LOG NO:	APR 0 5 1994	RD.	÷
ACTION.			- -
FILE NO:	·····		••••••

1993 Geochemical and Diamond Drilling Report on the Lorraine Property

Omineca Mining Division NTS 93 N/14W

Latitude 55°24' N Longitude 125° 25' W GEOLOGICAL BRANCH ASSESSMENT REPORT

Prepared by: S. Bishop

Owner/Operator:

Kennecott Canada Inc. 354-200 Granville St. Vancouver, B.C. V6C 1S4

February 25, 1994

SUMMARY

The Lorraine property comprises 36 claim units located in the Omineca Mining District, north-central British Columbia. The property is underlain by intrusive rocks of the Duckling Creek Syenite Complex, an Early Jurassic, alkaline phase of the Late Triassic-Early Cretaceous Hogem Batholith. Two significant zones of copper-gold mineralization have been explored to date on the property, the Main Zone (Upper and Lower deposits) and the Extension Zone. A combined geological resource was estimated in 1975 for the Main Zone deposits at 10Mt averaging 0.65% Cu and between 1.0g/t and 3.4g/t Au. Gold grades were estimated based on a limited number of gold analyses. The Extension Zone, discovered in 1990, is still at an exploration stage, however it is estimated to be considerably smaller than the Main Zone.

The 1993 exploration program at Lorraine focussed on the Main Zone, with the objectives of establishing the tenor of gold mineralization associated with copper and assessing the potential to increase reserves in the zone. Field work, completed on the property between July 1 and August 15, 1993, included extensive rock chip sampling over the exposed portion of the Main Zone and diamond drilling, to test for extensions of the Main Zone. Three holes were drilled; the first two intersected narrow widths of low grade copper-gold mineralization and the third was abandoned due to difficult drilling conditions. Analytical results from both surface sampling and drillcore indicates that, although there is a positive copper-gold correlation on the property, the tenor of gold mineralization is an order of magnitude lower than the historical predictions, and generally ranges from 0.1 to 0.5g/t Au. Final data compilation, report writing and drafting were completed between December 1993 and February 1994.

Table of Contents

		· · · · · · · · · · · · · · · · · · ·	<u>age</u>
SUM	MARY		. i
1.0	INTRO	DOUCTION	
	1.1	Location, Access and Physiography	1
	1.2	Claim Data	1
	1.3	Exploration History	5
	1.4	1993 Exploration Program	6
2.0	REGIO	ONAL GEOLOGY	7
3.0	PROP	PERTY GEOLOGY	
	3.1	Geology	7
	3.2	Structure	10
	3.3	Alteration	10
	3.4	Mineralization	11
4.0	1993	EXPLORATION PROGRAM RESULTS	
	4.1	Rock Chip Sampling	12
	4.2	Drilling	13
5.0	CON	CLUSIONS	17
6.0	BIBLI	OGRAPHY	18
7.0	STAT		19
8.0	STAT	TEMENT OF QUALIFICATIONS	20

List of Figures

Figure 1	Location 2
Figure 2	Access 3
Figure 3	Government Claim Map
Figure 4	General Geology
Figure 5	Main Zone Cu-Au Geochemistry back pocket
Figure 6	Drill Hole Locations
Figure 7	Cross Section L93-1
Figure 8	Cross Section L93-2

List of Appendices

Appendix I Appendix II Appendix III Rock Sample Descriptions Analytical Techniques and Detailed Analytical Results Drill Logs

<u>Page</u>

1.0 INTRODUCTION

1.1 LOCATION, ACCESS AND PHYSIOGRAPHY

The Lorraine property is located approximately 45km west-northwest of Germansen Landing, in the Omineca Mining District, north-central British Columbia (Figure 1). Access is provided to the Lorraine claim area by a four wheel drive dirt road that was constructed for exploration in the 1970's. The access road is located 41km north of Germansen Landing along the Omineca Mining Road (Figure 2).

The property is situated in the Omineca Mountains. The area is typified by mountains of moderate relief with elevations that range from 1150m in the valleys to peaks of up to 2000m. Valleys are U-shaped and blanketed by glacial till which give way to steep, talus covered slopes and sharp ridges. Vegetation ranges from coniferous forests of spruce, balsam and pine in the valleys to alpine grasses and shrubs at elevations above 1600m. Outcrop is generally limited to elevations above 1600m.

1.2 CLAIM DATA

The Lorraine property is comprised of 36 single unit mineral claims or fractional claims, owned 100% by Kennecott Canada Inc. (Figure 3). Essential claim data is listed below. The expiry dates listed are the dates that apply once the assessment work from the 1993/94 program has been credited to the claims:

<u>Claim Name</u>	Record #	<u>New Tenure #</u>	<u>Units</u>	Record Date	Expiry Date
				(M-D-Y)	(M-D-Y)
Lorraine 1	15672	243499	1	9-17-1947	9-17-2004
Lorraine 2	25673	243500	1	9-17-1947	9-17-2004
Lorraine 3	35674	243501	1	9-17-1947	9-17-2004
Lorraine 4	45675	243502	1	9-17-1947	9-17-2004
Lorraine 5	55676	243503	1	9-17-1947	9-17-2004
Lorraine 6	65677	243504	1	9-17-1947	9-17-2004
Lorraine 7	75678	243505	1	9-17-1947	9-17-2004
Lorraine 8	85679	243506	1	9-17-1947	9-17-2004
Lorraine 9	95917	243507	1	6-22-1948	6-22-2004
Lorraine 10	105918	243508	1	6-22-1948	6-22-2004
Lorraine 11	115919	243509	1	6-22-1948	6-22-2004
Lorraine 12	125920	243510	1	6-22-1948	6-22-2004
Lorraine1FR	110611	245449	1	5-31-1972	5-31-2004
Lorraine2FR	110612	245450	1	5-31-1972	5-31-2004
Lorraine3FR	110613	245451	1	5-31-1972	5-31-2004
Lorrex 1	14206	243646	1	9-4-1961	9-4-2004
Lorrex 2	14207	243647	1	9-4-1961	9-4-2004
GK 1	89161	245043	1	7-3-1970	7-3-2004

<u>Claim Name</u>	<u>Record #</u>	<u>New Tenure #</u>	<u>Units</u>	<u>Record Date</u> (M-D-Y)	Expiry Date (M-D-Y)
GK 2	89162	245044	1	7-3-1970	7-3-2004
GK 3	89163	245045	1	7-3-1970	7-3-2004
GK 4	89164	245046	1	7-3-1970	7-3-2004
GK 5	89165	245047	1	7-3-1970	7-3-2004
GK 6	89166	245048	1	7-3-1970	7-3-2004
GK 7	89167	245049	1	7-3-1970	7-3-2004
GK 8	89168	245050	1	7-3-1970	7-3-2004
GK 9	89169	245051	1	7-3-1970	7-3-2004
GK10	89170	245052	1	7-3-1970	7-3-2004
GK11	89171	245053	1	7-3-1970	7-3-2004
GK18	89178	243054	1	7-3-1970	7-3-2004
GK19	89179	243055	1	7-3-1970	7-3-2004
GK20	89180	243056	1	7-3-1970	7-3-2004
<u>GK21</u>	89181	243057	1	7-3-1970	7-3-2004
GK109FR	110614	245452	1	5-31-1972	5-31-2004
GK110FR	110619	245530	1	7-25-1972	7-25-2004
GK111FR	110615	245453	1	5-31-1972	5-31-2004
GK112FR	113820	245531	1	7-25-1972	7-25-2004

<u>NOTE:</u> The Lorraine property is incorrectly positioned on the government claim map (Figure 3). The correct location of the property is approximately 2km to the east.

1.3 EXPLORATION HISTORY

The highly visible, malachite-stained bluffs at Lorraine Mountain were first brought to the attention of prospectors by local indigenous peoples during World War I. The earliest claims were reportedly staked in 1931 by F. Weber of Fort Graham. The Consolidated Mining and Smelting Company Limited acquired the property in 1943, but allowed the claims to lapse in 1947.

Later in 1947, the Lorraine claims were grubstaked by D. Heavenor for Northwestern Explorations Limited, a predecessor company to Kennco Explorations (Western) Ltd. and Kennecott Canada Inc. In 1948 the Main Zone copper showings were mapped and sampled. In 1949 five AX drill holes, totalling 965m, were completed to test the zone, which was later referred to as the Main Zone Upper deposit. In 1961, Kennco staked the Lorrex claims and conducted an extensive exploration program including soil and rock sampling, magnetometer and induced polarization (IP) surveys, in search of an extension of the Upper deposit. Two AX diamond drill holes, totalling 118m, were drilled in the cirgue southwest of the Upper deposit.

In 1970, Granby Mining Corporation optioned the property from Kennco. Additional claims, the G.K. claims, were staked in 1970 and 1972. From 1970-73, Granby completed further exploration work that included geological mapping, soil and rock

sampling, magnetometer surveys, trenching and a total of 3992m of diamond drilling and 2470m of percussion drilling. This work led to the discovery of the Main Zone Lower deposit. A potential resource, calculated in 1975 for the Main Zone deposits, was reported as 4.5Mt grading 0.75% Cu and 3.4g/t Au in the Upper deposit and 5.5Mt grading 0.60% Cu and 1.0g/t Au in the Lower deposit, based on a cutoff grade of 0.4% Cu (Figure 4; Wilkinson et al., 1976). Gold grades were estimated based on a limited number of analyses.

The property lay dormant from 1975 to 1990, when Kennecott re-initiated exploration work at Lorraine to assess the tenor of gold mineralization associated with copper and to explore the areas peripheral to the Main Zone for additional mineralization. Work completed in 1990 and 1991 included soil and rock sampling, geological mapping, IP surveys and 2392m of diamond drilling in 12 holes. This work succeeded in discovering a new zone of mineralization, referred to as the Extension Zone (Figure 4). Analytical results from Extension Zone surface and drill core samples indicated that gold grades, associated with copper mineralization, were an order of magnitude lower than those reported historically, and generally ranged from 0.1 to 0.5g/t Au.

1.4 1993 EXPLORATION PROGRAM

The focus of the 1993 exploration program at Lorraine shifted back to the Main Zone, and was targeted to establish the tenor of gold mineralization associated with copper and to test for extensions of the zone. Work included continuous chip sampling across three lines through the Main Zone Upper deposit and the collection of composite grab samples, at regular intervals, across the north face of the mountain (Figure 5). Three diamond drill holes were completed to test for extensions to the Main Zone (Figure 6). In conjunction with the 1993 exploration program at the Lorraine Main Zone, additional work was completed on the Extension Zone to trace it beyond the Lorraine claim boundary onto the Boot/Steele claims that were under option to Kennecott. The results of the Extension Zone work are reported in a 1993 assessment report on the Boot/Steele claims (Bishop, 1993).

A total of 320 rock samples and 132 drillcore samples were collected and sent to Min-En Analytical Laboratories in Vancouver, B.C., for analysis. Samples were analyzed for 31 elements by ICP and by atomic absorption for gold. Rock samples that returned results of >2000ppm Cu and/or >300ppb Au were then assayed for copper or gold respectively. Rock sample descriptions are provided in Appendix I. Coppergold analytical results are plotted on Figures 5, 6 & 7. Analytical techniques and detailed 31 element ICP, Cu and Au assay analytical results are provided in Appendix II.

Data compilation, report writing and drafting were completed between December 1993 and February 1994.

2.0 REGIONAL GEOLOGY

The Lorraine property is located in northern Quesnellia in the Intermontane Belt of British Columbia. Quesnellia comprises a northwest-trending sequence of Mesozoic volcano-sedimentary strata (Takla and Nicola Groups) representative of an intraoceanic volcanic arc environment (Souther, 1992), which was intruded by a series of coeval, comagmatic stocks and batholiths (Woodsworth et al., 1992).

The Lorraine claims lie entirely within the Hogem Batholith, a Late Triassic to Middle Jurassic multiphase intrusion of calc-alkaline to alkaline composition, intruded by Early Cretaceous granitic bodies (Garnett, 1978; Woodsworth et al., 1992). The three principal phases of the batholith are defined by distinct petrographic, chemical and geochronological signatures, represented by: (i) Phase 1 Hogem basic suite rocks and Hogem granodiorite, with K/Ar dates of 176-212 Ma, (ii) Phase 2 Duckling Creek and Chuchi syenite bodies, with K/Ar dates of 162-182 Ma, and (iii) Phase 3 granite/aplite dykes or plugs with considerably younger ages of 108-206 Ma. (Garnett, 1978). Constituent plutons are elongate northwesterly, suggesting long-lived structural control of plutonism (Woodsworth et al., 1992). The batholith intrudes volcanic rocks of the Takla Group to the east and is bounded to the west by the northerly trending Pinchi fault (Figure 1; Garnett, 1978).

Numerous copper and/or gold prospects occur throughout the batholith. The most well known, other than the Lorraine property, include the Cat Mountain (Lysander Gold), Tam (Major General/Canarc) and Col (Kookaburra) properties.

3.0 PROPERTY GEOLOGY

3.1 GEOLOGY

Rock types on the property comprise a diverse alkaline suite ranging from pyroxenite through diorite to syenite, Units 1 to 5 (Figure 4). Unit 6 consists of late stage granite dikes. Intrusive paragenesis is complicated by: (i) repeated intrusion of Units 1 to 5 which display conflicting cross-cutting relationships, (ii) obscuring of contacts by alteration or local development of migmatitic fabrics, (iii) lack of observed sharp intrusive contacts, and (iv) compositional gradations, resulting from both primary differentiation and secondary alteration, which occur between all phases. Rock types were grouped into six units to simplify the geologic map (Figure 4), although compositional gradations exist between all units. In general, field relationships indicate that Unit 1 is oldest and Unit 6 youngest.

Biotite pyroxenite (Unit 1) is typically dark green to black, medium to coarse grained, and composed predominantly of clinopyroxene, porphyroblastic biotite, variable amounts of potassium feldspar, abundant magnetite (+/- ilmenite) and apatite. This

7

FIGURE 4: LORRAINE GENERAL GEOLOGY

unit commonly weathers to distinctive piles of coarse greenish black sand. With increasing potassium feldspar content, biotite pyroxenite grades into alkali gabbro. Locally, either an oikocrystic or porphyroblastic variety of pyroxenite, with prominent pink-orange potassium feldspar oikocrysts or porphyroblasts occurs. Further study is required to determine the origin of this texture.

In the Main Zone, pyroxenite occurs as irregular, lens-like bodies that generally crop out in areas of lower elevation. Previous mapping (Garnett, 1978) depicted these lenses as easterly trending and steeply dipping, parallel to the trend of the migmatitic foliation. Recent mapping in the Extension Zone (Bishop, 1993) has determined that a large body of pyroxenite to alkali gabbro, interpreted to represent a cumulate layer within the syenite complex, occurs southeast of the mineralized zone.

The northeastern portion of the property is dominated by a mass of relatively homogeneous monzodiorite to diorite (Unit 2). This unit is characteristically grey in colour, medium grained and equigranular, composed of 30-80% plagioclase, up to 50% potassium feldspar and up to 30% mafic minerals (clinopyroxene and biotite, with lesser hornblende). In the southern part of the property, a gradation from pyroxenite to melanocratic and leucocratic diorite occurs. With increasing potassium feldspar content, diorite grades into monzonite, monzosyenite and grey syenite (Unit 3). Grey syenite, composed primarily of potassium feldspar and clinopyroxene with minor biotite, magnetite and apatite, is restricted to the southern half of the property. In the central part of the property, grey syenite is in contact with syenite migmatite (Unit 4) along a fault which truncates the Upper Lorraine deposit (Figure 4).

Syenite migmatite (Unit 4) is distributed in a broad, northwest-trending area through the Main and Extension Zones. Its migmatitic texture is most pronounced in the Main Zone, however this unit grades into more texturally uniform leucocratic syenites in both the Main and Extension Zone areas. Unit 4 is the predominant host of mineralization on the property. Syenite migmatite is fine to medium grained and is agmatitic, migmatitic or gneissic with alternating pink-orange and grey banding. Principal minerals are potassium feldspar, biotite and clinopyroxene, with variable magnetite. In the Main Zone, foliated migmatitic syenite contains metasomatized xenoliths of pyroxenite, diorite, monzonite and metavolcanic "basement" rocks.

Cross-cutting, sub-vertical leucocratic syenite and plagiophyric syenite dikes (Unit 5) and granite dikes (Unit 6) post-date all rock types, alteration and mineralized zones. They vary from aplitic to pegmatitic in texture and range in width from 1 to 25m. The greatest density of dikes occurs at higher elevations in the Main Zone and along adjoining ridges, with lesser syenite dikes in the lower part of the Main Zone. Syenite and granite dikes commonly trend 0° to 020° whereas plagioclase porphyry dikes strike from 090° to 120°.

3.2 STRUCTURE

Igneous contacts and all ductile and brittle structural fabrics exhibit prominent trends at 020°, 060° and 110° to 120°. The main foliation in syenite migmatite strikes westnorthwest and dips gently to the south. The intensity of migmatite development, fracture density and frequency of pegmatite and granite dike intrusion is greatest in the Main Zone.

Three significant east-west trending faults occur in the property area (Figure 4). The first cuts the northern property area, and is indicated by sheared pyroxenite exposures and by a series of igneous contacts that mark a compositional change from syenite migmatite to diorite and monzodiorite. Minor late-stage copper mineralization is localized along this structure. The second fault, trending through the centre of the property, is steeply south-dipping and truncates mineralization in the Main Zone to the southeast. A third east-west trending fault is interpreted to lie in the west central property area and to truncate or displace Main Zone mineralization to the south.

East-northeast trending structures are also prominent in the Lorraine property area. A major 060° trending fault was mapped across the middle of the Extension Zone and through the ridges on either side of the zone (Figure 4). Mineralization in the Extension Zone is not offset across this fault and localized pockets of mineralization occur along this structure where it transects Weber Ridge.

North-northeasterly trending structures are also significant at Lorraine. A 020° trending fault, located immediately west of the map area (Figure 4), parallels a tributary of Haha Creek. Lower Zone mineralization is interpreted to be bounded, or displaced to the west, by this fault.

Recent field work did not determine the relative ages nor the sense of motion of these structures. Outside the map area of Figure 4, slickensides indicate oblique-slip (normal and left lateral) displacement on 060° trending faults.

3.3 ALTERATION

Three major alteration stages are represented at Lorraine: (i) early potassium metasomatism resulting in secondary biotite, (ii) main-stage potassium feldspathization and (iii) late-stage, weak sericitization and propylitization (chlorite-epidote-carbonate). In addition, clay-sericite and quartz-sericite-carbonate alteration occur locally throughout the property. Minor quartz veins occur in the Main Zone area. The results of work completed to date has not indicated the presence of a systematic, property-scale, alteration zonation and evidence to define the temporal relationship of alteration assemblages is insufficient to propose a well defined paragenetic sequence of alteration.

Fine to coarse grained secondary biotite occurs as partial to near-complete replacement of pyroxenes in pyroxenite and melanocratic phases of the Duckling Creek Syenite Complex. Stringers and books of biotite are common in leucocratic phases. Potassium feldspathization, characterized by a pink-orange colour, is widespread and varies in intensity throughout the property. Potassium feldspar occurs as incipient grains, in stringers or as patchy, pervasive flooding. Potassium metasomatism is associated with emplacement of syenitic intrusions. Late stage sericite, only noted in thin section, occurs as partial replacement of plagioclase. Epidote occurs locally as patches, ranging in intensity to complete replacement of the protolith. Spectacular, late hydrothermal magnetite occurs as pegmatoidal aggregates, veinlets and as matrix to breccias.

3.4 MINERALIZATION

The greatest concentrations of mineralization occur in syenitic rocks and, locally, in biotite pyroxenite in the Main and Extension Zones. Elsewhere on the property copper mineralization occurs as localized patches or zones, hosted by all rock types except late granite dikes. These small zones of copper mineralization are generally discontinuous. The Weber Ridge (Figure 4) and Eckland Ridge (500m west-southwest of Weber Ridge, outside the area of Figure 4) occurrences contain the most significant concentrations of mineralization outside the Main and Extension Zones.

Copper sulphides that occur at Lorraine include chalcopyrite, bornite and rare covellite. Pyrite occurs in minor amounts (<1%), with an erratic distribution throughout the property. Malachite, azurite and chrysocolla occur in oxidized portions of the property. Sulphides are typically fine to medium grained and are disseminated throughout the host rock or concentrated along fractures and in narrow quartz veinlets. Rare net-textured sulphides were observed in pyroxenites in diamond drill core. Sulphide abundance ranges from trace amounts to greater than 7%.

4.0 1993 EXPLORATION PROGRAM RESULTS

4.1 ROCK CHIP SAMPLING

A total of 247 continuous rock chip samples were collected over three lines along the bluffs in the Main Zone. Samples were collected with hammer and chisel over 5m sample lengths. In addition to the continuous chip samples, a total of 68 composite grab samples were collected from the northwest face and along the ridge of Lorraine Mountain. Sample locations and copper-gold geochemistry are plotted on Figure 5. Sample descriptions are provided in Appendix I and 31 element ICP, copper and gold assay results are presented in Appendix II.

Results from sampling returned significant copper mineralization across the bluffs in the Main Zone, however mineralization in the zone is truncated to the southeast by a steeply dipping, easterly striking fault. Along these bluffs, copper values generally range from 0.1% to 1.0%Cu, with gold values between 50ppb and 500ppb Au. The highest values returned 2.0%Cu and 1365ppb Au. Summarized below are weighted averages of copper and gold values along the length of the three sample lines, to the point where the fault truncates mineralization (Figure 5). The upper line was sampled in discontinuous segments, reflecting the sporadic occurrence of outcrop. Results from the north face, composite chip sampling were disappointing and are reported on Figure 5.

LINE	LENGTH (m)	<u>Cu(ppm)</u>	<u>Au(ppb)</u>
Lower Bluffs	500	3623	243
Middle Bluffs	380	4675	217
Upper Bluffs	40	3415	98
Upper Bluffs	18	2736	66
Upper Bluffs	30	5262	535
Upper Bluffs	35	5388	140
Upper Bluffs	35	3920	215

When plotted on a scatterplot, analytical results show a strong correlation between copper and gold grades (Stanley, pers. comm), however the copper/gold ratio is unusually high (45000 in the Main Zone, 60000 in the Extension Zone) in comparison to other alkaline copper-gold prospects in Quesnellia, such as Afton/Ajax, Copper Mountain and Mount Polley, which have copper/gold ratios that range from 10000 to 25000 (Stanley, 1993). Work to date has not determined if gold has a greater association with any one copper sulphide.

