```
District Geologist, Vancouver
Off Confidential: 94.10.12
ASSESSMENT REPORT 23238 MINING DIVISION: Vancouver
```



```
WORK
DONE: Geological,Geochemical,Geophysical,Physical
    EMGR 10.3 km;VLF
    FOTO 400.0 ha
    Map(s) - 1; Scale(s) - 1:13 333
GEOL 225.0 ha
    Map(s) - 1; Scale(s) - 1:2500
LINE 10.3 km
MAGG 10.3 km
PETR 7 sample(s)
ROCK 89 sample(s) ;ME
    Map(s) - 1; Scale(s) - 1:2500
SOIL 196 sample(s) ;ME
MINFILE:
        092G
```


NTS 92G/13W
lat. $49^{\circ} 45^{\prime} \mathrm{N}$ long. $123^{\circ} 50^{\prime} \mathrm{W}$

GEOLOGICAI, GEOCHEMICAL, GEOPHYSICAL REPORT
ON THE TREAT 1 AND 3 MINERAL CLAIMS JERVIS INLET

VANCOUVER MINING DIVISION
GEOLOTMEATHRANCH ASSHSSMEMTRDPORTM

SUB-RECORDER
 RECEIVFD

JAN 181934
VANCOUVER, B.C.

For
ANTHIAN RESOURCE CORP.
\#1730-1055 West Georgia Street
Vancouver, B.C.
V6E 3P3
P.O. Box 11115

FILMED

By
Andris Kikauka, P.Geo.
ARROWHEAD EXPLORATION SERVICES
\#900-999 West Hastings Street Vancouver, B.C.

V6C 2W2

April 21, 1993

SUMMARY

Arrowhead Exploration Services carried out a field program, consisting of geological mapping, rock, and soil sampling, VLF-EM and magnetometer survey on the Treat 1 and 3 claims for Anthian Resource Corp., during March 1993. The Treat property consists of two contiguous claims (35 units) located in the Vancouver Mining Division, on Jervis Inlet, about 12 kilometres north of Egmont, B.C.

The Treat property is underlain by a Cretaceous volcanic and sedimentary roof pendant that is elongated along a northwest trend. Lithology of the pendant consists of massive andesitic tuffs/flows, with intercalations of argillaceous siltstone, chert, and agglomerate. Deformation and very low grade metamorphism of this roof pendant has produced extensive epidote, quartz, and chlorite alteration that formed during the emplacement of the surrounding Cretaceous and/or Tertiary Coast Range Plutonic Complex.

Previous work on the property during 1971 consisted of geological mapping, soil geochemistry, VLF-EM and magnetometer geophysics, and approximately 2,500 feet of AQ diamond drilling outlined extensive fracture fillings, veins, and/or replacement sulphide mineralization. A 10 foot drill intersection returned an assay value of $0.35 \% \mathrm{Cu}$.

The 1993 exploration program outlined four areas that require follow-up work.

1. The first area is the adit creek showing where massive, semimassive to disseminated sulphides occur in shear zones and fractures located at the southeast corner of the grid area. Sampling this showing yielded values of up to 3.03oz/St silver, 4064 ppm copper and 2809 ppm zinc.
2. The second area highlights the T1 drill target zone located on L3 300 S $-7+50 E$ to $10+00 \mathrm{E}$ where drill hole Tl by El Paso in 1971 intersected $0.2 \% \mathrm{Cu}$ across 30 feet zone. A high amplitude, narrow width Mag anomaly is coincident with this zone.
3. . The third area is located between L3+00S - 4+50E and LL4+00S $5+00 \mathrm{E}$ and represents massive pyrrhotite, pyrite and chalcopyrite mineralization of the $T 2$ drill target zone. Sampling this showing yielded values of up to 9.980z/St silver, 2.03\% copper, 2199 ppm Pb and 6792 ppm zinc.
4. This area represents the Lone Jack Creek showing located on the lower end of Lone Jack Creek where a rusty, disseminated volcanic tuff outcrops are exposed with magnetite, pyrrhotite and pyrite.

A second phase exploration program has been recommended and will consist of follow-up trenching, detailed soil sampling, magnetometer survey and geological mapping on all areas which require follow-up work in addition to mapping and rock sampling the unmapped portions of the property at an estimated cost of $\$ 100,500$. Contingent on the results of this proposed program, diamond drilling may be recommended.

TABLE OF CONTENTS

Page No.
Summary i
1.0 Introduction 1
2.0 Location, Access and Physiography 1
3.0 Property status 3
4.0 Area History 3
5.0 Property History 5
6.0 General Geology 6
7.0 1993 Field Program 9
7.1 Methods and Procedures 9
8.0 Results 10
8.1 Property Geology and Mineralization 10
8.2 Structure 11
8.3 Alteration 12
8.4 Mineralization 12
8.4.1 Adit Creek Showing 13
8.4.2 T1 Drill Target Zone 13
8.4.3 T2 Drill Target Zone 13
8.4.4 Road Showing 13
8.4.5 Lone Jack Creek Showing 17
8.5 Aerial Photo Interpretation 17
8.6 Geochemical Soil Survey 19
8.6.1 Gold in Soils 20
8.6.2 Silver in Soils 20
8.6.3 Copper in Soils 20
8.6.4 Lead in Soils 20
8.6.5 Zinc in Soils 25
8.6.6 Arsenic in Soils 25
8.7 Discussion of Soil Results 25
8.8 VLF-EM and Magnetometer 29
Geophysical Surveys
8.8.1 Magnetometer Survey 29
8.8.2 VLF-EM Survey 36
9.0 Discussion of Results 36
10.0 Conclusion 38
11.0 Recommendations 40
Proposed Budget References Certificate

LIST OF FIGURES AND MAPS

	Page No.	
Figure 1:	General Location Map	2
Figure 2:	Claim Map	4
Figure 3:	Regional Geology Map	7
Figure 4:	Adit Creek Showing	14
Figure 5:	T2 Drill Target Showing	15
Figure 6:	Road Showing	16
Figure 7:	Lone Jack Creek Showing	18
Figure 8:	Gold - Soil Geochemistry	21
Figure 9:	Silver - Soil Geochemistry	22
Figure 10:	Copper - Soil Geochemistry	23
Figure 11:	Lead - Soil Geochemistry	24
Figure 12:	Zinc - Soil Geochemistry	26
Figure 13:	Arsenic - Soil Geochemistry	27
Figure 14:	Soil Geochemistry Compilation	28
Figure 15:	Total Magnetic Field Intensity	30
Figure 16:	VLF-EM Hawaii Profile Map	31
Figure 17:	VLF-EM Annapolis Profile Map	32
Figure 18:	VLF-EM Cutler Profile Map	33
Figure 19:	Geophysical Compilation Map	34
Figure 20:	Geophysical Interpretation Map	35
Map 1	Geology Map (1:25,000)	
Map 2	Rock Sample Locations and Analy	s (1:25,000)
Map 3	Photogeologic Map	

LIST OF APPENDICES

Appendix A:	Rock Sample Descriptions
Appendix B:	Analytical Results
Appendix C:	Analytical Techniques
Appendix D:	Photo Interpretation
Appendix E:	Statistical Analysis
Appendix F:	Petrographical Analysis

1.0 INTRODUCTION

This report was prepared at the request of Anthian Resource Corp. to describe and evaluate the results of geological, geochemical, and geophysical fieldwork on the Treat 1 and 3 mineral claims located on Jervis Inlet. The purpose of this field program was to assess the economic mineral potential of the claim group.

Fieldwork included geological mapping and rock sampling, soil geochemistry, VLF-EM and magnetometer geophysics. The work was performed by Arrowhead Exploration Services during March 13-30, 1993. The field crew consisted of Andris Kikauka, Fayz Yacoub, Andrew MacIntosh (geologists), and Kevin Gerlitz (geophysicist).

2.0 LOCATION, ACCESS, AND PHYSIOGRAPHY (Figure 1)

The Treat 1 and 3 claims are located on Jervis Inlet, 12 kilometres north of Earl's Cove ferry terminal on the Sunshine Coast Highway. The claims are situated at Latitude $49^{\circ} 45^{\prime} \mathrm{N}$ and Longitude $123^{\circ} 50^{\circ}$ W , on NTS map sheet $92^{\circ} \mathrm{G} / 13^{\circ} \mathrm{W}$, and are within the Vancouver Mining Division.

The property is accessed via boat along Jervis Inlet from Earl's Cove or Egmont to the mouth of Treat Creek. Two floating docks at the mouth of Treat Creek can be used by permission of the gravel processing plant, owned by Delta Rock Aggregates, which currently operates year round near the mouth of Treat Creek. The claims are located adjacent to the gravel pit and are criss-crossed by a network of logging roads that are presently used by a logging company.

[^0]

Vegetation consists of fir-hemlock-cedar-spruce softwood and aldermaple hardwood with minor pine-larch-arbutus on rocky slopes. Although vegetation is dense (especially in clear cuts with recent regrowth), there is relatively thin soil depth of about 20-40 centimetres. Climate is coastal marine with cool, wet winters and warm, dry summers. Snow accumulation is minimal, and work could be carried out year round.

3.0 PROPERTY STATUS (Figure 2)

The registered owner of the Treat 1 and 3 claims is Clive Ashworth of Vancouver, B.C. The property consists of 2 contiguous mineral claims covering an area of 875 hectares. Claim data is as follows:

CLAIM NAME	UNITS	RECORD NO.	RECORD DATE	EXPIRY DATE	
Treat 1					
Treat 3	15	2657	NOV. 25,89	NOV. 25,93	
	15	2659	Nov. 25,89	NOv. 25,93	

4.0 AREA HISTORY

There are approximately 60 base and precious metal mines and prospects within a 50 kilometre radius of the Treat property. This includes the famous Britannia copper mine, located on the east side of Howe Sound, which produced 48 million tonnes of 1.1% copper, 0.3% zinc, 0.03% lead, $0.3 \mathrm{~g} / \mathrm{t}$ gold, and $3.8 \mathrm{~g} / \mathrm{t}$ silver. The Britannia ore body is hosted in a northwest trending deformed roof pendant consisting of Cretaceous Gambier Group volcanics and sediments. Mining at Britannia ceased in 1974 when the main ore reserve was depleted. For the greater part of its 70 year history, Britannia was the largest copper producer in the British Commonwealth.

Other base and precious metal deposits have been explored and developed within the Coast Range near Jervis Inlet. Notable prospects include; McVicar ($\mathrm{Cu}-\mathrm{Ag}-\mathrm{Au}$), Roy ($\mathrm{Cu}-\mathrm{Ag}-\mathrm{Au}$), Indian River ($\mathrm{Cu}-\mathrm{Zn}$), Gambier Island ($\mathrm{Cu}-\mathrm{Mo}$), Cambrian Chieftan (Cu-Ag$\mathrm{Au})$, Red Jacket (Cu-Ag-Au-Mo), Howe Copper (Cu-Ag-Mo), Brittain River (Mo), and Diadem ($\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}-\mathrm{Au}$).
4

5.0 PROPERTY HISTORY

In 1917, three adits were driven into massive pyrrhotite-magnetite mineralization located at an elevation of 2,000 feet. A grab sample of solid magnetite-pyrrhotite assayed $1.1 \% \mathrm{Cu}, 1.2 \mathrm{oz} / \mathrm{t} \mathrm{Ag}$, $0.02 \mathrm{oz} / \mathrm{t} \mathrm{Au}$, and $33.9 \% \mathrm{Fe}$. A four foot wide face sample assayed $1.0 \% \mathrm{Cu}, 0.8 \mathrm{oz} / \mathrm{t} \mathrm{Ag}$,trace Au , and $19.3 \% \mathrm{Fe}$.

Several years later, numerous mineral showings were located at elevations of 500 to 2,500 feet. During the 1920's another adit was driven at an elevation of 1,000 feet as well as several trenches at elevations of 500,800 , and 1,400 feet.

In 1966, Gunnex Ltd. performed a mapping and sampling program which covered all the old workings. Hugo Laanela, consulting geologist for Gunnex, took 13 rock chip samples that gave an unweighed assay average of $0.24 \% \mathrm{Cu} . \mathrm{Mr}$. Laanela recommended an extensive exploration program based on the relative abundance of mineral showings. In 1971, El Paso Mining performed an extensive survey grid which included geological mapping, soil geochemistry, VLF-EM and magnetometer geophysics, and diamond drilling. Pyrite, pyrrhotite, magnetite, chalcopyrite, sphalerite, and molybdenite mineralization coincides with anomalous $\mathrm{Cu}-\mathrm{Zn}-\mathrm{Ag}-\mathrm{Mo}$ soil geochemistry and strong magnetic and VLF-EM geophysical responses. Approximately 2,500 feet of $A Q$ diamond drilling outlined extensive fracture filling, vein, and/or replacement sulphide mineralization and related quartz-epidote alteration. A 10 foot drill intersection, located near the 2,000 foot elevation adits, returned an assay value of $0.35 \% \mathrm{Cu}$. Core was assayed only for copper and zinc.

In 1987, Ashworth Explorations Ltd. performed mapping and sampling on the Treat property. A rock chip sample across a width of two meters from a well mineralized road cut at 500 foot elevation returned an assay of $0.1 \% \mathrm{Cu}, 0.2 \% \mathrm{~Pb}, 2.8 \% \mathrm{Zn}$ and $20.7 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$. A rock chip sample across a width of four meters near the trenches at

1,400 foot elevation assayed $0.3 \% \mathrm{Cu}, 0.2 \% \mathrm{Zn}$, and $22 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$. Further mapping, trenching, and geophysics were recommended.

6.0 GENERAL GEOLOGY (Figure 3)

A series of northwest trending, Upper Triassic to Lower Cretaceous volcanic and sedimentary roof pendants occur within the massive, Cretaceous-Tertiary Coast Range intrusive complex. The Coast Range Complex forms a continuous belt from Hope, B.C. through to the Alaska Panhandle. The Coast Plutonic Complex consists mainly of quartz diorite and granodiorite which form large, discrete, homogeneous plutons. In rare cases, the plutons form complexes with gneiss and migmatite.

The volcanic and sedimentary roof pendants form 15\% of the total volume of bedrock in the Coast Range complex. These pendants are wedge shaped and are about $1-10$ kilometres wide and 5-50 kilometres long. The volcanic rocks range from basalt to rhyolite and the sediments range from coarse to fine grain clastics with minor limestone and chert. These volcanic and sedimentary sequence were deposited in an island arc volcanic environment with subsequent deformation related to the emplacement of the Coast Range Plutonic Complex. Metamorphism, as a result of deformation, ranges from sub-greenschist to sillimanite facies.

Most of the mineral deposits in the Coast Range occur in these roof pendants and are spatially related to an increase in sulphide mineralization, silicification, and/or alteration. The Britannia copper-zinc sulphide deposit is interpreted as a volcanogenic deposit formed from hydrothermal and exhalitive solutions related to dacitic volcanism, and deformed during later shearing and faulting. Mineralogy of the Britannia ore consists of mostly pyrite, chalcopyrite, and sphalerite with minor galena, tennantite, and/or tetrahedrite.


```
QUATERNARY
```


LEGEND

QUATERNARY

```
PLEISTOCENE AND RECENT
Q
Alluvial, marine and glacial deposits.
```

LAWER CRETACEOUS

GAMBIER GROUP
Andesite to rhyodacite flows and pyrociastics, greenstone, argillite; minor conglomerate, limestone and schist.

PLUTONIC ROCKS
(IUGS Classification, 1973)

Granodiorite; gdu (non-IUGS classification, from older reports)

Leucocratic varieties of granodiorite, tonalite and quartz diorite; minor β - granite

Quartz diorite; qdu (non-IUGS classification, from older reports)

Leucocratic quartz diorite, minor granodiorite and tonalite

Quartz monzodiorite, minor quartz diorite

d Diorite, minor gabbro and quartz diorite

SYMBOLS

Approximate limit of outcrop

Geological boundary (known, approximate)
Attitude of bedding or flows (inclined, vertical)
Attitude of foliation (inclined, vertical, dip unknown)
Outcrop examined; bedding or foliation absent
Fault (approximate)
Fossil Locality

Dyke Swarms
MINERAL DEPOSITS
Reference Name

Red Jacket

7.0 1993 FIELD PROGRAM

7.1 METHODS AND PROCEDURES

A 1.2 kilometre north-south baseline was established using the intersection of Lone Jack Creek and a logging road which follows a 600 foot elevation contour. 16 east-west cross lines at 100 meter spacing were surveyed using hip chains and compasses to cover the main mineral zone on the property. A total of 10.4 kilometres of grid line was surveyed.

All grid lines were flagged and stations established at 25 meter intervals. Soil samples were taken with a grubhoe from a depth of 20-40 cm. at 50 meter intervals along cross lines. About 300-500 grams of 'B' horizon soil were placed in marked kraft envelopes, dried, and shipped to Vangeochem Lab Ltd. for analysis. A total of 196 soil samples were taken.

A Scintrex EDA Omni Plus and Omni 4 geophysical system was used to measure total magnetic field and VLF-EM conductivity contrasts. A total of 750 magnetometer and VLF-EM readings were taken at 12.5 meter spacing along cross lines.

Geological mapping, covering about 50 hectares, was carried out at a scale of $1: 2,500$. Detailed geological mapping, covering about 2 hectares, was executed at a scale of 1:500. A mineralized outcrop was sampled with rock hammer and chisel. Rock chip samples were taken across widths of $8-500 \mathrm{~cm} .$, with an average sample size of 1.5 kilograms. A total of 89 rock samples were shipped to Vangeochem Lab Ltd. and analyzed for 30 elements I.C.P. and fire assayed for gold.

Seven rock samples were sent to John Payne (Vancouver Petrographics Ltd.) for Thin Section descriptions. The aerial photographs of the property were sent to Dr. Richard E. Kucera for structural interpretation. Geological and geochemical data was processed by Tony Clarke Ph.D. of Tony Clarke Consulting. Geophysical data was processed by Geophysicist Trent Pezzot (GeoSci Data Analysis Ltd.).

8.0 RESULTS

8.1 PROPERTY GEOLOGY AND MINERALIZATION

The following description of Lithologic units is based on geological mapping by the author, Mr. Fayz Yacoub (Geologist) and from petrographic analysis by Vancouver Petrographics Ltd. (see Map 1 for thin section sample locations). Bedrock exposure on the Treat 1 and 3 claims is sparse and generally restricted to cliffs, creek beds and road cuts.

The property is underlain by a sequence of Cretaceous volcanics and sediments that have been intruded by Tertiary and Quaternary dykes and sills. Lithologic formations are divided into the following units:

TERTIARY AND QUATERNARY INTRUSIVE ROCKS QUARTZ MONZONITE dykes and sills, light grey to cream colour, poorly developed porphyritic texture, 1-4 mm. subhedral to anhedral plagioclase phenocrysts.

ANDESITE HYPABYSSAL dykes and sills, dark green to grey colour, fine grained equigranular texture, $0.5-0.8 \mathrm{~mm}$. plagioclase and pyroxene phenocrysts.

CRETACEOUS VOLCANICS AND SEDIMENTS

1 AGGLOMERATE AND TUFF BRECCIA angular to sub-angular granitic and volcanic clasts $1-30 \mathrm{~cm} .$, black colour fine grain matrix

2 CHERT grey colour, very fine grain texture, l-10 mm. wide laminations

3 ARGILLACEOUS SILTSTONE grey to black colour, thin bedded

4 ANDESITIC TUFFS AND/OR FLOWS massive, dark green to black colour, l-3 mm. subhedral plagioclase phenocrysts, minor aphanitic texture.

The andesite tuffs/flows (unit 4) form about 80% of the total volume of bedrock within the grid area. Argillaceous siltstone (unit 3) occurs as northwest trending, moderate and steeply dipping, 5-100 meter wide lenses and deformed layers within the massive andesite tuffs/flows. Unit 3 constitutes about 15% of the total volume of bedrock exposed in the grid area. Under the microscope the argillite is relatively uniform with minor variations between layers in grain size, texture, and content of carbonaceous opaque; texture suggest soft sediment deformation. Chert (unit 2) occurs as moderate and steeply dipping, 5-50 meter wide lenses in the northeast and southeast portion of the grid area. Agglomerate/tuff breccia (unit 1) occurs as 25-50 meter wide band in the north end of the grid. 1-5 meter wide quartz monzonite and andesite (hypabyssal) dykes trend northwest and occur along dilatent fractures.

8.2 STRUCTURE

The Cretaceous volcanic and sedimentary sequence (unit 1-4) has been partially deformed by the subsequent intrusion of the Coast Range Plutonic Complex.

The main structural features on the Treat 1 and 3 claims are north to northwest trending, steep to moderate dipping faults, shear zones and fractures occur as a result of the late coast Range Plutonic Intrusion.

Several northeast trending fractures and shear zones usually cut both cretaceous volcanics and sediments were mapped by the aerial photographs cutting across the regional structural trend nearly at right angles.

