		FILMED	LOG NO: ACTION	APR 0 5 1994	RD.
			FILE NO:	••••••••••••••••••••••••••••••••••••••	
• •		Sampling and Rec of the PIL 1-13 Clair oggone Area, Briti	ms		•
	SUB-RECORDER RECEIVED				

Latitude 57°19'N Longitude 126°55'W

VANCOUVER, B.C.

for Electrum Resource Corporation

GEOLOGICAL BRANCH ASSESSMENT REPORT

by C.F. Staargaard Consulting Geologist 912-510 West Hastings St. Vancouver, B.C. V6B 1L8

January, 1994

Table of Contents

<u>Page</u>

<u>Page</u>

Summary and Conclusions	
Recommendations	
Location and Access	
Tenure	
History of Work	
Regional Geology	
Property Geology and Rock Sampling	
Geochemistry	
References	
Statement of Qualifications	 ;

Appendix A - Statement of Costs

Appendix B - Analytical Results

<u>Figure</u>

Appendix C - Rock Sample Descriptions

Appendix D - Description of Stream Sediment Sampling Pan

List of Figures

One	Property Location and Regional Geology	3
Тwo	Claim Locations	3
Three	Property Geology and Rock Sample Locations	in pocket
Four	Stream Sediment Samples - Sample Numbers	in pocket
Five	Stream Sediment Samples - Copper, Gold and Zinc in Silt	in pocket
Six	Stream Sediment Samples - Copper, Gold And Zinc in Heavy Minerals	in pocket

Summary and Conclusions

The PIL property is underlain by volcanic rocks of the Toodoggone Formation that are intruded by an elongate, northwesterly trending, multiphase granodiorite to monzonite pluton. A number of conspicuous gossans are situated at the northwestern end of this intrusive. A 1993 program of reconnaissance silt sampling, prospecting and rock sampling was carried out to follow up several gold, copper and zinc heavy mineral anomalies located in stream sediments in 1992 as well as to investigate the known showings and gossans with respect to their possible relationship to porphyry copper-gold mineralization.

Seventy-four sieved samples were collected on and in the vicinity of the property. Anomalous values in gold, copper, zinc, lead, molybdenum and barium are concentrated in the vicinity of a number of gossans in the northwestern portion of the property. Higher gold values are also concentrated in the lower portions of the main creek draining the central portions of the property. Analyses of heavy mineral separates from the samples show a similar distribution of anomalous values except that zinc values are elevated along a northwest trend crossing the property. This trend corresponds either to the intrusive monzonite or the structure bounding it on its east side.

The gossans in the northwestern part of the property are developed on sericite-pyrite altered rocks near an intrusive-volcanic contact (Area One). Local concentrations of jarosite and argillic alteration are also present and a thick, layered ferricrete deposit is developed in at least one creek bottom in the area. Anomalous Cu, Au, Zn, Pb, Mo and Ba values occurring in stream sediments in the vicinity suggest potential for porphyry style copper-gold mineralization. Extensive sericite-pyrite alteration is interpreted as possibly representing peripheral phyllic alteration associated with such a system, which would lie in the valley bottom in this area.

A second and smaller gossan zone (Area Two) occurs near the mouth of the main creek draining the central portion of the property where Toodoggone volcanics are cut by a number of monzonite dykes. Various zones of sericitic alteration with disseminated pyrite are present and the rocks are generally highly fractured and/or shattered over an exposed length of about 400 metres. Within this area are several zones of quartz-magnetite fracture fillings, some of which contain traces of malachite. Representative samples taken in this area returned values of up to 608 ppb Au and 582 ppm Cu. The style of alteration, veining and the presence of anomalous copper and gold values suggests potential for porphyry style mineralization. Similar mineralization is reported on the Brenda property adjoining the PIL claims in the southeast where elevated copper values, shown to be present at depth by drilling, have been leached out to background levels at surface.

Recommendations

A two phase exploration program is proposed for the PIL claims, the second phase being dependent on results of the first.

Phase One

a) carry out additional geological and sampling/prospecting traverses in Area One and analyze all samples for Au together with a 30 element ICP suite.

b) complete a series of 2 km E-W reconnaissance IP lines spaced at 500m in Area One in an attempt to locate and delineate a potential porphyry-related sulphide system

c) complete a series of 1 km E-W reconnaissance IP lines spaced at 300 metres centred on the gossanous outcrops in Area Two to determine whether or not a sulphide system exists at depth and its extent

Phase Two

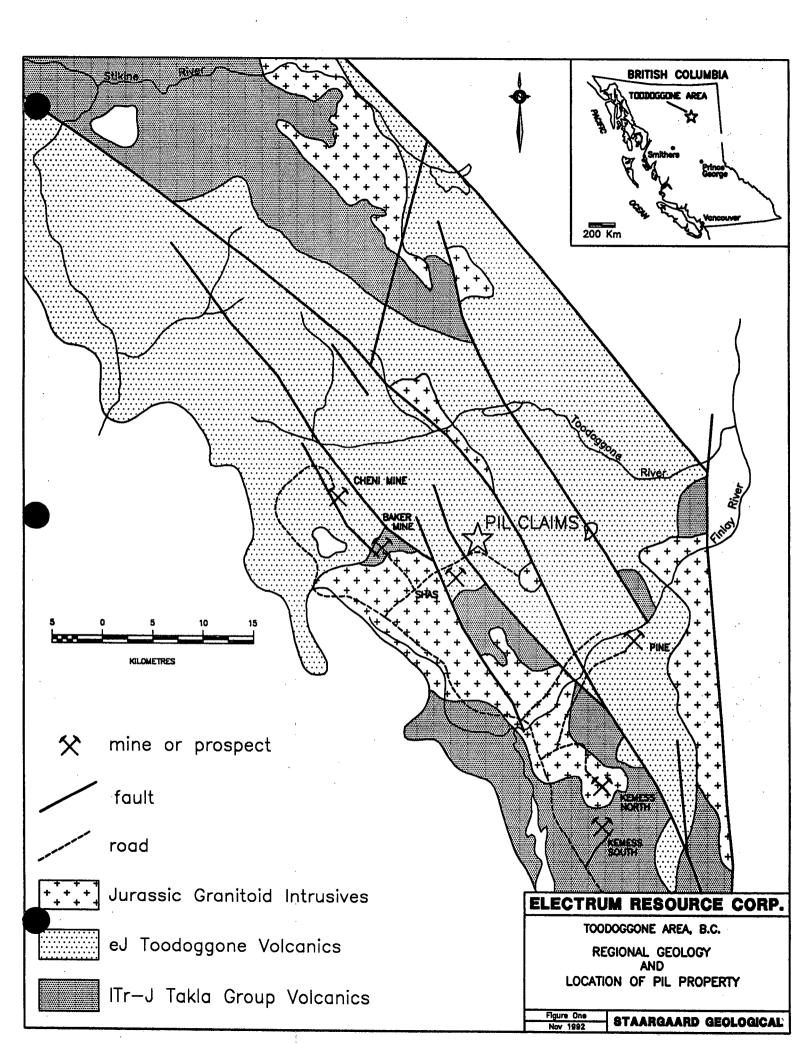
a) Drill 2-3 200 metre diamond drill holes to test any favourable anomalies in Area One.

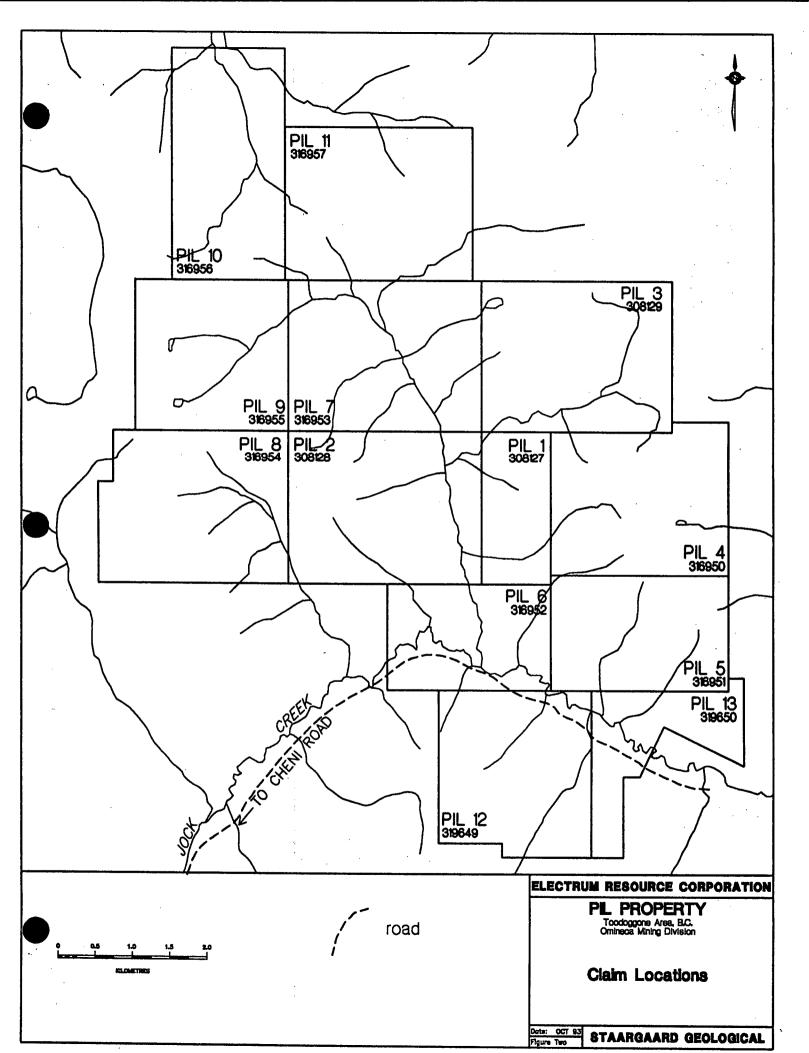
b) Drill 2-3 200 metre diamond drill holes to test any favourable anomalies in Area Two.

Introduction

The PIL claims were staked to cover a number of known mineral occurrences and gossans in the Toodoggone area about 10 kilometres to the east of the Baker Mine. Electrum Resources Corporation retained the writer and S. Zastavnikovich to respectively carry out programs of reconnaissance geological work and geochemical silt sampling on the property. This field work was completed in the period July 20-25, 1993. J. Barakso of Electrum spent two days on the property within this period in the capacity of consulting geochemist.

Location and Access


The claims are situated approximately 280 km due north of Smithers, B.C., centred at Latitude 57°19'N and Longitude 126°55'W on NTS sheet 94E/7W (Fig. 1). The Cheni Mine Road is located 7 km to the southwest where it passes the old Black Lake airstrip. A good dirt road leads northeast along Jock Creek and passes through the southern end of the claim group. Access by helicopter is possible from Smithers or from temporary bases commonly situated in the Toodoggone area. The Sturdee River airstrip is located 13 kilometres to the southwest.


Topography on the property is steep, with elevations ranging from 1,300 to 2,000 metres ASL. Grasses and buckbrush are typical of valley bottoms with patchy conifer forest on slopes. Elevations above 1,500 to 1,700 metres are typified by alpine grasses and dwarf conifers.