12

4.2 DRILLING

Three drillholes were completed to test for extensions to the Main Zone. Hole L93-1 was drilled southwest of the zone, L93-2 to the northeast and L93-3, west-northwest of the Main Zone. Drillhole locations are depicted in Figure 6 and cross sections for L93-1 & 2, in Figures 7 & 8. Drillhole L93-3 was lost due to difficult drilling conditions in overburden, therefore no cross section was drafted for this hole. Drill logs are presented in Appendix III and detailed 31 element ICP, copper and gold assay results in Appendix II .

Results from drilling were disappointing, the intersections that returned anomalous levels of mineralization are summarized below.

<u>Drillhole</u>	From (m)	<u>To (m)</u>	Width (m)	<u>Cu (%)</u>	<u>Au (ppb)</u>
L93-1	137.3	139.3	2.0	0.35	82
L93-2	3.0	28.0	25.0	0.21	105
L93-2	35.0	40.9	5.9	0.13	100
L93-2	44.8	52.5	6.3	0.12	24
L93-2	58.0	124.0	66.0	0.29	124
L93-2	130.6	257.0	126.4	0.17	99

No samples were collected from drillhole L93-3 as it was abandoned in overburden.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The 1993 exploration program at Lorraine succeeded in establishing that the tenor of gold mineralization associated with copper is an order of magnitude lower than that predicted by work completed in the 1970's. A combined geologic resource was estimated in 1975 for the Main Zone deposits at 10Mt averaging 0.7% Cu, and from 1.0 to 3.4g/t Au. The zone is more adequately represented by gold grades ranging from 0.1 to 0.4g/t Au. No statistical work has been completed to give more precise copper or gold grades.

A strong copper-gold correlation, with an unusually high copper/gold ratio, exists at Lorraine. Copper/gold ratios of 45000 in the Main Zone and 60000 in the Extension Zone contrast with 10000 to 25000 ratios exhibited by many of the other alkaline copper-gold systems in the Canadian Cordillera (Stanley, 1993).

Diamond drilling did not succeed in expanding the reserves, or in locating new zones of mineralization. The drill rig, however, was inadequate to penetrate depths of overburden exceeding 13m. Although the areas peripheral to the Main Zone have not been adequately drill tested to determine if extensions to the Main Zone mineralization exist, there appears to be little potential to develop a resource in the order of +150Mt. No further work is recommended for Kennecott at this time.

6.0 **BIBLIOGRAPHY**

Archambault, M., Price, B.J., and Rebagliati, C.M. (1991): 1990 Exploration Report, Lorraine Property, Duckling Creek, <u>Kennecott Canada Inc.</u>, Confidential Report, 23p., 3 Appendices and 7 Maps.

Barr, D.A., et al. (1976): The Alkaline Suite Porphyry Deposits - A Summary, in <u>Canadian Institute of Mining and Metallurgy</u>, A. Sutherland Brown (ed.) Special Volume 15, p.359-367.

Bishop, S.T., and Fingler, J. (1992): 1991 Lorraine Property Exploration Report, Kennecott Canada Inc., Confidential Report, 54p, 8 Appendices and 6 maps

Bishop, S.T. (1993): Geological, Geochemical, Geophysical and Diamond Drilling Report on the Boot/Steele Property, <u>British Columbia Ministry of Energy, Mines and</u> <u>Petroleum Resources</u>, Assessment Report, 15p, 4 Appendices and 2 maps..

Garnett, J.A. (1978): Geology and Mineral Occurrences of the Southern Hogem Batholith, <u>British Columbia Ministry of Energy</u>, <u>Mines and Petroleum Resources</u>, Bulletin 70, 75p.

Leitch, C.H.B. (1992): Petrographic Report of 45 Specimens form the Lorraine Porphyry Cu-Au Property, British Columbia, <u>Kennecott Canada Inc.</u>, Confidential Report, 50p.

Souther J.G. (1992): Volcanic Regimes, in Geology of the Cordilleran Orogen in Canada, H. Gabrielse and C.J. Yorath (eds.), <u>Geological Survey of Canada</u>, Geology of Canada, no. 4, p457-490.

Stanley, C.R., (1993): A Thermodynamic Geochemical Model for the Co-precipitation of Gold and Chalcopyrite in Alkalic Porphyry Copper-Gold Deposits, in Copper-Gold Porphyry Systems of British Columbia, Annual Technical Report-Year 2, July 1992-July 1993, <u>Mineral Deposit Research Unit</u>.

Wilkinson, W.J. Stevenson, R.W. and Garnett, J.A. (1976): Lorraine, in <u>Canadian</u> <u>Institute of Mining and Metallurgy</u>, A. Sutherland Brown (ed.), Special Volume 15, p.397-401.

Woodsworth, G.J., Anderson, R.G., Armstrong, R.L., Struik, L.C. and van der Heyden, P. (1992): Plutonic Regimes, in Geology of the Cordilleran Orogen in Canada, H. Gabrielse and C.J. Yorath (eds.), <u>Geological Survey of Canada</u>, Geology of Canada, no. 4, p491-531.

7.0 Statement of Expenditures

Fieldwork Salaries (work performed between July 4" and AuguS. Bishop (34 days @ \$200/day)\$ 6,800T. Heah (18 days @ \$200/day)3,600S. Coombes (13 days @ \$222/day)2,886D. Combes (13 days @ \$150/day)4,800	ust 15 th , 1993)
D. Coolidge (32 days @ \$150/day)4,800	\$ 18,086
Diamond Drilling: 1577' @ \$28/ft	\$ 44,156
Helicopter Support for Drilling and Geology 17hrs @ \$750/hr	\$ 12,750
Analytical (including sample prep, ICP, Cu and Au assay and shipping) 452 rock samples @ \$16.11/sple	\$ 7,285
Room and Board 97 man days @ \$50/day	\$ 4,850
Freight and Travel Expenses	\$ 1,750
Truck Rental (includes gas, insurance and excess km charge) 2 trucks @ \$60/day for avg. 33 days	\$ 3,960
Supplies (Radio rental, field gear etc.)	\$ 518
Drafting, Wordprocessing and Report Writing	<u>\$ 2,000</u>
Total	\$ 95,355

19

8.0 <u>Statement of Qualifications</u>

- I, Sandra T. Bishop, of Vancouver, British Columbia do hereby certify that:
- 1) I am a staff geologist with Kennecott Canada Incorporated, with offices located at 354-200 Granville Street, Vancouver, British Columbia.
- 2) I am a graduate of the University of British Columbia with a B.Sc., Geology, 1985.
- 3) I am a member, in good standing, of the Geological Association of Canada and the Association for Professional Engineer's and Geoscientists of British Columbia (Registration No. 19229)
- 4) This report is a result of fieldwork and research performed by and overseen by me between July and August, 1993.

Dated at Vancouver, in the Province of British Columbia, this 25th day of February, 1994.

Sandra T. Bishop, P. Geo.

Copper Values $\square \stackrel{\leq}{=} 0.2\%$ 0.2% < Cu < 0.5%Gold Values

APPENDIX I

Ĉ

án

į

7

1

Rock Sample Descriptions

Sample Number	Sample Description
0462	Grab sample, eastern extent of north face. High grade grab sample of biotitized migmatite with 5% bornite and 1% chalcopyrite as wisps along foliation, or in narrow quartz veinlets (<5cm wide).
0465	Grab sample, ridge between Extension and Main Zone. Malachite stained, salmon pink coloured monzonite.
0466	Grab sample, tracing sample 0465 downslope to Extension Zone. Similar malachite stained, salmon pink monzonite.
0482 & 0483	Grab samples, following up sample 0462. High grade bornite and chalcopyrite in white quartz veinlets (<5cm wide) in biotitized migmatite.
12001-12116	Lower bluffs, continuous 5m chip sampling through 580m total length. Predominant rock type is pink-orange coloured fine to medium grained syenite migmatite. Variable amounts, from 1-10%, disseminated magnetite and biotite. 1-5% fine grained chalcopyrite, disseminated or along fractures, occasional bornite, but it is so fine grained it is hard to quantify the amount. Trace pyrite. Malachite staining on some surfaces. Samples cross occasional pegmatite dykes, that generally host only trace amounts of sulphides.
12140-12225	Middle bluffs, continuous 5m chip sampling through 380m length. Similar to 12001-12116 above.
02509-02553	Upper Bluffs, continuous 5m chip sampling across sporadic outcrops of syenite migmatite. Similar to 12002-12116 above.
02451-02507	North face, composite grab samples collected across the north face of Lorraine mountain. Variable rock types, including grey diorite, pink syenite and syenite migmatite. Only rare sulphides observed throughout the face.
12117-12139 2268-12280	L93-1 drillcore samples; samples described in Appendix III drill logs.
12881-12377	L93-2 drillcore samples; samples described in Appendix III drilllogs.

í ,

ŧ

APPENDIX II

Analytical Techniques and Detailed Analytical Results

PROJ: #05-405

ESAMPIS

CHD

BLURE

0 MOR

۰.

ZONE

MAIN

ATTN: SANDRA BISHOP

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 3V-0359-RJ1+2

DATE: 93/07/22 * ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPM	AL X	AS PPM	8 PPM	BA PPM	BE PPM	BI CA	CD	CO PPM	CU PPM	FE %	K X	LI PPM	MG %	MN PPM	MO PPM	NA N % PF	V I PM	P PPM	PB PPM	SB PP m i	SR PPM	TH P PM	T I PPM	V PPM	ZN PPM	GA PPM	SN P pm	W PPM	CR PPM	AU-FIRE PPB
12001 12002 12003 12004 12005	3.9 3.2 3.6 3.1 4.3	1.15 .74 .92 .88 .70	17 7 12 11 10	1 27 13 21 15	67 91 105 74 82	.6 .1 .1 .1	12 1.0 12 .7 14 .7 13 1.0 10 .9	· .1 · .1 · .1 · .1 · .1	12 14 18 15 14	3230 1682 2584 2361 3076	2.11 2.73 3.43 2.68 2.69	.61 .61 .72 .44 .42	9 10 13 7 7	.64 .75 1.01 .75 .62	433 493 701 655 591	4 1 3 1 2	.30 .04 .04 .04 .04	4 1 3 1	2650 1650 1700 1790 1770	9 8 12 14	92744	127 87 95 117 109	107 90 132 127 96	1344 1849 2323 2095 1729	101.7 138.7 189.6 129.1 112.1	50 49 81 64 65	8 9 12 10 9	2 1 2 2 1	8 8 10 8 8	68 76 102 68 71	192 142 109 107 159
12006 12007 12008 12009 12010	1.6 2.4 7.9 6.8 3.1	.86 1.01 1.13 .88 .95	9 11 9 12 14	11 30 31 21 8	73 66 67 53 57	.2 .4 .1 .1	10 .9 10 1.5 15 1.3 10 1.0 10 1.8	2 .1 7 .1 2 .1 3 .1 5 .1	11 13 21 16 11	1306 1901 6599 5143 2200	2.36 2.95 4.41 2.88 1.78	.25 .25 .44 .33 .22	45 1066	-58 -59 -85 -67 -60	594 651 920 620 704	23131	.04 .05 .04 .04 .04	1 1 1 2	1040 4250 2680 1240 550	8 9 14 12	2 4 8 6 3	123 214 168 116 95	99 149 178 107 102	1578 1550 2829 2096 1602	109.1 150.4 225.0 138.0 73.7	56 70 103 84 56	8 10 14 10 8	1 1 2 2	7 8 11 9 6	65 77 83 97 63	27 82 456 415 157
12011 12012 12013 12014 12015	3.7 2.2 2.6 3.6 2.8	.75 .61 .61 .82 .88	11 12 10 6 13	4 5 10 11 15	65 56 63 148 41	.1 .2 .1 .4 .2	9.7 9.8 101.0 101.0 131.1	3.1 9.1 6.1 5.1 5.1	10 10 12 13 15	2251 1979 2061 2882 1733	1.55 1.51 1.85 2.12 2.39	.33 .25 .33 .22 .17	74544	.53 .55 .67 .66 .73	384 437 542 543 629	5 1 2 2 2	.04 .03 .03 .03 .03	1 1 1 1	610 490 580 480 310	5 5 7 5 4	2 2 1 3 2	63 57 65 96 114	80 79 94 94 130	1515 1402 1916 1726 2280	67.1 63.8 80.0 91.8 107.5	37 50 54 67 76	6 6 7 9 10	2 1 3 2 2	5 5 7 6 8	62 63 76 45 74	285 112 94 186 113
12016 12017 12018 12019 12020	2.3 2.7 2.9 2.1 2.0	.59 .45 .86 .82 1.08	32 10 10 7 1	20 15 29 36 23	41 71 82 54 64	.32.1	11 .8 8 .6 13 .7 14 .7 10 .7	5.1 3.1 5.1 9.1 0.1	12 8 13 14 21	1744 2535 2826 1571 2744	1.60 1.20 2.07 2.11 4.23	.20 .17 .39 .28 .42	33657	.48 .36 .77 .59 .81	428 292 500 412 566	1 1 1 4	.03 .03 .04 .03 .03	1 1 1 1	150 280 280 400 200	4 7 10 1 9	2 2 2 1 3	60 62 87 82 109	83 62 82 112 136	1825 1280 1961 2371 2124	66.1 44.1 82.2 78.5 138.4	49 32 61 43 64	7 4 8 12	3 1 2 3 1	5 5 7 6 7	42 56 60 47 52	83 129 267 95 87
12021 12022 12023 12024 12025	10.9 13.3 6.9 5.1 3.4	.83 1.13 1.42 1.74 1.20	1 14 13 15 10	22 54 24 32 10	42 64 64 82 41	.1 .2 .8 1.0 1.2	7 1.0 7 1.9 9 1.8 14 1.5 4 1.2	0 .1 2 .1 4 .1 9 .1 8 .1	16 15 11 16 7	>10000 >10000 7382 4925 3887	3.27 2.71 2.33 2.65 1.33	.23 .37 .29 .46 .22	4 8 5 14 3	.56 .73 .50 .74 .25	697 683 603 695 319	2 4 5 4 5	.03 .06 .16 .19 .43	1 1 1 1	1920 7490 5280 2520 3120	15 23 16 16 7	11 13 10 9 7	123 239 224 256 1 33	120 194 159 153 86	1949 1826 1428 2376 633	144.6 108.2 109.6 121.5 59.2	72 78 59 74 40	9 10 8 11 5	1 1 2 1	7 8 7 9 5	45 64 49 79 45	515 812 815 332 198
12026 12027 12028 12029 12030	3.4 4.4 7.2 17.8 33.9	1.16 .71 .53 .92 1.43	12 4 12 37	21 14 7 35 55	45 49 51 56 83	.6 .2 .1 .1	7 1.6 4 1.3 1 .9 8 1.9 22 4.2	1 .1 0 .1 1 .1 0 .1 4 .1	11 8 10 11 21	3899 4936 8256 >10000 >10000	1.99 1.56 1.87 1.90 4.12	.29 .26 .28 .23 .36	7 4 6 4 8	.60 .29 .37 .40 .94	702 396 402 484 1313	3 2 1 5 7	.18 .09 .05 .05 .05	3 1 3 5 7	4480 4030 2140 7150 >10000	6 9 17 24 43	6 9 14 25	240 187 102 304 581	125 98 75 204 608	1144 1193 1204 1387 1630	96.5 65.9 62.0 61.1 162.0	73 35 43 49 108	9 5 7 16	1 1 1	5 4 4 7 11	56 40 34 60 56	140 227 528 1034 1365
12031 12032 12033 12034 12035	9.5 4.2 5.1 3.3 5.5	.88 .60 .56 .69 1.12	5 6 1 1	37 26 20 17 19	76 65 57 50 77	.5 .1 .1 .1	7 1.9 8 1.4 7 .9 9 1.0 10 1.2	0.1 8.1 3.1 6.1	14 13 14 17 19	>10000 3713 5177 3475 5977	3.02 2.41 3.17 4.15 3.45	.38 .23 .23 .17 .39	5 3 3 10	.61 .31 .25 .34 .61	904 557 519 792 740	5 1 2 1 3	.06 .04 .04 .03 .04	1 1 1 1	9250 6060 2820 2490 2060	32 8 7 3 10	13 3 6 4 6	239 181 127 148 188	241 140 103 109 129	1353 1553 1650 1871 2123	119.7 113.7 157.2 219.0 168.2	88 51 58 99 122	10 7 8 11 12	1 1 1 1	7 6 6 7 7	65 50 53 50 48	584 248 457 283 170
12036 12037 12038 12039 12040	5.6 3.3 4.3 5.9 .1	.89 .72 .85 .80 .43	2 1 2 1 12	13 20 13 23 9	58 66 48 50 83	.1 .1 .2 .4 .1	7 1.0 5 1.0 7 1.1 6 1.3 4 .6	0.1 0.1 6.1 1.1 7.1	15 11 12 12 5	6499 3717 3255 6162 493	2.68 2.31 2.46 2.30 1.34	.20 .22 .20 .20 .20 .14	42543	.42 .36 .40 .38 .19	616 496 557 597 293	3 1 3 1 2	.04 .04 .04 .07 .07	1 1 1 1	1200 2270 2220 4110 650	12 14 5 12 4	7 4 3 7 1	146 132 160 169 82	91 113 117 137 58	1616 1133 1371 1464 496	123.8 105.3 106.2 98.2 48.5	86 65 69 73 25	8 6 7 3	1 1 1 1	6 5 5 5 3	45 39 47 37 70	177 160 140 158 1
12041 12042 12043 12044 12045	.5 .4 2.8 3.9 4.2	.80 .38 1.74 1.73 1.56	1 7 5 4 6	15 12 20 21 22	98 92 51 47 42	.5 .1 1.9 1.9 1.7	8 .9 3 .6 13 1.3 13 1.3 10 1.4	6 .1 4 .1 0 .1 8 .1 6 .1	12 4 11 14 14	1734 913 3025 4091 4349	2.76 .94 2.25 3.10 3.54	.20 .11 .14 .20 .20	6 1 3 4 4	.43 .13 .23 .27 .24	544 222 507 692 569	1 1 5 6 4	.07 .05 .30 .46 .25	1 1 1 1	1400 880 1530 2170 3830	3 5 12 19 4	4 13 13 9	126 85 420 225 203	87 51 109 124 136	1172 458 1138 1297 1233	103.0 34.2 112.0 158.9 180.0	66 23 47 46 38	7 3 8 9 9	1 1 1 1	6 3 6 7 8	49 58 38 54 69	10 3 54 148 271
12046 12047 12048	2.7 2.0 1.8	.94 1.00 .70	1 2 1	19 21 23	58 64 75	.1 .4 .4	9 1.3 9 1.2 3 1.3	5 .1 9 .1 1 .1	17 16 12	2762 2950 2981	4.45 3.94 2.94	.28 .25 .23	6 8 4	.46 .65 .38	796 793 737	3 1 1	.05 .05 .04	1 1 1	5170 3420 2150	12 8 7	3 4 3	241 165 112	182 163 106	1677 1501 842	251.5 212.0 138.8	74 81 69	12 12 8	1 1 1	8 8 5	56 69 42	238 136 82
							··															•									

PROJ: #05-405

ATTN: SANDRA BISHOP

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 3V-0359-RJ3+4 DATE: 93/07/22

* ROCK * (ACT:F31)