Bedding attitude for the most part of the property is northwest, dip 50° to 70° westward whereas in the area north of Lone Jack Creek the argillaceous siltstone Unit 3 dip 40° to 60° eastward. Warps and open folds are observed in the steeply dipping argillaceous
siltstone suggesting partial ductile deformation in response to stress from emplacement of the Coast Range Plutonic Complex.

8.3 ALTERATION

Two types of secondary alteration were observed within the grid area:

1) Propylitic-Epidote, chlorite developed as replacement texture
2) Silicification-Quartz developed as replacement texture

Silicification and propylitic alteration occur as 5-200 meter wide lenses and bands localized along the andesite (unit 4)/siltstone (unit 3) contacts. Increased silicification and propylitic alteration are related to sulphide and oxide mineralization.

8.4 MINERALIZATION (Figure 4, 5, 6, 7)

During the 1993 exploration program the writer observed that mineralization and alteration on the Treat 1 and 3 claims are related to either andesite tuff/flow (unit 4) and siltstone (unit 3) contacts or to shear zones.

Three types of mineralization were observed within the grid area:

1) Pyrrhotite-pyrite-magnetite-hematite-chalcopyrite-and/or sphalerite
2) Pyrite-pyrrhotite-chalcopyrite-and/or sphalerite
3) Pyrite-and/or pyrrhotite

Type 1 and 2 occurs as $0.1-14 \mathrm{~cm}$. of massive to semi-massive sulphide lenses that contains significant copper, silver, and zinc values. Showings represent these types of mineralization are the adit showing, T_{2} drill target showing and the Lone Jack Creek showing. Type 3 occurs as primary pyrite disseminated as .5-5 mm blebs throughout the country rock within the grid area. The road showing represents this type of mineralization.

Relatively high concentrations of epidote and chlorite alteration

LEGEND
4 P3 Rock Sanple Locotion

 Au ppb Ag ppm cu
Uniess otherwise stated

SYMBOLS

- Fagade Grid Line (50m Station Spacing)
- Topogrophical Contour
L Claim Boundary-
$=$ Logging Rood.
silffs Steop Canyon, Clifi

| 0. | $50 \quad 100 \quad 150 \quad 200 \quad 250$ |
| :--- | :--- | :--- | :--- |
| | | metros

Map No: 2
ANTHIAN RESOURCE CORP.
 ROCK SAMPLE
ARROWHEAD EXPLORATION SERVICES DATE: 27 April 1993|SCAIE: $1: 7500$ Drawn By: TONY CLARK CONSULTING
and silicification are associated with type 1 and 2. Mineralization has resulted in intense induration that is localized along andesite tuff and silt stone contacts. These lithological contacts trend northwest. Structurally controlled mineralization dominantly trends northeast and has a steep dip.
Five significant copper and/or zinc bearing sulphide zones were outlined in the grid area:
8.4.1 ADIT CREEK SHOWING (Figure 4) - This showing is located between $L 6+00 \mathrm{~S}-6+75 \mathrm{E}$ to $\mathrm{L} 7+00 \mathrm{~S}-7+25 \mathrm{E}$ at the southeast corner of the grid area. Magnetite, pyrrhotite, pyrite, chalcopyrite, and sphalerite present as veins and fracture fillings. Seven meters long adit trends 030° was drifted during 1917 in an attempt to intersect a massive magnetite and pyrrhotite mineralization in shear zones. Mineralization is localized in shears near an andesitic tuff/flow/argillaceous siltstone contact.
8.4.2 T1 DRILL TARGET ZONE - Located on L 3+00 S - 7+50 E to $10+00$ E. Drill hole $T 1$ intersected $0.2 \% \mathrm{Cu}$ across 30 feet (at 760'-790'). This zone is largely covered by overburden, but gives a $\mathrm{Cu}-\mathrm{Zn}-\mathrm{Ag}$ soil geochemical response.
8.4.3 T2 DRILL TARGET ZONE (Figure 5) - Located on L 3+00 S - 4+50 E to L $4+00 \mathrm{~S}-5+00 \mathrm{E}$. Massive pyrrhotite and pyrite with interstitial chalcopyrite and sphalerite occur as veins, fracture fillings, and replacement in a gangue of epidote, chlorite, and quartz. Mineralization is localized near an andesitic tuff/flow (unit 4)/argillaceous siltstone (unit 3) contact. Drill hole $T 2$ intersected scattered streaks of chalcopyrite and sphalerite mineralization in the first 400 feet. Ten feet of $0.16 \% \mathrm{Cu}$ was the highest recorded assay value.
8.4.4 ROAD SHOWING (Figure 6) - The road showing is located along the main road between $L 4+50 \mathrm{~N}-\mathrm{BL}$ and $\mathrm{L} 5+15 \mathrm{~N}-\mathrm{BL}$. Mineralized pyritic volcanic outcrops exposed along the east side of the logging road.

Mineralization consists of 15 to 20% fine to medium grained, disseminated pyrite, minor chalcopyrite in light grey to green, rusty in parts andesitic tuff with limonite hematite and fine grained quartz in cavities.

The aerial photo interpretation suggests that the road showing occurs near the southern end of a fold axis and a suspected northwest trending fault probably inconspicuous on the ground.
8.4.5 LONE JACK CREEK SHOWING (Figure 7) - This showing is located on the south bank of Lone Jack Creek. It can be reached from the main logging road just south of the Creek crossing about 60 meters above the road. A rusty gossan small outcrops of altered volcanic tuff are exposed within an area of 50 meters and crossing Lone Jack Creek just above a waterfall. Mineralization consists of magnetite, pyrrhotite with minor pyrite and chalcopyrite disseminated as . $3-.5 \mathrm{~mm}$ in medium to light grey dacitic-andesitic tuff or flow in contact with argillaceous siltstone. Mineralization is fracture controlled and fills tension cracks and joints. Similar mineralization hosted by rusty hematitic volcanic tuffs located on $L 2+00 \mathrm{~N}$ between $2+00 \mathrm{E}$ and $3+50 \mathrm{E}$. This zone may be related to the nearby Lone Jack Creek showing.

8.5 AERIAL PHOTO INTERPRETATION (MAP 3)

Geological photo interpretation was performed at a scale of 1:15,000 over an area of approximately 4.5 square kilometres by Dr. Richard E. Kucera. The purpose of this study was to describe the results of photo interpretation of Jervis Inlet property and to add more geological and structural information to the area.

Steep slopes and thick forest prevented the tracing of contacts between the argillite sediments and volcanic tuffs, but the detailed aerial photo interpretation of the property has extended the geologic contacts determined in the field.

Detailed mapping on the aerial photographs shows the presence of several northeast and northwest trending fractures, many of which are not recognizable on the ground. The lower end of Lone Jack Creek and tributary of Treat Creek reflects distinct structural control.

The aerial photo also recognizes the presence of six distinct northeast trending faults cut across the main structural trend.

The 1993 field observations indicated a strong relation between mineralization and argillite volcanic tuff contacts. Inspection of aerial photographs indicates that some of the mineralization is related to structural control. The close proximity of the Lone Jack Creek and the Adit Creek showings to northeast trending faults suggests a strong possibility of structurally controlled mineralization. The mineralized gossan zone located on the road north of Lone Jack Creek lies adjacent to a fold axis as well as a suspected northwest trending fault.
8.6 GEOCHEMICAL SOIL SURVEY (Figure 8, 9, 10, 11, 12, 13 \& 14) Correlation coefficients, histograms and symbol maps have been prepared and used in the evaluation of soil sample analysis collected from the grid area of the Treat 1 and 3 mineral claims.

Correlation coefficients were calculated for gold, silver, copper, lead, zinc and arsenic to define useful groupings of the data values. Correlations were considered to be significant for coefficient values equal to or above 0.25 , with the following being the terminology used for both the positive and the negative correlation:

$$
\begin{array}{ll}
0.25 \text { to }<0.30 & \text { very weak correlation } \\
0.30 \text { to }<0.40 & \text { weak correlation } \\
0.40 \text { to }<0.60 & \text { moderate correlation } \\
0.60 \text { to } 0.80 & \text { strong correlation } \\
0.80 \text { to } 1.00 & \text { very strong correlation }
\end{array}
$$

Histograms were plotted of all elements considered of exploration significance. Ranges used for the symbols on the symbol maps were chosen to show any groupings that are indicated in the data by discordant changes in the shape of the curve at the higher values of the histograms.

8.6.1 GOLD IN SOILS (Figure 8)

Most gold values fall below 50 ppb, however, there is a slight secondary grouping at about 60 to 90 ppb . A symbol and value map was plotted with the following value ranges:

30 to < 50 ppb low anomalous
50 to < 100 ppb medium anomalous
$100+$ ppb high anomalous
Gold shows no correlation with any other element.
8.6.2 SILVER IN SOILS (Figure 9)

Most silver values are distributed between 0 and 3.5 ppm . There is no indication of any highly anomalous values. A symbol and value map was plotted with the following value ranges:

$$
\begin{array}{ll}
1 \text { to }<2 \mathrm{ppm} & \text { low anomalous } \\
2 \text { to }<4 \mathrm{ppm} & \text { medium anomalous } \\
4+\text { ppm } & \text { high anomalous }
\end{array}
$$

Silver has a moderate correlation with copper, molybdenum and lead.
8.6.3 COPPER IN SOILS (Figure 10)

Copper values ranged up to 2283 ppm. A symbol and value map was plotted using the following value ranges:

500 to < 1000 ppm low anomalous
1000 to < 1500 ppm medium anomalous
1500 + ppm high anomalous
Copper has a strong correlation with molybdenum, moderate correlation with lead and very weak correlation with zinc.
8.6.4 LEAD IN SOILS (Figure 11)

Lead values form an approximately log-normal up to about 140 ppm with higher values distributed up to 274 ppm forming a possible

second population. A symbol and value map was plotted using the following value ranges:

60 to < 120 ppm low anomalous
120 to < 220 ppm medium anomalous
220 + ppm high anomalous

Lead shows moderate correlation with silver and copper.
8.6.5 ZINC IN SOILS (Figure 12)

Zinc values produce a slightly irregular log-normal curve up to about 2432 ppm. These values were plotted on a symbol map using the following value ranges:

700 to < 1400 ppm	low anomalous
1400 to < 1700 ppm	medium anomalous
$1700+\mathrm{ppm}$	high anomalous

Zinc has a very weak correlation with copper.
8.6.6 ARSENIC IN SOILS (Figure 13)

Arsenic values ranged up to the 1564 ppm. All values equal to or greater than 200 ppm were considered anomalous.

Arsenic shows no correlation with any other element.

8.7 DISCUSSION OF SOIL RESULTS (Figure 14)

Correlation coefficients, histograms and symbol maps indicate that there is no distinctive association of elements apart from the correlation of copper and molybdenum. Generally gold, silver and arsenic do not associate with one another.

The areal distribution of the higher values indicates two areas of interest:

The first area is in the general vicinity of LON BL-2+00E and LIN BL-2+00E. There is moderate to high gold in soils and high zinc in soils. This area represents the Lone Jack Creek showing.

The second area is in the vicinity of L3+00S-700E to 100E where a high gold, silver and zinc soil samples occur.

The other high and medium soil analysis values are generally in the vicinity of known showings.

8.8 VLF-EM AND MAGNETOMETER GEOPHYSICAL SURVEYS

All of the geophysical data collected on the grid area was sent to GeoSci Data Analysis Ltd. of Richmond, B.C. for precessing and interpretation. An EDA Omni Plus Magnetometer/VLF system was used to gather total field magnetic intensity readings, the in-phase tilt angel, quadrature and field strength components of two VLF-EM signals. Data was recorded digitally and down loaded to a field computer for storage on floppy disk. A base station was established on the survey grid which recorded the diurnal variations in the magnetic field.

Magnetic and VLF-EM surveys were conducted across the survey grid with the dual intention of locating specific targets and providing assistance in geological mapping.

8.8.1 MAGNETOMETER SURVEY (Figures 15 to 20)

The magnetic data has identified ten anomalies which are characterized by high amplitudes and narrow widths and are attributed to massive magnetite mineralization. Most occur as single line anomalies. The most noticeable exception is an anomaly in the vicinity of the adit showing which traces a northwesterly striking magnetite lens some 250 meters long. This zone plunges to

the northwest and may be dipping to the northeast. A second large magnetic feature is located across lines 600N to 400N, near station 250E. This anomaly coincides with the base of a scarp and requires a more detailed examination.

Additionally, a number of weaker magnetic anomalies are noted across the grid which could represent intrusive dykes. These anomalies could also be interpreted as indicating magnetite bodies.

The narrow, high amplitude magnetic anomalies dominate the data set however there are also a number of more subtle trends evident. A magnetic low striking northwesterly through the road showing may represent a fold axis or contact. A weak magnetic gradient located in the southeast corner of the grid is likely reflecting the contact between argillites and volcanics.

A northeasterly trending fault, identified by the aerial photo interpretation in the vicinity of line 500N, is evident in the magnetic data as a discontinuity in the regional northwesterly trends.

8.8.2 VLF-EM SURVEY

The VLF-EM data contains a number of weak conductivity anomalies. Most of these features are poorly defined and in most cases line to line correlation is uncertain. The quality of the responses is likely the result of the poor coupling angles between the transmission signal and short strike length source bodies. Shear zones, contacts, faults or poorly conductive sulphide lenses are possible sources.

9.0 DISCUSSION OF RESULTS

Thermal metamorphism from local intrusives provided a heat source that has produced propylitic alteration, silicification, and indurated country rock. Fracturing, faulting, and shearing associated with the emplacement of local intrusives sustained dilatant zones where base metal mineralization occurs. The 1993
surveys delineated four areas that require follow-up work.

AREA 1
The Adit Creek showing where massive, semi-massive to disseminated sulphides (magnetite, pyrrhotite, pyrite, chalcopyrite and sphalerite occur in shear zones and fractures located between $6+00 S-7+75 E$ and $L 7+00 S-7+25 E$ at the southeast corner of the grid area. Sampling this showing yielded values of up to 4064 ppm copper, $3.030 z /$ St silver and 2809 ppm zinc.

A well defined magnetic anomaly occurs in the vicinity of the Adit Creek showing coinside with the high copper, lead, zinc rock anomalies mentioned above.

Inspection of aerial photographs indicated that the mineralization in this location is related to structural control.

AREA 2
The second area highlights the TI drill target zone located on L3 3 O0S-7+50E to $10+00 E$ where drill hole Tl by El Paso in 1971 intersected 0.2% Cu across 30 feet zone. A high amplitude, narrow width mag anomaly is coincide with this zone.

AREA 3
The third area is located between $L 3+00 S-4+50 \mathrm{E}$ and L4+00S-5+00E. It represents massive pyrrhotite, pyrite and chalcopyrite mineralization of $T 2$ drill target zone. Drill hole $T 2$ by El Paso intersected mineralization of chalcopyrite - sphalerite the highest assay value was $0.16 \% \mathrm{Cu}$ across 10 feet. The 1993 rock sampling yielded values of up to $9.980 z / \mathrm{St} \mathrm{Ag} 2.03 \% \mathrm{Cu},, 2199 \mathrm{ppm} \mathrm{Pb}$ and 6792 ppm Zn.

AREA 4
This area represents the Lone Jack Creek showing located on the lower end of Lone Jack Creek, several small rusty altered volcanic outcrops, with pyrrhotite, magnetite, pyrite and minor
chalcopyrite. This area coincides with the VLF-EM anomaly on L1 $+00 \mathrm{~N} 0+75 \mathrm{E}$ to $2+00 \mathrm{E}$, and soil anomaly in the vicinity of the Lone Jack Creek showing.

10.0 CONCLUSIONS

* The Treat 1 and 3 claims are located in an area that is well known for hosting copper deposits. Numerous base and precious metal mines and showings occur in close proximity to the subject claims.
* The geological setting of the Treat property is similar to other dominantly copper rich base and precious metal deposits that occur within the region.
* The Treat property has been subject to several exploration and development programs as early as 1917 when three adits were driven into massive pyrrhotite - magnetite mineralization. 2,500 feet of core drilling were done in 1971 by El Paso Mining.
* The 1993 field work program has outlined four areas of geological interest including old showings characterized by anomalous copper, zinc and silver with assay values greater than $2 \% \mathrm{Cu}, 2 \% \mathrm{Zn}$ and 50 grams/tonne Ag . The geochemical soil survey has outlined two areas of interest. One area in the vicinity of the Lone Jack Creek showing, with elevated gold and zinc values. Another area in the vicinity of L3+00S between $7+00 \mathrm{E}-10+00 \mathrm{E}$ with high silver and zinc values in soils. Both areas need follow-up work with detailed soil sampling.
* Ten magnetic anomalies were detected during the 1993 geophysical survey which could be attributed to massive magnetite bodies associated with copper directly beneath the survey lines. The most noticeable exception is an anomaly in the vicinity of the adit showing, which traces a northwesterly
striking magnetic lens some 250 meters long. The associated VLF-EM anomaly suggests a similarly shaped source of conductivity.
* Close proximity to tidewater and infrastructure would reduce production costs.
* The results of the 1993 field program were encouraging and indicated that good potential exists for locating economic mineralization.

For these reasons further exploration work is recommended and warranted.

11.0 RECOMMENDATIONS

PHASE II

1. Geologically map and rock sample the unmapped area of the claims.
2. The grid should be extended to the south as well as to the east. A geochemical soil sampling and magnetometer survey program should be performed over the new extended grid.
3. Intermediate detailed grid lines should be put in at 50 meter intervals over all areas of Magnetometer anomalies and all areas of surface showings.
4. Detailed soil sampling and magnetometer surveys should be performed over all areas that require follow up work to help define the source, shape and the attitude of each magnetic or geochemical anomaly detected during the 1993 field program.
5. Backhoe trenching and blasting should be performed over all mineral showings including the adit creek showing, T1 and T2 drill target zones, Lone Jack Creek showing and the road showing to expose and test the mineralization along the strike of each zone.
6. Detailed mapping and rock sampling over all areas which require follow-up work. Attention should be paid to the northeast trending fractures which reflects distinct structural control.

PHASE 1

Field Crew:	
Project Geologist, Geotechnicians, Blaster	$\$ 28,000$
Geophysicists	8,000
Backhoe operator	8,000
Field Cost:	
Backhoe, pump, hose, explosives, detonators	25,000
Mob/Lemob	6,500
Assays	3,000
Meals and accommodation	16,000
Report	6,000
	-
	TOTAL $-\$ 100,500$

Contingent on the results of Phase 1, a follow up program of diamond drilling may be recommended.

PHASE 2
1,500 meters diamond drilling $\quad \$ 150,000$
Project geologist, Geotechnician 25,000
Meals and accommodation
22,000
Assays 5,000
Mob/Demob 17,000
Report $\quad 6,000$

TOTAL - \$ 225,000

REFERENCES

B.C. Dept. of Mines and Petroleum Resources, 1970. Geology, Exploration, and Mining in British Columbia.
B.C. Minister of Mines Report, 1917, 1922, and 1925.

Bacon, W.R., 1957. Geology of Lower Jervis Inlet, B.C. Dept of Mines Bulletin No. 39.

Kidlark, R.G., 1989, Report on the Jervis Inlet Property, private company report.

Laanela, H. 1968, Treat Creek Property Examination Report, Gunnex Ltd., private company report.

Lemmon, T.C., 1973, Diamond drill hole logs, El Paso Mining and Smelting Co., private company report.

