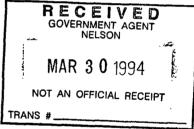
FILMED

LOG NO: APR 1 3 1994	RD.
ACTION.	
FILE NO:	

1993 Summary Report

on the


ADMIRAL DEWEY and MYRTLE Claims

Greenwood Mining Division British Columbia

North Latitude 49°05' West Longitude 119°09'

NTS 82E/3

KAM 93-0400767-2294

Prepared for

W. HALLAUER Route 1, Box 35, Dairy Point Oroville, WA 98844

> WINSLOW GOLD CORP. Suite 1290 112-4th Avenue EOLOGICAL BRANCH Calgary, AlbertaSESSMENT REPORT T2P 0H3ASSESSMENT REPORT

diese la henrich Prepared b R.E. Miller Parces.

P.O. Box 2941 Grand Forks, British Columbia VOH 1HO

December 1993

TABLE OF CONTENTS

SUMMARY

- 1.0 INTRODUCTION
 - 1.1 Location and Access
 - 1.2 Topography and Climate
 - 1.3 Property and Claim Status
 - 1.4 History and Previous Work
 - 1.5 Work in 1993

2.0 GEOLOGY and MINERALIZATION

- 2.1 General Regional Geology
- 2.2 Local Geology
- 2.3 1993 Rotary Percussion Drill Program

3.0 DISCUSSION OF RESULTS

4.0 CONCLUSION AND RECOMMENDATIONS

- 4.1 Conclusion
- 4.2 Recommendations

APPENDICES

Appendix	A	Statement of Qualifications
Appendix	B .	Statement of Expenditures
Appendix	С	References
Appendix	D	Certificate of Analysis & Analytical Procedures
Appendix	Ε	Field Drill Logs

LIST OF ILLUSTRATIONS

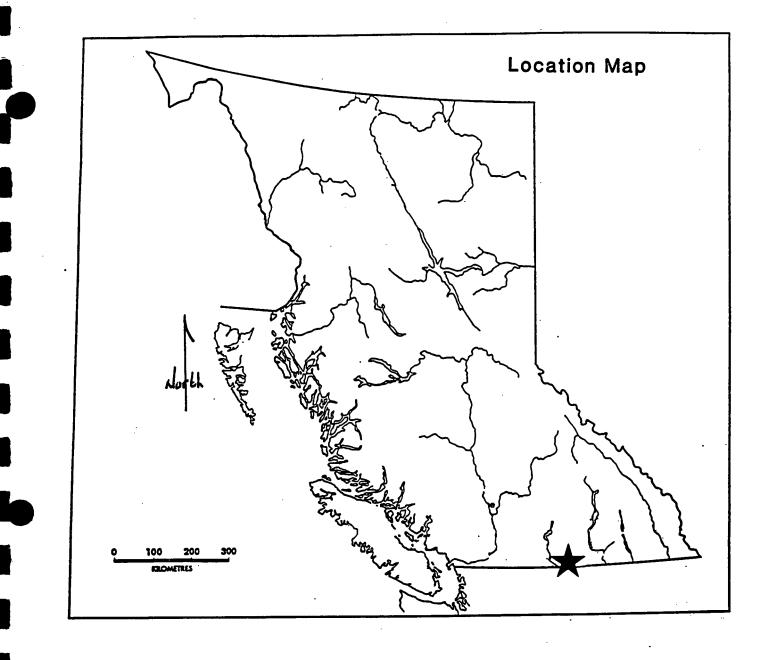
Figure	1	Property Location Map
Figure	2	Claim Map
Figure	3	Historical Map
Figure	4	Work in 1993
Figure	5	Regional Geology Map
Figure	6	Geophysical Airborne Survey Outline
Figure	7	Drill Hole Location Map

ADMIRAL DEWEY & MYRTLE CLAIMS DAYTON CAMP AREA ROCK CREEK, B.C. GREENWOOD MINING DIVISION NTS. 82E/3

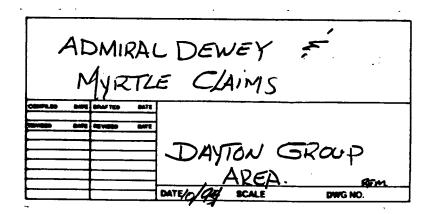
SUMMARY

The Admiral Dewey and Myrtle claims cover copper gold prospects on the west side of Rock Creek some 4.5 kilometers north of Highway 3 at the Mount Baldy turn-off which leaves the highway at the west end of the Rock Creek Canyon Bridge.

