ARIS SUMMARY SHEET

District Geol	ogist, Kamloops	Off Confidential: 94.12.06				
ASSESSMENT REPORT 23240 MINING DIVISION: Kamloops						
PROPERTY: LOCATION:	NB 6 LAT 51 20 00 LONG 119 53 00 UTM 11 5690622 299142 NTS 082M05W					
CAMP:	039 Adams Plateau - Clearwater Arc	ea				
CLAIM(S): NB 6 OPERATOR(S): Teck Corp. AUTHOR(S): Thomson, G.R. REPORT YEAR: 1994, 61 Pages COMMODITIES SEARCHED FOR: Copper,Zinc KEYWORDS: Devonian,Eagle Bay Formation,Phyllites,Schists,Pyrrhotite,Pyrite						
<pre>KEYWORDS: Devonian, Eagle Bay Formation, Phyllittes, Schists, Pyrhotite, Pyrite Chalcopyrite WORK DONE: Drilling, Geophysical, Geochemical DIAD 618.8 m 5 hole(s); NQ Map(s) - 1; Scale(s) - 1:5000 SAMP 135 sample(s); ME SPOT 3.5 km RELATED REPORTS: 14707 MINFILE: 082M 130,082M 131</pre>						

LOG NO:	[JAN 3 1 1994	RD.
ACTION.	anna 🖉 anna a sana a na sa baran a na sa baran an a	
FILE NO:	αμαλήγ ¹ ομ ¹ τη θαλή θαθοληγοριτη θα φαλά το ματρογραφία τη ματρογραφία το του του του του του του του του του -	

DIAMOND DRILLING AND GEOPHYSICAL

ASSESSMENT REPORT

ON THE

NB-6 MINERAL PROPERTY

NTS 82 M / 5W

GEOLOGICAL BRANCH ASSESSMENT REPORT

il de la

OWNER: Teck Corporation # 600-200 Burrard Street Vancouver, B.C. V6C 3L9

G. Thomson, P.Geo January 15, 1994 Kamloops, B.C.

TABLE OF CONTENTS

Page

لمنتق

}

) (739

لنعن

فتسأ

INTRODUCTION	•••••			1
LOCATION. ACCESS				1
PHYSIOGRAPHY AND VEGETATION		••••		1
<u>CLAIMS</u>				2
HISTORY	• • • • • • • • •			2
GEOLOGY AND MINERALIZATION				3
SELF-POTENTIAL SURVEY				4
DIAMOND DRILL PROGRAM			. .	5
DRILL PROGRAM RESULTS	••••••		•••••	5
SUMMARY AND RECOMMENDATIONS				7

APPENDICES

APPENDIX 1 - COST STATEMENT	•	• •	•	•	•	•	•	•	•	•	o .	. 9
<u>APPENDIX 2</u> - REFERENCES	•		•	•		-		•	•	•		10
<u>APPENDIX 3 - CERTIFICATE OF QUALIFICATIONS.</u>	•	• •		•			•	•		•		11
APPENDIX 4 - GEOCHEMICAL ANALYSES	•			•			•	·	•	•	•••	12
APPENDIX 5 - DRILL LOGS	•	•	•		•	•			•	•		13
APPENDIX 6 - SELF-POTENTIAL THEORY		•	•		•	•	•	•		•		14
APPENDIX 7 - GEOCHEMICAL METHODS					•	•	•	•	•			15
APPENDIX 8 - TRENCH ROCK SAMPLE DESCRIPTIONS												16

LIST OF ILLUSTRATIONS

(FRAM

(Carrow of the second s

10,000

(**1**

1.194

Figure 1 - Location Map		• •		•••	•••	•••	• •	 •		.follow p.1
Figure 2 - Claim Map		• •								.follow p.2
Figure 3 - Grid, Drill Site Location Map			•••	•••		• •		 •	• •	pocket
Figure 4 - Geology Map	•••	• •			•••			 •	• •	follow p. 3
Figure 5 - Self Potential Survey Map .	•••		••						•••	follow p. 4
Figure 6 - Drill Section (93-NB-01, -02)				•••	• •		 •	• •	follow p. 6
Figure 7 - Drill Section (93-NB-03).			• •							follow p. 6
Figure 8 - Drill Section (93-NB-04).		• •	• •			• •		 •		follow p. 5
Figure 9 - Drill Section (93-NB-05).		• •					• •			. follow p.6

INTRODUCTION

The NB-6 property, located northeast of Barriere, B.C. was explored during the 1993 field season. The exploration was centred on a number of occurrences of stratabound, volcanogenic sulphide mineralization.

The exploration program was carried out by Teck Exploration Ltd. on the NB-6 property, following an option agreement made on July 7, 1993, with the owner, Mr. Leo Loranger.

Field mapping and self potential surveys were carried out on the property from July 19-24, 1993 with the diamond drill program carried out from August 16 to 27, 1993. This report summarizes the results of the 1993 exploration program.

LOCATION. ACCESS

The property is located in south-central British Columbia about 80 kilometres northnortheast of Kamloops and approximately 23 kilometres northeast of the town of Barriere, located on the North Thompson Highway. The property is road accessible via paved and gravel roads leading from Barriere towards North Barriere Lake and then by approximately 4 kilometres of logging road following the east side of Birk Creek. Approximately 1.5 km. of 4 wheel drive road leads eastward from Birk Creek towards Harper Creek and the claim area.

PHYSIOGRAPHY AND VEGETATION

The property straddles the valley of Harper Creek, which flows southerly into the Barriere River at the west end of North Barriere Lake. Harper Creek flows from the northeast to the south central boundary of the claim and lies at an elevation of about 2300' a.s.l. Within the property boundary, the valley of Harper Creek rises moderately to steeply to the east, and west, to elevations of 2900' and 3300' a.s.l. respectively.

Except for local logging slashes, the entire property is heavily wooded with mature spruce and fir. Local patches of alder and birch are common. Outcrops are relatively scarce over the claim area and glacial overburden averages about 10 meters in thickness as demonstrated by the diamond drill program.

<u>CLAIMS</u>

The property consists of one nine-unit claim as follows:

<u>Claim Name</u>	Tenure No.	Expiry Date
NB-6	217304	April 16/96y

The claim is owned by Mr.L. Loranger, however it is currently under option by Teck Exploration Ltd. under an agreement dated July 7/93.

<u>HISTORY</u>

This area was first prospected in the early 1900's. Old showings on adjacent properties are referred to in B.C. Minister of Mines Annual reports during the 1920's. Two old showings known as the May and Broken Ridge are located within the property boundaries. There is no record of exploration on the claim area until 1971.

In 1971, local prospectors optioned a large claim block which included the Broken Ridge and May prospects to Ducanex Resources. Ducanex carried out geological mapping and geochemical soil sampling as well as road construction and trenching. A total of 2,334 feet of diamond drilling was completed in 7 holes. At least three of these drill holes appear to be located on the present property.

In 1976, Kennco Exploration acquired the property and performed geochemical soil sampling as well as mapping and sampling of the old trenches.

With the discovery of the Hilton deposit in 1983, extensive staking took place along the strike of this occurrence in the Eagle Bay rocks. The current property was staked in early 1984 as part of that activity.

Morgain Minerals Inc. optioned the property in 1985 and carried out a program consisting of geological mapping, geochemical soil surveys, magnetometer and electromagnetometer surveys.

Airborne geophysical surveys were carried out in 1985 by Aerodat Ltd. for Noranda Exploration Co. Ltd. The survey was centred over the Birk Creek area and included the NB-6 claim area.

GEOLOGY AND MINERALIZATION

Prior to self-potential and diamond drilling programs, the NB-6 property was geologically mapped and sampled. Most of this work was conducted in areas of known mineral occurrences, as well as trench and roadcut exposures on the west side of Harper Creek.

The claim area is underlain by low grade felsic to intermediate meta-volcanics and associated volcaniclastic sediments of the Eagle Bay Formation of Devonian Age. These rocks are intruded by Cretaceous granitics of the Baldy Batholith along the north property boundary. The Eagle Bay package of rocks is host to numerous polymetallic base and precious metal showings within the map area.

The rocks observed both on surface and in drill core consist of varieties of green quartz-feldspar-sericite-chlorite (+/- biotite) schist grading to dark green chlorite schist. Interbedded within these intermediate meta-volcanics, are distinct zones of bedding conformable grey (felsic) quartz-sericite schists which are generally non-mineralized and are marked by the development of bluish, ovate quartz eyes.

Mapping has outlined a number of conformable, massive to disseminated sulphide occurrences, which consist primarily of pyrrhotite and pyrite, commonly associated with chalcopyrite. Pyrite typically occurs as distinct segregated bands, usually having a coarse texture. Sphalerite occurs very sporadically and is typically associated with medium to coarsed grain pyrite bands as was observed in drill hole 93-NB-05 from 62.5 - 75.3 m. Galena is very rare and was only seen in two instances as part of a narrow quartz vein in drill hole 93-NB-03 at 94.75 m and a very minor occurrence at 21.6 m (across 4 cm) in drill hole 93-NB-01.

The Broken Ridge showing consists of bands of massive to semi-massive pyrite (30-40%) within a host unit of quartz-feldspar-sericite schist. This rock is slightly carbonaceous and has thin bands of phyllite interstratified with the sulphide horizons. Traces of chalcopyrite are visible within the pyrite. The zone has a width of approximately 2 metres, strikes east-west and dips shallowly south, conforming to local stratigraphy. In the immediate footwall and hanging wall of this zone, rocks consist of sulphide rich chloritic schists, phyllites and sericitic phyllites.

A total of eight rock samples were taken in and around the Broken Ridge showing, in order to establish the background rock geochemistry of sulphide mineralization and related host rocks. One rock sample was taken from the nearby May showing. Most surface exposures exhibit anomalous, but non-economic values in copper.

The host unit of the May showing is a dark green-grey metavolcanic with up to 10% pyrite and chalcopyrite. Sulphides occur as disseminations, blebs and pods along bedding planes and fracture surfaces. Malachite coatings are commonly seen.

SELF-POTENTIAL SURVEY

An S-P survey was carried out July 18-23/93 over a portion of the NB 6 claim. The survey was run to cover an area of known mineral showings, with coincident soil geochemical and VLF-EM anomalies as located by previous operators.

The grid consisted of 3.5 km of flagged lines at both 50m and 100 m line spacings. Measurements were taken at 10 m intervals along the grid lines. A value of -50 mv was given to the base station at 49+00N, 50+00E in order to eliminate positive values in the survey. The base line was established for 500 m along an azimuth of 140° with grid lines at 50° to cross stratigraphy at close to right angles to strike.

The survey was useful in locating three parallel northwest-southeast conductive zones. (see Fig.5) These zones shall be referred to as Anomalies A, B, and C.

ANOMALY A

This weak conductor extends from Line 49+00N, 51+40E to Line 47+50 N, 51+30E and reflects the massive sulphide mineralization at the Broken Ridge showing. As indicated by the survey, mineralization appears narrow and localized. This anomaly was drill tested by drill holes 93-NB-01 and 02.

ANOMALY B

The S-P survey indicated this anomaly to be moderate (compared to Anomaly A and C), with greater indicated strike length than anomaly A, extending from Line 51+00N, 52+50E to Line 47+50N, 52+10E. This anomaly was not drill tested during the Teck drill program, but could be considered as a possible drill target for a future drill program.

-4-

ANOMALY C

C-

A very strong, wide conductor is indicated at Anomaly C. The conductor appears to terminate to the northwest and is virtually absent by Line 51+00 N. It does, however, extend strongly throughout the grid area and continues open to the southeast off the grid area. The anomaly also coincides fairly well with an EM anomaly as determined by surveys carried out on behalf of Morgain Minerals Inc. in 1985. Anomaly C was drill tested by Teck in drill holes 93-NB-03,04 and 05, with encouraging results for copper.

DIAMOND DRILL PROGRAM

Diamond drilling was carried out on the NB-6 property from August 16-22, 1993. All drilling was of NQ size and totalled 618.75 m in five drill holes from five separate set-ups. The drilling was carried out by L.D.S. Diamond Drilling Ltd. of Kamloops, B.C. Drill core is stored on the property at drill site location 93-NB-03.

Particulars of the drill program are given as follows:

<u>HOLE NO.</u>	DIP	AZIMUTH	<u>LENGTH</u>
93-NB-01	-70	40°	142.3 m
93-NB-02	-70	50°	102.4
93-NB-03	-60	40°	147.2
93-NB-04	-60	50°	127.1
93-NB-05	-60	50 °	99.7

DRILL PROGRAM RESULTS

All five drill holes contained sporadic anomalous copper values with local concentrations in the 1 to 2% range. The strongest mineralized zone was in hole 93-NB-02 containing 1.8% copper over 3.15m at 71.0-74.15m.

The best intersections for the five drill holes is as follows:

93-NB-01	- numerous values	0.1-0.3 % Cu
93-NB-02	71.0 to 72.5 (1.5 m)	2.36% Cu
	72.5 to 74.15 (1.65)	1.29% Cu

93-NB-03 - numerous values (0.1-0.3% Cu)

	43.4 to 44.8 (1.4 m)	0.84 % Cu	
	49.15 to 50.9 (1.75)	1.20 % Cu	
	77.15 to 78.3 (1.15)	1.01 % Cu	
93-NB-04	- several values	0.1-0.3 % Cu	
93-NB-05	- several values - sporadic zinc value (0.1-0.4 %	0.1-0.3 % Cu % Zn) over the interval 62.5 to 75.3 m	

32.6 to 35.7 (3.1 m) 1.15% Cu

base or precious metal content was observed from these drill holes.

intermediate chlorite-sericite-quartz schists and dark green chlorite schists.

