ARIS SUMMARY SHEET

District Geol	ogist, Vancouver	Off Confidential: 94.10.18
ASSESSMENT RE	PORT 23283 MINING DIVISION:	Alberni
PROPERTY: LOCATION:	Deer Bay LAT 49 14 00 LONG 125 35 0 UTM 10 5456387 311935 NTS 092F05E	0
CAMP:	025 Tofino - Kennedy River Area	
KEYWORDS:		s,Amphibolites,Massive sulphides
GEO ROC SOI RELATED	Map(s) - 1; Scale(s) - 1:90 K 15 sample(s) ;ME L 8 sample(s) ;ME	
REPORTS: MINFILE:	08016,08138,14807,16220,17284,1875 092F 029	1,21136,22749

LOG NO:	IFEB 2 1 1994	RD.	Nilioja Ni
ACTION.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
FILE NO:	*****		

GEOLOGICAL AND GEOCHEMICAL ASSESSMENT REPORT

ON THE

DEER BAY PROPERTY, ALBERNI, M.D.

NTS 92 F/4, F/5

LAT: 49° 14'; LONG: 125° 35'

FOR

PETER C. BUCKLAND

BY

ARNE O. BIRKELAND, P.ENG. ARNEX RESOURCES LIMITED

JANUARY 15, 1994

FILMED

GEOLOGICAL BRANCH ASSESSMENT REPORT

C:\DBPRPT2T.DOC

inate [

لالتنا

ľ

. (13388

(uda

.

التحقي أ

. الله ال

1.66

1.28

TABLE OF CONTENTS

ا انوب

هن الارا

) الانتقار

1.0	INTR	RODUCTION 1
	1.1	General 1
	1.2	Property 1
	1.3	Location and Access 2
	1.4	History 5
2.0	PROP	PERTY GEOLOGY 5
	2.1	Lithology 5
	2.2	Structure 10
	2.3	Metamorphism 11
	2.4	Mineralization 12
3.0	GEOC	CHEMISTRY 13
	3.1	Procedure 13
	3.2	Results 13
		3.2.1 Rock Geochemistry 14
		3.2.2 Orientation Soil Sampling 14
		3.2.3 Stream Sediment Geochemistry 15
4.0	CONC	CLUSIONS 15
5.0	RECO	DMMENDATIONS 17

LIST OF FIGURES

<u>د</u>/ سا

/*395 . 1.1566

الانتار الانتقال

1.28

Г'09 : 1. (

Figure No	NTS No	Figure Name	Scale	Page
1	92F	Location Map	1:250,000) 3
2	92F/4, F/5	Claim Location Map	1:50,000	4
3	92F/4, F/5	Compilation Map Tranquil Creek Area	1:20,000	In Pocket
4	92F/4	Geology and Geochemistry Main Showing	1:90	In Pocket

LIST OF TABLES

Table No	Title	Page
1	Deer Bay Property - Mineral Tenure	2
2	Stratigraphy and Lithology	6

APPENDIX

Appendix No	Description
I	Statement of Expenditures
II	Statement of Qualification
III	Geochemical Data Sheets
IV	Analytical Results and Certificates
v	Bibliography

GEOLOGICAL AND GEOCHEMICAL ASSESSMENT REPORT DEER BAY PROPERTY

1.0 INTRODUCTION

1.1 General

Detailed geological mapping, rock chip sampling and orientation geochemical sampling were conducted on the Deer Bay Property between June 15th and June 21st, 1993.

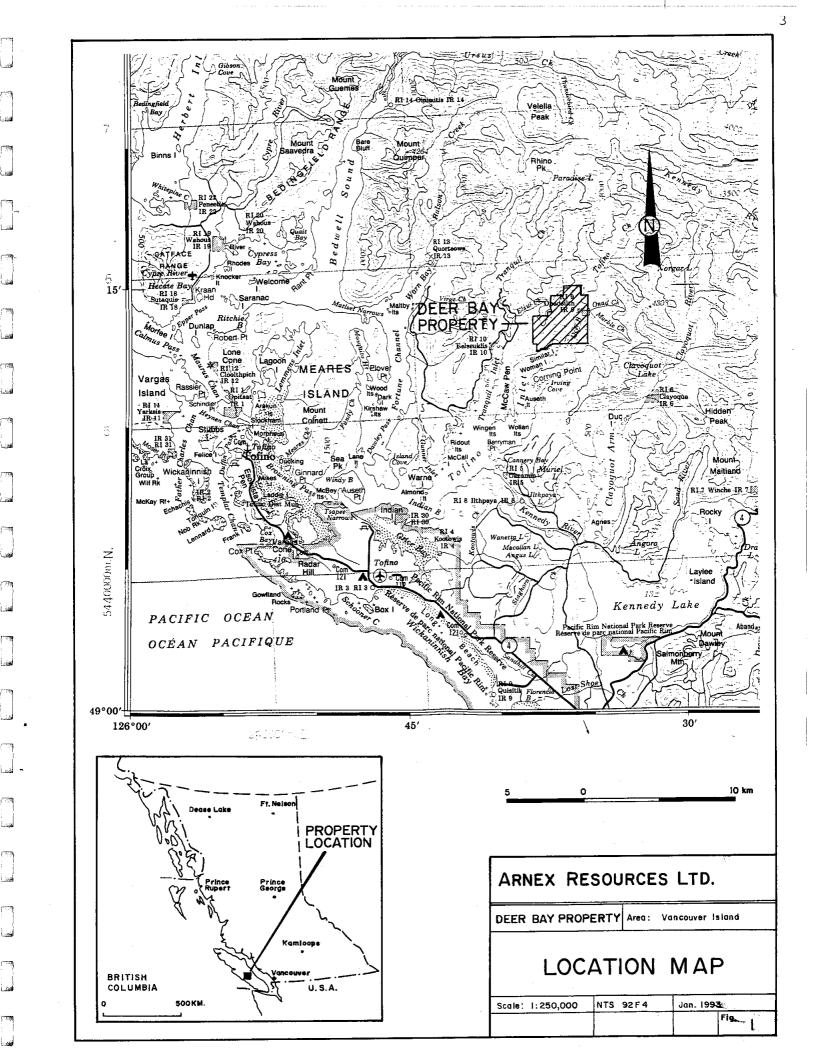
The objective of the field work was to re-locate and sample the Ni-Cu-PGM massive sulphide Main Showing to determine the dimension and tenor of the mineralization, geological setting, metallogenesis, and, if warranted, make work program recommendations to further develop the property. Orientation soil sampling was also conducted to measure dispersion effects to aid geochemical interpretation.

1.2 Property

.

The property is comprised of 6 continuous mineral claims totalling 40 units owned by Peter Buckland (See Table 1, Figure 2).

<u>Deer Bay Property</u>


Mineral Tenure

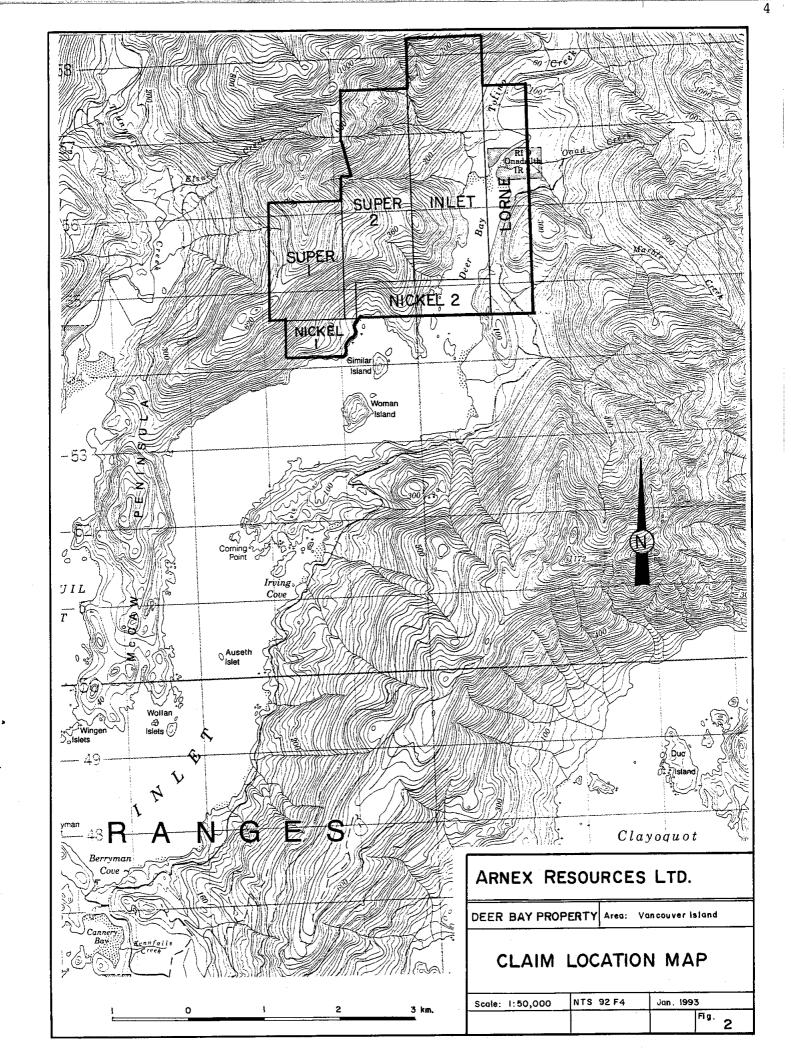

Claim Name	Record #	No of	Expiry			
		Units	Date			
Nickel 1	200102, 1048	2	Oct. 24/93			
Nickel 2	200131, 1338	2	Nov. 12/93			
Lorne	200132, 1341	6	Nov. 12/93			
Super 1	200234, 2150	6	May 10/94			
Super 2	200235, 2151	12	May 10/94			
Inlet	200614, 3404	12	Dec. 1/93			

Table 1

1.3 Location and Access

The property is located 25 km ENE of Tofino near the head of Tofino Inlet in NTS 92F/4, 49^o 14'N, 125^o 35'E (Fig 1,2). Access is by logging road (70 km from Tofino via Kennedy Lake bridge) or by boat (30 km from Tofino). The Main Showing is at the 275 m elevation on a steep timbered hillside 0.5 km north of Similar Island.

T

1.4 History

Intermittent exploration has been carried out on the property since discovery in 1898. Gold quartz veins, Cu-Mo porphyry and Ni-Cu-PGM mineralization have variously been evaluated by different operators. The focus of the current investigation has been on the Ni-Cu-PGM mineralization. The most meaningful work was carried out in 1984 and 1985 by Cominco who conducted geological mapping, geochemical, geophysical and trenching programs on the main Cu - Ni - PGM showing area.

2.0 PROPERTY GEOLOGY

2.1 Lithology

Lithologic descriptions are summarized in Table 2, Stratigraphy and Lithology.

Stratigraphy and Lithology

é

р ан -- Сіни

۳(*) •

> (- 199 ! !