<u>Tenure</u>

The claims comprising the PIL property are wholly owned by Electrum Resources Corporation and their particulars are listed in Table One:

Name	Units	Table One New Tenure No.	Expiry
	-		
PIL 1	8	308127	March 14, 1993
PIL 2	20	308128	March 14, 1993
PIL 3	20	308129	March 14, 1993
PIL 4	20	316950	March 29, 1994
PIL 5	15	316951	March 29, 1994
PIL 6	12	316952	March 29, 1994
PIL 7	20	316953	March 29, 1994
PIL 8	20	316954	March 29, 1994
PIL 9	16	316955	March 29, 1994
PIL 10	18	316956	March 29, 1994
PIL 11	20	316957	March 29, 1994
PIL 12	20	319649	July 21, 1994
PIL 13	<u>20</u>	319650	July 21, 1994
	229		

History of Work

1980-81	Serem Ltd.	stream silt and contour soil sampling, rock sampling and preliminary geological mapping
1986	Toodoggone Gold	airborne magnetics
1987	Toodoggone Gold	reconnaissance soil and rock sampling
1987	Beachview Resources	reconnaissance soil and rock sampling
1992	Electrum Resource Corp.	heavy mineral sampling

Regional Geology

The Toodoggone area is situated in the Intermontane Belt, near its eastern margin (Fig. 1). The oldest rocks in the region are limestones and rhyolitic tuffs of the Permian Asitka Group. These are overlain by mafic to intermediate flows and related fragmental and sedimentary rocks of the Upper Triassic Takla Group. Overlying these in turn are volcanics of the Lower Jurassic Toodoggone Formation, a complexly intercalated pile of largely subaerial, high potassium, calc-alkaline latite and dacite flows, fragmental rocks and related sediments exceeding 2,200 metres in thickness.

Two main periods of eruptive activity are evident and the formation is subdivided into six members on the basis of lithology, mineral assemblage, texture and field relationships. A series of comagmatic plutons were emplaced during the lower volcanic cycle and were partly unroofed and eroded during a brief period of uplift before commencement of the upper cycle.

Extensive and repeated faulting led to the development of an asymmetric collapse feature and served to localize epithermal, vein-type gold-silver mineralization. The most well-known of these occurrences is the Lawyers deposit, where Cheni Gold Mines Ltd. until recently was mining from a reserve of 1.75 million tonnes grading 6.8 gt Au and 242.7 gt Ag. A number of porphyry copper gold deposits and prospects, including the Kemess and Pine properties, are apparently related to some of the comagmatic plutons situated in the southern portions of the Toodoggone area. Reserves at the Kemess deposit are approximately 200 million tonnes grading 0.22% Cu and 0.018 opt Au.

Property Geology and Rock Sampling

The property is underlain by volcanic rocks of the Toodoggone Formation that are intruded by an elongate, northwesterly trending, multiphase granodiorite to monzonite pluton (Fig. 2). Portions of this intrusive exposed along the Sturdee airstrip-Brenda road consist of magnetite-bearing gabbro. East of the intrusive, volcanics include high K latite flows, flow breccias and tuff of the Metsantan Member as well as undivided volcanics of the Hazelton Group. To the west, the volcanics include the Metsantan Member, high-K dacitic ash flow tuffs of the Saunders Member and minor lithic crystal tuffs and pyroclastic breccias of the Attycelly Member. In many parts of the property, these units have been broken up into numerous small blocks by faulting.

The northwestern end of the claim group is marked by abundant gossans which appear to straddle intrusive contacts with volcanics. Most of these are limonitic, with local concentrations of jarosite and argillic alteration. Disseminated pyrite was observed in places. On the PIL 10 claim, several samples

(SP17-21) were collected from a ferricrete layer exposed in a creek bottom. The ferricrete is at least 8-10 metres thick and is layered, with a Mn-rich zone overlying an Fe-rich zone. Both consist of stream gravels and colluvial material cemented by very abundant Fe and/or Mn oxides and hydroxides and are probably derived from a large gossan on the slope immediately north of the stream. Samples SP-20 and SP-21 are porphyritic monzonite with chloritized hornblende and minor limonite and/or disseminated pyrite collected from outcrops in the creek bottom in this area. Their low gold, copper and zinc contents do not explain the anomalous stream sediment values in this area.

In the central portion of the PIL 7 claim, a limited amount of float consisted of fine to medium grained monzonite with abundant millimetre scale quartz-limonite jarosite and quartz-magnetite fracture-fillings. Some of these exhibited narrow K-feldspar alteration envelopes and several float boulders contained traces of malachite on fractures heavily coated with Mn hydroxides. Samples SP22-25 were collected in this area. Table Two lists selected analytical values:

Sample No.	Table Two ppm Cu	ppb Au	
SP-22	375	366	
SP-23	289	86	
SP-24 SP-25	136	67	
SP-25	3335	11	

A second zone of sericite-pyrite alteration is exposed in a series of bluffs and cliffs on the PIL 6 claim where the main stream draining the property empties into Jock Creek. Although regional mapping suggests the entire area here is underlain by intrusive, abundant outcrops of Toodoggone volcanics cut by numerous monzonitic dykes were observed by the writer. Various zones of sericitic alteration with disseminated pyrite are present and the rocks are generally highly fractured and/or shattered over an exposed length of about 400 metres. Within this area are several zones of quartz-magnetite fracture fillings. Table Three lists selected analytical values in this area.

Sample No.	Table Three ppm Cu	ppb Au
00.03	140	016
SP-29 SP-30	148 448	216 248
SP-31	344	135
SP-32	582	237
SP-33	270	46
SP-34	174	480
SP-35	35	440
SP-36	10	9
SP-37	8	10
SP-38	59	608

Samples SP29-32 were collected from a 50 metre wide zone encompassing a number of steep and narrow (~1m) sericitized pyritic shears cutting porphyritic andesitic volcanics. The surrounding volcanics are characterized by variable but sometimes abundant quartz-magnetite veinlets and strong fracturing. Fracture surfaces are commonly coated with abundant Mn stain which generally exhibits a

spotted character, suggesting the presence of copper. Traces of malachite were observed on a few fractures. Samples SP-33 and 34 were collected about 50 metres to the south from chloritized and/or sericitized andesite containing no magnetite-filled fractures.

Samples SP35-51 were collected from a series of outcrops to the south exhibiting sericitic alteration, variable limonite and fracturing. Gold values are elevated, generally in the range of 40-300 ppb, while copper values are at background levels.

Samples SP12-15 were collected from an epithermal vein type occurrence on the PIL 1 claim first described by Serem (AR 10326). Several trenches were opened here and sampled by Serem although bedrock was currently visible in only one of these. Toodoggone Formation andesites are cut by several generations of quartz veins, vein stockworks and silicification. An early stage of black, fine-grained and sub-chalcedonic quartz is cut by a drusy, white quartz vein stockwork which is locally weakly amethystine. In places, the central portion of the black quartz veins is occupied by colourless drusy quartz. Late calcite is present as open space fillings and as matrix to quartz vein breccias. Finely disseminated pyrite is present in some of the veins and as coatings on some fractures. The andesite is pervasively propylitized and is locally silicified. Samples SP-12 to SP-15 returned values of up to 74.2 ppm Ag and 850 ppb Au along with slightly elevated As. A similar range of values was returned for three samples (PJ-19 to PJ-21) taken from float at the base of a west-facing gossanous talus slope about 500 metres southeast of the aforementioned trenches. The samples consisted of epithermal style quartz vein material and quartz-veined andesite.

Geochemistry

Seventy-four samples of panned sediments were collected from a number of streams draining the property as well as the surrounding area. Appendix D describes the pan-screen set used to collect the samples. Both the panned material and a derivative heavy mineral concentrate obtained through heavy liquid separation were analyzed at Min-En Laboratories in North Vancouver for a suite of 30 elements using ICP analysis. Gold was determined by AAS following a fire assay sample preparation. Sample locations and numbers are shown on Figure Three.

Figure 4 illustrates analytical values for Cu, Au and Zn in standard analyses of the panned concentrates. It is immediately obvious that elevated values for Cu and Zn, and to a lesser degree Au, are concentrated around the northwestern end of the PIL property, in an area marked by abundant gossans. Inspection of tabulated results revealed that Pb, Mo and Ba values are also somewhat elevated in this area. Many of the higher gold values are concentrated in the lower portion of the main creek draining the central portions of the property.

Figure 5 shows analytical values for the heavy mineral separates. Elevated gold values are concentrated in the northwestern part of the property along with Mo, Pb and Ba, which show improved contrast over the standard analytical values. Gold values are also elevated in the lower portion of the creek draining the central part of the property. Anomalous Zn values appear to be associated with a northwest trending structure running the length of the property and which generally forms the eastern boundary of the large intrusive occupying the central portion of the claims.

References

Crawford, S.A. (1982): Geological and Geochemical Report on the Atlas and Hercules Claims, BCMEMPR Assessment Report 10326, 9p.

Crawford, S.A. and Carne, J.F. (1981): Geochemical and Geological Report on the OJ-ARG Claim Group, BCMEMPR Assessment Report 9501, 10p.

Crawford, S.A. and Vulimiri, M.R. (1981): Geochemical and Geological Report on the Argus 1, Argus 2, Argus 3 and Argus 4 Mineral Claims, BCMEMPR Assessment Report 9001.

- Davis, J.W. (1985): Prospecting and Geochemical Report on the JK 1-5 Mineral Claims, BCMEMPR Assessment Report 14488.
- Diakow, L.J., Panteleyev, A. and Schroeter, T.G. (1993): Geology of the Early Jurassic Toodoggone Formation and Gold-Silver Deposits in the Toodoggone River Map Area, Northern British Columbia, BCMEMPR Bulletin 86, Geological Survey Branch-Mineral Resources Division, 72p.
- Pezzot, E. (1986): Geophysical Report on an Airborne Magnetometer Survey: Brooke, Lee, Erin, Daniel and Eloise Claims, BCMEMPR Assessment Report 15269.

Rebagliati, C.M. (1993): Summary Report, Brenda Property, White Pass Gold-Copper Porphyry, Toodoggone-Kerness Gold Camp, private report for United Mineral Services, Ltd., 19p.

Seyward, J. and Bekdache, M. (1987): Geological Report on the Eloise, Jeremy and Daniel Claims, BCMEMPR Assessment Report 16798.

Seyward, J. and Bekdache, M. (1987): Geological Report on the Lee, Erin and Brooke Claims, BCMEMPR Assessment Report 16804.

Staargaard, C.F. (1993): Reconnaissance Heavy Mineral Sampling in the Vicinity of the PIL 1-3 Claims, private report for Electrum Resources Ltd. (submitted for assessment Jan 1993)

Vulimiri, M.R. and Crawford, S.A. (1980): Geochemical and Prospecting Report on the Orange Claim, Toodoggone River Area, BCMEMPR Assessment Report 8574.

Statement of Qualifications

I, C.F. Staargaard, of 1470 Doran Road, North Vancouver, B.C., hereby certify that:

a) I am a consulting geologist with offices at 912-510 West Hastings St., Vancouver, B.C.

b) I have the following degrees:

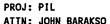
1977	B.Sc.	Geology	The Pennsylvania State University
1981	M.Sc.	Geochemistry	Queen's University, Kingston, Ontario

- c) I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia and am licensed as a Professional Geologist in the Northwest Territories, Canada.
- d) I have been continuously employed in mineral exploration in Canada, the USA and South and Central America since 1979 and seasonally since 1975.
- e) I have no interest, either directly or indirectly, in the subject properties or the client company.
- f) This report is based on available information together with my personal observations on the property.

