LOG	NO:	MN 04 514	RD.
ACT		9.7-5 1 %	
		104 4-16	5. Flor has

ASSESSMENT WORK REPORT ON THE

PHASE 1A RECONNAISSANCE PROGRAM

AND ON THE

PHASE 1B FOLLOW-UP GEOPHYSICAL AND GEOCHEMICAL PROGRAMS

CARRIED OUT ON THE FOX CLAIMS,

STEWART PROPERTY:

SKEENA MINING DIVISION,

NORTHWESTERN BRITISH COLUMBIA

AL DATA CALL OF LAND AND ADDRESS	17	alaa Teer Teer	Ĉ	Challen Sher Days		្រុំ	25 -2 5-25	ti.	Ð
al sality of solution where	1.		EC 2		想	œ			
والمتعادية والملي مدورته والمعادية	Golo		ico		E	R,	ß	ر .C.	fice

LATITUDE 56° 40' NORTH LONGITUDE 129° 35' WEST NTS 104 A/11,12 E

ΒY

GEOFINE EXPLORATION CONSULTANTS LTD.

DECEMBER, 1993

SUMMARY:

The Stewart property is located in the Skeena Mining Division on the east side of the Stewart Gold Camp in Northwestern British Columbia, about 80 km north-northeast of Stewart and 2 km east of the Cassiar Highway. The 24 mining claims comprise 464 claim units that cover 116 square kilometres.

Much of the Stewart property is underlain by rocks of the prospective Hazelton Group that elsewhere in the Stewart camp host the Red Mountain, Silback Premier and Eskay Creek deposits. In July, 1993, the Stewart property was optioned by GEOFUND to American Barrick Resources Corporation which has the right to earn a 100% interest by meeting escalating option payments and work conditions.

The Phase 1A, \$45,000 reconnaissance geological and geochemical survey funded by Barrick was carried out by Geofine during August, 1993. The program focused on the evaluation of colour anomalies in favourable structural and geological environments. Although a number of alteration zones did not return positive analyses, the Deltaic target area of the property, recently held by Cominco, and surrounding areas were deemed to offer a high priority gold target.

The Deltaic target area is associated with pyritized and silicified pyroclastic rocks and intermediate to felsic lavas and intrusive rocks that, based on initial sampling, often contain anomalous gold, copper and zinc values ranging up to 470 ppb gold, 8080 ppm copper and 2628 ppm zinc, respectively. Initial sediment samples from streams in and draining the Deltaic target area have returned anomalous values ranging between 11 and 352 ppb gold, 84 to 635 ppm copper and 104 to 741 ppm zinc.

Based on the positive analytical results obtained from the Geofine and Cominco exploration programs, the Deltaic mineralization trends northeast over an apparent intermittent strike length of 3 km and an apparent intermittent width of over 1 km. The Deltaic Zone remains open for expansion and detailed evaluation.

As a follow-up to the Phase 1A program, an approximately \$65,000 Phase 1B geophysical and geochemical program was carried out from September 20 to October 6, 1993, to locate and prioritize drill targets. Three additional claims were staked to fully cover the Deltaic target area.

The geochemical survey utilized a 5.75 km grid and entailed the collection of 422 soil, rock, stream sediment and talus samples. The soil survey delineated two broad, anomalous gold zones that trend northeast across the northern and southern parts of the grid. The very broad northern zone is the strongest and has been traced over a strike length of 650 m. Its higher grade core as outlined by the 100 ppb contour correlates with the strongest IP Zones A and A1. For example, the northern zone soil anomaly on L 54E averages 139 ppb gold over a distance of 500 m, remains open to the north, and the higher grade core of the zone averages 195 ppb gold over a distance of 300 m. A zinc soil anomaly (averaging 652 ppm over 100 m) on the north side of the higher grade gold core is suggestive of polymetallic zoning.

The soil anomaly remains open to the north and another gold zone is suggested by strong soil gold values at the north end of Lines 50E, 51E and 54E. Additional gold targets are postulated to exist in the Deltaic target area based on sediment anomalies discovered in streams draining areas to the north, east and west of the grid, particulary where alteration zones are associated with more rugged topography.

The southern gold zone soil anomaly as outlined by the 50 ppb contour has been traced over a distance of 650 m, but is narrower and weaker than the northern zone. However, the overburden cover is much thicker than on the northern zone and the southern zone is still characterized by very anomalous gold values over substantial widths. The southern zone remains open to the northeast and southwest.

The IP survey has defined a number of specific chargeability anomalies that tend to pinpoint and prioritize initial drill targets. The strongest IP anomalies, Zones A and A1 are associated with the strongest soil gold anomalies on the northern zone and drilling of both IP zones in a number of locations is recommended.

On the southern part of the property, drill targets are also apparent on IP zones D and E where the better soil geochemical responses are located. Soil gold anomalies tend to flank the IP anomalies on the downslope side on the southern part of the property, probably due to hydromorphic and physical dispersion in the deeper overburden.

A 1500 m, Phase 2A drill program is thus recommended for implementation in June, 1994 as an initial test of the gold potential of the targets outlined to date. Five hundred meters of the program would be contingent on positive results from critical holes. If the program is successful in intersecting significant gold mineralization, it is recommended that the Phase 1B geological, geophysical and geochemical survey be immediately expanded as part of the Phase 2 program. The survey would evaluate the obvious along strike extensions of the Deltaic Zone and additional targets in the Deltaic target area to ascertain the full range and priority of drill targets available.

The all in cost of the Phase 2, 1500 m helicopter supported drill program is estimated (subject to drill bids) at \$357,000, including assessment work filing fees. Approximately \$120,000 of the proposed budget would be contingent on positive results from the initial holes. The cost of the recommended ground follow-up program is estimated at \$42,000.

iv -

TABLE OF CONTENTS

TITLE: PAGE	:
SUMMARYii	
TABLE OF CONTENTSv	
1. INTRODUCTION:1	
2. PROPERTY, OWNERSHIP:4	
3. LOCATION, ACCESS:4	
4. TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE AND VEGETATION:.7	
5. EXPLORATION HISTORY:9	
6. REGIONAL GEOLOGY:9	
7. REGIONAL MINERALIZATION AND EXPLORATION ACTIVITIES:12	
8. PROPERTY GEOLOGY:15	
9.1993 PHASE 1A RECONNAISSANCE PROGRAM.189. A. DELTAIC ZONE209. B. GLACIER TARGET AREA.249. C. SKOWILL TARGET AREA.259. D. PORPHYRY TARGET AREA.259. E. ROAD PROGRAM.26	
10. CONCLUSIONS, RECOMMENDATIONS - PHASE 1A PROGRAM2610. A. DELTAIC ZONE.2610. B. GLACIER TARGET AREA.2710. C. SKOWILL TARGET AREA.2710. D. PORPHYRY TARGET AREA.2910. E. ROAD PROGRAM.29	
11. PHASE 1B FOLLOW-UP PROGRAM. 30 11. A. DELTAIC ZONE GRID. 30 11. a. SOIL ZONE S1. 33 11. a. SOIL ZONE S1. 33 11. a. i. IP ZONE A. 35 11. a. ii. IP ZONE A. 35 11. a. iii. IP ZONE A1. 35 11. a. iii. IP ZONE A1. 35 11. a. iii. IP ZONE A2. 36 11. a. iv. IP ZONE B. 36 11. b. SOIL ZONE S2. 36 11. b. i. IP ZONE A3. 36 11. c. SOIL ZONE S3. 37 11. c. ii. IP ZONE C. 37 11. c. iii. IP ZONES D, D1. 37 11. c. iii. IP ZONES E, E1. 38 11. B. SNOWPATCH CREEK. 38 11. C. EAST CREEK. 39	

TABLE OF CONTENTS (CONTINUED)

TITLE:	PAGE:
12. CONCLUSIONS, RECOMMENDATIONS - PHASE 1B PROGRAM 12. a. PHASE 2 DIAMOND DRILL PROGRAM 12. b. PHASE 2 ADDITIONAL GROUND FOLLOW-UP & DRILL PROGRAM	.40
13. REFERENCES	.45
14. STATEMENT OF QUALIFICATIONS	.47
LIST OF FIGURES	
FIGURE:	PAGE:
1. STEWART PROPERTY LOCATION MAP	2
2. STEWART GOLD CAMP	3
3. ROAD MAP	6
4. RELIEF MAP	8
5. STEWART COMPLEX	.10
6. STEWART PROPERTY GEOLOGY, UNUK RIVER SHEET	.16
7. STEWART PROPERTY GEOLOGY, GREIG, 1991	.17
8. AEROMAGNETIC SURVEY, STEWART PROPERTY	.19
LIST OF TABLES	
TABLE:	PAGE:
TABLE 1. FOX CLAIMS, STEWART PROPERTY	5
TABLE 2. PHASE 1A PROJECT EXPENDITURES	21
TABLE 3. PHASE 1A ANALYTICAL RESULTS, SAMPLE DESCRIPTIONS	22
TABLE 4. PROPOSED PHASE 1B BUDGET	28
TABLE 5. PHASE 1B PROJECT EXPENDITURES	31
TABLE 6. PHASE 1B ANALYTICAL RESULTS, SAMPLE DESCRIPTIONS	32
TABLE 7. GEOCHEMICAL AND IP RESULTS	34
TABLE 8. PROPOSED PHASE 2 DRILL PROGRAM	42
TABLE 9A. PROPOSED PHASE 2 DRILL BUDGET TABLE 9B. PROPOSED PHASE 2 GROUND SURVEYS AND DRILL BUDGET	

LIST OF MAPS

MAP:	LIST OF MAD	APPENDIX 1	LOCATI	ON:
1. FOX CLAIM MAP		IN	POCKET	A
2. REGIONAL GEOLOGY, STEWA	ART CAMP	IN	POCKET	A
3. GEOLOGICAL COMPILATION,	, STEWART PROPERTY.	IN	POCKET	в
4. PROPERTY GEOLOGY, GSC,	1993	IN	POCKET	в
5. CROSS SECTIONS, STEWART	PROPERTY	IN	POCKET	в
6A. ANALYTICAL RESULTS: ST SOUTHERN AREA			POCKET	с
6B. ANALYTICAL RESULTS: ST NORTHERN AREA			POCKET	с
7A. ANALYTICAL RESULTS: RC AREA			POCKET	D
7B. ANALYTICAL RESULTS: RC AREA	, ,		POCKET	D
8. TOPOGRAPHIC MAP WITH RC	DAD SAMPLES	IN	POCKET	Е
9A. DELTAIC ZONE GRID WITH 9B. DELTAIC ZONE GRID WITH 9C. DELTAIC ZONE GRID WITH 9D. DELTAIC ZONE GRID WITH	H SOIL GOLD RESULTS H SOIL COPPER RESUL	IN TSIN	POCKET POCKET	F F
 10A. DELTAIC ZONE GRID WIT NUMBERS 10B. DELTAIC ZONE GRID WIT 		IN		
 11A. DELTAIC ZONE GRID WIT NUMBERS 11B. DELTAIC ZONE GRID WIT 		IN		
12. IP CHARGEABILITY CONTO	OURS	IN	POCKET	Н
13. IP RESISTIVITY CONTOUR	s	IN	POCKET	Ĥ

.

LIST OF APPENDICES:

APPENDIX 1: MAPS

APPENDIX 2: LABORATORY RESULTS - PHASE 1A PROGRAM

APPENDIX 3: LABORATORY RESULTS - PHASE 1B PROGRAM

APPENDIX 4. JVX GEOPHYSICAL REPORT

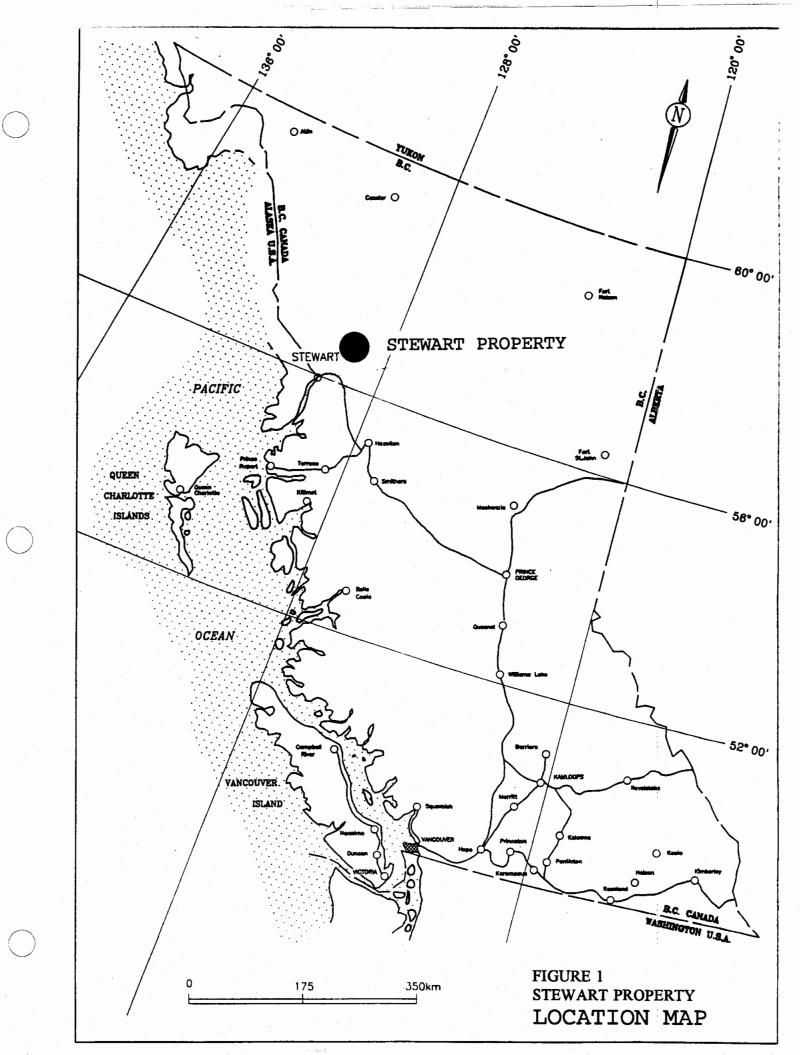
REPORT ON THE PHASE 1A RECONNAISSANCE PROGRAM

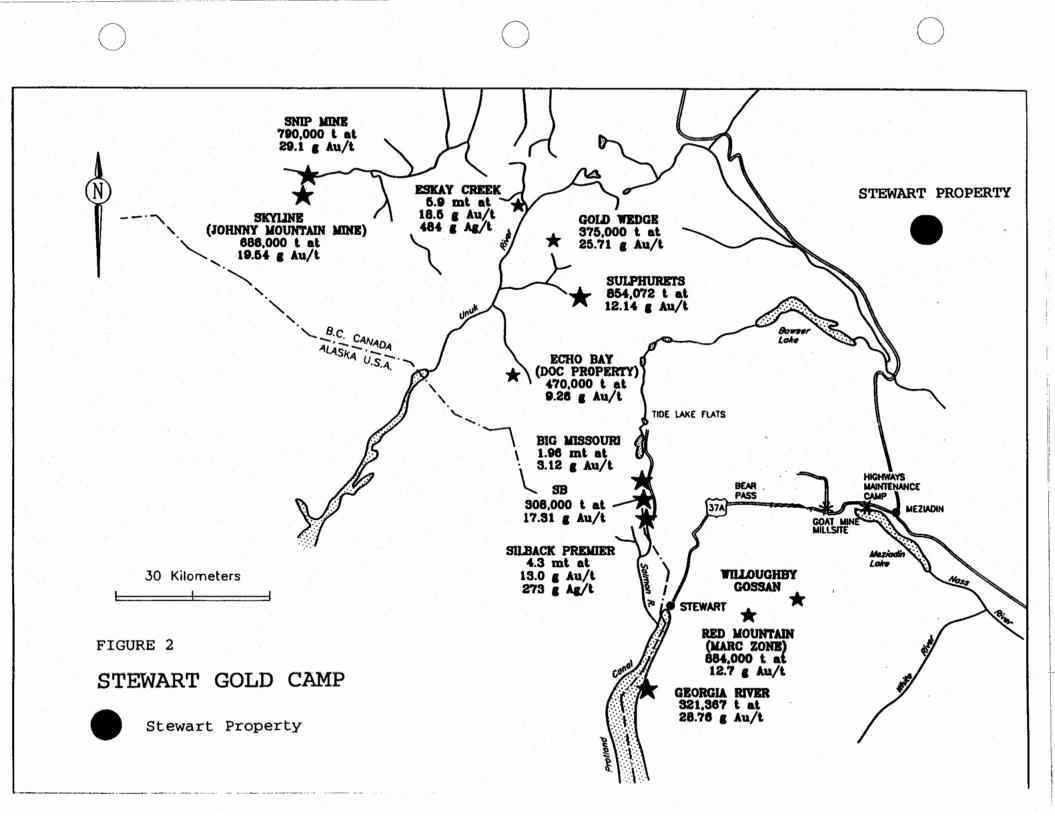
AND ON THE PHASE 1B FOLLOW-UP PROGRAM,

DELTAIC TARGET AREA, STEWART PROPERTY,

NORTHWESTERN BRITISH COLUMBIA

1. INTRODUCTION:


The following report describes the Phase 1A, \$45,000 reconnaissance exploration program that was initially used to evaluate the polymetallic potential of Stewart property; and, the results of the Phase 1B, approximately \$65,000 follow-up program that was initiated in September, 1993, to locate and prioritize drill targets on the Deltaic Zone situated in the southeast area of the Stewart property. The Stewart claims are located on the east side of the Stewart Gold Camp near Oweegee Peak, about 2 km east of the Cassiar Highway (Figure 1).


The Geofine Acquisition Fund ("GEOFUND") acquired the property in June, 1993, and optioned it to American Barrick Resources Corporation ("Barrick") which has the right to earn a 100% interest by funding escalating option payments and work conditions. The property is mainly underlain by the prospective Hazelton Formation that hosts most of the significant mineralization in the Stewart Camp (Figure 2).

The general Stewart area has been explored for both precious and base metals for the last 100 years. Stewart was a boom town at the turn of the century with many small, high grade operations in production. The recorded production figures (2,198,250 Troy ounces produced from 24,562,980 tons) are, in all likelihood, substantially low.

The exploration target on the Stewart property is gold and with mineralization most likely associated polymetallic structurally controlled, sulfidized zones and volcanogenic massive Relevant models include Marc sulfides. the Zone type mineralization (auriferous pyrite and sphalerite), located on Lac Mineral's Red Mountain property; and, the Eskay Creek volcanogenic massive sulfide deposit (Figure 2).

- 1 -

2. PROPERTY, OWNERSHIP:

The Fox 1 to Fox 24 claims (Map 1) comprise 464 claim units (Table 1) and cover 116 square km. The Fox claims are located on British Columbia Mineral Titles Maps M104A/12E and Map 104A/11W.

The claims are registered in the name of David R. Kennedy on behalf of GEOFUND and will be transferred to Barrick at the request of that company. GEOFUND is a private exploration fund sponsored by a group of explorationists and investors who research, acquire and market specific claim groups that are deemed to have excellent gold potential.

Under the terms of an option agreement executed on July 26, 1993, American Barrick has the right to earn a 100% in the Stewart property by making escalating option payments and fulfilling work conditions. During the first year of the agreement, Geofine is the exploration contractor to Barrick on the Stewart property.

3. LOCATION AND ACCESS:

The Stewart property is located in the Skeena Mining Division about 80 km northeast of the town of Stewart, B.C. (Figure 1). Stewart is located at the head of the Portland Canal (Figure 2) and has the distinction of being Canada's most northerly ice free, deep water port.

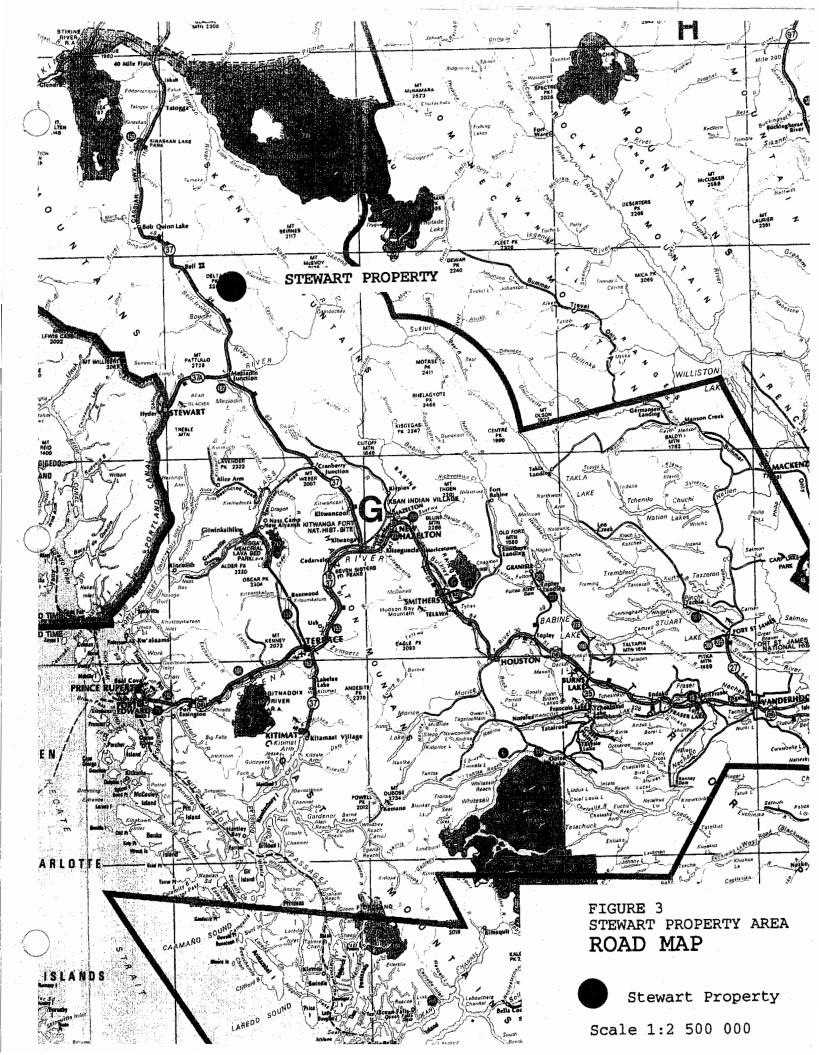
The Stewart property is located about 2 km east of the Cassiar Highway, about one hour's drive north of Meziadin Junction (Figure 3). The property is centred on NTS Map Sheet 104A/12, at latitude 56°40'N, longitude 129°35'W.

The main access to the Stewart property is via helicopter from the Cassiar Highway at Deltaic Creek or from the helicopter base at Bell 2 on the Cassiar Highway about 15 km north of the property. Accommodation can be obtained at reasonable rates at Bell 2 or at the Bulkley Valley Maintenance Camp (BVMC) located at the Highways' Maintenance Yard at Meziadin Lake (Figure 2).

The 1993 program was carried out using the BVMC as an exploration base. Vancouver Island Helicopters supplied a Hughes 500 and a Bell 206 for the Phase 1 programs.

- 4 -

TABLE 1


STEWART PROPERTY, FOX CLAIMS

DELTA PEAK SHEET, 104 A/12 TAFT CREEK SHEET, 104 A/11

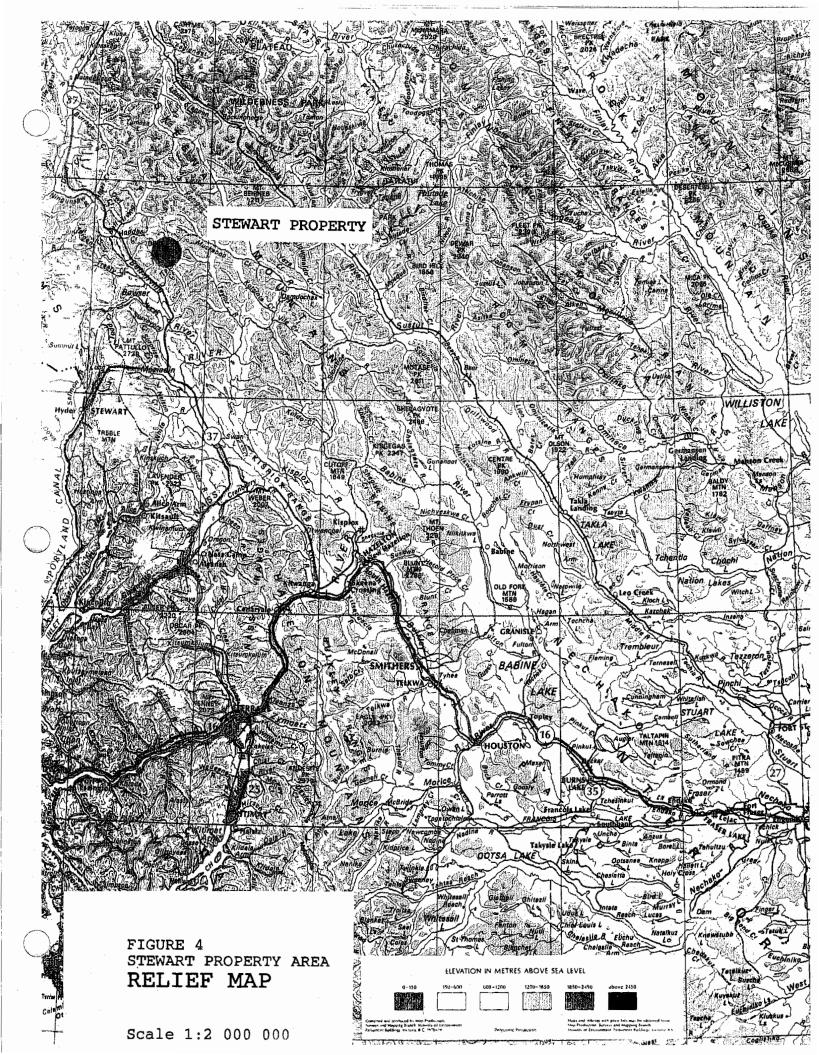
Claim Name	Tag No.	Record No.	Units	Expiry Date
FOX 1	228945	318286	20	JUNE 19/94
FOX 2	228946	318287	20	JUNE 19/94
FOX 3	228947	318288	20	JUNE 19/94
FOX 4	228948	318289	20	JUNE 19/94
FOX 5	228949	318290	20	JUNE 19/94
FOX б	228950	318291	20	JUNE 19/94
FOX 7	228951	318292	20	JUNE 19/94
FOX 8	228952	318293	20	JUNE 19/94
FOX 9	228953	318294	20	JUNE 19/94
FOX 10	228954	318295	20	JUNE 19/94
FOX 11	228955	318296	20	JUNE 19/94
FOX 12	228956	318297	20	JUNE 19/94
FOX 13	228957	318298	20	JUNE 19/94
FOX 14	228958	318299	20	JUNE 19/94
FOX 15	228959	318300	20	JUNE 19/94
FOX 16	228960	318301	20	JUNE 19/94
FOX 17	228961	318852	20	JUNE 30/94
FOX 18	228962	318853	20	JUNE 30/94
FOX 19	223595	320182	20	AUG 19/94
FOX 20	102830	320183	16	AUG 19/94
FOX 21	102831	320184	16	AUG 19/94
FOX 22	229766	321176	16	SEPT 25/94
FOX 23	229767	321177	16	SEPT 25/94
FOX 24	229768	321178	20	SEPT 25/94
Total Units			464	
IOLAI UNILS			404	

Total square kilometers

116

4. TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE & VEGETATION:

The Stewart property is located within the Boundary Ranges of the northern British Columbia Coast Mountains (Figure 4). The general area is characterized by fairly rugged mountainous terrain ranging from 600 to 2298 metres above sea level. Delta Peak, in the centre of the property, and Oweegee Peak, 1 km north of Delta Peak, are both over 2200 m in elevation and dominate the topography. The terrain is incised with young, deep valleys that drain the area to the southwest, generally into the Bell-Irving River that parallels the Cassiar Highway.


A number of the specific target areas (e.g., Glacier, Deltaic) on the property have relatively gentle topography and would be favourable sites for mine development that could be accessed via a road or roads built up the valley. Much of the area immediately to the east of Cassiar Highway on the west boundary of the claims has been lumbered via clear cutting. The claims are approximately 18% covered by glaciers which, with global warming, continue to recede often by tens of feet per year.

The field exploration season extends from June to October. Snowfalls are heavy and can deposit several meters in a 24 hour period. Recorded mean annual snowfalls in the area range from 520 cm at Stewart (sea level) to 1,500 cm at Bear Pass (460 m elevation) to 2,250 cm at Tide Lake Flats (915 m elevation). Summers are characterized by long hours of daylight and pleasant temperatures. The proximity to the ocean and relatively high mountains make for highly changeable and unpredictable weather.

Wildlife in the area consists of mountain goats, foxes, grizzly bears, black bears, wolves, marmots, martins, and ptarmigan. Black bears, grizzly bears, mountain goats and ptarmigan were noted in the course of carrying out the 1993 program.

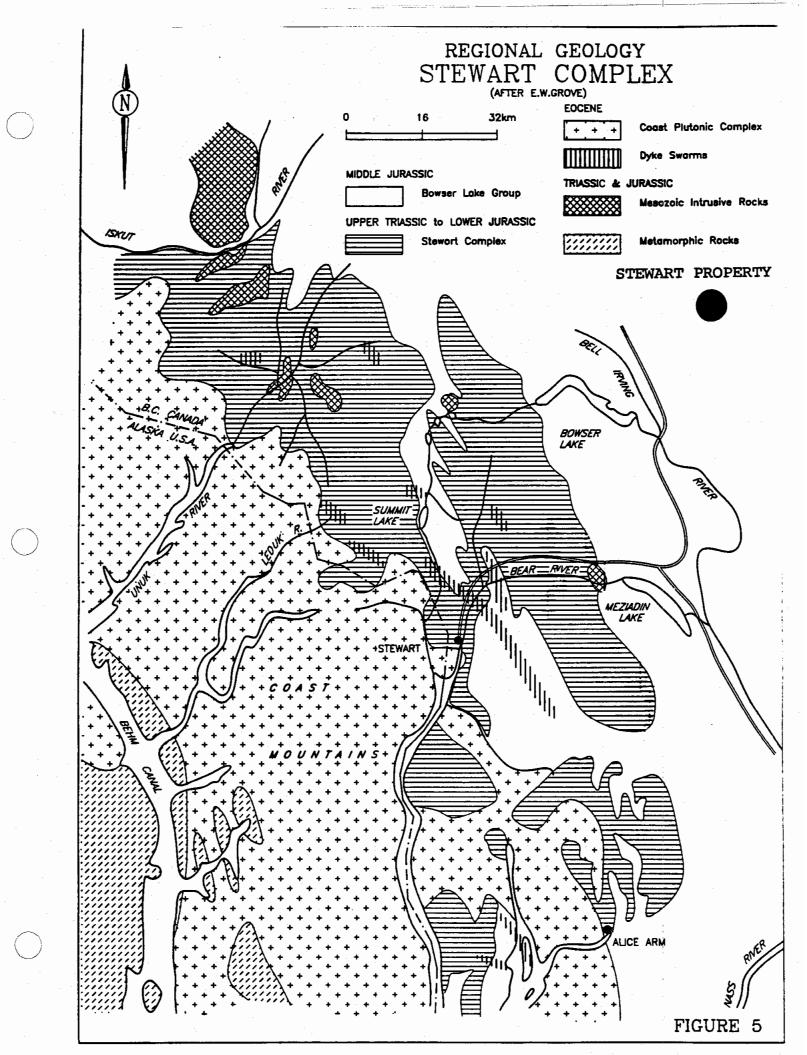
Vegetation in the area ranges from coastal rain forest including mature western hemlock, sitka spruce, fir and cottonwood, with ferns, devil's club and moss as ground cover, to subalpine spruce thickets with heather and alpine meadows. Above treeline, at approximately 1,300 m, bare rock, talus slopes and glaciers with occasional islands of alpine meadow prevail.

- 7 -

5. EXPLORATION HISTORY:

The central area of the Stewart Camp was prospected mainly for visible gold in quartz veins at the close of the 19th century but very little of this work was documented. The Camp, after more recent discoveries that include the Snip, Eskay Creek and Red Mountain deposits (Figure 2), continues to be regarded as elephant country in which low cost discoveries can be made.

Exploration activities on and in the vicinity of the Stewart property apparently only commenced in the 1990's. Indigo Mines funded an Aerodat helicopter borne magnetometer and VLF-EM survey in 1991 that covered the area of the Stewart property and extended beyond its boundaries to the southeast and north. Apparently the company was wound up recently and the ground lapsed. There is no indication that the survey, the magnetic portion of which was useful in outlining Hazelton Formation rocks and structure, was followed-up on the ground.


In the 1990's Cominco apparently carried out regional geochemical surveys in the area before staking the Delta claims that cover a large colour anomaly (Lee, 1990; Hamilton, 1991). Cominco carried out reconnaissance surveys in 1990 and 1991 that delineated very anomalous gold and copper values in rock, stream sediment and talus samples. But the company apparently let the claims lapse in 1993 in view of budget cutbacks in B.C.

Geofine carried out the Phase 1A and 1B programs for Barrick in August, and September, 1993, respectively.

6. REGIONAL GEOLOGY:

The Stewart property is situated on the eastern margin of a broad, north-northwest trending volcanogenic-plutonic belt consisting of the Upper Triassic Stuhini Group and the Upper Triassic to Lower Middle Jurassic Hazelton Group. This belt has been termed the "Stewart Complex" (Figure 5) by Grove (1986) and forms part of the Stikinia Terrane. The Stikinia Terrane together with the Cache Creek and Quesnel Terranes constitute the Intermontane Superterrane which was accreted to North America in Middle Jurassic time (Monger et al 1982). To the west the Stewart Complex is bordered by the Coast Plutonic Complex. Sedimentary rocks of the Middle to Upper Jurassic Bowser Lake Group overlay the Stewart Complex in the east.

The Jurassic stratigraphy was established by Grove (1986) during regional mapping conducted from 1964 to 1968. Formational subdivisions have been and are currently being modified and refined as regional work continues most notably by the Geological Survey Branch of the British Columbia Ministry of Energy Mines and Petroleum Resources (Alldrick 1984, 1985, 1989) and the Geological Survey of Canada (Anderson 1989, Anderson and Thorkelson 1990).

The sedimentological, structural, and stratigraphic framework of the area is being established with some degree of precision.

The Hazelton Group represents an evolving (alkalic/cal-alkalic) island arc complex, capped by a thick turbidite succession (Bowser Lake Group; Figure 5). Grove (1986) divided the Hazelton into four litho-stratigraphic units (time intervals defined by Alldrick 1987):

- 1. The Upper Triassic to Lower Jurassic Unuk River Formation (Norian to Pliensbachian)
- 2. The Middle Jurassic Betty Creek Formation (Pliensbachian to Toarcian)
- 3. The Middle Jurassic Salmon River Formation (Toarcian to Bajocian)
- The Middle to Upper Jurassic Nass Formation (Bathonian to Oxfordian - Kimmeridigian)

Alldrick assigned formational status (Mt. Dilworth Formation) to a Toarcian rhyolite unit (Monitor Rhyolite) overlying the Betty Creek formation. Rocks of the Salmon River Formation are transitional between the mostly volcanic Hazelton Group and the wholly sedimentary Bowser Lake Group and are presently regarded as the uppermost formation of the Hazelton or the basal formation of the Bowser Lake Group.

The Unuk River Formation, a thick sequence of andesitic flows and tuffs with minor interbedded sedimentary rocks, hosts a number of major gold deposits in the Stewart area (Figure 2). The unit is unconformably overlain by heterogeneous maroon to green, epiclastic volcanic conglomerates, breccias, greywackes and finer grained clastic rocks of the Betty Creek Formation. Felsic flows, tuffs and tuff breccias characterize the Mt. Dilworth Formation. This formation represents the climactic and penultimate volcanic event of the Hazelton Group volcanism and forms an important regional The overlying Salmon River Formation has been marker horizon. subdivided in the Iskut area into an Upper Lower Jurassic and a Lower Middle Jurassic member (Anderson and Thorkelson 1990). The upper member has been further subdivided into three north trending facies belts: the eastern Troy Ridge facies (starved basin), the medial Eskay Creek facies (back-arc basin) and the western Snippaker Mountain facies (volcanic arc).

Sediments of the Bowser Lake Group rest unconformably on the Hazelton Group rocks and were originally thought to underlie most of the Stewart property. They include shales, argillites, silt and mudstones, greywackes and conglomerates. The contact between the Bowser Lake Group and Hazelton Group passes between Strohn Creek in the north and White River in the south. The contact appears to be a thrust zone with Bowser Lake Group sediment "slices" occurring within and overlying the Hazelton Group pyroclastics to the west. Two main intrusive episodes occur in the Stewart area: a Lower Jurassic suite of diorite to granodiorite porphyries (Texas Creek Suite) that are comagmatic with extrusive rocks of the Hazelton Group; and, an Upper Cretaceous to Early Tertiary intrusive complex (Coast Plutonic Complex and satellite intrusions). The early Jurassic suite is characterized by the occurrence of coarse hornblende, orthoclase and plagioclase phenocrysts and locally potassium feldspar megacrysts. The Eocene Hyder quartz-monzonite, comprising a main batholith, several smaller plugs and a widespread dike phase, represents the Coast Plutonic Complex.

Middle Cretaceous regional metamorphism (Alldrick et al. 1987) is predominantly of the lower greenschist facies. This metamorphic event seems to be related to compression and concomitant crustal thickening at the Intermontane - Insular superterrane boundary (Rubin et al. 1990). Biotite hornfels zones are associated with a majority of the quartz monzonite and granodiorite stocks.

7. REGIONAL MINERALIZATION AND EXPLORATION ACTIVITIES:

The Stewart Complex is the setting for the Stewart (Silbak-Premier, Silver Butte, Big Missouri), Iskut (Snip, Johnny Mountain, Eskay Creek), Sulphurets, and Kitsault (Alice Arm) gold/silver mining camps (Figure 2). Mesothermal to epithermal, depth persistent gold-silver veins form one of the most significant types of economic deposit. There appears to be a spatial as well as a temporal association of gold deposits to Lower Jurassic calcalkaline intrusions and volcanic centres. These intrusions are often characterized by 1-2 cm sized, potassium feldspar megacrysts and correspond to the top of the Unuk River Formation.

The most prominent example of this type of mineralization is the historic Silbak-Premier gold-silver mine which has produced 56,000 kg gold and 1,281,400 kg silver in its original lifetime from 1918 to 1976. The mine was reopened by Westmin in 1988 with reserves quoted as 5.9 million tonnes grading 2.16 g Au/t and 80.23 g Ag/t (Randall 1988). Geological reserves as of January 1/92 are reported as 418,200 tonnes grading 3.07 g Au/t and 41.60 g Ag/t in Westmin's 1991 Annual Report.

The ore is hosted by Unuk River Formation andesites and comagmatic Texas Creek porphyritic dacite sills and dykes. The ore bodies comprise a series of en echelon lenses which are developed over a strike length of 1800 metres and through a vertical range of 600 m (Grove 1986, McDonald 1988). The mineralization is controlled by northwesterly and northeasterly trending structures and their intersections but also occurs locally concordant with andesitic flows and breccias.

Two main vein types occur: silica-rich, low-sulfide precious metal veins and sulfide-rich base metal veins. The precious metal veins

are more prominent in the upper levels of the deposit and contain polybasite, pyrargyrite, argentiferous tetrahedrite, native silver, electrum, and argentite. Combined sulfides of pyrite, sphalerite, chalcopyrite and galena are generally less than 5%. The base metal veins crosscut the precious metal veins and increase in abundance with depth. They contain 25 to 45% combined pyrite, sphalerite, chalcopyrite and galena with minor amounts of pyrrhotite, argentiferous tetrahedrite, native silver, electrum and arsenopyrite.

Quartz is the main gangue mineral, with lesser amounts of calcite, barite, and some adularia being present. The mineralization is associated with strong silicification, feldspathization, and pyritization. A temperature range of 250 to 260 degrees C has been determined for the deposition of the base and precious metals (McDonald 1990).

Middle Eocene silver-lead-zinc veins are characterized by high silver to gold ratios and by spatial association with molybdenum and/or tungsten occurrences. They are structurally controlled and lie within north, northwest, and east trending faults. This mineralization has been less significant in economic terms.

Porphyry molybdenum deposits are associated with Tertiary Alice Arm Intrusions, a belt of quartz-monzonite intrusions parallel to the eastern margin of the Coast Plutonic Complex. An example of this type of deposit is the B.C. Molybdenum Mine at Lime Creek.

Recent exploration in the Stewart Mining Camp has resulted in the discovery of a number of exciting new deposits. Cominco's Snip Mine commenced production in January of 1991 with reserves of 790,000 tonnes grading 29.1 g Au/t. Production is scheduled at 90,000 ounces per year.

Tenajon Resources Corp. milled 102,500 tonnes with a recovered grade of 8.88 g Au/t. The ore was mined from the Silver Butte property (Figure 2) and processed at Westmin's Premier mill between July 9, 1991 and November 14, 1991 as a joint venture between Tenajon and Westmin.

No work was done on the Eskay Creek road in 1992 as government backing was rescinded. Slashing of the right of way commenced in late August of 1993 with road work scheduled for early 1994. Preliminary reserves at the Eskay Creek deposit are estimated at 5.9 million tonnes grading 18.5 g Au/t and 484.4 g Ag/t. Prime and then partner Placer Dome have carried out underground test mining and a full scale feasibility study is now expected in 1993.

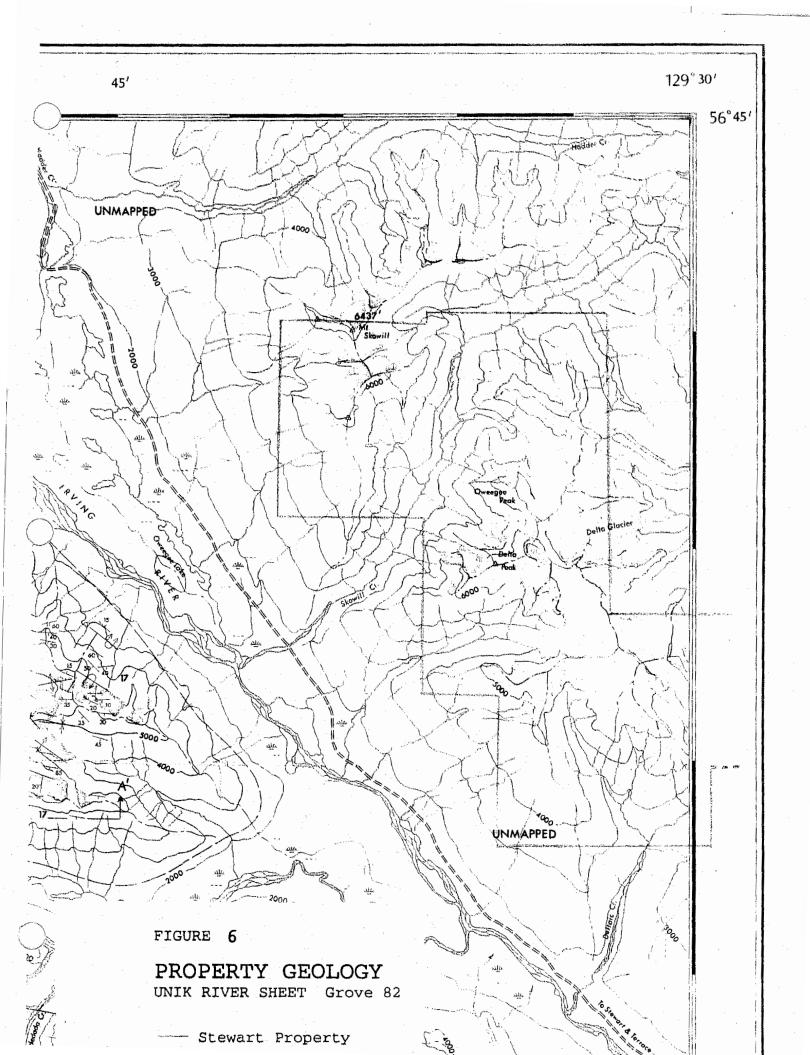
The Eskay Creek 21A Deposit is hosted within the Contact Unit of carbonaceous mudstone and breccia, as well as the underlying rhyolite breccia. Two styles of mineralization are present. The first is a visually striking assemblage of disseminated to near massive stibnite and realgar within the Contact Unit. The second style occurs in the adjacent footwall rhyolite, and features a stockwork style quartz-muscovite-chlorite breccia mineralized with sphalerite, tetrahedrite and pyrite. Highest gold and silver values are obtained where the Contact Unit is thickest and the immediately underlying rhyolite breccia is highly fractured and altered. Drilling has outlined a zone approximately 280 m long, up to 100 m wide and of variable thickness but averaging 10 m.

The Eskay Creek 21B Deposit is approximately 900 m long, from 60 to 200 m wide and locally in excess of 40 m thick. Contact Unit mineralization comprises a continuous stratiform sheet of banded high grade gold and silver bearing base metal sulfide layers, from 2 to 12 m thick. Mineralization appears to be bedding-parallel. Sulfide minerals present include sphalerite, tetrahedrite, boulangerite, bornite plus minor galena and pyrite. Gold and silver is associated with electrum, which occurs as abundant grains associated with sphalerite. Peripheral and footwall to the banded sulfide mineralization are areas of microfracture, veinlet hosted, disseminated tetrahedrite, pyrite and minor boulangerite mineralization.

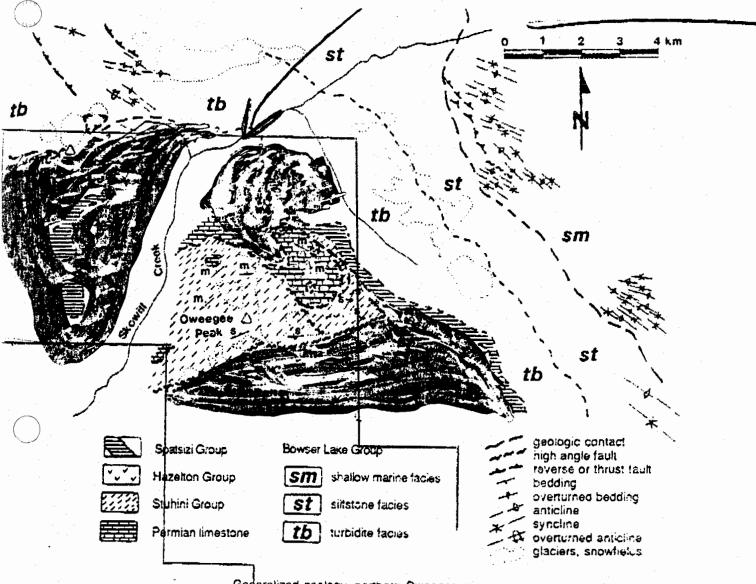
Exploration, including surface diamond drilling with four rigs and underground development and diamond drilling, continued this year at Lac Minerals' Red Mountain project. Geological reserves, for Red Mountain, announced previous to this year's drill program were 2.54 million tonnes grading 12.68 g Au/t (Northern Miner; August 16, 1993). At a public meeting in Stewart on September 29, 1993, Lac indicated that, with the discovery of two additional zones, there was now potential for over 2 million ounces of gold.

The Marc Zone and its northerly extension, the AV Zone, occur as sulfide lenses or cylinders associated with a structural junction and the brecciated contact of the Goldslide Intrusion. The mineralization consists of densely disseminated to massive pyrite and/or pyrite stringers and veinlets and variable amounts of associated pyrrhotite and sphalerite as well as chalcopyrite, arsenopyrite, tetrahedrite and various tellurides. Several phases of mineralization and deformation are indicated by the presence of different generations of pyrite and breccia fragments consisting of pyrite. High grade gold values are usually associated with the semi-massive, coarse-grained pyrite aggregates, but also with stockwork pyrite stringers and veinlets. Gold occurs as native gold, electrum and as tellurides.

8. PROPERTY GEOLOGY:


The property is postulated to cover a tectonic window in which Jurassic Hazelton Group and Palaeozoic Stikine Assemblage rocks have been exposed by the uplift of broad anticlinal features known as the Oweegee and Ritchie Domes and by the erosion of Upper Jurassic sediments of the Bowser Basin.

The evolution of geological thinking with regard to the Stewart property is shown on a series of maps and figures: Figure 6 (Grove, 1982: Unuk River Sheet) on which the area of the property is shown as unmapped; Map 2 (GSC Map 1418A, Iskut River) on which the property geology is shown to comprise Carboniferous and Permian volcanic rocks; Figure 7 (Greig, 1991) on which there are indications of the Hazelton Group volcanic rocks; Map 3 which represents Geofine's regional geological and structural compilation map after Greig (1991) and Questor (1990); and, Map 4 (Delta Peak: GSC, 1993) and accompanying cross sections (Map 5) on which Greig has delineated broad areas of Hazelton Group rocks.


As indicated on Map 4, the southern and northwestern areas of the Stewart property are dominated by rocks of the Lower Jurassic Hazelton Group: intermediate to mafic plagioclase-pyroxene lapilli tuff-breccia, lapilli, ash and dust tuffs; intermediate and felsic flows and derived debris flows; tuffaceous arkose and siltstone; and, conglomerate and sandstone. However, based on Geofine's field observations, in the Deltaic area and as reported by Cominco in 1990, there is some evidence of an altered porphyritic intrusion of The composition appears to vary between a quartz unknown age. porphyry with grey to green quartz phenocrysts to the feldspar (hornblende) porphyry with varying degrees of propylitic alteration reported by Cominco (1990). In the northwest corner of the property, felsic volcanics of the Lower Jurassic Mt. Dilworth Formation appear to be much more widespread than indicated by Map 4.

Volcanic breccias and other pyroclastic rocks observed in the northern and southeastern areas of the property are postulated to be indicative of one or more volcanic centres on or in proximity to the property. In the Deltaic target area, pyritized and silicified pyroclastic rocks and porphyry host the anomalous gold mineralization that was discovered by the Cominco programs and confirmed in the Phase 1A program.

The central area of the property is dominated by a wedge of Upper Triassic sediments and pyroclastic rocks of the Stuhini Group that overlie Permian bioclastic limestones of the Stikine Assemblage (Map 4) and that is in apparent fault contact with sediments and pyroclastic rocks of the Lower and Middle Jurassic Salmon Arm Formation of the Hazelton Group. Greig concludes that the Hazelton Group probably underlies much of the Oweegee Dome and that the Hazelton Group was deposited on a surface with considerable relief.

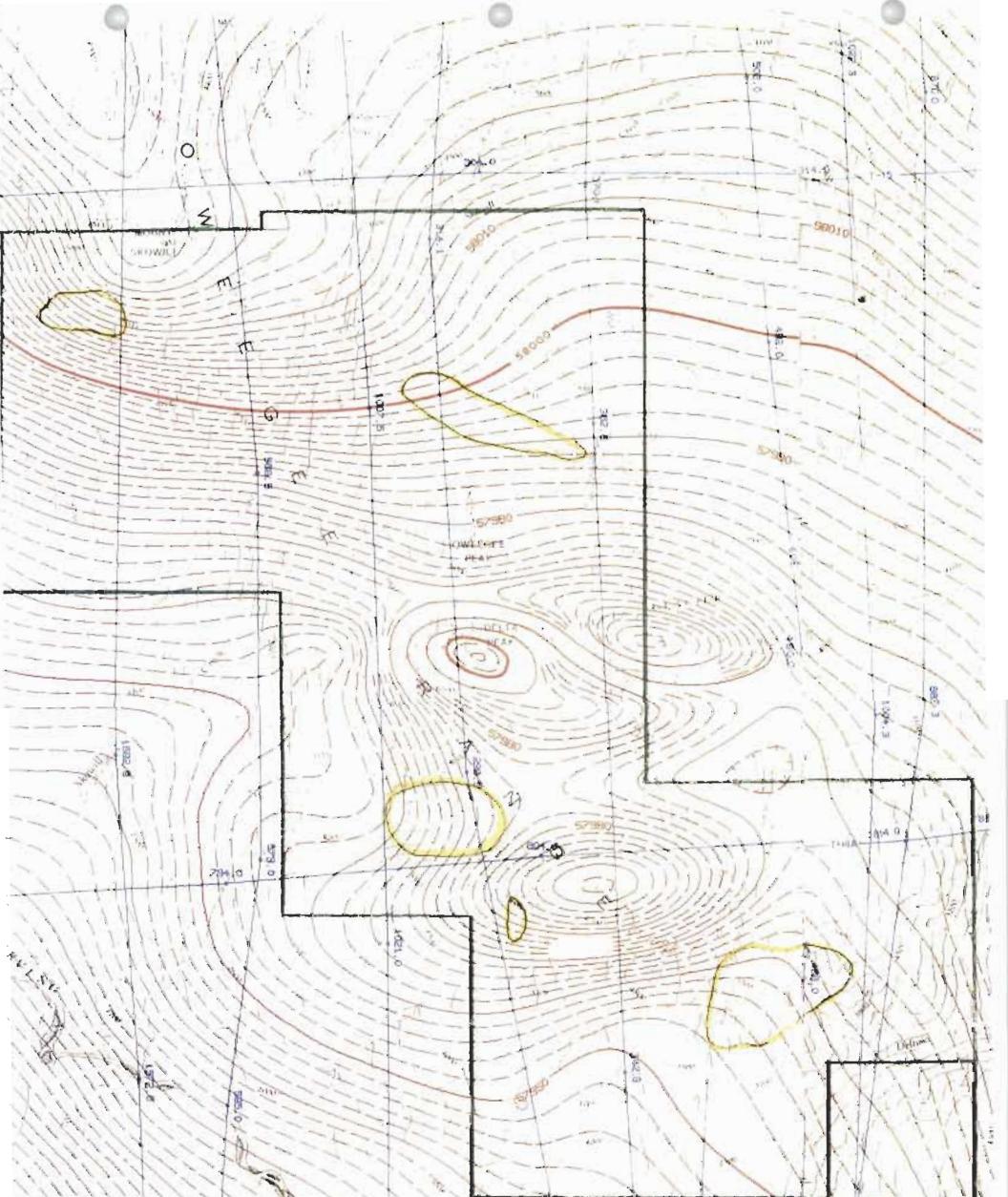
APPROXIMATE STEWART PROPERTY OUTLINE

Generalized geology, northern Oweegee range.

FIGURE 7

STEWART PROPERTY GEOLOGY Greig 1991 The aeromagnetic expression of the stratigraphies comprising the Stewart property is shown in Figure 8. The magnetics are useful for the interpretation of structures (Map 4) beyond those indicated on Map 5. The general structural representation shown on Map 4 is after the Aerodat and Greig's interpretation and includes Geofine's regional field observations. It is concluded that much of the drainage system is probably structurally controlled. The main components of the structural fabric, as at Red Mountain, trend northwest and northeast.

Older faults (pre-Bowser Lake Group) according to Greig (1991) are mainly characterized by northwest dips which place Permian limestone on Stuhini Group rocks, and a steeply south dipping fault which, as mentioned above, juxtaposes the Stuhini Group with Hazelton Group rocks. Generally, a variety of dips and apparent movements characterize the major to minor faults on the Stewart property that require precise delineation by detailed mapping.


Many of the most interesting exploration targets are apparently located near structural junctions associated with older structures that cut the Hazelton Group rocks. In the Deltaic target area, mineralization is thought to be associated with northeast trending structures near their intersection with the Bear Creek Fault. Iron oxide and clay alteration colour anomalies delineate many of the exploration targets which were prioritized and evaluated in the 1993 Phase 1A reconnaissance program.

9. PHASE 1A RECONNAISSANCE PROGRAM:

The Phase 1A exploration program on the Stewart Property was carried out intermittently from August 8 to August 22, 1993 as weather and helicopter availability allowed. In view of the large area of the property and the generally unexplored geological environment offered by the Hazelton Volcanic Group, initial exploration activities were focused on colour anomalies (Maps 3, 4) and related structural controls. The program also included the collection of 69 stream sediment samples to provide regional coverage on the west margin of the property and to evaluate some of the more precipitous drainage basins and areas of glacial cover.

On August 19, 1993, the Delta 1 and 2 claims previously held by Cominco came open and the area was staked as Fox 19, 20 and 21 to form part of the Stewart property (Map 1). The ground covers one of the most intensely developed colour anomalies on the property and on which anomalous copper, zinc and gold values in talus and stream sediment anomalies were outlined by Cominco (see Exploration History, p. 9). Confirmation and follow-up sampling was then carried out by Geofine as budget permitted on the Deltaic target area.

- 18 -

FIGURE 8

AEROMAGNETIC TOTAL FIELD Maps 9201G & 9187G

- Stewart Property Outline

Scale 1:50 000

Expenditures for the approximately \$45,000 Phase 1A program are summarized by category in Table 2. Three hundred and five samples, including check samples, were collected and assayed for gold using FA/AA on a 30 gram pulp and were also subject to a 31 element ICP scan. The samples are described in Table 3 along with the assay and ICP results. The original lab sheets are included in Appendix 2.

Specific target areas that were evaluated are shown on the more detailed geological Map 4 and on the general geological and structural fabric Map 3 as compiled from field observations and the Aerodat aeromagnetic survey carried out by Indigo Gold Mines in Gold, copper and zinc results for stream sediment, soil 1991. samples and talus fines from the southern and northern target areas are plotted on Maps 6A and 6B, respectively; gold, copper and zinc results for rock, rock talus and float samples for the respective areas are plotted on Maps 7A and 7B. Based on Geofine's experience in high velocity drainage and mineralized halo environments of the Stewart Camp, generally relevant threshold values for gold, copper, and zinc used for sediments, rocks and talus samples in this study are 8 ppb, 80 ppm and 90 ppm, respectively. The results of the work carried out in each target area are described below:

A. Deltaic Zone:

The Deltaic Zone (Maps 3, 4, 6A, 7A) is associated with an extensive iron oxide and clay (including jarosite/alunite) colour anomaly and is mainly located on ground recently held by Cominco. The colour anomaly can be traced intermittently over an area 3 km by to over 0.8 km and is localized near the intersection of interpreted northwest and northeast trending structures (Map 3).

Assessment work files indicate that in 1990 Cominco utilized a geochemical survey to outline anomalous gold, copper and zinc values in soil and silt samples ranging up to 599 ppb, 737 ppm and 1550 ppm, respectively, over an area 600 m by 700 m with obvious extensions to the north, east and west. The target was apparently copper-gold mineralization associated with Hazelton volcanic rocks intruded by an "intermediate feldspar-hornblende porphyry with strong hematite-epidote alteration". In 1991 the company carried out limited follow-up chip sampling and concluded that the anomalous mineralization in surface samples was not of economic interest.

As observed by Geofine in two days of initial reconnaissance sampling activities on the property, the ubiquitous pyrite with or without traces of sphalerite and more localized copper (chalcopyrite, malachite, azurite) mineralization is associated with altered (oxidized, carbonatized, silicified, clay altered jarosite/alunite, sericitized) tuffs, breccias and porphyries. The OCTOBER 15, 1993

TABLE 2

STEWART PROPERTY PHASE 1A PROGRAM SUMMARY OF EXPENDITURES

Expense	(\$)
Expense Accounts	2200
Supplies/Rental	2112
Communication	334
Salaries: Field/Report	15311
Subsistence	1127
Mob/Demob	1013
Aircraft Charter	14869
Vehicle Rental	1577
Analyses	559 9
Shipping	198
Copying	125
Recording/Filing Fees	520
Insurance	<u>268</u>

P-21

TOTAL

\$45,253.00

TABLE 3

PHASE 1A ANALYTICAL RESULTS & SAMPLE DESCRIPTIONS

PROJECT 6000 SUMMARY OF SAMPLES

	SAMPLE NAME TYPE	MINERALIZATION	LOCATION
NU			
	LEGEND OF SAMPLE TYPES Project 6000		
	T = talus TF = talus fines		
	TC = composite of talus F = float		
н - С.	S = stream sediment R = insitu rock		
	R-Grab = insitu grab sample Comp-2m = insitu rock compos Chip-2m = chip sample over 2r		

>

SS CHK - stream sediment check sample 62129 used LR CHK - low rock check sample HR CHK - high rock check sample

c:\us4\sampzone.wk3

DELTAIC ZONE

PROJECT 6000 SUMMARY OF SAMPLES

SAMPLE SAMPLE NO TYPE

NAME

MINERALIZATION

LOCATION

DELTAIC CREEK ZONE

62001 T	Altered Volcanic	2% py, mod carb'd	Deltaic Cr-Fox 19
62002 T	Andesite	3-5% fine granular py	Deltaic Cr-Fox 19
62003 T	Breccia	2% py; sil'd matrix	Deltaic Cr-Fox 19
62004 T	Breccia	5% fine py; rusty	Deltaic Cr-Fox 19
62005 T	Altered Volcanic	some oxidized material	Deltaic Cr-Fox 19
62006 T	Altered Volcanic	strong jar/alunite; sulfide smell	Deltaic Cr-Fox 19
62007 T	Silicified Alt'd Volcanic	7-8% fine py; massive	Deltaic Cr-Fox 19
62101 F	Brecciated fragmental	5-7% py, tr sph blebs & diss	Deltaic Cr-Fox 19
62102 S	hetro sand	oxidized material	Deltaic Cr-Fox 19
62103 F	Brecciated fragmental	5-7% diss sulf	Deltaic Cr-Fox 19
62261 Comp-2m	Alt'd Rhyolite Porphyry	<1% fine py; sil'd, minor carb	Deltaic R-Fox 19
62262 R-grab	Alt'd Rhyolite Porphyry	<1% fine py; qtz-carb stwk	Deltaic R-Fox 19
62263 S	hetro sand	some ox'd material	Deltaic R-Fox 19
62264 S	hetro sand-gravel	some ox'd material	Deltaic R-Fox 19
62265 S	hetro sand graver	some ox'd material	Deltaic R-Fox 19
62266 S	hetro sand	some ox'd material	Deltaic R-Fox 19
62267 Comp-3m	Alt'd Breccia	2% diss py & sph in veinlets	Deltaic R-Fox 19
62268 S	hetro sand		Deltaic R-Fox 19
62269 F	Breccia	5% diss py	Deltaic R-Fox 19
62270 T	Alt'd Breccia	3-4% diss sulfs in veinlets, sph;	Deltaic R-Fox 19
62271 F	Pyroclastic	1% diss py	Deltaic R-Fox 19
62272 S	hetro sand	some ox'd material	Deltaic R-Fox 19
62273 F	Rhyolite Porphyry	1-2% py & in vienlets	Deltaic R-Fox 19
62274 R	Rhyolite Porphyry	1% diss py	Deltaic R-Fox 19
62275 F	Rhyolite Porphyry	mod carb'd	Deltaic R-Fox 19
62276 F	Alt'd Volcanic	3-4% py as diss & veinlets	Deltaic R-Fox 19
62277 T	Alt'd Breccia	2-3% diss sulfs in veinlets, sph;	Deltaic R-Fox 19
62278 S	hetro sand	minor ox'd material	Deltaic R-Fox 19
62279 S	hetro sand	minor ox'd material	Deltaic R-Fox 19
62280 T	Pyroclastic	2-3% diss sulf in frags & matrix	Deltaic R-Fox 19
62281 S	hetro sand-gravel	minor ox'd material	Deltaic R-Fox 19
62282 S	hetro sand-gravel	increased ox'd material	Deltaic R-Fox 19
62283 Comp-1m	Altered Felsic Volcanic	3-4% diss py & sph	Deltaic R-Fox 19
62284 F	Altered Felsic Volcanic	3-5% diss py & sph; no carb	Deltaic R-Fox 19
62285 F	Altered Felsic Volcanic	5% diss py in sil'd matrix	Deltaic R-Fox 19
62286 SS CHK		······································	
62287 LR CHK			
62288 Chip-2m	Altered Porphyritic Vol	minor diss py as blebs;	Deltaic R-Fox 13
62289 Comp-5m	Propylitically Alt'd Vol	minor diss py as blebs	Deltaic R-Fox 13
62290 Comp	Altered Rhyolite Porphyr	•	Deltaic R-Fox 13
62291 Chip-1.5m		<1% py, well carb, monr epi & ser	
62292 Chip-2m	Altered Rhyolite Porphyr		Deltaic R-Fox 13
62293 Chip-1m	Breccia	1-2% diss py matrix; to 10% in fra	
62294 S	silt	· · · · · · · · · · · · · · · · · · ·	Deltaic R-Fox 13
62295 Comp-5m	Alt'd Breccia	4% diss py matrix; to 10% in frags	
62296 S	clay-silt		Deltaic R-Fox 13
62297 S	sand	minor ox'd material	Deltaic R-Fox 19, 16
62298 F	Altered Vol Porphyry	5% py as diss & blebs	Deltaic R-Fox 19, 16
	Altered Vol Porphyry	5-7% py as diss & blebs	Deltaic R-Fox 19, 16
	hetro sand	some ox'd material	Deltaic R-Fox 19, 16

PROJECT 6000 SUMMARY OF SAMPLES

) SAM NO	PLE	SAMPLE TYPE	NAME	MINERALIZATION	LOCATION
. 6	52301	F	Altered Vol Porphyry	5% py as diss & blebs; more ox'd	Deltaic R-Fox 19, 16
e	52302	S	hetro sand	minor ox'd material	Deltaic R-Fox 19, 16
. 6	62303	T	Alt'd Tuff	5-7% py in veins & diss; good stwk	Deltaic R-Fox 19, 16
e	523 0 4	Т	Alt'd Tuff	10% py in veins & diss; good stwk	Deltaic R-Fox 19, 16
e	62305	Т	Alt'd Tuff	5% diss sulfs;bleached	Deltaic R-Fox 19, 16
e	62306	т	Alt'd Tuff	5% py in veins & diss; good stwk	Deltaic R-Fox 19, 16
e e	62307	т	Chlorite Carb Schist	1-2% py; good stwk	Deltaic R-Fox 19, 16
e	62341	T	Breccia	2-3% py; chl on fractures	Deltaic Cr-Fox 19
6	62342	TFines	hetro sand-gravel	some oxidized material	Deltaic Cr-Fox 16
	62343		Tuffaceous Breccia	3-4% diss py in frags & matrix	Deltaic Cr-Fox 16
	52344		Tuffaceous Breccia	2-3% diss py; vuggy, ox'd	Deltaic Cr-Fox 19
÷€	62345	R	Atlered Tuff	host of Gossan 62343	Deltaic Cr-Fox 19
	62346		Altered Tuff	sheared chl in veins	Deltaic Cr-Fox 19
	52347		sand-gravel	10% ox'd material	Deltaic Cr-Fox 19
		TFines	hetro sand-gravel	some oxidized material	Deltaic Cr-Fox 19
6	52349	F	Tuff	2-3% diss py; frags	Deltaic Cr-Fox 19
. 6	62350	т	Ox'd Tuff	2-3% very fine diss in frags	Deltaic Cr-Fox 19
6	62351	Soil-2m	hetro sand-gravel		Deltaic Cr-Fox 19
6	62352	Soil-2m	hetro sand		Deltaic Cr-Fox 19
6	62353	TFines	hetro sand-gravel		Deltaic Cr-Fox 19
6	62354	т	Alt'd Tuff	5% finely diss py; jar/alunite	Deltaic Cr-Fox 19
	62355		Sil'd Tuff	2-3% diss py; minor ox'd	Deltaic Cr-Fox 19
/	62356		hetro sand gravel	some oxidized material	Deltaic Cr-Fox 19
	62357		Alt'd Tuff	5% diss py; lim'd	Deltaic Cr-Fox 19
		TF-3m	hetro sand gravel	some oxidized material	Deltaic Cr-Fox 19
		TF-3m	hetro sand gravel	some oxidized material	Deltaic Cr-Fox 19
	62360		Alt'd Tuff	2-3% diss py	Deltaic Cr-Fox 19
	62361		Alt'd Tuff		Deltaic Cr-Fox 19
	62362		Alt'd Tuff		Deltaic Cr-Fox 19-Cu Zone
	52363			1-2% diss py; well ox'd, mal stains	
	2364		Alt'd Tuff	••••••	Deltaic Cr-Fox 19
	2365		Alt'd Tuffaceous Breccia		Deltaic Cr-Fox 19
	2366		hetro sand gravel	some oxidized material	Deltaic Cr-Fox 19
	2367		hetro sand gravel		Deltaic Cr-Fox 19
		TC-20m	Alt'd Tuffaceous Breccia		Deltaic Cr-Fox 19
	2369		hetro sand gravel		Deltaic Cr-Fox 19
	2370		hetro sand gravel		Deltaic Cr-Fox 19
	2371		Alt'd Tuff		Deltaic Cr-Fox 19
	2372				Deltaic Cr-Fox 19
	2373		Alt'd Tuff		Deltaic Cr-Fox 19
	2374		sand Bhualita Brassia		Deltaic Cr-Fox 19
	2375		Rhyolite Breccia		Deltaic Cr-Fox 19
	2376				Deltaic Cr-Fox 19-Cu Zone
	2377		Ox'd Breccia	2-3% diss py; mal/azurite, 10% chl	
	2378		Alt'd Breccia		Deltaic Cr-Fox 19-Cu Zone
	2379 2380		Alt'd Breccia	2-3% diss py; mal/azurite; well chl'd	
			Alt'd Breccia	2-3% diss py; mal/azurite;20% chl	
/	2381		Alt'd Breccia	2-3% diss py; 5% mal/azurite	Deltaic Cr-Fox 19-Cu Zone
		SS CHK	Alt'd Tuff Proces	minor mal/anurita	Deltais California 10 California
	2383				Deltaic Cr-Fox 19-Cu Zone
	2384 [°]				Deltaic Cr-Fox 19-Cu Zone
Ŭ,	2385		Alt'd Tuff Breccia	10% py as diss & veins	Deltaic Cr-Fox 19

PROJECT 6000 SUMMARY OF SAMPLES

SAMPLE NO	SAMPLE TYPE	NAME	MINERALIZATION	LOCATION
6238	6 Т	Alt'd Tuff Breccia	2-3% diss py; 2% mal stains	Deltaic Cr-Fox 19
6238		Alt'd Tuff Breccia	10% py as diss & veins	Deltaic Cr-Fox 19
6238	8 LR CHK			