اندور) اندور ا

ا فغنا

أفنت

Catfa	ace Int	trusives	(Tg)
	Tgdio	-	light grey medium to coarse grained quartz diorite.
Isla	nd Inti	rusives (a	Jg)
	Jgdio	-	grey medium to coarse grained diorite; granodiorite.
Sick	er Grou	up (CPs)	
	1st	-	grey medium grained massive bioclastic limestone; marble locally.
	arg	-	alternating light, dark grey thin bedded argillite; pyrite.
	and	-	green, grey fine grained massive andesite; chlorite.
	bas	-	dark green, grey basalt; calcite epidote veinlets, local py+/-cpy.
	meta sed	-	layered dark grey silicified argillite, chert, greywacke.
	meta bas	<u>-</u>	dark green basalt; epidote, calcite; amphibolite gneiss.
West	Coast	Crystall	ine Complex (WC3)
	gab	-	massive medium grained dark grey-green hornblend gabbro.
	amp	-	medium to coarse grained black amphibolite.
	gns	-	pale green, grey fine to medium grained quartzo-feldspathic gneiss; amphibolite layers common; quartz, feldspar, muscovite chlorite veins.

Table 2

The northerly trending, easterly dipping stratigraphic sequence on the Deer Bay Property consists of the following (from west to east, oldest to youngest):

WEST COAST COMPLEX (WC3) - Quartzo-felspathic gneiss; amphibolite

SICKER GROUP (CPs) - Mafic, felsic volcanics; argillite; limestone

Intruding the Paleozoic strata to the southwest and northeast respectively are intrusive stocks and related dykes and sills as follows:

CATFACE INTRUSIONS (Tg) - Quartz diorite

ISLAND INTRUSIONS (Jg) - Diorite; granodiorite

Lithologic Descriptions

WEST COAST CRYSTALLINE COMPLEX (WC3)

The principal rock type underlying the Main Showing area consists of quartzo-feldspathic gneiss containing numerous thin foliated amphibolite bands. Gneisses are characteristically fine to medium grained and are pale green to grayish in colour with moderately developed foliation. Dark green chlorite rich bands and amphibolite dykes and sills are common within the gneissic complex and remnant basaltic sills and intercalated felsic volcanics were observed where metamorphism is less prevalent. Chalky white feldspar, light colored muscovite and disseminated pyrite often occur at contacts between gneiss and amphibolite.

The WC3 is interpreted as a migmatic zone of granitized Paleozoic strata. Granitization has occurred at depth and preferentially along major structures. Uplift and erosion have exposed graded metamorphic fronts as observed on the property.

PALEOZOIC SICKER GROUP (CPs)

A thick sequence of metabasalts are comprised of dark green fine grained basalt and andesite containing local amygdales. Calcite and epidote stringers are common and a wide variety of dykes intrude the metabasalts. Limestone lenses occur near the contacts with metabasalt or diabase in the upper portion of the assemblage. They have been metamorphosed to a coarse grained assemblage of calcite and garnet diopside skarn assemblage. Near the upper portion of the metabasalt sequence the intercalated limestone and metabasalt/diabase unit may represent a metamorphose equivalent of the Sediment Sill unit. This is supported by the presence of a large limestone occurrence in the north central portion of the Buttle Lake formation.

INTRUSIVE ROCKS

Of particular note is a hornblende gabbro intrusive body 400 m southwest of the Main Showing. The hornblende gabbro is a massive medium grained dark green to grey rock consisting of amphibolite and altered feldspar. Several variations of this intrusive include dark grey, black and green amphibolite.

The hornblend gabbro intrusive is considered to be upper Triassic in age and is interpreted to be a subvolcanic magmatic feeder for Karmutsen formation tholeiitic basalts. The numerous amphibolite and hornblend gabbro amphibolite dykes and sills in the area are related to the hornblend gabbro intrusive. A genetic relationship between the gabbro and Cu-Ni-PGM bearing amphibolite is postulated. It is possible that the Main Showing amphibolite may thicken down dip or along strike and allow a substantial accumulation of massive sulphide to form as the hornblend gabbro amphibolite differentiates and magmatic and meteoric (sea water) fluids inter-react.

The head of Tofino Inlet is underlain by Jurassic Island Intrusions (Jg) consisting of a poly-phase sequence of diorite and granodiorite stocks, sills and dykes.

The northern portion of the property in the vicinity of Tofino Creek is underlain by a thick unit of dacite feldspar porphyry which is thought to belong to the Tertiary Catface Intrusive

complex (Tg). A body of Tg diorite also has been mapped in the southwestern portion of the property.

2.2 Structure

Pronounced jointing and faulting occur along a northeasterly direction generally paralleling Tofino Creek and Deer Bay. A conjugate fault set trending in a northwesterly direction commonly contains numerous gabbro and diabased dykes and local pyrite. These normal faults are considered to be Tertiary in age and relate to emplacement of Tg.

Geologic mapping reveals changes in direction of foliation indicating folding in the WC3 and CPs units is common. Small isoclinal folds plunging northwesterly are often observed in outcrop.

At the Main Showing, foliation is locally oriented northeast with moderate dips to the southwest. Foliation in the rocks immediately adjacent to the showing strikes northwest (paralleling the regional trend) with moderate to steep dips to the west.

2.3 Metamorphism

Metamorphic events include contact metamorphic aureoles marginal to Jg and Tg intrusives and lower amphibolite grade regional metamorphism from migmitization of CPs group protolith.

Contact metamorphic aureoles around diorite intrusions and quartz-feldspar and diorite dykes occur primarily as skarn assemblages when in contact with carbonate rich wall rocks. Skarn assemblages often contain magnetite and varying amount of base metal +/- Au, Ag. Hornfels aureoles occur when intrusives are in contact with volcanic and sedimentary wall rocks and commonly contain disseminated chalcopyrite.

Migmitization of the Paleozoic CPs protolith is responsible for the quartz-feldspar and amphibolite gneiss complexes which make up the WC3. Truly intrusive diorites and related contact metasomitism can be observed within the WC3 but most greensehist to amphibolite metamorphic facies appears to be related to recrystalization (of subducting strata, ie partial melting). Greenschist to higher grade amphibolite facies is irregularly distributed within the complex highgrade metamorphic belt. The metamorphic events of the WC3 are poorly understood.

2.4 Mineralization

Massive sulphide mineralization is hosted in approximately a 1.5 m wide band which is exposed in outcrop and trenches over approximately a 22 m strike length (Fig 4). The mineralization is hosted in, and intimately associated with, a black, coarse grained, euhedral, hypidomorphic granular, biotite hornblend amphibolite. The mineralization is concordant with the strongly developed foliation which may represent relect bedding in Sicker protolith rocks.

Fine to coarse grained massive pyrrhotite and pyrite mineralization contains locally up to 50% chalcopyrite with minor magnetite, sphalerite and galena. Accessory minerals includes violarite, millerite +/- pentlandite.

The strike extension of the mineralization to the southeast is unknown as outcrop in the heavy bush is restricted. The zone appears to pinch out in the most northwestern trench (Trench 1).

Sulfide float from this occurrence is distributed downstream from where the showing outcrops.

3.0 GEOCHEMISTRY

3.1 Procedure

Rock chip channel samples and grab samples taken from the Main Showing were analyzed by Chemex Labs using ICP and various assay techniques. Lithogeochemical analysis was also conducted by Activation Laboratories using NAA.

Orientation soil sampling was conducted at the Main Showing. Soil samples were taken from the B horizon, from residual soil profiles where possible. Soils were analyzed by Chemex Labs utilizing multi-element ICP analytical techniques.

Orientation stream sediment samples were taken in two northern drainages adjacent to the Main Showing and analyzed by Chemex Labs using ICP.

3.2 Results

Results and analytical procedures are reported in Appendix IV, Analytical Results and Certificates and key elements are plotted on Figures 3 and 4.

3.2.1 Rock Geochemistry

1

77(17) . .

1913

links

ور ا

1.50

Values of up to 10.1% Ni, 0.24% Cu, 0.17 o/T Pt and 0.76 o/T Pd were obtained from representative grab sampling of loose highgrade talus at the Main Showing. The best rock chip channel sampling of the zone returned 2.06% Ni, 1.97% Cu, 0.051 o/T Pt and 0.171 o/T Pd over a 2.2 m width and 1.58% Ni, 1.9% Cu, 0.024 o/T Pt and 0.166 o/T Pd over 1.3 m. This confirmed Cominco results (1985) where chip sampling over 11.1 m gave values up to 1.5% Ni, 4.2% Cu, 1.4 ppm Pt and 4 ppm Pd. Selected character samples gave considerably higher values.

Of importance was grab sampling of unmineralized amphibolite host at the Main Showing and from the gabbro amphibolite body on the western portion of the property. Anomalous Ni values of 103 ppm and 147 ppm respectively may indicate a genetic link between the amphibolite hosted mineralization and the gabbro body. Ni occurrences associated with WC3 amphibolite are also known to exist to the northwest indicating that a Ni-PGM Belt may be present and that the Deer Bay showing is not an isolated occurrence.

3.2.2 Orientation Soil Sampling

Orientation soil sampling achieved anomalous results immediately adjacent to the showing. Anomalous values ranged from 146 to 1400 ppm Cu, 79 to 771 ppm Ni, 90 to 750 ppb Pd, 110 to 310 ppb Pt and 44 to 70 ppb Au in close proximity to the mineralization but sampling as close as 10 m away (Sx 210016) failed to return anomalous values.

Because of the poor dispersion, isolated soil anomalies which occur elsewhere on the Main Showing grid may be significant. From previous limited work, soil sampling conducted on a grid in the Ni-PGM area encountered highly anomalous Pt and Pd values approximately 100 m south of the Main Showing (75 ppm Cu, 37 ppm Ni, 9 ppb Au, 40 ppb Pt and 117 ppb Pd). Samples with moderate highly anomalous Cu, Ni values also occur as clusters in two areas located 120 m north and 200 m southeast of the main showing.

3.2.3 Stream Sediment Geochemistry

Stream sediment samples (Sx 210329, 210330) were taken from drainages to the north of the Main Showing area (Fig 3). Samples were poor quality coarse sediments from dry flood channels. Values were not anomalous.

4.0 CONCLUSIONS

The Deer Bay property is primarily underlain by quartz-feldspar gneiss belonging to the WC3 and metavolcanic and metasedimentary rocks of the Paleozoic Sicker Group. Greenschist metamorphic facies within the WC3 results from granitization of the Sicker protolith. Foliated gneissic rocks cut by amphibolite dykes and sills are present at the Main Showing.

Ni-Cu-PGM sulfide mineralization occurs in outcrop at the Main Showing area. The massive sulphide zone appears to have a strike length of 22 m and is continuously exposed over 11 m. The best channel sample intercept was 2.2 m of approximately 2% Ni, 2% Cu, 0.05 o/T Pt and 0.2 o/T Pd. The showing has never been tested in the vertical dimension by diamond drilling.

