ARIS SUMMARY SHEET

District Geologist, Prince George Off Confidential: 94.02.13 ASSESSMENT REPORT 23281 MINING DIVISION: Omineca **PROPERTY:** Pal LOCATION: LAT 56 16 00 LONG 125 30 00 UTM 10 6238355 345168 094C05E 094C06W NTS CLAIM(S): Pal 1-4 Swannell Min. OPERATOR(S): AUTHOR(S): Leriche, P.D. 1993, 70 Pages **REPORT YEAR:** COMMODITIES SEARCHED FOR: Copper, Gold Triassic-Jurassic, Takla Group, Hogem Batholith, Andesites, Diorites **KEYWORDS:** Chalcopyrite, Malachite WORK Geochemical, Geophysical, Physical DONE: IPOL 28.6 km Map(s) - 6; Scale(s) - 1:500010.6 km LINE 26.5 km MAGG Map(s) - 2; Scale(s) - 1:5000SOIL 152 sample(s) ;ME Map(s) - 3; Scale(s) - 1:10 000RELATED 21783,22589

REPORTS:

 \bigcirc

25 00

可又

77 P o z 20 - J

North Vancouver, B.C. V7L 1B4 Tel: (604) 984-3663 Fax: (604) 988-4653

9 December 1993

SUMMARY

At the request of Swannell Minerals Corporation, Reliance Geological Services carried out an exploration program consisting of soil sampling, and magnetic and induced polarization surveys on the PAL property during September 1993.

The PAL property comprises four contiguous mineral claims totalling 80 units in the Aiken Lake area of the Omineca Mining Division. The property is situated approximately 225 kilometers north northwest of Fort St James, B.C., and is accessible by helicopter.

The claims lie in the regionally extensive Mesozoic Quesnel Belt. In the Aiken Lake district, Triassic Takla volcanic rocks are intruded by Triassic-Jurassic alkaline stocks and Cretaceous Hogem Batholith. Alkalic plutons of the Quesnel Belt commonly host porphyry copper-gold deposits. The claims are underlain by light grey aphanitic Takla andesite intruded by diorite.

Previous work consisted of regional airborne magnetic surveys, silt sampling and limited soil sampling. A 300 x 400 meter open ended copper anomaly in soils paralleling a magnetic high was defined.

In 1991, Swannell contracted a soil survey which further outlined and expanded the copper anomaly (above 100 ppm) to 400 by 600 meters, open to the southwest. Weakly anomalous (over 14 ppb) gold results formed a pattern peripheral to the copper anomaly. to

In 1992, followup work in the area of the previously identified anomaly included surveying 34.3 kilometers of line, taking 23 rock and 288 soil samples, and cutting 24 kilometers of line to prepare for an IP survey. The previously defined copper/gold geochemical anomaly was expanded to 600 x 1200 meters.

In 1993, followup work consisted of surveying 8.6 kilometers of line, collecting 152 soil samples, and geophysical magnetic (26.5 km) and IP (28.6 km) surveys. Three target areas were outlined.

The first target, called the central anomaly, is characterized by medium to high chargeability values over an area of approximately 500 x 2100 meters. The southern portion of the zone is coincident with the 600 x 1200 meter soil anomaly.

The second target, the west anomaly, is characterized by medium to very high chargeability values coincident with high resistivity values along the western portion of the grid. The target is interpreted as a zone with high sulphide content combined with silicic alteration.

The third target is an area of high magnetic response combined with low chargeability.

Further work, consisting of 5000 feet of diamond drilling and 10 line kilometers of magnetic and IP surveys is recommended to test the targets at depth and to extend the area of the known targets. Estimated cost is \$266,000.

TABLE OF CONTENTS

рто | | | | | | |

i and

. National de la companya de la company

PAL Property

	SUMMARY
1.	INTRODUCTION
2	LOCATION, ACCESS, and PHYSIOGRAPHY
3.	PROPERTY STATUS
4.	REGIONAL GEOLOGY
5.	PREVIOUS WORK
6.	PROPERTY GEOLOGY
	6.1Lithologies6.2Alteration106.3Structure116.4Mineralization11
7.	1993 WORK PROGRAM
	7.1.2 Geophysics
	7.2.2 Magnetic Survey
	7.2.4 Geophysical Interpretation 17
8.	DISCUSSION
8.	CONCLUSIONS
9.	RECOMMENDATIONS
	CERTIFICATE
	REFERENCES
	Itemized Cost Statement 26

TABLE OF CONTENTS (continued)

PAL Property

LIST OF FIGURES:

porter Local

FIGURE	1:	General Location Map 2a
	2:	Claim Map
	3:	Quesnel Belt 6a
	4:	Regional Geology
	5:	Compilation Plan, Previous Work 8a
	6:	Property Geology in pocket
	7:	Soil Geochemistry, Copper in pocket
	8:	Soil Geochemistry, Gold in pocket
	9:	Magnetic Profiles
	10:	Magnetic Contour Plan in pocket
	11:	Resistivity Contour Plan in pocket
	12:	Chargeability Contour Plan in pocket
	13:	Pseudosections (84+00N to 90+00N) in pocket
	14:	Pseudosections (92+00N to 98+00N) in pocket
ta an an an	15:	Pseudosections (10+000N to 10+600N) . in pocket
	16:	Compilation Map in pocket

APPENDICES

- A: ANALYTICAL REPORTS
- B: STATISTICAL ANALYSIS

C: LOGISTICAL REPORT ON IP AND MAGNETIC SURVEYS

INTRODUCTION

1.

This report was prepared at the request of Swannell Minerals Corporation to describe and evaluate the results of the 1993 geophysical and geochemical program carried out by Reliance Geological Services Inc on the PAL claim group in the Aiken Lake area of the Omineca Mining District, British Columbia.

The field work was undertaken for the purpose of following up on anomalous rock and soil geochemistry identified in earlier exploration programs and evaluating the potential of the property to host a porphyry copper/gold deposit.

Field work was carried out from September 16 to 29, 1993 by John Fleishman (prospector), Nigel Hulme (geologist), Brian Doubt (geotechnician) and a Scott Geophysics IP crew. All work was carried out under the supervision of Peter Leriche, P.Geo.

This report is based on published and unpublished information and the maps, reports and notes of the field crew.

2.

LOCATION, ACCESS and PHYSIOGRAPHY

The PAL property is situated in the Omineca Mining Division in the Aiken Lake area, approximately 190 kilometers northwest of Mackenzie (Figures 1 and 2).

The claims are located on Map Sheets NTS 94C/5 and 94C/6, at latitude 56° 16' North, longitude 126° 31' West, and between UTM 6236000 m and 6240000 m North, and UTM 341000 m and 346000 m East.

Road access is via the Finlay Forest Service Road from Windy Point on Highway 97, northwest to the Osilinka Logging Camp (approximately 225 km). The claims are then accessed by helicopter from the Osilinka air strip.

The property is on mountainous terrain with gentle to moderate slopes rising from about 1060 meters to 1600 meters. The area is covered by spruce and pine forests below tree-line, and alpine vegetation above tree-line which is approximately 1600 meters.

Recommended work season is mid-June to early October.

aciai

E E F F

PROPERTY STATUS

The property consists of four contiguous claims (Figure 2) in the Omineca Mining Division. The claims are registered in the name of Major General Resources Ltd and a 60% interest has been optioned to Swannell Minerals Corporation.

Details of the claims are as follows:

<u>Claim</u>	<u>Record Number</u>	<u>Units</u>	<u>Record Date</u>	Expiry Date
Pal 1	12349	20	1 Aug 1990	1 Aug 1995
Pal 2	12350	. 20	1 Aug 1990	1 Aug 1995
Pal 3	12351	20	2 Aug 1990	2 Aug 1995
Pal 4	12352	_20	2 Aug 1990	2 Aug 1995
Total		80	units	

The total area covered by the claims is 2,000 hectares, or 6,050 acres, allowing for overlap.

The writer is not aware of any particular environmental, political or regulatory problems that would adversely affect mineral exploration and development on the PAL property.

REGIONAL GEOLOGY

(from Rebagliati, 1991)

"The PAL property lies within the regionally extensive early Mesozoic Quesnel Belt. This 35 km wide belt extends northwesterly for 1200 km and includes equivalent rocks of the Upper Triassic-Lower Jurassic Takla, Nicola, and Stuhini Groups (Mortimer, 1986) (Figures 3 and 4). To the west, deformed and uplifted Permian Cache Creek Group rocks are separated from the Quesnel Belt by the Pinchi Fault Zone. To the east, the Manson Fault Zone separates this belt from the uplifted Proterozoic/ early Palaeozoic Wolverine Metamorphic Complex, and the Mississippian-Permian Slide Mountain and Cache Creek Groups (Garnet, 1978).

In the Mt. Milligan - Johanson Lake district, the Takla Group volcanics are dominated by subaqueous alkalic to subalkalic dark green tuffs and volcanic breccias of andesitic and basaltic composition, interbedded with pyroxene porphyritic flow rocks of similar composition. Intercalated bedded tuffs and argillites are subordinate. Black argillites interfinger with volcanic rocks to the east and west of the central volcanic core. Locally, thick successions of maroon coloured lahars suggest the presence of emergent subaerial volcanic centres.

The volcanic-sedimentary strata of the Quesnel Belt are locally intruded by alkaline syenite, monzonite, and diorite batholiths, stocks and dykes. In the Quesnel Belt, most intrusions are considered coeval and comagmatic with late Triassic-early Jurassic volcanism. Many of the stocks lie along linear trends which are interpreted to reflect fault zones which have localized volcanism and associated stock emplacement.

The Hogem Batholith of Early Jurassic to Cretaceous age is the largest body of intrusive rock within the Omineca Mountains (Armstrong and Garnett 1973) (Figure 4). Takla Group volcanic and sedimentary strata are intruded by the north-south elongate batholith which is, in part, truncated along its western margin by the Pinchi Fault. Numerous satellitic plutons flank the eastern margins of the batholith.

The complexity of the Hogem Batholith is characterized by rock units ranging in composition from diorite to granite. Lithologic changes are rapid to gradational at all scales of mapping.

Garnett, who used the I.U.G.S. classification of 1973 as shown in Table 1 on the following page, described three phases within the Hogem Batholith.

The earliest, Phase I, contains the more basic phases, including pyroxenite, gabbro, diorite, monzodiorite, monzonite, and the "Hogem Granodiorite", and accounts for two-thirds of all rock types mapped. The Hogem Granodiorite is a distinctive leucocratic felsic division, predominantly quartz diorite in composition, but also comprising quartz monzodiorite, quartz monzonite and, more rarely, quartz diorite, tonalite and granite.

The Phase II syenites, such as the Duckling Creek complex, (with migmatitic, compositionally banded, and intrusive varieties) and the leucocratic Chuchi (quartz) syenite, are reported to be intrusive into Phase I rocks.

Phase III rocks include leucocratic varieties (including aplites, pegmatite, varieties of granite, quartz syenite and alaskite). These rocks may be represented by leucocratic late-stage dykes cutting units of Phases I and II.

Numerous porphyry copper prospects occur throughout the Hogem Batholith.

The alkalic plutons of the Quesnel Belt commonly host porphyry copper deposits, which are increasingly being recognized as an important source of gold. It has also been recently recognized that related failed porphyry systems (those that did not form copper deposits) also have the potential to generate disseminated gold deposits (eg: QR and the 66 Zone at Mt Milligan).

The volcanic strata on all of the PAL property claims are intruded by alkalic plutons. Some of these plutons are reported to display some of the geological characteristics which are related to the formation of gold-rich porphyry copper deposits in the Quesnel Belt." Many auriferous porphyry copper prospects are under active exploration within the Quesnel Belt, and the following deposits have been identified:

Gold-Copper Porphyry Deposits Quesnel Belt British Columbia

	Number of	Reserves / Mir	neral
		Inventory	
Property	Deposits	Copper (x10 ⁶ Gold	(x10° oz)
		lbs)	•
In Production:			
Copper Mountain (Princeton)	5	1,600	0.910
Afton (Teck)	2	680	0.970
Exploration/Development Stage			
Mt Polley (Imperial Metals)	2	875	2.000
Galore Creek (Hudsons Bay et al)	8	3,000	1.750
Red Chris (Noranda)	2	550	0.450
QR (QPX)	4	· 0	0.200
Lorraine (Kennco)	2	150	0.100
Mt Milligan (Placer Dome)	2	1,680	6.376
South Kemess (El Condor)	1	988	3.969
North Kemess (El Condor)	1 ·	622	1.900

The Mount Milligan property, located 170 km southwest of the PAL property, is hosted by Takla group volcanic strata intruded by several alkaline plutons. Two bulk tonnage deposits have been outlined which contain extensive disseminated and stockwork porphyry-type copper-gold mineralization.

The Kemess property, located 100 km northwest of the PAL property, is underlain by Triassic Takla group volcanic rocks intruded by Cretaceous/Tertiary quartz monzonite porphyries. A disseminated sulphide system measuring at least six by nine kilometers contains both the North and South Kemess deposits.

6A

GEOLOGICAL SERVICES INC.

TABLE 1

SOUTHERN HOGEM BATHOLITH: INTRUSIVE ROCK DIVISIONS

INTRUSIVE PHASES	PHASE DIVISIONS	UNIT	ROCK VARIETIES	
PHASE III LOWER CRETACEOUS	-	9	LEUCOCRATIC GRANITE, Alaskita	
PHASE II MIDDLE	CHUCHI SYENITE	8	LEUCOCRATIC SYENITE, Quarte Syenite	
TO	DUCKLING CREEK SYENITE COMPLEX	7	LEUCOCRATIC SYENITE	
JURASSIC		6	FOLIATED SYENITE	
	HOGEM GRANODIORITE	5	GRANODIORITE, QUARTZ MONZONITE, minor Tonelite, Quartz Diorite, Quartz Monzonite, Granite	
PHASE I	HOGEM BASIC C SUITE	4	MONZONITE to Quertz Monzonite	
JURASSIC		3	MONZODIORITE to Quartz Monzodiorite	
UPPER TRIASSIC		2	NATION LAKES PLAGIOCLASE PORPHYRY (a) Monzonite (b) Monzodiorite	
		1	DIORITE, minor Gabbro, Pyroxenita, Hornblendite	

Hogern batholith intrusive phases in relation to general plutonic rock classification (after 1.U.G.S., 1973).

С

The South Kemess deposit occurs in a flat-lying, near-surface quartz monzodiorite intrusion which hosts porphyry-style mineralization consisting of copper, gold, and lesser silver and molybdenum.

An upper supergene zone, comprising 20% of the mineral inventory, contains native copper, chalcocite, and fine-grained gold. A lower hypogene zone, comprising 80% of the mineral inventory, contains pyrite, chalcopyrite, bornite, and minor molybdenite. A mineable reserve of 220 million tons grading 0.224% Cu and 0.018 oz/ton Au was calculated by IMC of Tucson, Arizona.

In July 1993, a pre-feasibility study on a 40,000 tonne per day operation at South Kemess was completed by Kilborn Engineering Pacific Ltd.

PREVIOUS WORK (Figure 5)

5.

Work undertaken by the UMEX-Wenner Gren Joint Venture in 1970-71 located scattered occurrences of copper mineralization in the volcanics adjacent to the stock, and partially defined a 300 meter by 400 meter open-ended copper soil geochemical anomaly trending parallel to the long axis of a magnetic anomaly which was identified through an extensive regional airborne magnetic survey. A 500 meter by 300 meter low-contrast magnetic anomaly was identified approximately 800 meters south of a small dioritic stock which intruded Takla Group volcanics and limy sediments (Figure 5). No samples were analyzed for gold or silver during the 1970-71 exploration program.

In 1990, Chow and Kahlert reported that results of a ground survey using a hand-held AEM pocket magnetometer corresponded well with the airborne survey.

In 1991, Swannell carried out a program of soil sampling, heavy mineral sampling, silt sampling, rock sampling and 1:10,000 reconnaissance geological mapping over approximately 10% of the property. The 1991 surveys confirmed the possible presence of a buried mineralized copper and/or gold occurrence. Soil sampling identified a 400 by 600 meter open ended copper anomaly which corresponded roughly with the anomaly identified in 1971. The copper anomaly, in combination with the magnetic high area, was considered a favorable target area.

In 1992, Swannell contracted Reliance Geological Services to carry out a program of soil sampling, rock sampling and 1:10,000 geological mapping. An open-ended, 600 by 1200 meter copper/ gold soil anomaly was identified. Chalcopyrite, malachite, and molybdenite were observed in altered volcanics and dykes along Matetlo Creek. The results of the geologic mapping program are discussed in Section 6.0.

6.0 **PROPERTY GEOLOGY** (Figure 6)

6.1 Lithologies

The PAL grid area is underlain by Triassic - Jurassic Takla volcanics and later intrusive dykes. Ten percent of this grid area is exposed rock between lines 82+00N and 88+00N and along Matetlo Creek. Volcanics consist of andesite porphyry (la), andesite tuff (lb), pyroxenite(?) (lc), diorite(?) and andesite flows (ld) which are intruded by feldspar porphyry (6) dykes.

Takla Group

Unit 1a, andesite porphyry consists of 30 percent pyroxene phenocrysts to 5 mm in length with plagioclase feldspars making up the remaining 70 percent. Porphyry, which comprises 60 percent of the exposed rock, is centered along the base line and in Matetlo Creek.