PROJECT 6000 - SAMPLE ANALYSES

SAMPLE NO	SAMPLE Type	AU-FIRE PPB	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	К %	LI PPM	MQ %	MN PPM	MO	NA %	NI PPM	P PPM	РВ РРМ	88 PP M	
		DELTAIC	CREEK Z	ONE AI	NALYTI	CAL RE	SULTS																		
6200		54	0.1	2.37	1	1	37	0.1	16	1.08	0.1	12	219	4.52	0.07	11	1.51	1419	7	0.05	1	1050	33	12	
6200	- ·	340	0.1	3.25	66	1	13	0.1	23	1.08	0.1	28	212	9.17	0.02	21	206	3173	1	0.02	1	790	67	13	
6200		31.	0.1	1.03	19	71	51	0.1	- 18	0.14	0.1	11	67	6.22	0.2	11	1.03	631	1	0.04	1	1130	89	1	
6200		78	0.1	0,96	28	32	87	0.1	11	0.3	0.1	6	. 76	4.02	0.19	4	0.46	474	· 6	0.03	1	1130	16	2	
6200		71	0.1	0,93	1	57	48	0.1	.9	0.35	0.1	5	12	3.51	0.18	. 3	0.82	701	5	0.04		910	24	3	
6200 6210		23 46	0.1 0.1	2.94	1	1	13	0.1	17	0.74	0.1	17	197	5.23	0.03	26	3027	1914	Б	0.04	14	1240	31	17	
6210		265	0.1	1.05 2.30	24	40	38 92	0.1 0.1	15	0.34 0.28	0.1	· 6 19	31	3.76 6.94	0.15 0.08	7	0.9	901 1749	2 18	0.03 0.03		1110	21	5	
6210		85	0.1	0.64	15	77	37	0.1	9	0.26	0.1	9	424 113	4.41	0.08	11	0.9	264	16	0.03	1	2240	59 7	7	
	1 Comp-2m	20	0.3	2.25	10	1	136	0.1	16	2.27	0.1	16	67	3.64	0.27	19	1.69	878	. 3	0.03	5	970	25	6	
	2 R-Greb	4	0.1	2.46			275	0.1	16	2.48	0.1	20	54	4.7	0.15	20	2.05	1201	3	0.02	11	1060	25	5	
6226		3	0.1	2.36	1	46	172	0.1	15	1.25	0.1	18	75	4.28	0.09	18	1.76	904	3	0.02	20	920	28	5	
6226		20	0.1	2.59	i 1	1	97	0.1	19	0.86	0.1	22	103	5.87	0.15	21	2	1213	3	0.02	1	930	28	· 1	
6226	5 S	31	0.1	2.65	1	2	44	0.1	20	1.01	0.1	23	107	5.71	0.12	18	2.15	1122	3	0.02	1	1010	26	1	
6226	6 S	19	0.4	2.78	1	50	87	0.1	19	1.95	0.1	19	79	4.48	0.12	16	1.91	863	3	0.03	7	880	25	5	,
6226	7 Comp-3m	3	0.2	2.92	1	1	88	0.1	26	1.14	0.1	25	88	6.15	0.13	26	2.68	1316	2	0.03	7	1010	29	2	
6226	8 S	7	0.4	2.58	1	56	152	0.1	19	1.81	0.1	18	79	4.45	0.12	16	1.77	879	4	0.03	10	900	25	5	,
6226	9 F	57	0.1	2.14	. 1	. 1	31	0.1	19	1.1	0.1	20	509	4.65	0.11	17	2.08	1041	12	0.05	3	1080	25	4	,
6227		32	0.1	1.32	22	1	25	0.3	8	3.25	0.1	17	114	4.54	0.07	10	2.69	1549	3	0.03	10	900	. 32	2	;
6227		. 5	0.1	2.73	1	1	21	0.1	17	1.47	0.1	19	68	4.85	0.07	20	2.37	1126	3	0.03	4	980	26	5	
6227		40	0.1	2.85	1	t; 1	43	0.1	21	0.98	0.1	- 24	114	5.9	0,15	20	2.26	1147	3	0.02	· 1	830	27	· 2	
6227		4	0.1	3.52	1	1	16	0.1	26	1.63	0.1	26	80	6.85	0.05	16	3.24	1390	4	0.04	1	1320	28	· . 7	
6227		2	0,1	2.98	1	1	15	0.1	23	2.21	0.1	33	135	6.98	0.03	11	3.38	1044	2	0.04	18	1060	23	. 2	;
6227		· · _									·								· · .		· · ·				
6227		6	0.7	2.08	1	!	48	0.1	18	3.48	0.1	17	34	3.95	0.2	14	1.17	1149	3	0.04	1	1200	26	4	
6227		17	0.1	0.79	42	. 1	22	0.3	6	2.73	0.1	19	150	3.91	0.15	4	1.82	1154	3	0.02	5	870	29	1	
6227 6227		21 20	0.1 0.1	2.71 2.72	1		45 38	0.1 0.1	19	0.93	0.1	23	120	5.61 5. B 3	0.13	20	2.18	1255	3	0.02	1	860 880	28	1	
6228		67	0.1	1.14	23	4	- 30	0.1	20 7	1.06 1.4	0.1 0.1	23 14	103 271	4.2	0.12	18	2.19 0.93	1533	3	0.02	3	1110	22 20		
6228		22	0.1	2.6	23		79	0.1	22	0.92	0.1	23	121	5.86	0.19	20	2.01	1448	. 3	0.04	· 3	1030	20	i	
6228		132	0.1	2.32	12	i	139	0.1	17	0.55	0.1	25	303	6.59	0.24	17	1.4	2810	4	0.02	1	1370	61	· 1	
	3 Comp-1 m	5	0.1	1.8	11		47	0.1	14	0.92	0.1	12	16	3.43	0.15	8	1.15	1533	3	0.05	1	900	24	5	
6228	-	12	0.1	2.69	13	i	22	0.1	28	2.23	0.1	35	123	7.66	0.04	25	3.56	1959	2	0.03	1	930	38	· ĭ	
6228		13	0.1	2.55	32	1	43	0.1	25	1.46	0.1	40	52	6.14	0.08	24	3.13	1885	ī	0.04	· i	850	82	· • •	
	6 SS CHK	5	0.1	2.52	- 1	53	194	0.1	16	1.33	0.1	18	74	4.3	0.15	19	1.76	908	4	0.02	21	910	25	5	
	7 LR CHK	2	0.2	0.42	27	1	18	0.2		0.2	0.1	3	11	0.87	0.13	5	0.17	219	2	0.05	4	200	13	2	2
6228	8 Chip-2m	1	0.1	1.82	1	1	64	0.3	5	0.51	0.1	9	28	3.2	0.28	12	1.33	684	. 3	0.03	1.1	1190	23	7	
	9 Comp-5m	2	0.3	3.39	1	1	68	0.1	23	2.18	0.1	27	125	6.06	0.06	24	2.68	858	3	0.04	. 1	890	28	7	١.
6229	0 Comp	4	0.1	2.84	1	1	33	0.1	22	1.93	0.1	35	141	6.92	0.03	18	2.73	785	2	0.03	7	900	22	1	
6229	1 Chip-1.5m	5	0.1	3.01	1	- 1	67	0.1	24	1.77	0.1	33	- 145	7.57	0.03	18	2.79	776	3	0.05	6	1020	21	1	
6229	2 Chip-2m	4	0.1	3,37	1	1	43	0.1	24	2.13	··· 0.1	35	146	7.48	0.02	- 17	2.6	691	3	0.03	1	1020	22	2	
6229	3 Chip-1 m	13	0.1	2.37	1	1	168	0.1	20	2.16	0.1	22	96	Б.46	0.12	16	2.14	1165	3	0.04	3	970	22		
6229	4 S	6	1	3.72	1	1	117	0.1	35	1.34	0.1	35	57	7.21	0.38	14	2.23	1074	2	0.78	5	1700	29		
6229	5 Comp-5m	5	0.1	1.41	2	1	39	0.1	14	0.83	0.1	14	43	3.97	0.17	13	1.23	794	1	0.05	· 1	1060	18	1	ļ

 \bigcirc

SAMPLE NO	SAMPLE TYPE	SR PPM	TH PPM	TI PPM	V PPM	ZN PPM	GA PPM	SN PPM	W PPM	CR PPM
62001	T	9	69	2105	132.2	94	23	1	8	54
62002	Т	30	92	3182	182.5	117	32	1	10	57
62003	т	1	58	2684	117.9	88	15	1	6	30
62004	т	20	46	1634	40.9	25	11	-1	. 4	23
62006	T T	10	51	1143	65	67	14	1	4	26
62007	T	9	93	2013	187.8	101	35	. 1	10	53
62101	F	14	66	648	50.1	106	19	1	5	32
62102	S	22	66	1644	75.3	192	18	1	5	2
62103	F	1	52	1125	20	46	8	1	4	30
62261	Comp-2m	91	62	2288	62.2	85	22	1	6	27
62262	R-Grab	55	63	2208	110.5	69	26	1	· 8	51
62263		24	74	2474	144.1	78	23	1	7	31
62264	S	28	81	2978	170.3	115	24	1	8	26
62265	-	37	75	3467	193	60	25	1	8	24
62266		28	63	3199	170.9	68	24	1	7	29
	Comp-3m	27	89	4456	185.1	89	29	1	11	84
62268		29	60	3083	163.2	69	23	1	7	27
62269		93	85	2336	151.8	. 99	26	. 1	- 8	51
62270		78	85	75	142.7	170	32	1	8	50
62271		20	81	2679	161.7	72	26	1	. 9	54
62272		37	86	3468	200.9	82	25	· 1	8	26
62273		33	94	4017	227.6	102	34	. 1	11	40
62274		105	86	3770	226.3	73	29	1	11	70
62275				_						
62276		1	41	2774	97.4	59	22	. 1	6	34
62277		51	73	69	107.8	101	24	1	5	32
62276		28	75	3272	184.8	82	26	1	8	24
62279	-	38	77	3566	197.9	78	25	1	8	24
62280		35	71	61	116.2	177	21	1	6	54
62281		29	73	3799	154.4	126	24	1	7	15
62282		14	74	2460	104.1	403	24	1	6	10
	Comp-1m	70	71	1892	69.5	117	23	1	6	47
62284	•	34	78	4581	302.4	149	32	1	11	43
62285		29	89	4095	294.3	121	31	1	10	28
	SS CHK	28	72	2484	147	83	23	1	7	34
	LR CHK	5	160	163	14.9	28	8	1	7	142
	3 Chip-2m	13	82	112	72.3	76	21	1	5	12
	Comp-5m	.9	79	3514	241.5	70	30	1	11	49
) Comp	1	88	3530	259.8	73	30	1	11	57
	Chip-1.5m	1	84	4032	278.1	78	29	1	12	75
	2 Chip-2m	1	85	3967	287.8	76	30	1	11	51
	3 Chip-1 m	30	68	3230	197.9	79	27	1	11	92
62294		130	64	6725	150.5	102	24	1	9	17
62295	5 Comp-5m	16	68	2161	115.7	67	20	1	6	43

PROJECT 6000 - SAMPLE ANALYSES

	SAMPLE	SAMPLE TYPE	AU-FIRE PPB	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	СО РР м	CU PPM	FE %	к %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	8B PPM	
	62296	S	6	0.1	3.18	1	1	104	0.1	23	0.84	0.1	26	98	6.34	0.22	25	2.08	1877	3	0.09	1	1170	29	2	
	62297	S	. 7	0.1	2.56	່ 1	1	22	0.1	21	2.17	0.1	22	99	5.25	0.09	19	2.08	1163	3	0.02	1	1080	28	2	
	62298	F ·	57	0.1	1.89	1	1	163	0.1	11	0.66	0.1	8	65	3.68	0.35	5	0.64	467	. 5	0.06	- 1	940	19	3	
	62299	F	36	0.1	1.47	· 1	1	89	0.1	12	0.38	0.1	10	104	4.38	0.44	7	0.92	559	2	0.04	1	1250	: 20	1	
	62300	S	11	0.1	2.58	<u> </u>	1	26	0.1	22	1.83	0.1	21	94	5.19	0.12	. 19	2.01	1228	.2	0.02	1	1160	26	. 1	
	62301	F	122	0.1	0.73	11	. 1	22	0.1	7	1.03	0.1	16	189	4.28	0.18	- 9	0.68	466	. 8	0.05	1	950	11	1	
	62302	S	5	0.4	2.88	1	32	19	0.1	22	1.83	0.1	21	87	5.15	0.09	18	2.25	1006	3	0.02	1	890	27	5	
	62303	т	21	0.1	0.88	1	63	31	0.1	8	1.23	0.1	12	47	4.44	0.22	7	0.87	467	5	0.05	1	1170	13	1	
	62304	Т	134	0.1	1.02	. 1	1	37	0.1	14	0.89	0.1	12	761	3.76	0.27	9	0.75	460	9	0.05	. 1	1060	16	1	
	62305	т	209	0.4	1.02	· 1	3	58	0.1	11	0.23	0.1	7	402	3.35	0.43	· 4	0.41	160	4	0.03	· · 1	870	- 6	1	
	62306	Т	6	0.7	2.25	1	1	32	0.1	21	2.8	0.1	. 22	65	5.54	0.13	20	2.28	811	- 3	0.04	1	1260	21	1	
	62307	т	15	0.5	5.96	. 1	1	4	0.2	16	5.12	0.1	21	85	4.92	0.07	16	2.51	1287	129	0.01	1	530	56	35	
	62341	т	8	0.1	2.67	1	1	12	0.1	23	2.66	0.1	18	91	4.75	0.06	19	2.31	1112	· 4	0.04	1	1150	31	9	
	62342	TF	14	0.1	2.04	1	· 1	32	0.4	19	0.67	0.1	23	84	5.73	0.26	26	2.08	1169	4	0.02	· 1	950	35	1	
	62343	R	18	0.1	1.42	1	1	28	0.1	20	0.29	0.1	15	60	5.09	0.18	15	1.57	612	2	0.03	1	1010	28	1	
	62344	T	13	0.1	1.07	1	1	22	0.1	18	0.27	0.1	12	40	4.61	0.2	11	1.04	553	4	0.02	1	1030	38	1	
	62345		8	0.1	2.47	1	1	33	0.1	17	1.94	0.1	17	80	4.15	0.09	18	2.23	1032	3	0.03	1	1030	25	5	
	62346	Т	24	0.1	3.22	1	1	28	0.1	21	3.16	0.1	21	75	5.74	0.2	27	3.55	1554	- 4	0.02	_ ÷ −1	860	38	6	
	62347	S	5	0.1	3	1	1	67	0.1	22	3.03	0.1	21	90	5.47	0.26	23	2.39	1132	3	0.04	1	1040	28	8	
	62348		18	0.1	2.77	1	1	70	0.4	20	1.25	0.1	21	116	5.4	0.2B	26	2.25	1498	4	0.04	· 1	1110	37	7	
	62349		14	0.5	2.47	1	1	56	0.1	17	2.38	0.1	16	77	4.51	0,14	12	0.99	466	4	0.06	1	1050	22	4	
	62350	Т	.47	0.4	2.07	1	. 1	151	0.1	. 15	1.23	0.1	11	34	4.2	0,26	7	0.46	308	5	0.04	1	1070	8	2	
	62351	Soil-2m	34	0.1	2.58	. 1.	1	140	0.3	20	0.96	0.1	25	124	6.49	0.22	19	1.85	2723	3	0.02	1	1340	50	· 1	
		Soil-2m	49	0.1	1.78	8	1	667	0.7	. 9	0.85	0.1	17	182	5	0.18	11	0.98	2476	3	0.01	· 1	1300	39	1.	
	62353	TF	15	0.1	2.98	1	1	77	0.2	21	1.4	0.1	22	115	5.63	0.32	31	2.29	1576	5	0.05	1	1050	38	8	
	62354		45	0.1	1.67	1	1	110	0.1	12	0.69	0.1	10	136	3.5	0.29	7	0.95	861	22	0.06	1	1170	22	. 2	
	62355		157	0.2	0.74	1	1	41	0.1	7,	1.75	0.1	8	14	3.18	0.23	5	0.59	1125	1	0.02	1	750	20	1	
	62356		13	0.1	2.77	1	1.	70	0.2	19	1.45	0.1	19	92	5.31	0.28	23	2.25	1584	3	0.04	2	1090	37	8	1
	62357		70	0.1	1.19	2	1	72	0.1	12	0.44	0.1	10	34	3.6	0.25	6	0.79	727	- 5	0.05	1	970	. 18	1	
		TF-3m	123	0.1	1.02	1	7	113	0.2	12	0.25	0.1	8	36	6.39	0.32	7	0.58	575	. 4	0.03	1	1220	• -	1	
	62359	TF-3m	162	0.1	1.33	1	1	120	0.1	- 11	0.37	0.1	9	58	4.55	0.34	7	0.77	970	6	0.03	- 1 J	1040	-	1	
	62360	R	46	0.2	1.38	1	1	.99	0.1	11	0.52	0.1	8	14	2.75	0.34	6	0.73	485	. 3	0.05	e e 11	860	- 1,6	2	
	62361	R	5	0.1	2.35	1	. 1	-69	0.1	14	2	0.1	14	22	4.09	0.27	13	1.61	2633	4.	0.05	: 1	1050		5	
	62362	Т	11	0.3	0.25	41	1	21	0.1	- 11	15	0.1	4	101	1.18	0.13	1	0.1	2932	. 2	0.01	6	260	27	8	1
	62363	T .	276	0.1	1.38	1.	1	101	0.1	12	0.48	0.1	8	215	4.18	0.27	9	0.88	784	- 16	0.05	· 1	800		. 1	
	62364	T	132	1	5.59	1	1	11	0.3	21	4.34	0.1	16	247	4.32	0.05	13	1.62	1215	. 8	0.03	- 14	920		32	
	62365	т	75	0.1	1.08	8	2	148	0.1	11	0.37	0.1	9	244	3.85	0.34	6	0.61	446	3	0.08	- 1	870	- 15	. e. 1	
	62366	TF	118	0.1	1.99	· 1	1	108	0.3	13	0.65	0.1	12	121	4.03	0.28	11	1.09	1923	6.	0.03	. s. 1	1030	33	5	
	62367	S	352	0.1	2.54	5	7	109	0.1	21	0.59	0.1	32	635	7.85	0.29	14	1.29	3871	- 26	0.01	1 (1	1960	62	1	
	62368	TC-20m	89	0.1	1.57	1	· 1	78	0.1	12	0.53	0.1	11	102	4.69	0.27	· 9	1.18	1346	5	0.03	1	930	25	1	
	62369	TF	72	0.1	2.23	1	1	83	0.3	15	0.83	0.1	13	115	4.29	0.29	12	1.37	1892	5	0.04	1	1000	32	6	;
	62370	TC	75	0.1	1.28	9	1.	74	0.1	11	0.44	-0.1	8	78	4.28	0.31	6	0.78	999	3	0.02	.e. 1	900		1	
-	-62371	T T	46	0.1	1.91	2	1	744	0.5	12	0.56	. 0.1	13	127	3.94	0.25	11	1.05	1884	5	0.02	1	980		5	
	62372	S	113	0.1	3.19	·	1	1020	0.1	17	1.05	0.1	22	256	5.63	0.36	18	1.3	2776	6	0.02	1	1680		6	1
	62373	TC	66	0.1	1.03	14	1	87	0.1	10	1.07	0.1	16	180		0.21	6	1.16	1766	12	0.04	3	1200	27	1	
	010/0			V. I	1.00	14		07	0.1	10	1.07	· 0.1	10	100	4.4	0.21	0	1.10	1700	14	0.04	3	1200	21	•	

 \bigcirc

SAMPLE	SAMPLE	ŚR	тн	ті	v	ZN	GA	\$N	w	CR
NO	TYPE	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
62296	S	35	76	4046	160.8	104	26	1	8	21
62297		18	58	3563	174	90	25	1	7	22
62298		39	56	1435	46	50	13	1	5	22
62299	-	11	73	1576	70.9	66	17	1	6	28
62300		22	56	3842	169	88	24	1	8	19
62301	-	1	61	937	44	62	13	1	3	22
62302		21	66	3660	196.9	72	26	· 1	9	26
62303	-	1	67	898	46	38	13	1	4	28
62304	-	3	57	1693	54.4	45	13	1	5	42
62305		3	41	1529	30.1	19	8	1	- 4	- 38
62306		3	70	3628	155.3	76	24	1	9	44
62307		75	61	1484	154.2	54	37	1	12	65
62341	-	22	70	2665	163.7	119	29	1	10	47
62342		2	94	2811	133.3	83	26	1	10	75
62343		12	80	2436	117.7	82	21	1	10	80
62344		.10	65	2199	90.2	51	16	1	7	39
62345		10	71	2696	131.8	66	26	1	8	31
62346	-	117	75	3251	130	71	31	1	8	17
62347		83	75	3575	162.5	78	28	1	9	44
62348		19	100	3171	155.4	131	30	1	9	49
62349		11	43	2717	127.4	28	16	1	. 8	54
62350	-	55	51	2502	78.1	23	12	1	5	27
	Soil-2m	17	92	3224	137.5	332	30	1	7	15
-	Soil-2m	24	71	962	71.7	302	22	1	4	4
62353 62354		19 25	96	3339	161.6	136	30	1	9	51
62354	-	25	64	1697	68.5	57	18 14	1	9 3	97
62355	-	17	45 97	923	26.5	645		1	-	27
62350	-	15	97 63	2941 1906	151.9	147	31 16	1	10 6	49
	H TF-3m	3	66	1843	58,5 58,9	49 52	13	•	-	35
	TF-3m	6		1732			17	1	6	34
62360		25	· 69 54	1690	63	69	14	1	5	26
62360		25 19	54 58	2085	44.1	37		. 1	6 8	55
62362		1	1	2085	96	102 30	28 25	1	. 4	63
62362	•	12	72	1478	10.1 53.7	- 30 66	17	1	6	60 54
62363		4	53	2476	160.2	44	35	1	11	54 69
62365		3	62	1334	52.6	44	13	1	7	73
62366		23	72	1656	73.3	146	23	1	7	43
		23 38	88	2518		377	23		6	
62367	S TC-20m	38 14	77	1541	103.8 65.5	169	29	1	5	6 67
62369		25	80	1966	92.7	148	21	1	7	46
62369		19	66	1442	92.7 47.3	148	25 16	1	6	46
62370		21	72	1230	47.3	167	21	1	6	
62371		56	82	1855	92.1	239	21	1	6	33 6
62372		27	68 68	951	92.1	131	28	- 1	6	31
		237	30	951			7	1	4	
62374	301	23/	30	141	17.3	27	'	1	4	65

		PROJEC	T 6000	- SAMI	PLE AN/	ALYSE S																	
SAMPLE SAMPLE NO TYPE	AU-FIRE PPB	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM
	· ·																						
62375 T	43	0.1	2.38	24	1	98	0.1	9	2.08	0.1	22	180	6.47	0.16	.16	2.13		3	0.03	19	950	42	3
62378 F	78	0.1	1.54	36	1	46	0.1	17	2.2	0.2	14	927	3.86	0.27	11	1.13	3528	19	0.04	1.	970	61	4
62377 T	160	0.4	2.17	1	1	48	0.1	27	0.92	0.1	16	2280	4.37	0.28	12	1.41	2941	13	0,03	1	1070	79	8
62378 T	306	0.1	2.15	43	1	56	0.2	31	1.27	2.5	17	3140	5.15	0.4	13	1.72	3479	44	0.02	- 1	1120	108	8
62379 S	65	0.1	2.29	4	1	56	0.4	19	1.07	0.1	16	568	4.38	0.22	19	1.9	2575	11	0.03	5	1010	44	7
62380 T	184	0.6	1.86	22	1	40	0.1	23	2.05	0.1	16	1458	4.97	0.25	12	1.34	3496	7	0.02	1	970	48	3
62381 T	470	2.2	2.44	20	1	36	0.1	56	2.24	0.1	25	8080	7.1	0.18	14	1.64	3573	12	0.02	1	9 50	66	9
62382 SS CHK	6	0.1	2.72	1	24	209	0.7	13	1.2	0.1	17	76	4.37	0.28	26	1.75		4	0.04	45	990	33	10
62383 T	89	0.1	1.79	. 8	1	41	0.1	23	1.09	0.1	19	1700	4.06	0.21	11	1.16	2715	10	0.05	. 1	1160	72	5
62384 T	141	0.1	2.89	1	1	57	0.1	34	1.24	0.1	21	2567	4.98	0.35	16	1.92	3552	: 74	0.03	i	1190	53	- 11
62385 T	50	0.1	1.36		157	78	0.1	11	0.58	0.1	11	159	3.24	0.29		0.82		40	0.07		1010	20	
62386 T	246	0.1	2.33	· -	1.57	70	0.1	16	0.50	0.1		447	5.06	0.29	13	1.41	2504	16	0.03		1050	33	
								10			11				• -							33	3
62387 T	213	0.1	0.74	16	. !	61	0.1		0.43	0.1	16	129	7.14	0.13	5	0.55		21	0.04	1	770		
62388 LR CHK	20	0.1	0.39	9	1	20	0.1	2	0.16	0.1	2	. 18	0.84	0.13	5	0.14	~ 210	2	0.05	4	210	12	1

SAMPLE NO	SAMPLE TYPE	SR PPM	TH PP M	TI PPM	V PPM	ZN PPM	GA PPM	SN PPM	W PPM	CR PPM
62375	т	11	89	96	125.1	2628	37	· 1	5	41
62376	F	12	60	1442	67.3	1468	29	1	5	38
62377	Т	45	78	2051	85.3	316	28	່ 1	7	36
62378	Т	22	91	1780	107.9	2140	32	1	6	37
62379	S	24	90	2248	120.7	741	30	1	9	67
62380	Т	20	67	1829	94.8	1150	29	1	6	35
62381	Т	37	78	1728	147.9	876	33	1	8	33
62382	SS CHK	27	94	1534	130	108	25	1	9	72
62383	Т	41	71	2040	79.2	608	27	1	6	47
62384	Т	-41	87	2837	141.B	992	34	1	8	32
62385	БΤ	14	56	1478	58.9	72	14	1	6	59
62386	5 T	52	75	1867	105	165	24	1	6	22
62387	•	5	67	725	24.6	81	8	1	3	30
62388	IR CHK	4	144	120	11.8	27	6	1	5	97

GLACIER CREEK ZONE

PROJECT 6000 SUMMARY OF SAMPLES

\bigcirc	SAMPLE NO	SAMPLE TYPE	NAME	MINERALIZATION	LOCATION
		CREEK ZONE			
	GLACIER	JREEK ZUNE			
	62308	BC	Rhyolite Porphyry	3-4% fine diss py; sil'd, ox'd	Glacier Cr-Fox 13
	62309		Rhyolite Breccia	2-3% diss py, cpy; mal/azurite	Glacier Cr-Fox 13
		0 R-Grab	Alt'd Tuff	3-4% py; sil'd	Glacier Cr-Fox 13
		I SS CHK			
		AR-Grab	Alt'd Tuff	3-4% py; sil'd	Glacier Cr-Fox 13
	62312	2 R	Breccia	10% sulf & ox'd material	Glacier Cr-Fox 13
	62313	3 R	Breccia	1-2% diss py; stwk; mod carb'd	Glacier Cr-Fox 13
	62314	1 S	hetro sand-gravel	some oxidized material	Glacier Cr-Fox 13
	62315	5 T	Quartz Porphyry	2-3% finely diss py;	Glacier Cr-Fox 12
	62316	6 T	Tuffaceous Breccia	1-2% py assoc with phenos	Glacier Cr-Fox 12
	62317	7 TC	Tuffaceous Breccia	1-2% py assoc with phenos	Glacier Cr-Fox 12
	62318	3 T	Tuffaceous Breccia	1-2% py assoc with phenos; alt'd	Glacier Cr-Fox 12
	62319		Tuffaceous Breccia	2-3% py with phenos, more alt'd	Glacier Cr-Fox 12
	62320) S	clay		Glacier Cr-Fox 12
	62321	l S	hetro sand	5% ox'd material	Glacier Cr-Fox 12
	62322		Breccia	3-4 py patch/diss;qtz frags	Glacier Cr-Fox 12
	62323		hetro clay-sand		Glacier Cr-Fox 12
	62324		hetro clay-sand	some ox'd material	Glacier Cr-Fox 12
	62325		Rhyolite Porphyry	1-2% diss/blebs py;	Glacier Cr-Fox 12
		LR CHK			
()	62327		Tuffaceous Breccia	3-4% diss py; frags to 5cm	Glacier Cr-Fox 12
\bigvee_{i}	62328		clay	minor ox'd material	Glacier Cr-Fox 12
	62329		sand-gravel	minor epidote	Glacier Cr-Fox 12
	62330		Alt'd Tuff		Glacier Cr-Fox 9
		TC-2m	Lapilli Tuff	oxidized	Glacier Cr-Fox 13
		2 T-Comp 5m	Tuffaceous Breccia	2% sulf as blebs, diss, coating	Glacier Cr-Fox 13
		Comp-4m	Alt'd Tuff	minor diss py	Glacier Cr-Fox 13
		Comp-4m	Alt'd Tuff	minor diss py; contig to 62334	Glacier Cr-Fox 13
	02339	HR CHK			

				PROJEC	T 6000	- SAMP	LE ANA	LYSES														•			
SAMPI NO	LE SAMPLE TYPE	A	U-FIRE PPB	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	. BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	РВ РРМ	88 PPM
		G	LACIER	CREEK Z	ONE A	ALYTIC	AL RE	BULTS																	
623	08 C		7	0.1	1.38	1	1	138	0.1	15	3.49	0.1	17	79	4.12	0.33	16	0.85	1023	3	0.03	1	1080	15	. 1
623	609 C		9	0.3	0.65	1	1	130	0.1	17	2.16	0.1	16	68	4.08	0.27	5	0.24	448	1.	0.03	1	900	5	1
623	10 R-Grab		. 1	0.1	0.55	1	4	105	0.1	13	2.67	0.1	12	35	4.12	0.32	3	0.16	374	3	0.03	2	720	2	1
623	11 SS CHK		-7	0.1	2.3	1	36	150	0.1	17	1.42	0.1	18	75	4.19	0.1	18	1.7	888	4	0.02	22	890	29	5
6231	1A R-Grab		2	0.3	0.58	1	4	132	0.1	15	2.99	0.1	12	36	3.48	0.32	3	0.18	536	3	0.02	5	760	4	. 1
623	12 R		3	0.8	0.71	1	1	82	0.1	20	3.49	0.1	16	51	3.73	0.27	7	0.31	684	1	0.02	1.	1200	2	1
623	313 R		1	0.1	2.75	1	1	58	0.1	24	1.36	0.1	19	122	5.85	0,13	45	2.7	1278	4	0.02	· 1.	1060	33	5
623	14 S		10	0.1	2.08	1	1	83	0.1	23	1.04	0.1	23	99	5.54	0,15	22	1.36	1536	3	0.01	1	870	18	1
623	15 т		14	0.1	2	81	1	50	0.1	26	0.94	0.1	22	202	5.68	0.12	22	1.73	699	3	0.07	1	960	26	2
623	16 T		13	0.1	3.05	1	1	28	0.1	21	2.42	0.1	17	59	4.31	0.12	20	2.09	1390	4	0.03	1	1120	36	11
623	17 TC		9	0.1	2.87	1	<u>1</u>	26	0.1	24	1.83	0.1	18	88	4.62	0.09	19	2.12	1239	4	0.03	1.	1100	34	9
623	318 T		1	0.1	2.24	. 1	1	39	0.1	20	1.24	0.1	16	73	3.84	0.16	16	1.67	934	-4	0.04	3	1060	30	7
623	319 T		7	0.1	2.03	1	1	28	0.1	21	1.24	0.1	16	69	4.89	0,09	27	2.24	1560	5	0.06	1	1120	36	3
623	320 S		9	0.3	2.45	1	192	39	0.1	23	2.59	0.1	18	90	4.76	0,07	17	1.81	986	3	0.04	: 1	1030	23	3
	21 S		12	0.1	2.63	1	114	27	0.1	23	2.18	.0.1	20	76	5.15	0,09	17	1.75	897	3	0.03	·. 1	880	20	3
623	22 T		27	0.1	1.74	1	1	21	0.1	21	3.72	0.1	16	70	5.16	0.15	10	0.83	1788	2	0.07	1	1050	22	1
	323 S		8	0.3	2.45	1	247	49	0.1	25	2.23	0.1	19	94	4.78	0,09	16	1.76	984	3	0.04	i. 1.	990	27	. 3
623	24 S		5	0.4	2.48	1	212	49	0.1	24	2.6	0.1	19	93	4.88	0.09	-16	1.86	1025	- 3	0.04	1	1110	20	2
	325 TC		8	0.1	2.82	1	1	17	0.1	26	2.03	0.1	24	152	5.64	0.12	19	2.63	984	4	0.03	3	1050	36	6
	28 LR CHK		2	0.2	0.48	13	1	- 29	0.2	4	0.22	0.1	3	9	0.96	0,15	6	0.19	221	2	0.05	1	250	13	3
	127 T		145	0.1	1.63	8	1	21	0.1	18	0.89	0.1	15	316	4.46	0,09	15	1.68	916	10	0.06	1	1090	33	2
	328 S		23	0.1	2.61	1	182	79	0.1	23	1.33	0.1	21	94	5.22	0.12	22	2.13	1146	3	0.04	6	1100	32	4
	329 S		. 7	0.1	2.66	. 1	169	71	0.1	25	1.33	0.1	22	151	5.59	0.16	27	1.98	1151	4	0.03	1	920	27	4
	взо т		1	0.1	0.73	- 1	7	202	0.1	5	0.26	0.1	15	31	6.38	0.09	6	0.08	1772	1	0.03	1	690	1	. 1
	31 TC-2m		3	0.6	0.64	1	1	169	0.1	24	0.39	0.1	12	32	4.3	0.28	3	0.16	200	i 1	0.05	1	770	1	1
	32 TC-5m		3	0.7	0.61	1	1	190	0.1	26	0.27	0.1	12	30	4.87	0.3	2	0.12	122	· · . 1	0.04	. 1	760	. 1	1
-	333 Comp-4m		2	0.3	0.99	1	1	197	0.1	19	0.86	0.1	15	29	4.19	0.21	- 7	0.29	332	· 3	0.04	s. 1	780	1	1 (1)
	334 Comp-4m		3	0.6	0.67	7	1	160	0.1	20	0.32	0.1	10	29	3.67	0.27	3	0.17	194	. 1	0.05	1	770	2	1
623	339 HR CHK		3950	16.7	0.53	223	24	80	0.1	29	1.52	100	18	4162	6.61	0.27	5	0.31	1237	13	0.05	5	760	300	20

SAMPLE NO	SAMPLE TYPE	SR PPM	TH PPM	TI PPM	V PPM	ZN PPM	GA PPM	SN PPM	W PPM	CR PPM
62308	C	18	40	1772	81.1	89	18	1	5	11
62309	C	24	28	2471	48.4	121	8	1	4	16
62310	R-Grab	23	20	1738	32.7	52	7	1	4	27
62311	SS CHK	28	83	2379	141.6	80	24	. 1	8	33
62311A	R-Grab	32	18	2081	33.6	45	6	1	3	19
62312	R	14	20	2695	41.1	73	-11	1	4	11
62313	R .	18	95	2641	146.8	87	30	1	8	13
62314	S	14	76	3456	144.9	79	23	1	7	•
62315	т	19	78	3363	217.2	66	22	1	9	25
62316	T -	81	62	2609	116.7	81	27	1	9	33
62317	TC	48	76	2978	126.8	82	27	1	9	27
62318	T T	59	77	2283	104.4	73	23	1	. 9	66
62319	T ·	17	83	2774	118.8	95	28	1	8	30
62320	S	47	64	3589	170.1	60	25	1	8	19
62321	S.	65	69	3660	208.2	57	24	i 1	- 9	27
62322	T T	27	35	2655	133.7	49	23	1	8	45
62323	S	49	63	3732	170.9	61	24	່ 1	6	20
62324	S	47	61	3765	171.5	63	25	1	8	23
62325	TC	21	- 83	3263	214.9	63	. 30	1	11	6
62326	LR CHK	8	149	246	16	28	8	° 1	6	114
82327	T ·	26	6 9	1797	105.5	118	24	1	9	65
62328	S	31	90	3456	159.5	88	27	1	9	37
62329	-	46	93	3650	175.2	82	26	1	9	27
62330		12	49	33	155.5	91	11	1	4	30
	TC-2m	7	26	3634	56.7	46	. 5	1	6	. 56
62332	TC-5m	9	22	3996	58.1	44	3	1	6	57
62333	Comp-4m	13	40	2799	60.6	42	8	1	6	5
62334	Comp-4m	.9	28	3076	43.2	37	6	1	6	57
62339	HRCHK	62	74	88	10.2	10000	12	1	. 1	4

MOUNT SKOWILL ZONE

PROJECT 6000 SUMMARY OF SAMPLES

\cap	\ \			-	•
\bigcirc	SAMPLE	SAMPLE TYPE	NAME	MINERALIZATION	LOCATION
	MT SKOW	ILL ZONE			
	MIT SKOW				
	62131	Т	Tuff	1-2% finely diss py	Mt Skowill-Fox 1
	62132		Lapilli Tuff	2% py as diss & blebs	Mt Skowill-Fox 1
	62133	IT ·	Lapilli Tuff	2% py as diss & blebs w stwking	Mt Skowill-Fox 1
	62134	S	clay		Mt Skowill-Fox 1
	62135	i. T	Lapilli Tuff	tr diss py	Mt Skowill-Fox 1
	62136	бΤ	Altered Rhyolite	3% py as cubes	Mt Skowill-Fox 1
	62137	7 Τ	Altered Andesite	Mn stained;	Mt Skowill-Fox 1
	62138	т	Lapilli Tuff	5-7% fine & coarse py; alu/jarosite	Mt Skowill-Fox 1
	62139	S	hetro clay-sand	5% oxidized material	Mt Skowill-Fox 1
	62140	S	hetro sand	5% oxidized material	Mt Skowill-Fox 1
	62141	S	hetro clay-sand	10% oxidized material	Mt Skowill-Fox 1
	62142	S	clay-sand gravel	5% oxidized material	Mt Skowill-Fox 1
	62143	TC	Alt'd Rhyolite	2% finely diss py; jar/alunite	Mt Skowill-Fox 1
	62144	Т	Altered tuffaceous breco	i 1% finely diss py; jar/alunite	Mt Skowill-Fox 1
	62145	Т	Alt'd Rhyolite	2-3% finely diss py; jar/alunite	Mt Skowill-Fox 1
	62146	T ·	Alt'd Rhyolite	5% finely diss py w chl in vesicles	Mt Skowill-Fox 1
	62147	T S	Alt'd Rhyolite	1-2% finely diss py	Mt Skowill-Fox 1
	62148	Т	Silicified Vol	up to 2% vuggy py	Mt Skowill-Fox 1
	62149	TC			
\sim	62150	т	Alt'd Rhyolite	1-2% finely diss py; jar/alunite	Mt Skowill-Fox 1
() 62151	T .	Alt'd Rhyolite	5% diss py blebs & diss	Mt Skowill-Fox 1
\smile	62152	T ·	Alt'd Rhyolite	1-2% py blebs & diss	Mt Skowill-Fox 1
	62153	.T	Alt'd Rhyolite	Mn stained; vuggy	Mt Skowill-Fox 1
	62154	Т	Lapilli Tuff		Mt Skowill-Fox 1
	62155	Т	Lapilli Tuff	tr py; minor chl on fractures	Mt Skowill-Fox 1
	62156	Т	Tuff	10-12% dirty py; ser/chl 5%	Mt Skowill-Fox 1
	62157	Т	Lapilli Tuff	jar/alu stains; 2% chl	Mt Skowill-Fox 1
	62158	Т	Alt'd Rhyolite	10% py as blebs, diss & with chl	Mt Skowill-Fox 1
	62159		Alt'd Rhyolite	as 62158-less chl/py	Mt Skowill-Fox 1
	62160	Т	Alt'd Rhyolite	Mn stained; tr fine diss py	Mt Skowill-Fox 1
	62161	Т	Alt'd Rhyolite	2% vuggy py	Mt Skowill-Fox 1
	62162		Alt'd Rhyolite	3% py; darker, more altered	Mt Skowill-Fox 1
	62163	T .	Rhyolite	3-5% py in ves at surface; more alt	Mt Skowill-Fox 1
	62164	Т	Rhyolite	3-5% py in larger vesicles	Mt Skowill-Fox 1
	62165	Т	Rhyolite	3% fine grained py	Mt Skowill-Fox 1
	62166		Rhyolite	1-2% py in blebs; py & chl	Mt Skowill-Fox 1
	62167		clay-sand	some oxidized material	Mt Skowill-Fox 1
	62168		Rhyolite	tr py in vessicles & diss; jar/alu	Mt Skowill-Fox 1
	62169		Rhyolite	1% fine diss py; Mn stained	Mt Skowill-Fox 1
	62170		-	tr fine py; minor qtz vessicles	Mt Skowill-Fox 1
	62171		clay-gravel	minor ox'd material	Mt Skowill-Fox 1
	62172		clay-organics		Mt Skowill-Fox 1
	62173			some oxidized material	Mt Skowill-Fox 1
	62174		Alt'd Rhyolite	1-2% py, qtz/ser vesicles	Mt Skowill-Fox 1
\cap	\	SS CHK			
\Box	62176		Alt'd Rhyolite	3-4% finely diss sulf; 3-4% jar/alu	Mt Skowill-Fox 1
	62177		Alt'd Rhyolite	1-2% py finely diss; 3-4% jar/aluni	Mt Skowill-Fox 1
	62178	T	Alt'd Rhyolite	less vesicles & jar/alunite	Mt Skowill-Fox 1
	62179	S	clay-sand	poorly sorted	Mt Skowill-Fox 1
	62180	S	hetro sand-gravel	minor ox'd material	Mt Skowill-Fox 1

PROJECT 6000 SUMMARY OF SAMPLES

	SAMPLE	SAMPLE	NAME	MINERALIZATION	LOCATION
	O	TYPE			
	60404	SS CHECK			
	+ - · · + ·				
		HR CHK	MV	294 dias subsdrat av	Mt Skowill-Dome-Fox 1,2
	62233 62234		MV	2% diss euhedral py minor finely diss py	Mt Skowill-Dome-Fox 1,2
			MV	5% finely diss py; well sil'd	Mt Skowill-Dome-Fox 1,2
	62235			• • • • •	Mt Skowill-Dome-Fox 1,2
	62236		Volcanic Breccia	7% py; frags in sil'd matrix	Mt Skowill-Dome-Fox 1,2
	62237		hetro clay-gravel	some oxidized material	
		SS CHK			Mt Skowill-Dome-Fox 1,2
	62239		hetro sand-gravel	some oxidized material	Mt Skowill-Dome-Fox 1,2
	62240		Alt'd Rhyolite	minor diss py, well fractured	Mt Skowill-Dome-Fox 1,2
	62241		Altered Vol Breccia	2% py in blebs & diss;	Mt Skowill-Dome-Fox 1,2
	62242		Alt'd Rhyolite	1% py in veinlets; vesicles with ser	
	62243			ry 2-3% py diss & stringers; well ox'd	
	62244	-	hetro sand	some oxidized material	Mt Skowill-Dome-Fox 1,2
	62245	-	hetro clay-gravel	minor oxidized material	Mt Skowill-Dome-Fox 1,2
	62246		Alt'd Rhyolite	vesicles of ox'd sulfides; vuggy	Mt Skowill-Dome-Fox 1,2
	62247	тс	Altered Volcanic	finely diss py & chl in vugs	Mt Skowill-Dome-Fox 1,2
	62248	Т	Altered Volcanic	1-2% diss & veins of galena?	Mt Skowill-Dome-Fox 1,2
	62249	Т	Altered Volcanic	3% py in vugs & euhedral	Mt Skowill-Dome-Fox 1,2
	62250	Т	Altered Volcanic	3-4% py as blebs & veinlets	Mt Skowill-Dome-Fox 1,2
	62251	ТС	Altered Volcanic	3-4% py as blebs & veinlets	Mt Skowill-Dome-Fox 1,2
\sim	62252	т	Altered Rhyolite	3-4% py in vesicles & diss	Mt Skowill-Dome-Fox 1,2
	62253	T	Altered Rhyolite	diss py; 6-7% chl; vuggy	Mt Skowill-Dome-Fox 1,2
	62254	т	Altered Rhyolite	3% py; strongly ox'd	Mt Skowill-Dome-Fox 1,2
	62255	Т	Altered Rhyolite	2-3% py diss & blebs;	Mt Skowill-Dome-Fox 1,2
	62256	т	Altered Rhyolite	2-3% py diss & blebs;	Mt Skowill-Dome-Fox 1,2
	62257	т	Altered Rhyolite	2-3% diss py blebs & veinlets; vug	Mt Skowill-Dome-Fox 1,2
	62258	т	Altered Rhyolite	2-3% diss py blebs; no vugs	Mt Skowill-Dome-Fox 1,2
	62259	Т	Altered Rhyolite	2-3% finely diss py with chl	Mt Skowill-Dome-Fox 1,2
	62260	SS CHK	•		
	62340	S	hetro sand-gravel	some oxidized material	Mt Skowill-Fox 2

62173 S

62174 T

4

2

0.1

0.1

1.33

0.2

10

22

1

2

237

92

1.1

0.1

5

1 0.02

0.4

0.1

0.1

10

1

2.66

5 0.76 0.31

0.16

1

0.01

47

160

1

2

0.06

4

2

PROJECT 6000 - SAMPLE ANALYSES SAMPLE SAMPLE PB AU-FIRE AG AL AS BA BĖ BI CA CD co CU FE ĸ L MG MN MO NA NI P SB В NO TYPE PPB PPM % **PPM** PPM PPM PPM **PPM** % **PPM PPM** PPM % % PPM % PPM **PPM** 96 PPM PPM PPM PPM MT SKOWILL ZONE ANALYTICAL RESULTS 62131 T 10 0.2 0.55 20 2 151 0.5 4 0.2 0.1 3 21 0.85 0.22 7 0.22 175 7 0.06 5 100 12 6 15 380 8 62132 T 0.1 1.11 13 1 95 0.5 4 3.71 0.1 6 30 2.26 0.19 20 0.47 1062 2 0.05 7 20 62133 T 2 0.1 0.96 18 2 101 0.6 4 2.68 0.1 5 14 1.78 0.29 18 0.3 711 6 0.03 10 180 17 7 62134 S 1370 13 .4 0.1 2.16 1 2 481 4 0.79 0.1 12 69 3.24 0.4 27 0.46 547 7 0.03 53 21 - 1 62135 T 2 0.1 1.39 25 2 198 1.1 4 0.89 0.1 9 1.24 0.7 14 0.26 412 6 0.13 16 110 22 10 4 62136 T 0.1 0.7 9 0.49 769 0.11 7 250 5 2 20 1 39 0.1 4 2.24 0.1 5 20 1.55 0.03 8 15 62137 T 0.6 0.42 0.05 1260 5 1.51 1 2 148 0.1 18 1.23 0.1 13 49 3.89 14 0.72 659 1 15 4 1 62138 T 3 3 0.1 0.59 20 2 0.1 3 0.03 0.1 0.22 4 0.03 35 0.01 1 30 13 447 2 6 1.9 4 74 7 62139 S 3 0.1 1.14 19 2 271 0.8 6 0.36 0.1 19 55 4.06 0.18 15 0.34 1522 7 0.02 1000 15 62140 S 0.1 3.55 19 0.79 0.01 38 930 17 7 5 1.32 9 2 196 0.6 9 0.5 0.1 14 44 0.2 828 3 62141 S 7 73 1000 7 4 0.1 1.16 19 2 255 0.8 6 0.36 0.1 19 68 4.08 0.18 16 0.35 1458 0.02 13 7 72 6 62142 S 2 0.1 1.42 18 2 330 0.7 Б 0.36 0.1 19 68 3.98 0.27 18 0.37 1365 0.03 990 16 62143 TC 2 0.4 0.24 31 2 85 0.1 2 0.02 0.1 1 4 0.62 0.11 1 0.01 33 4 0.07 1 70 5 3 62144 T 0.5 0.37 25 88 0.1 2 0.06 0.1 0.49 0.09 з 0.01 32 6 0.03 2 100 6 4 1 1 1 4 62145 T 2 0.3 0.19 28 84 0.1 0.01 0.1 5 0.57 0.11 1 0.01 27 2 0.06 60 8 3 1 2 1 1 62146 T 0.1 0.21 43 2 90 0.1 2 0.01 0.1 2 5 0.13 1 0.01 40 0.1 60 14 1 1.27 5 -1 1 62147 T 0.1 0.27 19 2 0.2 2 0.3 0.1 4 0.88 0.25 0.01 211 0.07 100 8 з 2 149 2 1 1 1 62148 T 1 0.2 0.19 22 1 32 0.1 2 0.01 0.1 1 5 0.74 0.01 1 0.01 40 2 0.15 4 120 6 2 62149 TC 10 203 0.07 200 B 2 з 0.1 0.4 1 23 0.3 4 0.15 0.1 2 7 0.84 0.17 4 0.13 1 62150 T 1 0.3 0.16 31 2 33 0.1 3 0.01 0.1 6 0.57 0.03 1 0.01 27 2 0.13 2 30 5 1 62151 T 2 0.1 0.23 18 234 0.1 2 0.01 0.1 10 0.54 0.21 0.01 34 0.05 70 4 1 1 1 1 1 62152 T 2 0.2 0.26 17 2 263 0.1 0.01 0.1 0.65 0.25 0.01 40 3 0.03 2 110 7 2 2 1 4 1 62153 T 1 0.1 0.26 46 2 3772 0.2 2 0.03 0.1 21 0.93 0.07 2 0.02 91 2 0.01 8 20 1 6 3 30 б 62154 T 2 0.1 0.49 10 0.1 0.13 4 0.02 40 з 0.01 2 6 2 42 2 0.03 0.1 1 3 0.46 20 0.52 28 50 4 2 62155 T 2 0.1 0.21 1 58 0.1 0.01 0.1 1 Б 0.05 2 0.01 2 0.06 2 1 0.13 40 62156 T 3 0.1 0.23 16 2 182 0.1 2 0.08 0.1 з 6 2.15 1 0.01 60 4 0.09 -1 2 1 62157 T 2 0.1 0.18 29 1 27 0.1 0.01 Ó.1 2 7 0.92 0.02 3 0.01 41 3 0.14 1 80 6 2 1 62158 T 3 0.1 0.18 15 101 0.1 0.01 0.1 2 5 1.16 0.19 1 0.01 31 6 0.04 2 20 9 1 1 1 62159 T 2 0.1 0.19 20 93 0.1 0.01 0.1 0.65 0.18 0.01 46 2 0.05 50 5 2 1 1 1 4 1 1 62160 T 22 0.89 0.01 3 0.06 2 150 11 2 1 0.1 0.18 1 53 0.1 2 0.02 0.1 2 8 0.08 1 158 62161 T 0.1 0.12 66 0.1 0.01 0.1 0.82 0.1 0.01 38 2 0.05 30 6 2 9 1 1 1 4 1 1 1 0.16 24 1.41 0.16 0.01 31 7 0.05 30 10 62162 T 0.1 2 116 0.1 1 0.01 0.1 2 5 1 2 1 1 0.72 0.01 3 30 62163 T 0.1 0.13 12 0.1 0.01 0.1 3 0.02 1 33 0.1 2 6 1 1 2 14 1 1 7 2 62164 T 1 0.1 0.15 17 1 41 0 1 1 0.01 0.1 1 4 0.85 0.05 1 0.01 34 0.1 3 30 11 15 0.8 0.2 0.01 66 2 0.05 90 2 62165 T 2 0.1 0.21 93 0.1 0.03 0.1 1 7 1 1 6 1 -1 0.01 80 62166 T 2 0.1 0.17 23 45 0.1 1 0.02 0.1 2 6 1.04 0.05 1 39 8 0.12 5 6 1 1 870 62167 S 6 0.1 1.01 12 133 0.7 0.39 0.1 13 45 3.16 0.08 18 0.71 771 2 0.01 38 15 6 1 6 62166 T 1 0.1 0.2 24 1 75 0.1 1 0.02 0.1 1 4 0.99 0.19 1 0.01 37 2 0.06 1 50 2 1 62169 T з 0.1 0.17 19 1 74 0.1 1 0.32 0.1 2 6 1.03 0.17 1 0.01 395 3 0.03 1 180 4 2 62170 T 0.1 0.19 10 1 103 0.2 2 0.19 0.1 2 5 1:21 0.17 1 0.01 78 1 0.07 1 360 10 2 1 62171 S 2 0.1 1.06 15 157 0.7 5 0.39 0.1 13 46 3.26 0.11 18 0.67 816 3 0.01 43 890 16 6 1 229 42 18 0.45 795 4 0.03 41 1350 21 11 62172 S 1 0.1 1.51 11 2 1 3 1.01 0.1 10 2.64 0.39 39 16 0.54 796 3 0.04 21 820 24 9

8AMPLE NO	SAMPLE TYPE	SR PPM	TH PPM	TI PPM	V PPM	ZN PPM	GA PPM	SN PPM	W PPM	CR PPM
62131	т. ¹	6	47	52	10.2	97	9	1	14	292
62132		91	34	36	44.5	91	16	. 1	. 9	155
62133	•	65	35	38	31.4	58	13	i	13	242
62134		48	57	54	67	178	13	i	4	11
62135		33	54	85	15.4	52	12	· 1	25	526
62136		59	43	48	17.6	42	14	1	12	219
62137		18	47	3108	38.4	55	15	1	6	57
62138	Ť	20	19	30	7.3	4	3	1	4	80
62139	S	35	56	46	56.4	224	14	1	3	1
62140	S	33	72	817	63.7	107	17	1	4	8
62141	S	33	59	43	55.6	221	14	1	2	1
62142	S	39	59	55	63.3	212	15	. 1	3	3
62143	TC	11	39	17	3.6	6	5	1	7	151
62144	т	11	31	10	2.9	4	4	· 1	9	188
62145	Т	15	35	. 11	3.8	5	4	1	6	117
62146	T	8	-38	15	2	8	4	. 1	.11	240
62147		15	56	17	2.6	- 18	4	1	9	193
62148		. 8	40	17	3.2	22	4	1	8	187
62149		4	151	197	12.7	23	7	1	7	133
62150		9	32	17	3.4	4	5	1	8	169
62151		17	14	18	2.4	8	3	1	7	137
62152		12	17	21	2.9	13	3	. 1	10	209
62153		18	17	14	4.6	20	3	. 1	10	207
62154		. 8	26	8	3.4	12	3	1	6	121
62155		8	29	. 9	3.1	4	- 2	1	6	135
62156		13	21	28	12.4	6	2	1	10	205
62157		12	35	16	9	17	3	1	8	168
62158		4	31	7	1.2	6	3	· 1	11	229
62159		5	36	7	1.1	7	3	1	8	173
62160		5	49	8	4.7	20	3	1	7	146
62161		3	32	7	0.8	5	2	1	6	1 20
62162		4	34	7	1.3	7	2	1	11	244
62163		4	26	9	0.8	8	3	1	7	160
62164		6	30	9	1.2	8	3	1	11	244
62165		6	48	9	1.2	12	3	1	10	208
62166		7	41	9	1.7	18	3	1	11	243
62167		19	55	469	46.3	100	14	. 1	3	16
62168		6	26	9	1.8	3	2	1	9	189
62169		15	48	17	2.5	15	3	1	7	150
62170		7	43	24	2.7	12	3	1	8	155
62171		22	58	427	47.9	116	14	1	3	15
62172		48	43	85	42.2	156	10	1	3	17
62173		25	54	398	38.5	90	13	1	3	12
62174	FΤ	6	45	9	2.5	8	3	1	. 7	149

PROJECT 6000 - SAMPLE ANALYSES

SAMPLE SAMPLE No type	AU-FIRE PPB	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	Bi PPM	СА %	CD PPM	CO PPM	CU PPM	FE %	К %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	
			~						70				70	, 1	FLIM	70			<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L Î IM				
62175 SS CHK	7	0.1	2.5	1	2	173	0.4	17	1.55	0.1	18	76	4.32	0.14	19	1.75	909	. 4	0.03	23	880	27	17	
62176 T	1	0.1	0.42	12	2	154	0.4	2	0.02	0.1	1	4	0.73	0.38		0.03	63	3	0.02	1	160	7	4	
62177 T	2	0.1	0.16	20	1	66	0.2	2	0.01	0.1	1	4	0.71	0.16	1	0.01	42	2	0.04	1	170	7	2	
62178 T	2	0.1	0.25	11	ŧ	119	0.2	. 1	0.01	0.1	1	4	0.73	0.23	1	0.01	34	1	0.06	3	150	8	2	
62179 S	4	0.1	1.5	20	1	284	0.9	5	0.4	0.1	16	54	3.56	0.26	19	0.59	1066	4	0.02	57	1000	18	11	
62180 S	- 5	0.1	1.38	17	1	234	0.8	6	0.41	0.1	15	51	3.54	0.23	19	0.63	1002	4	0.01	51	900	20	9	
62181 SS CHECK	8	0.1	2.4	1	2	152	0.3	16	1.49	0.1	17	76	4.17	0.13	19	1.67	867	3	0.03	20	850	26	15	
62182 HR CHK	2750	10.6	0.51	92	2	88	0.1	20	2.04	92.2	17	2950	5.3	0.31	4	0.28	1254	10	0.02	. 15	870	177	15	
62233 T	2	0.3	1.33	50	1	102	0.4	10	15	0.1	7	30	2.46	0.02	35	2.73	2122	11-	0.03	20	64 0	44	15	
62234 T	· 1	0.8	1.23	11	1	101	0.6	8	5,17	0.1	4	16	1.6	0.03	33	6.12	1479	10	0.04	15	330	43	13	
62235 T	4	0.1	1.7	1	1	178	0.1	14	2.2	0.1	15	24	4.12	0.3	21	0.87	986	3	0.06	· 1	530	- 25	1	
62236 T	8	0.1	0.92	154	1	103	0.1	12	2.61	0.1	12	21	3.73	0.19	13	0.57	1300	2	0.04	1	600	15	1	
62237 S	3	0.1	1.07	13	48	165	0.4	7	0.39	0.1	14	62	3.74	0.19	15	0.66	1167	4	0,01	26	1090	16	1	
62238 SS CHK	· 1	0.1	2.25	. 1	104	153	0.2	15	1.14	0.1	.17	75	4.13	0.09	18	1.69	870	3	0.02	22	880	22	3	
62239 S	.13	0.1	1.59	7	23	225	0.4	11	0.46	0.1	16	58	3.84	0.26	25	1.25	1320	3	0,01	10	1130	21	1	
62240	3	0.1	1.28	19	1	123	0.1	8	0.5	0.1	8	- 18	2.51	0.03	- 14	0.98	862	3	0.05	່ 1	500	22	3	
62241 T	9	0.1	0.79	49	1	137	0.1	13	2.59	0.1	15	19	3.26	0.2	10	0.42	1183	5	0.04	2 1	460	19	1	
62242 T	2	0.1	0.21	19	1	266	0.1	1	0.08	0.1	2	4	1.54	0.18	1	0.02	35	5	0.03	1	40	. 9	1	
62243 T	· 1	0.1	0.81	5	1	123	0.3	3	0.09	0.1	3	5	2.07	0.09	14	0.42	255	3	0.05	1	260	13	2	
62244 S	1	0,1	1.02	14	41	192	0.5	6	0.36	0.1	12	37	3.23	0.17	17	0,83	968	· 4	0.01	17	650	15	1	
62245 S	1	0.1	1.85	1	1	206	0.6	9	0.42	0.1	. 12	39	2.91	0.32	20	0.78	830	3	0.04	13	910	22	5	
62246 T	1	0.1	0.25	34	1	72	0.1	1	0.03	0.1	3	6	1.65	0.15	1	0.01	. 187	1	0,02	່ 1	140	14	2	
62247 TC	12	0.2	0.19	11	1	77	0.1	2	0.13	0.1	1	4	0.58	0.16	1	0.01	63	1	0.03	1	110	7	1	
62248 T	20	0.3	0.2	9	1	55	0.1	2	0.02	0.1	1	3	0.42	0.15	1	0.01	28	1	0.03	1	120	6	2	
62249 T	5	0.1	1.65	13	. 1	326	0.1	6	0.62	0.1	13	11	4.52	0.14	34	1.41	908	3	0,02	2	270	21	2	
62250 T	2	0.1	1.03	10	5	147	0.1	12	2.81	0.1	11	21	3,74	0.25	13	0.52	1041	- 1 .	0.03	1	460	14	1	
62251 TC	3	0.1	1.12	108	1	117	0.1	13	3.56	0.1	11	28	3.33	0.2	18	0.74	1800	2	0.03	1	450	25	3	
62252 T	2	0.1	0.22	8	1	101	0.1	3	0.08	0.1	2	6	1.95	0.18	1	0.03	48	. 1	0.05	1	- 90	18	1	
82253 T	1	0.1	0.33	10	1	304	0.1	2	0.07	0.1	2	5.	1.46	0.17	2	0.06	51	1	0.04	1.	280	14	1	
62254 T	3	0.1	0.3	9	1	214	0.1	2	0.07	0.1	2	. 5	1.19	0.18	3	0.07	64	1	0.05	1	360	12	1	
62255 T	6	0.1	0.35	14	- 1	87	0.1	1	0.23	0.1	2	7	1.41	0.17	3	0.09	259	1	0.06	. 1	280	12	2	
62256 T	44	0.1	0.24	9	1	73	0.1	2	0.1	0.1	2	6	1.28	0.15	2	0.04	175	. 1	0.05	; 1	300	11	· 1	
62257 T	2	0.3	0.29	10	1	309	0.3	· 1 ,	0,12	0.1	2	5	0.81	0.18	2	0.06	120	2	0.04	3	410	15	2	
62258 T	3	0.1	0.22	5	1	85	0.1	- 2	0.07	0.1	2	11	1.09	0.12	2	0.04	157	1	0.07	1	260	9	1	
62259 T	2	0.1	0.24	10	_1	91	0.1	2	0.22	0.1	2	_5	1.19	0.17	1	0.03	190	-	0.07	1	270	8	2	
62260 SS CHK	11	0.1	2.39	1	63	160	0.1	16	1.19	0.1	18	78	4.34	0.11	19	1.76	924	4	0.02	23	910	26		
62340 S	3	0.1	1.56	1	10	172	0.5	9	0.49	0.1	13	52	3.55	0.31	19	0,97	783	3	0,01	19	: 950	27	3	

SAMPLE NO	SAMPLE TYPE	SR PPM	TH PPM	TI PPM	V PPM	ZN PPM	ga PPM	SN PPM	W PPM	CR PPM
	SS CHK	28	89	2431	146.6	88	27	1	8	34
62176		4	81	11	2.2	7	- 4	· 1	· 4	85
62177		4	47	8	1.2	8	3	1	6	136
62178		.13	47	9	2.3	8	- 2	· 1	8	180
62179		36	64	291	62.4	144	17	1	- 4	24
62180	-	33	64	345	60. 2	139	16	1	4	21
	SS CHECK	26	78	2455	143	79	26	1	7	31
	HR CHK	66	49	63	11.4	9931	11	1	1	62
62233	•	412	1	18	124	180	37	1	7	34
62234	-	120	43	27	87.7	158	. 31	1	7	53
62235		31	47	2085	40.7	65	17	1	7	67
62236		24	35	1733	64	66	16	1	6	63
62237	-	17	56	785	51.1	123	13	1	3	12
	SS CHK	21	70	2335	137.1	80	21	1	7	31
62239	-	31	68	1551	66.1	76	18	1	6	16
62240		102	72	1042	67.9	59	19	1	·· 6	45
62241	•	34	29	1992	49.6	60	14	1	5	58
62242		2	47	25	1.6	5	3	. 1	3	64
62243		7	64	44	29.9	34	11	1	5	74
62244	-	23	57	747	51.5	133	13	•	3	10
62245		34	47	1408	51.4	72	14	1	4	13
62246	•	5	68	12	4.7	69	4	1	3	69
62247		2	53	10	3.8	14	3	1	4	92
62248	•	7	55	8	3.6	12	3	1	3	63
62249		15	88	53	40.3	68	21	1	11	156
62250 62251	•	18 20	31 33	1524	31.6	51	14	1	5	45
62252	• =	20	33	1440 32	40.5 6.8	54 7	21	1	6	46
62252		6	42	24	8.3		3	1	3	60
62254		7	42	24	6.8	23	6 5	. 1	4	77
62255	•	. 6	-		16.3	18	7	1	5	103
		4	46			32		1	6	133
62256		-	51	25	11.2	. 19	5	1	4	72
62257		10	28	27	5.5	26	5	1	5	110
62258		4	40	28	10.1	19	4	1	4	82
62259	•		44	24	8.4	19	5	1	6	127
	SS CHK	25	77	2422	143.1	84	23	1	7	34
62340	5	25	72	901	67.4	86	18	1	5	21

PROJECT 6000 SUMMARY OF SAMPLES

-					•
\bigcirc	SAMPLE NO	SAMPLE TYPE	NAME	MINERALIZATION	LOCATION
	PORPHYRY	ZONE			
	ronriithi	2011			
	62183	Т	Otz Porphyry	5% finely diss py & veinlets	Porphyry Zone-Fox 5
	62184		Otz Porphyry	3-5% finely diss py & patches	Porphyry Zone-Fox 5
	62185		Qtz Porphyry	5% finely diss py & blebs	Porphyry Zone-Fox 5
	62186		Qtz Porphyry	1-2% py	Porphyry Zone-Fox 5
	62187		Alt'd Volcanic	20% py as viens, blebs, diss	Porphyry Zone-Fox 5
	62188		Alt'd Volcanic	5-7% finely diss py & veinlets	Porphyry Zone-Fox 5
	62189		Alt'd Volcanic	2-3% diss py;tr sphal; gal in stwk	Porphyry Zone-Fox 5
	62190		Alt'd Volcanic	3-5% py diss & with chl in veins	Porphyry Zone-Fox 5
	62191	т	Alt'd Porphyry	3-5% py;	Porphyry Zone-Fox 5
	62192		Alt'd Porphyry	5-7 py; strongly sulf'd	Porphyry Zone-Fox 5
	62193		Alt'd Porphyry	tr cpy, sph & py	Porphyry Zone-Fox 5
	62194		hetro sand gravel	3% ox'd material	Porphyry Zone-Fox 5
	62195	Т	Alt'd Volcanic	2-3% diss py;tr sphal; gal in stwk	Porphyry Zone-Fox 5
	62196	S	hetro sand	some oxidized material	Porphyry Zone-Fox 5
	62197		hetro sand	some oxidized material, fuchsite	Porphyry Zone-Fox 5
	62198		clay-sand	•	Porphyry Zone-Fox 5
		Chip-1.5m	•	1-4% py in matrix & frags; very ox'	
		HR CHK			
		Chip- 2m	Altered Porphyry Breccia	1-4% py in matrix & frags; very ox'	Porphyry Zone-Fox 5
		Comp-1m	Altered Porphyry Breccia		Porphyry Zone-Fox 5
\frown		Comp-3m	1 1 1	as 62202;more carb & chl	Porphyry Zone-Fox 5
Ì		Comp-3m		10-12% py w chl; strongly carb'd	Porphyry Zone-Fox 5
	62205	Comp-3m		<10% py;intensely carb'd	Porphyry Zone-Fox 5
		Comp-3m		<12% py; intensely ox'd	Porphyry Zone-Fox 5
	62207	Comp-3m	Altered Porphyry Breccia	<12% py; less intensely ox'd	Porphyry Zone-Fox 5
		Comp-3m	Quartz Porphyry	5% diss py; vuggy	Porphyry Zone-Fox 5
	62209	Comp-3m	Alt'd Quartz Porphyry	2-3% py;less sil'd & carb'd	Porphyry Zone-Fox 5
	62210	Comp-3m	Alt'd Quartz Porphyry	2-3% py;mod carb'd, wkly sil'd	Porphyry Zone-Fox 5
	62211	Comp-3m	Alt'd Quartz Porphyry	5% py; intensely chl'd	Porphyry Zone-Fox 5
	62212	Comp-3m	Alt'd Quartz Porphyry	2-3% py, 8% in brecc frags	Porphyry Zone-Fox 5
	62213	Comp-2m	Alt'd Quartz Porphyry	up to 15% py in pieces; frac'd	Porphyry Zone-Fox 5
		Comp-2m	Alt'd Quartz Porphyry	up to 15% py in pieces; frac'd	Porphyry Zone-Fox 5
	62215	Comp-2m		2-3% py in frags; 20% py in matrix	Porphyry Zone-Fox 5
	62216	Chip-2m	Alt'd Brecciated Porphyr	1% diss py	Porphyry Zone-Fox 5
	62217	Comp-2m	Alt'd Brecciated Porphyr	2% py in frags; 5% in matrix	Porphyry Zone-Fox 5
	62218	Comp-2m	Alt'd Brecciated Porphyr	2% py in frags; 5% in matrix	Porphyry Zone-Fox 5
	62219	HR CHK			
	62220		hetro sand-gravel	minor ox'd material	Porphyry Zone-Fox 5
	62221	S	hetro clay-sand	minor ox'd material	Porphyry Zone-Fox 5
	62222		Quartz Feldspar Porphyry	2-5% finely diss py; massive	Porphyry Zone-Fox 5
	62223	T - L	Altered Porphyry	2% finely diss py; strongly ox'd	Porphyry Zone-Fox 5
	62224	т	Altered Porphyry	2% finely diss py; vuggy, chl'd	Porphyry Zone-Fox 5
	62225		Quartz Porphyry		Porphyry Zone-Fox 5
	62226		Quartz Porphyry	2% very fine diss py, net texture	Porphyry Zone-Fox 5
-	62227		Quartz Porphyry	5% very fine diss py, net texture	Porphyry Zone-Fox 5
	62228		Ox'd Porphyry	very lim'd, vuggy, fractured	Porphyry Zone-Fox 5
	62229	Т	Altered Porphyry	5-7% very finely diss py;	Porphyry Zone-Fox 5
	62230	т	Altered Volcanic	minor diss py; well oxidized	Porphyry Zone-Fox 5
	62231	Т	Altered Porphyry	finely diss py	Porphyry Zone-Fox 5
	62232	T	Altered Volcanic	minor diss py; well devel stwk	Porphyry Zone-Fox 5

PROJECT 6000 SUMMARY OF SAMPLES

NO	TYPE	NAME	MINERALIZATION	LOCATION
62501	Chip-0.3m	Andesitic Vol Congl		Porphyry Zone-Fox 6
62502	R-Grab	Agglomerate	malachite; fuchsite	Porphyry Zone-Fox 6
62503	Chip-2m	Feldspar Porphyry	py 2-8% diss & fracturs	Porphyry Zone-Fox 6
62504	Chip-2m	Feldspar Porphyry	py 1-5%	Porphyry Zone-Fox 6
62505	Chip-2m	Bleached Feld Porphyry	2-5% py diss & fractures	Porphyry Zone-Fox 6
62506	R-Grab	Feldspar Porphyry	tr diss py	Porphyry Zone-Fox 6
62507	Chip-0.5m	Breccia	strongly carb'd	Porphyry Zone-Fox 6
62508	Chip-1.0m	Alt'd & Brecciated		Porphyry Zone-Fox 6
62509	Chip-1.0m	Breccia		Porphyry Zone-Fox 6
62510	Chip-2m	Feldspar Porphyry	1-5% py	Porphyry Zone-Fox 6
62551	Chip-2m	Alt'd Porphyry	1-5% diss py;strongly lim'd	Porphyry Zone-Fox 6
62552	Chip-2m	Tuff?	strongly lim'd, mod carb.	Porphyry Zone-Fox 6
62553	Comp	Fe Carb Breccia	strongly lim'd & carb'd	Porphyry Zone-Fox 6
62554	Chip-2m	Vol Conglomerate	strongly lim'd & carb'd; fuchsite	Porphyry Zone-Fox 6
62555	Chip-1.5m	Andesitic Feldspar Porph	strongly lim'd & carb'd;qtz-carb vei	Porphyry Zone-Fox 6

