

Reliance Geological Services Inc.

SUMMARY

At the request of the Swannell Minerals Corporation, Reliance Geological Services carried out an exploration program consisting of soil sampling and magnetic and induced polarization surveys on the ABE property during September 1993.

The ABE property comprises twelve contiguous mineral claims totalling 140 units in the Aiken Lake area of the Omineca Mining Division. The property is situated approximately 225 kilometers northwest of Fort St James, B.C., and is accessible by helicopter.

The claims lie in the regionally extensive Mesozoic Quesnel Belt where alkalic plutons commonly host porphyry copper-gold deposits. In the Aiken Lake district, Triassic Takla volcanic rocks are intruded by Triassic-Jurassic alkaline stocks and Cretaceous calkalkaline stocks of the Hogem Batholith.

The claims are underlain by Triassic-Jurassic Takla volcanics which are intruded by pyroxenite, diorite, monzonite and quartz monzonite of the Triassic-Jurassic Hogem batholith.

Previous work consisted of regional airborne magnetic, soil, and silt sampling surveys, and one short drill hole. Four magnetic highs and one 550 by 1550 meter molybdenum anomaly were defined.

In 1991, Swannell contracted a silt sampling, rock sampling, and reconnaissance mapping program. Copper and gold mineralization was encountered in two areas and found to consist of:

- a) flat-lying quartz veins carrying sporadic pyrite-chalcopyritegalena-hematite,
- b) fracture-controlled malachite-chalcopyrite-magnetite, and
- c) disseminated chalcopyrite-pyrite associated with strong carbonate-chlorite alteration.

In 1992, follow-up work in the area of previously identified mineralization included geological mapping, line surveying, line cutting, and rock and soil sampling. Vein style, fracture controlled and disseminated copper/gold mineralization was identified in an area underlain by Takla volcanics, diorite, hybrid rocks, and pyroxenite. Mineralization was partially coincident with an open-ended 400 x 600 meter copper soil anomaly with anomalous gold results forming a peripheral pattern.

In 1993, follow-up work consisted of line surveying, rock and soil sampling, and magnetic and IP surveys. Three target areas were outlined.

The first target, called the East Zone, is characterized by gold mineralization in andesite volcanic rocks and is overlain by a 600 x 1500 meter gold soil anomaly. Chargeability values range from 10 to 20 msec.

The second target, called the Central Zone, is underlain by diorite and hybrid rocks, and is characterized by a large, irregularly shaped copper soil anomaly coincident with chargeability responses greater than 20 msec.

The third target, called the West Zone, is underlain by diorite and hybrid rocks. High grade copper and gold mineralization is found in quartz veins and shear zones. Medium to high chargeability responses are coincident with high resistivity values.

Further work, consisting of 5000 feet of diamond drilling, geological mapping, soil sampling, and 15 km of magnetic and IP surveying, is recommended to test targets at depth and to extend the areas of the known targets. Estimated cost is \$305,000.

TABLE OF CONTENTS

ABE Property

-	SUMMARY	
1.	INTRODUCTION	1
2	LOCATION, ACCESS, and PHYSIOGRAPHY	2
3.	PROPERTY STATUS	3
4.	REGIONAL GEOLOGY	<u> </u>
5.	PREVIOUS WORK	8
6.	PROPERTY GEOLOGY	9
	6.2 Alteration	11
	6.3 Structure	11
	6.4 Mineralization	
7.	1993 WORK PROGRAM	13
· _• .	7.1.1 Geochemistry 7.1.2 Geophysics	1/1
	7.2 Results and Interpretation	15
	7.2.1 Rock Geochemistry	10
	7.2.2 Soil Geochemistry	
	7.2.3 Magnetic Survey	17
	7.2.4 Chargeability and Resistivity	
	7.3 Interpretation of Results	19
8.	DISCUSSION	22
8.	CONCLUSIONS	23
9.	RECOMMENDATIONS	24
	CERTIFICATE	25
	REFERENCES	26
	Tremized Cost Statement	. 28
		• • •

TABLE OF CONTENTS (continued)

ABE Property

LIST OF FIGURES:

FIGURE	1:	General Location Map 2a
	2:	Claim Map
	3:	Quesnel Belt 6a
	4:	Regional Geology
	5:	Compilation Plan, Previous Work 8a
	6:	Property Geology in pocket
	7:	Soil Geochemistry, Copper in pocket
	8:	Soil Geochemistry, Gold in pocket
	9:	Magnetic Profiles in pocket
	10:	Magnetic Contour Plan in pocket
	11:	Resistivity Contour Plan in pocket
	12:	Chargeability Contour Plan in pocket
	13:	Pseudosections (94+00N to 10+200N) in pocket
	14:	Pseudosections (10+400N to 11+200N) . in pocket
	15 _. :	Pseudosections (10+800N to 11+600N) . in pocket
	16:	Compilation Map in pocket

APPENDICES

- A: ANALYTICAL REPORTS
- B: STATISTICAL ANALYSIS
- C: LOGISTICAL REPORT ON IP AND MAGNETIC SURVEYS

— Reliance Geological Services Inc. —

1. <u>INTRODUCTION</u>

This report was prepared at the request of Swannell Minerals Corporation to describe and evaluate the results of the 1993 geophysical and geochemical program carried out by Reliance Geological Services on the ABE claim group in the Aiken Lake area of the Omineca Mining District, British Columbia.

The field work was undertaken for the purpose of following up on anomalous rock and soil geochemistry identified by earlier exploration programs and evaluating the potential of the property to host porphyry copper/gold deposits.

Field work was carried out from September 3 to 16, 1993 by John Fleishman (prospector), Nigel Hulme (geologist), Brian Doubt (geotechnician), and a Scott Geophysics IP crew. All work was carried out under the supervision of Peter Leriche, P.Geo.

This report is based on published and unpublished information and the maps, reports, and notes of the field crew.

2. LOCATION, ACCESS and PHYSIOGRAPHY

The ABE property is situated in the Omineca Mining Division in the Aiken Lake area, approximately 210 kilometers northwest of Mackenzie (Figures 1 and 2).

The claims are located on Map Sheet NTS 94C/5 at latitude 56°21' North, longitude 125°48' West, and between UTM 6251000 m and 6245500 m North, and UTM 325000 m and 333000 m East.

Road access is via the Finlay Forest Service Road from Windy Point on Highway 97, northwest to the Osilinka Logging Camp (approximately 225 km). The claims are then accessed by helicopter from the Osilinka air strip.

The property is on mountainous terrain with moderate to steep slopes rising from approximately 1320 meters to 2000 meters. The area is sparsely forested with spruce and pine. Scrub fir and alpine vegetation occur above tree-line which is \pm 1600 meters.

Recommended work season is mid-June to early October.

Reliance Geological Services Inc. -

3. **PROPERTY STATUS** (Figure 2)

The property consists of twelve contiguous mineral claims in the Omineca Mining Division. The claims are registered in the name of Major General Resources Ltd (136 units) and Harvey Keck (4 units), and a 60% interest has been optioned to Swannell Minerals Corporation.

Details of the claims are as follows:

<u>Claim</u>	<u>Record Number</u>	<u>Units</u>	<u>Record Date</u>	<u>Expiry Date</u>
Abe 1	243091	18	9 Feb 1991	9 Feb 1995
Abe 2	243092	20	9 Feb 1991	9 Feb 1995
Abe 3	243093	15 ·	10 Feb 1991	10 Feb 1995
Abe 4	243094	20	10 Feb 1991	10 Feb 1995
Abe 5	243095	20	9 Feb 1991	9 Feb 1995
Abe 6	243096	18	9 Feb 1991	9 Feb 1995
Abe 7	243097	10	10 Feb 1991	10 Feb 1995
Abe 8	243098	15	10 Feb 1991	10 Feb 1995
Norm 1	312957	1	22 Aug 1992	22 Aug 1995
Norm 2 .	312958	1	22 Aug 1992	22 Aug 1995
Norm 3	312959	1	22 Aug 1992	22 Aug 1995
Norm 4	312960	1	22 Aug 1992	22 Aug 1995

Total

¢

140 units

The total area covered by the claims is 3500 hectares, or 8645 acres, allowing for overlap.

The writer is not aware of any particular environmental, political, or regulatory problems that would adversely affect mineral exploration and development on the ABE property.

Reliance Geological Services Inc. -

REGIONAL GEOLOGY

4.

(from Rebagliati, 1991)

"The ABE property lies within the regionally extensive early Mesozoic Quesnel Belt. This 35 km wide belt extends northwesterly for 1200 km and includes equivalent rocks of the Upper Triassic-Lower Jurassic Takla, Nicola, and Stuhini Groups (Mortimer, 1986) (Figures 3 and 4). To the west, deformed and uplifted Permian Cache Creek Group rocks are separated from the Quesnel Belt by the Pinchi Fault Zone. To the east, the Manson Fault Zone separates this belt from the uplifted Proterozoic/ early Palaeozoic Wolverine Metamorphic Complex, and the Mississippian-Permian Slide Mountain and Cache Creek Groups (Garnet, 1978).

In the Mt. Milligan - Johanson Lake district, the Takla Group volcanics are dominated by subaqueous alkalic to subalkalic dark green tuffs and volcanic breccias of andesitic and basaltic composition, interbedded with pyroxene porphyritic flow rocks of similar composition. Intercalated bedded tuffs and argillites are subordinate. Black argillites interfinger with volcanic rocks to the east and west of the central volcanic core. Locally, thick successions of maroon coloured lahars suggest the presence of emergent subaerial volcanic centres.

The volcanic-sedimentary strata of the Quesnel Belt are locally intruded by alkaline syenite, monzonite, and diorite batholiths, stocks and dykes. In the Quesnel Belt, most intrusions are considered coeval and comagmatic with late Triassic-early Jurassic volcanism. Many of the stocks lie along linear trends which are interpreted to reflect fault zones which have localized volcanism and associated stock emplacement.

The Hogem Batholith of Early Jurassic to Cretaceous age is the largest body of intrusive rock within the Omineca Mountains (Armstrong and Garnett 1973) (Figure 4). Takla Group volcanic and sedimentary strata are intruded by the north-south elongate batholith which is, in part, truncated along its western margin by the Pinchi Fault. Numerous satellitic plutons flank the eastern margins of the batholith. The complexity of the Hogem Batholith is characterized by rock units ranging in composition from diorite to granite. Lithologic changes are rapid to gradational at all scales of mapping.

Garnett, who used the I.U.G.S. classification of 1973 as shown in Table 1 on the following page, described three phases within the Hogem Batholith.

The earliest, Phase I, contains the more basic phases, including pyroxenite, gabbro, diorite, monzodiorite, monzonite, and the "Hogem Granodiorite", and accounts for two-thirds of all rock types mapped. The Hogem Granodiorite is a distinctive leucocratic felsic division, predominantly quartz diorite in composition, but also comprising quartz monzodiorite, quartz monzonite and, more rarely, quartz diorite, tonalite and granite.

The Phase II syenites, such as the Duckling Creek complex, (with migmatitic, compositionally banded, and intrusive varieties) and the leucocratic Chuchi (quartz) syenite, are reported to be intrusive into Phase I rocks.

Phase III rocks include leucocratic varieties (including aplites, pegmatite, varieties of granite, quartz syenite and alaskite). These rocks may be represented by leucocratic late-stage dykes cutting units of Phases I and II.

Numerous porphyry copper prospects occur throughout the Hogem Batholith.

The alkalic plutons of the Quesnel Belt commonly host porphyry copper deposits, which are increasingly being recognized as an important source of gold. It has also been recently recognized that related failed porphyry systems (those that did not form copper deposits) also have the potential to generate disseminated gold deposits (eg: QR and the 66 Zone at Mt Milligan).

The volcanic strata on all of the ABE property claims are intruded by alkalic plutons. Some of these plutons are reported to display some of the geological characteristics which are related to the formation of gold-rich porphyry copper deposits in the Quesnel Belt."

TABLE 1

SOUTHERN HOGEM BATHOLITH: INTRUSIVE ROCK DIVISIONS

INTRUSIVE PHASES	PHASE DIVISIONS	UNIT	ROCK VARIETIES
PHASE III LOWER CRETACEOUS		9	LEUCOCRATIC GRANITE, Alaskita
PHASE II MIDDLE		6	LEUCOCRATIC SYENITE, Querte Syenite
	DUCKLING CREEK SYENITE COMPLEX	.7	LEUCOCRATIC SYENITE
JURASSIC		6	FOLIATED SYENITE
	HOGEM GRANODIORITE	5	GRANODIORITE, QUARTZ MONZONITE, minor Tonelite, Quertz Diorite, Quertz Monzonite, Granite
PHASEI	HOGEM BASIC SUITE	4	MONZONITE to Quertz Monzonite
JURASSIC		3	MONZODIORITE to Quarte Monzodiorite
UPPER		2	NATION LAKES PLAGIOCLASE PORPHYRY (a) Morzonite (b) Morzodiorite
		1	DIORITE, minor Gebbro, Pyroxenite, Hornblendite

:

. ·

Hogern batholith intrusive phases in relation to general plutonic rock classification fatter I.U.G.S., 1973).

. **C**

Many auriferous porphyry copper prospects are under active exploration within the Quesnel Belt, and the following deposits have been identified:

Gold-Copper Porphyry Deposits Quesnel Belt British Columbia

	Number of	Reserves / Min	eral
		Inventory	
Property	Deposits	Copper (x10 ⁶ Gold	(x10° oz)
		lbs)	
In Production:			
Copper Mountain (Princeton)	5	1,600	0.910
Afton (Teck)	2	680	0.970
Exploration/Development_Stage			
Mt Polley (Imperial Metals)	2	875	2.000
Galore Creek (Hudsons Bay et al)	8	3,000	1.750
Red Chris (Noranda)	2	550	0.450
QR (QPX)	4	0	0.200
Lorraine (Kennco)	2	150	0.100
Mt Milligan (Placer Dome)	. 2	1,680	6.376
South Kemess (El Condor)	1	988	3.969
North Kemess (El Condor)	1	622	1.900

The Mount Milligan property, located 180 km southwest of the ABE property, is hosted by Takla group volcanic strata intruded by several alkaline plutons. Two bulk tonnage deposits have been outlined which contain extensive disseminated and stockwork porphyry-type copper-gold mineralization.

The Kemess property, located 90 km northwest of the ABE property, is underlain by Triassic Takla group volcanic rocks intruded by Cretaceous/Tertiary quartz monzonite porphyries. A disseminated sulphide system measuring at least six by nine kilometers contains both the North and South Kemess deposits.

The South Kemess deposit occurs in a flat-lying, near-surface quartz monzodiorite intrusion which hosts porphyry-style mineralization consisting of copper, gold, and lesser silver and molybdenum.

An upper supergene zone, comprising 20% of the mineral inventory, contains native copper, chalcocite, and fine-grained gold. A lower hypogene zone, comprising 80% of the mineral inventory, contains pyrite, chalcopyrite, bornite, and minor molybdenite. A mineable reserve of 220 million tons grading 0.224% Cu and 0.018 oz/ton Au was calculated by IMC of Tucson, Arizona.

In July 1993, a pre-feasibility study on a 40,000 tonne per day operation at South Kemess was completed by Kilborn Engineering Pacific Ltd.

5. <u>PREVIOUS WORK</u>

Early work included one short hole diamond drilled on the ABE 4 to test a narrow quartz vein mineralized with pyrite, galena, chalcopyrite, and tetrahedrite. This vein had been first sampled during the 1950's by the Geological Survey of Canada during regional geologic mapping.

During the 1970's, the ABE claim area was explored by the UMEX-Wenner Gren Joint Venture. The property was covered by a regional airborne magnetic survey, and soil and stream sampling surveys. Four magnetic anomalies were defined (Figure 5): three on the margin of a diorite stock, and one in Takla volcanics near a contact with the Hogem Batholith. Soil sampling outlined a 550 by 1550 meter molybdenum anomaly on the ABE 7 and 8 claims. Copper-molybdenum silt anomalies were discovered on three of the streams that drain the property. No samples were analyzed for gold.

In 1991, Swannell carried out a program of silt sampling, rock sampling, and 1:10,000 reconnaissance geological mapping. Copper mineralization with values up to 1.28% was found in two areas, one of which had anomalous gold values up to 0.365 oz/t. Anomalous copper and gold values were identified in silts from two streams.

In 1992, Swannell carried out a program of soil sampling, rock sampling and 1:10,000 geological mapping. Porphyry-style copper mineralization was identified in outcrop, and an open-ended, 600 by 1500 meter copper/gold soil anomaly was outlined.

The results of the geologic mapping program are discussed in Section 6.0.

6.0 **PROPERTY GEOLOGY** (Figure 6)

6.1 Lithologies

The ABE grid area is underlain by Triassic - Jurassic Takla volcanics which are intruded by pyroxenite, diorite, monzonite, and quartz monzonite of the Triassic - Jurassic Hogem batholith.

Approximately 40% of the claim area has been mapped, with exposed rock along ridges and steeper slopes accounting for approximately 50% of the surface area.

Takla Group

Unit 1A is an andesite augite porphyry which is exposed on the ridge east of the ABE grid. Augite porphyry commonly weathers a dark brown and, locally where cut by ankeritic dykes, a bright orangy brown. Mineral constituents include 20% (range 10% to 40%) subhedral to euhedral dark green augite phenocrysts in a fine-grained matrix of plagioclase and biotite.

Unit 1B consists of fine grained, light grey to dark green andesitic tuffs found in the west central part of the property adjacent to Unit 4B. Tuffs weather to a dark green to rusty brown color. Ankeritic zones with disseminated 1% pyrite are common.

<u>Intrusive Rocks</u> (Hogem Batholith)

Units 2A, 2B, 2C, and 2D are moderately to strongly magnetic green-brown pyroxenites occurring throughout the southern area of the grid.