Unit 1b is dark green to grey-green andesite tuff composed of 40 to 60 percent fine to medium-grained pyroxenes and 40 to 60 percent plagioclase feldspars. Unit 1a is approximately 25 percent of the exposed rock and appears peripheral to the porphyry in the east and southwest areas of the grid. A finegrained, bedded, greenish grey tuff/mudstone(?) is found in Matetlo Creek just west of the base line and north of line 100+00N.

Unit 1c is a coarse-grained, dark green pyroxenite(?). Pyroxene crystals as long as 5 cm comprise 70+ percent of the rock and are contained in a finer-grained plagioclase-rich matrix. Comprising 10 percent of the exposed rock, the pyroxenite occurs in the core of the outcrops and within the andesite porphyry (1a).

Unit 1d, light colored diorite to andesite flows, is fine to medium-grained consisting of 80 - 85 percent plagioclase feldspars and 15 - 20 percent pyroxene laths. Pyroxenes are up to 2 mm in length and are oriented subparallel to each other. Unit 1d is interfingered with pyroxenite and comprises 5 percent of the exposed rock.

<u>Intrusives</u>

Unit 6, a feldspar porphyry, is approximately Jurassic -Cretaceous in age and consists of 25 percent coarse feldspar phenocrysts in a light colored, fine-grained matrix. A small outcrop of feldspar porphyry occurs on line 84+00N at 95+05E. An altered feldspar porphyry dyke was located in Matetlo Creek at approximately 101+50N and 107+20E.

A previously mapped diorite stock north of Matetlo Creek was not identified in outcrop, although numerous pieces of diorite float were found.

6.2 Alteration

All volcanic rocks show weak propylitic alteration. Epidote is common in fractures. Quartz and quartz/carbonate was locally observed as stringers (<2 mm) and stockworks (<2 mm).

Along Matetlo Creek, 10 meter by 10 meter irregular patches of alteration have been noted. Alteration is ankeritic and is associated with quartz-carbonate veining, stockworks, and rare mariposite in narrow <0.5 m shears.

An albitized feldspar porphyry dyke was identified in Matetlo Creek at 101+50N, 107+20E. Argillically altered plagioclase crystals are set in a hard, creamy white, fine-grained matrix.

6.3 Structure

A major linear/shear(?) structure, oriented at 131°/78° NE was found on line 82+00N at 101+11E. Fracturing occurs in three general directions, with attitudes of 180°/20° to 45°E, 110°/60° to 90°NE-SW, and 040°/40° to 70°NE-SW. Structural orientations were difficult to measure due to locally high magnetite content.

6.4 Mineralization

Magnetite, up to 10%, is the most pervasive metallic mineral. It is found in all volcanic rocks as discrete disseminated grains, clots, or streaks up to 10 cm in length. Pyrite, up to 2%, is the second most abundant metallic mineral, occurring as individual crystals, smears, and clots, especially along fracture planes.

Chalcopyrite (<1%) occurs as small blebs in fractures, as small clots within the volcanics, in narrow calcite-epidote stringers, in a narrow <0.2 m potassium feldspar dyke, and in a 5 cm wide quartz vein. It has been identified in fractures on line 94+00N, 98+71E, in a stringer on line 84+00N, 104+00E, and in the general area bounded by lines 83+00N to 85+00N and stations 98+50E to 101+00E. Malachite was found with the chalcopyrite blebs in a potassium feldspar dyke in Matetlo Creek at approximately 99+80N and 99+00E. Minor molybdenite was observed with chalcopyrite in a quartz vein at 100+27N, 100+00E. Pyrrhotite occurs with chalcopyrite on fracture surfaces at 84+00N, 100+25E, and with pyrite at 84+00N, 95+75E.

7. <u>1993 WORK PROGRAM</u>

Done under B.C.M.E.M.P.R. Approval Number PRG-1300196-45749

7.1 Methods and Procedures

Geochemical, magnetic and induced polarization (IP) surveys were carried out on the claims to follow up on anomalous rock and soil geochemistry identified in previous exploration programs.

7.1.1 Geochemistry

The 1992 survey grid in the western area of the property was extended to the north, west, and east. Baselines and tie-lines were surveyed using compass, hipchain, and flagging. Cross-lines were put in at 200 meter line spacings using compass, hipchain, flagging, pickets, and metal tags. Stations on baselines and cross-lines were marked at 50 meter intervals using flagging and embossed metal tags. Total line surveyed was 8.6 kilometers. Two line kilometers were cut (Lines 90+00N to 96+00N).

The current grid was soil sampled at 100 meter station spacings. Using a grub hoe, 152 samples were taken from the B horizon (approximate depth 30 cm), placed into marked Kraft paper bags, and sent to International Plasma Laboratory for analysis. See Appendix A for analytical results and techniques.

The statistical analysis (Appendix B) and sample plans (Figures 7 and 8) include 463 samples collected in 1991, 1992 and 1993.

The analytical results for two elements (Cu, Au) were computerplotted on 1:10,000 scale maps (Figures 7 and 8).

To evaluate any existing geochemical anomalies, frequency distribution histograms based on laboratory data were prepared for each of the aforementioned elements (Appendix B). Anomalous values were chosen using natural breaks in each histogram.

For interpretation purposes, correlation coefficients were calculated (Appendix B) and anomalous ranges for each element were plotted using symbol maps (Figures 7 and 8). All statistical and plotting work was performed by Tony Clark, Ph.D.

7.1.2 Geophysics (Figures 9 to 16)

Two Scintrex MP-3 magnetometers were used on the magnetic survey, one as the field survey unit and the other as a base station. Readings were taken at 25 meter intervals along the grid lines and were corrected for diurnal drift. A total of 26.5 line kilometers of magnetometer survey was completed on the PAL property.

Magnetic profiles are presented in Figure 9 and a magnetic contour plan is given in Figure 10.

A Scintrex IPR12 receiver and IPC7 2.5 kilowatt transmitter were used on the IP survey. The pole-dipole array configuration was used, with a 75 meter "a" spacing and "n" separations of 1 to 4. Readings were taken in the time domain using a 2 second current pulse. At total of 28.6 line kilometers of IP survey was completed on the PAL property.

Resistivity and chargeability contour plans are shown in Figures 11 and 12. Pseudosections are presented in Figures 13, 14, and 15. Figure 16 is a compilation of soil geochemistry, magnetic and IP survey results.

7.2 Results and Interpretation

7.2.1 Soil Geochemistry

Summary Statistics:

	<u>Copper</u>	Gold
Range	12.0 - 4308.0 ppm	1.0 - 294.0 ppb
Mean	107.1 ppm	9.5 ppb
Standard Deviation	235.00	18.65
Background	<100 ppm	<15 ppb
Low Anomalous	≥100 and <250 ppm	≥15 and <25 ppb
Medium Anomalous	\geq 250 and <400 ppm	≥25 and <50 ppb
High Anomalous	≥400 ppm	≥50 ppb

The correlation coefficient chart (Appendix B) shows a weak correlation between copper and molybdenum. Correlations between copper/gold and other elements were not significant.

The 1991/92 sampling outlined a coincident copper (>100 ppm) and gold (>15 ppb) anomaly, measuring approximately 600 by 1200 meters, extending from Line 88+00N to 98+00N.

Results in copper and gold from 152 samples collected in 1993 consist of several single point copper and gold anomalies. The samples were collected primarily along and north of Matetlo Creek. The field crew reported thick layers of alluvium along Matetlo Creek and glacial features (eskers and moraines) north of Matetlo Creek.

7.2.2 Magnetic Survey (Figures 9 and 10)

Magnetic values range from 56,800 to 58,400 nT for a total magnetic relief of 1,600 nT. Background values are in the 56,800 to 57,000 nT range.

A centrally-located magnetic high (>57,000 nT) extends from Line 88+00N to Line 106+00N, 1,800 meters in length (Figure 10). The anomaly is open to the north. The southern part of the anomaly is approximately 700 meters wide and the northern part is 300 meters wide.

7.2.3 Chargeability and Resistivity (Figures 11 to 15)

Resistivity values on the "n=2" contour plan (Figure 11) range from 248 to 3476 ohm-meters.

The following ranges were used for interpretation of resistivity values:

very high values > 1500 Ωm high values >750 to ≤1500 Ωm medium values >500 to ≤750 Ωm low values ≤500 Ωm

A wide band of medium to high values runs from 96+00E to 114+00E on the southern edge of the grid, narrowing towards the northern edge of the grid where it lies between 105+00E and 109+00E. A 400 meter wide band of low to medium values runs along the eastern flank of this band, from 110+00E, 100+00N to 114+00E, 94+00N.

A zone of high to very high values exists in the southwest area of the grid, between 88+00E and 97+00E and between lines 90+00N and 102+00N. The zone is open to the north, south, and west.

Chargeability values in the "n=2" contour plan (Figure 12) range from 0.7 to 34.5 milliseconds.

The following ranges were used for interpretation of chargeability values:

very high values > 20 msec high values >12 to ≤20 msec medium values >6 to ≤12 msec low values ≤6 msec

The central anomaly consists of medium to high values in a 500 meter wide, north-south trending zone extending from 85+00 N to 10+600 N. The northern part of the anomaly, bounded by grid coordinates 101+00 E to 105+00 E and 99+00 N to 10+600 N, is characterized by a 400 x 700 meter zone of chargeability values up to 22.9 msec, classified as high. The southern part of the anomaly is characterized by medium chargeability values which grade into low-medium values at line 84+00 N at the southern end of the survey area. The central anomaly is open to the north.

The west anomaly consists of medium to very high values (up to 34.5 msec) in the western area of the grid. A 500 meter band of very high values is located along the western edge of the grid between lines 90+000N and 96+000N and between 87+000E and 91+000E. The west anomaly is open to the north, south, and west.

A chargeability low (below 5.0 msec) approximately 500 meters wide is located between the central and west anomalies.

7.2.4 Geophysical Interpretation

The magnetic high is coincident with low chargeability values and low to medium resistivity values, indicating a rock unit (volcanic or intrusive?) with a high magnetite content and low sulphide content. High magnetite, up to 10%, was observed as disseminations, clots, and veinlets in volcanic rocks between lines 78+00N and 86+00N.

The central chargeability anomaly correlates with medium to high resistivity values. The anomaly is strong to the north and is weaker and more diffuse to the south, indicating that the source could be deep at the south end of the survey area. A combined copper/gold geochemical anomaly correlates with the southern portion of the central chargeability anomaly.

The west chargeability anomaly is characterized by very high chargeability values which correlate with high to very high resistivity values. The anomaly could represent an area with high sulphide content (4 to 7%) with associated silicification.

8. <u>DISCUSSION</u>

The target on the PAL property is a porphyry copper/gold deposit similar to the recently discovered Mt Milligan/Southern Star and North/South Kemess deposits.

Geochemical results to date on the PAL property have outlined inconsistent but coincident copper and gold anomalies in an area measuring approximately 600 by 1200 meters. Relatively thick layers of alluvium along Matetlo Creek and glacial features (eskers and moraines) north of Matetlo Creek suggest that the geochemistry of underlying rocks and soil is being masked by alluvium and till.

The same inconsistent results were obtained at the Mt Milligan and Southern Star deposits, now proven to be overlain by accumulations of alluvium and till which mask the geochemical signature of underlying mineralization. As a result, those deposits are not specifically defined by high copper and gold values in soils.

Similarly, the eastern portion of the South Kemess project is underlain by a coincident gold/copper/molybdenum soil anomaly, but metal concentrations over the western portion of the deposit are comparatively low due to a wedge of younger cover rocks overlying the mineralized intrusion.

The IP response over the Mt Milligan/Southern Star deposits varies from 10 to over 40 msec and does not specifically define the deposits. Similarly, IP response over the Kemess deposit varies from medium to high chargeability in the eastern section to low in the western section where there is a younger barren rock cover and sulphide minerals have been oxidized to hematite in a supergene zone. The geochemical and geophysical surveys conducted on the PAL property have outlined three target areas for follow-up diamond drilling.

First is the central anomaly defined by a north-south trending, 500×1200 meter chargeability anomaly. The northern area of the central anomaly includes a 400 x 700 meter zone of values up to 22.9 msec, while the southern portion is coincident with a 600 x 1200 meter copper/gold soil anomaly.

Second is the west anomaly consisting of a band of medium to very high chargeability values combined with high resistivity values along the western edge of the grid. This zone is open to the south, north, and west. The west anomaly has no coincidence with anomalous geochemical results, and is interpreted as a zone of high sulphide content combined with silicic alteration.

The third, located between the central and west anomalous zones, is an area of high magnetic response combined with low chargeability values. There is a possibility that this response is associated with a low sulphide mineralized supergene zone. Alternatively, the high magnetic response could represent a volcanic or intrusive unit with high primary magnetite content.

As seen at Mt Milligan and Kemess, blind mineralized bodies are characterized by varying geochemical and geophysical responses. The variable geochemical and geophysical signatures outlining the three target areas on the PAL property could represent hypogene or supergene porphyry-style mineralization. Diamond drilling will be required to test the significance of target areas defined to date. This exploration drilling will be a guide for possible follow-up delineation drilling and ground surveys. See Figure 16 for proposed drill hole locations.

9. <u>CONCLUSIONS</u>

i.

The PAL property has potential to host a porphyry style copper/gold deposit because:

- it lies within the Mesozoic Quesnel Belt which hosts several porphyry copper/gold deposits;
- the geological environment, diorite stock(s) intruding Takla
 Group volcanic rocks, is favorable; and
- results of work to date show geological, geochemical, and geophysical similarities to the nearby proven Mt Milligan and Kemess deposits
- geophysical and geochemical surveys have defined target areas for followup drilling.

10. <u>RECOMMENDATIONS</u>

 a) Using a widely spaced pattern as illustrated in Figure 16, drill a number of holes ranging in depth from 300 to 600 feet. Total footage is proposed to be 5000 feet.

Five holes are proposed on a fence pattern along line 94+00N to test the central anomaly, magnetic high, and west anomaly.

Two holes are proposed on line 90+00N to test the southern area of the west anomaly.

Three holes are proposed along line 10200N to test the northern area of the central and west anomalies.

b) Perform approximately ten line kilometers of induced polarization and magnetic geophysics to extend the known target areas.

Total budget for the above is estimated at \$266,000. Geophysics (10 line km) \$ 16,000 Drilling (5000 feet) \$ 250,000

CERTIFICATE

I, **PETER D. LERICHE**, of 3125 West 12th Avenue, Vancouver, B.C., V6K 2R6, do hereby state that:

- 1. I am a graduate of McMaster University, Hamilton, Ontario, with a Bachelor of Science Degree in Geology, 1980.
- 2. I am registered as a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I am a Fellow in good standing with the Geological Association of Canada.
- 4. I have actively pursued my career as a geologist for thirteen years in British Columbia, Ontario, Saskatchewan, the Yukon and Northwest Territories, Montana, Oregon, Alaska, Arizona, Nevada and California.
- 5. The information, opinions, and recommendations in this report are based on fieldwork carried out under my direction, and on published and unpublished literature. I visited the Pal property during July 1992.
- 6. I have no interest, direct or indirect, in the subject claims or the securities of Swannell Minerals Corporation or Major General Resources Ltd, nor do I expect to receive any.
- 7. I consent to the use of this report, only in its entirety, in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

RELIANCE GEOLOGICAL SERVICES INC. 242 LERICHE BRITISH COLUMBIA Peter D. Lettche M.B.Sc., P.Geo.

Dated at North Vancouver, B.C., this 9th day of December 1993.

REFERENCES

ADAMSON, R.S., (1968-72):

Dolmage-Campbell & Associates, Private UMEX - Wenner Gren Joint Venture Reports.

ARMSTRONG, J.E. (1949):

Fort St. James Map Area, Cassiar and Coast Districts, B.C., Geol. Survey of Canada Memoir 252.

ARMSTRONG, J.E., ROOTS, E.F.:

Map 1030A, Aiken Lake, Cassiar District, B.C., with Descriptive Notes.

BARR, D.A., et al., (1976):

The Alkaline Porphyry Deposits - A Summary., Porphyry Deposits of the Canadian Cordillera, C.I.M. Special Volume 15, ed: A. Sutherland Brown, pp 359-367.

BOWEN, B.K., COPELAND, D.J., REBAGLIATI, C.M., 1992: 1991 Exploration and Delineation Drilling Program on the Kemess North Property.

CHOW, F., and KAHLERT, B.H., 1990:

Complilation of Geological, Geochemical, Geophysical and other data on the PAL group of mineral claims. Private report.

CROSS, D., 1985:

Geochemical Report 1221 Claim, Omineca Mining Division, B.C., Suncor Inc. Resources Group, Assessment Report #14,809.

FERREIRA, W., HELSEN, J., 1982:

Altabrit Claims, Report No.1, Geochemistry and Geology, Omineca Mining Division, Mattagami Lake Exploration Limited. Assessment Report #10436.

23

FRASER, B.M. (1980):

Geological, Geochemical Report on the Halo 1 Mineral Plain, Omineca Mining Division, N.T.S. 93N/6E, Dome Exploration (Canada) Ltd.