PROJECT 6000 - SAMPLE ANALYSES

S A NC	MPLE SAMPLE TYPE		AU-FIRE PPB	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	СО РР М	CU PPM	FE %	K %	LI PPM	MG %	MN PPM	MO PPM	NA 96	NI PPM	P PPM	PB PPM	8B PPM	
			PORPYRY	ZONE A	NALYT	ICAL RE	SULTS																	·		
	62183 T		2	0.1	2.35	28	1	176	0.1	18	0.97	0.1	30	72	7.42	0.1	19	2.34	1015	· 1	0.06	1	420	30	· 1	
	62184 T		9	0.6	1.47	233	1	143	0.1	11	0.55	0.1	31	63	5.84	0.1	10	1.2	805	5	0.06	. 1	570	53	9	
	62185 T		3	0.1	1.95	4	1	41	0.1	16	1.22	0.1	32	82	6.85	0.08	10	1.83	821	· 1	0.09	1	410	20	. 1	
	62186 T		1 -	0.2	1.66	161	1	233	0.1	14	2.29	0.1	30	46	4.36	0.25	11	1.39	723	4	0.05	· 1	690	38	- 8	
	62187 T		15	0.1	0.52	1360	47	10	0.1	3	0.38	0,1	33	79	15	0.27	2	0.17	142	6	0.01	1	10	. 7	7	
	62188 T		1	0.1	1.46	179	, 1 ,	223	0.1	16	0.87	0.1	31	51	5.38	0,14	7	0.92	916	2	0.05	1	570	28	1	
	62189 T		33	0.1	1.37	30	· 1	617	0.4	4	2.11	0.1	12	54	2.79	0,23	5	0.84	623	4	0.01	1	840	.1001	. 5	
	62190 T		· 1	0.4	1.25	62	1	. 76	0.1	11	3.92	0.1	13	34	3.25	0.17	11	1.13	918	3	0.03	. 1	610	24	7	
	62191 T		1	0.1	3.63	1	1	98	0.1	17	2.32	0,1	38	100	9.3	0.2	18	2.5	1107	2	0.04	. · 1	510	26	1	
	62192 T		1	0.1	1.45	207	1	51	0.1	13	0.73	0.1	39	42	6.84	0.13	11	1.18	716	1	0.04	- 1	500	42	1	
	62193 TC		9	0.1	1.72	109	1	146	0.1	15	1.08	0.1	- 30	79	7.17	0.17	12	1.48	562	2	0.05	1	410	54	1	
	62194 S		1	0.1	2.03	10	1	142	0.2	12	3.35	0.1	19	79	3.95	0.08	11	2.09	875	4.	0,02	9	650	33	. 7	
	62195 T		17	0.1	1.52	31	1	1270	0.1	- 4	2.49	0.1	13	63	2.85	0.27	5	0.93	799	5	0.01	·	830	998	6	
	62196 S		1	0.4	1.87	23	1	352	0.2	•••	3.89	0.1	16	67	3.64	0.05	13	2.5	821	4	0.02	13	660	31	6	
	62197 S		11	0.1	2.28	17	1	209	0.1	9	2.88	0.1	20	76	4.4	0.09	15	2.08	904	6	0.02	12	560	39	7	
	62198 S		2	0.9	1.96	20	59	266	0.1	13	3.91	0.1	16	68	3.57	0.07	12	2.45	794	5	0.03	14	720	34	9	
	62199 Chip-1.5r	n	1	0.1	2.17	1	1	99	0.1	16	1.62	0.1	27	65	6.23	0.25	10	1.53	919	2	0.03	1	560	20	1	
	62200 HR CHK		5010	15.2	0.78	95	80	121	0.2		1.5	100	19	3009	5.1	0.39	5	0.29	1048	20	0.01	11	900	239	. 12	
	62201 Chip- 2m		. 7	0.1	2.14	1	1	134	0.1	17	2.09	0.1	24	55	5.96	0.29	10	1.45	852	1	0.03	1	570	21	1	
	62202 Comp-1m		3	0.1	2.97	1	1	64	0.2		2.33	0.1	31	78	6.75	0.06	14	2.5	995	3	0.03	1	490	26	4	
	62203 Comp-3m		4	0.1	2.4	1	1	171	0.1	18	1.9	0.1	28	70	5.81	0.14	15	2.17	998	3	0.03	· 1	620	25	<u>1</u>	
	62204 Comp-3m		1	0.1	2.62	1	1	224	0.1	17	2.26	0.1	25.	61	5.73	0.22	15	2.09	938	3	0.03	1	610	50	4	
	62205 Comp-3m		1	0.1	2.43	1	1	240	0.1	15	1.06	0.1	27	76	6.23	0.14	17	2.22	813	3	0.04	1	560	126	1	
	62206 Comp-3m		1	0.1	2.11	1	1	228	0.1	16	0.95	0.1	27	70	5.89	0.11	14	1.99	810	4	0.04	1	590	98	1	
	62207 Comp-3m		1 5	0.1	2.2	1	1	74	0.1	18	0.98	0.1	28	64	5.45	0.12	14	2.08	856	2	0.07	. 1	630	80	1	
	62208 Comp-3m		5	0.1	2.18		1	64	0.1	14	1.02	0.1	31	77	5.68	0.09	12	1.82	744	2	0.05	3	620 550	78	1	
	62209 Comp-3m		2	0.1	2.58			184	0.1	16	2.02	0.1	33	76	5.73	0.05	13	2.11	823	3	0.04	-		49	2	
	62210 Comp-3m		-	0.1	2.29		1	106	0.1	16	2.09	0.1	31	72	5.59	0.05	11	1.77	739	3	0.05	5	610	37	- 1	
	62211 Comp-3m		2 3	0.1	2.38	1	1	153	0.1	19	1.06	0.1	26	58	6.42	0.22	12	1.92		2	0.04		670	22	1	
	62212 Comp-3m		-	0.1	2.28	-	1	188	0.1	.19	1.01	0.1	24	51	5.64	0.25	12	1.72	964	3	0.04	1	650	24	1	
	62213 Comp-2m		16	0.1	1.92	59	1	173	0.1	17	1.03	0.1	31	89	6.4	0.31	14	2.23	897	2	0.04	6		31	-	
	62214 Comp-2m		4	0.1	2.29	2		43	0.1	18	0.87	0.1	22	58	5.6	0.24	16	2.89	1006	3	0.03		840	34	1	
	62215 Comp-2m	•	. 6	0.1	2.03	6	.1	44	0.1	17	0.93	0.1	22	49	5.62	0.22	14	2.36	821	2	0.05		630	27	· 2	
	62216 Chip-2m		3	0.1	2.47		1	44	0.1	19	0.98	0.1	25	61	5.55	0.25	18	2.98		3	0.05		680	24		
	62217 Comp-2m		- 6	0.1	2.2	4 18	1	39	0.1	18	1.2	0.1	26	62	5.93	0.19	14	2.54	909	3	0.06		570	24	1 3	
	62218 Comp-2m	1	•	0.1	2.51			34 96	0.1		1.77	0.1	34	101	8.5 6.03	0.2	21 5	3.43	1230	-	0.03	16		31 180	_	
	62219 HR CHK		3140	9.8	0.7	149	7		0.1	19	1.49	69.7	. 16	2646		0.38	-	0.38	1228	11		4			13	
	62220 S		. 7	0.1	2.5	8 5	1	306	0.4		1.08	0.1	24	112	4.87	0.22	14	1.88	1331	3	0.01	-		34	Б - 6	
	62221 S		-	0.1	2.1	0	1	107	0.1	11	2.92	0.1	18	81	3.74	0.12	11	2.01	764		0.02			30	4	
	62222 T		12	0.1	1.98	· · · 1	1	46 104	0.1	13	2.7	0.1	20	97	4.48	0.1	14	1.78		3			420	26 47	4	
-	62223 T		13	0.1	1.87	•	1		0.1	8	0.64	0.1	19	68	5.58	0.12	11	1.4	619	2	0.04			47		
	62224 T		50	0.1	1.29	1	1	142 96	0.1	16	0.13	0.1	19	103	6.57	0.11	5	0.76	266	1	0.05	-			1	
	62225 T		13	0.1	1.42	2	1		0.1	13	1.63	0.1	38	103	6.08	0.44	9	1.13	650 265	•	0.02			22 15	· 1 3	
	62226 T		7	0.1	0.7	6	1	3932	0.2	3	0.45	0.1	3	5	1.32	0.17	4	0.39	265	2	0.03	• •	560	15	3	

 \bigcirc

SAMPLE	SAMPLE	SR	тн	ті	v	ZN	GA	SN	w	CR
NO	TYPE	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
	-		~~	0005	407.0	47				
62183 62184	-	1	90 76	2885 1475	187.3 126.5	- 47 58	23 18	1	9 6	41 41
62185	-	1	63	2522	126.5	55	22	i	9	76
62186		· · · .	58	2231	141.1	55 66	21	i	9	42
62180		1	65	611	34.9	35	21	· 1	3	42
62188	-	7	63	2828	169.3	56	17	i	. 8	63
62189	-	16	43	26	27.9	34	14	· 1	4	27
62190	-	28	35	1458	72.9	22	19	i	5	38
82191	-	1	89	2767	228	55	27	i	.10	48
62192		1	73	2481	147.3	61	17	i	6	27
62193		1	77	2696	170.9	106	17	i	8	40
62194		25	58	1148	114.2	60	26	i	7	30
62195	-	27	42	30	29.9	39	16	i	5	49
62196		37	61	971	100.7	69	27	· 1	· 7	34
62197		26	72	775	105.1	87	25	1	7	33
62198		40	69	1502	113.6	70	28	i	ż	36
	Chip-1.5m	- 1	64	2807	162.4	58	20	i	8	40
	HRCHK	55	99	244	18	10000	12	1	ĭ	67
	Chip- 2m	1	53	2671	147.4	72	21	i	7	37
	Comp-1m	. 1	80	2834	224.8	56	29	1	9	41
	Comp-3m	i	80	2855	197.1	77	26	1	÷ 9	46
	Comp-3m	1	75		171.5	133	28	1	8	30
	Comp-3m	1	90	2353	196.3	269	24	1	8	35
	Comp-3m	i	66	2290	192.9	257	23	1	8	54
	Comp-3m	1	60	3149		222	25	1	. 8	45
	Comp-3m	4	83		184.6	150	22	1	9	57
62209	Comp-3m	1	75	2424	218.8	119	26	1	10	65
	Comp-3m	1	67	2658	214.4	87	23	1	10	72
	Comp-3m	6	87	2949	166.7	53	24	1	8	41
	Comp-3m	5	79	2917	181.8	50	23	1	- 8	44
	Comp-2m	4	91	2505	172.6	41	24	1	10	89
	Comp-2m	. 7	92	2634	153.3	46	26	i	8	33
	Comp-2m	5	86	2477	140.8	40	23	1	8	-34
	Chip-2m	9	88	2917	158.8	44	26	· i	8	40
	Comp-2m	10	87	2782	156.5	36	24	· · i	9	41
	Comp-2m	2	95	2343	193.5	61	29	i	12	102
	HR CHK	59	72	184	12.3	7810	11	1	1	73
62220		14	86	303	100.5	77	24	i	6	20
62221		21	60	1173	109.7	63	23	i	7	29
62222	-	14	64	1696	143.3	- 99	26	i	9	79
62223		13	85	549	128.4	127	19	i	7	59
62224		2	54	2648	174.6	48	12	i	6	18
62225	-	1	65	1917	112.8	38	17	i	6	29
62226		31	36	39	5.6	38	9	i	5	85
	-								-	

PROJECT 6000 - SAMPLE ANALYSES

SAMPLE NO	SAMPLE TYPE	-FIRE PB	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	Bi PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	К %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	РВ РРМ	SB PPM	
61007		_		• • •		•							4.05									- 40		-	
62227		5	0.1	2.99		1	348	0.1	19	1.97	0.1	27	165	6.83	0.19	15	2.59	1436	3	0.05	1	640	30	3	
62228		. 3	0.1	2.29		1	45	0.1	18	0,91	0.1	34	125	6.89	0.11	15	3.31	742	3	0.04	19	320	27	- 1	
62229		3	0.1	0.9	1	1	121	0.1	15	0,57	0.1	27	71	6.4	0.14	6	0.73	279	· 1	0.07	-1	410	13	. 1	
62230		3	0.1	0.76	19	1	2364	0.5	4	2.23	0.1	9	19	2.48	0.25	4	0.76	567	2	0.01	1	520	19	- 2	
62231		5	0.1	1.92	1	1	106	0.1	5	0.64	0.1	21	73	6.16	0.1	· 9	1.79	661	3	0.04	· 1	660	25	1	
62232		2	0.7	0.24	36	1	682	0.2	5	3,34	0.1	- 5	38	1.58	0.13	1	2.01	546	4	0.02	· 4	240	31	3	
	Chip-0.3m	2	0.1	0.86	3	69	91	0.1	8	3,03	0.1	14	72	4.53	0.23	4	0.29	938	1	0.02	1	900	9	1	
	R-Grab	1	0.1	0.68	157	8	40	0,1	20	15	0.1	10	1477	2.27	0.02	. 9	1.3	6344	5	0.01	8	190	49	14	
	3 Chip-2m	2	0.1	1.69	, 1 .	59	100	0.1	7	0.16	0.1	14	87	7	0.26	11	1.09	271	1	0.03	a 1	620	31	1	
	Chip-2m	1	0.1	3.14	1	1	31	0.1	17	0.84	0.1	29	150	6.72	0.1	24	3.27	1407	3	0.03	1	650	34	3	
62505	5 Chip-2m	3	0.1	1.43	1	1	96	0.1	7	0,15	0.1	14	49	5.1	0.12	8	1.2	352	2	0.06	1	600	13	1	
62506	R-Grab	1	0.1	0.9	30	10	1779	0.5	. 8	8,03	0.1	21	65	5.03	0.22	4	3.41	1784	2	0.01	. 6	160	29	2	
62507	Chip-0.5m	1	0.1	0.41	22	26	155	0.3	5	4.58	0.1	8	11	2.76	0.12	2	0.68	1018	3	0.01	. 1	170	17	1	
62508	B Chip-1.0m	1	0.5	0.59	10	26	107	0.2	3	2,52	0.1	4	8	1.22	0.29	2	0.12	329	2	0.02	. 1	190	9	4	
	Chip-1.0m	2	0.6	0.54	12	7	112	0.2	3	2.65	0.1	3	7	1.2	0.25	2	0.11	352	4	0.03	2	170	. 9	4	
82510) Chip	6	0.5	0.39	19	1	21	0.4	3	0.19	0.1	2	10	0.81	0.14	5	0.13	178	2	0.04	2	200	11	3	
	Chip-2m	7	0.1	1.84	1	1	738	0.1	14	0.16	0.1	17	91	7.97	0.28	12	1.44	405	1	0.02		440	26	. 1	
	Chip-2m	3	0.1	0.88	13	2	565	0.5	7	3.1	0.1	18	173	5.08	0.26	4	1.18	1145	1	0.02	3	1000	21	1	
	3 Comp	1	0.1	0.8	26	16	604	0.4	8	5,46	0.1	13	. 9	4	0.34	,	3.66	2408	Å	0.02	Ā	460	37	. 4	
	Chip-2m	1	0.1	0.7	25	1	965	0.5	5	4.03	0.1		16	2.48	0.31	,	1.79	724	3	0.01	. 2	180	28		
	5 Chip-1.5m	. 1	0.1	0.47	34	4	479	0.5	6	3.12	0.1	13	189	3.62	0,16	2	1.78	890	. 3	0.02	6	970	22	1 I	

 \bigcirc

SAMPLE NO	SAMPLE TYPE	SR PPM	TH PPM	TI PPM	V PPM	ZN PPM	ga PP M	SN PPM	W PPM	CR PPM
62227	т.	2	83	2533	215.6	71	29	1	9	23
62228	Т	22	108	2406	242.6	43	28	1	15	161
62229	T	· · 1	61	2421	139,5	. 21	11	1	7	66
62230	т	. 95	40	23	18.5	57	13	1	3	35
62231	т	9	98	51	77.8	48	24	1	6	44
62232	T	147	54	15	13.7	50	21	1	7	106
62501	Chip-0.3m	30	35	269	116. 9	89	12	1	3	13
	R-Grab	1	1	212	94.3	.28	45	1	6	32
62503	Chip-2m	. 1	80	667	117.8	41	16	1	5	14
62504	Chip-2m	1	98	2427	208.9	116	29	· 1	10	42
62505	Chip-2m	2	65	955	93.2	21	15	1	. 6	40
62506	R-Grab	106	15	34	152.1	75	33	- 1	7	34
62507	Chip-0.5m	38	26	23	103.7	71	19	1	8	100
62508	Chip-1.0m	1	11	18	27.9	42	7	1	5	82
62509	Chip-1.0m	. 1	9	16	14.6	49	7	1	. 8	152
62510	Chip	4	173	142	11	25	7	1	6	125
62551	Chip-2m	1	80	2139	172.4	47	18	1	8	42
62552	Chip-2m	38	62	40	139.5	88	20	1	6	45
62553	Comp	81	63	-32	88.3	85	35	1	7	52
62554	Chip-2m	67	53	20	54.3	66	23	1	5	43
62555	Chip-1.5m	85	68	. 16	82.4	74	22	1	5	25

ROAD RECONAISSANCE

PROJECT 6000 SUMMARY OF SAMPLES

D	SAMPLE NO	SAMPLE TYPE	NAME	MINERALIZATION	LOCATION
	ROAD REC	ONAISSANCE			
	62104	R	Sheared chloritized MV	minor py; lim'd on fractures	Road recon
	62105	R	Sheared MV	tr py	Road recon
	62106	S	hetro sand	10% oxidized material	Road recon
	62107	S	organic muck/clay-sand		Road recon
	62108	S S	hetro clay-sand	minor mag	Road recon
	62109	S	hetro sand	well sorted	Road recon
	62110	S	clay-sand	Host-gy-bl mudstne	Road recon
	62111	Comp-10m	MV	tr diss sulfs	Road recon
	62112	S	clay		Road recon
	62113	S	hetro sand	some oxidized material	Road recon
	62114	S	hetro sand	<1% mag; oxidized material	Road recon-Oweeji Cr
	62115	S	clay-sand	20% oxidized material	Road recon
	62116	Comp	Andesite	1-2% py in blebs & veinlets	Road recon
	62117	S	hetro clay-gravel		Road recon
	62118	S	hetro sand	minor mag, oxidized material	Road recon
	62119	S	hetro sand-gravel	some oxidized material	Road recon
	62120	S	clay-sand	minor py; some oxidized material	Road recon-Glacier Cr
	62121	S	hetro sand	tr grey metallic; oxidized material	Road recon
	62122	S	clay-sand-gravel	some oxidized material	Road recon
	62123	S	hetro sand	20 % oxidized material	Road recon
~	62124	SS CHECK			
)	62125	S	clay-sand	20 % oxidized material	Road recon
	62126	Chip-3m	Altered MV	sil'd, strongly carb'd, lim'd on fract	Road recon
	62127	LR CHK			
	62128	HR CHK			
	62129	S	silt-sand Check Material		Road recon-Deltaic Cr
	62130	SS CHECK			

PROJECT 6000 - SAMPLE ANALYSES

SAN No	IPLE SAMPLE TYPE	AU-FIRE PPB	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	СО РРМ	CU PPM	FE %	K %	LI	MG %	MN PPM	MO PPM	NA %	Nł PPM	P PPM	РВ РРМ	8B PPM
		ROAD RE	CONAIS	SANCE	ANALY		ESULT	5																
6	2104 R		0.1	1.44	16	1	1 20	0.4	4	0.54	0.1	13	40	3.55	0.16	22	0.86	1498	- 5	0.02	39	460	30	15
6	2105 R	. 6	5 0.1	1.24	10	1	98	0.3	5	0.05	0.1	10	37	3.29	0.13	. 17	0.7	655	. 8	0.02	22	350	38	.19
6	2106 S	. E	0.1	1.73	1	1	166	0.6	8	0.48	0.1	21	46	3.46	0.1	32	1.07	2020	4	0.01	87	1020	27	10
6	2107 S	1	0.1	1.73	1	1	180	0.6	6	0.53	0.1	14	31	2.61	0.11	26	0.77	1864	4	0.02	65	1060	20	10
6	2108 S	- 1	0.1	2.43	1	1	212	0.7	. 11	0.47	0.1	21	45	3.58	0.13	25	0.91	1719	4	0.02	67	1330	24	12
	2109 S		2 0.1	1.84	1	2	350	0.7	6	0.43	0.1	15	. 44	3.34	0.23	27	1.17	703	5	0.02	- 83	890	27	11
	2110 5	1	2 - 0.1	1,81	1	1	181	0.6	8	0.5	0.1	18	43	3.4	0.18	23	1,35	1 201	4	0.03	i 95	B70	29	11
6	2111 Comp-10m	. 4	0.1	1,89	7	1	149	0.5		0.28	0.1	14	40	3.8	0.18	33	1.42	526	. 5	0.02	75	720	31	11 -
	2112 5	·	3 Ó.1	1.44	1	1	246	0.5	9	1.25	0.1	25	45	3.19	0.11	15	0.55	5410	. 4	0.02	88	1900	27	8
-	2113 5	1	0.1	2,11	1	1	234	0.6	10	0.51	0.1	23	42	4.08	0.22	34	1.07	2738	- 4	0.02	74	· 980	30	11
	2114 S	4	k. , 0.1	1.37	7	1	319	0.7	6	0.46	0.1	16	44	3.58	0.2	21	0.65	1403	4	0.02	52	940	21	6
	2115 S		0.1	1.53	1	1	221	0.5	6	0.56	0.1	13	31	2.9	0.19	26	0.68	1252	. 5	0.01	36	B10	25	9
	2116 Comp	. 4	0.1	1.51	19	2	231	0.4	5	0.32	. 0.1	12	55	3.85	0.23	22	0.83	855	. 10	0.03	64	490	21	9
	2117 S	. 6	3 0.1	2.01	1	1	193	0.6	7	0.46	0.1	22	58	4.11	0.15	36	1,19	3130	7	0.02	91	900	34	11
	2118 S	7	0.3	2.05	. 3	2	389	0.4	11	3.9	0.1	17	61	3.92	0.13	- 19.	2	764	4	0.03	37	800	32	13
	2119 5	3	3 0.1	1.6	12	1	247	0.4	7	0.54	0.1	16	27	3.32	0.13	25	0.69	3263	4	0.01	43	770	25	9
	2120 S	8	8 0.5	2.42	1	3	66	0.1	20	1.62	0.1	20	84	4.97	0.1	18	1.81	1072	3	0.04	1	940	21	10 -
	2121 S	8		1.92	4	1	162	0.3	9	0.66	0.1	18	66	4.47	0.21	24	1.07	1418	5	0.02	18	1010	24	10
	2122 S		2 0.1	1.45	5	1	293	0.4	8	0.65	0.1	20	49	4.3	0.15	. 21	0.61	5230	5	0.01	73	1030	24	· · 7
	2123 5	1	0.1	1.19	57	2	313	0,5	6	1.15	0.1	16	50	4.43	0.15	16	0.57	1491	7	0.01	45	1170	16	8
	21 25 S	1	0.1	1,38	6	2	183	0.7	6	0.45	0.1	17	47	3.65	0.12	20	0.72	964	4	0.01	63	1010	20	8
	2126 Chip-3m		3 0.1	1.29	10	1	201	0.5	5	0.24	0.1	19	29	4.02	0.11	16	0.65	1392	. 3	0.04	101	650	22	7
	2127 LR CHK	4	0.3	0.41	26	1	23	0.4	- 3	0.14	0.1	2	8	0.83	0.15	4	0.11	179	7	0.07	5	160	13	4
	2128 HR CHK	3060	. –	0.9	101	2	135	0.2	21	3.13	62.3	15	2736	5.13	0.48	- 5	0.4	1497	17	0.02	10		171	24
	2129 S	:	3 0.4	2.54	. 1	2	171	0.1	18	1.6	0.1	19	.76	4.5	0.13	19	1.81	945	. 4	0.03	- 21	950	26	13
6	2130 SS CHECK		3 0.7	2.47	1	2	174	0.1	18	1.59	0.1	19	76	4.45	0.12	18	1.77	938	3	0.03	23	910	- 24	13

()

SAMP No	LE SAMPLE TYPE	SR PPM	TH PPM	TI PPM	V PPM	ZN PPM	GA PPM	SN PPM	W PPM	CR PPM
62	104 R	24	62	30	40.7	79	19	1	12	202
62	105 R	4	54	28	39.8	58	15	1	7	104
62	106 S	27	64	249	54.6	203	21	1	5	31
62	107 S	26	49	386	47.7	174	17	1	4	26
62	108 S	24	53	1450	67.1	160	20	1	7	49
62	109 S	27	75	130	66.8	121	19	1	6	43
62	110 S	23	78	681	61.6	103	22	1	7	55
62	111 Comp-10m	7	78	829	57.6	82	23	1	9	104
62	112 S	75	50	669	40.2	205	26	1	4	20
62	113 5	20	65	1088	66	177	24	1	6	25
62	114 S	26	57	362	56.3	150	- 16	· 1	4	9
62	115 S	17	50	450	67.1	133	15	1	4	10
62	116 Comp	9	67	41	82.5	100	18	1	11	150
62	117 S	20	74	344	81.7	266	25	1	5	30
62	118 S	26	69	1000	105.2	94	25	1	7	29
	119 S	17	53	422	56.4	148	22	1	4	14
62	120 S	39	76	3251	160.7	71	26	1	7	6
	121 S	19	75	1083	93.8	131	21	1	5	1
62	122 5	29	55	325	62.6	200	26	1	4	9
62	123 5	27	- 71	138	55.4	181	17	1	3	2
82	125 S	27	72	128	59.7	136	16	1	4	25
62	126 Chip-3m	8	70	28	103.7	102	23	1	11	165
62	127 LR CHK	4	148	134	11.8	23	8	·· 1	14	294
62	128 HR CHK	84	65	215	20.7	9423	14	1	. 1	132
	129 S	29	91	2616	153.5	89	28	1	8	20
62	130 SS CHECK	28	. 90	2553	150.6	84	28	.1	8	21

prospective geological environment, including a favourable structural setting and apparent intrusion, along with the polymetallic signature of the northeast trending mineralization, is suggestive of the geological environment and the pyritic halo at Red Mountain.

As indicated in Table 3, 105 samples including 76 rock, float, talus, 22 stream sediment, 3 soil and 4 check samples were collected in the Deltaic Target Area (Maps 6A, 7A). The rock, float and talus samples returned gold, copper, zinc and arsenic values in individual samples ranging up to 470 ppb, 8080 ppm, 876 ppm and 20 ppm, respectively. The rock, float and talus samples average a very anomalous 70 ppb gold.

The stream sediment samples returned gold, copper, zinc and arsenic values in individual samples ranging up to 352 ppb, 635 ppm, 377 ppm and 5 ppm, respectively (Map 6A). The stream sediment samples average a very anomalous 54 ppb gold. The three soil samples returned gold, copper, zinc and arsenic values in individual samples ranging up to 174 ppb, 468 ppm, 27 ppm and 5 ppm, respectively. The soil samples average 86 ppb gold.

Trace and indicator elements, other than base metals, often include (based on non-quantitative ICP analyses) some indications of anomalous arsenic, boron, potassium, manganese, antimony and phosphorous. Due to weather conditions, limited sampling was carried out on the plateau (Maps 6A, 7A) on which the Deltaic colour anomaly is best developed. Anomalous values were obtained in seven composite rock samples of altered (oxidized, silicified, sericitized, pyritized) pyroclastic, ranging from 46 to 340 ppb gold. The only sediment sample taken from Grid Creek (Map 6A) which drains the northern part of the colour anomaly returned 265 ppb gold, 424 ppm copper, 192 ppm zinc and 24 ppm arsenic.

Samples of oxidized float and composite samples of altered pyroclastic and quartz porphyry collected on a one day traverse along Bear Valley (Table 3; Maps 6A, 7A) which bisects the mineralized zones about 700 m east of Grid Creek have also returned anomalous gold values. For example, values from altered (carbonatized, chloritized) float indicative of associated copper mineralization (chalcopyrite, malachite, azurite) include 470 ppb gold, 8080 ppm copper, 876 ppm zinc; 306 ppb gold, 3140 ppm copper, 2140 ppm zinc; and, 184 ppb gold, 1458 ppm copper, 1150 ppm zinc. The mineralization was found in a gully draining the central part of the colour anomaly. Anomalous values returned from float and composite samples of pyritized and altered pyroclastic rocks collected along the west side of the valley include 157 ppb gold, 14 ppm copper, 645 ppm zinc; 174 ppb gold, 468 ppm copper, 27 ppm zinc; 132 ppb gold, 247 ppm copper, 44 ppm zinc; 162 ppb gold, 58 ppb copper, 69 ppm zinc; 118 ppb gold, 121 ppm copper, 146 ppm zinc.

- 23 -

Anomalous sediment samples from streams draining pyritized gossans comprised of pyroclastic rocks with jarosite/alunite alteration along the west side of Bear Valley also returned strongly anomalous values including 352 ppb gold, 635 ppm copper, 377 ppm zinc; 276 ppb gold, 215 ppm copper, 66 ppm zinc; and, 75 ppb gold, 78 ppm copper and 110 ppm zinc.

Two stream sediment samples taken on East Junction and West Junction Creeks near their confluence each returned anomalous gold, copper and zinc values of 132 ppb, 303 ppm, 403 ppm, and 22 ppb, 121 ppm and 126 ppm, respectively. Two of three pyritized and silicified samples of pyroclastic rock taken in the area returned weakly anomalous gold values of 12 and 13 ppb.

Consistently anomalous gold values ranging between 20 and 40 ppb have also been returned in the 4 stream sediment samples taken from Snowpatch Creek draining a valley about 1.5 km to the west of Grid Creek on the plateau. Four rock samples collected in Snowpatch Creek in the vicinity of the stream sediment samples have gold contents ranging between 17 and 67 ppb and individual anomalous gold, copper and zinc contents ranging up to 67 ppb, 271 ppm and 177 ppm, respectively.

B. Glacier Creek Target Area:

The Glacier Creek target area (Table 3; Maps 6A, 7A) covers the head of Glacier Creek and a large gossan zone of sulfidized tuffs, breccias, and rhyolite porphyry located about 1.8 km southeast of the head of Glacier Creek. A northwest trending fault (Map 3) is associated with both areas.

A total of 29 samples including 7 stream sediment, 19 rock and talus and three check samples were submitted for analysis.

The head of Glacier Creek is underlain by mafic to intermediate pyroclastic rocks and tuffaceous sediments (Map 4). Of 6 stream sediment samples taken, 4 returned anomalous gold values ranging between 8 and 23 ppb gold, with individual values ranging up to 23 ppb gold, 94 ppm copper and 88 ppm zinc. Of the nine rock samples taken, 6 have slightly anomalous gold values ranging between 8 and 27 ppb. An additional sample of sulfidized, tuffaceous breccia returned 145 ppb gold, 316 ppm copper and 118 ppm zinc.

One sediment sample that was taken from the creek draining the Glacier gossan zone returned 10 ppb gold, 99 ppm copper and 79 ppm zinc. Nine rock and chip samples returned only low gold values ranging between 1 and 9 ppb (Map 7A). The two southern most rock samples have elevated gold and base metal contents relative to the rest of the samples.

- 24 -

C. Skowill Target Area:

The Skowill target area is an extensive area of felsic volcanic flows and pyroclastic rocks in the northwestern area of the property (Table 3; Maps 3, 4, 6B, 7B). The rocks are characterized by strong iron oxide and jarosite/alunite colour anomalies.

Vesicles in the rocks are often replaced by pyrite and fine grained massive pyrite has been observed often associated with chlorite in coalesced vesicles. Based on exploration successes in the Stewart Camp, any sulfidized zones or EM conductors associated with the felsic volcanic rocks should be regarded as priority auriferous, polymetallic targets. As noted above, the rhyolites are thought to be Dilworth Formation at the top of the Lower Jurassic Hazelton Group and are considered important markers at most of the gold deposits in the Stewart camp.

As indicated in Table 3, 81 samples, including 15 stream sediment, 61 talus rock and 5 check samples, were collected. The stream sediment gold analyses are low, with only one anomalous value of 13 ppb. The talus rock samples returned gold values ranging between 1 and 44 ppb gold, with 7 generally low anomalous values. Base metal anomalies do not accompany the anomalous gold values and indicator elements, with the exception of a few arsenic values, are low.

D. Porphyry Target Area:

The Porphyry target area is located in the northeastern part of the Stewart property on the Fox 5 and Fox 6 claims. The mineralization is hosted by an intrusive porphyry and altered volcanic rocks cut by a northwest trending fault along which several apparent inflections occur (Map 3). The Porphyry Zone is associated with a quartz porphyry that may represent a subvolcanic core that has intruded a package of mafic and intermediate volcanic rocks. Sulfidized zones in the altered (silicified, carbonatized) porphyry consisting of up to 10% fine grained, disseminated pyrite in a siliceous, often blue quartz matrix, are characterized by iron oxide colour anomalies and zones of brecciation. Pyritized zones delineated by iron oxide and jarosite/alunite are associated with (silicified, chloritized, carbonatized) volcanic and altered volcanoclastic rocks in the vicinity of the porphyry and these rocks were also considered prospective for gold.

Stream sediment, talus and chip samples were collected to initially evaluate a number of these zones. As indicated in Table 3 and on Maps 6B and 7B, 65 samples including 36 chip and composite rock, 20 talus rock, 5 stream sediment, and 4 check samples were submitted to the lab. One of the stream samples that returned 11 ppb gold, 76 ppm copper, 87 ppm zinc and 17 ppm arsenic is considered anomalous for gold and arsenic. Only one of the chip samples from the Porphyry Zone that returned 16 ppb gold, 89 ppm copper, 41 ppm zinc and 59 ppm arsenic is considered anomalous. A number of the chip samples do have anomalous zinc contents (values ranging between 119 to 269 ppm), but without any gold or copper correlation. However, nine of the talus samples that include both sulfidized volcanics and porphyry have generally weakly anomalous gold contents ranging from 9 to 50 ppb gold, most often with some arsenic correlation (values up to 1360 ppm) and some lead correlation (values up to 1001 ppm).

E. Road Program:

In order to evaluate the regional potential of the western side of the property, twenty stream sediment samples and five rock samples were taken from or in the vicinity of creeks along the Cassiar Highway (Map 8; Table 3). Eighteen of the streams have returned anomalous zinc values ranging between 94 and 266 ppm, with some associated anomalous arsenic values, with no anomalous copper values, and with only two weak anomalous gold values (8 and 9 ppb) from Glacier Creek.

10. CONCLUSIONS, RECOMMENDATIONS - PHASE 1A PROGRAM:

A. Deltaic Zone:

It is concluded that the initial program carried out in the Deltaic area of the property has confirmed the polymetallic target originally located by Cominco. Based on Geofine's experience in the Stewart camp, such anomalous mineralization as associated with the prominent Deltaic colour anomaly can be very important since it often halos the high grade gold mineralization at many deposits in the Golden Triangle.

The complete package of results for the reconnaissance samples collected on and in the vicinity of the Deltaic portion of the Property, in Geofine's opinion, confirms the potential for a prospective auriferous target. The target has not been explored historically in any detail and has a number of positive attributes including a pyritic halo, a polymetallic signature and a Jurassic geological environment somewhat similar to the setting of the Marc Zone at Red Mountain. The Marc Zone mineralization has the morphology of a plunging cylinder surrounded by a substantial (50-200 m) pyritic halo that has anomalous gold values and a polymetallic signature including zinc and copper.

The core of the auriferous Marc Zone at Red Mountain is exposed, thus facilitating its discovery. On the Deltaic property there are many of the same geological and geochemical attributes but economic gold values are lacking in reconnaissance surface samples collected to date. The strongest gold values are associated with the more intensely silicified and pyritized mineralization.

It is thus recommended that the heart of the target area as known to date should be further investigated by geophysical surveying (IP and magnetometer) on a 5 km grid (Map 5) to locate chargeability and resistivity anomalies associated with the strongest zones of silicification and sulfidization. Soil geochemical and geological surveys would be useful to screen and prioritize drill targets.

Follow-up geological and geochemical surveys are recommended along the upper reaches of Snowpatch Creek, on East and West Junction Creeks and on the east side of Bear Creek in order to fully outline the extent and probable sources of the anomalous gold mineralization. A proposed Phase 1B, \$44,000 program that includes the recommended work on the Deltaic Zone is shown in Table 4. The staking of an additional three claims is also recommended, but the cost of it and contingencies are not included the budget.

B. Glacier Target Area:

Initial reconnaissance activities in the Glacier Creek valley have located anomalous gold and base metal values in altered pyroclastic rocks and stream sediment samples collected near the toe of the glacier. Oxidized float boulders of sulfidized breccia appear to be the origin of the gold mineralization and it is concluded that additional work is required to locate and evaluate the in situ source or sources. The anomalous mineralization is similar to that found in float boulders on the Deltaic Zone.

The Glacier Zone comprises an extensive gossan zone whose only indication of gold potential to date is anomalous gold and copper values in the one stream sediment sample taken, and elevated gold and base metal values in the southern most rock samples collected.

It is recommended that a small follow-up geochemical and geological survey be carried out in both of the areas referenced above as part of the Phase 1B program recommended in Table 4. The anomalous gold mineralization found in Snowpatch Creek and in the Glacier Creek valley could have a common source and follow-up surveys up Snowpatch Creek would probably be the most expeditious means of locating in situ mineralization.

C. Skowill Target Area:

Based on oxide and jarosite/alunite alteration and the presence of Mount Dilworth felsic volcanic horizons, the large Skowill target area with its relatively flat terrain and proximity to infrastructure presented a prospective target. However, any gold potential appears not to be reflected in the stream sediment

TABLE 4

PROPOSED PHASE 1B, 1993 FOLLOW-UP BUDGET

DELTAIC ZONE,

STEWART PROPERTY

	ITEM	COST 1B
		(\$)
iv)	Property, assessment work research Project permitting Geochemical signature analyses Property Compensation Structural fabric studies, airphotos, mag maps	
ix)	Field equipment, supplies Mob-demob Ground transport, helicopter support Analyses, assays 350 @ \$20; Linecutting 4 km@ 350 km Geophysical surveys: 4 km of mag 4 km of IP report	1000 3600 10000 7000 1400 8500
xv) xvi) xvii) xviii)	Land surveys Food, sustenance, accommodation Communications - in field	2500 500 2500 7000
XX)	Diamond drilling	

TOTAL

\$44000*

* The Phase 1B program as outlined above, does not include the recommended staking or contingencies.

samples from the northern target area. The lone anomalous stream sediment anomaly (13 ppb) and most of the anomalous rock samples are located in the southern part of the target area in proximity to the Skowill felsic dome. Airborne EM surveying could probably provide additional targets, but additional reconnaissance geological and geophysical surveys are recommended to evaluate the area of the Skowill Dome not covered by the present survey. Two days of helicopter supported traverses are proposed, but the work would be subordinate to the higher priority activities recommended for the Deltaic and Glacier target areas.

D. Porphyry Target Area:

The prospective alteration and often intense sulfidization associated with rocks of the Porphyry target area have failed to return any strong gold anomalies that are recommended for follow-up at this time. The western part of the target area remains to be evaluated by reconnaissance surveys, but in view of the results from the main part of the target area, it is deemed a low priority at this time.

E. Road Reconnaissance Program:

The analytical results, except for the Glacier Creek anomalies and the zinc and a few arsenic values, are considered low and not of interest. High water levels due to run-off caused by the persistent warm weather melting glaciers may have diluted most anomalies. Because of the high level run-off conditions that creeks in the area experience and the constant dilution of anomalies, the utilization of low level threshold values is required for the recognition and evaluation of follow-up targets.

11. PHASE 1B FOLLOW-UP PROGRAM :

Based on the positive results of the Phase 1A reconnaissance program, the Phase 1B geochemical and geophysical program was carried out from September 20 to October 6, 1993, to locate and prioritize drill targets in the Deltaic target area. On September 25, 1993, three additional claims, Fox 22, 23 and 24, were staked to cover the postulated extension of the favourable Deltaic geological environment.

Expenditures for the approximately \$65,000 Phase 1B program are summarized by category in Table 5.

A. DELTAIC ZONE GRID:

Four hundred and twenty two samples, including check samples, were collected and assayed for gold using neutron activation on a 30 gram pulp. Quantitative analyses for copper and zinc were also carried out. The samples are described in Table 6 along with the analytical results. The original lab sheets are included in Appendix 3. The Deltaic Zone grid is shown on Map 9A along with soil sample numbers. Soil gold, copper and zinc analytical results are contoured on Maps 9B, 9C and 9D, respectively. Stream sediment sample numbers are shown on Map 10A and analytical results are shown on Map 10B. Rock sample numbers are shown on Map 11A and analytical results are shown on Map 11B.

IP chargeability and resistivity contours are shown on Maps 12 and 13, respectively. The IP report by JVX accompanies the report.

The geochemical survey utilized a 5.75 km grid and entailed the collection of 251 soil samples (Table 6). The soil survey delineated two broad, anomalous gold zones, Zones S1 and S3, that trend northeast across the northern and southern parts of the grid, respectively (Map 9B). A third Zone S2 is only partially outlined by samples collected on the north ends of Lines 50E, 51E and 54E. The very anomalous metal values returned from the north end of Line 50E indicate that Zone S2 could be indicative of the highest priority follow-up target which remains to be fully delineated.

Over the grid there is a fair correlation between copper and gold (correlation coefficient of 0.48) and a higher correlation between the metals on Zone S1 (correlation coefficient of 0.54). The gold-zinc correlation is poor (correlation coefficient of 0.22 on the grid and 0.11 in Zone S1) as expected, since the higher zinc values tend to halo the soil gold zones.

TABLE 5

STEWART PROPERTY PHASE 1B PROGRAM SUMMARY OF EXPENDITURES

Expense	Amount (\$)
Expense Accounts	4145
Supplies/Rental	1040
Communication	380
Salaries: Field/Report	22410
Subsistence	3969
Mob/Demob	1998
Aircraft Charter	13786
Vehicle Rental	1900
Analyses	4770
Shipping	460
Copying	832
Recording/Filing Fees	520
IP	12000

TOTAL

\$68,210.00

ui Kir

b:\asstab5

TABLE 6

PHASE 1B ANALYTICAL RESULTS & SAMPLE DESCRIPTIONS

SAMPLE NO	LOCATION	ТҮРЕ	NAME	ALTERATION	COMPOSITION\MINERALIZATION	Au ppb	Cu ppm	Zn ppm
							- a pp.m	
Line 50E		•	~ .			40		005
	L50E 40+00N	Soil	Clay-loam	sil-wk, lim-wk	clay, silt, 6% organ, minor lim'd tuff pebs	40	55	205
	L50E 40+25N	Soil	Clay-loam	lim-wk	clay, silt, 6% organ, minor lim'd tuff pebs	7	41	85
	L50E 40+50N	Soil	Clay-loam		clay, silt, 3% organics	14	39	107
	L50E 40+50N	R	Pyroclastic	sil-wk, lim, Mn stained	qtz matrix, qtz & ox'd mat frags	31	53	97
	L50E 40 + 75N	Soil	Clay-sand		60% clay, 40% hetro sand	97	135	228
	L50E 41 + 00N	Soil	Clay-sand		50% clay, 50% hetro sand	59	640	500
	L50E 41 + 25N	Soil	Clay-loam		80% clay & silt, 5% organics	10	238	630
	L50E 41 + 50N	Soil	Clay-loam		80% clay & silt, 5% organics	21	50	110
	L50E 41 + 75N	Soil	Clay-loam		80% clay & silt, 5% organics	-1	52	65
	L50E 42+00N	Soil	Clay-loam		80% clay & silt, 5% organics	11	43	57
	L50E 42 + 25N	Soil	Clay-loam		80% clay & silt, 2% organics	7	50	68
	L50E 42+50N	Soil	Clay-loam		clay, silt, minor qtz sand, 5% organics	11	60	90
	L50E 42+75N	Soil	Clay-sand		70% clay, 30% hetro sand, 4% organics	33	77	135
	L50E 42+87.5N	Soil	Clay-sand		70% clay, 30% hetro sand, 2% organics	69	108	160
	L50E 43+00N	Soil	Clay-sand		70% clay, 30 hetro sand	42	95	182
	L50E 43+12.5N	Soil	Clay-sand		60% clay, 40% qtz with minor ox'd mat	82	150	148
	L50E 43+25N	Soil	Sand		clay, 10% organ, lapilli tuff frags	64	167	162
	L50E 43+37.5N	Soil	Sand		clay, 10% organ, lapilli tuff frags	91	167	112
62957	'L50E 43+37.5N	R	Pyroclastic	sil-wk, lim, Mn stained	qtz matrix, qtz & ox'd mat frags	21	36	42
62956	L50E 43+50N	Soil	Clay-sand		qtz, clay, hetro sand, <1% grey met	105	190	127
62955	L50E 43+75N	Soil	Clay-gravel		clay, 10% organ, lapilli tuff frags	37	65	53
62954	L50E 44 + 00N	Soil	Sandy clay-loam		clay, qtz sand, 1 % met, 5 % organics	35	68	70
62953	L50E 44 + 25N	Soil	Sandy clay-loam		clay, qtz sand, 1% met, 5% organics	38	74	60
62952	L50E 44 + 50N	Soil	Sandy clay-loam		clay, qtz sand, 1 % met, 2% organics	55	100	76
62748	BL 44 + 75N 50 + 00E	Soil	Clay-loam		clay, silt, lim'd tuff pyrocl frags	109	225	145
62747	BL 44 + 75N 50 + 25E	Soil	Clay-sand	sil-wk	tuff pyrocl frags, 5% organics	65	143	95
62746	BL 44 + 75N 50 + 50E	Soil	Clay-sand		clay, sand, ox'd mat, tuff pyroci frags	71	178	145
62745	BL 44 + 75N 50 + 75E	Soil	Clay-sand		clay, sand, ox'd mat, tuff pyroci frags	75	167	154
62749	L50E 45+00N	Soil	Clay-sand	sil-wk	tuff pyrocl frags, 5% organics	94	93	73
62950	L50+30E 45+20N	S	Sand-gravel		hetro sand 70% qtz, carb, pyrocl frags	102	148	310
62750	L50E 45 + 25N	S	Clay sand-gravel	ox'd-wk	clay, ox'd tuff pyroci frags	33	150	137
62759	L50E 45 + 25N	Soil	Clay-sand		clay, qtz sand, ox'd pyrocl pebs	137	158	88
62758	L50E 45+27N	R	Alt'd Agglomerate	sil-mod, lim str, jar/alunite	qtz matrix, sil'd frags, qtz, minor carb, <1% ox'd py	105	182	116
62760	L50E 45 + 50N	Soil	Hetro clay-sand		clay, qtz, ox'd mat, calcite, 5% organ, 1% met	246	205	120
62761	L50E 45 + 75N	Soil	Clay-loam		clay, qtz, minor pyroci frags, 10% organics	54	62	80
62762	L50E 46+00N	Soil	Clay-loam		clay, qtz, minor pyrocl frags, 10% organics	126	112	100
	L50E 46+25N	S	Clay-sand		clay, qtz sand, fimor pyrocl frags	174	348	490
	L50E 46+50N	Soil	Clay-loam		clay, silt, gtz sand, 5% organics	51	95	84
	L50E 46+75N	Soil	Clay-loam		clay, silt, qtz sand, 5% organics	30	56	92
	150E 47+00N	S				35	138	230
	L50E 47+00N	Soil	Clay-loam		clay, silt, gtz sand, 5% organics	34	68	140
	L50E 47+25N	Soil	Clay-loam		clay, silt, 5% organics	32	142	123
	L50E 47+37.5N	T	Alt'd Lapilli Tuff	sil-mod, lim-wk, jar/alun	clay, jar/alun, gtz, ox'd mat, 2% diss sulfs	65	46	29
	L50E 47+50N	Soil	Clay-loam	on mody nin tricy junyaran	clay, silt, 7% organics	21	66	75
	LSOE 47 + 75N	Soil	Clay-sand		clay, gtz sand, minor ox'd frags, minor met, 2% orga	50	200	128
	LSOE 48+00N	Soil	Ox'd sand-gravel	lim-str	clay, ox'd frags of pyroclastic, 1-2% ox'd py	123	248	132
	150+10E 48+00N	R-Comp	Alt'd Pyroclastic	sil-str, lim-str	qtz, 5% diss py	50	64	178
	L50+10E 48+10N	R-Comp	Alt'd Pyroclastic	sil, carb-mod	50% gtz phenos, gtz/carb matrix, 5% diss py	104	37	150
	L50E 48+09N	R-Comp R	Alt'd Volcanic	sil-str, carb-well	sil, sand, carb, 1-2% diss py	104	65	76
	LSOE 48+09N	R Soil		-		117	218	305
			Sand-gravel	sil-mod, sil-mod	clay, qtz sand, ang ox'd frags of pyroclastic	363	348	590
	L50E 48+50N	Soil	Sand-gravel	sil-mod, sil-mod	clay, qtz sand, grn vol, ox'd frags of pyroclastic	245	348 253	403
	5 L50E 48 + 75N	Soil	Sand-gravel	sil-mod, lim-str	clay, qtz sand, grn vol, ox'd frags of pyroclastic	245 90	253 370	403 500
	6 L50E 49 + 00N	Soil	Sand-gravel	bom-ada lia	clay, qtz sand, sil'd frags of gm vol	90 158	520	427
62407	1 L50E 49 + 25N	Soil	Sand-gravel	sil pebs-mod, carb-well	clay, silt, qtz sand, gm frags of pyroclastic	120	520	421

SAMPLE LOCATION NO	TYPE	NAME	ALTERATION	COMPOSITION\MINERALIZATION	Ац ррь	Cuppm	Zn ppm
62921 L50E 49+50N	Soil	Cley-loam		clay, qtz sand, <1% grey met	215	85	182
Line 51E							
62915 L51E 40+00N	Soil	Sandy clay-loam		clay, qtz sand, minor ox'd mat, 5% organics	28	47	73
62914 L51E 40+25N	Soil	Cley-sand	sil-mod	clay, ox'd pyrocl frags	141	275	135
62913 L51E 40+50N	Soil	Sandy clay-loam		clay, qtz sand, minor ox'd mat, 8% organics	27	32	60
62912 L51E 40+75N	Soil	Sandy clay-loam		clay, qtz sand, minor ox'd mat, 5% organics	51	55	1 1 0
62911 L51E 41+00N	Soil	Clay-loam		clay, silt, 10% organics	38	49	58
62910 L51E 41 + 25N	Soil	Clay-sand		clay, silt, tuff pyrocl frags, 8% organics	39	35	83
62909 L51E 41 + 50N	Soil	Clay-sand		clay, silt, tuff pyrocl frags, 3% organics	9	36	79
62908 L51E 41 + 75N	Soil	Clay-sand		clay, silt, tuff pyrocl frags, 7% organics	8	44	88
62906 L51E 42+00N	Soil	Clay-sand		clay, silt, tuff pyrocl frags, 7% organics	14	63	98
62907 L51E 42+25N	Soil	Sandy clay-loam		clay, sand, tuff pyrocl frags, 7% organics	8	63	130
62905 L51E 42+50N	Soil	Clay-loam		clay, silt, tuff pyroci frags, 7% organics	8	44	87
62904 L51E 42+75N	Soil	Clay-sand		clay, qtz sand	53	115	116
62903 L51E 43+00N	Soil	Clay-sand		clay, silt, minor sand, 5% organics	25	70	120
62902 L51E 43+25N	Soil	Clay-sand		clay, hetro sand, ox'd pyroci frags,	51	150	138
62901 L51E 43+50N	Soil	Clay-sand		clay, silt, minor sand, 5% organics	26	60	100
62900 L51E 43+75N	Soil	Clay-loam		clay, silt, minor sand, 3% organics	28	39	52
62899 L51E 44+00N	Soil	Clay-sand		30% clay, 70% hetro sand, <1% grey met	113	133	110
62898 L51E 44 + 25N	Soil	Clay-sand		70% clay, 30% hetro sand	28	118	148 155
62897 L51E 44+50N	Soil	Ox'd hetro sand		50% clay, 50% sand	108 52	280 130	94
62877 BL44 + 75N 51 + 00E	Soil	Clay-sand		50% hetro sand, 50% clay, 3% organics	52 75	130	112
62876 BL44 + 75N 51 + 25E	Soil	Clay-sand		clay, hetro sand, pyroci & qtz frags,	69	57	34
62875 BL44 + 75N 51 + 50E	Soil	Clay-sand		clay, qtz sand, pyroci frags, 5% organics clay, qtz sand, pyroci frags, 2% organics	46	107	75
62874 BL44 + 75N 51 + 75E 62879 L51E 45 + 00N	Soil Soil	Clay-sand Clay-sand		50% hetro sand, 50% clay, 3% organics	65	102	88 .
62880 L51E 45+25N	Soil	Clay-sand		clay, hetro sand, 8% organ, <1% grey met	49	60	58
62881 L51E 45+50N	Soil	Clay-sand		clay, hetro sand, 8% organ, <1% grey met	74	78	52
62882 L51E 45+75N	Soil	Clay-sand		clay, qtz sand, ig alt d tuff frags	281	131	67
62883 L51E 46+00N	Soil	Clay-sand			133	175	58
62884 L51E 46+25N	Soil	Sandy-loam		clay, silt, gtz sand, 5% organics	197	80	73
62895 L51E 46+45N	S	Hetro sand-gravel		frags of tuff, argillite, qtz, pyrocl	98	205	308
62885 L51E 46+50N	Soil	Sandy-loam		clay, silt, qtz sand, 5% organics	80	177	235
62859 L51 + 90E 46 + 64N	R	Hetro clay-sand		clay, hetro sand, 20% ox'd mat, 1-2% grey met	42	123	110
62886 L51E 46+75N	Soil	Sandy clay-loam		clay, silt, hetro sand, 3% organics	46	83	66
62887 L51E 47+00N	Soil	Sandy clay-loam		clay, silt, hetro sand, 3% organics	380	223	840
62888 L51E 47 + 25N	Soil	Sandy clay-loam		clay, silt, hetro sand, 3% organics	106	90	76
62889 L51E 47 + 50N	Soil	Sandy clay-loam		clay, silt, hetro sand, 4% organics	62	190	121
62890 L51E 47 + 75N	Soil	Clay-loam		clay, silt, 5% organics	28	56	197
62891 L51E 48+00N	Soil	Sand-gravel	lim-wk	hetro sand, qtz, lapilli tuff frags	58	230	240
62892 L51E 48+25N	Soil	Sandy clay-loam		clay, silt, hetro sand, 3% organics	26	96	155
62893 L51E 48+50N	Soil	Sandy clay-loam		clay, silt, hetro sand, 3% organics	21	125	138
62894 L51E 48+75N	Soil	Clay-sand		60% sand, 50% clay, 5% ox'd frags, 2% grey met	102	320	280
Line 52E							
62822 L52E 40+00N	Soil	Clay-sand		clay	40	590	630
62821 L52E 40 + 25N	Soil	Clay-sand		clay, qtz sand	38	60	206
62820 L52E 40+50N	Soil	Clay-sand		clay, sand, minor sil'd tuff frags, 2% organ	50	79	216
62819 L52E 40+75N	Soil	Clay-sand		clay, sand, minor sil'd tuff frags	62	75	278
62818 L52E 41 + 00N	Soil	Clay-sand		50% clay, 50% qtz sand	34	66	160
62817 L52E 41 + 25N	Soil	Clay-aand		50% clay, 50% qtz sand	142	55	132
62816 L52E 41 + 50N	Soil	Clay-sand		qtz sand, tuff frags, 3% organics	87	103	135
62815 L52E 41 + 75N	Soil	Clay-sand		qtz sand, tuff frags, 3% organics	12	68 78	127 83
62814 L52E 42+00N	Soil	Clay-sand		clay, qtz sand, 2cm pyrocl frags, 5% organics	7	78	03

		TYPE	NAME	ALTERATION	COMPOSITION\MINERALIZATION	6	0	7
NO						Au ppb	Cu ppm	Zn ppm
6281:	3 L52E 42+25N	Soil	Clay-sand		clay, qtz sand, 2cm pyrocl frags, 5% organics	22	38	50
6281	2 L52E 42+50N	Soil	Clay-sand		clay, qtz sand, 5% organics	25	49	60
6281	1 L52E 42+75N	Soil	Clay-sand		clay, qtz sand, 5% organics	9	65	50
	0 L52E 43+00N	Soil	Sand	sil-mod, lim-wk	qtz, alt'd pyroci frags, 5% organ, 1% grey met	9	55	80
6280	9 L52E 43+25N	Soil	Sand	sil-mod, lim-wk	qtz, alt'd pyroci frags, 7% organ, 1% grey met	22	64	78
6280	BL52E 43+50N	Soil	Sand	sil-mod, lim-wk	qtz, alt'd pyroci frags, 7% organ, 1% grey met	35	83	102
6280	7 L52E 43+75N	Soil	Sand	sil-mod, lim-wk	qtz, alt'd pyroci frags, 1% grey met	64	115	164
6280	6 L52E 44 + 00N	Soil	Clay-sand	sil-mod	clay, qtz sand, pyroci frags	40	98	132
6280	5 L52E 44 + 25N	Soil	Clay-sand	sil-mod	clay, qtz sand, pyroci frags	85	178	148
	4 L52E 44 + 50N	Soil	Clay-sand		clay, sand, minor lapilli tuff frags, 5% organics	77	102	100
	0 BL 44+75N 52+00E	Soil	Clay-sand		clay	49	173	120
	3 BL 44 + 75N 52 + 25E	Soil	Clay-sand		clay, sand, minor lapilli tuff frags, 5% organics	34	125	113
	2 BL 44 + 75N 52 + 50E	Soil	Clay-sand		clay, sand, minor lapilli tuff frags, 5% organics	47	158	137
	1 BL 44 + 75N 52 + 75E	Soil	Clay-sand		clay, sand, minor lapilli tuff frags, 5% organics	46	125	107
	9 L52E 44+87.5N	Soil	Clay-sand	sil-mod, lim-mod	clay, qtz sand, sil'd pyrocl frags, 1-2% grey met	98	165	132
	B L52E 45+00N	Soil	Clay-sand	sil-mod, lim-mod	clay, qtz sand, sil'd pyrocl frags, 1-2% grey met	110	202	143
	7 L52E 45 + 25N	Soil	Clay-loam	sil-mod, lim-mod	clay, qtz sand, 3% organ, pyrocl frags	99	98	53
	6 L52E 45+37.5N	Soil	Sand		qtz, ox'd pyroci frags, <1% grey met	134	110	70
	5 L52E 45+50N	Soil	Clay-sand	sil-mod	clay, qtz frags, cal, sil'd pyrocl frags, <1% met	138	128	86
	4 L52E 45+67.5N	Soil	Clay-sand	sil-mod	clay, qtz frags, cal, sil'd pyrocl frags, <1% met	156	39	29
	3 L52E 45 + 75N	Soil	Clay-sand		clay, qtz frags, cal, pyrocl frags, <1% met	180	49	30
	2 L52E 45+87.5N	Soil	Clay-gravel		clay, ox'd mat, qtz, ox'd frags of pyrocl	139	48	45
	1 L52E 46+00N	Soil	Clay-gravel		clay, ox'd mat, qtz, ox'd frags of pyrocl	145	52	38
	0 L52E 46+12.5N	Soil	Clay-sand		clay, ox'd mat, qtz, ox'd frags of pyrocl	228	62	42
	9 L52E 46+25N	Soil	Clay-sand		clay, ox'd mat, qtz, ox'd frags of pyrocl	176	88	70
	7 L52E 46+50N	Soil	Sand		95% qtz, ox'd pyroci frags, clay, cal, <1% met	181	152	132
	0 L52E 46+67.5N	S	Hetro sand		qtz, ox'd pyroci frags, cal, <1% grey met	279	465	850
	8 L52E 46+75N	Soil	Hetro clay-sand		clay, hetro sand, 10% ox'd mat, 1-2% grey met	131	242	190
	7 L52E 46+87.5N	Soil	Hetro clay-sand		clay, hetro sand, 10% ox'd mat, 1-2% grey met	220	244	230
	8 L52E 46.37.5N	Soil	Sand	sil-mod, lim-wk,	95% qtz, ox'd pyrocl frags, clay, cal, <1% met	231	147	118
	6 L52E 46.87.5N	R	Alt'd Ble'd Pyroci	jar/alun, Mn, lim, ox'd-well	ox'd mat, clay, Mn, qtz, minor carb	140	207	47
	5 L52E 47+00N	Soil	Clay-sand		clay, hetro sand	178	150	440
	4 L52E 47 + 25N	Soil	Clay-gravel		clay, qtz sand, tuff frags, 10% organics	55	55	408
	3 L52E 47+50N	Soil	Clay		clay, 20% organics	42	57	184
	2 L52E 47 + 75N	Soil	Clay		clay, 5% organics	32	122	190
6285	1 L52E 48+00N	Soil	Clay-grit		qtz, 15% organ, 2% grey met	37	64	143
Line 53E								
6272	5 L53E 40+00N	Soil	Clay-sand		clay, qtz sand, 3% organics	10	50	86
6272	6 L53E 40+25N	Soil	Clay-sand		clay, qtz sand, 5% organics	18	95	113
6272	7 L53E 40+50N	Soil	Clay-graval	s il-mod	clay, qtz sand, sil'd pyroci pebs, 2% organics	21	153	268
6272	8 L53E 40 + 75N	Soil	Clay-loam		clay, sand, argillite frags, cal, 3% organics	15	155	230
6272	9 L53E 41+00N	Soil	Clay-loam		clay, sand, argillite frags, cal, 3% organics	22	58	120
6273	0 L53E 41 + 25N	Soil	Clay-loam		clay, sand, argillite frags, cal, 3% organics	32	57	155
6273	1 L53E 41+50N	Soil	Clay-loam		clay, sand, argillite & pyrocl frags, cal, 3% organics	24	290	192
6273	2 L53E 41 + 75N	Soil	Clay-loam		clay, sand, argillite & pyrocl frags, cal, 3% organics	60	115	88
6273	3 L53E 42+00N	Soil	Sand		qtz, ox'd pyroci, 5% organ, 1% grey met	103	300	78
6273	4 L53E 42 + 25N	Soil	Sand		qtz, ox'd pyrocl, 5% organ, 1% grey met	129	285	156
6273	5 L53E 42+50N	Soil	Sand		qtz, ox'd pyrocl, 7% organ, 1% grey met	55	55	66
6273	6 L53E 42+75N	Soil	Clay-sand		clay, qtz sand, 2% organics	24	338	152
6273	7 L53E 43+00N	Soil	Clay-sand		clay, qtz sand, 2% organics	60	142	130
6273	8 L53E 43+25N	Soil	Clay-sand		clay, qtz sand, minor pyrocl frags	16	108	115
6273	9 L53E 43+50N	Soil	Clay-sand		90% clay, qtz sand, 3% organics	22	83	70
-	0 L53E 43+75N	Soil	Clay-sand		90% clay, qtz sand, 3% organics	62	163	108
6274	1 L53E 44+00N	Soil	Clay-loam		clay, silt, minor qtz sand, ox'd tuff frags, 5% organic	32	90	115

SAMPLE No	LOCATION	ТҮРЕ	NAME	ALTERATION	COMPOSITION\MINERALIZATION	Au ppb	Cu ppm.	Zn ppm
60751	L53E 44+25N	Soil	Clay-sand		clay, gtz, monir ox'd pyrocl frags, 1% grey met	88	108	73
	153E 44 + 50N	Soil	Clay-sand Clay-sand			188	630	128
			,		clay, qtz frags, ox'd pyroci frags	216	310	176
	BL 44 + 75N 53 + 00E	Soil	Clay-sand		clay, ox'd frags of pyroci, qtz	210 90	310 31B	105
	BL44 + 75N 53 + 25E	Soil	Clay-sand		clay, qtz sand, pyroci frags	76	102	55
	BL44 + 75N 53 + 50E	Soil	Clay-loam		clay, ailt, qtz sand, 1% met, 5% organics	52	610	32
	BL44 + 75N 53 + 75E	Soil	Clay-loam		clay, silt, qtz sand, 1% met, 5% organics	52 65	65	52
	L53E 45+00N	Soil	Clay-loam		clay, silt, 10% organics	55	64	47
	L53E 45 + 25N	Soil	Clay-loam		clay, silt, 10% organics	120	111	47 96
	L53E 45 + 50N	Soil	Clay-sand		clay, ox'd frags of pyrocl	225	115	96
	L53E 45 + 75N	Soil	Clay-gravel		clay, qtz, ox'd mat, frags of sil'd pyrocl, 1% met	172	112	90
	L53E 46+00N	Soil	Clay-gravel		clay, qtz, ox'd mat, 1% met	347	123	71
	L53E 46+25N	Soil	Clay-sand		clay, qtz, ox'd mat, 1% met	277	117	68
	L53E 46+50N	Soil	Clay-gravel		clay, ox'd mat, frags of pyrocl	171	204	200
	L53E 46+75N	Soil	Sand		qtz, ox'd mat, minor met	241	204 305	200
	L53E 47+00N	Soil	Clay-sand		clay, qtz sand, frags of pyrocl			-
	L53E 47+25N	Soil	Clay-sand		clay, silt, sand, 10% organics	92	69 68	91 194
	L53E 47+50N	Soil	Clay-sand		clay, silt, sand, minor organics	43		315
	L53E 47 + 75N	Soil	Clay-gravel		clay, silt, frags of pyrocl	123	134	• • •
	L53E 48+00N	Soil	Clay-gravel		clay, silt, frags of pyrocl	319	178	448
62633	L53E 48+25N	Soil	Clay-sand		clayu, qtz sand, silt, 40% organics	29	45	82
Line 54E								
62724	L54E 40+00N	Soil	Sandy-clay-loam		clay, silt, minor pyrocl pebs	45	37	198
62723	154E 40+25N	Soil	Clay-loam		clay, silt, 5% organics	13	71	86
62722	2 L54E 40+50N	Soil	Clay-loam		clay, silt, 5% organics	8	77	100
62721	L54E 40+75N	Soil	Sandy-clay-loam		clay, silt, 5% organics	22	38	42
62720	L54E 41+00N	Soil	Sandy-clay-loam		clay, silt, 5% organics	10	. 37	.90
62719	L54E 41+25N	Soil	Sandy-clay-loam		clay, silt, 5% organics	21	83	200
62718	3 L54E 41 + 50N	Soil	Clay-loam		clay, silt, 5% organics	55	37	115
62717	L54E 41+75N	Soil	Clay-loam		clay, silt, 5% organics	37	58	78
62716	5 L54E 42 + 00N	Soil	Sandy clay-loam		clay, fine sand, 10% organ, ox'd pyrocl frags	59	83	77
62715	5 L54E 42 + 25N	Soil	Sandy clay-loam		clay, fine sand, 10% organ, ox'd pyrocl frags	85	54	90
62714	L54E 42+50N	Soil	Sandy clay-loam		clay, fine sand, 10% organ, ox'd pyrocl frags	19	77	83
62713	3 L54E 42+75N	Soil	Sandy clay-loam		clay, fine sand, 5% organ, ox'd pyrocl frags	56	104	330
62712	L54E 43+00N	Soil	Clay-sand		clay, 10% organics	26	105	308
62711	L54E 43+25N	Soil	Clay-sand		clay, 10% organics	28	40	113
62710	L54E 43+50N	Soil	Clay-loam		clay, silt, 5% organics	15	85	79
62709	L54E 43+75N	Soil	Clay-loam		clay, silt, 5% organics	24	54	65
62708	3 L54E 44 + 00N	Soil	Clay-gravel		clay, qtz sand, frags of ox'd mat	41	119	155
62707	/ L54E 44 + 25N	Soil	Clay-loam		clay-silt, minor vol & ox'd pebs	23	68	73
62706	5 L54E 44 + 50N	Soil	Clay-loam		clay-silt, minor vol & ox'd pebs, 10% organics	34	54	75
62705	5 BL44 + 75N 54 + 00E	Soil	Clay-loam		clay-silt, minor vol & ox'd pebs	63	70	52
62756	6 BL44 + 75N 54 + 25E	Soil	Clay-gravel	lim-wk	clay, qtz sand, tuff pyrocl pebs, 10% organics	109	95	106
62757	BL44 + 75N 54 + 50E	Soil	Clay-gravel	lim-wk	clay, gtz sand, tuff pyrocl pebs, 10% organics	55	107	133
62704	L54E 45+00N	Soil	Clay-gravel		clay, ox'd pebs of pyrocl	192	545	92
62703	3 L54E 45 + 25N	Soil	clay-loam		85% clay/silt, 10% ox'd mat, 5% organics	107	190	49
	2 L54E 45+50N	Soil	Sand		clay, silt, qtz sand, 10% organics	72	116	39
· · · · · · · · · · · · · · · · · · ·	L54E 45 + 75N	Soil	Sand		clay, silt, qtz sand, 10% organics	126	124	50
	2 L54E 46+00N	Soil	Sand-gravel		gtz sand, ox'd frag of pyrocl	185	145	102
	L54E 46+25N	Soil	Sand-gravel		gtz sand, ox'd frag of pyroci	255	264	134
	L54E 46+50N	Soil	Clay sand		clay, gtz sand, ox'd mat	277	248	122
	L54E 46+75N	Soil	Clay sand		clay, qtz sand, ox'd mat	351	410	192
	3 L54E 47 + 00N	Soil	Clay sand		clay, qtz sand, ox'd mat	320	446	127
	7 L54E 47 + 25N	Soil	Clay sand		clay, qtz sand, ox'd mat	197	175	105
	L54E 47 + 50N	T	Hetro gravel	sil-mod	98% frags of pyrocl	18	89	323

