligocene. Stocks nearest to the property are the Melville and John Peaks diorites.

In closer proximity to the property within the upper Unuk River drainage, most of the area is underlain by rocks of the lower to middle Jurassic Hazelton Group. This group has been divided into four recognizable formations, the Unuk River formation, Betty Creek formation, Mount Dilworth formation, and the Salmon River formation.

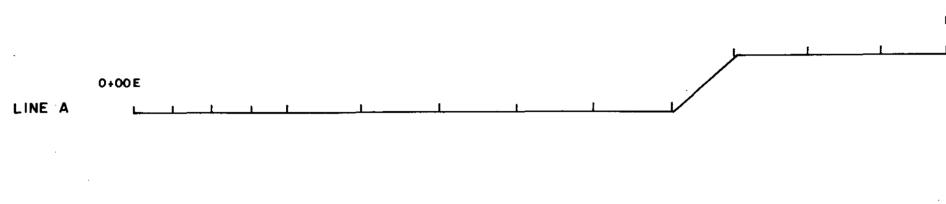
The Unuk River formation is a thick sequence of fine grained andesitic pyroclatics and flows with tuffaceous turbidite, wacke, and conglomerate interbeds. The Betty Creek formation overlies the Unuk River formation and is a heterogeneous sequence of andesitic to dacitic tuffs and flows, interbedded with volcanic derived sedimentary rocks. Thick sequences of pillow lavas found on Mount Shirley have been correlated to the Betty Creek formation. The Betty Creek formation is overlain by the Mount Dilworth formation which consists of a sequence of felsic volcanic rocks. These are typically white weathering, or rusty where pyrite bearing, consisting of rhyolitic to dacitic ash and lapilli tuffs. This sequence of felsic volcanics appears to represent the terminal stages of volcanism in the area. This unit is important as a marker horizon for ore mineralization since it is host to many base and precious metal deposits, including the Eskay Creek deposit. The Salmon River formation is uppermost in the Hazelton Group strata, and consists of mainly turbiditic siltstones and fine sandstones with rare conglomerate, tuff, or volcanic interbeds. These rocks are gradational to the overlaying Bowser Lake Group sedimentary rocks.

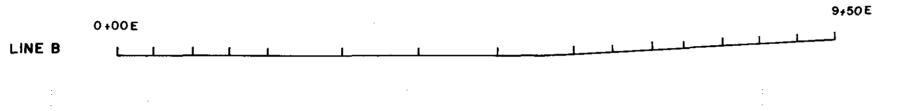
2.2 PROPERTY GEOLOGY

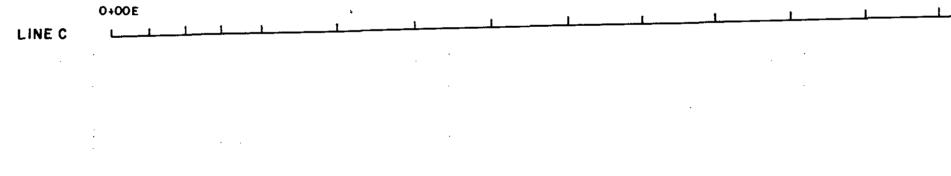
Results of mapping at a 1:20,000 scale are shown on Figure 3. The centre of the claim block, and western margin of the Sib claims, are underlain by a sequence of argillite and siltstone which trends northerly along Coulter Creek. These are highly folded, steeply dipping to the east and west. The western portion of the property through the centre of the Noot 1 and 3 claims, is predominantly underlain by volcanic breccia and tuff. Felsic volcanic rocks, which crop out in pods along this trend, are interpreted to belong to the Mount Dilworth formation. Minor offsets along the trend, as mapped by a "marker" horizon thin band of argillaceous siltstone, are interpreted to be minor faults cross cutting bedding. A competent, resistive ridge of dacite outcrop appears to be an intrusive stock within the volcanics. Highly visible, gossanous bluffs which crop out east of Coulter Creek within the Sib claims (owned by Silver Butte Resources and American Fibre Corporation) are predominantly felsic volcanic (rhyolite) breccia and tuff. Recent detailed mapping by R.D. Bartsch of the Mineral Deposit Research Unit of the University of British Columbia indicates that these rocks comprise a rhyolite flow-dome complex which forms a linear belt several kilometres long, trending from the Sib property north-easterly to Eskay Creek. They are highly mineralized and intensely altered. Felsic volcanic rocks are interpreted to represent a fissure eruptive centre. These rocks comprise the stratigraphic footwall to the Eskay Creek deposits.

3.0 GEOCHEMISTRY

3.1 SAMPLING PROCEDURE


A total of nine rock samples and 46 soil samples were taking from the Noot claims. Sample locations are shown on Figure 3. Rock samples were taken from pyritiferous felsic and andesitic volcanics along the western and eastern margins of the claim, within and adjacent to the volcanic tuffs and breccias of these areas. Soil sampling was conducted along three east-west lines (Lines LA, LB and LC) to cross the north-south stratigraphy of the area. This was a reconnaissance style sampling procedure with 200 metre line spacing and 50 and 100 metre sampling spacings. All soil samples were taken from the "B" horizon at depths ranging from 10 to 30 cm.

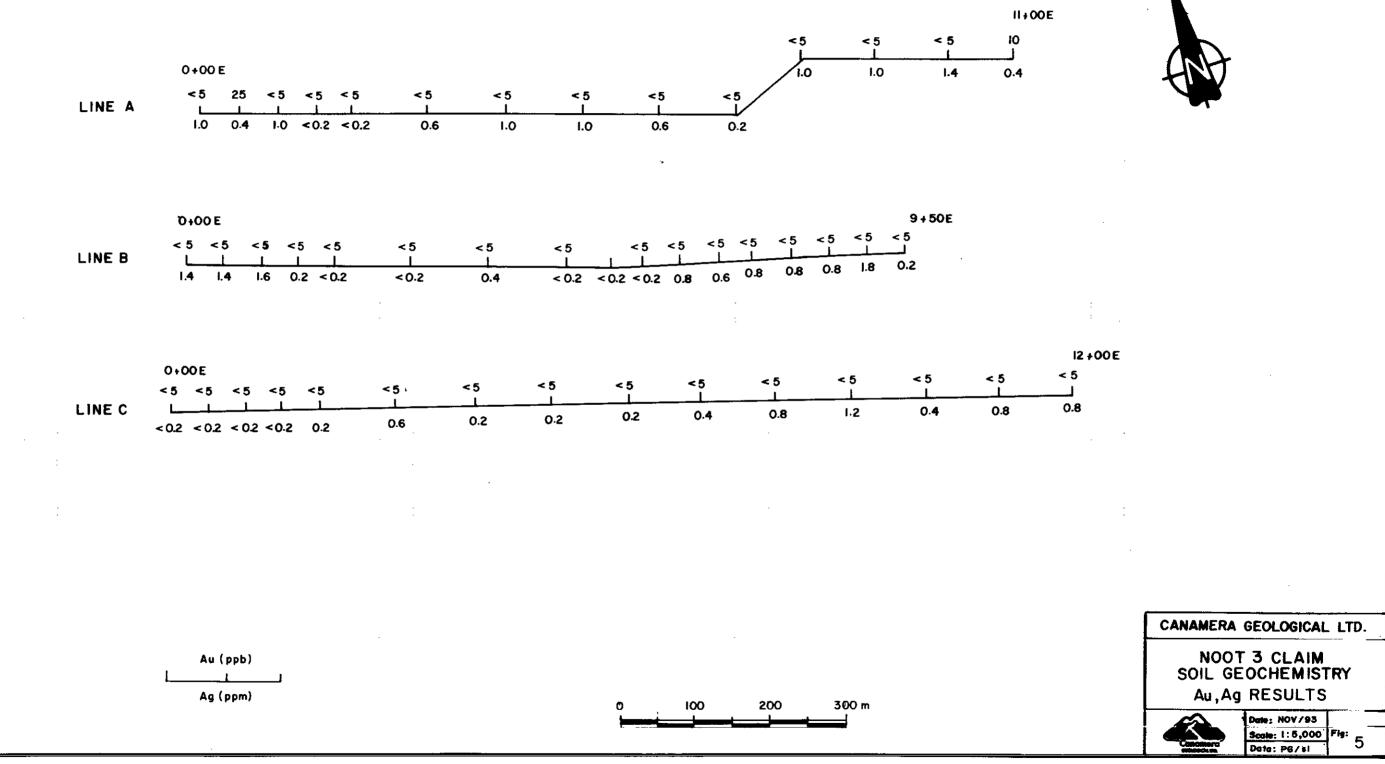

3.2 SAMPLE RESULTS

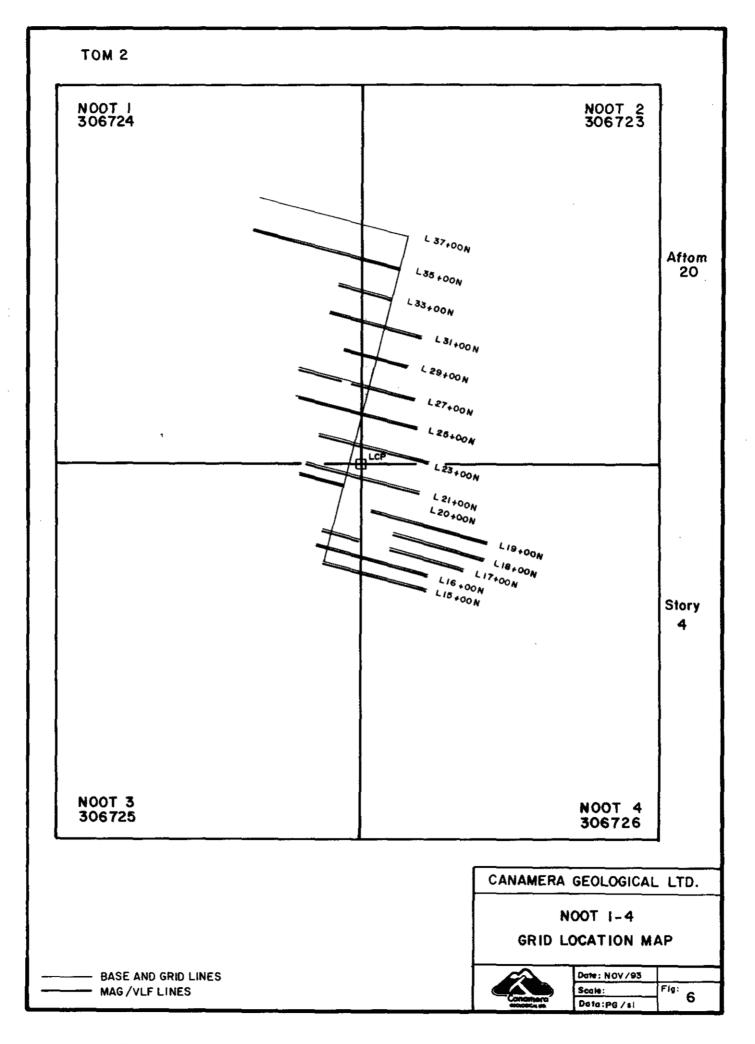

All soil and rock samples were shipped to Chemex Labs Ltd. for 32 element ICP analysis, and fire assay for gold. Copies Chemex Labs certificates of analysis are contained within the appendix.

Plotted soil sample assay results for Au and Ag are shown on Figure 5. The majority of the soil samples contained assay values for gold below the lower detection limit of analysis. Two samples on Line A returned Au values of 10 and 25 ppb. Silver values vary from below detection to a high of 1.8 ppm near the east end of Line B. Zinc values vary from 32 ppm to a high of 306 ppm. Values over 100 ppm appear to be anomalous. Other base metal values are relatively low and non-anomalous.

Several rock samples returned gold assay values with a high of 1200 ppb from sample 2766. This sample also contained the highest Fe (10.05%) and As (1460 ppm), possibly correlating high gold values with high percentages of pyrite and arsenopyrite. This sample was taken from silicified pyritiferous felsic breccia on the Noot 2 claim. More rock sampling, along with further detailed mapping, would help define gold bearing terrains.

300m 100 200


II +00 E


12+00E

CANAMERA GEOLOGICAL LTD.

NOOT 3 CLAIM SOIL GEOCHEMISTRY GRID LINES

Dute: NOV/93	
Scale: 1:5,000	Fig: A
Data: PG /sl	

4.0 GEOPHYSICS

4.1 Procedure and Instrumentation

4.1.1 Survey Parameters

- survey line separation 100 meters detail and 200 meters for reconnaissance lines.
- data station spacing 12.5 m.
- horizontal control survey lines were located using hip chain and compass from a base line established along Coulter Creek at azimuth 15 degrees.
- a total of 10.65 km. of VLF-EM data were accumulated.
- a total of 10.65 km. of magnetic data were accumulated.

4.1.2 Equipment Parameters

- EDA Omni Plus combined VLF-EM and magnetometer
- in-phase (dip angle) and quadrature (out-of-phase) measured in percent at each station
- field strength measured at each station
- transmitting stations NLK (24.8 kHz.) Seattle WA
 - NSS (21.4 kHz.) Annapolis MD
- initialization direction easterly
- earth's total magnetic field measured in gammas (nanoteslas)
- magnetic variations controlled by automatic magnetic base station recording every 30 seconds
- instrument accuracy +/- 0.1 gamma
- station repeatability better than +/- 3 gammas in low gradients

4.1.3 Equipment Specifications - see Appendix II

4.1.4 Calculations

4.1.4.1 Total Field Magnetic Survey

Total field magnetic readings were individually corrected for variations in the earth's magnetic field using magnetic base station values. The formula used for magnetic corrections was: CTFR = TFR + (DBL - BSR) (gammas) where:

CTFR = Corrected Total Field Reading

TFR = Total Field Reading

DBL = Datum Base Level

BSR = Base Station Reading

4.1.4.2 VLF-EM Survey

Seattle VLF-EM data in-phase and out-of-phase data values on lines 1500N, 1600N, 1700N (2450E to 2712.5E), 2000N, 2100N, 2300N, 2500N, 2700N, 3500N and 3700N were multiplied by -1 in order to correct for a direction reversal in these data. The reversal was caused by a slight change in direction when the instrument was initialized from one day to the next. This can occur when the station direction is close to the instrument threshold direction which determines the sign of the in-phase and out-of-phase data to be recorded.

4.1.5 Presentation

- Seattle VLF-EM in-phase, out-of-phase and field strength readings are presented in profile form on Figure # 6-1 at a scale of 1:5000.
- Annapolis VLF-EM in-phase, out-of-phase and field strength readings are presented in profile form on Figure # 6-2 at a scale of 1:5000.
- Total field magnetic data are presented in profile form on Figure # 6-3 at a scale of 1:5000.

4.2 VLF-EM SURVEY RESULTS

VLF-EM signal strength from the Seattle transmitter was higher than from Annapolis and the response to conductivity was more definitive in the Seattle data. For this reason, after comparison with the Annapolis data, only the Seattle data were used in the present VLF-EM interpretation.

Although the large 200 meter separation between reconnaissance survey lines north of line 2100N makes it difficult to confidently predict conductivity continuation from line to line an overview of the VLF-EM results suggests a group of conductors trending roughly to the north across the entire grid. Most conductors, especially in the south, produced a strong response. Profiles indicate that the double conductor on the east portion of lines 1700N, 1800N and 1900N (3200E to 3300E) is a high conductivity feature probably near surface but within bedrock. Another strong high conductivity response is evident on line 1500N at 2975E. These two features are the best candidates in the search for sulphide mineral occurrences and related precious metals. These conductors as well as other conductive trends within the grid are probably related to the sequence of steeply dipping argillite and siltstone rocks trending northerly along Coulter Creek. Conductivity in this north trending group of conductors may be associated with carbonaceous material within the sequence as well as faulting along bedding planes with related metallic sulphide mineral emplacement producing the high conductivity mentioned above. The high conductivity anomaly on line 1500 N at 2975 E and the conductive trend from line 1500 N at 3062.5 E to line 1600 N at 3025 E show direct correlation with magnetic highs. This suggests conductive pyrrhotite as the cause of conductivity and reinforces the interpretation of the presence of sulphide minerals associated with the northerly trending group of conductors seen on the Noot grid.

4.3 MAGNETOMETER RESULTS

Magnetic survey results show a number of magnetic highs trending northerly. Except for those mentioned above, the magnetic high anomalies do not correlate with conductivity and are not parallel to the conductive trends. This suggests that these unrelated magnetic features are independent of the argillite and siltstone sequence and therefore could be part of a more magnetic sequence of volcanic rocks or a more basic intrusive rock type in the form of narrow dykes.

Minor short wavelength (mostly single station) magnetic highs at various locations probably represent near surface magnetic sources such as magnetic boulders or local occurrences of slightly more magnetic rock.

5.0 RECLAMATION

The remains of a previous exploration camp were discovered on the NOOT 1 claim. The apparent 2 tent camp had been built in an open area within the alpine terrain on the northwest boundary of the NOOT 1 claim. Remains of this camp containing wood floors and frames, canvasses, tarps, and other supplies had been laind in a rough pile. All the remaining debris was collected and repiled by Canamera crew, and clean-up was completed by burning of the pile. Only debris that could not be burnt was slung out by helicopter, and then sent on to Bob Quinn for disposal. Copies of before and after reclamation photos are shown in Figure **8**.