GARNETT, J.A., 1978:

Geology and Mineral Occurrences of the Southern Hogem Batholith, B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin #70.

GARNETT, J.A., 1971:

Duckling Creek Area, Hogem Batholith., Geology Exploration and Mining, B.C. Ministry of Energy, Mines and Petroleum Resources. pp. 203-219.

GARNETT, J.A., (1972):

Preliminary Geological Map of Part of the Southern Hogem Batholith, Duckling Creek Area., BCMEMPR, Preliminary Map No. 9.

KILBORN Engineering Pacific Ltd, 1993:

Executive Summary on the Kemess South Gold Copper Project.

LERICHE, P.D. and LUCKMAN, N., 1991: Geological and Geochemical Report on the PAL Property for Swannell Minerals Corp.

LERICHE, P.D. and FAULKNER, R., 1992: Geological and Geochemical Report on the PAL Property for Swannell Minerals Corp.

LLOYD, J., 1989:

Summary Report and Drilling Recommendations on Ground Magnetic and Induced Polarization Surveys on the Mt Milligan Property for Continental Gold Corp.
NEVIN, A.E., 1971:

Geological Report, Kam Group, Matetlo Creek, Omineca Mining Division, Fortune Island Mines Ltd., Assessment Report #3342.

REBAGLIATI, C.M., 1991:

Summary Report on the Mt Milligan Project for Continental Gold Corp.

REBAGLIATI, C.M., 1991: Summary Report, Takla Joint Venture, Porphyry Copper Gold Project.

REBAGLIATI, C.M., 1992: Summary Report, Takla Joint Venture

Summary Report, Takla Joint Venture, Porphyry Copper Gold Project.

U.S.G.S., (1990): Gold in Porphyry Copper Systems. U.S.G.S. Bulletin 1957-E, 55 pp.

RELIANCE GEOLOGICAL SERVICES INC.

241 EAST 1ST STREET NORTH VANCOUVER, B.C. V7L 1B4

TEL: (604) 984-3663 FAX: (604) 988-4653

ITEMIZED COST STATEMENT Re: PAL Project 1993, J790 750 Project Preparation \$ Mobilization & demobilization: \$ 4,230 \$ 2,000 Consulting Field Crew: Supervision 400 \$ 345/day x 4 days \$ Project Geologist 1,380 (N. Hulme: Sep 16 - 19, 1993) \$ 285/day x 4 days \$ 1,140 Field Geologist (J. Fleishman: Sep 16 - 19, 1993) Geotechnician \$ 220/day x 4 days \$<u>880</u> \$ 3,800 (B. Doubt: Sep 16 - 19, 1993) Field Costs: Helicopter 5,569 \$ \$ Food & Accomm 75/day x 12 days \$ 900 \$ 50/day x 4 days \$ \$ 18/day x 12 days \$ Communications 200 Supplies 216 \$ Expediting 50/day x4 days \$ 200 Freight \$ 100 Vehicle: use \$ 110/day x 2 days Vehicle: standby \$ 30/day x 2 days \$_ 280 \$ 7,465 Assays & Analysis: 152 soil samples @ \$14.50/sample \$ 2,204 (Au by FA/AA and 30 element ICP) 2,204 \$ Geophysics \$1600/km x 28.6 kms \$ 45,760 \$ 45,760 Report: Drafting and map preparation \$ 2,000 Report writing and editing \$ 1,600 \$ 300 \$ Word processing, copying, binding 3,900 Administration, incl Overheads & Profit \$<u>8,225</u> Sub-total \$ 78,334 plus 7% G.S.T. \$<u>5,484</u> \$ 83,818

TOTAL

APPENDIX A

ANALYTICAL REPORTS

TERNATIONAL PLASMA LABORATORY LTD.		CERT	IFIC iP	ATE L 93	OF ANA J0106	LYSIS				2036 Columbia S Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879- Fax (604) 879-	7878 7898
Reliance Geological Services LtdOut: Oct 06, 1993Project: Pal 790In: Oct 01, 1993Shipper: Peter LerichePO#:Shipment:ID=C026901	d 161	Sampl Raw Stora Pulp Stora	es ige: ige:	0= Roc	k 77= Soil - 00Mon/Dis - 12Mon/Dis	0= Core	0=RC	Ct 0≠ Pulp	84=Other 03Mon/Dis 12Mon/Dis	[054114:13: Mon=Month Rtn=Return	28:39100693] Dis=Discard Arc=Archive
Msg: Au(FA/AAS 20g) ICP(AqR) Msg: Decumpost Dictribution	Analy	Met Tit	Sumn le Limit:	lary-	Units Descrip	otion		Element	##		<u> </u>
1 Reliance Geological Services Ltd EN RT CC IN FX 241 East 1st Street 1 2 2 2 1 North Vancouver DL 3D 5D BT BL BC V7P 2S3 0 0 0 1 0	01 312P 02 721P 03 711P 04 714P 05 730P	FAAA ICP ICP ICP ICP ICP	Au 5 Ag 0.1 Cu 1 Pb 2 Zn 1	5 9999 100 20000 20000 20000	ppb Au Fire ppm Ag ICP ppm Cu ICP ppm Pb ICP ppm Zn ICP	e Assay/AAS	finish	Gold Silver Copper Lead Zinc	01 02 03 04 05		
ATT: Peter Leriche Ph:604/984-3663 Fx:604/988-4653	06 703P 07 702P 08 732P 09 717P 10 747P	ICP ICP ICP ICP ICP	As 5 Sb 5 Hg 3 Mo 1 T1 10	5 9999 5 9999 3 9999 9999 9999 9999	ppm As ICP ppm Sb ICP ppm Hg ICP ppm Mo ICP ppm T1 ICP	5 ppm 10 ppm		Arsenic Antimony Mercury Molydenum Thallium	06 07 08 09 10		· .
	11 705P 12 707P 13 710P 14 718P 15 704P	ICP ICP ICP ICP ICP	Bi 2 Cd 0.1 Co 1 Ni 1 Ba 2	999 100 999 999 999	ppm Bi ICP ppm Cd ICP ppm Co ICP ppm Ni ICP ppm Ba ICP			Bismuth Cadmium Cobalt Nickel Barium	11 12 13 14 15		· · · · · · · · · · · · · · · · · · ·
	16 727P 17 709P 18 729P 19 716P 20 713P	ICP ICP ICP ICP ICP	W 5 Cr 1 V 2 Mn 1 La 2	999 9999 999 9999 9999 9999	ppm W ICP ppm Cr ICP ppm V ICP ppm Mn ICP ppm La ICP			Tungsten Chromium Vanadium Manganese Lanthanum	16 17 18 19 20		
	21 723P 22 731P 23 736P 24 726P 25 701P	ICP ICP ICP ICP ICP	Sr 1 Zr 1 Sc 1 Ti 0.01 Al 0.01	99999 999 99 1.00 9.99	ppm Sr ICP ppm Zr ICP ppm Sc ICP % Ti ICP % Al ICP			Strontium Zirconium Scandium Titanium Aluminum	21 22 23 24 25		
	26 708P 27 712P 28 715P 29 720P 30 722P	ICP ICP ICP ICP ICP	Ca 0.01 Fe 0.01 Mg 0.01 K 0.01 Na 0.01	9.99 9.99 9.99 9.99 5.00	% Ca ICP % Fe ICP % Mg ICP % K ICP % Na ICP			Calcium Iron Magnesium Potassium Sodium	26 27 28 29 30		. · · ·
	31 719P	ICP	P 0.01	5.00	% P ICP			Phosphorus	31		
					• • •						
•					1. A. ¹			••• • • • • • • • • • • • • • • • • •			

N=Envelope # RT=Report Style CC=Copies IN=Invoices FX=Fax(1=Yes 0=No) N=DownLoad 3D=3-1/2 Disk 5D=5-1/4 Disk BT=BBS Type BL=BBS(1=Yes 0=No)

2=Copy 2=Invoice 0=3-1/2 Disk 0=5-1/4 Disk Totals:

i Di	CERTIFICATE OF ANALYSIS Vancouver, B.C.	
	iPL 93J0106 Canada V5Y 3E1 Phone (604) 879-783	78
INTERNATIONAL PLASMA LABORATORY LTD.	Fax (604) 879-78	98
Client: Reliance Geological Services Ltd Project: Pal 790 161 Soil	i iPL: 93J0106 Out: Oct 06, 1993 Page 1 of 5 Section 1 of 2 In: Oct 01, 1993 Certified BC Assayer: David Chiu	JAR.
Sample Name Au Ag Cu ppb ppm ppm	u Pb Zn As Sb Hg Mo Tl Bi Cd Co Ni Ba W Cr V Mn La Sr Zr Sc Ti Al Ca Fe n ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Mg K X X
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 81 8 <	1.23 0.04 0.38 0.04 1.03 0.03 1.05 0.03 0.79 0.03
Pa1-92 88+00N 111+00E \$\$ <	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.03 0.04 0.32 < 1.03 0.04 0.24 0.02 0.20 0.01
Pa1-92 90+00N 111+00E \$ 6 <	8 68 5 <	0.75 0.03 0.80 0.02 0.64 0.03 0.87 0.04 2.46 0.02
Pa1-92 92+00N 111+00E \$5 <	6 42 <	0.24 0.03 0.25 0.03 0.71 0.02 0.92 0.05 0.93 0.04
Pa1-92 94+00N 111+00E \$\$ <	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.14 0.01 0.18 0.02 0.75 0.02 0.76 0.02 0.72 0.04
Pa1-92 98+00N 90+00E \$ ins Pa1-92 98+00N 91+00E \$ ins Pa1-92 98+00N 92+00E \$ 6 < 149	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.84 0.04 1.04 0.04 1.45 0.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.71 0.03 0.76 0.04 0.90 0.04 1.10 0.07 0.88 0.05
Pa1-92 100+00N 92+00E \$ 5 <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.75 0.05 1.11 0.05 0.61 0.05 0.82 0.04
Min Limit50.11Max Reported*999999.92000020MethodFAAAICPICP=NoTestins=InsufficientSampleS=SoiInternationalPlasmaLabLtd.2036Columbi	2 1 5 5 3 1 10 2 0.1 1 1 2 5 1 2 1 2 1 1 1 0.01 0.01 0.01 0.01 20000 20000 9999 9999 9999 9999 999 999	0.01 0.01 9.99 9.99 ICP ICP

- - - - - - ----

The URL LEMENTION The Total Lement Internation of the temperature of the temperature of the temperature of temperatemperatemperatemperature of temperature of temperature of tempe	iP			CERTIFIC iP	CATE OF A PL 93J010	NALYSI 6	LS			2036 Co Vancou Canada Phone (lumbia Street ver, B.C. V5Y 3E1 604) 879-7878	1
Name Name P $1 = 22$ 36 ± 000 $111 \pm 000t$ 50 (0.20, 0.07) $1 = 22$ 56 ± 000 $112 \pm 00t$ 50 (0.20, 0.07) $1 = 22$ $66 \pm 000t$ $113 \pm 00t$ 50 (0.20, 0.07) $1 = 22$ $66 \pm 000t$ $113 \pm 00t$ 50 (0.20, 0.06) $1 = 22$ $66 \pm 000t$ $113 \pm 00t$ 50 (0.20, 0.06) $1 = 22$ $68 \pm 000t$ $112 \pm 00t$ 50 (0.20, 0.06) $1 = 22$ $68 \pm 000t$ $112 \pm 00t$ 50 (0.20, 0.06) $1 = 22$ $68 \pm 00t$ $112 \pm 00t$ 50 (0.20, 0.04) $1 = 22$ $68 \pm 00t$ $112 \pm 00t$ 50 (0.20, 0.04) $1 = 22$ $68 \pm 00t$ $114 \pm 00t$ 50 (0.20, 0.04) $1 = 22$ $90 \pm 00t$ $111 \pm 00t$ 50 (0.20, 0.04) $1 = 22$ $90 \pm 00t$ $111 \pm 00t$ 50 (0.20, 0.03) $1 = 22$ $90 \pm 00t$ $111 \pm 00t$ 50 (0.20, 0.03) $1 = 22$ $90 \pm 00t$ $111 \pm 00t$ 50 (0.20, 0.05) $1 = 22$ $90 \pm 00t$ $90 \pm 00t$ $91 \pm 00t$ $90 \pm 00t$ <th>INTERNATIONAL PLASMA LAB Client: Reliance G roject: Pal 790</th> <th>eological Services Ltd 161 Soil</th> <th>TPL: 93J0106</th> <th>Out: Oc In: Oc</th> <th>nt 06, 1993 nt 01, 1993</th> <th></th> <th>Page 1</th> <th>of 5 Cer</th> <th>Section tified BC</th> <th>Fax (2 of 2 Assayer: Davi</th> <th>604) 879-7898</th> <th>\$2</th>	INTERNATIONAL PLASMA LAB Client: Reliance G roject: Pal 790	eological Services Ltd 161 Soil	TPL: 93J0106	Out: Oc In: Oc	nt 06, 1993 nt 01, 1993		Page 1	of 5 Cer	Section tified BC	Fax (2 of 2 Assayer: Davi	604) 879-7898	\$2
1-22 86-001 1114005 \$0.03 0.06 1-22 86-001 1124005 \$0.02 0.07 1-22 86-001 1144005 \$0.02 0.08 1-22 86+001 1144005 \$0.02 0.04 1-22 86+001 1144005 \$0.02 0.08 1-22 86+001 1144005 \$0.02 0.13 1-22 86+001 1144005 \$0.02 0.13 1-22 86+001 1144005 \$0.02 0.14 1-22 86+001 1144005 \$0.02 0.14 1-22 86+001 1144005 \$0.02 0.14 1-22 86+001 1144005 \$0.02 0.14 1-22 86+001 1144005 \$0.02 0.13 1-22 92+001 1144005 \$0.02 0.13 1-22 92+001 1144005 \$0.02 0.03 1-22 92+001 1144005 \$0.02 0.03 1-22 92+001 1144005 \$0.02 0.05 1-22	mple Name	Na P % %										
1-92 89+00N 111+00E \$ 0.03 0.05 1-92 89+00N 112+00E \$ 0.02 0.13 1-92 89+00N 114+00E \$ 0.02 0.10 1-92 89+00N 114+00E \$ 0.02 0.20 1-92 90+00N 111+00E \$ 0.02 0.20 1-92 90+00N 112+00E \$ 0.02 0.06 1-92 90+00N 112+00E \$ 0.02 0.06 1-92 90+00N 114+00E \$ 0.02 0.06 1-92 90+00N 114+00E \$ 0.02 0.03 1-92 92+00N 114+00E \$ 0.02 0.03 1-92 94+00N 114+00E \$ 0.02 0.16 92 94+00N 1	1-92 86+00N 111+(1-92 86+00N 112+(1-92 86+00N 112+(1-92 86+00N 113+(1-92 86+00N 114+(1-92 86+00N 115+(00E \$ 0.03 0.06 00E \$ 0.02 0.07 00E \$ 0.02 0.07 00E \$ 0.02 0.07 00E \$ 0.02 0.07 00E \$ 0.02 0.04 00E \$ 0.02 0.08										
-92 90+00N 111+00E \$ 0.02 0.04 -92 90+00N 112+00E \$ 0.02 0.06 -92 90+00N 114+00E \$ 0.02 0.06 -92 90+00N 114+00E \$ 0.02 0.03 -92 92+00N 112+00E \$ 0.02 0.03 -92 94+00N 112+00E \$ 0.02 0.03 -92 94+00N 112+00E \$ 0.02 0.05 -92 94+00N 112+00E \$ 0.02 0.05 -92 94+00N 114+00E \$ 0.02 0.06 -92 94+00N 91+00E \$ 0.02 0.06 -92 94+00N 92+00E \$ 0.02 0.08 -92 <t< td=""><td>-92 88+00N 111+(-92 88+00N 112+(-92 88+00N 113+(-92 88+00N 113+(-92 88+00N 114+(-92 88+00N 115+(</td><td>DOE \$ 0.03 0.05 DOE \$ 0.02 0.13 DOE \$ 0.04 0.05 DOE \$ 0.02 0.10 DOE \$ 0.02 0.20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-92 88+00N 111+(-92 88+00N 112+(-92 88+00N 113+(-92 88+00N 113+(-92 88+00N 114+(-92 88+00N 115+(DOE \$ 0.03 0.05 DOE \$ 0.02 0.13 DOE \$ 0.04 0.05 DOE \$ 0.02 0.10 DOE \$ 0.02 0.20										
-92 92+00N 111+00E \$ 0.02 0.11 -92 92+00N 112+00E \$ 0.03 0.01 -92 92+00N 114+00E \$ 0.02 0.02 -92 92+00N 114+00E \$ 0.02 0.03 -92 92+00N 114+00E \$ 0.02 0.03 -92 92+00N 112+00E \$ 0.02 0.08 -92 94+00N 113+00E \$ 0.02 0.05 -92 94+00N 113+00E \$ 0.02 0.06 -92 94+00N 113+00E \$ 0.02 0.06 -92 94+00N 113+00E \$ 0.02 0.09 -92 96+00N 91+00E \$ -92 98+00N 91+00E \$ 0.02 0.08 -92 98+00N 92+00E \$ 0.02 0.08 -92 98+00N 93+00E \$ 0.02 0.08 -92 98+00N 95+00E \$ 0.02 0.28 -92 98+00N 95+00E \$ 0.03 0.07 -92 9	-92 90+00N 111+(-92 90+00N 112+(-92 90+00N 112+(-92 90+00N 113+(-92 90+00N 114+(-92 90+00N 115+(DOE \$ 0.02 0.04 DOE \$ 0.02 0.04 DOE \$ 0.02 0.04 DOE \$ 0.02 0.06 DOE \$ 0.02 0.04 DOE \$ 0.02 0.04 DOE \$ 0.02 0.04 DOE \$ 0.02 0.04										
-92 94+00N 111+00E \$ 0.02 0.08 -92 94+00N 112+00E \$ 0.02 0.05 -92 94+00N 113+00E \$ 0.02 0.05 -92 94+00N 113+00E \$ 0.02 0.06 -92 94+00N 115+00E \$ 0.02 0.09 -92 94+00N 91+00E \$ -92 98+00N 91+00E \$ -92 98+00N 92+00E \$ 0.02 0.08 -92 98+00N 93+00E \$ 0.02 0.08 -92 98+00N 93+00E \$ 0.02 0.08 -92 98+00N 95+00E \$ 0.02 0.08 -92 98+00N 95+00E \$ 0.02 0.06 -92 98+00N 95+00E \$ 0.03 0.25 -92 98+00N 97+00E \$ 0.03 0.05 -92 100+00N 91+00E \$ 0.03 0.05 -92 100+00N 91+00E \$ 0.03 0.05 -92 100+00N 91+00E	-92 92+00N 111+0 -92 92+00N 112+0 -92 92+00N 113+0 -92 92+00N 113+0 -92 92+00N 114+0 -92 92+00N 115+0	00E \$ 0.02 0.11 00E \$ 0.02 0.03 00E \$ 0.03 0.01 00E A\$ 0.02 0.02 00E \$ 0.03 0.03										
-92 98+00N 90+00E \$ -92 98+00N 92+00E \$ 0.02 0.08 -92 98+00N 93+00E \$ 0.02 0.08 -92 98+00N 93+00E \$ 0.02 0.08 -92 98+00N 93+00E \$ 0.02 0.08 -92 98+00N 94+00E \$ 0.02 0.08 -92 98+00N 95+00E \$ 0.02 0.28 -92 98+00N 96+00E \$ 0.02 0.26 -92 98+00N 97+00E \$ 0.03 0.25 -92 100+00N 90+00E \$ 0.03 0.09 -92 100+00N 91+00E \$ 0.03 0.09	-92 94+00N 111+0 -92 94+00N 112+0 -92 94+00N 113+0 -92 94+00N 114+0 -92 94+00N 115+0	00E \$\$0.02 0.08 00E \$\$0.02 0.13 00E \$\$0.02 0.05 00E \$\$0.02 0.06 00E \$\$0.02 0.09			•							
92 98+00N 95+00E \$ 0.02 0.28 92 98+00N 96+00E \$ 0.02 0.06 92 98+00N 97+00E \$ 0.03 0.25 92 100+00N 90+00E \$ 0.03 0.05 92 100+00N 91+00E \$ 0.03 0.09	-92 98+00N 90+0 -92 98+00N 91+0 -92 98+00N 92+0 -92 98+00N 93+0 -92 98+00N 94+0	XOE S NOE S NOE S 0.02 0.08 NOE S 0.03 0.07						·			·	
	-92 98+00N 95+0 -92 98+00N 96+0 -92 98+00N 97+0 -92 100+00N 90+0 -92 100+00N 91+0	NOE \$\$ 0.02 0.28 NOE \$\$ 0.02 0.06 NOE \$\$ 0.03 0.25 NOE \$\$ 0.03 0.05 NOE \$\$ 0.03 0.05 NOE \$\$ 0.03 0.09										
-92 100+00N 92+00E \$ 0.03 0.11 -92 100+00N 93+00E \$ 0.03 0.07 -92 100+00N 94+00E \$ 0.02 0.14 -92 100+00N 95+00E \$ 0.02 0.12	-92 100+00N 92+0 -92 100+00N 93+0 -92 100+00N 94+0 -92 100+00N 95+0	NOE \$ 0.03 0.11 NOE \$ 0.03 0.07 NOE \$ 0.02 0.14 NOE \$ 0.02 0.12			· · · · · · · · · · · · · · · · · · ·	. .						