The most encouraging style of mineralization observed in the 1993 program consists of conformable bands of semimassive pyrrhotite and chalcopyrite within

Drill holes 93-NB-01 and 93-NB-02 tested the down-dip extensions of the Broken Ridge sulphide zone. The mineralization consists mainly of pyrite and pyrrhotite bands with minor associated chalcopyrite. The pyritic bands in these two holes are weakly anomalous in gold (50-275 ppb Au) with an anomalous arsenical association. No other appreciable

Drill holes 93-NB-03, 04 and 05 were drilled to test the strike extension of the strong S-P anomaly occurring along the northeast side of the survey grid.

Drill hole #3 contained two defined zones of pyrrhotite and chalcopyrite mineralization from 13.25 to 53.95 m and a weaker zone at 77.8 to 92.65m. Mineralization consists of sporadic sulphide bands, approximately 3 to 15% pyrrhotite with associated chalcopyrite.

Drill hole #4 contained weak, anomalous copper mineralization within a zone of chloritic schists from 58.3 to 72.1 m. This correlates with the strongest mineralized zones seen in holes #3 and #5. As indicated by the S-P survey, the general paucity of mineralization was to be expected with closure of Anomaly C at the location of this drill hole.

Drill hole #5 tested the southeastern extent of the known surveyed portion of Anomaly C. The copper mineralization in drill hole #5 from 30.5 to 35.7m is easily correlatable with a very similar zone of semimassive pyrrhotite-chalcopyrite mineralization encountered in drill hole #3 from 49.15 to 54.0m. This hole also contained a zone of zinc enrichment associated with pyrite bands from 62.5 to 75.3m., which may be related to similar bands occurring in drill hole #1.

93-NB-02 93-NB-01 DIP:-70° έ... AZIM:40 ° (roodbed) AZIM:50 ° + 20-30% Py>Po. minor Cpy (roadbed) 10-15% PO (CPY) 51...572 652...191 653...136 1054...1348 121780...1348 121655...414. 121655...414. local bands Py, Po.(cpy) 732 121657...569 121767...569 121768...961-121768...204-121769...959 121769...959 3 121770...116 121//.... 121659....147-121771....147-121660...797-121661....826-121662....1281-121663.... gern MSV Py, Po 40% Semi-Msv py,po,cpy 121673...4324 = 121664...1405 121772...2147 ^FFault Gouge Zone 121779...309, 121772...2177 121773...711 121773...578 121774...578 121665....640 121665....641 Catallastic Zone crushed, fractured 121775...481 -121674...844 121675...2.36% 121676...1.29% 121882...29 121882...29 121882...29 SEMI MSV Py bands with minor Cpy 121677...496 t sporadic bands/fract. fills Po>Cpy>Py 5% 121666...1687 _ 121667...1178 -. . 10-15% ^{Po,} Py(cpy) ^{bands} 102.4m _ ۱ 121776---1245 121668...2621__ 121669...2242 121777...1030 121778...482 121778...194 121670...194 121671...2854 121672...1548_ 1

142.3m

SUMMARY AND RECOMMENDATIONS

The NB-6 property should have a continued exploration program to examine the potential for economic volcanogenic massive sulphide style of mineralization.

The S-P anomaly, as drill tested by drill holes 93-NB-03, 04 and 05, should be expanded to test it's continuation to the east side of Harper Creek. It is important to note, that airborne surveys carried out by Noranda in 1985, indicate an EM conductor on strike with the NB-6 mineralized zone(s). This conductor has not been fully tested by the 1993 Teck drill program.

If results of the S-P survey are positive, the anomaly should be drill tested along it's strike length towards the south-east corner of the claim. If encouraging mineralization is found to extend off the claim boundary, it will become necessary to make participatory arrangements with neighbouring claim owners.

It is also important to note that previous operators on the property located a float boulder of massive pyrite, on the east side of Harper Creek. This rock is similar in appearance to mineralization found at the Broken Ridge showing. Anomalous values of copper, zinc and silver are present in the boulder, however, gold is negligible. It is most significant that the boulder is found within a strong east-west coincident EM anomaly, indicating a possible nearby source. It would therefore, be very significant if the planned S-P survey should produce an anomaly coinciding with the area of the existing EM anomaly.

As a secondary target, S-P anomaly 'B' could possibly be drill tested as a comparison to the mineralization that was drill tested in anomalies 'A' and 'C' by Teck. This hole would be useful to determine if the known mineralization consists of continuous, shallow dipping bands or perhaps as separate 'stacked' lenses of mineralization at differing stratigraphic intervals.

The May prospect, which lies approximately 400m south-west of the Broken Ridge showing area, is a low priority exploration target. The mineralization occurs mainly as thin pyrite bands in chloritic schists, but does carry anomalous copper (1.67 % Cu, 8.0 ppm Ag in sample 120962).

In conclusion, the following points can be made for the NB-6 property:

1. Geochemical surveys have outlined areas of strongly anomalous copper and zinc (Cu 500-850 ppm, Zn 850-1500 ppm)

- 2. Based on the known distribution of sulphides and the volcanogenic model, the greatest potential for finding significant Cu-Zn-Pb mineralization would be near the top of a felsic unit.
- 3. The NB-6 property warrants additional drilling for improved sulphide accumulations both at depth and along strike.

COST STATEMENT

A. SALARIES:

in south

entik Kilom

3498 (2608)

oral SSC

	G. Thomson (Geologist) P. Donkersloot (Geologist) G. Lovang (Technician)	13 days @ \$271.87/day 19 days @ \$250.60/day 9 days @ \$256.49/day	\$3534.31 4761.56 <u>2308.41</u>
			10604.28
B.	LIVING: (Motel, Restaurant)		1965.93
C.	TRANSPORTATION: 4x4 truck rent	al, gasoline	1075.20
D.	ASSAYING: (Eco-Tech Laboratories - nine rock samples and 1 gold geochem. and 30 ele	Ltd.) 27 core samples for ment ICP analysis	2380.94
E.	DRILLING: (L.D.S. Diamond Drilling - 618.75m NQ drilling @ \$	Ltd.) 32.80/m	22,736.00
F.	REPORT PREPARATION: 7 days @) \$271.87/day	1903.09
G.	DRAFTING: 3 days @ \$217.50/day		652.50
H.	TELEPHONE:		<u> 143.16</u>
		TOTAL	\$41461.10

BIBLIOGRAPHY

CACH Igliai

ta Ensis

12446

1737-1 1

read Land

649

200

les:

[

EMPR	Geology of the Clearwater - Vavenby - Adams Plateau Area P. Schiarizza, V. Preto, Paper 1987-2
EMPR	Fieldwork 1978 (p.31-37), 1979 (p.28-36), 1984 (p.67-76)
EMPR	Exploration in B.C. 1971 (p.440), 1976 (E 62), 1982 (p.113,114), 1986 (C115,C120)
EMPR	Assessment Reports
3333 -	Geochemistry at Birk Creek (Fennell - Schilling Option) J.R. Woodcock, 1971
8489 -	Geology and Geophysical Report on the Percy and BC-1 Claims; J.G. Payne, 1980
10582 -	Geophysical Report on the Percy 1 Claim; F. Daley, 1982 (Preussag Canada)
11033 -	Geological, Geophysical and Drilling Report on the Bluff 1 Claim Group; F. Daley, 1983 (Preussag)
12442 -	Report on the NB-1 Mineral Claim, North Barriere Lake Area; J. Murphy, 1983
14707 -	Geological, Geochemical and Geophysical Report on the NB-6 Property; J. M. Dawson, 1985
14388 -	Airborne Geophysical Surveys on the Semco Claim Group and BC Loranger Claim Group; L. Bradish, 1986 (Noranda)
15802 -	Geological, Geochemical, Geophysical Report on the NB Property; J.M. Dawson, 1987
17344 -	Assessment Report on the Bluff 1,2,4 and Percy 1 Mineral Claims; G. Shevchenko, 1988 (Noranda)
19363 -	Geological and Geophysical Assessment Report: Bluff 1,2,4 and Percy 1 Claim and Rust 1,2,3,4 Claims; S. Clemmer, 1989 (Falconbridge)
	-10-

CERTIFICATE OF QUALIFICATIONS

Gregory R. Thomson, P. Geo.

I hereby certify that:

- 1. I graduated from the University of British Columbia in 1970 with a B.Sc. degree in geology.
- 2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 3. I have worked since graduation as an exploration geologist, mostly in the province of British Columbia.
- 4. The work described herein was carried out under my direct supervision.

ESSIO FROVINCI G. R. THOMSON GR. M SCIEN

G. R. Thomson, P. Geo.

-11-

1 | | | | | | | | |

kaine

GEOCHEMICAL ANALYSES

SC93/TECK

NOTE: < = LESS THAN

> = GREATER THAN

ECO-TECH #ABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T.

B.C. Certified Assayer

90 1.0 .15 100 2 40 5 2.09 44 38 2084 12.22 .01 10 .13 230 1 .01 24 20 38 5 20 18 .01 10 1 10 1 1 - 120966 25 1.6 .77 5 6 35 5 .45 10 141 2362 .03 .02 20 .02 30 2 10 2 2.63 10 . 29 231 q 10 6 5 23 3 5 26 OC DATA: ***** REPEAT #: 7- 120964 .27 1.6 375 4 65 5 3.22 1 25 25 1675 >15 .01 10 .19 358 1 .01 20 20 8 25 20 68 .02 60 1 10 1 49 STANDARD 1991 -1.2 2.04 65 6 150 5 1.82 1 21 70 85 3.99 .43 10 1.06 733 1 .02 24 670 24 5 20 75 .13 10 87 10 12 73

DESCRIPTION AU(ppb) AG AL(%) ET# AS B BA BI CA(%) CD CO CR CU FE(%) K(%) LA HG(%) MN MO NA(%) NI Р PB SB SN SR TI(%) 11 V W Y ZN ------- 120958 20 3.8 1 .61 600 4 100 .13 6 144 446 8.29 .14 10 20 .02 5 1 .15 91 7 .01 7 280 1140 5 20 20 10 10 1 402 120959 85 3.8 .56 280 55 2 -6 5 .05 1 22 117 1250 >15 .02 10 .45 226 .01 10 10 136 5 20 6 .02 40 1 10 43 5 1 120960 80 2.6 1.07 75 60 .35 3 -6 5 19 69 2655 >15 .07 .63 430 .01 41 690 5 20 13 .02 40 3 10 1 10 54 1 105 1 4 -120961 80 3.2 .64 680 8 50 5 .06 1 35 137 1240 >15 .01 10 .41 195 7 .01 8 40 136 5 20 9 .02 30 1 10 1 61 12096? 40 5 8.0 3.19 30 6 65 5 51 37 78 >10000 2.60 591 5 20 . 06 20 ÷ 2 10 1 9.06 .08 10 3 .01 24 1720 12 16 5 200 120963 300 6 --. 2 4.01 155 6 105 5 .79 1 11 148 384 4.05 .92 10 1.68 323 7 .12 22 810 22 5 20 79 .08 10 63 10 4 110 -120964 25 1.4 .25 370 4 65 5 2.93 23 23 1593 >15 .01 10 .15 328 1 .01 18 30 6 5 20 71 .01 70 1 10 1 1 44 - 120965 0 45 9

VALUES IN PPM UNLESS OTHERWISE REPORTED

AUGUST 4, 1993

ECO-TECH LABORATORIES LTD. 10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

TECK EXPLORATION BTK 93-213 # 350, 272 Victoria Street KAMLOOPS, B.C.

9 ROCK SAMPLES RECEIVED JULY 22, 1993 PROJECT #: 1389-5

V2C 2A2 ATTENTION: GREG THOMPSON

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

AUGUST 4, 1993

CERTIFICATE OF ASSAY ETK 93-213

TECK EXPLORATION LTD. # 350, 272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: GREG THOMPSON

SAMPLE IDENTIFICATION: 9 ROCK samples received JULY 22, 1993 PROJECT #: 1389-5

		Cu
ET#	Description	(%)
5 -	120962	1.67

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

SC93/TECK

ECO-TECH LABORATORIES LTD. 10041 RAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