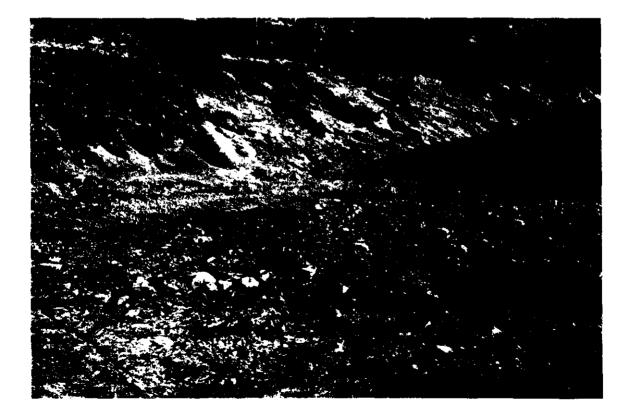


Figure 8 - Photos showing old exploration camp on the Noot 1 claim, before reclamation (above), and after (next page)

6.0 REFERENCES

BARTSCH, R.D., ESKAY CREEK AREA, STRATIGRAPHY UPDATE (104B/9, 10), Mineral Deposit Research Unit, the University of British Columbia, in Ministry of Energy, Mines and Petroleum Resources geological fieldwork 1001, paper 1992-1.

BARTSCH, R.D., A RHYOLITE FLOW DOME IN THE UPPER HAZELTON GROUP, ESKAY CREEK AREA (104B/9, 10), Mineral Deposit Research Unit, the University of British Columbia, in the Ministry of Energy, Mines and Petroleum Resources geological fieldwork 1992, paper 1993-1.

BRITTON, J.M., BLACKWELL, J.D., AND SCHROETER, T.G., #21 ZONE DEPOSITS, ESKAY CREEK, NORTHWESTERN BRITISH COLUMBIA, British Columbia Geological Survey Branch of the Ministry of Energy, Mines and Petroleum Resources, Exploration in British Columbia summary 1989.

CHAPMAN, J., AND RAVEN, W., GEOLOGICAL, GEOPHYSICAL, AND GEOCHEMICAL COMPILATION CONSOLIDATED POWERGEM RESOURCE CORPORATION ALBINO LAKE PROJECT (ALPHA, BETA, GAMMA, EPSILON, OMEGA, RHO, PI, DELTA PHI CLAIMS), December 15, 1989 assessment report of Orequest Consultants Limited.

DAWSON, G.L., AND HARRISON, D.J., GEOLOGICAL REPORT ON THE AFTOM 9 CLAIM, Skeena Mining Division for Waterford Resources Ltd.

HICKS, K.E. AND METCALFE, P., GEOLOGICAL REPORT ON THE AFTOM 5, 6, 7, 10, 11, 13 AND 20 CLAIMS, for Tagish Resources Ltd., Dec. 04, 1991.

HOPPER, D.H., ASSESSMENT, PROSPECTING, ROCK SAMPLING REPORT ON THE FRED 16 AND DUP 8 CLAIMS, Nov. 17, 1989.

KILLIN, KEVIN, REPORT ON A COMBINED HELICOPTER BORNE MAGNETIC ELECTROMAGNETIC AND VLF-EM SURVEY, UNUK RIVER AREA, Unuk River Area, Northeastern British Columbia, for Swift Minerals Ltd., Oct. 20, 1989.

LEWIS, P.D., STRUCTURAL GEOLOGY OF THE PROUT PLATEAU REGION, ISKUT RIVER MAP AREA, BRITISH COLUMBIA (104 B/9), Mineral Deposit Research Unit, the University of British Columbia, in the Ministry of Energy, Mines and Petroleum Resources geological fieldwork 1001, paper 1992-1.

MACDONALD, J., LEWIS, P.D., ETTLINGER, A.D., BARTSCH, R.D., MILLER, B.D. AND LOGAN, J.M., BASALTIC ROCKS OF THE MIDDLE JURASSIC SALMON RIVER FORMATION, NORTHWESTERN BRITISH COLUMBIA, Mineral Deposit Research Unit, the University of British Columbia, in the Ministry of Energy, Mines and Petroleum Resources geological fieldwork 1992, paper 1993-1. **ROTH, T.**, SURFACE GEOLOGY OF THE 21A ZONE, ESKAY CREEK, BRITISH COLUMBIA, Mineral Deposit Research Unit, the University of British Columbia, in the Ministry of Energy, Mines and Petroleum Resources geological fieldwork, 1992, paper 1993-1.

VISSER, SYD, MAGNETOMETER AND VLF-EM SURVEY ON THE FRED 16 CLAIM for Silver Princess Resources Inc., Skeena MD, BC, October, 1989.

7.0 COST STATEMENT

SALARIES	2 Line Surveyor/Samplers X 6 Mandays X \$200/day 2 Geophysical Technicians X 6 Mandays X \$250/day Perry Grunenberg, P. Geo. X 6 Mandays X \$350/day	3,000.00
TRAVEL CO	STS Vehicle Rentals (apportioned) & Airline Tickets (apportioned)	2,000.00
CAMP COST	S Camp Rental: 6 days X \$250/day Food & Supplies: 6 days X \$150/day	1,500.00 900.00
HELICOPTE	R COST VIH Helicopter 12 hrs. X \$720/hr.	8,640.00
GEOPHYSIC	AL EQUIPMENT RENTAL Computer & Radios: 6 days X \$800/day	4800.00
ASSAY COS	TS 55 Samples X \$30/sample	<u>1,650.00</u>
	SUB TOTAL \$2	26,990.00
CONTINGEN	ACIES At 10% (Shipping Costs, Communications, Fuels, Office Supplies, etc.)	<u>2699.00</u>
	GRAND TOTAL \$2	29,689.00

%0 STATEMENT OF QUALIFICATIONS

PERRY GRUNENBERG, B.Sc., F.G.A.C., P. Geo.

ACADEMIC

1982	B. Sc. in Geol	logy The University of British Columbia
1987	Fellowship	Geological Association of Canada
1992	Membership	Association of Professional Engineers and Geoscientist of British Columbia
PROFESSIONAL		
1989 TO PRESENT		P AND L GEOLOGICAL SERVICES, SMITHERS, BC
		Contract geologist working on mining and mining exploration throughout BC and the Northwest Territories
1984 to 1989		HUGHES-LANG EXPLORATIONS, VANCOUVER, BC
		Project geologist employed to work on geological, geophysical, and geochemical surveys with follow-up drilling and trenching, in areas throughout BC and the Yukon.
1983		STRATO GEOLOGICAL ENGINEERING LTD. VANCOUVER, BC
		Project geologist contracted to work in all aspects of mining exploration on properties in Nevada and Washington, USA, and in British Columbia.
1982		P AND L EXPLORATION, VANCOUVER, BC
		Contract geologist involved in evaluating placer gold prospects near Quesnel and Princeton, BC
1978 to 1981		RIO ALGOM, KENNECOTT CANADA, MARK MANAGEMENT LTD
		Summer student involved in exploration projects in British Columbia.

(1)

CERTIFICATE

- I, Edwin Ross Rockel, Geophysicist of Surrey, British Columbia, Canada, hereby certify that:
 - 1. I received a B.Sc. degree in Geophysics from the University of British Columbia in 1966.
 - 2. I am a Consulting Geophysicist contracted to Canamera Geological Ltd. located in the City of Vancouver, in the Province of British Columbia.
 - 3. I currently reside at 13000 54A Ave, in the City of Surrey, in the Province of British Columbia.
 - 4. I have been practising my profession since graduation.
 - 5. I am a Professional Geophysicist registered in the Province of Alberta.
 - 6. I am a Certified Professional Geological Scientist registered in the United States of America.
 - 7. I am a Professional Geoscientist registered in the Province of British Columbia.

Date: J_{an} 10 \93 Signed:

Surrey, British Columbia

FESSIC

Edwin Ross Rockel U B.Sc., P.Geoph., P.G.S., P.Geo.

APPENDIX I

CHEMEX LABS ASSAY CERTIFICATES

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: CANAMERA GEOLOGICAL LTD.

220 CAMBIE ST., SUITE 290 VANCOUVER, BC V6B 2M9 Page Number : 1-B Total Pages : 1 Certificate Date: 15-OCT-93 Invoice No. : 19322356 P.O. Number : Account : KBO

Project : Comments:

1

							<u></u>	CERT	RTIFI	CATE	A9322356						
SAMPLE	PREP CODE		Mo ppm	Na %	Ni ppm	P PPm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U Ppm	v ppm	W	Zn ppn	
A002760 A002761 A002762 A002763 A002764	205 2 205 2 205 2 205 2 205 2 205 2	74	15 1 2 6 5	0.04 0.02 0.02 0.02 0.02	65 36 41 3 1	2250 1520 1630 660 1420	6 2 2 10 6	< 2 < 2 < 2 < 2 < 2 < 2	6 11 9 2 1	22 · 6 ·	0.25 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	134 110 77 22 10	< 10 < 10 < 10 < 10 < 10 < 10	50 52 44 30 16	

**

Jew Horseller

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

fo: CANAMERA GEOLOGICAL LTD.

**

220 CAMBIE ST., SUITE 290 VANCOUVER, BC V6B 2M9

Project : ESKAY Comments: ATTN: J. DUPUIS

Invoice No. 1 P.O. Number :19322115 KBO Account

SAMPLE PREP CODE Ho Na Ni P Pb Sb Sc Sr Ti Ti U V M Sn AD2256 200 274 1 0.01 5.5. 54 1.4 0.01 <10 52 1.0 1.4 AD2256 200 274 1.5 0.01 1.4 0.01 <10 62 <10 1.4 AD2256 200 274 1.5 0.02 1.2 60 40 52 2.4 3.4 0.01 <10 62 <10 1.5 0.02 1.0				r	_				. <u></u>	<u>. </u>			CE	RTIF	CATE	OF A	NALY	'SIS	A9322115
002766 208 274 6 0.01 6 550 54 12 4 1 < 0.01 10 62 <10 14 002767 208 274 12 0.02 2 320 70 66 2 43 <0.01 <10 62 <10 14 002768 208 274 16 0.02 12 60 40 52 2 39 < 0.01 <10 15 <10 8 002769 208 274 16 0.02 12 60 40 52 2 39 < 0.01 <10 19 <10 18 002769 208 274 19 0.01 3 150 124 72 1 16 < 0.01 <10 10 9 <10 24 208 274 11 0.66 107 420 30 2 18 143 0.25 <10 <10 72	SAMPLE																		
208 274 11 0.66 107 420 30 2 18 143 0.25 < 10 10 162 10 72 208 274 20 0.19 111 590 32 2 30 50 0.25 < 10 < 10 208 10 80 208 274 20 0.19 111 590 32 2 30 50 0.255 < 10 < 10 208 10 80	002767 002768	208 208 208	274 274 274		20 50).02).02	2 12	550 320 60	70 40	66 52	2 2	43 < 39 <	0.01	< 10 < 10	< 10 < 10	15 19	< 10 < 10	8 18	
		208 208	274 274	1: 2(L 0) 0).66).19				2 2									
				ł															
		1																	
· · ·																			Jash Sichin

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: CANAMERA GEOLOGICAL LTD.

**

220 CAMBIE ST., SUITE 290 VANCOUVER, BC V6B 2M9 Pac mber :1-B Tota ages :2 Certificate Date: 13-OCT-93 Invoice No. :19322355 P.O. Number : Account :KBO

Project :	
Comments:	

											CE	RTIF	CATE	A9322355			
SAMPLE	PREP CODE		Mo ppm	Na %	Ni ppm	DDm D	Pb	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	D D	V ppm	W	Zn ppm	
NT-3-93 LA00+00E			1	0.07	15	1010	12	< 2	7	17	0.77	< 10	< 10	170	< 10	52	
NT-3-93 LA00+50E			6	0.02	19	810	16	< 2	5	8	0.23	< 10	< 10	74	< 10	84	
NT-3-93 LA01+00E NT-3-93 LA01+50E			1	0.06 0.01	24 27	1050 1220	12 8	< 2 < 2	13	13 10	0.46	< 10	< 10	131	< 10	52	
NT-3-93 LA02+00E				0.02	35	2270	8	< 2	4	14	0.04 0.03	< 10 < 10	< 10 < 10	104 79	< 10 < 10	84 112	
NT-3-93 LA03+00E	201	229	7	0.03	18	1150	10	< 2	4	25	0.29	< 10	< 10	101	< 10	174	
NT-3-93 LA04+00E			11	0.01	39	2280	20	< 2	4	16	0.01	< 10	< 10	41	< 10	246	
NT-3-93 LA05+00E			11	0.01	39	2190	12	< 2	3	23	0.01	< 10	< 10	54	< 10	306	
NT-3-93 LA06+00E NT-3-93 LA07+00E			7	0.18 0.42	37	1730	14	2	8	58	0.16	< 10	< 10	70	< 10	292	
			3	U.4.4	46	1270	10	< 2	14	83	0.34	< 10	< 10	109	< 10	162	
NT-3-93 LA08+00E			4	0.04	25	1340	24	2	9	11	0.36	< 10	< 10	92	< 10	134	
NT-3-93 LA09+00E			4	0.02	30	760	12	< 2	5	10	0.16	< 10	< 10	80	< 10	98	
NT-3-93 LA10+00E NT-3-93 LA11+00E			2	0.10 0.06	15 34	830 2320	16 18	4	9 5	29 24	0.77 0.33	< 10 < 10	< 10 < 10	143 127	< 10 < 10	58 78	
NT-3-93 LB0+00E				0.09	11	790	24	< 2	5	12	0.33	< 10	< 10	56	< 10	82	
NT-3-93 LB0+50E	201	229	6	0.07	7	700	24		6	4	0.27	< 10	< 10	48	< 10	68	
	201		3	0.02	13	830	26	< 2	3	10	0.21	< 10	< 10	39	< 10	48	
NT-3-93 LB1+50E			3	0.04	15	1300	16	< 2	10	23	0.44	< 10	< 10	147	< 10	80	
NT-3-93 LB2+00E		229	2	0.02	54	1980	22	4	10	80	0.03	< 10	< 10	74	< 10	174	
NT-3-93 LB3+00E	201	229	3	0.01	25	2060	16	2	5	34	0.02	< 10	< 10	61	< 10	180	
NT-3-93 LB4+00E NT-3-93 LB5+00E		229	4	0.06	14	1380	8	< 2	5	22	0.10	< 10	< 10	72	< 10	118	
NT-3-93 LB5+50E		229 229	6 2	0.01 0.05	8 17	1480 4100	10 14	< 2 2	23	4 22	0.07 0.08	< 10 < 10	< 10 < 10	79 64	< 10 < 10	64 84	
NT-3-93 LB6+00E	201		3	0.03	25	1080	2	< 2	7	50	0.02	< 10	< 10	58	< 10	166	
NT-3-93 LB6+50E				0.05	19	1220	6	2	5	15	0.17	< 10	< 10	77	< 10	124	
NT-3-93 LB7+00E	201	229	8	0.02	3	780	22	< 2	2	7	0.35	< 10	< 10	75	< 10	48	
NT-3-93 LB7+50E		229		0.04	12	790	14	< 2	- 4	14	0.39	< 10	< 10	111	< 10	52	
	201		1	0.12	13	1460	8	4	7	32	0.64	< 10	< 10	145	< 10	68	
NT-3-93 LB8+50E NT-3-93 LB9+00E	201 201		6 13	0.07 0.04	13 15	750 580	18 30	2 < 2	8 6	23 60	0.50 0.21	< 10 < 10	< 10 < 10	110 51	< 10 < 10	64 80	
NT-3-93 LB9+50E	201	229	3	0.02	18	400	16	2	5	8	0.21	< 10	< 10	94	< 10	32	
NT-3-93 LC00+00E			2	0.01	53	910	- 8	< 2	5	10	0.08	< 10	< 10	48	< 10	80	
NT-3-93 LC00+50E	201	229	2	0.01	98	580	8	< 2	5	9	0.01	< 10	< 10	44	< 10	154	
NT-3-93 LC01+00E			3	0.01	44	680	16	4	6	8	0.13	< 10	< 10	74	< 10	74	
NT-3-93 LC01+50E	201	229	1	0.02	14	1110	16	4	4	9	0.15	< 10	< 10	132	< 10	58	
NT-3-93 LC02+00E	201	229	1	0.06	14	1390	6	< 2	10	22	0.52	< 10	< 10	151	< 10	76	
NT-3-93 LC03+00E			3	0.07	14	1200	8	< 2	7	22	0.46	< 10	< 10	132	< 10	62	
NT-3-93 LC04+00E			2	0.01	26	3120	12	< 2	14		< 0.01	< 10	< 10	53	< 10	80	
NT-3-93 LC05+00E			2	0.20	20	1580	< 2	< 2	7	77	0.12	< 10	< 10	76	< 10	112	
NT-3-93 LC06+00E	¥01	229	< 1	0.03	9	1190	4	< 2	5	14	0.35	< 10	< 10	115	< 10	62	
<u>_</u>	L																

CERTIFICATION: HartBuchler

¢

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CANAMERA GEOLOGICAL LTD.