	N.W.	Are L	VUSSON	EW 3		102 M		かつつ	10 2	140	ſ
	02468 02469 02470	02463 02464 02465 02466 02467	02458 02459 02460 02461 02462	02453 02454 02455 02456 02457	12074 12075 12075 02451 02452	12069 12070 12071 12072 12073	12064 12065 12066 12067 12068	12059 12060 12061 12062 12063	12054 12055 12056 12057 12058	12049 12050 12051 12052 12053	SAMPLE
	1.0 2.0 1.2	2.2 1.5 .7 1.0 .6	1.6 1.5 1.0 1.4 2.8	1.7 .6 9.7 2.4 1.5	1.9 1.8 1.5 .5 1.4	2.8 3.6 2.7 2.6 1.8	4.2 4.4 5.9 3.2 2.4	7.1 3.9 4.7 3.5 5.7	3.5 2.2 1.6 1.9 7.6	2.4 3.3 4.8 2.7 2.3	AG
	1.53 .73 1.71	.78 1.47 .84 1.15 .31	.45 .31 .28 1.57 2.06	2.30 .42 .53 1.03 .80	.94 1.05 1.17 1.21 1.93	.75 1.07 1.16 1.15 .87	.97 .71 .67 .89	.73 .71 .63 .55	1.00 .78 1.39 .55 .65	.63 .86 .89 .94 .55	AL X
	6 6 13	10 9 4 4 12	1 11 11 18 31	28 12 3 1	14 8 19 10 31	15 12 12 7 3	13 14 10 11 14	2 7 13 7	6 2 4 5 8	1 1 3 1 2	AS
	29 18 42	38 22 16 24 19	19 14 20 33 28	48 30 20 33 22	13 28 35 31 46	21 26 22 31 22	26 11 14 33 16	54 23 20 12 8	16 12 19 13 30	14 27 21 17 16	B
	252 64 70	217 140 38 110 37	46 55 73 240 121	96 45 90 65 39	48 52 64 57 232	43 48 45 42 37	38 44 43 55 51	92 81 62 145 45	60 62 45 72 82	84 85 85 90 101	BA
	.1 .1 .2	.3 .1 .1 .1 .1	.1 .1 .1 .1	.6 .2 .1 .1	.4 .6 .9 .1	.3 .9 1.3 1.2 1.1	.9 .3 .2 1.0 1.0	.4 .3 .3 .4	1.3 .5 2.1 .3 .6	.4 .3 .7 .3 .1	BE
	19 1.! 12 .0 16 1.0	3 1. 14 1. 8 1. 15 .0 5 .0	7 . 10 . 8 . 14 1. 20 1.	20 1.8 1 .9 1 1.3 14 1.0 10 1.0	6 1.5 8 1.6 8 1.8 7 1.2 20 1.5	5 1.2 7 1.5 7 1.8 5 1.7 5 1.5	5 1.6 5 1.5 5 1.1 6 1.3 7 1.5	1 1.3 4 1.2 4 1.1 3 .7 5 1.0	7 1.3 10 .9 11 1.4 5 .9 1 1.6	3 1.1 2 1.3 1 1.2 7 1.1 7 1.2	BI C
	i6 .1 i4 .1 i6 .1	27 .1 22 .1 18 .1 39 .1 23 .1	6 .1 6 .1 7 .1 5 .1	18 .1 13 .1 16 .1 14 .1 13 .1	9 .1 2 .1 3 .1 9 .1	9 .1 9 .1 3 .1 5 .1 8 .1	0.1 8.1 3.1 8.1	3.1 8.1 8.1 8.1 8.1	1 .1 9 .1 9 .1 3 .1 2 .1	5.1 1.1 5.1 6.1 7.1	A CD
	31 15 16	15 17 13 15 6	11 11 9 23 27	24 2 19 37 19	11 13 12 8 29	9 12 11 12 11	10 9 11 11	11 8 8 7 11	11 14 14 10 8	10 13 9 15 11	CO PPM
	181 6. 1717 2. 113 3.	2404 2. 662 3. 241 2. 287 3. 277 1.	937 2. 653 1. 390 1. 653 4. 1359 5.	826 4. 13 - >10000 3. 2670 7. 968 3.	2195 2. 1810 2. 966 2. 16 2. 218 4.	2808 1. 3535 2. 2798 2. 3005 2. 1833 2.	4531 1. 3973 1. 4363 2. 3667 2. 2109 1.	8589 2.4 4050 1.1 4942 1.4 4187 1.5 5880 1.4	3219 2. 2026 3. 1319 3. 2150 2. 7935 1.	3641 2.0 4839 3.1 6566 2.0 3902 3.1 2649 2.1	CU I PPM
	85 .73 78 .40 73 .21	42 .55 41 .73 91 .20 48 .77 33 .24	27 .20 98 .20 65 .18 16 1.01 07 1.82	78 .80 38 .32 46 .45 26 .69 84 .21	33 .24 20 .32 40 .25 13 .27 77 1.39	35 .19 54 .22 29 .25 53 .20 59 .24	33 .16 75 .24 01 .18 36 .25 44 .20	9 .26 30 .21 53 .19 55 .30 76 .20	28 .24 07 .27 12 .25 23 .16 70 .26	57 .22 56 .24 50 .20 77 .28 54 .32	E K
	15 4 9	8 28 7 14 5	3 2 1 41 62	25 3 6 13 7	6 10 6 25	3 5 7 5 6	5 4 3 7 4	43263	8 7 3 4	6 7 6 7 5	LI
	1.30 .56 .62	.64 1.35 .31 .98 .15	.24 .31 .25 1.64 2.74	1.53 .04 .72 1.01 .39	.49 .64 .58 .69 2.26	.39 .54 .67 .57 .53	.60 .40 .36 .63	.56 .41 .37 .32 .40	.36 .44 .42 .44 .56	.45 .42 .45 .58 .38	MG
·	985 658 910	501 478 366 747 299	531 434 375 892 965	1702 171 704 1357 743	505 648 621 486 784	486 608 634 666 575	575 407 411 623 468	717 564 385 433 429	490 648 716 549 651	629 729 524 822 565	MN PPM
	422	3 2 2 1 1	2 1 1 4 4	4 1 2 3 1	1 1 3 1 3	32333	23432	3 3 3 1 4	3 1 4 1 1	1 2 3 1	MO
	.11 .03 .07	.03 .06 .05 .05 .05	.03 .03 .03 .06 .07	.14 .01 .03 .05 .04	.04 .04 .05 .04	.04 .04 .05 .04 .05	.04 .04 .04 .04 .04	.04 .04 .04 .04 .04	.14 .05 .26 .03 .04	.03 .04 .05 .05 .05	NA X
	63 1 11	1 1 1 1 1 1 1	1 9 1 22 2 12 1	22 1 1 3 2 22 1 17 1	1 5 1 6 1 5 1 1 68 2	1 3 1 4 1 5 1 4 1 5	1 4 1 6 1 2 1 3 1 5	1 3 1 3 1 2 1 1	1 40 1 23 1 31 1 20 1 60	1 20 1 33 1 33 1 34 1 60	NI PPM F
	960 350 450	340 920 650 770 140	360 310 820 300 320	720 300 400 820 360	860 260 460 000 400	620 330 370 810 230	490 220 860 870 190	400 130 950 130 950	580 3 570 570 2 570 2 570 570 570 2 570 2 570 2 570 2 570 2 570 2 570 2 570 2	540 540 560 170 590	P I PPM PI
	6 4 17	94664	10 8 1 9 11	14 1 18 1 6 1	9 8 11 5 12	22 15 10 9 15	11 14 22 8 8	15 10 16 14 38	32 9 23 6 19	9 8 10 12 12	PB S PM PP
	3 354 2 82 2 399	3 78 2 265 1 184 1 100 1 22	1 82 1 47 1 63 3 219 5 143	5 334 1 17 4 113 4 160 1 126	3 195 3 224 2 230 1 86 6 228	4 145 4 196 4 211 4 247 3 196	5 184 4 179 5 134 5 146 4 197	8 135 5 120 5 113 4 57 5 95	5 230 3 126 4 242 2 128 9 167	4 109 6 122 8 158 4 217 3 160	B SR M PPM
	216 76 131	79 142 84 108 54	71 89 66 181 260	189 28 128 181 104	150 217 203 109 245	129 157 186 184 143	160 155 109 144 138	126 129 114 71 99	132 132 147 94 152	96 133 119 134 139	TH P pm
	3146 2328 2692	692 2589 1601 2581 963	1395 1980 1556 2455 3560	3265 42 1021 2879 2039	1115 1275 1416 1077 2674	1096 1382 1272 1349 1006	1409 1221 1411 1386 1166	1123 955 1198 1008 1540	1201 1929 1451 1017 726	810 694 779 1566 1250	T I PPM
	263.4 134.3 136.7	84.4 186.5 117.2 141.7 57.1	87.6 85.7 75.0 152.0 263.9	185.0 11.4 124.8 341.9 151.9	106.0 137.1 115.2 35.2 150.3	76.5 119.6 111.8 122.0 119.5	79.3 73.9 79.5 108.3 61.0	104.4 80.5 63.9 68.8 75.0	100.8 150.2 175.4 94.8 63.5	118.2 166.4 81.8 196.9 121.9	V PPM
	86 81 52	52 39 42 75 28	64 68 28 79 92	139 4 75 216 123	70 66 74 35 70	50 66 60 67 63	56 43 47 63 45	76 50 47 49 43	47 67 59 59 54	71 82 63 88 56	ZN PPM I
	19 11 14	7 14 8 12 5	7 7 5 16 22	19 2 9 19 11	9 10 10 9 20	8 10 11 11 9	10 8 7 10 8	9 7 6 7	8 10 12 7 8	8 10 8 12 8	GA PPM PI
	1 1	1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1	1 1 1 1	SN PM PF
	12 9 7 5 8 6	58675	4 4 6 9 5 1 10 13 14 10	12 12 2 3 6 4 13 11 7 6	5 4 5 4 7 6 6 8	6 7 6 5 6 6 5 6 5	6 6 6 6 6 5	7 5 5 6 6 7 5 7 8	6 4 4 5 4 5 4 5	5 3 7 6 5 4 8 5 5 4	W C PM PP
	90 53 65	57 46 74 54 78	42 91 72 33 07	21 37 46 16 65	45 49 50 37 06	73 59 74 50	51 59 50 30 59	57 56 73 53 30	9 8 9 0 3	8 50 55 56	CR AU-
	13 99 7	88 9 97 11 78	51 30 29 65 51	2 21 473 126 66	174 182 106 1	172 427 335 332 258	440 491 535 349 217	495 281 482 197 465	439 264 124 146 527	160 303 490 249 206	FIRE PPB

PROJ: #05-405

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 DR (604)988-4524 FILE NO: 3V-0359-RJ5+6

* ROCK *

DATE: 93/07/22

(ACT:F31)

SATTN: SANDRA BISHOP

AL % TH BE B1 CA CD CO CU FE LI MG MN MO NA NI Ρ PB SB SR TI v ΖN GA SN u. CR AU-FIRE SAMPLE AG AS В BA 3 NUMBER PPM PPM PPM PPM PPM PPM * PPM PPM PPM X PPM X PPM PPM % PPM PPB x 2357 1.85 .03 Q 70 88 1601 65.5 38 251 .34 . 32 710 3 44 6 02471 3.5 .67 2 18 70 10 .61 .1 11 5 318 1 2 123 02472 6 .43 .09 .03 .05 2 30 2 9 47 105 8.4 5 2 .13 18 14 32 1 19 . 1 48 118 5 .1 2208 4.87 7 19 122 2138 245.8 96 12 51 84 33 27 19 .26 .62 .04 140 1 65 02473 1.7 .50 45 .1 11 1.02 .1 5 966 - 1 C M S 43 99 1814 83.7 7 Ś. 71 7 .57 12 333 2.39 .16 .38 530 .03 620 92 60 02474 .9 5 11 .93 .1 37 4 1 1 . 1 5 33 .7 .55 13 11 495 2.27 23 .32 353 .04 1 1140 10 1 66 64 1101 90.6 37 4 37 02475 45 .1 8 .68 .1 1 4429 3.80 4593 5.27 7 83 236 . 39 330 10 4 86 92 1662 169.1 101 02476 4.8 .69 26 26 .1 10 .91 15 .14 6 668 .03 1 10 .1 865 370 140 2019 256.7 ò 378 .52 .03 98 13 60 02477 .90 ĀÖ 44 57 1 13 .85 .1 19 11 5 111 6.1 8 106 6 59 żž 10 .97 337 3.30 .34 11 .72 523 Ż .05 15 1670 7 114 113 1531 135.8 46 10 61 230 02478 15 .8 3 .1 .1 .2 1.3 .59 23 57 1.18 13 367 3.27 .17 .51 612 04 3 1650 8 112 127 1125 137.2 63 10 1 02479 ī 7 .1 4 1 77 43 338 1.37 .24 03 38 43.9 29 .5 .23 15 32 .1 . 60 .1 . 15 1 345 1 540 10 1 64 503 4 1 4 02480 8 4 6 1 14 17 .20 1.71 26 45 1.2 .1 18 2197 5.14 6 .44 1064 6 3 .15 1 1200 5 314 142 1756 262.3 95 14 Q 61 113 02481 1.8 1.48 6 1 1238 3.75 23 1.34 574 .06 810 5 ž 147 148 2638 142.3 62 13 8 78 228 28 38 .00 .1 21 02482 1.5 1.30 6 51 .1 02483 1.0 1.88 10 37 14 1.33 352 2.95 .46 10 .61 647 Ŝ. .34 15 1720 14 8 640 135 1142 92.5 43 10 1 7 72 6 .1 14 .8 374 137 1507 147.5 ē .22 .44 3 7 46 12 7 68 02484 .8 1.75 11 46 42 1.1 15 1.55 .1 14 204 3.33 6 628 1 1630 11 1 2.5 .84 31 110 .ġ 6 2.09 2481 4.16 .20 ã. 788 1 03 1 2770 9 4 113 177 518 151.1 108 10 ŝ 42 75 02485 1 .1 15 .46 .37 27 8 2 5 7 62 17 .37 3 .21 1 1450 360 132 1820 175.5 89 13 02486 1.0 1.61 2 37 133 1.4 16 1.24 677 4.16 943 8 .22 **9** 1.32 1966 2.14 457 .05 2 6030 Ż 133 154 1178 76.0 46 7 36 102 02487 2.2 24 3078 .1 .1 11 .18 1 11 1 4 ġ 53 47 17 1.55 .21 11 288 147 1558 191.6 57 63 166 02488 2.4 2.01 12 31 1.7 .1 16 2321 4.10 .36 800 6 .31 1 570 14 13 93 2674 3.10 Ĩ4 .41 484 1 1170 204 114 1590 110.6 52 8 6 66 02489 2.6 .89 29 .3 .3 16 4 .10 17 6 1 20 .76 .90 595 1 139 140 1063 38 10 89 02490 .6 13 25 81 8 1.57 .1 14 50 2.76 .41 13 1 .04 13 2070 5 86.9 1 .3 1.23 .2 .78 .7 1.79 3 .3 7 .62 .08 1 1080 175 107 1528 102.8 107 6 64 34 31 12 1.21 .1 13 102 3.00 .16 985 2 18 11 02491 35 27 10 74 3.19 ò .35 884 .10 1 1070 5 88 1518 127.2 9 52 4 1 02492 .94 12 .21 1 83 65 6 -1 .1 1 76 4.33 1.08 93 2.19 .25 .1 .5 .1 523 47 2190 25 279 197 2207 152.6 18 12 155 02493 41 29 207 14 1.54 .1 23 32 1.92 1308 .08 3 121 24 11 2 27 .99 3 399 99 1069 88.9 7 54 10 .96 10 .25 .44 .11 4 1240 10 34 6 02494 .4 .6 57 .1 6 448 h 14 ž .94 799 3.21 ā. .68 534 1210 1 132 117 1486 121.3 ġ. 5 66 02495 . 69 49 1 14 .04 4 66 1 .6 .17 .5 1.01 3 231 49 .1 2 58 .62 . 15 1 .02 131 1 . 03 50 14 42 25 5 73 02496 .1 .35 1 6 1 1 4 6.4 .41 .27 .37 5 7 221 02497 22 1.72 .57 525 .03 920 111 104 680 25.5 31 7 5 84 40 10 7 20 354 3222 14 .1 1.61 1 6 .1 6 539 .10 258 125 1595 119.3 59 82 288 2.84 .49 .75 1450 10 6 02498 .9 .95 28 87 1 11 1.26 .1 13 1 11 48 1 29 240 2.20 8 7 **99** 34 123 11 467 . 05 900 6 111 128 1253 71.1 41 02499 .65 8 1.09 6 6 6 .1 170 02500 .51 114 Ż 1 1160 1.44 .33 4 .30 387 .03 1 820 8 2 43 92 228 29.1 35 4 3 45 1.4 4 1 1.24 4 38 1.49 202 1.35 .46 .37 444 178 .03 880 9 2 51 27 80 60 02501 .73 7 69 4 1.67 32 3 100 217 19.0 4 4 .2 8 .1 .1 4 1 .32 3 .04 420 63 1 59 53.4 3 40 10 02502 .4 3 11 187 -1 .49 6 1 1 155 480 12 4 .1 323 02503 1.1 1.13 1Ž 35 133 15 1.23 2Ž 160 4.05 .47 10 1.04 508 .06 19 1840 284 146 2513 155.2 52 14 12 171 7 1 .1 8 02504 .3 .49 4 141 4 13 . 62 5 272 1.04 .17 54 .26 160 .04 2 660 34 5 1 218 43 91 451 37.9 16 27 35 74 6 .1 .2 682 . 19 1210 ż õ 02505 1 38 41 1.17 .1 14 215 3.20 196 1851 118.8 58 11 1.6 .49 02506 5 .58 24 38 18 81 .1 9 . 64 9 1270 1.51 .47 8 8 527 .04 2 400 8 50 83 1467 72.3 2 5 41 .1 61 30 28 23 17 3255 .35 .74 141 2092 238.2 123 8 **8**9 12 1.00 896 4.71 878 .04 600 13 85 02509 1 42 .1 18 1 1 104 38 42 758 4.62 754 2.91 .23 .29 .32 Š .47 .45 03 7 57 .78 10 .91 17 939 1 360 87 110 1872 222.5 129 12 60 とう 02510 .8 .9 .1 .1 1 190 77 1766 139.0 Ż . ÖŽ Ś 143 .68 10 13 6 629 62 Ì 02511 .1 .60 .1 1 76 56 1305 2.73 5 .52 ž .03 **7**0 90 1142 132.8 104 02512 1.3 .53 .1 .61 12 480 3 1020 8 4 40 - 1 6 .1 1 66 222 15 5 33 52 .Ż 8 1.13 10 2407 1.79 .21 .47 3 .03 2490 3 108 109 1391 93 7 5 70 80 9 02513 3.0 .65 .1 3225 448 0. 60 14 12 16 53 .39 .03 4 9 70 97 1502 85.3 55 44 115 154 02514 3.0 .46 7 10 2835 1.68 .22 412 1400 54 67 .1 .84 .1 1 02515 3.7 47 .1 8 .94 11 2869 1.94 .19 .36 395 23 1510 79 107 1634 104.5 56 66 4 .1 1 57 44 1193 2.48 .04 6 96 1618 .81 32 1.17 .35 459 1760 1 124 127.0 58 8 61 02516 1.8 .1 8 .1 12 .16 1 96 Ž . 05 ō 73 ÃÒ 02517 1.2 913 3.30 .23 .48 1620 6 1629 141.9 53 .86 16 56 10 1.08 . 1 14 6 556 1 141 .1 £ 02518 .88 13 36 14 942 3.20 .15 9 .52 638 .04 1580 3 98 1523 136.6 70 10 5 39 28 1.0 10 1.11 1 143 1 .1 .1 . 15 1.7 .79 13 50 1544 2.54 5 .48 534 22 .04 1130 2 2 116 104 1174 122.9 8 5 56 46 02519 .2 .2 7 1.00 .1 11 64 6 1 1 02520 9.8 2 10 37 1 .73 10 >10000 1.83 2 .50 430 .03 1 1620 13 11 56 79 1097 89.6 6 37 262 .46 .1 .21 66 1 6 222 MAIN

PROJ: LORRAINE 05-405

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 3V-0363-RJ1+2

DATE: 93/07/29

ATTN: SANDRA BISHOP / SCOTT MUELLER

(604)980-5814 DR (604)988-4524

* ROCK * (ACT:F31)