AUGUST 27, 1993

VALUES IN PPM UNLESS OTHERWISE REPORTED

-

PAGE 1

TECK EXPLORATION ETK 93-283 # 350, 272 Victoria Street KAMLOOPS, B.C. V2C 2A2

ATTENTION: GREG THOMPSON

22 CORE SAMPLES RECEIVED AUGUST 20, 1993 PROJECT #:1737

1. AL

and a second

ET#	DESCRIPTION A	U (ppb)	AG	AL(%)	AS	B	BA	BI	CA(%)	CD	co	CR	CU	FE(%)	K(%)	LA	MG(€)	MN	MO	NA(%)	NI	P	PB	SB	SN	SR	TI(%)	υ	v	W	¥	ZN
1	- 121651	185	1.2	.19	1200	2	15	<5	.64	5	8	38	57 2	6.12	.07	<10	.16	227	1	<.01	<1	160	162	<5	<20	 34	<.01	80	<1	<10	<1	363
2	- 121652	275	.2	2.47	1075	4	45	<5	1.35	7	16	83	191	4.59	.56	<10	1.63	1011	2	.07	29	470	18	<5	<20	29	.04	<10	69	<10	1	143
3	- 121653	70	1.6	.91	390	2	35	<5	.24	2	9	32	1110	7.23	.10	<10	.81	398	<1	<.01	8	160	20	5	<20	<1	.01	<10	16	<10	<1	86
4	- 121654	100	1.6	1.00	150	<2	40	<5	. 49	<1	15	25	1936	9.17	.22	<10	.80	438	<1	.01	9	210	12	<5	<20	2	.01	<10	12	<10	<1	79
5	- 121655	<5	<.2	.15	30	2	5	<5	1.23	<1	16	23	387	4.67	.07	<10	.13	573	<1	<.01	7	60	4	<5	<20	69	<.01	60	<1	<10	<1	10
6	- 121656	<5	3.8	1.57	20	4	35	<5	3.56	3	17	52	414	4.94	.73	<10	.94	1633	4	.04	24	250	1476	10	<20	55	.04	<10	25	<10	2	470
7	- 121657	50	.2	1.74	245	6	<5	<5	1.45	2	36	69	732	6.68	.15	<10	1.50	511	4	.04	57	2370	42	15	<20	31	.02	<10	46	30	<1	53
8	- 121658	5	<.2	4.45	90	6	60	<5	1.94	<1	53	156	961	>15	.45	<10	3.13	818	<1	.06	116	2070	12	<5	<20	75	.07	<10	98	<10	<1	125
9	- 121659	5	<.2	3.39	20	6	50	<5	1.57	<1	42	69	494	>15	.68	<10	2.98	541	<1	.05	102	3330	4	<5	<20	79	.09	<10	111	<10	8	207
10	- 121660	15	<.2	2.78	20	2	60	<5	1.09	<1	35	206	797	>15	.23	<10	2.13	466	<1	.03	125	3840	<2	<5	<20	46	.05	30	49	<10	6	137
11	- 121661	<5	<.2	2.89	40	4	15	<5	1.27	<1	37	55	607	>15	.59	<10	2.05	422	<1	.06	54	3480	<2	<5	<20	56	.07	10	68	<10	4	68
12	- 121662	<5	<.2	3.55	15	2	40	<5	.88	<1	44	20	826	>15	1.32	<10	2.43	378	<1	.04	43	4230	<2	<5	<20	30	.10	<10	83	<10	4	93
13	- 121663	5	<.2	2.73	10	4	35	<5	1.25	<1	80	26	1281	>15	2.00	<10	1.72	351	<1	.10	54	3250	2	<5	<20	55	.14	<10	82	<10	6	66
14	- 121664	5	.8	2.49	30	4	25	<5	2.44	<1	45	153	1405	>15	.48	<10	1.66	438	<1	.03	143	1680	<2	<5	<20	82	.04	<10	62	<10	3	63
15	- 121665	<5	<.2	2.56	15	4	20	<5	.53	10	37	83	640	>15	.62	<10	1.76	505	1	.02	68	2440	<2	<5	<20	22	.05	<10	51	190	<1	2535
16	- 121666	<5	.4	3.49	15	4	20	<5	1.19	<1	32	34	1687	>15	.65	<10	1.93	282	<1	.09	43	3130	<2	<5	<20	41	.04	<10	56	<10	<1	98
17	- 121667	15	.6	2.93	20	4	5	<5	.87	<1	24	80	1178	14.87	.64	<10	1.73	254	<1	.08	57	2990	<2	<5	<20	36	.04	<10	66	<10	<1	119
18	- 121668	35	1.8	2.60	180	2	5	<5	.72	2	40	107	2621	>15	.18	<10	1.70	258	<1	.04	97	2480	6	<5	<20	37	.02	<10	70	<10	<1	86
19	- 121669	5	1.0	2.11	60	2	25	<5	1.24	<1	21	101	2242	>15	.46	<10	1.08	328	<1	.09	83	2040	<2	<5	<20	75	.05	30	62	<10	<1	87
20	- 121670	5	1.2	1.48	95	2	10	<5	.64	<1	24	27	1194	14.49	.38	<10	.78	321	<1	.03	43	2020	<2	<5	<20	35	.03	50	19	<10	<1	45
21	- 121671	5	1.4	2.20	10	2	30	<5	.21	<1	25	39	2854	>15	.25	<10	1.24	392	<1	<.01	22	240	<2	<5	<20	13	.01	10	25	20	<1	100
22	- 121672	<5	.8	2.34	20	4	20	<5	1.27	<1	27	68	1548	13.22	.13	<10	1.24	431	<1	.06	59	1820	<2	<5	<20	66	.02	<10	37	20	<1	73

- D

NOTE: < = LESS THAN

> = GREATER THAN

ECONTROL LANDON THE LTD

SC93/TECK

ECO-TECH LAGERATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

		E		u		.		· • • • • • • • • • • • • • • • • • • •	政	G	• هي.	L		\bigcirc	-				······································			ę	•		8	*	(Ĵ		R ., -	
		ECO-T	ECH LAB	ORATOR	IES I	TD.									г	ECK EX	PLORATI	ION E	тк 93-3	00			•								
		10041	EAST T	RANS C	ANADA	HWY.										350,	272 Vid	toria	Street	:											
		KAMLO	OPS, B.	c. v2c	2J3										K	AMLOOP	s, в.с.														
		PHONE	- 604-	573-57	00										v	2C 2A2															
		FAX -	604-	573-45	57																										
SEPTEMBER 2, 1993															А	TTENTI	ON: GRE	G THC	MSON												
VALUES IN PPM UNL	ESS OTHERN	VISE RI	PORTED												5 P	CORE : ROJECT	SAMPLES	RECE	IVED AU	GUST	20, 19	93									
ET# DESCRIPTION	AU (ppb)	AG	AL(%)	AS	в	BA	BI	CA(%)	CD	со	CR	CU	FE (%)	K(\$)	LA	MG(€)	MN	мо	NA(%)	NI	P	PB	SB	SN	SR	TI(%)	U	v	W	¥	ZN
1 - 121673	30	3.6	2.44	30	¤~ 4	50	<5	1.35	<1	32	53	4324	13.68	.62	<10	1.40	1055	1	.08	28	170	106	10	<20	52	 .05	20	29	<10	<1	81
2 - 121674	25	<.2	3.74	15	4	55	<5	1.49	<1	48	269	844	11.88	.16	<10	3.61	547	2	.03	210	2190	<2	15	<20	66	.06	10	124	<10	3	144
3 - 121675	95	10.8	2.98	40	4	60	<5	2.44	<1	103	222 >1	0000	11.60	.16	<10	2.44	844	1	.03	56	990	8	25	<20	62	.07	10	97	30	4	328
4 - 121676	75	5.2	3.11	100	4	70	<5	1.99	<1	103	188 >1	0000	>15	.05	<10	2.16	695	1	<.01	53	1810	14	20	<20	35	.05	20	100	30	2	200
5 - 121677	<5	<.2	3.99	60	4	65	<5	5.36	<1	50	42	496	9.23	.41	<10	3.37	1149	<1	.14	39	5430	26	25	<20	141	.09	<10	114	<10	13	117
QC DATA																															
REPEAT #:																															
4 - 121676		5.8	3.23	100	B	70	<5	2.23	<1	113	203 >1	0000	>15	.04	<10	2.22	746	1	.01	58	2060	14	20	<20	37	.06	10	105	30	3	223
STANDARD 1991 -		1.2	2.30	145	6	285	<5	3.24	<1	36	120	86	6.98	.41	<10	1.18	1248	<1	.02	53	960	19	15	<20	73	.22	<10	124	<10	17	77

 NOTE: < = LESS THAN

> = GREATER THAN

ECO-TECH LABORATORIES LTD.

FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer 1

____ 6

1

SC93/TECK

5

5

1

6

 6

13

£ 3

6

F

LABORATORIES LTD.

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

SEPTEMBER 2, 1993

CERTIFICATE OF ASSAY ETK 93-300

TECK EXPLORATION LTD. # 350, 272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: GREG THOMSON

SAMPLE IDENTIFICATION: 5 CORE samples received AUGUST 20, 1993 PROJECT #: 1737

			Cu
\mathbf{ET}_{1}	#	Description	(%)
===			
3		121675	2.36
4	-	121676	1.29

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

SC93/TECK

FCO-TECH LABORATORIES LTD. 10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

SEPTEMBER 2, 1993

VALUES IN PPM UNLESS OTHERWISE REPORTED

PAGE 1

TECK EXPLORATION ETK 93-291 # 350, 272 Victoria Street KAMLOOPS, B.C. V2C 2A2

ATTENTION: GREG THOMSON

13 CORE SAMPLES RECEIVED AUGUST 23, 1993 PROJECT #:1737

ET# DESCRIPTION	AU (ppb)	AG	AL(%)	AS	В	BA	BI	CA(%)	CD	co	CR	CU	FE(%)	K(%)	LA	MG(%)	MN	MO	NA(%)	NI	P	PB	SB	SN	SR	TI(%)	U	v	W	¥	ZN
1 - 121678	<5	2.4	2.16	15	<2	110	<5	.47	<1	17	60 60	1443	4.24	.50	<10	1.36	576	3	.03	29	110	8	<5	<20	38	.02	30	19	<10	1	98
2 - 121679	<5	1.2	1.29	10	2	75	<5	.67	<1	2	78	252	.94	.46	<10	.46	390	6	.07	3	10	8	<5	<20	54	<.01	20	3	<10	<1	17
3 - 121680	45	2.6	3.06	135	<2	· 80	<5	.82	2	18	61	518	5.43	1.40	<10	2.19	750	1	.06	36	380	186	<5	<20	63	.06	30	50	<10	2	257
4 - 121681	35	1.8	2.92	225	<2	50	<5	.82	2	18	78	657	4.81	1.16	<10	1.83	553	2	.09	35	290	20	<5	<20	75	.05	<10	48	<10	2	86
5 - 121682	5	1.6	2.94	280	2	60	<5	.67	3	15	69	441	4.64	1.02	<10	2.14	563	3	.07	25	370	24	<5	<20	69	.04	10	52	<10	1	101
6 - 121683	<5	1.8	2.15	35	2	60	<5	.20	<1	31	48	1590	8.25	.66	<10	1.83	341	<1	.02	30	180	4	5	<20	30	.03	10	37	<10	<1	106
7 - 121684	<5	.8	2.25	25	2	80	<5	.62	<1	19	49	729	5.31	1.25	<10	1.56	353	3	.10	28	280	6	<5	<20	63	.05	20	40	<10	2	64
8 - 121685	5	1.0	1.93	15	2	70	<5	.44	<1	12	50	303	3.97	1.25	<10	1.46	246	<1	.09	25	350	2	<5	<20	54	.05	20	34	<10	з	54
9 - 121686	5	.2	2.21	175	2	50	<5	2.02	2	12	41	133	2.78	1.24	<10	1.16	495	9	.14	31	360	12	10	<20	106	.04	20	33	<10	3	91
10 - 121687	<5	1.2	1.02	40	<2	80	<5	8.37	<1	4	27	52	1,36	.42	<10	.90	1385	1	.03	7	210	<2	5	<20	139	.02	10	23	<10	6	38
11 - 121688	5	.4	1.27	160	<2	20	<5	2.76	1	10	36	70	2.34	.67	<10	.77	675	3	.08	30	280	<2	<5	<20	114	.02	<10	24	<10	з	32
12 - 121689	<5	1.6	1.66	735	2	10	<5	1.69	6	8	32	251	3.07	1.01	<10	1.24	664	2	.09	19	430	4	5	<20	115	.02	10	28	<10	1	41
13 - 121690	5	2.4	1.48	10	2	15	<5	.35	<1	35	30	2538	7.14	.57	<10	1.30	314	<1	.04	16	180	2	<5	<20	48	.02	30	28	<10	<1	105
QC DATA																															
REPRAT #:																															
10 - 121687		.2	.68	45	<2	25	<5	5.33	<1	3	24	66	1.19	.39	<10	.64	980	2	.02	10	210	<2	5	<20	103	.01	40	15	<10	5	34
STANDARD 1991 -		2.2	1.65	75	4	220	<5	1.48	1	17	55	88	3.39	.47	<10	.93	617	<1	.02	28	590	16	<5	<20	99	.11	60	69	<10	11	72

NOTE: < = LESS THAN

> = GREATER THAN

SC93/TECK

ECO-TECH LABORATORIES LTD.

FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer ECO-TECH LABORATORIES LTD. 10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

<.2 3.49

5

4 120

<5

SEPTEMBER 3, 1993

VALUES IN PPM UNLESS OTHERWISE REPORTED

TECK EXPLORATION ETK 93-292 # 350, 272 Victoria Street KAMLOOPS, B.C. V2C 2A2

ATTENTION: GREG THOMSON

13 CORE SAMPLES RECEIVED AUGUST 23, 1993 PROJECT #:1723

ET# DESCRIPTION	N AU (ppb)	AG	AL(%)	AS	B	BA	BI	CA(%)	CD	co	CR	CU	FE(%)	K(%)	LA	MG(€)	MN	MO	NA(%)	NI	P	PB	SB	SN	SR	TI(%)	U	v	W	¥	ZN
1 - 121692	5	.4	4.25	5	2	105	<5	1.83	<1	24	94	1075	6.46	1.38	<10	2.25	988	3	.08	40	370	10	10	<20	78	.11	<10	60	<10	4	107
2 - 121693	5	<.2	6.55	<5	<2	65	<5	1.19	<1	24	113	557	8.58	1.61	<10	3.51	741	<1	.12	26	350	<2	<5	<20	36	.13	<10	97	<10	2	82
3 - 121694	5	<.2	4.27	10	4	110	<5	1.28	<1	25	107	501	7.31	.72	<10	2.18	677	З	.07	40	520	8	5	<20	66	.0B	<10	80	<10	3	77
4 - 121695	15	5.6	3.80	15	2	85	<5	2.84	<1	53	70	8287	11.41	.85	<10	1.94	1236	2	.07	45	280	8	10	<20	102	.07	<10	63	<10	2	185
5 - 121696	<5	<.2	4.68	15	4	155	<5	.80	<1	29	107	761	7.72	1.12	<10	2.42	628	4	.07	47	410	14	10	<20	48	.11	<10	66	<10	4	80
6 - 121698	25	6.4	5.52	15	4	120	<5	1.41	1	56	179	>10000	14.47	.21	<10	3.69	679	<1	.05	74	1400	4	5	<20	55	.05	<10	91	<10	<1	385
7 - 121699	30	1.4	5.60	10	4	110	<5	2.01	<1	46	276	3736	11.92	.25	<10	3.85	824	2	.05	141	1770	14	5	<20	65	.06	<10	90	20	4	189
8 - 121700	25	<.2	2.04	5	4	185	<5	1.00	<1	11	81	163	3.82	.76	<10	1.09	663	5	.05	3	140	6	5	<20	27	.04	<10	15	<10	2	41
9 - 121701	15	<.2	4.39	10	4	110	<5	1.76	<1	38	111	689	8.59	1.91	<10	2.88	793	2	.10	77	2590	16	5	<20	62	.16	<10	92	<10	10	86
10 - 121702	30	<.2	3.47	5	6	110	<5	.90	<1	24	85	201	6.73	1.39	<10	2.57	811	41	.07	18	420	16	15	<20	31	.11	<10	110	<10	4	73
11 - 121703	55	7.4	5.07	10	• 4	100	<5	2.40	<1	59	135	>10000	10.27	.35	<10	4.06	822	5	.06	118	2350	10	15	<20	73	.09	<10	120	10	8	192
12 - 121704	25	.4	5.19	20	4	125	<5	1.60	<1	52	153	1692	8.99	.62	<10	3.82	838	7	.07	84	2020	24	15	<20	53	.11	<10	141	20	7	177
13 - 121705	20	<.2	4.83	20	4	130	<5	1.99	<1	45	222	807	8.53	.57	<10	3.61	724	4	.08	193	3000	20	20	<20	69	.11	<10	111	10	9	267

QC DATA

REPEAT #:

10 - 121702

SC93/TECK

.99 <1 27 94 197 7.32 1.36 <10 2.58 880 46 .07 21 430 20 15 <20 31 .13 <10 116 <10 4 82

NOTE: < = LESS THAN

> = GREATER THAN

Ocoπи ECO-TECH LABORATORIES LTD.