Minor disseminated chalcopyrite observed in an intrusive gabbro complex accompanied by anomalous Ni geochemical values indicate that mineralization may be related to Karmutsen differentiated sill complexes and implicating considerable size potential may be possible.

Orientation soil sampling indicates metal dispersions are very restricted and are not present as near as 10 m away from the Main Showing. From previous work, soil anomalies on the grid north and south of the Main Showing indicate additional mineralized showings may be present, and reconnaissance soil sampling (Birkeland, 1992) from road-cuts indicates anomalous values occur over a +2 km strike length.

A property program is recommended as follows:

- Drill test the Main Showing (with a light-weight helicopter portable diamond drill) at a shallow depth from two relatively easy set-ups to sample the mineralized zone in the vertical dimension. Surface disturbance would be minimal.

- If significant intercepts are achieved, initiate a conventional property program. The first step would be to compile all historical data and prepare base maps.

- An integrated field exploration program would follow the data compilation phase. The program should conduct geochemical soil sampling, follow up prospecting, mapping and sampling, contingent geophysics and conventional drilling.

Mapping and reconnaissance soil sampling on all newly constructed access roads is recommended on an ongoing basis as active logging continues to provide exposure and access on the property.

A favourable geologic setting, a highgrade showing in outcrop and several geochemical responses over a +2 km strike length indicates additional exploration work is warranted at the Main Showing, Ni-Cu-PGM area. Dated this 15Th day of January, 1994

By: Arne O. Birkeland, P.Eng.

<u>ين ان</u>

1.200

وفف

1_12

ھەت) ھىن

. المتحدث

) Lucità

: قوت

/∩¤ Lua

APPENDIX I

لاتها

فعننا

. ارتباط

> i Kazadi

. الم

--159

ور ا

i da

Γ

1139

STATEMENT OF EXPENDITURES

ARNEX RESOURCES LTD. 4005 BROCKTON CRES. NORTH VANCOUVER, B.C., V7G 1E5

DECEMBER 16, 1993 DATE:

DEER BAY PROPERTY - 1992 GEOLOGICAL/GEOCHEMICAL PROGRAM RE: STATEMENT OF EXPENDITURES

DESCRIPTION			-	COST/L	JNIT = = = = =	
	SERVICES					
Fees	Geological Engineer	3	field day	\$454.75	•	\$1,364.25
	Geologists	3	field day	\$367.75	/ day	\$1,103.25
	Geological Engineer	4	report day	\$454.75	-	\$1,819.00
	Clerical	20	hrs	\$22.47	/ hr	\$449.40
	RENTALS					
Rentals	Truck	1	day	\$80.25	/ day	\$80.25
	Camper	1	day	\$26.75	/ day	\$26.75
	Field Equip	6	day	\$16.05	/ day	\$96.30
	Boat	2	day	\$142.67	/ day	\$285.34
	IC-H16 Radio	3	day	\$8.63	/ day	\$25.89
	IC-H18 Radio	3	day	\$6.90	/ day	\$20.71
	PC Computer	4	day	\$6.90	/ day	\$27.61
	Rock Slab Saw	10	hr	\$5.35	/ hr	\$53.50
	Binoc Microscope	6	hr	\$4.14	/ hr	\$24.85
	Subtotal					\$5,377.10
	GST					\$376.40
				x		
Expenses	Chemex Labs - Analytical		Sx	\$13.48	/ Sx	\$107.84
	Chemex Labs - Analytical	10	Rx	\$32.20	/Rx	\$322.00
	Chemex Labs - Analytical	9	Rx	\$32.00	/ Rx	\$288.00
	Act Labs - Analytical	5	Rx	\$10.70	/ Rx	\$53.50
	Mineral Tenure Recording Fees					\$400.00
	Printing, Copying					\$10.00

\$6,934.84

TOTAL GIM C:\ARNEXI\BUCKI4.WK1

Land िल्ल Cost 1.546

ð,

APPENDIX II

یدن) (سر)

(۳۳) الاستا

• | | | |

1.46

. Lag

/ 39

ور میں اور میں

(________)

CERTIFICATE OF QUALIFICATION

APPENDIX I

CERTIFICATE OF QUALIFICATION

- I, ARNE O. BIRKELAND, DO HEREBY CERTIFY THAT:
- I am a Geological Engineer in the employ of Arnex Resources Ltd. with offices at 4005 Brockton Crescent, North Vancouver, British Columbia.
- I am a 1972 graduate of the Colorado School of Mines with a Bachelor of Science Degree in Geological Engineering.
- 3. I have been a registered Professional Engineer with the Association of Professional Engineers of British Columbia (Registration No. 9870) since 1975.
- 4. My primary employment since 1966 has been in the field of mineral exploration, namely as a Geological Engineer.
- 5. My experience has encompassed a wide range of geological environments and has allowed considerable familiarization with geophysical, geochemical and diamond drilling techniques.
- 6. I have conducted the exploration work on the property reported on herein. This report is based on data acquired and also draws from researched published information available on the area.

DATED at North Vancouver, British Columbia,

this 15 th day of January, 10 BIRKE

APPENDIX III

. . .

ा रह - देख

1

. فضنا

| {_________

1.00

1

i Luna Luna

. فيدرأ

{ an

GEOCHEMICAL DATA SHEETS

	A. Travis RESOURCES LTD.									NTS 90 F/4					
E	A. Travis June 18/93		5 73	RESO	URCES LTI	ROJECT		APP		LINE AIR PHOTO NO.					
MPLE NO.	LOCATION	Depth	Horiz	DESCRIPTION				SLOPE	VEG.	ADDITIONAL OBSERVATIONS OF REMARKS		ASSAYS			
				Calour	Part Size	% ORG.	Ph				РЬ	Zn		–	
< 014	TOFINO N.	10cm	в	red brown	Sardy	mad	-	SE	Capiters	u 3n North of topend of autore					
ors	N	202 m	B	1.	۲	1.	-	6	1.6	van south of "					
2016	L.	45cn	в	**	LL .	u	-	۲۴	*	v IOM south of "					
710	u	42m	B	ic	u	*		*	1 L	015 North of bottom of altop just carss are	.k				
018	*	4an	ß	ν.	Ŀ	u.	-	u	x -	directly clausslope of mineralized amphibolite				1	
019	*	30cm	ß	N .	u	j.	-	.	~	South side of bottom end of o/c					
				·						· · · · · · · · · · · · · · · · · · ·					
										· · · · · · · · · · · · · · · · · · ·					
										·					
				• • • • • • • • • • • • • • • • • • •										F	
				1.						· · · · · · · · · · · · · · · · · · ·					
- -															
			· · · · · · · ·												

EXPLORATION DIV. GEOCIL MICAL DATA SHALET - STREAM SILTS ARNEX 92 F/4 NTS RESOURCES LTD TE JUNE 18, 143 PROJECT APP- DEER BAY PROPERTY CREEK AIR PHOTO NO. ASSAYS PETROLOGY VOLUME DRAIN SAMPLE TYPE OF Ph COLOUR TEXTURE ORGANIC OF BEDROCK ADDITIONAL OBSERVATIONS OR REMARKS AGE SAMPLE MATERIAL NO AND/OR FLOAT Width Depth Pb Zn Meta bagalt; py hfls; Jg w/ contact xanoliths CB Hgr Sandy Low X Sn. In Mod 5.5. Silly 10329 from day Winnow behind vocks flood channel Metabas; sil. py hils. dry flood channel gravel Mod SK And /M 1.7 2/0330 this

				EOCHEMICA	AL DATA SI	HEE - RC	OCK CHIP SA	AMPLING EXPLORATION EXPLORATIAN EXPLORATIANATION EXPLORATION EXPLO		N ٺ י		
SAMP		TRAVIS		PROJECT	APP			LINE				
DATE	Ju	NE 18/93						AIR PHOTO NO.	·····			
SAMPLE	LOCATION	ROCK		DI	SCRIPTIO	N		ADDITIONAL OBSERVATIONS	ASSAYS			
NO.	TYPE	Sample Type	APPARENT WIDTH TRUE WIDTH	Alteration	Freshness	Mineratization	OR REMARKS	РЬ	Zn			
				· · ·								
23224		amphibilite	chip	tour	popylitic	good	Ry 3-5%	FROTWALL SIDE OF MODERATORY				
<u></u>	SHOWING						Cpy 1%	MINERALIZED AMPHIBOLITE				
•							Po 1-3%					
23225	<i>v</i>	amphibolite	chip	toocm	r	رد	Py 5-7%	MINGRALIZED ZONE				
							Cpy 3-5%	UPPER PORTION OF OUTCROP			 	
							Po 3-5%	· · · · · · · · · · · · · · · · · · ·]_	
23226	<u>к</u>	granitic	chip	torm	-	U	Ry 1%	qt, feld, ruscalite, folicited				
	• 	gneiss	•					granitic gneiss				
23227	le	K	chip	adin	<u> </u>	¥	Py1-3%	granitic gneiss footwall side, weak by				
			- r									
33328	u.	amphibolite	chip	tm	propylitic	je je	Ry 5-7%	mineralized zone				
					, , ,			MIDDLE PORTION OF OUTCROP				
							Po 3-5%					
23229	"	amphibolite	cha	tm	propylitic	\ _	Ry1-36	mineralized zne				
		Surfaction C			WHYICK		Coy 1-3%					
							1 1		-#			
							Po 1-340	HOOVE SPUT IN ZONE			-	
								· ·				
										-		

				EOCHEMICA	L DATA S	HEEI – R	OCK CHIP SA			,		
SAMP	C.			PROJECT	DEER	BAY	PROPERTY		NTS 92 F/4			
DATE	JUNE	18, 1994										
		ROCK		DE	SCRIPTIO	N		ADDITI	ONAL OBSERVATIONS		ASSAYS	
AMPLE NO. K	LOCATION	ΤΥΡΕ	Sample Type	APPARENT WIDTH TRUE WIDTH	Alteration	Freshness	Mineralization		OR REMARKS	ICP	Assay NHOL	NAA
24001	MAIN SH.	Massone	Channel	17.4	· .		Poly Cpy	· · · · · · · · · · · · · · · · · · ·				
		Sulphide (M.S.)										
		(11.5.)						i				
24002		"	Grab		· · · · · · · · · · · · · · · · · · ·		Po Pylly					
24003	TF 3		Channel	1.1 M			Po Py Cpy					
24004	/1	11	u	1.1			P- P4 494					
4005	Tr 2		Grab				Po ly Lpg	Loose	Talus			
4006		Compres	Rep.									
7000		Country Rock	Grab									_
4007		Amphibotte	<u>u</u>									
	r l	Cdu										
4008	Cure	Country Rick	Grab									
24009		Galloro	Grab									+
		Intrasine						·	·			
	Į	· ·	1					1				

.