<u> </u>	SAMPLE NUMBER	AG PPM	AL X	AS PPM	B PPN	BA PPM	BE PPM	BI (PPM	XA XP	CD PM P	CO PM F	CU PM	FE %	K X	LI PPM	MG %	MN PPM	MO PP m	NA %	NI P PPM PPM	PB PPM	SB PPM p	SR TI PM PPI	I TI I PPM	V PPP	ZN PPM	GA PPM	SN PPM	W PPM	CR A PPM	U-FIRE PPB
Mun	12077 12078 12079 12080 12081	1.9 2.5 3.5 1 3.8 1 2.1 1	.87 .78 .13 .09 .34	1 16 7 17	58 49 50 65 54	1328 223 147 76 103	.3 .4 1.1 1.2 2.2	22 1.0 17 1. 21 2. 27 1. 20 1.)1 55 21 51 51	.1 .1 .1 .1 .1	14 31 10 24 11 39 15 45 9 22	24 3. 84 2. 94 2. 537 3. 202 1.	.35 .22 .18 .33 .97	.45 .29 .22 .19 .16	7 5 6 6	.75 .55 .68 .83 .61	682 600 768 994 666	3 3 3 3 4	.03 .04 .05 .03 .05	1 3410 1 3730 1 8850 1 3510 1 2430	40 62 20 18 11	6 1 4 1 8 2 8 1 7 2	20 13 8 15 8 23 33 18 6 14	5 1577 2 1186 9 1278 5 1525 9 1489	164.1 93.9 100.8 157.1 87.0	213 78 83 98 68	11 7 11 15 11	1 1 1 1	7 7 7 9 7	53 70 57 84 49	173 155 485 275 91
South	12082 12083 12084 12085 12086	2.2 1 2.1 2 1.7 1 2.0 1 1.4 1	.98 .23 .73 .70 .40	29 33 23 20 2	64 53 51 41 51	78 90 93 91 58	3.1 3.6 2.1 1.8 .9	16 1. 15 2. 18 1. 16 2. 17 1.	25 04 01 01 32	.1 .1 .1 .1	8 18 8 19 11 16 10 17 14 16	306 1. 271 1. 526 2. 738 2. 533 3.	.76 .85 .41 .10 .35	.18 .16 .25 .24 .15	6 6 10 8 7	.43 .44 .63 .70 .76	552 586 769 799 1047	6 7 6 5 4	.26 .41 .16 .11 .04	1 4350 2 3830 1 3400 1 3590 1 2840	11 10 10 15 14	94 104 74 74 62	51 174 59 164 52 164 5 158 53 144	4 1040 4 943 5 1504 3 1333 5 1579	79.8 81.2 103.5 88.8 140.5	53 52 68 67 96	10 11 13 12 13	1 1 1 1	8 6 8 6 7	79 49 61 49 60	106 100 103 128 110
	12087 12088 12089 12090 12091	1.1 1 .6 1 1.5 1 2.7 1 1.5 1	.06 .16 .59 .44 .01	2 3 12 1 1	56 45 56 51 58	69 55 68 73 59	.5 .26 .3 .3	19 1. 15 1. 20 1. 25 1. 19 1.	27 42 76 98 53	.1 .1 .1 .1 .1	15 13 12 6 14 15 16 31 15 19	514 3. 566 3. 598 3. 143 4. 926 3.	.77 .31 .47 .10 .61	.14 .13 .19 .20 .18	94795	.83 .39 .66 1.06 .71	1088 831 955 1247 912	3 3 10 3 2	.03 .08 .09 .05 .03	1 2690 1 2030 1 2040 1 2530 1 2690	9 13 27 8 14	5 1 3 2 7 3 7 1 4 1	2 12 7 12 31 14 59 14 70 13	5 1809 5 1479 5 1584 9 1748 7 1691	167.5 152.3 144.0 170.4 149.8	109 76 89 113 78	15 11 13 16 13	1 1 1 1	9 7 8 8 8	70 56 64 60 66	60 43 84 277 70
SULP SULP	12092 12093 12094 12095 12096	1.0 1 1.7 .7 .1 .6	.35 .99 .40 .51 .80	6 1 5 5 1	51 37 29 29 55	54 63 74 49 108	.5 .1 .2 .3	20 1. 20 1. 5 1. 4 1. 15 1.	50 50 01 03 52	.1 .1 .1 .1 .1	14 10 14 17 5 5 4 13 7	089 3. 761 3. 547 1. 81 1. 778 3.	.49 .82 .24 .24 .49	.19 .19 .19 .15 .15	7 5 1 2 3	.68 .63 .35 .41 .54	896 864 569 520 865	3 4 1 1	.08 .04 .05 .03 .03	1 1910 1 2590 1 700 1 420 1 1490	12 10 25 5	62 51 2 1 31	01 140 71 130 88 70 82 71 84 110	0 1745 5 1696 3 443 2 275 3 1448	154.9 180.6 50.2 45.0	74 75 19 17 61	13 13 7 6 12	1 1 1 1	9 8 4 4 7	68 74 58 56 62	50 411 67 6 51
₹¥ N	12097 12098 12099 12100 12102	.5 1 .9 1 .8 .8 1 .1	.40 .39 .92 .17 .67	1 1 1 1 1	57 62 49 69 43	90 87 75 111 69	1.0 .8 .2 .3 .2	16 2. 17 2. 18 1. 19 1. 9	39 02 44 85 95	.1 .1 .1 .1 .1	18 d 15 d 12 d 14 d	689 4 620 3 606 2 637 3 61 2	.85 .68 .94 .46 .71	.14 .22 .15 .18 .10	68456	1.05 .82 .55 .70 .45	1465 1089 784 918 527	23241	.03 .04 .03 .04 .03	1 2800 1 2150 1 1850 1 2410 1 1330	22 13 14 13 2	4 2 4 2 2 1 3 2 1 1	57 18 23 14 74 12 50 13 45 9	1 1824 5 1867 1 1969 4 2058 7 837	201.9 157.7 127.7 143.2 109.9	104 78 61 61 48	17 15 12 13 9	1 1 1 1	10 8 6 7 4	77 68 60 67 36	44 31 20 16 10
9	12103 12104 12105 12106 12140	.1 .4 .2 1 1.4	.88 .64 .01 .02 .93	1 1 1 1	39 46 48 66 77	88 75 103 466 122	.4 .2 .3 .5	12 . 8 1. 13 1. 10 1. 23 .	96 06 34 81 95	.1 .1 .1 .1 .1	12 9 13 12 23 19	71 3 79 2 355 3 123 3 963 6	.13 .49 .11 .17 .75	.23 .15 .18 .28 .73	10 3 5 4 17	.54 .41 .61 .53 .97	731 576 680 876 1242	1 1 1 1	.05 .04 .05 .03 .04	1 1370 1 1100 1 1300 1 1270 1 1980	2 6 5 15 5	2 1 1 2 2 3 1 2	1 89 38 100 23 11 58 120 31 16	9 1405 5 963 7 1558 5 1049 7 2238	120.4 89.4 124.7 114.3 439.1	47 35 43 41 151	9 9 11 11 20	1 1 1 1	5 4 5 13	48 41 57 44 111	9 5 21 19 165
S JIM	12141 12142 12143 12144 12145	2.0 1 1.1 1.7 .8 1.3 1	1.34 .96 .81 .85 1.10	1 1 1 1	73 62 57 79 78	100 92 149 89 88	.1 .1 .1 .1	27 1. 16 1. 24 . 22 . 25 1.	26 00 79 90 01	.1 .1 .1 .1	28 20 23 30 24 20 22 19 28 2	803 7 025 6 840 6 964 6 147 8	.62 .71 .72 .54 .71	.71 .41 .58 .68 .64	14 6 8 11 11	1.16 .56 .81 .86 1.00	1729 1249 1019 1039 1193	1 1 1 1	.03 .02 .03 .04 .04	1 2670 1 2140 1 2140 1 2440 1 2040	9 38 4 9 1	5 1 5 2 2 1	03 18 81 14 88 14 87 17 09 17	B 2817 B 1013 9 2188 4 2112 7 3231	429. 354. 403. 405. 563.	231 189 129 134 117	24 17 18 19 22	11111	12 11 11 12 14	61 79 60 108 78	179 176 251 69 120
IALE G	12146 12147 12148 12149 12150	1.6 3.2 1.6 1 .8 1.3	.99 .93 1.35 .68 .72	1 11 11 1	63 58 63 53 46	91 83 78 123 80	.1 .1 .5 .1 .1	24 21 20 1. 19 15 1.	94 80 32 71 13	.1 .1 .1 .1 .1	24 18 22 24 17 1 15 10 13 14	866 6 420 6 121 3 013 3 472 2	.52 .70 .25 .90 .90	-69 .35 .34 .47 .51	11 5 11 9 7	.95 .50 .75 .58 .70	1000 954 782 785 674	1 1 2 1 1	.04 .03 .05 .04 .05	1 2040 1 2140 1 1520 1 1040 1 2470	8 7 11 26 5	2 3 4 1 1	87 14 90 16 83 12 67 10 79 11	0 2977 1 1799 4 2285 9 1970 2 1861	390.4 429.0 177.2 229. 167.2	102 100 77 77 77 272	17 17 13 11 9	1 1 1 1	13 14 9 7	115 125 71 92 88	149 352 34 27 52
	12151 12152 12153 12154 12155	1.1 1.0 1.5 1.3 1 2.1 1	.51 .72 .23 1.00 1.12	3 1 4 3 1	45 61 41 50 57	115 335 42 67 60	.1 .1 .1 .1	17 . 18 . 14 . 20 1. 23 1.	95 94 48 10 22	.1 .1 .1 .1 .1	9 1 11 1 5 0 14 10 16 20	417 1 895 2 620 080 3 008 4	.84 .74 .71 .54 .31	.34 .36 .22 .32 .27	5 7 1 7 9	.48 .54 .22 .73 .55	476 540 198 794 721	1 1 2 1	.05 .04 .04 .04 .06	1 2020 1 1400 1 280 1 1140 1 1580	3 3 1 6 6	2 1 2 1 2 1	50 8 72 11 19 6 00 11	9 1846 5 2032 0 1551 6 2414 1 2434	123. 166. 34. 213. 281.9	5 86 98 32 5 126 93	7 10 4 12 11	1 1 3 1 1	683 98	71 85 45 81 57	31 75 15 304 78
: 4	12156 12157 12158	2.3 1 .3 2.0	1.15 .19 .80	1 5 3	65 36 51	61 74 62	.1 .1 .1	26 1. 1 . 18 1.	25 05 08	.1 .1 .1	21 20 1 9 10	627 5 272 664 1	.67 .46 .48	.34 .12 .24	9 1 4	.78 .02 .50	949 127 419	2 1 2	.04 .05 .04	1 1800 1 40 1 1350	6 2 7	3 1 1 4	16 15 6 6 90 10	2 3018 0 82 0 1965	374.0 21.0 77.1	5 114) 11 55	16 3 7	1 1 2	10 5 6	77 106 85	87 17 76
White 2.5																															
																													<u> </u>		

PROJ: LORRAINE 05-405

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OP (604)988-6524

FILE NO: 3V-0363-RJ3+4

DATE: 93/07/29 * ROCK * (ACT:F31)

	A1	TTN: SANDRA E	3 I SHOP	/ sco	TT MUE	LLER							(604)9	80-58	314 OR	(604)988-	4524												* R	OCK	* (ACT:F51
	ſ	SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI C PPM	A C X PP	D CO M PPM	CL PPM	FE X	K X	L1 PPM	MG X	MN PPM	MO PPM	NA X	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	TH PPM	T I PPM	V PPM	ZN PP m	GA PPM	SN P PM	W PPM	CR / PPM	NU-FIRE PPB
•		12159 12160 12161 12162 12163	2.3 2.4 2.9 4.2 3.6	.62 .40 .99 .95 .82	5 1 1 4 3	50 54 54 61 48	48 42 51 36 50	.1 .1 .2 .2 .1	17 .8 21 .6 26 1.1 28 1.2 24 1.0	4 . 3 . 5 . 0 .	1 9 1 9 1 12 1 11 1 11	1768 2215 2442 2906 2897	1.52 1.74 2.25 1.85 2.21	.32 .28 .38 .18 .25	3 2 8 4 6	.54 .41 .75 .53 .51	406 445 526 494 510	2 1 2 2 11	.03 .03 .04 .05 .03	2 1 3 1	1510 870 1920 1060 1270	9 9 14 14 13	32464	65 38 99 98 84	76 68 89 97 91	1695 1795 2615 2585 2242	78.8 95.9 115.2 92.5 121.4	43 45 60 54 65	9 8 12 11 10	1 1 2 1	6 6 7 7 8	59 64 59 47 85	37 51 59 66 77
•	E	12164 12165 12166 12167 12168	2.6 5.2 25.9 6.4 2.2	.66 1.13 .96 1.07 1.47	5 5 1 1	40 71 51 61 80	41 56 45 51 52	.4.4.1.3	19 1.4 28 1.1 77 1.1 33 1.1 29 1.2	0. 7. 8. 7. 9.	1 7 1 13 1 15 1 14 1 20	2370 5203 >10000 6449 4135	1.53 2.61 2.63 3.51 4.55	.15 .21 .23 .19 .32	2 5 6 4 11	.41 .61 .81 .57 1.06	567 680 867 752 936	1 4 4 3 4	.04 .04 .03 .04 .05	1 2 1 1	890 1370 3880 1740 1980	7 12 44 24 21	4 12 25 11 9	58 133 108 173 153	94 91 111 105 131	1401 2071 2215 2069 2448	70.7 130.1 129.0 168.3 217.6	40 68 102 88 108	10 13 14 14 19	1 1 1	6 8 9 8 10	48 59 33 51 53	34 80 430 154 58
•	BLV	12169 12170 12171 12172 12173	1.3 .9 1.9 1.1 2.2	1.20 .73 1.06 1.01 .96	1 1 1 1	78 56 67 55 76	39 70 44 39 32	.1 .1 .1 .2	20 1.1 16 .7 19 1.0 18 1.1 19 1.1	8 · 0 · 2 · 5 ·	1 15 1 12 1 16 1 13 1 12	147 212 154 177 294	3.88 2.80 4.63 73.53 53.38	.22 .17 .21 .17 .15	8 4 6 8 7	.56 .33 .37 .50 .47	716 518 842 757 676	21222	.07 .06 .06 .04 .05	1 1 1 1	1380 580 1470 1380 2180	12 5 10 5 12	43345	147 78 108 100 116	101 62 106 98 111	2176 1403 1996 1681 1512	204.4 144.6 250.9 194.8 174.8	91 58 81 98 86	14 9 14 13 12	1 1 1 1	8 6 8 7 8	52 47 51 47 67	60 47 162 67 163
	ANE	12174 12175 12176 12177 12177 12178	1.9 1.3 1.7 4.1 2.3	1.26 1.24 1.28 .90 .82	1 1 1 1	68 66 53 50	43 39 48 43 35		22 1.4 18 1.3 19 1.3 25 1.0 20 .9	72204	1 13 1 11 1 12 1 13 1 13	220 180 231 473 352	3.44 3.13 3.18 3.06 3.51	.17 .19 .19 .16 .15	8 8 7 4 4	.40 .46 .48 .39 .38	693 614 561 681 730	2 2 3 3 1	.04 .06 .05 .04 .03	1 1 1 1	1920 1320 1940 1260 1110	21 9 20 12	65 67 5	162 143 200 136 104	101 82 84 88 88 84	1853 1741 1720 1572 1498	205.9 193.1 189.5 177.8 221.0	76 69 67 73 77	13 12 13 11 11	1 1 1 1	8 7 8 7 6	61 47 63 42 34	101 54 170 179 105
) ië L	12179 12180 12181 12182 12183	4.2 5.1 3.6 3.5 1.0	1.22 1.11 1.26 1.04 1.05	1 1 1 1	57 59 59 57 47	67 61 58 41	.1 .1 .1 .1	32 1.0 35 1.0 33 1.2 33 1.0 20 .9	0.2	1 19 1 18 1 20 1 18 1 13	453 526 409 313 250	5 4.34 2 4.31 7 5.11 1 4.07 1 3.28	.47 .36 .29 .33 .32	14 11 7 9 8	1.04 .81 .80 .71 .66	1019 945 1040 953 768	3 2 4 2 1	.04 .04 .04 .05 .05	1 1 1 1	1390 1680 1810 1210 1270	20 17 20 12 4	7 7 4 3	108 93 123 93 86	111 111 129 101 93	2744 2859 2780 3455 1706	260.9 263.5 311.3 236.0 175.2	114 106 121 87 97	19 16 19 16 10	1 1 1 1	11 10 11 9 7	47 46 59 52 51	147 234 230 105 126
	SU DY	12184 12185 12186 12187 12188	.2 .7 5.1 6.7 14.3	1.09 1.13 .99 .86 .80	1 4 1 9 29	61 63 49 52 63	30 35 44 47 36	.3 .2 .1 .1	10 1.2 14 1.2 34 1.2 41 1.2 54 2.3	6 - 1 . 5 . 9 .	1 10 1 10 1 15 1 11 1 13	544 649 476 633 >1000	5 2.74 9 2.72 7 3.02 5 2.03 9 2.68	.17 .16 .17 .14 .15	46423	.49 .35 .55 .28 .44	726 670 867 567 773	2 2 1 5	.05 .08 .04 .04 .04	1 1 2	1330 1390 1470 1850 >10000	11 4 14 12 27	2 2 6 18	126 116 124 112 225	103 87 125 117 211	1264 1589 2987 2993 2172	152.7 156.4 170.6 113.6 151.2	77 69 108 63 95	9 10 12 8 10	1 1 2 1	6 6 9 7 9	47 49 59 63 68	28 25 86 93 310
•	, . Lis	12189 12190 12191 12192 12193	6.3 9.3 5.4 5.5 7.3	.72 1.20 1.19 1.20 1.10	13 9 2 4 10	51 52 44 49 52	59 43 43 45 42	.1 .1 .2 .4	31 1.1 39 1.8 31 1.0 27 1.3 33 1.0	6 .4 .7 .6 .7	1 10 1 12 1 12 1 10 1 11	502 958 635 584 711	1 1.83 9 2.52 3 2.57 1 2.08 2 2.41	.17 .14 .17 .18 .17	24745	.27 .44 .52 .33 .47	520 872 808 570 840	33556	.04 .04 .04 .08 .04	1 1 1 1	1570 2670 2890 1850 3800	14 15 17 20 25	6 13 9 8 10	122 168 207 233 183	106 123 125 87 151	2038 2218 2008 1702 1789	90.9 132.4 133.0 84.9 92.9	58 83 81 61 90	8 10 9 8 10	1 1 1 1	7 9 7 6 6	63 66 47 69 44	180 300 110 177 347
	20NG	12194 12195 12196 12197 12198	5.2 3.2 6.5 6.4 4.7	.70 1.18 1.28 1.65 1.37	8 11 12 15 7	47 52 48 52	33 38 42 49 71	.2 .5 1.9 .6	23 1. 23 1. 29 2. 29 1.8 27 1.8	0 4 2 3 3	1 8 1 11 1 10 1 10 1 11	506 334 733 674 513	3 1.62 1 2.44 2 2.38 3 2.05 9 2.36	.16 .17 .18 .19 .17	35563	.34 .43 .49 .54 .48	569 874 1175 955 869	34463	.04 .06 .05 .18 .04	1 1 1	1900 2190 3620 2560 3460	24 17 22 21 22	6 5 10 11 9	117 176 191 360 262	105 118 137 112 154	1258 1830 1944 1489 1503	58.1 117.5 114.0 75.8 104.0	70 76 88 90 94	7 9 10 9 10	1 1 1 1	5 5 7 6 7	64 47 64 37 64	248 136 341 450 260
	JAIN!	12199 12200 12201 12202 12203	14.0 15.0 10.6 12.8 11.4	1.09 1.16 1.19 1.18 1.00	13 4 9 2 10	52 55 49 59 53	53 53 38 48 46	.7 .6 .9 .5	58 1.4 64 1.5 49 1.5 53 1.8 37 1.8	1 10 13 14 15	1 12 1 15 1 12 1 13 1 11	>1000 >1000 >1000 >1000 >1000	0 2.15 0 3.14 0 2.34 0 2.98 0 2.47	.14 .19 .16 .15 .17	4444	.56 .55 .58 .61 .39	935 1081 892 1141 648	6 6 5 4	.03 .03 .04 .04 .04	1 1 1 1	2620 3530 3170 3580 6860	31 34 29 27 34	22 25 16 19 13	155 178 181 186 231	112 129 131 146 185	1630 1694 1752 1787 1285	74.1 116.5 84.7 126.6 84.3	99 134 92 122 94	9 10 10 13 9	1 1 1 1	7 96 86	34 51 40 65 52	550 664 410 673 695
I	ح	12204 12205 12206	9.5 2.2 3.0	1.32 1.03 1.00	5 7 9	79 50 51	47 57 66	.6 .5 .6	36 2.3 16 1.4 19 1.4	9 5 3	1 15 1 10 1 9	997 247 236	8 3.86 4 2.39 4 2.10	. 16 . 18 . 13	6 5 3	.57 .50 .45	1127 818 685	5 2 4	.04 .04 .03	1 2 1	8050 2990 2330	28 11 16	15 2 5	294 195 204	264 128 136	1619 1453 1438	165.5 94.8 90.2	117 86 84	13 9 10	1 1 1	9 6 6	74 50 66	1195 132 189
									÷.	<u> </u>																-							
•																										<u>, </u>							
			1																														

Z COMP: KENNECOTT CANADA INC. PROJ: LORRAINE 05-405

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 3V-0363-RJ5 DATE: 93/07/29

ې ډک	PROJ: LORRAINE 05-405 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 ATTN: SANDRA BISHOP / SCOTT MUELLER (604)980-5814 OR (604)988-4524															* **	DATI	: 93/07/2										
3	ATTN: SANDRA B	AC AL			RF	(604)980-5814 OR (604)988-4524 CD CO CU FF K LI NG MN MO NA NI P PB SB SR TH TI V ZN G														GA.	* RU		ALI-FIRE					
£.	NUMBER	PPM %	PPM F	PPM PPH	PPM	PPM	X PPM	PPM	PPM	<u>×</u>	x	PPM	<u>×</u>	PPM	PPM	<u> </u>	PPM	PPM	PPM I	PM PP	PPM	PPM	PPM	PPM	PPM P	PPM P	PM PP	PPB
<u>ج</u>	12207	3.4 .63	1	57 48	.5	15 1.0		13	2153	4.23	.15	4	.37	474 910	2	.04	1	3450	10	4 161	127	1217	186.6	118	14	1	5 40	184
•	02521	3.6 1.06	1 '	78 38		24 1.6	5.1	12	2049 3249	2.96	.16	3	.52	721	3	.05	1	2310	10	7 201	97	1791	180.8	66	14	1	8 6	121
	02525	6.9 .86	<u>i</u> 1	65 45	<u> </u>	32 1.0	<u>6.1</u>	13	3428	2.68	.10	5	.44	564	2	.04		450	13	6 100	5 101	2781	149.8	61	13	1	9 9	47
. <u>ل</u> ر	T 02525	8.4 .93	1	71 34 64 34		35 1.1 26 1.0	$ \begin{array}{ccc} 4 & .1 \\ 1 & .1 \end{array} $	12 12	4962 3297	2.79	.17	4	.38 .36	529 538	22	.05	1	810 640	19 14	8 112 5 102	2 104	2158 2009	141.6	63 58	11	1	8 63	521 248
, ĝ	→ 02527 → 02528	7.6 1.16 6.9 .70	1	51 3 62 2	, .2 .1	36 1.1 30 1.0	1 :1	11	4961	2.38	.14	3	.41 .25	495 522	23	.10	1	880 1860	23	12 12	5 101	1958 1933	104.2	55	10 9	1	6 54	421 298
2	02529 1002530	8.8 .78 10.8 1.14	4	78 39	2.1	39 1.3 40 1.6	0.1 9.1	15 13	7245 9322	4.04	.17	4	.39	763 775	13	.04 .05	1	3140 3850	17 24	10 128	3 134 5 131	2265 1781	263.9	88 85	15 13	1	9 50 7 5	233 247
Ž	02531	9.9 1.02 7.0 .97	1 1	56 4 ⁴ 54 40	1.3).4	42 1.3 33 1.3	0.1 3.1	14 10	9442 6771	3.01 1.90	.18 .15	5	.46 .33	699 497	3 3	.04 .04	1	2580 1880	30 15	13 143 10 12	5 125 1 92	1966 1784	135.7 78.4	91 55	12 10	1 1	7 44	208 2 165
5	02533	1.9 1.09	1	62 57 68 100	2 <u>.3</u>	22 1.3	<u>2.1</u> 5.1	11	2593	2.72	.20	6	.37	639	2	.06	1	1790	10	6 17	<u>3 86</u> 1 66	1677	123.8	68	11	1	6 5	7 32
	0462	28.6 .38	2	47 9		71 1.1	7.1	12	>10000	2.25	.36	5	.69	424	3	.09	6	1970	108	22 7) 75 7 112	1308	75.0	35	10 22	į	9 8 12 6	199
	0465	1.9 1.00	1	52 7 60 8	7 1.0 7 .1	20 1.1	6 1	14 16	2502 1765	3.45	.18	52	.72	1016	2 1	.04	1	1420 2530	21 10	5 15	7 120 3 181	1619 1216	143.2	114	14 12	1	7 5	3 266 3 108
U		i <u>i i i i i i i i i i i i i i i i </u>		- <u>-</u>			i			~~==			<u></u>														,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>.</u>
ંટ્રે		1																										
Š														<u> </u>														
5																												
														<u> </u>														
;																												
;																												
I																		<u> </u>						<u> </u>	· · · ·			
r	{	[
1																				· · · .								
ı		ł																										
-						•.																						
•																												
•																												
i		1																										

COMP: KENNECOTT CANADA PROJ: LORRAIN 05-405

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 3V-0362-RJ1+2

DATE: 93/07/29

ATTN: SANDRA BISHOP / SCOTT MUELLER

• ROCK * (ACT:F31)