CERTIFICATE OF ANALYSIS

1

2036 Columbia Street

Vancouver, B.C.

Canada V5Y 3E1

iPL 93J0106

INTERNATIONAL	PLASMA	LABORATORY LTD.
		the second se

- Contraction of the second

S. Contraction

			IPI 9300100		Phone (604) 879-7878 Fax (604) 879-7898
Client: Reliance Geologica Project: Pal 790 161	al Services Ltd Soil	iPL: 93J0106	Out: Oct 06, 1993 In: Oct 01, 1993	Page 2 of 5 Section 1 Certified BC Ass	of 2 ayer: David Chiu
Sample Name	Au Ag Cu ppb ppm ppm	Pb Zn As Sb Hg ppm ppm ppm ppm ppm	Mo Tì Bị Cơi Co Ni Ba W ppm ppm ppm ppm ppm ppm ppm ppm	Cr V Mn La Sr Zr Sc T ppm ppm ppm ppm ppm ppm	i Al Ca Fe Mg K Z Z Z Z Z Z
Pa1-92 100+00N 96+00E \$ Pa1-92 100+00N 97+00E \$ Pa1-92 100+00N 98+00E \$ Pa1-92 102+00N 90+00E \$ Pa1-92 102+00N 90+00E \$ Pa1-92 102+00N 91+00E \$	6 30 <	15 71 < < < 12 131 10 < < 25 156 13 < < 17 86 17 < < 28 149 15 < <	2 <	36 164 287 2 26 2 3 0.00 42 142 502 2 36 1 4 0.17 40 157 459 3 25 1 4 0.01 47 129 367 3 54 2 5 0.11 45 179 518 2 40 3 5 0.1	3 3.08 0.27 4.79 0.69 0.03 1 2.56 0.35 4.77 0.94 0.03 5 4.30 0.26 5.92 0.83 0.05 3 3.30 0.46 4.38 1.00 0.06 1 3.81 0.41 6.08 1.00 0.05
Pa1-92 102+00N 92+00E \$ Pa1-92 102+00N 93+00E \$ Pa1-92 102+00N 94+00E \$ Pa1-92 102+00N 94+00E \$ Pa1-92 102+00N 95+00E \$ Pa1-92 102+00N 95+00E \$ Pa1-92 102+00N 96+00E \$	16 1.7 477 6 <	21 143 13 < 4 11 204 < < < 18 108 7 < < 7 67 5 < <	9 <	54 101 1062 21 78 5 10 0.0 32 102 706 3 67 2 4 0.0 52 100 1315 11 95 2 7 0.0 52 100 1315 11 95 2 7 0.0 15 34 1073 11 133 1 2 0.0	3 4.25 1.80 3.61 1.05 0.07 3 1.87 1.29 3.22 0.91 0.05 5 3.09 1.84 3.70 1.28 0.08 - - - - - - 1 1.28 3.58 1.60 0.30 0.03
Pa1-92 102+00N 97+00E Š Pa1-92 102+00N 98+00E Š Pa1-92 102+00N 99+00E Š Pa1-92 102+00N 100+00E Š Pa1-92 102+00N 101+00E Š	20 < 61 6 < 79 37 < 249 5 < 82 ins	15 113 5 < < 13 81 9 < < 18 80 17 < < 12 149 5 < < 	4 <	114 137 443 2 31 2 5 0.12 70 161 367 2 35 2 3 0.11 42 229 264 2 28 3 5 0.11 35 140 301 3 31 1 3 0.14	2 3.80 0.32 4.91 1.72 0.04 5 2.30 0.45 4.96 1.26 0.04 5 2.98 0.40 6.28 0.77 0.03 4 2.22 0.38 4.52 0.77 0.04
Pa1-92 102+00N 102+00E \$ Pa1-92 102+00N 103+00E \$ Pa1-92 102+00N 104+00E \$ Pa1-92 102+00N 105+00E \$ Pa1-92 102+00N 106+00E \$	ins 8 < 198 11 < 284 6 < 34 < < 24	14 104 37 <	4 <	70 126 1279 5 46 2 12 0.10 61 381 430 9 45 8 10 0.12 50 138 258 2 23 4 3 0.16 38 126 528 2 21 1 3 0.06	0 2.52 0.69 4.05 1.12 0.06 2 2.72 0.66 5.75 1.09 0.05 0 3.28 0.31 4.89 0.78 0.04 8 3.14 0.31 4.18 0.64 0.03
Pa1-92 102+00N 107+00E \$ Pa1-92 102+00N 108+00E \$ Pa1-92 102+00N 109+00E \$ Pa1-92 102+00N 109+00E \$ Pa1-92 102+00N 110+00E \$ Pa1-92 102+00N 90+00E \$	8 <	9 61 10 < < 16 159 15 < < 16 178 14 < < 18 222 20 < < 11 99 < < <	3 <	42 92 373 3 42 1 5 0.00 57 124 544 3 87 1 5 0.00 62 140 513 3 58 2 5 0.1' 61 137 750 3 69 2 6 0.1' 28 145 474 4 60 1 4 0.1'	3 1.34 0.59 3.15 0.84 0.04 3 2.09 0.62 4.20 1.23 0.06 1 1.94 0.73 4.53 1.33 0.05 2 2.28 0.81 4.56 1.47 0.04 0 2.42 0.50 4.09 1.11 0.06
Pa1-92104+00N91+00E\$Pa1-92104+00N92+00E\$Pa1-92104+00N93+00E\$Pa1-92104+00N94+00E\$Pa1-92104+00N95+00E\$	10 <	14 112 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29 139 567 3 51 <	3 2.70 0.43 4.47 1.16 0.04 7 2.81 1.02 3.85 0.97 0.04 7 1.88 1.06 3.26 0.69 0.05 0 3.34 0.45 3.81 1.14 0.04 9 2.98 0.45 4.12 1.10 0.04
Pa1-92 104+00N 96+00E \$ Pa1-92 104+00N 97+00E \$ Pa1-92 104+00N 98+00E \$ Pa1-92 104+00N 99+00E \$ Pa1-92 104+00N 100+00E \$	7 < 36 < 64 < 46 33 < 44 6 < 22	14. 99 < < < 19 130 < < < 15 105 < < < 21 155 < < < 18 128 < < <	3 <	37 143 555 2 46 1 4 0.11 80 196 337 3 29 2 4 0.10 35 101 425 4 62 1 5 0.00 47 199 353 3 28 2 4 0.11 44 168 360 3 33 3 4 0.11	i 2.36 0.60 4.10 1.18 0.05 j 4.44 0.34 6.61 1.13 0.05 j 2.83 0.77 3.24 1.12 0.07 j 3.89 0.37 6.19 0.82 0.04 j 2.85 0.47 4.74 0.75 0.04
Pa1-92 104+00N 101+00E \$ Pa1-92 104+00N 102+00E \$ Pa1-92 104+00N 103+00E \$ Pa1-92 104+00N 104+00E \$	22 < 66 5 < 71 < 65 < 38	16 1.18 13 <	4 <	48 170 675 <	1 4.74 0.72 5.11 1.16 0.04 3 3.70 0.54 5.34 1.19 0.04 2 3.03 0.44 5.86 0.89 0.04 0 2.90 0.37 4.59 0.82 0.03
Min Limit Max Reported* 9 Method F =No Test ins=Insufficien International Plasma Lab Lt	5 0.1 1 9999 99.9 20000 2 AAA ICP ICP It Sample S=So cd. 2036 Columb	2 1 5 5 3 20000 20000 9999 9999 9999 ICP ICP ICP ICP ICP il R=Rock C=Core L=Silt P=F ia St. Vancouver BC V5V 3	1 10 2 0.1 1 1 2 5 9999 999 999 999 999 999 999 999 ICP ICP ICP ICP ICP ICP ICP ICP Pulp U=Undefined m=Estimate/1000 3E1 Ph:604/879-7878 Fax:604/879-78	1 2 1 2 1 1 10.0 9999 999 9999 9999 9999 99 1.00 ICP ICP ICP ICP ICP ICP ICP ICP Z=Estimate Z Max=No Estimate 398	0.01 0.01 0.01 0.01 0.01 9.99 9.99 9.99 9.99 9.99 CF ICP ICP ICP ICP ICP

INTERNATIONAL PLASMA LABORATORY LTD.		CERTIFICATE OF ANALYSIS iPL 93J0106	2038 condinbia Groot Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898
Client: Reliance Geological Services Ltd Project: Pal 790 161 Soil	iPL: 93J0106	Out: Oct 06, 1993 Page 2 of 5 In: Oct 01, 1993 C	Section 2 of 2 ertified BC Assayer: David Chiu
ampleName Na P XX			
1-92 100+00N 96+00E \$ 0.02 0.12 1-92 100+00N 97+00E \$ 0.03 0.14 1-92 100+00N 98+00E \$ 0.02 0.19 1-92 102+00N 90+00E \$ 0.03 0.05 1-92 102+00N 91+00E \$ 0.02 0.20			
1-92 102+00N 92+00E \$ 0.03 0.27 1-92 102+00N 93+00E \$ 0.03 0.03 1-92 102+00N 94+00E \$ 0.03 0.13 1-92 102+00N 95+00E \$ 1-92 102+00N 96+00E \$ 0.02 0.12			
1-92 102+00N 97+00E \$ 0.03 0.11 1-92 102+00N 98+00E \$ 0.03 0.04 1-92 102+00N 99+00E \$ 0.02 0.04 1-92 102+00N 100+00E \$ 0.02 0.05 1-92 102+00N 101+00E \$			
1-92 102+00N 102+00E \$ 1-92 102+00N 103+00E \$ 0.04 0.12 1-92 102+00N 104+00E \$ 0.03 0.12 1-92 102+00N 105+00E \$ 0.02 0.17 1-92 102+00N 106+00E \$ 0.02 0.21			
1-92 102+00N 107+00E \$ 0.03 0.07 1-92 102+00N 108+00E \$ 0.03 0.07 1-92 102+00N 109+00E \$ 0.03 0.08 1-92 102+00N 110+00E \$ 0.04 0.08 1-92 102+00N 90+00E \$ 0.03 0.05			
1-92 104+00N 91+00E \$ 0.03 0.05 1-92 104+00N 92+00E \$ 0.03 0.07 1-92 104+00N 93+00E \$ 0.03 0.06 1-92 104+00N 94+00E \$ 0.03 0.11 1-92 104+00N 95+00E \$ 0.03 0.07			
1-92 104+00N 96+00E \$ 0.03 0.03 1-92 104+00N 97+00E \$ 0.03 0.21 1-92 104+00N 98+00E \$ 0.03 0.04 1-92 104+00N 99+00E \$ 0.03 0.24 1-92 104+00N 100+00E \$ 0.03 0.11			
1-92 104+00N 101+00E \$0.04 0.15 1-92 104+00N 102+00E \$0.03 0.05 1-92 104+00N 103+00E \$0.03 0.06 1-92 104+00N 104+00E \$0.03 0.05			
in Limit 0.01 0.01 ax Reported* 5.00 5.00			

Method ICP ICP --=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898 CERTIFICATE OF ANALYSIS