APPENDIX IV

e e E

. التقديل

- 198 |-|-

[·/]

فمندأ

100

ههنأ

ر ایر اندستا

الهيد ا

. هندر ا

ANALYTICAL RESULTS AND CERTIFICATES

1993 Analytical Results - Deer Bay Property

<u>।</u> -

أس

أهلنك

ور ا

أنفعتنا

Stream Sediment and Soil Geochemistry - Multi-element Results Rock Geochemistry - Multi-element Results Rock Assay - Multi-element Results Rock Geochemistry - NAA Results Whole Rock Multi-element Results

DEER BAY PROPERTY

1993 STREAM SEDIMENT AND SOIL GEOCHEMISTRY - MULTIELEMENT RESULTS ARNEX RESOURCES LTD. C:\APPGC93\A9316093.WK1

SAMPLE SX#	Au ppb	Pd ppb	Pt ppb	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm
																	
210014	66	750	310	0.2	2.28	-2	20	-0.5	-2	0.16	-0.5	38	34	1400	4.96	10	-1
210015	70	140	120	-0.2	3.18	-2	30	-0.5	-2	0.1	-0.5	10	38	317	7.37	30	-1
210016	4	8	-5	0.2	1.52	-2	20	-0.5	-2	0.21	-0.5	4	34	34	4.85	10	-1
210017	10	90	25	0.2	2.11	10	30	-0.5	-2	0.13	-0.5	7	21	146	4.14	10	-1
210018	20	370	140	0.2	4.27	2	50	-0.5	-2	0.13	-0.5	9	52	716	6.26	10	-1
210019	44	340	110	0.2	6.59	8	10	-0.5	-2	0.11	-0.5	6	61	230	5.88	10	-1
210329	20	6	5	0.2	2.51	14	50	-0.5	-2	0.99	-0.5	20	48	96	4.19	10	-1
210330	2	2	5	0.2	2.61	130	30	-0.5	-2	0.5	0.5	18	44	48	4.8	10	-1

DEER BAY PROPERTY 1993 STREAM SEDIMENT AND SOIL GEOCHEMISTRY - MULTIELEMENT RESULTS ARNEX RESOURCES LTD. C:\APPGC93\A9316093.WK1

SAMPLE SX#	К %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	TI ppm	U ppm	V ppm	W	Zn ppm
						<u> </u>		<u> </u>										
210014	0.02	10	0.53	370	1	-0.01	771	330	4	-2	2	6	0.07	-10	-10	50	-10	38
210015	0.02	-10	0.41	180	3	-0.01	215	220	12	-2	2	10	0.14	-10	-10	115	-10	36
210016	0.03	-10	0.39	165	-1	0.02	22	190	2	-2	3	11	0.23	-10	-10	120	-10	40
210017	0.02	-10	0.23	190	1	0.01	79	270	4	-2	3	9	0.11	-10	-10	90	-10	34
210018	0.01	-10	0.21	130	1	0.01	231	420	4	-2	6	16	0.14	-10	-10	87	-10	36
210019	0.01	-10	0.18	120	1	0.01	98	490	2	-2	12	6	0.21	-10	-10	107	-10	34
210329	0.04	10	1.33	750	-1	0.01	23	710	-2	-2	9	31	0.22	-10	-10	103	-10	66
210330	0.07	10	0.97	980	1	0.02	19	590	14	2	· 9	21	0.08	-10	-10	80	10	114

DEER BAY PROPERTY

1993 ROCK GEOCHEMISTRY - MULTIELEMENT RESULTS ARNEX RESOURCES LTD. C:\APPGC93\A9316094.WK1

SAMPLE RX#	Au ppb	Pd ppb	Pt	Ag	Al	As	Ba ppm	Be ppm	Bi	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm
			ppb	ppm	%	ppm [.]											
223224	88	630	195	-0.2	6.11	4	-10	1.00	-2	0.12	-0.5	38	187	3799	12.01	-10	-1
223225	130	2700	730	2.4	2.40	10	-10	-0.5	-2	0.39	-0.5	154	613	10000	9.19	-10	-1
223226	-2	20	5	-0.2	2.51	-2	980	-0.5	-2	1.06	-0.5	8	26	182	2.48	· 10	-1
223227	54	440	90	-0.2	2.90	-2	160	-0.5	-2	3.57	-0.5	53	20	1324	3.38	-10	-1
223228	220	5130	1520	-0.2	3.90	62	-10	-0.5	-2	0.19	-0.5	655	281	7918	15	-10	-1
223229	84	2020	580	-0.2	2.86	20	-10	-0.5	-2	0.54	-0.5	138	614	3824	5.75	-10	-1

DEER BAY PROPERTY 1993 ROCK GEOCHEMISTRY - MULTIELEMENT RESULTS ARNEX RESOURCES LTD. C:\APPGC93\A9316094.WK1

SAMPLE	к	La	Mg	⁺ Mn	Мо	Na	Ni	Р	Pb	Sb	Sc	Sr	Ti	TI	U	. V	W	Zn
RX#	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
223224	-0.01	-10	5.75	1220	-1	0.01	1848	-10	-2	-2		2	0.08	-10	-10	24	-10	68
223224	-0.01	-10	3.90	390	-1	0.05	1561	-10	-2	-2	3	4	0.10	-10	10	52	30	106
223226	0.13	-10	1.85	515	-1	0.05	402	240	-2	-2	3	31	0.14	-10	10	12	-10	34
223227	0.08	-10	1.68	530	-1	0.08	2924	190	-2	-2	2	24	0.07	-10	-10	6	-10	48
223228	-0.01	-10	4.00	825	-1	0.02	10000	-10	-2	-2	3	3	0.04	120	10	29	-10	126
223229	-0.01	-10	4.49	345	-1	0.07	6021	80	-2	2	3	8	0.12	20	-10	51	20	70

DEER BAY PROPERTY 1993 ROCK ASSAY - MULTIELEMENT RESULTS ARNEX RESOURCES LTD. C:\APPGC93\A9316169.WK1

Sample	РТ	PD	AU	RH	CU	NI	CO	S	FE	AS	AG	CO	CU	FE	MN	МО	NI	PB	ZN
Rx#	ОРТ	OPT	OPT	OPT	%	%	%	%	%	%	PPM	PPM	PPM	%	PPM	РРМ	PPM	PPM	PPM
RX 224001	0.024	0.166	0.004	<.004	1.90	1.58	0.04	8.93	15.1	0	<0.5	450	>10000	13.3	500	<1	>10000	4	306
RX 224003	0.054	0.162	0.012	<.003	3.48	1.00	0.05	12.00	18.3	<0.01	1.0	507	>10000	>15	415	<1	9479	10	244
RX 224004	0.048	0.180	0.006	0.003	0.46	3.12	0.09	15.50	21.6	<0.01	<0.5	802	4812	>15	920	<1	>10000	4	202
RX 224005	0.170	0.760	0.009	0.012	0.24	10.08	0.21	41.40	36.9	0.08	<0.5	2059	2474	>15	65	<1	>10000	<2	402

DEER BAY PROPERTY

1993 ROCK GEOCHEMISTRY - NAA RESULTS

ARNEX RESOURCES LTD. C:\APPGC93\5219.WK1

SAMPLE Rx#	AU PPB	AG PPM	AS PPM	BA PPM	BR PPM	CAO %	CO PPM	CR PPM	CS PPM	FE203 %	HF PPM	HG PPM	IR PPM	MO PPM	NA2O3 %	NI PPM	RB PPM
RX 224002	66	-5	-2	760	-1	3	46	180	-2	3.29	3.3	-1	-5	-5	3.55	1900	-30
RX 224006	143	-5	2	410	-1	8	25	20	-2	4.22	5.0	-1	-5	-5	5.69	850	44
RX 224007	5	-5	2	200	-1	8	26	87	2	8.96	2.3	-1	-5	-5	3.59	-50	-30
RX 224008	5	-5	-2	-100	-1	10	68	620	-2	12.17	1.2	-1	-5	-5	1.85	430	-30
RX 224009	-5	-5	-2	-100	1	10	56	1300	-2	8.18	0.6	-1	-5	-5	1.15	560	35

1993 ROCK ARNEX RES				esults C:\Appg(C93\5219	.WK1												
SAMPLE Rx#	SB PPM	SC PPM	SE PPM	SN %	SR %	TA PPM	TH PPM	U PPM	W PPM	ZN PPM	LA PPM	CE PPM	ND PPM	SM PPM	EU PPM	TB PPM	YB PPM	LU PPM
RX 224002	0.4	3.8	-5	-0.01	-0.05	-1	-0.5	-0.5	-4	66	3.2	9	-5	1.1	0.5	-0.5	1.3	0.20
RX 224006	0.4	6.0	-5	-0.01	0.08	-1	3.2	-0.5	-4	90	17.1	38	12	3.1	0.6	0.6	3.0	0.51
RX 224007	-0.2	33.0	-5	-0.01	-0.05	-1	0.9	0.7	-4	180	7.7	17	9	2.7	0.8	0.6	2.2	0.36
RX 224008	-0.2	46.0	-5	-0.01	-0.05	-1	-0.5	-0.5	-4	160	1.1	6	-5	1.5	0.7	-0.5	2.3	0.35
RX 224009	-0.2	34.0	-5	-0.01	-0.05	-1	-0.5	-0.5	-4	120	0.7	4	-5	0.6	0.3	-0.5	1.2	0.19

Mass g

> 1.07 1.10 1.59 1.29 1.72

DEER BAY PROPERTY

a a a a a a a a a a a a a a a a a a a

DEER BAY PROPERTY

1993 ROCK GEOCHEMISTRY - WHOLE ROCK MULTIELEMENT RESULTS ARNEX RESOURCES LTD. C:\APPGC93\A9316170.WK1

			·								· ·		
Sample Rx#	AL2O3 %	CAO %	CR2O3 %	FE2O3 %	K2O %	MGO %	MNO %	NA2O3 %	P2O5 %	SIO2 %	TIO2 %	LOI %	TOTAL %
					<u></u>			<u></u> -		.			
RX 224001	8.43	5.47	0.17	21.70	0.11	16.30	0.17	0.62	0.09	32.40	0.38	9.93	95.77
RX 224002	13.06	2.59	0.03	3.31	0.68	0.83	0.03	3.62	0.15	74.25	0.19	1.94	100.68
RX 224003	7.91	4.96	0.14	25.70	0.07	13.51	0.15	0.58	0.10	29.18	0.34	10.57	93.21
RX 224004	9.43	1.51	<0.01	30.70	0.07	7.57	0.15	0.59	<0.01	28.03	0.17	15.03	93.27
RX 224005	0.29	0.05	<0.01	50.80	0.02	0.23	<0.01	<0.01	<0.01	1.42	<0.01	32.83	85.69
RX 224006	21.59	8.76	0.03	4.15	1.27	2.19	0.09	5.78	0.13	50.93	0.27	5.00	100.19
RX 224007	16.84	8.65	0.11	9.13	0.82	5.79	0.31	3.91	0.26	52.00	0.68	2.79	101.29
RX 224008	14.88	10.25	0.16	11.44	0.20	12.86	0.18	1.92	0.16	44.14	0.62	2.47	99.28
RX 224009	15.99	10.99	0.25	8.09	0.83	14.37	0.16	1.26	0.12	45.40	0.26	2.76	100.48