				, 300																													
	SAMPL	E R	AG PPM	AL X	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA X	CD PPM	CO PPM	CU PP M	FE X	K X	LI PPM	MG X	MN PPM	MO PPM	NA X	NI PPM P	P P PM PP	PB PM P	SB S PM PP	R TH M PPM	TI PPM	V PPM	ZN P PM	GA PPM	SN PPM	W PPM	CR / PPM	AU-FIRE PPB
	12209 12210 12211 12212 12212		.4 8.0 8.8 7.1 2.9	.21 .86 1.55 1.12 1.48	12 11 22 6 5	27 33 51 46 45	27 57 72 59 39	.3 1.3 2.3 .9 1.4	3 35 38 35 22	.16 1.14 2.49 1.82 2.08	.1 .1 .1 .1	2 9 11 13 15	222 7709 8144 6848 3011	.42 1.69 2.16 2.80 3.25	.12 .17 .21 .24 .15	1 5 10 6 7	.04 .61 .69 .55 .83	133 718 900 1001 1159	3 5 9 5 7	.07 .07 .08 .07 .06	1 1 4 17 3 85 1 43 2 37	70 10 2 50 2 10 2	7 23 26 23 16	4 1 15 11 17 28 15 20 11 25	4 52 1 87 0 274 8 173 6 187	77 951 1119 1418 1349	10.2 59.2 85.8 120.8 124.5	23 111 113 153 190	3 11 13 13 14	1 1 1 1	46877	103 68 77 64 64	6 659 812 533 339
4× 20	12214 12215 12216 12217 12217 12218	5	7.5 1.3 .6 .5	1.05 1.20 .92 .85 .49	4 1 3 1 1	45 42 37 67 73	127 78 61 76 76	1.2 .8 .8 .4 .4	38 18 9 10 8	1.94 1.57 .81 1.02 1.11	.1 .1 .1 .1	15 16 10 11 8	7058 2184 334 444 381	3.14 3.87 2.63 2.90 2.10	.27 .25 .18 .16 .16	5 8 7 3	.69 .86 .43 .34 .28	1118 1257 739 556 597	5 5 4 4 1	.09 .09 .07 .04 .06	3 22 3 20 1 8 1 13 4 11	10 2 20 2 30 1 70 10 1	26 27 11 7 15	17 15 10 16 7 10 4 16 4 7	1 156 0 143 3 88 3 92 7 85	1034 1337 922 1441 957	124.8 168.6 102.0 113.6 92.6	141 148 91 83 58	13 14 11 11 8	1 1 1 1	7 7 5 6 5	57 74 49 71 57	713 114 24 150 18
in on	12219 12220 12221 12221 12222 12222		.6 .8 .3 .7 1.0	.93 .82 .93 1.26 .95	1 1 2 7	76 73 80 83 89	99 73 51 111 93	.8 .6 1.2 1.3 .9	8 9 5 11 9	1.22 2.10 1.82 2.10 1.08	.1 .1 .1 .1	10 9 8 13 10	242 420 525 821 765	2.77 2.40 2.22 3.37 2.34	.17 .15 .29 .29 .14	7 4 3 8 8	.34 .56 .61 .88 .52	597 859 825 946 573	32335	.05 .04 .02 .03 .04	1 12 4 9 1 13 1 15 5 11	00 90 1 10 1 10 1 60	3 10 12 13 9	5 15 5 11 6 6 9 15 5 17	1 96 6 114 1 102 4 126 1 90	1359 977 216 952 1261	117.2 89.3 75.8 129.2 100.5	82 68 54 79 63	11 11 14 10	1 1 1 1	55565	71 58 64 67 73	12 14 14 45 3 0
La St	12224 12225 12107 12108 12108	7 8 9	.4 1.9 .5 .3 .5	.29 1.48 1.07 1.07 1.02	6 9 1 2 1	55 88 96 72 76	55 63 96 44 51	.3 1.9 1.1 .7 .8	1 14 8 10 11	.28 2.37 1.67 1.24 1.22	.1 .1 .1 .1	2 13 13 12 13	209 1854 469 112 130	.59 3.24 3.30 3.19 3.46	.10 .17 .27 .19 .18	1 11 10 10 8	.08 .62 .59 .37 .37	179 1060 811 563 581	1 7 3 4 3	.07 .05 .08 .17 .11	1 6 1 70 1 14 1 15 1 15	50 60 2 50 1 40 40	4 20 10 9 7	3 2 9 39 6 17 5 27 6 26	9 53 4 255 1 95 2 105 4 97	127 1183 1161 1466 1584	29.8 152.7 125.7 137.3 150.9	20 117 55 48 74	4 15 12 11 11	1 1 1 1	37676	43 68 51 71 56	7 84 27 19 89
the zun	12110 1211 12111 12111 12111 12114	0 1 2 3 4	.6 .4 .9 .5 .1	.78 1.08 .82 .28 .72	1 10 3 7 1	82 68 67 65 45	52 56 90 152 54	.3 .4 .5 .3 .1	8 8 7 1 12	1.22 1.28 1.22 .81 1.15	.1 .1 .1 .1	12 13 13 4 10	86 88 316 32 149	2.96 2.84 2.63 1.07 2.64	.15 .15 .11 .12 .13	6 8 5 1 3	.42 .72 .48 .10 .37	526 602 461 347 470	4 2 4 2 1	.05 .05 .04 .07 .05	1 13 1 16 4 12 1 4 1 18	90 10 30 60 10	9 11 11 20 8	4 20 5 36 4 21 3 4 2 15	3 90 3 95 7 90 6 71 6 83	1355 1426 1201 324 1164	126.4 111.4 97.9 43.9 110.1	59 61 50 22 41	10 11 11 6 8	1 1 1 1	6 6 3 6	67 59 73 52 59	17 16 24 42 11
23	1211 1211 0253 0253 0253	5	.3 .1 2.5 3.6 3.3	.80 .20 1.24 1.51 1.48	1 1 1 1 1 1	43 37 54 59 64	72 352 52 50 63	.1 .1 .3 .8 .4	11 26 31 32	1.15 .53 1.27 1.59 1.83	.1 .1 .1 .1	9 1 16 19 21	33 36 2610 3651 5016	2.39 .44 3.99 4.41 4.87	.12 .12 .20 .19 .19	3 1 6 7 7	.31 .01 .47 .80 1.03	427 192 935 1298 1382	2 1 6 21 2	.04 .06 .08 .07 .03	1 12 1 1 13 1 16 1 19	70 90 30 80 90	10 16 7 26 21	2 20 1 3 7 17 10 19 9 19	9 65 3 37 9 110 0 141 1 133	1287 29 2209 2004 2317	102.1 10.2 216.4 218.3 205.9	39 7 108 120 196	7 2 13 17 17	1 1 1 1	6 4 10 10 10	59 67 80 63 78	6 53 128 120 55
	0253 0254 0254 0254 0254	92345	2.1 6.2 16.0 4.8 1.2	1.07 .83 .68 .57 .51	1 2 1 1	55 43 52 45 40	68 62 53 50 54	.4 .5 .4 .1 .1	23 30 43 19 15	1.27 1.14 1.03 1.14 1.07	.1 .1 .1 .1	16 11 8 11	3076 5936 10000 3828 1377	4.31 2.99 1.83 2.04 3.84	.22 .17 .15 .16 .13	6 3 2 2 2	.74 .46 .44 .30 .24	1111 694 551 506 832	1 3 2 2 2	.04 .04 .03 .04 .04	1 12 1 20 1 31 1 36 1 19	50 10 10 70 90	13 16 25 14 10	6 16 9 14 26 11 6 12 3 11	1 123 0 111 3 97 9 94 2 108	1652 1405 865 884 1110	190.7 149.2 73.1 89.5 214.0	135 94 73 75 80	16 10 7 7 11	1 1 1 1	9 8 6 8	66 69 46 64 59	100 335 588 161 87
10 X0X	0254 0254 0254 0254 0255	6 7 8 9 0	.6 .1 3.1 1.2 .8	.63 .39 1.07 .90 1.47	1 1 1 1	42 45 53 46 69	60 59 47 38 120	.1 .2 .8 .6 1.8	14 8 19 18 15	.98 .74 1.38 1.54 1.95	.1 .1 .1 .1 .1	10 7 11 13 14	875 460 2365 1088 1043	3.09 2.16 2.44 3.04 3.69	.14 .15 .17 .11 .19	3 1 6 5 10	.36 .23 .67 .63 .82	720 535 726 1025 1287	1 1 5 2	.05 .04 .04 .04 .06	1 13 1 9 1 15 1 16 1 25	30 90 50 80 20	16 18 15 14 21	1 11 1 6 5 18 4 15 5 31	6 87 0 57 6 104 1 109 5 169	7 1128 7 654 6 1590 9 1555 9 1117	147.4 99.6 101.6 119.0 136.5	91 73 105 110 128	8 6 11 13 15	1 1 1 1	64 7 7 6	66 45 76 54 48	47 79 209 92 67
5	0255	1 2 3	.1 .1 .1	.30 .42 .22	1 1 4	38 37 33	133 89 40	.1 .1 .1	454	.55 1.22 .66	.1 .1 .1	572	199 75 27	1.06	.15 .13 .11	1 2 1	.27 .26 .09	278 582 278	3 1 2	.04 .03 .05	1 4 1 7 1 1	50 00 10	8 7 4	1 4 2 6 1 2	9 38 0 73 2 57	8 471 8 472 7 293	42.1 90.8 29.1	21 39 10	574	1 1 1	444	60 46 72	9 20 5
																																	·
	h-manual states																																
COMP: KENNECOTT CANADA PROJ: LORRAINE 05-405

MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 3V-0456-RJ1+2

DATE: 93/08/13

ATTN: SANDRA BISHOP / SCOTT MUELLER

(604)980-5814 OR (604)988-4524

* CORE * (ACT:F31)

•	SAMPLE NUMBER	AG / PPM	AL X P	AS PM P	B	BA PPM	BE PPM	B I PPM	CA X	CD PPM	CO PPM	CU PPM	FE X	K X	LI PPM	MG %	MN PPM	MO	NA %	NI PPM	P PPM	PB S	SB SR PM PPM	TH PPM	TI PPM	PPP	ZN PPM	GA PPM P	SN PM PP	W CR M PPM	AU-FIRE PPB
	12117 12118 12119 12120 12121	.1 1.0 .1 .8 .1 .9 .1 1.4 .1 1.4	05 88 97 41 25	1 1 1 1	26 53 20 1	73 41 55 81 127	.1 .1 .1 .1	12 12 17 19 19	.49 .61 .68 .92 1.03	.1 .1 .1 .1	44 46 38 53 48	27 27 597 155 57	14.40 >15.00 11.32 >15.00 >15.00	.65 .31 .25 .59 .45	16 8 10 10 11	1.33 .96 .78 1.33 1.20	2601 2141 2009 2999 2426	1 1 1 1	.04 .04 .04 .05 .03	1 1 1 1	10 10 10 10	6 1 9 1	1 142 1 90 1 129 1 148 1 185	113 121 92 129 129	1886 1814 1770 2850 2790	339.6 365.7 288.9 449.7 422.9	236 279 233 205 156	24 20 20 28 25	1 1 1 1 1	8 24 8 21 7 30 9 12 9 16	1 10 25 42 91
7-63-7	12122 12123 12124 12125 12126	.1 1. 1.0 . 1.1 . .1 . .1 1.	20 71 31 75 26	8 6 7 1 5	1 16 52 13 1	114 137 215 58 108	.1 .3 .1 .1 .3	19 15 6 17 18	2.00 .73 .49 1.73 2.66	.1 .1 .1 .1	27 19 4 31 29	13 1101 122 10 87	5.88 2.36 .76 7.82 6.29	.78 .18 .18 .58 .34	10 4 1 9 12	1.77 .25 .12 1.33 1.48	866 218 124 863 1484	4 13 4 1 2	.05 .04 .04 .05 .03	25 4 1 12 5	2160 250 100 4350 3190	20 12 9 7 19	3 139 6 229 3 187 1 83 5 207	92 61 37 95 91	2485 1123 580 2274 1969	215.0 42.5 19.4 297.8 252.8	90 32 15 81 120	26 9 6 23 29	1 1 1 1 1 1 1 1	3 143 5 55 3 47 2 117 0 75	21 36 20 7 7
t u É	12127 12128 12129 12130 12131	.1 1. .1 1. .4 1. .1 1. .1 1.	31 19 34 12 68	2 10 8 5 4	1 1 1 1	107 55 149 97 117	.4 .2 .4 .1	13 15 15 12 13	2.01 2.46 2.28 2.10 .95	.1 .1 .1 .1	18 17 12 13 14	222 380 981 365 466	5.73 4.28 3.50 3.80 4.53	.16 .13 .14 .14 .15	8 7 6 4	.68 .82 .50 .37 .29	1432 1816 1052 873 855	36321	.05 .04 .07 .05 .04	1 1 1 1	1560 950 7420 6140 1470	15 22 17 15 7	5 227 8 150 9 195 8 235 1 248	75 70 106 123 87	1482 1266 1005 1124 1384	244.5 164.7 144.6 153.9 185.8	158 137 102 116 116	21 25 18 16 14	1 1 1 1	7 46 7 55 6 52 6 53 6 46	13 86 38 23 17
ORIU	12132 12133 12134 12135 12136	.1 1. .1 . .1 1. .6 . .1 1.	01 92 03 97 80	1 1 7 1	1 1	241 104 94 70 678	.1 .4 .1 .6 .1	14 17 16 14 24	1.32 .90 .95 1.38 2.27	.1 .1 .1 .1	20 26 36 13 43	608 1179 118 343 340	6.05 4.66 13.67 2.72 9.39	.18 .16 .14 .20 1.45	7 7 11 7 19	.50 .41 .51 .75 2.91	1181 786 1992 989 1241	1 2 1 7 1	.04 .06 .06 .05 .05	1 1 1 5	850 730 1850 140 6820	14 13 1 28 18	1 573 2 218 1 134 7 282 2 259	82 68 126 65 121	1267 1252 2293 1483 3143	226.3 152.8 518.7 73.2 380.1	139 110 161 107 104	18 13 19 19 32	1 1 1	7 50 6 45 9 28 6 46 2 67	59 11 3 11 28
3-1	12137 12138 12139 12267 12268	.1 1. 2.3 1. .1 1. .3 . .1 .	20 12 46 56 62	10 1 3 16 1	1 1 3	539 176 336 112 169	1.5 .3 1.2 .5	16 31 14 9	2.59 1.60 2.67 2.07 1.18	.1 .1 .1 .1 .1	25 16 19 10 10	252 3464 1233 193 160	5.39 3.98 4.73 2.68 2.91	.74 .55 .54 .16 .12	11 10 4 5 5	1.73 .95 .87 .63 .70	1303 957 1219 853 634	23533	.04 .07 .03 .04 .04	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3550 1250 1850 630 700	23 27 23 16 14	7 180 9 107 11 108 5 98 1 149	63 63 72 65 61	1457 1514 328 617 973	242.9 187.0 164.2 104.5 94.7	97 110 91 558 755	30 21 23 19 15	1 1 1	9 41 8 57 7 38 6 55 5 43	26 82 27 4 2
いた	12209 12270 12271 12272 12273	.1 . .1 . 1.9 . .1 . .1 .	73 88 26 78 50	1 6 3 15	5 1 28 1 28	59 60 27 386 47	.9.2.8.9	11 11 11 11 8	1.82 2.24 .90 2.43 2.13	.1 .1 .1 .1	11 14 3 13 9	301 1348 296 187	3.22 4.11 1.11 3.44 2.02	.17 .17 .10 .12 .11	0 7 1 6 4	.73 .78 .14 .97 <u>1.13</u>	978 978 412 1197 1090	22452	.04 .04 .05 .04 .04	1 1 2 1	920 920 100 380 60	13 14 11 17 22	2 130 4 21 4 130 4 60	50 50 55 55 55 55 47	968 1020 76 975 621	102. 128.8 42.4 117.0 93.0	61 68 68 63 65 55 65 55 65 65 65 65 65 65	16 17 20 20	1 1 1	5 36 5 34 3 46 5 30 5 36	17 13 15 11 6
ging	12274 12275 12276 12277 12278 12278	.1 1. .1 1. .1 1. .1 1.	85 46 17 94 08 09	1 3 1 1	7 1 1 1	62 132 201 89	.5 1.8 1.4 .5 .5	13 13 13	1.09 2.66 3.06 1.99 2.42 2.18	.1 .1 .1 .1	16 15 15 18 12	239 111 331 168 162 1199	3.18 4.26 4.30 4.09 5.23	.20 .32 .36 .20 .52	5 5 5 7	.92 .83 .84 .95 .99	1400 2101 948 1305	3 3 5 5	.05 .03 .03 .05 .05	1	640 400 620 2730	27 127 127 12 16	9 11 9 15 1 17 2 13 7 10	0 00 7 53 6 45 3 49 0 83 7 50	1412 504 851 1605 1320	99.4 152.8 129.6 166.3	99 3 113 5 91 5 104	18 21 25 17 21	1	0 41 5 25 7 48 6 39 7 41 5 26	7 6 3 4 1
	12280	.1 '.	31	16	45	457		8	2.96	:i	· 9	426	2.81	.06	Ĩ	.57	1057	3	:05	i 	1010	17 	3 411	3 47	186	258.3	52	18	i	7 43	55
: 				<u>-</u>																											
								<u>_</u>																							
1									<u>.</u>																						
																									-						

COMP: KENNECOTT CANADA

PROJ: 05-405

MIN-EN LABS - ICP REPORT

FILE NO: 3V-0489-RJ1+2

DATE: 93/08/24

ATTN: SANDRA BISHOP

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

* CORE * (ACT:F31)

ſ	SAMPLE NUMBER	AG PPM	AL X	AS P PM	B PPM	BA PP M	BE	BI PPM	CA X	CD PPM	CO PPM	CU PPM	FE %	K X	LI PPM	MG %	MN PPM	MO PPM	NA X	NI P PM	P PPM	PB PPM I	SB PPM P	SR T Pm ppi	I TI I PPM	I PPI	ZN P pm	GA PPM	SN P PM	W PPM	CR A	U-FIRE PPB
	12281 12282 12283 12284 12285	1.1 3.8 .1 .8 .5	1.30 1.06 .97 1.36 1.29	1 6 1 1	1 1 1 1	67 138 77 63 111	1.3 1.2 1.1 1.2 1.5	33 45 17 27 25	2.31 1.67 1.29 1.67 1.74	.1 .1 .1 .1 .1	16 14 10 15 17	4222 6090 1450 2732 2491	4.69 4.00 2.93 4.08 4.49	.42 .32 .34 .39 .51	10 5 9 13	1.06 .78 .76 .86 1.07	1415 1073 981 1238 1325	32225	.04 .04 .06 .06 .06	1 1 1 1	1530 2060 900 1710 1550	919 264 33 34 37	11 12 1 5 1 9 1 7 1	78 70 08 80 08 60 43 80 87 80	3 1262 5 1118 5 1346 5 1493 5 1493 5 1658	187.5 170.9 115.8 182.0 191.1	1484 507 101 144 151	22 19 16 21 22	1 1 1 1	8 6 7 8	77 38 84 42 71	209 315 57 82 96
	12286 12287 12288 12289 12290	.3 .4 .5 .2	1.04 1.14 1.04 1.06 .34	3 3 1 5 3	1 3 1 1	46 56 52 97 31	.7 .8 .8 1.0 .2	17 15 20 16 4	1.39 2.12 1.66 2.31 .62	.1 .1 .1 .1	14 12 17 16 3	1133 722 1555 953 94	3.14 3.28 4.12 3.44 1.20	.28 .32 .27 .41 .18	6 8 5 11 1	.65 .72 .77 .89 .10	884 1016 1156 1114 203	44251	.06 .05 .05 .05	1111	940 1530 730 1090 90	23 27 22 22 16	71 82 51 61 2	86 6 55 7 55 7 62 6 53 2	9 1568 5 1617 5 1642 5 1645 5 1655 5 16555 5 16555 5 165555 5 165555555555	129.0 137.1 177.9 137.1 44.9	106 105 138 108 16	16 18 19 20 5	1 1 1 1	6 8 7 3	46 77 47 77 50	39 48 121 40 46
	12291 12292 12293 12294 12295	.1 .5 .7 .2	1.56 1.48 1.62 1.05 1.28	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 220 57 105 172	2.3 1.5 1.5 1.1 1.1	19 18 18 19 18	3.00 2.85 1.38 1.54 1.38	.1 .1 .1 .1	16 13 12 14 11	1199 1491 1220 1568 1110	4.77 3.72 3.78 4.45 3.19	.49 .49 .30 .41 .39	17 17 7 13 19	.99 .80 .46 .65 .72	1344 1008 860 1120 904	23612	.05 .08 .24 .07 .06	1 1 1 1	590 1250 540 390 670	25 24 19 15 23	9 1 10 3 12 3 4 1 7 2	65 5 79 4 93 6 67 5 74 6	5 1254 4 1206 2 148 9 1655 0 1707	194. 147. 176. 195. 132.	142 92 110 137 101	23 19 15 17 18	1 1 1	8 7 8 7 7	58 51 61 49 67	91 110 23 44 15
	12296 12297 12298 12299 12300	.4 1.6 3.5 4.6 4.5	1.03 .93 .98 .92 1.11	1 1 6 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	135 72 61 62 50	.8 1.0 1.5 .9 1.7	12 22 37 49 43	1.20 1.57 2.48 2.02 2.77	.1 .1 .1 .1	6 11 12 10 13	900 2137 4585 6847 5753	1.96 3.01 3.41 2.82 3.45	.31 .25 .30 .22 .26	7 8 5 4 5	-40 .76 .83 .70 .74	545 1002 1260 1035 1124	53644	.12 .05 .04 .06 .03	1 1 1 3	440 730 600 690 970	15 25 26 26 32	63 71 101 121 121	19 4 51 6 02 5 34 6 39 5	0 1050 6 1519 8 1299 3 1399 1 1070	81.9 129.4 141.6 122.5 130.6	60 95 136 98 152	9 17 21 16 18	1 1 1 1	5 6 7 6	48 57 48 70 38	14 59 202 283 198
73-2	12301 12302 12303 12304 12305	.8 3.1 4.7 1.5 3.8	1.14 1.29 .95 1.23 .93	1 11 6 12	1 1 1 22	87 78 57 55 34	1.4 1.9 1.0 1.3 .9	21 34 48 20 32	1.81 1.66 1.32 1.39 1.12	.1 .1 .1 .1	11 12 11 9 11	2013 3961 5818 1620 3853	2.89 2.90 2.87 2.25 2.46	.32 .33 .27 .28 .28	7 6 5 7 13	.67 .71 .56 .51 .58	895 922 772 652 579	24344	.06 .07 .06 .08 .08	1 1 1 4	1400 970 620 630 1640	22 28 26 23 23	9 1 11 1 10 1 10 4 11 1	61 6 47 6 70 7 26 7 89 6	1 1278 8 146 2 157 4 1319 7 104	126. 126. 126. 122. 99.	90 111 105 71 77	16 17 15 14 15	1 1 1 1	7 6 7 6	63 46 65 48 36	52 105 199 49 243
7	12306 12307 12308 12309 12310	4.8 1.2 1.9 2.2 2.3	.91 1.29 1.13 .99 1.17	19 11 22 23	1 1 1 1	35 39 54 78 122	.9 1.8 1.3 1.0 1.1	32 17 21 19 24	1.42 1.44 1.52 1.76 2.22	.1 .1 .1 .1	8 11 11 11 13	3528 1135 1398 1125 1644	1.67 2.82 2.82 2.44 2.94	.29 .32 .26 .30 .41	11 8 8 8 11	.65 .56 .64 .72 .86	755 723 842 851 1043	33233	.04 .12 .06 .04 .04	2 1 1 3	520 800 500 380 570	26 19 21 22 25	15 1 12 2 13 2 12 1 12 1	31 7 92 7 05 8 82 8 92 8	3 940 1 1220 4 140 6 142 5 172	67. 107. 107. 122. 102. 102. 123.	89 80 101 102 117	19 17 22 23 26	1 1 1 1	5 6 6 7	35 30 37 33 41	286 53 64 61 66
Bue	12311 12312 12313 12314 12315	1.8 2.4 1.5 1.4 1.6	1.30 1.16 .67 .81 .23	24 19 23 10 16	1 1 1 19	72 63 41 56 68	1.2 .8 .6 .9 .3	19 24 12 20 7	1.78 2.11 1.31 1.45 .69	.1 .1 .1 .1	11 12 8 13 3	1035 1791 575 1429 225	2.53 3.12 1.81 3.98 .87	.31 .28 .17 .22 .12	9 8 6 1	.71 .69 .47 .55 .07	854 1029 649 823 206	3 4 2 1 1	.06 .04 .03 .09 .04	2 1 1 1	510 730 480 1140 140	63 29 19 15 9	14 3 13 1 8 1 7 1 4	51 8 95 8 17 6 31 8 48 6	1 155 6 161 7 90 1 160 8 51	4 104. 1 139. 2 81. 7 168. 9 32.	255 112 85 90 322	21 24 17 17 9	1 1 1 1	6 7 4 6 4	39 44 21 36 47	38 61 25 94 20
21115	12316 12317 12318 12319 12320	4.7 2.7 4.3 2.8 2.7	.72 .52 .64 .90 .72	11 20 15 17 19	53 1 1 9	58 22 40 52 32	.8 .5 .6 1.3 .6	35 18 34 29 23	1.64 1.36 1.29 1.37 1.28	.1 .1 .1 .1	9 7 9 11 9	3986 1594 3833 2890 2189	2.41 1.82 2.03 2.75 2.36	.12 .10 .17 .22 .22	44585	.34 .34 .40 .58 .47	600 582 581 793 621	2 2 4 5 3	.05 .03 .03 .05 .03	11111	790 510 1030 1130 1330	13 13 21 24 18	11 1 9 11 13 1 10 1	22 6 73 5 91 7 64 8 74 7	1 127 8 78 5 106 1 119 4 108	5 94. 1 89. 5 91. 5 126. 3 105.	5 57 5 60 7 100 5 77	14 15 20 17	1 1 1 1	54465	28 19 28 24 33	231 99 223 134 59
0	12321 12322 12323 12324 12325	12.8 3.6 1.3 .7 .8	.83 1.20 1.22 .57 .85	24 17 7 9 17	18 1 14 51	43 42 104 74 73	.8 1.1 1.1 1.0 .7	103 31 21 12 18	1.55 1.78 1.68 1.63 1.66	.1 .1 .1 .1	14 11 13 11 17	>10000 3136 1776 468 861	3.19 2.76 3.42 3.90 4.31	.25 .32 .33 .15 .46	6 10 11 4 13	.68 .70 .76 .31 1.00	852 880 968 632 821	6 2 1	.03 .06 .05 .08 .08	2 1 1 9	2860 1060 1300 1190 1850	43 27 18 7 15	24 16 10 3 1 6	46 9 35 7 47 7 53 6 22 9	9 123 9 126 8 139 6 144 5 183	3 127. 6 115. 3 142. 6 152. 5 160.	5 126 5 97 105 5 52 8 80	22 21 20 13 22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 6 5 8	31 36 32 37 57	241 105 63 51 73
	12326 12327 12328	2.9 1.7 1.8	.94 1.00 .96	16 18 18	30 89 94	105 102 143	1.1 .9 1.0	24 21 27	2.36 1.48 1.88	.1 .1 .1	14 13 16	2141 1905 2333	3.91 3.28 4.27	.36 .27 .46	12 13 16	.86 .65 .76	977 745 897	3 2 3	.04 .04 .04	1 1 1	2010 2810 2710	29 20 27	10 1 10 2 10 1	56 8 31 8 72 9	9 124 5 127 2 147	7 164. 5 158. 0 186.	9 111 89 99	23 19 21	1 1 1	7 6 7	37 28 31	283 80 159
									-																							