Unit 2 is variable in texture and has been classified into four local subdivisions:

Unit 2A: fine to medium-grained dark green massive pyroxenite. Unit 2B: sheared, dark black, fine-grained chlorite rich phase. Unit 2C: local coarse gabbroic phase with plagioclase and

pyroxene crystals up to 10 cm in length.

Unit 2D: weathers light grey and contains numerous carbonate veins with minor talc and chrysotile.

Unit 3A is a brown-grey, fine to medium grained diorite which is exposed in isolated outcrops on the grid. Minor chlorite and epidote give the rock a light green color. Diorite occurs both as massive outcrop and as dyke-like bodies.

Unit 3B is a hybrid zone located near the periphery of the pyroxenite. It consists of 10% to 90% subangular to angular xenoliths of pyroxenite set in a felsic matrix. The matrix varies from a very fine grained felsite to diorite in composition and weathers to a white chalky color. This zone is distinctive but possibly correlates with Unit 3A.

Unit 3C is a feldspar porphyry which occurs as sub-vertical dykelike bodies up to 30 meters wide crosscutting pyroxenite. Due to high silica content, Unit 3C forms prominent ridges and pinnacles. Dykes consist of white, subhedral to euhedral, medium grained plagioclase phenocrysts set in a light grey, fine grained silicic matrix containing minor black amphiboles and biotite.

Unit 4A (monzonite) and Unit 4B (quartz monzonite) are found in the western area of the claim. Unit 4 is a massive, coarsely jointed unit. It weathers to a pinkish-brown color, and consists of both medium-grained potassium and plagioclase feldspar phenocrysts set in a biotite-rich interstitial matrix.

6.2 Alteration

Pyroxenite units exhibit local alteration consisting of carbonate-talc veinlets, chloritization and minor serpentine development. Rusty brown weathering quartz-ankerite intrusion-type and replacement-type veins are common within shear zones.

Diorite Unit 3A contains minor epidote-chlorite and exhibits weak pervasive propylitic alteration.

A small outcrop of Takla volcanics in a stream cut north of line 108+00N shows strong chlorite-carbonate alteration.

6.3 Structure

Prominent, generally flat-lying sequences of quartz veins cut all local stratigraphy within the pyroxenite units. Quartz crystals within the veins are commonly in a comblike intergrowth indicating static emplacement.

Numerous dykes and shear zones are located in the northern part of the ABE grid. A fault in the northeastern corner of the grid places andesite tuff stratigraphy adjacent to intrusive rocks.

6.4 Mineralization

Three types of mineralization have been found on the property:

Reliance Geological Services Inc. -

Mineralization (cont)

a) Vein-type:

Relatively flat lying quartz veins up to 1 meter thick carry sporadic pyrite-chalcopyrite-galena-hematite. Small local quartz veins and lenses within the pyroxenite unit carry pyrite-chalcopyrite.

b) Fracture controlled:

Malachite-chalcopyrite-magnetite occurs along fracture planes within the pyroxenite, diorite dykes, hybrid zone (in ultramafic xenoliths), and in quartz-feldspathic lenses of the feldspar porphyry.

c) Disseminated:

Chalcopyrite-pyrite, associated with strong carbonatechlorite alteration, occurs as disseminations within Takla volcanics and in carbonate veinlets.

Reliance Geological Services Inc. -

7. <u>1993 WORK PROGRAM</u>

Done under B.C.M.E.M.P.R. Approval Number PRG-1300199-44752

7.1 Methods and Procedures

Geochemical, magnetic and induced polarization (IP) surveys were carried out on the Abe 2, 4, and 5 claims to follow up on anomalous rock and soil geochemistry identified in previous exploration programs.

7.1.1 Geochemistry

The survey grid in the eastern area of the property was extended to the north. Baselines and tielines were surveyed and crosslines were put in at 200 meter line spacings using compass, hipchain, and flagging. Stations on baselines and cross-lines were marked at 50 meter intervals using flagging and marked double flagging. Total line surveyed was 8.35 kilometers.

Two rock samples were collected and analyzed for gold (FA/AA) and multi-element ICP by International Plasma Laboratory Ltd of Vancouver, B.C. See Appendix A for analytical reports and techniques.

The current grid was soil sampled at 100 meter station spacings. Using a grub hoe, 126 samples were taken from the B horizon (approximate depth 30 cm), placed into marked Kraft paper bags, and sent to International Plasma Laboratory for analysis. See Appendix A for analytical reports and techniques. A statistical analysis was performed by Tony Clark, Ph.D. (See Appendix B). Sample plans (Figures 7 and 8) include 284 soil samples collected in 1992 and 1993.

The analytical results for two elements (Cu, Au) were computerplotted on 1:10,000 scale maps (Figures 7 and 8).

7.1.2 Geophysics (Figures 9 to 16)

Two Scintrex MP-3 magnetometers were used on the magnetic survey, one as the field survey unit and the other as a base station. Readings were taken at 25 meter intervals along the grid lines and were corrected for diurnal drift. A total of 13.1 line kilometers of magnetometer survey was completed on the ABE property.

Magnetic profiles are presented in Figure 9 and a magnetic contour plan is given in Figure 10.

A Scintrex IPR12 receiver and IPC7 2.5 kilowatt transmitter were used on the IP survey. The pole-dipole array configuration was used, with a 75 meter "a" spacing and "n" separations of 1 to 4. Readings were taken in the time domain using a 2 second current pulse. At total of 22.5 line kilometers of IP survey was completed on the ABE property.

Resistivity and chargeability contour plans are shown in Figures 11 and 12. Pseudosections are presented in Figures 13, 14, and 15. Figure 16 is a compilation of soil geochemistry, magnetic and IP survey results.

7.2 Results and Interpretation

7.2.1 Rock Geochemistry (Figure 6)

Eleven rock samples collected in 1992 returned significant assay results in copper (>1000 ppm) or gold (>300 ppb). Results ranged up to 2.7% copper and 14,000 ppb gold (0.408 oz/t). Descriptions and assay results from 1992 rock sampling are included in Appendix A.

In 1993, two rock samples were collected from the eastern portion of the Abe 2 claim. Descriptions were: 12107: Chip sample across 2 meters in altered pyritic volcanics.

Minor malachite stain. Results - 174 ppm Cu, 100 ppb Au. 12108: Chip sample across 2 meters of massive sulphide (pyrite) in volcanics. 20% quartz. Results - 379 ppm Cu, 903 ppb Au.

7.2.2 Soil Geochemistry (Figure 7 and 8)

Copper (Figure 7)

Copper shows a strong correlation with cobalt, a moderate correlation with molybdenum and nickel, and a weak corrlation with silver.

Copper results over 250 ppm form a large irregularly shaped anomaly in the central area of the grid, bounded by lines 98+00N, 11+200N, and stations 10+700E and 12+700E. Two areas of medium to high anomalous values are centered at 10+600N, 11+500E and 9+900N, 11+900E. The anomaly is open to the northwest, but is cut off abruptly to the southwest at the contact zone, probably a fault, between volcanics and intrusive pyroxenite and hybrid rocks. Gold (Figure 8)

The correlation coefficient chart (Appendix B) shows a moderate correlation between gold and silver and a low correlation between gold and arsenic, cadmium, and manganese. There is no significant correlation between copper and gold.

The relatively low number of samples (284) in the data set used 0 to 100 ppb gold as the background value. The writer reinterpreted the statistics by drawing a contour around all values greater than 50 ppb. It was determined that values greater than 50 ppb form sharply defined patterns surrounding values greater than 100 ppb. Therefore, gold results higher than 50 ppb have been considered anomalous in this report.

Gold results over 50 ppb form a 600 x 1500 meter anomaly along the eastern portion of the grid. A cluster of seventeen medium to high anomalous results occupy an area of approximately $300 \times$ 900 meters between lines 10+200N and 11+000N. The eastern lobe of the copper soil anomaly (>250 ppm) is partly coincident with the gold anomaly.

- 1 - I

Summary Statistics from T. Clark report:

	Copper	GOId
Range	2.0 - 1824.0 ppm	2.5 - 1670.0 ppb
Mean	243.1 ppm	60.7 ppb
Standard Deviation	310.00 ppm	166.54 ppb
Background	< 250 ppm	< 100 ppb
Low Anomalous	≥250 to <550 ppm	<u><</u> 100 to <200 ppb
Medium Anomalous	≥550 to <1100 ppm	<u>≥</u> 200 to <600 ppb
High Anomalous	> 1100 ppm	> 600 ppb

16

Reliance Geological Services Inc. -

7.2.3 Magnetic Survey (Figures 9 and 10)

Magnetic values range from 57,084 to 67,534 nT for a total magnetic relief of 10,450 nT. Background values are in the 57,000 to 59,000 range.

The northern half of the grid from line 10+600N to 11+600N contains background values only.

Three magnetic highs with values greater than 60,000 nT are found in the southern half of the grid.

The first is centered at line 10+400N, 12+150E. Outcrop has been mapped as a diorite (Unit 3).

The second occupies athe southwest area of the grid and is open to the west. The sharp change in magnetic values around 11+750E coincides with a contact between moderately magnetic volcanics and highly magnetic pyroxenites.

The third is centered at line 9+600N, 12+150E and is open to the south. No outcrop is exposed in this area.

7.2.4 Resistivity and Chargeability (Figures 11 to 15)

Resistivity values in the "n=2" contour plan (Figure 11) range from 230 to 3288 ohm-meters (Ω) .

Reliance Geological Services Inc.

Resistivity values are variable throughout the survey area and do not form any distinctive patterns indicating areas of alteration or mineralization. Generaly, values below 1000Ω are found in areas underlain by volcanics. Values over 1000Ω are found in areas underlain by diorite or pyroxenite.

A zone with resistivity values above 1500Ω is found at the eastern edge of the survey area. It is underlain by diorite (3a) and the hybrid unit (3b). Quartz veins hosting chalcopyrite-tetrahedrite mineralization with associated ankeritic alteration has been mapped in the area.

Chargeability vlaues in the "n=2" contour plan (Figure 12) range from 2.3 to 46.3 milliseconds.

The following ranges were used for interpretation of chargeability values:

very high	> 30 msec
high	> 20 to \leq 30 msec
medium	> 10 to \leq 20 msec
low	\leq 10 msec

Most of the grid area south of line 11+000N is characterized by high chargeability values (>20 msec).

A 500 to 700 meter wide zone with very high values (>30 msec) trends north-south from line 10+400N to 9+400N and off the grid to the south. No outcrop was mapped in the area.

The gold soil anomaly in the eastern part of the grid corresponds with an area of medium chargeability values (10 to 20 msec).

7.3 Interpretation of Results (Figure 16)

Results to date have outlined four distinctly different zones:

a) East Zone

Ridge areas in the eastern area of the grid are underlain by augite porphyry flows and andesite lapilli tuffs. Types of alteration include propylitic, ankeritic, and siliceous. Mineralization includes disseminated and semi-massive pyrite and malachite staining. Approximately 10% of the area is covered by outcrop.

Rock samples have returned values up to 1.2% copper and 1440 ppb gold.

The area is overlain by a gold anomaly (>50 ppb) in soils measuring 600 x 1500 meters. A copper soil anomaly (>250 ppm) is partially coincident.

IP response over the western half of the gold anomaly is characterized by values in the 10 to 20 msec range, which is considered medium.

Geochemical results indicate that the East Zone is a goldonly area. The IP response is lower than other areas of the grid, but medium values indicate that low to moderate (1%?) sulphides are associated with mineralization.

Reliance Geological Services Inc.

b) Central Zone

Outcrop (approximately 10%) along ridges consists of diorite, hybrid zones, and feldspar porphyry dykes. Mineralization consists of malachite staining.

The area is overlain by a large, irregularly shaped copper soil anomaly measuring approximately 1000 x 1500 meters. No anomalous gold values are associated.

IP response is consistently greater than 20 msec with a 500 x 800 meter area measuring greater than 30 msec, classified as very high. The zone is open to the south.

The Central Zone appears to be a copper area with high (>5%) sulphides. It may represent a porphyry system or a semimassive sulphide zone.

c) West Zone

Outcrop, constituting approximately 20% of the surface area, consists of the hybrid unit (breccia associated with a contact zone) and diorite. Mineralization consists of pyrite, chalcopyrite, and tetrahedrite in flat-lying quartz veins and shear zones.

Rock samples have returned values up to 2.7% copper and 14,000 ppb gold. Soil sampling over part of the area did not return any significant results.

Geophysical surveys over a portion of this area show medium to hgih chargeability values. Resistivity values are high, indicating zones of silicification (quartz). Structurally controlled, shear related and quartz vein mineralization indicate that the West Zone could be peripheral to or above a copper/gold porphyry system similar to the Esker veins at Mt Milligan.

d) Southwest Zone

Outcrop, approximately 30%, consists mainly of pyroxenite. Local mineralization consists of malachite, pyrite, and galena in narrow quartz veins.

Copper values from rock samples are significant when sampled from quartz veins (veinlets). A high result of 2.4% copper was obtained from a 2m² panel sample collected from malachite stained pyroxenite near a diorite contact. Geochemical results from soil sampling were not significant.

Geophysical surveys covered the eastern edge of the Southwest zone. Magnetic responses were high due to primary magnetite in the pyroxenite. IP did not cover enough of the zone to allow any conclusions to be reached.

Mineralization is sparse and soil sampling did not return any significant results, so the Southwest Zone is a lower priority for follow-up work.

Reliance Geological Services Inc. -

8. <u>DISCUSSION</u>

The target on the ABE property is a porphyry copper/gold deposit similar to the recently discovered Mt Milligan/Southern Star and North/South Kemess deposits. Three target areas which may represent porphyry style mineralization have been defined on the ABE property.

The East Zone is characterized by gold mineralization in andesite volcanic rocks, and is overlain by a large gold soil anomaly. Medium chargeability responses indicate low to moderate sulphide content.

The Central Zone is underlain by diorite and hybrid rocks. There is a large copper soil anomaly, and chargeability responses greater than 20 msec indicate an area of high sulphide content.

The West Zone is underlain by the hybrid unit and diorite, with high grade copper and gold mineralization hosted in quartz veins and shear zones. Medium to high chargeability responses and high resistivity values indicate moderate sulphide content combined with silicic alteration.

As seen at the Mt Milligan and Kemess deposits, the blind mineralized bodies are characterized by varying geochemical and geophysical responses. Exploration diamond drilling will be required on the ABE property to test the significance of each of the target areas. See Figure 16 for proposed drill hole locations.

9. <u>CONCLUSIONS</u>

The ABE property has potential to host a porphyry style copper/ gold deposit because:

- it lies within the Mesozoic Quesnel Belt which hosts several porphyry copper/gold deposits;
- the geological environment, diorite stock(s) intruding Takla
 Group volcanic rocks, is favorable; and
- results of work to date show geological, geochemical, and geophysical similarities to the nearby proven Mt Milligan and Kemess deposits
- geophysical and geochemical surveys have defined target areas for followup drilling.

Reliance Geological Services Inc.

10. <u>RECOMMENDATIONS</u>

a) Diamond drilling:

Approximately 5,000 feet to test the East, Central, and West Zones at depth.

Fourteen holes averaging 300 feet are recommended: seven in the Central Zone, five in the East Zone, and two in the West Zones. The remaining 800 feet should be allotted to extend selected holes to greater than 300 foot depth.

- b) Perform a total of approximately 15 line kilometers of induced polarization and magnetic geophysics to extend the known target areas.
- c) Collect 150 soil samples along the new grid.
- d) Geologically map the grid and surrounding areas in detail.

Total budget for the above is estimated at \$305,000. Drilling (5000 feet) Geophysics (15 line km) Soil Sampling (150) Geological mapping

CERTIFICATE

I, **PETER D. LERICHE**, of 3125 West 12th Avenue, Vancouver, B.C., V6K 2R6, do hereby state that:

- 1. I am a graduate of McMaster University, Hamilton, Ontario, with a Bachelor of Science Degree in Geology, 1980.
- 2. I am registered as a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I am a Fellow in good standing with the Geological Association of Canada.
- 4. I have actively pursued my career as a geologist for twelve years in British Columbia, Ontario, Saskatchewan, the Yukon and Northwest Territories, Montana, Oregon, Alaska, Arizona, Nevada and California.
- 5. The information, opinions, and recommendations in this report are based on fieldwork carried out under my direction, and on published and unpublished literature. I visited the subject property during July 1992.
- 6. I have no interest, direct or indirect, in the subject claims or the securities of Swannell Minerals Corporation or Major General Resources Ltd, nor do I expect to receive any.
- 7. I consent to the use of this report only in its entirety in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

RELIANCE EQEOCICAL SERVICES INC. PROVINCE D. D. KERICHE Deriche "B.Sc., P.Geo. Peter SCIEN

Dated at North Vancouver, B.C., this 10th day of December 1993.

Reliance Geological Services Inc.
REFERENCES

ADAMSON, R.S., (1968-72): Dolmage-Campbell & Associates, Private UMEX - Wenner Gren Joint Venture Reports.

ARMSTRONG, J.E. (1949): Fort St. James Map Area, Cassiar and Coast Districts, B.C., Geol. Survey of Canada Memoir 252.

ARMSTRONG, J.E., ROOTS, E.F.: Map 1030A, Aiken Lake, Cassiar District, B.C., with Descriptive Notes.

BARR, D.A., et al., (1976): The Alkaline Porphyry Deposits - A Summary., Porphyry Deposits of the Canadian Cordillera, C.I.M. Special Volume 15, ed: A. Sutherland Brown, pp 359-367.

BOWEN, B.K., COPELAND, D.J., REBAGLIATI, C.M., 1992: 1991 Exploration and Delineation Drilling Program on the Kemess North Property.

CHOW, F., and KAHLERT, B.H., (1990): Complilation of Geological, Geochemical, Geophysical and other data on the ABE group of mineral claims. Private report.