Dated this 31st day of Janua 1994, in Vancouver, B.C. ESSIC Staargaard, P.Geo,, ₽.Geol. PROVINCE OF C. F. STAARGAAPD BRITISH LUMER CIEN

<u>Appendix A</u>

Statement of Costs


Maps, Publications and Airpho	tos	97.05
Expediting		168.23
Field Equipment, Rentals	radio, misc. supplies	512.66
Phone		45.60
Room and Board	motel, groceries, meals	2,648.79
Truck fuel, mileage	3350 km @ \$0.34/km	1,154.71
Travel	aircraft, motels, meals etc	2,073.00
Analytical Costs	74 heavy mineral samples @ \$70.10 each 74 standard silt analyses @ \$32.65 each 80 rock samples @ \$19.50	5,187.40 2,416.10 1,560.00
Field Work	14 man-days @ \$400/day	5,600.00
Travel Time	10 man-days @ \$400/day	4,000.00
Helicopter	10.2 hours @ \$800/hr	8,731.20
Report Writing	3.5 man-days @ \$400/day plus expenses	1,610.83
Drafting		676.65

Total \$36,482.22

Appendix B

Analytical Results

COMP: JOHN BARAKSO

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 3V-0405-SJ1+2 DATE: 93/08/12

.

SESIMENT * (ACT:F31)

TTN: JOHN BAR	RAKSO											(004)	980-5	014 U	K (0	04) 90	88-4	224											- 30	ESIME		(ACT:F3
SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %		LI PPM	MG %		MO PPM		NI PPM		PB PPM		SR PPM		TI PPM	V PPM	PPM	GA PPM			CR HG PM PPB	
SZ001 SZ002 SZ003 SZ004 SZ005		.62 .77 .74	11 8 17 11 10	45 37 54 54 53	210 139 77 249 44	1.1 1.1 1.5 1.7 1.0	6 10 10 12 34	.42 .75 .57 .64 1.55	.1 .1 .1 .1	10 9 13 21	36 34 148 164 40	4.32 5.56 4.66 5.76 8.05	.08 .08 .09 .11 .08		.77	953 901 1000 1023 850	- 3	.01 .01 .01 .01 .02		1400 1680 1260 1520 1210	79 37 69 67 26	17 20 25 23 25	51 47 58		1024	82.4 166.3 107.6 155.2 282.9	282 830	14 15 18 15 18	1111	34438	1 180 1 185 1 160 1 165 8 195	21 320 165
SZ006 SZ007 SZ008 SZ009 SZ010	.1 1 .1 1 .1 1 .1 1 .1 1	.87 .79 .88	8 11 10 16	68 60 75 62 55	384 122 77 142 94	1.1 1.2 1.3 1.2 1.0	17 15 33 26 18	.57 .81 .78 .79 .64	.1 .1 .1 .1	14 12 21 18 14	22 238 35 36 27	6.60 4.36 10.45 7.86 6.25	.18 .09 .11 .11 .12	1	.13		18 1 1	.01 .01 .01 .02 .02		940 1090 820 910 930	24 89 26 32 33	12 27 13 20 18	120 27 36	114 194 166	1275 4445 3445	206.7 90.5 416.8 294.4 213.6	102	11 21 16 19 17	1 1 1 1		1 205 1 210 12 155 13 180 6 145	1670
SZ011 SZ012 SZ013 SZ014 SZ015	.1 2 .1 1 .1 1 .1 3 .1 3	.82 .79 .47	26 15 1 31 6	31 44 76 56 61	133 170 212 325 138	3.0 1.5 1.8 2.6 1.7	19 21 33 18 27	.62 .67 .73 .56 .67	.1 .1 .1 .1	15 15 26 39 21	51 51 40 121 45	5.42 6.46 13.98 6.45 9.67	.11 .14 .18 .13 .09	14 1 10 16	.02 .91 .98	1734 1189 1281 1901 1609	1	.01 .02 .01 .01 .01	1 1 22 1		42 37 14 60 32	33 21 5 54 13	34 19 39	148 256 160	2404 4371 1673	176.3 215.3 477.3 164.2 352.4		24 18 11 23 17	1 1 1 1	56957	7 160 8 200 1 205 43 135 10 125	3 6 33 4 3
SZ016 SZ017 SZ018 SZ019 SZ020	.1 1 .1 2 .1 2 .1 3 .1 3	.22	14 9 15 21 29	31 44 49 51 53	295 460 490 601 695	2.0 1.6 1.5 1.9 1.9	9 9 10 11 11	.24 .18 .19 .18 .18	.1 .1 .1 .1	22 14 17 17 17	129 132 152 101 106	5.26 5.45 5.59 5.86 5.72	.13 .20 .27 .24 .25	8 8 8	.52 .58 .51	2003 1169 1540 1749 1523	11 10 10	.02 .02 .03 .02 .02	1	1140 1240 1470 1670 1610		29 31 29 52 65	41 37 76 87	136 141 153 156 154	405 433 444 404 419	89.3 86.1 60.0 63.2 60.9	292 659	18 12 17 17	1111	33334	1 200 1 205 1 230 1 180 1 190	1 138 32 322 93
SZ021 SZ022 SZ023 SZ024 SZ025		.30	23 22 16 24 9	66 63 49 34 164	529 255 375 565 144	3.5 2.1 3.5 3.0 .9	12 7 15 11 24	.38 .35 .34 .40 1.41	.1 .1 .1 .1	48 16 69 54 19	212 122 309 106 34	4.59 4.19 6.43 6.90 6.76	.12 .10 .10 .11 .13	13 8 14	.75 .60 .67	6419 1449 6195 6079 1399		.01 .01 .01	1	1190 1080 1260 1390 990	79 66 76 92 35	50 35 37 45 26	36	119 110 153 172 124	531 355 635 392 2830	64.8 62.5 90.9 85.2 238.6	610 1078	43 18 41 42 17	1111	32336	5 155 1 175 1 200 1 185 2 205	18 7 49 6 14
SZ026 SZ027 SZ028 SZ029 SZ030	.11 .11 .11	.65	14 28 28 15 14	167 157 158 189 159	120 178 92 253 162	.7 1.4 .9 1.0 .8	17 13 17 14 10	.62 .52 .78 .59 .42	.1 .1 .1 .1	13 12 13 13 10	29 21 15 12 14	5.21 5.58 5.46 6.60 4.70	.16 .13 .14 .12 .10	21 14		973 1006 1052 747 694	11111	.01 .01 .01 .01 .01		890 1390 1550 1340 1080	39 26 26 16 25	15 18 22 11 10	35 32 21 19	127 119 138	1132 1829 1370	139.9 165.0 175.5 221.6 128.6	108 110 60 73 72	15 14 16 9 11		44553	1 195 1 200 1 155 1 195 1 145	86 6 1 19 9
SZ031 SZ032 SZ033 SZ034 SZ035	.1 .1 1 .1 1 .1 1 .1 1	.84 .44	12 23 4 16 15	153 153 190 165 156	232 180 142 88 41	.8 1.2 1.1 .7 1.0	8 11 18 14 16	.31 .52 .81 .54 .74	.1 .1 .1 .1	7 11 16 10 12	20 32 41 25 29	3.52 4.12 6.80 3.88 5.24	.16 .09 .13 .04 .05	13 13	.89 .86	514 1090 967 1025 1048	1 2 1 1	.05 .01 .01 .01 .01	1 1 1 1	760 1080 1240 750 740	24 51 27 89 32	12 21 23 19 20	26 30	93	1883 1549	54.7 112.7 187.7 105.6 152.0	54 111 87 196 92	9 18 14 18 21	1 1 1 1	23534	1 220 1 215 1 265 1 160 1 180	16 9 91 51 3
S2036 S2037 S2038 S2039 S2040	.1 2 .1 2 .1 1	.45 .42 .11 .78 .71	16 15 11 14 42	181 196 146 160 1	52 50 157 90 55	1.0 1.0 1.0 .9 .2	24	1.33 1.34 1.12 .96 .39	.1 .1 .1 .1	15 15 12 11 4	31 31 21 25 55	6.63 6.16 6.39 4.65 1.23	.08 .07 .13 .07 .05	9 14	.88 .91 .65 .84 .27	744 845 1185 734 507	1	.02 .02 .02 .02 .01	1 1 1 1 1	1080 990 900 880 340	34 37 27 32 32	30 30 26 22 20	57 77	116 147	2978 2187	245.5 225.2 217.5 159.3 28.4	94 108 164 86 345	16 15 14 16 28	1 1 1 1		13 255 12 150 1 170 4 185 4 165	1 6 8 4 4
SZ041 SZ042 SZ043 SZ044 SZ045		.83 .19 .62	19 13 18 28 20	150 154 150 165 178	166 85 96 134 144	1.5 .9 .6 1.2 .8	18	.74 1.16 1.49 1.38 .71	.1 .1 .1 .1	15 10 10 17 9	76 42 22 79 30	3.40 4.23 3.83 4.14 2.77	.12 .04 .05 .10 .05	4 1 7 1 9 1	.02	1259 954 937 2288 964	1 1 4	.01 .01 .01 .01 .01	1	990 1630 1480 1670 1080	94 49 48 253 91	32		104 83 87		84.6 127.7 124.4 107.2 73.6	495 198 152 818 261	17 20 20 31 18	1 1 1 1	34533	6 225 1 135 2 200 1 225 4 195	6 3 2 21 8
SZ046 SZ047 SZ048	.1 1 1.7 1 .1 1	.08	21 50 8	166 1 180	154 71 130	1.6 .5 1.1	9 15 12	.57 .42 .63	.1 .1 .1	14 9 12	39 186 118	2.99 1.71 7.11	.06 .05 .07	5	.77 .29 .65	1217 622 977	3 4 4	.02 .02 .01	1	1570 610 1600	63 26 62	30 28 23		71 113 171	871 365 867	71.2 38.7 173.7	506 178 204	18 29 11	3 1 1	234	3 145 6 240 1 185	6 88 73
r																																
			<u></u>																													

· .

COMP: JOHN BARAKSO

PROJ: PIL

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 3V-0405-SJ3+4 DATE: 93/08/12 • SEDIMENT * (ACT:F31)

:

ATTN: JOHN BARAKSO

SAMPLE NUMBER	AG AL PPM %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	K %	LI	MG %	MN PPM	MO	NA %	NI PPM		PB PPM	SB PPM	SR PPM F	TH	TI PPM	V PPM	ZN			W	CR HO PPM PPB	AU-FIRE
\$2049 \$2050 \$2051 \$2052 \$2053	.1 1.86 .1 1.36 .1 1.84 .1 2.27 .1 2.13	10 1 6 22 14	128 175 184 196 131	39 73 110 107 110	1.1 1.4 .8 1.2 1.6	11 14 26 16 20	1.06 .74 .90 .80 .66	.1 .1 .1 .1	9 14 16 16 21	13 12 27 54 74	5.61 9.02 7.41 5.74 6.46				678 758 917 1878	1 1 1 4	.01 .01 .02 .02 .02	1 1 1	1860 1940	26 14 28	24 8 19 32 27	73 1 35 1 50 1	37 82 50 48	1110 1597 3128 1532	181.7 327.1 267.1 160.1 153.8	52 67 110 346 496	15 9 14 23	1 1 1 1	5 6 6 4 4	1 210 1 145 4 150 1 210 1 185	3 109 6
SZ054 SZ055 SZ056 SZ057 SZ058	.1 1.36 .1 1.66 .1 1.63 .1 1.18 .1 1.62	48 43 38 22 20	177 143 172 159 119	149 217 177 174 426	.9 .7 1.0 1.3 .8	10 9 15 11 8	.73 .96 .79 .52 .79	.1 .1 .1 .1 .1	10 7 11 10 7	14 10 22 17 35	4.22 3.81 5.20 5.38 3.24	.11 .12 .13 .13 .10	15 15 27 19 16	-58 -52 -82 -65 -56	643 630 811 749 1272	2 2 1 1	.02 .02 .02 .02 .02	1 1 1 1	1310 1320 1180 1460 1120	25 28 32 39 50	18 25 24 17 27	34 1 52 33 1 40 1	00	1045 782 1640	117.9 126.2 180.7 164.5 76.8	63 53 70 98 160	12 12 16 16	1 1 1 1 1 1	3 3 5 4 3	1 235 1 175 1 125 1 225 15 240	2 2 1 21
SZ059 SZ060 SZ061 SZ062 SZ063	.1 1.34 .1 1.71 .1 1.54 .1 1.63 .1 1.87	3 14 1 11 25	163 172 190 181 163	321 238 453 452 609	1.1 1.9 1.3 1.2 1.4	16 14 32 16 13	.63 .61 .80 .68 .71	.1 .1 .1 .1 .1	13 18 22 14 9	60 28 31 106 192	7.13 6.47 12.82 6.62 3.81	.11 .19 .13 .15 .20	9	.69 .64 .74 .87 .90	1376	2 1 3	.02 .02 .02 .02 .02 .01	1 1 1	1180 1180 1170 1240 1500	95 38 13 47 93	14 23 3 20 31	47 1 40 1 37 2	56 33 4	1297 4053	222.6 165.3 469.6 189.2 74.2	420 217 138 437 822	15 19 10 20 23	1 1 1 1 1	4 4 9 4 1	9 185 3 200 8 135 2 200 3 175	48 810 860
SZ064 SZ065 SZ066 SZ067 SZ068	.1 1.29 .1 1.34 .1 1.42 .1 1.29 .1 1.93	19 22 6 1 8	152 169 165 193 174	153 143 394 368 327	.7 .7 1.3 1.4 1.5	12 11 20 19 12	.57 .58 .69 .67 .31	.1 .1 .1 .1	7 7 15 16 9	39 38 62 58 113	3.02 3.09 8.02 9.58 6.50	.10 .11 .13 .10 .11	6 6 7 6 1	.70	748 776 1249 1153 806	5 1 1	.02 .02 .02 .01 .03	1	990 1030 1200 1340 1090	40	25	48 49 51 1 43 2 66 1	95 97 83 00 51	1000 1068 1991 1902 864	70.5 72.2 252.5 311.1 116.0	225 222 419 325 175	18 18 17 12 11	1 1 1 1	3 3 5 6 6	5 155 5 135 4 205 10 165 52 135	1405 829 23 95
SZ069 SZ070 SZ071 SZ072 SZ073	.1 2.39 .1 1.28 .1 2.09 .1 2.03 .1 1.98	33 13 19 31 8	149 175 158 190 28	215 246 53 99 148	1.5 1.4 1.2 1.6 .7	16	.64 .62 1.10 .75 1.21	.1 .1 .1 .1	23 12 16 15 8	313 60 35 52 16	6.37 6.24 6.93 5.76 4.31	.12 .09 .07 .11 .10	8 1 7 14 15 1 7	.72 .92 .14	1493 982 881 1731 1003	1 1 10	.03 .02 .02 .02 .02	1	1330 1260 990 1210 880	70 32	38 16 28 30 28	49 1	61 .	1454	141.8 189.0 254.3 161.2 136.8	1757 396 98 365 113	27 18 21 27 15	1 1 1 1	6 4 7 5 4	123 210 12 155 11 175 2 150 1 255	94 9 5
047	.1 2.35	20	38	173	1.3	14	.76	.1	18	458	3.90	.09	5	.61	1351	6	.02	1	1440	49	37	83	95	896	91.4	387	17	1	2	2 190	141
																								<u>, , , , , , , , , , , , , , , , , , , </u>							
	<u> </u>	<u> </u>						. 4.			,	·····				£11							_								
														<u> </u>																	
												.				·								•			• • <u></u>			- <u>-</u>	
																118 1 11	<u>.</u>														

MIN-EN LABS - ICP REPORT

COMP: BARAKSO CONSULTANTS PROJ: PIL

ATTN: C. STAARGAARD

2

.

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 3V-0551-RJ1+2 DATE: 93/09/02

• ROCK * (ACT:F31)

AIIN: L. SIAA	KUAAKU											(004	,,,,,,,	2014																	` `	
SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM	SB PPM	SR PPM		TI PPM	V PPM	ZN PPM	GA PPM	SN PPM P			U-FIRE PPB
SP-01 SP-02 SP-03 SP-04 SP-05	.4 .2 1 .1 1 .2 1 .3 1	.45	16 10 1 1 4	1 1 1 1	28 110 44 52 252	.2 .2 .2 .2	10 13 13 15 13	.56 .75 .57 .65 .65	.1 .1 .1	8 10 7 9	22 2 53 3 10 3	2.17 2.88 3.01 3.07 2.36	.05 .10 .13 .10 .10	9 7 7 6 6	.98 .87 .84 .89 .91	572 780 1700 789 913	3 2 6 4 3	.04 .04 .04 .04 .03	11111	730 680 770 810 690	24 21 58 22 25	42546	47 40 54 43 53	76 92	979 1513 1524 1987 1637	71.1 52.6 76.0 39.9	41 45 205 63 126	19 20 22 19 19	1 1 1 1	7 8 7	71 66 80 64 71	7 1 22 1 2
SP-06 SP-07 SP-08 SP-09 SP-10	.1 .1 .1 1	.64 .56 .57 .14 .65	5 1 12 10	1 1 1 1	94 224 448 490 195	.1 .1 .1 .1	4 11 6 8 6	.04 .03 .03 .03 .10		25445	98 6	2.16 5.62 4.28 5.49 2.71	.25 .25 .25 .25 .25 .18	2 1 4 3	.15 .05 .09 .41 .25	114 18 33 139 206	4 8 10 3 2	.05 .01 .06 .05 .11	1 1 1 1	1280	220 259 157 24 41	11111	20 80 54 45 46	50 76 65 81 64	19 34 444	13.0 14.4 12.4 27.8 28.0	45 24 18 37 65	8 6 5 12 10	1 1 1 1	2344	90 11 39 40 56	21 3 31 33 2
SP-11 SP-12 SP-13 SP-14 SP-15	4.0 1 7.0 74.2	.61 .14 .82 .28 .86	10 16 26 31 60	1 1 1 1	1685 426 673 160 964	.1 .4 .3 .1	76554	.23 .09 .17 2.38 .09	.1 .1 6.3 .1	5 5 3 3	30 2 25 1 106 18 2	1.14 2.53 1.68 .84 2.20	.12 .26 .18 .07 .30	5 10 8 3 7	.26 .52 .50 .31 .43	239 310 1033 1157 215	2 10 4 5 3	.03 .01 .01 .01 .01	1 1 3 6 1	620	14 26 24 111 35	45665	35 18 10 4 16	74 74 62 27 65	29 41 13	24.5 60.1 49.9 23.1 60.9	41 76 64 121 55	10 15 17 14 14	1 1 1 1	9 1 10 1 6	97 76	23 45 51 850 346
SP-16 SP-17 SP-18 SP-19 SP-20	.1		1 1 2 1	1 1 1 1	852 364 602 688 105	1.3 .1 .5 .1	20 7 9 16 15	.40 .08 .34 .43 .82	7.3 .1 .1 .1	116 9 195 13	93 4 199 3 31 3	5.64 4.91 5.62 5.38	.19 .22 .25 .28 .13	30 2 9 12 8	.85 .17 .69 .80 1.05	>10000 122 633 >10000 964	23 8 29 14 5	.02 .02 .02 .04 .04	30 1 28 1	890 2210 1750 710 930	135- 9 58 77 21	1 4 6 4	47 13 34 47 95		385 395 772 1868	22.2 39.1 53.4 78.2	- <u>699</u> 27 151 192 82	- 54 8 16 62 22	1 1 1 1	4 6 8 9	78 36 58 89 97	14 25 13 7 1
SP-21 SP-22 SP-23 SP-24 SP-25		.10 .93 .40	1 8 5 3 8	1 1 160 1 1	83 276 80 52 1053	.1 .4 .2 .1 .3	14 10 8 11 25	.65 .19 .22 .30 .22	.1 .1 .1 20.6	8 4 5 7 36	375 2 289 3	5.36 2.99 3.23 5.43 2.19	.13 .30 .18 .17 .35	83464	.73 .39 .51 .91 .87	872 587 619 719 6859	3 46 7 5	.06 .03 .05 .05 .03	1 1 1 17	840 590 530 580 730	24 495 20 39 55	2 4 2 5 10	61 44 18 23 15	99 74 80 91 67	292 634	18.3 35.4 58.9	55 210 111 101 1363	19 14 15 21 36	1 1 1 1	6 5 8	66 91 62 92 97	22 366 86 67 11
SP-26 SP-27 SP-28 SP-28A SP-28A SP-29		.10	1 2 3 1 17	1 1 1 1	87 51 503 62 335	.1 .2 .1 .1	7 8 5 8 6	.33 .72 .17 .43 .08	.1 .1 .1 .1	69456		2.34 2.19 2.07	.20 .09 .34 .15 .18	5 5 5 7 6	-80 -66 -65 -77 -52	717 1016 505 257 1704	4 3 7 10	.05 .04 .03 .07 .02	1 1 1 1	830 660	25 123 62 18 322	43441	32 60 21 41 8	61 71 81 72 78	931 35 1023	43.7 59.3 34.4 47.3 35.2	91 210 57 27 293	16 15 14 13 17	1 1 1 1	6 5 6 5	84 80 46 58 62	8 1 55 7 216
SP-30 SP-31 SP-32 SP-33 SP-34	.11	.26 .92 .26 .51 .19	3 1 1 1 16	1 1 1 1	80 54 66 436 280	.4 .2 .1 .9	10 9 13 11 8	.72 .78 1.00 .27 .19	9.1 1.3 3.0 .1 .1	11 10 12 8 6	448 4 344 4 582 5 270 4 174 3	.25 .37 .19	.17 .13 .10 .25 .28	11	1.01 .65 1.07 1.78 .57	3233 2439 3056 6334 3653	11 6 19 6 7	.03 .03 .04 .01 .01	1 1 6 1	620 890 980	100 56 48 187 132	2 1 12 3	9	106 91 105 110 80	50	60.5 70.5 31.2 36.8	807 583 705 744 263	27 21 28 41 25	1 1 1 1	5 6 5 5	59 58 55 26 42	248 135 237 46 480
SP-35 SP-36 SP-37 SP-38 SP-39	.1 .1 1 .8	.94 .95 .42 .91 .86	12 1 6 5	1 1 1 1	662 598 314 632 172	.1 .1 .4 .2	67 14 7	.05 .16 .52 .88 1.20	.1 .1 .1 .1	45768	8 3 59 1	.28	.23 .26 .13 .37 .35	55	-56 -50 1.05 -31 -49	1628 742 1318 949 1032	11 3 7 5	.02 .04 .04 .01 .02		830 1170 1180 700 830	76 53 37 86 225	1 2 5 1	22 26 30 46 11	60 84	507 1979	67.0 15.7	84 169 119 237 280	19 14 21 12 13	1 1 1 1	4654	31 27 40 76 42	440 9 10 608 20
SP-40 SP-41 SP-42 SP-43 SP-44	.1 1 .1 1 .1 1 .1 1 .1 1	.40	7 24 13 8 33	1 1 1 1	374 802 207 211 373	.3 .1 .4 .1 .4	11 6 9 15 7	.87 .43 1.27 .72 .29	.1 .1 3.3 .1 .1	10 5 9 7 5	65 3 177 3 51 4		.16 .22 .16 .16 .21		1.27 .70 1.08 1.08 .88	3045 1947 2501 1974 1414	4 187 7 7 12	.04 .04 .03 .04 .03	1		131 180 52 64 50	4 3 5	53 102 45 45 16	95 106 98 94	751 49 207 1847 195	44.5 58.8 62.3	441 148 857 249 149	30 22 27 24 22	1 1 1 1	5 5 6 5	57 41 63 40 40	87 301 138 49 90
SP-45 SP-46 SP-47	.1 1 .1 1 .1 1	.75	27 66 23	1 1 1	119 579 249	.4 .7 .2	6 8 5	.30 .48 .23	.1 .1 .1	4 11 .5	34 3	5.50 5.37 5.41	.23 .15 .30	13 30 7	.59 1.06 .44	775 1831 879	28 26 13	.03 .03 .03	1 1 1	850	122 66 122	5 7 2	17 30 12	94 105 76	114 489 111	77.1	101 227 124	17 24 14	1 1	6	33 55 35	80 37 69
					·,																											