**

220 CAMBIE ST., SUITE 290 VANCOUVER, BC V6B 2M9

Pε umber :2-A To., ages :2 Certificate Date: 13-OCT-9 Invoice No. :19322355 P.O. Number : Account :KBO

Project :
Comments:

					Al %				Bi ppm		CERTIFICATE OF ANALYSIS A9322355										
SAMPLE	PREP CODE	Au p FA+		Ag ppm		As ppm	Ba ppm	Be ppm		Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
NT-3-93 LC07+001 NT-3-93 LC08+003 NT-3-93 LC09+001 NT-3-93 LC10+001 NT-3-93 LC10+001 NT-3-93 LC11+001	E 201 22 E 201 22 E 201 22	9 < 9 < 9 <	5 5 5 5 5 5	0.4 0.8 1.2 0.4 0.8	3.34 1.20 3.54 1.94 2.36	< 2 < 2 2 < 2 < 2 < 2 < 2	50 30 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 10	0.21 0.05 0.14 0.11 0.16	0.5 < 0.5 0.5 0.5 0.5	13 6 6 8	34 37 31 26 28	24 29 28 26 28	5.16 6.45 5.08 5.89 6.82	10 20 10 20 20	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.04 0.06 0.05 0.07	10 10 20 10 10	0.66 0.29 0.48 0.16 0.26	785 170 185 185 295
VT-3-93 LC12+001	E 201 22	9 <	5	0.8	3.23	18	100	< 0.5	< 2	0.06	< 0.5	6	65	30	4.04	10	< 1	0.07	10	0.95	200
								· .			<u>-</u>				ERTIFIC		195	H	Sid	hler	

APPENDIX II

EQUIPMENT SPECIFICATIONS

• • • • • • • • • • **Specifications*** range accommodates new Puerto Rico station at 28.5 kHz Transmitting Stations Measured, . Up to 3 stations can be automatically measured at any given grid location within frequency tuning range Recorded VLF Magnetic quadrature (or alternately, horizontal amplitude) Standard Memory Capacity 800 combined VLF magnetic and VLF electric measurements as well as gradiometer and magnetometer readings Display Custom designed, ruggedized liquid crystal display with built-in heater and an operating temperature range from -40°C to +55°C. The display contains six numeric digits, decimal point, battery status monitor, signal strength status monitor and function descriptors. RS232C Serial I/O Interface 2400 baud rate, 8 data bits, 2 stop bits, no parity memory) B. Self Test (hardware) automatic tilt compensation Operating Environmental Range-40°C to +55°C; 0 - 100% relative humidity; Weatherproof DC battery cartridge or belt; 18V DC disposable battery belt: 12V DC external power source for base station operation only.

)

*Preliminary

EDA instruments Inc., 4 Thomcliffe Park Drive, Toronto, Ontario Canada M4H 1H1 Telex: D6 23222 EDA TOR, Cables: Instruments Toronti, 416 425-7800

In USA, EDA Instruments Inc., 5151 Ward Road, Wheat Ridge, Colorado U.S.A. 80033 (303) 422-9112

Printed in Canada

omning The line Machatometer

specifications

Specifications	
Dynamic Range	18,000 to 110,000 gammas. Roll-over display feature suppresses first significant digit upon exceeding 100,000
	gammas.
	Tuning value is calculated accurately utilizing a specially developed tuning algorithm
	. ± 15% relative to ambient field strength of last stored value
Display Resolution	
Processing Sensitivity	
Statistical Error Resolution	0.01 gamma
Absolute Accuracy	. ± 1 gamma at 50,000 gammas at 23°C ± 2 gamma over total temperature range
Standard Memory Capacity	
Total Field or Gradient	1,200 data blocks or sets of readings
Tie-Line Points Base Station	5,000 data blocks or sets of readings
Display	Custom-designed, ruggedized liquid crystal display with an
	operating temperature range from -40°C to +55°C. The
	display contains six numeric digits, decimal point, battery
	status monitor, signal decay rate and signal amplitude monitor and function descriptors.
RS 232 Serial I/O interface	
Gradient Tolerance	6.000 gammas per meter (field proven)
Test Mode	A. Diagnostic testing (data and programmable memory)
	8. Self Test (hardware)
	Optimized miniature design, Magnetic cleanliness is consistent with the specified absolute accuracy.
Gradient Sensors	0.5 meter sensor separation (standard), normalized to
	gammas/meter, Optional 1.0 meter sensor separation available. Horizontal sensors optional.
Sensor Cable	, Remains flexible in temperature range specified, includes
	strain-relief connector
	Programmable from 5 seconds up to 60 minutes in 1 second increments
	-40°C to +55°C; 0-100% relative humidity; weatherproof
Power Supply	Non-magnetic rechargeable sealed lead-acid battery cartridge or belt; rechargeable NiCad or Disposable battery cartridge or belt; or 12V DC power source option for base station operation.
Battery Cartridge/Belt Life	2,000 to 5,000 readings, for sealed lead acid power supply,
	depending upon ambient temperature and rate of readings
Weights and Dimensions	•
Instrument Console Only	, 2.8 kg, 238 x 150 x 250mm
NiCad or Alkaline Battery Cartridge	1.2 kg, 235 x 105 x 90mm
NiCad or Alkaline Battery Belt	1.2 kg, 540 x 100 x 40mm
Lead-Acid Battery Cartridge	
Lead-Acid Battery Belt	
Sensor	, 1.2 kg, Sommi diameter x 200mm
Gradient Sensor (0,5 m separation - standard)	2.1 kg. 56mm diameter x 790mm
Gradient Sensor	
(1.0 m separation - optional),	, 2.2 kg, 56mm diameter x 1300mm
	Instrument console; sensor; 3-meter cable, aluminum
	sectional sensor staff, power supply, harness assembly, operations manual.
Base Station Option	Standard system plus 30 meter cable
Gradiometer Option	Standard system plus 0.5 meter sensor

E D A Instruments Inc. 4 Thorncliffe Park Drive Toronto, Ontario Canada M4H 1H1 Telex: 06 23222 EDA TOR Cable: Instruments Toronto (4163 425 7800

In U.S.A. E D A Instruments Inc. S151 Ward Road Wheat Ridge, Colorado U.S.A. 80033 (303) 422 9112

Printed in Canada

APPENDIX III

DATA LISTING

CANAMERA GEOLOGICAL LTD. Data Listing

Area:	ESKAY CREEK, B.C.	Current File Name:	NOODATA.GPH
Grid:	NOOT 1 - 4	From File Name:	NZZ.XYZ
Date:	December, 1993		

INSTRUMENT TYPE: EDA Omni Plus VLF-EM/Magnetometer System

(Line & Station + = Northings and Eastings, - = Southings and Westings)

DATA TYPE(S):

DATA DETAILS:

#2. Total Field Magnetic Values	Corrected total magnetic field
#3. VLF-EM In-Phase Values	Seattle Transmitter - facing north
#4. VLF-EM Quadrature	Seattle Transmitter - facing north
#5. VLF-EM Field Strength	Seattle total field strength
#6. VLF-EM In-Phase Values	Annapolis Transmitter - facing north
#7. VLF-EM Quadrature	Annapolis Transmitter - facing north
#8. VLF-EM Field Strength	Annapolis total field strength

Easting	Northing	# 1.	# 2.	#3.	# 4.	# 5.	# 6.	#7.	# 8.
		Station							
line 2000									
2200	2000	2200	56986	-3.7	-7.1	23.3	-9.0	4.4	7.5
2212.5	2000	2212.5	56986	0.6	-5.3	23.2	-10.1	4.4	7.5
2225	2000	2225	56995	7.9	-1.4	25.3	-8.5	3.2	7.6
2237.5	2000	2237.5	56987	8.4	-3.6	26.7	-9.0	2.9	7.7
2250	2000	2250	56987	4.3	-8.6	28.6	-8.3	2.9	7.8
2262.5	2000	2262.5	56988	0.9	-10.0	29.1	-8.7	1.3	7.9
2275	2000	2275	56988	4.0	-6.7	28.7	-10.4	0.1	8.0
2287.5	2000	2287.5	56989	3.8	-4.7	29.6	-8.3	0.4	8.0

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8.
2300	2000	2300	56993	3.1	-3.1	29.8	-7.9	0.3	8.0
2312.5	2000	2312.5	56991	3.6	-1.0	29.8	-7.1	0.2	8.1
2325	2000	2325	56989	5.9	1.6	30.0	-8.6	-0.6	8.1
2337.5	2000	2337.5	56991	4.7	5.5	33.1	-7.8	0.3	8.2
2350	2000	2350	56998	-1.0	2.7	33.5	-6.0	0.5	8.2
2362.5	2000	2362.5	56994	-9.5	-1.7	33.2	-3.4	0.5	8.2
2375	2000	2375	56987	-9.3	1.6	32.5	-2.4	1.5	8.1
2387.5	2000	2387.5	56997	-11.5	1.6	32.9	-2.3	1.5	8.3
2400	2000	2400	56997	-11.7	3.4	32.4	-1.6	1.3	8.4
2412.5	2000	2412.5	56994	-19.2	-5.1	32.5	-3.6	-1.9	8.4
2425	2000	2425	57002	-18.3	-4.1	30.5	-6.9	-3.0	8.4
2437.5	2000	2437.5	57001	-17.2	-1.1	29.9	-7.7	-3.8	8.4
2450	2000	2450	57007	-14.8	2.2	28.8	-7.9	-4.5	8.3
2462.5	2000	2462.5	57121	-11.6	2.6	29.5	-5.4	-2.6	8.4
2475	2000	2475	57043	-12.0	0.0	28.9	-4.9	-1.3	8.5
2487.5	2000	2487.5	57015	-12.2	-3.2	28.5	-2.8	0.0	8.7
2500	2000	2500	57009	-13.5	-4.6	28.0	-1.0	2.4	8.9
line 2100									
2200	2100	2200	56989	9.9	-6.8	30.5	-18.3	1.8	8.1
2212.5	2100	2212.5	56990	8.7	-7.2	31.0	-15.4	2.3	8.2
2225	2100	2225	56992	7.8	-5.9	31.8	-11.6	3.3	8.2
2237.5	2100	2237.5	56993	5.7	-6.4	31.2	-8.1	5.5	8.2
2250	2100	2250	56990	4.7	-5.6	31.7	-5.4	5.1	8.2
2262.5	2100	2262.5	56997	6.3	-1.2	32.2	-7.1	3.4	8.3
2275	2100	2275	56997	2.3	-4.7	32.5	-4.7	5.2	8.3
2287.5	2100	2287.5	56995	2.1	-3.7	33.2	-5.3	5.2	8.2
2300	2100	2300	57000	0.4	-0.5	33.9	-7.1	3.5	8.2
2312.5	2100	2312.5	56999	-0.8	-2.0	34.1	-8.4	2.8	8.3
2325	2100	2325	56998	0.8	2.9	34.7	-12.2	1.1	8.2
2337.5	2100	2337.5	56996	-4.6	0.7	35.3	-9.4	2.3	8.3

Eas	ting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8.
	2350	2100	2350	57001	-7.2	0.6	33.2	-6.7	3.4	8.3
2	362.5	2100	2362.5	56999	-9.4	-0.3	33.1	-3.5	4.5	8.3
	2375	2100	2375	56997	-9.1	1.4	32.2	-0.3	5.5	8.4
2	387.5	2100	2387.5	56998	-12.8	-1.6	31.9	-0.4	4.1	8.4
	2400	2100	2400	56995	-9.6	-0.4	30.1	-4.7	1.0	8.4
2	412.5	2100	2412.5	57000	-5.1	1.1	30.8	-7.0	0.0	8.4
	2425	2100	2425	57005	-5.8	-0.5	29.9	-9 .1	-0.3	8.5
2	437.5	2100	2437.5	57001	-3.2	0.1	29.8	-10.0	-1.2	8.5
	2450	2100	2450	57002	-4.1	-2.4	29.7	-9.2	0.3	8.5
2	462.5	2100	2462.5	57009	-1.6	-2.9	29 .1	-9.9	0.3	8.5
	2475	2100	2475	57057	-0.6	-4.3	29.9	-9.5	0.0	8.5
2	487.5	2100	2487.5	57074	0.3	-6.3	30.1	-8.5	1.4	8.4
	2500	2100	2500	57018	2.2	-8.2	29.1	-10.1	1.1	8.5
2	512.5	2100	2512.5	57021	6.0	-4.7	29.2	-10.2	0.6	8.7
	2525	2100	2525	57020	10.2	-2.4	28.6	-9.0	1.8	8.7
2	537.5	2100	2537.5	57025	6.9	-2.9	29.8	-7.5	3.4	8.7
	2550	2100	2550	57026	5.8	-4.1	29.7	-11.7	0.2	8.7
2	562.5	2100	2562.5	57019	7.7	-2.9	29.8	-11.4	0.1	8.7
	2575	2100	2575	57014	10.5	-0.8	29.1	-11.6	0.0	8.7
2	587.5	2100	2587.5	57019	8.9	-3.6	30.3	-10.3	0.8	8.6
	2600	2100	2600	57010	11.4	-8.4	29.5	-11.8	1.3	8.8
2	612.5	2100	2612.5	57009	20.3	-5.7	29.7	-15.6	-0.1	9.1
	2625	2100	2625	57011	20.1	-6.6	30.3	-17.5	0.3	9.2
2	637.5	2100	2637.5	57005	19.6	-6.6	28.7	-19.9	0.1	9.2
	2650	2100	2650	57009	31.3	-1.1	29.6	-22.6	-2.4	9.5
2	662.5	2100	2662.5	57009	41.7	0.3	29.4	-21.4	-4.9	9.6
	2675	2100	2675	57000	47.4	4.2	30.4	-17.4	-4.8	9.3
2	687.5	2100	2687.5	57011	53.8	5.1	32.7	-10.6	-3.9	9.2
	2700	2100	2700	57010	51.7	17.7	35.6	-10.0	-3.7	9.1
2	712.5	2100	2712.5	57013	43.1	14.6	44.7	-8.9	-3.9	9.0

.

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8 .
2725	2100	2725	57017	31.6	7.8	46.5	-7.5	-2.7	9.0
2737.5	2100	2737.5	57017	14.2	7.9	44.8	-4.3	0.3	8.9
2750	2100	2750	57015	-5.9	-1.6	44.6	-4.0	1.9	8.7
2762.5	2100	2762.5	57016	-16.3	-8.9	41.6	-6.1	1.5	8.7
2775	2100	2775	57012	-12.0	-4.1	35.8	-9.3	-0.4	8.6
2787.5	2100	2787.5	57015	-3.6	3.6	36.5	-13.6	-2.2	8.6
2800	2100	2800	57014	-13.0	-4.6	38.7	-10.5	1.8	8.6
2812.5	2100	2812.5	57016	-23.5	-6.7	34.8	-10.5	3.3	8.6
2825	2100	2825	57014	-18.3	-2.7	31.2	-13.1	1.5	8.5
2837.5	2100	2837.5	57010	-7.4	0.8	.28.5	-15.8	2.4	8.4
2850	2100	2850	57010	-2.0	3.0	28.0	-15.7	3.3	8.5
, 2862.5	2100	2862.5	57012	7.0	2.2	27.5	-13.1	6.8	8.4
2875	2100	2875	57013	13.4	11.0	29.4	-11.0	7.3	8.3
2887.5	2100	2887.5	56940	18.6	12.9	30.3	-14.6	3.7	8.1
2900	2100	2900	57022	15.5	6.6	33.9	-9.2	0.1	8.5
2912.5	2100	2912.5	57023	14.7	3.9	35.0	-10.3	-3.0	8.5
2925	2100	2925	57019	10.1	-0.4	36.2 ⁻	-12.0	-7.7	8.5
2937.5	2100	2937.5	57015	7.5	0.4	36.9	-9.2	-10.4	8.4
2950	2100	2950	57022	2.2	0.2	34.9	-3.7	-11.3	8.5
2962.5	2100	2962.5	57023	7.8	0.6	36.0	5.6	-5.6	8.5
2975	2100	2975	57023	8.3	1.9	35.2	10.9	-5.2	8.6
2987.5	2100	2987.5	57025	7.6	-0.7	36.2	22.5	-5.1	8.7
3000	2100	3000	57022	9.1	-1.8	35.5	29.9	-3.6	8.5
line 2300									
2175	2300	2175	57001	-16.6	3.0	29.9	-6.5	-1.1	7.3
2187.5	2300	2187.5	57004	-19.1	2.6	30.3	-6.1	-0.1	7.2
2200	2300	2200	57003	-18.8	0.0	30.7	-7.3	-0.1	7.3
2212.5	2300	2212.5	56998	-22.6	-0.4	30.1	-8.3	-0.2	7.3
2225	2300	2225	56997	-18.9	-2.0	28.4	-10.0	-1.4	7.3
2237.5	2300	2237.5	56995	-18.9	0.4	29.0	-9.9	-2.1	7.3