CERTIFICATE

I, Andris Kikauka, of Box 370, Brackendale, B.C., hereby certify that:

1. I am a graduate of Brock University, St. Catherines, Ontario, with an Honours Bachelor of Science Degree in Geological Sciences, 1980.
2. I am a Fellow in good standing with the Geological Association of Canada.
3. I am registered in the Province of British Columbia as a Professional Geoscientist.
4. I have practised my profession for fifteen years in precious and base metal exploration in the Cordillera of Western Canada and South America, and for three years in uranium exploration in the Canadian Shield.
5. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence on the subject properties between March 13 and March 30, 1993 and on published and unpublished literature.
6. I have no interest, direct or indirect, with the subject property.
7. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

APPENDIX A

ROCK SAMPLE DESCRIPTIONS

APPENDIX A: ROCK SAMPLE DESCRIPTIONS

SAMPLE	DESCRIPTION	WIDTH cm
T/93 RI	Chip; mineralized o/c of andesite tuff. Massive to disseminated sulphide includes 8% Py, 1% CPY, trace of SP, strong silicification, 5\% quartz in cavities.	8
T/93 R2	Chip; silicified o/c of andesitic tuff taken from the same o/c as R1. Massive to disseminated sulphides 3% pyritite and 3% CPY, quartz and epidote in cavities.	100
T/93 R3	Chip; the same o/c, the same as above	100
T/93 R4	Chip; contact zone between silicified andesitic tuff and argillite, 5\% qtz, 3\%ep, tr CPY.	22
T/93 R5	Chip across zone of massive pyrrhotite hosted by altered (chloritic) volcanic tuff in contact with argillitic siltstone, $40 \% \mathrm{PYO}$ 1\%CPY, tr sphalerite.	95
T/93 R6	Chip over smaller zone of massive sulphides, the same as above.	28
T/93 R7	Chip; silicified, altered andesitic tuff disseminated with pyrite, chalcopyrite, sphalerite. 5\% qtz., $5 \% e p, 3 \% P Y, 3 \% C P Y, 1 \% S p$.	80
T/93 R8	Massive magnetite pod, hosted by andesitic tuff, 40\% Mag, 10\% Py, minor CPY Chip.	65

SAMPLE	DESCRIPTION	WIDTH cm
SAMPLE	DESCRIPTION	WIDTH cm
T/93 R9	Chip; contact zone between volcanic tuff and sediments (argillitic siltstone), massive pyrite, 2 to 3% chalcopyrite dissimination hosted by chloritic tuff.	30
T/93 R10	Chip across 25 cm of pyritic andesite tuff, massive pyrite, minor serecite in fractures, strike $N E$, dipping $77^{\circ} \mathrm{SE}$	25
T/93 R11	Chip, pyritic volcanic tuff along the road cut disseminated with 8 to 10% pyrite, 5\% pyrrhotite.	
T/93 R12	Chip, base of bluff, 5% disseminated pyritic pyrrhotite, tr cpy, fracture filling $150^{\circ} / 72^{\circ}$ SW.	30
T/93 R13	Base of bluff, altered (chloritic) andesite flow, 8\% combined py and pyrrhotite, tr cpy in fractures chip sample.	30
T/93 R14	Chip across 2 meters of silicified, altered andesitic tuff disseminated with 8% pyo, 3% Py, 1 to 2% sphalerite, tr 0.5% CPY. Gossan zone along the road cut exposed for 35 meters.	200
$\begin{array}{ll} \mathrm{T} / 93 & \mathrm{R} 15 \\ \mathrm{~T} / 93 & \mathrm{R} 16 \end{array}$	Chip samples across the same gossan zone, 2 meters wide each, the same as R14.	200

SAMPLE	LESCRIPTION	WIDTH Cm
T/93 R17-	Chip across 2 meters of light brown, T/93 R20 altered gossan zone, altered hematitic volcanic andesite disseminated with 8\% PYO, 3\%Py, tr CPY, cavities filled with hematite.	200

SAMPLE	DESCRIPTION	WIDTH cm
SAMPLE	DESCRIPTION	WIDTH cm
T/93 R21	Float angular boulder taken from adit dump, silicified material disseminated with 3% Py, tr CPY.	---
T/93 R22	```Float, (adit dump), altered chloritic andesitic tuff, 30% massive to disseminated Py, 1%CPY.```	---
T/93 R23	Chip; shear zone, $N-20^{\circ} E$ dipping $80^{\circ} \mathrm{ES}$, pyrite dissemination 8\%, tr CPY.	15
T/93 R24	```Float; angular boulder (adit dump), 40% massive magnetite, 10% pyrrhotite, 5% pyrite and trace of CPY.```	---
T/93 R25	Altered andesitic tuff (chloritic), disseminated with 8% pyrite, tr of CPY. Chip sample.	15
T/93 R26	```Chip across shear zone strike N-20'E; semi-massive to disseminated mag (20%), pyrite (10%), 3% Pyo, 1% CPY.```	20
T/93 R27	Same as R26. (trace of CPY)	15
T/93 R28	```Small o/c of chloritic, altered andesitic tuff, 8% fine grained pyrite. Chip sample.```	25
T/93 R29	```Chip; semi-massive to massive pyrrhotite, hosted by chloritic andesitic tuff, 3% chalcopyrite and 1% sphalerite```	15

SAMPLE	DESCRIPTION	WIDTH cm
T/93 R30	Chip; contact zone (volcanic tuff siltstone) 40\% massive pyrrhotite, 2\% chalcopyrite, hosted by altered (propylitic) andesitic tuff with 10\% epidote.	15

SAMPLE	DESCRIPTION	WIDTH cm
SAMPLE	DESCRIPTION	WIDTH cm
T/93 R31	Chip; pyritic volcanic tuff o/c along the road cut, 8% Py, tr CPY.	15
T/93 R32	The same as above	15
T/93 R33	Float; gossan zone by the road cut, 8\% disseminated pyrite, 2\% sphalerite.	---
$\begin{aligned} & \text { T/93 R34 } \\ & \text { to T/93 } \\ & \text { R37 } \end{aligned}$	Float samples collected from dump materials of the road showing at L5 $500^{\circ} \mathrm{N}$, 10 to 40% pyrrhotite, 1% chalcopyrite hosted by altered hematitic andesitic tuff.	---
T/93 R38	Float; angular andesitic tuff, semimassive to disseminated sulphides, mainly pyrrhotite 10%, tr CPY.	---
T/93 R39	Chip; subcrop of light grey aphanitic tuff, 10% pyrite dissemination, tr of chalcopyrite.	30
T/93 R40	Subcrop of andesitic tuff, semi-massive to disseminated pyrrhotite 20%, 10% pyrite, 5\% chalcopyrite. Chip across 30 cm .	30
T/93 R41	Float; angular boulder of volcanic tuff, massive to disseminated magnetic sulphides, mainly pyrrhotite, 5\% dissimination and fracture filling pyrrhotite.	---

SAMPLE	LESCRIPTION	WIDTH cm
T/93 R42	Lone Jack Creek, contact zone between argillic siltstone and andesitic tuff, fracture filling pyrite 1 to 2\%, up to 15\% pyrrhotite, and 3\% sphalerite. Chip across 1 meter.	100

SAMPLE	DESCRIPTION	WIDTH cm
SAMPLE	DESCRIPTION	WIDTH cm
T/93 R43	Silicified, light grey pyritic andesite with up to 50% secondary quartz, 15% fine grained pyrite. Fractures at N $45^{\circ} \mathrm{E}$ 。	8
T/93 R44	Chip; shear zone $N-45^{\circ} E$, fracture filling 15% Py, 10% epidote hosted by volcanic tuff.	8
T/93 R45	Float, angular, local volcanic tuff, 30% pyrrhotite, 2% sphalerite, 1\% chalcopyrite and 10% chlorite.	---
T/93 R46	Chip over 30 cm of silicified pyritic volcanic tuff, $35 \% q t z, 3 \% P y, ~ f r a c t u r e s$ $\mathrm{N}-10^{\circ} \mathrm{E}$ dipping west.	---
$\begin{aligned} & \text { T/93 R47 } \\ & \text { to } T / 93 \\ & \text { R50 } \end{aligned}$	Chip sample across 1 meter of contact zone at T_{2} drill target showing. Massive pyrrhotite 20 to 30%, . 5 chalcopyrite and 2% sphalerite, hosted by altered dark brown hematitic volcanic, fractures $S+N$ dipping west filled with hematite.	100
T/93 FR51	Chip Sample; Rusty, altered (homatitic) volcanic tuff, $10 \% \mathrm{Mn}$ oxide, 5% hematite, 5\% limonite. Cavities filled with quartz.	200
T/93 FR52	Chip Sample; altered, hematitic rhyolite tuff intense Mn oxide, hematite limonite in vuggs.	200

SAMPLE	DESCRIPTION	WIDTH cm
T/93 FR53	Float; light grey plagioclase rhyolite porphyry, disseminated with 1 to 2% very fine grained pyrite.	- -

SAMPLE	DESCRIPTION	WIDTH cm
SAMPLE	DESCRIPTION	WIDTH cm
T/93 FR54	Chip; andesitic volcanic tuff hosting two quartz veins 4 to 5 cm wide strike $55^{\circ} / 80^{\circ} \mathrm{NW}$, no sulphides.	30
T/93 FR55	Chip sample; rusty andesitic volcanic flow, 5\% hem, 3\% magnetite, 2% pyrite, 2% chalcopyrite.	30
T/93 FR56	Chip sample over 4 meters of altered, dark brown andesitic volcanic tuff with up to 10\% hem, 3\% limonite, 1\% pyrite and 2% pyrrhotite, trace of chalcopyrite.	400
T/93 FR57	Chip over 5 meters of hematitic, rusty andesitic tuff, 10\% hem, 3\% lim, 1\%Py, 2% pyrrhotite and 1 to 2% chalcopyrite.	500
T/93 FR58	Chip, altered, hematitic tuff, 10% hem, 3\% lim, 3\% pyrite, trace of chalcopyrite.	60
T/93 FR59	Chip; hematitic, dark brown andesitic volcanic tuff, 10% hematite, 10% lim, 8\% pyrite and 1\% chalcopyrite.	100
T/93 FR60	Chip across 8 meters of altered (hematitic), mineralized o.c of volcanic tuff, south bank of Lone Jack Creek, 5\% hem, 5\%Py, 2\%Pyo, 1\%CPY	800
T/93 FR61	Chip Sample across 10 meters of altered hematitic andesitic tuff, disseminated with 5% Py, 2% Pyo, minor chalcopyrite.	1000

SAMPLE	DESCRIPTION	WIDTH cm
T/93 FR62	Chip; reddish to dark brown pyritic volcanic tuff, 1\% fine grained pyrite.	500

SAMPLE	DESCRIPTION	WIDTH cm
SAMPLE	DESCRIPTION	WIDTH cm
T/93 FR63	Float, massive sulphides hosted by dark grey aphanitic tuff, 15\%Pyo, 5\%Py, 10\% magnetite.	---
T/93 FR64	Float; altered black argillite, intense silicification 80% milky massive quartz, 2% Py dissemination minor chalcopyrite.	---
T/93 FR65	Chip; black banded argillite, less than 1\% fine grained pyrite.	200
T/93 FR66	Chip sample over 1 meter of black banded argillite hosting 1 to 2 mm of calcite veinlets 2% fine grained pyrite.	100
T/93 FR67	Channel sample; massive, reddish quartz vein strike $45^{\circ} / 90^{\circ}$, hosted by black banded argillite, 2% Py, trace CPY. Vein exposed for 2 meters.	20
T/93 FR68	Chip; altered argillite, limonite, hematite along fractures, 2% Py.	60
T/93 FR69	Chip over I meter of mineralized argillite, 2\% fine grained Py along beddings, 5% Ep in vuggs.	100
T/93 FR70	Float; silicified pyritic volcanic tuff, 2% Py, limonite hematite along fractures.	---
T/93 FR71	Chip; pyritized, light grey aphanitic dacite, 2 to 3% Py. Fractures strike $60^{\circ} / 90^{\circ}$ filled with pyrite.	100

SAMPLE	DESCRIPTION	WIDTH cm
SAMPLE	DESCRIPTION	WIDTH cm
T/93 FR72	Chip; rusty, massive to disseminated Py, pyrrhotite hosted by light grey plag porphyry dacitic tuff.	30
T/93 FR73	Chip over 60 cm of hematitic, altered volcanic tuff, 30% combined hematite and limonite, 5 to 7% Py, 2% magnetite, minor CPY	60
T/93 FR74	Chip; shear zone strike $315^{\circ} / 45^{\circ}$ taken at the end of an adit, 40% recrystallized sugary quartz 2 to 3% epidote. No obvious sulphides, Chip sample across 30 cm of the shear zone.	30
T/93 FR75	Chip; black banded argillite, hosting 5 cm quartz vein disseminated with 2% Py.	20
T/93 FR76	Select sample of altered volcanic o/c, hosting fracture zone south and north $55^{\circ} / 90^{\circ}$, 15% combined massive to disseminated sulphides mainly Py and Pyo.	30
T/93 FR77	```Chip; pyritic, rusty volcanic andesite tuff, 10% hematite and limonite in cavities, 1%Py.```	30
T/93 FR78	Chip; plagioclase porphyry dyke strike $120^{\circ} / 90^{\circ}, 4$ meters wide, 2% fine grained pyrite dissemination.	400
T/93 FR79	Select; reddish, rusty o/c of pyritic andesite tuff 20% pyrite and Mn oxide.	30

SAMPLE	DESCRIPTION	WIDTH cm
T/93 FR80	Chip; light grey fine grained volcanic tuff disseminated with 1 to 2% Py, fractures filled with Mn oxide and hematite.	60

SAMPLE	DESCRIPTION	WIDTH cm
SAMPLE	DESCRIPTION	WIDTH cm
T/93 R101	Shear zone trending NW, 50 cm of pyritic sheared volcanic tuff, 5\% fine grained pyrite. Chip sample across the shear zone.	50
T/93 R102	Milky quartz vein next to shear zone, <1\% pyrite dissemination with irregular width and trend, max width is 10 cm . Chip sample over the vein.	10
T/93 R103	Pyritic, silicified crystals ash tuff, 2 to 3\% disseminated and fracture controlled pyrite in dark grey to green groundmass - 10\% epidote. Chip over 30 cm .	30
T/93 R104	Three meters of strongly silicified and chloritized rusty weathering andesitic tuff, weakly magnetic, 3 to 5% pyrrhotite disseminated and in fractures, minor pyrite. Chip over 3 meters.	300
T/93 R105	Rusty banded pyritic ash tuff, 1\% pyrite. Chip over 1 meter.	100
T/93 R106	Same as R105	100
T/93 R107	Subcrop, strong silicification in quartz monzonite, minor pyrite.	100
T/93 R108	Pyritic, silicified argillite, <1\% pyrite in quartz stringers. Chip over 1 meter.	100
T/93 R109	Same as R108	100

APPENDIX B

ANALYTICAL REPORTS

PROJECT\#: 402
SAMPLES ARRIVED: MAR 291993 REPORT COMPLETED: APR 081993 ANALYSED FOR: Au (FA/AAS) ICP

INVOICE\#: 930020 NA
TOTAL SAMPLES: 90
SAMPLE TYPE: 90 ROCK
REJECTS: SAVED

SAMPLES FROM: MR. FAYZ YACOUB COPY SENT TO: ARROWHEAD EXPLORATION SERVICES

PREPARED FOR: MR. FAYZ YACOUB

ANALYSED BY: Raymond Chan
SIGNED:

GENERAL REMARK: RESULTS FAXED TO MR. FAYZ YACOUB 683-6958.
REPORT MOUBER: 990020 GAJOB NUIERR: 930020AROM
SAMPLEAuppb
T93 FR-79 120
T93 FR-80 10
TC93 R-101 10
TC93 R-102 20
TC93 R-103 10 0
TC83 R-104 10
TC93 R-105 nd
TC83 R-106 nd
TC93 R-107 nd

d

TC93 R-108 nd
nd
TC93 R-109 nd
AM 9301 ROCK 2055515 E ndu00

［－］	E							3 ．		［	1	3	E	1												－．
									1630	$3 \text { Pandor }$ $\text { Ph: } 160$	Street 4）251－56	Vancou Fax： 6	er, B.C $\text { 504) } 254-9$	5717												
							IC	AF	G	EロO	HET	IO	AL	Ar	NAI	γs	IS									
					gras		digested	dith is leac		$\begin{aligned} & \text { 1:1: HCL } \\ & \text { ial for } \end{aligned}$	$\begin{aligned} & \text { to HNO, } \\ & \mathrm{Al}, \mathrm{Ba}, \end{aligned}$	$\text { to } \mathrm{H}_{2} \mathrm{O}$ $a_{1} c_{r},$	$\begin{aligned} & \text { at } 95^{\circ} \mathrm{C} \\ & \text { ee, } \mathrm{K}, \mathrm{Mg} \end{aligned}$	$\text { for } 90$			iluted H．		vith vat							
																						NAL				
REPORT ： 930020 PA		WHEAD	Explorat	ON SERY			Projec	T： 402				DAIE	IN：MAR	291993		DUT：AP	14 199		cention：	Rr．FA	yacoub				PAGE ：	Of 3
Sapple Nare	Ag	A！	As	；Au	Ba	Bi	Ca	cd	co	Cr^{2}	Cu	Fe	k	M9	Kn	Ho	Na	Ni	p	Pb	56	5 n	Sr	U	W	In
	ppa	2	ppa	ppb	ppa	ppa	\％	ppa	ppı	ppa	ppe	4	2	2	ppe	ppa	1	ppa	\％	pps	ppa	ppe	ppa	P98	ppa	ppa
193 R－1	750	0.82	（3	60	9	＜3	1.36	5.8	36	64	120000	9.02	＜0．01	0.05	359	3	0.04	26	0.14	117	＜2	＜2	59	＜	＜3	451
T93 R－2	42.0	0.99	＜3	20	3	＜3	1.45	2.8	60	155	9290	6.58	＜0．01	0.16	489	2	0.02	26	0.11	23	＜2	＜2	61	＜5	＜3	442
T93 R－3	750	0.92	＜3	10	2	＜3	1.45	0.1	21	162	4081	6.75	＜0．01	0.07	413	4	0.03	14	0.09	37	＜2	＜2	64	＜5	＜3	306
T93 R－4	33.0	1.13	¢3	10	＜1	＜3	1.92	＜0．1	28	187	2140	4.52	0.01	0.09	327	1	0.03	8	0.06	44	$\stackrel{1}{2}$	＜2	96	＜	＜3	107
193 R－5	750	0.27	＜3	20	（1）	＜3	0.37	21.9	362	12	13191	710	20.01	0.12	523	1	0.24	492	0.05	2198	＜2	＜2	11	＜ 5	＜3	3519
193 p －6	34.0	0.30	＜3	20	＜1	${ }_{3}$	0.37	43.7	586	43	7582	310	＜0．01	0.11	509	2	0.35	914	0.06	315	＜2	＜2	13	＜ 5	＜3	5539
T93 R－7	150	1.01	＜3	80	＜1	＜3	1.40	9.4	29	198	220000	210	20.01	0.21	700	（1）	0.05	29	0.10	416	＜2	＜2	68	＜	＜3	1647
T93 R－8	7.1	1.97	＜3	20	＜1	＜3	210	（0．1	99	101	4064	110	＜0．01	0.42	2348	1	0.17	49	0.03	105	＜2	12	12	＜5	＜3	458
193 R－9	150	2.72	${ }_{3}$	20	＜1	＜3	0.97	＜0．1	21	44	220000	310	＜0．01	1.02	2528	1	0.04	36	0.11	141	＜2	＜2	64	＜5	＜3	356
T93 R－10	25.4	0.71	＜3	20	＜1	10	0.95	＜0．1	255	37	745	310	＜0．01	0.11	296	4	0.20	72	0.03	336	＜2	＜2	40	＜	＜3	344
T93 R－11	1.3	2.60	＜3	60	39	＜3	2.08	10.1	50	74	317	6.92	$\langle 0.01$	0.48	230	1	0.31	58	0.09	7	＜2	12	143	＜	＜3	64
$193 \mathrm{R}-12$	2.2	2.50	＜3	10	27	＜3	2.24	＜0．1	42	79	353	5.48	＜0．01	0.72	301	＜1	0.32	45	0.06	＜2	$\stackrel{2}{ }$	＜2	72	45	＜3	45
T93 R－13	0.8	¢． 34	＜3	10	55	く3	3.27	＜0．1	78	237	434.	8.26	＜0．01	3.36	742	＜1	0.15	275	0.12	＜2	$\stackrel{2}{2}$	＜2	116	＜5	＜3	34
193 R－14	2.8	3.53	3	10	88	＜3	2.62	<0.1	44	64	794	7.46	＜0．01	1.44	1293	，	0.10	30	0.06	＜2	＜2	＜2	92	＜	＜3	251
T93 R－15	2.7	4.38	＜3	10	23	＜3	1.51	12.0	53	164	1449	310	＜0．01	2.80	2957	1	0.01	55	0.06	24	＜2	＜2	59	＜ 5	＜3	1303
193 8 R－16	2.5	4.75	＜3	10	43	3	1.19	49.7	56	－ 165	1208	310	$\langle 0.01$	3.20	3825	1	＜0．01	58	0.06	＜2	＜2	＜2	48	＜5	3	6624
193 R－17	2.8	2.46	＜3	10	＜1	＜3	0.88	335.8	49	95	1197	210	＜0．01	1.43	2862	6	0.45	51	0.05	＜2	＜2	<2	29	＜ 5	13	720000
T93 R－18	2.2	2.06	＜3	20	＜1	＜3	0.82	164.4	41	164	1070	710	＜0．01	1.10	2214	2	0.14	60	0.02	，	＜2	＜2	27	＜ 5	${ }_{3}$	13100
T93 R－19	2.3	1.88	54	20	＜1	＜3	0.92	379.5	49	59	1487	310	＜0．01	0.97	2066	3	0.71	73	0.03	13	＜2	亿2	36	＜ 5	＜3	22000
193 R－20	3.4	2.27	849	50	4	く3	0.76	200.7	129	73	1283	70	＜0．0）	1.44	2196	2	0.24	107	0.04	83	＜2	＜2	27	＜	亿	220000
193 R－21	0.9	3.77	＜3	10	88	＜3	1.56	＜0．1	34	212	541	7.05	＜0．01	0.96	789	6	0.21	56	0.05	8	＜2	＜2	114	＜ 5	行	276
T93 $\mathrm{R}-22$	2.4	3.64	＜3	40	＜1	＜3	0.78	＜0．1	215	92	818	210	＜0．01	1.67	3574	1	0.25	123	0.05	65	＜2	＜2	28	45	3	1168
T93 R－23	7.6	3.19	156	150	4	＜3	0.36	¢0．1	58	31000	3170	210	＜0．01	1.55	5753	，	0.29	133	0.03	211	＜2	＜2	，	＜ 5	＜3	2809
T93 R－24	3.6	1.57	${ }_{3}$	40	＜1	＜3	7.29	＜0．1	80	91	498	310	$\langle 0.01$	0.18	1300	I	0.33	31	0.02	491	＜2	12	2	＜5	亿	620
193 R－25	0.7	1.33	＜3	10	26	＜3	1．85．	<0.1	49	102	164	7.29	＜0．01	0.48	375	＜	0.15	46	0.07	17	＜2	<2	95	<5	＜3	91
T93 R－26	5.6	1.58	＜3	20	＜1	＜3	7.88	10.1	263	126	1607	710	＜0．01	0.15	1332	1	0.30	135	0.02	64	＜2	12	6	is	3	121
T93 $\mathrm{R}-27$	2.8	2.06	121	30	＜1	く3	1.71	＜0．1	52	309	549	＞10	$\langle 0.01$	0.63	1775	1	0.35	128	0.02	101	＜2	<2	4	＜ 5	＜3	785
193 $\mathrm{k}-28$	0.8	3.40	＜3	E0	24	3	1.93	（0．1	58	59	461	310	＜0．01	1.34	634	＜1	0.33	58	0.08	12	＜2	＜2	138	＜5	＜3	89
T938－29	750	1.09	＜3	20	＜1	＜3	1.62	55.4	112	88	320000	310	＜0．01	0.44	1337	＜1	0.04	195	0.12	45	$(2$	＜2	60	＜ 5	亿	6792
T93 8 －30	9.0	0.11	＜3	10	＜	く3	0.21	5.1	928	13	2539	1：0	＜0．01	0.02	163	2	0.42	1204	0.05	75	＜2	＜2		＜ 5	＜3	1614
193 R－31	1.0	1.26	¢3	10	59	〔3	0.67	0.1	37	213	281	6.65	＜0．01	0.57	309	1	0.13	71	0.09	＜ 2	＜2	＜2	21	＜ 5	亿	113
193 f －32	0.5	1.42	（3）	10	23	3	1.40	＜0．1	34	91	110	4.10	20．01	0.62	310	1	0.16	33	0.10	亿2	12	倍	52	估	4	40
T93 R－33	2.2	7.06	765	10	1	＜3	8.98	66.8	34	81	890	110	0.01	0.91	1071	2	＜0．01	35	0.07	（2	＜2	＜2	10	＜5	${ }_{3}$	9265
T93 R－34	8.6	1.89	＜	10	＜1	（3）	0.55	1000	171	64	886	310	＜0．01	1.28	2729	7	6.37	121	0.04	59	＜2	＜2	25		＜3	22000
193 $\mathrm{f}-35$	3.2	4.50	＜3	20	23	＜3	1.22	47.9	101	116	1843	310	0.01	3.41	2594	2	＜0．01	104	0.07	45	＜2	12	36	＜5	${ }_{3}$	6921
T93 $\mathrm{R}-36$	3.3	1．25	141	10	14	${ }_{3}$	0.89	56.4	71	165	2057	210	＜0．01	0.52	908	1	0.12	114	0.01	23	＜2	$\stackrel{2}{2}$	44	＜	3	7811
［93 $\mathrm{R}-37$	3.3	1.56	${ }_{3}$	10	4	（3）	0.95	448.6	39	148	1354	310	80．01	0.61	1617	3	0.96	76	0.04	29	（2）	12	34	＜ 5	$\stackrel{3}{ }$	220000
［93 8－38	1.5	0.50	＜3	20	1	＜3	1.45	0.1	289	22	1456	16	＜0．01	0.09	325	1	0.21	892	0.08	35	12	＜2	39	＜ 5	＜3	531
193 $\mathrm{R}-39$	2.0	1.82	${ }_{3}$	10	11	＜3	1.86	$\langle 0.1$	371	44	1769	310	＜0．01	0.09	536	1	0.37	684	0.07	27	12	12	48	＜	＜3	277
Kinimua detection	0.1	0.01	3	5	1	3	0.01	e．t		1		0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	！
Maxinue Detection	50.0	10.00	2000	10000	1000	1000	10.60	1060.0	20000	1000	2000	10.00	10.00	10.60	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000