COMP: JOHN BARAKSO

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

DATE: 93/11/02

2

,

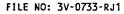
PROJ: PIL

100.110													· · · · ,		474		.,		F4 416	•												33/11/0
ATTN: John Ba	arakso											(604)980-	5814	OR (é	504)98	8-452	4											* r	ock 📍	((ACT:F3
SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	۶E %	K %	L I PPM	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM	SB PPM	SR PPM	TH PPM	T I PPM	V PPM	ZN PPM	GA PPM	SN PPM I			Au-Fire PPB
PJ-01 PJ-02 PJ-03 PJ-04 PJ-05	.4 .1 .1	1.81 1.07 .98 .47 1.11	1 1 1 1 1	1 1 1 1	65 37 62 87 111	.2 .1 .2 .2	13 10 7 1 12	.62 .43 .95 .80 .29	.1 .1 .1 .1	96726	24 14 3	3.56 2.43 1.85 .83 3.37	.11 .09 .09 .21 .25	15 8 4 1 4	1.11 .75 .65 .10 .57	714 603 715 238 287	3 5 1 2 2	.07 .03 .05 .03 .12	1 1 1 1	1050 580 630 210 720	23 28 15 5 12	4 3 3 1 1	41 19 70 4 44	71 51 36	1898 1607 1211 87 1811	55.3 38.3 8.3	50 57 15	18 16 15 3 11	1 1 1 1	6 5 3	41 72 56 55 34	1 25 3 2 5
PJ-06 PJ-07 PJ-08 PJ-09 PJ-10	.1 .1 .3 .1	.89 1.07 .81 1.19 .45	1 6 2 1 1	1 1 1 1	40 107 170 88 197	.1 .1 .1	7 10 7 10 5	.31 .46 .12 .41 .02	.1 .1 .1 .1	46872	17 ⁻ 211 28	1.53 2.91 2.82 2.99 2.61	.19 .16 .16 .10 .31	5 5 3 7 1		1140 1378 562 560 41	3 5 47 3 12	.05 .05 .03 .08 .01	1 1 1 1 1 1 1	460 900 490 840 590	31 311 24 24 17	42331	11 20 10 45 7	70	1385	40.1 22.6	92 101 59	16 19 15 19 4	1 1 1 1 1	4 5	56 30 40 36 46	3 8 50 6 10
PJ-11 PJ-12 PJ-13 PJ-14 PJ-15	.1 .1 .2 .1 .1	1.65 .94 .67 .99 .38	1 11 5 101 9	1 1 1 1	41 275 196 232 27	.1 .2 .2 .3 .2	12 7 6 4 2	.61 .06 .22 .20 .04	.1 .1 .1 .1	5 5 2 3	17	2.71 2.55 1.07 1.82 .67	.18 .17 .15 .48 .14	5 4 5 2 3	.73 .64 .33 .43 .16	882 492 254 256 374	4 26 2 4 2	.05 .08 .05 .04 .01	1 1 1 2	540 400 480 240 80	26 47 18 29 8	6 3 4 7 3	44 23 5 15 2	62 79 74 71 21	1790 281 593		113 63 44	17 17 10 14 8	1 1 1 1	5 5	66 53 76 26 63	9 15 2 16 43
PJ-16 PJ-19 PJ-20 PJ-21 PJ-22	.1 17.5 58.5 11.4 8.4	1.01 .46 .23 .25 .76	13 25 25 18 26	11111	96 321 120 46 508	.2 .1 .1 .2	53423	.07 .10 2.79 .10 .06	.1 .1 1.6 .1 .1	7 3 2 2 3	30 86 59 25 15	2.62 1.22 .67 .77 1.73	.29 .11 .04 .08 .26	35226	.55 .27 .32 .14 .35	357 656 1329 291 249	3 3 5 2 6	.06 .01 .01 .01 .01	1 1 4 1 1	460 390 70 200 540	17 62 56 14 40	33525	13 8 3 1 34	70 32 28 15 57	18 7 24	27.8 26.9 19.0 20.5 39.5	41	15 10 15 6 13	1 1 1 1	7 1 9 1 10 1	60	11 292 734 103 91
PJ-23	1.4	.62	19	1	97	.2	4	.04	.1	3	9	1.82	.20	6	.41	220	3	.02	1	300	14	3	9	54	84	23.4	24	13	1	7 1	20	16

COMP: BARAKSO CONSULTANTS

PROJ: PIL

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2


(604)980-5814 OR (604)988-4524

FILE NO: 3V-0551-RJ3

DATE: 93/09/02

* ROCK * (ACT:F31)

SAMPLE	AG PPM	AL %	AS PPM	B	BA PPM	BE PPM	BI	CA %	CD PPM	CO PPM	CU PPM	FE %	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM	SB PPM	SR PPM F	TH	TI PPM	V PPM	ZN PPM		SN Pm f	W CR	PPB
SP-48 SP-49 SP-50 SP-51	.1 .1 .1 .1	2.60 1.44 1.49 1.68	1	1	70 508 764 642	1.1 .7 .4 .1	11 6 5 15	2.51 .47 .38 .59	.1 .1 .1 .1	22 7 5 7		.36	.21 .26 .30 .23 .18	41 15 14 13	.83 .87	1135 1252 1192 1342 992	5 11 7 4	.03 .03 .03 .04 .07	1	1190 1130 1170 1140 1330	36 66 49 70 32	6231 1	23 19 28 38 53		787 149 289 2344 2386	48.8	79 229 126 149 59	29 17 20 20 19	1 1 1 1	8 35 4 24 5 45 6 35 7 59	43 80 25
SP-52 SP-53 PJ-24 PJ-25 PJ-26	.1 .1 .7 .1	1.41 1.28 1.44 .92 .88	1 21 5 1	1 1 1	156 360 895 1962 294 925	.3 .4 .1 .2	16 13 6 3 6	.59 .35 .10 .02 .03 .39	.1 .1 .1	4 5 1 4 7	4 2 34 3 3 32 3	.97 .81 .65	.25 .35 .14 .30 .21	9 6 1 2 4	.99 .90 .01 .15	1024 2155 32 99 1028	9 15 6 13 17	.08 .02 .10 .02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1030 1170 230 440 400	38	5 3 7 1 4	38 21 189 17 35	98 93 26 67	358 42 19 180 617	67.4 36.9 6.9 36.0	54 145 22 126	23 24 4 6 17	1 1 1 1	6 46 5 40 5 90 5 73 8 121	3 107 6 3 39
PJ-27 PJ-28 SZR101 SZR102 SZR103	.1 3.1 .1	1.22 1.40 .07 .43 2.91	0 1 30 27 1	1 1 1 1	925 122 24 6223 305	.1 .1 .1 .1	12 5 5 46	.50 15.00 .90 2.08	.1 .1 5.8 .1	10 2 4 38	112 3 5 16 3652 7		.21 .04 .16 .08	6 1 4 20	.95 .01 .16	1247 13 1557 1385	5 2 3 4	.04 .01 .01 .04	1 1 7 1	700 80 120 1260	36 26 18 36		33 944 392 152	1 37	1394 14 19 4043	5.4	124 5 488 128	20 12 12 30	1 1 1	8 88 2 18 13 281 10 43	3 3 7

Appendix C Rock Sample Descriptions

rep = 1-2 kg of chips representative of outcrop SP series collected by C.F. Staargaard

<u>No.</u>	Туре	Lithology
SP-1	rep	medium to coarse-grained hb monzonite, trace primary diss. magnetite, epidote on mm sized fractures
SP-2	rep	hb monzonite porphyry, weakly magnetic, fine-grained K-spar/plagioclase groundmass
SP-3	rep	medium grained hb monzonite, fresh K-spar, weakly sericitic plagioclase, weakly magnetic, trace diss. py, limonitic fractures
SP-4	rep	hb monzonite porphyry, fine-grained K-spar/plagioclase groundmass, 1% py as dissem. and fracture fillings
SP-5	rep	medium grained syenite to monzonite, abundant chloritized hornblende, 3% pyrite as grains assoc. with hornblende and fracture fillings, limonitic fractures
SP-6	rep	strongly to intensely sericitized rock, highly oxidized with abundant limonitic fracture fillings (after pyrite)
SP-7	rep	strongly sericitized intrusive that has been brecciated and weakly silicified, limonitic matrix and/or fracture fillings
SP-8	rep	highly fractured, moderately sericitized intrusive, moderate pervasive silicification, abundant limonitic fractures
SP-9	rep	highly fractured, moderately sericitized intrusive, moderate pervasive silicification, abundant limonitic fractures
SP-10	rep	as SP-8 but moderate amounts of limonite with some jarosite on fractures, 2% disseminated pyrite, possible weak silicification
SP-11	rep	medium grained quartz monzonite, chloritized biotite and minor hornblende, abundant 1 cm quartz veins, quartz eyes could be secondary
SP-12	selected	strongly silicified andesite, vuggy quartz-goethite-limonite fracture fillings, taken from uppermost trench
SP-13	selected	dark, sub-chalcedonic veins cutting silicified andesite, sample includes minor second generation drusy quartz veins (weakly amethystine)
SP-14	rep	quartz vein breccia cutting andesite, brown carbonate (not in specimen) in matrix in places, trace very finely disseminated pyrite

<u>No.</u>	Туре	Lithology
SP-15 3	metre chip	strongly silicified andesite, minor stockwork of 1.5 cm dark, sub-chalcedonic veins as in SP-13, 1% finely disseminated pyrite, limonite on fractures
SP-16	rep	manganese wad ie stream pebbles and colluvial material cemented by Mn hydroxides
SP-17	rep	ferricrete, as SP-16 except cemented with Fe hydroxides
SP-18	rep	ferricrete, as SP-17
SP-19	rep	manganese wad, as SP-16
SP-20	rep _.	porphyritic monzonite, chloritized hornblende, primary disseminated magnetite partly associated with hornblende, minor limonite on fractures
SP-21	rep	porphyritic monzonite with chloritized hornblende, 3% disseminated pyrite, minor limonitic fractures, type specimen has less K-spar than remainder
SP-22	rep	medium grained monzonite, weak pervasive sericitization in places, limonite and some jarosite on fractures
SP-23	rep	fine to medium grained monzonite(?), abundant x mm quartz-limonite fractures, possible narrow K-spar alteration envelopes on fractures
SP-24	rep	fine to medium grained monzonite, x mm quartz-magnetite veinlets, abundant jarositic fractures
SP-25	rep	fine to medium grained monzonite, highly fractured with Mn coatings, 1% malachite on fractures
SP-26	rep	medium grained monzonite, chloritized hornblende, x mm quartz- limonite(after pyrite) veinlets with trace disseminated pyrite, limonitic fractures, possible quartz monzonite but quartz eyes are probably secondary
SP-27	rep	porphyritic hornblende monzonite, chloritized hornblende, minor to weak stockwork of x mm drusy quartz veinlets, minor Mn and epidote on fractures
SP-28	rep	chips from subcrop, sericitized andesite with trace disseminated pyrite and limonite on fractures
SP-28a	rep	weakly sericitized latite porphyry, highly fractured with limonite, minor quartz- epidote fracture fillings
SP-29	selected	porphyritic andesite, possible weak pervasive sericitization and silicification, highly fractured with limonite, 3% disseminated and fracture-controlled pyrite, limonite and quartz fracture fillings
SP-30	selected	porphyritic andesite, strongly fractured with spotty (Cu-rich) Mn stain, quartz- magnetite fracture fillings