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	<i>#</i> 7.	# 8 .
2250	2300	2250	56996	-18.5	0.3	28.5	-13.1	-3.4	7.3
2262.5	2300	2262.5	57001	-14.7	2.6	26.2	-15.9	-0.7	7.2
2275	2300	2275	56998	-10.6	5.0	27.9	-15.5	2.6	7.4
2287.5	2300	2287.5	56998	-7.8	3.7	28.1	-18.0	2.8	7.3
2300	2300	2300	56999	-10.1	0.3	27.2	-19.9	1.7	7.1
2312.5	2300	2312.5	57001	-6.2	1.7	28.2	-20.6	1.7	7.1
2325	2300	2325	57009	-3.5	2.7	28.3	-20.0	0.2	7.2
2337.5	2300	2337.5	57037	0.6	6.9	28.1	-22.4	-3.2	7.3
2350	2300	2350	57016	1.2	5.9	30.4	-16.3	-0.9	7.6
2362.5	2300	2362.5	57004	-2.8	2.6	30.8	-6.3	3.9	7.6
2375	2300	2375	57007	-4.8	2.0	30.4	-3.2	3.8	7.5
2387.5	2300	2387.5	57006	-5.8	0.8	28.8	-1.4	2.5	7.4
2400	2300	2400	57007	-5.8	1.2	29.2	-1.8	2.6	7.4
2412.5	2300	2412.5	57009	-5.5	-1.7	27.6	0.1	2.4	7.3
2425	2300	2425	57007	-1.7	-0.2	27.9	-1.2	0.0	7.3
2437.5	2300	2437.5	57010	1.0	0.7	28.1	-4.1	-0.8	7.3
2450	2300	2450	57009	0.7	-3.3	28.4	-6.1	-1.0	7.4
2462.5	2300	2462.5	57022	0.9	-4.6	28.1	-6.6	-1.5	7.4
2475	2300	2475	57007	4.9	-0.4	29.0	-6.8	-1.0	7.5
2487.5	2300	2487.5	57010	5.4	3.1	31.1	-8.9	-1.8	7.3
2500	2300	2500	57008	-3.4	-1.7	31.7	-9.4	-0.4	7.3
2512.5	2300	2512.5	56997	-9.4	-7.3	29.5	-7.2	1.9	7.3
2525	2300	2525	57007	-14.5	-8.8	27.3	-3.9	3.4	7.2
2537.5	2300	2537.5	57008	-16.3	-3.0	24.3	-5.2	1.6	7.0
2550	2300	2550	57003	-6.2	2.2	19.7	-3.1	2.4	6.9
2562.5	2300	2562.5	57006	4.8	3.8	20.3	-5.0	1.1	6.9
2575	2300	2575	57007	11.7	9.1	20.1	-6.5	0.0	6.9
2587.5	2300	2587.5	57010	23.1	9.7	24.0	-11.1	-2.0	7.0
2600	2300	2600	57012	25.3	11.1	26.5	-13.0	-3.5	7.2
2612.5	2300	2612.5	57012	24.5	11.6	30.2	-12.5	-3.4	7.3

Easting	Northing	# 1. Station	<i>#</i> 2.	# 3.	# 4 .	# 5.	# 6.	# 7.	# 8.
2625	2300	2625	57014	17.0	7.7	31.6	-9.2	-2.1	7.3
2637.5	2300	2637.5	57025	16.1	6.9	32.8	-8.1	-0.4	7.4
2650	2300	2650	57015	12.4	1.7	33.7	-5.5	2.2	7.3
2662.5	2300	2662.5	57017	18.7	3.6	35.7	-7.7	-0.7	7.5
2675	2300	2675	57018	18.2	1.4	38.2	-8.5	-1.6	7.6
2687.5	2300	2687.5	57020	12.9	-1.1	37.5	-7.7	0.3	7.6
2700	2300	2700	57020	5.3	-4.7	38.2	-6.2	5.1	7.7
2712.5	2300	2712.5	57022	-0.9	-8.5	35.1	-6.5	. 6.2	7.6
2725	2300	2725	57021	4.5	-3.5	33.8	-12.6	2.7	7.6
2737.5	2300	2737.5	57019	5.5	-3.8	35.1	-16.5	2.9	7.6
2750	2300	2750	57020	4.3	-5.0	35.1	-27.9	-0.1	7.6
2762.5	2300	2762.5	57025	6.2	-1.2	34.5	-27.5	-1.2	8.1
2775	2300	2775	57020	5.1	-2.2	35.6	-23.2	-0.3	8.4
2787.5	2300	2787.5	57016	6.2	-0.6	37.7	-22.3	-0.8	8.6
2800	2300	28 00	57021	0.4	-2.2	34.4	-6.7	2.5	8.4
2812.5	2300	2812.5	57022	-0.7	-3.8	32.0	-5.9	2.8	8.3
2825	2300	2825	57020	-0.1	-3.7	30.5	-5.1	2.0	8.3
2837.5	2300	2837.5	57018	14.7	-1.7	27.5	-7.1	0.0	8.3
2850	2300	2850	57021	39.9	7.4	29.9	-12.8	-1.7	8.2
2862.5	2300	2862.5	57023	31.9	11.3	41.5	-15.5	-4.8	8.5
2875	2300	2875	57023	2.3	6.0	39.9	-5.3	-3.2	8.4
2887.5	2300	2887.5	57027	-0.4	6.9	35.5	-0.9	-3.1	8.2
2900	2300	2900	57031	5.4	3.4	33.6	-3.7	-1.2	8.1
2912.5	2300	2912.5	57030	7.5	-0.8	33.2	-5.1	0.0	8.2
2925	2300	2925	57029	11.5	-5.4	33.0	-4.8	1.1	8.2
2937.5	2300	2937.5	57026	19.9	-6.5	33.3	-9.0	2.6	8.2
2950	2300	2950	57028	25.4	-6.1	37.3	-12.2	1.9	8.3
2962.5	2300	2962.5	57035	13.1	-2.3	39.4	-10.4	1.7	8.4
2975	2300	2975	57032	15.1	1.4	34.9	-10.0	1.5	8.6
2987.5	2300	2987.5	57033	32.2	6.9	34.6	-15.6	1.0	8.7

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8 .
3000 line 2500	2300	3000	57029	35.9	8.0	36.1	-16.4	1.4	8.8
2075	2500	2075	57005	-13.2	-5.9	35.0	-14.2	-0.1	8.5
2075	2500	2075	57005	-19.2	-6.1	36.7	-19.2	0.0	8.2
2100	2500	2100	57001	-19.2	-4.3	36.7	-19.2	0.0 1.4	8.2 8.2
2100	2500	2110.5	57002	-32.2	-18.6	37.8	-21.0	7.2	8.0
2112.5	2500	2112.5	57004	-34.7	-5.9	31.7	-21.1	8.1	7.9
2125	2500	2125	57013	-25.2	-2.4	31.3	-20.7	5.4	8.0
2157.5	2500	2157.5	57013	-22.4	-2.8	31.3	-20.1	6.6	8.0
2162.5	2500	2162.5	57011	-18.7	-6.6	29.7	-19.3	6.1	7.9
2102.5	2500	2175	57013	-14.2	-4.2	30.7	-22.5	5.5	7.9
2187.5	2500	2187.5	57014	-16.4	-4.0	32.6	-25.5	4.1	7.9
2200	2500	2200	57017	-17.0	-6.1	32.4	-26.0	4.5	8.0
2212.5	2500	2212.5	57017	-15.2	-5.5	32.0	-26.4	4.9	8.0
2225	2500	2225	57023	-17.0	-4.9	33.1	-18.8	9.3	8.5
2237.5	2500	2237.5	57016	-14.4	-2.3	32.5	-15.9	8.3	8.4
2250	2500	2250	57002	-16.4	-6.9	32.4	-9.1	8.6	8.4
2262.5	2500	2262.5	57002	-23.0	-6.4	32.1	-5.6	6.1	8.2
2275	2500	2275	57007	-19.0	-3.5	31.3	-7.0	4.6	8.2
2287.5	2500	2287.5	57010	-18.0	-1.3	31.5	-5.7	3.4	8.3
2300	2500	2300	57013	-18.0	-2.9	31.1	-2.7	4.1	8.2
2312.5	2500	2312.5	57017	-16.4	-4.0	30.4	-0.9	3.6	8.0
2325	2500	2325	57023	-15.7	-3.8	29.9	1.2	2.4	8.0
2337.5	2500	2337.5	57050	-16.1	-6.0	28.9	-0.2	-1.2	7.9
2350	2500	2350	57154	-20.8	-5.8	28.6	-0.4	-2.2	7.8
2362.5	2500	2362.5	57013	-16.1	-4.6	26.6	-2.5	-1.8	7.7
2375	2500	2375	57010	-10.8	-2.3	26.2	-4.0	-2.3	7.7
2387.5	2500	2387.5	57010	-9.0	-1.8	24.8	-4.2	-1.7	7.6
2400	2500	2400	57008	1.0	1.1	26.2	-5.3	-3.1	7.7
2412.5	2500	2412.5	57009	-1.2	-0.2	27.0	-1.9	-1.6	7.6

Easting	Northing	# 1. Station	# 2.	# 3.	# 4 .	# 5.	# 6 .	# 7.	# 8 .
2425	2500	2425	57007	-2.7	-1.2	27.5	0.2	-0.8	7.6
2437.5	2500	2437.5	57013	-2.1	-2.6	27.4	0.8	0.8	7.7
2450	2500	2450	57014	-4.1	-6.7	27.0	-3.6	0.2	7. 7
2462.5	2500	2462.5	57011	-1.8	-2.7	27.2	-1.9	1.0	7.7
2475	2500	2475	57014	-10.5	-3.8	28.3	-2.0	1.8	7.8
2487.5	2500	2487.5	57019	-9.1	1.8	26.1	-3.4	-0.2	7.7
2500	2500	2500	57037	-5.6	2.7	25.6	-4.1	-0.7	7.8
2512.5	2500	2512.5	57011	-3.9	2.9	25.3	0.1	1.8	7.9
2525	2500	2525	57013	-3.5	2.9	25.6	8.3	3.4	8.0
2537.5	2500	2537.5	57022	6.0	1.2	27.2	8.7	4.3	7.9
2550	2500	2550	57020	10.3	-1.3	27.2	8.5	3.4	7.9
2562.5	2500	2562.5	57024	11.1	-1.3	27.4	9.5	4.2	8.0
2575	2500	2575	57022	14.0	-0.9	26.8	7.9	2.9	8.2
2587.5	2500	2587.5	57021	19.6	1.0	28.1	2.0	-0.2	8.4
2600	2500	2600	57023	20.3	3.0	30.3	-5.5	-3.9	8.5
2612.5	2500	2612.5	57024	21.1	2.7	31.3	-9.0	-3.1	8.5
2625	2500	2625	57028	24.1	0.1	34.5	-9.6	0.0	8.5
2637.5	2500	2637.5	57025	21.8	-1.3	38.1	-14.9	-1.5	8.4
2650	2500	2650	57030	13.1	-2.9	40.6	-12.4	2.0	8.5
2662.5	2500	2662.5	57024	-9.5	-9.3	41.4	-1.2	4.1	8.4
2675	2500	2675	57026	-17.2	0.8	36.7	3.4	0.8	8.3
2687.5	2500	2687.5	57026	-22.0	3.2	35.0	-0.2	0.4	8.0
2700	2500	2700	57027	-26.4	-2.8	31.5	-4.2	0.0	7.8
2712.5	2500	2712.5	57026	-8.6	0.0	27.0	-7.6	0.5	7.7
2725	2500	2725	57027	5.6	1.8	28.0	-7.5	1.7	7.8
2737.5	2500	2737.5	57025	3.3	4.3	39.0	-6.4	0.8	7.8
2750	2500	2750	57026	-9.8	15.2	29.7	-0.6	-5.2	7.8
2762.5	2500	2762.5	57030	-2.2	12.9	29.9	0.4	-5.4	7.8
2775	2500	2775	57028	-4.6	6.6	29.1	-1.0	-5.9	7.8
2787.5	2500	2787.5	57029	-1.0	4.3	27.6	-2.4	-7.6	7.8

Easting	Northing	; # 1. Station	# 2.	# 3.	# 4 <i>.</i>	# 5.	# 6.	#7.	# 8.
2800	2500	2800	57029	3.5	3.7	27.2	-3.0	-9.0	7.9
2812.5	2500	2812.5	57031	9.3	1.6	28.1	-3.0	-7.2	8.1
2825	2500	2825	57028	8.7	-4.0	28.8	-1.4	-4.9	8.1
2837.5	2500	2837.5	57029	14.3	0.4	27.6	2.5	-5.3	8.0
2850	2500	2850	57029	17.3	4.8	29.2	2.7	-6.4	8.2
2862.5	2500	2862.5	57030	13.0	10.0	31.7	6.6	-6.5	8.3
2875	2500	2875	57031	9.2	11.9	32.4	10.4	-5.7	8.3
2887.5	2500	2887.5	57031	6.5	16.4	32.3	9.0	-4.9	8.3
2900	2500	2900	57031	3.2	18.5	32.2	10.2	-4.0	8.3
ine 2700									
2025	2700	2025	57028	-4.6	-11.3	30.8	-5.5	1.2	8.1
2037.5	2700	2037.5	57015	-5.0	-11.1	31.1	-4.1	3.0	8.2
2050	2700	2050	56999	-7.9	-10.5	31.3	-3.0	3.8	8.5
2062.5	2700	2062.5	57001	-10.8	-10.1	31.5	0.3	5.5	8.5
2075	2700	2075	57003	-21.7	-10.3	33.5	-5.0	2.7	8.4
2087.5	2700	2087.5	57001	-31.9	-15.4	33.1	-9.2	1.0	8.1
2100	2700	2100	57002	-37.3	-20.5	30.1	-13.1	1.2	8.0
2112.5	2700	2112.5	57009	-31.7	-9.7	28.1	-6.9	3.7	7.7
2125	2700	2125	57007	-34.9	-12.4	27.0	-5.9	4.1	7.7
2137.5	2700	2137.5	57012	-34.1	-13.5	25.0	-6.5	3.8	7.6
2150	2700	2150	57010	-28.4	-7.7	25.6	-7.8	1.6	7.5
2162.5	2700	2162.5	57010	-20.7	-7.0	24.1	-16.2	-2.3	7.2
2175	2700	2175	57010	-19.4	-7.9	25.0	-15.8	-2.2	7.3
2187.5	2700	2187.5	57011	-19.5	-10.3	25.2	-13.9	1.8	7.3
2200	2700	2200	57014	-17.3	-8.6	25.6	-10.4	4.0	7.4
2212.5	2700	2212.5	57016	-15.8	-9.1	25.5	-8.3	6.0	7.5
2225	2700	2225	57013	-17.1	-13.4	25.0	-8.2	6.4	7.5
2237.5	2700	2237.5	57017	-14.7	-10.4	23.8	-11.7	3.3	7.5
2250	2700	2250	57026	-11.3	-5.6	23.9	-13.5	2.5	7.6
2262.5	2700	2262.5	57032	-3.1	-1.5	23.3	-15.1	2.7	7.5

Easting	Northing	# 1. Station	# 2.	# 3.	# 4 .	# 5.	# 6.	# 7.	# 8.
2275	2700	2275	57029	4.1	4.8	24.0	-17.0	0.6	7.5
2287.5	2700	2287.5	57002	-0.9	1.2	24.8	-12.8	2.4	7.2
2300	2700	2300	56995	4.5	6.0	24.4	-15.0	-0.8	7.2
2312.5	2700	2312.5	57015	3.5	0.9	25.9	-13.4	-1.2	7.5
2350	2700	2350	57028	15.6	14.5	29.4	-13.0	-6.0	7.7
2362.5	2700	2362.5	57023	15.7	14.0	30.9	-13.4	-6.3	7.7
2375	2700	2375	57024	9.0	11.3	33.9	-11.0	-5.1	7.7
2387.5	2700	2387.5	57021	-6.3	1.3	35.9	-9.4	-3.9	7.8
2400	2700	2400	57019	-11.1	-0.7	34.3	-7.9	-3.6	7.8
2412.5	2700	2412.5	57022	-16.2	-0.6	32.7	-9.0	-4.2	7.9
2425	2700	2425	57020	-16.7	-1.0	32.7	-6.9	-3.7	7.9
2437.5	2700	2437.5	57022	-15.1	-1.0	31.6	-6.8	-4.3	8.0
2450	2700	2450	57019	-11.6	0.0	30.0	-3.1	-3.8	8.1
2462.5	2700	2462.5	57017	-8.7	0.2	29.1	1.5	-3.0	8.2
2475	2700	2475	57014	-9.6	-3.5	27.1	0.0	-6.9	8.0
2487.5	2700	2487.5	57018	-2.4	0.9	26.1	-2.0	-7.6	7.9
2500	2700	2500	57028	6.1	5.8	27.2	-2.8	-6.4	8.0
2512.5	2700	2512.5	57027	6.8	5.3	27.7	-3.1	-5.2	7.9
2525	2700	2525	57022	4.9	0.5	27.7	-0.1	-3.5	8.1
2537.5	2700	2537.5	57027	10.7	0.1	26.8	-0.8	-1.5	8.0
2550	2700	2550	57033	28.0	9.6	30.7	-4.4	-5.4	8.0
2562.5	2700	2562.5	57027	12.2	0.9	36.0	-6.2	-3.1	7.9
2575	2700	2575	57030	2.0	-1.0	33.8	2.1	2.7	7.7
2587.5	2700	2587.5	57033	5.1	-0.1	31.3	8.6	9.7	7.3
2600	2700	2600	57032	8.5	1.7	32.7	10.1	11.8	7.2
2612.5	2700	2612.5	57036	2.4	-1.4	33.1	-2.4	14.4	7.3
2625	2700	2625	57035	-1.4	-3.5	30.5	-11.1	13.5	7.7
2637.5	2700	2637.5	57035	-3.4	-6.8	29.8	-13.4	11.5	7.8
2650	2700	2650	57032	-1.4	-5.2	28.7	-15.3	8.2	7.9
2662.5	2700	2662.5	57031	-6.9	-9.3	26.9	-18.9	4.7	8.1