C	OMP: KENNECOT Roj: 05-405 TIN: Sandra B	T CANA	DA) 705	IIN WEST	I-EN I 15TH (604	LA ST.,	BS NORT	H VAN		REJ R, B.(POR!	r M 1t2								FILE	NO: 3V- DA CORE *	0489-R [E: 93] (AC	J3+4+5 /08/24 (1:F31)
Ĩ	SAMPLE	AG	AL	AS	B	BA	BE	81	CA	CD	со	CU	FE	K		MG	MN	MO	NA	NI	Ρ	PB	SB SR	TH	TI	v	ZN	GA S	N W	R AU-	FIRE
	NUMBER 12329 12330 12331 12332 12333	PPM 4.0 .2 .1 .2 .4	.66 .81 .92 .58 .71	2 3 1 6 3	PPM 2 2 2 1 2	PPM 185 79 81 133 108	.2 .8 .8 .4 .4	PPM 42 1 18 1 17 1 13 1 18 1	× .44 .89 .82 .11	<u>PPM</u> .1 .1 .1 .1 .1	PPM 14 (12 13 10 12	PPM 5417 1792 1598 1023 1522	3.56 3.01 3.83 3.35 3.35	.36 .23 .20 .29 .34	PPM 11 12 9 5 11	× .62 .65 .64 .37 .64	PPM 757 929 869 692 740	PPM 4 3 2 2 3	x .03 .03 .04 .04 .05	PPM 1 3 1 1 1 1 1 1 1 1	PPM 180 860 450 710 150	24 16 16 10 18	PPM PPM 8 131 6 120 4 115 2 101 4 144	PPM 72 58 54 45 65	PPM 632 859 884 657 1091	PPM 154.6 150.7 192.1 152.4 139.1	94 116 124 90 78	PPM PF 14 16 17 13 14	M PPM P 1 6 1 5 1 6 1 4 1 6	24 52 53 52 51	PPB 271 90 64 77 60
	12334 12335 12336 12337 12338	.4 1.0 .5 1.2 1.2	.92 .89 .71 .64 .50	3 11 7 1	1 1 2 2 2 2	65 144 108 82 134	.2 .2 .2 .1 .1	15 1 20 1 23 1 34 28	.12 .90 .28 .79 .95	.1 .1 .1 .1 .1	13 16 14 15 12	706 1747 2247 3995 3643	2.83 3.88 4.29 5.38 4.15	.35 .62 .40 .35 .28	16 12 10 9 6	.79 1.09 .69 .49 .33	804 905 893 830 711	443333	.05 .04 .04 .04 .04 .04	6 1 5 1 2 2 1 1 1 2	250 910 470 910 910 610	29 53 22 20 18	5 294 6 139 3 105 2 72 2 97	64 67 84 82 94	1502 1093 1109 1427 877	103.0 150.5 213.9 299.0 227.5	96 92 95 114 98	16 20 17 14 12	1 6 1 7 1 9 1 8 1 7	53 50 34 45 57	24 113 62 74 89
2	12339 12340 12341 12342 12343	1.3 .1 2.8 1.2 .6	.63 1.19 .90 1.11 1.46	2 1 1 1	2 1 1 1	244 164 150 110 61	.4 .3 .3 .6 .7	20 1 26 37 19 24	.30 .99 .92 .95 .95	.1 .1 .1 .1	11 17 12 11 14	2678 2775 4885 1648 2306	3.95 5.73 3.78 3.70 4.51	.38 .36 .28 .31 .35	86455	.38 .49 .30 .28 .35	693 935 623 629 753	23364	.04 .10 .09 .21 .35	1 1 1 2 1 3 1 1 1	990 760 650 880 190	14 14 16 14 14	4 110 4 454 8 357 7 256 8 274	86 104 111 57 64	451 1258 1019 1248 1401	217.4 325.8 202.8 187.1 243.6	92 112 91 74 91	13 16 12 11 13	1 6 1 9 1 6 1 7 1 7	41 59 52 51 54	58 83 141 39 80
- 56	12344 12345 12346 12347 12348	.6 .1 .7 .9 .1	1.79 1.90 1.05 1.08 1.78	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 1	34 35 118 149 239	1.3 2.0 .7 .7 .1	21 1 17 1 31 31 1 18 1	.24 .11 .91 .11 .22	.1 .1 .1 .1	12 12 17 18 32	1881 1304 3830 3517 <u>34</u>	3.96 4.16 5.07 4.78 5.03	.29 .24 .35 .48 1.68	5 9 14 24	.31 .25 .63 .93 3.14	671 727 834 993 794	6 5 10 3	.44 .41 .10 .05 .05	1 3 1 1 1 1 1 1 107 1	070 100 020 770 650	15 18 16 22 35	13 270 13 301 6 332 6 253 10 96	94 60 70 82 110	1196 1220 1350 1401 2248	196.2 209.7 226.7 214.3 129.9	86 79 104 136 84	13 12 16 19 28	1 / 1 6 1 8 1 8 1 18 2	54 29 57 51 31	93 46 162 66 5
1	12349 12350 12351 12352 12353	.1 2.1 .1 .2 .6	1.88 1.11 1.98 1.05 .82	1 4 10 1	1 2 2 1	256 179 243 170 78	.2 1.0 .1 .7 .5	24 1 32 2 20 1 14 1 12 1	.25 2.01 .04 .11 .01	.1 .1 .1 .1	35 20 36 14 9	1292 3903 246 520 1159	5.53 3.87 5.32 2.82 2.16	1.44 .68 1.81 .46 .30	21 24 21 26 13	3.35 1.44 3.83 .91 .51	829 793 847 808 440	33443	.05 .06 .05 .05 .06	109 1 31 2 124 1 5 1 7 1	890 920 300 550 250	26 26 32 18 13	11 114 10 173 13 99 6 197 6 227	118 97 120 79 59	2104 1243 2179 1445 808	140.3 129.5 130.8 110.7 81.8	81 69 77 82 43	29 21 32 19 11	1 19 2 1 9 1 21 3 1 8 1 5	36 33 17 21 41	40 159 7 21 68
5704	12354 12355 12356 12357 12358	.5 .9 .8 .3	.87 1.28 1.43 .63 .70	2 12 4 14 7	2 1 2 1	131 287 265 72 90	.6 .8 .1 .2 .1	11 1 17 3 17 1 8 1 8 1	.05 .02 .65 .26 .16	.1 .1 .1 .1	9 17 22 9 10	601 510 32 14 47	1.98 2.84 3.59 1.58 2.07	.33 1.15 1.35 .43 .45	14 23 26 11 14	.60 1.81 2.22 .75 .76	439 814 912 618 713	29 6 3 2	.07 .04 .05 .04 .06	8 1 26 1 44 2 7 1 8 1	260 930 480 730 800	12 30 37 25 17	6 250 10 150 10 123 6 85 10 104	53 75 93 63 57	838 1623 2116 626 706	78.1 90.6 113.7 24.9 36.4	44 64 87 60 66	12 24 26 14 15	1 5 1 9 1 10 1 4 1 4	41 39 97 51 29	43 17 47 51 63
RILLI	12359 12360 12361 12362 12363	.1 1.5 .9 1.6 1.6	.67 .82 1.24 1.17 .47	3 14 7 11 4	1 1 1 1	102 195 176 329 56	.1 .6 .2 .1 .1	8 21 19 20 22	1.21 1.65 2.35 1.44 .86	.1 .1 .1 .1 .1	12 15 20 19 13	6 1978 951 776 2542	3.03 3.02 4.39 3.08 2.87	.44 .49 .93 .97 .34	9 26 22 18 6	.79 1.03 1.75 1.75 .57	731 901 923 617 326	2 4 6 4 5	.04 .03 .04 .04 .06	5.1 101 411 401 11	820 710 950 360 410	10 20 24 47 9	4 94 7 108 9 107 10 110 4 71	69 82 101 102 53	795 953 1484 1850 1101	60.6 125.8 168.2 98.1 120.0	60 101 100 68 49	16 20 26 24 12	1 4 1 7 1 10 1 1 9 1 5	28 47 02 95 29	10 81 57 71 276
0	12364 12365 12366 12367 12368	2.0 1.6 .8 1.5 1.1	.30 .86 .60 .62 .34	11 1 5 17 12	2 1 2 5 1	38 101 51 92 33	.1 .1 .1 .1	22 25 16 19 19	.63 .70 .85 .77 .86	.1 .1 .1 .1 .1	8 14 11 11 11	3315 2237 1081 1400 1477	1.61 2.98 2.76 2.75 3.26	.21 .80 .32 .48 .15	3 22 10 13 4	.25 1.04 .61 .70 .28	184 308 327 315 350	23442	.06 .07 .06 .07 .05	2 1 1 1 1 1 7 1 1 1	020 210 470 020 960	13 21 12 15 10	6 70 7 70 3 159 5 149 4 177	47 66 60 67 92	569 1851 1307 1512 920	51.7 112.2 108.8 101.6 126.2	30 40 43 47 50	9 17 14 15 13	1 4 1 6 1 5 1 6 1 5	29 34 38 53 42	424 269 85 100 202
	12369 12370 12371 12372 12373	2.1 2.2 1.8 1.5 .8	.70 .74 .92 .67 1.17	22 22 14 22 22	1 2 1 2	77 59 58 73 191	.1 .1 .1 .1	28 30 25 22 20	1.18 1.12 1.10 1.15 1.07	.1 .1 .1 .1	16 16 18 24	2192 2244 1524 1315 271	4.16 3.98 3.88 4.24 4.44	.47 .48 .61 .43 .97	10 10 13 9 27	.95 .89 1.07 .87 1.65	569 672 647 695 653	6 9 7 6	.05 .05 .06 .05 .05	6 1 3 1 3 1 10 1 33 2	150 1370 1580 1800 2490	20 31 28 20 24	8 131 8 112 9 117 7 142 9 210	103 105 111 111 123	1669 1629 1653 1469 1898	154.4 156.1 154.1 160.9 158.6	74 88 89 101 68	22 22 23 23 26	1 8 1 8 1 8 1 9 1 11 1	47 71 52 82 17	305 156 73 103 34
	12374 12375 12376 12377	1.2 1.5 1.2 2.4	.77 .51 .27 .36	18 23 24 25	2222	132 95 56 58	.1 .4 .2 .1	18 13 6 15	1.13 1.31 .67 .80	.1 .1 .1 .1	16 9 5 7	922 493 121 461	3.64 2.20 1.03 1.48	.48 .29 .16 .20	10 5 2 4	.95 .61 .40 .30	589 612 316 327	7 9 3 3	-04 -04 -04 -05	6 1 4 2 1	780 800 290 630	21 17 12 12	8 146 7 125 5 62 6 114	92 75 62 78	1085 748 441 1265	102.7 83.3 35.1 53.0	79 53 28 44	21 18 12 14	1 7 1 5 1 4 1 5	61 52 42 45	61 50 18 29
								·*.																							

	. .	/																											
	COMP: KENNECOT	T CANADA	A INC	•						1	MIN	- EN	LA	BS ·	;	ICP	REI	POR	Т								FILE	NO: 3	V-0380-RJ1
1	PROJ: LORRAINE	05-405	CCOT	-						705	WEST	15TH	ST.,	NORT	H VAN	COUVE	R, B.(C. V7 4	7MI 1T2								• R(DATE DCK •	: 93/07/30 (ACT:F31)
	CANDLE	AC AC	AL		ELLCK	PA.	AF	BI CA	00	01	CU	FF	×	11		MN	MO	NA	NI P	PB	SB SR	тн	TI	v	ZN	GA	SN	W CR	AU-FIRE
	NUMBER	PPM	<u> </u>	PPM	PPM	PPM	PPM	PPM 2	PPM	PPM	PPM	<u>×</u>	<u> </u>	PPM	<u>×</u>	PPM	PPM	*	PPM PPM	PPM	PPM PPM	PPM	PPM	PPN	PPM	PPM F	PPM F	PM PPM	PPB
Q	00469	1.3	.63	1	89 95	218 155	.1	17 1.01	· .]	11 29	2551	3.36 9.30	.20	11	1.26	1330	1	.04	2 1310	14	1 80	127	2608	327.0	178	21	1	15 155	65
12	00471 00472	.31 1.21	.50 .32	1	79 99	158 112	.1	14 1.10	.1	18 21	1279 1601	4.84 5.14	.69 .63	13 10	.86	908 1236	1	.03	1 1480	Ş	1 149	87	16/4 3154	212.2	248	15	1	8 54	51
ι.	00473	1.4 1	.64	<u>1</u> 1	<u>95</u> 75	<u>134</u> 55	.1	23 1.22		23	2036	5.36 3.59	.95	21	<u>1.24</u> .38	<u>1440</u> 925	2	.09	1 2040	<u>16</u> 5	2 132	66	2217	137.0	280	10	1	7 68	<u>70</u> 5
261	00475	1 1 2	.97	1 30	74	52 473	1	13 .9		11 36	59 88	3.71	.26	9 36	.37	1095	13	.09	1 1150 86 2810	8 22	1 109 6 54	158	2354 4737	145.7	109	11 27	1 1	5 42 19 254	3
Š	00477	.11	.19	7	94 95	1078	.1	10 1.00		16 17	23 1043	3.47	.85	20 12	1.24	756 674	35	.06	18 1290 14 970	12 19	2 101 5 314	99 95	1491 2284	91.3 155.0	55 81	14 14	1	7 85 9 91	35 33
	00479	.1 1	.02	7	50	169	.?	3 1.2	.1	5	39	2.12	.30	3	.55	523	2	.05	1 930	17	2 91	84	568	40.0	40	9	1	5 75	21
	00482		.39	1	59	112	.1	14 .8		26	1628	4.30	.33	3	.62	279	1	.06	1 1310	1	1 65	57	1506	74.2	9	8	į	4 34	10
R	00485	2.5			60	320	• •	17 1.13	/ .1	10	3033	2.00	. 39	4	.04	297		.04	1 1050					104.4			•		
Š																													
				•																									
																					-								
																			<u></u>										
													<u>.</u>																
										· · · ·							· ···						<u> </u>						
																										•			
		1																											
		1																											

.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAY EFS + ANALYSTS + PECCHEMISTS **VANCOUVER OFFICE:**

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

v

3V-0380-PA1

Company:KENNECOTT CANADA INC.Project:LORRAINE 05-405Attn:SANDRA BISHOP / SCOTT MUELLER

Date: JUL-30-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 4 PULP samples submitted JUL-26-93 by S. BISHOP.

Sample	CU
Number	%
00482	460

.....

Certified by

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

SMITHERS LAB .:

705 WEST 15TH STREET NORTH VANCOLVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

Geochemical Analysis Certificate

 $R \supseteq L$

ENV LABORATORIES (DIVISION OF ASSAYERS CORP.)

3V-0380-RG1

Company:KENNECOTT CANADA INC.Project:LORRAINE 05-405Attn:SANDRA BISHOP / SCOTT MUELLER

Date: JUL-30-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Geochemical Analysis of 2 ROCK samples submitted JUL-26-93 by S. BISHOP.

SPECIALISTS IN MINERAL ENVIRONMENTS DHEMISTS + 4554 EFE + HINAUSTS + ASCOMEMISTS

Sample	AU-FIRE	AU-FIRE	
Number	g/tonne	oz/ton	
00483	.66	.019	

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .: SIITE TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0359-RA4

Company:	KENNECOTT CANADA INC.
Project:	#05-405
Attn:	SANDRA BISHOP

Date: JUL-22-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C

We hereby certify the following Assay of 3 ROCK samples submitted JUL-19-93 by S. BISHOP.

Sample Number	•	AU-FIRE g/tonne	AU-FIRE oz/ton	
02455		.47	.014	

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS CREMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0359-RA5

Company:	KENNECOTT CANADA INC.
Project:	#05-405
Attn:	SANDRA BISHOP

Date: JUL-22-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C

We hereby certify the following Assay of 5 ROCK samples submitted JUL-19-93 by S. BISHOP.

Sample	AU-FIRE	AU-FIRE	
Number	g/tonne	oz/ton	
02477	. 33	.010	

M Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

3V-0359-RA1

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

Company:	KENNECOTT CANADA INC.	
Project:	#05-405	
Attn:	SANDRA BISHOP	

Date: JUL-22-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C

We hereby certify the following Assay of 6 ROCK samples submitted JUL-19-93 by S. BISHOP.

Sample Number	AU-FIRE g/tonne	AU-FIRE oz/ton	
10000		012	
12008	. 43	.015	
12009	. 40	.012	
12021	. 5 5	.016	
12022	.71	. 021	
12023	. 78	. 023	
12024	. 34	.010	

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0359-RA2

Company:	KENNECOTT CANADA INC.
Project:	#05-405
Attn:	SANDRA BISHOP

· - ·

Date: JUL-22-93 copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C

We hereby certify the following Assay of 5 ROCK samples submitted JUL-19-93 by S. BISHOP.

Sample AU-H Number g/to	FIRE AU-FIR	3
12028	.50 .01	5
12029	1.02.030	
12030	1.24 .03	5
12031	.58 .01	7
12033	.41 .01	2

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-9621

3V-0359-RA3

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

Company:	KENNECOTT CANADA INC.
Project:	#05-405
Attn:	SANDRA BISHOP

.

Date: JUL-22-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C

We hereby certify the following Assay of 14 ROCK samples submitted JUL-19-93 by S. BISHOP.

Sample	AU-FIRE	AU-FIRE	
Number	g/tonne	oz/ton	
12050	. 30	.009	
12051	. 51	.015	
12054	. 44	. 013	
1 2058	. 54	. 016	
12059	. 52	.015	
12061	. 43	.013	
12063	. 47	.014	
12064	. 40	.012	
12065	. 45	. 013	
12066	. 50	.015	
12067	.33	.010	
12070	. 43	. 013	
12071	.31	. 009	
12072	.32	. 009	

np. Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0363-RA1

Company:KENNECOTT CANADA INC.Project:LORRAINE 05-405Attn:SANDRA BISHOP / SCOTT MUELLER

Date: JUL-29-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of ROCK samples submitted JUL-21-93 by SANDRA BISHOP.

. . .

Sample	AU-FIRE	AU-FIRE	
Number	g/tonne	oz/ton	
12079	. 52	.015	
12093	. 39	.011	

Certified by

705 WEST 15TH STREET NORTH VANCOUVER B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0363-RA2

Company:	KENNECOTT CANADA INC.
Project:	LORRAINE 05-405
Attn:	SANDRA BISHOP / SCOTT MUELLER

Date: JUL-29-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 2 ROCK samples submitted JUL-21-93 by SANDRA BISHOP.

Sample	AU-FIRE	AU-FIRE	
Number	g/tonne	oz/ton	
12147	. 44	. 013	
12154	. 34	. 010	

_ _ _ _ _

V Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS **VANCOUVER OFFICE:**

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0363-RA3

Company:KENNECOTT CANADA INC.Project:LORRAINE 05-405Attn:SANDRA BISHOP / SCOTT MUELLER

Date: JUL-29-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 1 ROCK samples submitted JUL-21-93 by SANDRA BISHOP.