ARNEX RESOL				9316170.WK											
Sample Rx#	BA PPM	NB PPM	RB PPM	SR PPM	Y PPM	ZR PPM	AG PPM	CO PPM	CU PPM	FE %	MN PPM	MO PPM	NI PPM	PB PPM	ZN PPM
RX 224001	10	<10	<5	40	10	20									
RX 224002	780	<10	10	380	<10	220	0.5	49	5977	2.20	200	<1	1680	2	40
RX 224003	<10	<10	<5	10	10	10									
RX 224004	10	<10	<5	30	10	110									
RX 224005	70	<10	<5	<10	<10	<10									
RX 224006	450	<10	30	490	20	170	<0.05	25	1003	2.46	485	<1	714	2	38
RX 224007	180	<10	15	330	20	70	<0.05	13	54	2.58	680	<1	37	4	52
RX 224008	40	<10	<5	160	20	30	<0.05	18	120	1.98	320	<1	103	<2	22
RX 224009	60	<10	20	90	10	10	<0.05	17	20	1.51	305	<1	147	<2	18

DEER BAY PROPERTY

1993 ROCK GEOCHEMISTRY - WHOLE ROCK MULTIELEMENT RESULTS

1993 Analytical Certificates - Deer Bay Property

Stream Sediment and Soil Geochemistry - Multi-element Results Rock Geochemistry - Multi-element Results Rock Assay - Multi-element Results

Rock Geochemistry - NAA Results

a [

. افغصا

i.

. التفاعيا

:

ليب

ز الضينا Whole Rock Multi-element Results

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

CERTIFICATE

A9316093

ARNEX RESOURCES LIMITED

Project: APP-SX P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 30-JUN-93.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
201 203 205 229	6 2 2 8	Dry, sieve to -80 mesh Dry, sieve to -35 mesh Geochem ring to approx 150 mesh ICP - AQ Digestion charge
* NOTE_	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. To: ARNEX RESOURCES LIMITED

4005 BROCKTON CR. N.VANCOUVER, BC V7G 1E5

A9316093

Comments: CC: C. BELL

CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPEF LIMIT
975	8	Au ppb: ICP-fluorescence package	FA-ICP-AFS	2	10000
977	8	Pd ppb: ICP-fluorescence package	FA-ICP-AFS	2	10000
976	8	Pt ppb: ICP-Fluorescence package	FA-ICP-AFS	5	10000
2118	8	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
2119	8	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	8	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2121	8	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	8	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	8	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	8	Ca %: 32 element, soil & rock	ICP-ABS	0.01	15.00
2125	8	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2126	8	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	8	Cr ppm: 32 element, soil & rock	ICP-AES	1 1	10000
2128	8	Cu ppm: 32 element, soil & rock	ICP-AES ICP-AES	0.01	15.00
2150	8	Fe %: 32 element, soil & rock	ICP-AES ICP-AES	10	10000
2130 2131	8	Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	8	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2152	8	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	8	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2134	8	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	8	Mo ppm: 32 element, soil & rock	ICP-AES	· 1	10000
2137	8	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
2138	8	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
2139	8	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	8	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
2141	8	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	8	Sc ppm: 32 elements, soil & rock	ICP-AES	ī	10000
2143	8	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144	8	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
2145	8	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	8	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	8	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	8	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	8	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

Par 4. [] _____] _____}

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: ARNEX RESOURCES LIMITED	To:	ARNEX	RESOURCES	LIMITED
-----------------------------	-----	-------	-----------	---------

4005 BROCKTON CR. N.VANCOUVER, BC V7G 1E5

Page Number :1-A Total Pages :1 Certificate Date: 30-JUN-93 Invoice No. :19316093 Invoice No. : P.O. Number : Account :AN

Project : APP-SX Comments: CC: C. BELL

												CE	RTIF		OF A	NAL	/SIS	A	9316	093		<u> </u>
S	AMPLE	PR CO		Au ppb Pe AFS	i ppb Pi AFS	t ppb AFS	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bí ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm
SX 210 SX 210 SX 210 SX 210 SX 210 SX 210	015 016 017	201 203 201	229 229 205 229 229	70 4 10	750 140 8 90 370	310 120 < 5 25 140	0.2 < 0.2 0.2 0.2 0.2	2.28 3.18 1.52 2.11 4.27	< 2 < 2 < 2 < 2 10 2	30 20 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.10 0.21 0.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	38 10 4 7 9	34 38 34 21 52	1400 317 34 146 716	4.96 7.37 4.85 4.14 6.26	10 30 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.02 0.03 0.02 0.01	10 < 10 < 10 < 10 < 10 < 10
SX 210 SX 210 SX 210	329	201	229 229 205	20	340 6 2	110 5 5	0.2 0.2 0.2	6.59 2.51 2.61	8 14 130	50	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.11 0.99 0.50	< 0.5 < 0.5 0.5	6 20 18	61 48 44	230 96 48	5.88 4.19 4.80	10 10 10	< 1 < 1 < 1	0.01 0.04 0.07	< 10 10 10
	· .																					
																		(tr)	W	<u>.</u>	20-	

*

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: ARNEX RESOURCES LIMITED

4005 BROCKTON CR. N.VANCOUVER, BC V7G 1E5 Page Number :1-B Total Pages :1 Certificate Date: 30-JUN-93 Invoice No. :19316093 P.O. Number : Account :AN

Project : APP-SX Comments: CC: C. BELL

										CE	RTIFI	CATE		NALY	'SIS	A	9316093	
SAMPLE	PREP CODE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
SX 210016 SX 210017	201 229 201 229 203 205 201 229 201 229 201 229	0.53 0.41 0.39 0.23 0.21	370 180 165 190 130		<pre>< 0.01 < 0.01 0.02 0.01 0.01 0.01</pre>	771 215 22 79 231	330 220 190 270 420	4 12 2 4 4	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 2 3 3 6	6 10 11 9 16	0.07 0.14 0.23 0.11 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	50 115 120 90 87	< 10 < 10 < 10 < 10 < 10 < 10	38 36 40 34 36	
SX 210329	201 229 201 229 203 205	0.18 1.33 0.97	120 750 980	1 < 1 1	0.01 0.01 0.02	98 23 19	490 710 590	2 < 2 14	< 2 < 2 2	12 9 9	6 31 21	0.21 0.22 0.08	< 10 < 10 < 10	< 10 < 10 < 10	107 103 80	< 10 < 10 10	34 66 114	412 410 4
								•										
																	ABre	0.0

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: ARNEX RESOURCES LIMITED

4005 BROCKTON CR. N.VANCOUVER, BC V7G 1E5

A9316094

Comments: CC: C. BELL

CERTIFICATE

A9316094

ARNEX RESOURCES LIMITED

Project: APP-RX P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 30-JUN-93.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
205 274 229	6 6 6	Geochem ring to approx 150 mesh 0-15 lb crush and split ICP - AQ Digestion charge
* NOTE	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: A1, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

ANALYTICAL PROCEDURES									
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT				
975	6	Au ppb: ICP-fluorescence package	FA-ICP-AFS	2	10000				
977	6	Pd ppb: ICP-fluorescence package	FA-ICP-AFS	2	10000				
976	6	Pt ppb: ICP-Fluorescence package	FA-ICP-AFS	5	10000				
2118	6	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200				
2119	6	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00				
2120	6	As ppm: 32 element, soil & rock	ICP-AES	2	10000				
2121	6	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000				
2122	6	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0				
2123	6	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000				
2124	6	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00				
2125	6	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0				
2126	6	Co ppm: 32 element, soil & rock	ICP-AES	1	10000				
2127	6	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000				
2128	6	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000				
2150	6	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00				
2130	6	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000				
2131	6	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000				
2132	6	K %: 32 element, soil & rock	ICP-AES	0.01	10.00				
2151	6	La ppm: 32 element, soil & rock	ICP-AES	10	10000				
2134	6	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00				
2135	6	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000				
2136	6	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000				
2137	6	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00				
2138	6	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000				
2139	6	P ppm: 32 element, soil & rock	ICP-AES	10	10000				
2140	6	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000				
2141	6	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000				
2142	6	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000				
2143	6	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000				
2144	6	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00				
2145	6	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000				
2146	6	U ppm: 32 element, soil & rock	ICP-AES	10	10000				
2147	6	V ppm: 32 element, soil & rock	ICP-AES	1	10000				
2148	6	W ppm: 32 element, soil & rock	ICP-AES	10	10000				
2149	6	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000				

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	ARNEX	RESOL	IRCES	LIMITED
10.		I LOOC	JUOLO	

*

4005 BROCKTON CR. N.VANCOUVER, BC V7G 1E5 Page Number :1-A Total Pages :1 Certificate Date: 30-JUN-93 Invoice No. : 19316094 P.O. Number : Account :AN

ч.

											CE	RTIF	CATE	OF A	NAL	/SIS		49316	094		
SAMPLE	PRI COI		Au ppb AFS	Pđ ppb AFS		Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm
LX 223224 LX 223225 LX 223226 LX 223227 LX 223227 LX 223228	205 205 205	274 274 274 274 274 274	< 2 54	630 2700 20 440 5130	90	2.4 < 0.2 < 0.2	6.11 2.40 2.51 2.90 3.90	4 10 < 2 < 2 62	980 160	1.0 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.39 1.06 3.57	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	38 154 8 53 655	187 613 2 26 20 281	3800 10000 182 1325 7920	12.00 9.19 2.48 3.38 >15.00	< 10 < 10 10 < 10 < 10	< 1 · < 1 < 1	< 0.01 < 0.01 0.13 0.08 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10
X 223229	205	274	84	2020	580	< 0.2	2.86	20	< 10	< 0.5	< 2	0.54	< 0.5	138	614	3820	5.75	< 10	< 1	< 0.01	< 10
															ERTIFI	CATION	- 6	ent	Bri	fle	~

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: ARNEX RESOURCES LIMITED

4005 BROCKTON CR. N.VANCOUVER, BC V7G 1E5 Page Number :1-B Total Pages :1 Certificate Date: 30-JUN-93 Invoice No. : I9316094 P.O. Number : Account :AN

Project : APP-RX Comments: CC: C. BELL

	-										CE	RTIFI	CATE	OF A	NALY	'SIS	4	9316094	
SAMPLE	PREP CODE		Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D mqq	V ppm	W ppm	Zn ppm	
RX 223224 RX 223225 RX 223226 RX 223227 RX 223228	205 2 205 2 205 2 205 2 205 2	74 74 74	5.75 3.90 1.85 1.68 4.00	1220 390 515 530 825	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.05 0.05 0.08 0.02	1850 1560 402 2920 >10000	< 10 < 10 240 190 < 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4 3 2 3	2 4 31 24 3	0.08 0.10 0.14 0.07 0.04	< 10 < 10 < 10 < 10 < 10 120	< 10 10 10 < 10 10	24 52 12 6 29	< 10 30 < 10 < 10 < 10 < 10	68 106 34 48 126	
X 223229	205 2	74	4.49	345	< 1	0.07	6020	80	< 2	2	3	8	0.12	20	< 10	51	20	70	
								-											
																		υ.	
															CERTIFI		100	ABre	flar

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: ARNEX RESOURCES LIMITED

4005 BROCKTON CR. N.VANCOUVER, BC V7G 1E5

A9317273

......