ICAF GEOCHEMICAL ANALYSIS
A. 5 gra sample is digested with 5 of $3: 1: 2 \mathrm{HCL}$ to HMO_{3} to $\mathrm{H}_{2} \mathrm{O}$ at $9{ }^{\circ}{ }^{\circ} \mathrm{C}$ for 90 minutes and is diluted to 10 al with water. This leach is partial for $\mathrm{Al}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{K}, \mathrm{Kg}, \mathrm{Mn}, \mathrm{Na}, \mathrm{P}, \mathrm{Sn}, \mathrm{Sr}$ and H .

DATE IN: MAR 29 : 1993 DATE OUT: APR 141993 ATTENTION: MR. FAYE YACOUB
PAGE 2 OF 3

CLIENT: ARROWHEAD EXPLORATION SERVICES DATE: APR 201993
ADDRESS: 900-999 W. HastIngs St.
: Vancouver, BC
REPORT\#: 930020. AA
: V8C 2 W2
JOB\#: 930020

PROJECT\#: 402
SAMPLES ARRIVED: MAR 291993 REPORT COMPLETED: APR 201993

ANALYSED FOR: Cu Zn Ag

INVOICE\#: 830020 NB
TOTAL SAMPLES: 13 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: ROCK

SAMPLES FROM: MR. FAYZ YACOUB
COPY SENT TO: ARROWHEAD EXPLORATION SERVICES

PREPARED FOR: MR. FAY YACOUB

ANALYSED BY: Raymond Chan
SIGNED :

Registered Provincial Assayer 1630 PANDORA STREET VANCOUVER, B.C.

REPORT NUUBER: 190020 AL

SAMPLE \#

Zn
$\%$

--	5.34
--	2.13
--	2.45
--	9.98
--	3.03

2.03

T93 R-29
T93 R-34
Cu
\%
2.60
--
--
1.92
2.04

T93 R-17
T93 R-19
T93 R-20
--
T93 R-1
T93 R-3
T93 R-5
T83 R-7
T93 R-9
--

PAGR 1 OF
3.28
3.76
2.26

T93 R-37
--
T83 R-42
T93 R-43
--
--
--
12.50
4.18
24.90
1.95
0.01
0.01

1 froy oz/short toe $=34.28 \mathrm{ppa} \quad 1 \mathrm{ppa}=0.00018 \mathrm{ppa}=$ parts per alliloil $<=1$ ess than

VEL. 1L6
TEL (604) 251-5656

GEOCHEMICAL ANATXYTECAL REPORT红

PROJECT\#: 402
SAMPLES ARRIVED: MAR 291993
REPORT COMPLETED: APR 081993 ANALYSED FOR: AU (FA/AAS) IMP

INVOICE\#: 930018 NA
TOTAL SAMPLES: 196
SAMPLE TYPE: 195 SOIL
REJECTS: DISCARDED

SAMPLES FROM: MR. FAYZ YACOUB
COPY SENT TO: ARROWHEAD EXPLORATION SERVICES

PREPARED FOR: MR. FAYE YACOUB

ANALYSED BY: Raymond chan
SIGNED:

GENERAL REMARK: L4+00S 8+00E - NO SAMPLE RESULTS FAXED TO MR. FAYZ YACOUB © 683-6958.

REPORT MUUBER: 930019 GA
SAMPLE \#
$\mathrm{LO} 0+0 \mathrm{~N} \quad 0+50 \mathrm{E}$
$\mathrm{LO} 0+00 \mathrm{~N} \quad 1+00 \mathrm{E}$
$\mathrm{LO}+00 \mathrm{~N} \quad 1+50 \mathrm{E}$
$\mathrm{L} 0+00 \mathrm{~N} \quad 2+00 \mathrm{E}$
$\mathrm{LO}+00 \mathrm{~N} \quad 2+50 \mathrm{E}$
$\mathrm{L} 0+00 \mathrm{~N} \quad 3+00 \mathrm{E}$
$\mathrm{LO} 0+0 \mathrm{~N} \quad 3+50 \mathrm{E}$
$\mathrm{L} 0+00 \mathrm{~N} \quad 4+00 \mathrm{E}$
$\mathrm{L} 1+00 \mathrm{~N} \quad 0+00 \mathrm{E}$
$\mathrm{L} 1+00 \mathrm{~N} \quad 0+50 \mathrm{E}$
$\mathrm{L} 1+00 \mathrm{~N} \quad 1+00 \mathrm{E}$
$\mathrm{L} 1+00 \mathrm{~N} \quad 1+50 \mathrm{E}$
$\mathrm{L} 1+00 \mathrm{~N} \quad 2+00 \mathrm{E}$
$\mathrm{L} 1+00 \mathrm{~N} \quad 2+50 \mathrm{E}$
$\mathrm{L} 1+00 \mathrm{~N} \quad 3+00 \mathrm{E} \quad 20$

$\mathrm{L} 1+00 \mathrm{~N}$	$3+50 \mathrm{E}$	10
$\mathrm{~L} 1+00 \mathrm{~N}$	$4+00 \mathrm{E}$	10
$\mathrm{~L} 1+00 \mathrm{~N}$	$4+50 \mathrm{E}$	nd
$\mathrm{L} 1+00 \mathrm{~N}$	$5+00 \mathrm{E}$	nd
$\mathrm{L} 1+00 \mathrm{~N}$	$5+50 \mathrm{E}$	nd
$\mathrm{L} 1+00 \mathrm{~N}$	$0+50 \mathrm{~W}$	nd
$\mathrm{L} 1+00 \mathrm{~N}$	$1+00 \mathrm{~W}$	nd
$\mathrm{L} 1+00 \mathrm{~N}$	$1+50 \mathrm{~W}$	nd
$\mathrm{L} 1+00 \mathrm{~N}$	$2+00 \mathrm{~W}$	330
$\mathrm{~L} 1+00 \mathrm{~N}$	$2+50 \mathrm{~W}$	

$\mathrm{L}+00 \mathrm{~N} \quad 3+00 \mathrm{w}$
$\mathrm{L} 1+50 \mathrm{~S} \quad 0+00 \mathrm{E}$
$\mathrm{L} 1+50 \mathrm{~S} \quad 0+50 \mathrm{E}$
$\mathrm{L} 1+50 \mathrm{~S} \quad 1+00 \mathrm{E}$
$L 1+50 \mathrm{~S} \quad 1+50 \mathrm{E}$
$\mathrm{L} 1+50 \mathrm{~S} \quad 2+00 \mathrm{E}$
$L 1+50 \mathrm{~S} \quad 2+50 \mathrm{E}$
$\mathrm{L} 1+50 \mathrm{~S} \quad 3+00 \mathrm{E}$
$\mathrm{L} 1+50 \mathrm{~S} \quad 3+50 \mathrm{E}$
L1+50S $4+00 \mathrm{E}$
Li+50S 4+50E
L1+50S 5+00E
L2N BL
$\mathrm{L} 2+00 \mathrm{~N} \quad 0+50 \mathrm{E} \quad 20$
DETECTION LIMIT
ad = ana detected
nd 40 60 30
nd
nd
nd
nd

5
JOB NUMBER: 930018 Au ppb 10 30 40 110 20

20 nd 10 nd nd 20 10 10 nd nd nd
nd
nd
nd nd 33020
nd nd nd nd
nd
nd
nd
nd d

SAMPLE	\#	Au
		ppb
$\mathrm{L} 2+00 \mathrm{~N}$	$1+00 \mathrm{E}$	10
$\mathrm{L} 2+00 \mathrm{~N}$	$1+50 \mathrm{E}$	20
$\mathrm{L} 2+00 \mathrm{~N}$	$2+00 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~N}$	$2+50 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~N}$	$3+00 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~N}$	$9+50 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~N}$	$4+00 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~N}$	$4+50 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~N}$	$5+00 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~N}$	$5+50 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~N}$	$6+00 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~N}$	$0+50 \mathrm{~W}$	nd
$\mathrm{L} 2+00 \mathrm{~N}$	$1+00 \mathrm{~W}$	nd
$\mathrm{L} 2+00 \mathrm{~N}$	$1+50 \mathrm{~W}$	10
$\mathrm{L} 2+00 \mathrm{~N}$	$2+00 \mathrm{~W}$	10
$\mathrm{L} 2+00 \mathrm{~N}$	$2+50 \mathrm{~W}$	30
$\mathrm{L} 2+00 \mathrm{~S}$	BL 000	10
$\mathrm{L} 2+00 \mathrm{~S}$	0+50E	20
$\mathrm{L} 2+00 \mathrm{~S}$	$1+00 \mathrm{E}$	10
$\mathrm{L} 2+00 \mathrm{~S}$	$1+50 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~S}$	$2+50 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~S}$	$3+00 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~S}$	$3+50 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~S}$	$4+00 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~S}$	$4+30 \mathrm{E}$	nd
$\mathrm{L} 2+00 \mathrm{~S}$	$5+00 \mathrm{E}$	nd
$\mathrm{L} 3+00 \mathrm{~N}$	$0+00 \mathrm{E}$	nd
L3 3 +00N	$0+50 \mathrm{E}$	nd
$\mathrm{L} 3+00 \mathrm{~N}$	$1+00 \mathrm{E}$	10

$\mathrm{L} 3+00 \mathrm{~N} \quad 2+50 \mathrm{E}$
$\mathrm{L} 3+00 \mathrm{~N} \quad 3+00 \mathrm{E}$
$\mathrm{L} 3+00 \mathrm{~N} \quad 3+50 \mathrm{E}$
$\mathrm{L} 3+00 \mathrm{~N} \quad 0+50 \mathrm{~W}$
$\mathrm{L} 3+00 \mathrm{~N} \quad 1+00 \mathrm{~W}$
$\mathrm{L} 3+00 \mathrm{~N} \quad 1+50 \mathrm{~W}$
$\mathrm{L} 3+00 \mathrm{~N} \quad 2+00 \mathrm{~W} \quad 20$
$\mathrm{L} 3+00 \mathrm{~N} 2+50 \mathrm{~W}$ nd
$\mathrm{L} 3+00 \mathrm{~S} \quad 0+00 \mathrm{E}$
$\mathrm{L} 3+00 \mathrm{~S} \quad 0+50 \mathrm{E}$

100 HOURER: 190018
Au ppb 10 20 nd nd nd nd nd nd nd nd
nd
nd nd
10
10
30
10
20
10 nd
nd
nd
nd
nd
nd
nd
nd
nd
10
10
nd
nd
nd
20
30
nd
30 30

DETECTION LIMIT

UGC
 VANGEOCHEM LAB LIMITED

REPORf RUMBER: Aseot GA
SAMPLE \#
$\mathrm{L} 3+00 \mathrm{~S} 1+00 \mathrm{E}$
$\mathrm{L} 3+00 \mathrm{~S} \quad 1+50 \mathrm{E}$
$\mathrm{L} 3+00 \mathrm{~S} \quad 2+00 \mathrm{E}$
$\mathrm{L} 3+00 \mathrm{~S} \quad 2+50 \mathrm{E}$
L3+00S 3+00E
JOB NOHBER: 930019
Au
ppb
10
20
30
20
20
$\mathrm{L} 3+00 \mathrm{~S} 3+50 \mathrm{E} \quad 40$
$\mathrm{L} 3+00 \mathrm{~S} \quad 4+00 \mathrm{E} \quad 30$
$\mathrm{L} 3+00 \mathrm{~S} 4+50 \mathrm{E} \quad 70$
$\mathrm{L} 3+00 \mathrm{~S} \quad 5+00 \mathrm{E} \quad 20$
$\mathrm{L} 3+00 \mathrm{~S}$ 5+50E 20
$\mathrm{L} 3+00 \mathrm{~S} \quad 6+00 \mathrm{E} \quad 30$
$\mathrm{L} 3+00 \mathrm{~S} \quad 8+50 \mathrm{E} \quad 30$
$\mathrm{L} 3+00 \mathrm{~S} \quad 7+00 \mathrm{E} \quad 20$
$\mathrm{L} 3+00 \mathrm{~S} \quad 7+50 \mathrm{E} \quad 30$
$\mathrm{L3}+00 \mathrm{~S} 8+00 \mathrm{E} \quad 130$
$\mathrm{L} 3+00 \mathrm{~S} \quad 8+50 \mathrm{E} \quad 40$
$\mathrm{L} 3+00 \mathrm{~S} \quad 9+00 \mathrm{E} \quad 20$
$\mathrm{L} 3+00 \mathrm{~S} \quad 9+50 \mathrm{E} \quad 20$
$\mathrm{L} 3+00 \mathrm{~S} \quad 10+00 \mathrm{E} \quad 30$
$\mathrm{L} 4+00 \mathrm{~N} \quad 0+00 \mathrm{E} \quad 30$
$\mathrm{L} 4+00 \mathrm{~N} \quad 1+00 \mathrm{E} \quad 10$
$\mathrm{L} 4+00 \mathrm{~N} \quad 1+50 \mathrm{E} \quad 10$
$\mathrm{L} 4+00 \mathrm{~N} \quad 2+00 \mathrm{E} \quad 20$
$\mathrm{L} 4+00 \mathrm{~N} \quad 2+50 \mathrm{E} \quad 20$
$\mathrm{L} 4+00 \mathrm{~N} \quad 3+00 \mathrm{E} \quad 40$
$\mathrm{L} 4+00 \mathrm{~N} \quad 3+50 \mathrm{E} \quad 10$
$\mathrm{L} 4+00 \mathrm{~N} \quad 0+00 \mathrm{~W} \quad 20$
$\mathrm{L} 4+00 \mathrm{~N} \quad 0+50 \mathrm{~W} \quad 10$
$\mathrm{L} 4+00 \mathrm{~N} \quad 1+00 \mathrm{~W} \quad 180$
$\mathrm{L} 4+00 \mathrm{~N} \quad 1+50 \mathrm{~W}$ nd
$\mathrm{L} 4+00 \mathrm{~N} \quad 2+00 \mathrm{~W}$ nd
$\mathrm{L} 4+00 \mathrm{~N} 2+50 \mathrm{~W}$ nd
$\mathrm{L} 4+00 \mathrm{~S} 0+00 \mathrm{E}$ BL nd
L4+00S $0+50 \mathrm{E}$ nd
L4+00S 1+00E nd
$\mathrm{L} 4+00 \mathrm{~S}$ 1+50E nd
L4+00S $2+00 \mathrm{E}$ nd
$\mathrm{L} 4+00 \mathrm{~S} 2+50 \mathrm{E}$
L4+00S 3+00E
nd
nd

BRANCH OFFICES BATHURST, N.B.