SAMPLE	LOCATION	TYPE	NAME	ALTERATION	COMPOSITIONIMINERALIZATION	Au ppb	Cu ppm	Zn ppm
	3 L54E 47 + 75N	Soil			clay, qtz sand, frags of gm vol	91	195	870
	2 L54E 48+00N	Soil			clay, qtz sand, frags of gm vol	131	205	880
	1 L54E 48+25N	Soil			clay, qtz sand, frags of gm vol	109	174	810
	0 L54E 48+50N	Soil	Hetro sand		clay, qtz, ox'd mat	186	123	435
	9 L54 + 25E 48 + 50N	Soil	Hetro sand-gravel		clay, qtz, ox'd mat, frags of sil'd gm vol	68	104	213
	8 L54E 48 + 75N	Soil	Hetro sand		clay, qtz, ox'd mat	115	100	266
	7 L54E 49 + 00N	Soil	Hetro sand		clay, qtz, ox'd mat	68	105	257
	5 L54N 49+12.5N	Soil	Hetro sand-gravel		frags of pyroci, qtz sand, clay	65	170	194
	4 L54N 49+25N	Soil	Hetro sand		frags of pyroci, qtz sand, clay	65	133	155
	6 L54 + 50E 49 + 25N	Soil	Hetro sand-gravel		ox'd frags of pyroci, qtz sand, clay	183	125	223
	2 L54E 49 + 50N	Soil			clay, qtz, pyrocl, minor ox'd mat	59	109	145
	3 L54 + 30E 49 + 50N	F-Comp	Pyroclastic	sil-well, sil-well	ox'd mat, Mn stained	11	93	74
	1 L54E 49 + 75N	Soil			clay, qtz, pyrocl, minor ox'd mat	27	185	188
	0 L54E 49 + 87.5	Soil	· · · · · ·		clay, ox'd frags of pyroci, qtz, 2% grey met	52	108	130
	9 L54E 49 + 88N	R	Alt'd Pyroclastic	sil-mod, carb-str, lim-wk	qtz, calcite, mafic frags, <1% diss py	1	33	23 50
	8 L54E 49 + 90N	R	Alt'd Pyroclastic	sil-str, carb-wk	qtz, carb, minor lim & sulfides	1	34	50 44
	7 L54E 49 + 90N	R	Alt'd Pyroclastic	sil-mod, carb-str, lim-wk	qtz, calcite, carb, minor epi, minor sulfides	1	120	44 55
	5 L54E 50+00N	F-Comp	Alt'd Pyroclastic	sil-mod, carb-wk	qtz, carb, ox'd mat, 2-3% py	22	38 135	193
6260	6 L54E 50 + 00N	Soil			qtz, clay, ox'd mat, pyrocl, 1-2% grey met	157	135	193
Line 55E		_ 1						70
	3 L55E 40 + 00N	Soil	Clay-sand		clay, minor pebs, lim'd pyrocl	24	81	72
	4 L55E 40 + 25N	Soil	Clay-sand	sil-mod	clay, qtz sand, 2% grey met	7	74	89 97
	7 L55E 40 + 50N	Soil	Clay-sand			8	53	
	8 L55E 40 + 75N	Soil	Clay-sand		clay, 2% organ, pebs of tuff pyrocl	9	100	133
	9 L55E 41 + 00N	Soil	Clay-sand		clay, sand with qtz, argillite, ox'd pyrocl	13	102	139
	0 L55E 41 + 25N	Soil	Clay-sand		clay, sand with qtz, argillite, ox'd pyrocl, 5% organic	20	74	63 30
	1 L55E 41 + 50N	Soil	Clay-sand		clay, sand with qtz, argillite, ox'd pyrocl, 5% organic	23	57 63	82
	2 L55E 41 + 75N	Soil	Clay-sand		clay, sand with qtz, argillite, ox'd pyrocl, 5% organic	18	90	69
	3 L55E 42 + 00N	Soil	Clay-sand		clay, sand with qtz, argillite, ox'd pyroci, 5% organic	61 34	90 82	125
	4 L55E 42 + 25N	Soil	Clay-sand		clay, sand with qtz, argillite, ox'd pyrocl, 10% organi	34	98	120
	5 L55E 42 + 50N	Soil	Clay-sand		clay, sand with qtz, argillite, ox'd pyrocl, 2% organic	69	103	68
	6 L55E 42 + 75N	Soil	Clay-sand		clay, sand with qtz, argillite, ox'd pyrocl, 4% organic	240	272	164
	7 L55E 43+00N	Soil	Clay-sand		50% clay, 50% hetro sand	240	74	104
	8 L55E 43 + 25N	Soil	Clay-sand		50% clay, 50% hetro sand	109	84	111
	9 L55E 43 + 50N	Soil	Clay-sand		clay, qtz sand	63	62	64
	0 L55E 43 + 75N	Soil	Clay-sand		clay, qtz sand, silt, 2-3% organics	37	71	91
	1 L55E 44 + 00N	Soil	Clay-loam		clay, qtz sand, silt, 2-3% organics	81	57	88
	2 L55E 44 + 25N	Soil	Clay-loam		60% clay, qtz sand, 7% organics	15	49	86
	3 L55E 44 + 50N	Soil	Clay-loam		60% clay, qtz sand, 7% organics	37	49 90	91
	4 BL 44 + 75N 55 + 00E	Soil	Clay-loam		60% clay, qtz sand, 7% organics	48	20	46
	5 L55E 45 + 00N	Soil	Clay-sand		clay, 8% organics clay, 10% organics	19	70	94
	6 L55E 45 + 25N	Soil	Clay-sand		· · ·	78	58	63
	7 L55E 45 + 50N	Soil Soil	Clay-sand Sand		clay, 10% organics qtz, alt'd pyrocl, argilite, <1% grey met	363	225	215
	8 L55E 45 + 75N	Soil			clay, qtz sand, 6% organics	242	113	69
	4 L55E 46+00N		Clay-sand	sil-mod, ox'd-wk, lim-str	qtz, ox'd mat	35	19	89
	3 L55 + 30E 46 + 00N 2 L55 + 25E 46 + 12.5N	R-Comp Soil	Alt'd Pyroclastic Clay-sand	lim-wk	clay, hetro sand, ox'd mat, tuff frags, minor grey me	242	180	245
	2 L55 + 25E 46 + 12.5N	Soil	Clay-sand Clay-sand	IIII-WK	clay, minor sand, 6% organics	242	144	93
	9 L55E 46 + 25N 1 L55 + 25E 46 + 25N	Soil	Clay-sand		clay, hetro aand, ox'd mat, tuff frags, minor grey me	333	230	195
	0 L55E 46+37.5N	Soil	Clay-sand Clay-sand		ciay, hetro sand, ox a mat, tuff frags, minor grey me	292	230	150
	8 L55E 46+50N	Soil	Clay-sand Clay-sand		clay, minor sand, 6% organics	178	132	78
	7 L55E 46+75N	Soil	Clay-sand Clay-sand		clay, minor sand, 4% organics	144	135	85
	6 L55E 47+00N	Soil	Clay-loam		clay, silt, sand	345	250	86
	5 L55E 47+00N	Soli R-Comp	Sand-gravel	sil-mod, lim-well, jar/alun	qtz matrix, 5-7% py, ox'd mat, qtz,	252	189	46
0200	5 LUGE 47 TOON	11-comp	Calla-Alayo		que manas or /o py, ox a man que,	202		

	LOCATION	TYPE	NAME	ALTERATION	COMPOSITION/MINERALIZATION		•	-
NO						Аи ррь	Cu ppm	Zn ppm
62863	L55E 47+25N	Soil	Sand-gravel	lim-mod, sil-mod	gtz, ox'd mat, alt'd pyrocl pebs,, 3% organics	274	345	167
62864	L55E 47+25N	R	Sand-gravel	sil-mod, lim-well, jar/alun	gtz matrix, 5-7% py, ox'd mat, gtz,	270	185	145
62799	L55E 47+50N	Soil	Sandy clay-loam		clay, silt, qtz sand, 5% organics	250	200	98
62800	L55E 47+50N	R	Fragmental Agglom	sil-mod, lim-wk	frags to 5cm, qtz, ox'd mat, <1% py	38	153	109
62798	3 L55E 47+75N	Soil	Sandy clay-loam		clay, silt, qtz sand	384	570	194
62797	L55E 48+00N	Soil	Sandy clay-loam		clay, silt, qtz sand	301	420	138
62796	5 L55E 48+15N	R	Fragmental Agglom	sil-mod, lim-wk	frags to 5cm, qtz, ox'd mst, diss py	7	60	330
62795	5 L55E 48+25N	Soil	Sandy-loam		silt, qtz sand, clay, 3% organics	310	175	163
62794	L55E 48+50N	Soil	Clay-gravel		clay, silt, pyrocl frags, minor cal, 5% organics	91	162	295
62793	3 L55E 48+75N	Soil	Clay-gravel		clay, silt, pyrocl frags, minor cal, 5% organics	112	82	178
62792	2 L55E 49 + 00N	Soil	Clay-gravel		clay, silt, pyrocl frags, minor cal, 5% organics	85	70	94
62791	L55E 49+12.5N	Soil	Clay-gravel		clay, silt, pyrocl frags, minor cal, 5% organics	84	72	152
Grid Creek	Stream Sediment Sampl	es						
62666	6 Grid Creek	S	Hetro sand-gravel		qtz sand, ox'd mat, pyrocl frags, ox'd py, 2-3% met	173	378	185
62667	Grid Creek	S	Hetro sand-gravel		qtz sand, ox'd mat, pyrocl frags, ox'd py, 2-3% met	276	620	170
62668	3 Grid Creek	S	Sand	lim-mod	qtz sand, ox'd mat, pyrocl frags, ox'd py, 2-3% met	404	1030	104
62669	Grid Creek	S	Hetro sand-gravel		qtz, calcite, argillite, 30% ox'd frags, ox'd py, 2% m	39	162	216
62670) Grid Creek	S	Sand		qtz sand, ox'd mat, pyroci frags, ox'd py, 2-3% met	340	380	166
62671	Grid Creek	S	Sand		qtz, calcite, argillite, 30% ox'd frags, ox'd py, 2% m	305	307	158
62672	Grid Creek	S	Sand-gravel		qtz, calcite, argillite, 10% ox'd frags, ox'd py, 2% m	14	170	193
	Grid Creek	S	Clay-gravel		clay, pyrocl frags, minor ox'd mat,	52	112	345
	Grid Creek	S	Clay-gravel		clay, pyrocl frags, minor ox'd mat,	114	204	358
62675	Grid Creek	S	Clay-gravel		clay, pyroci frags, minor ox'd mat,	59	109	358
62676	6 Grid Creek	S	Sand gravel		70% ox'd frags, 30% qtz, 1-2% grey met	62	202	154
62677	Grid Creek	S	Sand gravel		80% ox'd frags, 20% qtz, 1-2% grey met	79	237	145
62678	3 Grid Creek	S	Sand gravel		70% ox'd frags, 30% qtz, 1-2% grey met	75	218	140
62679	Grid Creek	S	Sand gravel		70% ox'd frags, 30% qtz, 1-2% grey met	83	250	173
62680) Grid Creek	S	Sand gravel		70% ox'd frags, 30% qtz, 1-2% grey met	82	237	158
62681	Grid Creek	S	Sand gravel		ox'd mat, minor vol frags, cal, qtz, 2% met	169	352	195
62682	2 Grid Creek	S	Sand gravel		ox'd mat, minor vol frags, cal, qtz, 2% met	230	454	305
62683	Grid Creek	S	Sand gravel		ox'd mat, minor vol frags, cal, qtz, 2% met	146	330	230
62684	Grid Creek	S	Sand gravel		ox'd mat, minor vol frags, cal, qtz, 2% met	197	342	218
62685	5 Grid Creek	S	Sand gravel		ox'd mat, minor vol frags, cal, qtz, 2% met	116	307	187
62686	6 Grid Creek	S	Sand gravel		ox'd mat, minor vol frags, cal, qtz, 2% met	113	292	190
62687	7 Grid Creek	S	Sand gravel		ox'd mat, minor vol frags, cal, qtz, 2% met	185	400	245
62688	3 Grid Creek	S	Sand		mostly ox'd mat, minor vol frags, cal, qtz, 2% met	215	400	238
62689	Grid Creek	S	Sand gravel	ox'd-str	tuff & sil'd vol frags,	167	332	240
62690) Grid Creek	S	Sand	ox'd-str	tuff & sil'd vol frags,	154	362	229
62691	Grid Creek	· S	Sand		predom ox'd mat, cal	121	340	225
62692	2 Grid Creek	S	Sand gravel		ox'd mat, frags of pyrocl	109	343	212
62693	Grid Creek	S	Sand		90% ox'd mat, vol frags, 3% met	149	311	196
62694	Grid Creek	S	Sand		90% ox'd mat, vol fregs, 3% met	124	354	218
62695	5 Grid Creek	S	Sand-gravel		60% ox'd mat, 38% frags, 2% organ, 1-2% met min	63	205	158
62696	6 Grid Creek	S	Sand		70% ox'd mat, 2% met min	123	350	207
62697	7 Grid Creek	S	Sand		70% ox'd mat, 2% met min	101	347	204
62698	3 Grid Creek	S	Sand-gravel		50% ox'd mat, 50% vol, 1% met min	48	233	178
62699	Grid Creek	S	Sand-gravel		60% ox'd mat, 40% qtz, 1-2% met min	49	209	178
62700) Grid Creek	S	Sand-gravel		60% ox'd mat, 40% qtz, 1-2% met min	49	191	162
East Junc	tion Creek							
62410) E Junction Cr	S	Hetro sand	sil-well, lim-wk, carb-wk	90% qtz, calcite, ox'd frags, 1-2% pγ	170	212	240
62411	I E Junction Cr	S	Hetro sand	sil-well, lim-wk, carb-wk	90% qtz, calcite, ox'd frags, 1-2% py	159	240	307
62413	3 E Junction Cr	R	Alt'd Volcanic	sil-str, lim-str	qtz, 10% py as blebs-diss-veinlets	103	34	160
162951	I E Junction Cr	S	Hetro sand-gravel	ox'd frags	qtz, argillite & ox'd tuff frags, minor cal,	14	77	228

162852 E. Junction Co S Hetre sand gravell ox'd frags dic ox'd mat, 1% grav met 40 125 230 162855 E. Junction Co S Hetre sand dic ox'd mat, 1% grav met 40 180 500 180 180 500 180 500 180 500 180 500 180 500 180 500 180 500 180 500 180 500 180 500 180 500 180 500 180 500 180 500 180	SAMPLE NO	LOCATION	TYPE	NAME	ALTERATION	COMPOSITION/MINERALIZATION	Au ppb	Cu ppm	Zn ppm
162835 E Junction Cr S Hetre and diamond for the analysis and the analysis turk of the analysis turk	16295	2 E Junction Cr	s	Hetro sand-gravel	ox'd frags	atz, amillite & ox'd tuff frags, minor cal.	64	125	320
162856 F. Junction Cr 5 Herro sand 128 50 128 50 128 50 128 50 128 50 128 50 128 50 128 50 128 128 50 128 118 128 118 <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>• • •</td> <td>420</td> <td></td> <td>630</td>				•		• • •	420		630
162355 E. Junction Cr 5 Herro and qt, more dt, out, mpilite, out, st, 1% mat 163 370 485 162365 E. Junction Cr 5 Clary-gravel tuff & angilite frags, minor qt, out of ant 481 174 250 162365 E. Junction Cr 5 Clary-gravel tuff & angilite frags, minor qt, out of ant 481 250 162365 E. Junction Cr 5 Clary-gravel tuff & angilite frags, minor qt, out of ant 483 493								126	550
162856 E Junction Cr 5 Clar-gravel full & anylittic frags, minor etz., ord mat 306 445 162857 E Junction Cr 5 Clar-gravel tuff & anylittic frags, minor etz., ord mat 233 345 447 162857 E Junction Cr 5 Clar-gravel tuff & anylittic frags, minor etz., ord mat 233 345 447 162897 E Junction Cr 5 Clar-gravel tuff & anylittic frags, alt, 54 graves 238 345 447 162897 E Junction Cr 5 Clar-gravel tuff & anylittic frags, alt, 54 graves 238 345 447 16276 E Junction Cr 6 Clar-gravel silmod, lim-surfaces 90% std; yoyne frags, alt, 25% graves 132 228 372 16276 E Junction Cr 8 Att d furf silmod, lim-surfaces 90% std; yoyne frags, alt, 25% graves 180 236 16276 E Junction Cr 5 Clary-send 180 236 350 445 16276 E Junction Cr 5 Clary-send 180 236 350 420 350 420 350 420 350 420 350 420 350 420	16295	5 E Junction Cr	S	Hetro sand			163	370	485
162857 F. Junction Cr S Cary gravel tuff & angillite frage, minor etz, ox d mat 46 174 253 162858 F. Junction Cr S Clay gravel tuff & angillite frage, minor etz, ox d mat 152 300 373 162858 F. Junction Cr S Hary gravel tuff & angillite frage, minor etz, ox d mat 152 300 373 16286 F. Junction Cr S Hatro and Band Mathematican 45% forms, dispersion 153 220 400 62766 F. Junction Cr S Hatro and Band Mathematican 45% forms, dispersion 153 220 175 62766 F. Junction Cr S And gravel Band Mathematican 80% for 20% frage, 35% forms, dispersion 186 226 62767 F. Junction Cr S Sand gravel etz and 42% forms of large, etaz, 2% dispersion 18 230 160 200 62767 F. Junction Cr S Sand gravel etz well, carb-wk, lim-wk qtz and, oxd frage & peofrom procleatic, 1, 2% p 10 112 285 62406 Ear Creek S Hatro and gravel etz well, carb-wk, lim-wk clay granot 427 112 <								350	443
162895 E. Junction Cr S Clay-gravel tuff & amilite frage, minor qtz, ox d mat 2.33 3.45 447 162895 E. Junction Cr S Hatro sand 45% vol frage, 45% qtz, qint, 1% gray met 2.30 2.00 400 162895 E. Junction Cr S Hatro sand 45% vol frage, 45% qtz, qint, 1% gray met 2.30 2.00 400 16297 E. Junction Cr S Hatro sand 45% vol frage, 45% qtz, qint, 1% gray met 2.30 2.00 400 6276 E. Junction Cr R Att's Tuff sill-med, lim-surfaces 90% frage, 2.3% (frage, 2.3% (frage, 2.4% (frage, 2	16295	7 E Junction Cr					48	174	253
162805 E. Junction Cr S Chargerweil turft free and 45% vol frage, 45% gtz. det, 1% gray met 132 230 373 162806 E. Junction Cr S Hetro sand 45% vol frage, 45% gtz. det, 1% gray met 133 226 372 22705 E. Junction Cr S Hetro sand 45% vol frage, 45% gtz. det, 1% gray met 153 126 22705 E. Junction Cr S Anter sand 45% vol frage, 45% gtz. det, 1% gray met 153 126 62706 E. Junction Cr S Sand gravel silwed, dam-surfaces 95% gtz. or mat, 1% gta 166 206 62706 E. Junction Cr S Sand gravel gta 166 206 62707 E. Junction Cr S Sand gravel gta gta 112 226 62708 E. Junction Cr S Sand gravel gta gta gta 112 230 62708 E. Junction Cr S Sand gravel gta gta gta gta 112 230 62400 East Creek S Hetro sand gravel silwell, nmwk gta gta dta, ox'd frags & besh grom proclastic, 1.2% p 10 112 235	162958	B E Junction Cr					233	345	447
162806 E Junction Cr. S Herro sand 455, wol frags, 455 wd. chag, 4								300	
162801 E Junction Cr. S Herro sand 40%, 50% vol frags, 45% drz, clar, 1% gray met 133 226 372 62735 E Junction Cr. R Att d' fuff ail-mod, lim-surfaces 90% strz, 20% frags, 2% diss pv 11 220 175 62736 E Junction Cr. R Att d' Fuff ail-mod, lim-surfaces 90% strz, 20% frags, 2% diss pv 68 188 206 62736 E Junction Cr. R Att d' Fuff ail-mod, lim-surfaces 90% strz, 20% frags, 2% diss pv 68 188 206 62737 E Junction Cr. S Band-gravel eil-well, cath-wk, lim-wk dtz anglike, cut, 2% gray met 31 108 206 62408 East Creek S Hetro sand-gravel ail-well, cath-wk, lim-wk dtz anglike, cut, 2% gray met 31 128 330 62408 East Creek S Hetro sand-gravel ail-well, cath-wk, lim-wk ctz and, ord frags & pebs from pyroclastic, 1-2% p 10 112 280 62416 East Creek S Hetro sand-gravel ail-well, im-wk frags & pebs from pyroclastic, 1-2% p 10 112 280 62416 East Creek S Hetro sand-gravel ail-well,								270	400
62763 E Junction Cr S Clary gravel carbox carbox Clary gravel carbox Clary gravel carbox Clary gravel carbox Clary gravel carbox									372
62764 E Junction Gr R Att ¹ firft #i-mod, lim-surfaces 90% str. 20% frägs, 2% dits py 11 220 175 62766 E Junction Gr R Att ¹ d Prycolastic 90% str. 20% frägs, 2% dits py 11 220 176 62766 E Junction Gr R Att ¹ d Prycolastic 90% str. 20% frägs, 2% dits py 10 268 62776 E Junction Gr S Sand gravel 90% str. 20% frägs, 2% dits py 11 220 198 206 62776 E Junction Gr S Sand gravel and diffics, sid at C py nord pabs, 1% gray met 31 106 300 62776 E Junction Gr S Hetro sand-gravel all-well, carb-wk, lim-wk clay, ridgs & pebs from pyroclastic, 1-2% p 12 280 62416 East Creek S Hetro sand-gravel all-well, lim-wk frags of pyroclastic, dtr. minor py 35 162 330 62416 East Creek S Hetro sand-gravel all-well, lim-wk frags of pyroclastic, dtr. minor py 35 162 240 62416 East Creek S Hetro sand-gravel all-well, lim-wk				· · · · · · · · · · · · · · · · · · ·					
62765 E Junction Cr S Hetre sand 925, or cornet. 2% diar or far sold suff. 68 948 428 445 62766 E Junction Cr S Sand-gravel 95% arc. or mat. 2% diar or far sold suff. 69 98 205 627 627 F. Junction Cr S Sand-gravel 320 627 627 F. Junction Cr S Sand-gravel 320 627 F. Junction Cr S Clay-sand 42 71 128 300 62707 E Junction Cr S Clay-sand Clay-sand 42 71 128 300 62406 East Creek S Hetro sand-gravel ail-well, cach-wk, lim-wk drags of pyroclastic, nguilite, ng					sil-mod, lim-surfaces				
62766 E Junction Cr R Aft'd Pyroclastic 95% str., or mst. 2% die ovd zulfs 96 198 206 62767 E Junction Cr S Sand-gravel ct., str.,									
62767 E Junction CrSSand gravelarglittic, ox'd aff'd pyroid rags, qtz, 2% grav met3216026862767 E Junction CrSClay-sandarglittic rags, aff'd pyroid rags, qtz, 2% grav met3110630062774 E Junction CrSClay-sandarglittic rags, aff'd pyroid rags, qtz, 2% grav met3110630062406 East CreekSHetro sand-gravelsil-well, carb-wk, lim-wkqtz sand, ox'd frags & pabs from pyroclastic, 1-2% p1518233062416 East CreekSHetro sand-gravelsil-well, carb-wk, lim-wkclay, rags of pyroclastic, gravillite, and, 1-2% p201647062416 East CreekSHetro sand-gravelsil-well, lim-wkfrags of pyroclastic, gravillite, and, 1-2% p201647062416 East CreekSHetro sand-gravelsil-well, lim-wkfrags of pyroclastic, gravillite, and, 1-2% p201647062416 East CreekSHetro sand-gravelsil-well, lim-wkfrags of pyroclastic, gravillite, and, 1-2% p206224062417 East CreekSHetro sand-gravelsil-well, lim-wkfrags of pyroclastic, gravillite, minor py3510223862417 East CreekSHetro sand-gravelsil-well, lim-wkfrags of pyroclastic, gravillite, minor py3510224062417 East CreekSHetro sand-gravelsil-wk, km-wkqtz, minor and, qt, minor py3510224062470 East CreekSHetro sand-gravelsil-wk, km-wk </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-						
62796 E Junction CrSSand-gravelanglittle frags, att 2 pyrol frags, att, 2 % gray met3110630062774 E Junction CrSClay-sendclay, dt send4271128East Creek Samplessil-well, carb-wk, lim-wkdt send, ox'd frags & pebs from pyroclastic, 1-2% p1011229562406 East Creek SSHetro send-gravelsil-well, carb-wk, lim-wkdt send, ox'd frags & pebs from pyroclastic, 1-2% p1011229562416 East Creek SSHetro send-gravelsil-well, carb-wk, lim-wkdt send, ox'd frags & pebs from pyroclastic, 1-2% p1011229562417 East Creek SSHetro send-gravelsil-well, carb-wk, lim-wkfrag of pyroclastic, dt, minipity3012624662417 East Creek SSHetro send-gravelsil-well, carb-wk, lim-wkfrag of pyroclastic, dt, minipity206412862418 East Creek SFetro sand-gravelsil-well, markfrag, dt (arg, dt (arg, dt, arg, dt (arg, dt									
62774 E Junction Cr S Clay-stand clay, gtz sand clay, gtz sand 42 71 128 East Creek Samples 62400 East Creek S Hetro sand-gravel sil-well, (ant-wk, lim-wk clay, frags & pebs from pyroclastic, 1-2% p 15 182 330 62400 East Creek S Hetro sand-gravel sil-well, (im-wk clay, frags & proclastic, 1-2% p 10 112 295 62416 East Creek S Hetro sand-gravel sil-well, (im-wk clay, frags of pyroclastic, qtz, minor py 35 122 240 62416 East Creek S Hetro sand-gravel sil-well, lim-wk trags of pyroclastic, qtz, minor py 35 105 238 62416 East Creek S Hetro sand-gravel sil-well, lim-wk trags of pyroclastic, qtz, minor py 35 105 238 62417 East Creek S Hetro sand-gravel sil-wk, (im-wk trags & gelas creek sil-sil-sil-sil-sil-sil-sil-sil-sil-sil-				5					
62409 East Creek S Hetro sand-gravel isl/velt, cath-wk, lim-wk cpt zand, ox'd frags & pebs from pyroclastic, 1-2% p 15 182 330 62409 East Creek S Hetro sand-gravel sil/velt, lim-wk, lim-wk clay, frags of pyroclastic, gtz, sind, 1-2% p 20 136 470 62414 East Creek S Hetro sand-gravel sil-welt, lim-wk clay, frags of pyroclastic, gtz, minor py 35 122 240 62415 East Creek S Hetro sand-gravel sil-welt, lim-wk frags of pyroclastic, gtz, minor py 35 105 238 62417 East Creek S Hetro sand-gravel sil-wk, lim-wk frags of pyroclastic gtz, minor py 35 105 238 62417 East Creek S Hetro sand-gravel sil-str, lim-wk gtz, gr pyroclastic gtz, minor py 10 105 960 62418 East Creek T Hetro sand-gravel sil-str, lim-wk gtz, gt pyroclastic gtz, minor py 15 130 580 62418 East Creek S And fragmental sil-str, earb-wk, lim-wk gtz, gt mont pyroclastic, gt mont py 15 130 580 62417 East Cre R Aht'd Fragmen				5					
62409 East Creek S Hetro sand-gravel sil-vel, lim-vk, move, drz, sand, o'd' frags & pebs from pyroclastio, 1-2% p 10 112 295 62415 East Creek S Hetro sand-gravel sil-vel, lim-vk, frags of pyroclastio, qt, minor py 35 102 240 62416 East Creek S Hetro sand-gravel sil-vel, lim-vk frags of pyroclastio, qt, minor py 35 106 238 62417 East Creek S Hetro sand-gravel sil-vel, lim-vk, lim-vk frags of pyroclastio, qt, minor py 35 106 238 62417 East Creek S Hetro sand-gravel sil-tr, camb-vk, lim-vk qt, minor py 115 130 580 62375 East Cr R Att d' fragental sil-tr, dt, lim-vk clav, throage, cl%, suifs 17 100 200 62375 East Cr T-4m Clay-send clav, throage, cl%, suifs 17 100 200 62375 East Cr T-4m Clay-send clav, throage, cl%, suifs 18 33 2250 62385 East Cr R Att d' proclastic sil-tr qt2,	East Cree	k Samples							
62414 Eat Creek S Hotro send-gravel sil-wekl, lim-wk clay, frags of pyroclastic, arglitts, citz, send, 1-2% p. 20 136 4700 62415 Eat Creek S Hotro send-gravel sil-well, lim-wk frags of pyroclastic, dz, minor py 35 105 236 62417 Eat Creek S Hotro send-gravel sil-well, lim-wk frags of pyroclastic, dz, minor py 35 105 236 62417 Eat Creek S Hotro send-gravel sil-wk, lim-wk frags of pyroclastic, dz, minor py 20 68 220 62418 Eat Creek S Hotro send-gravel sil-str, lim-wk dz, rings of gyroclastic, dz, minor py 105 580 62376 East Cr R Ah'd Fragmental sil-wk, lim-str clay, hetro sand, ox'd vol frags, <1% sulfs	6240	B East Creek	S	Hetro sand-gravel	sil-well, carb-wk, lim-wk	qtz sand, ox'd frags & pebs from pyroclastic, 1-2% p	15	182	330
62416 East CreekSHetro send-graveleil-weil, im-wkfrags of pyroclastic, qtz, mior py3512224062416 East CreekSHetro send-graveleil-wk, im-wkfrags of pyroclastic, qtz, mior py3512223862417 East CreekSHetro send-graveleil-wk, im-wkqtz, gm pyroclastic frags, angilite207417962418 East CreekTHisto send-graveleil-wt, carb-wk, im-wkqtz, gm colacite, 1% py20686862376 East CrRAft'd Fragmentaleil-wk, im-etrclay, frags of gm vol, qtz, mior py3512224062377 East CrSSand-graveleil-wk, im-etrclay, thro sand, ox'd vol frags, c1% sulfs1710020062378 East CrT-3mClay-sendclay, hetro sand, ox'd vol frags, c1% sulfs1710020062380 East CrT-4mSand-graveleil-strqt & 30% qtz metix, some ox'd frags, 4% dise py1513325062380 East CrSHetro-sendeil-strqt & 30% qtz metix, some ox'd frags, 4% dise py1513325062382 East CrSHetro-sendeil-strqt & 30% qtz metix, some ox'd frags, 4% dise py181313720362382 East CrSHetro-sendeil-strqt & 30% qtz metix, some ox'd frags, 4% dise py264613462383 East CrTAtt'd Proclasticeil-strqt & 30% qtz metix, some ox'd frags, 4% dise py284114462385 East	62409	9 East Creek	S	Hetro sand-gravel		qtz sand, ox'd frags & pebs from pyroclastic, 1-2% p	10	112	295
62416 East Creek S Hetro sand-gravel eil-woll, lim-wk fragis of pyroclastic, dz, minor py 35 105 238 62417 East Creek S Hetro sand-gravel eil-wit, cmb-wk, hm-wk dz, um pyroclastic, dz, minor py 20 68 220 62418 East Creek T Hetro sand-gravel eil-str, cmb-wk, hm-wk dz, um pyroclastic, dz, minor py 20 68 220 62476 East Cr R At'd fragmental eil-str, lim-wk clay, frags of gm vol, qtz, minor py 36 64 76 62977 East Cr S Sand-gravel eil-str, lim-wk clay, hetro sand, ox/d vol frags, c1% suifs 17 100 200 62979 East Cr T-4m Clay, setro sand, ox/d vol frags, c1% suifs 18 93 250 62980 East Cr R At'd Pyroclastic eil-str clay, hetro sand, ox/d vol frags, c1% suifs 18 111 117 255 62980 East Cr S Hetro-sand clay, hetro sand, ox/d vol frags, c1% dise py 28 166 316 62980 East Cr T At'd Pyroc	62414	4 East Creek	S	Hetro sand-gravel	sil-wk, lim-wk	clay, frags of pyroclastic, argillite, qtz, sand, 1-2% p	20	136	470
6 2416 East Cneek S Hetro sand-gravel eii-wik, kim-wik frags of pyroclastic, qtz, minor py 36 105 238 6 2417 East Cneek S Hetro sand-gravel eii-wik, kim-wik qtz, minor colcite, 1% py 20 68 220 6 2418 East Cneek S Hetro sand-gravel eii-wik, kim-wik qtz, minor colcite, 1% py 15 130 580 6 2976 East Cr R Att d fragmental eii-wik, kim-wik clay, frags of gm vol, qtz, minor py 26 48 26 6 2977 East Cr T And d frage-read clay, hetro sand, oxid vol frage, c1% suifs 16 99 238 6 2979 East Cr T-4m Clay-end clay, hetro sand, oxid vol frage, c1% suifs 18 93 250 6 2980 East Cr R Att d Proclastic eil-tr otxid utif sed frags, pyrocl, argillite, minor qtz, 1% suifs 18 13 132 203 6 2981 East Cr S Hetro-sand sand, tuff, qtz, minor met 13 137 203 6 2985 East Cr T Att d Pyroclastic eil-st etand, tuff, qtz, minor met 16 246 316 <	6241	5 East Creek	S	Hetro sand-grave!	sil-well, lim-wk	frags of pyroclastic, gtz, minor py	35	122	240
62418 East CreakSHotro sand-graveleil-str, carb-wk, lim-wkqtz, minor calcite, 1% py206822062419 East CreakTHetro sand-graveleil-str, lim-wkclay, frags of gm vol, qtz, minor py11513058062976 East CrRAtrá Fragmentaleil-str, lim-wkclay, frags of gm vol, qtz, minor py11513058062977 East CrSSand-gravelclay, hetro sand, ord vol frags, % suffs169323862979 East CrT-3mClay-sandclay, hetro sand, ord vol frags, % suffs1710020062979 East CrRAtrá Prycolasticeil-strclay, hetro sand, ord vol frags, % suffs189325062981 East CrRAtrá Prycolasticeil-strcta 30% qtz matrix, some oxid frags, % diss py15132362982 East CrSHetro-sandsand, tuff, qtz, minor met2516831562982 East CrSClay-sandclay, hetro sand, oxid vol frags, 4% diss py284211662985 East CrTAtriage andclay, hetro sand, oxid rang, 4% diss py284211662986 East CrTAtriage andclay, nonor met2516831562985 East CrTHetro-sandclay, nonor met4013427062986 East CrTFragmentallim-mod, Mn richqtz, Min stained matrix, oxid frags4641462986 East CrTTClay-sand20% clay, noxid	6241	6 East Creek	S	Hetro sand-gravel	sil-well, lim-wk		35	105	238
62418 East Creek S Hetro sand-gravel ail-str, cash-wik, lin-wik qtz, minor calcite, 1% py 20 68 220 62419 East Creek T Hetro sand-gravel ail-str, lin-wik clay, fags of gm vol, qtz, minor py 115 100 200 62976 East Cr R At'd Fragmental ail-wik, lim-str clay, fags of gm vol, qtz, minor qtz & cal, <1% suifs	6241	7 East Creek	S	Hetro sand-gravel	sil-wk, carb-wk, hem-wk	qtz, grn pyroclastic frags, argillite	20	74	179
62976 East Cr R Alt'd fragmental sil-wk, lim-str clay, qtz-carb stringers, qtz frags, 3% diss py 8 26 47 62977 East Cr S Sand-gravel argilite, ox'd tuff frags, minor qtz & cal, <1% suffs	6241	B East Creek	S	Hetro sand-gravel	sil-str, carb-wk, lim-wk		20	68	220
62976 East Cr R Alt'd Fragmental 62977 East Cr S and-gravel elw, lim-str elw, qtz-carb stringer, qtz frage, 3% dis py 8 26 47 62976 East Cr T-3m Clay-send angilite, ox'd vol frage, <1% sulfs	6241	9 East Creek	т	Hetro sand-gravel	sil-str, lim-wk		115	130	580
62978 East Cr T-3m Clay-sand clay, hetro sand, ox'd vol frags, <1% sulfs	6297	6 East Cr	R	Alt'd Fragmental	sil-wk, lim-str		8	26	47
62979 East Cr T-3m Clay-sand clay, hetro sand, ox'd vol frags, <1% sulfs	6297	7 East Cr	S	Sand-gravel		argillite, ox'd tuff frags, minor qtz & cal, <1% sulfs	16	99	238
62979 East Cr T-4m Clay-sand clay, hetro sand, ox'd vol frage, <1% sulfs 18 93 250 62980 East Cr R Alt'd Pyroclastic sil-str gt2 & 30% gtz matrix, some ox'd frage, 4% diss py 17 51 323 62980 East Cr S Metro-sand ox'd tuff seds frage, pyrod, smillte, minor qtz, 1% 11 117 225 62983 East Cr S Hetro-sand sand, tuff, qtz, minor met 13 137 203 62983 East Cr S Hetro-sand sand, tuff, qtz, minor met 18 93 270 62985 East Cr T Alt'd Pyroclastic sil-str gt2 & 30% gtz matrix, some ox'd frags, 4% diss py 28 42 116 62985 East Cr T Alt'd Pyroclastic sil-str gt2 & 30% gtz matrix, some ox'd frags, 4% diss py 28 42 116 62985 East Cr T Alt'd Pyroclastic sil-str gt2 & 30% gtz matrix, some ox'd frags, 4% diss py 28 42 116 62986 East Cr T Alt'd Pyroclastic sil-str gt2 & 30% 30%<	6297	8 East Cr	T-3m	Clay-sand			· 17	100	200
62980 East Cr R At'd Pyroclastic sil-str gt & 30% gtz matrix, some ox'd frags, 4% diss py 17 51 323 62981 East Cr S Metro-sand sand, gravel ox'd tuff seds frags, pyrocl, argillite, minor qtz, 1% 11 117 255 62982 East Cr S Hetro-sand sand, tuff, qtz, minor met 13 137 203 62984 East Cr S Hetro-sand clay, hetro sand 40 134 270 62985 East Cr T At'd Pyroclastic sil-str qtz & 30% qtz matrix, some ox'd frags, 4% diss py 28 42 116 62986 East Cr T At'd Pyroclastic sil-str qtz & 30% qtz matrix, some ox'd frags, 4% diss py 28 42 116 62986 East Cr T Fregmental lim-mod, Mn nich qtz, Minor ox'd mat, ninor met 40 54 174 62980 East Cr T Ox'd Pyroclastic bleached-str, lim-str clay, ox'd mat, qtz veins, minor suf, lig/alun on fract 37 75 84 62980 East Cr T G'day-sand Ox'd-s	6297	9 East Cr	T-4m	Clay-sand			18	93	250
62981 East CrT-4mSand-gravelox'd tuff seds frags, pyrocl, argillite, minor qtz, 1%1111725562982 East CrSHetro-sandsand, tuff, qtz, minor met1313720362983 East CrSClay-sandclay, hetro sand4013427062985 East CrTAlt'd Pyroclesticsil-strqtz & 30% qtz matix, some ox'd frags, 4% diss py284211662986 East CrTFHetro-sandim-mod, Mn richqtz, Mn stained matrix, ox'd frags26240134062986 East CrTFClay-sand30% clay, 70% hetro sand, 1% grey met4110013862987 East CrTOx'd Pyroclasticbleached-str, lim-strclay, ox,d mat, qtz veins, minor sulf, jar/alun on fract37758462980 East CrTF-5mClay-sandvol frags, argillite, minor ox'd mat, minor met2014313262992 East CrTF-5mClay-gravel60% clay, 40% vol frags & pebs, <1% met	6298) East Cr	R	Alt'd Pyroclastic	sil-str		17	51	323
62982 East Cr S Hetro-sand sand, tuff, qtz, minor met 13 137 203 62983 East Cr S Hetro-sand sand, tuff, qtz, minor met 25 168 315 62984 East Cr S Clay-sand clay, hetro sand 40 134 270 62985 East Cr T Alt'd Pyroclastic sil-str qtz & 30% qtz matrix, some ox'd frags, 4% diss py 28 42 116 62986 East Cr T Alt'd Pyroclastic sil-str qtz & 30% qtz matrix, some ox'd frags, 4% diss py 28 42 116 62986 East Cr T F Hetro sand 40 54 174 62986 East Cr T Fragmental lim-mod, Mn nich qtz, Minor with, gtz, minor with girs/lun on fract 37 75 84 62980 East Cr S Hetro sand 20% clay, 00% betro sand, 1% grey met 41 100 138 62980 East Cr S Hetro sand 20% clay, 00% sand, <1% met	6298	1 East Cr	T-4m				11	117	255
62983 East CrSHetro-sandsand, tuff, qtz, minor met2516831562984 East CrTA ht'd Pyroclasticsil-strclay, hetro sand4013427062985 East CrTA ht'd Pyroclasticsil-strqtz. & 30% qtz matrix, some ox'd frags, 4% diss py284211662986 East CrTFHetro sandqtz. & 30% qtz matrix, some ox'd frags, 4% diss py284211662987 East CrTFragmentallim-mod, Mn nichqtz, Mn stained matrix, ox'd frags2624013462987 East CrTOx'd Pyroclasticbleached-str, lim-strclay, ox,d mat, qtz veins, minor suff, afr/alun on fract37758462988 East CrTSHetro sandvol frags, argillite, minor ox'd mat, qtz veins, minor suff, afqtz4110013862989 East CrTF-5mClay-sandclay-sandvol frags, argillite, minor ox'd mat, qtz veins, minor suff, afqtz37758462993 East CrT-3mClay-sandox'd-strclay, 80% sand, <1% met	6298	2 East Cr	S	2			13	137	203
62984 East CrSClay-sand4013427062985 East CrTAt'd Pyroclasticsil-strqtz & 30% qtz matrix, some ox'd frags, 4% diss py284211662986 East CrTFHetro sandqtz, minor ox'd mat, minor met405417462987 East CrTFragmentallim-mod, Mn richqtz, Mn stained matrix, ox'd frags26240134062988 East CrTFClay-sand30% clay, 70% hetro sand, 1% grey met4110013862989 East CrTO'vroclasticbleached-str, lim-strclay, ox, dm at, qtz veins, minor sulf, jar/alun on fract37758462990 East CrSHetro sandvol frags, argillite, minor ox'd mat & qtz4714330062992 East CrTF-5mClay-sandvol frags, argillite, minor ox'd mat & qtz4714330062993 East CrSClay-sandox'd-strclay, 80% sand, <1% met	6298	3 East Cr	S	Hetro-sand			25	168	315
62985 East CrTAlt'd Pyroclasticsil-strqtz & 30% qtz matrix, some ox'd frags, 4% diss py qtz, minor ox'd mat, minor met284211662986 East CrTFHetro sandim-mod, Mn nichqtz, minor ox'd mat, minor met405417462986 East CrTFragmentalim-mod, Mn nichqtz, Mn stained matrix, ox'd frags, 4% diss py qtz, Mox ox, dm dt qtz284211662980 East CrTTOx'd Pyroclastic PyroclasticSGay-gravelSGay-gravelGo% clay, 40% vol frags, argilite, nom ox'd mat, minor met18132 <t< td=""><td>62984</td><td>4 East Cr</td><td>S</td><td>Clav-sand</td><td></td><td></td><td>40</td><td>134</td><td>270</td></t<>	62984	4 East Cr	S	Clav-sand			40	134	270
62986 East CrTFHetro sandim-mod, Mn richqtz, minor ox'd mat, minor met405417462987 East CrTFragmentallim-mod, Mn richqtz, Mn stained matrix, ox'd frags26240134062988 East CrTFClay-sand30% clay, 70% hetro sand, 1% grey met4110018462989 East CrTOx'd Pyrocleaticbleached-str, lim-strclay, ox,d mat, qtz veins, minor sulf, jar/alun on fract37758462990 East CrSHetro sand20% clay, 80% sand, <1% met			т		sil-str		28	42	116
62987 East CrTFragmentallim-mod, Mn nichqtz, Mn stained matrix, ox'd frags26240134062988 East CrTFClay-sand30% clay, 70% hetro sand, 1% grey met4110013862989 East CrTOx'd Pyroclasticbleached-str, lim-strclay, ox,d mat, qtz veins, minor sulf, jar/alun on fract37758462990 East CrSHetro sandvol frags, argillite, minor ox'd mat & qtz4714330062992 East CrTF-5mClay-sand20% clay, 80% sand, <1% met			TE	•			40	54	174
62988 East CrTFClay-sand30% clay, 70% hetro sand, 1% grey met4110013862989 East CrTOx'd Pyroclasticbleached-str, lim-strclay, ox,d mat, qtz veins, minor sulf, jar/slun on fract37758462990 East CrSHetro sandvol frags, argilite, minor ox'd mat & qtz4714330062993 East CrTF-5mClay-sand20% clay, 80% sand, <1% met	6298	7 East Cr	т	Fragmental	lim-mod. Mn rich		26	240	1340
62989 East CrTOx'd Pyroclasticbleached-str, lim-strclay, ox,d mat, qtz veins, minor sulf, jar/alun on fract37758462990 East CrSHetro sandvol frags, argillite, minor ox'd mat & qtz4714330062992 East CrTF-5mClay-sand20% clay, 80% sand, <1% met				-			41	100	138
62990 East CrSHetro sandvol frags, argillite, minor ox'd mat & qtz4714330062992 East CrTF-5mClay-sand20% clay, 80% sand, <1% met					bleached-str. lim-str			75	84
62992 East CrTF-5mClay-sand20% clay, 80% sand, <1% met23699762993 East CrSClay-gravel60% clay, 40% vol frags & pebs, <1% met									300
62993 East CrSClay-gravel60% clay, 40% vol frags & pebs, <1% met2014313262994 East CrT-3mClay-sandox'd-strclay, ox'd hetro sand20915523262995 East CrSClay-sandox'd-strclay, ox'd hetro sand20915523262995 East CrSClay-sandox'd-wkqtz, minor ox'd mat, minor met18455262997 East CrTClay-sandox'd-wkqtz, minor ox'd mat, minor met18455262997 East CrTClay-sandox'd-wkqtz, minor ox'd mat, minor met2310577Snowpatch Creek Samples62420 Snowpatch CrSHetro clay-sandsil-wk, lim-wkclay, qtz sand, 3-4% py711210262460 Snowpatch CrSHetro sand-gravelsil pebs-mod, carb-wkqtz, pyrocl, red sed frags, argillite, 1-2% grey metalli6766262461 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m51097262462 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m213268									
62994 East CrT-3mClay-sandox'd-strclay, ox'd hetro sand20915523262995 East CrSClay-sand60% qtz, 40% clay1012810062996 East CrRAlt'd Fragmentalox'd-wkqtz, minor ox'd mat, minor met18455262997 East CrTClay-sandox'd-wkqtz, minor ox'd mat, minor met18455262997 East CrTClay-sandox'd-wkqtz, minor ox'd mat, minor met2310577Snowpatch Creek Samples62420 Snowpatch CrSHetro clay-sandsil-wk, lim-wkclay, qtz sand, 3-4% py711210262460 Snowpatch CrSHetro sand-gravelsil pebs-mod, carb-wkqtz, pyrocl, red sed frags, argillite, 1-2% grey metalli6766262461 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m51097262462 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m213268								143	
62995 East CrSClay-sand60% qtz, 40% clay1012810062996 East CrRAlt'd Fragmentalox'd-wkqtz, minor ox'd mat, minor met18455262997 East CrTClay-sandox'd-wkqtz, minor ox'd mat, minor met18455262997 East CrTClay-sandox'd-wkqtz, minor ox'd mat, minor met184552Snowpatch Creek Samples5Hetro clay-sandsil-wk, lim-wkclay, qtz sand, 3-4% py711210262460 Snowpatch CrSHetro sand-gravelsil pebs-mod, carb-wkqtz, pyrocl, red sed frags, argillite, 1-2% grey metalli6766262461 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m51097262462 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m213268					ox'd-str			155	
62996 East CrRAlt'd Fragmental Clay-sandox'd-wkqtz, minor ox'd mat, minor met18455262997 East CrTClay-sandox'd-wkqtz, minor ox'd mat, minor met184552Snowpatch Creek Samples5220% cley, 80% sand, <1% met									
62997 East CrTClay-sand20% cley, 80% sand, <1% met2310577Snowpatch Creek Samples62420 Snowpatch CrSHetro clay-sandsil-wk, lim-wkclay, qtz sand, 3-4% py711210262460 Snowpatch CrSHetro sand-gravelsil pebs-mod, carb-wkqtz, pyrocl, red sed frags, argiilite, 1-2% grey metalli6766262461 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m51097262462 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m213268					ox'd-wk		,		
62420 Snowpatch CrSHetro clay-sandsil-wk, lim-wkclay, qtz sand, 3-4% py711210262460 Snowpatch CrSHetro sand-gravelsil pebs-mod, carb-wkqtz, pyrocl, red sed frags, argillite, 1-2% grey metalli6766262461 Snowpatch CrSHetro sand-gravelsil pebs-mod, carb-wkpebs/frags of pyrocl, red seds, qtz, minor py, ox'd m51097262462 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m213268									
62460 Snowpatch CrSHetro sand-gravelsil pebs-mod, carb-wkqtz, pyrocl, red sed frags, argillite, 1-2% grey metalli6766262461 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m51097262462 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m213268	Snowpate	h Creek Samples							
62460 Snowpatch CrSHetro sand-gravelsil pebs-mod, carb-wkqtz, pyrocl, red sed frags, argillite, 1-2% grey metalli6766262461 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m51097262462 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m213268	6242	0 Snowpatch Cr	S	Hetro clay-sand	sil-wk, lim-wk	clay, qtz sand, 3-4% py	7	112	102
62461 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m51097262462 Snowpatch CrSHetro sand-gravelsil pebs-mod, epipebs/frags of pyrocl, red seds, qtz, minor py, ox'd m213268	6246	0 Snowpatch Cr			sil pebs-mod, carb-wk		6	76	62
62462 Snowpatch Cr S Hetro sand-gravel sil pebs-mod, epi pebs/frags of pyrocl, red seds, qtz, minor py, ox'd m 2 132 68				-				109	72
				-				132	68
		•						123	72

SAMPLE NO	LOCATION	TYPE	NAME	ALTERATION	COMPOSITION\MINERALIZATION	Aven	Cu	7
NU						Au ppb	Сиррт	Zn ppm
62464	Snowpatch Cr	S	Hetro sand-gravel	sil pebs-mod, epi	pebs/frags of pyrocl, red seds, qtz, minor py, ox'd m	4	122	84
62465	Snowpatch Cr	S	Hetro sand-gravel	sil pebs-mod, epi	pebs/frags of pyrocl, red seds, qtz, minor py, ox'd m	2	125	68
62466	Snowpatch Cr	S	Hetro sand-gravel	sil pebs-mod, epi	pebs/frags of pyrocl, red seds, qtz, minor py, ox'd m	3	105	74
62467	Snowpatch Cr	S	Hetro sand-gravel	sil-str	frags of pyrocl, minor qtz, ox'd mat, 1 % py	4	100	72
62468	Snowpatch Cr	F	Alt'd Pyroclastic	sil-well, carb-wk	90% qtz, minor carb, ox'd mat, 6% diss py	28	252	6
62469	Snowpatch Cr	F	Alt'd Pyroclastic	sil/carb-mod, lim-wk	90% qtz, cerb, lim, 2-3% py	4	165	72
62470	Snowpatch Cr-trib	S	Hetro sand	sil-mod	pebs of pyroci, gtz, ox'd mat, 2% py	70	140	104
62471	Snowpatch Cr-trib	S	Hetro sand			25	156	113
62472	Snowpatch Cr-trib	S	Alt'd Vol	sil-str, lim-wk	90% qtz, ox'd mat, 5-7% diss/blebs py	93	1550	18
62473	Snowpatch Cr	F	Hetro sand		qtz, ox'd mat, minor frags of vol, minor sulfs	27	117	92
62474	Snowpatch Cr	S	Hetro sand		gtz, ox'd mat, minor frags of vol, minor sulfs	25	118	88
62475	Snowpatch Cr	F	Sil'd Vol	sil-str, carb/qtz stwk	40% gtz phenos, 10% py, cpy, met, Cu, bo, 2-3% m	43	1370	16
	Snowpatch Cr	S	Hetro sand		gtz, minor calcite, ox'd mat, grey metallic	26	100	78
	Snowpetch Cr	F	Sil'd Vol	sil-str, carb/lim-mod	95% gtz, 1-2% carb, lim, 5% diss py	52	650	12
	Snowpatch Cr	F	Sil'd Vol	sil-str, carb/lim-mod	95% qtz, 1-2% carb, lim, 5% diss py	67	520	11
	Snowpatch Cr-trib	S	Hetro Sand	sil-str, lim-mod	frags of pyrocl, ox'd mat, 1% grey met	5	142	91
	Snowpatch Cr-trib	s	Hetro Sand	sil-str, lim-mod	frags of pyroci, ox'd mat, 1% grey met	5	127	88
	Snowpatch Cr	F	Brec'd Tuff	carb-well, lim-mod	80% qtz matrix, 20% qtz/carb/lim veins	1	11	8
	Snowpatch Cr	F	Alt'd brec'd tuff	sil-well,	qtz, 5% qtz-carb veins, 2-3% py	2	35	44
	Snowpatch Cr	F	Alt'd Pyroclastic	sil-mod, lim-well	qtz, lim, 1-2% diss py	17	56	42
	Snowpatch Cr	s	Hetro sand	carb-wk, lim-wk	qtz, sil'd frags of pyrocl, ox'd amt, 1-2% met	19	120	92
	Snowpatch Cr	ŝ	Hetro sand	carb-wk, lim-wk	qtz, sil'd frags of pyrocl, ox'd amt, 1-2% met	19	115	84
	Snowpatch Cr	Ř	Alt'd Pyroclastic	sil-wk, lim-wk	qtz, carb, lim, calcite, 1% diss py	-1	130	80
	Snowpatch Cr	S	Silica Sand		gtz, ox'd mat, frags of pyroci, calcite	92	106	78
	Snowpatch Cr	F	Alt'd Vol Porphyry	sil-well, carb-wk, lim-str	gtz, lim, 3-4% diss py	8	102	49
	Snowpatch Cr	F	Alt'd Vol Porphyry	sil-well, carb-str, lim-mod	qtz, lim, sencite, 3-4% diss py	9	93	72
	Snowpatch Cr	F	Alt'd Vol Porphyry	sil, carb-mod, lim	gtz, carb, 10% gtz phenos, 5% diss py	35	870	6
	Snowpatch Cr	s	Hetro sand		gtz, vol frags, calcite, 1-2% grey met	31	122	89
	Snowpatch Cr	ŝ	Hetro sand		qtz, vol frags, calcite, 1-2% grey met	181	120	82
	2 Snowpatch Cr	ŝ	Sand-gravel		qtz, vol frags, calcite, 1-2% grey met	237	115	84
	Snowpatch Cr	š	Hetro sand-gravel		qtz, ox'd mat, frags of pyrocl, minor met	52	202	140
	Snowpatch Cr	s	Clay-gravel		clay, gtz sand, ox'd frags of pyroci, 2% grey met	28	128	102
62665		ŝ	Hetro sand		frags of pyroci, ox'd mat, qtz sand, 2-3% grey net, o	19	150	102
62919		Soil	Clay-loam		clay, silt, 3% organics	23	110	143
	Snowpatch Cr	S	Hetro sand		qtz, vol frags, 2% grey met	4	80	64
	Snowpatch Cr	š	Hetro sand		qtz, vol frags, 2% grey met	23	120	94
) Snowpatch Cr	Ĕ	Alt'd Qtz Porphyry	sil-mod	70% qtz phenos in qtz matrix	40	370	7
00000	onompaten or	•		SIFTING		40	0,0	
High & Lo	w Check Samples							
62700	A Grid Creek	High SS cl	hk Clay-sand			174	280	210
6241	2 E Junction Cr	High SS cl	hk Clay-sand			183	305	235
62603	3 Grid Creek	High SS cl	hk Clay-sand			137	324	260
6262	5 Grid Creek	High SS cl	hk Clay-sand			184	300	230
62660) Grid Creek	High SS cl	hk Clay-sand			168	310	260
62743	3 Grid Creek	High SS cl	hk Clay-sand			177	305	238
6282	Grid Creek	High SS cl	hk Clay-sand			152	270	223
62861	Grid Creek	High SS cl	hk Clay-sand			5 9	168	180
62878	Grid Creek	High SS cl	hk Clay-sand			57	180	178
6291(Grid Creek	•	hk Clay-sand					
	Deitaic Creek	-	nk Clay-loam			7	72	104
	6 Deltaic Creek		nk Clay-loam			3	68	108
	2 Deltaic Creek		hk Clay-loam			2	68	113
	5 Deltaic Creek		nk Clay-loam			-1	60	105
	6 Deltaic Creek		hk Clay-loam			. 3	62	104
	2 Deltaic Creek		hk Clay-loam			3	68	108
			,			-		-

SAMPLE LOCATION	TYPE NAME	ALTERATION	COMPOSITION\MINERALIZATION			
NO				Au ppb	Cu ppm	Zn ppm
62896 Deltaic Craek	Low SS chk Clay-loam			2	72	110
62922 Deltaic Creek	Low SS chk Clay-loam			2	64	105
62949 Deltaic Creek	Low SS chk Clay-loam			3	64	106
CEDTO DUICUIS CIOUR	Ebw oo cirk olay loain			0		100

b:\1bassays.wk3

a. Soil Zone S1:

The very broad northern Zone S1 as outlined by the 50 ppb gold contour (Map 9B) is the strongest soil gold zone. It has **a** general trend of 40 degrees and has been traced over a strike length of 650 m. Its higher grade core as outlined by the 100 ppb contour correlates with the strongest IP chargeability Zones A and A1 (Maps 9B, 12). However, relative to the specific IP targets and based on increased chargeabilities and broad geochemical responses on the northern parts of the lines referenced above, the drill targets appear to be wider than indicated by the specific IP anomalies. For example, the S1 Zone on Line 54E averages a very anomalous 139 ppb gold over a distance of 525 m, remains open to the north, and the higher grade core of the zone averages 195 ppb gold over a distance of 300 m. A zinc soil anomaly (averaging 652 ppm Zn over 100 m) on the north side of the higher grade gold core is indicative of metallic zoning. The S1 Zone does get weaker and narrower to the west on Line 50E, but in view of the still strong, wide IP response, this may be due to overburden effects.

Metal value averages for the S1 Zone on the other grid lines are shown in Table 7. Higher copper values tend to correlate well with the Zone S1 gold zone and the highest copper values tend to be associated with the highest gold values (Map 9C). In general, higher zinc values flank the highest gold values and the core of the S1 Zone is flanked to the north by the highest zinc values on Lines 52E to 55E.

To the east of Line 55E at 49+12N, Zone S1 is truncated by the steep and rugged topography of the west side of Bear Creek valley. The edge of the deep valley is shown on Map 9A and as displayed on Maps 6A and 6B, most Phase 1A samples types collected on or at the base of the slope have yielded anomalous gold values: individual rock samples returned up to 470 ppb gold, 8080 ppm copper and 876 zinc; and, individual stream sediments samples returned up to 352 ppb gold, 635 ppm copper and 377 ppm zinc.

Zone S1 is delineated by a strong colour anomaly associated with oxidized and silicified lapilli tuffs and volcanic breccias. Shallow overburden is comprised of red clay and sand and talus slopes with oxidized fragments of altered pyroclastic rocks. Isolated outcrops of quartz porphyry showing various stages of alteration were also observed. Grassy areas also cover Zone S1 usually in areas of deeper overburden and are underlain by sandy clay loam. Some of the better gold values have been returned from this type of material.

November 13, 1993

TABLE 7 STEWART PROPERTY PHASE 1B IP & GEOCHEMICAL RESULTS

IP ZONE			\$OIL G	OLD ZONES						
NAME	** LINE NUMBER	NAME	FROM (m)	TO (m)	WIDTH (m)	NO OF SAMPLES	AVG AU VALUE (ppb)	AVG CU VALUE (ppm)	AVG ZN VALUE (ppm)	COMMENT
C,D1	55E	South	42+00N	44 + 25N	225	10	81	99	101	
D1	54E	South	41+50N	42 + 75N	125	6	52	69	129	
С	53E	South	41 + 75N	43 + 00N	125	6	72	206	112	
D/E	52E	South	40 + 00N	41 + 50N	150	7	65	171	276	
D	51E	South	40 + 00N	41 + 25N	125	6	54	82	86.5	
D	50E	South	40 + 50N	41 + 50N	150	5	40	220	315	
A/A1/A2	55E	North	45 + 50N 4	49 + 12.5N	362.5	17	222	199	136	
A/A1/A2/A3	54E	North	44 + 50N	49 + 50N	500	21	139	195	245	
A/A1/B	53E	North	43 + 75N	48+00N	425	18	158	165	143	
A/A1	52E	North	43 + 50N	47 + 75N	425	25	121	118	136	
A/A1/C	51E	North	42 + 75N	48 + 75N	600	25	86	127	151	
A/A1/A2	50E	North	44 + 50N	46 + 50N	200	. 8	109	131	96	
A/A1/A2	55E	North Core	45 + 75N	48 + 75N	300	14	252	227	144	
A/A1/A2	54E	North Core	45 + 00N	45 + 50N	50	12	195	217	341	A*
Α	53E	North Core	45 + 50N	48 + 00N	250	11	194	140	170	В*
A/A1	52E	North Core	45+00N	47 + 00N	200	15	163	121	114	C*
Α	51E	North Core	45 + 50N	47 + 25N	175	8	162	130	183	
A/A1	50E	North Core	45 + 00N	45 + 50N	50	3	159	152	94	

A* Zinc halo north side of North Core averages 652 ppm zinc over 100m (47 + 75 to 48 + 75N).

B* Zinc halo north side of North Core averages 241 ppm zinc over 125m (45+75 to 48+00N).

C* Zinc halo north side of North Core averages 424 ppm zinc over 62.5m (46+62.5 to 47+25N).

** IP was not carried out on L51 + 00E or L55 + 00E. IP zones are estimated.

c:\us4\auave1.wk3

Weather conditions and budget did not permit IP surveying on Lines 55E and 51E, and magnetometer surveying could not be completed on Line 50E. Magnetic relief over the whole grid is very low (Map 12). However, the areas of lower magnetic relief are often associated with the most significant IP responses.

i. IP Zone A (MAPS 9B-D, 12-13):

IP Zone A is the strongest anomaly and it shows excellent correlation with the centre of the core of the S1 Zone. Zone A has a general trend of 40 degrees and IP surveying on four lines has traced it over a 450 m strike length. As described by JVX (1993), Zone A is a strong to very strong chargeability response with a weak resistivity low occurring on Lines 54E to 50E near 47N. The Zone has generally short time constants which is indicative of fine grained sulfide mineralization.

Initial drill testing is recommended on Line 52E where the narrow resistivity high has a shape that may be associated with a zone of silicification or a quartz feldspar porphyry; and, on Line 54E where higher soil gold geochemical responses occur. Long holes in the range of 200 m drilled at a bearing of 330 degrees and an inclination of -45 degrees are recommended.

ii. IP Zone A1 (MAPS 9B-D, 12-13):

IP Zone A1 is described as a moderate to strong chargeability response located on the south flank of Zone A. As shown on Map 9B, it occurs near the south edge of the core of Zone S1. Zone A1 has a general average trend of 46 about degrees and IP surveying on four lines has traced it over a strike length of 450 m. Zone A1 is generally a moderate response but its MIP spectral response is quite high with a short time constant indicating a relative high percent by volume of fine grained sulfide. On Line 52E the anomaly is associated with a weak resistivity high which may be significant.

Drill testing is recommended on Lines 52E and 54E in conjunction with the drill testing of IP Zone A. Separate set-ups will be needed to test Zone A1 with hole lengths in the range of 100 m.

iii.

IP Zone A2 flanks Zone A on the north on Lines 50E and 54E. It is described as a weak chargeability response that on Line 54E occurs on the south flank of a magnetic low which is also associated with a weak resistivity high. It is also associated with the strongest zinc, strong copper and strong gold values on Line 54E. Drill testing is recommended on Line 54E utilizing a 125 meter hole if results of Zone A are encouraging.

iv.

IP Zone B (MAPS 9B-D, 12-13):

The weak chargeability response is located immediately to the south of Zone A1 on Line 53E and about 100 m south of Zone A1 on Line 54E. Zone B is particulary interesting on Line 53E since it is coincident with strong gold and zinc soil anomalies. If drilling of the A1 Zone on Line 52E is positive, it is recommended that the B and A1 Zones on Line 53E be tested with a 200 m hole.

b. Soil Zone S2:

Soil Zone S2 (Map 9B), as partially outlined over a distance of 175 meters on the north end of L50E, is characterized by coincident, strong gold, copper and zinc soil anomalies (Maps 9C, D). Soil gold values of 102 and 157 ppb at the north ends of Lines 51E and 54E, respectively, are indicative of the Zone S2 anomaly that remains to be fully delineated. For example, a sediment sample taken from a stream 100 m to the west of the grid and draining the area northwest of the grid returned 159 ppb gold, 240 ppm copper and 307 ppm zinc (Map 10B). A stream sample taken from a stream at 51+37E, 49+00N, that drains the area north of the grid returned the highest set of metal values of any sediment sample on the property: 420 ppb gold, 680 ppm copper and 630 ppm zinc. It is recommended that further delineation surveys be carried on the S2 Zone: Lines 49E and 48E should be picketed and Lines 50E, 51E and 52E extended to the north as topography allows.

i.

IP Zone A3 (MAPS 9B-D, 12-13):

IP Zone A3 is a weak chargeability response located near the north ends of Lines 54E and 50E. High gold, copper and zinc values are associated with Zone A3 on Line 50E. However as noted above, very anomalous metal values in soils continue to the north end of Line 50E, and the S2 Zone soil anomaly remains to be fully delineated.

c. Soil Zone S3:

The southern soil gold Zone S3 as outlined by the 50 ppb contour trends about 50 degrees and has been traced over a distance of 650 m (Map 9B). As indicated by the parameters in Table 7, it is narrower and weaker than the northern Zone S1. However, the overburden cover is much thicker than on Zone S1 and the southern zone is still characterized by very anomalous gold values over substantial widths.

Anomalous copper values as outlined by the 100 ppm contour (Map 9C) do show some periodic correlation with the gold Zone S3. There is also some overlap with the anomalous zinc values as outlined by the 100 ppm contour (Map 9D); however, the higher zinc values tend to flank Zone S3 on Lines 50E, 52E and 53E.

IP anomalies tend to occur on the flanks of Zone S3, suggesting that there could be some downslope dispersion of the gold in the deeper overburden.

i. IP Zone C (MAPS 9B-D, 12-13):

The weak to moderate chargeability response trends 53 degrees across the grid north of Zone S3. It is generally associated with weaker gold and copper values. Follow-up via detailed soil sampling at 12.5 m spacings is recommended on Lines 51E to 55E. Trenching could be carried out on Line 53E to ascertain the importance of the anomaly as the upslope source of the gold in Zone S3.

ii.

IP Zones D and D1 (MAPS 9B-D, 12-13):

IP Zone D as interpreted by Geofine trends at 70 degrees and extends between Lines 53E and 52E. It has mainly a flanking relationship with the gold Zone S3 and may represent a splay off IP Zone D1 described below. It represents a weak to moderate chargeability response and on Line 52E is in a slightly higher resistivity environment that may suggest silicification. Down slope dispersion of gold from the Zone D may be responsible for the gold values in Zone S3 on that Line 52E.

Zone D1 is a moderate chargeability response that trends 50 degrees. It is interpreted by Geofine to extend from Line 50E to Line 54E and, based on the trend of Zone S3, beyond to Line 55E which was not surveyed with IP. The response is particularly interesting in that it is generally on the north edge of Zone S3 and down slope dispersion from it may be responsible for much of the gold content of Zone S3. Zone D1 may be associated with a resistive chargeable source on Line 54E.

It is recommended that IP Zone D1 be drill tested with a 125 m hole on Line 54E and if successful, its postulated along strike extension through the core of the gold Zone S3 on Line 55E would also warrant testing. Detailed soil sampling and some specific trenching to determine the relative importance of the Zones D and D1 in other locations is also recommended.

iii.

IP Zones E, E1 (MAPS 9B-D, 12-13):

IP Zone E trends about 50 degrees across the southern edge of the grid and the chargeability response becomes very strong on Lines 52E and 50E. On Line 50E the anomaly is located south of any soil sampling; and, on Line 52E it is located at the south end of the line and is not fully delineated by IP or soil sampling. However, on Line 52E fairly strong gold values are associated with strong zinc and copper values.

Where IP Zone E is fully delineated on Line 50E it is described as a higher priority response where the very strong chargeability is in a slightly higher resistivity environment. A fine grain sulfide source is indicated and diamond drilling is recommended via 125 m hole. If positive, drilling of Zone E on Line 52E is advised.

IP Zone E1 is a moderate chargeability response on the southern extension of Line 50E. If drill testing of Zone E on Line 50E is successful, drill testing of Zone E1 would also be recommended.

B. SNOWPATCH CREEK:

Snowpatch Creek is located about 1.6 km west of Line 50E (Maps 6A, 7A). Phase 1B stream sediment and float sampling was carried out to follow-up stream sediment anomalies detected in the Phase 1A program and to determine if the projected trend of soil gold zones and IP anomalies on the Deltaic grid extended through the area.

The results are deemed to be positive, with gold values in stream sediment samples from Snowpatch Creek near its intersection with the west-southwest projection of the Deltaic gold zones ranging up to 237 ppb. Gold values in sediments from a northeast trending tributary 800 m north of the highest gold values in Snowpatch Creek range up to 93 ppb and are postulated to be indicative of additional gold mineralization further to the northeast. Gold values in sediments from Snowpatch Creek north of the tributary are not considered anomalous, thus directing detailed follow-up activities to rather specific areas. Anomalous gold and copper values up to 67 ppb and 1370 ppm, respectively, were returned from pyritized and silicified float in Snowpatch Creek. Detailed follow-up of the results is advised in conjunction with drilling on the Deltaic grid.

C. EAST CREEK:

The East Creek area is located approximately one km east of Line 55E, on the east side of Bear Creek (Maps 6A, 7A). Altered, pryritized pyroclastic rocks similar to those on the Deltaic grid account for the colour anomaly. Phase 1B sampling was carried out to confirm the very anomalous Cominco gold results and to ascertain the importance of the colour anomaly that represents the apparent along strike extension of the Deltaic Zone.

Gold, copper and zinc values in seven stream sediment samples taken from the north creek (Map 6A) range between 10 and 47 ppb, 99 and 168 ppm, and 100 and 315 ppm, respectively. All the values are considered anomalous. The western most talus sample taken from the bank of the northern creek returned 209 ppb gold, 155 ppm copper and 232 ppm zinc over 3 m.

Seven sediment samples from the south creek had anomalous gold contents ranging between 10 and 35 ppb. Most copper and all zinc values are also anomalous. One talus sample taken west of the stream sediments contained 115 ppb gold along with 130 ppm copper and 565 ppm zinc. Detailed follow-up of the East Creek area is recommended if the results of the Phase 2 drill program on the Deltaic grid are positive.

12. CONCLUSIONS, RECOMMENDATIONS - PHASE 1B PROGRAM:

The Phase 1B program has been very successful in delineating high priority drill targets on the Deltaic grid. The drill targets are generally coincident with strong soil gold anomalies and strong IP chargeability anomalies. Indications of Red Mountain style of polymetallic zoning are also present. The targets are hosted by sulfidized and silicified pyroclastic and felsic volcanic rocks of the prospective Hazelton Formation, and the size and morphology of a quartz porphyry intrusion remains to be ascertained. The gold mineralization appears to be associated with structures that trend northeast and that may be splays off the Bear Creek Fault. Most of the targets remain open for further delineation and new targets in the favourable geological environment are apparent.

The exploration targets as envisaged by Geofine are large lenses or cylinders of high grade gold mineralization within the auriferous, pyritic alteration halos. Two possible strategies for a Phase 2 follow-up program are outlined below and the associated costs are shown in Tables 9A and 9B:

a. Diamond Drilling

High priority drill targets have been delineated and an initial drilling for discovery scenario is proposed in Table 8. Nine holes totalling 1425 m are recommended, with three holes being contingent on positive results from other holes. A minimum recommended drill scenario for the helicopter supported program would entail 6 holes totalling about 1000 m with an all in estimated cost, subject to drill bids, of \$238/m including assessment work filing and GST. Provision for success, say for another 500 m to complete the recommended 9 holes, is also advised.

b. Additional Ground Follow-up and Diamond Drilling:

To date IP surveying has been carried out on four, and magnetometer surveying on five, of the six grid lines. Detailed geological mapping remains to be carried out in most areas.

It is obvious from the results of the Phase 1B program, that other, possibly more important targets, such as the Zone S2 soil gold anomaly, remain to be delineated north of the grid and that IP Zone E remains open for delineation to the south and west of the grid. Additional targets are obvious in more rugged topography north of the grid and all existing targets remain open to the east and west.

In order to further delineate and prioritize drill targets and maximize the results of the drilling, a ground program as outlined below could be carried out prior to the initiation of diamond drilling:

Grid Lines 48E and 49E and the extension of Lines 50E, 51E and 52E to the north and south could be established as topography permits and detailed mapping could be carried out on the grid as required. Lines 48E, 49E, 51E and 55E and the extensions could be evaluated with IP and soil sampling. Detailed soil sampling could be carried out on IP Zones D and D1. IP surveying on a grid line in Bear Creek Valley would be useful to determine the eastern continuity and depth extent of the anomalous zones delineated on the grid. IP surveying and soil sampling on a grid line along Snowpatch Creek and on two grid lines over the East Creek target area are also recommended.

As shown in Table 9B, the cost of the Phase 2 ground follow-up program is estimated at \$42,000 and if the Phase 2 drill program is successful, the ground program would provide the coherence and necessary target definition for along strike delineation of reserves.

Strategy 1 is recommended, i.e. that the 1000 m drill program, with a success contingency for an additional 500 m, be initiated first to determine the existence of and tonnage potential for ore grade mineralization. If this program has initial success, it is recommended that the ground follow-up survey be immediately initiated concurrently with the drill program to maximize cost efficiencies and discovery progress in the relatively short field season. A turn around time of at least 10 days is anticipated for assay results.