2036 Columbia Street

20

المؤدينة

Ĭ								CE	RT	IFI	CAT	'E C)F	AN	IAL	ZS I	IS 👘							Varico	uver. B	12 00 00 3.C.		
										i	\mathbf{PL}	935	J01	06)									Canac	ia V5Y	3E1		
													• •											Phone	(604) 8	379-7878)	
INTERNATIONAL PLA	ASMA LABORATORY	LTD.												· .									• •	Fax	(604) 8	379-7898	0	1_
Client: Relia Project: Pal 7	nce Geolog 90 1	ical S 61 Soi	ervica 1	es Ltd		iPL: 93	50106			Out: (In: (D et 06 Det 01	, 199 , 199	3 3				Page	3 0	F_5	Certi	Sect: fied	ion BC	1 of Assay	2 er: Da	vid Ch	iu		AC.
Sample Name		Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm p	T1 Bi pm ppm	Cd ppm	Co ppm	N-i ppm	Ba ppm	W ppm	Cr V ppm ppm	.Mn ppm	La ppm	Sr ppm	Zr ppm p	Sc opm	Ti %	A1 2	Ca X	Fe X	Mg %	K X
Pa1-92 104+00N Pa1-92 104+00N Pa1-92 104+00N Pa1-92 104+00N Pa1-92 104+00N Pa1-92 104+00N	105+00E 106+00E 107+00E 108+00E 109+00E	いた。 、 、 、 、 、 、 、 、 、 、 、 、 、	< < < < <	124 84 55 42 48	15 15 17 11 17	95 106 171 130 154	10 5 8 < 6	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~	3 3 3 3 3	~ ~ ~ ~ ~ ~ ~ ~ ~	< < < <	20 21 20 17 21	25 28 29 22 26	112 88 78 60 64	< < 5 < <	39 103 44 123 52 161 41 163 50 129	769 687 382 349 437	11 3 2 2 3	56 36 35 36 28	1 1 3 1 3	7 (4 (4 (3 (5 (0.07 0.09 0.15 0.11 0.11	3.00 2.43 3.33 2.58 4.53	1.02 0.54 0.54 0.44 0.34	3.42 4.17 5.32 4.92 4.60	.13 .03 .09).82).92	0.04 0.05 0.05 0.04 0.04
Pa1-92 104+00N Pa1-93 90+00N Pa1-93 90+00N Pa1-93 92+00N Pa1-93 92+00N Pa1-93 92+00N	110+00E 88+00E 89+00E 88+00E 89+00E	ຮັ້ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	< < 1.7 <	62 35 22 172 43	20 16 17 17 20	168 98 63 142 95	8 7 ~ 7 <	< < < < <	~ ~ ~ ~ ~	3 2 3 3 3	~ ~ ~ ~ ~ ~	< < < < <	27 16 21 25 15	33 24 14 43 28	59 106 41 116 133	~ ~ ~ ~ ~	56 183 49 162 28 174 62 127 53 137	507 804 1036 720 389	23 ¥ 5 2	34 37 29 52 48	4 1 8 1 2	5 (5 (5 (5 (5 (0.11 0.15 0.29 0.10 0.11	4-21 2-81 5-72 3.06 3.68	0.44 0.33 0.69 1.03 0.30	5.57 4.68 6.89 4.60 5.72	.01).92).90 .36	0.04 0.05 0.02 0.04 0.05
Pa1-93 92+00N Pa1-93 94+00N Pa1-93 94+00N Pa1-93 94+00N Pa1-93 94+00N Pa1-93 96+00N	114+00E B 87+00E 88+00E 89+00E 87+00E	5 6 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	v v v v v v	63 104 63 69 83	17 23 21 20 10	116 94 123 158 212	< 6 < 20	< <u><</u> < < < < <	< < < < <	2 3 5 5 4	~ ~ ~ ~ ~ ~ ~	<pre></pre>	17 15 13 16 17	32 25 16 18 26	202 209 125 107 76	~ ~ ~ ~ ~	50 75 41 148 32 198 36 173 62 193	319 633 377 468 381	4 4 3 4 2	45 173 54 45 41	4 2 3 5 1	7 (6 (4 (5 (4 (0.09 0.10 0.17 0.22 0.13	2,83 3,82 3,46 3,64 2,18	0.97 0.61 0.33 0.67 0.50	2.49 1 5.54 1 6.13 (5.68 1 4.85 1	.17 .04 .62 .12 .03	0.03 0.05 0.03 0.06 0.04
Pa1-93 96+00N Pa1-93 96+00N Pa1-93 96+00N Pa1-93 96+00N Pa1-93 96+00N Pa1-93 96+00N	88+00E 89+00E 111+00E 112+00E 113+20E	\$ 14 \$ 7 \$ 9 \$ 14 \$ 11	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	37 64 50 45 70	16 14 15 17 16	79 106 73 112 79	8 5 8 9 <	< < < < <	< < < < <	2 2 4 3 2	~ ~ ~ ~ ~ ~	< < < < <	14 17 18 19 30	18 27 24 24 45	52 52 83 70 57	~ ~ ~ ~ ~	46 172 53 102 60 161 51 186 67 165	303 477 342 482 461	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	32 32 49 30 32	2 2 3 2 11	3 (4 (6 (7 (0.13 0.10 0.12 0.11 0.20	2.36 3.36 4.29 3.57 4.21	0.34 0.41 1.34 0.41 0.42	5.26 (3.81 1 5.02 (5.57 (5.43 1	.80 .11).86).89 .76	0.05 0.05 0.03 0.03 0.04
Pa1-93 96+00N Pa1-93 96+00N Pa1-93 98+00N Pa1-93 98+00N Pa1-93 98+00N Pa1-93 98+00N	114+00E 115+00E 111+00E 112+00E 113+00E	5 < 5 < 5 5 6 10 10	< < < < <	40 92 32 38 16	19 21 12 12 11	91 114 72 128 51	< < 9 7	~ ~ ~ ~ ~	~ ~ ~ ~ ~	3 4 3 3 4	×	< < < < <	28 44 15 16 12	56 71 21 24 15	40 42 88 61 61	~ ~ ~ ~ ~	75 183 87 226 37 149 49 154 40 214	566 756 311 426 198	42 Y 32	26 23 44 31 36	5 14 1 2 2	6 (14 (4 (3 (0.20 0.29 0.09 0.11 0.16	3.77 6.09 1.94 2.91 1.64	0.46 2.59 1.18 0.45 0.50	6.02 1 7.16 2 4.08 (4.85 (5.18 (.69 .88 .86 .94 .51	0.05 0.03 0.03 0.05 0.05
Pa1-93 98+00N Pa1-93 100+00N Pa1-93 100+00N Pa1-93 100+00N Pa1-93 100+00N Pa1-93 100+00N	115+00E 111+00E 112+00E 113+00E 114+00E	5 7 5 10 12 15 6	< < < < <	35 46 108 37 42	22 10 12 11 12	67 72 51 48 88	< 6 8 < 4	~ ~ ~ ~ ~	~ ~ ~ ~ ~	8 2 3 1 3	~ ~ ~ ~ ~ ~	< 0.1 <	18 20 15 14 20	24 27 21 24 34	54 50 57 61 70	< < < 7	59 227 49 154 41 105 47 112 58 126	264 377 508 323 370	2 2 3 2 2 2	27 39 57 44 33	3 3 1 1 3	4 (4 (7 (4 (5 (0.17 0.09 0.07 0.10 0.11	3.17 2.13 1.92 2.02 2.94	0.32 0.46 1.03 0.41 0.50	6.27 (4.50 (3.07 (3.35 (4.22 1	1.88 1.95 1.80 1.95 1.14	0.03 0.03 0.03 0.03 0.03 0.03
Pa1-93 100+00N Pa1-93 102+00N Pa1-93 102+00N Pa1-93 102+00N Pa1-93 104+00N	115+00E 111+00E 112+00E 111+00E 111+00E 112+00E	\$ 10 \$ 7 \$ 10 \$ 11 \$ 15	< < < < <	35 79 77 36 51	16 21 16 14 19	108 162 168 104 123	< 19 12 5 <	~ ~ ~ ~	~ ~ ~ ~ ~	3 3 2 3 4	~ ~ ~ ~ ~ ~	< < < < <	33 23 26 16 23	62 33 33 23 29	37 58 57 61 53	<pre>< < < < 5</pre>	112 185 58 127 60 125 43 122 54 148	496 553 586 472 412	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16 68 57 29 29	9 1 2 1 4	10 (5 (5 (4 (4 (0.23 0.10 0.10 0.09 0.11	4.36 1.98 1.72 2.80 4.44	0.82 0.83 0.85 0.42 0.31	5.50 2 4.34 1 4.19 1 3.77 0 5.49 0	.38 .37 .26 .89 .96	0.02 0.04 0.07 0.03 0.03
Pa1-93 104+00N Pa1-93 104+00N Pa1-93 106+00N Pa1-93 106+00N	113+00E 114+00E 91+00E 92+00E	0.00.00 0.0	× × × × ×	36 32 31 28	22 11 17 14	133 92 73 103	< 5 5 <	~ ~ ~ ~	< < < <	3 3 3 3	~ ~ ~ ~	< 0.2 <	20 18 14 15	27 24 16 21	58 65 80 69	< < < <	52 154 59 157 30 140 37 146	401 276 623 342	3 2 2 4	26 25 39 30	4 3 1 2	4 (3 (3 (3 ().12).17).11).09	4.44 2.42 1.58 2.72	0.33 0.33 0.37 0.33	5.53 (5.10 (3.72 (4.45 (.91 .88 .61 .84	0.04 0.04 0.05 0.05
Min Limit Max Reported* Method =No Test ins	s=Insuffic	5 9999 FAAA ient Sa	0.1 99.9 ICP ample 2036	1 20000 ICP S=So	2 20000 ICP 11 R=F	1 20000 ICP lock C=	5 99999 9 ICP Core 1	5 9999 9 ICP ==Silt	3 1999 9 ICP : P=Pt	1 1 9999 99 ICP IC ulp U=4	0 2 9 999 P ICP Indefi	0.1 99.9 ICP ned	1 999 ICP m=Es	1 999 ICP tima	2 9999 9 ICP te/100	5 999 9 ICP 00 7	1 2 9999 999 ICP ICP C =Estimat	1 99999 ICP ce %	2 9999 ICP Max=N	1 9999 ICP 6 Est	1 999 ICP I imate	1 (99 1 (CP	0.01 1.00 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 (9.99 9 ICP	.01 .99 ICP	0.01 9.99 ICP

INTERNATIONAL PLASMA LABORA	TORY LTD.		iPL 93J0106		Canada Canada Phone (6 Fax (6	V5Y 3E1 04) 879-7878 04) 879-7898
Client: Reliance Geo roject: Pal 790	logical Services Ltd 161 Soil	iPL: 93J0106	Out: Oct 06, 1993 In: Oct 01, 1993	Page 3 of 5	Section 2 of 2 Certified BC Assayer: David	j Chiu
ample Name	Na P 7. %					••••••••••••••••••••••••••••••••••••••
al-92 104+00N 105+00 al-92 104+00N 105+00 al-92 104+00N 106+00 al-92 104+00N 107+00 al-92 104+00N 108+00 al-92 104+00N 109+00	E Š 0.04 0.08 E Š 0.03 0.08 E Š 0.03 0.06 E Š 0.03 0.10 E Š 0.03 0.27					
a1-92 104+00N 110+00 a1-93 90+00N 88+00 a1-93 90+00N 89+00 a1-93 92+00N 88+00 a1-93 92+00N 88+00 a1-93 92+00N 89+00	E Š 0.03 0.20 E Š 0.03 0.10 E Š 0.07 0.27 E Š 0.03 0.05 E Š 0.02 0.07					·
a1-93 92+00N 114+00 a1-93 94+00N 87+00 a1-93 94+00N 88+00 a1-93 94+00N 89+00 a1-93 96+00N 87+00	E B\$ 0.03 0.03 E \$ 0.04 0.06 E \$ 0.03 0.08 E \$ 0.05 0.07 E \$ 0.03 0.04			- -		
a1–93 96+00N 88+00 a1–93 96+00N 89+00 a1–93 96+00N 111+00 a1–93 96+00N 112+00 a1–93 96+00N 112+00 a1–93 96+00N 113+20	E \$ 0.02 0.14 E \$ 0.03 0.23 E \$ 0.04 0.04 E \$ 0.03 0.14 E \$ 0.03 0.06					
a1-93 96+00N 114+00 a1-93 96+00N 115+00 a1-93 98+00N 111+00 a1-93 98+00N 111+00 a1-93 98+00N 112+00 a1-93 98+00N 113+00	E \$ 0.02 0.12 E \$ 0.02 0.13 E \$ 0.03 0.04 E \$ 0.03 0.15 E \$ 0.02 0.02					
1-93 98+00N 115+00 1-93 100+00N 111+00 1-93 100+00N 112+00 1-93 100+00N 112+00 1-93 100+00N 113+00 1-93 100+00N 114+00	E \$ 0.03 0.03 E \$ 0.03 0.09 E \$ 0.03 0.03 E \$ 0.03 0.08 E \$ 0.03 0.09				- * -	• • • •
1-93 100+00N 115+00 1-93 102+00N 111+00 1-93 102+00N 112+00 1-93 104+00N 111+00 1-93 104+00N 111+00 1-93 104+00N 112+00	E \$ 0.02 0.09 E \$ 0.03 0.09 E \$ 0.03 0.08 E \$ 0.03 0.11 E \$ 0.02 0.28	•				
a1-93 104+00N 113+00 a1-93 104+00N 114+00 a1-93 106+00N 91+00 a1-93 106+00N 91+00 a1-93 106+00N 92+00	E \$ 0.03 0.19 E \$ 0.03 0.05 E \$ 0.03 0.05 E \$ 0.03 0.05 E \$ 0.02 0.12					

---=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879=7878 Eax:604/879-7898

CERTIFICATE OF ANALYSIS

2036 Columbia Street

INTERNATIONAL	PLASMA	LABORATORY	170

in called

1000

	· · · · · · · · · · · · · · · · · · ·	CERTIFICATE OF ANALYSIS	Vancouver, B.C.
		iPL 93J0106	Canada V5Y 3E1
		· · · · · · · · · · · · · · · · · · ·	Phone (604) 879-7878
INTERNATIONAL PLASMA LABORATORY LTD.			Fax (604) 879-7898
Client: Reliance Geological Services Ltd Project: Pal 790 161 Soil	iPL: 93J0106	Out: Oct 06, 1993 Page 4 In: Oct 01, 1993	of 5 Section 1 of 2 Certified BC Assayer: David Chiu
SampleName Au Ag Cu ppb ppm ppm	Pb Zn As S ppm ppm ppm pp	Sb Hg Mo TT Bi Cd Co Ni Ba W Cr V ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	Mn La Sr Zr Sc Ti Al Ca Fe Mg K pm ppm ppm ppm ppm % % % % %
Pa1-93 106+00N 93+00E S <	11 67 < 15 112 < 13 79 < 15 91 7	3 <	64 2 33 1 4 0.13 2.40 0.38 4.40 1.26 0.04 51 2 36 3 5 0.11 3.74 0.44 4.47 1.39 0.06 65 2 41 2 5 0.10 3.06 0.47 4.47 1.25 0.05 65 2 42 4 5 0.13 3.38 0.70 4.93 1.14 0.05 64 2 33 2 4 0.18 265 0.42 5 3.98 0.07
Pa1-93 106+00N 98+00E \$ 12 <	17 32 < 16 90 6 17 146 5 13 135 7 16 167 11 16 81 <	3 <	98 2 46 2 5 0.10 3.21 0.48 3.95 0.95 0.04 88 2 37 2 6 0.12 3.66 0.50 5.00 1.14 0.05 81 3 25 1 4 0.05 2.77 0.33 4.95 0.71 0.04 99 2 37 2 4 0.05 2.28 0.64 5.94 0.76 0.05 11 2 36 3 5 0.15 2.91 0.47 5.83 1.13 0.05
Pa1-93 106+00N 103+00E \$ 6 0.3 29 Pa1-93 106+00N 104+00E \$ < 59 Pa1-93 106+00N 105+00E \$ < 78 Pa1-93 106+00N 106+00E \$ < 78 Pa1-93 106+00N 106+00E \$ < 52 Pa1-93 106+00N 107+00E \$ 14 < 36	10 38 < 16 56 15 10 66 60 1 12 84 < 17 103 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09 3 28 2 4 0.12 2 50 0.33 3.67 0.54 0.03 27 38 5 5 0.14 3.24 0.58 4.92 0.87 0.02 10 <
Pa1-93 106+00N 108+00E \$ < < 53 Pa1-93 106+00N 109+00E \$ ins Pa1-93 108+00N 90+00E \$ ins Pa1-93 108+00N 91+00E \$ < < 39 Pa1-93 108+00N 92+00E \$ < < 47	16 114 < 13 84 < 12 92 10	<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Pa1-93 108+00N 93+00E \$\$ <	22 83 < 13 100 < 23 99 7 20 85 < 12 58 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59 2 42 1 5 0.09 3.75 0.42 5.87 1.40 0.06 54 3 30 1 4 0.12 2.17 0.37 4.48 0.82 0.04 29 42 3 4 0.16 2.70 0.54 5.68 1.08 0.04 49 2 31 3 4 0.13 2.93 0.44 5.79 0.84 0.04 54 2 32 1 3 0.16 1.84 0.37 4.06 0.64 0.03
Pa1-93 108+00N 98+00E \$\$ <	16 122 5 19 249 8 14 155 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25 2 43 2 5 0.17 2.83 0.48 5.62 1.20 0.04 13 2 40 2 4 0.12 2.30 0.71 5.67 0.99 0.05 33 3 46 2 5 0.10 2.59 0.79 4.99 1.19 0.05
Pa1-93 108+00N 103+00E \$ 10 < 60 Pa1-93 108+00N 104+00E \$ < 42 Pa1-93 108+00N 105+00E \$ 7 < 22 Pa1-93 110+00N 91+00E \$ 11 < 56 Pa1-93 110+00N 92+00E \$ ins	25 140 < 16 49 10 18 77 < 13 50 6 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	73 35 6 6 0.15 5.50 0.44 5.52 0.99 0.04 34 2 51 3 4 0.11 2.48 1.06 3.39 1.24 0.05 56 3 24 1 3 0.15 2.66 0.31 5.71 0.72 0.04 25 4 58 1 4 0.09 2.08 1.10 4.17 0.72 0.06
Pa1-93 110+00N 93+00E \$ 9 < 101 Pa1-93 110+00N 94+00E \$ 7 < 61 Pa1-93 110+00N 95+00E \$ 14 < 60 Pa1-93 110+00N 96+00E \$ 8 < 12	19 146 < 14 104 < 35 171 5 12 53 <	<	77 4 55 3 6 0.12 2.73 1.24 4.54 1.13 0.06 52 35 2 5 0.14 3.12 0.53 4.93 1.05 0.04 08 2 35 4 5 0.13 4.16 0.46 5.32 1.17 0.05 58 2 41 1 3 0.17 1.72 0.54 3.35 0.82 0.03
Min Limit 5 0.1 1 Max Reported* 9999 99.9 20000 20 Method FAAA ICP ICP =No Test ins=Insufficient Sample S=Soil International Plasma Lab Ltd. 2036 Columbia	2 1 5 000 20000 9999 999 ICP ICP ICP IC R=Rock C=Core L=S St. Vancouver BC	5 3 1 10 2 0.1 1 1 2 5 1 2 999 9999 9999 999 999 999 999 999 999	1 2 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 99 9999 9999 999 99 1.00 9.99 9.99 9.99