FRANE J. FEZZOTTI, A.Sc.T. B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

SEPTEMBER 2, 1993

CERTIFICATE OF ASSAY ETK 93-292

TECK EXPLORATION LTD. # 350, 272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: GREG THOMPSON

SAMPLE IDENTIFICATION: 13 CORE samples received AUGUST 23, 1993 ----- PROJECT #: 1737

ET#	Description	Cu (%)	=====
4 – 6 – 11 –	121695 121698 121703	.84 1.20	

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.SC.T. B.C. /Cert/ified /Assayer

SC93/TECK

ECO-TECH LABORATORIES LTD. 10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

SEPTEMBER 2, 1993

VALUES IN PPM UNLESS OTHERWISE REPORTED

PAGE 1

TECK EXPLORATION ETK 93-293 # 350, 272 Victoria Street KAMLOOPS, B.C. V2C 2A2

ATTENTION: GREG THOMSON

17 CORE SAMPLES RECEIVED AUGUST 23, 1993 PROJECT #:1737

BT ‡	DESCRIPTION AU	(ppb)	AG	AL(%)	AS	В	BA	BI	CA(%)	CD	CO	CR	CU	FE(%)	K(%)	LA	MG(€)	MN	MO	NA(%)	NI	₽	PB	SB	SN	SR	TI(%)	U	v	W	х	ZN
1	- 121706	<5	<.2	4.72	10		160	<5	2.86	<1	36	220	243	6.82	1.28	<10	3.38	1120	4	.11	109	2200	28	15	<20	83	.17	<10	127	<10	10	143
2	- 121707	10	<.2	4.90	15	4	130	<5	1.53	<1	50	143	184	8.79	.73	<10	3.65	987	3	.12	110	1600	28	15	<20	43	.14	<10	140	20	7	241
3	- 121708	20	<.2	3.86	10	4	85	<5	3.36	2	62	171	175	7.94	.20	<10	3.38	853	6	.14	169	5020	32	15	<20	64	.14	<10	136	100	17	75€
4	- 121709	15	2.8	5.14	55	4	85	<5	3.57	<1	66	207	640	12.35	1.39	<10	3.89	869	8	.13	169	4520	340	15	<20	95	.19	<10	150	<10	13	254
5	- 121710	35	4.2	5.43	145	2	85	<5	5.65	69	72	137	382	13.61	2.03	<10	3.52	1527	7	.13	146	3120	3074	25	<20	105	.30	<10	175	480	17	6890
6	- 121711	15	.6	4.57	40	2	85	<5	4.62	<1	25	72	100	7.53	1.48	<10	2.25	1645	2	.15	24	440	622	25	<20	101	.14	<10	83	<10	6	138
7	- 121712	20	<.2	5.16	10	4	160	<5	4.60	<1	22	95	114	6.75	1.69	<10	2.34	1717	4	.18	7	200	48	15	<20	107	.12	<10	84	<10	4	80
8	- 121713	15	<.2	3.91	10	4	80	<5	4.17	<1	27	118	121	7.10	1.29	<10	1.85	1590	5	.13	15	170	36	5	<20	73	.10	<10	63	<10	з	30
9	- 121714	30	2.4	3.32	5	4	155	<5	2.63	<1	34	197	963	6.76	.95	<10	2.02	1312	8	.08	33	450	36	10	<20	52	.12	<10	72	<10	7	62
10	- 121715	20	4.2	3.21	5	4	160	<5	4.80	<1	45	261	1531	7.28	.89	<10	2.33	1243	3	.09	164	1590	44	15	<20	91	.21	<10	87	<10	14	92
11	- 121716	13	<.2	3.89	5	6	155	5	3.61	<1	72	480	67	8.38	1.26	<10	3.29	578	1	.17	380	4010	52	10	<20	135	.32	<10	170	<10	17	13
12	- 121717	35	<.2	2.60	10	4	55	<5	6.83	<1	66	242	150	8.14	.10	<10	1.68	928	2	.11	219	4250	46	5	<20	90	.27	<10	105	10	16	62
13	- 121718	70	2.2	4.28	15	6	80	<5	3.48	<1	111	224	1739	13.48	1.18	<10	3.15	661	5	.12	222	3930	76	20	<20	95	.31	<10	184	80	17	70
14	- 121719	50	<.2	5.43	20	8	85	<5	4.73	<1	141	205	747	>15	1.34	<10	3.59	734	5	.16	257	4960	116	25	<20	116	.30	<10	203	60	20	78
15	- 121720	40	.4	5.37	25	8	90.	<5	4.68	<1	86	230	885	14.84	1.41	<10	3.51	1233	4	.13	162	5120	120	20	<20	129	.31	<10	146	80	19	74
16	- 121691	20	<.2	5.25	5	4	155	<5	3.39	<1	38	169	832	12.23	1.08	<10	2.41	1106	7	.12	54	700	110	20	<20	85	.18	<10	106	<10	7	9:
17	- 121697	20	<.2	5.29	20	4	570	<5	1.63	<1	42	187	75	10.95	1.37	<10	2.61	1082	5	.09	83	760	102	20	<20	43	.22	<10	104	<10	8	73

ECO-TECH LABORATORIES ITD. 10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

SEPTEMBER 2, 1993

VALUES IN PPM UNLESS OTHERWISE REPORTED

TECK EXPLORATION ETK 93-322 # 350, 272 Victoria Street KAMLOOPS, B.C. V2C 2A2

ATTENTION: GREG THOMSON

20 ROCK SAMPLES RECEIVED AUGUST 24, 1993 PROJECT #:1737

ET#	DESCRIPTI	ON AU (ppb)	AG	AL(%)	AS	В	BA	BI	CA(%)	CD	со	CR	CU	FE(%)	K(%)	LA	MG(%)	MIN	MO	NA(%)	NI	Р	PB	SB	SN	SR	TI(%)	ប	v	W	Å	ZN
1	- 121721	<5	.4	.41	10	2	30	<5	>15	<1	£⊒≆⊒. 9	10	557	6.12	.11	<10	.40	966	<1	<.01	15	340	12	15	<20	559	.01	<10	7	<10	9	87
2	- 121722	<5	.6	2.13	85	4	50	<5	3.42	<1	19	86	627	7.51	.40	<10	1.21	613	3	.02	25	230	26	15	<20	61	.05	10	34	<10	6	87
3	- 121723	<5	<.2	3.42	300	4	70	<5	3.62	2	25	89	183	5.78	1.02	<10	1.71	931	3	.10	47	850	34	15	<20	108	.10	<10	67	<10	9	98
4	- 121724	15	<.2	3.36	110	4	50	<5	1.09	<1	53	166	1213	12.31	.95	<10	2.46	362	1	.06	64	1460	22	20	<20	56	.11	10	89	<10	5	145
5	- 121725	<5	.2	2.57	10	4	40	<5	.63	<1	28	89	943	10.07	.86	<10	1.67	434	1	.03	28	320	22	20	<20	36	.10	10	49	<10	2	118
6	- 121726	<5	.2	1.64	10	4	65	<5	1.36	<1	15	143	334	3.34	.58	<10	.74	812	9	.03	17	150	20	10	<20	49	.04	<10	14	<10	2	33
7	- 121727	5	.2	1.71	5	4	65	<5	1.41	<1	15	82	359	3.40	.61	<10	.77	835	4	.03	17	170	22	10	<20	52	.04	<10	14	<10	2	34
8	- 121728	30	3.0	3.45	20	4	60	<5	1.57	<1	34	84	3461	8.28	1.20	<10	1.70	1248	3	.04	37	520	28	20	<20	62	.11	<10	62	<10	5	250
9	- 121729	40	2.2	1.15	5	4	80	<5	.43	<1	8	65	1464	2.95	.29	<10	.44	397	4	.01	5	220	12	5	<20	24	.01	<10	5	<10	1	65
10	- 121730	15	•2	4.62	5	4	55	<5	2.25	<1	60	156	1229	10.59	1.04	<10	2.27	595	1	.11	88	1780	30	15	<20	76	.11	<10	100	10	5	126
11	- 121731	10	<.2	5.44	15	2	75	<5	3.22	<1	48	200	202	6.38	1.29	<10	3.39	708	1	.12	153	2650	44	15	<20	106	.18	<10	129	<10	11	240
12	- 121732	40	1.8	3.95	20	2	45	<5	2.25	<1	63	328	1458	7.97	.26	<10	3.27	690	<1	.05	272	1850	46	15	<20	66	.07	<10	107	<10	4	293
13 -	- 121733	25	4.4	3.26	15	2	40	<5	1.68	4	54	174	2724	7.17	.50	<10	2.57	620	1	.09	127	1740	72	20	<20	49	.10	<10	146	<10	6	837
14	- 121734	15	<.2	2.31	5	4	55	<5	3.37	<1	52	179	243	6.62	.31	<10	1.37	678	1	.11	201	2760	30	15	<20	100	.20	<10	84	30	13	147
15 ·	- 121735	20	1.6	1.95	5	4	55	<5	1.59	<1	19	124	1105	4.99	.55	<10	1.44	641	5	.05	21	390	24	15	<20	40	.07	<10	42	<10	4	146
16	- 121736	<5	<.2	2.26	15	4	50	<5	2.41	<1	34	83	373	7.03	.30	<10	1.58	521	1	.09	49	3140	26	15	<20	67	.14	<10	108	<10	14	90
17 -	- 121737	20	<.2	2.20	10	4	55	<5	2.37	<1	34	78	377	6.93	.29	<10	1.55	523	1	.09	49	3100	28	15	<20	66	.14	<10	104	<10	14	90
18 -	- 121738	10	<.2	3.07	25	2	65	<5	4.39	<1	66	208	535	7.48	.22	<10	1.74	802	<1	.17	265	2130	40	20	<20	210	.13	<10	72	<10	8	97
19 ·	- 121739	<5	<.2	2.70	30	2	55	<5	3.58	<1	52	175	281	7.11	.32	<10	1.63	607	<1	.13	267	2310	34	20	<20	173	.11	<10	72	<10	9	102
20 ·	- 121740	20	.4	3.85	25	4	55	<5	2.87	<1	78	187	880	10.47	.74	<10	3.48	582	2	.10	180	3320	50	15	<20	110	.12	<10	110	<10	10	155

ECO-TECH LABORATORIES LTD. 10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

SEPTEMBER 2, 1993

TECK EXPLORATION ETK 93-326 # 350, 272 Victoria Street KAMLOOPS, B.C. V2C 2A2

ATTENTION: GREG THOMPSON

.