Easting	Northing	# 1.	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8.
		Station							
2700	0700	2700	67001	4.1	<i></i>	20.2	1.0	0.0	0.1
2700	2700	2700	57031	4.1	5.7	28.3	1.0	-0.9	8.1
2712.5	2700	2712.5	57036	9.7	6.9	29.2	0.3	-3.3	8.1
2725	2700	2725	57038	12.6	8.9	29.9	1.2	-5.5	8.2
2737.5	2700	2737.5	57040	4.7	-1.5	31.5	2.7	-4.1	8.4
2750	2700	2750	57038	-6.8	-7.1	31.2	6.2	-3.3	9.0
2762.5	2700	2762.5	57035	-5.0	-7.2	27.8	13.6	3.2	9.1
2775	2700	2775	57036	-6.9	-4.1	26.7	8.1	-2.1	8.6
2787.5	2700	2787.5	57035	4.7	-4.3	24.9	6.8	-4.2	8.3
2800	2700	2800	57035	17.7	-4.6	24.6	7.7	-5.3	8.3
2812.5	2700	2812.5	57034	26.4	-1.4	26.2	8.9	-6.5	8.3
2825	2700	2825	57034	22.4	5.4	27.5	5.0	-7.3	8.4
line 2900									
2250	2900	2250	57035	13.9	14.1	20.6	-6.6	-5.3	6.2
2262.5	2900	2262.5	57034	14.2	11.1	21.9	-7.5	-6.5	6.2
2275	2900	2275	57033	9.6	7.7	23.1	-3.5	-3.3	6.2
2287.5	2900	2287.5	57035	8.8	6.6	23.6	-2.9	-2.2	6.3
2300	2900	2300	57032	10.5	9.2	24.9	1.8	-1.0	6.3
2312.5	2900	2312.5	57033	10.1	9.9	28.2	3.9	0.3	6.4
2325	2900	2325	57043	-4.8	3.6	29.1	1.1	1.8	6.7
2337.5	2900	2337.5	57039	-10.1	-0.1	28.4	-4.7	-2 .1	6.7
2350	2900	2350	57035	-13.8	-3.4	26.5	-10.8	-6.3	6.9
2362.5	2900	2362.5	57033	-15.0	-2.0	26.0	-11.6	-6.1	7.0
2375	2900	2375	57034	-16.9	-4.6	25.7	-16.5	-3.7	7.5
2387.5	2900	2387.5	57031	-20.5	-6.7	24.0	-23.7	-4.8	7.9
2400	2900	2400	57031	-18.9	-6.4	22.6	-30.0	-2.9	7.9
2412.5	2900	2412.5	57029	-14.3	-4.8	21.0	-35.9	-5.9	7.8
2425	2900	2425	57034	-8.9	-4.6	21.5	-33.3	1.2	7.1
2437.5	2900	2437.5	57033	-4.1	-8.1	22.1	-25.4	6.6	7.1 7.1
2450	2900	2450	57037	2.5	-10.0	22.1	-18.8	9.1	7.0
2462.5	2900	2462.5	57039	8.4	-7.7	22.5	-18.0	7.3	6.8

;

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	<i>#</i> 7.	# 8.
2475	2900	2475	57044	13.5	-0.4	27.1	-16.6	1.6	7.3
2487.5	2900	2487.5	57042	1.9	-4.5	27.8	-4.7	4.3	7.2
2500	2900	2500	57039	-5.9	-2.1	25.7	5.5	2.5	7.0
2512.5	2900	2512.5	57045	-4.8	4.6	28.4	10.7	-2.0	7.2
2525	2900	2525	57044	-9.7	-0.1	25.2	14.3	2.6	6.8
2537.5	2900	2537.5	57043	-10.1	-2.5	23.4	15.5	5.3	6.6
2550	2900	2550	57044	-9.3	-3.4	22.4	16.8	6.3	6.4
2562.5	2900	2562.5	57047	-6.5	-3.5	22.6	15.2	5.7	6.4
2575	2900	2575	57043	-2.7	-3.0	22.3	8.3	4.5	6.5
2587.5	2900	2587.5	57042	2.2	-2.9	21.1	5.3	3.1	6.4
2600	2900	2600	57046	6.1	-3.3	21.8	-1.1	-2.0	6.4
2700	2900	2700	57050	-4.5	-0.5	19.8	-6.1	-2.9	6.4
2712.5	2900	2712.5	57052	0.0	2.5	20.3	-4.6	-2.6	6.4
2725	2900	2725	57050	1.0	2.4	20.7	-5.0	-2.8	6.4
2737.5	2900	2737.5	57047	1.3	3.5	21.4	-3.4	-1.1	6.4
2750	2900	2750	57047	1.8	6.2	22.2	-3.0	0.1	6.3
2762.5	2900	2762.5	57047	-6.6	3.7	23.0	-2.4	2.6	6.2
2775	2900	2775	57046	-8.9	2.6	22.2	1.7	4.0	6.4
2787.5	2900	2787.5	57046	-7.6	3.0	22.1	0.0	1.5	6.4
line 3100									
2150	3100	2150	57021	22.9	12.5	20.0	-18.4	-0.4	6.4
2162.5	3100	2162.5	57024	25.1	15.4	21.9	-20.5	-4.8	6.4
2175	3100	2175	57029	27.2	17.3	22.9	-21.1	-5.3	6.4
2187.5	3100	2187.5	57032	24.9	17.4	26.2	-17.6	-7.0	6.5
2200	3100	2200	57033	19.5	16.5	29.7	-12.9	-6.7	6.5
2212.5	3100	2212.5	57042	-2.8	5.4	31.4	-1.0	-1.7	6.4
2225	3100	2225	57041	-8.6	1.9	32.3	1.1	-1.8	6.5
2237.5	3100	2237.5	57040	-16.2	-0.1	31.2	6.3	-2.6	6.4
2250	3100	2250	57036	-24.4	-3.5	30.3	9.5	-1.2	6.4
2262.5	3100	2262.5	57039	-32.9	-4.3	28.9	10.4	-3.9	6.5

Easting	Northing	# 1. Station	# 2.	#3.	#4.	# 5.	# 6.	#7.	# 8.	
2275	3100	2275	57035	-31.2	1.0	26.6	11.0	-5.7	6.3	
2287.5	3100	2287.5	57038	-30.0	0.0	27.0	5.3	-6.4	6.1	
2300	3100	2300	57039	-28.8	0.8	26.6	4.2	-6.0	6.0	
2312.5	3100	2312.5	57040	-28.1	1.3	26.3	4.0	-5.1	5.8	
2325	3100	2325	57038	-33.2	-3.7	26.2	2.8	-4.3	5.8	
2337.5	3100	2337.5	57040	-35.0	-3.7	25.8	0.4	-4.8	5.7	
2350	3100	2350	57041	-35.6	-5.4	25.1	-1.2	-3.5	5.7	
2362.5	3100	2362.5	57037	-37.0	-7.1	24.0	-0.8	-2.8	5.7	
2375	3100	2375	57053	-33.1	-6.4	21.5	-3.2	-4.4	5.7	
2387.5	3100	2387.5	57045	-23.6	-2.7	20.2	-3.1	-5.1	5.7	
2400	3100	2400	57045	-20.3	-0.5	20.3	-0.5	-4.7	5.8	
2412.5	3100	2412.5	57048	-16.4	2.7	20.8	0.1	-6.0	5.8	
2425	3100	2425	57040	-15.1	4.1	20.9	7.0	-3.6	6.1	
2437.5	3100	2437.5	57044	-14.3	5.8	21.8	5.1	-4.9	6.2	-
2450	3100	2450	57047	-14.4	2.1	21.6	-6.6	-5.3	6.1	
2462.5	3100	2462.5	57047	-15.4	-0.2	21.8	-14.4	-1.2	6.0	
2475	3100	2475	57044	-15.3	-1.2	21.5	-14.4	3.3	5.8	
2487.5	3100	2487.5	57037	-13.3	1.1	21.0	-10.7	5.1	5.7	
2500	3100	2500	57044	-10.3	1.6	20.9	-7.2	4.8	5.7	
2512.5	3100	2512.5	57056	-9.1	0.7	21.0	-3.2	2.8	5.7	
2525	3100	2525	57060	-7.3	0.1	21.1	-1.0	2.6	5.7	
2537.5	3100	2537.5	57070	-5.5	0.0	21.0	1.1	2.3	5.7	
2550	3100	2550	57072	-5.3	0.2	21.1	2.2	1.4	5.7	
2562.5	3100	2562.5	57067	-4.0	-0.3	20.9	3.6	1.8	5.7	
2575	3100	2575	57061	-2.6	-1.4	20.6	3.7	0.9	5.8	
2587.5	3100	2587.5	57059	-2.0	-1.5	20.2	3.4	0.8	5.6	
2600	3100	2600	57061	0.1	-2.2	19.9	3.0	1.1	5.7	
2612.5	3100	2612.5	57063	1.4	-2.7	19.5	2.1	1.1	5.6	
2625	3100	2625	57061	4.0	-2.6	19.2	2.2	1.3	5.6	
2637.5	3100	2637.5	57058	9.7	-2.2	19.0	1.0	1.7	5.5	

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8 .
2650	3100	2650	57058	14.1	-1.6	18.9	1.6	2.5	5.5
2662.5	3100	2662.5	57051	25.6	0.3	19.9	1.5	1.5	5.5
2675	3100	2675	57047	27.4	1.8	21.1	-0.8	0.4	5.5
2687.5	3100	2687.5	57053	21.2	-0.2	21.5	-6.7	-1.3	5.5
2700	3100	2700	57054	10.5	-0.9	21.6	-9.4	-3.7	5.5
2712.5	3100	2712.5	57056	9.2	0.2	19.7	-12.0	-3.1	5.6
2725	3100	2725	57053	20.2	3.1	19.9	-4.9	-1.8	5.5
line 3300									
2100	3300	2100	57031	27.4	15.6	18.5	-5.0	-4.5	5.5
2112.5	3300	2112.5	57032	28.0	9.6	20.8	-3.8	-4.0	5.5
2125	3300	2125	57036	22.9	4.9	21.6	-6.2	-5.3	5.5
2137.5	3300	2137.5	57042	25.2	1.5	23.1	-9.0	-5.5	5.4
2150	3300	2150	57041	26.1	2.2	23.8	-9.5	-5.1	5.3
2162.5	3300	2162.5	57038	25.7	1.8	25.6	-11.2	-6.2	5.2
2175	3300	2175	57039	24.4	-0.1	27.0	-13.6	-8.3	5.2
2187.5	3300	2187.5	57039	18.5	-2.2	29.6	-9.5	-5.0	5.3
2200	3300	2200	57039	15.9	1.1	29.6	-3.7	-0.3	5.3
2212.5	3300	2212.5	57040	5.0	2.6	30.3	-6.3	0.3	5.5
2225	3300	2225	57039	-4.0	0.2	29.0	-9.1	-0.2	5.5
2237.5	3300	2237.5	57044	-7.9	-0.6	27.2	-10.3	-0.8	5.5
2250	3300	2250	57039	-6.3	-1.8	26.1	-13.6	-1.7	5.4
2262.5	3300	2262.5	57045	-0.1	5.0	26.0	-11.7	-1.4	5.4
2275	3300	2275	57045	-9.7	-1.0	27.4	-7.9	0.4	5.6
2287.5	3300	2287.5	57041	-16.5	-4.6	27.8	-7.2	0.0	5.5
2300	3300	2300	57042	-27.0	-4.4	25.3	-5.2	0.4	5.5
2312.5	3300	2312.5	57046	-25.1	-1.0	24.8	-3.4	1.5	5.5
2325	3300	2325	57042	-28.2	-4.5	22.6	-3.1	2.1	5.5
2337.5	3300	2337.5	57043	-26.7	-5.4	22.3	-4.9	0.0	5.6
2350	3300	2350	57043	-21.3	-1.4	21.3	-7.2	-1.8	5.6
2362.5	3300	2362.5	57047	-26.0	-4.4	20.9	-9.8	-4.5	5.6

Easting	Northing	# 1. Station	# 2.	# 3.	# 4 .	# 5.	# 6.	# 7.	# 8.
2375	3300	2375	57047	-20.5	0.4	18.9	-6.6	-5.6	5.5
2387.5	3300	2387.5	57046	-20.4	-0.3	20.1	-7.5	-4.8	5.6
2400	3300	2400	57047	-14.1	1.8	18.8	-5.1	-4.9	5.6
2412.5	3300	2412.5	57050	-8.1	4.0	18.8	-1.6	-4.4	5.5
2425	3300	2425	57052	-3.4	4.3	18.8	2.1	-1.0	5.5
2437.5	3300	2437.5	57053	0.9	6.1	19.1	1.5	-1.4	5.5
2450	3300	2450	57052	-3.5	1.9	19.7	-5.8	-0.2	5.7
2462.5	3300	2462.5	57051	-5.4	-0.4	18.9	-11.6	-2.9	5.6
2475	3300	2475	57055	-5.3	1.5	18.5	-14.2	-4.2	5.5
2487.5	3300	2487.5	57055	-1.3	3.4	17.7	-15.7	-5.4	5.5
2500	3300	2500	57054	4.0	4.8	18.4	-15.6	-3.9	5.5
2512.5	3300	2512.5	57056	6.5	4.8	18.7	-15.1	-3.1	5.6
2525	3300	2525	57056	8.2	0.0	18.5	-13.4	-2.0	5.6
2537.5	3300	2537.5	57068	8.5	0.1	19.0	-11.1	-0.8	5.7
2550	3300	2550	57055	10.4	-0.7	18.8	-10.1	0.3	5.7
2562.5	3300	2562.5	57055	12.9	0.0	18.9	-7.9	1.3	5.7
2575	3300	2575	57054	14.3	0.3	19.0	-8.3	0.5	5.7
2587.5	3300	2587.5	57056	18.6	4.7	19.7	-8.5	-0.2	5.7
2600	3300	2600	57046	8.5	3.5	20.4	-2.4	-0.2	5.9
2612.5	3300	2612.5	57060	9.3	4.3	18.8	-3.6	0.0	5.9
2625	3300	2625	57063	14.7	6.5	18.0	-4.3	-0.9	5.9
2637.5	3300	2637.5	57064	19.0	9.4	17.9	-5.6	-0.7	5.8
2650	3300	2650	57060	24.5	10.0	18.0	-8.5	-0.5	5.8
2662.5	3300	2662.5	57062	28.4	10.8	1 8.7	-11.4	-2.1	5.8
2675	3300	2675	57060	31.3	12.4	19.1	-11.9	-0.4	5.9
2687.5	3300	2687.5	57065	28.0	9.4	20.6	-12.9	-2.0	6.0
2700	3300	2700	57063	25.6	7.7	19.5	-13.0	-2.3	6.0
line 1700									
2900	1700	2900	57016	33.0	8.3	46.3	-9.2	2.3	7.5
2912.5	1700	2912.5	57017	3.7	2.8	39.7	-18.4	0.7	7.4

Easting	Northing	# 1. Station	# 2.	# 3.	# 4 .	# 5.	# 6.	#7.	# 8 .
2925	1700	2925	57013	3.0	8.5	35.2	-19.4	0.6	7.4
2937.5	1700	2937.5	57017	5.6	8.8	34.3	-21.7	2.0	7.4
2950	1700	2950	57014	-1.4	4.0	32.7	-26.1	3.6	7.4
2962.5	1700	2962.5	57015	4.0	6.7	32.4	-28.2	4.0	7.4
2975	1700	2975	57017	6.5	6.6	32.2	-29.3	2.9	7.3
2987.5	1700	2987.5	57016	2.3	-0.7	33.1	-31.7	4.5	7.4
3000	1700	3000	57014	-2.2	-3.1	30.8	-36.1	4.9	7.4
3012.5	1700	3012.5	57012	-2.2	-0.5	28.3	-39.8	3.2	7.5
3025	1700	3025	57013	5.4	3.6	29.2	-36.2	4.4	7.8
3037.5	1700	3037.5	57015	5.7	0.0	31.9	-26.9	5.4	8.2
3050	1700	3050	57014	4.0	-2.0	32.3	-22.3	5.0	8.4
3062.5	1700	3062.5	57011	9.8	-1.3	33.5	-16.0	4.4	8.4
3075	1700	3075	57012	5.6	-3.3	34.4	-8.3	3.9	8.3
3087.5	1700	3087.5	57019	6.5	-0.8	34.7	-3.5	1.9	8.0
3100	1700	3100	57015	10.9	-2.9	34.0	-1.3	5.3	8.1
3112.5	1700	3112.5	57015	12.7	-4.9	34.0	-0.3	8.4	8.3
3125	1700	3125	57015	15.8	-4.7	34.3	-1.8	8.7	8.3
3137.5	1700	3137.5	57020	19.1	-4.6	35.6	-3.8	9.2	8.3
3150	1700	3150	57017	21.4	-2.8	36.2	-5.4	7.9	8.3
3162.5	1700	3162.5	57018	17.0	-1.6	38.9	-6.0	3.9	8.4
3175	1700	3175	57019	1.8	-2.2	40.1	-3.3	-1.4	8.2
3187.5	1700	3187.5	57019	-12.7	0.4	35.0	2.8	-4.6	8.0
3200	1700	3200	57023	-20.3	0.6	31.5	10.2	-4.2	7.9
3212.5	1700	3212.5	57019	-5.2	5.2	27.1	7.3	-7.9	8.0
3225	1700	3225	57019	14.4	0.0	27.1	8.4	-5.2	8.2
3237.5	1700	3237.5	57018	35.6	-3.3	33.1	9.5	0.0	9.1
3250	1700	3250	57020	22.4	6.0	42.4	-9.2	-3.4	9.5
3262.5	1700	3262.5	57021	13.3	8.0	41.7	-3.5	-2.5	10.2
3275	1700	3275	57016	14.6	8.1	44.0	1.9	0.0	10.6
3287.5	1700	3287.5	57017	-4.2	-2.4	46.2	8.5	3.9	10.9