Mineralization: in quartz veins, along shear zones, in skarnification and as disseminations within intrusive bodies appears to be spacially related to Dioritic intrusions into Anarchist volcanics and metasediments.


Numerous pits, trenches and shallow shafts attest to early efforts to develop economic mineral reserves.

An I.P. Geophysical program followed by drilling on the Admiral Dewey and Myrtle claims is recommended.


1.0 INTRODUCTION

1.1 LOCATION AND ACCESS

Located approximately five kilometers north of Bridesville along the Mount Baldy ski hill road, the Admiral Dewey and Myrtle claims lie at the northern end of the old Dayton Camp area. The claims are located within the Greenwood Mining Division of B.C. and the geographical coordinates for the center of the property is approximately

FIGURE 1.

 $49^{\circ}05^{\circ}$ north latitude and $119^{\circ}09^{\circ}$ west longitude. The property is located on the eastern half of the N.T.S. map sheet 82E/3. (Figure #1)

Jolly Creek - Rock Creek borders the east side of the claims with Rice Creek to the west and McKinney Creek to the south. The Camp McKinney gold district is located some six (6) kilometers to the northwest.

Perimeter access to the property is via Highway 3 to the west end of Rock Creek Canyon bridge, then north 4.5 km along the improved Mount Baldy road at which point bush roads provide internal access to the Dayton Camp area.

1.2 TOPOGRAPHY AND CLIMATE

Relief in the general area is moderate with elevations ranging from 671 meters above sea level in the Kettle River valley to 1463 meters above sea level on Anarchist Mountain. The intervening area consists of grassy, rolling highlands with local steep gradients near the numerous drainages and in particular, along Rock Creek.

Conifers and grassland pasture are found at the higher elevations with grasslands, poplars, willows, and conifers, intermixed with crop and hay lands, at lower elevations.

Within the claims proper, the terrain is gentle and fairly open.

Climate conditions can be characterized by hot, dry summers and moderate winters with little snow cover.

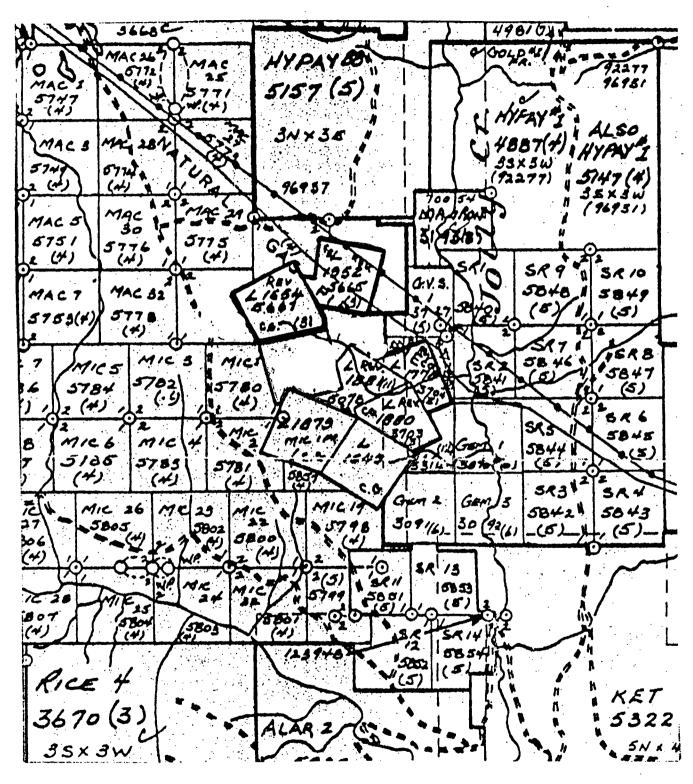
1.3 PROPERTY AND CLAIM STATUS

The Admiral Dewey and Myrtle reverted Crown granted claims are located in the Greenwood Mining Division of Southern British Columbia and are optioned from Mr. W. Hallauer by Winslow Gold Corporation. (Figure #2)

The following table summarizes pertinent data concerning the claims.