RRPORI 期HEPR: OSOO18 GA
SAMPLE \#
$4+00 S \quad 3+50 E$
$\mathrm{L} 4+00 \mathrm{~S} \quad 4+00 \mathrm{E}$
L4+00S $5+00 \mathrm{E}$
$\mathrm{L} 4+00 \mathrm{~S} \quad 5+50 \mathrm{E}$
$L 4+00 S \quad 6+00 E$
$L 4+00 \mathrm{~S} \quad \theta+50 \mathrm{E}$
$L 4+00 S \quad 7+00 E$
$\mathrm{L} 4+00 \mathrm{~S} \quad 7+50 \mathrm{E}$
$L 4+00 \mathrm{~S} \quad 8+00 \mathrm{E}$
$L 4+00 S \quad 8+50 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 0+00 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 1+00 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 1+50 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 2+00 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 2+50 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 3+00 \mathrm{E}$
L5+00N $\quad 3+50 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 4+00 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 4+50 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 5+00 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 0+50 \mathrm{~W}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 1+00 \mathrm{~W}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 1+50 \mathrm{~W}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 2+00 \mathrm{~W}$
$\mathrm{L} 5+00 \mathrm{~N} \quad 2+50 \mathrm{~W}$
$\mathrm{L} 5+00 \mathrm{~S} \quad 0+00 \mathrm{~F}$
$L 5+00 \mathrm{~S} \quad 0+50 \mathrm{E}$
L5+00S $1+00 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~S} \quad 1+50 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~S} \quad 2+00 \mathrm{E}$
$L 5+00 \mathrm{~S} \quad 2+50 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~S} \quad 3+00 \mathrm{E}$
$L 5+00 \mathrm{~S} \quad 3+50 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~S} \quad 4+00 \mathrm{E}$
L5 $5+00 \mathrm{~S} \quad 4+50 \mathrm{E}$
$L 5+00 \mathrm{~S} \quad 5+00 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~S} \quad 5+50 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~S} \quad 8+00 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~S} \quad 6+50 \mathrm{E}$

JOB. NUWBRE: 950010
Au
ppb
nd
nd
nd
nd
nd
10
10
nd
--
nd
nd
nd nd nd nd nd nd nd 10 10
nd
nd
nd
nd
20
10
10
nd
nd
nd
nd
10
10
nd 20

20
nd
nd
nd

MAIN OFFICE

REPORY MOHBER: 950018 GA
SAMPLE \#
$\mathrm{L} 5+00 \mathrm{~S} \quad 7+00 \mathrm{E}$
L5+00S 7+50E
$\mathrm{L} 5+00 \mathrm{~S} \quad 8+00 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~S} \quad 8+50 \mathrm{E}$
$\mathrm{L} 5+00 \mathrm{~S} \quad 9+00 \mathrm{E}$
$\mathrm{L} 6+00 \mathrm{~N} \quad 1+00 \mathrm{E}$
$\mathrm{L} 8+00 \mathrm{~N} \quad 1+50 \mathrm{E}$
$\mathrm{L} 8+00 \mathrm{~N} \quad 2+00 \mathrm{E}$
$\mathrm{L} 6+00 \mathrm{~N} \quad 2+50 \mathrm{E}$
$\mathrm{L} 6+00 \mathrm{~N} \quad 3+00 \mathrm{E}$
$\mathrm{Lb}+00 \mathrm{~N} \quad 3+50 \mathrm{E}$
$\mathrm{LB}+00 \mathrm{~N} \quad 0+25 \mathrm{~W}$ 20
$\mathrm{LB}+00 \mathrm{~N} \quad 0+75 \mathrm{~W}$ 10
$\mathrm{L} 6+00 \mathrm{~S} \quad 6+00 \mathrm{E}$ 20
$\mathrm{L} 6+00 \mathrm{~S} \quad 6+50 \mathrm{E}$ 20
L6+00S $\quad 7+00 \mathrm{E}$ 10
$\mathrm{L} 6+00 \mathrm{~S} \quad 7+50 \mathrm{E}$ 20
$\mathrm{L} 8+00 \mathrm{~S} \quad 8+00 \mathrm{E}$ 20
$L 8+00 \mathrm{~S} \quad 8+50 \mathrm{E}$ 20
$\mathrm{L} 8+50 \mathrm{~S} \quad 5+50 \mathrm{E}$ 20
$\mathrm{L} 6+50 \mathrm{~S} \quad 6+00 \mathrm{E}$
10
10
$\mathrm{L} 6+50 \mathrm{~S} \quad 6+50 \mathrm{E}$ nd
nd$\mathrm{LB}+50 \mathrm{~S} \quad 7+00 \mathrm{E}$
nd
$\mathrm{L} 6+50 \mathrm{~S} \quad 7+50 \mathrm{E}$ 10
$\mathrm{L} 7+00 \mathrm{~N}$ BL 10
$\mathrm{L} 7+00 \mathrm{~N}$ $1+00 \mathrm{E}$ nd
ndndndnd20
10
$\mathrm{L} 7+00 \mathrm{~N}$ $2+00 \mathrm{~W}$
20
$\mathrm{L} 7+00 \mathrm{~N} \quad 2+50 \mathrm{~W}$
30
30
$\mathrm{L} 7+00 \mathrm{~S} \quad 6+00 \mathrm{E}$
$\mathrm{L} 7+00 \mathrm{~S} \quad 6+00 \mathrm{E}$ 20
L7+00S 7+00E 80

Au

 ppb201010201010202020 0
0 d
L7+00N $1+50 \mathrm{E}$$\mathrm{L} 7+00 \mathrm{~N} \quad 2+00 \mathrm{E}$

$$
\mathrm{L} 7+00 \mathrm{~N} \quad 3+00 \mathrm{E}
$$

$$
\mathrm{L} 7+00 \mathrm{~N} \quad 3+50 \mathrm{E}
$$

ad
nd
$\mathrm{L} 7+00 \mathrm{~N} \quad 4+00 \mathrm{E}$
nd nd d
$\mathrm{L} 7+00 \mathrm{~N} \quad 1+00 \mathrm{~W}$
DETECTION LIMIT 5
nd = mone detected -- = not analysed

SAMPLE \#
\#

Au
ppb
$\mathrm{L} 7+00 \mathrm{~S} \quad 7+50 \mathrm{E}$

Ph: (604)251-5656 fax: (604)254-5717
 ICAP GEOCHEMICAL ANALYSIS

A. 5 gram sample is digested with 5 al of $3: 1: 2 \mathrm{HCL}$ to HNO_{3} to $\mathrm{H}_{2} \mathrm{O}$ at $95^{\circ} \mathrm{C}$ for 90 minutes and is diluted to 10 al with water.

This leach is partial for Al, Ba, Ca, $\mathrm{Cr}, \mathrm{Fe}, \mathrm{K}, \mathrm{Mg}, \mathrm{Kn}, \mathrm{Na}, \mathrm{P}, \mathrm{Sn}, \mathrm{Sr}$ and K .

ANALYST: \qquad

ICAF SEDCHEMICAL ANALYSIS
A． 5 grae saple is digested with 5 ol of $3: 1: 2 \mathrm{HCL}$ to HNO_{3} to $\mathrm{H}_{2} \mathrm{O}$ at $95^{\circ} \mathrm{C}$ for 90 sinutes and is diluted to 10 al with water． This leach is partial for $\mathrm{Al}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Cr}, \mathrm{fe}, \mathrm{K}, \mathrm{Hg}, \mathrm{Mn}, \mathrm{Na}, \mathrm{P}, \mathrm{Sn}, \mathrm{Sr}$ and H ．

ANALYST：
DATE IN：HAR 291993 DATE OUT：APR 141993
attention：hr．fayl yacoub

Sample	Nae		$\mathrm{Ag}^{\text {g }}$	Al	As	tau	Ba	Bi	ca	cd	Co	Cr	Cu	Fe	K	Mg	Mn	Ho	Na	Ni	p	Pb	Sb	5 n	$5 r$	U	H	In
			pos	2	ppa	ppb	ppo	pp：	4	ppa	pps	pp\％	pp\％	\％	\check{L}	$\%$	P0，	pp	\％	ppg	$\%$	gpa	ppa	ppa	ppa	ppa	ppa	ppo
L2＋00N	1＋00E		0.9	5.10	＜3	10	80	＜3	0.35	2.7	90	33	769	310	＜0．01	0.22	1508	3	0.12	63	0.11	2	＜2	＜2	24	＜	＜3	407
L2＋00	$1+50 \varepsilon$		0.8	4.05	＜3	20	104	＜3	0.45	＜0．1	54	21	662	310	＜0．01	0.16	1294	2	0.10	36	0.12	12	＜2	＜2	25	＜ 5	＜3	322
$\mathrm{L}_{2}+00 \mathrm{~N}$	2＋00E		0.2	2.93	く3	＜5	136	く3	0.20	＜0．1	57	26	264	710	<0.01	0.14	2407	1	0.13	45	0.11	20	＜2	＜2	16	＜ 5	＜3	480
L2＋00	2＋50E	：	0.2	3.05	＜3	＜5	92	（3）	0.10	＜0．1	53	23	80	8.62	＜0．01	0.29	1363	1	0.02	40	0.08	＜2	＜2	＜2	13	＜ 5	＜3	513
$12+00 \mathrm{H}$	3＋00E		0.4	3.52	＜3	＜	291	（3）	0.68	0.5	76	25	219	7.52	＜0．01	0.34	4807	1	$\langle 0.01$	64	0.11	16	＜2	＜2	48	＜	＜3	1001
L2＋00N	$3+50 \varepsilon$		0.3	2.27	＜3	＜ 5	132	＜3	0.34	＜0．1	25	14	20	4.00	＜0．01	0.31	2553	1	$\langle 0.01$	14	0.06	58	<2	＜2	$3!$	＜ 5	＜3	367
L2＋00N	4＋00E		0.2	6.07	＜3	＜5	78	＜3	0.19	＜0．1	20	19	25	3.66	$\langle 0.01$	0.44	1105	1	＜0．01	15	0.06	＜2	＜2	＜2	17	＜ 5	＜3	109
$12+00 \mathrm{~N}$	4＋50E		0.1	3.37	＜3	＜ 5	72	（3	0.23	0.4	15	14	10	3.44	＜0．01	0.30	676	1	＜0．01	10	0.05	＜2	＜2	＜2	19	＜	＜3	80
L2＋00N	5＋00E		0.1	2.57	く3	＜5	84	（3	0.12	＜0．1	9	13	7	3.51	＜0．01	0.31	268	1	0.01	B	0.02	＜2	＜2	＜2	15	＜5	く3	83
L2＋00\％	5＋50E		0.1	2.97	＜3	＜ 5	140	（3	0.17	0.4	13	11	8	3.48	＜0．01	0.19	738	1	＜0．01	5	0.03	8	＜2	＜2	24	＜ 5	（3	267
$12+00 \mathrm{~N}$	6＋00E		0.2	3.35	＜3	＜5	153	＜3	0.16	0.7	13	14	14	3.66	＜0．01	0.39	595	1	0.01	10	0.03	4	＜2	＜2	22	＜ 5	く3	$23!$
L． $2+00 \mathrm{~N}$	0＋501		0.3	2.77	く3	＜5	99	＜3	0.41	＜0．1	38	28	116	5.32	＜0．01	0.62	2625	1	0.03	35	0.08	25	＜2	＜2	28	＜	＜3	352
L2＋00\％	1＋003		0.4	4.30	217	＜	55	＜3	0.83	＜0．1	134	52	200	6.18	＜0．01	0.45	796	2	0.08	142	0.04	42	＜2	＜2	31	＜5	＜3	874
$12+00 \mathrm{~N}$	$1+50 \mathrm{~W}$		1.5	2.19	61	10	75	＜3	1.51	5.3	343	23	407	3.05	＜0．01	0.22	4109	1	0.01	241	0.17	22	<2	＜2	39	＜ 5	＜3	1530
L2＋00N	2＋003		0.6	2.76	36	10	63	＜3	0.57	＜0．1	302	32	295	6.79	＜0．01	0.19	4328	2	0.04	156	0.10	45	＜2	（2	25	＜ 5	＜3	1207
L2＋00N	2＋504		0.7	2.87	＜3	30	74	（3）	0.72	＜0．1	56	28	108	6.34	＜0．01	$0.40{ }^{\circ}$	1562	1	0.03	67	0.15	19	＜2	＜2	47	＜	13	505
L2＋005	BL 000		0.3	3.65	く3	10	126	＜3	0.16	＜0．1	14	15	35	3.54	＜0．01	0.66	1212	1	＜0．01	17	0.06	＜2	$\stackrel{1}{2}$	＜2	21	＜ 5	＜3	163
12＋005	0＋50E		0.2	2.99	＜3	20	150	＜3	0.16	＜0．1	11	14	14	2.67	＜0．01	0.39	1947	1	＜0．01	8	0.16	＜2	＜2	＜2	15	＜	＜3	217
L2＋005	1＋00E		0.2	1.58	＜3	10	141	＜3	0.29	＜0．1	8	7	5	1.99	10.01	0.26	2758	＜1	＜0．01	4	0.06	2	＜2	＜2	23	＜	＜3	171
L2＋00s	$1+50 \mathrm{E}$		1.0	1.53	＜3	＜5	86	¢3	0.46	＜0．1	21	33	177	310	＜0．01	0.11	4194	2	0.14	32	0.14	118	＜2	＜2	24	＜	行	614
$12+005$	$2+50 \mathrm{E}$		0.4	3.03	＜3	＜5	80	＜3	0.14	＜0．1	28	21	162	4.72	＜0．01	0.19	409	1	0.02	41	0.05	＜2	＜2	（2	15	（5	く3	211
［2＋00S	$3+00 \mathrm{E}$		0.8	3.92	＜3	＜ 5	112	＜3	0.22	＜0．1	33	25	309	5.83	（0．01	0.23	835	1	0.04	52	0.06	＜2	＜2	＜2	21	（5）	13	242
L2＋005	$3+50 \mathrm{E}$		0.3	2.82	＜3	＜5	76	3	0.48	＜0．1	32	22	149	4.24	＜0．01	0.56	619	1	0.09	42	0.05	＜2	＜2	＜2	33	＜5	＜3	195
L2＋00S	$4+00 \mathrm{E}$		0.2	3.95	13	15	144	＜3	0.19	0.1	52	24	230	4.97	＜0．01	0.31	637	1	＜0．01	68	0.04	7	＜2	＜2	17	＜ 5	＜3	350
L2＋005	$4+30 \mathrm{E}$		0.2	2.43	＜3	く5	91	＜3	0.15	10.1	26	14	47	3.23	＜0．01	0.23	1600	1	＜0．01	16	0.04	3	＜	＜2	17	＜ 5	＜3	148
L2＋00s	5＋00E		0.7	4.48	＜3	＜5	127	＜3	0.13	＜0．1	28	26	279	4.91	（0．01	0.21	634	2	0.03	47	0.05	12	＜2	＜2	13	＜ 5	＜3	293
L3＋00N	0＋00E		0.9	3.77	＜3	＜5	97	＜3	0.33	＜0．1	65	27	549	310	＜0．01	0.13	945	2	0.25	44	0.26	27	＜2	＜2	27	＜ 5	＜3	298
L． $3+00 \mathrm{~N}$	O＋50E		1.0	5.03	＜3	＜ 5	46	＜3	0.45	＜0．1	50	32	896	110	＜0．01	0.21	557	4	0.18	54	0.09	15	＜2	＜2	22	＜ 5	＜3	249
$13+100 \mathrm{~N}$	1＋00E		1.2	8.27	＜3	10	48	9	0.39	＜0．1	43	93	1238	110	＜0．01	0.33	492	6	0.30	47	0.17	58	20	＜2	15	＜ 5	＜3	215
L3＋00N	$2+50 E$		0.3	2.53	＜3	10	89	く3	0.09	0.9	11	20	45	3.39	（0．01	0.33	793	1	＜0．01	15	0.11	＜2	＜2	＜2	12	＜	＜3	120
L． $3+00 \mathrm{~N}$	$3+00 \mathrm{E}$		0.2	3.20	＜3	＜5	86	＜3	0.03	$\langle 0.1$	12	21	29	3.61	＜0．0）	0.35	479	1	＜0．01	17	0.05	＜2	＜2	（2	11	＜ 5	＜3	183
［3＋00	$3+50 \mathrm{c}$		0.1	3.15	＜3	＜ 5	65	＜3	0.05	0.4	13	19	30	3.44	＜0．01	0.81	468	1	＜0．01	18	0.03	＜2	＜2	＜2	13	45	＜3	84
L3＋00N	0＋504		0.6	3.13	＜3	＜ 5	56	＜3	0.62	＜0．1	19	37	362	9.04	＜0．01	0.67	576	2	0.14	24	0.09	＜2	＜2	＜2	36	（5）	（3）	187
13＋00N	$1+00 \mathrm{H}$		0.9	6.62	3	20	22	\bigcirc	0.13	10.1	37	17	740	5.14	＜0．01	0.17	560	2	0.01	26	0.16	12	＜2	<2	11	＜	＜3	106
L3＋00	$1+504$		0.6	6.69	＜3	30	28	（3	0.18	＜0．1	26	23	653	3.71	＜0．01	0.18	878	3	0.08	32	0.22	＜2	＜2	12	11	＜ 5	＜3	208
L3＋60N	$2+004$		0.5	5.64	$\langle 3$	20	34	3	0.30	0.1	41	29	789	210	＜0．01	0.25	792	3	0.10	42	0.17	33	12	＜	18	（5	$\bigcirc 3$	231
L3＋00N	$2+504$		0.3	3.17	＜3	＜5	35	＜3	0.54	＜0．1	149	39	761	5.98	＜0．01	0.86	1957	1	0.02	58	0.09	39	く2	＜2	22	¢ 5	（3	247
43＋00s	$0+008$		0.7	3.92	＜3	30	73	＜3	0.09	61．1	13	28	150	3.65	＜0．0． 1	0.83	419	1	＜0．01	19	0.07	（2）	＜2	＜2	20	45	亿3	144
13：005	O450		0.5	6.51	＜3	30	184	7	0.37	$\bigcirc 0.1$	59	143	348	B． 25	10.01	0.67	1636	4	0.08	110	0.14	77	7	12	32	＜	＜3	1234

Miniasm dotection

 $==-=$
 1630 Pandora Street, Vancouver, B.C. V5L $1 L 5$
 Ph s (604)251-5656 Fax (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A. 5 gram sample is digested with 5 al of $3: 1: 2 \mathrm{HCL}$ to HNO_{3} to $\mathrm{H}_{2} \mathrm{O}$ at $95{ }^{\circ} \mathrm{C}$ for 90 minutes and is diluted to 10 al with water.

This leach is partial for $\mathrm{Al}, \mathrm{Ba}_{\mathrm{y}} \mathrm{Ca}, \mathrm{Cr}, \mathrm{Fe}_{\mathrm{I}} \mathrm{K}, \mathrm{Kg}, \mathrm{Kn}, \mathrm{Na}, \mathrm{P}, \mathrm{Sn}, \mathrm{Sr}$ and W .
ANALYST: \qquad Etganral
REPORT i: 930019 PA

A. 5 gram sample is digested with 5 al of $3: 1: 2 \mathrm{HCL}$ to HNO_{3} to $\mathrm{H}_{2} \mathrm{O}$ at $95^{\circ} \mathrm{C}$ for 90 minutes and is diluted to 10 al with water.

This leach is partial for $\mathrm{Al}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Cr}, \mathrm{Fe}_{1} \mathrm{~K}, \mathrm{Kg}$, $\mathrm{Kn}, \mathrm{Ha}, \mathrm{P}, \mathrm{Sn}, \mathrm{Sr}$ and H .

ARROWHEAD EXPLORATION SERVICES

 PROJECT: 402DATE IN: MAR 291993 DATE OUT: APR 141993
ATTEMTION: MR. fays yacoub
PAGE 4 OF 6

[-B.

1630 Pandora Sireet, Vancouver, B.C. V5L Ll: 6
Ph: (604)251-5656 Fax:(604)254-5717

i. 5 grala sample is digested with 5 al of $3: 1: 2 \mathrm{HCL}$ to HNO_{3} to $\mathrm{H}_{2} 0$ at 95 of for 90 ainutes and is diluted to 10 al vith water.

REFORT I: 330013 PA
arrouhead explorailon services
PROJECI: 402
DATE IN: MAR 231992 DATE OUT: APS 141993
ATEENTION: AR. FAYZ YACDUR
PABE 5 OF

APPENDIX C

ANALYTICAL PROCEDURE

April 08, 1993

TO: Mr. Fayz Yacoub ARROWHEAD EXPLORATION SERVICES 900-999 w. Hastings street vancouver, BC V6C 2 W 2

FROM: VANGEOCHEM LAB LIMITED 1630 Pandora street
Vancouver, BC V5L 1L6
SUBJECT: Analytical procedure used to determine not acid soluble for 25 element scan by Inductively coupled plasma spectrophotometry in geochemical silt and soil samples.

1. Method of sample preparation

(a) Geochemical soll, silt or rock samples were recelved at the laboratory in high wet-strength, $4^{\prime \prime} \mathrm{X}$ 6", Kraft paper bags. Rock samples would be recelved in poly ore bags.
(b) Dried soil and silt samples were sifted by hand using an $8^{\prime \prime}$ diameter, 80 -mesh, stainless steel sleve. The plus 80 -mesh fraction was rejected. The minus 80 -mesh fraction was transferred into a new bag for subsequent analyses.
(c) Dried rock samples were crushed using a faw crusher and pulverized to 100 -mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2 Method of Digestion

(a) 0.50 gram portions of the minus 80 -mesh samples were used. Samples were weighed out using an electronic balance.
(b) Samples were digested with a 5 ml solution of HCl:HNO $: H 20$ in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
(c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with demineralized water and thoroughly mixed.
3. Method of Analyses

The ICP analyses elements were determined by using a Jarrell-Ash ICAP model 9000 directly reading the spectrophotometric emissions. All major matrix and trace elements are interelement corrected. All data are subsequently stored onto disketts.
4. Analyste

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and his laboratory staff.

April 08, 1993

TO:	Mr. Fayz Yacoub
	ARROWHEAD EXPLORATION SERVICES
	$900-999$ W. Hastings Street
	Vancouver, BC V6C 2 2
FROM:	
	VANGEOCHEM LAB LIMITED
	1630 Pandora Street
	Vancouver, BC V5L 1L6

SUBJECT: Analytical procedure used to determine gold by fire assay method and detect by atomic absorption spectrophotometry in geological samples.

1. Method of Sample Preparation
(a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, $4^{\prime \prime} x$ 6", Kraft paper bags. Rock samples would be received in poly ore bags.
(b) Dried soil and silt samples were sifted by hand using an $8^{\prime \prime}$ diameter, 80 -mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
(c) Dried rock samples were crushed using a Jaw crusher and pulverized to 100 -mesh or finer by using a disc mill. The pulverized samples wexe then put in a new bag for subsequent analyses.
2. Method of Extraction
(a) 20.0 to 30.0 grams of the pulp samples were used. samples were weighed out using a top-loading balance and deposited into individual fusion pots.
(b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhlet to form a lead "button". VANCOUVER, BC.
(c) The gold is extracted by cupellation and parted with diluted nitric acid.
(d) The gold beads are retained for subsequent measurement.
3. Method of Detection
(a) The gold beads are dissolved by boiling with concentrated aqua regia solution in hot water bath.
(b) The detection of gold was performed with a Techtron model AAS Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.
4. Analysts

The analyses were supervised or determined by $M r$. Raymond Chan or Mr. Conway Chin and his laboratory staff.