TABLE 8: PROPOSED PHASE 2 DRILL PROGRAM

Hole No.:	Target, Location:	Azimuth/ Inclination:		Comments:
DZ 94-1	IP ZONE A, LINE 54E, 46+25N	330°/-45°	200 m	
DZ 94-2	IP ZONE A2, LINE 54E, 47+75N	330°/-45°	125 m	drilling contingent on results of 93-1
DZ 94-3	IP ZONE A1, LINE 54 E, 45+25N	330°/45°	125 m	
DZ 94-4	IP ZONES A, A1, LINE 52E, 45+50N	330°/45°	250 m	
DZ 94-5	IP ZONES A1 B, LINE 53, 44+00	, 330°/45°	200 m	contingent on results of 93-3, 93-4
DZ 94-6	IP ZONE D1, LINE 54, 41+75N	330°/45°	200 m	
DZ 94-7	IP ZONE E, LINE 50E, 39+00N	330°/45°	125 m	
DZ 94-8	IP ZONE E1, LINE 50E, 38+00N	330°/45°	150 m	
DZ 94-9	IP ZONE E, LINE 52E, 39+50N	330°/45°	150 m	contingent on results of 93-7

TABLE 9A

STRATEGY 1: RECOMMENDED PHASE 2 DRILL PROGRAM:

DELTAIC ZONE,

STEWART PROPERTY

	ITEM	COST 1B
		(\$)
i) ii) iii) iv) v)	Property, assessment work research Project permitting, planning Geochemical signature analyses Property Compensation Structural fabric studies, airphotos, mag maps	1000
vi)	Field equipment, supplies	3500
vii)	Mob-demob	3500
viii)	Ground transport, helicopter support	10000*
ix)	Analyses, assays 1000 @ \$20	20000*
x)	Linecutting 6 km@ 350 km	
xi)	Geophysical surveys: 4 km of mag	
	4 km of IP	
xii)	report Land surveys	
xiii)	Food, sustenance, accommodation	4500
xiv)	Communications - in field	1500
xv)	Drafting, reporting, assess. rpts, fees	15000**
xvi)		20000
	Legal fees	
	Licences	
xix)	Salaries: local labour, 2 geologists, \$700/day @ 50 days;	35000*
xx)	Diamond drilling: 1000 m @ \$178/m	178000***
•	500 m @ 170/m	85000* ***
	TOTAL	\$357000****
** 9 *** 9 **** 1	SSUMES 1500 M DRILL PROGRAM UBJECT TO AMOUNT OF WORK FILED AND REPORTS RE UBJECT TO DRILL BIDS- BASED ON FALCON ALL IN NCLUDES GST, FOR 1000 M PROGRAM TOTAL WOULD BE	BID INC GST

LESS

TABLE 9B

STRATEGY 2: PROPOSED PHASE 2 GROUND PROGRAM

AND DRILL PROGRAM:

DELTAIC ZONE,

STEWART PROPERTY

	ITEM	COST 1B
		(\$)
i) ii) iii) iv) v)	Property, assessment work research Project permitting, planning Geochemical signature analyses Property Compensation Structural fabric studies, airphotos, mag maps	1000
vi) vii) viii) ix) x) xi)	Field equipment, supplies Mob-demob Ground transport, helicopter support Analyses, assays 1300 @ \$20 Linecutting 6 km@ 350 km Geophysical surveys: 4 km of mag @ \$250 7 km of IP @ \$1500 report \$2000	4500 12000 18000 26000 2100 1000 10500 2000
xiv) xv) xvi) xvii) xvii)	Land surveys Food, sustenance, accommodation Communications - in field Drafting, reporting, assess. rpts, fees Land acquisition payments Legal fees Licences Salaries: local labour, 3 geologists, \$350/day @ 110 days;	6500 2500 15000 38500
XX)	Diamond drilling: 1000 m @ \$178/m 500 m @ 170/m TOTAL SAY	178000 85000 \$402600 \$405000*

*ASSUMPTIONS ARE THE SAME AS IN TABLE 7A

13. REFERENCES:

Aerodat Limited (1991): Report on the Oweegee Project for Indigo Gold Mines Inc.: BCMEMPR Assessment Work File 22,082.

ALLDRICK, D. J. (1984): Geologic Setting of the Precious Metal Deposits in the Stewart Area; in: Geological Fieldwork 1983, BCMEMPR, Paper 1984-1, p. 149-164

ALLDRICK, D. J. (1985): Stratigraphy and Petrology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1984, BCMEMPR, Paper 1985-1, p. 316-341

ALLDRICK, D.J. (1989): Geology and Mineral Deposits of the Salmon River Valley - Stewart Area, 1:50,000. BCMEMPR Open File Map 1987-22.

ALLDRICK, D.J. (1989): Volcanic Centres in the Stewart Complex (103P and 104A,B); in: Geological Fieldwork 1988, BCMEMPR, Paper 1989-1 p. 223-240.

ALLDRICK, D. J., BROWN, D. A., HARAKAL, J. E., MORTENSEN, J. K. and ARMSTRONG, R. L. (1987): Geochronology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1986, BCMEMPR, Paper 1987-1, p. 81-92.

ANDERSON, R. G. (1989): A Stratigraphic, Plutonic, and Structural Framework of the Iskut River Map Area, Northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 89-1E, p. 145-154.

ANDERSON, R. G. and THORKELSON, D. J. (1990): Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut Map Area, northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 90-1E, p. 131-139.

BLACKWELL, J. (1990): Geology of the Eskay Creek #21 Deposits; in: The Gangue, MDD-GAC, No 31, April, 1990.

DANIELSON, VIVIAN (1993): Busy Summer For Stewart Area; Northern Miner August 16, 1993, p. 1

Greig, C. J. (1991): Stratigraphic and structural relations along the west-central margin of the Bowser Basin, Oweegee and Kinskush areas, northwestern British Columbia: in Current Research, Part A, Geological Survey of Canada, Paper 91-1A, p. 197-205.

GREIG, C. J., EVENCHICK, C. A., Mustard, P. S., Porter, J. S. (1992): Regional Jurassic and Cretaceous facies assemblages, and structural geology in Bowser Lake map area (104A), B.C.: Open File 2582, EMR Canada.

GREIG, C. J., EVENCHICK, C. A. (1993): Geology of Oweegee Dome, Delta Peak (104A/12) And Taft Creek (104A/11W) Map Areas, GSC Preliminary Map.

GROVE, E. W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; BCMEMPR, Bulletin 63.

Hamilton, A. (1991): Assessment Report on Geological and Geochemical Work on the Delta 1 and 2 Mineral Claims, BCMEMPR Assessment Work File 21.745, prepared for Cominco Ltd.

JVX Limited (1993): Report ON Geophysical Surveys On The Stewart Project, Delta Target Area, Northwestern British Columbia, prepared for Geofine Exploration Consultants Ltd.

LEE, A. W. (1990): Assessment Report on Geological and Geochemical Work on the Delta 1 and 2 Mineral Claims, BCMEMPR Assessment Work File 20.399, prepared for Cominco Ltd.

MCDONALD, D. (1989): Metallic Minerals in the Silbak Premier Silver Gold Deposits, Stewart; in: Geological Fieldwork 1987, BCMEMPR, Paper 1988-1, p. 349-352.

MOLLOY, D. E. (1993): Report On The Phase 1A Reconnaissance Program On The Fox Claims Of The Stewart Property, prepared for American Barrick Resources Corporation.

RAINSFORD, D. R. B. (1990): Report on A Combined Helicopter Borne Magnetic Electromagnetic and VLF Survey, Stewart Area; BCMEMPR Assessment Report # 20,200.

RANDALL, A. W. (1988): Geological Setting and Mineralization of the Silbak Premier and Big Missouri Deposits; in Field Guide Book, Major Gold-Silver Deposits of the northern Canadian Cordillera, Society of Economic Geologists, p. 85-99.

RUBIN, C. M., SALEEBY, J. B., COWAN, D. S., BRANDON, M. T., and MCGRODER, M. F., (1990): Regionally Extensive Mid-Cretaceous Westvergent Thrust Systems in the Northwestern Cordillera: Implications for Continent-Margin Tectonism. Geology, v.18, p. 276-280.

TENAJON RESOURCES CORP. (1992): Report to Shareholders; in: Annual Report 1992 p. 1.

VOGT, ANDREAS H., BRAY, ADRIAN D., and BULL, KATE, (1992): Geologic Setting and Mineralization of the Lac Minerals Red Mountain Deposit, handout at 1992 Cordilleran Round-up "Spotlight Session".

WESTMIN RESOURCES LIMITED (1992): Premier Gold Project: in: Annual Report 1991; p.9.14.

STATEMENT OF QUALIFICATIONS:

I, David E. Molloy, of the Town of Unionville, of the Regional Municipality of York, Ontario, hereby certify that:

- i. I am President of Geofine Exploration Consultants Ltd. and Geofine (Jamaica) Limited with business addresses at 49 Normandale Road, Unionville, Ontario, L3R 4J8 and 30 Knutsford Blvd, 7th Floor, Kingston, Jamaica, respectively;
- ii. I am a graduate of McMaster University, in the City of Hamilton, Ontario, with a B.A. in Philosophy (1968); I am a graduate of the University of Waterloo, in the City of Waterloo, Ontario, with a B.Sc. in Earth Science (1972);
- iii. I have practised my profession in mineral exploration continuously for the past 22 years, including 3 years as a consultant; 10 years with St. Joe Canada Inc./Bond Gold Canada Inc./LAC Minerals Ltd. as Regional Geologist, Exploration Manager, Vice President and as Senior Vice President, Canadian Exploration; and, 8 years with Beth-Canada Mining Company as a Regional Geologist;
- iv. I am a Fellow of The Geological Association of Canada;
- v. I am a Member of the Canadian Institute of Mining and Metallurgy; of the Prospectors and Developers' Association; and of the Association of Exploration Geochemists.
- vi. I have supervised the field program and the preparation of this report titled "Report on the Phase 1B Follow-up Geochemical And Geophysical Program Carried Out On The Delta Target Area Of The Fox Claims, Stewart Property, Skeena Mining Division, Northwestern British Columbia" for American Barrick Resources Corporation. I have referenced the technical data available in the BCMEMPR assessment work files as well as other sources listed in the References.
- vii. The recommendations herein are solely the responsibility of Geofine Exploration Consultants Ltd.

David E. Molloy, B.A., B.Sc., F.G.A.C. President

Dated at Unionville, Ontario, this 8th day of December, 1993.

- 47 -

14.

APPENDIX 1

MAPS

APPENDIX 2

LABORATORY RESULTS - PHASE 1A PROGRAM

Division of Assayers Corp. Ltd.

ana ana amin'ny s

MEMO

TO:Geofine Exploration ConsultantsATTN:Ginine CalderRE:Outline of Analytical work done on Project 6000

Au

Fire Geochem Au 1 Assay Ton A.A. Finish

ICP

31 Element (Trace Geochem Package) Aqua Regia Digestion

OFFICE AND LABORATORIES: 705 WEST FIFTEENTH STREET, NORTH VANCOUVER, B.C. CANADA V7M 1T2 PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9621

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

ATTN: DAVE MOLLOY / DAVE KENNEDY

PROJ: 6000

FILE NO: 3S-0145-RJ1+2 DATE: 93/08/31

* ROCK * (ACT:F31)

ATTN: DAVE MOL	LOY / DAVE	KENNED	γ							(0	J 4) 98 0 -	2814	UK (604	4)988-	4724								_			- K	DCK *	(ACT:F31
SAMPLE NUMBER	AG AL PPM %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	KL %PP		MN PPM	MO PPM		NI PPM	P PPM				TH T PPM PP	PM PPI			SN PPM I	W CR	AU-FIRE PPB
62308 62309 62310 62311A 62312	.1 1.38 .3 .65 .1 .55 .3 .58 .8 .71	1 1 1 1	1 1 4 4 1	138 130 105 132 82	.1 .1 .1 .1	15 17 13 15 20	3.49 2.16 2.67 2.99 3.49	.1 .1 .1 .1	17 16 12 12 16	35 4 36 3 51 3	.08 .2 .12 .3 .48 .3 .73 .2	7227	6 .85 5 .24 3 .16 3 .18 7 .31	448 374 536 684	3 1 3 3 1	.03 .03 .03 .02 .02	1 2 5 1	1080 900 720 760 1200	15 2 4 2	1 1 1 1	18 24 23 32 14	40 177 28 247 20 173 18 208 20 269	1 48. 8 32. 31 33. 95 41.	4 121 7 52 6 45 1 73	8 7 5 8 5 11	1	5 11 4 16 4 27 3 19 4 11	1 2 3
62313 62315 62316 62317 62318	.1 2.75 .1 2.00 .1 3.05 .1 2.87 .1 2.24	1 81 1 1	1 1 1 1	58 50 28 26 39	.1 .1 .1 .1 .1	24 26 21 24 20	1.36 .94 2.42 1.83 1.24	.1 .1 .1 .1 .1	19 22 17 18 16	202 5 59 4 88 4 73 3	.31 .1 .62 .0 .84 .1	22 91 61	5 2.70 2 1.73 0 2.09 9 2.12 6 1.67	1390 1239 934	4 4 4	.02 .07 .03 .03 .04	1	1060 980 1120 1100 1060	33 26 36 34 30	5 2 11 9 7	18 19 81 48 59	95 284 78 336 62 260 76 297 77 228	3 217. 9 116. 8 126.8 3 104.4	2 60 7 8 8 82 4 73	5 22 27 2 27 3 23	1 1 1 1	8 13 9 25 9 33 9 27 9 66	14 13 9 1
62319 62322 62325 62326 62327	.1 2.03 .1 1.74 .1 2.82 .2 .48 .1 1.63	1 1 13 8	1 1 1 1	28 21 17 29 21	.1 .1 .2 .1	21 21 26 4 18	1.24 3.72 2.03 .22 .89	.1 .1 .1 .1	16 16 24 3 15	70 5 152 5 9 316 4	.96 .1 .46 .0	5 1 2 1 5 9 1	9 2.63 6 .19 5 1.68	1788 984 221 916	4 2 10	.06 .07 .03 .05 .06	1	1120 1050 1050 250 1090	36 22 36 13 33	31632	26	149 24 89 179	5 133. 3 214.9 6 16.0 7 105.9	7 49 9 63 0 28 5 118	23 30 3 8 3 24	1 1 1 1	8 30 8 45 11 67 6 114 9 65	27 8 2 145
62330 62331 62332 62333 62334	.1 .73 .6 .64 .7 .61 .3 .99 .6 .67	1 1 1 7	7 1 1 1	202 169 190 197 160	.1 .1 .1 .1 .1	5 24 26 19 20	.26 .39 .27 .86 .32	.1 .1 .1 .1	15 12 15 10	32 4 30 4 29 4 29 3	.19 .2 .67 .2	8 0 1 7	3.16 2.12 7.29 3.17	122 332 194	1 1 3 1	.03 .05 .04 .04 .05	1 1 1 1	690 770 760 780 770	1 1 1 2	1 1 1 1	12 7 13 9	26 363 22 399 40 279 28 307	6 58. 9 60. 8 43.	7 46 1 44 6 42 37	5 3 8 6	1 1 1 1	4 30 6 56 6 57 6 55 6 57	3 3 2 3
62339 62341 62342 62343 62344	16.7 .53 .1 2.67 .1 2.04 .1 1.42 .1 1.07	223 1 1 1 1	24 1 1 1	80 12 32 28 22	.1 .1 .4 .1 .1	29 23 19 20 18	2.66 .67 .29 .27	100.0 .1 .1 .1 .1	18 23 15 12	84 5 60 5 40 4	.75 .0 .73 .2 .09 .1 .61 .2	6 1 6 2 8 1 0 1	5 .31 9 2.31 6 2.08 5 1.57 1 1.04	1112 1169 612 553	4 4 2 4	.05 .04 .02 .03 .02	5 1 1 1	1150 950 1010 1030	300 31 35 26 38	20 9 1 1	62 22 12 10	70 266 94 281 80 243 65 219	1 133. 6 117. 9 90.	7 119 3 83 7 82 2 51	29 26 26 21 16	1 1 1 1	1 46 10 47 10 75 10 80 7 3 9	8 14 18 13
62345 62346 62347 62348 62349	.1 2.47 .1 3.22 .1 3.00 .1 2.77 .5 2.47	1 1 1 1	1 1 1 1	33 28 67 70 56	.1 .1 .4 .1	17 21 22 20 17	1.94 3.16 3.03 1.25 2.38	.1 .1 .1 .1	17 21 21 21 16	90 5 116 5 77 4	.74 .2 .47 .2 .40 .2 .51 .1	20 2 26 2 28 2 4 1	8 2.23 7 3.55 3 2.39 6 2.25 2 .99	1554 1132 1498 466	4344	03 02 04 04 04	1 1 1 1	1030 860 1040 1110 1050	25 36 28 37 22	8 7 4	11	71 269 75 325 75 357 100 317 43 271	1 130.0 5 162.9 1 155.4 7 127.4	0 71 5 78 4 131 4 28	30 316	1 1 1 1	8 31 8 17 9 44 9 49 8 54	8 24 5 18 14
62350 62353 62354 62355 62356	.4 2.07 .1 2.98 .1 1.67 .2 .74 .1 2.77	11111	1 1 1 1	151 77 110 41 70	.1 .2 .1 .1 .2	15 21 12 7 19	1.23 1.40 .69 1.75 1.45	.1 .1 .1 .1 .1	11 22 10 8 19	115 5 136 3	.18 .2	2 3 9 3 8 2	7 .46 1 2.29 7 .95 5 .59 3 2.25	1578 861 1125	22 1	.04 .05 .06 .02 .04	1 1 1 2	1070 1050 1170 750 1090	8 38 22 20 37	2 8 2 1 8	55 19 25 1 17	51 250 96 333 64 169 45 92 97 294	9 161.0 7 68. 3 26.	6 136 5 57 5 645 9 147	5 30 7 18 5 14 7 31	1 1 1	5 27 9 51 9 97 3 27 10 49	47 15 45 157 13
62357 62358 62359 62360 62361	.1 1.19 .1 1.02 .1 1.33 .2 1.38 .1 2.35	2 1 1 1	1 7 1 1	72 113 120 99 69	.1 .2 .1 .1	12 12 11 11 14	.44 .25 .37 .52 2.00	-1 -1 -1 -1	10 8 9 8 14	58 4 14 2	.39 .3	25 22 24 27 1	6 .79 7 .58 7 .77 6 .73 3 1.61	575 970	3	.05 .03 .03 .05 .05	1 1 1	970 1220 1040 860 1050	18 15 21 16 27	11125	15 6 25 19	63 190 66 184 69 173 54 169 58 208	3 58.9 2 63.0 0 44.	9 52 0 69 1 37	2 17 7 14	1 1 1 1	6 35 6 34 5 26 5 6 8 63	70 123 162 46 5
62362 62363 62364 62365 62366	.3 .25 .1 1.38 1.0 5.59 .1 1.08 .1 1.99	41 1 8 1	1 1 2 1	21 101 11 148 108	.1 .3 .1 .3	11 12 21 11 13	15.00 .48 4.34 .37 .65	.1 .1 .1 .1	4 8 16 9 12	215 4 247 4 244 3	.32 .0	27 15 1 14	1 .10 9 .88 3 1.62 6 .61 1 1.09	1215 446	16 8 3 6	.01 .05 .03 .06 .03	6 1 14 1	260 900 920 870 1030	27 19 53 15 33	8 1 32 1 5	1 12 4 3 23	1 29 72 147 53 247 62 133 72 165	8 53. 6 160.2 4 52.0	7 66 2 44 6 40	5 17 5 35 5 13	1 1 1 1	4 60 6 54 11 69 7 73 7 43	11 276 132 75 118
62368 62369 62370	.1 1.57 .1 2.23 .1 1.28	1 1 9	1 1 1	78 83 74	.1 .3 .1	12 15 11	.53 .83 .44	.1 .1 .1	11 13 8	102 4 115 4 78 4	.29 .2	27 29 1 51	9 1.18 2 1.37 6 .78	1346 1892 999	5 5 3	.03 .04 .02	1 1 1	930 1000 900	25 32 17	1 6 1	14 25 19	77 154 80 196 66 144	6 92.7	7 148	25	1 1 1	7 67 7 46 6 32	89 72 75
																								-				
											· · .																	
												($\overline{)}$													\bigcirc)	
													<u> </u>													~		

AG

.1 1.91

.1 1.03 .1 2.38 .1 1.54

.4 2.17

.1 2.15

.6 1.86

.1 2.72

.1 1.79

.1 2.89

.1 2.33

.1 .39

2.2 2.44

PPM

AL AS B % PPM PPM

2

43

4 22 20

-ĭ

8

1

1

16

9

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

CA %

12 .56 10 1.07 9 2.08 17 2.20

27 .92

31 1.27 19 1.07 23 2.05 56 2.24 13 1.20

23 1.09 34 1.24 11 .58 16 .70

16 .70 7 .43

2.16

CD

PPM.

.1 .1 .1

ż

.ī 1

2.5

. 1

.1

.1 2

.1 1

.1 1

:1

.1

.1 1

.1

BA

PPM

1

1

1

1

1 48

1

1

1

1

24

1 41

1

1

1 61

1 20

157 1

744 87 98

46

57 78

70

BE

PPM

.5 .1 .1 .1

li

.2 .4 .1 .1 .7

.1

.1 .1 .1

.1

.1

BI

PPM

FILE NO: 38-0145-RJ3

DATE: 93/08/31

ATTN: DAVE MOLLOY / DAVE KENNEDY

PRO.I: 6000

SAMPLE

NUMBER

62371

62373 62375 62376

62377

62382

62388

				••••			100012	.,			-												. ,,,,,,,,,,,,
			(604))980-	5814	OR (504)98	8-452	4											* R	OCK	* .	(ACT:F31
)	CO PPM	CU PPM	FE %	K %	LI	MG %	MN PPM	MO	NA %	N I PPM	P PPM	PB PPM	SB PPM	SR	TH	TI	V PPM	ZN	GA PPM	SN PPM	W PPM-		AU-FIRE PPB
	13 16 22 14	180 180	3.94 4.40 6.47 3.86 4.37	.25 .21 .16 .27 .28	6 16 11	1.05 1.16 2.13 1.13 1.41	1766 4260 3528	5 12 3 19 13	.02 .04 .03 .04 .03	1 3 19 1	980 1200 950 970 1070	33 27 42 61 79	5 1 3 4 8	21 27 11 12 45	60	951	73.0 111.5 125.1 67.3 85.3		21 21 37 29 28	1 1 1 1	66557	33 31 41 38 36	46 66 43 78 160
; 	17 16 16	3140 568 1458 8080	5.15 4.38 4.97	.40 .22 .25 .18 .28	13 19 12 14	1.72 1.90 1.34 1.64 1.75	3479 2575 3496	44 11 7 12 4	.02 .03 .02 .02 .02 .02	1 5 1 45	1120 1010 970 950 990	108 44 48 66 33	8 7 3 9 10	22 24 20 37 27	91 90 67 78	1780 2248 1829	107.9 120.7 94.8 147.9		32 30 29 33 25	1 1 1 1	69689	37 67 35 33 72	306 65 184 470 6
		447		.21 .35 .29 .29 .13	16 7	1.92	2715 3552 658 2504 505	10 74 40 16 21	.05 .03 .07 .03 .04	1 1 1 1	1160 1190 1010 1050 770	72 53 20 33 1	5 11 1 3	41 41 14 52 5		2040 2837 1478 1867 725	79.2 141.8 58.9 105.0 24.6	608 992 72 165 81	27 34 14 24 8	1 1 1 1	6 8 6 3	47 32 59 22 30	89 141 50 246 213
I	2.	18	.84	.13	5	. 14	210	2	.05	4	210	12	1	4	144	120	11.8	27	6	1	5	97	20

PROJ: 6000

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

DATE: 93/08/31 * STREAM SEDIMENT * (ACT-E31)

FILE NO: 35-0145-LJ1

TTN: DAVE MOL	LOY / DAV	E KENN	EDY						105	WEO1					504)98	к, в. 8-452		m 112							*	STRE	AM SE	DIME		E: 93/08, (ACT:F:
SAMPLE NUMBER	AG A PPM	L AS % PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	K %	L I PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	Р РР М	PB PPM	SB PPM	SR PPM	PPM F	TI	V PPM	ZN PPM	GA PPM P	SN Pm p	W CF PPM PPN	R AU-FIR
62311 62314 62320 62321 62323	.1 2.3 .1 2.0 .3 2.4 .1 2.6 .3 2.4		36 1 192 114 247	150 83 39 27 49	.1 .1 .1 .1 .1	17 23 23 23 25	1.42 1.04 2.59 2.18 2.23	.1 .1 .1 .1	18 23 18 20 19	75 99 90 76 94	4.19 5.54 4.76 5.15 4.78	.10 .15 .07 .09 .09	18 22 17 17 16	1.70 1.36 1.81 1.75 1.76	888 1536 986 897 984	4 3 3 3 3 3 3 3 3	.02 .01 .04 .03 .04	22 1 1 1 1	890 870 1030 880 990	29 18 23 20 27	5 1 3 3 3	28 14 47 65 49	83 23 78 34 64 35 69 36 63 37	379 1 456 1 589 1 660 2 732 1	41.6 44.9 70.1 208.2 70.9	80 79 60 57 61	24 23 25 24 24	1 1 1 1 1	8 33 7 6 8 19 9 27 8 20	3 10 6 10 9 0 7 12 0 8
62324 62328 62329 62340 62367	.4 2.4 .1 2.6 .1 2.6 .1 1.5 .1 1.5	8 1 1 1 6 1 6 1 4 5	<u> </u>		.1 .1 .5 .1	24 23 25 9 21	2.60 1.33 1.33 .49 .59	.1 .1 .1 .1	19 21 22 13 32	93 94 151 52 635	4.88 5.22 5.59 3.55 7.85	.09 .12 .16 .31 .29	14	1.86 2.13 1.96 .97 1.29	2011	3 3 4 3 26	.04 .04 .03 .01 .01	1 6 1 19 1	1110 1100 920 950 1960	20 32 27 27 62	2 4 3 1	47 31 46 25 38	61 37 90 34 93 36 72 9 88 25	765 1 456 1 650 1 201 518 1	71.5 59.5 75.2 67.4 03.8	63 88 82 86 377	25 27 26 18 29	1 1 1 1	8 22 9 37 9 27 5 21 6 6	7 1 3 6 35
62372	.1 3.1	9 1	1	1020	.1	17	1.05	.1	22	256 !	5.63	.36	18	1.30	2776	6	.02	1	1680	50	8	56	82 18	355	92.1	239	28	1	6 6	6 113
											-				• •															
													-	-								-							_	
	•		* .						-							-												-		
																	-		-											
										· .		**			-			-								-				-
				-	-			-										-							· · ·	-				
-												-		-				-			-	-								
								-						-				-						•		-				• •
	•												-				-									-				
									•		-	-												-			(
(-											J													(].		

TN: DAVE MOL					٩A	BE	BI		CD	со	CU		.)980- K	-5814 LI		604)98			NT		PB	58	SR	тн 1	11	V	N GA		OIL *		
NUMBER	AG PPM 1	2.58	AS PPM 1		PPM 140	PPM	PPM 20	CA %	PPM	PPM	PPM	%	%	PPM	1.85	MN PPM 2723	MO PPM 3	<u>%</u>	PPM 1	P PPM 1340	PPM 50	PPM	PPM P	PM PF	PM P	PMP	M PPM	PPM	PPM P	PM	PPB
62351 62352 62374	.1	1.78	87	1	667 327	.3 .7 .3	5	.85 1.42	.1 .1	17 3	182 468	6.49 5.00 .92	.18 .19	11 3	.98 .21	2723 2476 417	3 26	.02 .01 .03	1	1300 510	39	2	24 237	71 96 30 14	52 71 1 17	.7 30	32 30 02 22 27 7	1 1	4	4 55	34 49 174
																				-						•.		· · · · ·			* 0
						-									-				•	-				-							
						-																	· .				<u> </u>				
-														•			• .		<u></u>		• • •			•				÷.,	. <u>.</u>		
							-								-						•.		·								
																· .						-			-						
												···· .	· · ·																		· .
					· .							-	-				· .	-		-		-			-						
																-															
			-	·				· .						($\overline{)}$			-	-					-							

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 35-0117-5J1+2

DATE: 93/08/19

ATTN: DAVE MOLLOY / DAVE KENNEDY

PROJ: 6000

* CORE * (ACT:F31)

TTN: DAVE MO	LLOY / DAVE	KENNED	Y						(604	1980-	2814	UK (604)9	58-452	24											CORE	-	(AU1:F31)
SAMPLE NUMBER	AG AL PPM %	AS PPM			BE PPM	BI (PPM	CA CI % PPI		CU FE PPM %	K %	LI	MG MN % PPM	MO PPM	NA %	NI PPM		PB PM		SR PPM P			PPM PF	PM P	GA S PM PP			AU-FIRE PPB
62106 62107 62108 62109 62109 62110	.1 1.73 .1 1.73 .1 2.43 .1 1.84 .1 1.81	1 1 1	1 1 2	166 180 212 350 181	.6.7.7.6	6 .4 6 .5 11 .4 6 .4	48 53 47 43 50	21 14 21 15 18	46 3.46 31 2.61 45 3.58 44 3.34 43 3.40	.10 .11 .13 .23 .18	26 25 27	1.07 2020 .77 1864 .91 1719 1.17 703 1.35 1201	44454	.01 .02 .02 .02	87 1. 83 1	080 330 890	27 20 24 27 29	11	26 24 27	49 38 53 145	86 (50 (30 (54.6 20 47.7 17 67.1 16 66.8 12 61.6 10	74 50 21	21 17 20 19 22	1 5 1 4 1 7 1 7 1 7	31 26 49 43 55	51122
62112 62113 62113 62114 62115 62117	.1 1.81 .1 1.44 .1 2.11 .1 1.37 .1 1.53 .1 2.01	1 1 7 1	1 1 1	246 234 319 221 193	.5 .6 .7 .5	9 1.2 10 .4 6 .4		25 23 16 13	45 3.19 45 3.19 42 4.08 44 3.58 31 2.90 58 4.11	.11 .22 .20 .19 .15	15 34 21 26	.55 5410 1.07 2736 .65 1403 .68 1252 1.19 3130	44457	.02 .02 .02 .02 .01 .02	86 19 74 52 36	900 980 940 810	27 30 21 25 34	8 11 6 9	75 20 26 17	50 66 65 108 57 36 50 45	69 4 88 6 62 1 50 6	40.2 20 66.0 17 56.3 15 67.1 13 61.7 26)5 77 50 53	26 24 16 15 25	1 4 1 6 1 4 1 4 1 5	20 25 9 10 30	3 1 4 3 6
62118 62119 62120 62121 62122	.3 2.05 .1 1.60 .5 2.42 .1 1.92 .1 1.45	3 12 1 4 5	2 1 3 1	389 247 66 162 293	.4 .4 .1 .3 .4	11 3. 7 . 20 1. 9 .	90 .	17 16 20 18	61 3.92 27 3.32 84 4.97 66 4.47 49 4.30	.13 .13 .10 .21 .15	19 25 18		4 4 3 5 5	.03 .01 .04 .02 .01	37 43	800 770 940 010	32 25 21 24 24	13 9 10 10	26 17 39 19	69 100 53 42 76 325 75 108 55 32	00 1 22 5 51 1 83 9	05.2 9 56.4 14 60.7 7 93.8 13 62.6 20	94 98 71 51	25 22 26 21 26	1 7 1 4 1 7 1 5 1 4	29 14 6 1 9	7 3 8 9 2
62123 62125 62129 62130 62134	.1 1.19 .1 1.36 .4 2.54 .7 2.47 .1 2.16	57 6 1 1	222	313 183 171 174 481 1	.5 .7 .1 .1	6 .4 18 1.4 18 1.4 4	59 79	17 19 19 12	50 4.43 47 3.65 78 4.50 76 4.45 69 3.24	.15 .12 .13 .12 .40	18 27	.57 1491 .72 964 1.81 945 1.77 938 .46 547	7 4 4 3 7	.01 .01 .03 .03 .03	23 (53 1	010 950 910 370	16 20 26 24 21	13	27 29 28 48	72 12 91 261 90 255 57 5	28 1 16 1 53 1 54 0	50.6 8 67.0 17	56 39 34 78	17 16 26 26 13	1 3 1 4 1 8 1 8 1 4	2 25 20 21 11	1 1 3 3 4
62139 62140 62141 62142 62167	.1 1.14 .1 1.32 .1 1.16 .1 1.42 .1 1.01	19 9 19 18 12	2 2 2 1	271 196 255 330 133	.8 .6 .7 .7	6 . 5 . 6 .	36 50 36 36 39	19 19 13	55 4.06 44 3.55 58 4.08 58 3.98 45 3.16	.18 .20 .18 .27 .08	15 19 16 18 18	.34 1522 .79 826 .35 1458 .37 1365 .71 771	7 3 7 2	.02 .01 .02 .03 .01	38 73 1 72 38	930 000 990 870	15 17 13 16 15		33 33 39 19	72 81 59 4 59 5 55 46	17 (43 : 55 (69 (56.4 22 63.7 10 55.6 22 63.3 21 46.3 10	07 21 200	14 17 14 15 14	1 3 1 4 1 2 1 3 1 3	1 8 1 3 16	3 5 4 2 6
62171 62172 62173 62175 62175 62179	.1 1.06 .1 1.51 .1 1.33 .1 2.50 .1 1.50	15 11 10 1 20	2 1 2 1	237 1 173 284	.7 1.0 1.1 .4 .9	3 1. 5 .4 17 1. 5 .4	40 . 55 . 40 .	10 10 18 16	46 3.26 42 2.64 39 2.66 76 4.32 54 3.56	.11 .39 .31 .14 .26	19	1.75 909 .59 1066	3 4 3 4 4	.01 .03 .04 .03 .02	41 1: 21 (23 1 57 1	350 620 880 000	16 21 24 27 18	9 17 11	48 / 25 / 28 8 36 6	54 39 39 243 54 29	85 98 31 14 91 (46.6 8 62.4 14	6 20 18 14	14 10 13 27 17	1 3 1 3 1 3 1 8 1 4	15 17 12 34 24	2 1 4 7 4
62180 62181	.1 1.38 .1 2.40	17 1	1 2	234 152	.8 .3	6 16 1	41 49		51 3.54 76 4.17	.23 .13	19 19	.63 1002 1.67 867	43	.01 .03		900 850	20 26	9 15	33 (26)	54 34 78 245	45 (55 14	60.2 13 43.0 7		16 26	1 4 1 7	21 31	5 8
						ĩ																-					
																					·.						
													· .						-								
			• •																							· · ·	
						· · · · · · · · · · · · · · · · · · ·							· · ·		-		-								horis		
(1										······································	ĵ				· · · · ·								<u> </u>			

PROJ: 6000

ATTN: DAVE MOLLOY / DAVE KENNEDY

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 3S-0117-RJ1+2 DATE: 93/08/19

* ROCK * (ACT:F31)

ATTN: DAVE MOL	LOY / E	DAVE	KENNE	DY								(604)980-	5814	OR (6	604)98	8-452	4											* ROC	(*	(ACT:F31
SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	K %	L I PPM	MG %	MN PPM	MO	NA %	N I PPM	P PPM	PB PPM			TH PPM	TI	V PPM	ZN PPM		SN N PPM PPN		U-FIRE PPB
62104 62105 62111 62116 62126	.1 .1 .1 .1	1.44 1.24 1.89 1.51 1.29	16 10 7 19 10	1 1 1 2 1	120 98 149 231 201	43545	45955	.54 05 28 32 24	.1 .1 .1 .1	13 10 14 12 19	40 3 37 3 40 3 55 3 29 4	5.80 5.85	-16 -13 -16 -23 -11	22 17 33 22 16	.70 1.42 .83	1498 655 526 855 1392	5 6 5 10 3	.02 .02 .02 .03 .04	39 22 75 64 101	460 350 720 490 650	30 38 31 21 22	15 19 11 9 7	24 4 7 9 8	62 54 78 67 70	30 28 829 41 28	40.7 39.8 57.6 82.5 103.7	79 58 82 100 102	19 15 23 18 23	1 7	2 202 7 104 9 104 1 150 1 165	3 6 4 3
62127 62128 62131 62132 62133	.3 9.6 .2 .1	.41 .90 .55 1.11 .96	26 101 20 13 18	1 2 1 2	23 135 151 95 101	42556	4 3	.14 3.13 .20 3.71 2.88	.1 82.3 .1 .1 .1	2 15 3 6 5		.83 .13 .85 2.26 1.78	.15 .48 .22 .19 .29	4 5 7 20 18	.22	179 1497 175 1062 711	7 17 7 2 6	.07 .02 .06 .05 .03	5 10 5 7 10	180 810 100 380 180	13 171 12 20 17	4 24 5 8 7	4 84 6 91 65	148 65 47 34 35	134 215 52 36 38	11.8 20.7 10.2 44.5 31.4	23 9423 97 91 58	8 14 9 16 13	1 14	4 294 1 132 4 292 9 155 8 242	4 3080 10 15 2
62135 62136 62137 62138 62143	.1	1.39 .70 1.51 .59 .24	25 20 1 20 31	2 1 2 2 2	198 39 148 447 85	1.1 .1 .1 .1	4 4 18 3 2		.1 .1 .1 .1	4 5 13 2 1	20 1 49 3	.24 .55 .89 .90 .62	.70 .03 .42 .22 .11	14 9 14 4 1	.26 .49 .72 .03 .01	412 769 659 35 33	8 6 1 4 4	.13 .11 .05 .01 .07	16 7 1 1	110 250 1260 30 70	22 15 15 13 5	10 5 4 3 3	33 59 18 20 11	54 43 47 19 39	85 48 3108 30 17	15.4 17.6 38.4 7.3 3.6	52 42 55 4 6	12 14 15 3 5	1 12		2 2 2 5 3 2
62144 62145 62146 62147 62148	.5 .1 .1 .2	.37 .19 .21 .27 .19	25 28 43 19 22	1 1 2 2 1	88 84 90 149 32	.1 .1 .2 .1	22222	.06 .01 .01 .30 .01	.1 .1 .1 .1	1 1 2 1	45545	.49 .57 .27 .88 .74	.09 .11 .13 .25 .01	3 1 1 1	.01 .01 .01 .01	32 27 40 211 40	62 51 2	.03 .06 .10 .07 .15	2 1 1 4	100 60 100 120	6 8 14 8 6	431 32	11 15 8 15 8	31 35 38 56 40	10 11 15 17 17	2.9 3.8 2.0 2.6 3.2	4 5 18 22	4444	1 11	5 117 1 240	1 2 1 2 1
62149 62150 62151 62152 62153	.1 .3 .1 .2 .1	.40 .16 .23 .26 .26	10 31 18 17 46	12122	23 33 234 263 3772	.3 .1 .1 .2	43222	.15 .01 .01 .01 .03	.1 .1 .1 .1	2 1 1 3	7 6 10 4 21	.84 .57 .54 .65 .93	.17 .03 .21 .25 .07	4 1 1 2	.13 .01 .01 .01	203 27 34 40 91	1 2 1 3 2	.07 .13 .05 .03 .01	1 2 1 2 8	200 30 70 110 20	8 5 4 7 1	2 1 2 6	4 9 17 12 18	151 32 14 17 17	197 17 18 21 14	12.7 3.4 2.4 2.9 4.6	23 4 13 20	7 5 3 3 3	1 10	7 133 3 169 7 137 0 209 0 207	3 1 2 1
62154 62155 62156 62157 62158		.49 .21 .23 .18 .18	10 20 16 29 15	2 1 2 1 1	42 58 182 27 101	.1 .1 .1 .1 .1	2 1 2 1	.03 .01 .08 .01 .01	.1 .1 .1 .1	1 1 3 2 2	35675	.46 .52 2.15 .92 1.16	.13 .05 .13 .02 .19	4 2 1 3 1	.02 .01 .01 .01 .01	40 26 50 41 31	32436	.01 .06 .09 .14 .04	2 2 1 1 2	30 50 40 80 20	64269	5 2 1 2 1	8 13 12 4	26 29 21 35 31	8 9 28 16 7	3.4 3.1 12.4 9.0 1.2	12 4 6 17 6	3 2 3 3 3	1 10 1 10	205	2 2 3 2 3 2 3
62159 62160 62161 62162 62163	.1 .1 .1 .1	.19 .18 .12 .16 .13	20 22 9 24 12	1 1 1 2 2	93 53 66 116 14	.1 .1 .1 .1	1 2 1 1	.01 .02 .01 .01 .01	.1 .1 .1 .1	1 2 1 2 1	48453	.65 .89 .82 1.41 .72	.18 .08 .10 .16 .02	1 1 1 1	.01 .01 .01 .01	46 158 38 31 33	2 3 2 7 3	.05 .06 .05 .05 .10	1 2 1 2 2	50 150 30 30 30	5 11 6 10 6	2 2 1 1	55344	36 49 32 34 26	7 8 7 9	1.1 4.7 .8 1.3 .8	7 20 5 7 8	3 3 2 2 3		244	2 1 2 1 1
62164 62165 62166 62168 62169	.1 .1 .1 .1	.15 .21 .17 .20 .17	17 15 23 24 19	1 1 1 1	41 93 45 75 74	.1	1 1 1 1	.01 .03 .02 .02 .32	.1 .1 .1 .1	1 1 2 1 2	47646	.85 .80 1.04 .99 1.03	.05 .20 .05 .19 .17	1 1 1 1	.01 .01 .01 .01	34 66 39 37 395	7 2 6 2 3	.10 .05 .12 .06 .03	3 1 5 1 1	30 90 80 50 180	11 8 6 2 4	2 2 1 2 2	6 6 7 6 15	30 48 41 26 48	9 9 9 17	1.2 1.2 1.7 1.8 2.5	8 12 18 3 15	33328	1 11	208	1 2 1 3
62170 62174 62176 62177 62178	.1 .1 .1 .1 .1	.19 .20 .42 .16 .25	10 22 12 20 11	1 2 2 1 1	103 92 154 66 119	.2	2 1 2 2 1	.19 .02 .02 .01 .01	.1 .1 .1 .1	2 1 1 1	55444	1.21 .76 .73 .71 .73	.17 .16 .38 .16 .23	1 1 1 1	.01 .01 .03 .01 .01	78 47 63 42 34	1 2 3 2 1	.07 .06 .02 .04 .06	1 1 1 3	360 180 160 170 150	10 4 7 8	22422	7 6 4 13	43 45 81 47 47	24 9 11 8 9	2.7 2.5 2.2 1.2 2.3	12 8 7 8 8	33432	1 8 1 7 1 4 1 6 1 8	85 136	1 2 1 2 2
62182	10.6	.51	92	2	88	.1	20	2.04	92.2	17	2950	5.30	.31	4	.28	1254	10	.02	15	870	177	15	66	49	63	11.4	9931	11	1 1		2750
																			-		· .					· .					
															-																
								· .								. *												(
/																					-						·····	(

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 35-0128-RJ1+2

DATE: 93/08/24

J: N: DAVE MOL	LOY / I	DAVE	KENNEI	DY						705			•	10811 VANG 14 OR (60		•	. V/M	112									* RO		(ACT:F
AMPLE UMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM		FE %	K %	LI MG PPM %		MO PPM	NA NI % PPM	P PPM	PB PPM	SB PPM F	SR PPM P		T I PPM	V PPM	PPM	GA PPM	SN PPM P	W CR PM PPM	AU-FIR
183 184 185 186 187	.1 .6 .1 .2 .1	2.35 1.47 1.95 1.66 .52	28 233 4 161 1360	1 1 1 47	176 143 41 233 10	.1 .1 .1 .1 .1	18 11 16 14 3	.97 .55 1.22 2.29 .38	.1 .1 .1 .1	30 31 32 30 33	72 63 82 46 79	7.42 5.84 6.85 4.36 >15.00	.10 .10 .08 .25 .27	19 2.34 10 1.20 10 1.83 11 1.39 2 .17	1015 805 821 723 142	1 . 5 . 1 . 6 .	06 1 06 1 09 1 05 1 01 1	420 570 410 690 10	30 53 20 38 7	1 9 1 8 7	1 4 1 1	90 28 76 14 83 25 58 22 65 6	885 475 522 231 611	187.3 126.5 198.9 141.1 34.9	58 55 66 35	23 18 22 21 1	1 1 1 1 1	9 41 6 41 9 76 7 42 3 35	, ,
188 189 190 191 192	.1 .4 .1 .1	1.46 1.37 1.25 3.63 1.45	179 30 62 1 207	1 1 1 1	223 617 76 98 51	.1 .4 .1 .1 .1	16 4 11 17 13	.87 2.11 3.92 2.32 .73	.1 .1 .1 .1	12 13 38 39	34 100 42		.23 .17 .20 .13	7.92 5.84 11 1.13 18 2.50 11 1.18	623 918 1107 716	2432	01 1 03 1 04 1 04 1	570 840 610 510 500	28 1001 24 26 42	1 5 7 1	16 28 1 1	43 35 14 89 27 73 24	26 458 767 2 481	169.3 27.9 72.9 228.0 147.3	56 34 22 55 61	17 14 19 27 17	1 1 1 1	8 63 4 27 5 38 10 48 6 27	
193 195 199 200 201	.1 .1 15.2 .1	2.14	109 31 1 95 1	1 1 80 1	146 1270 99 121 134	.1 .1 .2 .1	17	2.09	1. 1 1 >100.0 .1	13 27 19 24	63 65 3009 55	5.10 5.96	.27 .25 .39 .29	12 1.48 5 .93 10 1.53 5 .29 10 1.45	919 1048 852	20. 1.	01 1 03 1 01 11 03 1	570	54 996 20 239 21	1	27 1 55 1	42 64 28 99 2 53 20	30 807 244 671_	147.4	39 58 >10000 72	17 16 20 12 21	1 1 1 1	8 40 5 49 8 40 1 67 7 37	50
202 203 204 205 206	.1 .1 .1 .1	2.97 2.40 2.62 2.43 2.11	1 1 1 1 1	1 1 1 1	84 171 224 240 228	.2 .1 .1 .1 .1	18 17 15 16	2.33 1.90 2.26 1.06 .95	.1 .1 .1 .1 .1	28 25 27 27	61 76 70	6.75 5.81 5.73 6.23 5.89	.14 .22 .14 .11	14 2.50 15 2.17 15 2.09 17 2.22 14 1.99	998 938 813 810	3. 3. 4.	03 1 03 1 04 1 04 1	490 620 610 560 590	26 25 50 126 98	4 1 1 1	1 1 1	80 28 75 25 90 23 88 22	855 542 353 290	224.8 197.1 171.5 196.3 192.9	56 77 133 269 257	29 26 26 24 23	1 1 1 1	9 41 9 46 8 30 8 35 8 54	
207 501 502 503 504	1	2.20 .86 .88 1.69 3.14	1 3 157 1 1	1 69 8 59 1	74 91 40 100 31	.1 .1 .1 .1 .1	18 6 20 > 7 17	.98 3.03 >15.00 .16 .84	.1 .1 .1 .1 .1	14 10 14 29	72 1477 87 150	5.45 4.53 2.27 7.00 6.72	.10	14 2.08 4 .29 9 1.30 11 1.09 24 3.27	5344 271 1407	1. 5. 1. 3.	03 1 0 <u>3</u> 1	520 550	80 9 49 31 34	1 14 1 3	30 1 1 1	35 2 1 2 80 6 98 24	269 212 667 427 2	230.3 116.9 94.3 117.8 208.9	222 89 28 41 116	25 12 45 16 29	1 1 1 1	8 45 3 13 6 32 5 14 10 42	
505 506 507 508 509	.1 .1 .5 .6	1.43 .90 .41 .59 .54	1 30 22 10 12	1 10 26 26 7	112	.5	3	.15 8.03 4.58 2.52 2.65		21 8 4 3	65 11 8 7	5.10 5.03 2.76 1.22 1.20	.22 .12 .29 .25	2 .12 2 .11	1784 1018 329 352	2 . 3 . 2 . 4 .	02 1 03 2	170 190 170	13 29 17 9 9	1 4 4	106 38 1 1	26 11 9	23 ' 18 16	93.2 152.1 103.7 27.9 14.6	21 75 71 42 49	15 33 19 7 7	1 1 1 1	6 40 7 34 8 100 5 82 8 152	
2510 2551 2552 2553 2554	.5 .1 .1 .1	.39 1.84 .88 .80 .70	19 1 13 26 25	1 2 16 1	21 738 565 604 965	.4 .1 .5 .4	14 7 8 5	.19 .16 3.10 5.46 4.03	.1 .1 .1	17 18 13 8	173 9 16	.81 7.97 5.08 4.00 2.48	.28 .26 .34 .31	5 .13 12 1.44 4 1.18 2 3.66 2 1.79	405 1145 2408 724	1 . 1 . 4 . 3 .		460 180	11 26 21 37 28	3 1 1 4 4	1 38 81 67	80 21 62 63 53	139 40 32 20	11.0 172.4 139.5 88.3 54.3	25 47 88 85 66	7 18 20 35 23	1 1 1 1	6 125 8 42 6 45 7 52 5 43	
2555	.1	.47	34	4	479	.5	6	3.12	.1	13	189	3.62	.16	2 1.78	890	3.	02 6	970	22	1	85	68	16	82.4	74	22	1	5 25	
					• .											•				-									
			· · ·							-															· .				-
																. 1	· _ · ·								· · · · · ·		. *		

TN: DAVE MOL		AL AS % PPN		BA PPM	BE	BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	. К %	LI	MG %	MN PPM	MO	NA %		P PPM	PB PPM	SB	SR PPM F	TH	TI	V			SN PPM P		AU-FIR
NUMBER 62194 62196 62197 62198	.1 2. .4 1. .1 2. .9 1.	03 10 87 23 28 17 96 20	1 5 7 1	142 352 209	.2 .2 .1 .1		3.35 3.89 2.88	.1 .1 .1 .1	19 16 20 16	79 67 76 68	3.95 3.64 4.40 3.57		11 13 15 12	2.09 2.50 2.08 2.45	875 821 904 794	4 4 6 5	.02 .02 .02 .03	9 13 12 14	650 660 560 720	33 31 39 34	7 8 7	25 37 26 40	58 1 61 72 69 1	148 971 775 502	114.2 100.7 105.1 113.6	60 69 87 70	26 27 25 28	1 1 1 1	7 30 7 34 7 33 7 30) 5 1
				•														-						•	-					
							,			-				-									-				-			
	-			-		-	· .			-									-								-			-
				,	-			-					-							· . ·										
									2					-									-				-			
					-								-			,														
														-					.*								-			
																												-		
·	-							- <u>.</u>														-					·. ·			
									÷.					-				-				-								
									·····									-												

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 DR (604)988-4524 FILE NO: 3S-0130-RJ1 DATE: 93/08/26

* ROCK * (ACT:F31)

ATTN: DAVE MOLLOY / DAVE KENNEDY

PROJ: 6000

ATTN: DAVE MOL	LOY /	DAVE	KENNE	Y							((604)9	80-58	14 OR ((604)98	8-4524											* R0	OCK *	(ACT:F31)
SAMPLE NUMBER	AG	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	K %	LI PPM	MG N % PF	M PPM	NA %	N I PPM	P PPM	PB PPM	SB PPM P	SR TH PM PPN	H TI PPM	PP	V ZN M PPM	GA PPM	SN PPM F	W CR PPM PPM	AU-FIRE PPB
62208 62209 62210 62211 62212	.1 .1 .1 .1 .1	2.18 2.58 2.29 2.38 2.28	1 1 1 1	1 1 1 1	64 184 106 153 188	_1 _1 _1 _1 _1 _1	14 16 16 19 19	1.02 2.02 2.09 1.06 1.01	.1 .1 .1 .1	31 33 31 26 24	77 76 72 58 51	5.68 5.73 5.59 6.42 5.84	.09 .05 .05 .22 .25	12 1 13 2 11 1 12 1 12 1	.82 74 .11 82 .77 73 .92 102 .72 96	4 2 3 3 9 3 7 2 4 3	.05 .04 .05 .04 .04	3 8 5 1	620 550 610 670 650	78 49 37 22 24	1 2 1 1	4 83 1 75 1 67 6 87 5 79	2318 2424 2658 2949 2917	184.0 218.0 214.4 166.1	6 150 B 119 4 87 7 53 B 50	22 26 23 24 23	1 1 1 1	9 57 10 65 10 72 8 41 8 44	52223
62213 62214 62215 62216 62216 62217	.1 .1 .1 .1	1.92 2.29 2.03 2.47 2.20	59 2 6 1 4	1 1 1 1	173 43 44 44 39	.1 .1 .1 .1	17 18 17 19 18	1.03 .87 .93 .98 1.20	.1 .1 .1 .1	31 22 22 25 26	89 58 49 61 62	6.40 5.60 5.62 5.55 5.93	.31 .24 .22 .25 .19	14 2 16 2 14 2 18 2 14 2	23 89 89 100 36 82 98 101 54 90	72632 12632	.05 .05 .06	6 1 1 1	390 640 630 680 570	31 34 27 24 24	1 1 2 1	4 91 7 92 5 86 9 88 10 87	2505 2 2634 3 2477 3 2917 7 2782	172.0 153.3 140.0 158.0 156.9	6 41 3 46 8 40 8 44 5 36	24 26 23 26 24	1 1 1 1	10 89 8 33 8 34 8 40 9 41	4 6 3 4
62218 62227 62228 62229 62230	.1 .1 .1 .1	2.51 2.99 2.29 .90 .76	18 1 1 1 19	1 1 1 1	34 348 45 121 2364	.1 .1 .1 .5	17 19 18 15 4	1.77 1.97 .91 .57 2.23	.1 .1 .1 .1	34 27 34 27 9	101 165 125 71 19	6.83 6.89 6.40 2.48	.20 .19 .11 .14 .25	21 3 15 2 15 3 6 4	.43 123 .59 143 .31 74 .73 27 .76 56	0 3 6 3 2 3 9 1 7 2	.07 .01	16 1 19 1	490 540 320 410 520	31 30 27 13 19	1	2 95 2 83 22 108 1 61 95 40	2343 2533 2406 2421 23	193. 215. 242. 139. 18.	5 61 6 71 6 43 5 21 5 57	28 11 13	1 1 1 1	12 102 9 23 15 161 7 66 3 35	5 3 3 3
62231 62232 62233 62234 62235	.1 .7 .3 .8 .1	1.92 .24 1.33 1.23 1.70	1 36 50 11 1	1 1 1 1	106 682 102 101 178	.1 .2 .4 .1	14	.64 3.34 >15.00 5.17 2.20	.1 .1 .1 .1	21 5 7 4 15	30 16 24	6.16 1.58 2.46 1.60 4.12	.10 .13 .02 .03 .30	33 o 21	.79 86 .01 54 .73 212 .12 147 .87 98	9 10 8 3	.04 .06	1 4 20 15 1	880 240 640 330 530	25		12 1 20 43 31 47	18 5 27 7 2085	13. 124.0 87. 40.	0 180 7 158 7 65	21 37 31 17	1 1 1 1	6 44 7 106 7 34 7 53 7 67	2 2 1 4
62236	.1	.92	154	1	103	.1	12	2.61	.1	12	21	3.73	.19	13	.57 130	02	.04	1	600	15	1	24 35	5 1733	84.0	0 66	16	1	6 63	5 8
																			4 		-	· .		-					
			-																										
- - -											· .			-			•	-			-	-							
																								•					
									÷ .											-									
																,		-	·			-							
																•.										/	\sim	4	
·														-()	}						-					(

COMP. GENEINE EXPLORATION CONSULTANTS

FILE NO: 35-0131-RJ1 DATE: 93/08/27

* ROCK * (ACT:F31)

9 7

6

3 69

ž

Ś

5 46

ž

11 156 5 45

4 77 5 103

6 133

4 72 5 110

4 82 6 127

92

63

60

W CR AU-FIRE

PPB

3140 12 13

50 13

73921

1

32

3 6

44232

ZN GA SN W CR PPM PPM PPM PPM PPM

1

1

1

1

1

1

11

26 19

12 17

19

14

3

ž

ž

21 3

6 5 7

45

TH

72

64

46

59

14 64

13

5 7 7 68

15

18

6

4

10 4 7

TI

PPM

184

85 549 128.4 54 2648 174.6 65 1917 112.8

36 39 72 1042 29 1992 47 25

53 10 55 8 88 53 31 1524

25 44

12 10

1440

1696 143.3

PPM

5.6 67.9

49.6

29.9

1.6

4.7

3.8

3.6

40.3

31.6

40.5

6.8

8.3

6.8

16.3

11.2 5.5

10.1

8.4

12.3 7810

99

127

48 38

38 9

59

60 5

34 11

69 4

14

12

68 51 21 14

54 7

23 18

3Ž

19 55

26 19

19

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 PPO.I - 6000 ATTN: DAVE MOLLOY / DAVE KENNEDY (604)980-5814 OR (604)988-4524 AL % CA % CO CU FE MG MN NA % SAMPLE BA BE BI CD LI MO NI PB SB SR AG AS в Ρ PPM PPM PPM PPM PPM PPM ž ž PPM NUMBER 19 1.49 69.7 16 2646 6.03 .38 .38 1228 .01 62219 .70 149 96 5 11 880 180 13 9.8 20 19 19 38 97 4.48 68 5.58 103 6.57 62222 46 13 2.70 .10 14 1.78 1016 3 .14 870 26 8 .1 1.98 .1 4 .1 .12 .11 62223 1 1.87 104 8 .64 11 1.40 619 2 .04 420 470 .1 1 1 .1 125 22 .1 1.29 .1 62224 142 16 .1 5 .76 266 1 1 62225 96 13 1.63 103 6.08 9 1.13 650 .02 290 .44 5 1 1.42 1 2 - 1 1 .39 265 .98 862 .42 1183 .02 35 .42 255 5 1.32 18 2.51 19 3.26 3 31 3 102 62226 .70 3932 3 .45 3 .17 4 .03 1 560 15 .2 .1 2355 .1 6 3 8 15 2 3 .03 .20 .18 .09 1.28 .79 .21 19 49 19 5 123 137 266 22 19 9 62240 14 .05 500 .1 1 -1 62241 62242 .04 1 34 1 7 2 7 13 2.59 iÓ .1 460 .1 .1 ĭĭ .08 4 1.54 40 .1 .1 1 -1 123 .09 5 2.07 .05 1Ś 62243 .81 .1 14 3 260 -3 3 1 .1 1 .1 .25 .2 .19 .3 .20 .1 1.65 62246 34 11 72 77 .03 3 6 1.65 .15 1 .01 187 - 02 140 14 7 .1 1 1 2 .1 1 62247 62248 62249 226 .13 .58 .16 .01 63 28 .03 110 1 .1 1 4 1 1 3 .42 11 4.52 .03 .02 221 ġ 55 .02 .15 .01 120 6 .1 1 1 1 -1 34 1.41 13 .52 .62 270 326 908 2 21 14 13 1 13 3 1 :1 62250 iŏ 147 12 2.81 11 21 3.74 .25 .52 1041 .03 1 1.03 5 1 460 1 .1 1.12 .1 .22 .1 .33 .1 .30 .1 .35 13 3.56 3 .08 2 .07 2 .07 11 2 2 2 2 2 25 18 .20 62251 108 117 .1 .1 28 3.33 18 .74 1800 2 .03 450 3 62252 62253 62254 101 6 1.95 .03 .05 . 90 Ř .1 48 1 .1 1233 .17 .06 51 14 12 10 304 5 1.46 . 04 280 .1 .1 1 1 1 ŏ 214 5 1.19 64 .05 360 .1 -1 1 1 1 62255 87 .23 7 1.41 .17 .09 259 .06 280 12 14 1 1 1 Ź 1 1 .24 .29 .22 .22 62256 62257 .1 .3 .1 222 0 73 .1 2 .10 .1 2222 6 1.28 .15 .04 175 1 .05 1 300 11 1 309 85 .18 15 9 9 10 1 .3 .12 .1 5 .81 .06 120 ż .04 3 410 ż ż .04 62258 .1 157 1 260 1 5 1.19 62259 10 1 õĩ 1 .22 1 .17 ī .03 190 2 .07 1 270 ź

COMP: GEOFINE EXPLORATION CONSULTANTS

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

ATTN: DAVE MOLLOY / DAVE KENNEDY

PROJ: 6000

* STREAM SEDIMENT * (ACT:F31)

FILE NO: 38-0131-LJ1

DATE: 93/08/27

SAMPLE NUMBER 62220 62221 62237 62238 62239 62244 62245 62245 62260		AG PPM .1 2		-	B	BA PPM	BE PPM	BI PPM	CA %	CD	CO PPM	CU F	EK	LI	MC	MAN	No	NA	NI	Р	DD		~~	TH	TI	v	ZN	G۵	SN I	CP CP	AU-FIR
62220 62221 62237 62238 62239		.1 2		-			FFR	PPM	~ ~	PPM	PPM	CU F PPM	Е К %%		%	MN PPM	MO PPM	NA %	PPM	PPM	PB PPM	PPM	SR PPM I	PPM I	PPM	PPM	PPM F	PMP	PM PP	PPM	PP
62260	╞╴	.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.07 2.25 1.59	8 5 13 7 14 1	1 48 104 23 41	306 107 165 153 225	.4	7 11 7 15 11	1.06 2.92 .39 1.14	.1 .1 .1 .1 .1 .1 .1	24 18 14 17 16 12 12 18	112 4.8 81 3.7 62 3.7 75 4.1 58 3.8 37 3.2 39 2.9 78 4.3	37 .22 74 .12 74 .19 13 .09 34 .26	14 11 15 18 25	1.86 2.01 .66 1.69 1.25	1331 784 1167 870 1320 968 830 924	3 4 4 3 3 4	.01 .02 .01 .02 .01	7 8 26 22 10	590 640 1090 880 1130 850 910 910	34 30 16 22 21 15 22 26	5 6 1 3 1 1 5	14 21 17 21 31	86 60 1 56 70 2 68 1	303 10 173 10 785 13 335 13 551 0 747 1 408 1 422 14	00.5 09.7 51.1 37.1 66.1	77 63 123 80 76	24 23 13 21 18 13 14	1 1 1 1 1	5 20 7 29 5 12 7 31 5 16 5 10 5 10 5 13 7 34	-
		.1 2	.39	i	63	206 160	.6	16	1.19	.1	18	78 4.3	51 .32 54 .11	19	1.76	924	34	.04	23	910	26	5	25	77 2	422 14	43.1	84	23	1	34	1
					-				-								-													-	
																						-									
-				-																	-				-	•					
									-															-						· .	
									-								-							· · · · ·							
		-		-																					· .				-		
																								· .	÷.						
																	 -								-						
								•																					•		
								-	-																		-	· . (

COMP: GEOFINE EXPLORATION CONSULTANTS

PROJ: 6000

MIN-EN LABS ---- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 35-0139-LJ1 DATE: 93/08/26

TTN: DAVE MOL	LOY /	DAVE	KENNE	DY			-			70.	JWE	60/ (60/				604)98	•		m 112	2					-		STRE	EAM S	EDIM			ACT:F31
SAMPLE NUMBER	AG PPM	%	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	۳ ا		CO PPM	PPI	<u> </u>		L I PPM			MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	PPM	TI PPM	PP	1 PPM	PPM	SN PPM	W PPM J	CR A	U-FIRE PPB
62263 62264 62265 62266 62268	.4	2.36 2.59 2.65 2.78 2.58	1 1 1 1	46 1 50 56	172 97 44 87 152	.1 .1 .1 .1	19 19	1.25 .86 1.01 1.95 1.81	:1	18 22 23 19 18	10 10 79	5 4.28 3 5.87 7 5.71 9 4.48 9 4.45	.15	21 18 16	1.77	1213 1122 863 879	33334	.02 .02 .02 .03 .03	20 1 7 10	930 1010 880	28 28 26 25 25	- 5 1 5 5	24 28 37 28 29	74 81 75 63	2474 2978 3467 3199 3083	144.1 170.3 193.0 170.9 163.2	78 5 115 0 80 9 68 2 69	23 24 25 24 23	- 1- 1 1 1	7 8 8 7 7	31 26 24 29 27	3 20 31 19 7
62272 62278 62279 62281 62282		2.85 2.71 2.72 2.60 2.32	1 1 1 1 12	1 1 4 1	43 45 38 79 139	.1 .1 .1 .1	21 19 20 22	.98 .93 1.06 .92 .55	.1 .1 .1 .1	24 23 23 23 25	114 120 103 127	4 5.90 0 5.61 3 5.83 1 5.86 3 6.59	.15	20 20 18 20	2.26 2.18 2.19 2.01	1147 1255 1058 1448 2810	33334		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	830 860 880 1030 1370	27 28 22 24 61	2 1 1	37 28 38 29 14	86 75 77 73	3468 3272 3566 3799 2460	200.9 184.8 197.9 154.4 104.1	82 8 82 78 126	25 26 25 24 24	1 1 1 1	8 8 7 6	26 24 24 15 10	40 21 20 22 132
62286 62294 62296 62297 62300	.1 1.0 .1	2.52 3.72 3.18 2.56 2.58	1	53 1 1 1	194 117 104 22 26	.1 .1 .1 .1 .1	16 35 23 21	1.33 1.34 .84 2.17 1.83	 -1 -1 -1 -1	18 35 26	- 74 57 98	4 4.30 7 7.21 8 6.34 9 5.25 4 5.19	.15 .38 .22 .09 .12	19 14 25 19	1.76 2.23 2.08 2.08	908 1074 1877 1163 1228	42332	.02	21 5 1		25 29 29 28 26	5 1 2 2	28 130 35 18	72 64 76 58	2484 6725 4046 3563	147.0 150.5 160.8 174.0 169.0	83 102 104 90	23 24 26 25 24	- 1 1 1		34 17 21 22	5 8 6 7
62302		2.88	1	32	19	.1	22	1.83	.1	21	8	7 5.15	.09			1006		.02		890	27		21	66	3660	196.9	72	24	1		19 26	<u>11</u> 5
											-			:									-									
			. '																	. <u></u> .						*.						
		-	-	•			-		-											-		·····					-					• .
																								· · ·								
						-		•		. <u>.</u>			<u></u>			· · ·															-	
						-	-					-			·								-									
																									-							
																															·····	

COMP; GEOFINE EXPLORATION CONSULTANTS

PROJ: 6000

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 35-0139-RJ1 DATE: 93/08/26

TTN: DAVE MOL	LLOY / DAVE	KENNE	DY						(60	4)980	-5814 OR	(604)98	8-452	4										* RO		(ACT:
SAMPLE NUMBER	AG AL PPM %		B PPM	BA PPM	BE PPM	BI CA PPM %	CD PPM	CO PPM	CU FE PPM %		LI M PPM	G MN 6 PPM	MO	NA %	N I PPM	Р РР М	PB PPM	PPM I	SR PPM P	PM PP	I PPI	V ZN M PPM		SN PPM P	W O	CRAU-FI
62261 62262 62267 62269 62270	.3 2.25 .1 2.46 .2 2.92 .1 2.14 .1 1.32) 1	1 1 1	136 275 88 31 25	.1 .1 .1 .1 .3	16 2.27 16 2.48 26 1.14 19 1.10 8 3.25	.1 .1 .1 .1	16 20 25 20 17	67 3.64 54 4.70 88 6.15 509 4.65 114 4.54	.13	26 2.60 17 2.00 10 2.60	5 1201 3 1316 3 1041 9 1549	3 3 12 3	.02 .04 .03 .05 .03	11 1	010 080	25 25 29 25 32	65242	55 27 93 78		110. 185. 151. 142.	5 69 1 89 8 99 7 170	29 26 32	1 1 1 1	85	27 51 54 51 50
62271 62273 62274 62276 62276 62277	.1 2.73 .1 3.52 .1 2.98 .7 2.08 .1 .79	1	1 1 1 1	21 16 15 48 22	.1 .1 .1 .1 .3	17 1.47 26 1.63 23 2.21 18 3.48 6 2.73	.1 .1 .1 .1 .1	19 26 33 17 19	68 4.85 80 6.85 135 6.98 34 3.95 150 3.91	.05 .03 .20 .15	20 2.3 18 3.2 11 3.3 14 1.1 4 1.8	2 1154	3 4 2 3 3	.03 .04 .04 .04 .02	1 1 16 1 1 1	980 320 060 200 870	26 28 23 26 29	57241	20 33 105 1 51	94 4017 86 3770 41 2774 73 69	107.4	6 102 3 73 4 59 8 101	34 29 22 24	1 1 1	11 4 11 6 5 3	54 50 54 52
62280 62283 62284 62285 62287	.1 1.14 .1 1.80 .1 2.89 .1 2.55 .2 .42	11 13 13 32 27	1 1 1 1	30 47 22 43 18	.2 .1 .1 .1 .2	7 1.40 14 .92 28 2.23 25 1.46 3 .20	.1 .1 .1 .1	14 12 35 40 3	271 4.20 16 3.43 123 7.66 52 8.14 11 .87		25 3.5 24 3.1 5 .1	3 1533 5 1533 5 1959 3 1885 7 219	7 3 2 1 2	.04 .05 .03 .04 .05	1 1 1 4	110 900 930 850 200	20 24 38 82 13	1 5 1 2	35 70 34 29 5 1	71 6 71 1892 78 4581 89 4095 60 163	116. 69. 302. 294. 14.	2 177 5 117 4 149 3 121 9 28	21 23 32 31 8	1 1 1 1	11 4 10 2 7 14	
62288 62289 62290 62291 62292	.1 1.82 .3 3.39 .1 2.84 .1 3.01 .1 3.37	1 1 7 1	1 1 1 1	64 68 33 67 43	.3 .1 .1 .1 .1	5 .51 23 2.18 22 1.93 24 1.77 24 2.13		9 27 35 33 35	28 3.20 125 6.06 141 6.92 145 7.57 146 7.48	.06 .03 .03 .02	18 2.7 18 2.7 17 2.6	J 691	3 2 3 3	.03 .04 .03 .05 .03	1 7 6 1 1 1	190 890 900 020 020	23 28 22 21 22	771122	1	82 112 79 3514 88 3530 84 4032 85 3967	287.0	8 70	30 30 29 30	1 1 1	11 4 11 5 12 7 11 5	2 9 57 5
62293 62295 62298 62299	.1 2.37 .1 1.41 .1 1.89 .1 1.47	2	1 1 1	168 39 163 89	.1 .1 .1 .1	20 2.16 14 .83 11 .66 12 .38	.1 .1 .1	22 14 8 10	96 5.46 43 3.97 65 3.68 104 4.38	.12 .17 .35 .44	16 2.1 13 1.2 5 .6 7 .9	4 1165 3 794 4 467 2 559	3 1 5 2	.04 .05 .06 .04	11	970 060 940 250	22 18 19 20	2 1 3 1	30 16 39 11	68 3230 68 2161 56 1435 73 1576	197. 115. 46.0 70.9	9 79 7 67 0 50 9 66	27 20 13 17	1 1 1	11 9 6 4 5 2 6 2	22 33 22 28
														-	÷											
				-			•						-					-	-							
			N.																							2
· · ·																			-							
															-				· · .							-
				-			÷.	-			\cap														•	

APPENDIX 3

LABORATORY RESULTS - PHASE 1B PROGRAM

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

CERTIFICATE A9323329 GEOFINE EXPLORATION CONSULTANTS I TD. Project: P.O. # : 6000 STREAM SEDS Samples submitted to our lab in Vancouver, BC. This report was printed on 28-OCT-93. SAMPLE PREPARATION CHEMEX CODE NUMBER SAMPLES DESCRIPTION 201 7 Dry, sieve to -80 mesh 240 7 Dry, sieve to -10 mesh 238 7 Nitric-aqua-regia digestion

GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

NUMBER

SAMPLES

7

7

7

CHEMEX

993

2

5

CODE

Comments: ATTN: JANINE CALDER

ANALYTICAL PROCEDURES DESCRIPTION METHOD DESCRIPTION METHOD

Au ppb: Fuse 30 g sampleFA-NAA1Cu ppm: HNO3-aqua regia digestAAS1Zn ppm: HNO3-aqua regia digestAAS1

A9323329

10000

10000

10000

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 STREAM SEDS Comments: ATTN: JANINE CALDER Page Pr :1 Total P :1 Certificate Date: 28-OCT-93 Invoice No. : 19323329 P.O. Number : Account : KIV

CERTIFICATE OF ANALYSIS AS

Δ9323329

**

SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm							
52625 52626 52742 52743 52862	201 240 201 240 201 240 201 240 201 240) 3) 2) 177	300 68 68 305 68	230 108 113 238 108							
2895 2896	201 240 201 240) 98) 3	205 72	308 110		1997 - 19					-
							1				
		1.5								-	· ·
		1.1									
					· · · ·				· · ·)		· .
			1997 - Ale								
	· · · · ·		1.12	· · · ·							
										1 . ·	
	÷ .				-						
and the second second											
										-	
										· · · ·	
		1	-			· ·				-	
											1.1
· · · · ·	· · ·						1.1	·			
			1						· ·		
									· · ·		
			· .						·	-	-
										•	
									they the	Rul	0
								CERTIFICATION	1:1000	10-010	~~~

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 Page r : 1 Total F : 1 Certificate Date: 28-OCT-93 Invoice No. : 19323329 P.O. Number : Account : KIV

Project : 6000 STREAM SEDS Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS

A9323329

SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm					
62625 62626 62742 62743 62862	201240201240201240201240201240	184 3 2 177 3	300 68 68 305 68	230 108 113 238 108					
62895 62896	201 240 201 240	98 3	205 72	308 110					
			and and an and a second se						
and a second									
	an a								
		an a							
									÷
						CERTIFICATI	ON: Jan	trach.	ler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

ò.