<u>No.</u>	Туре	Lithology
SP-31	rep	porphyritic andesite, strongly fractured with spotty (Cu-rich) Mn stain, abundant quartz-magnetite veinlets
SP-32	rep	as SP-31 but minor Mn and trace malachite on fractures
SP-33	rep	andesite, Mn stain on fractures along with minor limonite, pervasive epidote- chlorite alteration but no carbonate
SP-34	rep	andesite, strong pervasive sericitization, ~3% disseminated pyrite, limonite on fractures
SP-35	rep	andesite(?), weak pervasive sericitization, minor argillic alteration which could be result of acid leaching in weathering process, abundant limonitic fractures
SP-36	rep	andesite(?), moderate pervasive sericitization, 1% finely disseminated pyrite, limonite and jarosite on abundant fractures
SP-37	rep	andesite(?), moderate pervasive sericitization, chloritized hornblende, spotty epidote, 2% finely disseminated pyrite, abundant limonitic fractures
SP-38	rep	possible intrusive, intense carbonate alteration with lesser chlorite and epidote, numerous x mm quartz veinlets, 3% finely disseminated pyrite
SP-39	rep	andesite, strong pervasive sericitization, weak pervasive silicification, weak pervasive carbonatization, ~3% disseminated pyrite
SP-40 (6 metre chip	andesite(?), highly fractured, numerous limonitic fractures with rare malachite, magnetic (possible magnetite in fractures), spotty Mn (Cu-rich?) on fractures
SP-41	rep	same outcrop as SP-40, highly oxidized and limonitic, highly fractured, several 40cm clay-rich seams probably after pyrite (not included in sample)
SP-42	5 metre chip	same as SP-40, occasional magnetite on fractures
SP-43	rep	andesite, highly fractured/shattered, limonitic, spotty moderate epidote, weakly magnetic
SP-44	rep	andesite, moderate sericitization, weak silicification, highly fractured/shattered, limonitic, 1% very finely disseminated pyrite
SP-451	.5 metre chip	andesite, highly fractured and rusty near contact with porphyritic monzonite dyke, patchy silicification
SP-46	5 metre chip	porphyritic monzonite dyke, highly fractured/shattered, minor limonite and Mn stain on fractures, sulphate(?) fracture fillings
SP-47	rep	andesite(?), highly fractured, moderate pervasive sericitization, limonite and jarosite on fractures

· •

u.

<u>No.</u>	Туре	Lithology
SP-48	rep	andesite, strong pervasive chloritization and carbonatization, abundant irregular carbonate fracture fillings
SP-49	rep	same as SP-47
SP-50	rep	same as SP-47
SP-51	rep	same as SP-47
SP-52	rep	fine grained granite(?) or leucomonzonite, strongly sericitized, strongly fractured with abundant limonite
SP-53	rep	fine grained granite(?) or leucomonzonite, weak pervasive sericitization, 3% disseminated pyrite, highly fractured with limonite

JP sample series collected by J.J. Barakso

JP-1	selected	plagioclase(red) phyric andesite; limonite on fractures
JP-2	selected	as JP-1; 1-2 mm drusy quartz veinlets; trace disseminated pyrite
JP-3	selected	medium to coarse grained hornblende monzonite; hornblende altered to chlorite and magnetite
JP-4	selected	fine-grained pink biotite monzonite; scattered limonite pseudomorphs after pyrite; chloritized biotite; minor hairline quartz veinlets
JP-5	selected	weakly sericitized intrusive(?); 0.5% dissem. pyrite; very abundant limonite on fractures; 1-2mm quartz veinlets
JP-6	selected	moderately sericitized intrusive(?); hairline quartz veinlets; abundant orange limonite on fractures
JP-7	selected	weakly to moderately sericitized porphyritic andesite; possible weak pervasive silicification or feldspathization; 1-2% finely dissem. pyrite; limonite on fractures
JP-8	selected	fine to medium grained intrusive(?); 5% dissem. pyrite; possible chlorite; abundant limonite; sample strongly weathered
JP-9	selected	moderately sericitized intrusive(?); 5% dissem. pyrite; abundant limonite on fractures
JP-10	selected	fine to medium grained feldspar porphyry; abundant limonite on fractures and in boxworks after pyrite (with jarosite); minor 1-2 mm quartz veinlets

<u>No.</u>	Туре	Lithology
JP-11	selected	strongly sericitized intrusive(?); hairline quartz veinlets with some open space texture; 1% dissem. pyrite; limonite on established fractures; minor jarosite on freshly broken surfaces
JP-12	selected	medium grained monzonite with chloritized hornblende; abundant mm sized quartz veinlets; trace dissem. pyrite often associated with mafics
JP-12	selected	weakly sericitized intrusive(?); 0.5% dissem. pyrite; limonite on fractures
JP-13	selected	intrusive(?); monzonite to granodiorite; brecciated; grey quartz matrix; hairline quartz veinlets; 1-2% dissem. pyrite; limonite on fractures
JP-14	selected	moderately sericitized porphyritic andesite; <1% finely disseminated pyrite; limonite on fractures
JP-15	selected	quartz vein with minor drusy openings; trace chlorite
JP-16	selected	medium grained quartz monzonite to granodiorite, biotite and hornblende altered to sericite and chlorite; 1-2% dissem. pyrite; limonite and minor jarosite on fractures
JP-19	selected	weakly porphyritic and generally finegrained, greenish gray andesite; common <3mm fine-grained and dark, cherty silica veinlets; later set of <1mm banded drusy quartz veinlets with minor open space texture (epithermal)
JP-20	selected	epithermal quartz vein breccia; weak limonitic stain in matrix; minor open space texture
JP-21	selected	epithermal quartz vein breccia; earlier white drusy quartz vein fragments and brownish argillized andesite fragments in dark cherty matrix
JP-22	selected	moderately to strongly sericitized intrusive(?); 1% dissem. pyrite, mainly as complete, fine-grained replacements of hornblende; minor limonite and jarosite on fractures; subtle pink colour in groundmass suggests K-spar?
JP-23	selected	moderately sericitized and silicified intrusive with argillically altered plagioclase; abundant multistage hairline quartz veinlets, some with limonite; cm scale bleached selvages around some veinlets
JP-24	selected	strongly sericitized and possibly argillized porphyritic andesite; 5% dissem. pyrite; heavy limonite staining with some Mn; sample is highly weathered
JP-25	selected	strongly sericitized and brecciated intrusive(?); abundant limonite and minor jarosite on fractures; weak pervasive silicification
JP-26	selected	leucocratic quartz feldspar porphyry; minor limonite stain, especially around boxworks after pyrite

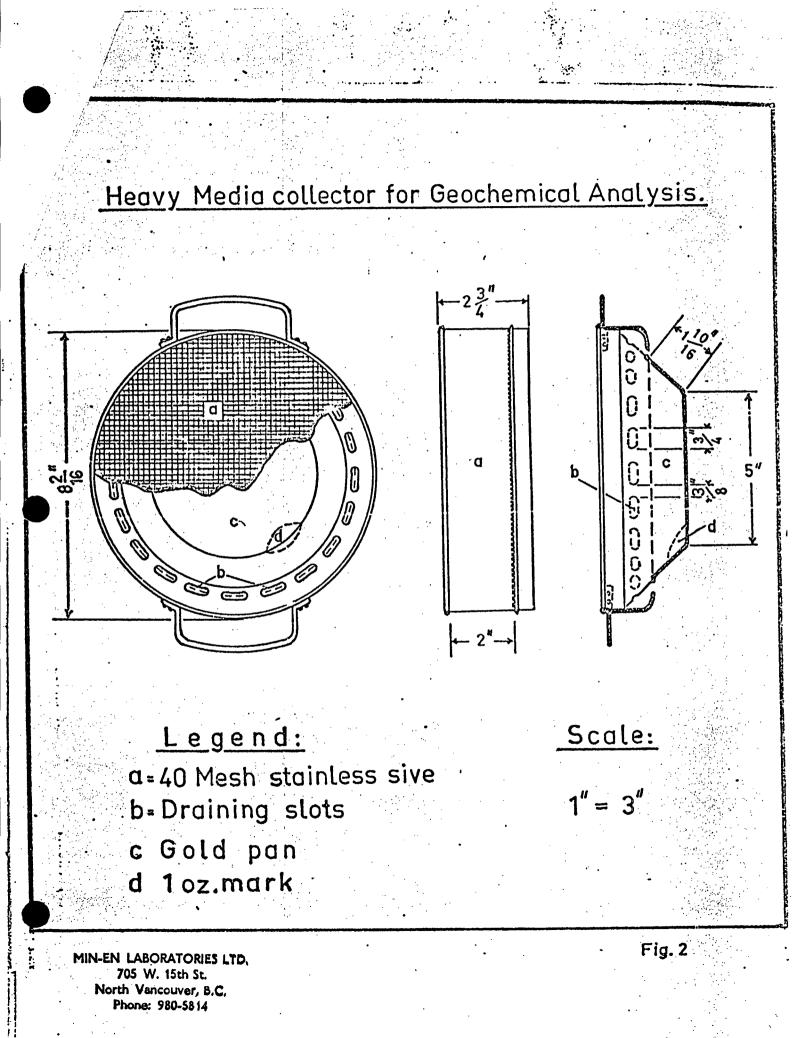
.

. ·

.

•

<u>No.</u>	Түрө	Lithology
JP-27	selected	medium grained hornblende tonalite to granodiorite; hornblende altered to chlorite, pyrite; weak pervasive sericite; minor epidote; moderately fractured with minor pyrite and limonite
JP-28	selected	medium grained hornblende tonalite; minor epidote alteration on some plagioclase; 3-5% dissem. pyrite; weak chloritization of hornblende; limonite on fractures


,

.

· .