1									
Easting	Northing	#1.	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8.
		Station							
3300	1700	3300	57019	-13.7	5.9	45.0	13.1	3.0	11.1
3312.5	1700	3312.5	57019	-24.4	13.2	45.0	21.4	0.4	11.8
3325	1700	3325	57019	-30.7	15.6	43.6	29.3	3.2	11.4
3337.5	1700	3337.5	57016	-25.9	20.6	38.0	22.3	1.2	10.8
3350	1700	3350	57023	-16.1	22.1	34.5	15.1	-0.7	9.8
3362.5	1700	3362.5	57032	-3.8	21.8	32.7	6.7	-3.7	9.3
3375	1700	3375	57036	3.7	23.4	31.8	4.9	-3.8	9.0
3387.5	1700	3387.5	57043	10.1	22.8	31.5	3.1	-3.8	8.8
3400	1700	3400	57038	16.9	23.8	31.6	1.6	-5.0	8.7
3412.5	1700	3412.5	57030	23.6	25.3	31.8	3.3	-4.4	8.8
3425	1700	3425	57031	29.6	27.2	32.3	3.2	-3.9	8.9
line 1800									
2887.5	1800	2887.5	57018	21.6	-0.1	30.0	-22.0	-0.2	7.8
2900	1800	2900	57017	22.1	-0.9	31.3	-17.7	-0.7	8.1
2912.5	1800	2912.5	57017	23.2	-0.6	32.0	-17.9	-0.1	8.8
2925	1800	2925	57016	19.7	0.0	29.3	-42.2	-3.2	11.1
2937.5	1800	2937.5	57019	28.4	0.1	28.9	-42.5	-2.4	11.2
2950	1800	2950	57025	30.5	-2.3	30.3	-35.8	-0.8	10.7
2962.5	1800	2962.5	57021	32.2	-0.6	29.8	-38.4	-0.2	10.2
2975	1800	2975	57022	34.7	-1.2	31.7	-33.4	0.0	10.5
2987.5	1800	2987.5	57021	37.9	0.5	32.7	-34.2	0.7	10.4
3000	1800	3000	57019	36.3	-2.6	35.1	-26.3	1.9	10.5
3012.5	1800	3012.5	57018	34.6	-0.8	36.9	-21.1	2.3	10.4
3025	1800	3025	57017	29.0	-3.5	39.0	-12.3	4.7	0.7
3025	1800	3025	57018	28.3	-3.5	39.1	-14.3	2.8	10.4
3037.5	1800	3037.5	57021	26.9	-1.7	38.5	-13.7	1.7	10.1
3050	1800	3050	57024	20.0	-1.8	38.9	-13.5	-1.3	9.7
3062.5	1800	3062.5	57023	15.5	-3.3	38.4	-13.8	-1.8	9.7
3075	1800	3075	57024	8.0	-6.5	35.9	-20.1	0.2	8.8
3087.5	1800	3087.5	57023	6.6	-6.7	34.4	-21.5	2.0	8.4

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8.
3100	1800	3100	57022	10.3	-4.5	33.2	-21.3	1.4	7.9
3112.5	1800	3112.5	57022	10.5	-5.0	33.3	-21.3	0.7	7.8
3125	1800	3125	57019	8.5	-7.1	32.4	-17.6	-0.9	7.6
3137.5	1800	3137.5	57023	12.7	-7.4	31.9	-13.4	-1.3	7.7
3150	1800	3150	57026	18.4	-6.7	31.7	-4.2	2.0	7.5
3162.5	1800	3162.5	57026	22.2	-6.1	33.2	-3.2	3.8	7.5
3175	1800	3175	57027	7.8	-11.6	38.8	3.6	6.9	7.3
3187.5	1800	3187.5	57028	3.0	-14.9	38.7	1.1	8.4	7.2
3200	1800	3200	57023	-1.7	-19.0	37.3	-3.9	10.1	7.2
3212.5	1800	3212.5	57026	12.5	-16.7	37.3	-9.9	9.6	8.0
3225	1800	3225	57020	10.2	-18.0	35.9	2.2	11.7	8.1
3237.5	1800	3237.5	57024	37.9	-12.7	37.8	-6.7	6.7	8.2
3250	1800	3250	57022	23.5	1.5	48.8	-2.5	3.0	8.7
3262.5	1800	3262.5	57025	9.8	1.4	51.7	2.7	-0.5	8.9
3275	1800	3275	57025	-29.7	17.1	51.0	36.5	-10.7	9.1
3287.5	1800	3287.5	57028	-36.2	17.0	43.0	36.2	-3.1	8.3
3300	1800	3300	57038	-27.5	12.3	34.5	21.9	-2.2	7.7
3312.5	1800	3312.5	57043	-19.9	15.8	33.6	19.1	-2.0	7.6
3325	1800	3325	57042	-13.0	13.6	31.7	15.1	-2.9	7.5
3337.5	1800	3337.5	57041	-11.3	13.9	31.0	13.1	-4.3	7.6
3350	1800	3350	57055	-5.8	17.5	29.2	13.4	-4.0	7.5
3362.5	1800	3362.5	57040	-3.5	17.4	29.3	12.2	-4.0	7.5
3375	1800	3375	57042	4.2	13.9	30.6	9.6	-2.7	7.9
3387.5	1800	3387.5	57045	10.1	12.0	30.7	5.9	-3.5	8.0
3400	1800	3400	57045	13.8	9.9	31.0	5.2	-5.0	8.0
3412.5	1800	3412.5	57059	16.1	11.9	31.9	4.8	-4.0	8.1
3425	1800	3425	57021	19.3	7.4	33.3	3.5	-3.8	8.2
3437.5	1800	3437.5	57040	20.3	5.8	34.3	4.3	-3.0	8.2
3450	1800	3450	57038	23.1	3.0	34.8	5.3	-2.8	8.4
3462.5	1800	3462.5	57048	26.5	0.6	35.4	6.2	-3.1	8.2

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8.
3475	1800	3475	57034	26.5	-2.6	36.5	8.6	-1.7	8.3
3487.5	1800	3487.5	57036	30.8	-1.3	38.3	12.7	-1.0	8.5
3500	1800	3500	57032	45.1	-1.5	42.4	20.4	1.5	8.9
3512.5	1800	3512.5	57030	32.9	0.2	46.7	17.8	2.2	9.2
3525	1800	3525	57033	24.4	2.5	47.5	11.5	2.8	9.4
3525	1800	3525	57033	23.5	2.8	47.7	11.7	2.9	9.3
line 1900									
2725	1900	2725	57019	15.3	-2.8	30.5	-8.9	2.9	8.6
2737.5	1900	2737.5	57018	16.5	-6.7	30.4	-2.6	4.9	8.6
2750	1900	2750	57019	17.9	-9.0	29.8	2.3	7.2	8.4
2762.5	1900	2762.5	57021	20.3	-10.4	29.6	4.6	8.8	8.2
2775	1900	2775	57019	21.1	-10.8	29.9	6.9	7.2	7.9
2787.5	1900	2787.5	57018	23.9	-9.5	29.5	7.5	6.1	8.0
2950	1900	2950	57019	25.5	-7.9	29.5	7.8	6.4	7.8
2962.5	1900	2962.5	57018	25.5	-2.1	28.6	7.9	-0.4	7.8
2975	1900	2975	57021	26.0	-1.7	29.4	9.2	-0.7	7.7
2987.5	1900	2987.5	57020	23.4	-1.5	31.1	11.4	-3.5	7.7
3000	1900	3000	57020	15.8	-2.5	31.1	13.7	-5.2	7.7
3012.5	1900	3012.5	57019	16.3	2.1	30.6	14.6	-5.6	7.8
3025	1900	3025	57024	16.6	3.7	30.7	18.2	-2.2	7.9
3037.5	1900	3037.5	57027	16.5	5.4	32.7	13.6	-2.9	8.0
3050	1900	3050	57028	16.3	4.5	35.0	7.3	-5.1	7.8
3062.5	1900	3062.5	57028	4.5	0.0	35.9	-10.7	-7.7	7.4
3075	1900	3075	57027	5.0	0.5	35.8	-10.6	-5.7	7.4
3087.5	1900	3087.5	57025	9.3	-0.5	35.3	-11.6	-1.3	7.2
3100	1900	3100	57027	11.7	-1.2	35.5	-11.6	-0.5	7.0
3112.5	1900	3112.5	57025	8.8	-7.7	38.9	-17.0	3.7	6.9
3125	1900	3125	57026	2.8	-11.4	37.2	-23.4	9.5	6.9
3137.5	1900	3137.5	57028	7.3	-5.1	36.8	-36.2	6.3	7.2
3150	1900	3150	57027	13.1	-2.7	38.2	-46.5	3.9	7.5

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8 .
3162.5	1900	3162.5	57026	9.8	-3.8	43.6	-40.1	6.8	8.4
3175	1900	3175	57030	3.7	-2.1	50.7	-27.9	4.7	9.7
3187.5	1900	3187.5	57028	-28.5	16.2	48.4	11.9	-1.4	9.1
3200	1900	3200	57028	-28.7	18.9	46.7	13.3	-2.6	8.9
3212.5	1900	3212.5	57022	-35.4	20.5	43.8	20.9	0.7	7.8
3225	1900	3225	57028	-36.1	19.0	37.5	19.3	3.7	7.3
3237.5	1900	3237.5	57035	-33.2	16.4	34.4	13.6	1.3	7.2
3250	1900	3250	57035	-34.4	17.4	32.4	8.6	-2.0	6.7
3262.5	1900	3262.5	57032	-28.1	19.6	30.6	7.7	-1.0	6.7
3275	1900	3275	57035	-19.6	17.9	30.7	4.2	-0.3	6.7
3287.5	1900	3287.5	57034	-16.2	20.5	29.3	4.6	-1.7	6.7
3300	1900	3300	57029	-13.3	19.4	29.1	4.5	-0.1	6.7
3312.5	1900	3312.5	57034	-5.3	19.4	29.6	1.7	0.0	6.9
3325	1900	3325	57039	-2.3	19.1	29.9	0.5	-2.0	7.0
3337.5	1900	3337.5	57040	3.5	18.2	29.5	-2.5	-2.8	7.2
3350	1900	3350	57045	5.7	16.7	30.0	-3.7	-3.4	7.2
3362.5	1900	3362.5	57044	10.3	15.9	30.4	-4.8	-3.7	7.3
3375	1900	3375	57042	12.3	15.5	30.8	-5.5	-3.5	7.3
3387.5	1900	3387.5	57040	14.5	11.5	31.5	-4.2	-2.2	7.4
3400	1900	3400	57050	16.5	10.1	31.7	-4.8	-1.9	7.3
3412.5	1900	3412.5	57056	17.4	7.7	32.5	-4.1	-2.0	7.3
3425	1900	3425	57056	19.5	7.0	32.3	-5.3	-2.0	7.3
3437.5	1900	3437.5	57061	23.8	5.8	32.9	-4.4	-1.4	7.2
3450	1900	3450	57065	33.3	8.9	34.4	-5.3	-2.9	7.2
3462.5	1900	3462.5	57113	28.3	-1.5	34.6	1.7	4.7	7.1
3475	1900	3475	57050	28.4	-3.6	35.0	4.3	4.7	7.3
3487.5	1900	3487.5	57059	31.7	-4.3	34.6	6.2	4.7	7.3
3500	1900	3500	57036	41.2	1.3	34.2	7.7	4.0	7.1
3512.5	1900	3512.5	57038	47.2	7.7	36.1	7.0	3.7	7.0
3525	1900	3525	57049	48.7	10.5	37.8	8.5	2.9	7.1

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	<i>#</i> 6.	#7.	# 8.
line 1500									
2525	1500	2525	56995	-5.2	4.8	24.9	-20.6	-1.8	7.4
2537.5	1500	2537.5	56995	-6.0	3.4	25.9	-19.1	-1.7	7.5
2550	1500	2550	56992	-7.7	0.2	25.8	-18.5	-1.4	7.5
2562.5	1500	2562.5	56994	-6.5	1.4	27.0	-16.7	-0.7	7.6
2575	1500	2575	56993	-9.7	0.5	27.0	-12.6	0.9	7.5
2587.5	1500	2587.5	56994	-12.1	-4.9	25.5	-10.9	0.0	7.5
2600	1500	2600	56997	-11.4	-2.7	25.7	-8.8	0.8	7.3
2612.5	1500	2612.5	56997	-11.1	-5.2	24.9	-6.5	1.3	7.2
2625	1500	2625	56994	-14.4	-7.8	24.4	-2.1	2.1	7.1
2637.5	1500	2637.5	56995	-13.7	-8.6	23.3	1.7	3.4	6.8
2650	1500	2650	56995	-12.5	-6.6	23.0	1.4	1.6	6.7
2662.5	1500	2662.5	56999	-14.0	-9.0	22.6	-1.0	-0.8	6.7
2675	1500	2675	57002	-12.2	-7.1	22.1	-3.0	-1.8	6.7
2687.5	1500	2687.5	57001	-11.8	-9.6	21.9	-2.5	-0.5	6.7
2700	1500	2700	57002	-13.4	-9.8	20.9	-2.7	-0.1	6.6
2712.5	1500	2712.5	57059	-8.7	-5.0	20.6	-6.3	-3.6	6.6
2725	1500	2725	57040	-10.7	-7.9	20.7	-5.3	-3.8	6.6
2737.5	1500	2737.5	56976	-12.9	-13.9	19.1	-3.0	1.0	6.5
2750	1500	2750	56923	-9.8	-11.6	18.0	0.3	1.4	6.5
2762.5	1500	2762.5	56978	-5.4	-1.2	17.4	-0.1	-0.5	6.6
2775	1500	2775	56984	1.7	0.5	16.7	0.2	-2.5	6.5
2787.5	1500	2787.5	56989	22.9	6.2	16.9	-3.3	-6.0	6.4
2800	1500	2800	56991	30.2	8.2	19.2	-4.2	-8.1	6.4
2812.5	1500	2812.5	56989	22.3	4.3	21.5	-3.0	-4.7	6.5
2825	1500	2825	56994	20.3	2.8	21.1	0.8	0.5	6.8
2837.5	1500	2837.5	56994	18.5	3.7	20.7	2.6	2.3	6.9
2850	1500	2850	56997	20.3	1.9	20.6	0.9	1.4	7.0
2862.5	1500	2862.5	56997	25.6	-2.3	20.8	-5.7	-2.1	7.0
2875	1500	2875	56999	34.0	-0.9	20.9	-11.7	-4.2	7.1

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	<i>#</i> 7.	# 8.
2887.5	1500	2887.5	56997	46.7	-0.2	21.6	-14.6	-4.8	7.0
2900	1500	2900	56996	54.7	-0.5	22.8	-16.5	-7.3	7.3
2912.5	1500	2912.5	56992	54.5	0.7	26.3	-23.9	-7.7	7.4
2925	1500	2925	56995	54.5	-2.5	27.6	-27.3	-4.1	7.8
2937.5	1500	2937.5	56992	42.9	-18.8	31.1	-20.7	9.1	8.1
2950	1500	2950	56984	42.9	-24.0	30.8	-17.2	15.6	8.0
2962.5	1500	2962.5	56992	56.4	-17.7	34.7	-19.9	16.9	8.0
2975	1500	2975	57037	27.7	0.3	42.6	-10.1	4.5	8.1
2987.5	1500	2987.5	57019	19.1	2.3	35.4	-3.0	3.4	7.8
3000	1500	3000	57019	22.6	6.6	35.2	-3.4	2.7	7.6
3012.5	1500	3012.5	57026	16.6	5.9	36.5	-4.5	2.0	7.4
3025	1500	3025	57033	9.3	-2.0	36.8	-5.4	2.3	7.2
3037.5	1500	3037.5	57057	14.9	-0.3	34.8	-9.6	-0.2	7.1
3050	1500	3050	57065	16.2	0.2	36.6	-12.1	-2.0	7.2
3062.5	1500	3062.5	57057	1.2	-0.9	41.6	-10.1	-3.9	7.2
3075	1500	3075	57008	- 8.7	-0.9	34.5	-8.7	-8.1	7.0
3087.5	1500	3087.5	56992	-4.9	2.4	33.2	-7.1	-3.2	7.4
3100	1500	3100	56992	-1.1	2.8	33.1	-4.5	0.0	7.5
3112.5	1500	3112.5	56990	-7.8	1.1	33.9	1.6	3.2	7.5
3125	1500	3125	56992	-8.0	0.3	28.3	1.4	7.5	7.1
3137.5	1500	3137.5	56999	15.0	9.3	28.6	-10.1	2.5	7.0
3150	1500	3150	57003	17.1	0.1	31.0	-17.4	4.0	7.1
3162.5	1500	3162.5	57006	23.8	6.2	31.9	-21.4	2.4	7.3
3175	1500	3175	57010	25.3	3.8	36.9	-22.7	1.1	7.6
3187.5	1500	3187.5	57008	10.0	-4.0	43.0	-14.6	4.2	7.9
3200	1500	3200	57008	0.3	-0.4	40.3	-8.2	1.9	7.7
3212.5	1500	3212.5	57006	-4.3	-0.3	38.0	1.6	4.6	7.6
3225	1500	3225	57008	-0.8	-0.1	34.2	1.2	6.8	7.2
3237.5	1500	3237.5	57004	9.9	8.3	34.0	-6.1	0.8	6.7
3250	1500	3250	57002	20.6	18.5	37.3	-7.8	-2.9	6.7