Comments: CC: C. BELL

CERTIFICATE

A9317273

ARNEX RESOURCES LIMITED

Project: APP-RX P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 31-JUL-93.

	SAMPLE PREPARATION											
CHEMEX	NUMBER SAMPLES	DESCRIPTION										
244	2	Pulp; prev. prepared at Chemex										

ANALYTICAL PROCEDURES

10561Cu %: Fusion - ICP-AESFusion - ICP-AES0.02210571Ni %: Fusion - ICP-AESFusion - ICP-AES0.02210581Co %: Fusion - ICP-AESFusion - ICP-AES0.011010591S %: Leco induction furnaceLECO-IR DETECTOR0.02410601Fe %: Fusion - ICP-AESFusion - ICP-AES0.110		NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
	1056 1057 1058 1059 1060	1 1 1 1	Cu %: Fusion - ICP-AES Ni %: Fusion - ICP-AES Co %: Fusion - ICP-AES S %: Leco induction furnace Fe %: Fusion - ICP-AES	Fusion - ICP-AES Fusion - ICP-AES Fusion - ICP-AES LECO-IR DETECTOR Fusion - ICP-AES	0.02 0.02 0.01 0.02 0.1	100.0 20.0 20.0 10.00 40.0 100.0 10.00

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: ARNEX RESOURCES LIMITED

4005 BROCKTON CR. N.VANCOUVER, BC V7G 1E5

Project : APP-RX Comments: CC: C. BELL Page Number :1 Total Pages :1 Certificate Date: 31-JUL-93 Invoice No. : 19317273 P.O. Number : Account : AN

A9317273 **CERTIFICATE OF ANALYSIS** Ni Co S % Fe As PREP Cu Cu % % % (Leco) % % SAMPLE CODE % _ _ _ _ _ _ ____ ____ RX 223225 244 ___ 2.02 ____ < 0.01 20.9 0.77 1.73 0.08 13.10 RX 223228 244 ----____ . CERTIFICATION: How How Chilen

CI

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: INCO EXPLORATION AND TECHNICAL SERVICES INC. ATTN: CAM BELL 2690 - 666 BURRARD ST. VANCOUVER, BC V6C 2X8

A9316169

Comments: ATTN: C. BELL

CERTIFICATE

A9316169

INCO EXPLORATION AND TECHNICAL SERVICES INC.

Project: 60555 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 5-JUL-93.

SAMPLE PREPARATION CHEMEX CODE NUMBER SAMPLES DESCRIPTION 208 4 Assay ring to approx 150 mesh 274 4 0-15 lb crush and split 233 4 Assay AQ ICP digestion charge

CODE	NUMBER SAMPLES	DESCRIPTION	METHOD		UPPER LIMIT
984	4	Pt oz/T - part. cupel. FA-ICP	FA-ICP-ARRAY	0.002	10.00
985	4	Pd oz/T - part. cupel. FA-ICP	FA-ICP-ARRAY	0.002	10.00
986	4	Au oz/T - part. cupel. FA-ICP	FA-ICP-ARRAY	0.001	2.50
988	4	Rh oz/T - part. cupel. FA-ICP	FA-ICP-ARRAY	0.001	5.00
1056	4	Cu %: Fusion - ICP-AES	Fusion - ICP-AES	0.02	20.0
1057	4	Ni %: Fusion - ICP-AES	Fusion - ICP-AES	0.02	20.0
1058	4	Co %: Fusion - ICP-AES	Fusion - ICP-AES	0.01	10.00
1059	4	S %: Leco induction furnace	LECO-IR DETECTOR	0.02	40.0
1060	4	Fe %: Fusion - ICP-AES	Fusion - ICP-AES	0.1	100.0
1061	4	As %: Fusion - ICP-AES	Fusion - ICP-AES	0.01	10.00
1005	4	Ag ppm: 9 element, soil and rock	ICP-AES	0.5	200
1929	4	Co ppm: 9 element, soil & rock	ICP-AES	1	10000
1931	4	Cu ppm: 9 element, soil & rock	ICP-AES	- 1	10000
1932	4	Fe %: 9 element, soil & rock	ICP-AES	0.01	15.00
1937	4	Mn ppm: 9 element, soil & rock	ICP-AES	5	10000
1938	4	Mo ppm: 9 element, soil & rock	ICP-AES	1	10000
1940	4	Ni ppm: 9 element, soil & rock	ICP-AES	1	10000
1004	4	Pb ppm: 9 element, soil and rock	ICP-AES	5	10000
1950	4	Zn ppm: 9 element, soil & rock	ICP-AES	2	10000

ANALYTICAL PROCEDURES

	21 Bri	alytical Che 2 Brooksb itish Colun IONE: 604	ank Ave. nbia. Car	, North V ada V	ancouver				Proje	V6C 2X8 ct : 6 nents: 4	0555	. BELL						P.O. Nur Account	mber : :K	(PJB
·	CERTIFICATE OF ANALYSIS AS												A9316169							
SAMPLE	PREP CODE	Pt oz/T	Pd oz/T	Au oz/T	Rh oz/T	Cu %	Ni %	Co %	S % (Leco)	Fe %	As %	Ag ppm	Со ррт	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	Pb ppm	Zn ppm
RX224001 RX224003 RX224004 RX224005	208 274 208 274 208 274 208 274 208 274	0.054 0.048	0.166 0.162 0.180 0.760	0.004< 0.012< 0.006 0.009	0.003	1.90 3.48 0.46 0.24	1.58 1.00 3.12 10.10		8.93 12.00 15.50 41.4	18.3 <	0.01 0.01	< 0.5 1.0 < 0.5 < 0.5		>10000 4810	13.30 >15.00 >15.00 >15.00	500 415 920 65	< 1 < 1	>10000 9480 >10000 >10000	4 10 4 < 2	306 244 202 402
															-					

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia Consider VZI 201

ting.

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: INCO EXPLORATION AND TECHNICAL SERVICES INC. ATTN: CAM BELL 2690 - 666 BURRARD ST. VANCOUVER, BC V6C 2X8

.

A9316170

Comments: ATTN: C. BELL

CERTIFICATE

A9316170

INCO EXPLORATION AND TECHNICAL SERVICES INC.

Project: 60555 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 7-JUL-93.

	SAM	SAMPLE PREPARATION										
CHEMEX CODE		DESCRIPTION										
299 200	4	Pulp; prepped on other workorder Whole rock fusion										

CHEMEX	NUMBER			DETECTION	UPPER
CODE	SAMPLES	DESCRIPTION	METHOD	LIMIT	LIMIT
594	4	Al2O3 %: Whole rock	ICP-AES	0.01	99.99
588	4	CaO %: Whole rock	ICP-AES	0.01	99.99
590	4	Cr2O3 %: Whole Rock	ICP-AES	0.01	100.00
586	4	Fe2O3(total) %: Whole rock	ICP-AES	0.01	100.00
821	4	K2O %: Whole rock	ICP-AES	0.01	99.99
593	4	MgO %: Whole rock	ICP-AES	0.01	99.99
596	4	MnO %: Whole rock	ICP-AES	0.01	99.99
599	4	Na20 %: Whole rock	ICP-AES	0.01	99.99
597	4	P2O5 %: Whole rock	ICP-AES	0.01	99.99
592	4	SiO2 %: Whole rock	ICP-AES	0.01	99.99
595	4	TiO2 %: Whole rock	ICP-AES	0.01	99.99
475	4	L.O.I. %: Loss on ignition	FURNACE	0.01	99.99
540	4	Total %	CALCULATION	0.01	105.00
891	4	Ba ppm		10	10000
973	4	Nb ppm	ICP	10	10000
1067	4	Rb ppm		5	10000
898	4	Sr ppm		10	10000
974	- 4	Y ppm	ICP	10	10000
978	4	Zr ppm	ICP	10	10000

ANALYTICAL PROCEDURES

		<u>.</u>	CERTIFICATE OF		A9316170
PREP SAMPLE CODE	A1203 CaO Cr203 % % %		Na20 P205 SiO2 TiO2 LOI % % % % %		
RX224001 299 200 RX224003 299 200 RX224004 299 200 RX224005 299 200	8.43 5.47 0.17 7.91 4.96 0.14 9.43 1.51 < 0.01 0.29 0.05 < 0.01	25.70 0.07 13.51 0.15 30.70 0.07 7.57 0.15	0.58 0.10 29.18 0.34 10.57 0.59 < 0.01 28.03 0.17 15.03	93.27 10 < 10	<pre>< 5 10 10 10 < 5 30 10 110</pre>

CERTIFICATION: HuttBuchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 2650 - 066 BUILDARD ST. VANCOUVER, BC V6C 2X8

Comments: ATTN: C. BELL

CERTIFICATE

A9316173

INCO EXPLORATION AND TECHNICAL SERVICES INC.

Project: 60555 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 5-JUL-93.