22 CORE SAMPLES RECEIVED AUGUST 26, 1993 PROJECT 1:1737

VALUES IN PPM UNLESS OTHERWISE REPORTED

PAGE 1

et i	DESCRIPTION	AU (ppb)	AG	AL(%)	AS	В	BA	BI	CA(%)	CD	co	CR	CU	FE(%)	K(%)	LA	MG(%)	MN	мо	NA(%)	NI	P	PB	SB	SN	SR	TI(%)	U	v	W	¥	ZN
1	- 121741	5	<.2	3.76	15	2	50	<5	2.62	<1	50	177	475	5.22	<.01	<10	1.89	269	<1	.12	161	2180	4	10	<20	206	.07	<10	76	<10	4	47
2	- 121742	5	<.2	2.66	20	4	60	<5	4.15	<1	41	162	502	5.96	<.01	<10	1.70	647	1	.06	145	1880	6	10	<20	231	.10	<10	70	<10	6	52
3	- 121743	5	.8	3.03	15	4	90	<5	2.27	<1	41	66	1426	6.75	.09	<10	2.10	515	<1	.12	51	2470	4	10	<20	81	.06	<10	119	<10	9	91
4	- 121744	<5	<.2	2.59	15	4	160	<5	3.44	<1	28	20	95	5.52	.27	<10	1.86	636	<1	.14	31	3780	2	15	<20	109	.09	<10	106	<10	13	75
5	- 121745	<5	<.2	1.05	10	6	170	<5	1.22	<1	6	86	175	2.02	.33	<10	.66	478	4	.05	5	150	6	5	<20	29	.03	<10	13	<10	3	43
6	- 121746	45	2.6	3.63	15	2	55	<5	1.64	<1	45	56	2480	8.81	.03	<10	2.99	501	<1	.10	58	3100	8	15	<20	65	.03	<10	101	<10	7	262
7	- 121751	<5	<.2	3.95	120	4	75	<5	1.90	<1	40	191	450	9.24	.26	<10	2.53	414	1	.07	94	4110	10	20	<20	54	.05	<10	104	<10	6	64
8	- 121752	<5	1.2	4.20	25	2	80	<5	1.53	<1	38	169	1339	9.57	.26	<10	3.18	553	<1	.05	93	3650	12	15	<20	56	.06	<10	96 -	<10	6	100
9	- 121753	<5	<.2	2.92	15	2	140	<5	2.94	<1	28	94	488	6.53	1.27	<10	1.54	1082	1	.07	66	750	20	20	<20	74	.11	<10	57	<10	5	36
10	- 121754	<5	.2	3.09	5	4	105	<5	.80	<1	23	71	527	6.33	.71	<10	2.00	638	2	.04	27	280	16	15	<20	28	.06	<10	42	<10	1	73
11	- 121755	5	<.2	3.83	15	2	195	<5	1.61	<1	24	89	221	5.57	1.34	<10	1.88	857	1	.09	42	470	24	15	<20	55	.09	<10	54	<10	4	72
12	- 121756	15	<.2	3.21	20	6	155	<5	2.50	8	46	335	203	5.39	1.03	<10	1.83	558	1	.13	138	2630	84	15	<20	92	.17	<10	130	<10	11 1	299
13	- 121757	15	•2	3.09	10	2	40	<5	1.60	<1	36	104	1679	9.34	.05	<10	2.33	413	<1	.03	34	5340	18	15	<20	57	.04	<10	78	<10	9. ·	37.9
14	- 121758	35	4.8	3.39	10	2	55	<5	1.70	<1	63	60	>10000	11.35	.11	<10	2.47	544	<1	.02	32	5280	12	20	<20	61	.04	<10	59	<10	7	334
15	- 121759	10	<.2	3.63	10	4	90	<5	3.45	<1	44	208	840	11.48	.95	<10	2.12	774	<1	.11	122	2350	26	20	<20	119	.14	<10	131	<10	6	105
16	- 121760	20	<.2	2.43	15	2	125	<5	1.78	<1	23	137	301	4.08	.27	<10	1.92	638	4	.06	46	770	16	15	<20	25	.05	<10	51	<10	3	70
17	- 121761	35	1.6	3.52	110	2	50	<5	2.19	<1	41	62	2269	9.40	.02	<10	3.00	762	<1	.04	60	3290	26	25	<20	55	.03	<10	83	<10	4	493
18	- 121762	15	.4	3.53	100	2	35	<5	1.76	5	58	83	986	7.81	.01	<10	2.68	440	<1	.06	83	3770	28	20	<20	58	.03	<10	79	<10	5 1	1622
19	- 121763	20	<.2	3.47	20	2	50	<5	2.96	4	50	92	193	5.82	.05	<10	1.89	498	2	.11	120	3250	32	15	<20	127	.07	<10	83	<10	7 1	1293
20	- 121764	30	1.2	3.60	55	<2	65	<5	2.41	13	61	142	292	5.84	.03	<10	1.90	612	<1	.07	165	2780	96	15	<20	85	.06	<10	86	<10	6 3	3875

 \Box

								\square	$\left(\right)$								~]]	
--	--	--	--	--	--	--	--	-----------	------------------	--	--	--	--	--	--	--	------	--

TECK EXPLORATION ETK 93-326

ECO-TECH LABORATORIES LTD.

SEPTEMBER 2, 1993

PAGE 2

ET#	DESCRIPTION	AU (ppb)	ÅG	AL(%)	AS	В	BA	BI	CA(%)	CD	co	CR	CU	FE(%)	K(€)	LA	MG (%)	MN	MO	NA(%)	NI	Р	PB	SB	SN	SR	TI(%)	U	v	W	Y S	ZN
21 - 22 -	· 121765 · 121766	15 35	.2 <.2	3.35 3.44	25 30	2 2	85 125	<5 <5	2.43 2.53	<1 <1	45 35	69 69	548 228	7.53 7.25	.35 1.33	<10 <10	3.02 2.25	800 960	<1 <1	.04	65 23	3700 890	36 44	25 15	<20 <20	56 62	.07 .10	<10 <10	84 121	<10 <10	8 2 4	22 54
QC DA	TA 																					,										
20 ~	121764		1.0	3.61	50	4	70	<5	2.44	14	61	144	288	6.02	.04	<10	1.89	619	<1	.07	172	2860	104	10	<20	86	.06	<10	87	340	5 394	47
stand	ARD 1991 -		1.0	1.64	75	4	160	<5	1.96	<1	22	76	83	4.32	.35	<10 7	.91	752	<1	.02	32	710	36	15	<20	66	.14	<10	83	<10	11	71

NOTE: < = LESS THAN

> = GREATER THAN

ECO-TECH LABORATOPIES Ľŕb.

FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

SC93/TECK

LABORATORIES LTD.

10041 E. Trans Canada Hwy., R.R. #2, Kamioops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

SEPTEMBER 2, 1993

CERTIFICATE OF ASSAY ETK 93-326

TECK EXPLORATION LTD. # 350, 272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: GREG THOMPSON

SAMPLE IDENTIFICATION: 22 CORE samples received AUGUST 26, 1993 ----- PROJECT #: 1737

		Cu
ET#	Description	(%)
==========		
14 -	121758	1.15

ECO-TECH/MABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

SC93/TECK

ECO-TECH LABORATORIES LTD.
10041 EAST TRANS CANADA HWY.
KAMLOOPS, B.C. V2C 2J3
PHONE - 604-573-5700
FAX - 604-573-4557

SEPTEMBER 2, 1993

VALUES IN PPM UNLESS OTHERWISE REPORTED

PAGE 1

TECK EXPLORATION ETK 93-330 # 350, 272 Victoria Street KAMLOOPS, B.C. V2C 2A2

ATTENTION: GREG THOMSON

14 CORE SAMPLES RECEIVED AUGUST 25, 1993 PROJECT #:1737

BT ŧ	DESCRIPTION AU	(ppb)	AG	AL(%)	AS	в	BA	BI	CA(%)	CD	со	CR	CU	FB(%)	K(%)	LA	MG(%)	MN	MO	NA (*)	NI	P	₽B	SB	SN	SR	TI(%)	ប	v	W Y	ZN
1	~ 121767	25	<.2	4.90	5 5	4	65 est	<5	2,20	<1	40	103	 569	8.77	.30	<10	3.64	815	2	.05	57	3730	22	20	<20	86	.05	<10	118	<10 6	86
2	- 121768	15	.2	3.58	20	2	235	<5	5.27	3	44	273	204	6.59	1.90	<10	2.74	1378	1	.11	138	1780	652	15	<20	156	.18	<10	111	<10 11	583
з	- 121769	45	.2	2.33	60	4	105	<5	3.84	12	92	215	959	8.78	.71	<10	2.23	1142	1	.06	118	1630	56	19	<20	109	.09	<10	100	<10 5	2245
4	- 121770	5	<.2	3.49	20	6	230	<5	4.32	<1	44	247	116	6.32	.76	<10	2.53	1031	1	.08	137	2490	38	15	<20	112	.10	<10	108	<10 8	192
5	- 121771	10	<.2	2.67	10	8	185	<5	.53	<1	32	100	147	6.03	1.74	<10	1.89	643	4	.04	52	610	26	10	<20	19	.13	<10	53	<10 5	157
6	- 121772	25	.4	4.85	10	6	165	<5	1.80	<1	54	22	2147	10.61	.65	<10	3.17	688	<1	.03	35	5700	32	20	<20	49	.08	<10	103	<10 7	116
7	- 121773	20	<.2	5.31	10	4	235	<5	2,52	<1	50	55	711	9.71	1.15	<10	3.06	734	<1	.09	49	5700	66	25	<20	73	.12	<10	121	<10 8	204
8	- 121774	25	<.2	5.54	15	4	305	<5	2.36	2	52	24	578	9.84	1.14	<10	3.14	882	<1	. 09	41	6170	46	25	<20	70	.11	<10	120	40 8	1237
9	- 121775	20	<.2	4.75	20	2	95	<5	4.07	1	61	224	481	9.76	1.68	<10	2.70	1255	<1	.12	133	3780	56	15	<20	102	.15	<10	111	<10 9	789
10	- 121776	15	• 2	3.73	20	4	120	<5	2.91	<1	52	287	1245	8.88	.81	<10	2.86	661	2	- 09	119	4570	46	20	<20	112	.10	<10	131	<10 12	124
11	- 121777	25	<.2	3.98	15	6	105	<5	5,54	<1	57	199	1030	9.88	.24	<10	1.86	1060	<1	.16	174	2950	42	15	<20	188	.12	<10	103	<10 6	89
12	- 121778	15	<.2	3.77	10	4	140	<5	7.13	<1	43	181	482	7.18	.75	<10	1.73	1632	<1	.16	140	3360	54	20	<20	194	.15	<10	107	<10 11	81
13	- 121779	10	<.2	3.30	10	2	165	<5	4.62	<1	21	84	309	5.96	1.26	<10	1.65	2208	1	.08	32	630	58	20	<20	86	.10	<10	72	<10 7	191
14	- 121780	15	•2	2.39	5	4	75	<5	3.43	<1	36	115	1348	10.08	.60	<10	1.61	1558	8	.03	37	510	36	30	<20	40	,05	<10	35	<10 2	115

OC DATA

REPEAT #:

10 - 121776

8.28 .75 <10 2.62 616 <1 .08 110 4320 44 20 <20 103 .10 <10 121 <10 11 118 6 115 <5 2.72 <1 48 267 1136 .2 3.45 5 .90 765 <1 .01 30 810 38 15 <20 62 .12 <10 80 <10 11 94 STANDARD 1991 -23 75 87 4.36 .40 <10 1.0 1.81 65 4 160 <5 1.93 <1

NOTE: < = LESS THAN

> = GREATER THAN

SC93/TECK

itta 10

ECOTTECH LABORATORIES LTD. FRANK J. PEZZOYTI, A.Sc.T.

B.C. Certified Asseyer

DRILL LOGS

	\bigcirc				\cup					\bigcirc	
TECK	EXPLORATION	LTD.	NB-6 PROPERTY		PROJECT #1737		HOLE NO.	93-NB-01	PAGE: 1 o	f 3	
	NTS:	82M/5W	DATE COLLARED:	16/08/93	DEPTH	<u>DIP</u>	AZ		LENGTH: 142	2.34 m	
	CLAIM:	NB-6	DATE COMPLETED:	17/08/93		-70°	40°		DEPTH OF O	VB:9.75 m	
	ELEVATION:	809m	DATE LOGGED:						CASING REM	AINING:	
	GRID COORD:		CORE SIZE:	NQ					WATERLINE	LENGTH:	

LOGGED BY: G.T.

PROBLEMS:

DEPTH (meters)	DESCRUPTION	STRUCTURE	<u></u>				SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Cu (ppm)	Au {dqq}	Zn (ppm)	Pb {ppm}	As (ppm)
0-9,76	Overburden													
9.75-13.1	Quartz-blo-ohlor-ser schlat: alternating drk and light bands, 1-20 mm, mod. broken.	Fol BO*		wk. carb.	Fol. align, blebs py,po (approx, 0.3%)									
13.1-14.33	Quartz-bio-chior-ser schist: as above, but with pervasive qtz flooding and associated bands may-semimav py>>po @ 13.76- 14.3, py as granular blebs, 2-5 mm.				py,po (semimav)	121651	13.6	14.33	0.73	672	185			1200
14.33-15.6	Chlor-qtz-ser-schist: drk green, broken, altern. light - drk green indistinet bands, 1 mm-3.0 cm.	Fol 80°		wk. carb	diss py,po (<0.5%)	121652	14.33	16.8	1.27	191	276			1075
16.6-18.4	Qtz-chlor-ser-schist: med to drk green, vegue banding, strong sulphide content throughout, 20-30% mav-semimsv bands, 1-5 cm (70%py, 29% po, 1% cpy), minersilization poss. sesoc.w. weak discont, qt flooding, py is f.g. up to 3.0 mm blobaxtis, cpy essoc. w, po streaks, sporadic vuginess sesoc. w. late stage veiniets,				20-30% ру, ро, сру	121663 121664	15.8 17.0	17.0 18.4	1.4 1.4	1110 1936	70 100			390 150
18.4-27.65	Ozz-bio/phlog-chlor-ser schist: altern. light and dark brwn bands, 1- 10 mm, sporadic po bands 1-2 mm, @ 18.92-21.02, zone of wht qz flooding/valining w. minoratized fract's subparallel to core axis w. 10-165 kp oa and minor coyr, 10-20 om fract. zone @ 22.0 m, qtz vns @ 22.8 m (16 cm), 23.46-23.75 (30 cm) and 24.5 m (20 cm) w. 3%, 15%, 0% po respectively, mod. brokan @ 22.0-27.65, f.g. glafma spece sorose 4 cm. @ 21.6 m, gradiational lower contact.	Fol 80			10-15% ро + <i>F</i> 1% сру	121780 121866 121666	18.4 19.8 21.0	19.9 21.0 22.0	1.6 1.1 1.0	1348 387 414			1476	