Raymond Chan
VANGEOCHEM LAB LIMITED

Report on the 1993 Aerial Photo interpretation
 Jervis Inlet Property, Vancouver Mining Division British Columbia

for
ARROWHEAD EXPLORATION SERVICES
900-999 WEST HASTINGS ST.
VANCOUVER, B.C. V6C 2W2

by
Richard E. Kucera
KUCERA GEOCONSULTANTS
5198 Ranchos Road
Bellingham, WA. 98226
ApriI, 1993

REPORT ON THE 1993 AERIAL PHOTO INTERPRETATION Jervis Inlet Property, Vancouver Mining Division British Columbia

INTRODUCTION

This report and accompanying photogeological map were prepared at the request of Mr. Fayz F. Yacoub, of Arrowhead Exploration Services, Vancouver, B.C.. It was hoped that the few limited outcrops and geologic contacts observed during field exploration might be extended on the map area using detailed photo interpretation.

The purpose of this report is to describe the results of photo interpretation of a portion of the Jervis Inlet Property. The photogeological map covers an area of approximately 4.5 square kilometres. Geologic features that were mapped include major types of bedrock, geologic structure, and unconsolidated alluvial deposits.

PHOTOGRAPHS AND GEOMETRIC CHARACTERISTICS

The photogeologic map and report are based on stereoscopic investigation of photographs BC 86050, Nos. 124-126, 150-152, and 221-223. The photogeologic map was constructed on overlays placed on alternate photographs of each flight line which were oriented in an east-west direction. Owing to scale variations caused by relief of terrain (from sealevel to over 900 m elevation), it should be noted that parts of the landscape within a single photograph will be a different scale. A map produced directly from photo overlays will show significant scale diferences across the map area.

PHYSIOGRAPHY

From sea level at Jervis Inlet, the land rises to over 900 metres along the eastern photomap boundary. The west facing slope has been dissected by streams into steep - sided ravines. Continental glaciation has modified the upland features on the mountain, and certain rock outcrops have been sculpted and rounded by moving ice.

The course of Treat Creek trends $\mathrm{N} 40^{\circ} \mathrm{W}$ and coincides with the strike of argillite (unit 2 on photogeologic map).

BEDROCK GEOLOGY

Various rock units have been described by Kidlark (1989) in his report on the Jervis Inlet Property. The area is underlain by the Coast Range intrusives which are composed of diorite, quartz diorite, and quartz monzonite. The intrusives are overlain by sediments of the Gambier Group (possibly Cretaceous age), and are composed of argillites and volcanics. These rock units are thought to represent pendants of sediments and volcanics within the plutonic complex.

Ashworth Explorations Ltd. compiled a geologic map based on previous work done on the Jervis Inlet Property. Using ths map as a reference, I have been able to expand our knowledge of the area with detailed photo interpretation.

Mineralization was noted in the field to occur near the contact of black argillites with green to black tuffs and volcanic flows. Steep slopes and thick forest cover prevented the tracing of contacts in the field, but on aerial photographs, a fair estimation of the extent of the contact can be ascertained. The aerial photographs also disclose the presence of distinct northeast - trending faults that cut across the prevailing structural trend, nearly at right angles. Subtle, but important northwest - trending fractures have also been noted.

Unit 1

Agglomerate and tuff breccia consists of angular to subangular granitic and volcanic fragments. This unit occurs along the northern edge of the sedimentary band and forms irregular steep slopes.

Unit 2

Black, thin - bedded argillite forms bands within the volcanics. In the stereo model this unit forms slightly recessed bands within bold, more resistant tuff and flows of unit 3 .

Unit 3

This unit consists of dark green to black andesitic tuffs and flows. Fine grained disseminated pyrite and pyrrhotite occurs throughout the volcanics. This unit at many places forms distinct dip slopes in the stereo model, and facilitates measurements of structural attitude on the aerial photographs.

Unit 4

Plutonic igneous rocks have been mapped as unit 4. Recognition of these rocks under the stereoscope is aided by the distinctive photo tone, fracturing and weathering characteristics of bare igneous outcrops.

GEOLOGIC STRUCTURES

Bedding Attitudes

Gambier rocks, including volcanic tuff, flows, argillite and breccias on the Jervis Inlet Property, for the most part, dip 50° to 70° westward, whereas in the area north of Lone Jack Creek (west of the road) unit 3 dips 40° to 60° eastward. This reversal of dip may be related to a northwest trending fault mapped in this area on the aerial photographs.

Faults

Detailed mapping on the aerial photographs shows the presence of several northeast and northwest trending fractures, many of which are probably inconspicuous on the ground. The fractures are expressed in the photographs as straight or gently curved lines. Lines suggestive of fractures are expressed as straight scarps, rectilinear depressions, straight segments of streams and ravines and vegetation differences along linear features. The steep, straight segment of the lower end of Lone Jack Creek as well as a tributary of Treat Creek (centre of photo map) reflects distinct structural control. The writer has mapped six distinct faults, as much as 1.8 km long that trend $\mathrm{N} 60^{\circ} \mathrm{E}$ to $\mathrm{N} 70^{\circ} \mathrm{E}$ cutting across the regional structural trend. It is noteworthy that the location of showings 1 and 3 lie adjacent to these faults. A skarn zone and showing No. 2 (north of Lone Jack Creek) occurs near the southern end of a fold axis and a suspected northwest trending fault.

CONCLUSIONS

Detailed aerial photo interpretation of the Jervis Inlet Property has extended the geologic contacts noted in the field and determined the presence and orientation of fractures in the map area.

According to Kidlark (1989) and Yacoub (1993), mineralization consisting of pyrite, magnetite, pyrrhotite, chalcopyrite, and sphalerite are present in most of the pendant rock units as lenses of massive sulfides and as disseminations in skarn. The location of these showings indicate that mineralization is related to the argillite - volcanic tuff contact.

Inspection of the aerial photographs indicates that at least some of the mineralization may reflect structural control. ie: the close proximity of showings 1 and 3 to apparent northeast trending faults. It is also noteworthy that showing
No. 2 and the skarn zone lies adjacent to a fold axis, as well as a suspected northwest trending fault.

If the position and orientation of mineralized rocks are structurally controlled, It is suggested that future exploration be concentrated within a 600 metre wide belt that extends southeastward from the area just north of the skarn zone to the tributary of Treat Creek, south of showing No. 3.

APPENDIX E

REPORT ON
 STATISTICAL EVALUATION OF SOIL SAMPLES COLLECTED FROM the TREAT 1 and 2 Claims JERVIS PROJECT, BRITISH COLUMBIA Vancouver Mining Division, NTS 92G/13W
 IN MARCH 1993

FOR

> ARROWHEAD EXPLORATION SERVICES $900-999$ West Hastings St. Vancouver, B.C.

By
A.M.S.Clark, Ph.D., P.Geo.(BC)

2988 Fleet Street
Coquitlam, B.C. V3L 3R8

SUMMARY

Correlation coefficients, histograms and symbol maps indicate increased values of gold, silver, copper and zinc in areas of known showings, and also two additional areas that require further investigation.

This report is based on an evaluation of the geochemical analyses only, the author has not visited the property.

TABLE OF CONTENTS

Page No.
SUMMARY . 2

1. INTRODUCTION . 4
2. DESCRIPTION OF STATISTICAL METHODS USED 4
2.1 Correlation Coefficients 4
2.2 Histograms . 5
3. DISCUSSION OF CORRELATION COEFFICIENTS 5
4. INTERPRETATION OF HISTOGRAMS 6
5. DISCUSSION . 7
6. RECOMMENDATIONS . 8

REFERENCES . 9
CERTIFICATE . 10
APPENDICES . 11

1. INTRODUCTION

The author of this report has not visited the sample area. This report is based on the assay results supplied by Vangeochem Laboratories, Vancouver, and discussions with the personnel who undertook the sampling. A complete interpretation of these results requires a thorough knowledge of the topography, geology and soil characteristics of the property.

A total of 195 samples were collected from a grid on the property.

Correlation coefficients have been determined for the samples.

Histograms were determined of gold, silver, copper, lead, zinc and arsenic to help define useful groupings of the data values for the symbols on the maps, and are included in an appendix at the end of the report.

Correlation coefficient tables and summary statistics tables are attached at the end of the report.
2. DESCRIPTION OF STATISTICAL METHODS USED
(See Levinson, 1974, and Sinclair, 1987, for further discussion of statistical applications to soil sampling).

2.1 Correlation Coefficients

Correlation coefficients were calculated for all the elements analysed. Correlations were considered to be significant for coefficient values equal to or above 0.25 , with the following being the terminology used for both the positive and the negative correlations:

5

0.25 to <0.30
0.30 to <0.40
0.40 to <0.60
0.60 to <0.80
0.80 to 1.00

> very weak correlation
> weak correlation moderate correlation strong correlation very strong correlation

2.2 Histograms

Histograms were plotted of all elements considered of exploration significance. Where the samples show a few very high values, a second histogram has been plotted to show only the main body of samples, to allow interpretation of the type and shape of the histogram curve, and to determine ranges for plotting on the symbol maps. Ranges used for the symbols on the symbol maps were chosen to show any groupings that are indicated in the data by discordant changes in the shape of the curve at the higher values of the histogram. Where there is no obvious discordant change in the histogram, then grouping is chosen to give a visually useful distribution of symbols on the map. These groupings are usually into low, medium and high anomalous categories. The values of the samples are not considered in this process as the pattern of distribution of the values, not the absolute values, is considered the main aid to exploration. This is especially important if dilution of soil samples may be a factor. The amount of dilution for these samples is not known.
3. DISCUSSION OF CORRELATION COEFFICIENTS

Correlation coefficient tables are in the appendix. Only correlations considered of exploration significance are discussed below.

Silver: Silver has a moderate correlation with copper, molybdenum and lead.

Arsenic: Arsenic shows no correlation with any other element.

Gold: Gold shows no correlation with any other element.

Bismuth: Bismuth shows a strong correlation with antimony.

Copper: Copper has a strong correlation with molybdenum, even when the single very high ($>500 \mathrm{ppm}$ Mo) sample is removed. Copper has a moderate correlation with lead and a very weak correlation with zinc.
4. INTERPRETATION OF HISTOGRAMS

Histograms are in the appendix.

Gold: The values form an irregular log-normal histogram with a long high-end 'tail'. Most values fall below about 50 ppb , but there is a slight secondary 'grouping' at about 60 to 90 ppb which is not considered indicative of a second population. A symbol and value map was plotted with the following value ranges:

30 to $<50 \mathrm{ppb}$	'low' anomalous
50 to $<100 \mathrm{ppb}$	'medium' anomalous
$100+\mathrm{ppb}$	'high' anomalous

Silver: Values range up to 30 ppm , but most values are distributed between 0 and about 3.5 ppm . Apart from one sample above 3.5 ppm there is no indication of any highly anomalous values. A symbol and value map was plotted with the following value ranges:

1 to $<2 \mathrm{ppm}$	'low' anomalous
2 to $<4 \mathrm{ppm}$	'medium' anomalous
$4+\mathrm{ppm}$	'high' anomalous

Copper: Values ranged up to 2283 ppm . The curve is approximately log-normal. A symbol and value map was plotted using the foll nuing yalne randes:
500 to $<1000 \mathrm{ppm} \mathrm{Cu}$ low anomalous
1000 to $<1500 \mathrm{ppm} \mathrm{Cu}$ medium anomalous
$1500+\mathrm{ppm} \mathrm{Cu} \quad$ high anomalous

Lead：Values form an approximately log－normal curve up to about 140 ppm with higher values distributed up to 274 ppm forming a possible second population．A symbol and value map was plotted using the following value ranges：

$$
\begin{array}{ll}
60 \text { to }<120 \mathrm{ppm} \mathrm{~Pb} & \text { low anomalous } \\
120 \text { to }<220 \mathrm{ppm} \mathrm{~Pb} & \text { medium anomalous } \\
220+\mathrm{ppm} \mathrm{~Pb} & \text { high anomalous }
\end{array}
$$

Zinc：Values produce a slightly irregular lognormal curve up to about 2432 ppm ．These were plotted as a symbol map using the following value ranges：

700 to＜1400 ppm Zn low anomalous 1400 to $<1700 \mathrm{ppm} \mathrm{Zn}$ medium anomalous $1700+\mathrm{ppm} \mathrm{Zn}$ high anomalous

Arsenic：Values ranged up to the 1564 ppm ．All values equal to or greater than 200 ppm As were plotted as anomalous．

5．DISCUSSION

A full interpretation of the distribution of values requires a knowledge of the geology，soil characteristics and topography． There is no distinctive association of elements apart from the correlation of copper and molybdenum．Gold，silver or arsenic do not associate with one another，and though there is a correlation between bismuth and antimony，this does not relate to the gold mineralisation．

The areal distribution of the higher values in soil samples indicates an area of interest at about $O N$ and 200E, where the $O N$ line bends. At this juncture and the adjacent part of the 100 N line there is moderate to high gold in soils, and high zinc in soils. This area does not appear to have been investigated in detail yet. There is also an area at 300 S and about 700 E to 1000 E where a high gold soil sample, and high silver and zinc soil samples occur. This area has also not apparently been investigated in detail.

The other high and medium soil analysis values are generally in the vicinity of known showings.

6. RECOMMENDATIONS

The area at about 200 E between 0 N and 100 N and the area between 700 E and 1000 E on line 300 S should be reinvestigated in more detail. This should consist of extending the grid where necessary, undertaking further soil sampling as well as detailed geological mapping and rock sampling.

REFERENCES

Levinson, A.A., 1974. Introduction to Exploration Geochemistry. Applied Publishing Limited, Calgary. 612p. and 1980 Supplement.
A.J.Sinclair, 1987. Statistical Interpretation of Soil Geochemical Data. In: Reviews in Economic geology, Volume 3, Fletcher, W.K., Hoffman, S.J., Mehrtens, M.B., Sinclair, A.,J., and Thomson, I, Exploration Geochemistry: Design and Interpretation of Soil Surveys. Edited by: Robertson, J.M. Society of Economic Geologists.

CERTIFICATE

I, ANTHONY M.S. CLARK, of 2988 Fleet Street, Coquitlam, B.C., do hereby state that:

1. I am a graduate of the University of Cape Town, Cape Town, South Africa, with a Bachelor of Science Degree in Geology, 1963, and a graduate of Memorial University, St. John's, Newfoundland, with a Doctor of Philosophy Degree in Geology, 1974.
2. I actively pursued my career as an exploration geologist for twenty-three years from 1963 to 1986 , since when I have undertaken consulting in the fields of mineral exploration and computer applications to exploration.
3. The information, opinions, and recommendations in this report are based on information obtained by other personnel who undertook the fieldwork on the property, and on published and unpublished literature. I have not visited the subject property.
4. I have no interest, direct or indirect, in the subject claims or the securities of Anthian Resource Corp.
5. I consent to the use of this report in Prospectus or Statement of Material Facts for the purpose of private or public financing.

Anthony M.S. Clark, PhD., P.Geo. (B.C.)
Dated at Coquitlam, B.C.,

11

APPENDICES

Appendix l: Correlation Coefficient and Summary Statistics. Appendix 2: Histograms.

APPENDIX 1

Correlation Coefficient Tables
 And
 Summary Statistics

Jervis Project：

Pearson Correlation Coefficients

	ng	Al＿pct	As，ppm	Au＿	Ba＿ppm	Bi＿ppm	Capct	Cd＿ppm	Co．ppm	Cr＿ppm	Cu＿ppm	Pe＿pet	K＿pct	Hg
Aq＿ppm	1.	－0．0575	0.0001	0.1707	－0，0899	0.0019	0.0423	－0．0105	0.0518	0.0726	0.5227	0.2131	－0．0008	－0，0719
Al＿pct	－0，0575	1.	－0，0710	0.0211	0.1079	0.1860	0.0637	0.0559	0.1359	0.4489	0.4097	0.4853	－0．1487	0.3738
As＿ppm	0.0001	－0．0710	1.	－0．0755	－0．0377	－0，0320	0.0188	－0．0529	0.0829	－0．0203	0.1496	0.024	－0．0126	－0，0327
hu＿pp	0.1707	0.0211	－0．0755	1.	0.0070	0.0710	0.1572	0.0637	0.0322	0.1154	0.1621	0.1465	－0．0328	0.0090
Ba．ppm	－0．0899	0.1079	-0.0377	0，0070	I．	－0．0294	－0．0201	0.0433	－0．1121	0.0219	－0．1319	－0．0469	－0．0368	0.1568
Bi．ppm	0.0019	0.1860	-0.0320	0.0710	－0．0294	1.	0.0020	0.0671	0.0328	0.1686	0.0922	0.1353	－0，0131	－0．0336
Ca＿pet	0.0423	0.0637	0.0188	0.1572	－0．0201	0.0020		0.2336	0.4130	0.2568	0.3078	0.3073	－0．0268	0，1275
Cd＿ppm	－0．0105	0.0559	－0．0529	0.0637	0.0433	0.0671	0.2336	，	0.3252	0.1485	0.0485	0.1090	－0．0254	0.0353
Co＿ppm	0.0518	0.1359	0.0829	0.0322	－0．1121	0.0328	0.4130	0.3252	1.	0.2116	0.3802	0.4373	－0．0604	－0．0866
Cr＿ppm	0.0726	0.4489	－0．0203	0.1154	0.0219	0.1686	0.2568	0.1485	0.2116	1.	0.3813	0.4440	－0．0394	0.6022
Cuppm	0.5227	0.4097	0.1498	0.1621	－0．1319	0.0922	0.3078	0.0485	0.3802	0.3813	1.	0.8808	－0．054	0.1786
Pepct	0.2131	0.4853	0.0249	0.1465	－0．0469	0.1353	0.3073	0.1090	0.4373	0.4440	0.6808	1.	－0．1291	0.0050
K．pet	－0．0008	－0．1487	－0．0126	－0．0328	－0．0368	-0.0131	－0．0268	-0.0254	－0．0604	－0．0394	－0．054	－0．1291		－0．0872
Hg＿pet	－0．0719	0.3738	－0．0327	0.0090	0.1568	－0．0336	0.1275	0.0353	－0．0866	0.6022	0.1786	0.0050	－0．0872	
Mn＿pm	－0，0001	－0．1239	0.0192	0.0274	0.0695	0.0403	0.3781	0.3912	0.4855	0.0852	0.0688	0.2701	－0．0588	-0.1876
Hoppm	0.4567	0.3630	0.0408	0.1602	－0．1639	0.2844	0.0502	0.0476	0.2228	0.2792	0.7499	0.6128	0.1473	0.0373
Nia＿pet	0.4283	0.2809	0.0150	0.1372	－0．1717	0.1994	0.2040	0.0335	0.2823	0.2783	0.6229	0.8191	-0.0618	－0．1711
Nippm	0.0291	0.2740	0.0819	0.0130	－0，0987	0.0938	0.3346	0.2372	0.6889	0.6165	0.3602	0.4826	－0，0461	0.2101
P＿pet	0.1491	0.2369	0.0012	0.2399	0.1043	0.1098	0.1631	0.0688	0.2405	0.2176	0.3446	0.4076	0.0257	0.001
Pb＿ppm	0.4022	0.1196	-0.0136	0.1293	0.0417	0.0048	0.3139	0.1765	0.1199	0.2682	0.4800	0.3137	－0．0429	0.2433
Sbppm	0.0124	0.2618	-0.0160	0.0035	－0．0454	0.6939	0.0071	－0．0325	0.0180	0.1872	0.1826	0.1306	－0．0066	－0．0096
Sn ppm	undef．													
Sr＿ppm	－0，0152	0.2473	0.0153	0.0561	0.3718	0.0048	0.3431	0.2361	0.2173	0.3319	0.0998	0.2211	－0．0288	0.3797
U＿prm	undef．	undef	indef．	undef										
9．ppm	undef．	undet．	undef．	undef．										
\％n＿ppm	0.1053	0.0909	0.1254	0.0725	－0，0150	0.0145	0.2241	0.3511	0.4990	0.1254	0.2753	0.3907	－0．0691	－0．090

Pearson Correiation Coefficients

Jervis Project:

Sumary Statistics

	Ag.ppr	Al_pct	As_PPR	Au ppb	8 a g ppin	8 i .ppa	Capct	Cd.ppm	Co_ppm	Cr Ppla	Cu.ppin	Fejpct
Number	195	195	195	195	195	195	195	195	195	195	195	195
Mean	0.724	3.7652	26.43	14.00	119.80	0.20	0.3481	0.478	38.98	37.43	292.22	5.8213
Std Dev	2.178	1.4205	151.51	30.72	73.99	1.10	0.4775	1.354	41.71	33.64	359.70	2.6204
Maximum	30.0	8.27	1564	330	774	9	5.82	7.8	343	272	2283	10.00
Minimum	0.0	0.00	0	0	0	0	0.00	0.0	0	0	0	0.00
Range	30.0	8.27	1564	330	774	9	5.82	7.8	343	272	2283	10.00
Coef Var	301.0446	37.7259	573.3275	219.4278	61.7649	548.1929	137.1843	283.0565	106.9992	89.8872	123.0937	45.0149
Std Err	0.1560	0.1017	10.8495	2.1999	5.2988	0.0785	0.0342	0.0970	2.9868	2.4089	25.7590	0.1877
Median	0.40	3.515	0.0	10.0	105.5	0.0	0.230	0.00	27.0	29.0	144.0	4.905
Mode	0.2	3.29	0	0	71	0	0.17	0.0	13	23	63	10.00
Variance	4.745	2.0177	22953.91	943.71	5475.16	1.20	0.2280	1.834	1739.54	1131.51	129387.63	6.8667
Skewness	12.4732	0.7915	7.4801	6.6618	3.9445	5.7881	8.0291	3.7336	3.8861	4.6501	2.1040	0.4763
Kurtosis	164.3514	0.6701	62.7756	58.8216	29.6834	34.6153	86.1673	14.2009	21.2803	26.8514	5.6413	-1.1326

Sumary Statistics	
	K.pct
Humber	195
Hean	0.0018
Std Dev	0.0251
Maximum	0.35
Mininum	0.00
Range	0.35
Coef Var	1396.4240
Std Err	0.0018
Median	0.000
Mode	0.00
Variance	0.0006
Skewness	13.7501
Kurtosis	188.0307

MS.pCt	Mn.pPP	Ho gpm
195	195	195
0.4472	1405.97	1.67
0.2784	1431.96	1.14
1.77	10911	7
0.00	0	0
1.77	10911	7
62.2849	101.8485	68.0375
0.0199	102.5450	0.0815
0.380	953.0	1.0
0.17	600	1
0.0775	2050519.76	1.29
1.8161	3.1848	1.7076
4.4094	13.2832	3.5649

Na pct	Ni ppp	Ppct
195	195	195
0.0578	50.77	0.08
0.0557	54.35	0.05
0.33	333	0
0.00	0	0
0.33	333	0
96.3708	107.0408	57.6161
0.0040	3.8920	0.0034
0.040	36.5	0.1
0.00	23	0
0.0031	2953.85	0.00
1.6552	2.9380	1.4808
3.9148	9.6802	2.8979

Pb.ppq	Sb.ppp
195	195
30.64	0.14
51.42	1.51
274	20
0	0
274	20
167.8050	1094.1518
3.6821	0.1085
10.0	0.0
0	0
2643.73	2.30
2.5405	12.0311
6.4135	150.6500

Sr.ppm	U_ppm	W_ppm	In_ppm
195	195	195	195
24.69	0.00	0.00	518.98
11.72	0.00	0.00	478.21
89	0	0	2432
0	0	0	0
89	0	0	2432
47.4766			92.1441
0.8395			34.2456
23.0	0.0	0.0	347.0
18	0	0	80
137.43	0.00	0.00	228688.30
1.9521			1.6711
6.7776			2.5940

APPENDIX 2
Histograms

APPENDIX F

PETROGRAPHICAL ANALYSIS

Vancouver Petrographics Ltd.

8080 GL.OVER ROAD, LANGLEY, B.C. V3A $4 P 9$
PHONE (604) 888-1323 • FAX (604) 888-3642

Report for: Fayz Yacoub,
Arrowhead Exploration Services, VANCOUVER, B.C., V6C 2W2 900 - 999 West Hastings street Job 920292

Samples: P-1 to $p-7$
Summary:
A. Petrographic Notes

Samples $\mathrm{P}-3, \mathrm{P}-4$, and $\mathrm{P}-5$ contain an alteration calc-silicate mineral which could not be identified completely optically, but which was identified tentatively as prehnite. It has moderate relief (R.I. about $1.6 \emptyset-1.65$), moderate birefringence ($0.015-\emptyset . \emptyset 2 \emptyset)$, lacks cleavage and crystal outlines, and its hardness is greater than 5.5. Its reflectivity is slightly less than than of epidote. In some samples, it forms irregular replacement patches in plagioclase and in others it forms similar patches in both plagioclase and mafic minerals.

B. Sample Descriptions

Sample $P-1$ is a slightly porphyritic mrcrodiorite containing scattered phenocrysts of plagioclase and less abundant, smaller ones of tremolite/actinolite in a groundmass of very fine grained tremolite/actinolite and plagioclase, with minor disseminated ilmenite and quartz, and much less pyrrhotite and sphene. Textures suggest a metamorphic history. Minor veinlets are of each of fluorite, quartz, tremolite/actinolite, sphene and epidote.

Sample $p-2$ is a relatively uniform argillite with minor variation between layers in grain size, texture, and content of carbonaceous opaque. It was brecciated in irregular lenses and patches, and fragments rotated strongly; textures suggest soft-sediment deformation. Chlorite forms a few replacement lenses. Minor veinlets are of quartz and of sericite-(opaque).

Sample $\mathrm{p}-3$ is an altered porphyritic hypabyssal andesite dyke or flow containing phenocrysts of plagioclase and much less abundant clinopyroxene in a groundmass dominated by plagioclase with less abundant epidote and clinopyroxene(?) and much less Ti-oxide/ leucoxene. Amygdules and replacement patches are of tremoliteprehnite?. Veinlets are of prehnite? and minor limonite.

Sample p-4 is a porphyritic dacite containing moderately abundant phenocrysts of plagioclase and quartz, less abundant ones of hornblende, and minor ones of biotite in a very fine grained groundmass dominated by plagioclase with much less K-feldspar, quartz and epidote, and with moderately abundant disseminated pyrite.

Sample P-5 is a hypabyssal andesite/diabase containing minor phenocrysts of plagioclase in a groundmass of fine grained, interlocking, lathy plagioclase with much less mafic patches (altered completely to secondary tremolite/prehnite(?) and epidote), accessory Ti-oxide and pyrite, and minor apatite and dolomite/ ankerite. Minor veinlets are of tremolite/prehnite(?).

Sample P-6 is a metamorphosed, extremely fine grained, foliated felsic tuff containing lenses of quartz parallel to foliation in a groundmass dominated by plagioclase with minor Ti-oxide. A replacement patch up to $1 \varnothing \mathrm{~mm}$ across of epidote-tremolite occurs mainly in a coarser grained plagioclase-quartz layer. Abundant veinlets are of epidote-quartz-(tremolite).

Sample P-7 is a zoned skarn dominated by an epidote-rich zone containing abundant patches and veinlike zones of sulfides, and a quartz-rich zone containing much less abundant sulfides. Sulfides are dominated by pyrrhotite with less sphalerite, much less chalcopyrite and minor pyrite. Chlorite forms scattered patches in the epidote-rich zone and forms intergrowths with quartz in the quartz-rich zone. Textures suggest that some of the sulfides were formed by replacement along irregular fractures of an original epidote-rich skarn. However, commonly in detail, subhedral to euhedral epidote grains are surrounded by interstitial patches of sulfides, suggesting that the minerals were formed together. A late veinlet is of pyrite-hematite and another is of chalcopyrite.

Tel: (604)-986-2928
Fax: (604)-983-3318

Slightly Porphyritic Microdiorite (Metamorphic); Veinlets of Fluorite, Quartz, Tremolite/Actinolite, Sphene, Epidote

Scattered phenocrysts of plagioclase and less abundant, smaller ones of tremolite/actinolite are set in a groundmass of very fine grained tremolite/actinolite and plagioclase, with minor disseminated ilmenite and quartz, and much less pyrrhotite and sphene. Textures suggest a metamorphic history. Minor veinlets are of each of fluorite, quartz, tremolite/actinolite, sphene and epidote.
phenocrysts

plagioclase	$4-5 \%$
tremolite/actinolite	$3-4$
groundmass	
tremolite/actinolite	$50-55$
plagioclase	$25-30$
ilmenite	$2-3$
quartz	1
pyrrhotite	minor
limonite	minor
sphene	minor

veinlets	
fluorite-(tremolite?- (chlorite) quartz minor tremolite/actinolite minor sphene minor epidote trace \quad.	

plagioclase forms anhedral, in part corroded phenocrysts and clusters of intergrown phenocrysts averaging l-1.5 mm in size, and locally up to 2 mm across. Some grains are recrystallized slightly to locally moderately to aggregates of extremely fine grained, equant plagioclase. Alteration is slight to moderate to disseminated flakes of sericite and ragged, acicular grains of tremolite/actinolite. In the groundmass plagioclase forms anhedral grains averaging 9.1-0.3 mm in size. In a few diffuse patches up to $\emptyset .3 \mathrm{~mm}$ in size, plagioclase forms aggregates of equant grains averaging $0.01-0.02 \mathrm{~mm}$ in size.

Tremolite/actinolite forms anhedral, equant phenocrysts averaging Ø. 4- 0.7 mm in size. Pleochroism is weak and the color is pale to light yellowish green. Phenocrysts grade downwards in size to groundmass tremolite/actinolite of similar composition, which forms ragged prismatic grains averaging $0.1-0.2 \mathrm{~mm}$ in size. Some of these were recrystallized moderately to somewhat finer grained, ragged, fibrous aggregates.

Ilmenite forms disseminated grains and clusters of grains averaging $\emptyset .03-\emptyset .05 \mathrm{~mm}$ in grain size, and a few grains up to 0.2 mm across.

Quartz forms disseminated, interstitial grains averaging Ø. 07-Ø. 2 mm in size.

Pyrrhotite forms disseminated patches averaging $\emptyset . \emptyset 1-0.015 \mathrm{~mm}$ in grain size. Commonly it is altered moderately to strongly to secondary pyrite/carbonate. Limonite is concentrated in diffuse halos bordering some patches of pyrrhotite.

Sphene forms disseminated grains and clusters of grains averaging Ø.05-0.l mm in size. It also is concentrated in a vein-like zone as several lenses of grains averaging $0 . \emptyset 5-\emptyset .1 \mathrm{~mm}$ in size.

Epidote forms scattered grains and clusters of grains, mainly cryptocrystalline in size, and mainly associated with tremolitel actinolite.

A veinlet 0.2 mm wide is dominated by extremely fine grained fluorite containing minor seams of chlorite and scattered grains up to 0.2 mm in size of tremolite?. A veinlet $\varnothing .02-\varnothing . \emptyset 5 \mathrm{~mm}$ wide is of very fine grained tremolite/actinolite.

A veinlet 0.02 mm wide is of very fine grained quartz. One diffuse veinlet $\varnothing .01-\boxed{0} .02 \mathrm{~mm}$ wide is of cryptocrystalline epidote.

The sample is a relatively uniform argillite with minor variation between layers in grain size, texture, and content of carbonaceous opaque. It was brecciated in irregular lenses and patches, and fragments rotated strongly; textures suggest soft-sediment deformation. Chlorite forms a few replacement lenses. Minor veinlets are of quartz and of sericite-(opaque).

fragments	
plagioclase	$1-2 \%$
quartz	$\emptyset .1$
muscovite	trace
groundmass	
plagioclase/quartz	$80-85 \%$
chlorite	$7-8$
carbonaceous opaque	$2-3$
opaque	$\emptyset .5$

veinlets, lenses	
quartz sericite-(opaque- \quad limonite)	0.5%
chlorite-(sericite)	0.1

Plagioclase forms equant fragments averaging $0.03-0.05 \mathrm{~mm}$ in size. Alteration is slight to sericite. Several larger fragments up to 0.2 mm long are of extremely fine grained latite. Quartz forms scattered fragments averaging $0.03-\emptyset . \emptyset 7 \mathrm{~mm}$ in size. These range from single grains to very fine grained, metamorphic aggregates. Muscovite forms ragged flakes from $0.15-0.25 \mathrm{~mm}$ long.

The groundmass is dominated by plagioclase and probably much less quartz averaging $\varnothing . \varnothing \emptyset 5-\varnothing . \varnothing 1 \mathrm{~mm}$ in size. (Grain size is too fine to allow optical distinction). Chlorite forms flakes averaging 0.005 mm
opaque (ilmenite? or hematite?) forms disseminated grains averaging $0.02-0.03 \mathrm{~mm}$ in size. Carbonaceous opaque forms wispy lenses, seams, and disseminations oriented parallel to foliation.

A weak to moderate foliation is defined by elongation of wispy lenses of chlorite and of carbonaceous opaque. Minor compositional banding is defined by lenses and thin layers containing much less or more carbonaceous opaque than normal, and in a few layers by more plagioclase fragments than normal.

The foliation is disrupted in a few lenses and patches, mainly in one zone up to 2 mm wide. In this zone, angular fragments of the rock averaging $\emptyset .5-1.5 \mathrm{~mm}$ in size are rotated moderately to strongly and closely packed. Textures suggest soft-sediment deformation. Near these zones, the rock locally shows microscopic folds, which disappear in layers further from the disrupted zone.

Quartz is concentrated in a few, proximal, parallel veinlets averaging 0.05 mm wide, which are parallel to foliation. Grain size averages $0.02-0.05 \mathrm{~mm}$. A few much smaller, tension quartz veinlets cut across the foliation; they are concentrated in one of the lenses of disrupted fragments.

Sericite forms several, discontinuous tension veinlets at averaging $0.02-0.05 \mathrm{~mm}$ wide and oriented at a high angle to the foliation. A few of these contain scattered lenses of opaque up to 0.3 mm long. The largest and most continuous veinlet, 0.1 mm wide, has a weak, diffuse halo containing slightly minor sericite. Several of the veinlets contain lenses and patches of light orange-brown limonite.

A few lenses up to 1 mm long are of very fine grained chlorite; these may be of hydrothermal replacement origin. Some are rimmed by sericite.

Altered Porphyritic Hypabyssal Andesite Dyke or Flow； Amygdules of Tremolite－Prehnite；Veinlets of Prehnite

Phenocrysts of plagioclase and much less abundant clinopyroxene are set in a groundmass dominated by plagioclase with less epidote and clinopyroxene（？）and much less Ti－oxide／leucoxene．Amygdules and replacement patches are of tremolite－prehnite．Veinlets are of prehnite and minor limonite．

phenocrysts		amygdules	
plagioclase	$5-7 \%$	tremolite	$3-4 \%$
clinopyroxene	$2-3$	prehnite	1
groundmass		opaque	0.1
plagioclase	$65-7 \emptyset$	epidote	
epidote	$15-20$		
clinopyroxene	$2-3$		
mi－oxide／leucoxene	$1-2$		
pyrrhotite	minor		
veinlets and replacement patches			
prehnite	$2-3$		
limonite	$\emptyset .2$		

Plagioclase forms subhedral phenocrysts averaging $0.5-1.5 \mathrm{~mm}$ in size．Some appear to have been resorbed slightly to moderately by the groundmass or recrystallized to much finer grained aggregates of plagioclase．Alteration is moderate to locally strong to of epidote and slight to disseminated flakes of sericite．

Clinopyroxene forms equant to slightly prismatic phenocrysts and clusters of phenocrysts averaging Ø． $5-\emptyset .8 \mathrm{~mm}$ in size．A few grains are fresh．Many are altered strongly to aggregates of tremolite？ with irregular rims of epidote．

In the groundmass，plagioclase forms anhedral，equant to lathy， moderately interlocking grains averaging $0.03-0.07 \mathrm{~mm}$ in size． Clinopyroxene forms scattered fresh grains averaging $0.1-\emptyset .2 \mathrm{~mm}$ in size．Epidote forms patches up to 0.3 mm in size of very fine grained aggregates of anhedral grains；it is secondary after both plagioclase and clinopyroxene．

Ti－oxide／leucoxene forms disseminated patches averaging $\emptyset . \emptyset 2-\emptyset . \emptyset 5$ mm in size．

Pyrrhotite？forms disseminated grains averaging $0.02-\varnothing .04 \mathrm{~mm}$ in size，which are rimmed by diffuse halos of light to medium brown limonite．

Several spheroidal amygdules averaging $1.5-3 \mathrm{~mm}$ across consist of subhedral to euhedral prismatic grains of tremolite averaging 0．1－ 0.4 mm long with interstitial patches of fine grained prehnite and local patches of epidote．A few contain moderately abundant opaque grains．

A vein up to $\varnothing .3 \mathrm{~mm}$ wide and a prominently braided vein up to 0.3 mm wide are of extremely fine to very fine grained prehnite．Similar prehnite forms irregular replacement patches up to 2 mm across in one corner of the section．Prehnite is identified by the following properties：colorless，R．I．about l．6－l．65，birefringence about $\emptyset . \emptyset 2 \emptyset-\emptyset . \emptyset 25$ ，hardness >5.5 ．Several much narrower veinlets are of prehnite and of limonite－（opaque）．

Porphyritic Dacite (Phenocrysts of Plagioclase, Quartz, Hornblende, and Biotite), Disseminated Pyrite

Phenocrysts of plagioclase and quartz, less abundant ones of hornblende, and minor ones of biotite are set in a very fine grained groundmass dominated by plagioclase with much less k-feldspar, quartz and epidote, and with moderately abundant disseminated pyrite.
phenocrysts
plagioclase
quartz
hornblende
biotite
groundmass plagioclase
K-feldspar
epidote quartz
pyrite
ilmenite/Ti-oxide spinel
fragment
dacite/latite

7- 8\%
4- 5
2- 3
0.3

60-65
7-8
7-8
7-8
2- 3
0.2
trace
1- 2

Plagioclase forms subhedral phenocrysts and clusters of phenocrysts averaging $1-3 \mathrm{~mm}$ in size. Alteration is variable. Many grains are replaced moderately to strongly by fine, irregular patches
 abundant, ragged patches of prehnite(?). Unreplaced patches of plagioclase are altered slightly to disseminated flakes of sericite.

Quartz forms several equant, subrounded phenocrysts averaging 1-2 mm in size and more irregular grains averaging $\varnothing .3-1 \mathrm{~mm}$ in size.

Hornblende forms a few subhedral to euhedral, prismatic phenocrysts up to 3.5 mm long. The largest grain is altered completely to aggregates of extremely fine grained chlorite with minor to moderately abundant patches of very fine grained epidote and disseminated, subhedral to euhedral grains of pyrite averaging $0.15-\emptyset .25 \mathrm{~mm}$ in size. A few elongate to stubby prismatic grains up to 2.5 mm long are altered completely to very fine grained epidote with minor to moderately abundant chlorite and pyrite and locally minor quartz. One grain 1.5 mm across is altered to interlocking grains of epidote with minor chlorite and prehnite(?). One prismatic hornblende or plagioclase phenocryst 1.3 mm long is altered completely to very fine grained quartz and plagioclase with less abundant epidote and minor pyrite.

Biotite forms two phenocrysts $1-1.2 \mathrm{~mm}$ across. One is altered completely to pseudomorphic muscovite with abundant patches of extremely fine grained epidote and minor Ti-oxide and pyrite. The other shows similar alteration except that muscovite was recrystallized strongly to extremely fine grained sericite.

The groundmass is dominated by plagioclase and less abundant K-feldspar and quartz grains averaging $\varnothing . \varnothing 2-\varnothing .05 \mathrm{~mm}$ in size. Plagioclase also forms scattered anhedral to subhedral prismatic grains averaging $\emptyset .1-\emptyset .2 \mathrm{~mm}$ long.

Epidote forms anhedral grains and clusters of grains averaging Ø. Ø4-Ø.ø8 mm in size.

Pyrite forms subhedral to euhedral grains averaging 0.1-0.2 mm in size. A few skeletal grains up to $\varnothing .4 \mathrm{~mm}$ across contain cores of groundmass feldspars. Along one side of the sample (weathered zone), grains are altered moderately to completely to hematite.

Ilmenite forms lensy grains averaging Ø.l-Ø. 15 mm long. Some are enclosed in coarser pyrite grains (up to $\emptyset .5 \mathrm{~mm}$ across). Alteration is strong to complete to aggregates of extremely fine grained Ti-oxide.

Spinel forms two adjacent anhedral grains from Ø. $04-\varnothing .07 \mathrm{~mm}$ in size. It is medium brown in color.

At one end of the section is a fragment up to 4 mm across of a hypabyssal, non-porphyritic latite/dacite. It is slightly finer grained than the main rock, and plagioclase is altered moderately to sericite. Pyrite forms disseminated grains as in the main rock.

Minor phenocrysts of plagioclase are set in a groundmass of fine grained, interlocking, lathy plagioclase with much less mafic patches (altered completely to secondary tremolite/prehnite(?) and epidote), accessory Ti-oxide and pyrite, and minor apatite and dolomite/ ankerite. Minor veinlets are of tremolite/prehnite(?).

phenocrysts	
plagioclase	$1-2 \%$
groundmass	
plagioclase	$75-80$
tremolite/prehnite(?)	$8-10$
epidote	$5-7$
Ti-oxide/leucoxene	$1-2$
pyrite/hematite	1
apatite	0.2
dolomite/ankerite	minor
quartz	minor
veinlets	
tremolite/prehnite(?)	$\emptyset .1$

Plagioclase forms a very few prismatic phenocrysts averaging $0.7-1.2 \mathrm{~mm}$ long. In the groundmass, plagioclase forms interlocking, lathy to prismatic grains averaging $\varnothing .2-\varnothing .5 \mathrm{~mm}$ long. Grains are altered slightly to small patches of epidote and contain moderately abundant dusty opaque (hematite?).