-	SAM	PLE PREPARATION
CHEMEX CODE		DESCRIPTION
208 274 200 229	5 5 5 5	Assay ring to approx 150 mesh 0–15 lb crush and split Whole rock fusion ICP - AQ Digestion charge

		ANALYTICAL P	ROCEDURES		
CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD		upper Limit
594	5	Al203 %: Whole rock	ICP-AES	0.01	99.99
588	5	CaO %: Whole rock	ICP-AES	0.01	99.99
590	5	Cr2O3 %: Whole Rock	ICP-AES	0.01	100.00
586	5	Fe2O3(total) %: Whole rock	ICP-AES	0.01	100.00
821	5	K20 %: Whole rock	ICP-AES	0.01	99.99
593	5	MgO %: Whole rock	ICP-AES	0.01	99.99
596	5	MnO %: Whole rock	ICP-AES	0.01	99.99
599	5	Na2O %: Whole rock	ICP-AES	0.01	99.99
597	5	P2O5 %: Whole rock	ICP-AES	0.01	99.99
592	5	SiO2 %: Whole rock	ICP-AES	0.01	99.99
595	5	TiO2 %: Whole rock	ICP-AES	0.01	99.99
475	5	L.O.I. %: Loss on ignition	FURNACE	0.01	99.99
540	5	Total %	CALCULATION	0.01	105.00
891	5	Ba ppm		10	10000
973	5	Nb ppm	ICP	10	10000
1067	5	Rb ppm		5	10000
898	5	Sr ppm		10	10000
974	5	Y ppm	ICP	10	10000
978	5	Zr ppm	ICP	10	10000
1005	5	Ag ppm: 9 element, soil and rock	ICP-AES	0.5	200
1929	5	Co ppm: 9 element, soil & rock	ICP-AES	1	10000
1931	5	Cu ppm: 9 element, soil & rock	ICP-AES	1	10000
1932	5	Fe %: 9 element, soil & rock	ICP-AES	0.01	15.00
1937	5	Mn ppm: 9 element, soil & rock	ICP-AES	5	10000
1938	5	Mo ppm: 9 element, soil & rock	ICP-AES	1	10000
1940	5	Ni ppm: 9 element, soil & rock	ICP-AES	1	10000
1004	5	Pb ppm: 9 element, soil and rock	ICP-AES	5	10000
1950	5	Zn ppm: 9 element, soil & rock	ICP-AES	2	10000

A9316173

1

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 26 56 BU RD S VANCOUVER, BC V6C 2X8

ate E 5-JUL Invoice No. : 19316173 P.O. Number : Account : KPJB

Project : 60555 Comments: ATTN: C. BELL

								CERTI	FICATE	OF AN	ALYSIS	<u> </u>	4931617	73	
SAMPLE	PREP CODE	Nb ppm	Rb ppm	Sr ppm	Y ppm	Zr ppm	Ag ppm	Co ppm	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	Pb ppm	Zn ppm
x224002 x224006 x224007 x224008 x224008 x224009	208 274 208 274 208 274 208 274 208 274 208 274	< 10 < 10 < 10 < 10 < 10 < 10	10 30 15 < 5 20	380 490 330 160 90	< 10 20 20 20 10	220 170 70 30 10	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	49 25 13 18 17	5980 1005 54 120 20	2.20 2.46 2.58 1.98 1.51	200 485 680 320 305	< 1 < 1 < 1 < 1 < 1 < 1 < 1	1680 714 37 103 147	2 2 4 < 2 < 2	40 38 52 22 18

To: INCO EXPLORATION AND TECHNICAL SERVICES INC. Page Number :1-A Chemex Labs Ltd. Total Pages :1 ATTN: CAM BELL 2690 - 666 BURRARD ST. Certificate Date: 05-JUL-93 VANCOUVER, BC Invoice No. : 19316173 Analytical Chemists * Geochemists * Registered Assayers P.O. Number V6C 2X8 212 Brooksbank Ave., North Vancouver Account :KPJB British Columbia, Canada V7J 2C1 Project : 60555 PHONE: 604-984-0221 Comments: ATTN: C. BELL A9316173 **CERTIFICATE OF ANALYSIS** Na20 TiO2 LOI TOTAL PREP A1203 CaO Cr203 Fe203 K20 Mg0 MnO P205 SiO2 Ba % SAMPLE CODE % % % % % * % mqq % ጷ 780 0.15 74.25 0.19 1.94 100.70 RX224002 208 274 13.06 2.59 0.03 3.31 0.68 0.83 0.03 3.62 450 0.09 5.78 0.13 50.93 0.27 5.00 100.20 RX224006 208 274 21.59 8.76 0.03 4.15 1.27 2.19 180 RX224007 208 274 16.84 8.65 0.11 9.13 0.82 5.79 0.31 3.91 0.26 52.00 0.68 2.79 101.30 0.18 1.92 0.16 44.14 0.62 2.47 99.28 40 RX224008 208 274 14.88 10.25 0.16 11.44 0.20 12.86 100.50 60 RX224009 208 274 15.99 10.99 0.25 8.09 0.83 14.37 0.16 1.26 0.12 45.40 0.26 2.76

CERTIFICATION: Sant Buchler

ACTIVATION LABORATORIES LTD

Invoice No.: 5219 Work Order: 5288 Invoice Date: 08-JUL-93 Date Submitted: 29-JUN-93 Your Reference: PROJ#60555 Account Number: 77

INCO EXPLORATION-COPPER CLIFF FIELD EXPLORATION BUILDING HIGHWAY 17 WEST COPPER CLIFF, ONT POM 1NO ATTN: HERB MACKOWIAK

CERTIFICATE OF ANALYSIS

INAA package, elements and detection limits:

138 	AU	5.	PPB	AG	5.	PPM	AS	2.	PPM	BA	100.	PPM
أتقتش	BR	1.	PPM	CA	1.	8	CO	5.	PPM	CR	10.	PPM
	CS	2.	PPM	FE	0.01	ક	HF	0.5	PPM	HG	1.	PPM
(The second s	IR	5.	PPB	MO	5.	PPM	NA	100.	PPM	NI	50.	PPM
	RB	30.	PPM	SB	0.2	PPM	SC	0.1	PPM	SE	5.	PPM
	SN	0.01	ક	SR	0.05	8	TA	1.	PPM	\mathbf{TH}	0.5	PPM
1.23	U	0.5	PPM	W	4.	PPM	ZN	50.	PPM	LA	0.5	PPM
	CE	3.	PPM	ND	5.	PPM	SM	0.1	PPM	EU	0.2	PPM
أهتشا	TB	0.5	PPM	YB	0.2	PPM	LU	0.05	PPM			

CERTIFIED BY :

muke ERIC L. HOFFMAN

Activation Laboratories Ltd. Work Order: 5288 Report: 5219

Sample description	AU	AG	AS	BA	BR	CA	co	CR	CS	FE	HF	ĦG	IR	мо	NA	NI	RB	SB	SC	SE	SN	SR	TA	TH
	PPB	PPM	ррм	PPM	ррм	8	PPM	PPM	PPM	8	PPM	PPM	PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM	8	8	PPM	PPM
RX 224002	66	<5	<2	760	<1	2	46	180	<2	2.30	3.3	<1	<5	<5 2	26300	1900	<30	0.4	3.8	<5	<0.01	<0.05	<1	<0.5
RX 224006	143	<5	2	410	<1	6	25	20	<2	2.95	5.0	<1	<5	<5 4	42200	850	44	0.4	6.0	<5	<0.01	0.08	<1	3.2
RX 224007	5	<5	2	200	<1	6	26	87	2	6.27	2.3	<1	<5	<5 2	26600	<50	<30	<0.2	33	<5	<0.01	<0.05	<1	0.9
RX 224008	5	<5	<2	<100	<1	7	68	620	<2	8.51	1.2	<1	<5	<5	13700	430	<30	<0.2	46	<5	<0.01	<0.05	<1	<0.5
RX 224009	<5	<5	<2	<100	<1	7	56	1300	<2	5.72	0.6	<1	<5	<5	8520	560	35	<0.2	34	<5	<0.01	<0.05	<1	<0.5
RX 51041	20	<5	11	3200	<1	<1	6	120	<2	2.42	3.3	<1	<5	<5	5420	<50	42	0.5	5.4	<5	<0.01	<0.05	<1	4.2
RX 51042	73	<5	6	10000	<1	1	6	74	<2	2.37	5.4	<1	<5	<5 2	22800	<50	35	0.4	7.1	<5	<0.01	<0.05	<1	6.1
RX 51043	<5	<5	12	1600	<1	<1	7	93	<2	1.84	3.2	<1	<5	8	5270	120	46	0.5	7.9	<5	<0.01	<0.05	<1	4.5

Activation Laboratories Ltd. Work Order: 5288 Report: 5219

Sample description	U PPM	W PPM	ZN PPM	LA PPM	СЕ РРМ	ND PPM	sm PPm	EU PPM	TB PPM	YB PPM	LU PPM	Mass g
RX 224002	<0.5	<4	66	3.2	9	<5	1.1	0.5	<0.5	1.3	0.20	1.074
RX 224006	<0.5	<4	90	17.1	38	12	3.1	0.6	0.6	3.0	0.51	1.095
RX 224007	0.7	<4	180	7.7	17	9	2.7	0.8	0.6	2.2	0.36	1.585
RX 224008	<0.5	<4	160	1.1	6	<5	1.5	0.7	<0.5	2.3	0.35	1.292
RX 224009	<0.5	<4	120	0.7	4	<5	0.6	0.3	<0.5	1.2	0.19	1.718
RX 51041	2.0	<4	72	12.7	29	10	1.9	0.7	0.6	1.6	0.27	0.8110
RX 51042	2.9	<4	100	19.7	41	12	3.0	1.0	0.6	2.5	0.41	1.087
RX 51043	2,.5	<4	93	15.0	29	10	1.7	0.6	<0.5	1.8	0.28	1.126

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: INCO EXPLORATION AND TECHNICAL SERVICES INC. ATTN: CAM BELL 2690 - 666 BURRARD ST. VANCOUVER, BC V6C 2X8

-

Page Number :1-A Total Pages :1 Certificate Date: 05-JUL-93 Invoice No. :19316173 P.O. Number : Account :KPJB

.

Project : 60555 Comments: ATTN: C. BELL

CERTIFICATE OF ANALYSIS A9

A9316173

SAMPLE	PREP CODE	A1203 %	Ca0 %	Cr203 %	Fe203	K20 %	Mg0 %	MnO %	Na20 %	P205 %	SiO2 %	Ti02 %	LOI %	TOTAL %	Ba ppm
RX224002 RX224006 RX224007 RX224008 RX224008 RX224009	208 274 208 274 208 274 208 274 208 274 208 274	13.06 21.59 16.84 14.88 15.99	2.59 8.76 8.65 10.25 10.99	0.03 0.03 0.11 0.16 0.25	3.31 4.15 9.13 11.44 8.09	0.68 1.27 0.82 0.20 0.83	0.83 2.19 5.79 12.86 14.37	0.03 0.09 0.31 0.18 0.16	3.62 5.78 3.91 1.92 1.26	0.15 0.13 0.26 0.16 0.12	74.25 50.93 52.00 44.14 45.40	0.19 0.27 0.68 0.62 0.26	1.94 5.00 2.79 2.47 2.76	100.70 100.20 101.30 99.28 100.50	780 450 180 40 60
													-		
		<u>]</u>						<u> </u>		CEF		N: Ja	AB	.chle	│ へ

APPENDIX V

(C.M

انتین انتشار

يني فريا

انت. افعیا

1.10.8

Line

r in Lind

> | | |:2:54

5710 1011

(trail

BIBLIOGRAPHY

SELECTED REFERENCES

APPENDIX V

BIBLIOGRAPHY

SELECTED REFERENCES

Birkeland, A.O., (1992) Geological and Geochemical Assessment Report, Deer Bay Property

Carsan, D.J.T., (1973) Plutonic Rocks of Vancouver Island, GSC Paper 72-44.

EMPR MINFILE, (1990): 092F - Albernie.