CLAIM	LOT	RECORD #	EXPIRY DATE*
Admiral Dewey	1952	5665	
Mrytle	1654	5667	

* Pending acceptance of this report

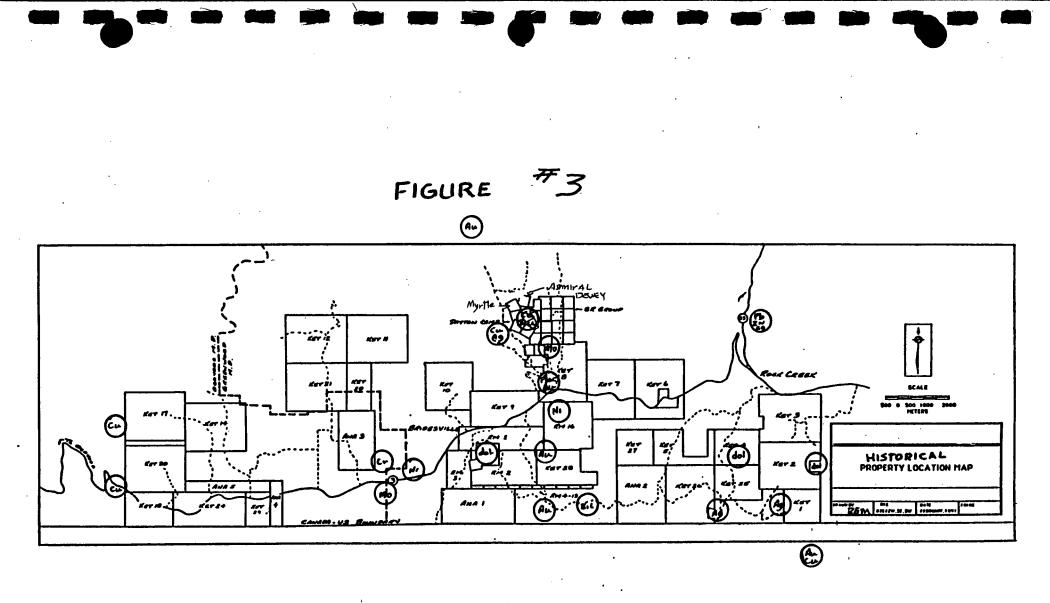

1.4 HISTORY AND PREVIOUS WORK

Mineral exploration and development, within the Dayton Camp area, commenced around the turn of the century with the discovery of the McKinney Creek - Rock Creek -Jolly Creek placer deposits and the lode mines of Camp McKinney. One of the early lode gold producing areas in British Columbia, Camp McKinney produced approximately 82,000 ounces of gold from 1894-1903 and various attempts to revive the camp have been made from 1903 until the present. Camp McKinney lode gold deposits along with the placer gold occurrences of McKinney, Rice, Jolly, and Rock Creek are located, adjacent to, along side, and within, six (6) kilometers of the Dayton Camp which includes the Admiral Dewey and Myrtle claims. (Figure #3)

ADMIRAL DEWEY - MYRTLE CLAIMS

DAYION GROUP AREA

FIGURE 2


Scale 1:25,000 1000 Meters REM /94

South of McKinney Camp minor turn of the century production of direct shipping, hand sorted ore was mined from the Dayton Fraction claim, near the south east corner of the Myrtle claim.

In 1955, Mr. Brian Fenwick-Wilson, a prospector, first staked a nickel showing, south of the Admiral Dewey and Myrtle claims, located between the Rock Creek bridge and the Rock Creek-Bridesville road, and then re-staked the ground in 1966. Since that time Newmont Mining Corp., Nickel Ridge Mines Ltd., and Utica Mines Ltd. have carried out extensive exploration programs, including drilling that has outlined a minimum of 100,000,000 tons of 0.22% nickel that appears to have sub-economic extraction recoveries of 56%.

Other small scale sporadic exploration programs, including numerous geochemical and geophysical surveys, within the area of interest, have continued through to the present time and have resulted in the development of drill targets, shafts, adits, and prospect pits for gold, chrome, molybdenum, and base metals.