Sample	AU-FIRE	AU-FIRE	
Number	g/tonne	oz/ton	
12166	.48	.014	

.....

Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0363-RA4

Company:	KENNECOTT CANADA INC.
Project:	LORRAINE 05-405
Attn:	SANDRA BISHOP / SCOTT MUELLER

Date: JUL-29-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 11 ROCK samples submitted JUL-21-93 by SANDRA BISHOP.

Sample	AU-FIRE	AU-FIRE	
Number	g/tonne	oz/ton	
12188	. 32	. 009	
12190	. 33	. 010	
12193	. 38	.011	
12196	. 35	. 010	
12197	. 47	.014	
12199	. 57	.017	
12200	. 78	. 023	
12201	. 44	.013	
12202	.72	. 021	
12203	.77	. 022	
12204	1.09	. 032	

Certified by_____

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assav Certificate

3V-0362-RA1

Company:	KENNECOTT CANADA
Project:	LORRAIN 05-405
Attn:	SANDRA BISHOP / SCOTT MUELLER

Date: JUL-29-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 5 ROCK samples submitted JUL-21-93 by SANDRA BISHOP.

Sample Number	AU-FIRE g/tonne	AU-FIRE oz/ton	
12210	.74	. 022	
12211	. 87	. 025	
12212	.61	. 018	
12213	. 32	. 009	
12214	.62	. 018	

1/1 Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0363-RA5

Company:KENNECOTT CANADA INC.Project:LORRAINE 05-405Atm:SANDRA BISHOP / SCOTT MUELLER

Date: JUL-29-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 4 ROCK samples submitted JUL-21-93 by SANDRA BISHOP.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Sample	AU-FIRE	AU-FIRE	
Number	g/tonne	oz/ton	
02524	.36	.011	
02525	.47	.014	
02527	.42	.012	
0467	.57	.017	

 \sim Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621 SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0362-RA2

Company:	KENNECOTT CANADA
Project:	LORRAIN 05-405
Attn:	SANDRA BISHOP / SCOTT MUELLER

Date: JUL-29-93 COPY 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 2 ROCK samples submitted JUL-21-93 by SANDRA BISHOP.

Sample	AU-FIRE	AU-FIRE	
Number	g/tonne	oz/ton	
02542 02543	.33	.010 .018	

- - - -

All Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS **VANCOUVER OFFICE:**

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0359-PA1

Company:	KENNECOTT CANADA INC.
Project:	#05-405
Attn:	SANDRA BISHOP

`\

Date: JUL-26-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 18 PULP samples submitted JUL-19-93 by S. BISHOP.

Sample Number	CU %	
12001	. 264	
12003	. 265	
12004	. 263	
12005	. 336	
12008	. 721	
12009	. 515	
12010	. 228	
12011	. 276'	
12012	. 226	
12013	. 234	
12014	. 323	
12017	. 305	
12018	. 301	
12020	. 293	
12021	1.208	
12022	1.300	· · · · · · · · · · · · · · · · · · ·
12023	. 853	
12024	. 494	

Certified by	ALI
	75

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-962 1

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0359-PA2

Company:	KENNECOTT CANADA INC.
Project:	#05-405
Attn:	SANDRA BISHOP

Date: JUL-26-93 copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 21 PULP samples submitted JUL-19-93 by S. BISHOP.

Sample Number	CU %	
12025 12026 12027	. 423 . 422 . 559	
12028 12029	¹ .974 1.348	· · · · · · · · · · · · · · · · · · ·
12030	2.005	
12031	.390	
12033 12034	. 368	
12035 12036	.654 .705	
12037	. 382	
12039	.663	
12043 12044	.310 .412	
12045	. 460	
12040	. 303	·
12048	. 331	

111 Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0359-PA3

Company:	KENNECOTT CANADA INC.
Project:	#05-405
Attn:	SANDRA BISHOP

Date: JUL-26-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 23 PULP samples submitted JUL-19-93 by S. BISHOP.

Sample Number	CU %	٥
12049	. 433	
12050	. 543	
12051	. 736	
12052	. 409	
12053	. 289	
12054	. 360	
12055	. 225	
12057	. 246	
12058	. 941	
12059	1.059	
12060	.470	
12061	. 542	
12062	. 468	
12063	. 676	
12064	. 505	
12065	.432	
12066	. 534	
12067	. 397	
12068	. 241	
12069	. 325	
12070	.401	
12071	. 305	
12072	. 338	

Certified by

(DIVISION OF ASSAYERS CORP.) SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + AMALYSTS + GEOCHEMISTS

1.45 A 1.5 1.5 1.5 1.5 1.5

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0359-PA4

Company:	KENNECOTT CANADA INC.
Project:	#05-405
Attn:	SANDRA BISHOP

Date: JUL-26-93 COPY 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 4 PULP samples submitted JUL-19-93 by S. BISHOP.

Sample Number	CD %	·
12074	. 248	
02455	1.369	
02456	. 286	
02463	. 292	

Per Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS DHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0359-PA5

Company: KENNECOTT CANADA INC. Project: #05-405 Attn: SANDRA BISHOP Date: JUL-26-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 8 PULP samples submitted JUL-19-93 by S. BISHOP.

Sample Number	CU %	
02471 02473 02476 02477 02481	. 283 . 254 . 500 . 542 . 240	
02485 02488 02489	. 302 . 259 . 309	

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS DHEMISTS + ASSAYERS + ANALYSTS + BEOCHEMISTS

Assay Certificate

3V-0359-PA6

Company:	KENNECOTT CANADA INC.
Project:	#05-405
Attn:	SANDRA BISHOP

Date: JUL-26-93 copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 4 PULP samples submitted JUL-19-93 by S. BISHOP.

Sample Number	CU %	
02513	.275	
02514	. 340	
02515	. 338	
02520	1.462	

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS --EMISTS - --SAFERS - 4MALISTS - GEOCHEMISTS **VANCOUVER OFFICE:**

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0362-PA2

Company:KENNECOTT CANADAProject:LORRAIN 05-405Attn:SANDRA BISHOP / SCOTT MUELLER

Date: JUL-30-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We	hereby	c erti fy	the	following	Assay	of 9	PULP	samples
sub	mitted.	JUL-21	-93	by SANĐ	RA BIS	SHO	P.	-

Sample Number	CU %	
02535	. 277	
02536	. 521	
02539	. 344 . 652	
02543	1.260	
02544	. 428	
02440	. 224	

Certified by

المربوعية فالمحادث المعتدين ويواقوا والمحاد

.....

MIN-EN LABORATORIES

.. ..

SPECIALISTS IN MINERAL ENVIRONMENTS I-EMISTS + 485A1 EFS + 4NACISTS + GEOCHEMISTS **VANCOUVER OFFICE:**

705 WEST 15TH STREET NORTH VANCOUVER, BC. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0363-PA1

Company:KENNECOTT CANADA INC.Project:LORRAINE 05-405Attn:SANDRA BISHOP / SCOTT MUELLER

Date: JUL-29-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 8 PULP samples submitted JUL-21-93 by SANDRA BISHOP.

Sample Number	CU %	 	
12077 12078 12079 12080 12081	.354 .266 .426 .508 .243		
12083 12090 12091	.218 .358 .221		

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS DHEMISTS + 4554455 + 4444/STS + 1500HEMISTS **VANCOUVER OFFICE:**

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0363-PA2

Company:KENNECOTT CANADA INC.Project:LORRAINE 05-405Attn:SANDRA BISHOP / SCOTT MUELLER

Date: JUL-29-93 copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 7 PULP samples submitted JUL-21-93 by SANDRA BISHOP.

Sample Number	CU %	
12141 12142 12143 12145 12147	.298 .337 .316 .229 .269	
12155 12156	. 217 . 272	·

Certified by **MIN-EN LABORATORIES**

AL

SPECIALISTS IN MINERAL ENVIRONMENTS DHEMISTS • 4554/ ERS • - 142/5TS • 1500HEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0363-PA3

Company:	KENNECOTT CANADA INC.
Project:	LORRAINE 05-405
Attn:	SANDRA BISHOP / SCOTT MUELLER

Date: JUL-29-93 copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 19 PULP samples submitted JUL-21-93 by SANDRA BISHOP.

Sample	a	
Number	%	· · · · · · · · · · · · · · · · · · ·
12160	.253	
12161	. 269	
12162	. 331	
12163	. 346	
12164	. 279	
12165	.577	
12166	2.505	
12167	. 709	
12168	. 444	
12170	.254	
12173	. 326	
12174	.254	
12176	.274	
12177	. 556	
12178	. 420	
12179	. 542	
12180	. 486	
12181	. 478	
12182	. 380	

Certified by	<u> III</u>
• • •	

MIN-EN LABORATORIES

ΛΛ

л

3PECIALISTS IN MINERAL ENVIRONMENTS DHEMISTS + 45547 EPS + 444L/STS + 3520 HEMISTS **VANCOUVER OFFICE:**

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0363-PA4

Company:	KENNECOTT CANADA INC.
Project:	LORRAINE 05-405
Attn:	SANDRA BISHOP / SCOTT MUELLER

.

Date: JUL-29-93 copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 22 PULP samples submitted JUL-21-93 by SANDRA BISHOP.

Sample Number	CU %	
12183	. 296	
12186	. 550	
12187	. 772	
12188	1.453	
12189	. 589	
12190	1.048	
12191	. 688	
12192	. 620	
12193	. 782	
12194	. 574	
12195	. 386	
12196	. 803	
12197	. 745	
12198	. 567	
12199	1 . 892	
12200	2.050	
12201	1.307	
12202	1.497	
12203	1.146	·
12204	1.087	
12205	. 291	
12206	. 302	

- ----

	Alli
Certified by	All'
	T

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAMERS + AMACISTS + GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0363-PA5

Company:KENNECOTT CANADA INC.Project:LORRAINE 05-405Attn:SANDRA BISHOP / SCOTT MUELLER

Date: JUL-29-93 copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 19 PULP samples submitted JUL-21-93 by SANDRA BISHOP.

Sample	au	
Number	%	
12207	. 422	
12208	. 242	
02521	. 307	
02522	. 368	
02523	. 290	
02524	. 403	
02525	. 567	
02526	. 381	
02527	. 821	
02528	. 553	
02529	. 823	
02530	1.018	
02531	1.048	
02532	. 797	
02533	. 298	
02534	. 390	
0462	2.020	
0465	. 297	
0467	1.182	

11 Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + 4NALISTS + ASCOHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0362-PA1

Company:KENNECOTT CANADAProject:LORRAIN 05-405Attn:SANDRA BISHOP / SCOTT MUELLER

Date: JUL-30-93 Copy 1. KENNECOTT CANADA INC., VANCOUVER, B.C.

We hereby certify the following Assay of 6 PULP samples submitted JUL-21-93 by SANDRA BISHOP.

Sample	CU	
Number	76	
12210	. 867	
12211	. 861	
12212	. 727	
12213	. 342	
12214	. 772	
12215	. 233	

HU

MIN-EN LABORATORIES

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS DHEMISTS • 4554/EF3 • 41ALYSTS • 3EDCHEMISTS **VANCOUVER OFFICE:**

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

3V-0489-RG1

Company: KENNECOTT CANADA Project: 05-405 Attn: SANDRA BISHOP Date: AUG-24-93 Copy 1. KENNECOTT CANADA, VANCOUVER, B.C.

We hereby certify the following Geochemical Analysis of 4 CORE samples submitted AUG-16-93 by S. BISHOP.

Sample	CU-OXIDE	CU
Number	AS CU %	%
12281 12282 12283 12284 12284	.4 .6 .036 .127 .2 .117 .2	426 689 285 243
12286 12297 12298 12299 12299 12300	.050 .1 .2 .5 .7	128 230 504 729 623
12301	.2	231
12302	.4	429
12303	.6	631

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

3V-0489-RG2

Company: KENNECOTT CANADA Project: 05-405 Attn: SANDRA BISHOP Date: AUG-24-93 copy 1. KENNECOTT CANADA, VANCOUVER, B.C.

We hereby certify the following Geochemical Analysis of CORE samples submitted AUG-16-93 by S. BISHOP.

Sample Number	CU-OXIDE AS CU %	CU %	
12305		. 567	
12306		. 581	
12316		.512	
12318		. 659	
12319		. 431	
12320		. 385	
12321	2	. 090	
12322		. 428	:
12326		.272	
12327		.258	
12328	. 120	.301	· · · · · · · · · · · · · · · · · · ·

Mer Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

3V-0489-RG3

KENNECOTT CANADA Company: 05-405 Project: SANDRA BISHOP Attn:

Date: AUG-24-93 COPY 1. KENNECOTT CANADA, VANCOUVER, B.C.

We hereby certify the following Geochemical Analysis of CORE samples submitted AUG-16-93 by S. BISHOP.

Sample	CU-0XIDE	a	
Number	AS CU %	%	
12329	. 116	. 707	
12330	. 074	. 208	
12336		. 243	
12337		. 429	
12338		. 397	
12339		. 281	
12340		. 291	
12341		. 542	
12343		. 254	
12346		. 410	
12347		. 368	
12350		. 406	

• ••••

ŴĹ Certified by

VANCOUVER OFFICE: 705 WEST 15TH STREET

NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

3V-0489-RG4

Company: KENNECOTT CANADA Project: 05-405 Attn: SANDRA BISHOP

Date: AUG-24-93 Copy 1. KENNECOTT CANADA, VANCOUVER, B.C.

We hereby certify the following Geochemical Analysis of CORE samples submitted AUG-16-93 by S. BISHOP.

Sample Number	CU %	
12363	.278	
12364	. 367	
12365	.242	
12369	.247	
12370	.243	

Certified by

APPENDIX III

Drill Logs
Hole Number	: <u>L93-1</u> AZIMUTH: <u>020°</u> DATE STARTED: <u>J</u>	uly 31, 1	993	PROPERTY :	LORRAIN	E-LOWER	MAIN ZO	DNE	
Location:	19600 N DIP:80° DATE COMPLETED: A	ugust 2,	1993	HOLE NO. :	<u>L93-1</u>				
	<u>19800 E</u> DEPTH			PAGE :	<u>1 of 10</u>				
TESTS: DEP	TH AZIMUTH: DIP:80° (ACID TESTS)			DATE:	August	1-3, 199	3		
	<u>91.4m</u> 80°			LOGGED BY	(: <u>S.Bis</u>	hop			
	<u>182.6m</u> <u>-76°</u>								
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Ag ppm
0-9.1	CASING - NOTE: core generally has a high recovery rate								
	good, competent core, a bit blocky.	12117	14.2	16.2	2.0	27		1	.1
9.1-51	Syenite Migmatite - Magnetite Breccia								
	-mottled salmon pink and grey/green,	12118	23.5	26.5	3.0	27		10	.1
	fine to medium grained syenite, weak-moderately foliated								
	at approx. 60° TCA								
	- 5-10% magnetite, disseminated grains and,								
	predominantly, as massive veinlets -	:							
	forms a crackle breccia to intrusion breccia texture								
	(locally to 25% coarse mgt); often 50-60° TCA								
	kspar alt'n occurs as veinlets and patches or areas of								
	flooding - classic "salmon pink" coloured								
	occasional coarse biotite								
	Epidote alteration occurs along fractures and as patches;								
	Not certain of degree of chlorite alteration				•		-		
	Occasional white quartz veinlets, up to 3 cm wide,								
ę	60° TCA Rare carbonate alteration								
	NO VISIBLE SULPHIDES (NVS)		-						
19.6-21	RUBBLY CORE								

,

				HOLE: L93	1-1				
				PAGE: 2 c	of 10				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu %	Au ppb	Ag ppm
23.8- 24.2	kspar pegmatite veinlet 50~60° TCA								
	pink and grey coarse grained kspar						-		
33-33.2	RUBBLY CORE (possible fault)								
36.1- 37.8	kspar pegmatite vein (1.7m wide) 25-30° TCA								
	coarse grey kspar with 1-2% coarse mgt and biotite,								
	minor mottled pink ksp	12119	41.4	44.4	3.0	597		25	.1
		12120	44.4	47.4	3.0	155		42	.1
42.1-51	trace to 1% fine to m.g. pyrite disseminated in mgt	12121	47.4	51.0	2.6	57		91	.1
	breccia matrix; possibly trace cpy								
51.0- 52.5	BIOTITE PYROXENITE	12122	51.0	52.5	1.5	13		21	.1
	dark green, fine-med grained, highly altered pyroxenite								
	altered to biotite as coarse crystals in a fine grained								
	chloritic (?) - magnetite matrix - intensely magnetic;								
	minor patchy kspar								
	minor epidote NO VISIBLE SULPHIDES								
	FW angle TCA = 40°								
52.5- 53.8	LATE SYENITE DYKE								

			-	HOLE: L	93-1				
				PAGE: 3	of 10				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Ag ppm
	massive, salmon pink coloured, m-c. grained syenite.	12123	53.3	56	2.2	1101		36	1.0
	<2% mafics, biotite (+/- magnetite) disseminated, N.V.S.								
	FW angle TCA = 50°								
53.8- 56.0	MONZOSYENITE (Mesocratic)								
	mottled grey pink, f-m grained (monzo?) syenite; weakly								
	foliated in places 30° TCA ~ looks murky, altered								
	possibly albitized?? or silicified??; weakly magnetic								
	late pick kspar along some fractures								
	5-10% f.g diss PYRITE								
	GRADATIONAL CONTACT INTO								
56.0- 61.5	SYENITE TO PEGMATITE	12124	56.0	58.0	2.0	122		20	1.1
	browny pink, mod-strongly foliated 50° TCA								
	very hardeither silicified or albitized								
	minor buff-white albite (?) veinlets @ 20°-30° TCA;								
<u>\</u>	w magnetite; this foliation possibly represents a shear								
	zoneslickensides in places @ 10° TCA								
	remnant megacrysts (ksp, bi) wispy along foliation, trace								
	diss pyrite								
	HW contact sheared strongly foliated 25° TCA								

				HOLE: L9	3-1				
				PAGE: 4	of 10				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu %	Au ppb	Ag ppm
61.5- 71.3	BIOTITE CHLORITE PYROXENITE	12125	66.8	69.8	3.0	10		7	.1
	dark green-fine grained, alt'd pyroxenite								
	remnant biotite megacrysts in v.f.g.								
	chlorite/magnetite <u>+</u> ksp matrix, imparts a 'spotty look'								
	intensely sheared + foliated H.W. contact								
	25° TCA and 4 cm hematite band @ FW 55-60° TCA								
	N.V.S.								
71.3- 92.6	MELANOCRATIC SYENITE								
	mottled, foliated, grey-pink syenite								
	m.g. (recrystallized) patchy salmon pink kspar;								
	m-i diss mgt; epidote along fract's, foliation 60-75° TCA								
	trace diss cpy								
71.3- 72.3	lm width at contact is distinctly "oikocrystic" with	12126	71.3	72.3	1.0	87		7	. 1
	pink kspar phenocrysts in fg mafic matrix - intensely	12127	72.3	74.3	2.0	222		13	.1
	foliated 60° TCA also minor 1 cm wide calcite veinlets	12128	74.3	76.3	2.0	380		86	.1
	with open space textures 30° TCA	12129	76.3	78.8	2.5	981		38	. 4
	· · · · · · · · · · · · · · · · · · ·	12130	78.8	81.3	2.5	365		23	.1
83.5- 84.5	fracture (fault) with calcite crystals	12131	81.3	83.8	2.5	466		17	.1
	and epidote 5° TCA								

•

				HOLE: L93	-1				
				PAGE: 5 c	of 10				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu %	Au ppb	Ag ppm
84.9- 88.1	rubbly broken, core	12132	83.8	86.3	2.5	608		59	. 1
	Moderate Fault Zone	12133	86.3	88.7	2.4	1179		11	. 1
88.1- 92.6	m-intensely magnetic syenite - with massive magnetite	12134	87.9	91.1	1.2	118		3	. 1
	veinleting between 90.1-90.6 m								
92.6- 124.3	MESOCRATIC MONZOSYENITE								
	pinky-grey coloured, plag + kspar + mafic intrusive								
	med grained, weak to moderately foliated in places								
	45-60° TCA								
· ·	m-i kspar alteration - along fractures and as patches	12135	103	105.5	2.5	343		11	
	m-i chlorite alteration of mafics								
	m-i magnetite throuhout section								
,	only trace of sulphides (pyrite) observed								
	occasional hematitic slickenside surfaces								
118.5- 121.6	35° TCA and from 118.5-121.6								
	i fractured core, rubbly, hematitic coatings,								
	some with slickensides								
	FAULT ZONE								

				HOLE: L93	8-1	······································			
				PAGE: 6 d	of 10				
Interval (m)	Description	Sample No.	From	То	Width' (m)	Cu ppm	Cu %	Au ppb	Ag ppm
124.3- 127.7	PEGMATITE								
	Grey and pink, coarse grained pegmatite, minor coarse								
	biotite, N.V.S. HW and FW contacts 25-30° TCA							1	
127.7- 134.1	BIOTITE PYROXENITE								
	dark green, fine grained, chloritic matrix with m grained								
-	angular biotite and magnetite								
	w. pervasive carbonate alteration, minor hairline								
	carbonate, qtz veinlets								
134.1- 134.3	HYBRID CONTACT	12136	133.2	135.2	2.0	340	28		.1
		12137	135.2	137.3	2.1	252	26		.1
134.3- 139.5	MELANOCRATIC SYENITE ('PORPHYRY')								
	grey-green fine grained matrix with 10% pink/grey								
	orthoclase phenocrysts,								
	angular up to 1 cm x 0.5 cm in size								
		L							

1

ł

: ,

•

				HOLE: L93	-1			·	
				PAGE: 7 c	of 10				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu %	Au ppb	Ag ppm
	in places it looks like the biotite pyroxenite described								
	above, but with kspar phenocrysts i.e. lots of								
	chloritic (f.g. matrix) and m.g. biotite;								
	also v. strongly magnetic. and a w. pervasive carbonate								
	alteration								
_									
136- 136.8	patchy ksp PEGMATITE 0° TCA	12138	137.3	139.3	2.0	3464		82	2.3
@ 137.3	this unit grades into a strongly foliated 45-60° TCA								
	grey f.g. version, mottled with pink ksp fracture								
	envelopes, highly magnetic, also w. pervasive carbonate								
	and \leq 0.5% f.g. diss. cpy; tr py								
139.3- 142.1	FAULT ZONE	12139	139.3	142.1	2.8	1233		27	.1
	? Volcanic Xenolith?? Alt'd SYENITE?								
	dark green - black, fine grained, chloritic,								
	non magnetic, foliated, hematitic fractures,								
	v. weak carbonate alteration.		*						
	a small (30 cm) interval with ksp phenocrysts								
	5% fg diss py								
				•					