CROSS, D., (1985):

Geochemical Report 1221 Claim, Omineca Mining Division, B.C., Suncor Inc. Resources Group, Assessment Report #14,809.

FERREIRA, W., HELSEN, J., (1982):

Altabrit Claims, Report No. 1, Geochemistry and Geology, Omineca Mining Division, Mattagami Lake Exploration Limited. Assessment Report #10436.

FRASER, B.M. (1980):

Geological, Geochemical Report on the Halo 1 Mineral Plain, Omineca Mining Division, N.T.S. 93N/6E, Dome Exploration (Canada) Ltd.

GARNETT, J.A., (1978):

Geology and Mineral Occurrences of the Southern Hogem Batholith, B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin #70.

GARNETT, J.A., (1971):

Duckling Creek Area, Hogem Batholith., Geology Exploration and Mining, B.C. Ministry of Energy, Mines and Petroleum Resources. pp. 203-219.

GARNETT, J.A., (1972):

Preliminary Geological Map of Part of the Southern Hogem Batholith, Duckling Creek Area., BCMEMPR, Preliminary Map No. 9.

KILBORN Engineering Pacific Ltd, 1993: Executive Summary on the Kemess South Gold Copper Project.

LERICHE, P., (1991):

Geological and Geochemical Report on the ABE Property, Private report for Swannell Minerals Corp.

LERICHE, P., (1992):

Geological and Geochemical Report on the ABE Property, Private report for Swannell Minerals Corp.

NEVIN, A.E., (1971):

Geological Report, Kam Group, Matetlo Creek, Omineca Mining Division, Fortune Island Mines Ltd., Assessment Report #3342.

REBAGLIATI, C.M., (1991):

Summary Report, Takla Joint Venture, Porphyry Copper Gold Project.

Reliance Geological Services Inc.

REBAGLIATI, C.M., 1991:

Summary Report on the Mt Milligan Project for Continental Gold Corp.

REBAGLIATI, C.M., (1992): Summary Report, Takla Joint Venture, Porphyry Copper Gold Project.

SMIT, H.Q. and MYERS, R.E. (1985): Assessment Report of the 1984 Geological and Geochemical Exploration Program on the KLI 84-1 Claim Group. Assessment Report # 13,258.

U.S.G.S., (1990): Gold in Porphyry Copper Systems. U.S.G.S. Bulletin 1957-E, 55 pp.

RELIANCE GEOLOGICAL SERVICES INC.

241 EAST 1ST STREET NORTH VANCOUVER, B.C. V7L 1B4

TEL: (604) 984-3663 FAX: (604) 988-4653

:

ITEMIZED COST STATEMENT

Re: ABE Project 1993, J791

Project Preparation		\$	750
Mobilization & demobilization:		\$	4,230
Consulting		\$	2,000
Field Crew: Supervision Project Geologist \$345/day x 5 days (N. Hulme: Sep 3 - 7, 1993) Field Geologist \$285/day x 5 days (J. Fleishman: Sep 3 - 7, 1993) Geotechnicians \$220/day x 5 days (B. Doubt: Sep 3 - 7, 1993)	\$ 500 \$ 1,725 \$ 1,425 \$ 1,100	\$	4,750
Field Costs: Helicopter Food & Accomm \$ 75/day x 5 days Communications \$ 50/day x 5 days Supplies \$ 18/day x 15 days Expediting \$ 50/day x 5 days Freight Vehicle: use \$ 110/day x 2 days	\$ 3,496 \$ 1,125 \$ 250 \$ 270 \$ 250 \$ 100		
Vehicle: standby \$ 30/day x 3 days	\$310	\$	5,801
Assays & Analysis: 126 soil samples @ \$14.50/sample 2 rock samples @ \$17.50/sample (Au by FA/AA and 30 element ICP)	\$ 1,827 \$ <u>35</u>	\$	1,862
Geophysics \$1600/km x 22.5 kms	\$ <u>36,000</u>	\$	36,000
Report: Drafting and map preparation Report writing and editing Word processing, copying, binding	\$ 2,000 \$ 1,500 \$300	\$	3,800
Administration, incl Overheads & Profit		\$	6,722
Sub-total		\$	65,915
plus 7% G.S.T.		\$_	4,614
TOTAL		\$	70,529

APPENDIX A

ANALYTICAL REPORTS

:

ŧ

.

•

- Reliance Geological Services Inc. —

L

H

CERTIFICATE OF ANALYSIS

iPL 93J0107

2030 couumbia Succi Vancouver, B.C.

Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Reliance Geological Se Out: Oct 06, 1993 Project: Abe 75 In : Oct 01, 1993 Shipper: Peter PO#: Shipment:	ervices Lto D1 Leriche ID=C026901	12 R P	Samp aw Stor ulp Stor	les rage: rage:	0: 12	2= Rock 3Mon/Dis 2Mon/Dis	0= Soil	0= Core 	0=RC	Ct 0= Pulp	0=0ther 	[054213:08:4 Mon=Month Rtn=Return	1:39100693] Dis=Discard Arc=Archive
Msg: Au(FA/AAS 20g) ICP(AqR)30 Msg: Document Distribution	EN RT CC IN FX	Analy ## Code	tica. Met Ti hod FAAA	L Si itle l Au	umma Limit Low 5	ary Limit l High 9999	nits Descrip pob Au Fire	tion	finish	Element Gold	## 01		
241 East 1st Street North Vancouver BC V7P 2S3	1 2 2 2 1 DL 3D 5D BT BL 0 0 0 1 0	02 721P 03 711P 04 714P	ICP ICP ICP	Ag Cu Pb Zp	0.1 1 2 1	100 20000 20000 20000	ppm Ag ICP ppm Cu ICP ppm Pb ICP			Silver Copper Lead Zipo	02 03 04		
ATT: Peter Leriche	Ph:604/984-3663 Fx:604/988-4653	06 703P 07 702P 08 732P		As Sb	י 5 5 3	9999 9999 9999	ppm As ICP ppm Sb ICP	5 ppm		Arsenic Antimony	06 07 08		
		09 717P 10 747P	ICP ICP ICP	Mo Tl	1 10	9999 9999	ppm Mo ICP ppm T1 ICP	10 ppm		Molydenum Thallium	09 10		
		12 707P 12 707P 13 710P 14 718P 15 704P	ICP ICP ICP ICP ICP	Cd Co Ni Ba	0.1 1 1 2	999 100 999 999 9999	ppm Cd ICP ppm Cd ICP ppm Co ICP ppm Ni ICP ppm Ba ICP			Cadmium Cobalt Nickel Barium	12 13 14 15		
		16 727P 17 709P 18 729P 19 716P 20 713P	ICP ICP ICP ICP ICP	W Cr V Mn La	5 1 2 1 2	999 9999 999 999 9999 9999	ppm W ICP ppm Cr ICP ppm V ICP ppm Mn ICP ppm La ICP			Tungsten Chromium Vanadium Manganese Lanthanum	16 17 18 19 20		
		21 723P 22 731P 23 736P 24 726P 25 701P	ICP ICP ICP ICP ICP	Sr Zr Sc Ti Al	1 1 0.01 0.01	9999 999 99 1.00 9.99	ppm Sr ICP ppm Zr ICP ppm Sc ICP % Ti ICP % Al ICP			Strontium Zirconium Scandium Titanium Aluminum	21 22 23 24 25		
		26 708P 27 712P 28 715P 29 720P 30 722P	ICP ICP ICP ICP ICP	Ca Fe Mg K Na	0.01 0.01 0.01 0.01 0.01	9.99 9.99 9.99 9.99 5.00	% Ca ICP % Fe ICP % Mg ICP % K ICP % Na ICP			Calcium Iron Magnesium Potassium Sodium	26 27 28 29 30		
		31 719P	ICP	Ρ	0.01	5.00	% P ICP			Phosphorus	31		
										* **			
						:							

EN=Envelope # RT=Report Style CC=Copies IN=Invoices FX=Fax(1=Yes 0=No) DL=DownLoad 3D=3-1/2 Disk 5D=5-1/4 Disk BT=BBS Type BL=BBS(1=Yes 0=No)

Totals: 2=Copy 2=Invoice 0=3-1/2 Disk 0=5-1/4 Disk

Client: Reli Project: Abe	ance 791	Geol	ogica 2 f	l Serv Rock	ices L	td	iPL	: 93J	0107			Out In	: 0cl	t 06, t 01,	199 199	13 13				F	Dage	1 of	1	Cert	Sect ified	tion 1 BCAs	l of 1 ssayer:	Davi	d Chi		A
Sample Name		Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn' ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	רד ppm	Bi ppm	Cd ppm	Co. ppm	Ni ppm	Ba ppm	W ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	۲۵ ۲	Ca X	Fe X	Mg X	K	Na X
12107 12108	R	100 903	2.7	174 379	8 12	7 42	23	× ×	< <	8 19	××	< 14	< <	11 32	9 58	97 16	< <	58 257	178 182	126 700	×	11 4	5 5	5 (12 (0.22 0.07	0.68 2.57	0.07 0.08	8.15 15	0.83 2.77	0.23 0.25	0.03 0.02
															·								~								
																														•	
																		¢													
													·					•													
														•	٠																
· •													•																		
					·											•															
									•						•																
															•																

.

---=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver 8C V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

÷

1 CERTIFICATE OF ANALYSIS

•

iPL 9312001

L

2036 Columbia Street

Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Leriche	1 126 	Samp: Raw Stor Pulp Stor	les rage: rage:	0= Rock 	< 126= Soil - 00Mon/Dis - 12Mon/Dis	0= Core 0=R(C Ct 0= Pulp 	0=0ther 	[049209:32:40:3909 Mon=Month Dis=D [.] Rtn=Return Arc=Ar	12793] iscard rchive
	Analy	vtica Met Ti hod	l Sui itle Li	mmary mit Limit I Low High	Units Descrip	tion	Element	##		
EN RT CC IN FX 1 2 2 2 1 DL 3D 5D BT BL 0 0 0 1 0	01 312P 02 721P 03 711P 04 714P	FAAA ICP ICP ICP	Au Ag Cu Pb	5 9999 0.1 100 1 20000 2 20000	ppb Au Fire ppm Ag ICP ppm Cu ICP ppm Pb ICP	Assay/AAS finish	Gold Silver Copper Lead	01 02 03 04		
Ph:604/984-3663 Fx:604/988-4653	06 703P 07 702P 08 732P 09 717P 10 747P	ICP ICP ICP ICP ICP ICP	As Sb Hg Mo Tl	5 9999 5 9999 3 9999 1 9999 10 999	ppm As ICP ppm Sb ICP ppm Hg ICP ppm Hg ICP ppm Mo ICP ppm T1 ICP 1	5 ppm 10 ppm	Arsenic Antimony Mercury Molydenum Thallium	06 07 08 09 10		
	11 705P 12 707P 13 710P 14 718P 15 704P	ICP ICP ICP ICP ICP	Bi Cd (Co Ni Ba	2 999 0.1 100 1 999 1 999 2 9999	ppm Bi ICP ppm Cd ICP ppm Co ICP ppm Ni ICP ppm Ba ICP		Bismuth Cadmium Cobalt Nickel Barium	11 12 13 14 15		
	16 727P 17 709P 18 729P 19 716P 20 713P	ICP ICP ICP ICP ICP	W Cr V Mn La	5 999 1 9999 2 999 1 9999 2 9999	ppm W ICP ppm Cr ICP ppm V ICP ppm Mn ICP ppm La ICP		Tungsten Chromium Vanadium Manganese Lanthanum	16 17 18 19 20		
	21 723P 22 731P 23 736P 24 726P 25 701P	ICP ICP ICP ICP ICP	Sr Zr Sc Ti O. Al O.	1 9999 1 999 1 99 01 1.00 01 99.99	ppm Sr ICP ppm Zr ICP ppm Sc ICP % T1 ICP % A1 ICP		Strontium Zirconium Scandium Titanium Aluminum	21 22 23 24 25		
	26 708P 27 712P 28 715P 29 720P 30 722P	ICP ICP ICP ICP ICP	Ca 0. Fe 0. Mg 0. K 0. Na 0.	01 99.99 01 99.99 01 9.99 01 9.99 01 9.99 01 5.00	% Ca ICP % Fe ICP % Mg ICP % K ICP % Na ICP		Calcium Iron Magnesium Potassium Sodium	26 27 28 29 30		
	31 719P	ICP	Р 0.	01 5.00	% P ICP		Phosphorus	31		
	• .									- :
	Ervices Lto Leriche ID=C026901 EN RT CC IN FX 1 2 2 2 1 DL 3D 5D BT BL 0 0 0 1 0 Ph:604/984-3663 Fx:604/988-4653	Ervices Ltd 126 Leriche ID=C026901 Analy ## Code EN RT CC IN FX 1 2 2 2 1 DL 30 5D BT BL 0 0 0 1 0 Ph: 604/984-3663 Fx: 604/988-4653 Fx: 604/988-4653 C6 703P 06 703P 07 702P 08 732P 09 717P 10 747P 11 705P 12 707P 13 710P 14 718P 15 704P 16 727P 17 709P 18 729P 19 716P 20 713P 21 723P 22 731P 23 736P 24 726P 25 701P 26 708P 27 712P 28 715P 29 720P 30 722P 31 719P	ervices Ltd 126 Samp. Raw Stor Leriche Pulp Stor ID=C026901 Analytica. ## Code Met T hod EN RT CC IN FX 01 312P FAAA 0 2 721P ICP 02 721P ICP DL 3D 5D BT BL 03 711P ICP 0 0 0 1 0 04 714P ICP Ph:604/984-3663 06 703P ICP Fx:604/988-4653 06 703P ICP 08 732P ICP 09 717P ICP 10 747P ICP 11 705P ICP 11 705P ICP 12 707P ICP 13 710P ICP 14 718P ICP 15 704P ICP 16 727P ICP 18 729P ICP 18 729P ICP 19 716P ICP 27 713P ICP 21 723P ICP 27 713P ICP 22 731P ICP 27 712P ICP 23 736P ICP 27 712P ICP 26 708P ICP 27 712P ICP 26 708P ICP 27 712P ICP 27 712P ICP 27 712P ICP 28 715P ICP 29 720P ICP 31 719P ICP 31 719P ICP	ervices Ltd 126 Samples Raw Storage: Pulp Storage: ID=C026901 Analytical Su ## Code Met Title Lt hod EN RT CC IN FX 01 312P FAAA Au 1 2 2 2 1 02 721P ICP Ag DL 30 5D BT BL 03 711P ICP Cu 0 0 0 0 1 0 04 714P ICP Pb Ph:604/984-3663 06 703P ICP As Fx:604/988-4653 06 703P ICP As 07 702P ICP Sb 08 732P ICP Hg 09 717P ICP Mo 10 747P ICP Mo 10 747P ICP Ni 15 704P ICP Ba 16 727P ICP W 17 709P ICP Cr 18 729P ICP V 19 716P ICP Mn 20 713P ICP Sc 27 31P ICP Sc 21 723P ICP Sc 24 726P ICP Ti 22 731P ICP Sc 24 726P ICP Mn 20 713P ICP Sc 24 726P ICP Mn 20 713P ICP Sc 24 726P ICP Ti 26 708P ICP Ca 0. 27 712P ICP Mg 0. 28 715P ICP Mg 0. 30 722P ICP Na 0. 31 719P ICP P 0.	ervices Ltd 126 Samples Raw Storage: Pulp Storage: ID=C026901 0 = Rock Raw Storage: Pulp Storage: 	ervices Ltd 126 Samples Raw Storage: 0= Rock 126= Soil Raw Storage: 00Mon/Dis For Dip Storage: ID=C026901 Analytical Summary ## Code Met Title Limit Limit Units Descrip hod Low High Low High 01 312P FAAA Au 5 9999 ppb Au Fire 02 721P ICP Ag 0.1 100 ppm Ag ICP 02 721P ICP Ag 0.1 100 ppm Db ICP 03 711P ICP Cu 1 20000 ppm Db ICP 04 714P ICP Pb 2 20000 ppm Db ICP 05 730P ICP Zn 1 20000 ppm Db ICP 05 730P ICP As 5 9999 ppm As ICP 07 702P ICP As 5 9999 ppm Ms ICP 09 717P ICP Mo 1 9999 ppm Mo ICP 10 747P ICP TI 10 999 ppm M ICP 10 747P ICP TI 10 999 ppm Bi ICP 12 707P ICP Cd 0.1 100 ppm Cd ICP 13 710P ICP Ca 1 9999 ppm Ms ICP 14 718P ICP Ni 1 999 ppm M ICP 15 704P ICP Bi 2 999 ppm Bi ICP 15 704P ICP Bi 2 999 ppm Bi ICP 14 718P ICP Ni 1 999 ppm M ICP 15 704P ICP Bi 2 9999 ppm Bi ICP 16 727P ICP Cc 1 9999 ppm M ICP 17 709P ICP Cr 1 9999 ppm M ICP 18 729P ICP V 2 9999 ppm M ICP 19 713P ICP Ka 2 9999 ppm M ICP 19 713P ICP Sc 1 9999 ppm M ICP 19 713P ICP Sc 1 9999 ppm M ICP 22 731P ICP Sc 1 999 ppm M ICP 23 736P ICP Sc 1 99 ppm Sr ICP 24 726P ICP Ka 0.01 9.99 X Al ICP 24 726P ICP Ka 0.01 9.99 X Al ICP 24 726P ICP Ka 0.01 9.99 X Al ICP 25 701P ICP Ca 0.01 9.99 X KICP 26 708P ICP Ka 0.01 9.99 X KICP 27 712P ICP Fe 0.01 9.99 X KICP 28 715P ICP Mg 0.01 9.99 X KICP 29 720P ICP Ka 0.01 9.99 X KICP	ervices Ltd 126 Samples 0= Rock 126= Soil 0= Core 0=Rock Raw Storage: 00Mon/Dis Pulp Storage: 12Mon/Dis Analytical Summary ## Code Met Title Limit Units Description bod Low High 01 312P FAAA Au 5 9999 ppb Au Fire Assay/AAS finish 1 2 2 2 1 02 721P ICP Ag 0.1 100 ppm Gu ICP 0 0 0 0 0 120000 ppm Pb ICP 0 3 0 50 F BL 02 721P ICP Ag 0.1 120000 ppm Cu ICP 0 730P ICP 12 20000 ppm As ICP 5 9999 ppm As ICP 5 ppm Ph:604/988-4653 06 703P ICP As 5 9999 ppm As ICP 5 ppm 107 702P ICP Hg 3 9999 ppm Bi ICP 0 770P ICP Cd 0.1 100 ppm Ci ICP 10 747P ICP TICP At 3 9999 ppm Bi ICP 10 747P ICP TI 10 999 ppm Nt ICP 12 707P ICP Cd 1 999 ppm Cr ICP 16 727P ICP 11 705P ICP Bi 2 9999 ppm Ba ICP 16 727P ICP Hd 5 9999 ppm Ba ICP 16 727P ICP 1 9999 ppm Cr ICP 12 707P ICP 1 9999 ppm Cr ICP 10 71P 12 707P ICP	ervices Ltd 126 Samples 0= Rock 126-Soil 0= Core 0=RC Ct 0=Pulp Leriche Pulp Storage:	Intervices Ltd 126 Samples 0 = Rock 126 = Soil 0 = Core 0 = Rock 0	zrvices Ltd 126 Samples: 0=Rock 126=Scil 0= Core 0=RC Ct 0=Fulp 0=00ther 000=Rout Non=Rout Non=