INTERNATIONAL PLASMA LABORATOR	Y LTD.		iPL 93J0106			Canada V5Y Phone (604) Fax (604)	' 3E1 879-7878 879-7898
Client: Reliance Geolo roject: Pal 790	gical Services Ltd 161 Soil	TPL: 93J0106	Out: Oct 06, 1993 In: Oct 01, 1993	Page 4 c	f 5 Section Certified BC	2 of 2 Assayer: David C	hiu
ample Name	Na P X X						<i>a</i>
x1-93 106+00N 93+00E x1-93 106+00N 94+00E x1-93 106+00N 95+00E x1-93 106+00N 95+00E x1-93 106+00N 96+00E x1-93 106+00N 96+00E x1-93 106+00N 97+00E	\$ 0.03 0.08 \$ 0.03 0.11 \$ 0.03 0.10 \$ 0.03 0.05 \$ 0.03 0.05						
a1-93 106+00N 98+00E a1-93 106+00N 99+00E a1-93 106+00N 100+00E a1-93 106+00N 101+00E a1-93 106+00N 101+00E a1-93 106+00N 102+00E	\$ 0.03 0.12 \$ 0.03 0.06 \$ 0.03 0.10 \$ 0.02 0.05 \$ 0.03 0.06		· · · ·				
a1-93 106+00N 103+00E a1-93 106+00N 104+00E a1-93 106+00N 105+00E a1-93 106+00N 105+00E a1-93 106+00N 106+00E a1-93 106+00N 107+00E	\$ 0.03 0.05 \$ 0.03 0.04 \$ 0.02 0.12 \$ 0.03 0.04 \$ 0.03 0.04 \$ 0.03 0.20						
1]-93 106+00N 108+00E 1]-93 106+00N 109+00E 1]-93 108+00N 90+00E 1]-93 108+00N 91+00E 1]-93 108+00N 91+00E 1]-93 108+00N 92+00E	\$ 0.03 0.08						
11-93 108+00N 93+00E 11-93 108+00N 94+00E 11-93 108+00N 95+00E 11-93 108+00N 96+00E 11-93 108+00N 96+00E 11-93 108+00N 97+00E	\$ 0.03 0.10 \$ 0.03 0.07 \$ 0.03 0.05 \$ 0.02 0.03 \$ 0.03 0.05						н Н
1-93 108+00N 98+00E 1-93 108+00N 99+00E 1-93 108+00N 100+00E 1-93 108+00N 101+00E 1-93 108+00N 101+00E 1-93 108+00N 102+00E	\$ 0.03 0.06 \$ 0.02 0.04 \$ 0.03 0.03 \$ \$ 0.03 0.02						
1-93 108+00N 103+00E 1-93 108+00N 104+00E 1-93 108+00N 105+00E 1-93 108+00N 91+00E 1-93 110+00N 91+00E 1-93 110+00N 92+00E	\$ 0.03 0.07 \$ 0.03 0.02 \$ 0.02 0.08 \$ 0.03 0.03 \$						
11-93 110+00N 93+00E 13-93 110+00N 94+00E 13-93 110+00N 95+00E 13-93 110+00N 95+00E 13-93 110+00N 96+00E	\$ 0.03 0.04 \$ 0.03 0.08 \$ 0.03 0.06 \$ 0.03 0.01		:				

----=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 Z=Estimate Z Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898 CERTIFICATE OF ANALYSIS

2036 commbia Server Vancouver, B.C.

> Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898()

iPL 93J0106

ATIONAL	LABORATORY LTD

			•																											<u> </u>	1	7
Client: Relian Project: Pal 79	nce Geolo 90	gic 161	al Se Soil	rvice	s Ltd	i	PL: 93	50106	,		Out: In:	Oct 0 Oct 0	6, 19 1, 19	93 93		<u>.</u>			Pa	ge	5 of	5	Certi	Sect fied	ion BC /	1 of Issaye	2 er: Da	vid Ch	iu	Ø	AC	$\frac{1}{2}$
Sample Name			Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm p	TT B pom pp	i (m p	λd (xπ p	Co pm p	Ni pm	Ba ppm (W ppm	Cr ppm p	V pm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	A1 7	Ca %	Fe X	Mg %	K X	
Pa1-93 110+00N	97+00E	Ŝ	12	<	42	15	130	<	<	<	2	~	<	<	19	32	57	<	55 1	45	394	2	49	3	4 (0.10	3.01	0.49	4.49	1.10	0.04	
Pa1-93 110+00N	98+00E	Ś	16	<	44	18	80	6	<	<	3		<	< `	17 :	21 🖁	45	<	37 1	78	442	2	36	2	4 ().16	2,18	0.53	4.51	1.00	0.03	
Pa1-93 110+00N	99+00E	ŝ	12	<	26	14	77	<	· <	<	4		< .	< `	15	19 🖞	73	<	34 1	71 .	339	2	31	2	3 ().13	2,47	0.44	5.04	J.65	0.04	
Pa1-93 110+00N	100+00E	ŝ	21	<	57	13	76	<	<	<	8	<	< 0.	1 3	23	22	124	<	361	46 1	156	3	58	1.	4 ().09	2,12	1.22	3.88	0 .9 5 '	0.04	
Pa1-93 110+00N	101+00F	ŝ	7	<	27	12	97	13	<	<	3	<	2	< '	19	24 🖇	67	5	44 1	73	383	2	34	1	4 ().12	3.04	0.50	5.01	0.74	0.03	

Min Limit 5 0.1 2 1 5 5 3 1 10 2 0.1 1 1 25 12 1 2 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 1 Max Reported* Method ---=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 Z=Estimate Z Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

INTERNATIONAL PLASE	MA LABORATOR	W LTD.									Phone (6 Fax (6	04) 879-7878 04) 879-7898	A
ient: Relianc ject: Pal 790	e Geolo)	gical Se 161 Soil	rvices Ltd	iPL: 9300	106	Out: Oct 06, 1993 In: Oct 01, 1993	\$ }	Page 5 o	f 5 Ce	Section 2 rtified BC As	ot 2 sayer: David	I Chiu	2H
ple Name		Na %	Р Х										
-93 110+00N -93 110+00N -93 110+00N -93 110+00N 1 -93 110+00N 1	97+00E 98+00E 99+00E 100+00E 101+00E	\$ 0.03 \$ 0.03 \$ 0.03 \$ 0.03 \$ 0.02 \$ 0.03	0.08 0.04 0.10 0.03 0.12						-				
							·			•			
								•					
			·			• •							
				•			·	•					
					. •								

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Method of Gold analysis by Fire Assay / AAS

- (a) 20.0 to 30.0 grams of sample is mixed with a combination of fluxes in a fusion pot. The sample is then fused at high temperature to form a lead "button".
- (b) The precious metals are extracted by cupellation. Any Silver is dissolved by nitric acid and decanted. The gold bead is then dissolved in boiling concentrated aqua regia solution heated by a hot water bath.
- (c) The gold in solution is determined with an Atomic Absorption Spectrometer. The gold value, in parts per billion, is calculated by comparision with a set of known gold standards.

QUALITY CONTROL

Every fusion of 24 pots contains 22 samples, one internal standard or blank, and a random reweigh of one of the samples. Samples with anomalous gold values greater than 500 ppb are automatically checked by Fire Assay/AA methods. Samples with gold values greater than 10000 ppb are automatically checked by Fire Assay/Gravimetric methods.

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Method of ICP Multi-element Analyses

- (a) 0.50 grams of sample is digested with diluted aqua regia solution by heating in a hot water bath for 90 minutes, then cooled, bulked up to a fixed volume with demineralized water, and thoroughly mixed.
- (b) The specific elements are determined using an Inductively Coupled Argon Plasma spectrophotometer. All elements are corrected for inter-element interference. All data are subsequently stored onto computer diskette.
- * Aqua regia leaching is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

QUALITY CONTROL

The machine is calibrated using six known standards and a blank. Another blank, which was digested with the samples, and a standard are tested before any samples to confirm the calibration. A maximum of 20 samples are analysed, and then a standard, also digested with the samples, is run. A known standard with characteristics best matching the samples is chosen and tested. Another 20 samples are analysed, with the last one being a random reweigh of one of the samples. The standard used at the beginning is rerun. This procedure is repeated for all of the samples.

APPENDIX B

1

lings.

kand . Land

lana

STATISTICAL ANALYSIS

SOIL SAMPLE GEOCHEMISTRY ON THE PAL PROPERTY British Columbia

By

A.M.S.Clark, Ph.D., P.Geo.(B.C.) SEGURO CONSULTING INC.

8 October 1993

INTRODUCTION

An investigation of the distribution of gold and copper in soil samples from the Pal Property was carried out between 8 August and 13 August 1993.

This report is based on an evaluation of the geochemical analyses only, the author has not visited the property.

A total of 463 samples were collected from one grid on the property, that had been sampled in three stages, a small detailed section in the northeast in 1991, an extension of this in less detail over a much larger area in 1992 (reported in 1992), and 152 samples over the balance of the grid in the summer of 1993. Statistics were undertaken on all the samples together as the colletion and analytical procedures used did not change over the period of the samples. Although the detailed grid samples will tend to bias the results slightly, the number of samples in each set is too few to be considered for statistical evaluation separately. Also, the main practical use of the data is the evaluation of the maps, which are least effected by the bias due to denser sample spacing of the 1991 samples.

DISCUSSION

Summary statistics and correlation coefficients have been calculated for the elements and histograms plotted for gold and copper. Gold values are generally low (see Summary Statistics Table and histograms) and show no significant correlation with other elements (see Correlation Coefficient Table). The strongest correlation is only 0.12 (too small to be relevant). Copper shows moderate to high values.

The histogram of gold shows a lognormal Gaussian distribution with some high values above 650 ppb Au. Similarly, copper shows a lognormal distribution but with some high values above 400 ppm Cu.

The 'breakpoints' for the symbol sizes used on the symbol maps were determined by inspection of the histograms. The following are the 'breakpoints' chosen as showing the most useful pattern of values on the maps:

Gold:	Low values Medium values High values	>=15 and <25 ppb Au >=25 and <50 ppb Au >=50 ppb Au.
Copper:	Low values Medium values High values	>=100 and <250 ppm Cu >=250 and <400 ppm Cu >=400 ppm Cu.

The symbol maps of the element values (in back pocket) indicate a weak spatial association of gold and copper in the detailed part of the grid.

CONCLUSION

Gold values in the soils show low to medium background with some high values. Copper shows low background with some higher values spatially associated with the higher gold values on the detailed grid.

Some higher gold and copper values in the southeast of the grid, and to a lesser extent to the northeast and west, should be followed up with further sampling if the geological situation

suggests continuity in any of these directions, but the geochemical results alone show only a weak possibility of continuity.

3

Lana I

line

in the second

ŗ

CERTIFICATE

I, ANTHONY M.S. CLARK, of 2988 Fleet Street, Coquitlam, B.C., do hereby state that:

- I am a graduate of the University of Cape Town, Cape Town, South Africa, with a Bachelor of Science Degree in Geology, 1963, and of Memorial University, St. John's, Newfoundland, with a Doctor of Philosophy Degree in Geology, 1974.
- 2. I am registered as a Professional Geologist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I actively pursued my career as an exploration geologist for twenty-three years from 1963 to 1986, since when I have undertaken consulting in the fields of mineral exploration and computer applications to exploration.
- 4. The information, opinions, and recommendations in this report are based on information obtained by other personnel who undertook the fieldwork on the property, and on published and unpublished literature. I have not visited the subject property.
- 5. I have no interest, direct or indirect, in the subject claims or the securities of Swannell Minerals Corporation.
- 6. I consent to the use of this report in Prospectus or Statement of Material Facts for the purpose of private or public financing.

OFESSIO PROVINCE A. M. S. CLARK BRITISH COLUMBIA SCIEN

Anthony M.S. Clark, Ph.D., P.Geo.(B.C.)

Dated at Coquitlam, British Columbia,

13 10 chober 1997

4

APPENDICES

5

i

لعتبها

Reference of

a starting

الاستخار الاستخار

an-c

. محبقها

. Lim

Sum	nmary Statis	stics			
	Ag_ppm	As_ppm	Au_ppb	Ba_ppm	Bi_ppm
Number	463	463	463	463	463
Mean	0.2473	17.488	9.509	101.300	. 54C
Std Dev	0.2946	19.368	18.652	57.193	2.772
Maximum	2.00	146.0	294.0	533.0	11.0
Minimum	0.05	1.0	1.0	30.0	1.0
Range	1.95	145.0	293.0	503.0	10.0
Coef Var	119.1154	110.7520	196.1536	56.4589	109.1512
Std Err	0.0137	0.9001	0.8668	2.6580	0.1288
Median	0.100	10.00	5.00	84.00	1.00
Mode	0.05	1.0	2.5	61.0	1.0
Variance	0.0868	375.137	347.880	3271.037	7.686
Skewness	2.4774	1.9228	9.4174	3.0158	1.4527
Kurtosis	8.1478	6.0648	123.0116	14.5123	0.4573
Sum	nmary Statis	stics			
	Cd ppm	Co ppm	Cr ppm	Cu ppm	Hg ppm
Number	463	463	463	463	347
Mean	0.1303	18.721	44.974	107.056	1.718
Std Dev	0.2886	5.843	15.733	235.003	0.622
Maximum	2.70	51.0	150.0	4308.0	5.0
Minimum	0.05	1.0	7.0	12.0	1.5
Range	2.65	50.0	143.0	4296.0	3.5
Coef Var	221.3861	31.2084	34.9815	219.5137	36.2085
Std Err	0.0134	0.2715	0.7312	10.9215	0.0334
Median	0.050	18.00	42.00	62.00	1.50
Mode	0.05	17.0	35.0	57.0	1.5
Variance	0.0833	34.136	247.514	55226.360	0.387
Skewness	5.7263	1.3294	1.4775	13.3272	2.8029
Kurtosis	37.3830	5.7042	5.8963	222.7306	6.9823
Sur	nmary Statis	stics			
		Mn ppm	Mo ppm	Ni ppm	Pb ppm
Number	347	463	463	463	463
Mean	3.032	662.369	2.861	21.950	10.091
Std Dev	2.289	799.964	1.815	11.491	5.758
Maximum	25.0	10347.0	15.0	79.0	46.0
Minimum	1.0	137.0	0.5	1.0	1.0
Range	24.0	10210.0	14.5	78.0	45.0
Coef Var	75.4975	120.7730	63,4323	52.3491	57.0601
Std Err	0.1229	37.1775	0.0843	0.5340	0.2676
Median	3.00	495.00	3.00	22.00	9.00
Mode	2.0	412.0	3.0	24.0	7.0
Variance	5.239	639941.779	3.293	132.039	33.152
Skewness	4.8510	8.6498	2.2279	0.9336	1.0983
Kurtosis	35.6747	91.4089	8.5450	2.4311	3.3946

i des

in series Linnació

ineer Lane

میں میر جا

12.96

.

Sumi	mary Statist	ics			
	Sb_ppm	Sc_ppm	Sr_ppm	Tl_ppm	V_ppm
Number	463	347	463	347	463
Mean	2.613	5.036	42.397	5.000	157.795
Std Dev	1.695	3.154	24.271	0.000	46.401
Maximum	13.0	36.0	221.0	5.0	381.0
Minimum	1.0	0.5	11.0	5.0	10.0
Range	12.0	35.5	210.0	0.0	371.0
Coef Var	64.8573	62.6369	57.2468	0.0000	29.4055
Std Err	0.0788	0.1693	1.1280	0.0000	2.1564
Median	2.50	4.00	36.00	5.00	158.00
Mode	2.5	4.0	32.0	5.0	146.0
Variance	2.873	9,950	589.088	0.000	2153.010
Skewness	2.3481	4.8427	2.8678	•	0.3269
Kurtosis	7.3845	36.8761	11.7611		3.1223

•

× .