Comments: ATTN: JANINE CALDER

C	ERTIFI	CATE A93233	28				A	NALYTICAL	PROCEDURE	S		
GEOFINE Project: P.O. # :	EXPLOR/ 6000 SC	ATION CONSULTANTS LTD. DIL	 	CHEMEX CODE	NUMBER	5	DE	SCRIPTION	METHOD		DETECTI LIMIT	
	submitt ort was	ed to our lab in Vancouver, B printed on 28-0CT-93.	c.	993 2 5	153	Cu ppm:	Fuse 30 g HNO3-aqua HNO3-aqua	sample regia digest regia digest	га-наа Адз Адз		1 1 1	
· ·												
	SAM	PLE PREPARATION		· ·		· .						
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION										
201 240 238	153 153 153	Dry, sieve to -80 mesh Dry, sieve to -10 mesh Nitric-aqua-regia digestion										

A9323328

UPPER LIMIT

10000 10000 10000

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 SOIL Comments: ATTN: JANINE CALDER

Page () r : 1 Total P : 4 Certificate Date: 28-OCT-93 Invoice No. : 19323328 P.O. Number : Account KIV

		- 				CERTIFIC	ATE OF A	NALYSIS	A93	323328	· · ·
SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm							
62606 62610 62611 62612 62614	201 240 201 240 201 240 201 240 201 240 201 240	157 52 27 59 65	135 108 185 109 133	193 130 188 145 155							· · · ·
62615 62616 62617 62618 62619	201 240 201 240 201 240 201 240 201 240 201 240	65 183 68 115 68	170 125 105 100 104	194 223 257 266 213	· · · · · · · · · · · · · · · · · · ·						
62620 62621 62622 62623 62623 62627	201240201240201240201240201240	186 109 131 91 197	123 174 205 195 175	435 810 880 870 105							
62628 62629 62630 62631 62632	201240201240201240201240	320 351 277 255 185	446 410 248 264 145	127 192 122 134 102	· · ·						
62633 62634 62635 62635 62636 62637	201240201240201240201240201240	29 319 123 43 92	45 178 134 68 69	82 448 315 194 91							
62638 62639 62640 62641 62642	201 240 201 240 201 240 201 240 201 240 201 240	241 171 277 347 172	305 204 117 123 112	200 200 68 71 90	· · · · · · · · · · · · · · · · · · ·						
62643 62644 62645 62645 62646 62647	201 240 201 240 201 240 201 240 201 240 201 240	225 120 55 65 216	115 111 64 65 310	96 96 47 52 176							
62701 62702 62703 62704 62705	201 240 201 240 201 240 201 240 201 240 201 240	126 72 107 192 63	124 116 190 545 70	50 39 49 92 52							

tartBully. CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 SOIL Comments: ATTN: JANINE CALDER Page er :2 Total :4 Certificate Date: 28-OCT-93 Invoice No. : I932328 P.O. Number : Account : KIV

**

						CERTIFIC	ATE OF ANALYSIS	A9323328	-
SAMPLE	PREP CODE		Cu ppm	Zn ppm					· · · ·
62706 62707 62708 62709 62710	201 240 201 240 201 240 201 240 201 240 201 240	34 23 41 24 15	54 68 119 54 85	75 73 155 65 79					 - - -
62711 62712 62713 62714 62715	201240201240201240201240201240	28 26 56 19 85	40 105 104 77 54	113 308 330 83 90					
62716 62717 62718 62719 62720	201 240 201 240 201 240 201 240 201 240 201 240	59 37 55 21 10	83 58 37 83 37	77 78 115 200 90					
62721 62722 62723 62724 62725	201 240 201 240 201 240 201 240 201 240 201 240	22 8 13 45 10	38 77 71 37 50	42 100 86 198 86					
62726 62727 62728 62729 62730	201 240 201 240 201 240 201 240 201 240 201 240	18 21 15 22 32	95 153 155 58 57	113 268 230 120 155					
62731 62732 62733 62734 62735	201 240 201 240 201 240 201 240 201 240 201 240	24 60 103 129 55	290 115 300 285 55	192 88 78 156 66					
62736 62737 62738 62739 62740	201 240 201 240 201 240 201 240 201 240 201 240	24 60 16 22 62	338 142 108 83 163	152 130 115 70 108	· · · ·				
62741 62751 62752 62777 62778	201 240 201 240 201 240 201 240 201 240 201 240	32 88 188 181 231	90 108 630 152 147	115 73 128 132 118					· · · · · · · · · · · · · · · · · · ·

CERTIFICATION: HartBuchler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 Page 1 r :3 Total F :4 Certificate Date: 28-OCT-93 Invoice No. : 19323328 P.O. Number : Account : KIV

Project : 6000 SOIL Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS A9323328

PREP CODE	Au NAA ppb	Cu ppm	Zn ppm							
201 240 201 240 201 240 201 240 201 240 201 240	176 228 145 139 180	88 62 52 48 49	70 42 38 45 30							
201 240 201 240 201 240 201 240 201 240 201 240	156 138 134 99 110	39 128 110 98 202	29 86 70 53 143							
201 240 201 240 201 240 201 240 201 240 201 240	98 49 77 85 40	165 173 102 178 98	132 120 100 148 132							
201 240 201 240 201 240 201 240 201 240 201 240	64 35 22 9 9	115 83 64 55 65	164 102 78 80 50							
201 240 201 240 201 240 201 240 201 240 201 240	25 22 7 12 87	49 38 78 68 103	60 50 83 127 135							
201 240 201 240 201 240 201 240 201 240 201 240	142 34 62 50 38	55 66 75 79 60	132 160 278 216 206							
201 240 201 240 201 240 201 240 201 240 201 240	40 32 42 55 178	590 122 57 55 150	630 190 184 408 440							
201 240 201 240 201 240 201 240 201 240 201 240	220 131 279 52 65	244 242 465 130 102	230 190 850 94 88							
	CODE 201 240	CODE ppb 201 240 176 201 240 145 201 240 139 201 240 139 201 240 136 201 240 138 201 240 138 201 240 138 201 240 134 201 240 110 201 240 99 201 240 98 201 240 98 201 240 98 201 240 99 201 240 35 201 240 22 201 240 22 201 240 22 201 240 22 201 240 22 201 240 34 201 240 34 201 240 32 201 <th>CODE ppb ppm 201 240 176 88 201 240 128 62 201 240 145 52 201 240 139 48 201 240 156 39 201 240 138 128 201 240 134 110 201 240 134 110 201 240 134 110 201 240 99 98 201 240 98 165 201 240 49 173 201 240 40 98 201 240 64 115 201 240 35 83 201 240 22 64 201 240 22 38 201 240 22 38 201 240 22 38 201<!--</th--><td>CODEppbppmppm2012401768870201240228624220124014552382012401394845201240139484520124015639292012401381288620124013411070201240134120702012409998532012409816513220124049173120201240981651322012409816513220124064115164201240358310220124022647820124025496020124025496020124025496020124025496020124025132201240346616020124034661602012403466160201240346616020124034661602012403555132201240346616020124035</td><td>CODE ppb ppm ppm 201 240 176 88 70 201 240 128 62 422 201 240 145 52 38 201 240 139 48 45 201 240 139 48 45 201 240 138 128 86 201 240 134 110 70 201 240 134 128 86 201 240 100 202 143 201 240 98 165 132 201 240 49 173 120 201 240 40 98 132 201 240 64 115 164 201 240 25 83 102 201 240 25 49 60 201 240 25 38 <td< td=""><td>$\begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>$C \cup DE$ppbppmppm2012401768870201240228624220124013948452012401364930201240136128862012401341107020124013411070201240134110702012401341102012401341102012409998201240991652012409816520124099165201240951782402264201240352012402549201240223850201240223850201240122409655020124024014255132201240240386020620124038602012403860201240386020124038602012403860201240386020124024035</td><td>$C \cup DE$ppbppmppmppm201240176887020124022862422012401394820124013948201240138128201240138128201240138128201240139992012401381282012401381282012401102022012409920124098201240982012409820124098201240982012409820124098201240982012409820124098201240982012409920124024099981322012402409558020124024012661272012402401226812720124024012268127201240240122681272012402403860206201240240122<</td><td>CODEppbppmppm2012401768870201240145523820124014552382012401563929201240136128862012401341107020124013411070201240134110702012401341107020124013411070201240981651322012409816513220124098173120201240981732012409813320124098164201240995201240995201240965201240965201240223820124012682012401268201240251322012401268201240132424012682012401268201240126820124012682012401268201240126820124012682</td><td>CODEppbppmppm$201$2401768870$201$2401455238$201$2401455238$201$24011384845$201$24011563929$201$24013812886$201$24013812886$201$24013812886$201$24013812886$201$24013812886$201$240138178132$201$24098173120$201$24098173120$201$24098176148$201$24064115164$201$240254960$201$240254960$201$240254960$201$240254960$201$240254960$201$24025133$201$24025135$201$24025135$201$24025136$201$24025136$201$24025136$201$24025136$201$24025136$201$24025136$201$24025136$2$</td></td<></td></th>	CODE ppb ppm 201 240 176 88 201 240 128 62 201 240 145 52 201 240 139 48 201 240 156 39 201 240 138 128 201 240 134 110 201 240 134 110 201 240 134 110 201 240 99 98 201 240 98 165 201 240 49 173 201 240 40 98 201 240 64 115 201 240 35 83 201 240 22 64 201 240 22 38 201 240 22 38 201 240 22 38 201 </th <td>CODEppbppmppm2012401768870201240228624220124014552382012401394845201240139484520124015639292012401381288620124013411070201240134120702012409998532012409816513220124049173120201240981651322012409816513220124064115164201240358310220124022647820124025496020124025496020124025496020124025496020124025132201240346616020124034661602012403466160201240346616020124034661602012403555132201240346616020124035</td> <td>CODE ppb ppm ppm 201 240 176 88 70 201 240 128 62 422 201 240 145 52 38 201 240 139 48 45 201 240 139 48 45 201 240 138 128 86 201 240 134 110 70 201 240 134 128 86 201 240 100 202 143 201 240 98 165 132 201 240 49 173 120 201 240 40 98 132 201 240 64 115 164 201 240 25 83 102 201 240 25 49 60 201 240 25 38 <td< td=""><td>$\begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>$C \cup DE$ppbppmppm2012401768870201240228624220124013948452012401364930201240136128862012401341107020124013411070201240134110702012401341102012401341102012409998201240991652012409816520124099165201240951782402264201240352012402549201240223850201240223850201240122409655020124024014255132201240240386020620124038602012403860201240386020124038602012403860201240386020124024035</td><td>$C \cup DE$ppbppmppmppm201240176887020124022862422012401394820124013948201240138128201240138128201240138128201240139992012401381282012401381282012401102022012409920124098201240982012409820124098201240982012409820124098201240982012409820124098201240982012409920124024099981322012402409558020124024012661272012402401226812720124024012268127201240240122681272012402403860206201240240122<</td><td>CODEppbppmppm2012401768870201240145523820124014552382012401563929201240136128862012401341107020124013411070201240134110702012401341107020124013411070201240981651322012409816513220124098173120201240981732012409813320124098164201240995201240995201240965201240965201240223820124012682012401268201240251322012401268201240132424012682012401268201240126820124012682012401268201240126820124012682</td><td>CODEppbppmppm$201$2401768870$201$2401455238$201$2401455238$201$24011384845$201$24011563929$201$24013812886$201$24013812886$201$24013812886$201$24013812886$201$24013812886$201$240138178132$201$24098173120$201$24098173120$201$24098176148$201$24064115164$201$240254960$201$240254960$201$240254960$201$240254960$201$240254960$201$24025133$201$24025135$201$24025135$201$24025136$201$24025136$201$24025136$201$24025136$201$24025136$201$24025136$201$24025136$2$</td></td<></td>	CODEppbppmppm2012401768870201240228624220124014552382012401394845201240139484520124015639292012401381288620124013411070201240134120702012409998532012409816513220124049173120201240981651322012409816513220124064115164201240358310220124022647820124025496020124025496020124025496020124025496020124025132201240346616020124034661602012403466160201240346616020124034661602012403555132201240346616020124035	CODE ppb ppm ppm 201 240 176 88 70 201 240 128 62 422 201 240 145 52 38 201 240 139 48 45 201 240 139 48 45 201 240 138 128 86 201 240 134 110 70 201 240 134 128 86 201 240 100 202 143 201 240 98 165 132 201 240 49 173 120 201 240 40 98 132 201 240 64 115 164 201 240 25 83 102 201 240 25 49 60 201 240 25 38 <td< td=""><td>$\begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>$C \cup DE$ppbppmppm2012401768870201240228624220124013948452012401364930201240136128862012401341107020124013411070201240134110702012401341102012401341102012409998201240991652012409816520124099165201240951782402264201240352012402549201240223850201240223850201240122409655020124024014255132201240240386020620124038602012403860201240386020124038602012403860201240386020124024035</td><td>$C \cup DE$ppbppmppmppm201240176887020124022862422012401394820124013948201240138128201240138128201240138128201240139992012401381282012401381282012401102022012409920124098201240982012409820124098201240982012409820124098201240982012409820124098201240982012409920124024099981322012402409558020124024012661272012402401226812720124024012268127201240240122681272012402403860206201240240122<</td><td>CODEppbppmppm2012401768870201240145523820124014552382012401563929201240136128862012401341107020124013411070201240134110702012401341107020124013411070201240981651322012409816513220124098173120201240981732012409813320124098164201240995201240995201240965201240965201240223820124012682012401268201240251322012401268201240132424012682012401268201240126820124012682012401268201240126820124012682</td><td>CODEppbppmppm$201$2401768870$201$2401455238$201$2401455238$201$24011384845$201$24011563929$201$24013812886$201$24013812886$201$24013812886$201$24013812886$201$24013812886$201$240138178132$201$24098173120$201$24098173120$201$24098176148$201$24064115164$201$240254960$201$240254960$201$240254960$201$240254960$201$240254960$201$24025133$201$24025135$201$24025135$201$24025136$201$24025136$201$24025136$201$24025136$201$24025136$201$24025136$201$24025136$2$</td></td<>	$\begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$C \cup DE$ ppbppmppm2012401768870201240228624220124013948452012401364930201240136128862012401341107020124013411070201240134110702012401341102012401341102012409998201240991652012409816520124099165201240951782402264201240352012402549201240223850201240223850201240122409655020124024014255132201240240386020620124038602012403860201240386020124038602012403860201240386020124024035	$C \cup DE$ ppbppmppmppm201240176887020124022862422012401394820124013948201240138128201240138128201240138128201240139992012401381282012401381282012401102022012409920124098201240982012409820124098201240982012409820124098201240982012409820124098201240982012409920124024099981322012402409558020124024012661272012402401226812720124024012268127201240240122681272012402403860206201240240122<	CODEppbppmppm2012401768870201240145523820124014552382012401563929201240136128862012401341107020124013411070201240134110702012401341107020124013411070201240981651322012409816513220124098173120201240981732012409813320124098164201240995201240995201240965201240965201240223820124012682012401268201240251322012401268201240132424012682012401268201240126820124012682012401268201240126820124012682	CODEppbppmppm 201 2401768870 201 2401455238 201 2401455238 201 24011384845 201 24011563929 201 24013812886 201 24013812886 201 24013812886 201 24013812886 201 24013812886 201 240138178132 201 24098173120 201 24098173120 201 24098176148 201 24064115164 201 240254960 201 240254960 201 240254960 201 240254960 201 240254960 201 24025133 201 24025135 201 24025135 201 24025136 201 24025136 201 24025136 201 24025136 201 24025136 201 24025136 201 24025136 2

CERTIFICATION

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 SOIL Comments: ATTN: JANINE CALDER

Page N Total P •4 Certificate Date: 28-OCT-93 Invoice No. : 19323328 P.O. Number : Account KIV

CERTIFICATE OF ANALYSIS A9323328

SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm	2,				
62880 62881 62882 62884 62885	201 240 201 240 201 240 201 240 201 240 201 240	49 74 281 197 80	60 78 131 80 177	58 52 67 73 235					
62886 62887 62888 62889 62899	201 240 201 240 201 240 201 240 201 240 201 240	46 380 106 62 28	83 223 90 190 56	66 840 76 121 197					
62891 62892 62893 62894 62897	201 240 201 240 201 240 201 240 201 240 201 240	58 26 21 102 108	230 96 125 320 280	240 155 138 280 155					
62898 62899 62900 62901 62902	201 240 201 240 201 240 201 240 201 240 201 240	28 113 28 26 51	118 133 39 60 150	148 110 52 100 138					
62903 62904 62905 62906 62907	201 240 201 240 201 240 201 240 201 240 201 240	25 53 8 14 8	70 115 44 63 63	120 116 87 98 130					
62908 62909 62910 62911 62912	201 240 201 240 201 240 201 240 201 240 201 240	8 9 39 38 51	44 36 35 49 55	88 79 83 58 110					
62913 62914 62915	201 240 201 240 201 240	27 141 28	32 275 47	60 135 73					
							ta	HSich	ler

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 SOIL Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS

A9323328

Page

Total F

Invoice No.

Account

P.O. Number

ar 1

Certificate Date: 28-OCT-93

:4

٠

KIV

:19323328

**

	· · · ·			I I			1			
SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm						
2606 2610 2611 2612 2614	201 240 201 240 201 240 201 240 201 240 201 240	157 52 27 59 65	135 108 185 109 133	193 130 188 145 155	· · · ·					
2615 2616 2617 2618 2619	201 240 201 240 201 240 201 240 201 240 201 240	65 183 68 115 68	170 125 105 100 104	194 223 257 266 213						
2620 2621 2622 2623 2623 2627	201 240 201 240 201 240 201 240 201 240 201 240	186 109 131 91 197	123 174 205 195 175	435 810 880 870 105						
2628 2629 2630 2631 2632	201 240 201 240 201 240 201 240 201 240 201 240	320 351 277 255 185	446 410 248 264 145	127 192 122 134 102						
2633 2634 2635 2636 2637	201 240 201 240 201 240 201 240 201 240 201 240	29 319 123 43 92	45 178 134 68 69	82 448 315 194 91						
2638 2639 2640 2641 2642	201 240 201 240 201 240 201 240 201 240 201 240	241 171 277 347 172	305 204 117 123 112	200 200 68 71 90						
2643 2644 2645 2646 2647	201 240 201 240 201 240 201 240 201 240 201 240	225 120 55 65 216	115 111 64 65 310	96 96 47 52 176	· · · · · · · · · · · · · · · · · · ·					
2701 2702 2703 2704 2705	201 240 201 240 201 240 201 240 201 240 201 240	126 72 107 192 63	124 116 190 545 70	50 39 49 92 52						
			L			1	· · · ·	Jan	Buch	ler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4.18

Project : 6000 SOIL Comments: ATTN: JANINE CALDER Page er :2 Total :4 Certificate Date: 28-OCT-93 Invoice No. :19323328 P.O. Number : Account :KIV

**

CERTIFICATE OF ANALYSIS A9323328 PREP Au NAA Cu Zn SAMPLE CODE ppb ngg ppm 201 240 201 240 201 240 201 240

CERTIFICATION:

tart Bichler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 SOIL Comments: ATTN: JANINE CALDER Page er :3 Total s :4 Certificate Date: 28-OCT-93 Invoice No. : I9323328 P.O. Number : Account : KIV

					CERTIFIC	ATE OF ANAL	YSIS	A9323328	· ·
SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm					
62779 62780 62781 62782 62783	201 240 201 240 201 240 201 240 201 240 201 240	176 228 145 139 180	88 62 52 48 49	70 42 38 45 30					
62784 62785 62786 62787 62788	201 240 201 240 201 240 201 240 201 240 201 240	156 138 134 99 110	39 128 110 98 202	29 86 70 53 143					
62789 62790 62804 62805 62806	201 240 201 240 201 240 201 240 201 240 201 240	98 49 77 85 40	165 173 102 178 98	132 120 100 148 132					
62807 62808 62809 62810 62811	201 240 201 240 201 240 201 240 201 240 201 240	64 35 22 9 9	115 83 64 55 65	164 102 78 80 50					
62812 62813 62814 62815 62816	201 240 201 240 201 240 201 240 201 240 201 240	25 22 7 12 87	49 38 78 68 103	60 50 83 127 135					
62817 62818 62819 62820 62821	201 240 201 240 201 240 201 240 201 240 201 240	142 34 62 50 38	55 66 75 79 60	132 160 278 216 206					
62822 62852 62853 62854 62855	201 240 201 240 201 240 201 240 201 240 201 240	40 32 42 55 178	590 122 57 55 150	630 190 184 408 440					
62857 62858 62860 62877 62879	201 240 201 240 201 240 201 240 201 240 201 240	220 131 279 52 65	244 242 465 130 102	230 190 850 94 88			· · · · · · · · · · · · · · · · · · ·		

CERTIFICATION:

tartBichler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 SOIL Comments: ATTN: JANINE CALDER

Page ::4 Total P :4 Certificate Date: 28-OCT-93 Invoice No. : 19323328 P.O. Number Account : KIV

·					CERTIFIC	ATE OF A	NALYSIS	A93	23328	
PREP CODE	Au NAA ppb	Cu ppm	Zn ppm							
201 240 201 240 201 240 201 240 201 240 201 240	49 74 281 197 80	60 78 131 80 177	58 52 67 73 235							
201 240 201 240 201 240 201 240 201 240 201 240	46 380 106 62 28	83 223 90 190 56	66 840 76 121 197	· · ·						
201 240 201 240 201 240 201 240 201 240 201 240	58 26 21 102 108	230 96 125 320 280	240 155 138 280 155							
201 240 201 240 201 240 201 240 201 240 201 240	28 113 28 26 51	118 133 39 60 150	148 110 52 100 138							
201 240 201 240 201 240 201 240 201 240 201 240	25 53 8 14 8	70 115 44 63 63	120 116 87 98 130							
201 240 201 240 201 240 201 240 201 240 201 240	8 9 39 38 51	44 36 35 49 55	88 79 83 58 110							
201 240 201 240 201 240 201 240	27 141 28	32 275 47	60 135 73							
	CODE 201 240	CODE ppb 201 240 49 201 240 74 201 240 281 201 240 197 201 240 80 201 240 380 201 240 380 201 240 380 201 240 380 201 240 28 201 240 28 201 240 28 201 240 28 201 240 28 201 240 26 201 240 28 201 240 28 201 240 28 201 240 28 201 240 26 201 240 51 201 240 51 201 240 8 201 240 8 201	CODE ppb ppm 201 240 49 60 201 240 74 78 201 240 281 131 201 240 281 131 201 240 280 177 201 240 80 177 201 240 380 223 201 240 380 223 201 240 62 190 201 240 28 56 201 240 28 96 201 240 28 30 201 240 28 30 201 240 28 318 201 240 28 39 201 240 28 39 201 240 25 70 201 240 25 70 201 240 25 70 201	CODE ppb ppm ppm 201 240 49 60 58 201 240 74 78 52 201 240 281 131 67 201 240 281 131 67 201 240 80 177 235 201 240 46 83 66 201 240 46 83 66 201 240 380 223 840 201 240 62 190 121 201 240 26 96 155 201 240 26 96 155 201 240 21 125 138 201 240 28 148 148 201 240 28 39 52 201 240 28 133 110 201 240 25 70 120	CODE ppb ppm ppm 201 240 49 60 58 201 240 281 131 67 201 240 281 131 67 201 240 281 131 67 201 240 280 177 235 201 240 46 83 66 201 240 380 223 840 201 240 380 223 840 201 240 62 190 121 201 240 28 56 197 201 240 28 230 240 201 240 21 125 138 201 240 28 118 148 201 240 28 39 52 201 240 25 70 120 201 240 25 70 <	CODE ppb ppm ppm 201 240 49 60 58 201 240 74 78 52 201 240 281 131 67 201 240 197 80 73 201 240 46 83 66 201 240 380 223 840 201 240 62 190 76 201 240 62 190 76 201 240 26 96 155 201 240 26 96 155 201 240 28 118 148 201 240 28 39 52 201 240 28 113 133 201 240 28 39 52 201 240 25 70 120 201 240 25 70 120 <td>CODE ppb ppm ppm 201 240 49 60 58 201 240 241 131 67 201 240 281 131 67 201 240 281 131 67 201 240 281 131 67 201 240 80 177 235 201 240 46 83 66 201 240 46 93 66 201 240 106 90 76 201 240 28 56 197 201 240 28 26 190 201 240 28 280 155 201 240 28 118 148 201 240 28 39 52 201 240 25 70 120 201 240 25 70 120<</td> <td>CODE ppb ppm ppm 201 240 49 60 58 201 240 74 78 52 201 240 281 131 67 201 240 281 131 67 201 240 280 177 235 201 240 46 83 66 201 240 380 223 840 201 240 106 90 76 201 240 106 90 76 201 240 28 56 197 201 240 28 26 196 201 240 28 280 280 201 240 28 118 148 201 240 26 60 100 201 240 25 70 120 201 240 25 70 12</td> <td>CODE ppb ppm ppm 201 240 49 60 58 201 240 74 78 52 201 240 197 80 73 201 240 80 177 235 201 240 80 177 235 201 240 380 223 840 201 240 46 83 66 201 240 46 90 76 201 240 62 190 121 201 240 28 56 155 201 240 26 96 155 201 240 28 39 52 201 240 108 280 155 201 240 108 280 155 201 240 133 130 140 201 240 133 130 <td< td=""><td>CODE ppb ppm ppm 201 240 49 60 58 201 240 74 78 52 201 240 281 131 67 201 240 197 80 73 201 240 46 83 66 201 240 380 233 840 201 240 46 83 66 201 240 46 83 66 201 240 46 83 66 201 240 106 90 76 201 240 26 100 121 201 240 26 96 155 201 240 26 96 155 201 240 113 133 10 201 240 13 133 10 201 240 25 70 120</td></td<></td>	CODE ppb ppm ppm 201 240 49 60 58 201 240 241 131 67 201 240 281 131 67 201 240 281 131 67 201 240 281 131 67 201 240 80 177 235 201 240 46 83 66 201 240 46 93 66 201 240 106 90 76 201 240 28 56 197 201 240 28 26 190 201 240 28 280 155 201 240 28 118 148 201 240 28 39 52 201 240 25 70 120 201 240 25 70 120<	CODE ppb ppm ppm 201 240 49 60 58 201 240 74 78 52 201 240 281 131 67 201 240 281 131 67 201 240 280 177 235 201 240 46 83 66 201 240 380 223 840 201 240 106 90 76 201 240 106 90 76 201 240 28 56 197 201 240 28 26 196 201 240 28 280 280 201 240 28 118 148 201 240 26 60 100 201 240 25 70 120 201 240 25 70 12	CODE ppb ppm ppm 201 240 49 60 58 201 240 74 78 52 201 240 197 80 73 201 240 80 177 235 201 240 80 177 235 201 240 380 223 840 201 240 46 83 66 201 240 46 90 76 201 240 62 190 121 201 240 28 56 155 201 240 26 96 155 201 240 28 39 52 201 240 108 280 155 201 240 108 280 155 201 240 133 130 140 201 240 133 130 <td< td=""><td>CODE ppb ppm ppm 201 240 49 60 58 201 240 74 78 52 201 240 281 131 67 201 240 197 80 73 201 240 46 83 66 201 240 380 233 840 201 240 46 83 66 201 240 46 83 66 201 240 46 83 66 201 240 106 90 76 201 240 26 100 121 201 240 26 96 155 201 240 26 96 155 201 240 113 133 10 201 240 13 133 10 201 240 25 70 120</td></td<>	CODE ppb ppm ppm 201 240 49 60 58 201 240 74 78 52 201 240 281 131 67 201 240 197 80 73 201 240 46 83 66 201 240 380 233 840 201 240 46 83 66 201 240 46 83 66 201 240 46 83 66 201 240 106 90 76 201 240 26 100 121 201 240 26 96 155 201 240 26 96 155 201 240 113 133 10 201 240 13 133 10 201 240 25 70 120

205

274

286

238

12

12

12

12

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

CERTIFICATE A9323327 GEOFINE EXPLORATION CONSULTANTS LTD. Project: P.O. # : 6000 ROCK Samples submitted to our lab in Vancouver, BC. This report was printed on 28-0CT-93. SAMPLE PREPARATION CHEMEX CODE NUMBER SAMPLES DESCRIPTION

Geochem ring to approx 150 mesh

0-15 1b crush and split

Drying charge (0-15 pounds)

Nitric-aqua-regia digestion

49 NORMANDALE RD.

CHEMEX

993

2

5

CODE

UNIONVILLE, ON L3R 4J8

Comments: ATTN: JANINE CALDER

GEOFINE EXPLORATION CONSULTANTS LTD.

ANALYTICAL PROCEDURES DETECTION UPPER NUMBER METHOD LIMIT SAMPLES DESCRIPTION

12	Au ppb: Fuse 30 g sample	FA-NAA	1 10000
12	Cu ppm: HNO3-aqua regia digest	AAS	1 10000
12	Zn ppm: HNO3-aqua regia digest	AAS	1 10000

A9323327

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 ROCK Comments: ATTN: JANINE CALDER Page er :1 Total P ::1 Certificate Date: 28-OCT-93 Invoice No. :19323327 P.O. Number : Account :KIV

					CERTIFICATE OF ANALYSIS A9323327
PREP SAMPLE CODE	Au NAA ppb	Cu ppm	Zn ppm	<u> </u>	
62605 205 274 62607 205 274 62608 205 274 62609 205 274 62613 205 274	1 1 1	38 120 34 33 93	55 44 50 23 74		
62624 205 274 62648 205 274 62649 205 274 62856 205 274 62859 205 274	50 104 140	89 64 37 207 123	323 178 150 47 110		
62861 205 274 62878 205 274		168 180	180 178		
					CERTIFICATION: StartBuchler

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 ROCK Comments: ATTN: JANINE CALDER

Page (Total P • 1 Certificate Date: 28-OCT-93 Invoice No. : 19323327 P.O. Number : KIV Account

**

SAMPLE PREP CODE Au NAA ppb Cu ppm Zn ppm 62605 205 274 22 38 55 62607 205 274 1 34 50 62607 205 274 1 34 50 62608 205 274 1 34 50 62613 205 274 1 34 50 62614 205 274 1 34 50 62614 205 274 10 67 176 62614 205 274 10 67 176 62856 205 274 10 67 176 62855 205 274 57 160 179 62856 205 274 57 180 179 62876 205 274 57 180 179						 CERTIFIC	ATE OF A	NALYSIS	A93	323327	
62607 205 274 1 120 44 62608 205 274 1 34 50 62608 205 274 1 33 23 62608 205 274 1 33 23 62613 205 274 1 93 74 62614 205 274 108 69 123 62649 205 274 104 37 150 62856 205 274 104 37 150 62856 205 274 104 37 150 62859 205 274 59 168 180 62861 205 274 57 180 178 62861 205 274 57 180 178 62878 205 274 57 180 178 62878 205 274 57 180 178 62878 205 274 57 180 178 62878 <t< th=""><th>SAMPLE</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	SAMPLE										
62648 205 274 50 64 178 62649 205 274 104 37 150 62856 205 274 104 207 47 62859 205 274 123 110 10 62859 205 274 42 123 110 628578 205 274 57 180 178 62878 205 274 57 180 178	62607 62608 62609	205 274 205 274 205 274	1	120 34 33	44 50 23						
62878 205 274 57 180 178	62648 62649 62856	205 274 205 274 205 274	50 104 140	64 37 207	178 150 47						
	62861 62878	205 274 205 274	59 57	168 180	180 178						

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD. òo.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Comments: ATTN: JANINE CALDER

CERTIFICATE A9323515			ANALYTICAL PF	OCEDURES		
EOFINE EXPLORATION CONSULTANTS LTD.	CHEMEX CODE	NUMBER	DESCRIPTION	METHOD	DETECTION LIMIT	UPPEF
roject 6000 ROCK .O. #: amples submitted to our lab in Vancouver, BC. his report was printed on 4-NOV-93.	993 2 5	11	Au ppb: Fuse 30 g sample Cu ppm: HNO3-aqua regia digest Zn ppm: HNO3-aqua regia digest	FA-NAA AAS AAS	1	10000 10000 10000
SAMPLE PREPARATION						
CODE SAMPLES DESCRIPTION						
20511Geochem ring to approx 150 mesh274110-15 1b crush and split28611Drying charge (0-15 pounds)23211Perchloric-nitric-HF digestion						
		-				
		-				

A9323515

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 SE GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 ROCK Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS

A9323515

Page

Total

- 1

Certificate Date: 04-NOV-93 Invoice No. : [9323515 P.O. Number : Account : KIV

**

					CERTIFIC	ATE OF ANALYSIS	A9323515	
SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm				
62401 62750 62758 62763 62764	205 274 205 274 205 274 205 274 205 274 205 274	10 33 105 55 11	65 150 182 125 220	76 137 116 110 175				
62766 62767 62769 62972 162951	205 274 205 274 205 274 205 274 205 274 205 274	86 32 31 31 14	198 160 106 53 77	205 268 300 97 228				
162957	205 274	48	174	253				
					· .			
	• · · · · · · · · · · · · · · · · · · ·		· · · · · ·	• • •	 • •	CERTIFICATIO	1 Sant Bich	ler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Nu :1 Total Pal :1 Certificate pate: 04-NOV-93 Invoice No. :19323515 P.O. Number : Account :KIV

Project : 6000 ROCK Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS

A9323515

...

	SAMPL	E			REP ODE	Au ppb		Cu ppm	Zn ppm		 · · ·				
62 62 62	401 750 758 763 764			205			10 33 105 55 11	65 150 182 125 220	1 1 1	76 .37 .16 .10 .75					
62 62 62	766 767 769 972 2951			205 205 205 205 205	274 274 274		86 32 31 31 14	198 160 106 53 77	2	05 68 00 97 28					
16	2957			205	274		48	174	2	53					· · ·
			,			· · ·									
									•						
											-	 			
· .					· ·										
						х									
				· ·											2 N
		-													
	* .														
												CERTIFICATIO	DN:_ 1Ster	ABrd	hler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

'n:

Comments: ATTN: JANINE CALDER

CERTIF	3516					ANALYTICAL F	ROCEDURES		
GEOFINE EXPLOF Project: 6000 S P.O. # :			J	CHEMEX	NUMBER SAMPLES		DESCRIPTION	METHOD	
Samples submit This report wa	ted to our la s printed on	b in Vancouver 4-NOV-93.	, BC.		993 2 5	42 42 42	Au ppb: Cu ppm: Zn ppm:	Fuse 30 g sample HNO3-aqua regia digest HNO3-aqua regia digest	га-NAA Aas Aas
				- - : 					
SAN	IPLE PREP	ARATION							
CHEMEX NUMBER CODE SAMPLES		DESCRIPTION							
201 42 240 42 220 42 238 42	Dry, sieve	to -80 mesh to -10 mesh ng charge a-regia digest:	ion						
								a tanàna Romanda amin'ny fisiana	

A9323516

UPPER

10000 10000

10000

DETECTION LIMIT

1

1

1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 SOIL Comments: ATTN: JANINE CALDER Page er : 1 Total : 3 :2 Certificate Date: 04-NOV-93 Invoice No. : 19323516 P.O. Number : Account : KIV

.

					CERTIFIC	ATE OF A	NALYSIS	A93	23516	
SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm						
62402 62403 62404 62405 62406	201 240 201 240 201 240 201 240 201 240 201 240	123 117 363 245 90	248 218 348 253 370	132 305 590 403 500						
62407 62748 62749 62759 62760	201 240 201 240 201 240 201 240 201 240 201 240	158 109 94 137 246	520 225 93 158 205	427 145 73 88 120						
62761 62762 62770 62771 62772	201 240 201 240 201 240 201 240 201 240 201 240	54 126 51 30 34	62 112 95 56 68	80 100 84 92 140						
62773 62917 62918 62920 62921	201 240 201 240 201 240 201 240 201 240 201 240	35 32 21 50 215	138 142 66 200 85	230 123 75 128 182						
62961 62962 62963 62964 62965	201 240 201 240 201 240 201 240 201 240 201 240	42 69 33 11 7	95 108 77 60 50	182 160 135 90 68						
62966 62967 62968 62969 62970	201 240 201 240 201 240 201 240 201 240 201 240	11 < 1 21 10 59	43 52 50 238 640	57 65 110 630 500						
62971 62973 62974 62975 162952	201 240 201 240 201 240 201 240 201 240 201 240	97 14 7 40 64	135 39 41 55 125	228 107 85 205 320						
162953 162954 162955 162956 162958	201 240 201 240 201 240 201 240 201 240 201 240	420 53 163 306 233	680 126 370 350 345	630 550 485 443 447						

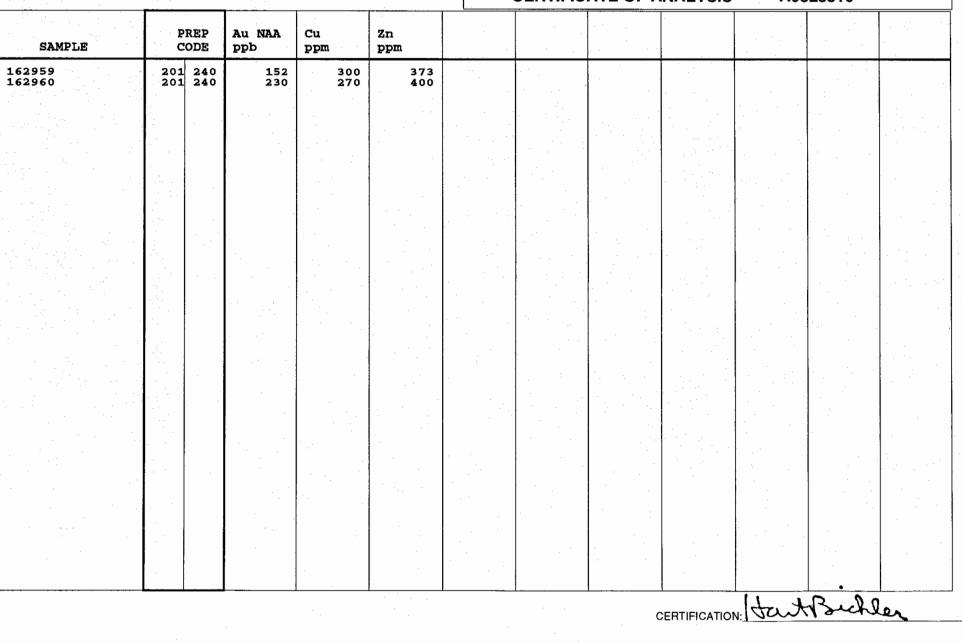
CERTIFICATION: StartBuchler

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD. b:

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8


Proiect : 6000 SOIL Comments: ATTN: JANINE CALDER

)er :2 Page Total Certificate Date: 04-NOV-93 Invoice No. :19323516 P.O. Number Account KIV

CERTIFICATE OF ANALYSIS

A9323516

**

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 SOIL Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS

A9323516

••

Page Nu Total Pa

Account

P.O. Number

. 2

KIV

Certificate Date: 04-NOV-93 Invoice No. : 19323516

SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm	· .			
62402 62403 62404 62405 62406	201240201240201240201240201240	123 117 363 245 90	248 218 348 253 370	132 305 590 403 500				
2407 2748 2749 2759 2760	201 240 201 240 201 240 201 240 201 240 201 240	158 109 94 137 246	520 225 93 158 205	427 145 73 88 120				
2761 2762 2770 2771 2772	201 240 201 240 201 240 201 240 201 240 201 240	54 126 51 30 34	62 112 95 56 68	80 100 84 92 140				
2773 2917 2918 2920 2921	201 240 201 240 201 240 201 240 201 240 201 240	35 32 21 50 215	138 142 66 200 85	230 123 75 128 182				
2961 2962 2963 2964 2965	201 240 201 240 201 240 201 240 201 240 201 240	42 69 33 11 7	95 108 77 60 50	182 160 135 90 68				
2966 2967 2968 2969 2970	201 240 201 240 201 240 201 240 201 240 201 240	11 < 1 21 10 59	43 52 50 238 640	57 65 110 630 500				
2971 2973 2974 2975 62952	201 240 201 240 201 240 201 240 201 240 201 240	97 14 7 40 64	135 39 41 55 125	228 107 85 205 320				
62953 62954 62955 62956 62958	201 240 201 240 201 240 201 240 201 240 201 240	420 53 163 306 233	680 126 370 350 345	630 550 485 443 447				

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 SOIL Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS

A9323516

**

Page Nu Total Pag Certificate Date: 04-NOV-93 Invoice No. : 19323516 P.O. Number

KIV

Account

						CERTIFIC	ATE OF AN	ALYSIS	A9323516	
SAMPLE	P	REP ODE	Au NAA ppb	Cu ppm	Zn ppm					
162959 162960	201 201	240 240	152 230	300 270	373 400					
						1 ³				
								· .		
				· .						
						· ·				
·	a te									
						· · · ·		· · · · · · · · · · · · · · · · · · ·	-	
	•					· ·	CEF	TIFICATION	Hter. A.Buch	YDA

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

NUMBER SAMPLES

Comments: ATTN: JANINE CALDER

C	ERTIFI	CATE	A	9323517		
			TANTS LTD.			CHEMEX
Project: P.O. # :	6000 S1	REAM SED.				
Samples This rej	submitte port was	ed to our lab printed on	in Vanco 4-NOV-93.	uver, BC.		993 2 5
	SAM		ARATIO	N ⁿ		
CHEMEX CODE	NUMBER SAMPLES		DESCRIP	TION		
201 240 220 238	6 6 6 6	Dry, sieve Dry, sieve Transferrin Nitric-aqua	to -10 mea g charge	h		
	· · ·					
					· · · ·	
	· · ·					
	-					
					-	

ANALYTICAL PROCEDURES DETECTION DESCRIPTION METHOD

	<u></u>		and the second		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 6 6	Cu ppm: HN	se 30 g sample 03-aqua regia digest 03-aqua regia digest	FA-NAA AAS AAS	1: ^{""} 1 . 1	10000 10000 10000

A9323517

UPPER LIMIT

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 : GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 STREAM SED. Comments: ATTN: JANINE CALDER Page er :1 Total :1 Certificate Date: 04-NOV-93 Invoice No. :19323517 P.O. Number : Account :KIV

Sichler

tart

				CERTIFICATE OF ANALYSIS A9323517
SAMPLE	PREP CODE	Au NAA Cu ppb ppm	Zn ppm	
62410 62411 62412 62765 62768	201 240 201 240 201 240 201 240 201 240 201 240	159 24 183 30 86 42	0 307 5 235 8 445	
62774	201 240	42 7	1 128	

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 Page NV Total Pa Certificate Date: 04-NOV-93 Invoice No. 19323517 P.O. Number Account :KIV

Project : 6000 STREAM SED. Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS

A9323517

								A9323517			
SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm							
62410 62411 62412 62765 62768	201 240 201 240 201 240 201 240 201 240 201 240	170 159 183 86 174	212 240 305 428 348	240 307 235 445 490							
62774	201 240	42	71	128							
		- 									
		•									
		· ·									
		-		د		 Note : .	CER ¹		tartfiel	ler	

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Comments: ATTN: JANINE CALDER

C	ERTIF	CATE	A9323747			PROCEDURES	DURES				
GEOFINE EXPLORATION CONSULTANTS LTD. Project: 6000 ROCK P.O. # :		CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT			
amples	submitt port was	ed to our lab printed on	in Vancouver, BC. 4-NOV-93.	993 2 5	30 30 30	Au ppb: Cu ppm: Zn ppm:	Fuse 30 g sample HNO3-aqua regia digest HNO3-aqua regia digest	га-наа Алс Алс	1 1 1	10000 10000 10000	
	SAM	PLE PREP	ARATION								
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION								
205 274 286 238	30 30 30 30	Geochem ring 0-15 1b crus Drying charg Nitric-aqua-	g to approx 150 mesh sh and split ge (0–15 pounds) -regia digestion								
	· · · .										
						- -					
				· · ·							

A9323747

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 ROCK Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS

A9323747

Page

Total

Account

• •

.ś :1

έĸιν

'nr

Certificate Date: 04-NOV-93 Invoice No. : 19323747 P.O. Number :

	1. A	_				ATE OF A	ALIOIO		23747	
SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm						
62413 62669 62672 62673 62676	205 274 205 274 205 274 205 274 205 274 205 274	103 39 14 52 62	34 162 170 112 202	160 216 193 345 154						
62677 62678 62679 62680 62695	205 274 205 274 205 274 205 274 205 274 205 274	79 75 83 82 63	237 218 250 237 205	145 140 173 158 158	-			· · · ·		
62698 62699 62700 62951 62957	205 274 205 274 205 274 205 274 205 274 205 274	48 49 49 65 21	233 209 191 46 36	178 178 162 29 42	· · · · ·					
62976 62977 62978 62979 62980	205 274 205 274 205 274 205 274 205 274 205 274	8 16 17 18 17	26 99 100 93 51	47 238 200 250 323						
62981 62985 62986 62987 62988	205 274 205 274 205 274 205 274 205 274 205 274	11 28 40 26 41	117 42 54 240 100	255 116 174 1340 138						
62989 62992 62994 62996 62997	205 274 205 274 205 274 205 274 205 274 205 274	37 23 209 18 23	75 69 155 45 105	84 97 232 52 77						
					· · · ·					

CERTIFICATION: Hart Brichler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 ROCK Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS

A9323747

					· L	 		
SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm				
62413 62669 62672 62673 62676	205274205274205274205274205274	103 39 14 52 62	34 162 170 112 202	160 216 193 345 154				
62677 62678 62679 62680 62695	205 274 205 274 205 274 205 274 205 274 205 274	79 75 83 82 63	237 218 250 237 205	145 140 173 158 158				
62698 62699 62700 62951 62957	205 274 205 274 205 274 205 274 205 274 205 274	48 49 49 65 21	233 209 191 46 36	178 178 162 29 42				
62976 62977 62978 62979 62980	205 274 205 274 205 274 205 274 205 274 205 274	8 16 17 18 17	26 99 100 93 51	47 238 200 250 323				
62981 62985 62986 62987 62988	205 274 205 274 205 274 205 274 205 274	11 28 40 26 41	117 42 54 240 100	255 116 174 1340 138				
62989 62992 62994 62996 62997	205 274 205 274 205 274 205 274 205 274 205 274	37 23 209 18 23	75 69 155 45 105	84 97 232 52 77				

CERTIFICATION: HartBuchler

Page Nv Total Pa 11 Certificate Date: 04-NOV-93 Invoice No. :19323747 P.O. Number Account ξκιν

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON 13B 4.18

Comments: ATTN: JANINE CALDER

DESCRIPTION

UPPER

1 IMIT

10000

10000

10000

DETECTION

LIMIT

1

1

1

CERTIFICATE A9323748 GEOFINE EXPLORATION CONSULTANTS | TD CHEMEX NUMBER CODE SAMPLES Project: P.O. # : 6000 SOII 993 71 Au ppb: Fuse 30 g sample Samples submitted to our lab in Vancouver, BC. 2 71 Cu ppm: HNO3-aqua regia digest This report was printed on 4-NOV-93. 5 71 Zn ppm: HN03-aqua regia digest SAMPLE PREPARATION CHEMEX CODE NUMBER SAMPLES DESCRIPTION 201 66 Dry, sieve to -80 mesh 240 66 Dry, sieve to -10 mesh 205 5 Geochem ring to approx 150 mesh 274 5 0-15 1b crush and split 220 71 Transferring charge 238 71 Nitric-aqua-regia digestion

ANALYTICAL PROCEDURES

METHOD

FA-NAA

AAS

AAS

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

0.

Project : 6000 SOIL Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS

A9323748

Page

Total

Account

Invoice No. P.O. Number

hor :1

Certificate Date: 04-NOV-93 Invoice No. : 19323748

2

KIV

		_				CERTIFICATE OF ANALYSIS				A9323/48			
SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm									
62744 62745 62746 62747 62753	201 240 201 240 201 240 201 240 201 240 201 240	242 75 71 65 90	113 167 178 143 318	69 154 145 95 105									
52754 52755 52756 52757 52791	201 240 201 240 201 240 201 240 201 240 201 240	76 52 109 55 84	102 610 95 107 72	55 32 106 133 152									
52792 52793 52794 52795 52796	201 240 201 240 201 240 201 240 201 240 205 274	85 112 91 310 7	70 82 162 175 60	94 178 295 163 330									
62797 62798 62799 62800 62801	201 240 201 240 201 240 205 274 201 240	301 384 250 38 46	420 570 200 153 125	138 194 98 109 107									
62802 62803 62823 62824 62827	201 240 201 240 201 240 201 240 201 240 201 240	47 34 24 7 8	158 125 81 74 53	137 113 72 89 97									
52828 52829 52830 52831 52832	201 240 201 240 201 240 201 240 201 240 201 240	9 13 20 23 18	100 102 74 57 63	133 139 63 30 82	an a								
62833 52834 52835 52836 52837	201 240 201 240 201 240 201 240 201 240 201 240	61 34 33 69 240	90 82 98 103 272	69 125 120 68 164	-								
52838 52839 52840 52841 52842	201 240 201 240 201 240 201 240 201 240 201 240	81 109 63 37 81	74 84 62 71 57	107 111 64 91 88	· · · · · ·								

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : 6000 SOIL Comments: ATTN: JANINE CALDER Page er :2 Total :2 Certificate Date: 04-NOV-93 Invoice No. : 19323748 P.O. Number : Account :KIV

**

		"				CERTIFIC	ATE OF A	NALYSIS	A93	23748	
SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm							
62843 62844 62845 62846 62847	201 240 201 240 201 240 201 240 201 240 201 240	15 37 48 19 78	49 90 20 70 58	86 91 46 94 63							
62848 62851 62883 62919 62863	201 240 201 240 201 240 201 240 201 240 201 240	363 37 133 23 274	225 64 175 110 345	215 143 58 143 167	· ·						
62864 62865 62866 62867 62868	205 274 205 274 201 240 201 240 201 240	270 252 345 144 178	185 189 250 135 132	145 46 86 85 78							· · · · · · · · · · · · · · · · · · ·
62869 62870 62871 62872 62873	201 240 201 240 201 240 201 240 201 240 205 274	243 292 333 242 35	144 225 230 180 19	93 150 195 245 89							
62874 62875 62876 62952 62953	201 240 201 240 201 240 201 240 201 240 201 240	46 69 75 55 38	107 57 130 100 74	75 34 112 76 60							
62954 62955 62956 62958 62959	201 240 201 240 201 240 201 240 201 240 201 240	35 37 105 91 64	68 65 190 167 167	70 53 127 112 162							
62960	201 240	82	150	148							
										. *	

CERTIFICATION:

Str. HBrechler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 Page Nu Total Page 1 Certificate ate: 04-NOV-93 Invoice No. 19323748 P.O. Number : Account :KIV

Project : 6000 SOIL Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS

A9323748

1		-						20140	
SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm					
62744 62745 62746 62747 62753	201 240 201 240 201 240 201 240 201 240 201 240	242 75 71 65 90	113 167 178 143 318	69 154 145 95 105			· · · ·		
62754 62755 62756 62757 62791	201 240 201 240 201 240 201 240 201 240 201 240	76 52 109 55 84	102 610 95 107 72	55 32 106 133 152					
62792 62793 62794 62795 62796	201 240 201 240 201 240 201 240 205 274	85 112 91 310 7	70 82 162 175 60	94 178 295 163 330	· ·				
62797 62798 62799 62800 62801	201 240 201 240 201 240 205 274 201 240	301 384 250 38 46	420 570 200 153 125	138 194 98 109 107	· .				
62802 62803 62823 62824 62827	201 240 201 240 201 240 201 240 201 240 201 240	47 34 24 7 8	158 125 81 74 53	137 113 72 89 97					
62828 62829 62830 62831 62832	201 240 201 240 201 240 201 240 201 240 201 240	9 13 20 23 18	100 102 74 57 63	133 139 63 30 82					
62833 62834 62835 62836 62837	201 240 201 240 201 240 201 240 201 240 201 240	61 34 33 69 240	90 82 98 103 272	69 125 120 68 164	·				
62838 62839 62840 62841 62842	201 240 201 240 201 240 201 240 201 240 201 240	81 109 63 37 81	74 84 62 71 57	107 111 64 91 88					

CERTIFICATION: Hart Buchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 Page Nu Total Pag Certificate Date: 04-NOV-93 Invoice No. : 19323748 P.O. Number Account : KIV

Project : 6000 SOIL Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS A

A9323748

SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm					
62843 62844 62845 62846 62847	201 240 201 240 201 240 201 240 201 240 201 240	15 37 48 19 78	49 90 20 70 58	86 91 46 94 63					
62848 62851 62883 62919 62863	201 240 201 240 201 240 201 240 201 240 201 240	363 37 133 23 274	225 64 175 110 345	215 143 58 143 167					
62864 62865 62866 62867 62868	205 274 205 274 201 240 201 240 201 240	270 252 345 144 178	185 189 250 135 132	145 46 86 85 78					
62869 62870 62871 62872 62873	201 240 201 240 201 240 201 240 201 240 205 274	243 292 333 242 35	144 225 230 180 19	93 150 195 245 89	· .				
62874 62875 62876 62952 62953	201 240 201 240 201 240 201 240 201 240 201 240	46 69 75 55 38	107 57 130 100 74	75 34 112 76 60					
62954 62955 62956 62958 62959	201240201240201240201240201240	35 37 105 91 64	68 65 190 167 167	70 53 127 112 162					
62960	201 240	82	150	148	· · ·				
								•	

CERTIFICATION:

Sant Buchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

b.

Comments: ATTN: JANINE CALDER

C	ERTIFI	CATE A9323749
ĜEOFINE	EXPLOR	ATION CONSULTANTS LTD.
Project: P.O. # :	6000 ST	IREAM SEDS.
		ed to our lab in Vancouver, BC. printed on 4-NOV-93.
	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
201 240 220 238	37 37 37 37 37	Dry, sieve to -80 mesh Dry, sieve to -10 mesh Transferring charge Nitric-aqua-regia digestion

ANALYTICAL PROCEDURES

CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
993 2 5	37 37 37 37	Au ppb: Fuse 30 g sample Cu ppm: HNO3-aqua regia digest Zn ppm: HNO3-aqua regia digest	га-наа Алз Алз	1 1 1	10000 10000 10000

A9323749

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 Page er :1 Total :1 Certificate Date: 04-NOV-93 Invoice No. :19323749 P.O. Number : Account :KIV

Project : 6000 STREAM SEDS. Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS

A9323749

	÷							23/49	
SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm					
62666 62667 62668 62670 62671	201 240 201 240 201 240 201 240 201 240 201 240	173 276 404 340 305	378 620 1030 380 307	185 170 104 166 158					
62674 62675 62681 62682 62683	201 240 201 240 201 240 201 240 201 240 201 240	114 59 169 230 146	204 109 352 454 330	358 358 195 305 230			· · · · · · · · · · · · · · · · · · ·		
62684 62685 62686 62687 62688	201 240 201 240 201 240 201 240 201 240 201 240	197 116 113 185 215	342 307 292 400 400	218 187 190 245 238					
62689 62690 62691 62692 62693	201 240 201 240 201 240 201 240 201 240 201 240	167 154 121 109 149	332 362 340 343 311	240 229 225 212 196			· · · · · ·		
62694 62696 62697 62700A 62775	201 240 201 240 201 240 201 240 201 240 201 240	124 123 101 174 < 1	354 350 347 280 60	218 207 204 210 105					
62825 62826 62922 62949 62950	201 240 201 240 201 240 201 240 201 240 201 240	152 3 2 3 102	270 62 64 64 148	223 104 105 106 310					
62961 62982 62983 62984 62990	201 240 201 240 201 240 201 240 201 240 201 240	133 13 25 40 47	226 137 168 134 143	372 203 315 270 300					
62993 62995	201 240 201 240	20 10	143 128	132 100					
]				IR D	

CERTIFICATION: Start Suchler

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

GEOFINE EXPLORATION CONSULTANTS LTD.

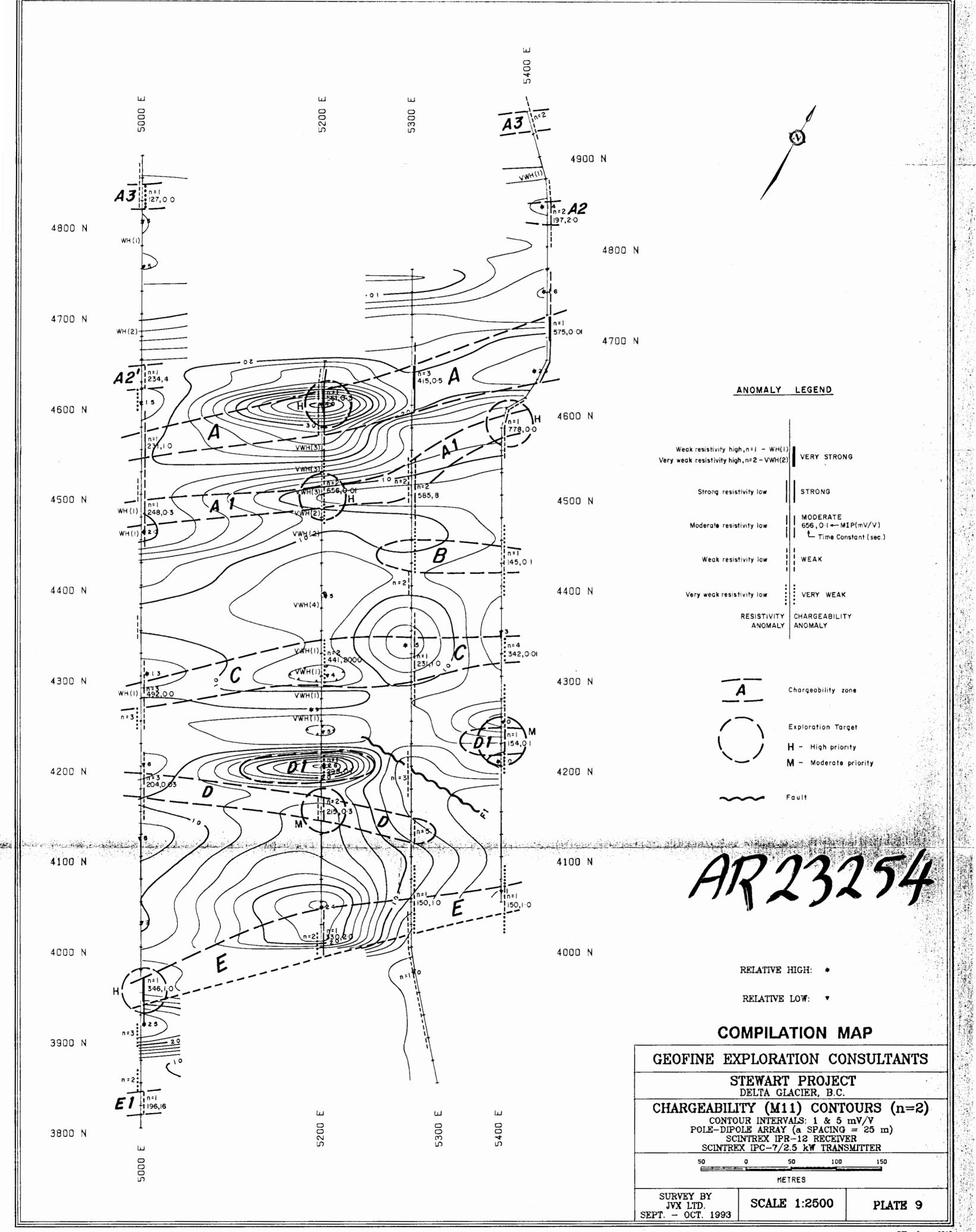
49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Nur Total Pag ė:1 Certificate pate: 04-NOV-93 Invoice No. : 19323749 P.O. Number : KIV Account

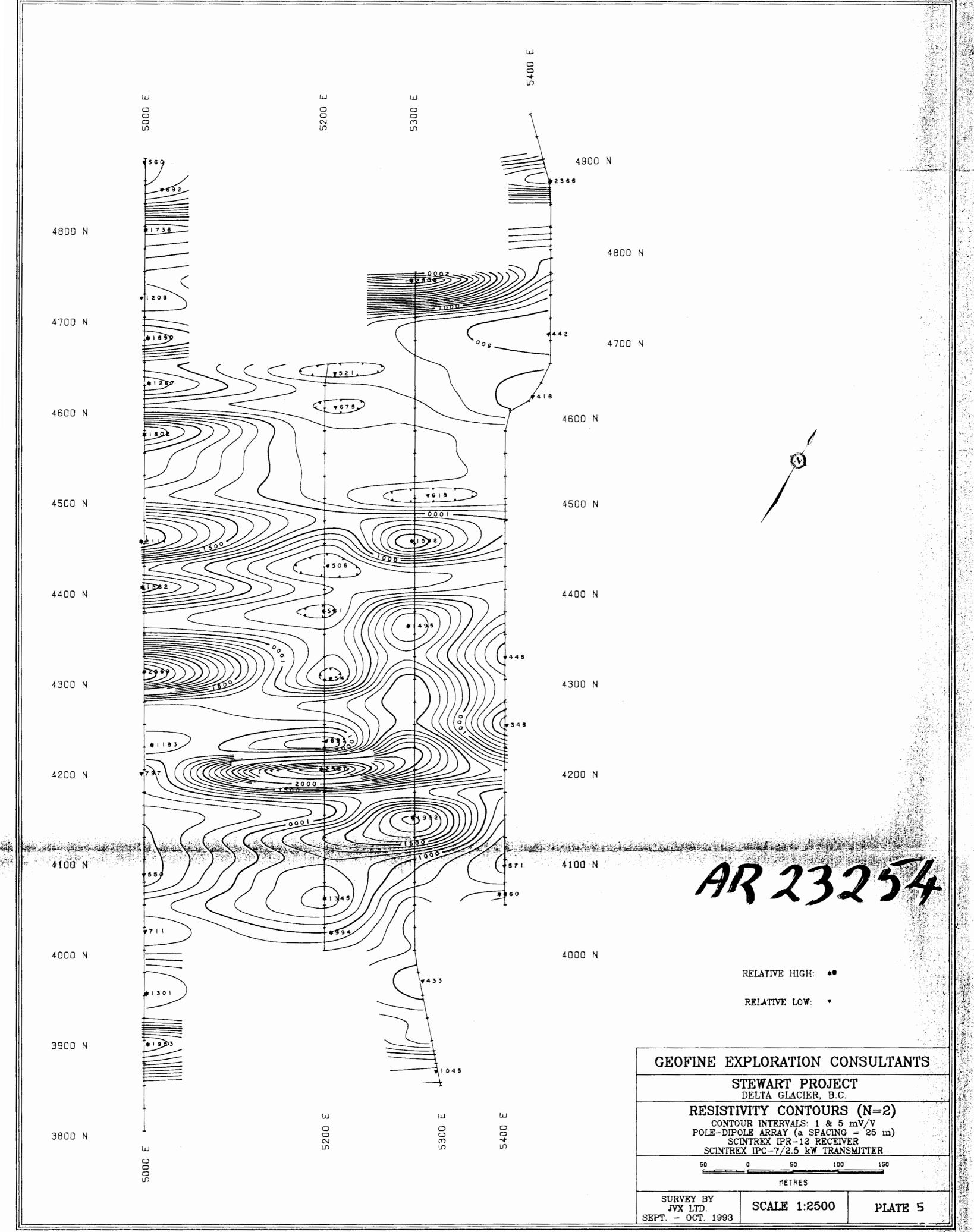
Project : 6000 STREAM SEDS. Comments: ATTN: JANINE CALDER

CERTIFICATE OF ANALYSIS

A9323749

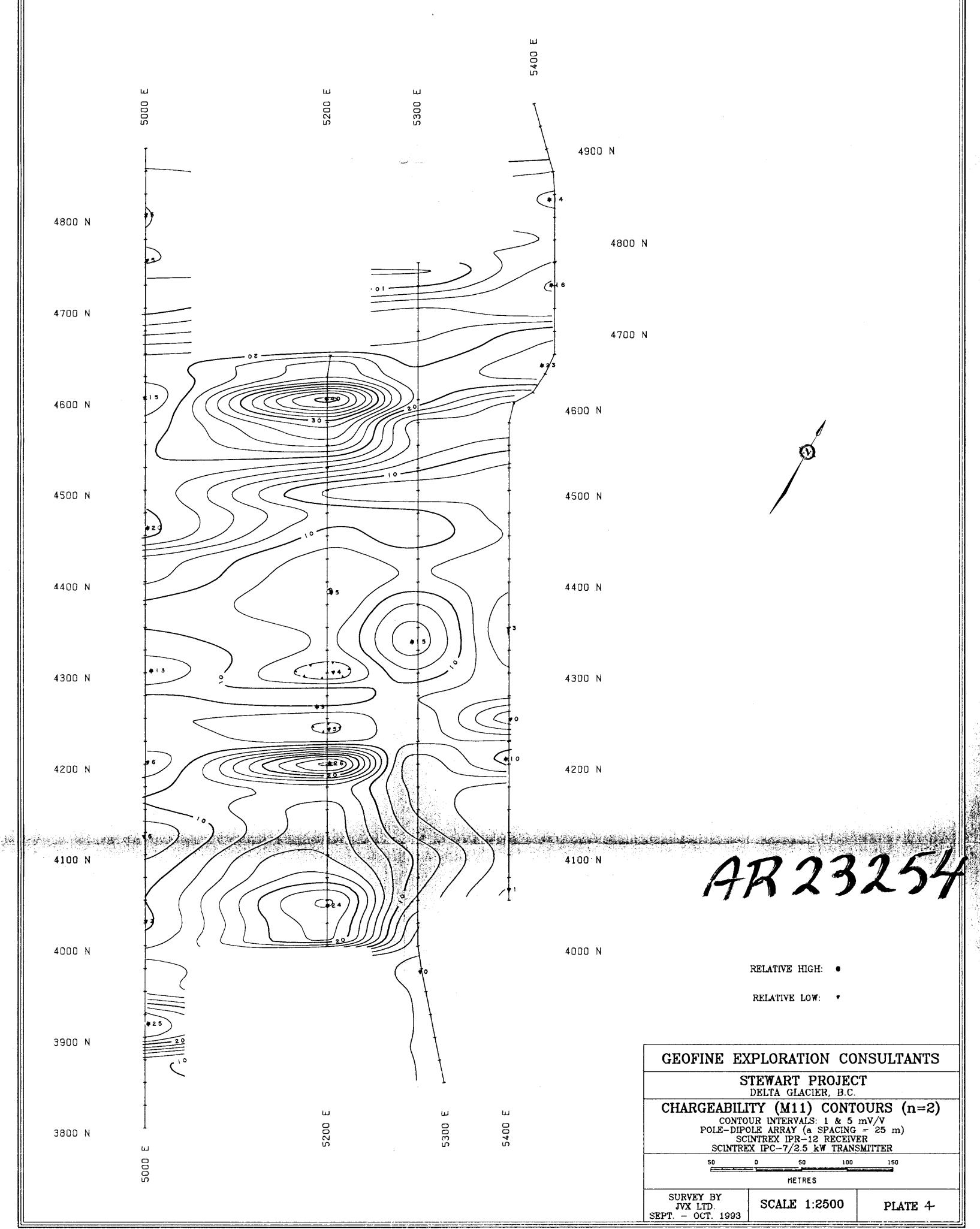

SAMPLE	PREP CODE	Au NAA ppb	Cu ppm	Zn ppm					
52666 52667 52668 52670 52671	201 240 201 240 201 240 201 240 201 240 201 240	173 276 404 340 305	378 620 1030 380 307	185 170 104 166 158					
2674 2675 2681 2682 2683	201 240 201 240 201 240 201 240 201 240 201 240	114 59 169 230 146	204 109 352 454 330	358 358 195 305 230					
2684 2685 2686 2687 2688	201 240 201 240 201 240 201 240 201 240 201 240	197 116 113 185 215	342 307 292 400 400	218 187 190 245 238					-
2689 2690 2691 2692 2693	201 240 201 240 201 240 201 240 201 240 201 240	167 154 121 109 149	332 362 340 343 311	240 229 225 212 196					
2694 2696 2697 2700A 2775	201 240 201 240 201 240 201 240 201 240 201 240	124 123 101 174 < 1	354 350 347 280 60	218 207 204 210 105					
2825 2826 2922 2949 2950	201 240 201 240 201 240 201 240 201 240 201 240	152 3 2 3 102	270 62 64 64 148	223 104 105 106 310					
2961 2982 2983 2984 2990	201 240 201 240 201 240 201 240 201 240 201 240	133 13 25 40 47	226 137 168 134 143	372 203 315 270 300					
2993 2995	201 240 201 240	20 10	143 128	132 100		· · · · ·			
	I		I <u>-</u> .	1			tai	Buch	les