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	#7.	# 8.
line 1600									
2462.5	1600	2462.5	56992	-9.7	1.7	23.6	-6.7	3.4	6.8
2402.5	1600	2402.5	56993	-10.2	2.0	23.0 24.4	-6.8	2.2	6.8
2475	1600	2487.5	56993	-10.2	2.0 4.8	24.4	-0.8	1.2	6.8
2500	1600	2487.3	56997	-8.2	4.6	24.4	-7.3 -8.9	1.2	6.8
2512.5	1600	2512.5	56998	-6.3	4.6	24.1	-8.3 -9.7	-0.5	6.8
2525	1600	2525	57000	-6.9	4.0 4.6	24.1	-9.7	-0.5 -1.1	6.8
2525	1600	2525	57000	-0.9 -6.4	2.5	24.1	-9.0 -8.6	-1.1 -1.0	6.8
2550	1600	2557.5	56999	-0.4 -8.0	2.3 1.0	23.8 24.4	-8.0 -9.5	-1.0	6.8
2562.5	1600	2562.5	56998	-8.3	-1.4	24.4	-9.5	-0.9	6.8
2575	1600	2502.5	56997	-7.8	-2.0	24.2	-9.5	-0.9	6.8
2587.5	1600	2587.5	56999	-6.4	-0.8	23.8	-9.5 -7.5	-0.8	6.8
2600	1600	2600	57002	-5.6	-3.1	23.0	-7.9	-0.8	6.7
2612.5	1600	2612.5	57002	-6.3	-3.5	23.0	-7.9	-0.4 -2.7	6.7
2625	1600	2625	57041	-0.7	-0.2	22.1	-11.1	-5.1	6.6
2637.5	1600	2637.5	57089	-0.2	0.2	22.7	-8.9	-3.2	6.6
2650	1600	2650	57005	0.3	0.2	22.7	-9.5	-1.2	6.5
2662.5	1600	2662.5	57019	1.0	1.7	21.9	-12.0	-2.4	6.5
2675	1600	2675	57031	1.1	2.7	22.0	-15.6	-3.3	6.3
2687.5	1600	2687.5	57041	-1.8	-0.1	21.7	-17.5	-3.4	6.3
2700	1600	2700	57009	-2.6	-0.7	22.0	-19.4	-4.0	6.2
2712.5	1600	2712.5	57001	-2.5	-2.1	21.6	-19.6	-4.4	6.1
2725	1600	2725	57000	-3.4	-2.9	21.0	-17.6	-2.6	6.1
2875	1600	2875	57002	40.7	2.5	25.9	-12.9	-1.4	6.6
2887.5	1600	2887.5	57006	45.9	0.4	24.9	-16.0	-0.5	6.5
2900	1600	2900	57003	52.4	-0.2	25.9	-15.7	-0.1	6.7
2912.5	1600	2912.5	57008	60.2	12.0	29.7	-17.6	-2.9	6.8
2925	1600	2925	57009	54.3	19.7	35.7	-18.4	-3.7	6.8
2937.5	1600	2937.5	57010	37.3	9.8	38.2	-14.8	-1.2	6.9
2950	1600	2950	57010	22.0	5.1	35.2	-12.6	3.0	6.8

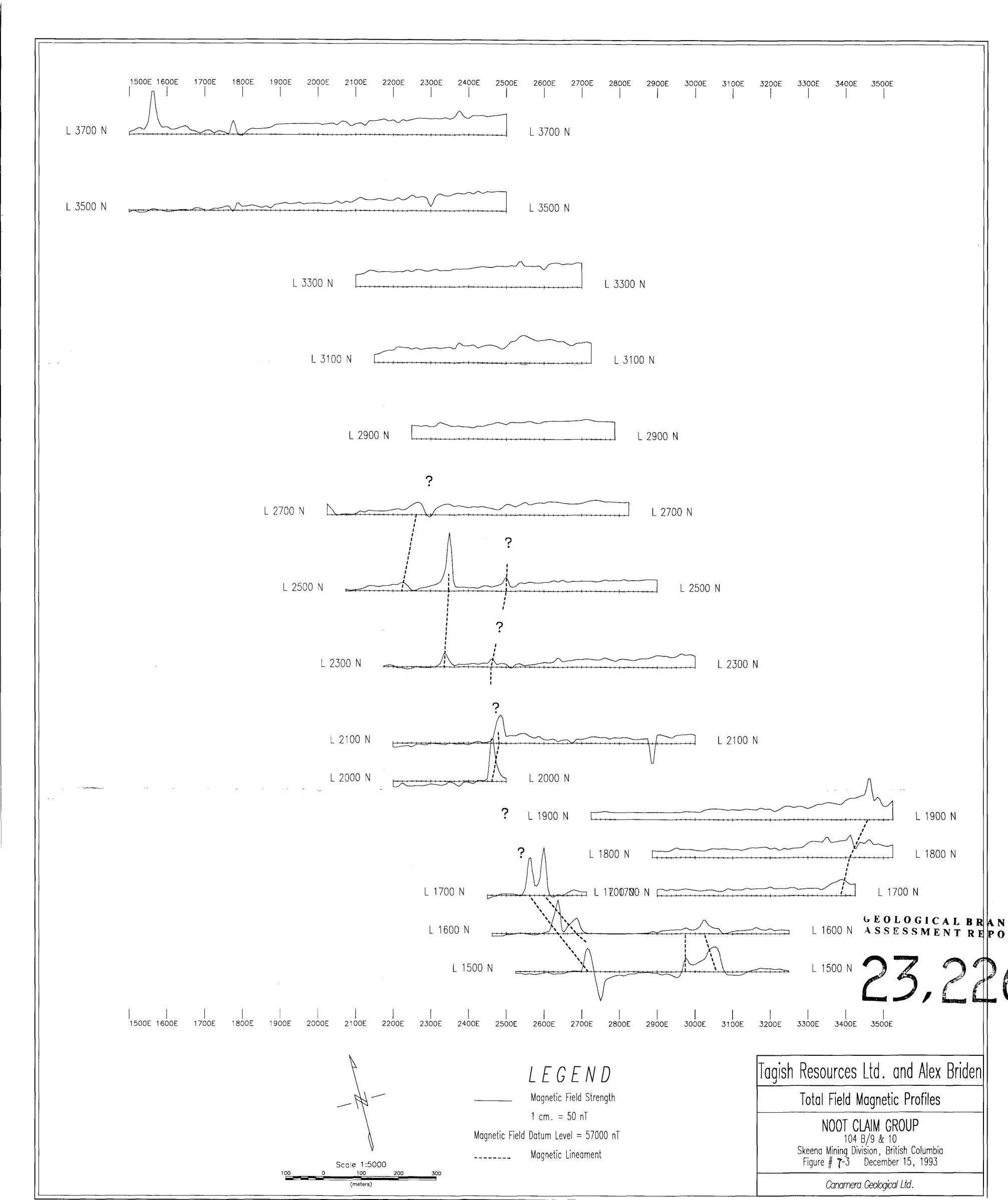
•

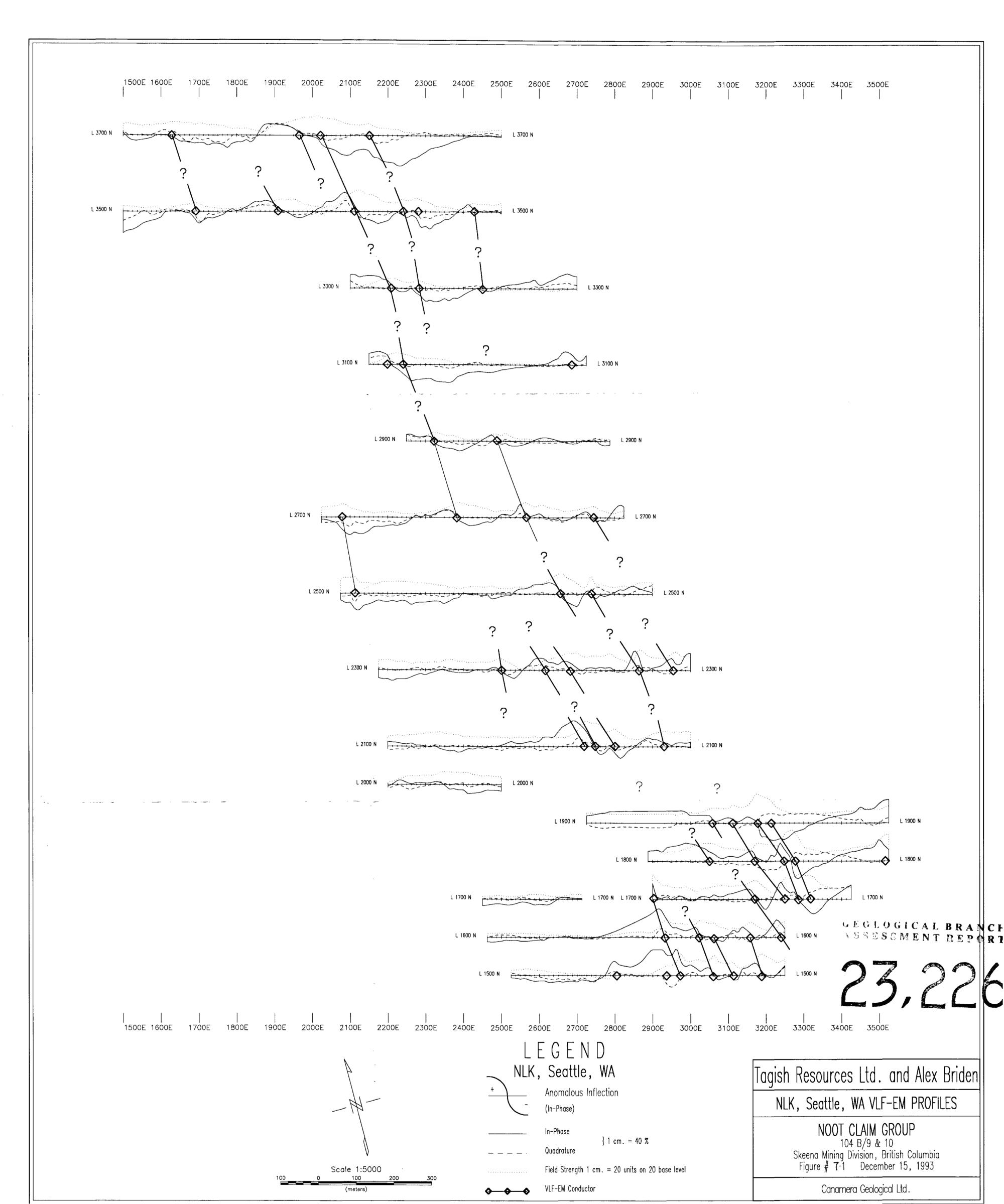
Easting	Northing	# 1. Station	# 2.	#3.	# 4 .	# 5.	# 6.	# 7.	# 8 .
2962.5	1600	2962.5	57010	20.6	8.0	34.6	-11.5	1.7	6.7
2975	1600	2975	57015	16.5	3.6	34.8	-13.0	3.6	6.7
2987.5	1600	2987.5	57010	14.1	-0.7	33.9	-13.5	5.2	6.8
3000	1600	3000	57011	17.4	2.4	33.5	-14.4	4.6	6.7
3012.5	1600	3012.5	57019	21.6	5.5	34.1	-16.8	3.8	6.8
3025	1600	3025	57038	7.3	-2.5	38.3	-17.1	5.0	6.8
3037.5	1600	3037.5	57022	2.2	-5.3	36.1	-18.2	6.5	6.8
3050	1600	3050	57015	1.8	-2.6	34.9	-20.7	4.7	6.7
3062.5	1600	3062.5	57014	-6.8	-8.0	35.5	-20.3	8.1	6.7
3075	1600	3075	57000	-6.3	0.6	31.1	-20.7	5.3	6.6
3087.5	1600	3087.5	57003	-7.5	3.0	30.2	-19.6	10.6	6.6
3100	1600	3100	57006	4.9	5.7	28.6	-16.0	8.8	6.7
3112.5	1600	3112.5	57008	15.3	9.1	30.4	-18.5	7.0	6.8
3125	1600	3125	57008	10.8	-4.8	29.0	-25.7	11.3	7.2
3137.5	1600	3137.5	57010	22.4	1.1	30.9	-25.8	10.1	7.4
3150	1600	3150	57011	14.9	-8.4	34.4	-14.6	12.8	7.4
3162.5	1600	3162.5	57017	5.6	-4.5	35.7	-8.0	6.6	7.3
3175	1600	3175	57011	-4.6	1.6	32.4	-2.6	-1.7	7.3
3187.5	1600	3187.5	57010	1.5	5.7	29.4	-4.6	-3.2	7.2
3200	1600	3200	57013	8.3	0.2	27.7	-4.9	-0.8	7.0
3212.5	1600	3212.5	57009	21.6	0.5	27.4	-10.5	0.4	6.8
3225	1600	3225	57010	35.2	5.2	28.5	-11.9	2.5	7.2
3237.5	1600	3237.5	57009	30.5	10.0	34.3	-9.3	-0.3	7.5
3250	1600	3250	57009	17.7	10.3	36.5	-10.6	-0.2	7.3
line 1700									
2450	1700	2450	56990	-13.5	0.6	22.9	-12.3	1.6	6.4
2462.5	1700	2462.5	56995	-12.3	1.9	23.4	-11.9	2.9	6.4
2475	1700	2475	56999	-10.7	2.3	23.3	-10.0	2.0	6.4
2487.5	1700	2487.5	57004	-9.4	1.8	23.8	-9.6	1.4	6.5
2500	1700	2500	57004	-10.0	1.1	23.7	-10.8	0.8	6.4

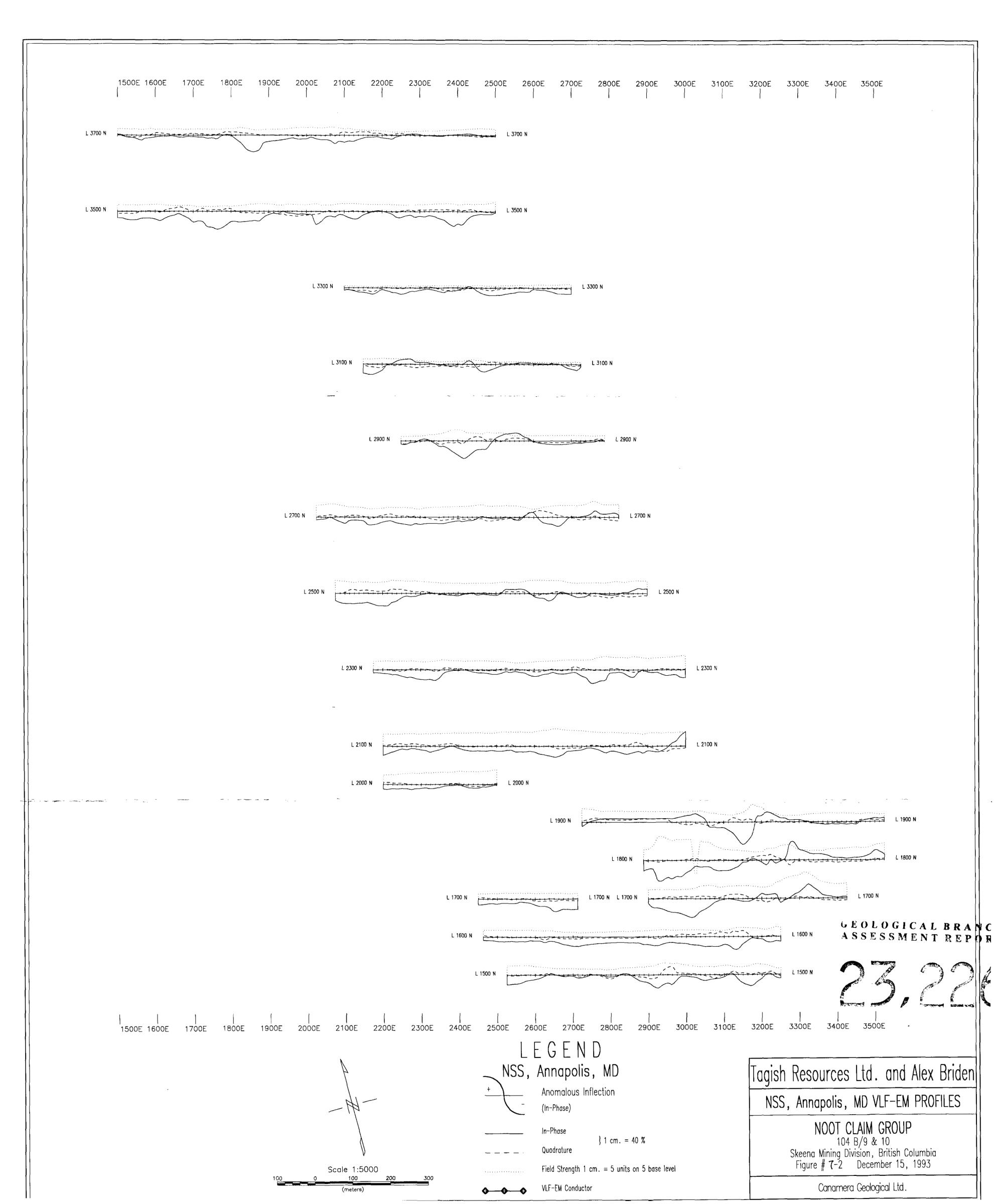
Easting	Northing	# 1. Station	# 2.	# 3.	# 4 .	# 5.	# 6 .	# 7.	# 8.
2512.5	1700	2512.5	57004	-11.7	-1.3	22.8	-9.1	0.6	6.5
2525	1700	2525	57003	-11.7	-2.0	22.5	-9.2	-0.2	6.5
2537.5	1700	2537.5	56997	-9.4	1.2	22.4	-9.2	-0.8	6.5
2550	1700	2550	57018	-6.1	3.6	23.4	-9.1	0.5	6.5
2562.5	1700	2562.5	57105	-6.0	2.9	23.4	-6.1	0.9	6.5
2575	1700	2575	57027	-8.1	1.3	25.3	-7.3	1.1	6.5
2587.5	1700	2587.5	57036	-11.7	-1.5	25.1	-8.7	-1.5	6.5
2600	1700	2600	57126	-10.2	-1.3	24.9	-12.3	-3.7	6.5
2612.5	1700	2612.5	57006	-11.3	-3.2	24.6	-15.1	-4.6	6.5
2625	1700	2625	56996	-10.9	-3.7	23.6	-15.2	-4.3	6.5
2637.5	1700	2637.5	57003	-5.6	-0.2	22.9	-18.1	-3.7	6.5
2650	1700	2650	57001	1.2	4.6	22.4	-26.6	-5.0	6.4
2662.5	1700	2662.5	57007	4.1	4.2	23.2	-25.1	-2.7	6.5
2675	1700	2675	57014	2.9	4.3	24.2	-21.5	-2.2	6.5
2687.5	1700	2687.5	57012	2.3	3.1	25.2	-22.1	-3.3	6.3
2700	1700	2700	57009	1.6	0.7	25.0	-22.6	-3.8	6.4
2712.5	1700	2712.5	57009	1.7	0.7	24.9	-22.0	-4.0	6.4
line 3500									
1500	3500	1500	56995	-44.9	-19.4	26.1	-13.6	-3.8	6.8
1512.5	3500	1512.5	57000	-39.6	-15.3	25.8	-13.8	-4.5	6.7
1525	3500	1525	56995	-37.9	-11.5	25.3	-16.5	-4.0	6.7
1537.5	3500	1537.5	56994	-33.0	-6.6	24.8	-17.5	-4.7	6.7
1550	3500	1550	56998	-26.0	0.6	23.7	-17.2	-3.2	6.7
1562.5	3500	1562.5	57004	-21.7	-0.8	24.2	-14.4	0.5	6.7
1575	3500	1575	57002	-19.1	-6.6	24.5	-13.9	0.3	6.8
1587.5	3500	1587.5	57000	-16.6	-5.7	24.3	-14.2	0.9	6.8
1600	3500	1600	56996	-12.1	-2.4	22.3	-16.0	0.0	6.8
1612.5	3500	1612.5	56997	-0.6	4.6	22.1	-19.1	-1.3	6.8
1625	3500	1625	57000	0.4	4.3	24.0	-14.3	2.6	6.7
1637.5	3500	1637.5	57002	1.0	3.7	25.4	-10.0	5.5	6.6