		<u></u>		HOLE: L93	-1				
				PAGE: 8 c	of 10				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Ag ppm
142.1- 153	MONZONITE - MONZOSYENITE	12267	142.1	144.1	2.0	193		4	. 3
· · · ·	grey & brick red. m-grained monzosyenite	12268	144.1	146.1	2.0	160		2	.1
	m kspar alteration as patches and along veinlets, 5-10%								
	diss mgt, 1-2% patchy epidote. v. w. to no foliation								
	minor (<1 %) f g diss cpy +/- py								
147.6- 147.8	PEG- Veinlet 20° TCA	12269	146.1	148.1	2.0	337		17	.1
		12270	148.1	149.7	1.6	301		13	.1
149.7- 150.7	PEGMATITE VEINLET (DYKE)	12271	149.7	150.7	1.0	1348		15	1.9
	pinky brown (brick red) m foliated 50° TCA	12272	150.7	153.0	2.3	296		11	.1
	HW, FW contacts @ 20-30° TCA								
	<1% blotchy cpy								
	minor coarse magnetite								
153- 155.5	MELANOCRATIC SYENITE	12273	153.0	155.5	2.5	187		6	.1
	v. dark grey; pink f-g syenite								
	w. magnetic, minor calcite chlorite alt'd mafics								
	and kspar; tr cpy throughout								

				HOLE: L93	-1				
				PAGE: 9 c	of 10				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu %	Au ppb	Ag ppm
155.5- 167.7	MONZONITE - MONZOSYENITE	12274	155.5	158.0	2.5	239		7	.1
	m. grained monzosyenite, grey and pink - patchy and	12275	158.0	160.5	2.5	111		6	. 1
	veinlet controlled kspar	12276	160.5	162.5	2.0	331		3	.1
	intensely magnetic; weak patchy epidote	12277	162.5	165.0	2.5	168		4	.1
	weak pervasive carbonate ?possibly albitized?	12278	165.0	167.5	2.5	162		1	.1
	trace fg diss cpy throughout								
	158.8-159.2 Shear Zone 30° TCA								
	160.5-161.1 Shear Zone, QTZ carbonate veinlet 20-30° TCA								
167.7- 170.7	HYBRID CONTACT ZONE	12279	167.5	169.6	2.1	1199		13	.1
	f.g. dark grey/black and pink mottled,	12280	169.6	172.2	2.6	426		55	.1
	looks like altered or sheared syentie to pegmatite								
	trace cpy.								
170.7- 173.2	QTZ/(KSP) VEIN, Crackle breccia								
	light grey/white mottled, qtz								
	trace cpy, py								
173.2- 182.6	MONZONITE/MONZOSYENITE								
	grey/pink, fine to med grained mottled massive								
	monzosyenite patchy + veinlet pink kspar alteration								
	monzosyenite patchy + veiniet pink kspar alteration			l				l	

				HOLE: L9	3-1				
				PAGE: 10	of 10				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Aq qq
	patchy epidote alteration								
	minor clacite along fractures								
	coarse biotite along fractures, and in patches								
	moderately magnetic								
	NO VISIBLE SULPHIDES								
	182.6m EOH		-						
· · · · · · · · · · · · · · · · · · ·									
									Γ
	· · · · · · · · · · · · · · · · · · ·								
							·		

;

. ! †

•

Hole Number		August 3	1993	DRODERTY	. LOPPAT	NF - 1100	EP ZONE		
HOIE NUMBER	: DATE STARTED:	August 5,	1995	PROPERTY	LORRAI	NE - UPP	ER ZONE		
Location:	<u>19800N</u> DIP: <u>-77°</u> DATE COMPLETED:	August 8,	1993	HOLE NO.	: <u>L93-2</u>				
	<u>20500E</u> DEPTH <u>275.8 m</u>			PAGE :	<u>1 of 1</u>	2	·		
TESTS: DEP	THO m AZIMUTH: _025° DIP:77°			DATE:	August	4, 1993			
	<u>127.7 m</u> 80°			LOGGED B	4: <u>S.Bis</u>	hop			
	<u>237.4 m</u> 79°								1
	<u>275.8 m</u> <u>-78°</u>	r			·		r	r	
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu %	Au ppb	Ag ppm
0 - 3	CASING	12281	3.0	5.5	2.5	4222	.426	209	1.1
		12282	5.5	8.0	2.5	6090	.689	315	3.8
3 - 255	(MONZO) SYENITE	12283	8.0	10.5	2.5	1450		57	.1
		12284	10.5	13.0	2.5	2732	.285	82	. 8
	Pink grey, mottled, fine to medium grained syenite	12285	13.0	15.5	2.5	2491	.243	96	. 5
	(migmatite?) - possibly monzonitic	12286	15.5	18.0	2.5	1133	.128	39	.3
		12287	18.0	20.5	2.5	722		48	. 4
	intense potassic alteration - brick/salmon red/pink	12288	20.5	23.0	2.5	1555		121	.5
	patchy kspar and numerous kspar veinlets, also biotite	12289	23.0	25.5	2.5	953		40	. 2
	(fine to med grained); m-i biotite to chlorite alteration								
	variable magnetite, w to intense in places								
	w - m patchy epidote alteration								
	no distinct foliation								
			1						
	trace visible fine grained chalcopyrite and pyrite								
	malachite staining on fracture surfaces.								
	17.9 - 18.3 kspar pegmatite vein 25° TCA								

				HOLE: I	.93-2				
				PAGE: 2	of 12				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Ag ppm
25.5 - 35.0	KSPAR PEGMATITE BRECCIA/DYKE	12290	25.5	28.0	2.5	94		46	. 2
	Pink and grey coarse grained Kspar pegmatite dyke -								
	variably mottled to phenocrysts with a trachytic texture.								
	kspar crysts up to 5 cm x 0.5 cm								
	occasional coarse magnetite clots & sericitized xenoliths								
	No VISIBLE SULPHIDES								
	therefore only one sample collected								
	(post mineral unit)								
	HW 60° FW 70° TCA								
35.0 - 40.9	MONZONITE								
				L					
	grey, pink, fine to medium grained monzonite with patchy	12291	35.0	38.0	3.0	1199		91	.1
·	pink potassic alteration	12292	38.0	40.9	2.9	1491		110	.5
	possibly weak - sericite alteration								
	m - i diss magnetite, moderate chlorite - epidote								
	alteration of mafics								

•

				HOLE: I	·93-2				
				PAGE: 3	of 12				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu %	Au ppb	Ag ppm
	also mgt to hematite								
	variable sulphides: from tr - 1% cpy in places								
	(38.3 - 39.3 rubbly core - FLT?)			· ·					
40.9 - 44.8	KSPAR PEGMATITE DYKE								
	grey - white coarse grained kspar (trachytic) albite								
	pegmatite; albite primary or secondary ??								
	HW and FW 10-20° TCA								
44.8 - 52.5	MONZONITE	12293	44.8	46.4	1.6	1220		23	.7
<u> </u>	As from 35.0 - 40.9 above.	12294	46.4	48.0	1.6	1568		44	.2
		12295	48.9	50.4	1.5	1110		15	.7
	48 - 48.9 Pegmatite dyke 40° TCA HW, FW	12296	50.9	52.5	1.6	900		14	.4
	50.4 - 50.9 Pegmatite dyke HW 50° TCA, FW 20° TCA								
······································		_		<u> </u>					[
52.5 - 58.0	KSPAR PEGMATITE DYKE								
	HW 40° FW 25° TCA								[
<u></u>	· · · · · · · · · · · · · · · · · · ·			 					
				+	<u>+</u>			<u> </u>	<u> </u>

	<u></u>			HOLE: L93	3-2				
				PAGE: 4 c	of 12				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Ag ppm
58.0 - 102	MONZONITE - MONZOSYENITE	12297	58.0	60.5	2.5	2137	. 230	59	1.6
	-very continuous, homogenous section	12298	60.5	63.0	2.5	4585	.504	202	3.5
	grey, pink, mottled monzonite - monzosyenite	12299	63.0	65.5	2.5	6847	.729	283	4.6
	m - i potassic alteration as patchy and veinlet pink	12300	65.5	68.0	2.5	5753	.623	198	4.5
	kspar - and biotite throughout; m - i mgt, w ep, m chl?	12301	68.0	70.5	2.5	2013	.231	52	0.8
	w foliation 50 - 60° TCA	12302	70.5	73.0	2.5	3961	. 429	105	3.1
	Ksp fract's and veinlets @ 25° TCA	12303	73.0	75.5	2.5	5818	.631	199	4.7
	·	12304	75.5	78.0	2.5	1620		49	1.5
	malachite on fracture surfaces, + 1% cpy, py								
	64 - 64.6 milky grey-white QV 30 cm wide with trace,								
	coarse cpy blebs; vein 30° TCA								
	66.8 - 68 RUBBLY FRACT'D CORE - FAULT ZONE	12305	78.0	80.5	2.5	3853	.567	243	3.8
		12306	80.5	83.0	2.5	3528	.581	286	4.8
	- 1% Malachite specks throughout, < 1% fvg cpy, PY	12307	83.0	85.5	2.5	1135		53	1.2
		12308	85.5	88.0	2.5	1398		64	1.9
	69.1 - 20 cm grey white qtz ksp? veinlets	12309	88	90.5	2.5	1125		61	2.2
	25° TCA, trace py	12310	90.5	93.0	2.5	1644		66	2.3
		12311	93	95.5	2.5	1035		38	1.8
	74.3 - mottled 30 cm vein 70° TCA	12312	95.5	98.0	2.5	1791		61	2.4
	qtz? Ksp	12313	98.0	100.5	2.5	575		25	1.5
		12314	100.5	102.0	1.5	1429		94	1.4
	76.1 - pegmatite veinlet 30 cm wide 20° TCA	12315	102	104	2.0	225		20	1.6

				HOLE: L	93-2				
				PAGE: 5	of 12				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Ag ppm
	80.2 - 81 1-2% malachite in fracture surfaces								
	GRADATIONAL INTO								
	84 - weaker potassic (pink kspar, biotite) alteration								
102 - 104	LATE SYENITE DYKE ALASKITE	12316	104	106.5	2.5	3986	. 512	231	4.7
	pink -brick reddy pink, mg to coarse grained in places	12317	106.5	109.0	2.5	1594		99	2.7
	syenite - monzosyenite dyke	12318	109.0	111.5	2.5	3833	.659	223	4.3
	primarily composed of feldspars - minor mafics -	12319	111.5	114.0	2.5	2890	. 431	134	2.8
	non-magnetic	12320	114.0	116.5	2.5	2189	. 385	59	2.7
	HW 60° FW 30° TCA	12321	116.5	119.0	2.5	>10000	2.090	241	12.8
		12322	119.0	121.5	2.5	3136	. 428	105	3.6
104 - 124	MONZONITE - MONZOSYENITE	12323	121.5	124	2.5	1776		63	1.3
	as from 58 - 102 m,								
	104-106 1-2% malachite along fractures and as species								
	trace - <1% cpy throughout section								
124 - 130.6	LATE SYENITE - ALASKITE DYKE								
	buff pink f - mg aplitic in places only trace cpy on								
	occasional fractures near HW & FW contacts								
	HW 30°, FW 55° TCA								
		·							
								<u> </u>	

				HOLE: L9	3-2	<u> </u>			
				PAGE: 6	of 12				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Ag ppm
130.6 - 134	MONZONITE - mesocratic - leucocratic	12324	130.6	133.1	2.5	468		51	.7
	buff, pinky grey m - c grained monzonite, especially	12325	133.1	135.6	2.5	861		73	. 8
	buff coloured from 131 - 134 possibly albitized?	12326	135.6	138.1	2.5	2141	. 272	283	2.9
	patchy pink ksp alteration	12327	138.1	140.6	2.5	1905	. 258	80	1.7
	5-10% diss mgt	12328	140.6	143.1	2.5	2333	.301	159	1.8
	clots of mafics (biotite, amph) with i chlorite	12329	143.1	145.6	2.5	6417	. 707	271	4.0
	alteration	12330	145.6	148.1	2.5	1792	. 208	90	. 2
	trace py > cpy	12331	148.1	150.6	2.5	1598		64	.1
		12332	150.6	153.1	2.5	1023		77	. 2
134 - 135.9	MONZOSYENITE - melanocratic	12333	153.1	155.6	2.5	1522		60	. 4
	similar to above but grey pink mottled colour; higher	12334	155.6	158.1	2.5	706		24	. 4
	mafic content, m-i chlorite alteration, patchy and	12335	158.1	160.6	2.5	1747		113	1.0
	veinlet pink kspar	12336	160.6	163.1	2.5	2247	. 243	62	. 5
	m-coarse grained, weak foliation 50° TCA	12337	163.1	165.6	2.5	3995	. 429	74	1.2
	N.V.S.	12338	165.6	168.1	2.5	3643	. 397	89	1.2
	GRADATIONAL INTO	12339	168.1	170.6	2.5	2678	.281	58	1.3
		12340	170.6	173.1	2.5	2775	. 291	83	.1
135.9 - 174.4	MONZOSYENITE - melanocratic	12341	173.1	175.6	2.5	4885	. 542	141	2.8
	fine to medium grained and strongly foliated (otherwise								
	similar to above unit)								
	50 - 60° TCA to 70° TCA								

				HOLE: L9	3-2				
				PAGE: 7	of 12				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Ag ppm
	<1% malachite flecks throughout, even on split surfaces;								
	trace cpy; py								
	136.4 - 136.55 grey qtz vein with 15% m-c. grained								
	pyrite, < 1% cpy 50° TCA								
•	@ 142.5m, grades into pink-grey m grained with i potassic								
	alteration pervasive ksp.								
	about 145.3m 1% cpy fg.								
(150.6 - 152.4)	VERY RUBBLY, BROKEN UP CORE FAULT ZONE								
	158.8 - 159.2 silicified, grey qtz veinlets in	•							
	monzosyenite 80° TCA with 1-3% coarse pyrite blebs								
	still traces of cpy throughout, m - i brick red-pink								
	potassic alteration								
174.4 - 186.1	DIORITE	12342	175.6	178.1	2.5	1648		39	1.2
	grey, m - c grey mottled diorite	12343	178.1	180.6	2.5	2306	. 254	80	. 6
	w to, in places, m diss mgt, w-m chlorite w kspar patches	12344	180.6	183.1	2.5	1881		93	. 6
	or xstals (1°?); minor chlorite veinlets < 2 cm wide	12345	183.1	185.6	2.5	1304		46	. 1
	in places quite hard and murky looking - possibly								
	silicified? or albitized?								

				HOLE: L93	-2				
				PAGE: 8 c	of 12				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Ag ppm
	w - m foliation in places 50° TCA								
	approx. 1% fg cpy mostly along fract's & with mafics								
	HW contact unclear, FW sharp 45° TCA								
186.1 - 190.7	MONZOSYENITE - MESOCRATIC	12346	185.6	188.1	2.5	3830	.410	162	.7
	pink-green-grey, f - m - grained moderately foliated	12347	188.1	190.7	2.6	3517	.368	66	.9
	60° TCA								
	m-i chl/epidote alteration of mafics along foliation								
	m - i pink kspar								
	i mgt - diss, as foliations and veinlets up to 1 cm wide								
	50° TCA								
	trace cpy, mal. along fractures								
190.7 - 199.4	BIOTITE PYROXENITE	12348	190.7	193.7	3.0	34		5	.1
	green, highly chloritized spotted biotite pyroxenite:	12349	193.7	194.8	1.1	1292		40	.1
	w-m magnetic	12350	194.8	195.9	1.1	3903	.406	159	2.1
	top portion of unit is moderately foliated 55° TCA	12351	195.9	199.4	3.5	246		7	.1
	No visible sulphides								
	HW 60° TCA, FW broken contact looks about 35° TCA??								
	191.8 - 193.7 3-4 pegmatite veinlets up to 25 cm wide,								
	30 and 50° TCA								

. . .

ł

				HOLE: LS	3-2				
				PAGE: 9	of 12				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Ag ppm
	numerous fract. surfaces with blue amphibole like mineral								
	coatings								
	194.8-195.85 ? xenolith? / dyke? / inclusion of								
	monzosyenite unit (as from 186.1 - 190.7)							-	
199.4 - 210.4	(MONZO) SYENITE (MESOCRATIC)	12352	199.4	202	2.6	510		21	.2
	pink grey mottled fine to medium grained, variable	12353	202	204.5	2.5	1159		68	. 6
	texture, monzosyenite	12354	204.5	207	2.5	601		43	. 5
	-occasional ksp megacryst (phenocryst) lath 2 cm x 0.5 cm	12355	207	209.5	2.5	510		17	. 9
	i pink kspar alteration or flooding, patches and veinlets	12356	209.5	212	2.5	32		47	. 8
	w diss mgt, with clots of msv mgt	12357	212	214.5	2.5	14		51	. 8
	patchy chlorite alteration of mafics, weak epidote along	12358	214.5	217	2.5	47		63	. 3
	some fractures	12359	217	219.5	2.5	6		10	.1
	variably foliated 50-60° TCA								
	only trace cpy, py observed								
	except at 209.4 3 cm white qtz vein. with coarse cpy;								
	50° TCA and galena								
210.4 - 211.1	BIOTITE PYROXENITE XENOLITH								
211.1- 220	MELANOCRATIC MONZOSYENITE								

				HOLE: L9	3-2			· · · · · · · · · · · · · · · · · · ·	
				PAGE: 10	of 12				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Ag ppm
	Very dark grey, very mottled, porphyritic monzosyenite -								
	relict kspar (alt'd)? and plag phenocrysts in fg dark								
	matrix								
	-looks murky, alt'd								
	only weakly magnetic		-						
	m-i potassic kspar alt'n 1° as fracture coatings,								
	20-70° TCA and patches								
	rare SX along fracture (PY +/- cpy)								
220 - 225.6	MESOCRATIC MONZOSYENITE	12360	219.5	222	2.5	1978		81	1.5
	as from 199.4 - 210.4m rare cpy, py	12361	222	224.5	2.5	951		57	.9
		12362	224.5	227.3	2.8	776		71	1.6
225.6 - 226.2	PEGMATITE DYKELET								
	pinky red, c.g. kspar pegmatite vein 70° TCA								
226.2 - 227.3	BIOTITE PYROXONITE	12363	227.3	229.6	2.5	2542	. 278	276	1.6
	green, chlorite rich, with coarse biotite	12364	229.6	232.1	2.5	3315	.367	424	2.0
		12365	232.1	234.2	2.1	2237	.242	269	1.6
227.3 - 248.7	MONZONITE ?	12366	234.1	237	2.9	1081		85	. 8
	grey - pink grey - murky looking, mottled	12367	237	239.5	2.5	1400		100	1.5

Í.

-

				HOLE: L93	1-2				
<u></u>				PAGE: 11	of 12	r		r	—
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu %	Au ppb	1
	v.f.g. light grey matrix with mm sized mafic phenocryst	12368	239.5	242	2.5	1477		202	
	(pxy > amph?, biot to chlorite	12369	242	244.5	2.5	2192	.247	305	
	- portions with 0.5 cm plag lath phenocrysts - generally	12370	244.5	247	2.5	2244	.243	156	
	non magnetic, occasional clots of magnetite	12371	247	249.5	2.5	1524		73	
	+ 1% fg cpy throughout								
	234.2-236.6 MESOCRATIC MONZOSYENITE interval								
	pink/grey f-mg. foliated approx. 50° TCA								
	NVS								
, 	241-241.7 - mesocratic monzosyenite interval								
	after 237.4 m - less % cpy → only trace								
	and unit is moderately foliated 50° TCA								
	· · · · · · · · · · · · · · · · · · ·								
	LOOKS LIKE SYENITE MIGMATITE								
248.7 - 256.1	INTERLAYERED MESOCRATIC MONZOSYENITE AND BIOTITE PYROXENITE								
									L
	intervals of each unit 0.5 - 1.0 m in width	12372	249.5	252	2.5	1315		103	
	contacts at 50 - 60° TCA,	12373	252	254.5	2.5	271	 	34	
	moderately foliated 50 - 60° TCA	12374	254.5	257	2.5	922		61	-
	pink kspar alt'd (pervasive) monzosyenite and chloritized							}	┞
	bi pxy.								T
		1	<u> </u>	t	1		 	t	t-

			<u></u>	HOLE: L93	1-2		·	<u></u>	
				PAGE: 12	of 12				
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Ag ppm
256.1 - 267.3	MESOCRATIC (MONZO) SYENITE								
		12375	263	265.5	2.5	493		50	1.5
	pink grey, m grained, m - i potassic alt'n	12376	267.3	269.9	2.6	121		18	
	pervasive, and veinlet ksp.	12377	273.7	275.8	2.1	461		291	2.4
	NVS								
	258.2 - 259.8 - DIORITIC INTERVAL								
267.3 - 272	(MONZO) SYENITE								
	dark green, pink intense chlorite alteration of mafics								
	- N.V.S.								
272 - 275.8	(MONZO) SYENITE								
	grey, pink, mottled monzosyenite			ĺ					
	i potassic alt'n ; pink kspar along veinlets and patchy								
	N.V.S.								
	· · · · · · · · · · · · · · · · · · ·								
	275.8 m EOH								
		l		·					
									

Hole Number Location: TESTS: DEN	Number: L93-3 AZIMUTH: 320° DATE STARTED: Aug 9/93 ion: 20150N DIP: -80° DATE COMPLETED: Aug 10/93 L19500E DEPTH 13.5 m DIP: :: DEPTH AZIMUTH: DIP:				LORR L93- <u>1 of</u> Augu S. B	AINE 3 1 st 9/93 ishop			
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu १	Au ppb	Ag ppm
0 - 13.5	OVERBURDEN								
	HOLE LOST IN OVERBURDEN								

~

-

Hole Number: L93-3 AZIMUTH: 320° DATE STARTED: Aug 9/93 Location: 20150N DIP: -80° DATE COMPLETED: Aug 10/93 L19500E DEPTH 13.5 m DIP:				PROPERTY : HOLE NO. : PAGE : DATE : LOGGED BY	LORR L93 - <u>l of</u> Augu S. B	AINE 3 1 st 9/93 Sishop			
Interval (m)	Description	Sample No.	From	То	Width (m)	Cu ppm	Cu ¥	Au ppb	Ag ppm
0 - 13.5	OVERBURDEN								
	HOLE LOST IN OVERBURDEN								
				<u> </u>			 	ļ	
	· · · · · · · · · · · · · · · · · · ·								