CERTIFICATE OF ANALYSIS

iPL 93I2001

2036 Columbia Street Vancouver, B.C.

_

Canada V5Y 3E1

INTERNATIONAL PLASMA LABOR	ATORY LTD.		· · ·					Phone (604) 879-7878 Fax (604) 879-7898
Client: Rellance Geo Project: ABE 12	o logical Serv 26 Soil	rices Ltd.	1PL: 93120)1	Out: Sep 27, 1993 In: Sep 20, 1993	Page	1 of 4 3t Certif	ied BC Assayer: David Chiu
Sample Name	Au ppb p	Ag Cu opm ppm	Pb Zn A: ppm ppm ppr	s Sb Hg n ppm ppm	Mo TI Bi Col ppm ppm ppm ppm p	Со Ni Ba W Cr- V эртррт рртрртррт	Mn La Sr Z ppm ppm ppm pp	r Sc. Ti Al Ca Fe Mg K سام ۲۰۰۶ ۲۰۰۶ ۲۰۰۶ ۲۰۰۶ ۲۰۰۶ ۲۰۰۶ ۲۰۰۶ ۲۰۰
Abe-92 98+00N 124+00 Abe-92 98+00N 125+00 Abe-92 100+00N 124+00 Abe-92 100+00N 125+00 Abe-92 100+00N 125+00 Abe-92 100+00N 126+00	DE \$ 56 DE \$ 61 DE \$ 54 DE \$ 146 DE \$ 71	< 77 < 201 < 49 < 151 < 198	14 52 18 71 15 106 18 100 17 94	<pre><</pre>	6 < < < 7 < < < 4 < < < 7 < < < 5 < < <	20 52 62 < 193 194 32 76 72 < 227 246 39 122 167 5 326 207 47 121 131 < 276 238 57 138 138 < 276 221	347 < 44 1490 < 41 2205 2 33 1239 < 24 1767 2 29	1 3 0.16 1 77 0.47 6.28 1.49 0.05 1 8 0.24 3 06 0.34 7.65 2.76 0.14 4 0.13 3 29 0.43 6.99 3.70 0.49 1 18 0.20 3 94 0.36 7.69 4.66 0.71 2 11 0.24 3 89 0.31 7.56 4.13 0.58
Abe-92 102+00N 124+00 Abe-92 102+00N 125+00 Abe-92 102+00N 126+00 Abe-92 102+00N 127+00 Abe-92 102+00N 128+00	E \$ 105 0 E \$ 1670 0 E \$ 95 0 E \$ 263 E \$ 36	.1 199 .9 423 .1 295 < 119 < 118	21 172 4 20 175 11 17 99 7 15 74 4 19 148 11	<pre>< < < </pre> <pre>< < < </pre> <pre>< < < </pre> <pre></pre>	6 < 2 < 11 < < < 1 5 < < < < 4 < < < 7 < < <	52 237 237 < 451 331 84 121 272 < 225 331 85 195 260 < 419 227 33 69 66 < 187 170 73 167 151 < 302 248	1564 < 22 1122 3 53 3682 < 19 631 2 50 2168 < 14	1 31 0.28 5 10 0.59 8.62 7.33 1.53 2 26 0.21 3.60 0.28 14.04 2.57 0.66 1 9 0.13 3.75 0.08 7.83 3.94 0.22 1 2 0.06 2.97 0.20 7.02 1.86 0.05 1 17 0.08 4.82 0.14 8.45 4.12 0.05
Abe-92 104+00N 124+00 Abe-92 104+00N 125+00 Abe-92 104+00N 126+00 Abe-92 104+00N 126+00 Abe-92 104+00N 127+00 Abe-92 104+00N 128+00	E \$ 151 E \$ 256 0 E \$ 210 0 E \$ 781 3 E \$ 175 0	< 59 .7 587 .2 263 .1 435 .5 314	17 91 4 70 138 8€ 24 116 11 72 512 112 19 108 16	7 < < < < < < < 7 <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34 116 82 < 303 263 15 179 42 10 248 239 58 120 60 < 295 242 96 178 104 < 325 229 38 85 74 < 179 171	1232 2 21 2971 2 21 1867 2 20 8664 3 15 1210 2 19	<pre>< 16 0.19 3.80 0.37 6.98 4.73 0.24 1 20 0.10 4.28 0.36 9.96 4.76 0.06 1 12 0.12 4.30 0.25 8.33 4.27 0.08 < 15 0.06 3.73 0.23 10.48 3.24 0.06 1 8 0.03 4.12 0.10 6.80 3.17 0.07</pre>
Abe-92 106+00N 124+00 Abe-92 106+00N 125+00 Abe-92 106+00N 126+00 Abe-92 106+00N 127+00 Abe-92 106+00N 128+00	E \$ 715 1 E \$ 255 0 E \$ 265 0 E \$ 132 0 E \$ 169 0	.3 446 .7 319 .6 418 .6 91 .2 78	39 168 13 37 155 12 32 116 24 18 94 5 15 71 <	< < < < < < < < < < < < < < < < < < <	6 < < < 5 7 < < < 5 5 < < < 5 3 < < < 5 3 < < < 5	91 127 248 < 152 144 53 110 215 < 246 181 98 194 173 < 341 230 28 87 85 < 215 155 31 90 67 < 226 169	8242 4 21 2567 3 31 3096 < 19 881 32 1503 2 22	2 29 0.01 2.54 0.85 10.67 2.43 0.15 1 18 0.06 3.22 0.53 8.75 3.43 0.13 7 0.07 3.30 0.40 9.49 3.72 0.08 1 3 0.05 3.01 0.26 5.31 2.84 0.06 3 0.07 2.64 0.24 6.04 2.41 0.06
Abe-92 108+00N 108+00 Abe-92 108+00N 109+00 Abe-92 108+00N 110+00 Abe-92 108+00N 111+00 Abe-92 108+00N 112+00	E \$ 11 E \$ 13 0. E \$ 42 E \$ 60 E \$ 39	< 569 .1 388 < 582 < 1443 < 1824	25 53 < 21 49 < 12 33 5 20 55 9 11 39 <	<pre>< < <pre>< < <pre>< < <pre>8 < <pre>< < <pre>< < <pre></pre></pre></pre></pre></pre></pre></pre>	6 < < 0.1 3 11 < < 3 13 < < 2 9 < 3 < 16 11 < < 8	39 43 30 < 63 105 33 72 91 < 157 198 23 119 79 < 281 130 69 117 80 < 85 107 83 100 58 < 139 138	647 < 52 422 31 193 35 1919 5 80 862 3 141	<pre>< 3 0.08 1.09 0.54 3.90 0.90 0.05 < 3 0.03 2.90 0.24 7.16 1.09 0.08 < 1 0.14 2.69 0.16 4.30 1.78 0.07 1 2 0.04 3.51 0.36 4.92 1.25 0.06 1 9 0.16 2.20 0.79 5.39 1.88 0.06</pre>
Abe-92 108+00N 113+00 Abe-92 108+00N 114+00 Abe-92 108+00N 115+00 Abe-92 108+00N 116+00 Abe-92 108+00N 117+00	E \$ 16 E \$ 13 E \$ 40 0. E \$ 27 E \$ 32	< 745 < 530 1 880 < 1329 < 570	13 47 5 8 44 < 17 49 < 17 91 8 13 65 <	6 < 10 < 6 < 12 < 7 <	16 < < 6 7 < < 3 34 < < 5 19 < < 4 9 < < 4	50 104 64 < 168 151 38 100 78 < 269 109 57 104 109 < 181 179 42 141 57 5 276 189 41 183 96 < 383 135	863 2 82 502 41 645 127 791 103 564 74	1 6 0.16 2.34 0.72 6.01 2.07 0.16 1 9 0.16 2.04 0.74 4.37 2.88 0.33 1 6 0.18 2.50 0.86 6.54 2.54 0.40 1 8 0.22 3.39 1.00 6.20 3.78 0.24 < 3 0.14 3.45 0.50 5.70 3.67 0.53
Abe-92 108+00N 118+00 Abe-92 108+00N 119+00 Abe-92 108+00N 120+00 Abe-92 108+00N 120+00 Abe-92 108+00N 121+00 Abe-92 108+00N 122+00	5 41 5 86 5 40 0. 5 56 5 749 0.	< 774 < 330 2 887 < 176 2 606	15 59 < 14 50 < 21 114 < 18 82 < 19 48 <	8 < 7 < < < 5 < < <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24 151 110 < 297 173 33 97 79 < 246 155 54 159 128 < 206 233 38 98 76 < 264 213 09 122 62 < 205 271	1029 < 177 546 74 1158 150 1126 3 45 1735 68	4 0.18 3.61 0.90 7.17 3.15 0.46 1 3 0.18 2.94 0.56 5.69 2.40 0.19 1 8 0.24 4.09 1.23 6.76 3.88 0.64 1 7 0.16 3.76 0.36 7.17 3.13 0.07 1 14 0.20 3.66 0.43 10.00 4.20 0.25
Abe-92 108+00N 123+001 Abe-92 108+00N 124+001 Abe-92 108+00N 125+001 Abe-92 108+00N 125+001 Abe-92 108+00N 126+001	\$ 78 \$ 396 2. \$ 184 \$ 137	< 115 0 296 < 89 < 181	75 110 < 113 117 8 17 87 7 21 59 <	10 < < < 5 < < <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 177 78 < 411 228 59 137 167 < 226 226 14 184 67 < 419 252 50 132 47 < 230 283	1602 < 26 2028 2 20 2296 7 2019 2 21	7 0.15 3.54 0.43 6.83 4.32 0.06 20 0.05 4.03 0.65 8.62 4.71 0.04 1 17 0.02 5.55 0.14 8.17 6.12 0.03 1 17 0.05 4.70 0.27 8.18 4.95 0.03
Min Limit Max Reported* Method =No Test ins=Insuf	5 0. 9999 99. FAAA I(ficient Samp)	1 1 9 20000 20 CP ICP le S=Soi	2 1 5 0000 20000 9999 ICP ICP ICP I R=Rock C=Core	5 3 9999 9999 9 ICP ICP L=Silt P=Pu	1 10 2 0.1 9999 999 999 99.9 99 ICP ICP ICP ICP IC ulp U=Undefined m=	1 1 2 5 1 2 9999 9999 999 9999 999 PFICP ICP ICP ICP ICP Estimate/1000 Z =Estimat	1 2 1 9999 9999 9999 999 ICP ICP ICP ICP ICP e X Max=No Estima	1 0.01 0.01 0.01 0.01 0.01 0.01 9 99 1.00 99.99 99.99 99.99 9.99 9.99 ICP ICP ICP ICP ICP ICP ICP ICP

International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

1 INTERNATIONAL PLASMA LABORATORY LTD.

f

CERTIFICATE OF ANALYSIS

iPL 93I2001

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Client: Reltance Geological Services Etd. Project: ABE 126 Soil	1PL: 9312001	Out: Sep 27, 1993 In: Sep 20, 1993	Certified BC Assayer:	David Chiu
Sample Name Na P X X		· · · · · · · · · · · · · · · · · · ·		/
Abe-92 98+00N 124+00E \$ 0.02 0.09 Abe-92 98+00N 125+00E \$ 0.02 0.12 Abe-92 100+00N 124+00E \$ 0.02 0.14 Abe-92 100+00N 125+00E \$ 0.02 0.11 Abe-92 100+00N 125+00E \$ 0.02 0.11 Abe-92 100+00N 126+00E \$ 0.02 0.13				
Abe-92 102+00N 124+00E \$ 0.01 0.10 Abe-92 102+00N 125+00E \$ 0.03 0.22 Abe-92 102+00N 126+00E \$ 0.02 0.11 Abe-92 102+00N 127+00E \$ 0.02 0.11 Abe-92 102+00N 127+00E \$ 0.02 0.11 Abe-92 102+00N 128+00E \$ 0.01 0.08				
Abe-92 104+00N 124+00E \$ 0.01 0.09 Abe-92 104+00N 125+00E \$ 0.01 0.12 Abe-92 104+00N 125+00E \$ 0.02 0.12 Abe-92 104+00N 126+00E \$ 0.01 0.17 Abe-92 104+00N 128+00E \$ 0.01 0.12				
Abe-92 106+00N 124+00E \$ 0.01 0.12 Abe-92 106+00N 125+00E \$ 0.02 0.13 Abe-92 106+00N 126+00E \$ 0.01 0.15 Abe-92 106+00N 126+00E \$ 0.02 0.13 Abe-92 106+00N 127+00E \$ 0.02 0.12 Abe-92 106+00N 127+00E \$ 0.02 0.02				
Abe-92 108+00N 108+00E \$ 0.02 0.08 Abe-92 108+00N 109+00E \$ 0.02 0.14 Abe-92 108+00N 109+00E \$ 0.02 0.14 Abe-92 108+00N 110+00E \$ 0.02 0.09 Abe-92 108+00N 111+00E \$ 0.02 0.27 Abe-92 108+00N 112+00E \$ 0.02 0.14				
Abe-92 108+00N 113+00E \$ 0.03 0.19 Abe-92 108+00N 114+00E \$ 0.03 0.05 Abe-92 108+00N 115+00E \$ 0.02 0.18 Abe-92 108+00N 116+00E \$ 0.02 0.18 Abe-92 108+00N 116+00E \$ 0.02 0.12 Abe-92 108+00N 117+00E \$ 0.02 0.08				
Abe-92 108+00N 118+00E \$ 0.02 0.11 Abe-92 108+00N 119+00E \$ 0.03 0.12 Abe-92 108+00N 120+00E \$ 0.02 0.24 Abe-92 108+00N 121+00E \$ 0.02 0.08 Abe-92 108+00N 122+00E \$ 0.02 0.08	·			
Abe-92 108+00N 123+00E \$ 0.02 0.15 Abe-92 108+00N 124+00E \$ 0.01 0.12 Abe-92 108+00N 125+00E \$ 0.01 0.15 Abe-92 108+00N 126+00E \$ 0.01 0.15				
Min Limit 0.01 0.01 Max Reported* 5.00 5.00 Method ICP ICP				