Mafic patches up to 1.5 mm in size are replaced completely by secondary tremolite/prehnite(?) and epidote. It is possible that the original composition was clinopyroxene. Tremolite/prehnite(?) forms very ragged, anhedral, irregular grains and clusters averaging Ø.1-0.3 mm in size. The mineral has moderate relief (R.I. about l.60) and birefringence (0.012-Ø.015), and is hard, with reflectivity slightly less than that of epidote. The lack of good crystal form or cleavage prevents complete optical identification.

Epidote forms ragged, equant patches averaging $0.15-\emptyset .3 \mathrm{~mm}$ in size, with a few up to 1.2 mm across. Commonly it is surrounded by patches of tremolite/prehnite(?).

Ti-oxide/leucoxene forms ragged patches averaging $\varnothing .03-\emptyset .08 \mathrm{~mm}$ in size.

Pyrite forms disseminated, anhedral to subhedral, equant grains averaging $0 . \emptyset 5-\emptyset .15 \mathrm{~mm}$ in size, and a few up to $\emptyset .2 \mathrm{~mm}$ long. Many grains are fresh, whereas others are altered moderately to completely to deep reddish brown hematite.

Apatite forms disseminated, acicular to prismatic grains averaging $\emptyset . \emptyset 3-\varnothing . \varnothing 7 \mathrm{~mm}$ long, and $\begin{aligned} & \text { few subhedral prismatic grains }\end{aligned}$ averaging $9.07-0.2 \mathrm{~mm}$ long.

Dolomite/ankerite forms ragged grains averaging $\varnothing .05-\varnothing .1 \mathrm{~mm}$ in size. It has moderate relief, suggesting that it is dolomite or ankerite rather than calcite.

Quartz forms scattered, equant, patches averaging 0.1-0.2 mm across of equant grains averaging $\varnothing . \varnothing 4-\emptyset . \emptyset 8 \mathrm{~mm}$ in size.

Wispy veinlets up to $\varnothing .02 \mathrm{~mm}$ wide are of tremolite/prehnite(?).

Metamorphosed Felsic Tuff; Replacement Patches of Epidote-Tremolite, Veinlets of Epidote-Quartz

The rock is an extremely fine grained, well foliated felsic tuff containing lenses of quartz parallel to foliation in a groundmass dominated by plagioclase with minor Ti-oxide. A replacement patch up to 10 mm across of epidote-tremolite occurs mainly in a coarser grained plagioclase-quartz layer. Abundant veinlets are of epidote-quartz-(tremolite).

```
porphyroblasts
    tremolite 2- 3
groundmass
    plagioclase 65-70
    quartz 5-7 (mainly in one layer)
        Ti-oxide \emptyset.5
        sericite minor
replacement (?) lenses
        quartz 2- 3%
replacement patches
        epidote 7- 8
        tremolite 3-4
veinlets
        quartz-epidote-(tremolite) 2- 3
```

The rock is dominated by layers rich in plagioclase, in which grains average ø. $\varnothing \varnothing 3-\emptyset .01 \mathrm{~mm}$ in size and are oriented slightly to moderately parallel to foliation. Grain size varies slightly to moderately between some layers.

Tremolite forms porphyroblastic patches averaging $0.2-0.5 \mathrm{~mm}$ in size and locally up to 1 mm long of ragged, subradiating, fibrous aggregates. A few of these also contain minor epidote. In some layers, tremolite forms minor to moderately abundant disseminated grains and clusters, which locally grade into coarser grained porphyroblastic patches.

Epidote forms a few ragged replacement patches up to 1.5 mm long. Grain size is cryptocrystalline.

Quartz is concentrate in lenses up to 2 mm long and 0.2 mm wide in the foliation plane. Grain size averages 0.03-0.05 mm in smaller lenses and up to 0.3 mm in size in larger lenses. Some lenses also contain minor to moderately abundant, extremely fine grained tremolite. Quartz also forms scattered equant grains averaging Ø. $05-0.07 \mathrm{~mm}$ in size.

Ti-oxide forms disseminated patches and lenses averaging $\emptyset . \emptyset \emptyset 3-\emptyset .0 日 7 \mathrm{~mm}$ in size; these are concentrated in wispy seams and lenses parallel to foliation. It also forms lenses averaging $0.02-0.05 \mathrm{~mm}$ in size.

Pyrite forms one disseminated grain $\emptyset . \emptyset 1 \mathrm{~mm}$ across.
One lensy patch 0.6 mm long is of extremely fine grained sericite.

One layer up to 10 mm wide has a more irregular texture and is dominated by plagioclase and moderately abundant quartz grains averaging $\emptyset .01-0.02 \mathrm{~mm}$ in size. It also contains $3-5 \%$ quartz grains averaging $0.05-0.2 \mathrm{~mm}$ in size. Pyrite forms one disseminated grain $\emptyset . \emptyset 2 \mathrm{~mm}$ across.

The main replacement patch, which is $10 \mathrm{~mm} x 5 \mathrm{~mm}$ in size, occurs almost entirely in this layer. An outer zone occupying over half the patch is dominated by very fine to fine and locally medium grained epidote. A zone up to 4 mm across in the core is dominated by unoriented, interlocking, ragged prismatic grains of tremolite averaging 0.l-0.3 mm in length. Epidote and tremolite are moderately abundant in a halo extending outwards from the replacement patch for a few mm in to the quartz-rich layer. A major vein up to 0.4 mm wide of epidote and tremolite and and several small veinlets of epidote also extend subparallel to foliation from the replacement patch along the quartz-rich layer.

Veinlets throughout the rock ranging from Ø. Øl-0. 2 mm in size are of various proportions of quartz and epidote and much less tremolite. In some larger veinlets, tremolite forms acicular grains oriented perpendicular to vein walls. A few wispy seams parallel to foliation also are of tremolite. One veinlet contains minor disseminated pyrite grains averaging ø.ø1-Ø.ø2 mm in size.

Sample $\mathrm{p}-7$

Skarn: Epidote-Quartz-Pyrrhotite-Sphalerite-Chlorite-(Chalcopyrite-pyrite-Sphene-Ti-oxide); Veinlets of Pyrite-Hematite, Chalcopyrite

The sample is a zoned skarn dominated by an epidote-rich zone containing abundant patches and veinlike zones of sulfides, and a quartz-rich zone containing much less abundant sulfides. Sulfides are dominated by pyrrhotite with less sphalerite, much less chalcopyrite and minor pyrite. Chlorite forms scattered patches in the epidote-rich zone and forms intergrowths with quartz in the quartz-rich zone. Textures suggest that some of the sulfides were formed by replacement along irregular fractures of an original epidote-rich skarn. However, commonly in detail, subhedral to euhedral epidote grains are surrounded by interstitial patches of sulfides, suggesting that the minerals were formed together. A late veinlet is of pyrite-hematite and another is of chalcopyrite.

epidote	$55-60 \%$	veinlets	
quartz	$20-25$	pyrite-hematite	0.1%
pyrrhotite	$8-10$	chalcopyrite	minor
sphalerite	$3-4$		
chlorite	$2-3$		
chalcopyrite	0.5		
pyrite	0.2		
sphene	0.1		
Ti-oxide	$\emptyset .1$		

Epidote forms patches of subhedral to euhedral grains averaging $0.05-\emptyset .15 \mathrm{~mm}$ in size. In a few patches, some grains are up to 0.5 mm long. In some patches, commonly near the border with quartz-rich zones, subhedral to euhedral epidote grains are enclosed in a groundmass of sphalerite in a texture which suggests that epidote was brecciated and fragments healed with sphalerite. These grade into zones in which sulfides, mainly sphalerite occurs in interstitial patches to subhedral to euhedral epidote aggregates.

Quartz is concentrated strongly in one corner of the section as aggregates of slightly interlocking grains averaging $\emptyset . \emptyset 2-\emptyset . \emptyset 5 \mathrm{~mm}$ in size, with smaller zones averaging $0 . \varnothing 7-0.2 \mathrm{~mm}$ in grain size. In the epidote-rich zone, quartz is concentrated in a few patches up to 2 mm across of grains averaging $\emptyset .05-\emptyset .15 \mathrm{~mm}$ in size intergrown with less abundant epidote and sulfides.

In the epidote-rich zone, chlorite is concentrated in a few irregular to subrounded patches up to 2 mm in size, in which it forms extremely fine to very fine grained aggregates. In the quartz-rich zone, it occurs in patches up to a few mm across as irregular grains interstitial to quartz.

Ti-oxide forms disseminated patches of grains averaging $\emptyset . \emptyset 2-\emptyset . \emptyset 5 \mathrm{~mm}$ in size in the quartz-rich zone, and is concentrated strongly in a few chlorite-rich lenses.

Sphene forms disseminated, anhedral grains averaging 0.03-ø. 05 mm in size in epidote-rich patches.

Sulfides are concentrated in vague, veinlike zones and irregular patches, mainly in the epidote-rich part of the rock. Pyrrhotite forms submosaic aggregates of grains averaging Ø. Ø3- 0.07 mm in size, and a few coarser grained patches with grains up to 0.3 mm across. Sphalerite is deep orange-brown in color; it forms patches averaging $\emptyset .2-\emptyset .5 \mathrm{~mm}$ in size. Some grains contain minor exsolution blebs of chalcopyrite. Chalcopyrite forms equant patches averaging Ø. 日2- 0.05 mm in size, and a very few irregular patches up to $\emptyset .3 \mathrm{~mm}$ across.

In the quartz-rich zone, pyrite forms disseminated subhedral to euhedral grains averaging $\emptyset . \emptyset 5-\emptyset .15 \mathrm{~mm}$ in size. In the epidote-rich zone, pyrite forms a very few subhedral, equant grains averaging $\emptyset .1-\emptyset .2 \mathrm{~mm}$ across, mainly surrounded by pyrrhotite.

A late, continuous veinlet $\emptyset .02-\varnothing .03 \mathrm{~mm}$ wide and a few, smaller discontinuous ones contain lenses of pyrite and hematite. pyrite occurs mainly where the veinlets cut sulfide patches. Locally, along the main pyrite veinlet, pyrrhotite is altered to secondary marcasite/pyrite. Hematite occurs mainly where the veinlet cuts the quartz-rich zone.

An irregular, discontinuous veinlet of chalcopyrite averaging Ø. Ø2-Ø. Ø5 mm wide cuts the epidote-rich patch.

SUEFEOTDER RECEIVED

FEB 231993
MR. \#
VANCOUVER, BC.

PROSPECTING REPORT ON THE
TREAT 1 AND 3 CLAIMS

VANCOUVER MINING DIVISION

For
Clive Ashworth
900-999 West Hastings Street
Vancouver, B.C. V6C 2W2
\section*{By}
Fayz F. Yacoub, B.Sc., F.G.A.C.
13031 - 64 th Avenue Surrey, B.C. V3W $1 \mathrm{X8}$

February 20, 1993

1992 WORR PROGRAM

On November 1 and 2, 1992 Fayz Yacoub and Thom Heah geologists carried out prospecting and rock sampling program on the Treat 1 and 3 claims. The main purpose of the program was to relocate the original old showings known as the Copper Group showings and to determine an exploration approach and recommendations for the next phase.

Two old showings have been located on the area of the claims during 1992 program.

First showing is located on the south side of Lone Jack creek. It can be reached from the main logging road at the creek crossing about 50-60 meters above the logging road. A rusty gossan area of volcanic outcrop is exposed for approximately 50 meters around and crossing Lone Jack Creek at a steep hill located at and above a waterfall. Mineralization consists of massive to semi-massive magnetite, pyrrhotite with minor pyrite and chalcopyrite disseminated as $.3-.5 \mathrm{~mm}$ cubes in medium to light grey dacitic andesitic tuff or flow, mineralization is obviously fracture controlled and fills tension cracks and joints. The best mineralized outcrops were located at the creek bed and much overburden on both sides of Lone Jack Creek. Second showing is located along the main road cut approximately 200 meters north of Lone Jack Creek crossing. 60-70 meters of mineralized outcrop semi-exposed along the east side of the road. Mineralization consists of up to 15% disseminated pyrite and minor chalcopyrite in dark grey to green, rusty, weathered in parts basaltic tuff or flow interlayered with dacitic - andesitic rocks. Massive to semi massive patches of magnetite and pyrrhotite were also located along the road cut in rusty fractured blocks. The attitude of mineralization and fractures in this showing appears to be similar to the first showing and possibly a continuation of the same zone of mineralization. A total of seven rock samples were collected from the second showing

MINERALIZATION

Pyrite, magnetite, pyrrhotite, chalcopyrite and sphalerite are present in most of the pendant rock units as lenses of massive sulphides and as disseminations in skarns. Outcrops of massive sulphides are leached or oxidized at the surface due to the unstable nature of high sulphide minerals and form a series of gossans, consisting of siliceous iron oxides separated by soft yellow limonite areas.

Chalcopyrite and molybdenite occur as disseminations in stockworks and quartz veins.

ROCK GEOCHEMISTRY

SAMPLING	DESCRIPTION	VALUES
92TR/RA1	On the north side of Long Jack Creek, dark green, rusty basaltic tuff or flow interlayered with dacite, both contain disseminated pyrite up to 15% pyrite fracture controlled and fills tension joints.	$\begin{aligned} & .03 \% \mathrm{Cu}, \\ & <.01 \% \mathrm{~Pb}, \\ & .07 \% \mathrm{Zn} \end{aligned}$
92TR/RA3	Chip sample across 6 meters of Silicified andesite, disseminated with pyrite \pm chalcopyrite.	$\begin{aligned} & .12 \% \mathrm{Cu}, \\ & <.01 \% \mathrm{~Pb}, \end{aligned}$
92TR/RL1	Lithogeochem sample, hornblende or pyroxene basaltic tuff or flow. Sample taken from fresh country rock, no mineralization.	$\begin{aligned} & 10.6 \% \mathrm{CaO}, \\ & .93 \% \mathrm{~K}_{2} \mathrm{O}, \\ & 43.29 \% \mathrm{SiO}_{2} \end{aligned}$
92TR/RL2	Dark grey, fine-grained to massive basalt with quartz veinlets, 5\% Py dissemination.	$\begin{aligned} & 10.76 \% \mathrm{CaO}, \\ & .16 \% \mathrm{~K}_{2} \mathrm{O}, \\ & 48 \% \mathrm{SiO}_{2} \end{aligned}$
92TR/RL2b	Dark grey, to black massive basalt, disseminated with 5% pyrite, quartz stringers.	$\begin{aligned} & 11.33 \% \mathrm{CaO}, \\ & .15 \% \mathrm{~K}_{2} \mathrm{O}, \\ & 48.48 \% \mathrm{SiO}_{2} \end{aligned}$
92TR/RL4	40 meters north of RL2b, prominent outcrop on east side of road, phylic dacite or rhyolite flow or tuff with quartz stringers. Lithogeochem sample of dacite flow with quartz eyes.	$\begin{aligned} & 3.25 \% \mathrm{CaO}, \\ & .42 \% \mathrm{~K}_{2} \mathrm{O}, \\ & 73.55 \% \mathrm{SiO}_{2} \end{aligned}$
92TR/RL5	Further down road, folded argillite, steeply ($45-70$) west dipping. Folds have gentle to moderate south plunges. Lithogeochem sample taken from folded argillite.	$\begin{aligned} & 4.24 \% \mathrm{CaO}, \\ & 2.2 \% \mathrm{~K}_{2} \mathrm{O}, \\ & 58.95 \% \mathrm{SiO}_{2} \end{aligned}$

Chemex Labs Ltd.
TO: KENNECOT'T CANADA, INC.
138-200 GRANVILLE ST VANCOUVER, BC
V6C 154

CONCLUSIONS

Significant results from previous work by El Paso and by Ashworth Explorations, all soil, Mag and V.L.F. anomalies occurs over a mafic volcanic tuff area that has undergone intense silicification and pyritization.

All showings appear to be related to the contact between the Coast Range intrusives and northwest trending bands of argillites and volcanics.

Magnetite, pyrrhotite and pyrite appear to be common and present in most of the rocks as well as disseminations.

Although, 1992 rock sampling did not return high $\mathrm{K}_{2} \mathrm{O}$ and SiO_{2} to suggest any similarity with Britannia Mine. Treat 1 and 3 property has good potential for hosting an economic $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$ mineralization for the following reasons:

* The Treat 1 and 3 claims are situated in an area that is well known for hosting gold, copper, lead and zinc mineralization. The Britannia Mine is located 52 kilometres to the southeast of the property.
* The property is underlain by sheared, silicified volcanics intercalated with metasediments in contact with the Coast Range Intrusive complex. this geological setting is a favourable environment for hosting economic mineralization.
* Significant results form previous work by El Paso Mining and Milling Company as well as results from previous work by Ashworth Explorations Limited during 1987-1988.
* Four old showings known as the Copper Showings occur within the area of the claims.
* 1992 Field program has covered only a small portion of the claim. Good potential exists for locating significant mineralization on the claims.

RECOMMENDATIONS

1. Perform follow-up work on the area of the two showings found during the 1992 field program. The work should consist of putting in 20 kilometres of grid lines (100 meters and 50 meters spacing).
2. Carry out detailed geological mapping and rock sampling over the area of the grid.
3. Carry out magnetometer and VLF-EM geophysical survey over the grid area to evaluate previous results and define drill targets.

Estimated Cost is $\$ 75,000$.
PROPOSED BUDGETJERVIS INLET PROPERTYTREAT 1 AND 3 CLAIMS
Geological, Geophysical Fieldwork Program (four man crew, 22 days)
Project Preparation (four man crew, two days)
includes preparation of maps, aerial photographs,
field supplies and warehouse work $\$ 2,250$
Mob/Demob (four man crew, two days) includes wages, travel, food and accommodation 3,310
Field Crew
project geologists, prospector, geotechnicianand geophysical operator27,500
Field Cost
includes food and accommodation, supplies and communications 9,900
Lab Analysis
150 Rock Samples @ \$18/sample 2,700
Petrographic Analysis (Thin Section) 800
Geophysical Survey Mag + VLF @ $\$ 250 /$ day $x 20$ days 5,000
Geophysical interpretation 2,500
Photo interpretation 1,000
Report
includes maps, plotting and drafting, report
writing, word processing, copying and binding 6,000
Sub Total $\$ 60,460$
Administration Costs @ 15\% 9,069
Sub Total $\$ 69,529$
GST @ 7\% 4,867
TOTAL$\$ 74,391$
say \$75,000
Respectfully Submitted by Fayz Yacoub, B.Sc., F.G.A.C. February 20, 1993

REFERENCES

B.C. Dept. of Mines and Petroleum Resources, 1970. Geology, Exploration and Mining in British Columbia.
B.C. Minister of Mines Report, 1917.
1922.
1925.

Bacon, W.R., 1957. Geology of Lower Jervis' Inlet, B.C. Dept. of Mines Bulletin 39 .

Folk, P., 1975. Geological and Geochemical Survey on the Bun Claims, Assessment Report 5,775.

GAC Cordilleran Section, 1974. Programme and Abstracts from Volcanic Geology and Mineral Deposits of the Canadian Cordilleran.

Malcolm, D.C., 1968. B.J. Group, Jervis Inlet, private company report.

Tomlinson, F.C., 1971. Geological Report on the Fang Nos. 1-14 Inclusive and Egg Nos. $1-2$, for Thunder Valley Mines Ltd., private company report.

Kidlark and Yacoub, 1989. Geological Report on the Jervis Inlet Property for Clive Ashworth.

CERTIFICATE

I, FAYZ F. YACOUB, of 13031 - 64 th Avenue, Surrey, British Columbia, V3W 1X8, do hereby declare:

1. That I am a graduate in geology and chemistry from Assuit University, Egypt (B.Sc. 1967), and Mining Exploration Geology of the International Institute for Aerial Survey and Earth Sciences (I.T.C.), Holland (Diploma 1978).
2. I have actively pursued my career as a geologist for the past eighteen years.
3. The information, opinions, and recommendations in this report are based on fieldwork carried out by myself, and on published and unpublished literature. I was present on the subject property on November 1 and 2, 1987, November 23, 1988, and November 1 and 2, 1992.
4. I have no interest, direct or indirect, in the subject claims.
5. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

Dated at Vancouver, February 22, 1993

[^0]: Elevation on the claims rise from sea level to 1,000 meters (3,300 feet). The property has moderate to steep slopes typical of the rugged topography of Jervis Inlet. Recent alpine glaciation has enhanced the steepness of the terrain by scouring and excavating the valley bottoms. Glaciation has also deposited a 20-60 meters deep alluvial gravel fan near the mouth of Treat Creek that supports a large scale gravel pit operation.