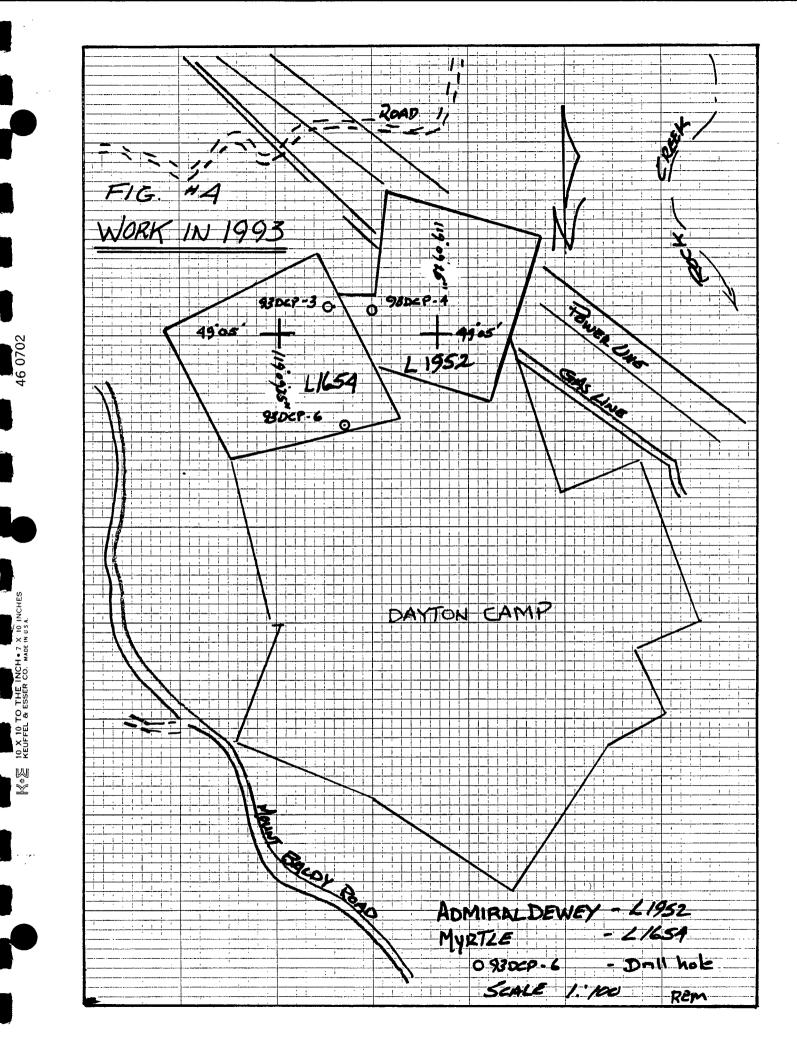
Industrial mineral exploitation is limited within the area, to the Mighty-White Dolomite pit to the east of the claims, as well various small scale gravel operations. Minor exploration and evaluation has been directed towards: the siliceous (meta-chert) outcrops along the Rock Mountain-Bridesville Road near the summit, and the sporadic outcropping of dolomite south of Rock Creek and south of

Bridesville.

Very limited recent placer activity was noted along the Rock Creek, Jolly Creek, and McKinney Creek drainages with no evidence of serious production efforts while windrowed piles of sand and gravel along the shores of the creeks attest to the intense historical placer mining effort.

1.5 WORK IN 1993

Claim boundaries were surveyed and flagged using compass and chain.


The 1990 Crownex grid and anomalous field data points related to geochemical gold values and ground magnetometry were re-established and selected areas were tested with three Rotary Percussion drill holes. (Figure #4)