Appendix D

Description of Pan-Screen Set Used to Collect Stream Sediment Samples

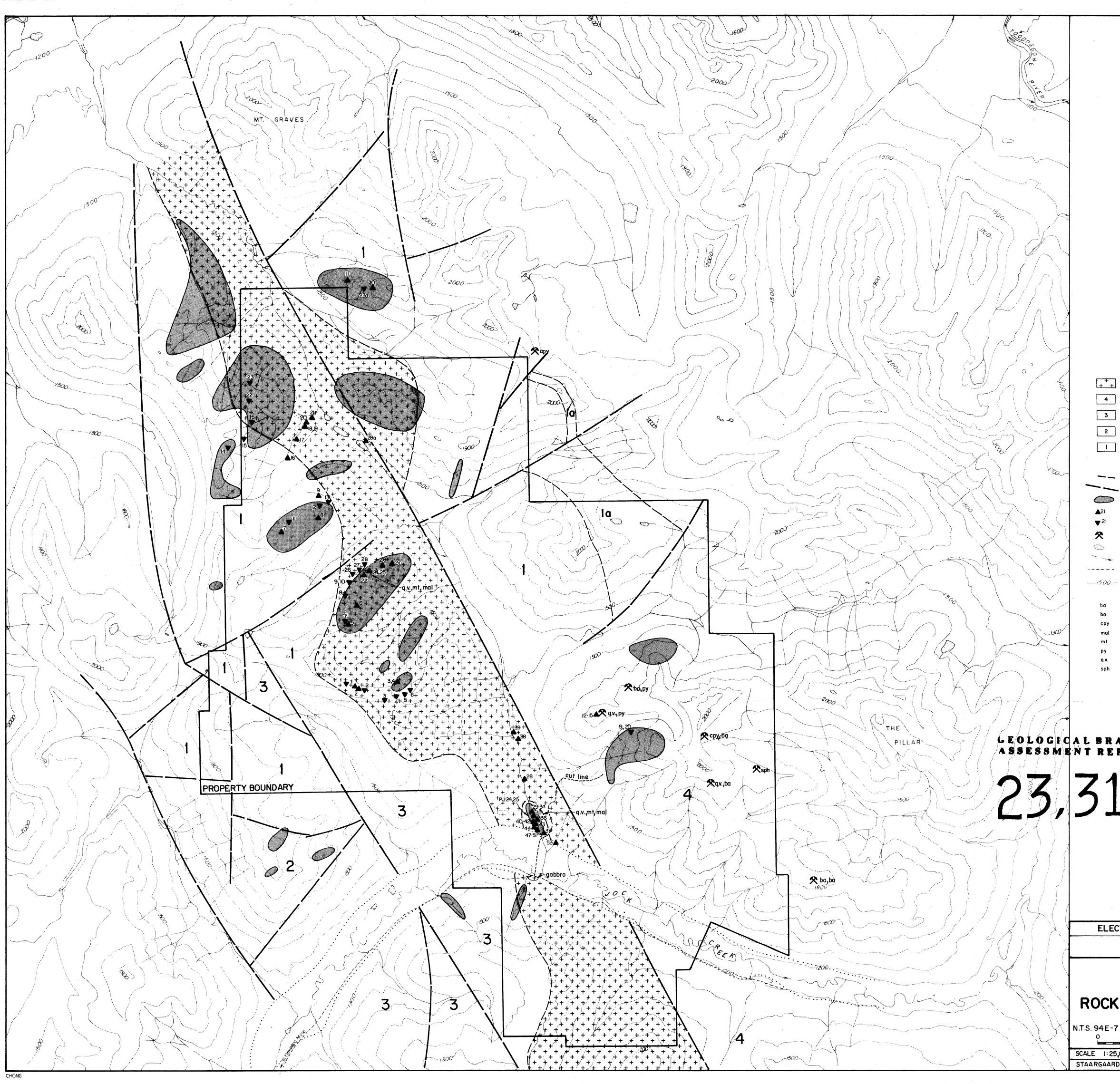
PHONE 980-5814

MIN-EN Laboratories Ltd.

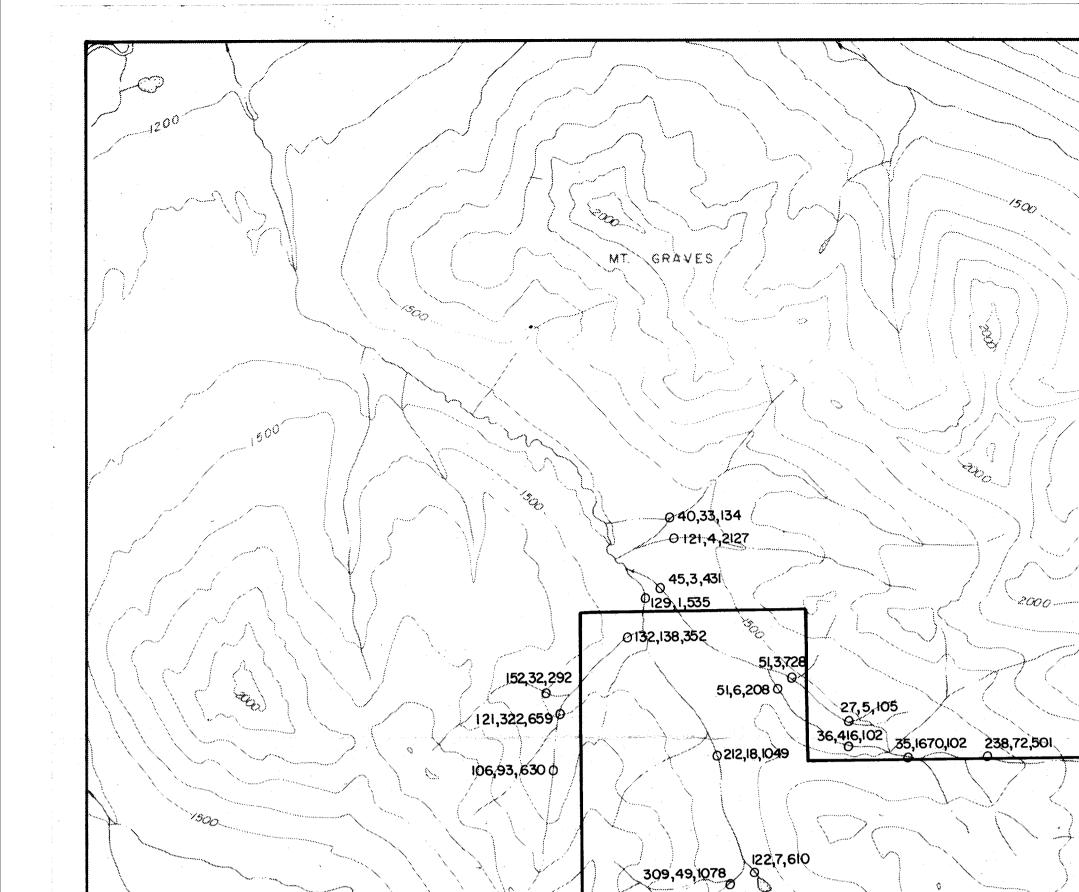
Specialists in Mineral Environments Corner 15th Street and Bewicke 705 WEST 15th STREET NORTH VANCOUVER, B.C. CANADA

PROCEDURE FOR HEAVY MINERAL SAMPLE COLLECTOR FOR Au. W. Sn

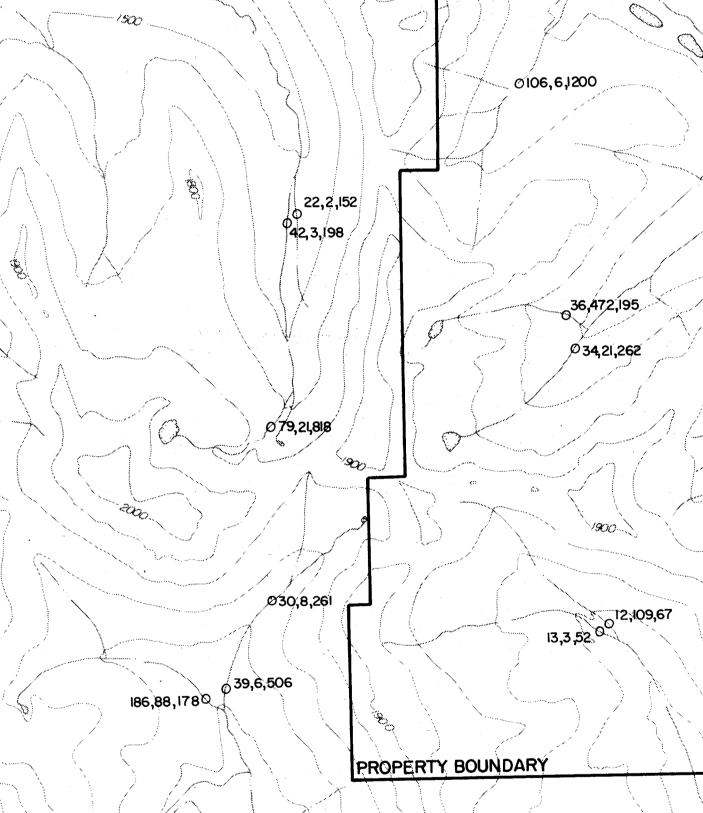
1.) Place a screen on top of pan and fill up the given screen with gravel from the stream bed to level the top of screen.


2.) Sieve underwater until the fine material gets into the pan.

3.) Than discard the material from the screen moving away the screen from the pan.


4.) Pan down the screened material to the amount marked on the bottom of the screen.

5.) Collect heavy panned geochem sample into a suitable vile and send with shipment notice to the laboratory for analysis.


P.S. Sieves are available from the laboratory of 10,20,40 mesh sizes.

	LEGEND
_,	
ŧ	Granodiorite , monzonite
]	HAZELTON GROUP Undivided
	TOODOGGONE FORMATION Saunder Member, high potassium dacite ash flow tuff
]	ATTYCELLY MEMBER Lithic crystal tuff_minor pyroclastic breccia
	METSANTAN MEMBER High potassium latite flows, flow breccia
	High potassium latite flows, flow breccia a) orthoclase megacrysts b) tuff
_	Geological contact
_	Geological contact Fault
>	Gossan
	Rock sample location & Nº. (Prefix SP)
	Rock sample location & Nº、 (Prefix PJ) Showings
	Showings Lake or pond
. .	Lake or pond Creek
~	Road
	Contour at 100 metres interval
	Parito
	Barite Bornite
	Chalcopyrite
	Malachite Magnetite
	Pyrite .
	Quartz vein Sphalerite
	NCH
	ORT
*	
1	7
L	
-	
	N
•	
	TRUM RESOURCE CORPORATION
EC	COLOUNCE CONFURATION
EC	PIL PROPERTY
EC.	· · · · · · · · · · · · · · · · · · ·
EC	PIL PROPERTY TOODOGGONE AREA
EC ⁻	PIL PROPERTY
	PIL PROPERTY TOODOGGONE AREA GEOLOGY and
	PIL PROPERTY TOODOGGONE AREA
	PIL PROPERTY TOODOGGONE AREA GEOLOGY and SAMPLE LOCATIONS OMINECA M.D., B.C.
K	PIL PROPERTY TOODOGGONE AREA GEOLOGY and SAMPLE LOCATIONS OMINECA M.D., B.C. 2000 METRES
K -7	PIL PROPERTY TOODOGGONE AREA GEOLOGY and SAMPLE LOCATIONS OMINECA M.D., B.C. 2000 METRES
K -7	PIL PROPERTY TOODOGGONE AREA GEOLOGY and SAMPLE LOCATIONS OMINECA M.D., B.C. 2000 METRES
K -7	PIL PROPERTY TOODOGGONE AREA GEOLOGY and SAMPLE LOCATIONS OMINECA M.D., B.C. 2000 METRES