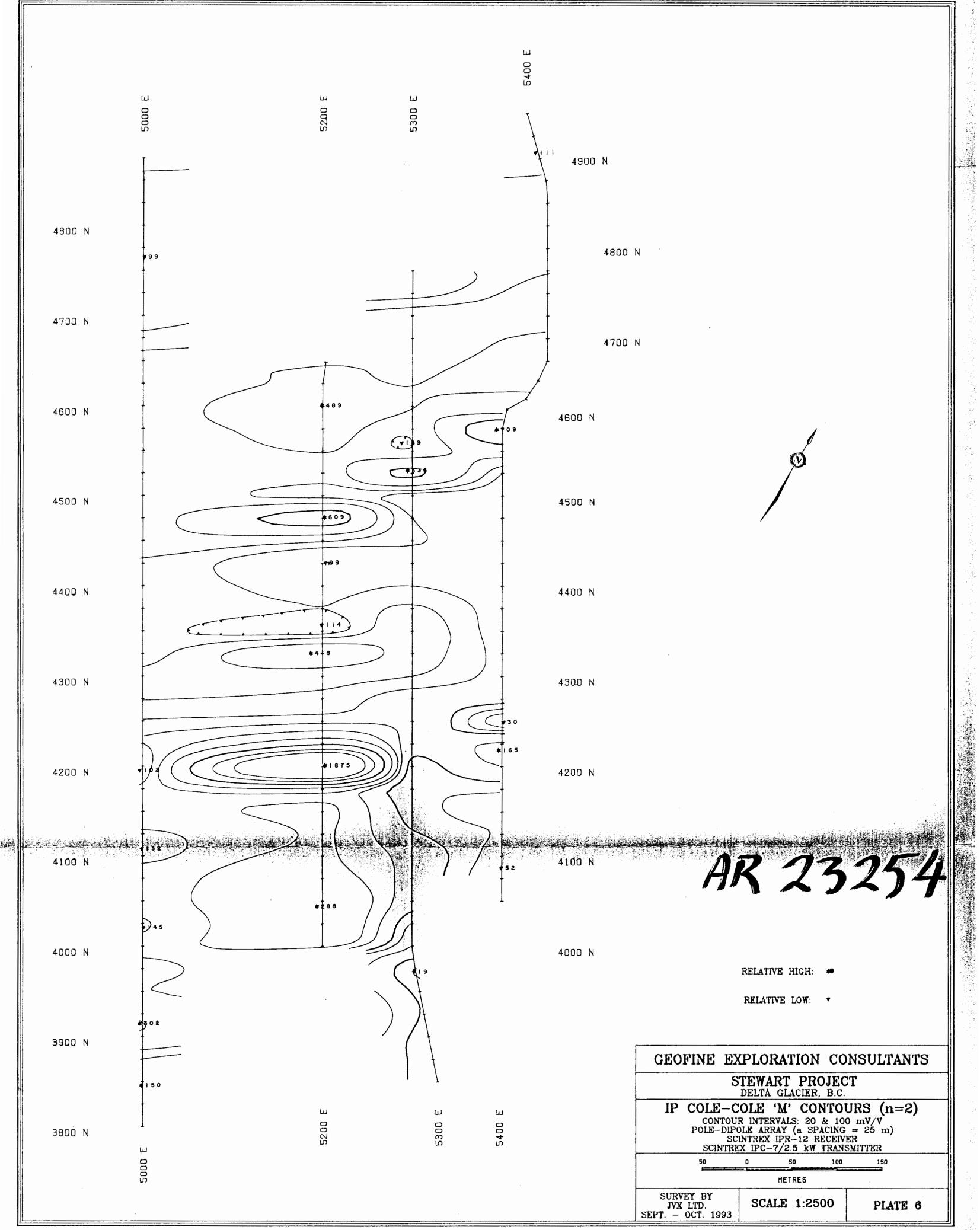
APPENDIX 3

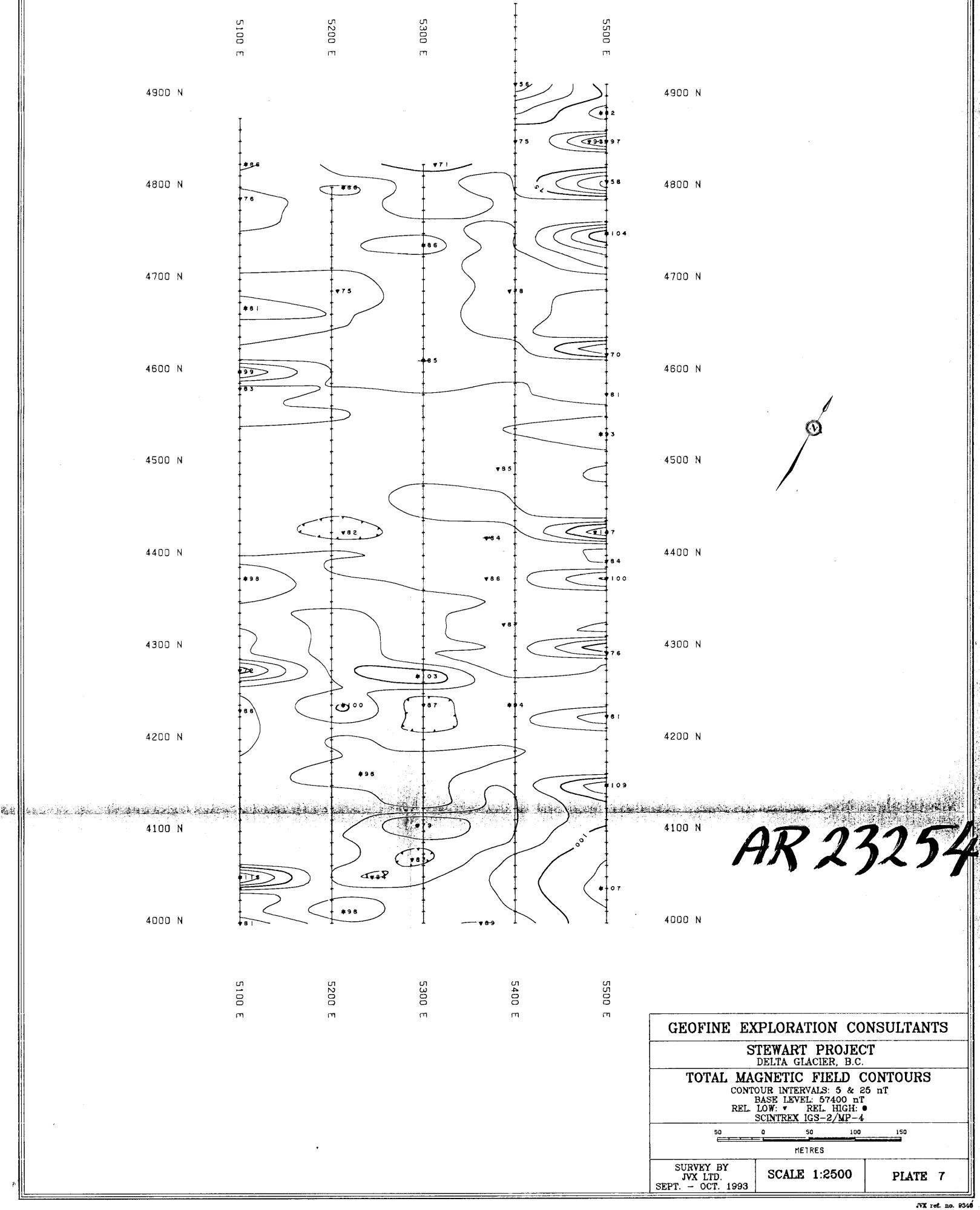

SEE OCT 1993 JVX GEOPHYSICAL REPORT ATTACHED

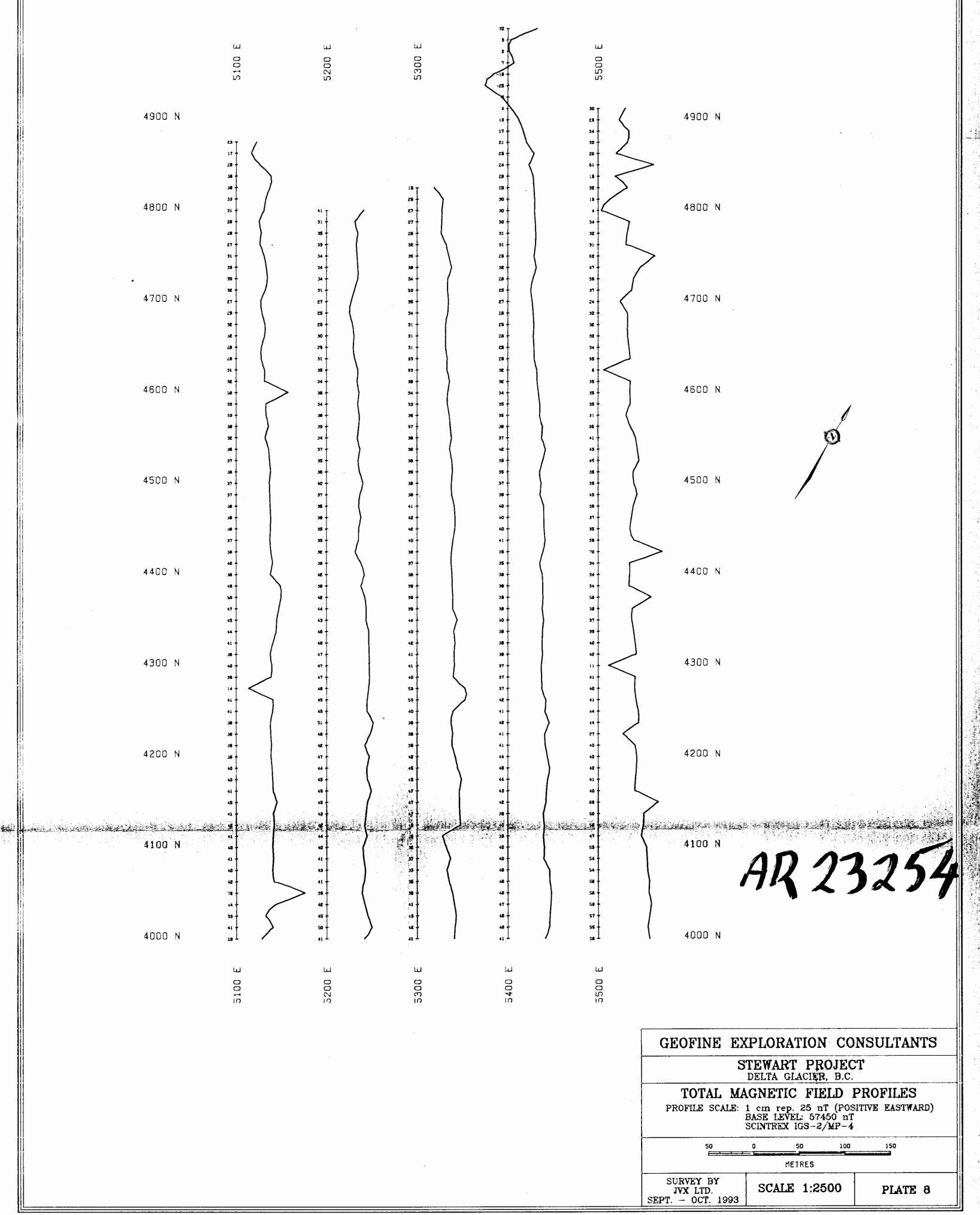
APPENDIX 4

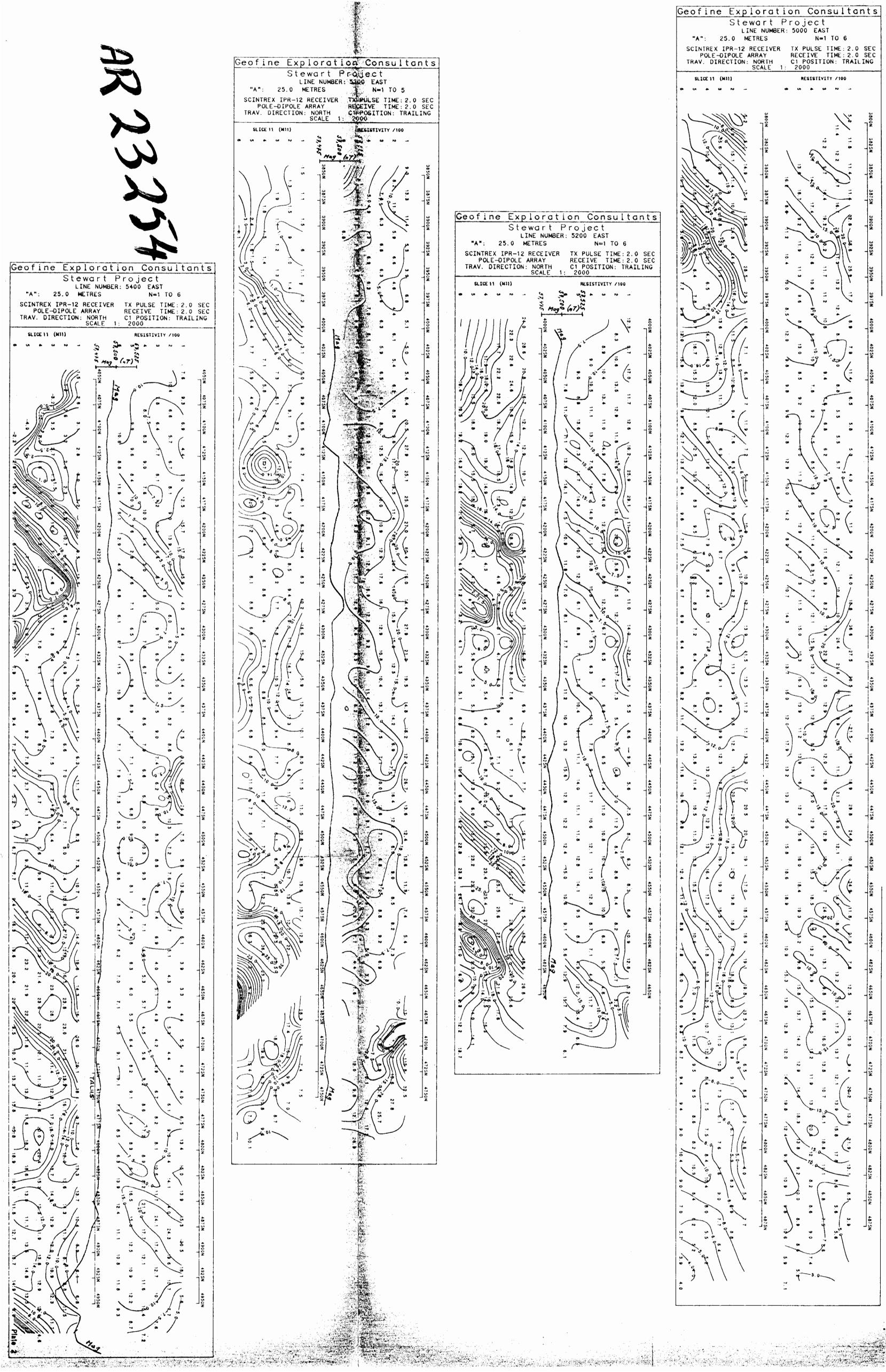
JVX GEOPHYSICAL REPORT

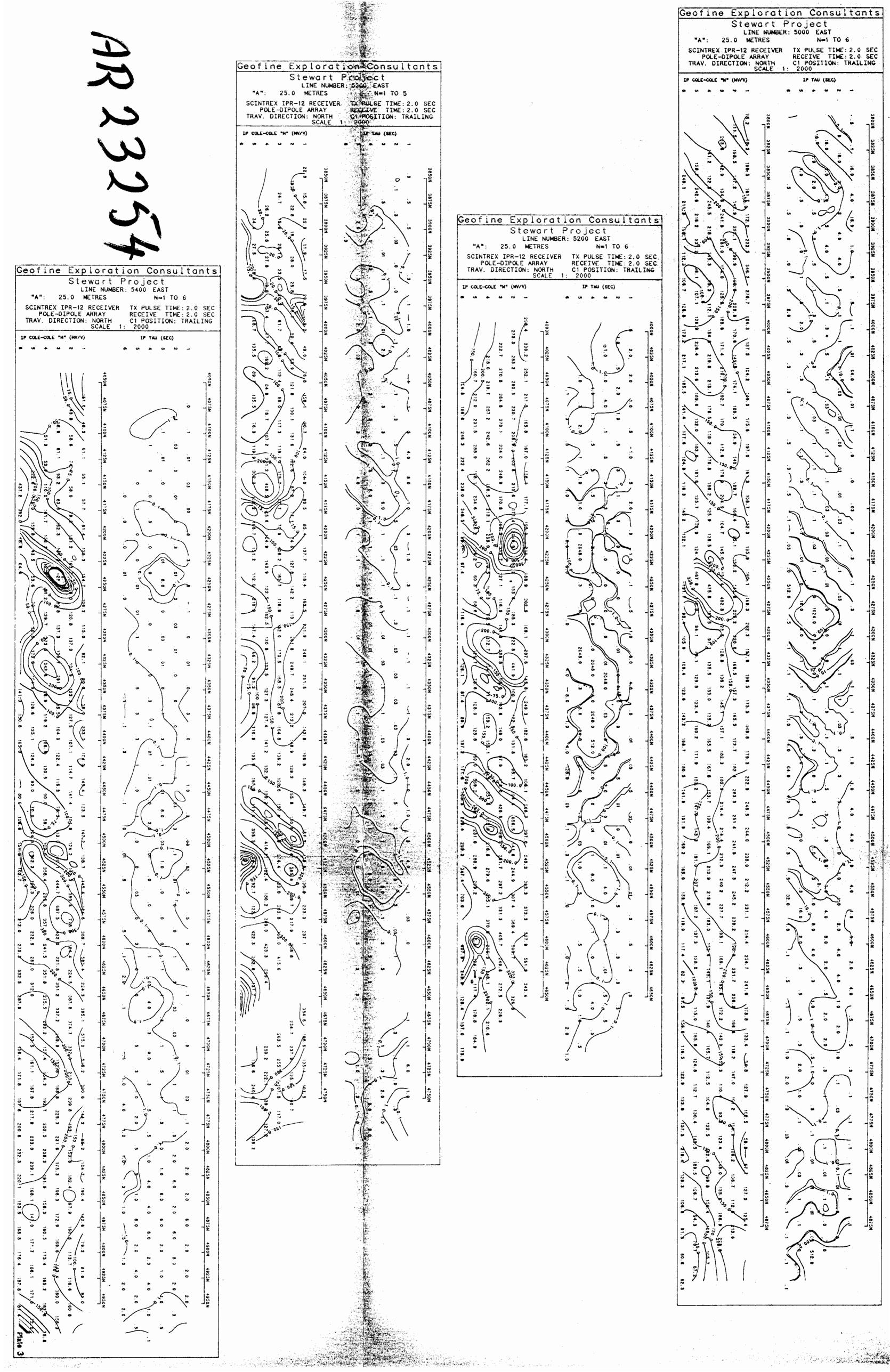


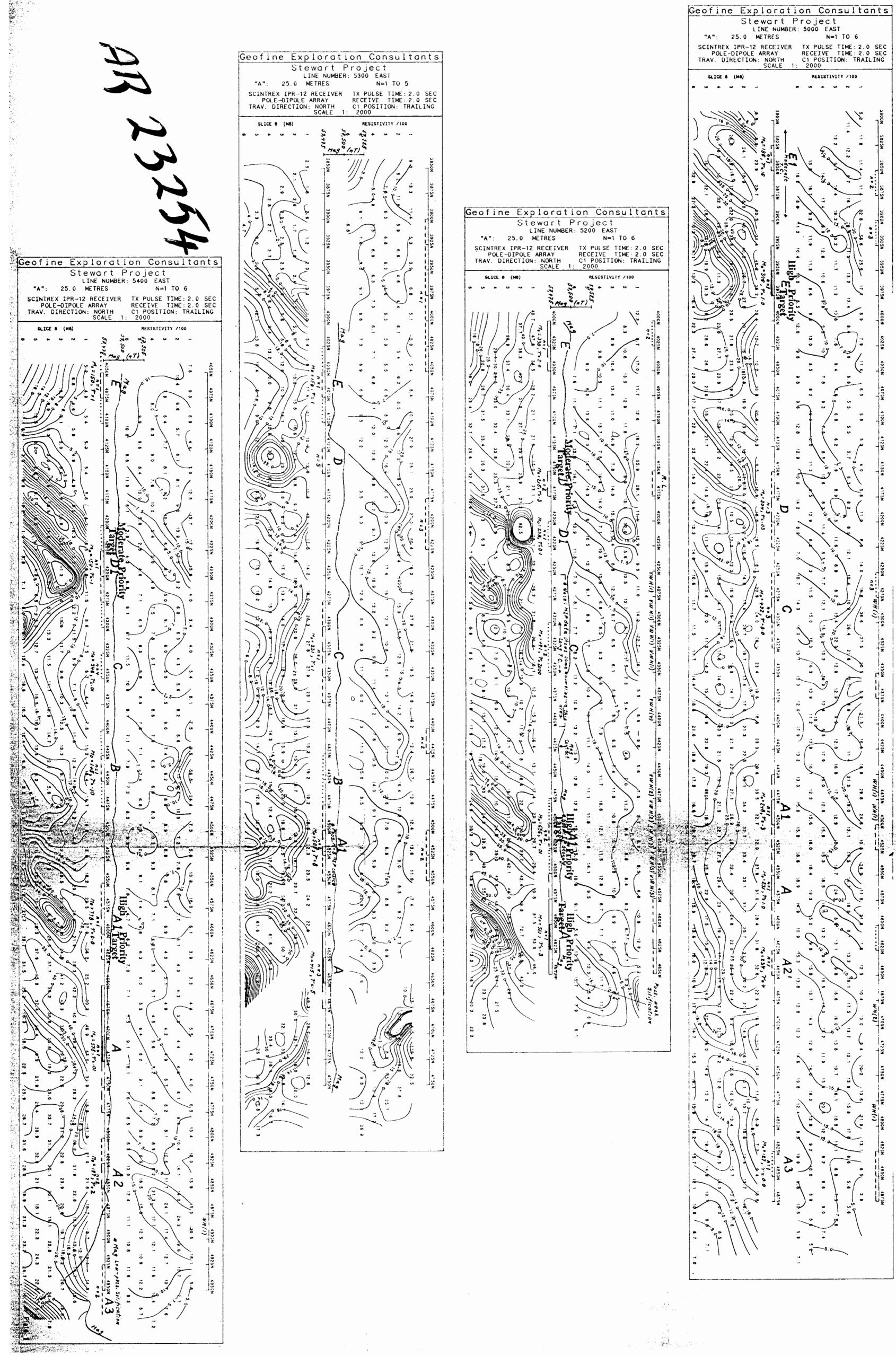

JVX ref. no. 9346

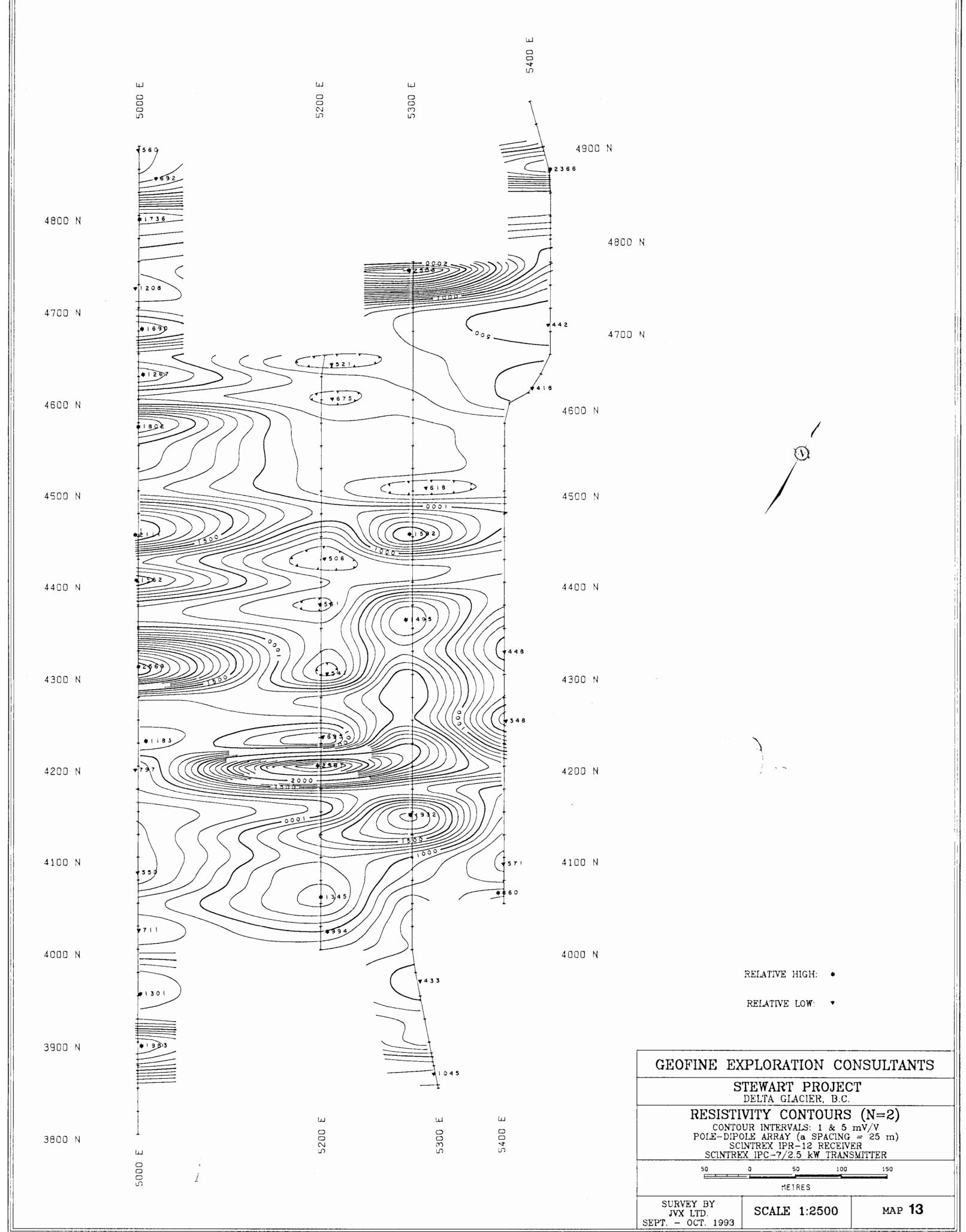

JVX ref. no. 9348

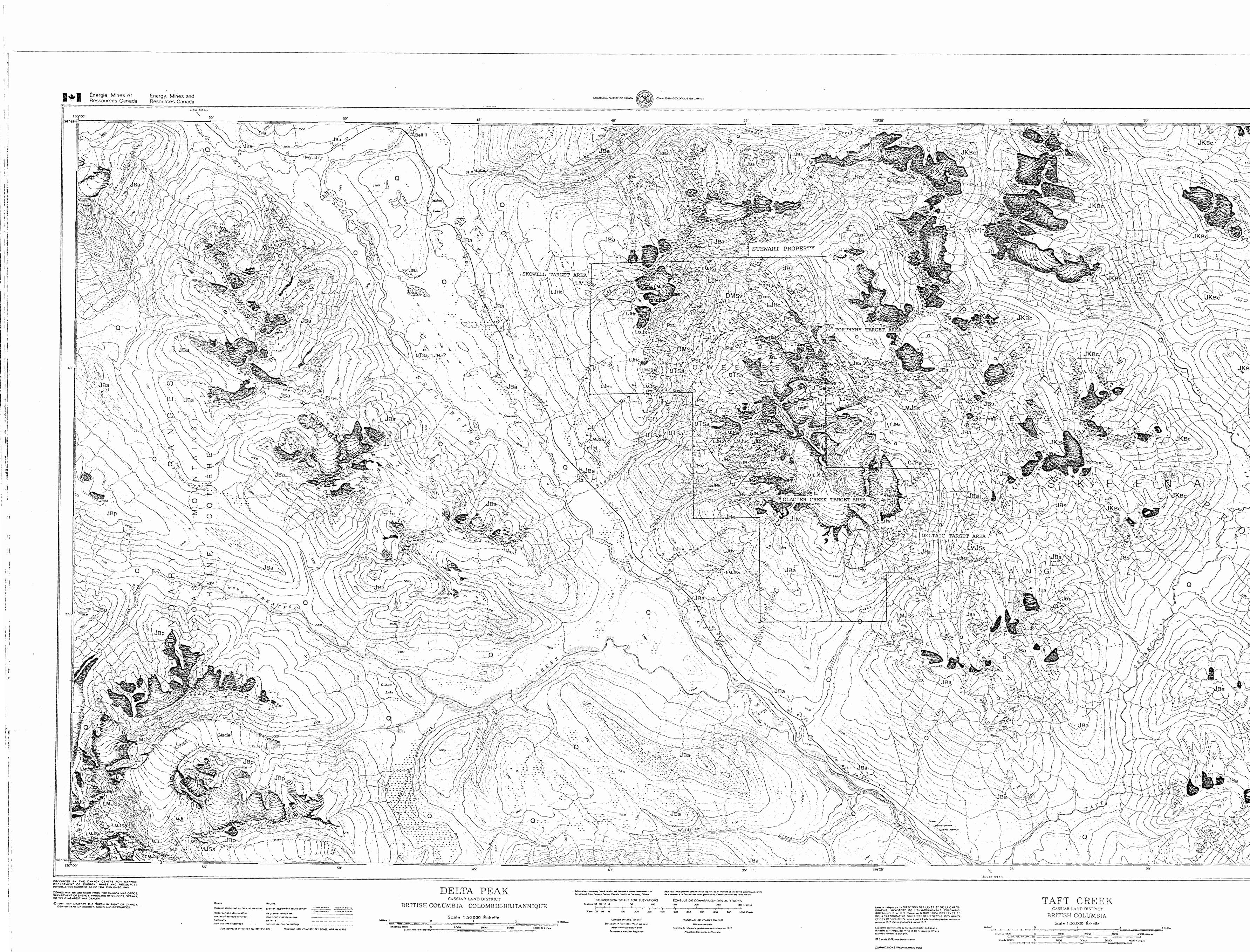

1、1974年3月

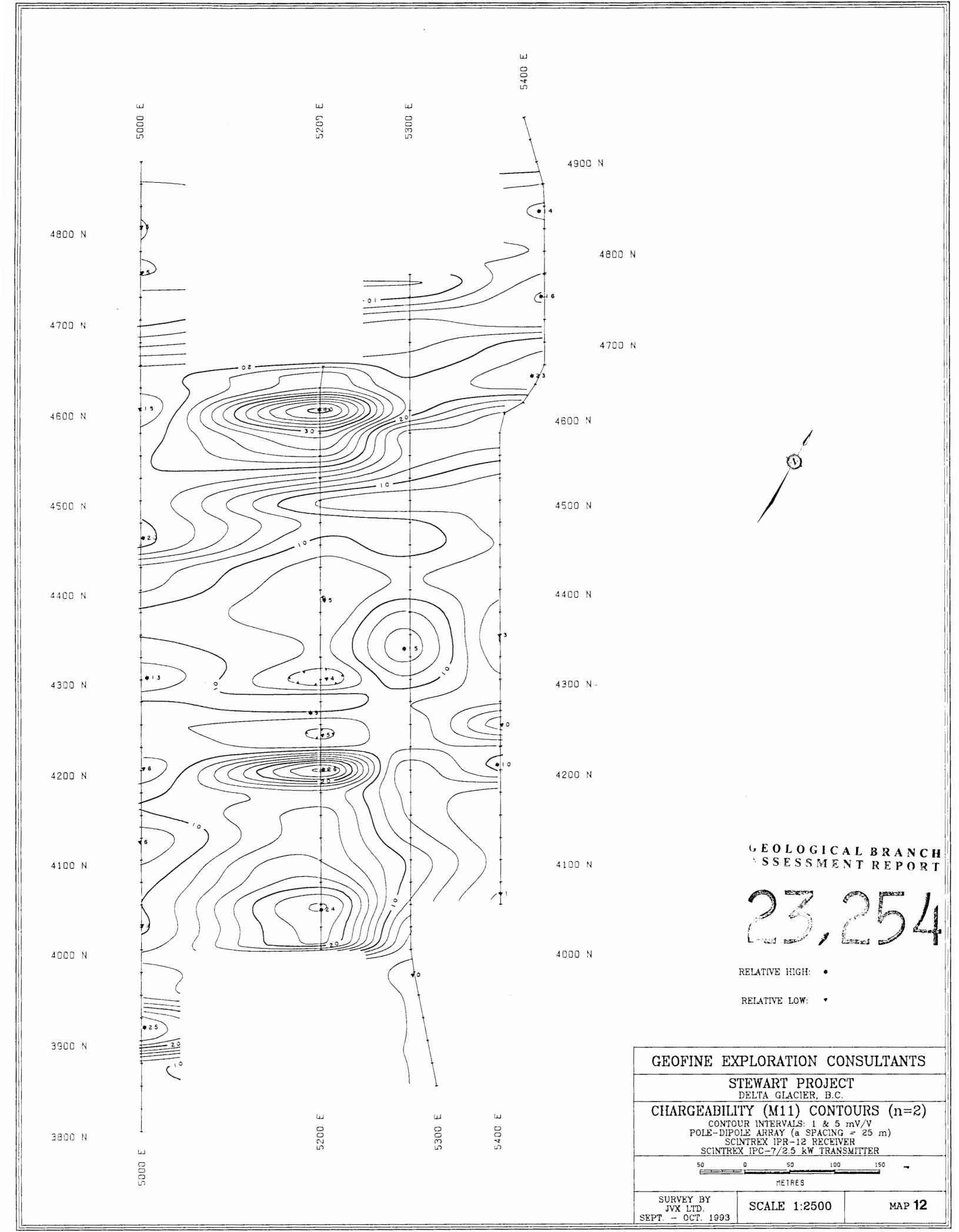


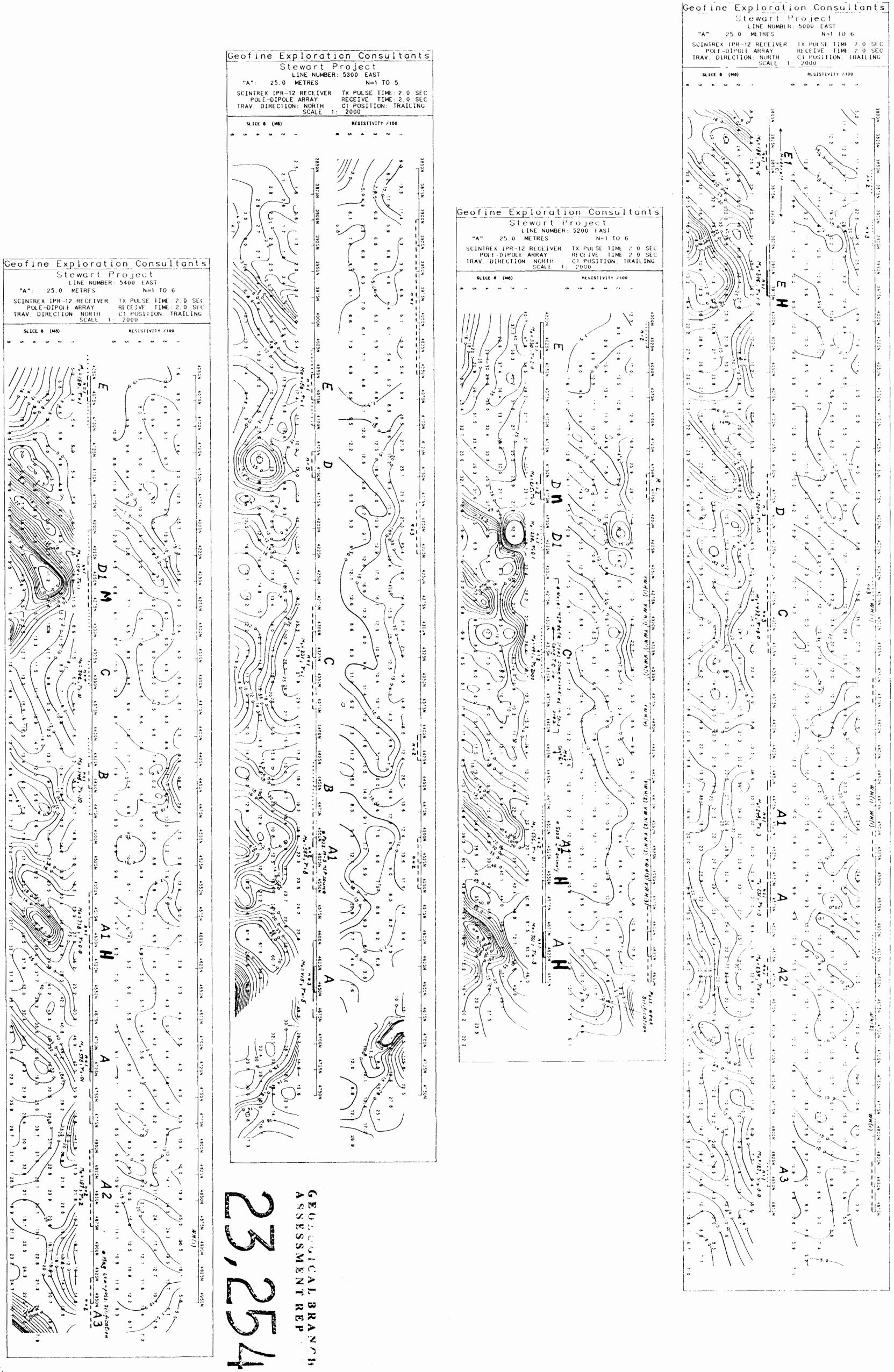


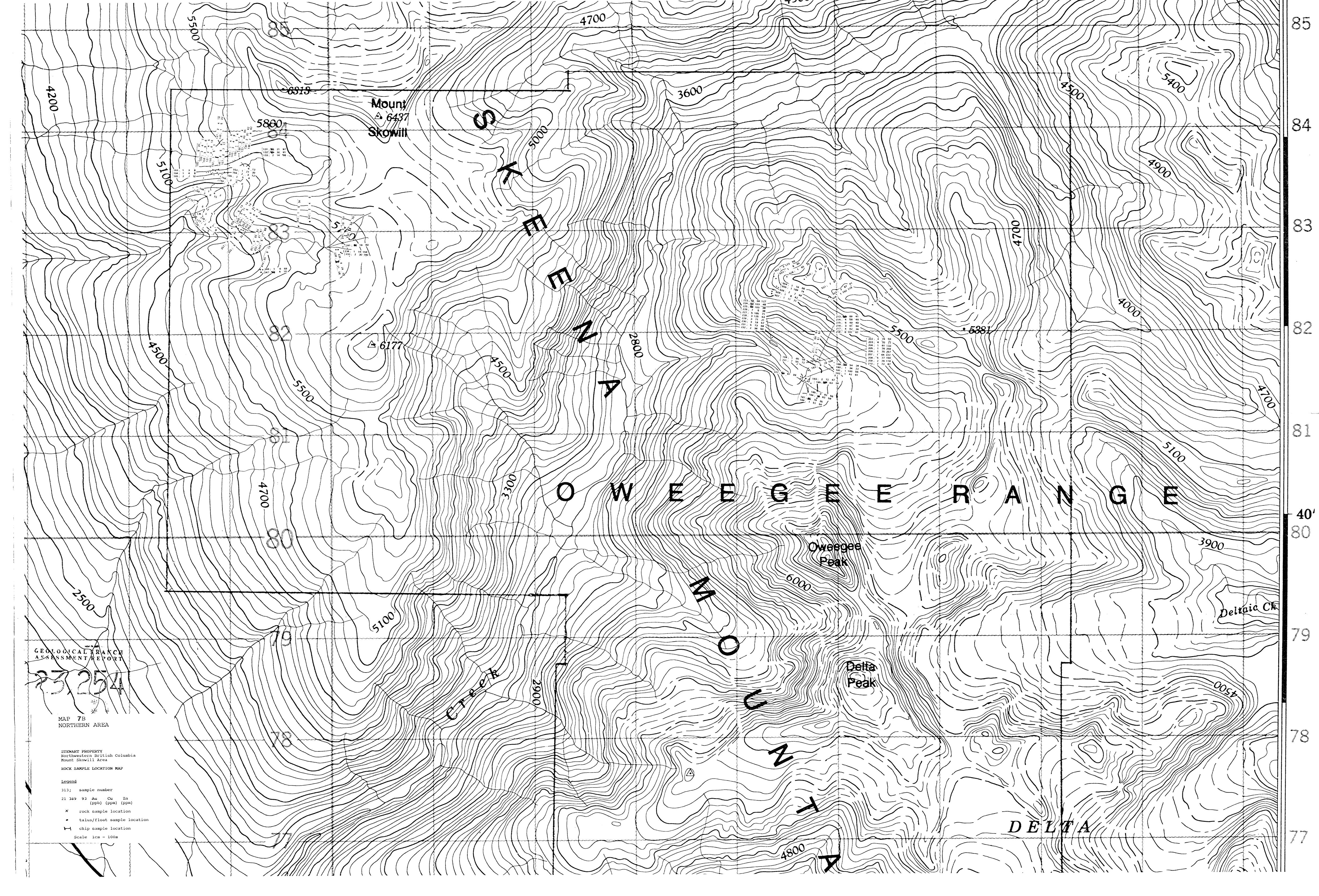

WE not no 0944

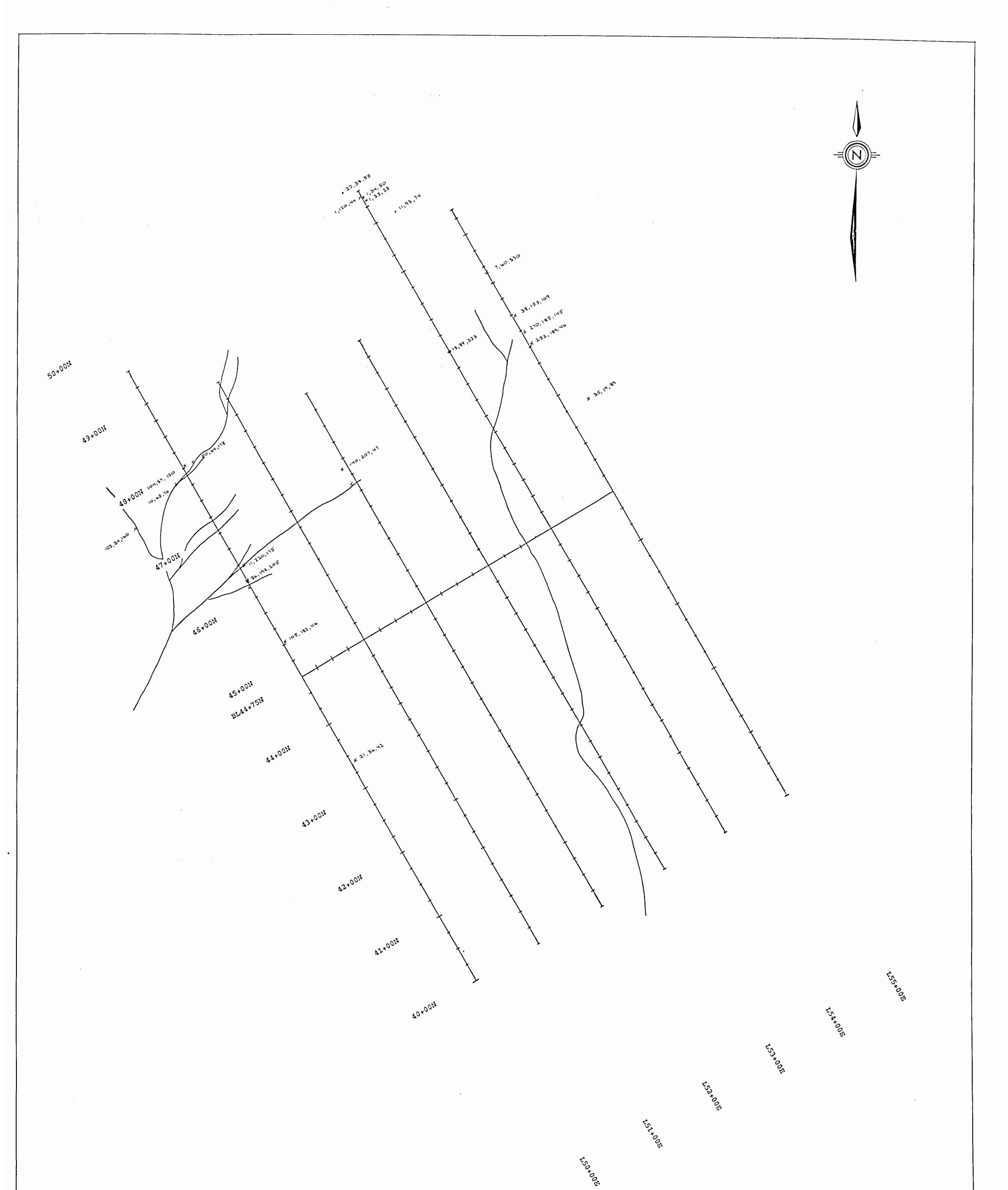




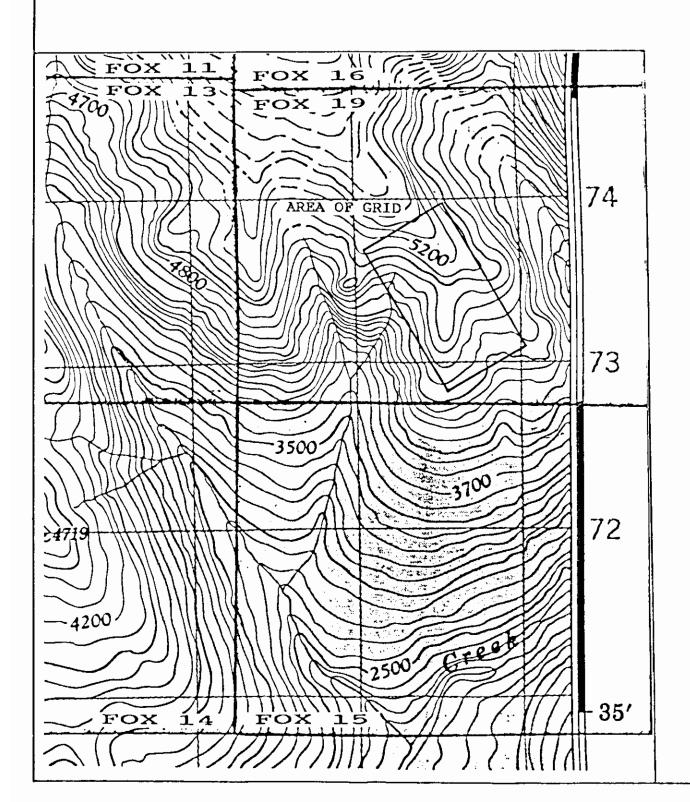


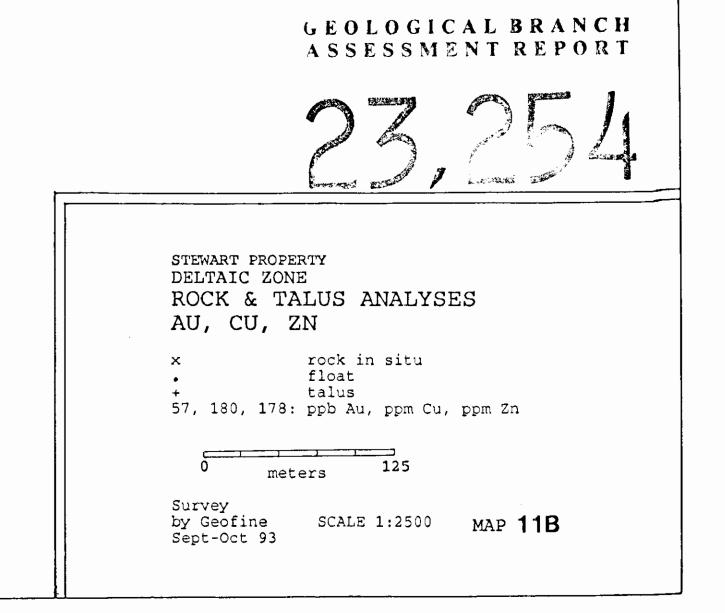

JVX ref. no. 9348

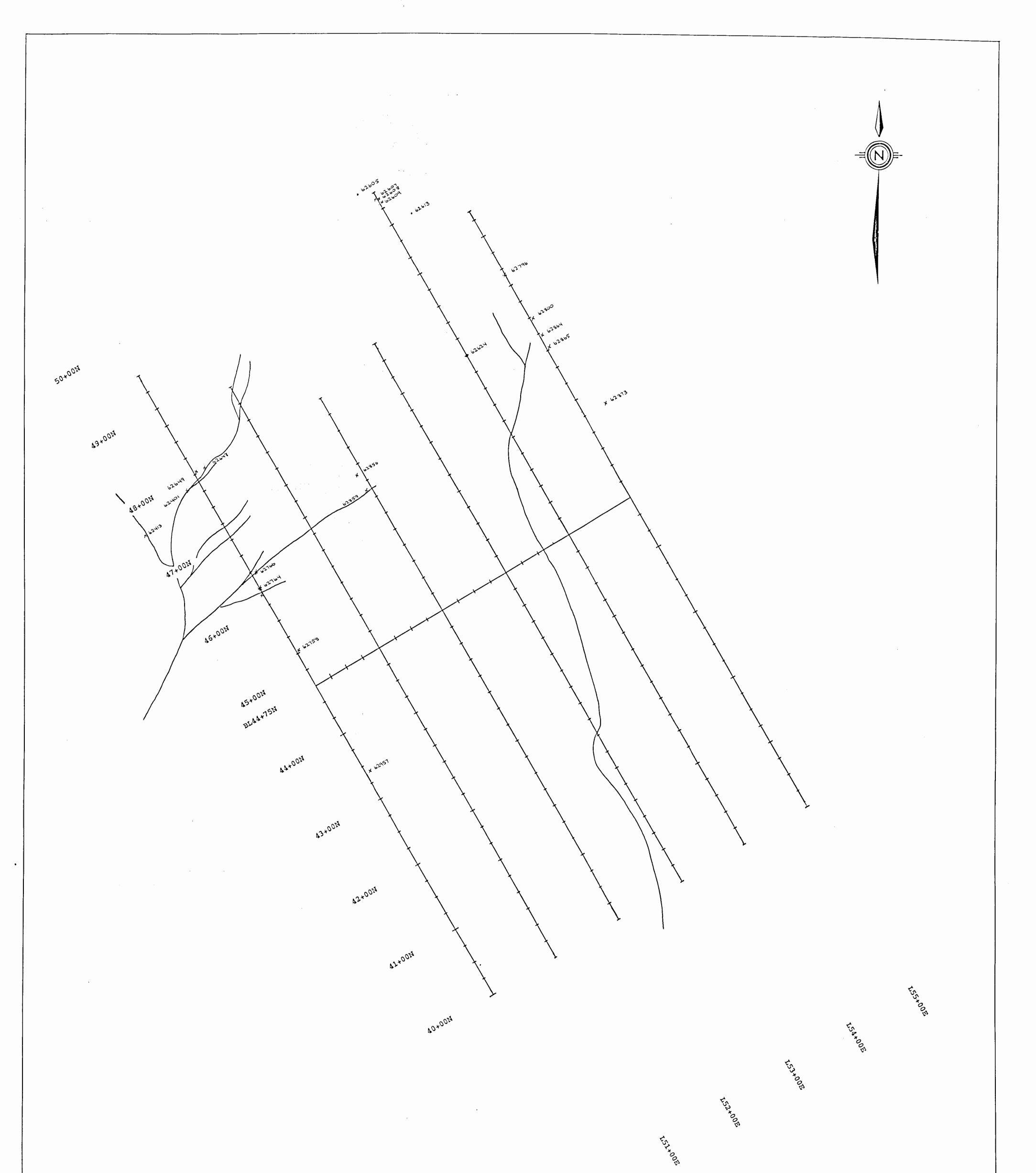


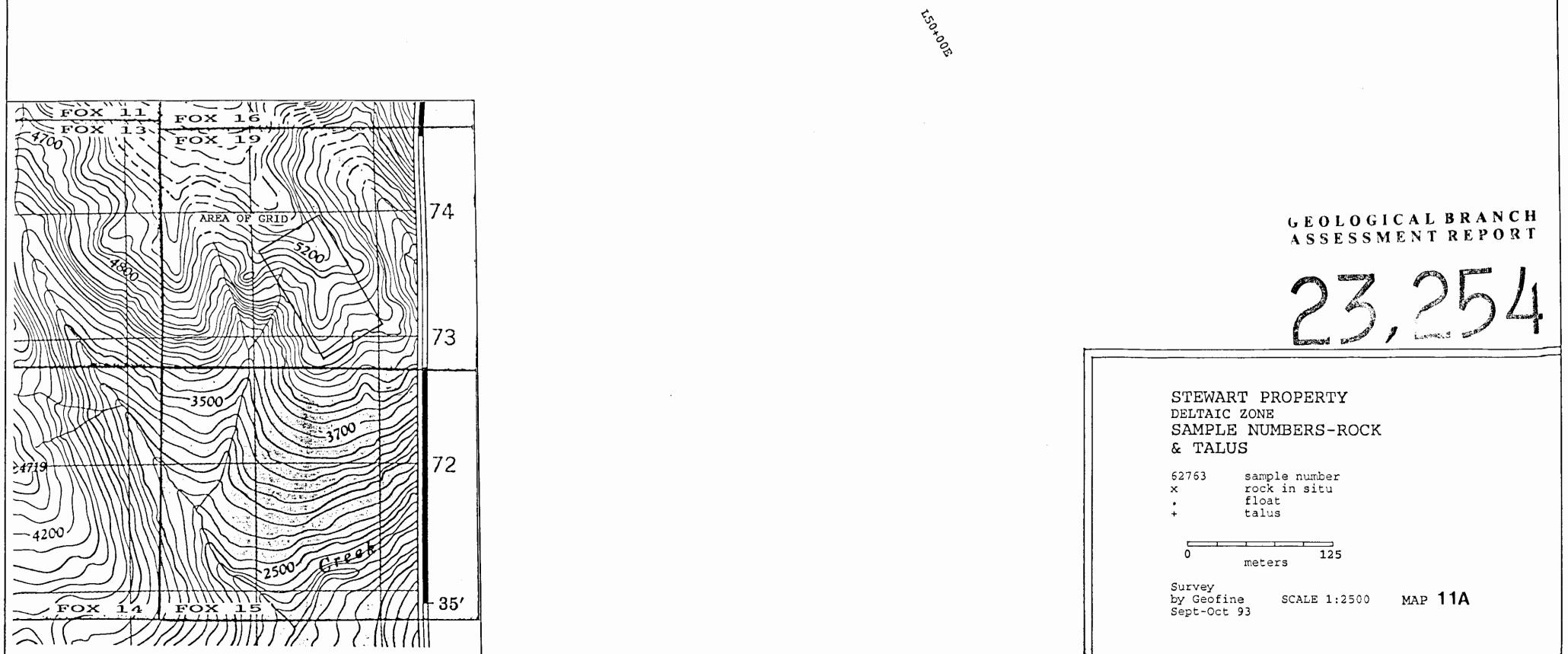

GEOLOGICAL BRANCH ASSESSMENT REPORT 23,254

Canadä		
129°15′ 56°45′		
	GEOLOGY OF OWEEGEE DOME	
	DELTA PEAK (104A/12) AND TAFT CREEK (104A/11W) MAP AREAS, NORTHWESTERN BRITISH COLUMBIA	
	C.J. GREIG and C.A. EVENCHICK (with contributions by M.H.Gunning, B.D.Ricketts and S.P.Porter)	
	Scale 1:50,000	
Hills Hills	LEGEND	
$\widetilde{\chi}$	Q thick drift: colluvium, alluvium, till.	
	STRATIFIED ROCKS MIDDLE(?) AND UPPER JURASSIC TO LOWER CRETACEOUS(?)	
	BOWSER LAKE GROUP chert litharenite lithofacies: fine to medium grained, moderately well sorted chert litharenite, interrbedded silty mudstone, common bivalve coquinas, rare chert pebble conglomerate.	
	MIDDLE(?) AND UPPER JURASSIC BOWSER LAKE GROUP	
	JBs silty mudstone lithofacies: bioturbated silty mudstone with regularly interbedded, buff weathering, Fe-carbonate cemented fine grained sandstone.	
Sc ~	JBa arkosic volcanic litharenite turbidite lithofacies; thin and medium bedded, fine to medium grained, poorly sorted arkosic litharenite with interbedded silty mudstone.	
40	JBp pyritic silty mudstone lithofacies; pyritic, siliceous, tuffaceous silty mudstone, fine to medium grained lithic arkose.	
	LOWER AND MIDDLE JURASSIC HAZELTON GROUP SALMON RIVER FORMATION	
H H	LMJSs thin bedded siliceous silty mudstone, clay-altered dust tuff(?), discontinuous limestone lenses.	
	LMJSb amygdaloidal pillow basalt, basalt pillow breccia, tuff-breccia and debris flow breccia.	
Ţ	LMJSr rhyodacite lapilli tuff-breccia; locally welded.	
A A	LMJS fossiliferous limy, coarse grained arkose; polymict pebble, boulder and cobble conglomerate.	
	LMJSp pyritic silty shale and mudstone.	
	LMJS undivided Spatsizi Group	
	LOWER JURASSIC HAZELTON GROUP	
	LJHr felsic lapilli tuff-breccia, ash and dust tuff. Diff(worth)	
	LJHc boulder and cobble conglomerate, pebbly sandstone; well-stratified, green and maroon ash, lapilli and dust tuff, tuffaceous arkose and mudstone.	
JBs	LJHv intermediate to matic plagioclase-pyroxene and subordinate plagioclase-hornblende phyric lapilli tuff-breccia, lapilli, ash and dust tuff, flows; derived debris flows, arkose and siltstone:	
35	LJHa thick bedded and massive tuffaceous arkose and siltstone with abundant syn-depositional soft-sediment deformation structures; mafic to intermediate fragmental volcanic rocks and associated debris flows.	
	UPPER TRIASSIC STUHINI GROUP June plagicclase-pyroxene crystal tuff turbidite arkose and siltstone, plagioclase-pyroxene phyric	
	UTSa plagicclase-pyroxene crystal turn turbidite arkose and sitstone, plagicclase-pyroxene privit mafic to intermediate lapilli and ash tuff, tuff-breccia and rare flows; minor limestone lenses. PALEOZOIC	
722	STIKINE ASSEMBLAGE PERMIAN 	
526	PSI micrite. DEVONIAN AND MISSISSIPPIAN	
	DMSV matic to intermediate plagiclase-pyroxene phyric lapilli tuff, lapilli tuff-breccia, and flows; plagioclase phyric amygdaloidal andesite(?) flows; rhyolite and rhyodacite lapilli tuff-breccia.	
	INTRUSIVE ROCKS	
	MJI pyraxene diorite sills.	
	MAP SYMBOLS	
	Limit of thick Quaternary drift. Geologic contact: defined, approximate, inferred.	
	Thrust or reverse fault, defined, approximate, inferred; teeth on upthrown side.	
	High angle fault, defined, approximate, inferred; ball on downthrown side.	
lo tomin	Bedding: Inclined, vertical, overturned; estimated: vg=very gentle(<10°), g=gentle (10°-30°), m=moderate(30°-50°), s=steep(50°-70°), vs=very steep(>70°).	
J8a 56-30	Bedding formlines.	
129°15'	 Cleavage: inclined, vertical. Minor fold axis, plunge. 	
	Anticline, overturned anticline, trace of axial surface: defined, approximate; arrow indicates vergence direction.	
	Syncline, overturned syncline, trace of axial surface: defined, approximate; arrow indicates vergence direction.	
	Indicates vergence unrection. -1K' Line of cross-section	
	E Tossil locality	
	MAPA	

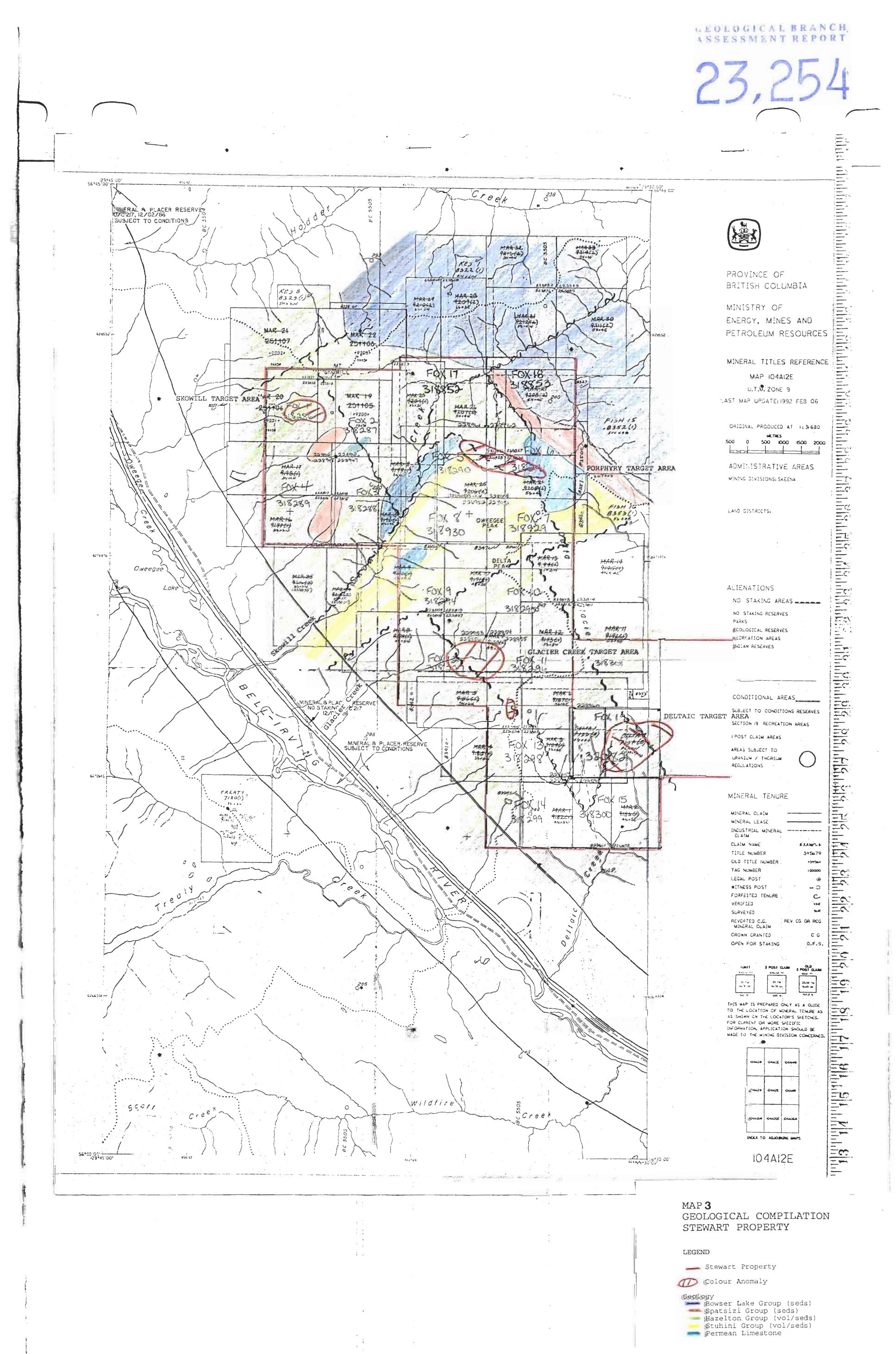


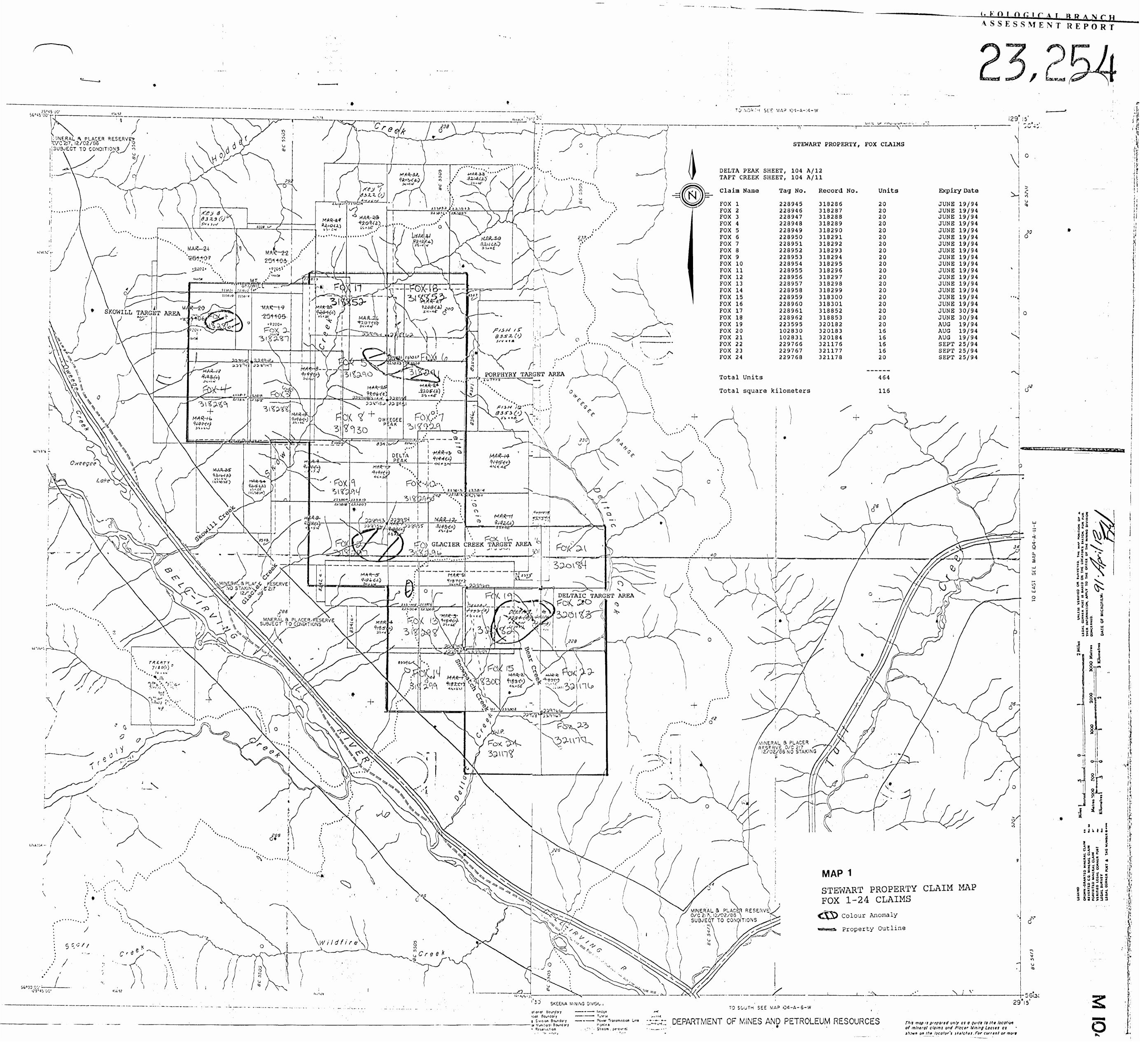


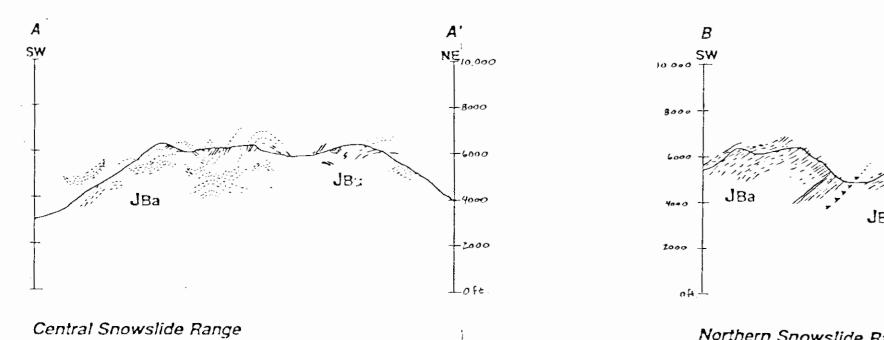




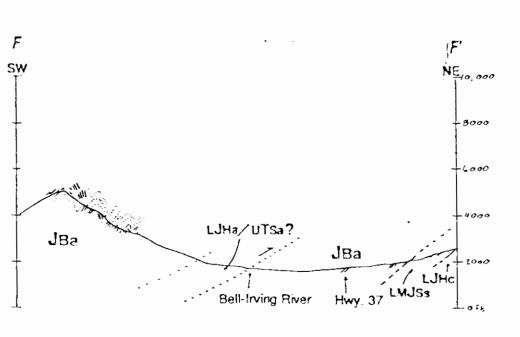
.

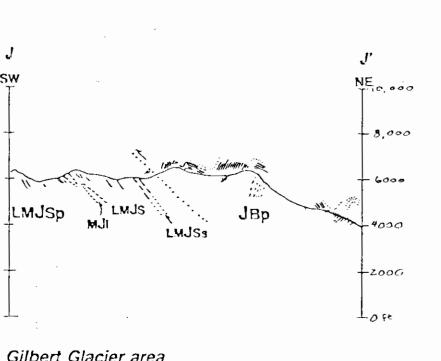


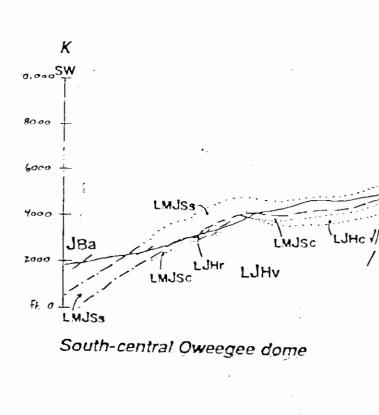


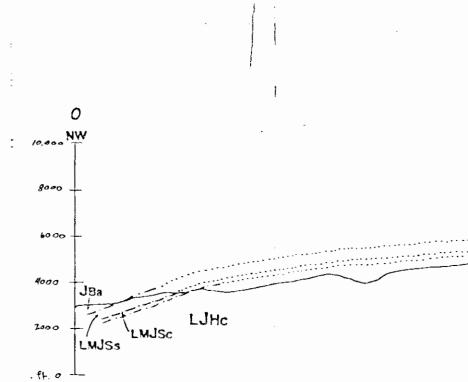


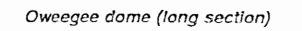
. .)

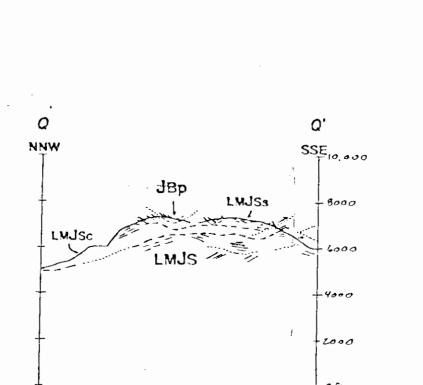

, ÷

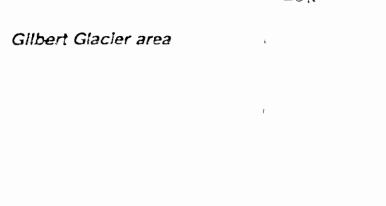


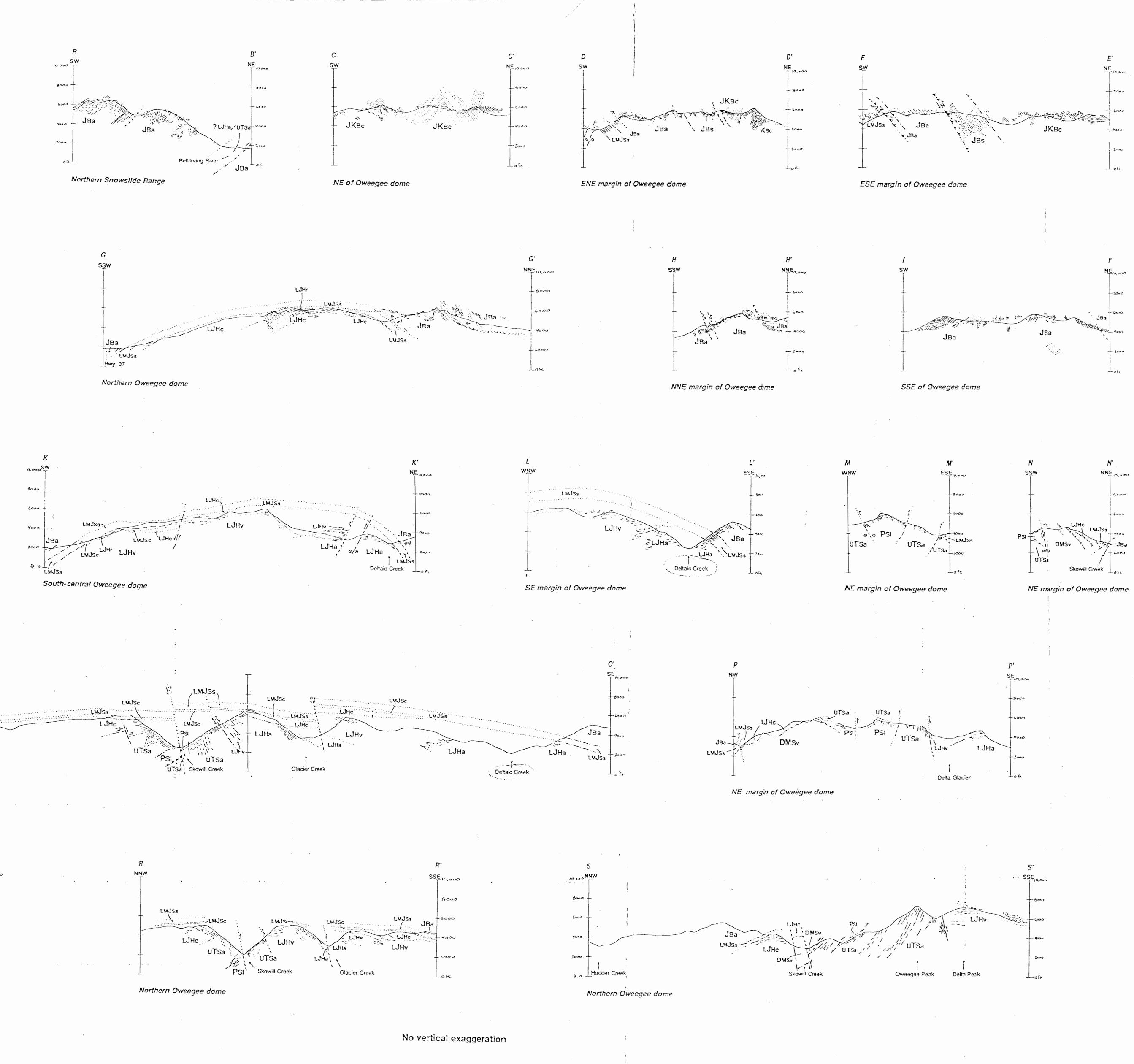

l


Southern Snowslide Range


-







• .