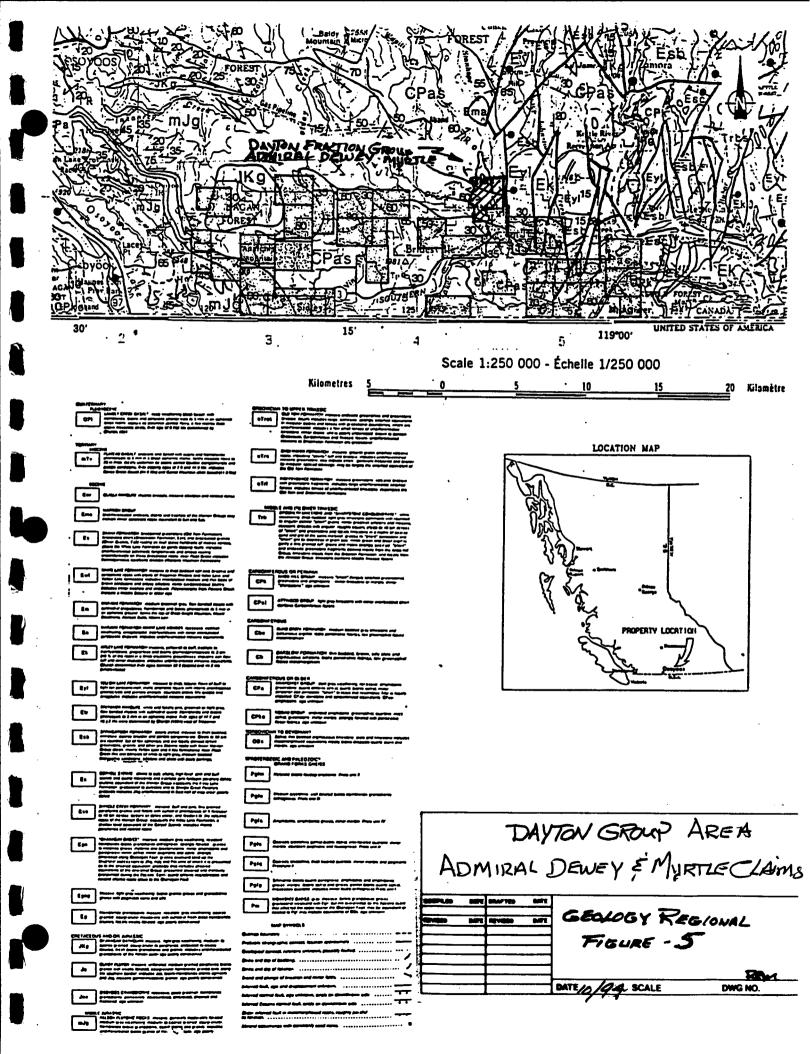
2.0 GEOLOGY AND MINERALIZATION

2.1 GENERAL GEOLOGY

Permo-triassic Anarchist Group rocks comprised of Amphibolite, greenstone, quartz-chlorite schist, quartzbiotite schist, minor serpentinite and thin bedded to massive limestones occur throughout most of the general area. Knob Hill Group rocks mainly chert, greenstone and marble, are found south of Rock Creek and north of Buckhorn Mountain in Washington state. (Figure #5)

Kobau group rocks, similar in age to the Anarchist

group, are found west and south the survey block where they are mainly comprised of amphibolite, greenschist, quartzite, chert, greenstone, and minor marble.


Nelson plutonic rocks of cretaceous Jurassic age consisting of: massive hornblende-biotite granodiorite, quartz diorite and granite, intrude the eugeosynclinal Anarchist Formation.

Smaller plugs, dikes, and sills? of biotite granodiorite, diorite and granite, of Jurassic to Cretaceous age belonging to the Okanogan batholith, are found to the south, northeast, and northwest of the Admiral Dewey and Myrtle claims.

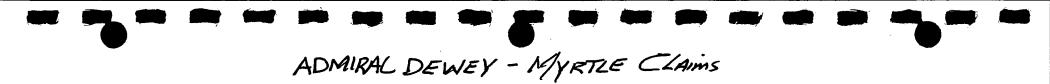
Eocene age rocks of the Yellow Lake and Kitley Lake formation are found trending north-south on the east side of Jolly Creek and can, in part, be traced to the south near the International border. These Tertiary rocks are composed of phonolite, trachyandesite, trachyte, and a sequence of cobble conglomerate and minor sands.

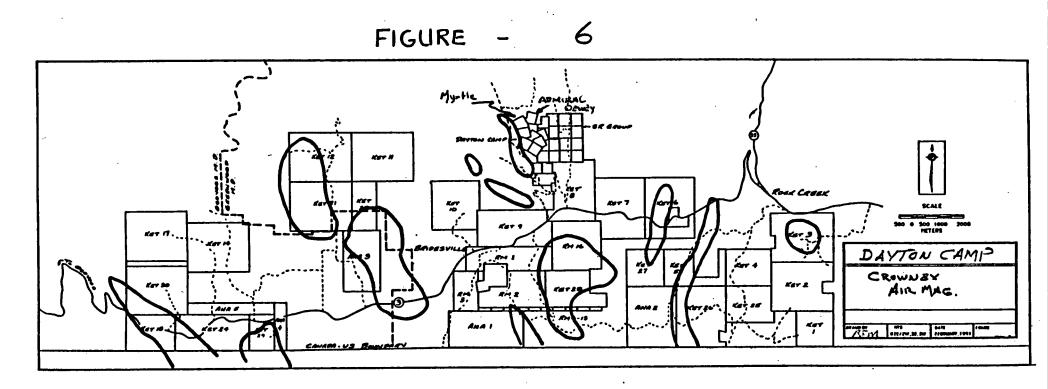
Tight folds were noted in the metasedimentarymetavolcanic sequence along with strong north-east and north trending faults. In between the northerly trending fault zones, minor east-west faulting has occurred. Phyllitic to mylonitic fabrics as well as some breccia zones were proximal to most of the predominate faulting.