----No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC VSY 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICATE OF ANALYSIS

iPL 93I2001

2036 Columbia

Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

∥

Cli ent: Reltance Geolo Project: ABE 126	gical Ser Soil	vices Lu	11 1	PL: 931200	1		Out: Sep 2 In: Sep 20	7, 1993 0, 1993			Page	? 2 of 4		ction 1 of ed BC Assay	er: David C			Z
Sample Name	Au ppb	Ag Cu ppm ppr	, РЬ n ppm	Zn As ppm ppm	Sb ppm	Hg ppm	Mo T1 B [.] ppm ppm ppr	i Col n ppm p	Co N	i Ba W n ppm ppm	Cr \ ppm ppm	/ Mn Ľa n ppm ppm	Sr Z ppm pp	r Sc Ti nppm %	A1 Ca Z Z	re X	Mg X	к х
Abe-92 108+00N 127+00E Abe-92 108+00N 128+00E Abe-93 102+00N 100+00E Abe-93 102+00N 101+00E Abe-93 102+00N 102+00E	\$ 45 \$ 48 \$ < \$ 17 \$ 26	0.6 100 < 78 < 29 < 24 < 12	5 52 3 27 5 13 1 13 2 16	439 15 153 5 40 6 27 < 22 <	5 ~ ~ ~ ~	< < < < < <	4 < . 5 < . 2 < . 3 < . 1 < .	< < < < < < < < < < < <	34 64 27 42 17 17 11 13 7 (236 < 2343 < 89 < 379 < 5201 <	100 130 90 188 49 87 54 156 23 57	0 1757 7 8 2518 3 7 690 3 6 250 3 7 158 3	100 156 77 75 101	3 11 0.09 1 3 0.14 2 0.09 1 2 0.15 1 1 0.09	4.02 0.84 4.45 0.63 1.85 0.56 1.90 0.34 2.86 1.21	5.73 2 6.04 1 3.07 1 3.78 (1.80 (2.53 0. 1.74 0. 1.52 0. 0.74 0. 0.39 0.	.08 .06 .06 .05 .11
Abe-93 102+00N 103+00E Abe-93 102+00N 104+00E Abe-93 102+00N 105+00E Abe-93 102+00N 106+00E Abe-93 102+00N 107+00E	\$ < \$ < \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	 < 64 0.1 32 < 240 0.2 27 0.1 9 	18 2 10 68 7 47 9 30	49 < 38 < 78 < 52 < 61 <	< 8 7 11	< < < < <	4	< <	19 30 17 29 36 68 23 37 24 57	90 82 < 90 90 < 8 78 < 7 65 < 7 48 <	79 137 57 114 216 114 273 169 395 91	7 373 4 587 2 530 < 489 < 538 <	91 76 34 27 32	4 0.14 3 0.12 5 0.12 5 0.23 6 0.15	2.52 0.38 2.15 0.48 1.41 0.69 1.40 0.25 1.83 0.64	3.95 1 3.48 1 4.44 2 4.93 1 4.15 3	1.46 0. 1.49 0. 2.55 0. 1.48 0. 3.07 0.	.06 .08 .29 .04 .05
Abe-93 102+00N 119+25E Abe-93 104+00N 118+50E Abe-93 106+00N 106+00E Abe-93 106+00N 107+00E Abe-93 108+00N 102+00E	\$ 10 \$ 22 \$ 5 \$ 16	 < 189 0.8 1070 < 17 1.2 54 < 176 	10 34 48 99 5 15	59 < 111 5 38 < 77 < 53 <	5 10 12 7 <	~ ~ ~ ~ ~	4 < 4 16 < 4 3 < 4 12 < 4 20 < 4	<pre><</pre>	21 59 49 128 22 57 29 74 17 27	58 < 148 < 24 < 106 < 196 <	132 112 196 220 404 109 303 126 83 86	413 6 595 2 373 < 678 2 1657 5	48 163 19 40 84	4 0.13 6 0.29 3 0.13 9 0.08 2 3 0.02	2.15 0.40 4.03 0.63 1.19 0.33 2.56 0.93 2.13 1.69	4.63 1 6.54 3 4.23 1 4.82 2 3.21 1	1.45 0. 3.13 1. 1.97 0. 2.88 0. 1.12 0.	. 14 . 01 . 05 . 14 . 07
Abe-93 108+00N 103+00E Abe-93 108+00N 104+00E Abe-93 108+00N 105+00E Abe-93 108+00N 106+00E Abe-93 108+00N 107+00E	マンジン ママン ママン ママン ママン ママン ママン ママン ママン ママン	 < 58 < 66 < 50 < 47 0.8 1451 	71 75 72 35 45	47 < 52 < 51 < 35 < 49 <	7 9 5 8 <	~ ~ ~ ~ ~	31 < < 12 < < 10 < < 21 < < 62 < <	* * * * * * * *	34 68 37 69 33 67 36 64 58 197	41 < 44 < 57 < 24 < 125 <	295 112 296 125 265 102 269 83 289 84	544 × 516 × 522 × 455 × 2413 19	26 31 1 28 1 26 4 57 11	6 0.10 5 0.11 5 0.08 5 0.08 5 0.08 16 0.04	1.48 0.68 1.48 0.79 1.38 0.99 1.26 0.74 5.28 0.95	4.35 2 4.95 2 4.19 2 3.98 1 4.64 2	2.38 0. 2.26 0. 2.21 0. 1.94 0. 2.84 0.	.05 .06 .08 .04 .12
Abe-93 110+00N 112+00E Abe-93 110+00N 113+00E Abe-93 110+00N 114+00E Abe-93 110+00N 115+00E Abe-93 110+00N 116+00E	\$ 41 \$ 25 \$ 19 (\$ 6 \$ 13 (< 880 < 496 0.2 59 < 72 0.5 353 	14 35 13 16 11	44 5 51 < 39 < 36 < 55 <	6 7 < <	< < < < < <	5 × < 18 < < 4 × < 6 × < 18 × <		60 97 41 100 25 50 19 44 32 71	106 < 73 < 101 < 60 < 81 <	181 127 254 163 82 148 115 133 149 151	1108 < 802 < 375 2 405 < 645 <	45 68 1 46 53 178	4 0.11 9 0.22 3 0.16 3 0.16 4 0.14	1.97 0.94 3.10 0.70 2.66 0.43 2.13 0.41 2.35 0.79	4.49 2 5.59 3 3.88 2 4.08 1 4.63 2	25 0. 22 0. 11 0. 44 0. 12 0.	21 14 26 04 18
Abe-93 110+00N 117+00E Abe-93 110+00N 118+00E Abe-93 110+00N 119+00E Abe-93 110+00N 120+00E Abe-93 110+00N 121+00E	\$ 25 0 \$ 54 0 \$ 128 0 \$ 26 0 \$ 61 0	0.3 970 0.2 53 0.9 1791 0.1 111 0.1 48	12 13 27 13 12	61 < 54 < 65 < 61 < 51 <	< 5 < < <	V V V	30 × < 5 × < 15 × < 3 × < 4 × <	< < < 1 < <	44 85 18 44 60 183 24 59 20 38	59 < 55 5 44 < 111 < 59 <	134 143 139 169 301 187 139 114 134 167	583 <	160 1 36 < 45 2 43 < 40 <	6 0.16 4 0.15 15 0.15 2 0.07 2 0.11	2.55 1.14 2.29 0.22 3.17 0.62 2.66 0.38 2.32 0.22	5.29 2 4.85 1 9.00 4 4.93 1 4.91 0	.40 0. .68 0. .26 0. .86 0. .98 0.	28 07 08 09 05
Abe-93 110+00N 122+00E Abe-93 110+00N 123+00E Abe-93 110+00N 123+00E Abe-93 110+00N 124+00E Abe-93 110+00N 125+00E Abe-93 110+00N 126+00E	\$ 41 0 \$ 93 0 \$ 525 0 \$ 814 1 \$ 11 0	0.2 101 0.3 84 0.7 162 1.8 258 0.1 54	13 21 16 36 15	60 < 105 < 55 7 84 5 94 <	< 9 < < <	~ ~ ~ ~ ~	3 < < 5 < < 5 < 2 8 < < 3 < <	< < < < <	16 32 23 123 31 51 56 104 16 24	999 < 190 < 301 < 337 < 444 <	102 131 257 163 89 145 161 146 44 98	693 5 675 4 1830 4 1948 6 1643 6	31 < 36 1 14 1 25 1 93 1	1 0.03 6 0.03 19 < 18 0.03 1 0.02	2.05 0.22 3.20 0.90 2.20 0.50 2.48 0.39 3.05 0.74	3.86 1 5.68 2 6.42 1 7.50 2 3.72 0	.15 0.0 .67 0.0 .40 0.0 .41 0.0	07 07 09 08 04
Abe-93 110+00N 127+00E Abe-93 112+00N 112+00E Abe-93 112+00N 113+00E Abe-93 112+00N 113+00E	\$ 6 0 \$ 57 \$ 130 0 \$ 140 0	0.2 86 < 645 0.4 278 0.2 70	21 7 12 10	176 < 41 < 48 < 17 <	5 < < <	< < < < <	3 < < 5 < < 7 < < 4 < <	<pre></pre>	29 38 41 67 32 69 21 31	343 5 39 < 76 < 27 5	60 138 115 138 160 146 108 151	1660 5 779 < 703 3 150 <	186 4 57 1 39 < 32 <	11 0.18 7 0.11 3 0.06 2 0.15	4.43 1.23 2.10 0.69 2.50 0.86 1.11 0.23	5.13 2 5.03 2 4.92 2 3.66 0	.30 0.0 .25 0.0 .07 0.0	07 06 07 03
Min Limit Max Reported* Method =No Test ins=Insuffic International Plasma Lab	5 0 9999 99 FAAA I cient Samp Ltd. 20	0.1 1 9.9 20000 (CP ICP ole S=Se 036 Colum	2 20000 20 ICP pil R=Ro bia St.	1 5 0000 9999 ICP ICP ck C=Core Vancouver	5 9999 99 ICP I L=Silt BC V5	3 199 9 ICP P=Pu SY 3E	1 10 2 999 999 999 ICP ICP ICP 1p U=Undefi 1 Ph:604/8	0.1 99.9 99 ICP I(ned m= 79-7878	1 1 99 999 CP ICP =Estim Fax:	2 5 9999 999 ICP ICP ate/1000 504/879-78	1 2 9999 999 ICP ICP Z=Estimat 98	1 2 9999 9999 ICP ICP te X Max=M	1 1 9999 999 ICP ICP o Estima	1 0.01 99 1.00 9 ICP ICP te	0.01 0.01 9.99 99.99 ICP ICP	0.01 0. 99.99 9. ICP	.01 0.0 .99 9.9 ICP IO	01 99 CP

1PL

CERTIFICATE OF ANALYSIS

iPL 93I2001

2036-50numbia Succe Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878

Fax (604) 879-7898

INTERNATIONAL PLASMA LABORATORY LTD.

Clients Reliance Geo	logical Se	rvices Ltd.		Out: Sep 27.	-1993	Ра	ige 2 of 4	Section	-2 of -2		\mathcal{A} / .
Project: ABF 120	5 Soil			In: Sep 20,	1993			Certified BC	Assayer: David	Chiu 🖌	
Sample Name	Na Z	Р Х	1.88					<u></u> _, ,			
Abe-92 108+00N 127+00 Abe-92 108+00N 128+00 Abe-93 102+00N 100+00 Abe-93 102+00N 101+00 Abe-93 102+00N 101+00 Abe-93 102+00N 102+00	S 0.02 (S 0.04 (S 0.02 (S 0.02 (S 0.02 (S 0.05 (0.10 0.12 0.11 0.06 0.04							· ·		
Abe-93 102+00N 103+00 Abe-93 102+00N 104+00 Abe-93 102+00N 105+00 Abe-93 102+00N 105+00 Abe-93 102+00N 106+00 Abe-93 102+00N 107+00	\$ 0.02 (\$ 0.03 (\$ 0.03 (\$ 0.03 (\$ 0.03 (\$ 0.03 (0.07 0.09 0.04 0.02 0.02									
Abe-93 102+00N 119+258 Abe-93 104+00N 118+508 Abe-93 106+00N 106+008 Abe-93 106+00N 107+008 Abe-93 108+00N 102+008	Š 0.02 (Š 0.04 (Š 0.04 (Š 0.03 (Š 0.02 (0.12 0.21 0.04 0.08 0.38			•						
Abe-93 108+00N 103+00E Abe-93 108+00N 104+00E Abe-93 108+00N 105+00E Abe-93 108+00N 105+00E Abe-93 108+00N 107+00E	\$ 0.03 0 \$ 0.04 0 \$ 0.03 0 \$ 0.03 0 \$ 0.03 0 \$ 0.04 0).03).04).04).02).25									
Abe-93 110+00N 112+00E Abe-93 110+00N 113+00E Abe-93 110+00N 114+00E Abe-93 110+00N 115+00E Abe-93 110+00N 116+00E	\$ 0.02 0 \$ 0.03 0 \$ 0.02 0 \$ 0.03 0 \$ 0.03 0), 16), 07), 05), 10), 18									
Abe-93 110+00N 117+00E Abe-93 110+00N 118+00E Abe-93 110+00N 119+00E Abe-93 110+00N 120+00E Abe-93 110+00N 121+00E	\$ 0.02 0 \$ 0.02 0 \$ 0.02 0 \$ 0.02 0 \$ 0.02 0 \$ 0.02 0), 17), 10), 08), 09), 11									
Abe-93 110+00N 122+00E Abe-93 110+00N 123+00E Abe-93 110+00N 124+00E Abe-93 110+00N 125+00E Abe-93 110+00N 126+00E	\$ 0.02 0 \$ 0.02 0 \$ 0.01 0 \$ 0.02 0 \$ 0.03 0	0.13 0.28 0.14 0.12 0.29		• .							
Abe-93 110+00N 127+00E Abe-93 112+00N 112+00E Abe-93 112+00N 113+00E Abe-93 112+00N 113+00E	\$ 0.03 0 \$ 0.02 0 \$ 0.02 0 \$ 0.02 0 \$ 0.02 0	. 11 . 14 . 11 . 07									
Min Limit Max Reported* Method	0.01 0 5.00 5 ICP	.01 .00 ICP									· •

---=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICATE OF ANALYSIS

iPL 93I2001

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1

- Phone (604) 879-7878 Fax (604) 879-7898

Client: Reltance Geological Services Ltd. Project: ABE 126 Soil		2 7, 1993 20, 1993	- Page 3 of 4 - Se Certifi	ed BC Assayer: David Chiu
Sample Name Au Ag Cu ppb ppm ppm	Pb Zn As Sb Hg Mo T1 B ppm ppm ppm ppm ppm ppm ppm ppm	3-i Cd Co N-i Ba. ₩ xm ppm ppm ppm ppm ppm	Cr V Mn La Sr Z ppm.ppm.ppm.ppm.ppm.ppm.pp	r Sc Ti Al Ca Fe Mg K m ppm 7 7 7 7 7 7
Abe-93 112+00N 115+00E \$ 37 0.1 70 Abe-93 112+00N 116+00E \$ 7 0.2 368 Abe-93 112+00N 117+00E \$ 121 0.1 309 Abe-93 112+00N 118+00E \$ 1160 0.3 119 Abe-93 112+00N 119+00E \$ 121 0.5 156	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 < 16 26 58 < < 21 51 34 < < 55 90 118 < < 30 64 77 < < 26 66 95 < 	101 157 337 3 40 88 83 287 <	<pre>< 2 0.11 1.45 0.21 4.06 0.58 0.04 1 3 0.11 1.51 1.01 2.88 1.43 0.20 1 4 0.08 2.08 0.85 5.30 2.19 0.20 1 3 0.13 2.24 0.59 6.69 1.65 0.05 < 5 0.08 3.53 0.20 5.96 2.34 0.04</pre>
Abe-93112+00N120+00E\$ 3110.6433Abe-93112+00N121+00E\$ 1620.1171Abe-93112+00N122+00E\$ 830.6350Abe-93112+00N123+00E\$ 170.1291Abe-93114+00N110+00E\$ 33< 606	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 < 63 139 134 < < 39 79 159 < < 68 110 154 < < 49 75 238 < < 44 89 66 5 	270 212 2429 6 16 149 148 1105 4 83 230 200 1529 3 39 137 160 1544 4 71 140 137 763 <	2 27 0.05 3.66 0.38 8.13 4.56 0.08 2 11 0.08 3.41 0.80 6.20 2.58 0.05 1 14 0.03 3.32 0.40 7.73 3.04 0.06 1 12 0.02 2.98 0.80 6.45 1.84 0.07 1 7 0.12 2.57 0.99 5.28 2.26 0.14
Abe-93 114+00N 111+00E \$ 10 0.1 87 Abe-93 114+00N 112+00E \$ 22 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 < 19 42 76 < < 11 24 42 < < 29 64 56 < < 46 93 88 < < 12 22 111 < 	158 100 243 2 62 122 87 142 2 41 181 142 539 3 38 224 154 935 2 83 27 76 521 33	1 2 0.06 2.28 0.35 3.56 1.37 0.04 1 2 0.09 1.00 0.28 2.42 0.67 0.05 4 0.09 1.91 0.60 4.98 1.64 0.06 1 8 0.11 2.61 0.60 5.96 2.77 0.08 1 3 0.01 4.24 0.12 3.69 1.21 0.07
Abe-93 114+00N 116+00E \$\$ 5 <	18 97 <	 < 11 25 239 < < 21 66 243 < < 0.2 20 18 477 < < 32 53 410 < < 30 46 284 5 	53 116 671 4 58 96 128 2068 <	1 3 0.05 3.64 0.32 3.79 1.05 0.05 1 3 0.12 3.85 0.74 4.23 1.99 0.05 <
Abe-93 114+00N 121+00E \$ 14 0.4 89 Abe-93 114+00N 122+00E \$ 12 0.1 59 Abe-93 114+00N 123+00E \$ 10 65 Abe-93 116+00N 106+00E \$ 25 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 < 18 46 201 6 < 14 30 267 < < 18 37 340 < 16 35 86 5 < 7 12 84 	92 116 957 4 49 50 105 740 3 87 57 105 1108 6 107 3 111 132 218 3 66 94 79 154 3 97	1 2 0.04 4.12 0.40 5.37 1.23 0.04 <
Abe-93 116+00N 108+00E \$ 20 <	18 24 <	 < 11 23 40 < < 28 34 31 < < 12 20 67 < < 57 105 44 < < 17 36 76 < 	147 77 165 2 45 45 198 231 <	1 3 0.12 1.23 0.43 1.99 1.02 0.03 1 4 0.34 1.58 0.68 5.27 1.59 0.05 1 0.07 0.82 0.33 2.23 0.25 0.04 1 6 0.14 2.73 1.15 6.15 2.56 0.07 2 0.11 1.73 0.26 4.47 0.89 0.05
Abe-93 116+00N 113+00E \$ 8 0.1 41 Abe-93 116+00N 114+00E \$ < 26 Abe-93 116+00N 115+00E \$ 5 0.2 54 Abe-93 116+00N 116+00E \$ < 0.1 67 Abe-93 116+00N 117+00E \$ 5 0.3 76	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 < 19 38 249 < < 15 17 766 6 < 17 49 579 5 < 21 29 282 < < 24 39 290 <	66 176 1391 2 90 25 129 567 3 347 3 79 148 539 3 296 3 45 160 834 4 85 3 63 153 937 6 102 6	5 0.16 3.27 0.36 5.26 1.34 0.05 2 4 0.17 5.68 1.36 4.73 0.79 0.13 2 5 0.18 4.86 0.74 5.79 1.24 0.11 2 5 0.14 5.75 0.64 5.78 1.56 0.09 5 10 0.17 6.08 0.72 5.32 1.79 0.09
Abe-93 116+00N 118+00E \$ 6 0.2 72 Abe-93 116+00N 119+00E \$ <	28 131 <	<pre>< < 22 40 263 < < < 24 50 431 < < < 6 13 227 < < < 17 23 123 <</pre>	72 131 1169 8 76 3 82 147 1343 3 97 2 34 58 504 3 60 4 77 136 340 3 80 1	3 8 0.12 4.92 0.87 4.57 1.81 0.09 2 5 0.16 4.86 0.99 5.26 1.93 0.05 4 1 0.02 2.33 0.24 2.14 0.40 0.05 3 0.23 1.60 0.50 3.79 0.96 0.04
Min Limit 5 0.1 1 Max Reported* 9999 99.9 20000 2 Method FAAA ICP ICP —=No Test ins=Insufficient Sample S=So International Plasma Lab Ltd. 2036 Columb	2 1 5 5 3 1 10 2 20000 20000 9999 9999 9999 9999 999 ICP ICP ICP ICP ICP ICP ICP ICP 11 R=Rock C=Core L=S11t P=Pu1p U=Undefi ia St. Vancouver 8C VSY 3E1 Ph:604/8	2 0.1 1 1 2 5 3 99.9 999 999 999 999 99 P ICP ICP ICP ICP ICP ICP ICP ICP ICP IC	1 2 1 2 1 1 999 999 9999 9999 9999 999 ICP ICP ICP ICP ICP ICP =Estimate % Max=No Estima 8	1 0.01 0.01 0.01 0.01 0.01 0.01 9 99 1.00 99.99 99.99 99.99 9.99 9 ICP ICP ICP ICP ICP ICP ICP Nte