PAGE:2

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	το	LENGTH (meters)	Cu (ppm)	Au (ppb)	Zn (ppm)	Pb (ppm)	As (ppm)
27.65-38.8	Otz-chlor-phlog-schist: wk - mod banded, sporedic chlorite speckled zones, localized narrow bands py, po, cpy (spprox 5% sulphides), minor sporadic atz veins, 5-10 cm, brokan in more chloritic zones; @ 33,75 - 10 cm atz vn w. scattared f.g. sphal; @ 31,8- fol. steepens to 55° across 30 cm.	Fol 80			10% py banda 1-6% po,py 10% py,po dies sphel 6% po(cpy)	121657 121767 121658 121768 121768 121769 121770 121659	28.16 28.75 30.0 31.3 32.61 34.0 37.6	28.76 30.0 31.3 32.61 34.0 37.8 39.0	0.8 1.25 1.3 1.31 1.39 3.8 1.4	732 569 961 204 969 116 494	50 25 5 15 45 5 5	2245		245
38.8-40.02	Otz-ser-ohlor-bio schist: alternating pale green qtz-ser bands up to 2.0 cm, w. 1-2 mm speckled blot, bands.				tre. fol. elign. py/po blebs	121771	39,0	40,0	1.0	147	10		-	
40.02-43.8	Otz-chior-bio schist: as above at 27.65-38.8, med green, altern. close spaced banding, sporadic, pervasive fine-med.gr, py bands 1- 10 mm (fol align), 5% overall, minor qtz vnita, < 5%, grad. lower contact.	Fol. 80°				121660	40.0 41.6 43.0	41.5 43.0 43.8	1.6 1.5 0.8	797 607 826	16 <6 <6			
43.8-49.66	Biot-chior-qtz-schist: (simifar to above unit w. greater biotite component), greenish brown, finely banded, minor qtz veining w. essoc. muscovite, diss py>po>cpy; 49.35-49.65 bleached, light grey qtz-ser schist w. grad. u. contact and 2 om gouge at lower cont., trc. overall sulphides.	Fot 80			15% py+/- po in sporad, bands	121663	43.8	44.7	0.9	1281	6			
49.65-69.75	Clor-qtz-ser-blo schist; banded, med to drk green, finely lam., veining as carb. fract. fills and minor qtz veins to 5.0 cm., sporadic localized py. bands w. assoc. po. blebs, 30 cm chloritic fract. gouge @ 64.86 m, qtz flooding /veining @ 64.7-64.85, 61.07-61,33 and 62.7-62.86 (brokent, sharp lower contact, 8 cm may sulphide band @ 54.66 m.(py>po>cpy)			wk-mod, qtz- carb.	scattered diss. and bands po, py, cpy (5-10%)	121884 121772 121773 121774 121885 121776	53,6 54,85 57.0 59,2 60,5 62,25	64,85 67.0 69.2 60,5 62.25 64,65	1.25 2.15 2.2 1.3 1.75 2.45	1406 2147 711 678 640 481	5 25 20 25 <5 20	1237 2636		
89.76-88.26	Otz-ser to qtz-ser-chlor schist: light to mod grey, prominent speckling w. fol. sligned chlor. clusters (1-2 mm) comprising sprox. 5 % vol., minor isolated second, qtz bands, localized shearing @ 84.5-86.26, conspicuous scattered (5-10%) blue ovel qtz eyes, 3-4 mm.	Fol 80			trc. po., py									
86,25-90,22	Qtz-ser-chior-bio schist; dark green, banded, sporadic bands and fract. fills po>py>cpy (5%), 3 qtz vns 2-5 cm.					121666 121667	86.25 88.4	88.4 90.22	2.15 1.82	1687 1179	<5 16			

	PAGE	: 3	
--	------	-----	--

													······································	
DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Cu (ppm)	Au (ppb)	Zn (ppm)	Pb {ppm}	As (ppm)
90.22-103.4	Otz-ser-chlor schlat: light-med green, mod to strong fracturing @ 93.3-103.4, bending masked in silic. or fract. zones, sporadic blue ovel qtz eyes, 3-5 mm, @ 101.4-102.28 grey, qtz-ser-chlor-bio schlat, sharp upper contact @ 45°, prominent blue qtz eyes, 3-5 mm.	Fol 70°		Mod. sillo	trc. py, po									
103,4-111.9	Qtz-ser-chlor schiat: strongly banded, py,po+/-cpy occurs as distinct bands throughout section w. gradat, downsection increase.				2-3% sulph 10-15% sulph	121776 121668 121669	103.4 107.2 109.2	107.2 109.2 111.2	3.8 2.0 2.0	1245 2621 2242	15 36 5			
111.9- 114.76	Qtz-ser-chlor-blo schist: irregular bending, med grey green.	Fol 80			1-2 % po band#	121777 121778	111.2 112.5	112.5 114.75	1.3 2.25	1030 482	26 16			
114.75- 117.75	Chlor-qtz-blo schist: finely banded, med to drk green, approx. 5% scattered bands and disseminations mixed po>py.	Fol 80				121670 121671	114.75 116.25	116.25 117.75	1. 5 1.5	1194 2864	6 6			
117.75- 142.34	Qtz-ser-chlor schist: med to drk grey green, mod. brkn, minor scattered blebs/fract. fills Py,po (<5%), gradational bleached zone @ 140.0-142.34 m.					121672	130.16	132.25	2.1	1648	<6			
142.34	E.O.H.													i
									ļ					
		· · · · · · · · · · · · · · · · · · ·	<u> </u>											
									<u> </u>					
-			<u> </u>						 					
					<u> </u>									
			·											
117.75	Clar-store suite: tinky beneds, med to drk green, approx, 5% soattered bands and disseminations mixed po>py. Otz-ser-chlor schiat: med to drk grey green, mod. brkn, minor scattered blebs/fract. fills Py.po (<5%), gradational bleached zone @ 140.0-142.34 m. E.O.H.							116.25	1.5		6 6 			

TECK	EXPLORATION	LTD.	NB-6 PROPERTY		PROJECT #173	7	HOLE NO.	93-NB-02	PAGE: 1	of 2	
	NTS:	82M/5W	DATE COLLARED:	18/08/93	DEPTH	DIP	<u>AZ</u>		LENGTH:102	.42 m	
	CLAIM:	NB-6	DATE COMPLETED:	19/08/93		· .70°	50°		DEPTH OF O	VB:13.1 m	
	ELEVATION:	809m	DATE LOGGED:			-			CASING REN	AINING:	

WATERLINE LENGTH:

PROBLEMS:

CORE SIZE: NO

GRID COORD:

LOGGED BY: G.T.

47+82N, 50+03E

DEPTH (motors)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Cu (ppm)	Au (ppb)	Zn (ppm)	Pb (ppm)	As (ppm)
0-13.1	Overburden													
13.1-28.2	Otz-ser-blo-chlor schist: light to drk grey, conspicuous banding, light green to grey to dark, 1-10mm, convolute folding @ 22.15-22.85, 27.0-27.65, mod. brkn w. local shearing, trc. euhedral py. crystals to 4 mm, very minor po., minor qtz-carb vnits, increased silicification @ 24.4-28.2 w. accompanying increased po. bands and dissem's	Fol. 60-66°		× .	py,po -trc., locally 1-3%									
28.2-29.84	Qtz-ser schist: light greenish grey, broken, minor 1-2 mm bands po +/- py, sharp lower contact	40° (cont)			py.patrc.									
29.84-31.05	Otz-ser-bio-chlor schist (as at 13.1-28.2)	Fol. 30°			minor py,po xla.									
31.05-32.66	Qtz-ser schist: light to med grey, mottled,mav., < 1 % blo/chlor, u. cont. 35°, l. cont. 50°													
32.85-61,15	Chior-qtz-ser-blo schist: alternating grey and dark chior,blo bends, 1- 10 mm, diss autedral po. x/s to 1.6 cm.	Fol 30-40°, occess. subpar. to C.A.												
61.16-64.66	Otz-ser-chlor schist; pale mod grey to green grey, fol. parallel py, bands or orystal frags, 2-3 %, 2-3 mm., semimav py,po+/- cpy (40% sulphides) @ 51.35-51.7, 15 cm, brkn. 25% po, 20% cpy @ 54.4-54.56; fault gouge zone w. green chlor. gouge w. semimav po (10-20 cm) at upper and lower contects @ 54.2-57.5 m.	Fol. 50*				121673	51.15	61.7	0.55	4324	30			
64.55-63.29	Qtz-ser-chlor-blo schist; med grey green to brownish grey, overall crushed (cateolastic) texture, composed of angular frags. w. chlor, matrix, minor fract. fills of py, po (<1%); @ 55,78-56.2, wht qtz vn w. approx. 10% po>py fract. fills, tro cpy; @ 67.3, msv 12 cm po,py	Fol. 40°				121779	54.2	67.6	3,3	309	10			

PAGE	:	2	
------	---	---	--

DEPTH (meters) FROM/TO	DESCRIPTION	STRUCTURE	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	SAMPLE FROM	DATA TO	LENGTH (metera)	Cu	Au (oob)	RESULTS Zn (ppm)	Pb (pom)	As (ppm)
63.29-63.94	Qtz-ser-chlor schist: light grey w, drk. chlor. speckling (2-3 mm), u. cont. gredational, i.cont 60°	Fol. 25°								(99.03	<u></u>	4F	4.1	
63.94-69.2	Chlor-qtz-phiog schist: pale green bands w. narrower brown (phiog) streaks, conspicuous change in foliation to subparallel to core axis, minor qtz-carb vnits and fract. fills, 1-2 %	Fol.subper'll to c.axis			tre-1% diss. po,py									
69.2-81,4	As above unit, but more chloritic, broken w. greater foliation angles, drk green to med drk green, banded, sporadic py, bande throughout w. msv to semimav @ 71.0-74.15	Avg. fol 60° 40°(ରା. @ 78.0- 80.2			Fol par'il banda, py>po>cpy. tro, py	121674 121676 121678 121882 121882	69.2 71.0 72.5 74.15 75.78	71.0 72.6 74.15 76.78 78.33	1.8 1.5 1.86 1.63 2.55	844 2.36% 1.29% 29 496	26 95 76 5 <5			
61.4-84.0	Qtz-phlog-chlor schist: alternating light brown/green bands (2 mm - 10 cm), minor secondary qtz vnits located near minor offsets.	Fol. 50°			py, po, trc									
84.0-89.4	Otz-chlor-phlog schist to chlor-phlog-qtz schist: dark brown to green grey, blocky w. sbundant rehealed qtz-carb fract's, foliation angles variable generally 0-30° to core axis.	Fol. 0-30°		Qtz-carb	Trc. po,py as vnits									
89.4-98.16	Otz-chlor-phiog schiet: well banded, pele green to grey brown, sporadio wht qtz bands to 5 mm, minor sporadic py. bands, approx. 2 mm or as isolated clusters,	Fol. 40-60°			trc. py									
98.16- 102.42	Otz-ser-chior schiat: light grey, wkiy banded, minor fol. aligned py. blebs, conspicuous blue quartz eyas to 4 mm, approx. 3%	Fol, 40°			1% diss. py.									
102.42	E.O.H.													
									_					
	· · · · · · · · · · · · · · · · · · ·													
1														1

TECK	EXPLORATION	LTD.	NB-6 PRO	PERTY		PROJECT #17	'37	HOLI	E NO.	93-NB-03		PAGE:	1 of 4		
	NTS: Claim: Elevation: Grid Coord:	82M/5W NB-6 827.5 m 48+20N, 53+10E	DATE COLLA Date comp Date logge Core size: Logged by:	RED:19/08/93 LETED:20/08/9 D: NQ G.T.	3	<u>DEPTH</u>	<u>DIP</u> -60	<u>AZ</u> 50°				LENGTH DEPTH (CASING WATERL PROBLE	:147.22 m DF OVB:6.1 m REMAINING: INE LENGTH WS:	n : :	
DEPTH (meter#) FROM/TO	DESCRI	IPTION	STRUCTURE	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE	SAMPLE FROM	DATA TO	LENGTH	Cu	Au	RESULTS	Ръ	As
0-6.1	Overburden	· · · · · · · · · · · · · · · · · · ·					NO.			(meters)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)
6.1-8.4	Otz-ser-chlor schist: med grey gree	en, lower gradational contact.	Fal. 90°			1-2% dias py.	l								

w. trc. cpy.

1-2 % diss po

W. assoc. cpy

121679

121679

9.5

12.6

12.6

13.25

3.0

0.75

1443

252

Silicification

<6 <6

.

8.4-9.5

9.5-13.26

indistinct banding.

Otz-sericite (chior) schist: more felsic than above unit, mottled, weakly porphyritic with bluish quartz eyes to 4 mm. (approx 3%)

Otz-ser-chlor-bio schist; grey green to grey (silicified), mottled w.