Summary	y Statie	stics	
	W_ppm	Zn_ppm	Zr_ppm
Number	463	463	347
Mean	3.298	111.801	1.921
Std Dev	1.300	72.934	1.720
Maximum	9.0	988.0	14.0
Minimum	2.0	36.0	0.5
Range	7.0	952.0	13.5
Coef Var 3	39.4194	65.2357	89.5687
Std Err	0.0604	3.3895	0.0924
Median	2.50	100.00	2.00
Mode	2.5	81.0	2.0
Variance	1.690	5319.419	2.960
Skewness	1.6754	6.9829	3.0433
Kurtosis	2.4847	69.7688	14,1980

	Pearson	Correlat	ion Coeff	icients				
		Ag ppm	AS PPM	Au ppb	Ba ppm	Bi ppm	Cd ppm	Co ppm
	Ag ppm	1.	-0.0174	0.0492	0.0369	0.3691	0.0540	-0.0346
	AS DDM	-0.0174	1.	-0.0398	0.3453	-0.3934	0.0734	0.2062
	Au ppb	0.0492	-0.0398	1.	-0.0524	0.1146	-0.0330	0.0681
	Ba ppm	0.0369	0.3453	-0.0524	1.	-0.2364	0.2265	0.2015
	Bi ppm	0.3691	-0.3934	0.1146	-0.2364	1.	-0.0603	0.0511
	Cd ppm	0.0540	0.0734	-0.0330	0.2265	-0.0603	1.	0.1299
	Co ppm	-0.0346	0.2062	0.0681	0.2015	0.0511	0.1299	1.
	Cr DOM	-0.0794	0.0457	0.0198	-0 1278	0.0006	-0.0336	0.4420
		0 1997	0 0030	0.0368	0 2351	-0.0171	0.2837	0.1312
		0 1185	0 3456	0.0969	0 1448	-0.0572	0.0331	0 1489
	la com	0 2878	0.0435	0.0372	0 3757	-0.0451	0.2698	0 1507
	Ka_ppm	0.2070	0.0000	-0.0102	0,5/5/	-0.0627	0.4305	0.1307
		-0 1094	0.1079	-0.0102	0.3953	-0.4817	0.4303	0.2101
		-0.1086	0.2075	-0.0100	0.2903	-0.4017	0.0051	0.2101
	ייילק_דא	-0.2262	. 0.3044	-0.0/30	· 0.1635	-0.5471	-0.0031	0.3320
		-0.0638	-0.1/38	-0.0089	~0.1112	-0.0835	-0.0021	0.2702
	SD_ppm	-0.1669	0.5023	-0.0768	0.14/2	-0.5195	0.0656	0.1583
	Sc_ppm	0.1141	0.1131	0.1262	0.2/1/	-0.0502	0.1162	0.5235
	Sr_ppm	0.0964	0.0612	-0.0459	0.3046	-0.048/	0.4402	0.0142
		under.	under.	under.	undet.	under.	under.	under.
	v_ppm	-0.146/	0.0001	0.08/5	-0.2693	0.1488	-0.3441	0.1//8
	M_bbw	0.0982	-0.0//8	0.0619	-0.15/8	0.414/	0.0255	0.0819
	Zn_ppm	0.0568	0.2078	-0.0163	0.1344	-0.0001	0.3702	0.4420
	Zr_ppm	0.0262	-0.0944	-0.0694	-0.0424	0.0202	-0.0879	0.2377
	Pearson	Correlat	ion Coeff	icients				
	Pearson	Correlat Cr ppm	ion Coeff	icients Ha pom	laoom	אסס מא	Mo ppm	Ni pom
	Pearson Ag ppm	Correlat Cr_ppm -0.0794	ion Coeff Cu_ppm 0.1997	icients Hg_ppm 0.1185	La_ppm 0 2878	Mn_ppm 0 0491	Mo_ppm -0 1086	Ni_ppm -0 2262
	Pearson Ag_ppm As_ppm	Correlat Cr_ppm -0.0794	ion Coeff Cu_ppm 0.1997 0.0030	icients Hg_ppm 0.1185 0.3456	La_ppm 0.2878 0.0835	Mn_ppm 0.0491 0.1679	Mo_ppm -0.1086	Ni_ppm -0.2262 0.3644
	Pearson Ag_ppm As_ppm Au_ppb	Correlat Cr_ppm -0.0794 0.0457 0.0198	ion Coeff Cu_ppm 0.1997 0.0030 0.0368	icients Hg_ppm 0.1185 0.3456 0.0969	La_ppm 0.2878 0.0835 0.0372	Mn_ppm 0.0491 0.1679 -0.0102	Mo_ppm -0.1086 0.2075 -0.0166	Ni_ppm -0.2262 0.3644 -0.0730
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0 1278	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351	icients Hg_ppm 0.1185 0.3456 0.0969 0 1448	La_ppm 0.2878 0.0835 0.0372 0.3757	Mn_ppm 0.0491 0.1679 -0.0102 0.5118	Mo_ppm -0.1086 0.2075 -0.0166 0.2953	Ni_ppm -0.2262 0.3644 -0.0730 0.1635
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Co_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0 1312	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Co_ppm Cr_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Co_ppm Cr_ppm Cu_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0338	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Co_ppm Cr_ppm Cu_ppm Ha_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0338	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Cd_ppm Cr_ppm Cu_ppm Hg_ppm La pom	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394 0.0540	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338 0.6441	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0338 1. 0.1261	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785 0.3185	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111 0.0746 0.0593
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Cd_ppm Co_ppm Cr_ppm Cu_ppm Hg_ppm La_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394 0.0540 -0.0248	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338 0.6441 0.4210	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0338 1. 0.1261 0.1185	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261 1. 0.3469	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185 0.3469	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785 0.3185	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111 0.0746 0.0593 0.0887
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Cd_ppm Co_ppm Cr_ppm La_ppm La_ppm Mn_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394 0.0540 -0.0248 -0.0175	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338 0.6441 0.4210 0.3291	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0394 0.0338 1. 0.1261 0.1185 0.0785	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261 1. 0.3469 0.3185	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185 0.3469 1.	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785 0.3185 0.3242	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111 0.0746 0.0593 0.0887
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Cd_ppm Cd_ppm Cu_ppm Hg_ppm La_ppm Mn_ppm Mo_ppm Ni ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394 0.0540 -0.0248 -0.0175 0.6026	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338 0.6441 0.4210 0.3291 0.0111	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0394 0.0338 1. 0.1261 0.1185 0.0785	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261 1. 0.3469 0.3185	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185 0.3469 1. 0.3242	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785 0.3185 0.3242 1.	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111 0.0746 0.0593 0.0887 0.2950
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Cd_ppm Cd_ppm Cr_ppm La_ppm La_ppm Mn_ppm Ni_ppm Ni_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394 0.0540 -0.0248 -0.0175 0.6026 0.1809	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338 0.6441 0.4210 0.3291 0.0111 -0.0610	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0394 0.0338 1. 0.1261 0.1185 0.0785 0.0746 -0 1267	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261 1. 0.3469 0.3185 0.0593 -0.0176	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185 0.3469 1. 0.3242 0.0887	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785 0.3185 0.3242 1. 0.2950 0.1861	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111 0.0746 0.0593 0.0887 0.2950 1.
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Cd_ppm Cd_ppm Cr_ppm La_ppm La_ppm Mn_ppm Ni_ppm Sb_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394 0.0540 -0.0248 -0.0175 0.6026 0.1809 0.1790	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338 0.6441 0.4210 0.3291 0.0111 -0.0610 0.0300	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0394 0.0338 1. 0.1261 0.1185 0.0785 0.0746 -0.1367	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261 1. 0.3469 0.3185 0.0593 -0.0176	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185 0.3469 1. 0.3242 0.0887 0.0162	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785 0.3185 0.3242 1. 0.2950 0.1861	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111 0.0746 0.0593 0.0887 0.2950 1. 0.2578
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Cd_ppm Cd_ppm Cd_ppm Cr_ppm La_ppm Mn_ppm Mo_ppm Ni_ppm Sb_ppm Sb_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394 0.0540 -0.0248 -0.0175 0.6026 0.1809 0.1790 0.2982	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338 0.6441 0.4210 0.3291 0.0111 -0.0610 0.0300 0.5082	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0338 1. 0.1261 0.1185 0.0785 0.0746 -0.1367 0.3873 0.0711	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261 1. 0.3469 0.3185 0.0593 -0.0176 0.1045	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185 0.3469 1. 0.3242 0.0887 0.0162 0.0429	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785 0.3185 0.3242 1. 0.2950 0.1861 0.2724	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111 0.0746 0.0593 0.0887 0.2950 1. 0.2578 0.4533
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Cd_ppm Cd_ppm Cr_ppm Cu_ppm La_ppm Mn_ppm Mn_ppm Ni_ppm Sb_ppm Sc_ppm Sc_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394 0.0540 -0.0248 -0.0175 0.6026 0.1809 0.1790 0.2982 0.0194	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338 0.6441 0.4210 0.3291 0.0111 -0.0610 0.0300 0.5082 0.2970	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0394 0.0338 1. 0.1261 0.1185 0.0785 0.0746 -0.1367 0.3873 0.0711	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261 1. 0.3469 0.3185 0.0593 -0.0176 0.1045 0.5014	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185 0.3469 1. 0.3242 0.0887 0.0162 0.0429 0.3495	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785 0.3185 0.3242 1. 0.2950 0.1861 0.2724 0.2754	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111 0.0746 0.0593 0.0887 0.2950 1. 0.2578 0.4533 0.3844
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Cd_ppm Cd_ppm Cd_ppm Cd_ppm La_ppm La_ppm Mn_ppm Ni_ppm Ni_ppm Sb_ppm Sb_ppm Sc_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394 0.0540 -0.0248 -0.0175 0.6026 0.1809 0.1790 0.2982 0.0196	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338 0.6441 0.4210 0.3291 0.0111 -0.0610 0.0300 0.5082 0.2879	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0394 0.0394 0.0338 1. 0.1261 0.1185 0.0785 0.0746 -0.1367 0.3873 0.0711 0.0855	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261 1. 0.3469 0.3185 0.0593 -0.0176 0.1045 0.5014 0.3379	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185 0.3469 1. 0.3242 0.0887 0.0162 0.0429 0.3495 0.2756	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785 0.3242 1. 0.2950 0.1861 0.2724 0.2754 0.1335	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111 0.0746 0.0593 0.0887 0.2950 1. 0.2578 0.4533 0.3844 0.0109
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Cd_ppm Cd_ppm Cd_ppm Cd_ppm La_ppm Hg_ppm La_ppm Ni_ppm Ni_ppm Sb_ppm Sb_ppm Sc_ppm Sr_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394 0.0540 -0.0248 -0.0175 0.6026 0.1809 0.1790 0.2982 0.0196 undef.	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338 0.6441 0.4210 0.3291 0.0111 -0.0610 0.0300 0.5082 0.2879 undef.	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0394 0.0394 0.0394 0.0394 0.0394 0.0394 0.0394 0.0395 0.0746 -0.1367 0.3873 0.0711 0.0855 undef.	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261 1. 0.3469 0.3185 0.0593 -0.0176 0.1045 0.5014 0.3379 undef.	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185 0.3469 1. 0.3242 0.0887 0.0162 0.0429 0.3495 0.2756 undef.	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785 0.3185 0.3242 1. 0.2950 0.1861 0.2724 0.2754 0.1335 undef.	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111 0.0746 0.0593 0.0887 0.2950 1. 0.2578 0.4533 0.3844 0.0109 undef.
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Cd_ppm Cd_ppm Cd_ppm Cd_ppm Cd_ppm Cd_ppm La_ppm Mn_ppm Ni_ppm Ni_ppm Sb_ppm Sb_ppm Sc_ppm Sr_ppm Tl_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394 0.0540 -0.0248 -0.0175 0.6026 0.1809 0.1790 0.2982 0.0196 undef. 0.2013	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338 0.6441 0.4210 0.3291 0.0111 -0.0610 0.0300 0.5082 0.2879 undef. -0.1697	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0394 0.0394 0.0394 0.0394 0.0394 0.0394 0.0394 0.0394 0.0395 0.0746 -0.1367 0.3873 0.0711 0.0855 undef. 0.0536	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261 1. 0.3469 0.3185 0.0593 -0.0176 0.1045 0.5014 0.3379 undef. -0.2496	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185 0.3469 1. 0.3242 0.0887 0.0162 0.0429 0.3495 0.2756 undef. -0.2035	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785 0.3185 0.3242 1. 0.2950 0.1861 0.2724 0.2754 0.1335 undef. 0.0763	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111 0.0746 0.0593 0.0887 0.2950 1. 0.2578 0.4533 0.3844 0.0109 undef. -0.0062
-	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Cd_ppm Cd_ppm Cd_ppm Cr_ppm Cd_ppm Cr_ppm La_ppm Mn_ppm Ni_ppm Sb_ppm Sc_ppm Sr_ppm T1_ppm V_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394 0.0540 -0.0248 -0.0175 0.6026 0.1809 0.1790 0.2982 0.0196 undef. 0.2013 0.0944	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338 0.6441 0.4210 0.3291 0.0111 -0.0610 0.0300 0.5082 0.2879 undef. -0.1697 0.0662	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0394 0.0394 0.0338 1. 0.1261 0.1185 0.0785 0.0746 -0.1367 0.3873 0.0711 0.0855 undef. 0.0536 0.0316	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261 1. 0.3469 0.3185 0.0593 -0.0176 0.1045 0.5014 0.3379 undef. -0.2496 -0.0243	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185 0.3469 1. 0.3242 0.0887 0.0162 0.0429 0.3495 0.2756 undef. -0.2035 0.0277	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785 0.3185 0.3242 1. 0.2950 0.1861 0.2724 0.2754 0.1335 undef. 0.0763 -0.1574	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111 0.0746 0.0593 0.0887 0.2950 1. 0.2578 0.4533 0.3844 0.0109 undef. -0.0062 -0.2239
	Pearson Ag_ppm As_ppm Au_ppb Ba_ppm Bi_ppm Cd_ppm Cd_ppm Cd_ppm Cr_ppm Cr_ppm La_ppm La_ppm Mn_ppm Ni_ppm Ni_ppm Sb_ppm Sc_ppm Sr_ppm Tl_ppm V_ppm Zn_ppm Zn_ppm	Correlat Cr_ppm -0.0794 0.0457 0.0198 -0.1278 0.0006 -0.0336 0.4420 1. 0.0313 0.0394 0.0540 -0.0248 -0.0175 0.6026 0.1809 0.1790 0.2982 0.0196 undef. 0.2013 0.0944 0.1789	ion Coeff Cu_ppm 0.1997 0.0030 0.0368 0.2351 -0.0171 0.2837 0.1312 0.0313 1. 0.0338 0.6441 0.4210 0.3291 0.0111 -0.0610 0.0300 0.5082 0.2879 undef. -0.1697 0.0662 0.0698	icients Hg_ppm 0.1185 0.3456 0.0969 0.1448 -0.0572 0.0331 0.1489 0.0394 0.0394 0.0394 0.0338 1. 0.1261 0.1185 0.0746 -0.1367 0.3873 0.0711 0.0855 undef. 0.0536 0.0316 0.0401	La_ppm 0.2878 0.0835 0.0372 0.3757 -0.0451 0.2698 0.1507 0.0540 0.6441 0.1261 1. 0.3469 0.3185 0.0593 -0.0176 0.1045 0.5014 0.3379 undef. -0.2496 -0.0243 0.1102	Mn_ppm 0.0491 0.1679 -0.0102 0.5118 -0.0627 0.4305 0.4791 -0.0248 0.4210 0.1185 0.3469 1. 0.3242 0.0887 0.0162 0.0429 0.3495 0.2756 undef. -0.2035 0.0277 0.2567	Mo_ppm -0.1086 0.2075 -0.0166 0.2953 -0.4817 0.1469 0.2101 -0.0175 0.3291 0.0785 0.3185 0.3242 1. 0.2950 0.1861 0.2724 0.2754 0.1335 undef. 0.0763 -0.1574 0.1187	Ni_ppm -0.2262 0.3644 -0.0730 0.1635 -0.5471 0.0051 0.5320 0.6026 0.0111 0.0746 0.0593 0.0887 0.2950 1. 0.2578 0.4533 0.3844 0.0109 undef. -0.0062 -0.2239 0.2473

100 . **275**9 CT (M) e kisa

Pearson	Correlat	ion Coeff	icients				
	Pb_ppm	Sb_ppm	Sc_ppm	Sr_ppm	mqq_lT	V_ppm	
Ag_ppm	-0.0638	-0.1669	0.1141	0.0964	undef.	-0.1467	
As_ppm	-0.1738	0.5023	0.1131	0.0612	undef.	0.0001	
Au_ppb	-0.0089	-0.0768	0.1262	-0.0459	undef.	0.0875	
Ba_ppm	-0.1112	0.1472	0.2717	0,3046	undef.	-0.2693	
Bi_ppm	-0.0835	-0.5195	-0.0502	-0.0987	undef.	0.1488	
Cd_ppm	-0.0021	0.0656	0.1162	0.4402	undef.	-0.3441	
Co_ppm	0.2702	0.1583	0.5235	0.0142	undef.	0.1778	
Cr_ppm	0.1809	0.1790	0.2982	0.0196	undef.	0.2013	
Cu_ppm	-0.0610	0.0300	0.5082	0.2879	undef.	-0.1697	
Hg_ppm	-0.1367	0.3873	0.0711	0.0855	undef.	0.0536	
La_ppm	-0.0176	0.1045	0.5014	0.3379	undef.	-0.2496	
Mn_ppm	0.0162	0.0429	0.3495	0.2756	undef.	-0.2035	
Mo_ppm	0.1861	0.2724	0.2754	0.1335	undef.	0.0763	
Ni_ppm	0.2578	0.4533	0.3844	0.0109	undef.	-0.0062	
Pb_ppm	1.	-0.0471	0.0373	0.0409	undef.	0.0386	
Sb_ppm	-0.0471	1.	0.1765	0.1661	undef.	-0.0157	
Sc_ppm	0.0373	0.1765	1.	0.0499	undef.	0.1508	
Sr_ppm	0.0409	0.1661	0.0499	1.	undef.	-0.5098	
Tl_ppm	undef.	undef.	undef.	undef.	1.	undef.	
V_ppm	0.0386	-0.0157	0.1508	-0.5098	undef.	1.	
W_ppm	-0.1687	-0.1895	0.0159	-0.1491	undef.	0.2398	
Zn_ppm	0.3737	0.1332	0.1744	0.0710	undef.	0.0062	
Zr_ppm	0.2106	-0.1087	0.2223	-0.0994	undef.	0.0974	
-			•				
Pearson	Correlat	10n Coeff	icients				
	W_ppm	Zn_ppm	Zr_ppm				
Ag_ppm	0.0982	0.0568	0.0262				
AS_ppm	-0.0778	0.20/8	-0.0944				
Au_ppb	0.0619	-0.0163	-0.0694				
Ba_ppm	-0.1578	0.1344	-0.0424				
RI_bbw	0.4147	-0.0001	0.0202				
Ca_ppm	0.0255	0.3702	-0.0879				
Lo_ppm	0.0819	0.4420	0.2377				
Cr_ppm	0.0944	0.1/89	0.2103				
cu_ppm	0.0662	0.0698	-0.0019				
ng_ppm	0.0316	0.0401	-0.0169				