INTERNATIONAL PLASMA LABORATORY LTD

CERTIFICATE OF ANALYSIS

iPL 93I2001

2036 (Construction of the second seco

Client: Reliance Geological Services Ltd.		Out: Sep 27, 1993		Page 3 of 4	Section	2 01 2	
Project: ABE 126 Soil		In: Sep 20, 1993	•		Certified BC /	Assayer: David Chi	
	······				····	-, ,	
Sample Name Na P							
2 2							
Aba-93 112+00N 115+00F \$ 0 02 0 10							
Abe-93 112+00N 116+00E \$ 0.03 0.13							
Abe-93 112+00N 117+00E \$ 0.02 0.12							
Abe-93 112+00N 118+00E \$ 0.02 0.07							
Abe-93 112+00N 119+00E \$ 0.02 0.08							
Abe-93 112+00N 120+00E \$ 0.02 0.13							
Abe-93 112+00N 121+00E \$ 0.03 0.10					4		
Abe-93 112+00N 122+00E S U.U2 U.13							
Abc-93 114+00N 123+00E 5 0.02 0.22							
Abe-93 114+00N 111+00E \$ 0.03 0.06							
Abe-93 114+00N 112+00E \$ 0.02 0.04							·
Abe-93 114+00N 113+00E § 0.02 0.11							
Abe-93 114+00N 114+00E \$ 0.02 0.12							
Abe-93 114+00N 115+00E § 0.02 0.06							
Abo 03 114,000 116,005 \$ 0 02 0 07							
Abe-93 114+00N 117+00F \$ 0.02 0.07							•
Abe-93 114+00N 118+00E \$ 0.02 0.19							
Abe-93 114+00N 119+00E \$ 0.02 0.20							
Abe-93 114+00N 120+00E \$0.08 0.10							
Abe-93 114+00N 121+00E \$ 0.03 0.14						•	
Abe-93 114+00N 122+00E 3 0.02 0.17 Abe-93 114+00N 123+00E \$ 0.04 0.13							
Abe-93 116+00N 106+00F \$ 0.02 0.04							
Abe-93 116+00N 107+00E \$ 0.02 0.04							
20							
Abe-93 116+00N 108+00E \$ 0.03 0.03							
Abe-93 116+00N 109+00E \$ 0.05 0.03							
Abe-93 116+00N 110+00E \$ 0.02 0.04							
ADE-93 116+00N 111+00E \$ 0.02 0.09							
ADE-55 110+004 112+00C 3 0.02 0.08	,				•		
Abe-93 116+00N 113+00F \$ 0.03 0.08		· .					
Abe-93 116+00N 114+00E \$ 0.09 0.08						,	
Abe-93 116+00N 115+00E 5 0.04 0.12							
Abe-93 116+00N 116+00E \$ 0.03 0.09							
Abe-93 116+00N 117+00E § 0.03 0.11							}
Abo 03 116,000 118,005 8 0 03 0 00							
Abe-93 116+00N 119+00F \$ 0.05 0.20							
Abe-93 116+00N 120+00E \$ 0.03 0.12							
Abe-93 118+00N 111+00E \$ 0.04 0.04							
· · · · · · · · · · · · · · · · · · ·							
Min Limit 0.01 0.01							
max keported* 5.00 5.00							

---=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898 CERTIFICATE OF ANALYSIS

2036 Columbia Street

Vancouver, B.C.

Canada V5Y 3E1 Phone (604) 879-7878

iPL 93I2001

ERNATIONAL PLASMA LABORATORY LTD

INTERNATIONAL PLASMA LABORATO	RY LTD.																							Fax	(604)	879-789	³ (
Clie nt: Reliance Geolc Project: ABE 126	gical S Soil	ervice	s Ltd.	1P	L: 93	12001			Out: Sep In: Sep	27, 20,	- 1993 1993						Page	4 of	4	Certi	Sect fied	BC	-1-of Assay	2 ver: Da	vid Ch	iu	Ø	<u>12</u>	
Sample Name	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo Ti ppm ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm	V mqq	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	A] X	Ca X	Fe X	Mg %	к х	-
Abe-93 118+00N 112+00E	Š 5	<	45	23	100	<	< .	<	5 🔫	<	<	24	36	244	<	63	175	3211	3	66	2	6	0.22	3.19	0.37	5.94	1.50	0.07	
Abe-93 118+00N 113+00E	Š 8	<	27	22 🕄	118	10	<	<	4 🔍	<	<	23	20	465	6	40	140	3241	<	265	<	4	0.09	3.52	0.63	4.76	1.61	0.07	
Abe-93 118+00N 114+00E	Š 13	<	98	26 🕺	160	.15	8	<	4 🔍	<	<	29	69	296	<	121	151	1694	2	109	<	7	0.06	5.01	0.48	6.12	2.48	0.09	
Abe-93 118+00N 115+00E	Š 25	<	88	27 🛞	179	<	<	<	3 🛸	3	<	28	33	217	<	50	155	1784	3	146	1	7	0.16	4.76	0.73	5.78	2.06	0.08	
Abe-93 118+00N 116+00E	<u></u> <u>5</u> 47	<	89	20	225	<	<	<	2	<	<	19	27	210	<	44	97	945	3	112	1	3	0.08	4,47	0.47	4.42	1.42	0.06	
Abe-93 118+00N 117+00E	§ 13	<	62	19	171	<	<	<	4	<	<	28	45	276	<	93	123	3288	4	98	<	6	0.11	3.78	0.63	4.87	2.04	0.07	
Abe-93 118+00N 118+00E	<u>§</u> 17	0.7	162	34	898	<	<	<	5 <	<	<	40	56	347	5	147	154	3052	6	104	2	15	0.08	5.41	0.70	6.33 3	3.04	0.07	
Abe93 118+00N 119+00E	<u>Ş</u> 21	<	90	22	102	<	<	<	3 <	<	<	27	25	427	<	41	141	1254	3	149	5	8	0.12	5.67	0.77	4.92	.47	0.09	
Abe-93 118+00N 120+00E	Š 20	0.1	97	30 🛞	200	<	<	<	4	<	<	30	23	220	<	33	136	1914	3	119	2	5	0.07	5,15	0.82	5.23	.54	0.12	'

Min Limit50.112155311020.1112512110.01<th

Client Marianes Gesign(21) Services Lud. int: 3312001 Out: Sep 27, 1933 Page 4 of 4 Section 2 of 2 Certified EC Assayer: David Chiu Xa P Ace-33 118-000 112-000 \$ 0.03 0.03 Ace-33 118-000 113-000 \$ 0.03 0.03 Ace-33 118-000 113-000 \$ 0.02 0.03 Ace-33 118-000 120-000 \$ 0.03 Ace-33 118-000 \$ 0.03 0.03 0.03 Ace-33 118-000 \$ 0.03 0.03 0.03 0.03 Ace-33 118-000 \$ 0.03 0.03 0.03 0.03 0.03 0.03 0.03		NTORY LTD.		CERTIFICATE OF ANA iPL 9312001	LYSIS		2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898
Sample Name Ni F Ab=33 119-000 124-000 § 0.03 0.14 Ab=33 119-000 119-000 § 0.03 0.14 Ab=33 119-000 119-000 § 0.02 0.13 Ab=33 119-000 119-000 § 0.02 0.14 Ab=33 119-000 119-000 § 0.02 0.13 Ab=33 119-000 119-000 § 0.02 0.03 Ab=33 119-000 120-000 § 0.02 0.03 Ab=33 119-000 120-000 § 0.02 0.01	Client: Reliance Geo Project: ABE 12	logical Services Ltd. 6 Soil	TPL: 9312001	Out: Sep 27, 1993 In: Sep 20, 1993	Page 4 of	4 Section 2 o Certified BC Assay	ver: David Chiu
Abe-32 119-001 112-002 \$ 0.03 0.13 Abe-33 119-001 113-002 \$ 0.03 0.13 Abe-33 119-001 113-002 \$ 0.02 0.03 Abe-33 119-001 113-002 \$ 0.02 0.03 Abe-33 119-001 113-002 \$ 0.02 0.13 Abe-33 119-001 113-002 \$ 0.02 0.13 Abe-33 119-001 113-002 \$ 0.02 0.11 Abe-33 119-001 120-002 \$ 0.02 0.11	Sample Name	Na P X X					
Abe-33 118-00N 117-00E § 0.02 0.03 Abe-33 118-00N 117-00E § 0.02 0.09 Abe-33 118-00N 1120-00E § 0.02 0.11 Abe-33 118-00N 120-00E § 0.02 0.11	Abe-93 118+00N 112+00 Abe-93 118+00N 113+00 Abe-93 118+00N 113+00 Abe-93 118+00N 114+00 Abe-93 118+00N 115+00 Abe-93 118+00N 116+00	E \$ 0.03 0.14 E \$ 0.03 0.13 E \$ 0.03 0.07 E \$ 0.02 0.08 E \$ 0.03 0.09					
	Abe-93 118+00N 117+00 Abe-93 118+00N 118+00 Abe-93 118+00N 119+00 Abe-93 118+00N 120+00 Abe-93 118+00N 120+00	E \$ 0.02 0.13 E \$ 0.02 0.09 E \$ 0.04 0.10 E \$ 0.02 0.11					
				· · ·			
	• •						
	Min Limit	0.01 0.01					

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Method of Gold analysis by Fire Assay / AAS

- (a) 20.0 to 30.0 grams of sample is mixed with a combination of fluxes in a fusion pot. The sample is then fused at high temperature to form a lead "button".
- (b) The precious metals are extracted by cupellation. Any Silver is dissolved by nitric acid and decanted. The gold bead is then dissolved in boiling concentrated aqua regia solution heated by a hot water bath.
- (c) The gold in solution is determined with an Atomic Absorption Spectrometer. The gold value, in parts per billion, is calculated by comparision with a set of known gold standards.

QUALITY CONTROL

Every fusion of 24 pots contains 22 samples, one internal standard or blank, and a random reweigh of one of the samples. Samples with anomalous gold values greater than 500 ppb are automatically checked by Fire Assay/AA methods. Samples with gold values greater than 10000 ppb are automatically checked by Fire Assay/Gravimetric methods.

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Method of ICP Multi-element Analyses

- (a) 0.50 grams of sample is digested with diluted aqua regia solution by heating in a hot water bath for 90 minutes, then cooled, bulked up to a fixed volume with demineralized water, and thoroughly mixed.
- (b) The specific elements are determined using an Inductively Coupled Argon Plasma spectrophotometer. All elements are corrected for inter-element interference. All data are subsequently stored onto computer diskette.
 - * Aqua regia leaching is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

QUALITY CONTROL

The machine is calibrated using six known standards and a blank. Another blank, which was digested with the samples, and a standard are tested before any samples to confirm the calibration. A maximum of 20 samples are analysed, and then a standard, also digested with the samples, is run. A known standard with characteristics best matching the samples is chosen and tested. Another 20 samples are analysed, with the last one being a random reweigh of one of the samples. The standard used at the beginning is rerun. This procedure is repeated for all of the samples.

	19	92 Rock	. Sample	es-Sign	ificant Results
a 1	—	Width	Cu	Au	
Sample	Type	<u>(m)</u>	(ppm)	(dqq)	Description
12357	Select	-	2.3% 1	4000 I	Diorite subcrop with pyrite blebs and 2% chalco- pyrite. 47.5 ppm Ag.
12358	Chip	0.3	2231	7	Hybrid unit with malachite stain.
12360	Select	_	2.78 4	4070	Hybrid unit hosting flat- lying quartz veins mineralized with chalcopyrite and tetrahedrite. 79 ppm Ag.
12367	Chip	3.0	3261	< 5	Shear zone in malachite stain pyroxenite.
12477	Select	-	665	366	Pyroxenite with quartz veinlets.
12023	Chip	1.0	1440	202	Rusty andesite with trace chalcopyrite.
12025	Chip	2.0	11961	1100	Andesite porphyry with pyrite blebs and malachite/ azurite stain.
12201	Chip	0.5	272	398	Lapilli tuff with moderate ankerite alteration and disseminated pyrite/ pyrrhotite up to 10%
12203	Panel	2 m ²	2.4%	99	Pyroxenite with strong malachite and limonite stain.
12205	Chip	2.0	1925	< 5	Quartz-feldspar dyke with moderate malachite/ azurite stain.
12206 .	Chip	1.0	1744	82	
12206 (reassayed)	2202	117	

APPENDIX B

STATISTICAL ANALYSIS

SOIL SAMPLE GEOCHEMISTRY ON THE ABE PROPERTY British Columbia

By

A.M.S.Clark, Ph.D., P.Geo.(B.C.) SEGURO CONSULTING INC.

6 October 1993

INTRODUCTION

An investigation of the distribution of gold and copper in soil samples from the Abe Property was carried out between 4 October and 6 October 1993.

This report is part of a larger report on the Abe Property and is based on an evaluation of the geochemical analyses only, the author has not visited the property.

A total of 158 samples from one grid on the property were analysed in 1992, and were reported previously (Clark, 28 September 1992) as part of a larger report on the project. An additional 111 samples were analysed in 1993.

DISCUSSION

Following discussions with the analytical laboratory staff (International Plasma Laboratories, Vancouver) and a review of the overall statistics of the 1992 and 1993 sample results, it has been determined that the variation between the 1992 analyses and the 1993 analyses is primarily due to sample variation, not analytical procedure. The two sets of samples have therefore been evaluated as a single set of samples.

Summary statistics and correlation coefficients have been calculated for the main elements of interest, and histograms plotted for gold and copper (see Appendix).

Gold:

Gold values are show many high values, ranging up to 1670 ppb Au (see Summary Statistics Tables). Gold shows a moderate correlation with silver, and a low correlation with arsenic. There is no correlation between gold and copper (see Correlation Coefficient Tables).

The detailed histogram of gold shows an irregular distribution that may be a log-normal Gaussian distribution incompletely defined due to an insufficient data set. This irregular data distribution ends at about 600 ppb, with isolated higher values of gold up to 1670 ppb (see histograms).

The 'breakpoints' for the symbol sizes used on the symbol maps were determined by inspection of the detailed histogram. All 'breakpoint' values are high compared to the usual soil values in British Columbia. The following are the 'breakpoints' chosen as showing the most useful pattern of values on the maps:

Gold:	Low values	>=100 and <200 ppb Au
	Medium values	>=200 and <600 ppb Au
	Higher values	>=600 ppb Au.

The higher values are located mainly in the east of the grid and extending from there to the northwest in the newly sampled area. This strongly confirms and extends the very weak anomalous area located in 1992.

Copper:

Copper shows a strong correlation with cobalt, a moderate correlation with molybdenum and nickel, and a very weak correlation with silver. Copper shows medium to high background values (above 100 ppm Cu, see Statistics Tables and histograms) and an irregular log-normal distribution ending at about 700 ppm, with a possible overlapping second population from 550 ppm to about 1100 ppm. Copper high values are distributed in the central part of the grid, and are not spatially associated with the high gold values. The following are the 'breakpoints' chosen as showing the most useful pattern of values on the maps:

Copper:	Low values	>=250 and <550 ppm Cu
	Medium values	>=550 and <1100 ppm Cu
	Higher values	>=1100 ppm Cu.

CONCLUSION

There is a significant area of higher gold results in the east part of the grid, trending northwest. This gold zone should be further investigated by sampling to the east and southeast. In addition, there is a zone of higher copper values, with little or no gold associated, in the central part of the grid and trending northwest. This copper zone appears to flank the gold zone on the west side of the gold zone, and requires further sampling to the northwest to locate the extension of the copper zone.

Although gold and copper are not correlated statistically, they could be genetically related, with the copper zone being the deeper, more mesothermal, part, and the gold zone being a shallower, part of a single mineralising system.

3

•

CERTIFICATE

4

I, ANTHONY M.S. CLARK, of 2988 Fleet Street, Coquitlam, B.C., dohereby state that:

- I am a graduate of the University of Cape Town, Cape Town, South Africa, with a Bachelor of Science Degree in Geology, 1963, and of Memorial University, St. John's, Newfoundland, with a Doctor of Philosophy Degree in Geology, 1974.
- 2. I am registered as a Professional Geologist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I actively pursued my career as an exploration geologist for twenty-three years from 1963 to 1986, since when I have undertaken consulting in the fields of mineral exploration and computer applications to exploration.
- 4. The information, opinions, and recommendations in this report are based on information obtained by other personnel who undertook the fieldwork on the property, and on published and unpublished literature. I have not visited the subject property.
- 5. I have no interest, direct or indirect, in the subject claims or the securities of Swannell Minerals Corporation.
- 6. I consent to the use of this report in Prospectus or Statement of Material Facts for the purpose of private or public financing.