Propylitic alteration is common in the greenstonediorite contact areas. Skarnification is evident at Dayton Camp near the contacts between granodiorite and lime rich

rocks specifically at the LeRoi-War Eagle workings. Massive silicification was observed south of Dayton Camp near the Old Nik prospect where sulfides occur in ⁻ metaquartzite and/or metachert and/or siliceously replaced metasedimentary beds. Extensive quartz veining and bleaching along with the introduction of magnesite was traced in a general north-south direction along the high ridge area south of Dayton Camp. Hornfelsic development occurs near granodiorite contacts with fine grained clastics? and/or greenstones at Dayton Camp. Epidote in the Osoyoos granodiorite pluton to the west is common and sanded dolomite with a strong hydrogen sulfide odor was found to outcrop in an east-west belt, south of the Dayton Camp Group near the International boundary.

Pyrite and/or base metal and/or precious metal in quartz veins, mineralized calcite veins, shear zones and breccias are common. Nickel rich pyrrhotite with pyrite and chalcopyrite and possible trace amounts of pentlandite are found with massive silicification, (replacement?), metachert, metaquartzite? outcrops in the Old Nik claim and Anarchist Summit areas. Pyrite with calcite and epidote veining along with disseminated magnetite is common in the chloritic greenstones and meta-andesites throughout the general area. Massive garnet, epidote, pyrrhotite and magnetite skarn at the Le Roi- War Eagle claim in the Dayton Camp, is associated with metasomatic contact aureoles that usually carry anomalous copper and gold


values. Magnetite is commonly disseminated in the serpentinite as is pyrite and pyrrhotite in the greenstone, neither of which appears to carry interesting gold mineralization but both of which occur locally within the general area.


2.2 LOCAL GEOLOGY

Geology of the property taken from grid line observations, consists of metavolcanic and metasedimentary rocks of the Permian Anarchist Formation and intrusive rocks of the Jurassic-Cretaceous Nelson batholith and Tertiary Coryell intrusive and Eocene coarse sediments are prominent along the eastern edge of the property.

Propylitic Greenstone hosting diorite and feldspar porphyry intrusives, calcite veins, mineralized quartz veins, zones of disseminated pyrite, and thin beds of metasediments that include chert pebble conglomerates, metaquartzite, and metasiltstones are found within the Admiral Dewey and Myrtle claim boundaries. Rocks of the metasediment package increase in abundance to the north east, strike north west, and dip to the north east.

Government airborne magnetic maps and ground magnetic readings show a northwest trending mag high along the west side of the claims.(Figure #6) Anomalous ground magnetics appear to be associated with disseminated magnetite in intrusive rocks, mainly granodiorite and diorite. Within the greenstones most of the high readings

GENERAL LOCATION OF AIRBORNE MAGNETIC ANOMALIES

Kon 1994

are related to a mix of pyrite and pyrrhotite and/or chalcopyrite with minor magnetite along shear zones and diorite-greenstone contacts.

2.3 1993 ROTARY PERCUSSION DRILL PROGRAM

Collar locations for Rotary Percussion drill holes on the Admiral Dewey and Myrtle claims are shown on Figure #7. (in pocket) Pertinent drill hole data is listed in the following table:

ADMIRAL DEWEY - MYRTLE DRILL HOLES

HOLE NUMBER	ANGLE	DEPTH FEET	*ANOMALOUS GOLD INTERCE Ftg.	PT Ft∕ppb
93DCP3	-90	150		
93DCP4	-90	200		5/160 5/190 5/280 5/280 5/140 10/190 20/168
93DCP5	-90	50	5-10 25-30 35-40	5/110 5/120 10/20 3

*ANOMALOUS GOLD INTERCEPT is defined as any gold assay greater that 99 ppb. (A)

The Rotary Percussion drill was capable of drilling vertical holes only and because of an undersized air

compressor was limited to about 200 feet of vertical capability. Both of these limitations have since been solved.

3.0 DISCUSSION OF RESULTS

Drill hole 93DCP #3 was drilled to test a soil geochem gold anomaly that was projected to occur at the contact between a propylitically altered diorite and porphyritic andesite.

Drill cuttings indicate that the geologic concept was correct but gold values were low, never reaching the arbitrary anomalous value of 100 ppb. In general alteration was not very extensive nor was there intense sulfide mineralization.