.

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8.
1650	3500	1650	57002	1.9	4.5	26.5	-7.9	6.1	6.5
1662.5	3500	1662.5	57000	-2.2	3.7	27.2	-4.8	9.4	6.5
1675	3500	1675	57006	-3.6	0.4	27.7	-9.1	7.5	6.6
1687.5	3500	1687.5	57005	-13.2	-5.8	29.1	-13.6	3.7	6.6
1700	3500	1700	57001	-25.1	-20.2	28.2	-22.3	-0.6	6.5
1712.5	3500	1712.5	57000	-18.4	-18.1	25.5	-20.1	3.3	6.2
1725	3500	1725	57006	-12.9	-4.7	24.7	-21.2	6.6	6.3
1737.5	3500	1737.5	57006	-14.1	-7.0	24.1	-31.4	2.4	6.3
1750	3500	1750	57009	-10.4	-3.8	23.4	-33.1	3.3	6.2
1762.5	3500	1762.5	57012	-7.4	-3.0	22.6	-37.3	3.7	6.2
1775	3500	1775	56997	-0.2	-0.9	22.6	-34.9	2.5	6.4
1787.5	3500	1787.5	57021	5.3	-0.5	23.1	-28.8	5.4	6.4
1800	3500	1800	57011	0.5	0.6	23.1	-21.1	5.9	6.3
1812.5	3500	1812.5	57011	4.7	2.6	23.8	-21.1	0.5	6.5
1825	3500	1825	57014	9.1	5.7	24.0	-22.4	-2.4	6.5
1837.5	3500	1837.5	57011	15.3	8.8	24.1	-21.3	-2.9	6.6
1850	3500	1850	57008	21.1	10.3	24.9	-20.4	-2.5	6.8
1862.5	3500	1862.5	57012	19.6	15.3	26.1	-18.7	-3.6	6.9
1875	3500	1875	57006	23.5	12.7	26.2	-19.8	-4.0	7.1
1887.5	3500	1887.5	57017	21.3	13.0	29.3	-11.6	-3.7	7.0
1900	3500	1900	57018	16.1	11.3	31.6	-6.7	-1.9	6.9
1912.5	3500	1912.5	57021	6.2	1.4	32.7	-3.9	-2.7	6.8
1925	3500	1925	57018	1.4	-2.6	32.9	-4.7	-6.0	6.7
1937.5	3500	1937.5	57019	-3.1	-3.8	32.5	0.1	-4.6	6.7
1950	3500	1950	57022	-9.5	-6.4	32.9	-2.9	-8.8	6.9
1962.5	3500	1962.5	57017	-12.9	-7.4	31.6	-4.0	-8.9	6.8
1975	3500	1975	57019	-12.2	-5.8	28.6	-5.9	-10.2	6.8
1987.5	3500	1987.5	57019	-7.8	-5.2	27.0	-4.8	-7.9	6.8
2000	3500	2000	57020	-3.1	-5.5	25.8	-5.9	-7.3	6.8
2012.5	3500	2012.5	57019	5.2	-2.1	25.4	-5.8	-6.3	6.9


Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8 .
2025	3500	2025	57019	9.6	-5.5	23.5	-27.5	-6.0	7.0
2037.5	3500	2037.5	57020	21.8	2.6	25.1	-21.3	-3.7	6.7
2050	3500	2050	57026	21.2	2.6	25.9	-11.9	1.2	6.7
2062.5	3500	2062.5	57020	26.1	5.9	25.8	-9.2	2.0	6.7
2075	3500	2075	57026	36.0	14.7	29.2	-11.0	-0.7	6.8
2087.5	3500	2087.5	57022	40.2	24.2	34.1	-6.4	-0.1	7.0
2100	3500	2100	57028	29.9	10.3	38.7	-8.1	0.6	7.1
2112.5	3500	2112.5	57035	11.9	-0.9	42.0	-12.5	0.3	7.1
2125	3500	2125	57029	-5.5	-11.7	42.7	-15.4	1.3	7.1
2137.5	3500	2137.5	57028	-14.9	-15.7	39.8	-14.4	0.1	7.0
2150	3500	2150	57029	-16.9	-5.7	37.9	-7.5	-1.3	6.9
2162.5	3500	2162.5	57032	-20.2	-6.2	37.5	-3.6	-1.6	6.8
2175	3500	2175	57030	-25.0	-6.1	34.3	-0.3	-1.8	6.8
2187.5	3500	2187.5	57028	-21.9	-7.9	30.6	1.6	1.4	6.8
2200	3500	2200	57028	-18.8	-5.2	29.9	0.9	0.3	6.8
2212.5	3500	2212.5	57035	-8.4	-0.3	29.2	-1.7	0.0	6.8
2225	3500	2225	57029	-1.9	0.9	29.9	-4.7	-0.4	6.8
2237.5	3500	2237.5	57033	-6.0	-1.9	32.9	-11.4	-1.8	6.8
2250	3500	2250	57041	-11.7	-1.9	31.7	-12.4	0.9	6.7
2262.5	3500	2262.5	57035	-7.7	2.4	31.9	-9.3	2.3	6.7
2275	3500	2275	57037	-12.5	1.4	34.6	-7.8	3.0	6.8
2287.5	3500	2287.5	57035	-32.3	-14.0	32.8	-11.7	1.5	6.8
2300	3500	2300	57012	-30.0	-10.9	30.9	-9.3	3.7	6.8
2312.5	3500	2312.5	57038	-35.6	-13.7	29.5	-11.0	3.2	6.8
2325	3500	2325	57045	-26.0	-8.4	25.8	-8.3	3.6	6.9
2337.5	3500	2337.5	57040	-22.9	-7.2	25.3	-10.2	3.8	7.0
2350	3500	2350	57040	-16.3	-4.7	25.0	-13.9	4.2	7.1
2362.5	3500	2362.5	57045	-14.8	-5.5	24.3	-16.9	4.6	7.1
2375	3500	2375	57047	-7.8	-4.9	23.3	-24.5	3.9	7.1
2387.5	3500	2387.5	57044	2.5	-0.9	22.7	-30.9	2.4	7.0


.


Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8.
2400	3500	2400	57049	8.0	-1.3	24.1	-25.9	3.6	6.8
2412.5	3500	2412.5	57045	16.1	2.0	25.4	-27.4	1.8	6.9
2425	3500	2425	57052	7.2	-0.9	28.9	-16.9	3.2	7.0
2437.5	3500	2437.5	57046	1.3	-1.3	28.3	-9.4	4.5	6.9
2450	3500	2450	57051	0.6	2.8	28.0	-6.9	1.5	6.9
2462.5	3500	2462.5	57050	0.7	2.5	28.1	-5.6	0.9	6.9
2475	3500	2475	57052	1.7	2.2	27.5	-5.7	-0.7	7.0
2487.5	3500	2487.5	57052	2.1	3.8	27.9	-5.8	-2.1	7.2
2500	3500	2500	57051	-3.2	0.5	29.5	-1.5	1.0	7.6
line 3700									
1500	3700	1500	57006	5.4	8.5	31.1	2.1	1.1	6.6
1512.5	3700	1512.5	57011	-4.9	2.0	32.7	0.6	-1.0	6.7
1525	3700	1525	57017	-10.2	0.7	31.4	-3.9	-3.7	6.6
1537.5	3700	1537.5	57012	-11.0	-0.2	30.9	-4.8	-3.9	6.6
1550	3700	1550	57033	-9.1	1.7	30.0	-6.8	-3.9	6.7
1562.5	3700	1562.5	57121	-7.4	-1.5	30.7	-10.4	-2.7	6.5
1575	3700	1575	57041	-5.2	1.4	30.2	-6.2	1.1	6.6
1587.5	3700	1587.5	57018	0.2	4.1	31.3	-5.7	0.8	6.7
1600	3700	1600	57019	0.6	9.3	31.3	-4.1	4.8	6.5
1612.5	3700	1612.5	57013	1.1	10.6	32.0	-2.5	4.8	6.6
1625	3700	1625	57015	-2.9	4.5	33.8	-2.9	4.0	6.6
1637.5	3700	1637.5	57019	-6.4	6.1	33.9	-2.0	2.1	6.5
1650	3700	1650	57022	-12.6	-1.8	33.4	-2.0	1.6	6.7
1662.5	3700	1662.5	57011	-12.8	-10.8	32.9	-4.4	1.4	6.7
1675	3700	1675	57008	-13.7	-15.3	33.2	-4.0	1.6	6.5
1687.5	3700	1687.5	57003	-16.8	-4.4	31.1	-2.8	3.3	6.6
1700	3700	1700	57009	-15.3	-8.5	32.4	-3.3	3.5	6.6
1712.5	3700	1712.5	57011	-16.1	-10.5	32.2	-4.0	2.7	6.7
1725	3700	1725	57004	-20.8	-6.9	30.5	-4.4	3.0	6.5
1737.5	3700	1737.5	57009	-16.8	-13.6	31.0	-6.1	1.5	6.7

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	<i>#</i> 7.	# 8.
1750	3700	1750	57007	-17.1	-13.2	30.4	-5.5	1.6	6.6
1762.5	3700	1762.5	57000	-20.1	-17.0	29.9	-8.3	1.0	6.5
1775	3700	1775	57036	-26.2	-11.7	28.0	-1.8	4.2	6.5
1787.5	3700	1787.5	57001	-17.4	-1.3	26.9	1.1	7.2	6.7
1800	3700	1800	56998	-14.3	1.1	27.3	-0.3	6.5	6.7
1812.5	3700	1812.5	57009	-14.0	-3.7	26.9	-7.6	6.6	6.8
1825	3700	1825	57015	-9.7	-2.3	27.3	-15.3	5.1	7.0
1837.5	3700	1837.5	57014	-14.6	-7.6	26.1	-27.1	4.2	6.8
1875	3700	1875	57019	22.5	10.8	23.7	-30.8	0.9	6.3
1887.5	3700	1887.5	57026	23.7	21.5	28.6	-15.3	0.2	6.5
1950	3700	1950	57028	14.5	14.8	35.2	-7.8	0.3	6.7
1962.5	3700	1962.5	57028	6.8	9.6	36.7	-5.7	-0.8	6.9
1975	3700	1975	57028	1.6	3.8	38.2	-8.0	-1.3	7.0
1987.5	3700	1987.5	57028	-0.6	4.6	38.9	-7.7	-1.3	7.1
2000	3700	2000	57029	-2.4	3.6	39.0	-7.5	-1.2	7.0
2012.5	3700	2012.5	57026	-5.7	2.1	40.8	-4.1	1.0	7.1
2025	3700	2025	57028	-18.6	-3.1	38.5	-7.2	-1.2	7.0
2037.5	3700	2037.5	57030	-25.5	-10.3	38.1	-9.1	0.1	7.0
2050	3700	2050	57026	-27.7	-8.9	37.4	-8.9	-0.4	7.0
2062.5	3700	2062.5	57035	-32.0	-6.9	36.5	-10.7	3.4	7.2
2075	3700	2075	57034	-38.6	-7.3	34.4	-17.4	-1.2	7.2
2087.5	3700	2087.5	57023	-41.8	-4.5	32.6	-12.7	4.2	6.9
2100	3700	2100	57028	-40.7	0.0	31.4	-14.6	7.3	6.7
2112.5	3700	2112.5	57030	-33.0	1.6	31.0	-12.0	5.5	6.8
2125	3700	2125	57024	-30.1	2.2	30.8	-12.5	6.1	6.6
2137.5	3700	2137.5	57037	-28.9	3.4	31.3	-9.1	7.2	6.4
2150	3700	2150	57036	-33.0	-3.7	32.5	-6.1	7.0	6.3
2162.5	3700	2162.5	57038	-45.6	-13.3	29.9	-3.8	7.7	6.3
2175	3700	2175	57041	-47.6	-16.8	27.8	-4.2	4.4	6.3
2187.5	3700	2187.5	57036	-54.7	-13.2	27.8	-2.8	4.7	6.2

Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7 .	# 8.
2200	3700	2200	57039	-56.1	-14.3	27.4	-5.4	3.3	6.2
2212.5	3700	2212.5	57031	-57.1	-7.3	26.4	-6.6	1.3	6.1
2225	3700	2225	57040	-62.9	-9.1	26.5	-7.8	1.2	5.9
2237.5	3700	2237.5	57037	-63.4	-3.5	24.5	-3.3	3.4	5.9
2250	3700	2250	57040	-57.5	0.6	23.3	-0.4	3.9	5.8
2262.5	3700	2262.5	57043	-49.8	3.0	23.0	1.2	2.2	6.0
2275	3700	2275	57044	-46.8	3.4	22.6	2.4	2.0	6.0
2287.5	3700	2287.5	57043	-40.7	5.1	22.1	3.2	0.8	6.1
2300	3700	2300	57042	-34.5	7.0	21.9	2.0	-0.4	6.1
2312.5	3700	2312.5	57043	-27.6	3.5	22.0	-0.4	-1.1	6.2
2325	3700	2325	57042	-25.1	2.8	21.9	-0.3	-0.4	6.2
2337.5	3700	2337.5	57045	-22.8	1.7	21.6	-1.4	-0.5	6.1
2350	3700	2350	57041	-19.6	2.0	21.4	-1.4	-0.1	6.2
2362.5	3700	2362.5	57047	-15.9	3.1	21.6	-1.2	0.0	6.3
2375	3700	2375	57063	-11.9	2.0	22.1	0.5	-0.3	6.3
2387.5	3700	2387.5	57047	-9.7	2.0	22.2	0.7	0.8	6.4
2400	3700	2400	57043	-5.5	2.0	22.6	1.4	-0.3	6.4
2412.5	3700	2412.5	57051	-2.4	0.6	23.3	2.5	0.0	6.5
2425	3700	2425	57051	-0.8	2.6	24.0	3.3	-1.4	6.6
2437.5	3700	2437.5	57051	-0.5	2.7	24.3	2.6	-1.4	6.7
2450	3700	2450	57048	-0.9	3.4	24.3	1.1	-2.9	6.8
2462.5	3700	2462.5	57050	1.0	5.6	24.9	-1.8	-3.2	6.8
2475	3700	2475	57052	0.2	5.7	25.9	-1.4	-2.3	6.8
2487.5	3700	2487.5	57054	-2.0	3.6	26.3	-2.0	-1.4	6.8
2500	3700	2500	57056	-2.5	1.4	26.0	-2.0	0.4	6.6