.

GEOLOGICAL BRANCH ASSESSMENT REPORT 22 254

GEOLOGY OF OWEEGEE DOME

(CROSS SECTIONS) DELTA PEAK (104A/12) AND TAFT CREEK (104A/11W) MAP AREAS, NORTHWESTERN BRITISH COLUMBIA

C.J. GREIG and C.A. EVENCHICK

(with contributions by M.H.Gunning, B.D.Ricketts and S.P.Porter)

Scale 1:50,000

1 EGEND

QUATERN	ARY	LEGEND	
Q		colluvium, alluvium, tili.	
L]		STRATIFIED ROCKS	
MIDDLE(?)	AND UPPE	ER JURASSIC TO LOWER CRETACEOUS(?)	
JKBc		BOWSER LAKE GROUP enite lithofacies: fine to medium grained, moderately well sorted chert litharenite, ed silty mudstone, common bivalve coquinas, rare chert pebble conglomerate.	
MIDDLE(?)	AND UPPE	ER JURASSIC	
JBs		BOWSER LAKE GROUP one lithofacies: bioturbated silty mudstone with regularly interbedded, buff I, Fe-carbonate cemented fine grained sandstone.	
JBa		canic litharenite turbidite lithofacies; thin and medium bedded, fine to medium porly sorted arkosic litharenite with interbedded silty mudstone.	·
JBp	pyritic silty grained lithi	nudstone lithofacies; pyritic, siliceous, tuffaceous silty mudstone, fine to medium lic arkose.	
LOWER AI	ND MIDDLE	JURASSIC HAZELTON GROUP	
		SALMON RIVER FORMATION	
LMJSs	thin beddeo	d siliceous silty mudstone, clay-altered dust tuff(?), discontinuous limestone lenses.	
LMJSb	amygdaloid	dal pillow basalt, basalt pillow breccia, tuff-breccia and debris flow breccia.	
LMJSr	rhyodacite	lapilli tuff-breccia; locally welded.	
LMJS	fossiliferous	s limy, coarse grained arkose; polymict pebble, boulder and cobble conglomerate.	
LMJSp	pyritic silty	shale and mudstone.	
LMJS		Spatsizi Group	
LOWER JU	JRASSIC	HAZELTON GROUP	
LJHr	felsic lapilli	tuff-breccia, ash and dust tuff.	and the second
LJHc		d cobble conglomerate, pebbly sandstone; well-stratified, green and maroon ash, dust tuff, tuffaceous arkose and mudstone.	*
LJHv		te to mafic plagioclase-pyroxene and subordinate plagioclase-hornblende phyric reccia, lapilli, ash and dust tuff, flows; derived debris flows, arkose and siltstone.	
LJHa	soft-sedime	ed and massive tuffaceous arkose and siltstone with abundant syn-depositional ent deformation structures; malic to intermediate fragmental volcanic rocks and	
UPPER TR		debris flows.	
UTSa		STUHINI GROUP -pyroxene crystal tuff turbidite arkose and siltstone, plagioclase-pyroxene phyric termediate lapilli and ash tuff, tuff-breccia and rare flows; minor limestone lenses.	
PALEOZOI	С	STIKINE ASSEMBLAGE	
PERMIAN	medium an	ad thick bedded to massive bioclastic limestone with chert interlayers; thin-bedded	
PSI	micrite.		
DMSV		SISSIPPIAN termediate plagiclase-pyroxene phyric lapilli tuff, lapilli tuff-breccia, and flows; e phyric amygdaloidal andesite(?) flows; rhyolite and rhyodacite lapilli tuff-breccia.	
		INTRUSIVE ROCKS	
	URASSIC O	R YOUNGER	
MJI	pyroxene d	liorite sills.	
		MAP SYMBOLS	
·		Limit of thick Quaternary drift.	
_/~	· · · ·	Geologic contact: defined, approximate, inferred.	
~ -	***** ****	Thrust or reverse fault, defined, approximate, inferred; teeth on upthrown side.	
		High angle fault, defined, approximate, inferred; ball on downthrown side.	
43	(at	Bedding: inclined, vertical, overturned; estimated: vg=very gentle(<10°), g=gentle (10°-30°), m=moderate(30°-50°), s=steep(50°-70°), vs=very steep(>70°).	
1 Alton	14	Bedding formlines.	
12	×	Cleavage: inclined, vertical.	
	-+ 8	Minor fold axis, plunge.	
· · · · · · · · · · · · · · · · · · ·	er and a start and a start a st	Anticline, overturned anticline, trace of axial surface: defined, approximate; arrow indicates vergence direction.	
·		Syncline, overturned syncline, trace of axial surface: defined, approximate; arrow indicates vergence direction.	
	-1K.	Line of cross-section	

۲. ۲.

1

MAP **5** CROSS SECTIONS, STEWART PROPERTY GSC 1993

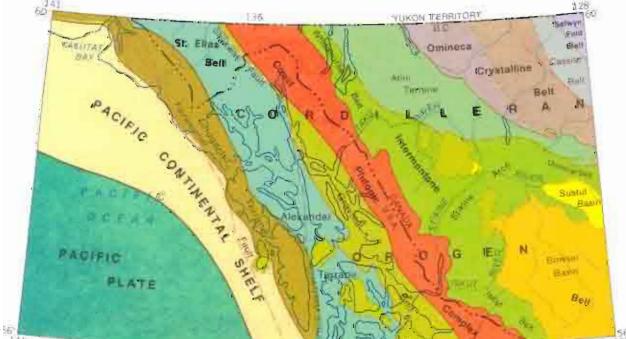
The weat Processed inclusion dans, of the Pacific Public Arit Public Contribution for Louis Include South West C Minute in the entropy of 11 Lincole at Migae. For the phase waters part of the composition (notice) m The Chugach Tenane Alexander Tenane and Gravies Relieve Alexandria (in: the St. 1946; Bol), Coast-Tation, Complete and Dissociations Relieve Protocol Council a first strategy of the Management of the St. 1946 # Style (MC miniteaux and typical of intermontanee Back and Gennesia Crystal Lee Back

the Continential Sope littler abruets from the standard rise of the Guilt A Alexandri her number uter manyer in one Paulto Confinential shed, a menunggoni wholened Sencerd masters, me sheet in rossed by the right target farmedher fault which contents and tward with the Queen Chargets Fault. considered to here. The schee transform teamany tertween the Paulic and form American Plates. indetends increased into Chagach Terrana, the sentence is no infected with a number albeing design integration Constraints and Lenders increasion of Messager, Terrana

Drugstell Tenarie (ICIGERs Upper Relation funcilates with million shall), all and conglementer Set the set of the set is the subflucture of its of the set of the section is set in the set of e, Terrenge werd Mer vind Eduction is new Meridge i regive ere impreciated hauft function with a registration i ter assemblage of volcamils a hert, substantial and anyone must why reptaciplearar, crust. The beinges maintailly provide, many possible Matter, an other is called in and my supports of Conference in Terri-No age and by mits fantiary standed. Must make ere in the permitte purchasive previous previous on erem in all metamenting taking. Denote show the metamological and by mathematical shows, variating program

Alergy der Terrahet includes under und Mistele Pareizing sperifolgtes of unpolate and upperformants wirf theire personnet standas under darbeitike unte mit upper Pressue neuestesse radoonale, ment end somande untegriterhabig overlichg and transit aufgamis, engelte keil ungenate and for all ung Defective castrix. The mean town ferties of star are Engelte and another protesting and fragment prointercomplex. The twitate is intruded by surand a story, and ha warnersus acide to gabbical bodies. ily mektretoresse war woldteleb omag normenen ferrimerik gewiere metamorphist reaches amphosphile in the Some force) faileful concurrent including in the end Message. Too wed by faile in the late Message for wed by faile in the late Message for the source of the second state of the source of the s

• General Bellins, Upper Juniors, or Loans Conferences many and an assertions of greenwork greenworks. splite restrance for sally on the order speel of Alexander Terrals on the contact a completated by all of the best of the second by we that the provide a point of the region of the best of the second s Late Metozon, internediate granilles. Meton inscholaride notis elektiverd rowards Classi Podomic Complex. The SL Erus Berton Strategies in a soliciteria by Shakwas foult and underformation entering, and animamic rocks included by Contaction mic Terrory granities. Mesoziais deformation was accompanied by low ander registering the Contaction in 12 (the room, annihuble until the faulting on the face Terrory in affected. emeters informational distance yournal of Macone


Calif Plubes, Complification perceptions and avoid your of Hamily Island Subtraction to a unitary terma man "Mile associated with sense mode process dependencies in entropy to end and management of the rest of management of the rest of management and party more thanked and the rest of management and party more thanked as the rest of management of the rest of the r even in the end of the mitable definition was state hirally and pressive over all the central Complex and with complained share your the highly megual calify includes. Falland calls more a managine band the compare prim pations agains at a similar board, we may more

(Intrasticity) Recessive multiple and O places, inc. Testion, The structure of interneticities Betting on models by Stellar Architecture metamologies and a relatively spectrum. d element to the late N-bow Testaric leap to Acie. Semane, exact was unlifted in the case lukased indept dated nuclea in Shanne Arge and Walnus analy built that the press and preprinted in the argument norm Carbonite on sentementary and vocano rocket of the accellary topfshilo tollara along receil south one in contrast with the west is interesting there of Ferrine Californian stratum, while therane and is in the optimization, front of younger solar. There are not any up this mineters of the Coast in Complex influenced subsequent class compared in Copper France To Middle Jurante and rand and mentary in Michigan Ine Kanut of the anth pool within advicent Writerional Queenmana Yosak Balasiami unmethetelehused of die graen uchiek graen while areas with oral functes, his fuding gran to boolder complete while the second shall be a sufficient of the end of the second states. They after presente on the end we eroware type?) in well-fail whiteboras Birly. The succession is repeated by the potnerty Dave lad, U.M. dary milétini Carraite (ménim Turnaile) na Reindochić, Herpiwellin semminist ennibase, Voicenco en appendental with division and appenditured periodilite Large assess adrematic Academication testers I May #MidlandsG along the ocurrence filons. So, theast of Stourse From Middle (periodic redimentary and i nip rocks of taket Bell are per stilutionably totelain by summeric stily foreed whole and reminipation barring, control sizes of the low-Certification Brivel Solicities in Barriwhith are carry revealed by Reveals and Terriery device a derived manihilation character and western deviced arrhener volumes, use Million of the set of the Summer Sectors Sectors the western and all interminitians Bell and eastern 1. Early Terriory which the cherry where selection of size of the western and all interminitians Bell and eastern 1

and the Data Gysterial Complex all consistent costronomic places off places indicated Sonce all stured associated with high and blatton establishment and may dynet. Mecane and international second and considered of the United to the United Structure of the United Structure of the United Structure Berl and the Walespin Volumic Berl et Aluce whether under one والأحياج والمراقبين والمراجع المنتقر المستريا ومتعاور والعصيف فيها والمناكر المعارك الكرائي فعز الاستريار med whereas his narcanalism uses of Wangeli visions. Bila per ocally mysees in tight symmetrical

Selding and interference to doe the floor of Weither Ommerce Crysterion Mell Object Planston Community and violation on an industry melanophosed is after bothe plans and end models to Emily Longia and met Ophercous doants while Weither Cryster Self in use the public for all on the End of the End of the selfer Weither Cryster Self in use the public for all on the End of the End of the selfer Weither Cryster Self in use the public for all on the End of the End of the selfer Weither Cryster Self in use the public for all on the End of the End of the selfer Selfer Self in the Frodmikh of the bordered by a numsk conflect metamorphic survice on the washand by Cassian Fault on and in a fight of the set of the veter assemblings of the flangitude suadtranends much variances and anomatic bodies, the undersynal matuety. But public marketer bugs of travel Patience, and Maryman conterrate due and suarrate he unconformativ uvinging Missiaupolan viration within carbonates. Perinavvarian imedical a ally faulters against the Mississippian and its familian by a thick ambummer of third bindpedic next, interactions visionical conglither expendic is minor frien in ethered after why body Eastern Cassian Bethia char-Intervent U, pell M. Lower Pari, son attain an equivalent of and a strategistic transmission demonstration of the end of the end

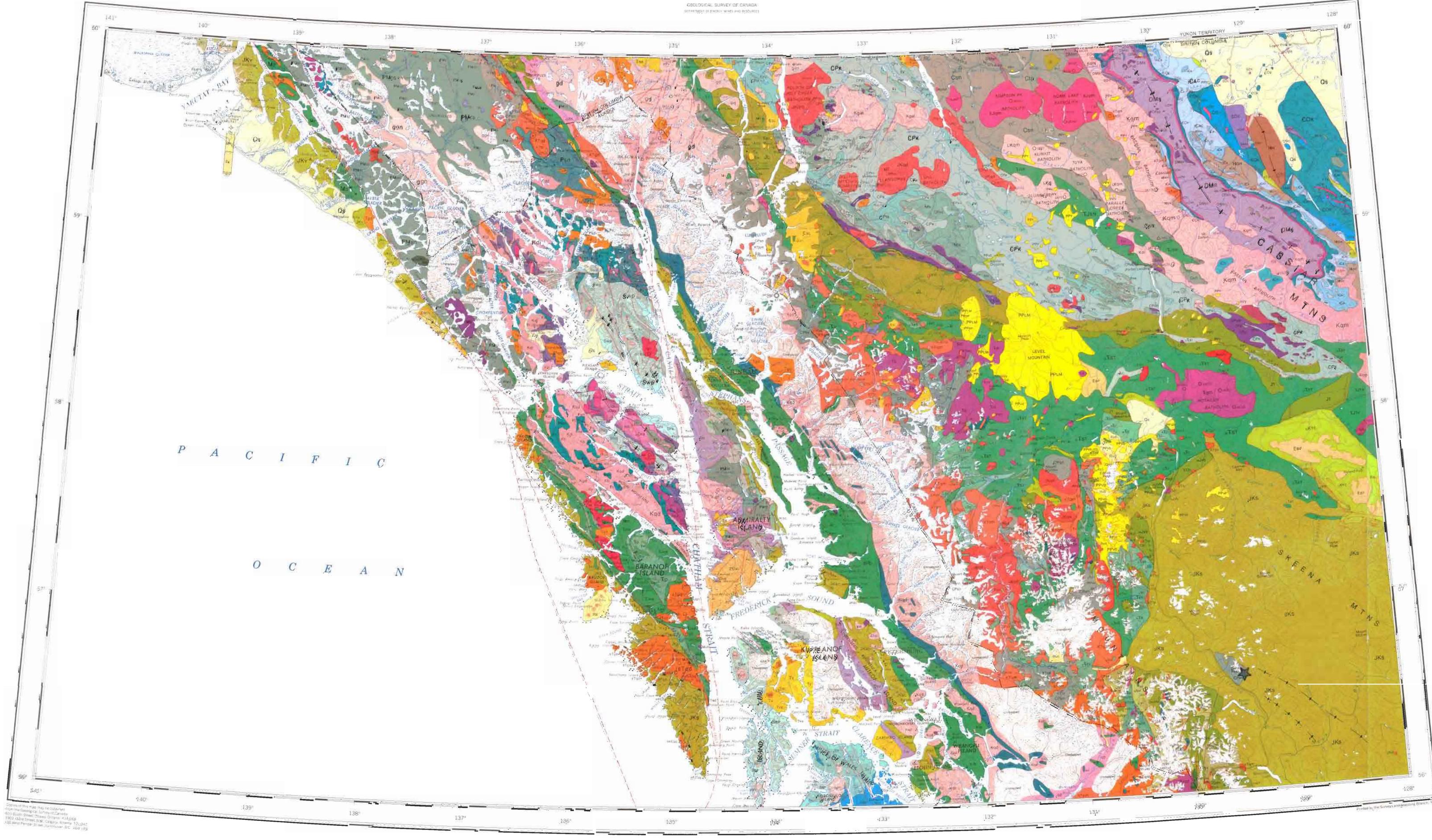
GEOLOGICAL PROVINCES

Presentar Sources (Constant)

Geological up/taxi (II subject accomation	
EAU/ Imagenetic annumient	
Patradoment (Ault Imacipied, Eductived)	
verme fault mightures of fleriging wall masked assume	d
when we are provided and the second states and the second secon	
01-C)-68-2866667-6820	
9752//Refs	
Mahan Art	
5 T T - 26 91 (8)	1
stational.	
a offers merine	- 140 T
0.0.2.200	
ocatives, more the second spin	
by the GSC	10.00
Nyy Odron' Iddam disprove	
gneous, metamosphic and sed mentary rocks	(D) AL (D)
I double symbol indicates median of several datarmina	Nonal.
argentati) a	- C
Astrices.	
Polassuyminargon unaniuminano	55.31
diates var	
ampridate addite muscles who are a service	· · · · · · · · · · · · · · · · · · ·
age in myllinds of years	100
Mer Laboratorias Designation	
aminentration Geographical Studies, Mareor Mare	
Televine School Wellwood N /	
Lamon Ginologica (Doueleatory	
Winner wert wertstein zeiten Grade strücker wert-	www.spcanion disc
	uppermitst layers not sampled
	\$7,00018820 II
	been of and not reached
	Caller of anni inclusioned the re-

Geomoy compliant by J'D Souther D & Brew and AW Douliton 19/14

Hish Columbia geology compiled by 2-B. Souther and A v. Oxohich Hom poarshe Output of the marks of the Gaurey (a) Server (05%) and an interest of the Benuth (Source), Output ment of Mines and Perchaum Resources and from confinements of H. Datasette in One-set, Disearch Benut W.H. Mongatar, Ann. Sectam. and \$1, AcDougari in \$1, Evia: Ford Bell

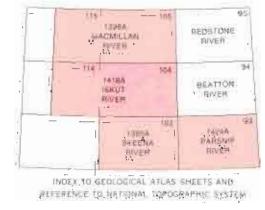

Alissengrenungsstampinen by D.A. Blow from published and unpublished maps of the United States Geological Survey, and from contributions by E.H. Latorem G. Plafter, E.M. Septement, H. A.T. Granshire and J.G. Smith

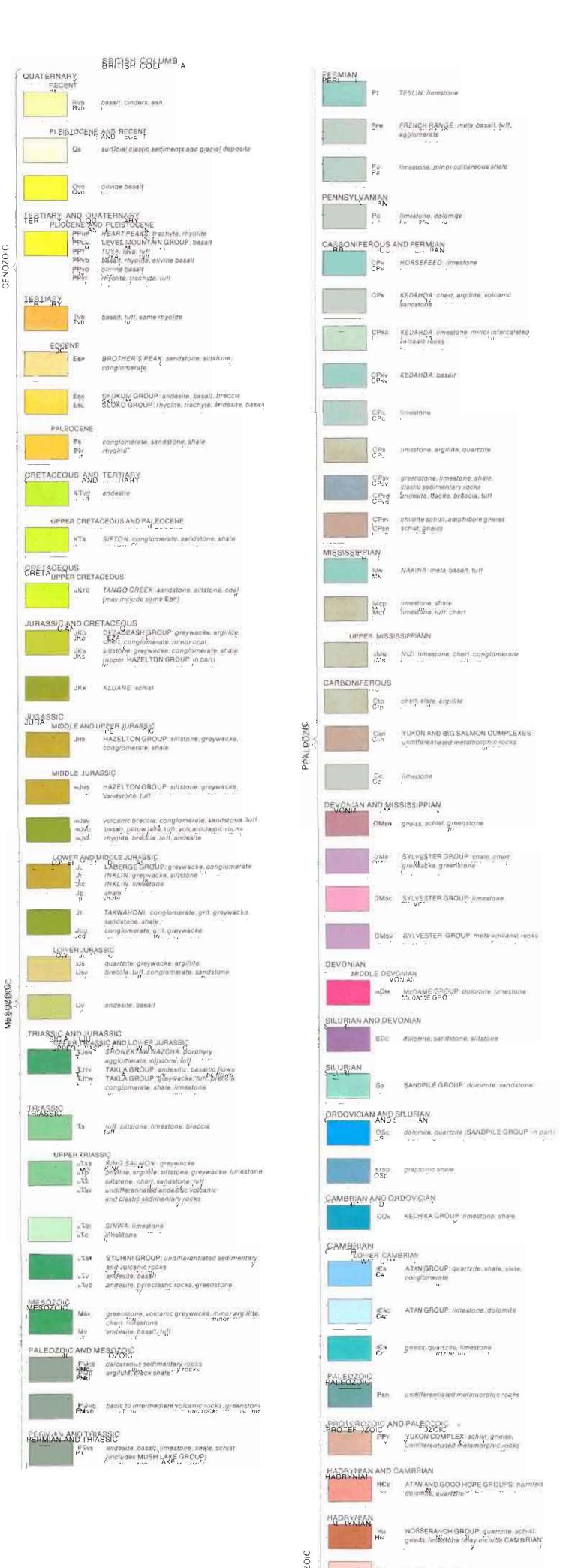
./Sebiogularicarrography by HL Allowed Geological Surveyob/Clanada

Comporter assisted and high-honel carlographic techniques were used to preduce the geological information politization do the man downshores Newts, folds and isogreosevere pigdiced in Computer Assisted Devtopractic Ont of the Geotogical Survey

er a co-uperature atreogermin) Geological Subley of Canada staff used o Cleaning and Bioton scheroce provided by the Automated Carrupaphy Unit of the Surveys and Mapping Branch to generate out they and the time reproduction material for Unography

arm earth control base obliges only an altern ho area by the Army Secret (NSTT). Conselot Engineers nington OSL commend in 1956 and max NOV origin Surveys a triffacting React Department of Energy Mines and Readurces. Officers in 1971.





MAP 1418A ISKUT RIVER

BRITISH COLUMBIA - ALASKA 1:1,000,000 GEOLOGICAL ATLAS SHEET 104, 114 GENERAL CONCEDENATOR FLW DUDGLAS

Williamagines 25 ______ D _____ 25 _550 ______ Z5 _Kilametres Miles 20 0 220 440 Miles Lambert Conformal Projection, standard parallels 55'40 and 59'20 Crows Copyrights reserved

HGH GOOD HOPE GROUP Intestone slate, Hnc nornfels, crystelline limestone

HH HORSERANCH GROUP guartante actost. HH grieta, linistone (day include CAMBRIAN

HADRYNIAL HADRYNIAL HCs ATAN AND GOOD HOPE GROUPS hormfels microfile, guarterie

Hc crystalline limestone

congromerate

ATAN GROUP: Imestone, dolomite

Co gress quartzite brestone Co utzite lar

Pan undifferentiated metimosphic rocks

REFACEOUS AND TERTIARY KTip /#lane.feldsser.porphyzy KTy lieucocratic systille RTgp: granite potohyty, granophyte, syenite KTam quartz monzonite ktgd granodiorita KTgdn foliated granooiorite RTpd guarts diorite KTbh Jeucogabbro, leuconorite Rg granite Kom quattz monzorite Kgal alaskite Kga granodiante Rod lonalite adameilite diorite Kdi *diorite* Kb gabbro Kub altrematic rocks, serpentinite homblendile **Pyraxeo**ite LATE CHETACEOUS LKg granite «Kom quartz monzonile JURASSIC AND CRETACEOUS JKg granita JKgm quarts monsonita granodiorite" JKgd gværtz diorite, granodiorite JKg diorite, harnblende diorite 3Kb gabbro minor diorite and uppathalic rocks -syends syenodiarite granodianije guartz dibrite ddr diorite ddr pabbro LATE JURASSIC L)gd granodionite MIDDLE JURASSIC MJam guanz manzanit MJmz monzanite EARLY JURASSIC edb gabbre TRIASSIC AND JURASSIC Ly syemie monzonite Tulga granomotile Tulg granomotile dianite.amphibolite diorne monzonite Tgm quertz monzoone Tgd granodiante ATE TRIASSIC Tod Quartz dionite respentinile gabbre minor utramatic rocks Mub seipentinized dunite peridante PALECZOIC AND MESOZOIC PA PERMIAN AND TRIASSIC ultramulic rocks serpentinite PRE-PERMIAN +Pam quarte monstanile, prenodicille CARBONIFEROUS AND PERMIAN AND P CPub periodille serpentime pyroxemite Mgd granodiante aprite gabbro: diarité Mub periodice, empenhinae, pyroxeniae merizonite trandihemite Oyd syenodiante Dyu sode and nephaline syenite

PMsn	amphobolità, greenschiat achiat, gneiss, migmatrie
UD TR	IASSIC
	BARLOW COVE chlandeschust gre
Pato	conglomerale, phyllide, endernic flos chert, limestone, sanctifore, greenet
	· :
1923	
	LUMBIA AND ALASKA
WWN -	
WW	
WWN -	LUMBIA AND ALASKA LUMB scid and intermediate infrusive focks
WW	acid and intermediate initiasive focks
997 997	
SST SST dr dr	açıd and intermediata infrusive rocki diahle numbleride diorife diarite greiss, amphibaire inigmatile
YWN ggn di din T PLUT	ecia and intermediate infrusive focks diarile numbleride diarite diarite geerss, amphibaide imigmable fDNIC COMPLEX
SST SST din	açıd and intermediata infrusive rocki diahle numbleride diorife diarite greiss, amphibaire inigmatile
YVN ggn din t PLUT ga	acid and intermediate chirusive rocki diarile numbleride diarite diarite geerss, amphibairte migmable IDNIC COMPLEX grandiarite
YVN ggn din t PLUT ga	acid and intermediate chirusive rocki diarile numbleride diarite diarite geerss, amphibairte migmable IDNIC COMPLEX grandiarite

LUMBIA AND ALASKA LUMB A KA
acid and intermediate chiruwve rocks
dialite numblende dialite
diòrite geeiss amphibolite inigmable
ONIC COMPLEX
grandjonte
grandiontegne(sa
2
guariz dioriti

crystalline activity phyllite, marble

privinte quartzite state

phylole layered gnelss schief.

greenstone chloutic phyllus

marble.stylonite

MAP 2


👗 Stewart Property

REGIONAL GEOLOGY-STEWART CAMP

SHEET 104 114

ISKUT SIVES

GEOLOGICAL BRANCH ASSESSMENT REPORT

Pr PYBUS delegante immittere immit

Pc Intrestone

LEGEND BRITISH COLUMBIA AND ALASKA

leucostalis granite

granodiarite

Tbh Jaucagaooro, leuconorite

LTod granodianta quartz diotite gabbro

ETIp: granite and syemite porphyry, involite

guartz monzonite

monzonite

ETgd granodiorite ETgd quartz.diorite

≡T0l diarite

Tdi dionte Tb gabbro.dionte

LATE TERTIARY

EARLY TERTIARY

agg/omerate

sandstone

voloznič rocks

stastic sedimentary rocks

unmitmentiated metamorphic rocks

greywacke, greenstone

quartz monzonite

quartz diorite, tronalhemite

RECENT

ALASKA

Ryta Destall lows, cindlers, ash

withtone coal

esody mudstone

clastic sectmentary rocks

Pa conglommate state

Wa little sandatione, mudatone

voloanic grøywacke

greywacke slate

congiomerate

JKco conglomerate

TWH WHITESTRIPE Marble

TPP PINNACLE PEAK PhyDite

2010日1日-12月1日1日

grwywskiw meta-chart

greenachist, Livert, marode

Volcanic greywacke IKG1 DDwG: AS ISLAND Volcanica: avgite kows treacu

IKa BROTHERS Valcanica, andesiting Nows, breccie

iXv augite perphyry breccia, futt, llows, minor

JKs SITKA Greywacke greywacke argilite greenstere

JEST SEYMOUR CANAL Wate greywaske congromerate

JKY YAKUTAT GROUP greywacke, anglitte siste.

congrammate and limestone

utav breccia toll, conglomerate sandstone

greenzione, greywacke

Lik KHA2 graanstane, greywacke, graanstanst, chen Like KELP BAY GROUP phymie quantate graenschim.

Tum amphibotite greenschist, physitre actricit

Tasy greensone greenschild phylide.greywacke

"Ljen biotife scriest, gneiss, emplitido/ité, guarizite, phyllite

phyllife quertaite greenschillt greenstone.

GOONDIP Greekstone greekstone greekschust

WATERFALL Greenstone greenstone greywacke

Two greywacke semiscrist, some physite, greenscrist

LOWER CRETAGEOUS

JURASSIC AND CRETAGEOUS

LOWER JURASSIC

TRIASSIC AND JURASSIC

PLEISTOCENE AND RECENT

MIDCENE AND PLIOCENE

OLIGOCENE AND MICCENE

ECCENE AND OLIGOCENE

ECCENE

PALEOCENE

CRETACEOUS

JURASSIC

1L IL IL -1

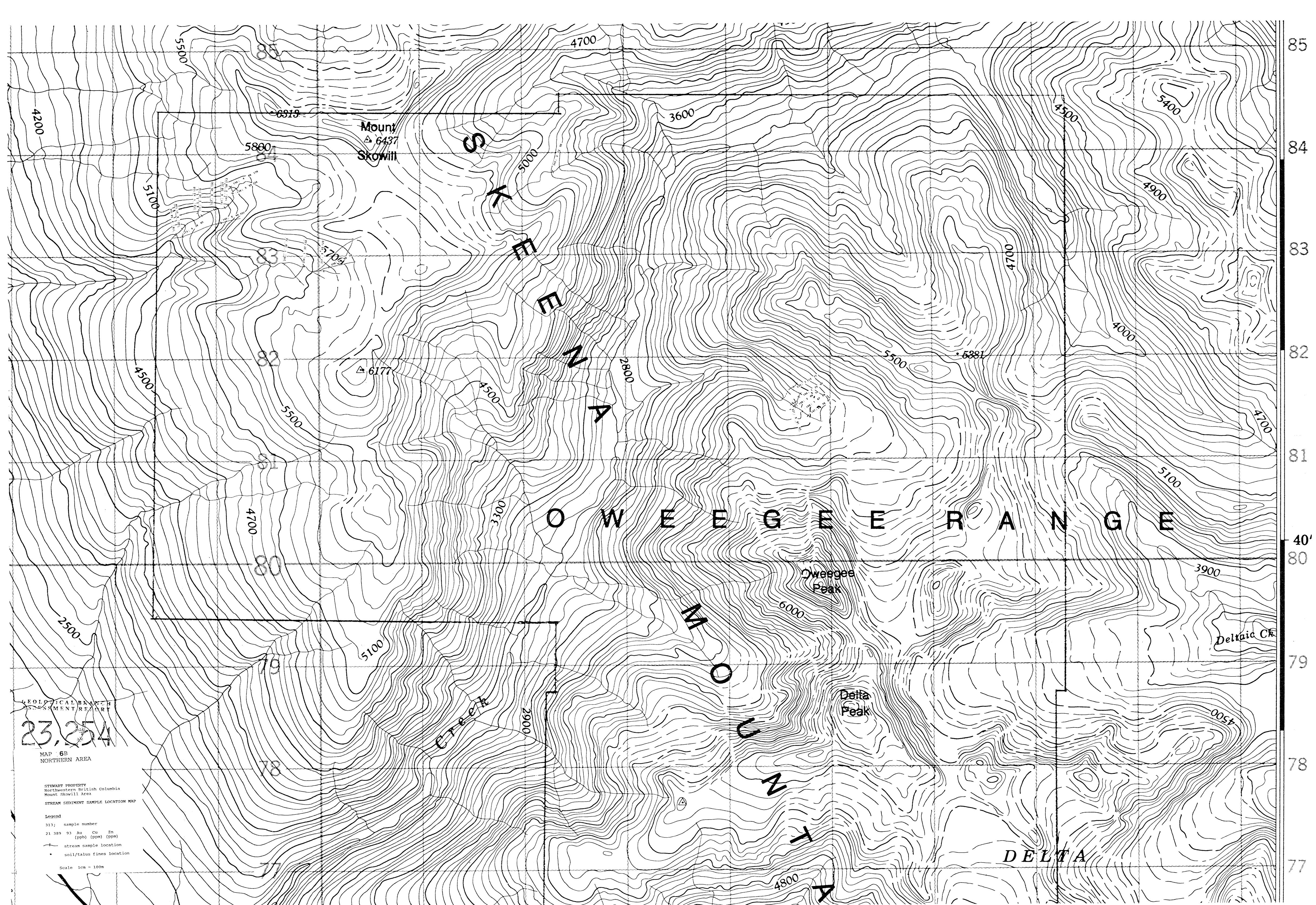
RE EDGECUMBE Volcanica basart Hows and Japini

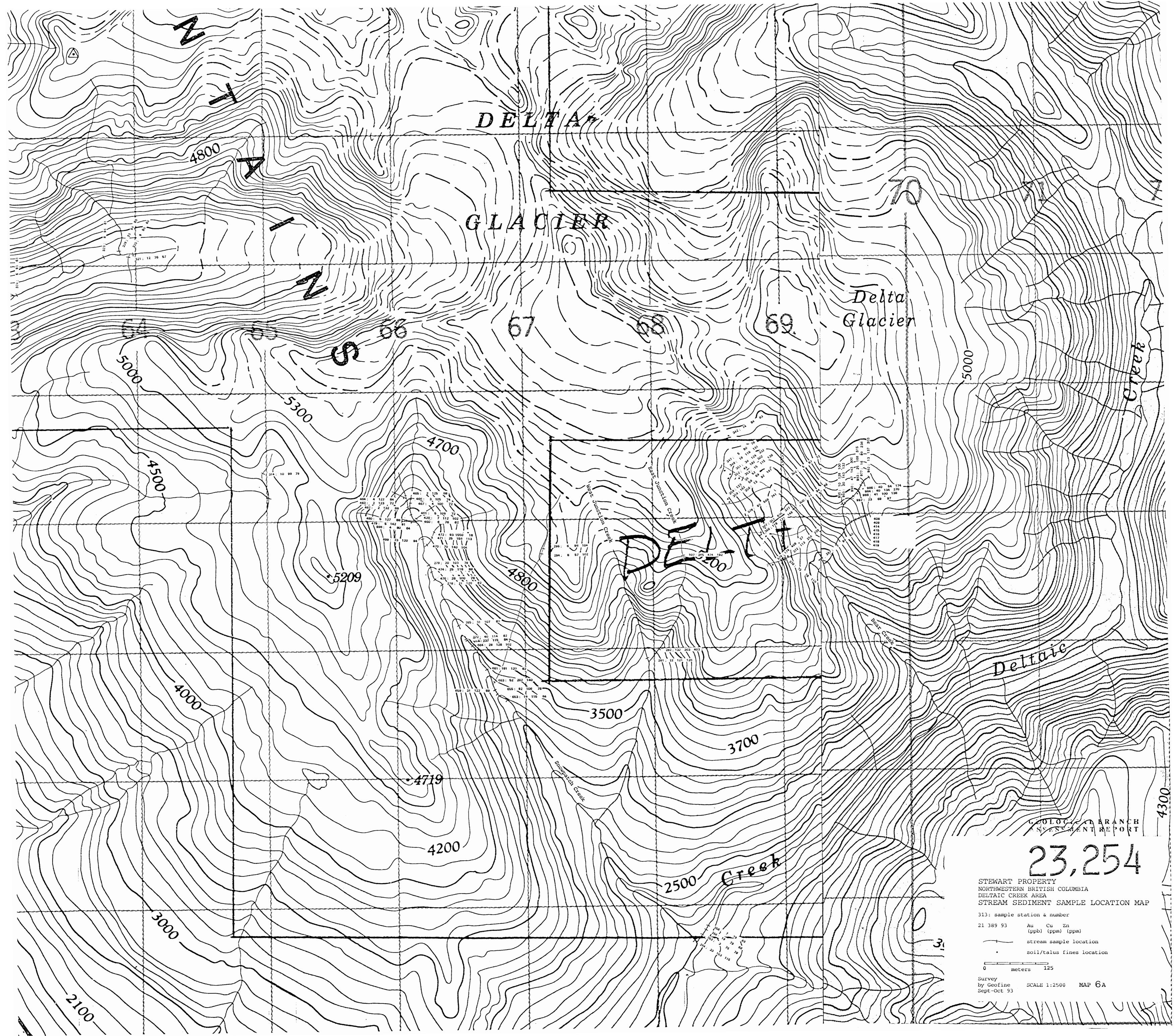
Ca sufficial clastic sediments and glacial decosits

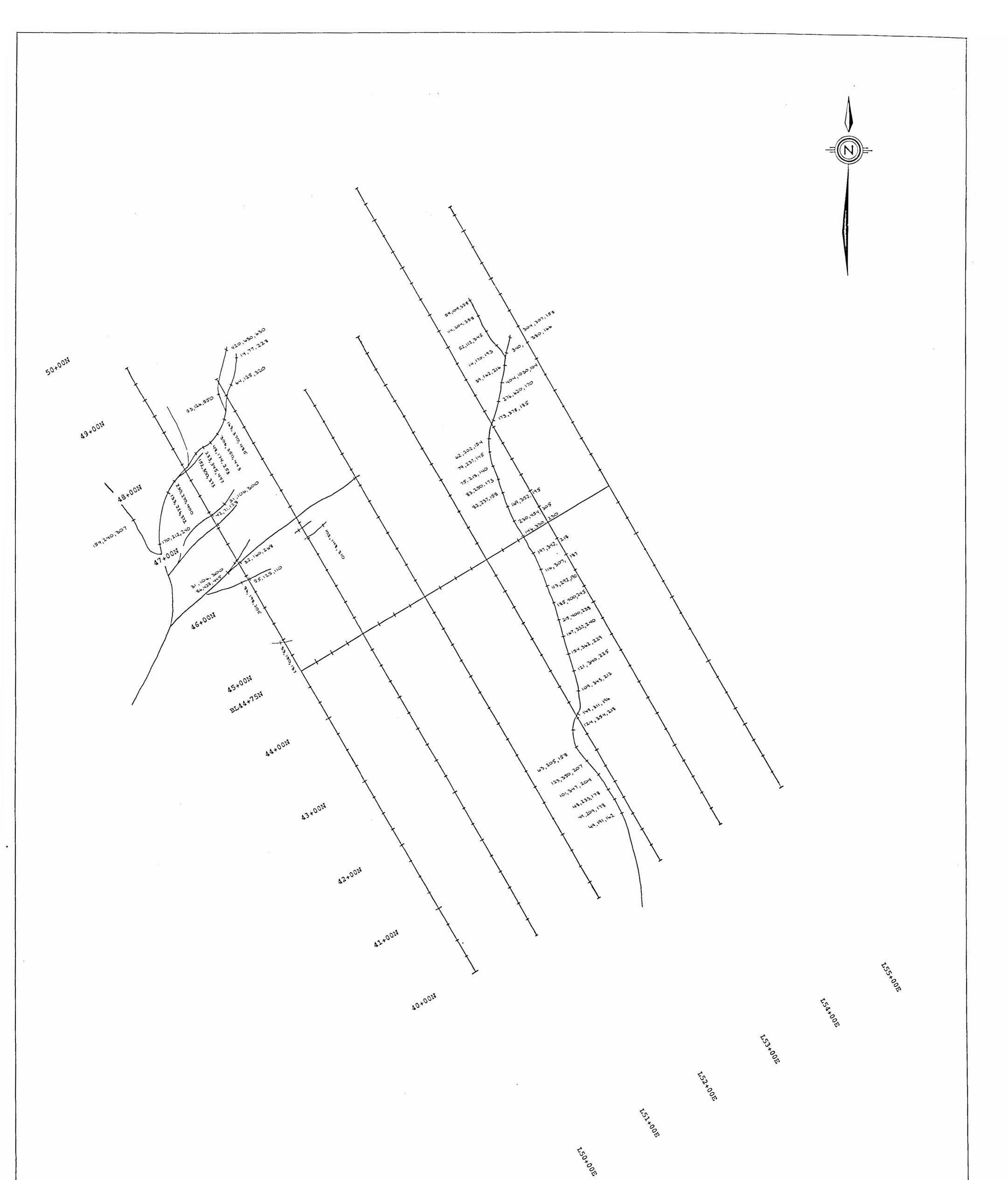
Tk: KOOTZNAHOO congiomerate, sandstone, snale

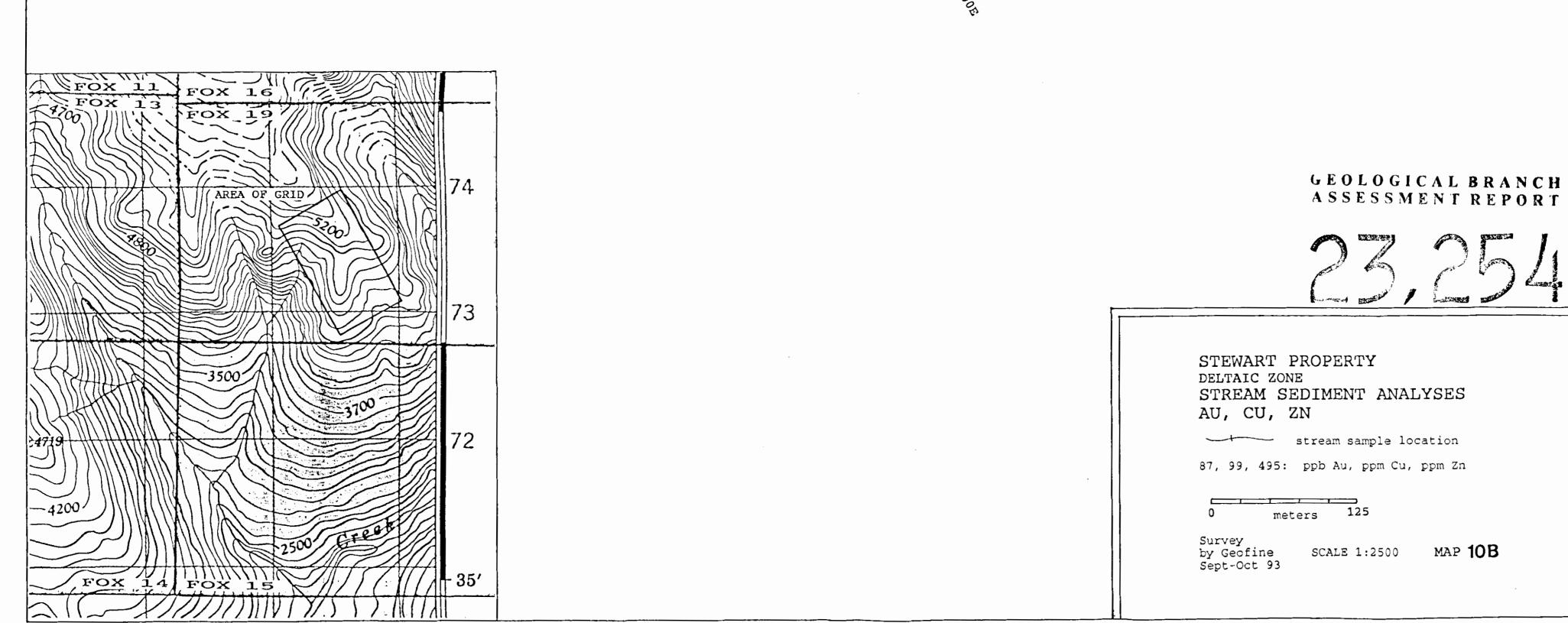
Tv baselits and endexitic lave Tve rhyplitic and endesitic lave, precore, decite, rhypdecite

Tva andesne, ascile, myodiscité llawa, breccia

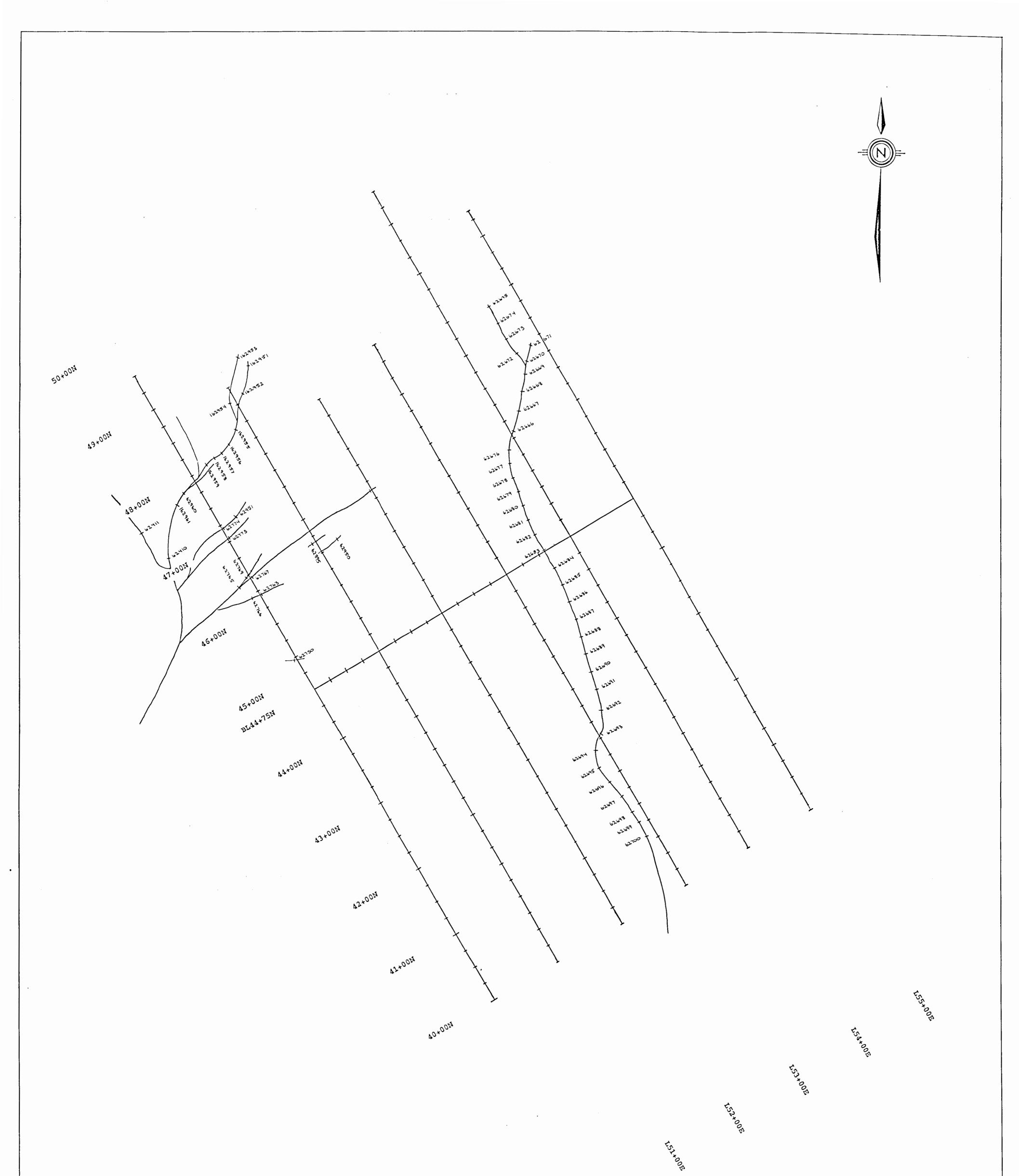

OMTC TOPSY sendstorm, complementate and CENOTAPH Volcames, endesite brecka, full.

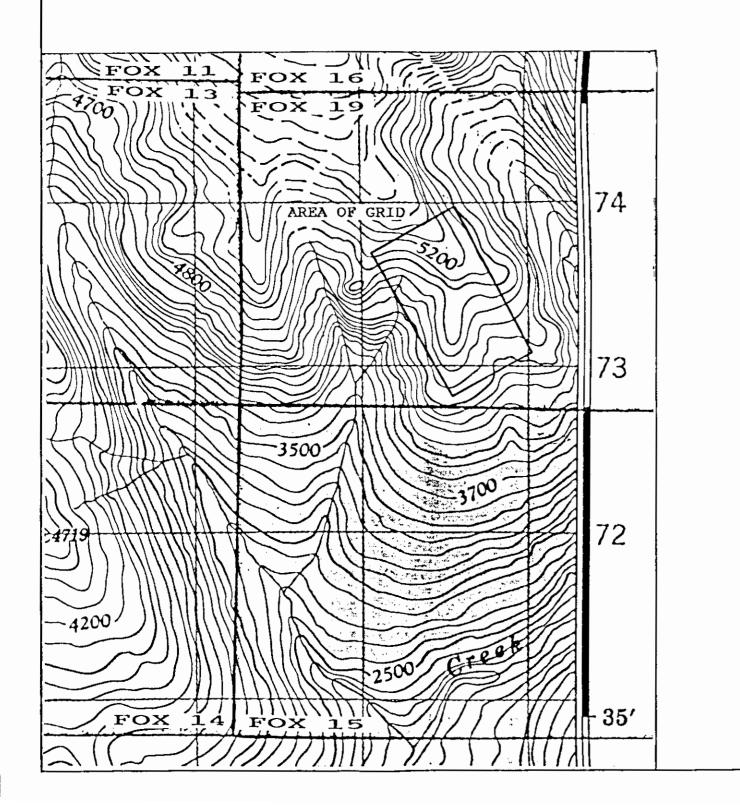

WPV YAXATAGA sendstone mudstone conglomeratic


EDAI ADMIRALTY ISLAND Valcanics antheside basen


Ex KULTHIETH erkosic sandstone. claystone.coal

(includes unnamed allistone unit



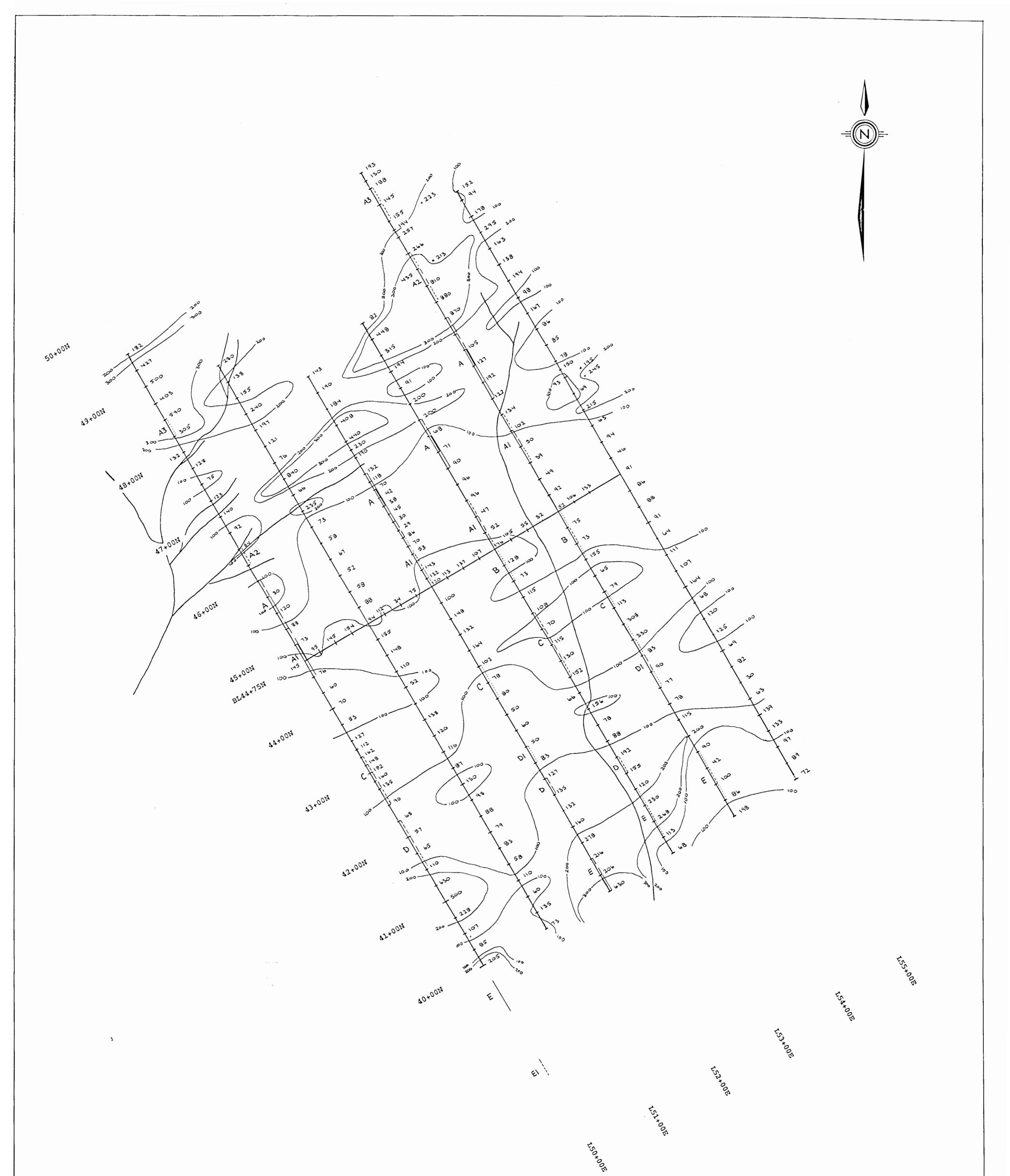


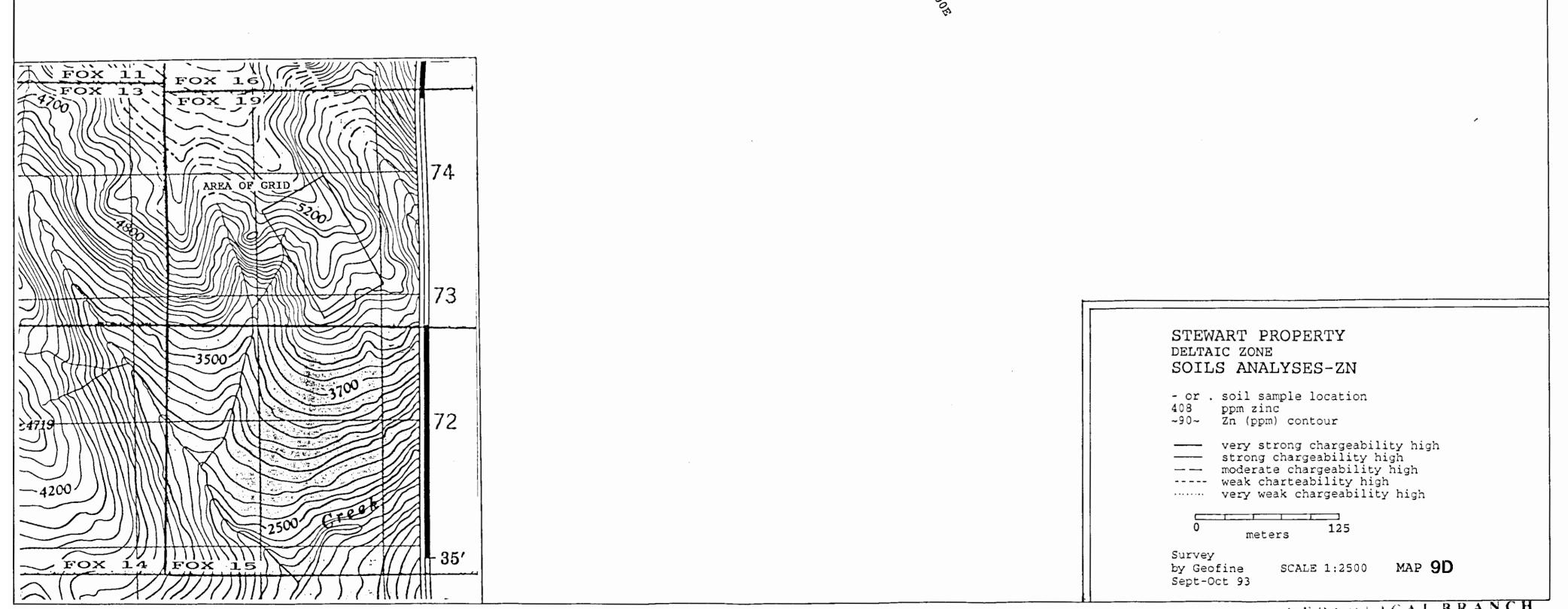
map **10B**

SEDIMENT - 62763 sample station & number

SAMPLE NUMBERS-STREAM

STEWART PROPERTY


DELTAIC ZONE



Survey by Geofine Sept-Oct 93 map **10A** SCALE 1:2500

GEOLOGICAL BRANCH ASSESSMENT REPORT

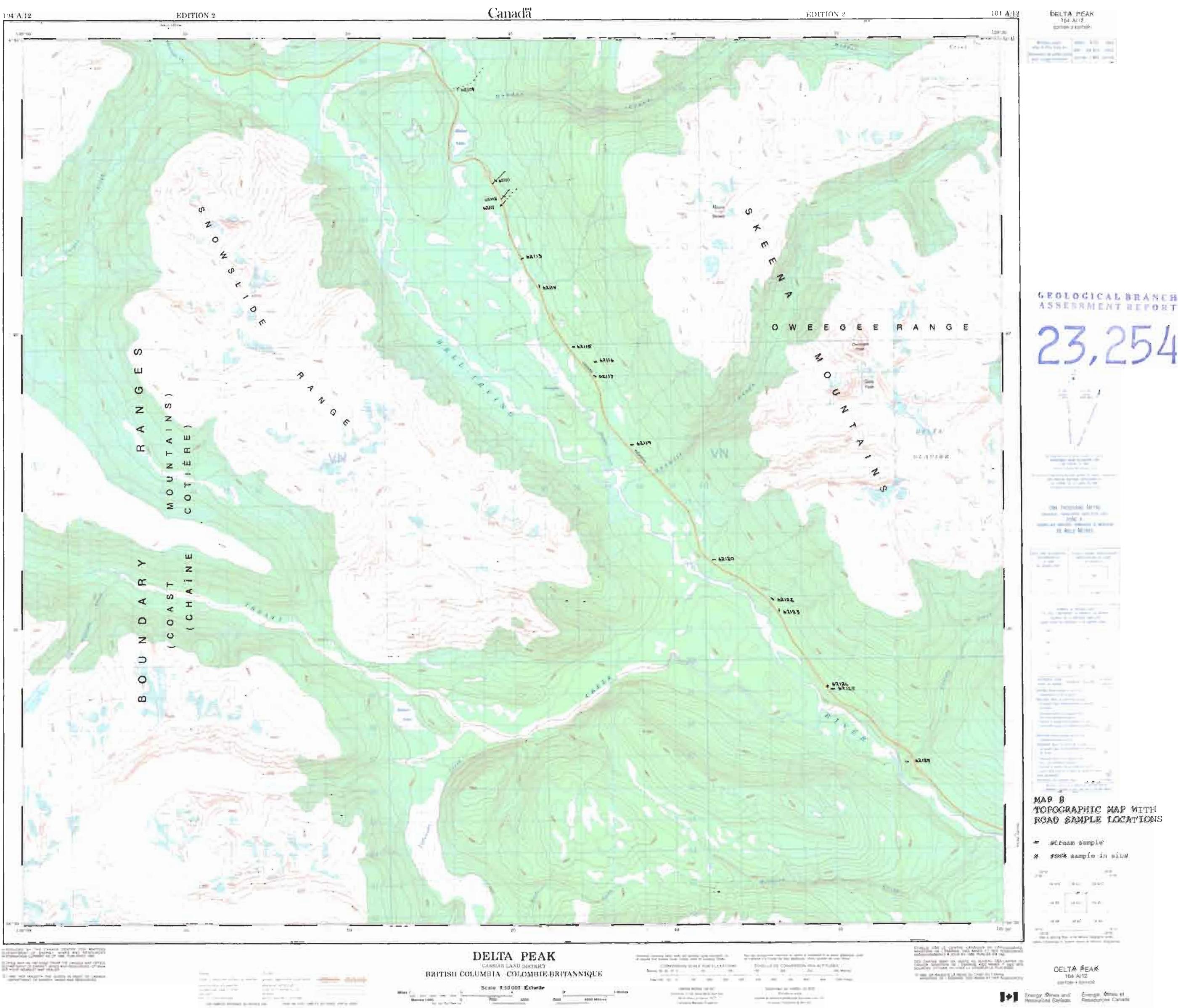


GEOLOGICAL BRANCH ASSESSMENT REPORT

····· ·· · · · ·

•

GEOLOGICAL BRANCH ASSESSMENT REPORT


•••

.

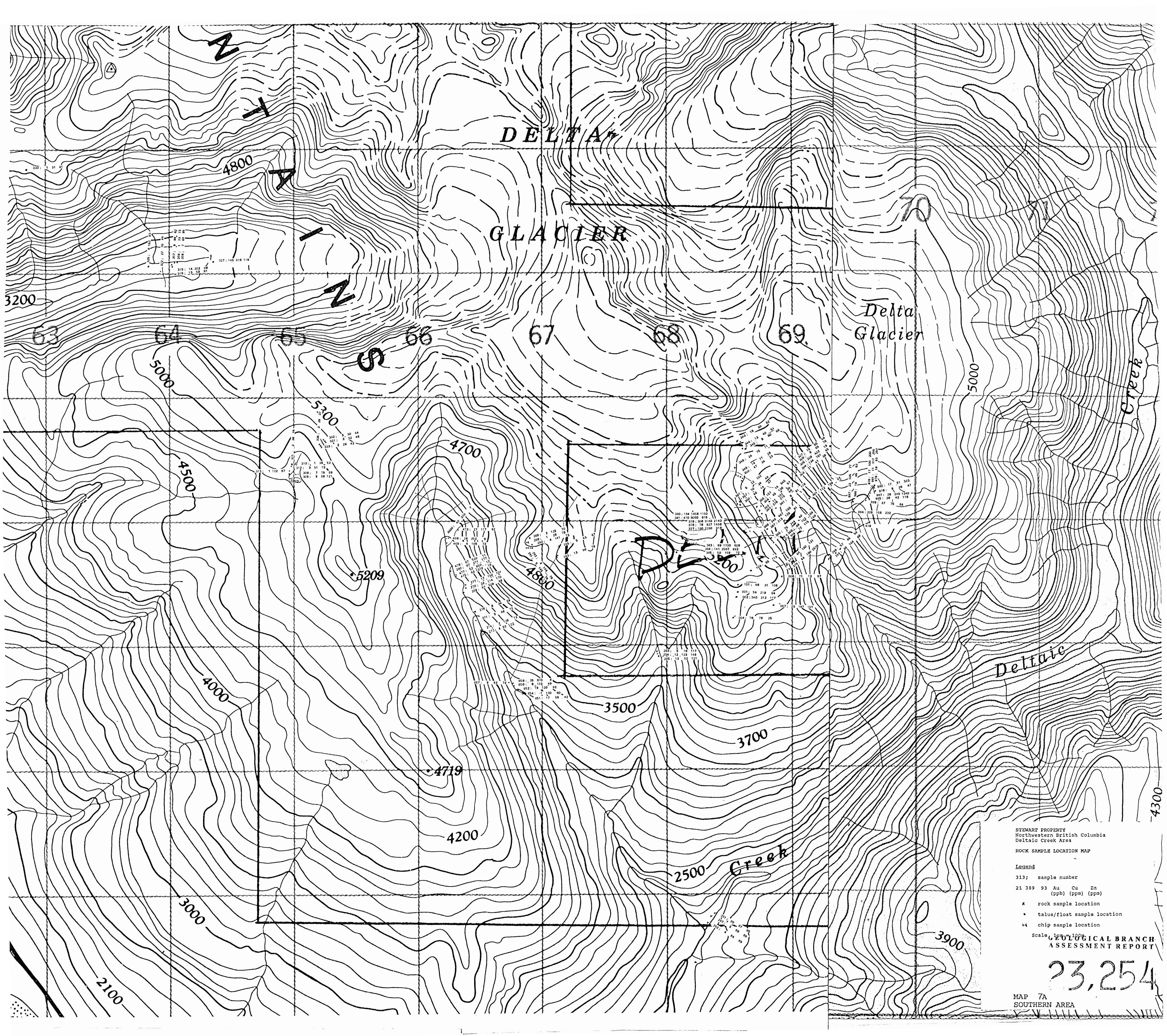
GEOLOGICAL BRANCH ANNESSMENT REPORT

------Section Section

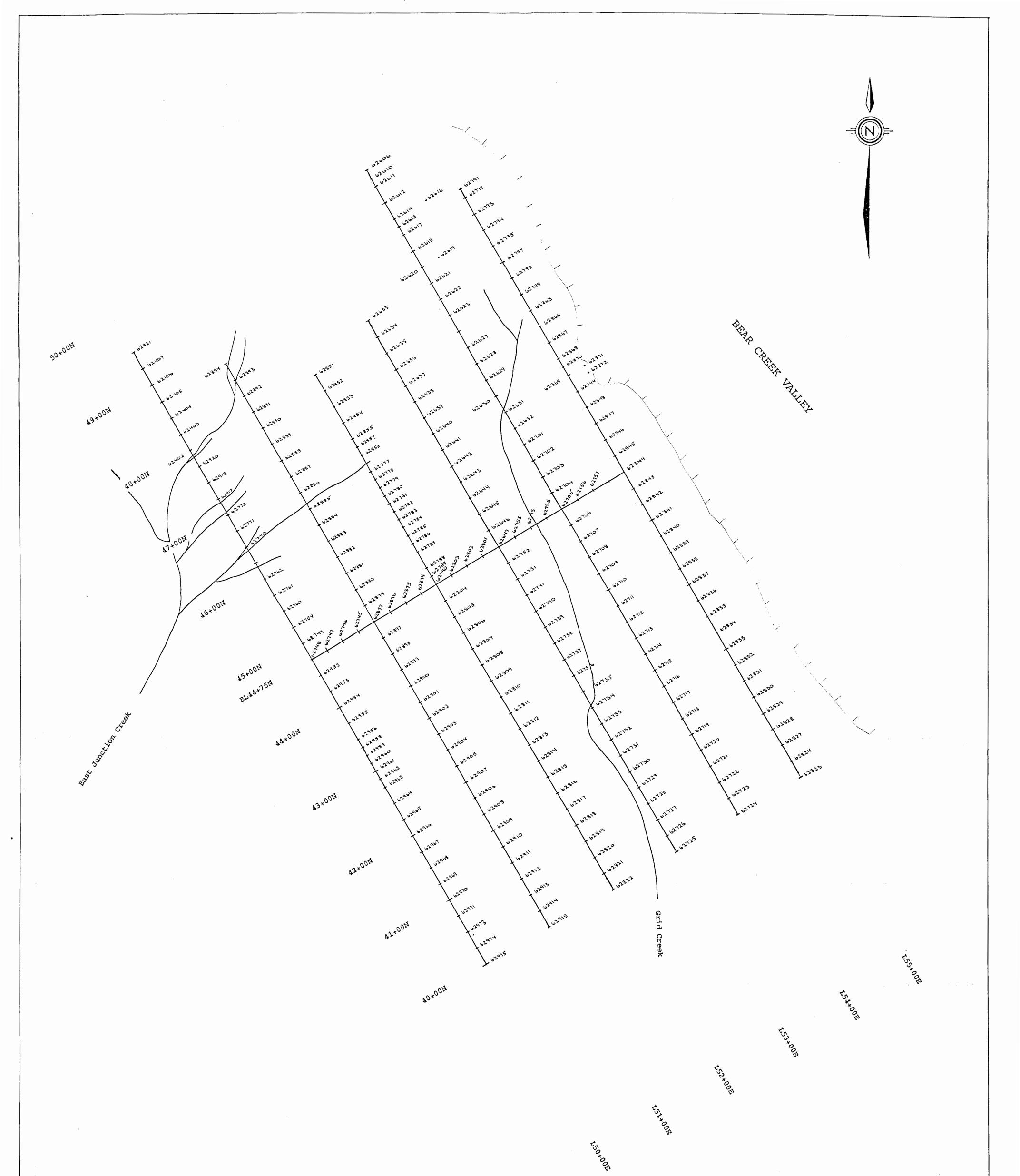
CONVENTIONAL LUCKE

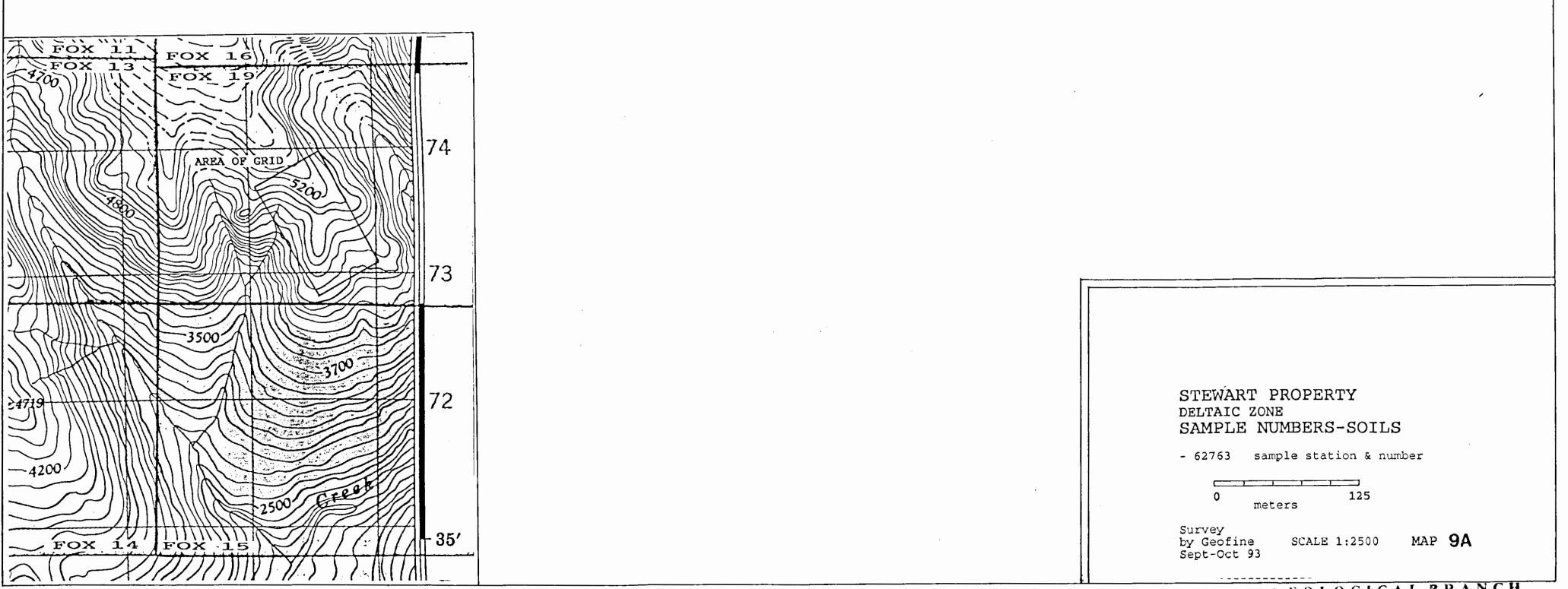
-

And a second sec


11-400 -12

14




REDNERVATIONS. MINHELMERICAL

1

GEOLOGICAL BRANCH ASSESSMENT REPORT

) 5,