Anthony M.S. Clark, Ph.D., P.Geo.(B.C.)

Dated at Coquitlam, British Columbia,

6" October 1997

APPENDICES

5

ABE Project, 1992 + 1993 Summary Statistics:

Summary Statistics							
	Ag_ppm	As_ppm	Au_ppb	Ba_ppm	Bi_ppm	Cd_ppm	Co_ppm
Number	284	284	284	284	284	284	284
Mean	0.2046	4.206	60.651	128.489	1.067	0.0634	38.194
Std Dev	0.3331	8.649	166.539	125.794	0.345	0.1425	25.505
Maximum	3.10	112.0	1670.0	996.0	4.0	2.40	215.0
Minimum	0.05	2.5	2.5	6.0	1.0	0.05	6.0
Range	3.05	109.5	1667.5	990.0	3.0	2.35	209.0
Coef Var	162.8198	205.6249	274.5841	97.9023	32.3581	224.7842	66.7787
Std Err	0.0198	0.5132	9.8823	7.4645	0.0205	0.0085	1.5135
Median	0.050	2.50	6.50	86.00	1.00	0.050	32.00
Mode	0.05	2.5	2.5	44.0	1.0	0.05	17.0
Std Dev	0.3331	8.649	166.539	125.794	0.345	0.1425	25.505
Variance	0.1110	74.798	27735.279	15824.159	0.119	0.0203	650.517
Skewness	4.4702	10,1360	5.6037	2.8581	6.1740	15.6057	2.9314
Kurtosis	27.2019	113.2091	39.8138	11.4926	42.3090	251.9192	12.9513

Number284284284284284284284284Mean218.958243.1371.7292.0601029.3176.94Std Dev142.637310.0140.6291.7811181.7557.26Maximum731.01824.05.019.013206.062Minimum23.02.01.51.083.01Range708.01822.03.518.013123.061Coef Var65.1437127.505736.407586.4775114.8096104.685Std Err8.464018.39590.03740.105770.12420.433Median187.50112.001.501.00692.005.0Mode92.027.01.51.0365.03Std Dev142.637310.0140.6291.7811181.7557.26Variance20345.38396108.6980.3963.1731396544.10452.76Skewness0.99382.32852.69483.90585.84223.275Kurtosis0.76376.12136.477428.194448.256715.248		Cr_ppm	Cu_ppm	Hg_ppm	La_ppm	Mn_ppm	Mo_ppm
Mean218.958243.1371.7292.0601029.3176.94Std Dev142.637310.0140.6291.7811181.7557.26Maximum731.01824.05.019.013206.062Minimum23.02.01.51.083.01Range708.01822.03.518.013123.061Coef Var65.1437127.505736.407586.4775114.8096104.685Std Err8.464018.39590.03740.105770.12420.433Median187.50112.001.501.00692.005.0Mode92.027.01.51.0365.03Std Dev142.637310.0140.6291.7811181.7557.26Variance20345.38396108.6980.3963.1731396544.10452.76Skewness0.99382.32852.69483.90585.84223.275Kurtosis0.76376.12136.477428.194448.256715.248	Number	284	284	284	284	284	284
Std Dev142.637310.0140.6291.7811181.7557.26Maximum731.01824.05.019.013206.062Minimum23.02.01.51.083.01Range708.01822.03.518.013123.061Coef Var65.1437127.505736.407586.4775114.8096104.685Std Err8.464018.39590.03740.105770.12420.432Median187.50112.001.501.00692.005.0Mode92.027.01.51.0365.03Std Dev142.637310.0140.6291.7811181.7557.26Variance20345.38396108.6980.3963.1731396544.10452.76Skewness0.99382.32852.69483.90585.84223.275Kurtosis0.76376.12136.477428.194448.256715.245	Mean	218.958	243.137	1.729	2.060	1029.317	6.940
Maximum731.01824.05.019.013206.062Minimum23.02.01.51.083.01Range708.01822.03.518.013123.061Coef Var65.1437127.505736.407586.4775114.8096104.685Std Err8.464018.39590.03740.105770.12420.432Median187.50112.001.501.00692.005.0Mode92.027.01.51.0365.03Std Dev142.637310.0140.6291.7811181.7557.26Variance20345.38396108.6980.3963.1731396544.10452.76Skewness0.99382.32852.69483.90585.84223.275Kurtosis0.76376.12136.477428.194448.256715.248	Std Dev	142.637	310.014	0.629	1.781	1181.755	7.265
Minimum23.02.01.51.083.01Range708.01822.03.518.013123.061Coef Var65.1437127.505736.407586.4775114.8096104.685Std Err8.464018.39590.03740.105770.12420.433Median187.50112.001.501.00692.005.0Mode92.027.01.51.0365.03Std Dev142.637310.0140.6291.7811181.7557.26Variance20345.38396108.6980.3963.1731396544.10452.76Skewness0.99382.32852.69483.90585.84223.275Kurtosis0.76376.12136.477428.194448.256715.248	Maximum	731.0	1824.0	5.0	19.0	13206.0	62.0
Range708.01822.03.518.013123.061Coef Var65.1437127.505736.407586.4775114.8096104.685Std Err8.464018.39590.03740.105770.12420.433Median187.50112.001.501.00692.005.0Mode92.027.01.51.0365.03Std Dev142.637310.0140.6291.7811181.7557.26Variance20345.38396108.6980.3963.1731396544.10452.76Skewness0.99382.32852.69483.90585.84223.275Kurtosis0.76376.12136.477428.194448.256715.248	Minimum	23.0	2.0	1.5	1.0	83.0	1.0
Coef Var 65.1437 127.5057 36.4075 86.4775 114.8096 104.685 Std Err 8.4640 18.3959 0.0374 0.1057 70.1242 0.437 Median 187.50 112.00 1.50 1.00 692.00 5.0 Mode 92.0 27.0 1.5 1.0 365.0 3 Std Dev 142.637 310.014 0.629 1.781 1181.755 7.26 Variance 20345.383 96108.698 0.396 3.173 1396544.104 52.78 Skewness 0.9938 2.3285 2.6948 3.9058 5.8422 3.275 Kurtosis 0.7637 6.1213 6.4774 28.1944 48.2567 15.245	Range	708.0	1822.0	3.5	18.0	13123.0	61.0
Std Err 8.4640 18.3959 0.0374 0.1057 70.1242 0.433 Median 187.50 112.00 1.50 1.00 692.00 5.0 Mode 92.0 27.0 1.5 1.0 365.0 3 Std Dev 142.637 310.014 0.629 1.781 1181.755 7.26 Variance 20345.383 96108.698 0.396 3.173 1396544.104 52.76 Skewness 0.9938 2.3285 2.6948 3.9058 5.8422 3.275 Kurtosis 0.7637 6.1213 6.4774 28.1944 48.2567 15.245	Coef Var	65.1437	127.5057	36.4075	86.4775	114.8096	104.6850
Median187.50112.001.501.00692.005.0Mode92.027.01.51.0365.03Std Dev142.637310.0140.6291.7811181.7557.26Variance20345.38396108.6980.3963.1731396544.10452.76Skewness0.99382.32852.69483.90585.84223.275Kurtosis0.76376.12136.477428.194448.256715.245	Std Err	8.4640	18.3959	0.0374	0.1057	70.1242	0.4311
Mode92.027.01.51.0365.03Std Dev142.637310.0140.6291.7811181.7557.26Variance20345.38396108.6980.3963.1731396544.10452.76Skewness0.99382.32852.69483.90585.84223.275Kurtosis0.76376.12136.477428.194448.256715.245	Median	187.50	112.00	1.50	1.00	692.00	5.00
Std Dev142.637310.0140.6291.7811181.7557.26Variance20345.38396108.6980.3963.1731396544.10452.78Skewness0.99382.32852.69483.90585.84223.275Kurtosis0.76376.12136.477428.194448.256715.245	Mode	92.0	27.0	1.5	1.0	365.0	3.0
Variance20345.38396108.6980.3963.1731396544.10452.76Skewness0.99382.32852.69483.90585.84223.275Kurtosis0.76376.12136.477428.194448.256715.245	Std Dev	142.637	310.014	0.629	1.781	1181.755	7.265
Skewness0.99382.32852.69483.90585.84223.275Kurtosis0.76376.12136.477428.194448.256715.245	Variance	20345.383	96108.698	0.396	3.173	1396544.104	52.784
Kurtosis 0.7637 6.1213 6.4774 28.1944 48.2567 15.24	Skewness	0.9938	2.3285	2.6948	3.9058	5.8422	3.2758
	Kurtosis	0.7637	6.1213	6.4774	28.1944	48.2567	15.2456

:

۲. ح ABE Project, 1992 + 1993 Summary Statistics, (continued):

Summary S	Statistics	5					
	Ni_ppm	Pb_ppm	Sb_ppm	Sc_ppm	Sr_ppm	Tl_ppm	V_ppm
Number	284	284	284	284	284	284	284
Mean	76.940	25.648	5.437	5.863	67.130	5.000	128.553
Std Dev	42.144	38.806	3.483	4.856	82.842	0.000	55.918
Maximum	237.0	311.0	19.0	31.0	543.0	5.0	331.0
Minimum	6.0	1.0	2.5	1.0	2.0	5.0	33.0
Range	231.0	310.0	16.5	30.0	541.0	0.0	298.0
Coef Var	54.7754	151.3010	64.0628	82.8309	123.4042	0.0000	43.4977
Std Err	2.5008	2.3027	0.2067	0.2882	4.9157	0.0000	3.3181
Median	71.50	15.00	5.00	5.00	39.00	5.00	120.50
Mode	64.0	1.0	2.5	3.0	11.0	5.0	71.0
Std Dev	42.144	38.806	3.483	4.856	82.842		55.918
Variance	1776.141	1505.869	12.130	23.582	6862.729	0.000	3126.771
Skewness	0.7920	3.6357	1.1214	2.2505	2.9584		0.8965
Kurtosis	0.6170	17.1368	0.7374	6.1951	10.4855		0.7182

	₩_ppm	Zn_ppm	Zr_ppm
Number	284	284	284
Mean	3.206	72.169	1.181
Std Dev	8.954	71.485	0.889
Maximum	153.0	898.0	11.0
Minimum	2.5	14.0	0.5
Range	150.5	884.0	10.5
Coef Var	279.2865	99.0519	75.2116
Std Err	0.5313	4.2418	0.0527
Median	2.50	55.00	1.00
Mode	2.5	47.0	1.0
Std Dev	8.954	71.485	0.8890
Variance	80.172	5110.077	0.789
Skewness	16.4885	6.8960	6.1138
Kurtosis	272.8134	67.6215	55.6700