Fol. 80°

-

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO	· · · · · · · · · · · · · · · · · · ·	ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	Sample No.	FROM	то	LENGTH (meters)	Cu (ppm)	Au (ppb)	Zn (ppm)	Pb (ppm)	A= {ppm}
13.25-49.15	Qt2-ser-chlor-bio schist: bandod, grocnish grey (qt2-ser) w. darker chlor/bio bands, 2.5 mm, uniform throughout section, pervasive po, cpy mineralization as closits, petches and narrow bands of fine to mod. grain po w. accompanying cpy., pyrite generally absent to trace, locally broken in more chloritic sections, pervasive mod strongly magnetic; @ 36.13-36.33, qtz vn w. 2% alse spo > cpy; broken carb. alt. zone @ 29.37-30.7 m with weaker alt. at 30.7 to approx. 32.0 m; secondary foliation, parallel to core axis @ 46.0- 49.2 m	Fol.90°, locally to 60°		Silicif, wk-mod w. local conc's trc. gal.@ 15m carb, alt.	po,cpy(4:1), 3- 5% loc. to 20/30% in 10- 20 cm bands, tre. py 3%po, tc. cpy 2%po 3%po - 10%po,1-2%cpy 7%po - 5%po, 1% cpy 5%po, 1% cpy 5%po, 1% cpy 2%po, 1% cpy 2%po, 1% cpy 2%po, 1% cpy 2%po, tc. cpy 2%po, tc. cpy	121680 121681 121682 121683 121684 121685 121686 121689 121689 121689 121689 121683 121684 121695 121695	13.26 15.85 18.85 22.07 24.00 28.52 28.30 29.57 30.90 32.81 34.50 35.86 37.05 38.71 41.76 43.40 44.81 47.85	15.85 18.86 22.07 24.00 26.52 28.30 28.57 30.90 32.61 34.50 35.66 37.06 39.71 41.76 43.40 44.81 47.85 49.15	2.60 3.00 3.22 1.93 2.52 1.78 1.27 1.33 1.71 1.89 1.16 1.39 1.64 1.41 3.04 1.30	518 667 441 1690 729 303 103 52 70 261 2538 832 1075 501 0.84% 761 76	45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
49.16-63.95	Chlor-qtz-ser schist: med to drk green, weak to mod banded, megnestlo, pervasively mineralized with variable width bands of mixed pyrrhotite-chelcopyrite, approx. 5 % vol. overall, most strongly mineralized section of this hole.	Fol. 90°			po,cpy,6% in local mixed banda	121698 121699	49.15 60.90	60.80 63.96	1.75 3.05	1.2% 3738	25 30			
63.95-64.75	Otz-ser-chlor-bio schist: grey to pale greenish grey w. 1-3 % oval biue etz eyes, 3-7 mm aligned along fol. planes, rock is speckled along fol. planes w. f.g. chlor/bio, <0.5% disa po w. lesser cpy, py, wikly banded.	Fol. 80-80°		mod. ellic.		121700	53.95	55.56	1.6	163	25			
64.75-69.69	Chlor-qtz-ser-bio schist: grey green to brown, banded, sporadic narrow po bands or disseminations, often w. minor assoc. opy.	Fot. 90°		local. silica bands		121701 121702	64,55 67.25	67.25 69.59	2.7 2.34	689 201	15 30			

0.2 % diss py,po

69.59-70.32

Otz-ser schist: light grey, v.f.g., finely lamin., minor chior.

.

Fol. 86°

PAGE : 2

DDH NO. 93-NB-03

PAGE: 3

DEPTH (metera)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Cu (ppm)	Au (ppb)	Zn (ppm)	Pb (ppm)	Ais (ppm)
70.32-77.82	Otz-ser-chlor-bio to chlor-gtz-ser schist: wk. to mod, banded, pale to med grey green, homogenous, competent, no veining, wkly mineralized w. diss. po. py.trc cpy (< 0.5% sulphides), weakly developed ovate blue gtz eyes, sporadic, 3-7 mm, < 3% in tess chloritic sections.													
77.82-92.66	Otz-ser-chlor-bio sohist: greenish grey to med. drk green, med. to strongly banded, minor qtz veiring, sporadic po+/- opy or pyrite as narrow bande 1-3 mm or as disseminations.	Fol. 80-90°			1-3 % mixed po,cpy,py w. m/nor local. (noreases	121703 121704 121705 121706 121706 121707 121709	77.15 78.33 81.38 84.43 87.48 90.62	78.33 81.38 84.43 87.48 90.52 92.66	1.18 3.05 3.06 3.06 3.06 2.13	1.01% 1 6 92 807 243 184 175	55 25 20 <5 10 20			
92.66-86.0	Blotte (phiogopite)-chior-qtz-ser schist: similar to above zone , but with marked increase in brown mice bands (20-30%) with eccompanying fol, parallel py, bands 1-5 mm; strongest mineralization surrounds 10 cm qtz vn @ 94.75 w, veining cresscutting fol. w. 10 % py, galena and a 2-10 mm band brwn sphal, vn margins contain 10-20% fol, parallel py, bands.		60°		1-2 % diss. py.; py.gal.sph. in vn @ 94.75	121709 121710	92.85 94.0	94.0 96.25	1.36 1.26	640 382	16 36	254 6890	340 3074	
95.0-101.76	Otz-ser-chlor-schist: wk. to mod. banded, conspicuous alternately banded qtz-ser isocokied w. chlor/blo) w. D.5-1.0 em green chloritie bands; faulted 2-6 em contact @ 96.05-96.26 m @ 30° to c. axis, up to 1 % diss. po, py.cpy secc. w. chlor. bands.	• •			tre. to 1% dise po.py.cpy	121711 121712 121713	96.26 97.08 99.67	97.08 99.67 101.75	1.83 2.69 2.08	100 114 121	16 20 15	138	822	
101.75- 103.8	Fault zone (Otz-ser-chlor schlat to Chlor-blor-qtz schlat): strongly fract., sheared, chlor-blot. dominant @ 101.76-spprox. 102.76, qtz dominant @ 102.76-103.6, chlor. zone has sbundent elickensided surfaces, qtz dominant zone is fault brecciated.				~ 1 % diss. py.po,cpy	121714	101.75	103.6	1.85	963	30			
103.6-104.1	Fault gouge zone (cateclastite): approx. 25% ang, qtz frags. to 4,0 cm, pale green gouge matrix. (clay, chlor)	U. cont. 20° L. cont. 35°		cley, wk. cerbonate	Approx. 1% diss po, py, cpy	121715	103.6	104.1	0.6	1631	20			
104.1- 116.43	Chlor-qtz-ser-phlog schist: (start of major unit persisting to bottom of hole): mod gray green, banded, mod. to weakly fract, decreasing sway from fault zone, unit is pervesively mineralized with v.f.g. po w. minor assoc. epy, pervaively wit to mod magnetic, conspicuous bands and streaks of brown mica.	Fel. 80-90°			perves. v.f.g. po w. trc. cpy, local po/cpy diss./bands									

DDH NO. 93-NB-03

PAGE:4

DEPTH (meters)	DESCRIPTION	STRUCTURE			-	2 2 2	SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGT'H (meters)	Cu (ppm)	Au (ppb)	Zn (ppm)	Pb (ppm)	As (ppm)
116.43- 118.51	Felsic band 116.43-117.04: groen grey felsic metstuff w. fol. persilei chior/bio stroaks, 1-2% diss. py, microfract'd, 5% sectored blue oval qtz eyes (1-5 mm); 117.04-117.13: dark chior. sch'st band w. 5% fol. parsilel po, tro cpy; 117.13-118.61: krownish grey felsic dyke, mottled w. amorphous pisg. phenos, 2-4 mm. (25%)	Sherp U. cont. 80° Sherp L. cont. 80°												
118.51- 122.7	Continuation of unit as at 104,1-116.43 m													
122.7-125.6	Qtz -feldspar tuff band; weakly fol, w. minor accessory chlor,bio, unit has approx, 10% patches of milky white quartz.				trc. py									
125. 6 - 147.22	Continuation of unit at 118.51-122.7 (Chior-qtz-ser-bio schiat): fract. zone @ 138.0-141.4 m w. minor sporadic pa+/-cpy bands, several isolated qtz veins (1-20 cm) @ 141.6-145.85 m, wht qtz vn @ 126.1-126.3 w. 3-5% cpy, po in fract fills.				trc. po,cpy	121716 121717 121718	126.6 128.2 138.6	128.2 130.16 141.4	67 150 1739	13 35 70				
147.22	E.O.H.													
											***-			
												L		
						• • • • • • • • • • • • • • • •								
						·····								
4 1		1	ľ	1	1									í ľ

TECK EXPLORATION LTD.

NTS:	82M/5W
CLAIM:	NB-6
ELEVATION:	866m
GRID COORD:	50+52N, 53+85E
LOGGED BY:	G.T.

NB-6 PROPERTY DATE COLLARED: 20/08/93 DATE COMPLETED: 21/08/93 DATE LOGGED: CORE SIZE: NQ

PROJECT #1737		HOLE NO.
DEPTH	<u>DIP</u>	AZ
	-60°	50°

93-NB-04

PAGE: 1 LENGTH:127.1m DEPTH OF OVB: 9.14m CASING REMAINING: WATERLINE LENGTH: PROBLEMS:

					the second s				and the second sec				-	
DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (metors)	Cu (ppm)	Au (ppb)	Zn (ppm)	Pb (ppm)	As (ppm)
0-9.14	Overburden													
8.14-11.96	Otz-ser-chior-phiog schist: banded, very broken w. lost recovery.	Fol 60°												
11.95-12.05	10 cm band msv. pyrrhotite w. access.cpy, ~1%, sharp lower contact w. limeatone unit.	L. cont. 46°			mev po + minor cpy	121721	11.95	12.95	1.0	667	<6			
12.05-12.95	Limestone: med grey and white, banded.	Foi. 40°			0.5% po									
12.85-18.67	Fault zone: greenish grey, strongly sheared and fractured gtz-ser- chlor-blo schiat, shearing most intense at contacts, po > py occurs as dissominations and fracture fills.				5% py, po as fract, fills	121722	12.95	16.67	3.62	627	< 6			
16.57-22.92	Otz-ser-chlor-bio schist: banded, strongly broken, pervasive foi. aligned po bands, 1-5 mm, 10%, locally msv to semimsv.	Fol. 80*			10% po bands	121723 121724	16.57 19.57	19,67 22.92	3.0 3.35	183 1213	<6 16			
22.92-29.25	Qtz-ser-chlor-bio/phlog schist: banded, broken, thinly banded black blotite , 1-2 mm w. med green sillceous bands @ 28,25-29.6 m.	-			1-2% dias po									
29.25-31.8	Otz-ser-chior-bio schist: As above unit, with increased silicification and mineralization, localized bands of dissem po,cpy (5-10%).			mod, silicif,	б-10% ро,сру	121725	29.25	31.8	2,66	943	<5			
31.8-32.46	As above: strong silicification, gray to white quartz w. relict schist bands (~20%).			strong sillcif,	1% diss po,cpy	121726	31.8	32.84	1.04	334	<5			
32.45-38.3	Qtz-ser-chlor-bio schist: banded, mod-strangly fract'd, w. localized shearing, localized silicification zones w. sporadic patches of po,cpy, more felsic bands are pervasively chlorite speckled.	Fol. 50°		mod. silicif.	diss. po,сру 1-2 %	121727 121728	32.84 35.66	35,88 38.3	2.82 2.64	359 3461	5 30		_	
38.3-43.7	Qtz-ser-chlor schist: light to med. grey, 3-5% ovel bluish quartz eyes, 3-7 mm, weakly speckled w. 1% metic minerais, 1-2 mm.	Fol. 60*			trc, diss, py	121729	38.3	38.71	0.41	1464	40			

PAG	E	:	2	
-----	---	---	---	--

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	TO	LENGTH (metons)	Cu (ppm)	Au (ppb)	Zn (ppm)	Рь (ppm)	As (ppm)
43.7-62.67	Qtz-ser-philog-child schild: grey groundmass, speckled w, brwn philogopite, overall mod. cataclastic texture w, isolated qtz, frags. to 3.0 cm, mod to strongly brkn, gradetional lower contact.	Fol. 70°		mod. silicif.	tro sulphides in more matic bands									
52.67-68.27	Otz-ser-chlor-phiog schist: dark greyish green, banded, rare bluish qtz eyes, wk. microfracturing w. calcite fills, mod. to wk. fracturing w. localized shearing decreasing downsection, 6 on epidote-chlorite band Φ 67.7 m, secondary foliation parallel to core axis, allokensided lower contect Φ 30° to c.axis.	•			trc. diss. py,po									
58.27-72.08	Chior-phiog-atz-ser schist: strongly banded, med to drk green to brown (phiog) bands, 5-10 mm, pervasive po>py.opy mainty as fol. parallel in chiorite dominent bands, shearing @ 63.09-66.14 (fol. parallel]	Fol. 70°	-		2% ро,сру <1% сру 4% ру,сру,ро 2% ро,сру 0.5% сру	121730 121731 121732 121733 121733 121734	58.27 60.04 63.09 66.14 69.19	60.04 63.09 66.14 69.19 72.08	1.77 3.06 3.06 3.05 2.18	1229 202 1458 2724 243	16 10 40 25 15			
72.08-73.11	Otz-ser-chlor-phlog schist: greenish grey, prominent fol. aligned oval blue qtz eyes, approx 5% reliat chlor-phlog-qtz schist bands, closely spaced fol. bands (<1cm) marked by aligned phlog. speckles, sharp upper and lower contacts- fol. parallel.	Fol. 65°		-	tro, py	121736	72.08	73.11	1.03	1105	20			
73.11- 77.0	Otz-ser-chlor- to chlor-phlop-qtz-ser schist: zone of veriable and gradationally intermixed felsic to intermediate schists: grey green to dark green, wik to mod. banded, sporadic po, py, opy bands assoc. w. chloritic conc. bands, frequent carb/chlor filled microfract's, localized fracture/ shears 110-50 cm)	Fal. 70°			1% sulphides	121736 121737	73.11 75.28	76.28 77.33	2.17 2.05	373 377	≺5 20			
77.0-87.0	Chlor-qtz-ser-phlog schlet: med to drk green, carb, fract. fill, 2-3% w. localized fracture or shear zones , localized cond's of po,py,cpy (tro) and pervasive disseminations.	Fol. 60°			eheared "	121738 121739 121740	77.33 80.7 82.85	80,7 82,65 85,0	3.37 1.96 2.36	535 281 880	10 <5 20			
87.0-112.68	Chlor-qtz-ser-phiog schist: continuous zone of light to med. green . less chioritic than above zones, whily to mod. banded, green groundmess w. streaks and bands of brown phiogopite, erratic bands/riser. I lils po +f- copy. sporadio fol, parallel epideto bands, approx. 1 cm wide from 92.75-104.66 m, rare qtz vns 2-10 cm, blue grey med. grain felsic tuff w. approx. 1 % diss. py,po @ 89.32 - 89.9 m.	Fol. 70°				121741 121742 121743 121744	93.57 96.62 108.7 111.86	96.62 99.54 111.86 112.68	3.05 2.92 3.16 0.82	475 602 1428 96	5 5 5 <6			