Drill hole 93DCP #4 was drilled to test a coppergold siliceous breccia in pebble conglomerate cut by a small quartz vein?. Anomalous gold values (>99ppb) are related to intrusive-metasediment contact, quartz veining, intrusive-intrusive contact and structural zones. The high value of 280 ppb occurs at the upper contact of a biotite syenite and an altered feldspar porphyry that cuts the pebble conglomerate. The second highest gold value of 275 ppb was intersected at the lower contact of the Syenite with the feldspar porphyry.

Drill hole 93DCP #6 was drilled to test a diorite body with elevated gold values on surface. The intrusive is located along the eastern edge of a projected north west mineralized trend. All but the first and last five feet

were anomalous (>99 ppb). The elevated values transects the diorite andesite contact at 50 feet.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSION

The drill program was successful in finding elevated gold values down hole which in part explains the anomalous gold from surface sampling. However, this was not successful in finding economic gold values.

4.2 RECOMMENDATIONS

Based on the general observation that strong alteration and intense sulfide mineralization have a good chance of being associated with better gold values, an Induced Polarization survey is recommended as the next step in developing drill targets.

Submitted by

R.E. Miller P. Geo.

PROVINCE. Of R. E. D. MILLER BRITISH OLUMBI

APPENDIX A

Statement of Qualifications

Î

Į

,

STATEMENT OF QUALIFICATIONS

I ROBERT E. MILLER, of Spokane, Washington U.S.A., DO HEREBY CERTIFY:

1. THAT I am a geologist with Greenwood Gold Inc. with a business address of 367 Gold Street, Greenwood, British Columbia. VOH 1J0.

- THAT I am a graduate from Brigham Young University with a Bachelor of Science degree in Geological Engineering (1969).
- 3. THAT I have practised my profession continuously since graduation.
- 4. THAT I personally conducted the 1993 exploration program discussed in this report.

Inch _day of <u></u> DATED this_ 1994.

Robert E. Miller P. Geo. Geological Engineer

OFESSIO PROVINCE 07 R. E. D. MILLER BRITISH CIENT

APPENDIX B

Į

Statement of Expenditures

ADMIRAL DEWEY - MYRTLE CLAIMS EXPENDITURES

Manpower

-

Bob Miller \$200.00 x 2	5 man days 2	\$1000.00	
Kim Anschet \$110.00 x 5	tz 5 man days 5	\$ 550.00	7
Stan Ruzic \$150.00 x 2	ka 2 man days 2	\$ 300.00	-
Derek Ruzio \$100.00 x 2	cka 2 man days 2	\$ 200.00	
Vehicle - 2 4x4 pic 5 days @ \$6	ck-ups 65.00/day x 2	\$ 650.00	

-

Drilling

ľ

Ĝ

\$15.00	per foot x 400	
Trays,	sample bags, shipping	
Assays	<i>,</i>	\$6000.00

Office

-	prepara typing		x	\$11.00	-	300.00 154.00
			-	[ot a]	\$\$	9154.00

APPENDIX C

.

References

V

. .

.

REFERENCES

Basil, Chris. 1990 Airborne Magnetic and VLF-EM Survey Report on the Ket 1-22 and Ket 24-32 Mineral Claims, Assessment Report for Crown Resources Corp..

ŀ

V

- Miller, Bob. 1990 Geologic Report on the Dayton Fraction, GVS 32, Gem 1-3, Gem Fraction, SR 1-10 and SR 11-14. Assessment for Crown Resources Corp..
- Miller, Bob and Kushner, W.R.. 1990 Summary Report on the Homestake and Daisy Fraction Claims, Assessment Report for Crown Resources Corp..
- Open File: Mineral Occurances; Penticton. West of Sixth Meridian, British Columbia. Map 2 of 6, scale 1:250,000.
- Templeman-Kluit, D.J.. (1989) Geology, Penticton, British Columbia. Geolgical Survey of Canada. Map 1736A, Scale 1:250,000.

APPENDIX D

Certificate of Analysis and Analytical Procedures

ASSAY PROCEDURES

Gold FA-AA ppb

Ì

A 10 gram sample is fused with a neutral flux inquarted with 6 mg of Au-free silver and then cupelled.

Silver beads for AA finish are digested for 1/2 hour in 0.5 ml HNO3, then 1.5 ml HCl is added and digested for 1 hour. The samples are cooled and made to a volume of 5 ml, homogenized and run on the AAS with background correction.

Detection limit: 5 ppb.