Pearson Correlat	tion Coeff	icients					
Ag_ppm	As_ppm	Au_ppb	Ba_ppm	Bi_ppm	Cd_ppm	Co_ppm	
Ag_ppm 1.	0.5013	0.4751	0.1402	0.2816	0.5084	0.3926	
As_ppm 0.5013	1.	0.3078	0.0417	0.5025	0.7273	0.3963	
Au_ppb 0.4751	0.3078	1.	0.0769	0.1584	0.2399	0.3242	
Ba_ppm 0.1402	0.0417	0.0769	1.	0.2562	0.0344	-0.0871	
Bi ppm 0.2816	0.5025	0.1584	0.2562	1.	0.5529	0.1960	
Cd ppm 0.5084	0.7273	0.2399	0.0344	0.5529	1.	0.1199	
Co ppm 0.3926	0.3963	0.3242	-0.0871	0.1960	0.1199	1.	
Cr ppm 0.0237	-0.0008	-0.0069	-0.3488	-0.0647	0.0553	0.2237	
Cu ppm 0.2755	0.0896	0.0912	-0.1361	0.0466	0.0217	0.6289	
Hg ppm -0.0509	-0.0637	-0.0806	-0.0260	-0.0707	-0.0037	0.0343	
La ppm 0.2494	0.0636	0.1268	0.4703	0.1544	0.0365	0.0974	
Mn ppm 0.3932	0.5118	0.3304	0.3806	0.4047	0.4160	0.3267	
MO PPM 0.2386	-0.0247	0.0185	-0.0602	-0.0533	-0.0190	0.3824	
Ni ppm 0.3328	0.2340	0.2536	-0.1964	0.0564	0.1248	0.7168	
Pb ppm 0.2307	0.0839	-0.0130	0.1426	0.2101	0.1360	0.1326	
Sb ppm -0.0918	-0.1087	-0.1791	-0.2518	-0.1081	-0.0348	0.0462	
Sc ppm 0.4312	0.2576	0.5348	0.0992	0.1320	0.0943	0.5468	. •
Sr ppm 0.0238	-0.0178	-0.0506	0.5183	-0.0396	-0.0547	-0.0566	•
Tloom undef.	undef.	undef.	undef.	undef.	undef.	undef.	
V ppm 0 2910	0 2195	0 4591	0.0141	0.1127	0.0630	0.3776	
W DDm -0.0164	0.0891	-0.0210	0.0319	0.0001	-0.0074	0.0291	·
7n ppm 0 3895	0 3946	0 2066	0.3039	0 2384	0.3614	0.1698	
7r ppm 0 1766	-0.0481	0.0643	0.3276	-0.0339	-0.0409	0.2429	
Pearson Correlat	tion Coeff	icients					
•	_						
Cr_ppm	Cu_ppm	Hg_ppm	La_ppm	Mn_ppm	Mo_ppm	Ni_ppm	
Cr_ppm Ag_ppm 0.0237	Cu_ppm 0.2755	Hg_ppm -0.0509	La_ppm 0.2494	Mn_ppm 0.3932	Mo_ppm 0.2386	Ni_ppm 0.3328	
Ст_ррт Ag_ррт 0.0237 As_ррт -0.0008	Cu_ppm 0.2755 0.0896	Hg_ppm -0.0509 -0.0637	La_ppm 0.2494 0.0636	Mn_ppm 0.3932 0.5118	Mo_ppm 0.2386 -0.0247	Ni_ppm 0.3328 0.2340	
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069	Cu_ppm 0.2755 0.0896 0.0912	Hg_ppm -0.0509 -0.0637 -0.0806	La_ppm 0.2494 0.0636 0.1268	Mn_ppm 0.3932 0.5118 0.3304	Mo_ppm 0.2386 -0.0247 0.0185	Ni_ppm 0.3328 0.2340 0.2536	
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488	Cu_ppm 0.2755 0.0896 0.0912 -0.1361	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260	La_ppm 0.2494 0.0636 0.1268 0.4703	Mn_ppm 0.3932 0.5118 0.3304 0.3806	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602	Ni_ppm 0.3328 0.2340 0.2536 -0.1964	
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564	
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248	
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168	
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1.	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126	· ·
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1.	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464	
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1.	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058	
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071 La_ppm -0.3613	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780 0.0700	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1. -0.1131	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131 1.	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255 0.2789	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723 0.2111	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058 -0.1180	· ·
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071 La_ppm -0.3613 Mn_ppm -0.0624	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780 0.0700 0.0557	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1. -0.1131 -0.0255	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131 1. 0.2789	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255 0.2789 1.	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723 0.2111 -0.0144	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058 -0.1180 0.2207	· ·
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071 La_ppm -0.3613 Mn_ppm -0.0624 Mo_ppm -0.0031	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780 0.0700 0.0557 0.5802	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1. -0.1131 -0.0255 -0.0723	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131 1. 0.2789 0.2111	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255 0.2789 1. -0.0144	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723 0.2111 -0.0144 1.	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058 -0.1180 0.2207 0.3396	· · · · · · · · · · · · · · · · · · ·
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071 La_ppm -0.3613 Mn_ppm -0.0624 Mo_ppm 0.6126	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780 0.0700 0.0557 0.5802 0.4464	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1. -0.1131 -0.0255 -0.0723 0.1058	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131 1. 0.2789 0.2111 -0.1180	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255 0.2789 1. -0.0144 0.2207	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723 0.2111 -0.0144 1. 0.3396	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058 -0.1180 0.2207 0.3396 1.	· · · · ·
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071 La_ppm -0.3613 Mn_ppm -0.0624 Mo_ppm -0.0031 Ni_ppm 0.6126 Pb_ppm 0.3399	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780 0.0700 0.0557 0.5802 0.4464 -0.1172	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1. -0.1131 -0.0255 -0.0723 0.1058 0.0603	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131 1. 0.2789 0.2111 -0.1180 -0.0121	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255 0.2789 1. -0.0144 0.2207 0.0919	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723 0.2111 -0.0144 1. 0.3396 0.0277	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058 -0.1180 0.2207 0.3396 1. 0.1779	· ·
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.3488 Bi_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071 La_ppm -0.3613 Mn_ppm -0.0624 Mo_ppm -0.0031 Ni_ppm 0.6126 Pb_ppm 0.3399 Sb_ppm 0.8472	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780 0.0700 0.0557 0.5802 0.4464 -0.1172 -0.1187	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1. -0.1131 -0.0255 -0.0723 0.1058 0.0603 0.2077	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131 1. 0.2789 0.2111 -0.1180 -0.0121 -0.3445	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255 0.2789 1. -0.0144 0.2207 0.0919 -0.1728	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723 0.2111 -0.0144 1. 0.3396 0.0277 -0.0402	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058 -0.1180 0.2207 0.3396 1. 0.1779 0.3851	· · ·
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071 La_ppm -0.3613 Mn_ppm -0.0624 Mo_ppm -0.0031 Ni_ppm 0.6126 Pb_ppm 0.3399 Sb_ppm 0.8472 Sc_ppm 0.1775	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780 0.0700 0.0557 0.5802 0.4464 -0.1172 -0.1187 0.2177	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1. -0.1131 -0.0255 -0.0723 0.1058 0.0603 0.2077 0.0144	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131 1. 0.2789 0.2111 -0.1180 -0.0121 -0.3445 0.1607	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255 0.2789 1. -0.0144 0.2207 0.0919 -0.1728 0.4200	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723 0.2111 -0.0144 1. 0.3396 0.0277 -0.0402 0.1396	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058 -0.1180 0.2207 0.3396 1. 0.1779 0.3851 0.5505	· · ·
Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071 La_ppm -0.0624 Mo_ppm -0.0031 Ni_ppm 0.6126 Pb_ppm 0.3399 Sb_ppm 0.8472 Sc_ppm 0.1775 Sr_ppm -0.4591	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780 0.0700 0.0557 0.5802 0.4464 -0.1172 -0.1187 0.2177 0.0615	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1. -0.1131 -0.0255 -0.0723 0.1058 0.0603 0.2077 0.0144 0.0717	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131 1. 0.2789 0.2111 -0.1180 -0.0121 -0.3445 0.1607 0.3033	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255 0.2789 1. -0.0144 0.2207 0.0919 -0.1728 0.4200 0.0578	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723 0.2111 -0.0144 1. 0.3396 0.0277 -0.0402 0.1396 0.0887	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058 -0.1180 0.2207 0.3396 1. 0.1779 0.3851 0.5505 -0.2037	· · ·
Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071 La_ppm -0.3613 Mn_ppm -0.0624 Mo_ppm 0.0031 Ni_ppm 0.6126 Pb_ppm 0.3399 Sb_ppm 0.8472 Sc_ppm 0.1775 Sr_ppm -0.4591 Tl_ppm undef.	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780 0.0700 0.0557 0.5802 0.4464 -0.1172 -0.1187 0.2177 0.0615 undef.	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1. -0.1131 -0.0255 -0.0723 0.1058 0.0603 0.2077 0.0144 0.0717 undef.	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131 1. 0.2789 0.2111 -0.1180 -0.0121 -0.3445 0.1607 0.3033 undef.	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255 0.2789 1. -0.0144 0.2207 0.0919 -0.1728 0.4200 0.0578 undef.	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723 0.2111 -0.0144 1. 0.3396 0.0277 -0.0402 0.1396 0.0887 undef.	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058 -0.1180 0.2207 0.3396 1. 0.1779 0.3851 0.5505 -0.2037 undef.	· · · · · · · · · · · · · · · · · · ·
Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071 La_ppm -0.3613 Mn_ppm -0.0624 Mo_ppm 0.6126 Pb_ppm 0.3399 Sb_ppm 0.8472 Sc_ppm 0.1775 Sr_ppm -0.4591 Tl_ppm undef. V_ppm -0.0628	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780 0.0700 0.0557 0.5802 0.4464 -0.1172 -0.1187 0.2177 0.0615 undef. 0.2650	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1. -0.1131 -0.0255 -0.0723 0.1058 0.0603 0.2077 0.0144 0.0717 undef. -0.1055	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131 1. 0.2789 0.2111 -0.1180 -0.0121 -0.3445 0.1607 0.3033 undef. 0.0140	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255 0.2789 1. -0.0144 0.2207 0.0919 -0.1728 0.4200 0.0578 undef. 0.2805	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723 0.2111 -0.0144 1. 0.3396 0.0277 -0.0402 0.1396 0.0887 undef. 0.1070	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058 -0.1180 0.2207 0.3396 1. 0.1779 0.3851 0.5505 -0.2037 undef. 0.4307	· · · · · · · · · · · · · · · · · · ·
Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071 La_ppm -0.3613 Mn_ppm -0.0624 Mo_ppm -0.0031 Ni_ppm 0.6126 Pb_ppm 0.3399 Sb_ppm 0.8472 Sc_ppm 0.1775 Sr_ppm -0.4591 Tl_ppm undef. V_ppm -0.0628 W_ppm -0.0736	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780 0.0700 0.0557 0.5802 0.4464 -0.1172 -0.1187 0.2177 0.0615 undef. 0.2650 -0.0198	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1. -0.1131 -0.0255 -0.0723 0.1058 0.0603 0.2077 0.0144 0.0717 undef. -0.1055 -0.0255	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131 1. 0.2789 0.2111 -0.1180 -0.0121 -0.3445 0.1607 0.3033 undef. 0.0140 0.1018	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255 0.2789 1. -0.0144 0.2207 0.0919 -0.1728 0.4200 0.0578 undef. 0.2805 0.0657	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723 0.2111 -0.0144 1. 0.3396 0.0277 -0.0402 0.1396 0.0887 undef. 0.1070 0.0452	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058 -0.1180 0.2207 0.3396 1. 0.1779 0.3851 0.5505 -0.2037 undef. 0.4307 -0.0477	· · · · · · · · · · · · · · · · · · ·
Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071 La_ppm -0.0624 Mo_ppm -0.0031 Ni_ppm 0.6126 Pb_ppm 0.3399 Sb_ppm 0.8472 Sc_ppm 0.1775 Sr_ppm -0.4591 Tl_ppm undef. V_ppm -0.0628 W_ppm -0.0736 Zn_ppm -0.0662	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780 0.0700 0.0557 0.5802 0.4464 -0.1172 -0.1187 0.2177 0.0615 undef. 0.2650 -0.0198 -0.0134	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1. -0.1131 -0.0255 -0.0723 0.1058 0.0603 0.2077 0.0144 0.0717 undef. -0.1055 -0.0255 -0.0523	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131 1. 0.2789 0.2111 -0.1180 -0.0121 -0.3445 0.1607 0.3033 undef. 0.0140 0.1018 0.2909	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255 0.2789 1. -0.0144 0.2207 0.0919 -0.1728 0.4200 0.0578 undef. 0.2805 0.0657 0.4558	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723 0.2111 -0.0144 1. 0.3396 0.0277 -0.0402 0.1396 0.0887 undef. 0.1070 0.0452 -0.0422	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058 -0.1180 0.2207 0.3396 1. 0.1779 0.3851 0.5505 -0.2037 undef. 0.4307 -0.0477 0.1407	· · · · · · · · · · · · · · · · · · ·
Cr_ppm Ag_ppm 0.0237 As_ppm -0.0008 Au_ppb -0.0069 Ba_ppm -0.3488 Bi_ppm -0.0647 Cd_ppm 0.0553 Co_ppm 0.2237 Cr_ppm 1. Cu_ppm -0.0766 Hg_ppm 0.2071 La_ppm -0.3613 Mn_ppm -0.0624 Mo_ppm -0.0624 Mo_ppm 0.6126 Pb_ppm 0.3399 Sb_ppm 0.8472 Sc_ppm 0.8472 Sc_ppm 0.1775 Sr_ppm -0.4591 Tl_ppm undef. V_ppm -0.0628 W_ppm -0.0628 W_ppm -0.0662 Zn_ppm -0.0602	Cu_ppm 0.2755 0.0896 0.0912 -0.1361 0.0466 0.0217 0.6289 -0.0766 1. -0.0780 0.0700 0.0557 0.5802 0.4464 -0.1172 -0.1187 0.2177 0.0615 undef. 0.2650 -0.0198 -0.0134 0.1378	Hg_ppm -0.0509 -0.0637 -0.0806 -0.0260 -0.0707 -0.0037 0.0343 0.2071 -0.0780 1. -0.1131 -0.0255 -0.0723 0.1058 0.0603 0.2077 0.0144 0.0717 undef. -0.1055 -0.0255 -0.0523 -0.0287	La_ppm 0.2494 0.0636 0.1268 0.4703 0.1544 0.0365 0.0974 -0.3613 0.0700 -0.1131 1. 0.2789 0.2111 -0.1180 -0.0121 -0.3445 0.1607 0.3033 undef. 0.0140 0.1018 0.2909 0.6272	Mn_ppm 0.3932 0.5118 0.3304 0.3806 0.4047 0.4160 0.3267 -0.0624 0.0557 -0.0255 0.2789 1. -0.0144 0.2207 0.0919 -0.1728 0.4200 0.0578 undef. 0.2805 0.0657 0.4558 0.1408	Mo_ppm 0.2386 -0.0247 0.0185 -0.0602 -0.0533 -0.0190 0.3824 -0.0031 0.5802 -0.0723 0.2111 -0.0144 1. 0.3396 0.0277 -0.0402 0.1396 0.0887 undef. 0.1070 0.0452 -0.0422 0.3487	Ni_ppm 0.3328 0.2340 0.2536 -0.1964 0.0564 0.1248 0.7168 0.6126 0.4464 0.1058 -0.1180 0.2207 0.3396 1. 0.1779 0.3851 0.5505 -0.2037 undef. 0.4307 -0.0477 0.1407 0.1099	

Pearson	Correlat	ion Coeff	icients				
	Pb_ppm	Sb_ppm	Sc_ppm	Sr_ppm	Tl_ppm	V_ppm	W_ppm
Ag_ppm	0.2307	-0.0918	0.4312	0.0238	undef.	0.2910	-0.0164
As_ppm	0.0839	-0.1087	0.2576	-0.0178	undef.	0.2195	0.0891
Au_ppb	-0.0130	-0.1791	0.5348	-0.0506	undef.	0.4591	-0.0210
Ba_ppm	0.1426	-0.2518	0.0992	0.5183	undef.	0.0141	0.0319
Bi_ppm	0.2101	-0.1081	0.1320	-0.0396	undef.	0.1127	0.0001
Cd_ppm	0.1360	-0.0348	0.0943	-0.0547	undef.	0.0630	-0.0074
Co_ppm	0.1326	0.0462	0.5468	-0.0566	undef.	0.3776	0.0291
Cr_ppm	0.3399	0.8472	0.1775	-0.4591	undef.	-0.0628	-0.0736
Cu_ppm	-0.1172	-0.1187	0.2177	0.0615	undef.	0.2650	-0.0198
Hg_ppm	0.0603	0.2077	0.0144	0.0717	undef.	-0.1055	-0.0255
La_ppm	-0.0121	-0.3445	0.1607	0.3033	undef.	0.0140	0.1018
Mn_ppm	0.0919	-0.1728	0.4200	0.0578	undef.	0.2805	0.0657
Mo_ppm	0.0277	-0.0402	0.1396	0.0887	undef.	0.1070	0.0452
Ni_ppm	0.1779	0.3851	0.5505	-0.2037	undef.	0.4307	-0.0477
Pb_ppm	1.	0.3321	0.1284	-0.1676	undef.	-0.0941	-0.0126
Sb_ppm	0.3321	1.	-0.0470	-0.3126	undef.	-0.2732	-0.0585
Sc_ppm	0.1284	-0.0470	1.	-0.1299	undef.	0.5761	-0.0040
Sr_ppm	-0.1676	-0.3126	-0.1299	1.	undef.	-0.0236	0.1408
Tl_ppm	undef.	undef.	undef.	undef.	1.	undef.	undef.
V_ppm	-0.0941	-0.2732	0.5761	-0.0236	undef.	1.	-0.0096
W_ppm	-0.0126	-0.0585	-0.0040	0.1408	undef.	-0.0096	1.
Zn_ppm	0.1335	-0.1225	0.3850	0.1262	undef.	0.3035	0.0462
Zr_ppm	0.0920	-0.0551	0.2941	0.2076	undef.	0.0188	-0.0100

•

N.

Pearson Correlation Coefficients

1 Cai 3011	conterac	TOUL COCLUTCT
	Zn_ppm	Zr_ppm
Ag_ppm	0.3895	0.1766
As_ppm	0.3946	-0.0481
Au_ppb	0.2066	0.0643
Ba_ppm	0.3039	0.3276
Bi_ppm	0.2384	-0.0339
Cd_ppm	0.3614	-0.0409
Co_ppm	0.1698	0.2429
Cr_ppm	-0.0662	-0.0402
Cu_ppm	-0.0134	0.1378
Hg_ppm	-0.0523	-0.0287
La_ppm	0.2909	0.6272
Mn_ppm	0.4558	0.1408
Mo_ppm	-0.0422	0.3487
Ni_ppm	0.1407	0.1099
Pb_ppm	0.1335	0.0920
Sb_ppm	-0.1225	-0.0551
Sc_ppm	0.3850	0.2941
Sr_ppm	0.1262	0.2076
Tl_ppm	undef.	undef.
V_ppm	0.3035	0.0188
W_ppm	0.0462	-0.0100
Zn_ppm	1.	0.1887
Zr_ppm	0.1887	1.

.

.

...

.

• "

.

APPENDIX C

•

LOGISTICAL REPORT ON IP and MAG SURVEYS

LOGISTICAL REPORT

INDUCED POLARIZATION AND MAGNETOMETER SURVEYS

ABE AND PAL PROPERTIES

OMINECA AREA, B.C.

on behalf of

RELIANCE GEOLOGICAL SEVICES INC. 241 East 1st Street North Vancouver, B. C., V7L 1B4

Field work completed: September 3 to 30, 1993

by

Alan Scott, Geophysicist SCOTT GEOPHYSICS LTD. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

October 9, 1993

TABLE OF CONTENTS

page 1 Introduction 1 2 1 Survey coverage 3 Personnel 1 4 Instrumentation 2 2 5 Recommendations

Appendix

Statement of Qualifications

rear of report

Contents of map pockets

One floppy disk with all IP and mag data - ABE and PAL envelope Chargeability/resistivity pseudosections - ABE (current East) map pocket 1 Chargeability/resistivity pseudosections - ABE (current West) map pocket 2 Chargeability/resistivity pseudosections - PAL (current West) map pocket 3

Accompanying maps (1:5000 scale) (originals, reproducible vellums, three blackline copies)

Chargeability/resistivity pse	eudosections - ABE (4 sheets))	map roll
Chargeability/resistivity pse	eudosections - PAL (3 sheets)) .	map roll
Chargeability contour plan	(2nd separation - a=75/n=2)	- ABE	map roll
Resistivity contour plan	(2nd separation - a=75/n=2)	- ABE	map roll
Magnetometer contour plan	(500 gamma intervals)	- ABE	map roll
Magnetometer Profiles	(1 cm : 1000 gammas)	- ABE	map roll
Magnetometer Total Field Valu	ues: (data postings)	- ABE	map roll
Chargeability contour plan	(2nd separation - a=75/n=2)	- PAL	map roll
Resistivity contour plan	(2nd separation - a=75/n=2)	- PAL	map roll
Magnetometer contour plan	(200 gamma intervals)	- PAL	map roll
Magnetometer Profiles	(1 cm : 500 gammas)	- PAL	map roll
Magnetometer Total Field Value	ues (data postings)	- PAL	map roll

1. INTRODUCTION

Induced polarization/resistivity surveys (IP surveys) and magentometer surveys were performed on the ABE and PAL Properties, Omineca Area, B.C., in the period September 3 to 30, 1993. The surveys were performed by Scott Geophysics Ltd. on behalf of Reliance Geological Services Inc.

The pole dipole array was used for the IP surveys, with an "a" spacing of 75 metres and "n" separations of 1 to 4.

The magnetometer survey was performed at a reading interval of 25 metres.

This report describes the instrumentation and procedures, and presents the results of the surveys.

2. SURVEY COVERAGE

A total of 22.5 line kilometres of IP survey was performed on the ABE property. Lines 9400N to 9800N were surveyed with the current electrode to the west of the receiving electrodes. Lines 11400N and 11600N were surveyed with the current electrode to the east of the receiving electrodes. Lines 10000N to 11200N were surveyed with access from the central area of the survey lines, with the current either east or west, and a few stations overlap.

A total of 13.1 line kilometres of magnetometer survey was completed on the ABE Property. The western portion of lines 100200N to 10800N were not surveyed with magnetometer.

A total of 28.6 line kilometres of IP survey was performed on the PAL property. All lines were IP surveyed with the current electrode to the west of the receiving electrodes on the PAL Property.

A total of 26.5 line kilometres of magnetometer survey were completed on the PAL property.

3. PERSONNEL

Ken Moir, geophysical technician, was the party chief on the survey, on behalf of Scott Geophysics.

Peter Leriche, geologist, was the Reliance representative for the survey.
4. INSTRUMENTATION

A Scintrex IPR12 receiver and IPC7 (2.5 kw) transmitter were used on the IP survey. Readings were taken in the time domain using a 2 second current pulse.

The chargeability plotted on the accompanying pseudosections and plan maps is for the interval 690 to 1050 milliseconds after shutoff (midpoint at 870 milliseconds). This corresponds to the M7 value for the IPR11.

Two Scintrex IGS-MP3 total field magnetometers were used for the magnetometer survey, with one as the field survey unit and the other as a fixed base station. The base station failed towards the end of the PAL survey, and that survey data was drift corrected by looping the field unit to repeats (subbase stations) and/or the base station at hourly intervals.

5. RECOMMENDATIONS

A preliminary evaluation of the results of the IP survey at the ABE and PAL Properties indicates the presence of moderate to strong chargeability highs that merit further investigation. Very strong magnetic highs were detected on the south portion of the ABE grid.

Correlation of these geophysical survey results to geological and geochemical information is required before any specific recommendations could be made.

Respectfully Submitted,

Alan Scott, P. Geos.

for

Alan Scott, Geophysicist

of

4013 West 14th Avenue Vancouver, B.C. V6R 2X3

I, Alan Scott, hereby certify the following statements regarding my qualifications, and my involvement in the program of work described in this report.

- 1. The work was performed by individuals sufficiently trained and qualified for its performance.
- 2. I have no material interest in the property under consideration in this report, nor in the company on whose behalf the work was performed.
- 3. I graduated from the University of British Columbia with a Bachelor of Science degree (Geophysics) in 1970, and with a Master of Business Administration degree in 1982.
- 4. I am a member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 5. I have been practicing my profession as a Geophysicist in the field of Mineral Exploration since 1970.

Respectfully submitted,

Alan Scott

FIG 15

3

LINE

600

0800N

LINE

GEOLOGICAL BRANCH ASSESSMENT REPORT

0200

.