 \odot

0118,73,204

CHONG

 \sim o 60,9,396

39,35,225 O

YODO

S

0

too

300

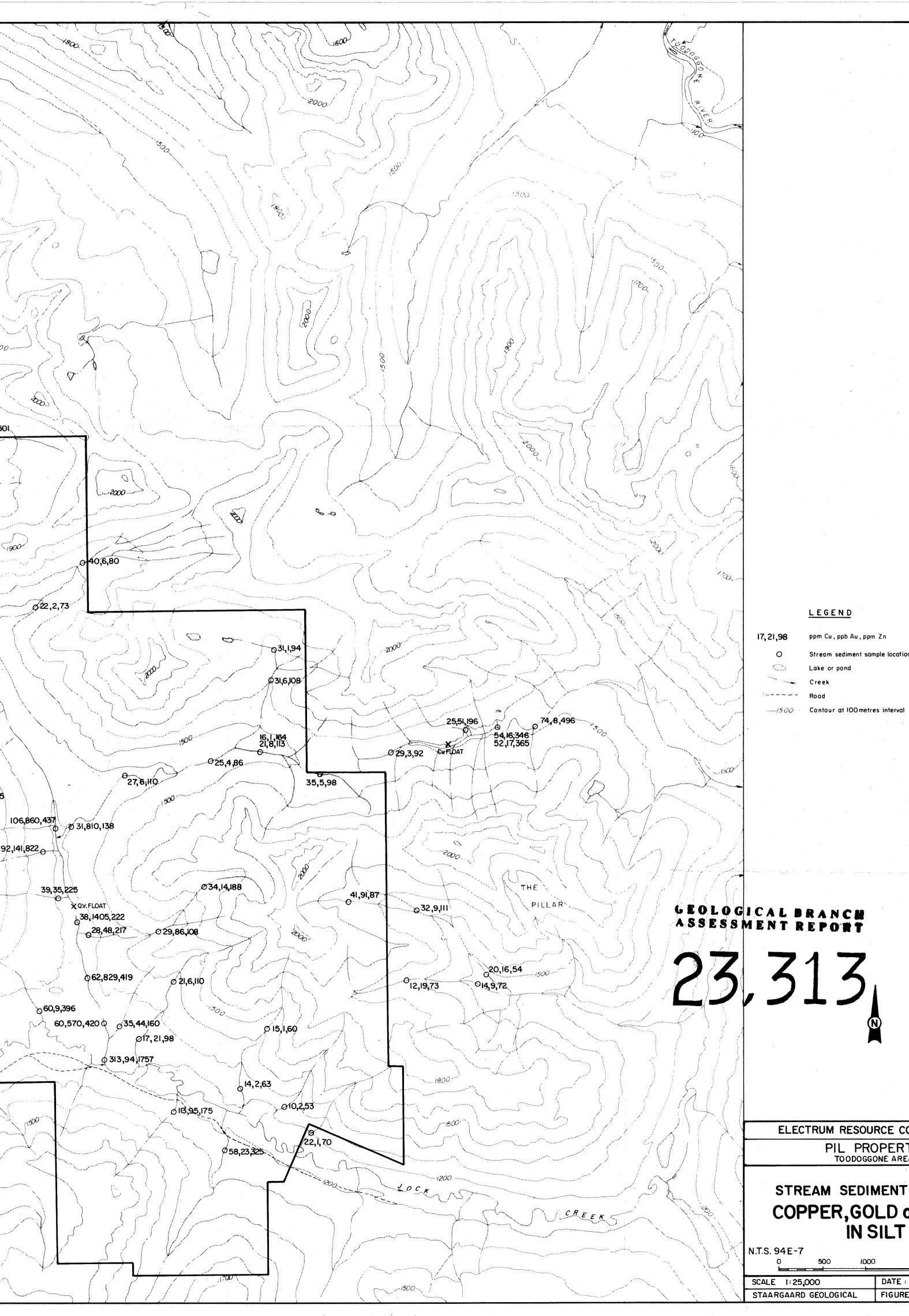
Ø22,2,73

12

Q148,320,282

0164,165,830

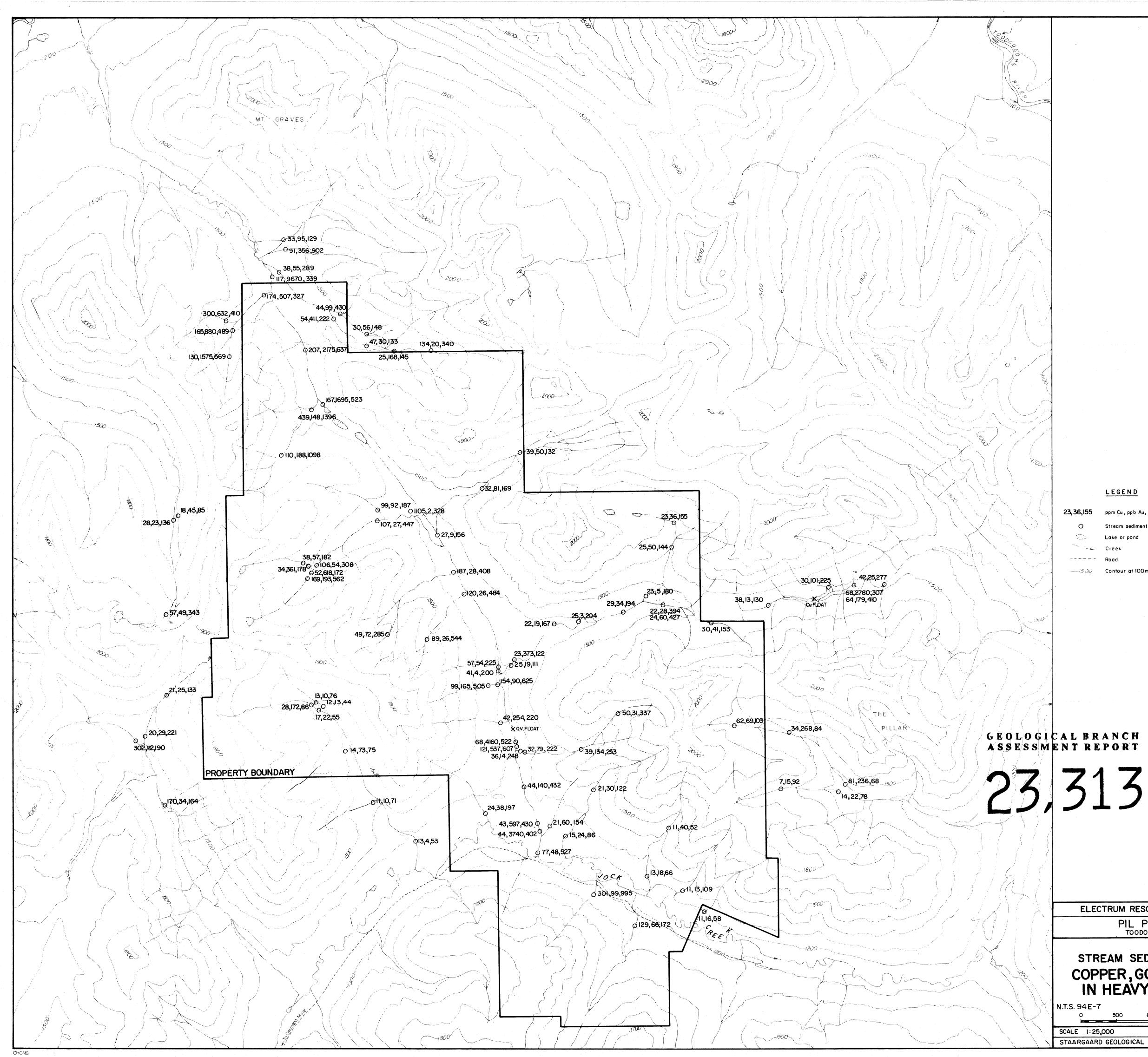
ø**76**, 6, 495


Jak I

Ø 55, 4,345

192,141,822

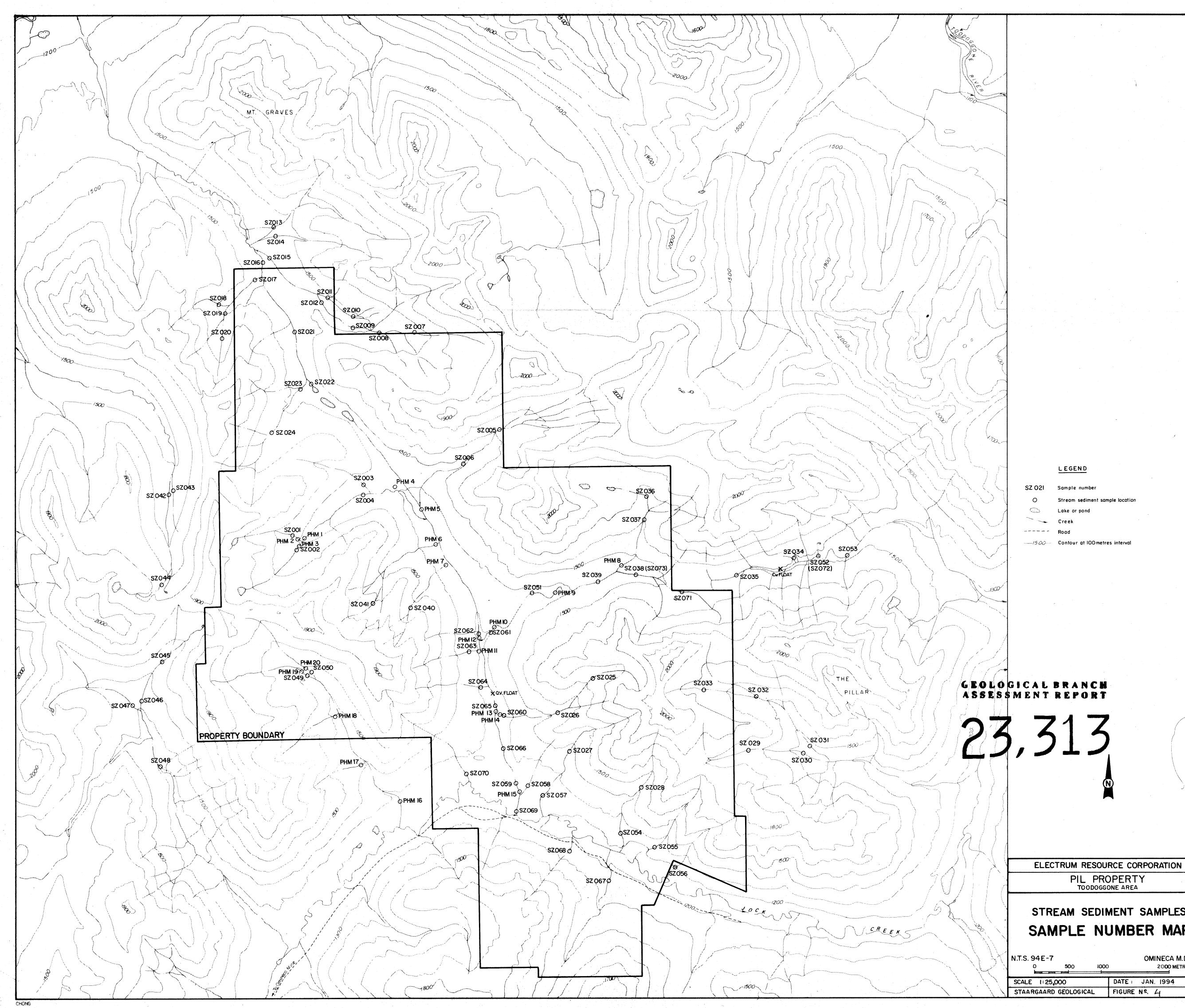
(1500


-4800

JEAL BRANCH JENT REPORT								
ELECTRUM RESOU	RCE CORPORATION							
PIL PRO								
STREAM SEDIMENT SAMPLES COPPER,GOLD and ZINC IN SILT								
N.T.S. 94E-7 0 500 1000	OMINECA M.D. , B.C.							
SCALE I: 25,000 STAARGAARD GEOLOGICAL	DATE : J.AN. 1994 Figure Nº. 5							

LEGEND

ppm Cu,ppb Au,ppm Zn Stream sediment sample location Lake or pond Creek


L	ε	G	E	N	D	

🖘 Creek Road

ppm Cu, ppb Au, ppm Zn Stream sediment sample location Lake or pond

ELECTRUM RESOURCE CORPORATION PIL PROPERTY STREAM SEDIMENT SAMPLES COPPER, GOLD and ZINC IN HEAVY MINERALS

4E-7	7		OMINECA M.D., B.C.		
	500	1000	2000 METRES		
1:25	5,000	DATE	: JAN 1994		
GAAR	D GEOLOGICAL	FIGU	FIGURE Nº 6		

PIL PROPERTY TOODOGGONE AREA						
REAM SEDIMENT SAMPLES						
MPLE NUMBER MAP						
500 1000	OMINECA M.D. , B.C.					
25,000	DATE : JAN. 1994					
ARD GEOLOGICAL	FIGURE Nº. 4					

Stream sediment sample location