	W_ppm	Zn_ppm	Zr_ppm
Ag_ppm	0.0982	0.0568	0.0262
As_ppm	-0.0778	0.2078	-0.0944
Au_ppb	0.0619	-0.0163	-0.0694
Ba_ppm	-0.1578	0.1344	-0.0424
Bi_ppm	0.4147	-0.0001	0.0202
Cd_ppm	0.0255	0.3702	-0.0879
Co_ppm	0.0819	0.4420	0.2377
Cr_ppm	0.0944	0.1789	0.2103
Cu_ppm	0.0662	0.0698	-0.0019
Hg_ppm	0.0316	0.0401	-0.0169
La_ppm	-0.0243	0.1102	-0.0306
Mn_ppm	0.0277	0.2567	-0.0488
Mo_ppm	-0.1574	0.1187	0.1115
Ni_ppm	-0.2239	0.2473	0.3555
Pb_ppm	-0.1687	0.3737	0.2106
Sb_ppm	-0.1895	0.1332	-0.1087
Sc_ppm	0.0159	0.1744	0.2223
Sr_ppm	-0.1491	0.0710	-0.0994
Tl_ppm	undef.	undef.	undef.
V_ppm	0.2398	0.0062	0.0974
W_ppm	1.	0.0794	-0.0864
Zn_ppm	0.0794	1.	-0.0392
Zr_ppm	-0.0864	-0.0392	1.

F

errer Little

> 10\$099 1

and a 100 and the second second S. . Mar 244 18 1. ALA 1

.

.

L. Berlin

APPENDIX C

LOGISTICAL REPORT ON IP and MAG SURVEYS

LOGISTICAL REPORT

INDUCED POLARIZATION AND MAGNETOMETER SURVEYS

ABE AND PAL PROPERTIES

OMINECA AREA, B.C.

on behalf of

RELIANCE GEOLOGICAL SEVICES INC. 241 East 1st Street North Vancouver, B. C., V7L 1B4

Field work completed: September 3 to 30, 1993

by

Alan Scott, Geophysicist SCOTT GEOPHYSICS LTD. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

3

October 9, 1993

TABLE OF CONTENTS

		page
1	Introduction	1
2	Survey coverage	1
3	Personnel	1
4	Instrumentation	2
5	Recommendations	2

Appendix

Statement of Qualifications

rear of report

Contents of map pockets

One floppy disk with all IP and mag data - ABE and PAL envelope Chargeability/resistivity pseudosections - ABE (current East) map pocket 1 Chargeability/resistivity pseudosections - ABE (current West) map pocket 2 Chargeability/resistivity pseudosections - PAL (current West) map pocket 3

Accompanying maps (1:5000 scale) (originals, reproducible vellums, three blackline copies)

Chargeability/resistivity pse	udosections - ABE (4 sheets))	map roll				
Chargeability/resistivity pseudosections - PAL (3 sheets)							
			_				
Chargeability contour plan	(2nd separation - a=75/n=2)	- ABE	map roll				
Resistivity contour plan	(2nd separation - a=75/n=2)	- ABE	map roll				
Magnetometer contour plan	(500 gamma intervals)	- ABE	map roll				
Magnetometer Profiles	(1 cm : 1000 gammas)	- ABE	map roll				
Magnetometer Total Field Valu	es (data postings)	- ABE	map roll				
Chargeability contour plan	(2nd separation - a=75/n=2)	- PAL	map roll				
Resistivity contour plan	(2nd separation $-a=75/n=2$)	- PAL	map roll				
Magnetometer contour plan	(200 gamma intervals)	- PAL	map roll				
Magnetometer Profiles	(1 cm : 500 gammas)	- PAL	map roll				
Magnetometer Total Field Valu	es (data postings)	- PAL	map roll				

1. INTRODUCTION

Induced polarization/resistivity surveys (IP surveys) and magentometer surveys were performed on the ABE and PAL Properties, Omineca Area, B.C., in the period September 3 to 30, 1993. The surveys were performed by Scott Geophysics Ltd. on behalf of Reliance Geological Services Inc.

The pole dipole array was used for the IP surveys, with an "a" spacing of 75 metres and "n" separations of 1 to 4.

The magnetometer survey was performed at a reading interval of 25 metres.

This report describes the instrumentation and procedures, and presents the results of the surveys.

2. SURVEY COVERAGE

A total of 22.5 line kilometres of IP survey was performed on the ABE property. Lines 9400N to 9800N were surveyed with the current electrode to the west of the receiving electrodes. Lines 11400N and 11600N were surveyed with the current electrode to the east of the receiving electrodes. Lines 10000N to 11200N were surveyed with access from the central area of the survey lines, with the current either east or west, and a few stations overlap.

A total of 13.1 line kilometres of magnetometer survey was completed on the ABE Property. The western portion of lines 100200N to 10800N were not surveyed with magnetometer.

A total of 28.6 line kilometres of IP survey was performed on the PAL property. All lines were IP surveyed with the current electrode to the west of the receiving electrodes on the PAL Property.

A total of 26.5 line kilometres of magnetometer survey were completed on the PAL property.

3. PERSONNEL

Ken Moir, geophysical technician, was the party chief on the survey, on behalf of Scott Geophysics.

Peter Leriche, geologist, was the Reliance representative for the survey.

4. INSTRUMENTATION

A Scintrex IPR12 receiver and IPC7 (2.5 kw) transmitter were used on the IP survey. Readings were taken in the time domain using a 2 second current pulse.

The chargeability plotted on the accompanying pseudosections and plan maps is for the interval 690 to 1050 milliseconds after shutoff (midpoint at 870 milliseconds). This corresponds to the M7 value for the IPR11.

Two Scintrex IGS-MP3 total field magnetometers were used for the magnetometer survey, with one as the field survey unit and the other as a fixed base station. The base station failed towards the end of the PAL survey, and that survey data was drift corrected by looping the field unit to repeats (subbase stations) and/or the base station at hourly intervals.

5. RECOMMENDATIONS

A preliminary evaluation of the results of the IP survey at the ABE and PAL Properties indicates the presence of moderate to strong chargeability highs that merit further investigation. Very strong magnetic highs were detected on the south portion of the ABE grid.

Correlation of these geophysical survey results to geological and geochemical information is required before any specific recommendations could be made.

Respectfully Submitted,

Alan Scott, P. Geos.

Statement of Qualifications

for

Alan Scott, Geophysicist

of

4013 West 14th Avenue Vancouver, B.C. V6R 2X3

I, Alan Scott, hereby certify the following statements regarding my qualifications, and my involvement in the program of work described in this report.

- 1. The work was performed by individuals sufficiently trained and qualified for its performance.
- 2. I have no material interest in the property under consideration in this report, nor in the company on whose behalf the work was performed.
- 3. I graduated from the University of British Columbia with a Bachelor of Science degree (Geophysics) in 1970, and with a Master of Business Administration degree in 1982.
- 4. I am a member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 5. I have been practicing my profession as a Geophysicist in the field of Mineral Exploration since 1970.

Respectfully submitted,

Alan Scott

SURVEY SPECIFICATIONS survey magnetometer Scin base magnetometer Scin Scintrex MP3 Scintrex MP3 proton type total field measurement gammas units base station diurnal corrections 57000 gammas profile base 500 gammas/cm profile scale above line positive values N0006 GEOLOGICAL BRANCH ASSESSMENT REPORT 200 300 400 100 METERS FIG 9 RELIANCE GEOLOGICAL SERVICES INC. - PAL PROPERTY, OMINECA AREA, B.C. MAGNETOMETER PROFILES profile scale = 500 gammos/cm profile base = 57000 gammos DATE: Sept/93 DRAWN BY: ors SCOTT GEOPHYSICS LTD.

SURVEY SPECIFICATIONS survey magnatomater Scintrex MP3 Scintrex MP3 base magnetometer proton type total field measurement units gammas diurnal corrections base station 100006 GEOLOGICAL BRANCH ASSESSMENT REPORT 100 0 200 300 METERS FIG 10 RELIANCE GEOLOGICAL SERVICES INC. 2000 PAL PROPERTY, OMINECA AREA, B.C. MAGNETOMETER CONTOUR PLAN contour interval = 200 gammas DRAWN BY: ors DA SCOTT GEOPHYSICS LTD. DATE: Sept/93

stkw - stockwork wk - weak

٢

N.T.S. 94.C/5E,6W

Geologist

Drawn by

Figure 6

g.e.l.

Scale

1 : 10,000

Date August 1992

.

\$`` .

Т		
	SURVEY SPECIFICATI	ONS
	receiver transmitter pulse time Mx receive window mid point	Scintrex JPR12 Scintrex JPC7 2 seconds 690-1050 msecs 870 msecs
~	array a spacing n separations	pole dipole 75 metres 1,2 7 4
	current electrode of receiving el	located west ectrodes
	contoured value	a=75 m n=2
	log contour interv 50, 75, 100, 150, 1000, 1500, 2000,	als: 200, 300, 500, 1000 3000, 5000 (ohm-m)
	• • • • • • • • • • • • • • • • • • •	
	an Article Ar	
	GEOLOGI ASSESSM	CAL BRANCH ENT REPORT
	22	201
		COL
	0 100 MET	200 300 400
1 de	FIG 11	NOAL SEDVICES ING
	PAL PROPERTY, (DMINECA AREA, B.C.
	RESISTIVITY (a spacing second sep	CONTOUR PLAN = 75 meters aration (n=2)
	DRAWN BY: ors	DATE: Sept/93
	SCOTT GEOPHYSICS	<u>_TD</u>

SURVEY SPECIFICATIONS Scintrex 1PR12 receiver transmitter Scintrex IPC7 2 seconds pulse time Mx receive window 690-1050 msecs mid point 870 msecs pole dipole array . 75 metres a spacing . n separations 1, 2, 3, 4 current electrode located west of receiving electrodes contoured value a=75 m n=2 contour intervals: 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5 20.0, 25.0, 30.0, 35.0, 40.0 (mV/Volt) 0000 N0006 GEOLOGICAL BRANCH ASSESSMENT REPORT 400 300 100 200 METERS FIG 12 RELIANCE GEOLOGICAL SERVICES INC. ð og -PAL PROPERTY, OMINECA AREA, B.C. CHARGEABILITY CONTOUR PLAN a spacing = 75 meters. second separation (n=2)DATE: Sept/93 DRAWN BY: ors 1 SCOTT GEOPHYSICS LTD.

FIG 13

- 22

ELIANCE GEOLOGI	CAL SERVICES INC.	RELIANCE GEOLOGICAL SERVICES INC.
PAL PROJECT, OM LINE: INDUCED POLARIZATION SU SCOTT GEOPHYSICS LTD. Oct/93 Current electrodes west of rec Mx chargeability for interval 6	AINECA AREA, B.C. 8600N JRVEY (Poie-Dipole Array) Scintrex #PR-12 Pulse Rate: 2 sec cetving electrodes (heading E) 190-1050 msecs after shutoff	PAL PROJECT, OMINECA AREA, B.C. LINE: 8800N INDUCED POLARIZATION SURVEY (Pole-Dipole Array) SCOTT GEOPHYSICS LTD. Oct/93 Current electrodes went of receiving electrodes (heading E) Mx chargeability for interval 690-1050 msecs after shutoff
6 50 100 100 100 100 100 100 100 100 100 10	200 300 EXECT 100	6 50 100 200 300 METERS
RESISTIMTY (ohm~m)	CHARDEABLITY	RESISTMTY CHARGEABLITY (ohm-m) (mV/V)
	• 5 5 5 5	a kikiti a kikiti
2 - 373 2 - 373 2 - 373		

1

\$ SELO 9725E 3756 12/ *****2 1000 1200 1001 1112 1200 1200 1001 1012 1202 000 1001 Ř. 617 **61**3 A Contraction of the second se N. BR C. and the set р Ф 2 1000 1000 р 5 ß ŝ 5 100236 772 8 <u>e</u> 13 24 g 101000 4 · · · · £ 5 614 ŝ 6 101756 101756 2. ANT CONTRACT OF A CONTRACT ON A CONTRACT OF ę ş त्र 2.0 3.1 2.0 3.1 10250 102505 \$ 3 8\ ŝ /: 5 103232 18 103296 3 3 / 104002 5 ş ş 5 104798 8400N ia N Sa 2 . 9421 9221 9421 9221 5 8.0 3,7 1807 8 5 / 6 1301 Ð e . . 1278 cci less servi ser 5 10775E 16 F. ţ 1132 2 5 <u>ğ</u>/ 6 8); 5 4.0 5 (5 act 4 3645 5.3 36.011 30,011 **1 ?**) \$. 2011 201 200 2011 1121 010 1121 2011 1121 010 010 010 3/ the training of the second sec 5 S 1022 1020 1020 1020

FIG 14

Ma
Ra
Va
Ca
<
1
3611
3601
3600
361
410
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400</ 9725E 9800E 9875E 9860E

RELIANCE GEOLOG	GICAL SERVICES INC.	RELIANCE GEOLO	GICAL SERVICES INC.	RELIANCE GEOLOG	ICAL SERVICES INC.
PAL PROJECT, LINE: INDUCED POLARIZATION SCOTT GEOPHYSICS LTD. Oct/93 Current electrodes west of Mx chargeability for interve	OMINECA AREA, B.C. 10000N SURVEY (Pole-Dipole Array) Scintrex IPR-12 Pulse Rate: 2 sec receiving electrodes (heading E) al 690-1050 masce after shutoff	PAL PROJECT, LINE: INDUCED POLARIZATION SCOTT GEOPHYSICS LTD. Oct/93 Current electrodes west a Mx chargeability for interv	OMINECA AREA, B.C. 10200N I SURVEY (Pole-Dipole Array) Scintrex IPR-12 Pulse Rate: 2 sec F receiving electrodes (heading E) al 690-1050 msecs after shutoff	PAL PROJECT, C LINE: INDUCED POLARIZATION SCOTT GEOPHYSICS LTD. Oct/93 Current electrodes west of Mix chargeability for interval	DMINECA AREA, B.C. 10400N SURVEY (Pole-Dipole Array) Scintrex IFR-12 Pulse Rate: 2 sec receiving electrodes (heading E) 1 690-1050 msecs after shutoff
0 50 100	200 500	0 50 100	200 300 A C T C R S	0 50 100 Paral	200 300 ETERS
ی RE\$ISTMTY (ماہیہ-یہ)	CHARGEABILITY (mV/V)	RESISTIMITY (obra-m)	CHARGEABILITY (mV/V)	RESISTMTY (ohm~m)	CHARGEAGUITY (mV/V)
a ki ki ki ki	a ki ki ki ki	a to to to to	• K K K	a - K K K	a K K K K
000 100 000 100 000 100 101 000 000 001 000 000 001 000 000 000 000 000 001 000 000 000 000 000 001 000 000 000 000 000 001 000 000 000 000 000	u zona zie zona zie zona zie zona zie zona zie zona	1 - <td></td> <td></td> <td></td>			
		THE RECE PARTY OF THE RECE PAR	11.7 12.0 60 11.7 12.0 60 11.7 12.0 60	177 177 177 178 179 179 179 179 179 179 179 179 179 179	
KK		Licit Contraction of the Licit Contraction of	North State		
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

0000N

.

RELIANCE GEOLOGI	CAL SERVICES INC.				
PAL PROJECT, OMINECA AREA, B.C. LINE: 10600N INDUCED POLARIZATION SURVEY (Pole-Dipole Array) SCOIT GEOPHYSICS LTD. Oct/93 Current electrodes west of receiving electrodes (heading E) Mx chargeobility for interval 690-3050 msecs after shutoff					
0 59 100 	200 500 Maria 1997				
RESISTMTY (ohm-m)	CHARGEABILITY (mV/V)				
• K K K K	a K K K K				
د سرمین م ا ا ا ا م	i i i i				
//********************************	المر المر				
i i i					
9 5 9 ⁵ /					
N N N N N N N N N N N N N N N N N N N					