EMPR AR 1898, 1899, 1902, 1916,1955, 1961, 1966, 1967

EMPR GEM 1969

EMPR EXPL 1972, 1973, 1974, 1980, 1986, 1987

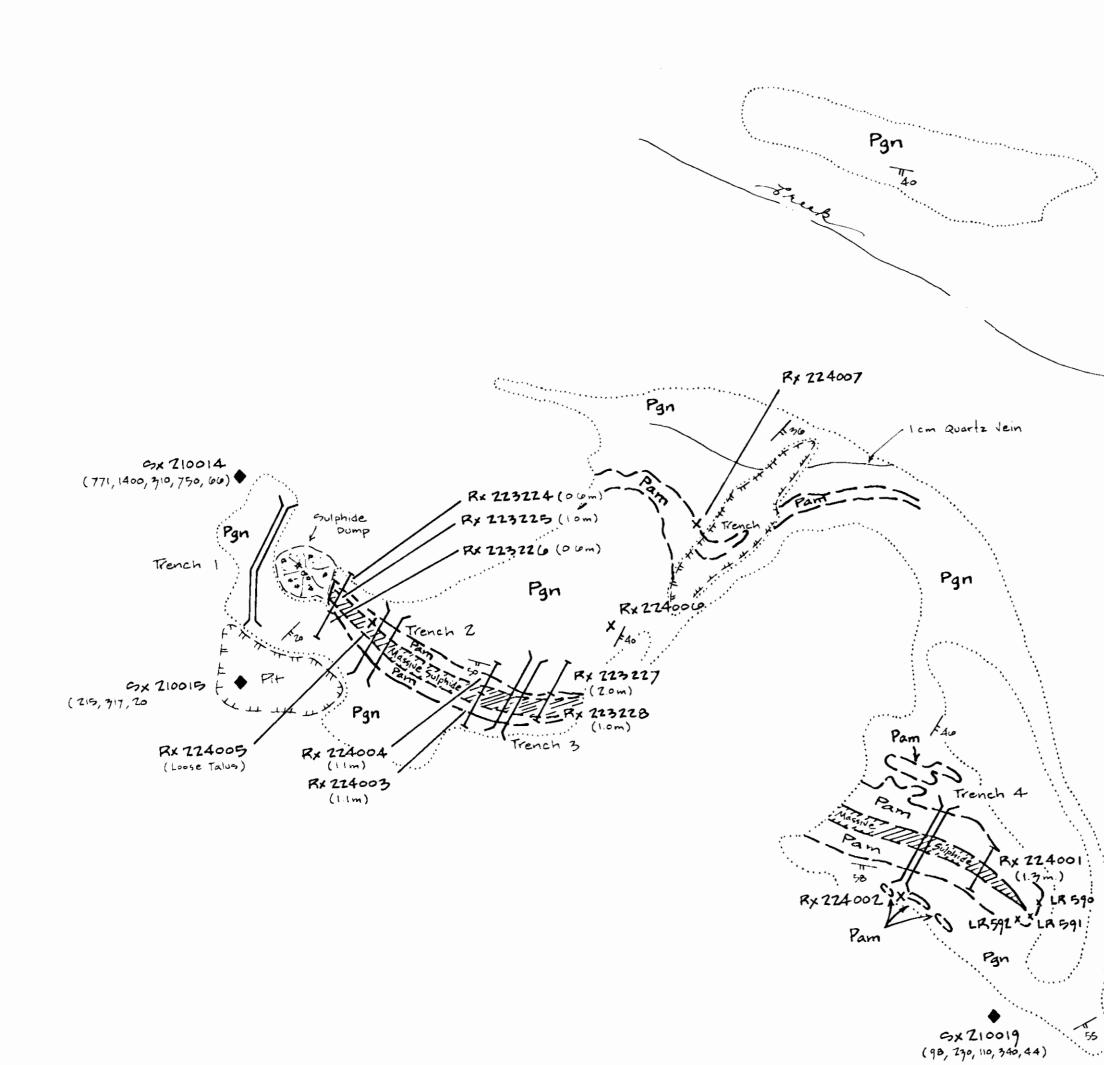
EMPR ASS RT 8106, 8138, 14807, 16220, 17284, 18751

Matysek, P.F., Gravel, J.L. Jackanun, W., Feulgen, S., (1990): NTS 92F - Albernie, MEMPR BC RGS 25, GSC O.F. 2183.

Muller, J.E. (1977): Geology of Vancouver Island, GSC O.F. 463.

Muller, J.E. (1980): The Paleozoic Sicker Group of Vancouver Island, GSC Paper 79-30.

Muller, J.E., Carson, D.J.T., (1968): Geology and Mineral Deposits of Albernie Map Area, GSC Paper 68-50.

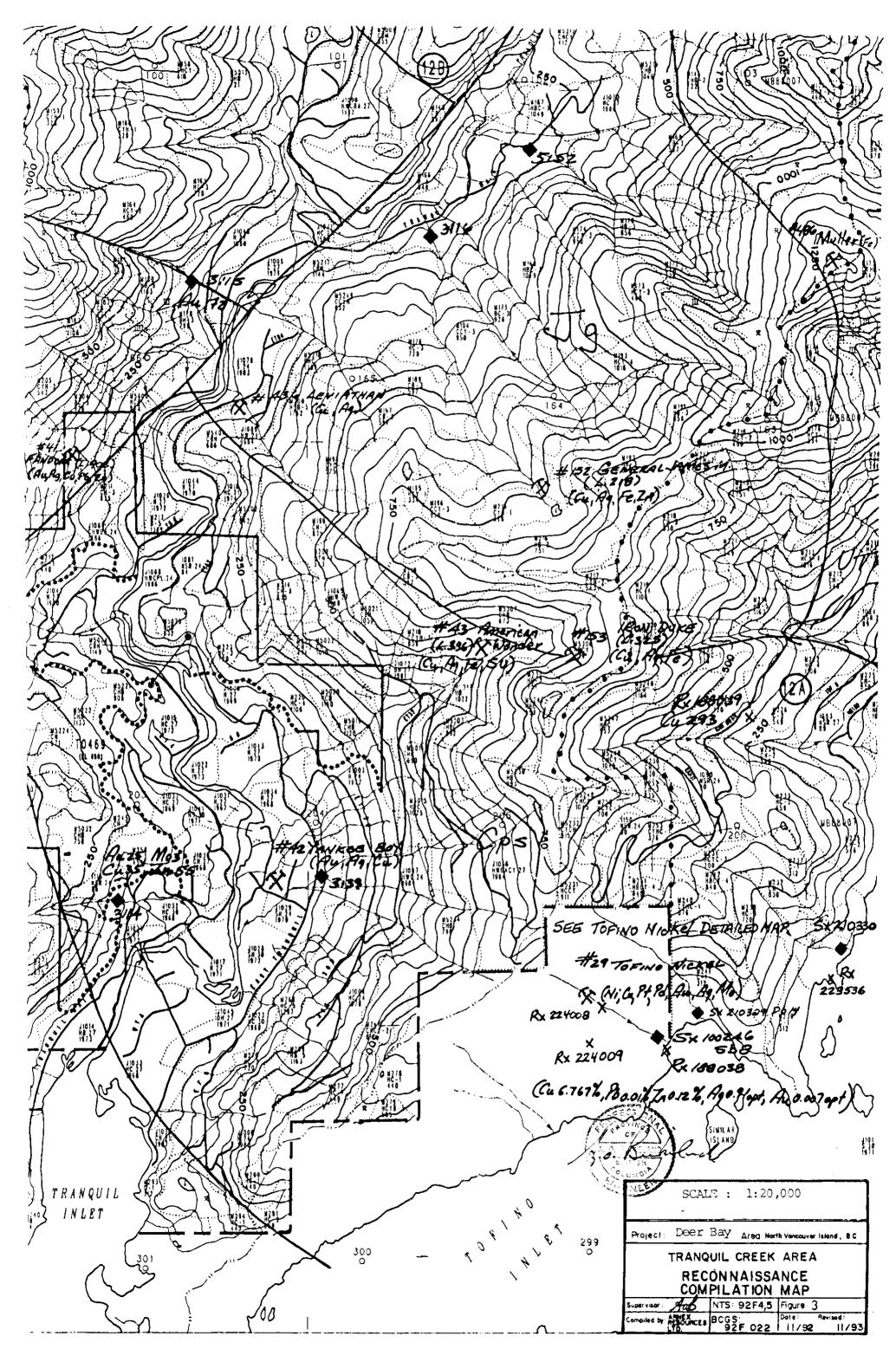

Roddick, J.A., Muller, J.E., and Okulitch, A.V. (1979): Frazer River, Sheet 92, GSC Map 1386A.

Sutherland Brown, A., (1988): Mineral Inventory of the Albernie Region, EMPR OF 1988-24.

Wheeler, J.O., McFeely, P., (1991): Tectonic Assembledge Map, GSC Map 1712A.

Wilton, P. (1989): Sicker Group Workshop and Personal Communication, B.C.G.S.

C:\DOC\DBPB2.DOC


c3x 210010 (22,34,<5, 8,4)

Gample No.	Nippm	Ni %	Cu ppm	Cu %	PT ppm	Pd ppm	Ag ppm
LR 590	49800	4.00	1860	.20	980	5700	130
LR 591	46700	5.00	5230	.5Z	2700	10000	240
LR 592	16100	0 و) . إ	9100	.93	1200	5400	170
Rx 224001	>10,000	1.58	>10,000	1.90	0.02402/+	0.166 oz/t	0.00402/
Rx 224002	1680	~	5980	-	-	-	-
Rx 224003	9480	1.00	710,000	3.48	0.0540z/t	0.162 02/+	0.0 1202/+
Rx 224004	>10,000	3.12	4810	0.40	0.048 02/+	0.180 oz/t	0.00 (0 02/
Rx 224005	>10,000	10.10	2470	0.24	0.170 oz/t	0.760 oz/t	0.009 02/
Rx 224006	714	-	1005	-	-	-	-
Rx 224007	37	-	54		-		-
Rx 223224	1850	-	3800		195	670	88
Rx 223225	1500	-	>10,000	-	730	2700	130
R×223226	402	-	182	_	5	20	~2
Rx 223227	2920	-	1325	-	90	440	54
RX223228	>10,000	-	7920	-	1520	5730	220
Rx 223229	6020	-	3820	-	580	2020	84

GEOLOGICZ ASSESSME

23,0

scale 1:90
GX Z10017 (79, 146, 25, 90, 10)
κ.
EXPLANATION
Pam Amphibolite Pan Gneigs
Foliation Contact Trench Outcrop
Sx Z1001B (Z31, 716, 140, 370, 20) Rx 224002 X Rock Sample (4rab) Rx 224001 J Rock Sample (Chip with width) (13m)
A.O. RESSION
ARNEX RESOURCES LTD. Project APP Area Northern Vancouver Island
DEER BAY PROPERTY GEOLOGY and GEOCHEMISTRY MAIN SHOWING
Subervisor A.B. NTS 92 F/4 Figure 4