PAGE: 3

			-											
DEPTH (meters)	DESCRIPTION	STRUCTURE				:	\$AMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	1.ENGTH (meters)	Cu (ppm)	Au (ppb)	Zn (ppm)	Pb (ppm)	As (ppm)
112,68- 114.7	Otz-feldspar porphyry dyke: greenish grey (112.68-113.95) to purplish brown (113.95-114.7), amorphous plag, phenos., 2-3 mm, 10-15 %, broken, fractured, minor chlor. bands 2 mm to 3.0 cm, 11 cm wht qtz band/vn @ 113.7 m.					121746	112. 0 8	114.7	2.02	176	<5			
114.7-127.1	Continuation of unit @ 87.0-112.68: elevated po, cpy (2-5%) @ 114.7-115.7				2-5% po>cpy bands	121748	114.7	116.7	1.0	2480	46			
127.1	E.O.H.													
	·													
_														
														· · ·
													,	
							_							
			_											

					· · ·			
TECK	EXPLORATION	LTD.	NB-6 PROPERTY	PROJECT #	f1737 HO	LE NO. 93-NB-05	i PAGE: 1 of 3	
	NTS:	82M/5W		DATE COLLARED:21/08/9 3	DEI	PTH DIP AZ	LENGTH:99.67 m	
	CLAIM:	NB-6		DATE COMPLETED:22/08/93		-60° 50°	DEPTH OF OVB:9.14 m	
	ELEVATION:	765 m		DATE LOGGED:			CASING REMAINING:	
	GRID COORD: LOGGED BY:	46+75N, 52+95E G.T.		CORE SIZE: NQ			WATERLINE LENGTH: PROBLEMS:	

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Cu (ppm)	Au (ppb)	Zn (ppm)	ዖb (ppm)	As (ppm)
0-9.14	Overburden													
9.14-14.3	Chior-qtz-ser schist: dark green, finely banded, competent, broken, pervesive fol, aligned bands of mbced py,po, cpy (6% overall), 10- 20% fol. perallel bands of fine to med. grein py. w. po @ 9,14-9.75, gredstional lower context.	Fol. 90°			6-10% fol. bande, py>po>cpy	121761 121762	9.14 11.28	11.28 13.3	2.14 2.02	450 1339	<5 <5			
14.3-23.47	Qtz-ser-chlor schist: med grey to greenish grey, competent, siliceous, 5-10% oval blue qtz eyes, 3-5 mm, finely bended, <1%, 1-2 mm fol, bands of f.g. py,po assoc, w. chloritic conc. bands.													
23.47-24,05	Transition zone; gradational change from blue quartz eye felsic schiat to strongly banded (0.5-2.0 cm), 80% whit qtz bands w. 20% green and brown chlor., phlog. bands., approx. 1% po>py assoc. w. more chlor. zones.				1 % diss, po,py	121753	23.47	24.92	1.45	488	< 6		-	
24.05-24.97	Phiogopite-chiorite schist: finally banded chocolata brown and pale to mod, green, strong fol, parallel bands $po\!>\!py\!>\!cpy$ (10%) @ 24.05-24.38 m.				1-2 % disa po>cpy									
24.97-29.06	Otz-ser-chior schist: banded, dark and med. green, 15 cm qtz vn. w. sporox, 15 % criter. inclusions and 1 % sesoc. po>py as 3-5 mm crystals. , pronounced socondery felistion parallel to cora axis.	Fol. 80°		mod, silicif.	1-2% diss. po>ру	121764 121766	24.92 26.52	26.52 29.06	1.8 2.54	627 721	<6 5			
29.06-30.5	Chlor-qtz-zer schist: strongly, light and dark green, light bands 3-10 mm, dark bands 2-6 mm.				1-2% fol.parallel po.cpy	121756	29.06	30.6	1.44	203	16	1299		

PAGE: 2

.

The second se			the second s			and the second se								
DEPTH (metors)	DESCRIPTION	STRUCTURE					SAMPLE	DATA		-		RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	τo	LENGTH (meters)	Cu (ppm)	Au (ppb)	Zn (ppm)	Pb (ppm)	As (ppm)
30.5-35.88	Otz-ser-chlor schist: grey green, weak to mod, banded, pervesively mineralized w. 5-10%, 2-5 mm fol. perallel bands py and mixed po,cpy, general downsection subplide increase, minor microfracture subplide fillinge, local 1-5 cm polyb bands up to 20% subplides @ 32.4-35.66 m, pervesive wkly magnetic.	Fol. 80°			рө,сру 7% ру 3%	121757 121758	30.6 32.61	32.61 35.66	2.11 3.05	1679 1.15%	16 36			
35.66-40.85	Chior-philog-gtz schist: banded, mottled, prominent derk brown to derk green whiepy bands, 6-10 mm, w. Interbedded pale green gtz- eer-chior schist, highly megnetic, coarse pyrite bands (5-10%) @ 36,86-38.2 m.	Fol. 80-90° (irreg.)			py- loc.6-10% Po < 0,5%	121759	35.66	38.3	2.64	840	10		-	
40.85-48.03	Otz-ser-chlor schlat: med. grey finely lamin., 3-5% oval blue qtz eyes, 10 cm ahear @ 44,3,4 cm ahear @ 48,03, increased chlorite w. 10% disa, po, trc. cpy @ through lower gradational contact @ 47,6-47,93 m.	Fol. 90°			0.6% diss ро+/-сру									
48.03-51.05	Qtz-ser-chlor schist; mod to drk green, siliceous, weskly banded, 1-2 % chlor, speckles, 1-2 mm, isolated clusters and disseminations $po+f-$ opy, 1%, 20-30% whit irreg. qtz bands, 2-5 cm @ 49.4-51.05 m.													
61.05-62.7	Fault zone: strongly broken, sheared, brecciated, gtz-ohlor schiat @ 51.05-52.4, silickensided chlor. surfaces @ 52.4-52.7, Intense shearing w. light to dark green gouge and gtz frage to 3.0 cm.	Shrg 60°			py-trc. to 1%	121760 .	50.9	62.7	1.8	301	20			
62.7-68.2	Otz-ser-chlor schist: med to drk green, weakly banded, rare bluish oval etz eyes, 1 %, 1-2 mm fol. bands py,po, strengly microfrac'd @ 67.72-58.2 m.	Fol. 80°		sillcif. wk. to mod.	1% ру,ро				:					
68.2-62.6	Otz-ser-chior, echiet to chior-qtz-ser schist; bended, bluish grey to grey green	Fei. BO*			0.5% ра,ру									
62,5-75.28	Chlor-qtz-ser schiat: mod to drk green, wk. to mod. banding, continuous, competent, abundent pyrite bands, fine to coarse, often sereor, with v.1.g. sphelerite whisps/narrow bands; @ 82.5-85.8, 10-20% pyr. bands 1mm to 7 cm w. minor access. sph.; @ 86.6- 75.28, marked decrease in pyr. bands, w. py. sereor. with sphel. to 75.3 m, mineralization occurring mainly as fol. parallel bands; po, cpy -trc	Fol. 80°			16% py,(sph) 10% py,(sph) 2% py (sph) 5% py (sph)	121761 121762 121763 121764	62.5 64.6 68.09 74.28	64.60 66.14 69.64 75.28	2,1 1.54 1.65 1.0	2269 986 193 292	35 15 20 30	493 1622 1293 3875		
75.28-85.43	Chior-qtz-ser schist: wk. to mod. banded, grey green to drk green, sporadic pervasive nerrow py. bands, 1-10 mm, (2-3% py), < 1% whit qtz bands.	Foi. 80°			2-3% py bands ,1 % po+/-cpy bands	121765	80.9	81.9	1.0	648	16			

PAGE : 3

(
(meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				Results		1
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Cu (ppm)	Au (ppb)	Zn (ppm)	Pb (ppm)	As (ppm)
86.43-86.96	Transition zone: mixed qtz (60%) and chlor. bands (60%)				1-2 % dise and fol. bands py, po,cpy									
85.96-93.14	Otz-fp-ser schist: grey to greenish grey, 1-2 % access, chior, conc. along fol, planes, wk. to strongly fol., 10% crosscutting whit, etz bands, interbedded chioritic schists @ 88.93-88.93 w, 2 % fol, eligned py.	Fol. 70-90*			tro. sulph.									
93.14-96.44	Chlor-blo-qtz-ser schist: dark, strongly møgnetic, longitudinel fræcturing @ 95.74-98.62 m.	Foi. BO*			3-5% v.f.g. diss po,py,cpy	121766	93.14	96.44	3.3	228	36			
96.44-99.67	Qtz-fp-ser schist: (continuation of unit @ 85.96-93.14 m), wht to green grey, mod. fract. , 10% crosscutting wht quartz bands.				< 1% py. fract, fills									
99.67	E.O.H.													
						-								
				-										

<u>APPENDIX 6</u>

F.599

. انتقاباً

SELF-POTENTIAL THEORY

e) Self or Spontaneous Potential

The self-potential (SP) technique is a passive technique (see Chapter 4) related to resistivity and IP. The SP method consists of measuring the natural electric potential generated by ongoing time-dependent electrochemical reactions in the ground. It has been employed in the search for massive sulphides, but has a more effective niche in exploration in sensing disseminated metallics near-surface. SP can interfere with IP and resistivity measurements. It is considered a background noise as far as IP and resistivity are concerned and must be removed from the data.

GEOCHEMICAL METHODS

-cies

1

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4657

GEOCHEMICAL LABORATORY METHODS

SAMPLE PREPARATION (STANDARD)

1.	Soil or Sediment:	Samples are dried and then sieved through 80 mesh sieves.
2.	Rock, Core:	Samples dried (if necessary), crushed, riffled to pulp size and pulverized to approximately -140 mesh.
3.	Humus/Vegetation:	The dry sample is ashed at 550 C. for 5 hours.

METHODS OF ANALYSIS

All methods have either canmet certified or in-house standards carried through entire procedure to ensure validity of results.

1. MULTI ELEMENT ANALYSES

(a) ICP Packages (6,12,30 element).

Digestion Finish

Hot Aqua Regin ICP

(b) ICP - Total Digestion (24 element).

Digestion Finish

Hot HClO4/HNO3/HF

(c) Atomic Absorption (Acid Soluble)

Ag*, Cd*, Cr, Co*, Cu, Pe, Pb*, Mn, Mo, Ni*, Zn.

Digestion

Finish

ICP

Hot Aqua Regia

Atomic Absorption * = Background corrected

(d) Whole Rock Analyses.

Digestion

Finish

Lithium Metaborate ICP fusion

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

2. Antimony

Digestion Finish

Hot aqua regia

3. Arsenic

Digestion

Hot aqua regia

Hydride generation - A.A.S.

ł

4. Barium

Digestion

Finish

Finish

ICP

ICP

Finish

Lithium Metaborate

5. Beryllium

Digestion

Hot agua regia

Atomic Absorption

6. Bismuth

Digestion

Hot aqua regia

Finish

Atomic Absorption (Background Corrected)

Atomic Absorption

7. Chromium

Digestion

Finish

Sodium Peroxide Fusion

8. Flourine

Digestion

Finish

Lithium Metaborate Fusion Ion Selective Electrode

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

9. Gallium

Digestion

Hot HC104/HN03/HF

10. Germanium

Digestion

Hot HClO4/HNO3/HF

11. Mercury

Digestion Hot aqua regia

12. Phosphorus

Digestion

Lithium Metaborate Fusion

13. Selenium

Digestion

Hot aqua regia

14. Tellurium

Digestion

Hot aqua regia Potassium Bisulphate Fusion Atomic Absorption

Finish

Finish

Atomic Absorption

Finish Cold vapor generation -A.A.S.

Finish

ICP finish

Finish

Hydride generation - A.A.S.

Finish

Hydride generation - A.A.S. Colorimetric or I.C.P.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4657

GEOCHEMICAL LABORATORY METHODS

Multi Element ICP Analyses

Digestion:

1 gram sample is digested with 6 ml dilute aqua regia in a waterbath at 90°C for 90 minutes and diluted to 20 ml.

Analysis:

Inductively coupled Plasma.

TRENCH ROCK SAMPLE DESCRIPTIONS

SAMPLE NUMBER LOCATION DESCRIPTION

1929

(nine) | | |

120958	Broken Ridge Showing	10 cm sample from outcrop of quartz-feldspar schist w. extensive surrounding ferricrete
120959	Broken Ridge Showing	0.75 m msv. pyrite with mixed carbonaceous gouge , extensive surrounding ferricrete
120960	Broken Ridge Showing	massive pyrite, 1 m chip taken across shallow dip plane (15°); thickness indeterminate
120961	Broken Ridge Showing	1 m chip sample across mixed msv. pyrite and grey phyllite, dip 20°S
120962	May Showing	0.5 m sample of green chlorite schist with approx. 5% dissem. pyrite, chalcopyrite, malachite coatings on weathered surfaces
120963	48+50 N 53+90 E	thinly banded gneissic rock with < 0.5% sulphides, limited trench exposure
120964		rusty massive pyritic float boulder
120965	48+50 N 54+10 E	1 m square float boulder with semi-msv. pyrite bands
120966	48+25 N 54+10 E	quartz-sericite schists with weak disseminated py.,po., cpy. (< 1.0%)

-16-