65 -	93	DCP	#3-	0	-	5
66 -	93	DCP	#3-	5	•	10
67 -	93	DCP	#3-	10	-	15
68 -	93	DCP	#3-	15	-	20
	93	DCP	#3-	20	-	25
70 -	-93	DCP	#3-	25	-	30
71 •	93	DCP	#3-	30	-	35
72 •	-93	DCP	#3-	35	•	40
73 -	-93	DCP	#3-	40	•	45
74 -	-93	DCP	#3 -	45	-	50
75 -	-93	DCP	#3-	50	-	55
76	-93	DCP	₩3 -	55	-	60
•••	-93	DCP	#3	60	-	65
78	-93	DCP	#3-	65	-	70
79	-93	DCP	#3-	70	-	75
	-93	DCP	#3-	75	-	80
81		DCP	#3-	80	-	85
82	-93	DCP	#3-	85	-	90
	-93	DCP	#3-	90	-	95
84	-93	DCP	#3-	95	-	100
	-93	DCP	#3-	10		105
86	-93	DCP	#3-	10	-	110
87	-93	DCP	#3-	11		115
88	-93	DCP	#3-	11	-	120
89	-93	DCP	•	12		125
90	-93	DCP	* #3	12	5-	130
91	-93	DCP	#3-	13	0-	135
92	-93	DCP	#3-	13	5-	140
93	-93	DCP			0-	145
94	-93	DCP	#3-	14	5-	150

T

AU(ppb)

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.SC.T. B.C. Certified Assayer

EDD. THIN LABORATORIES LTD.

SAMPLE IDENTIFICATION: 101 CORE SAMPLES RECEIVED JULY 8, 1993 PROJECT #: 41-DAYTON

	Au
et# description	(ppb)
삼소유방법및고프루프방송교공 / ⁴ 바라고 보고 / 2 파용유 호유	
1 - 93 DCP #4 0 - 5	20
2 - 93 DCP #4 5 - 10	† Ø
3 - 93 DCP #4 10 - 15	10
4 - 93 DCP #4 15 - 20	20
5 - 93 DCP #4 20 - 25	20
6 - 93 DCP #4 25 - 30	160
7 - 93 DCP #4 30 - 35	45
8 - 93 DCP #4 35 - 40	30
9 - 93 DCP #4 40 - 45	10
10 - 93 DCP #4 45 - 50	55
11 - 93 DCP #4 50 - 55	75
12 - 93 DCP #4 55 - 60	50
13 - 93 DCP #4 60 - 65	95
14 - 93 DCP #4 65 - 70	40
15 - 9 3 DCP #4 70 - 75	40
16 - 93 DCP #4 75 - 80	80
17 - 93 DCP #4 80 - 85	110
18 - 93 DCP #4 85 - 90	35
19 - 93 DCP #4 90 - 95	190
20 - 93 DCP #4 95 - 100	60
21 - 93 DCP #4 100 - 105	280
22 - 93 DCP #4 105 - 110	70
23 - 93 DCP #4 110 - 115	65
24 - 93 DCP #4 115 - 120	140
25 - 93 DCP #4 120 - 125	35
26 - 93 DCP #4 125 - 130	40
27 - 93 DCP #4 130 - 135	60
28 - 93 DCP #4 135 - 140	65
29 - 93 DCP #4 140/- 145	45
30 - 93 DCP #4 145 - 150	85
31 - 93 DCP #4 150 - 155	155
32 - 93 DCP #4 155 - 160	225
33 - 93 DCP #4 160 - 165	80
34 - 93 DCP #4 165 - 170	30
35 - 93 DCP #4 170 - 175	80
36 - 93 DCP #4 175 - 180	90
37 - 93 DCP #4 180 - 185	110
38 - 93 DCP #4 185 - 190	120
39 - 93 DCP #4 190 - 195 40 - 93 DCP #4 195 - 200	275
40 - 93 DCP #4 195 - 200	165

Ś

JULY 16, 1993

PAGE 3

S

et#	-	D	escr	IPT	ION			Au (ppb)
	-							
51		93	DCP		0	_	5	60
52	•	93	DCP	#6	5	-	10	185 -
53	-	93	DCP	#6	10	-	15	210
54	-	93	DCP	#6	15	-	20	220
55	•	93	DCP	#6	20	-	25	260
56		93	DCP	#6	25	-	30	130
57	÷	93	DCP	#6	30	-	35	125
58	-	93	DCP	#6	35	-	40	155
59	10	93	DCP	#6	40	-	45	150
60	-	93	DCP	#6	45	-	50	160
61	-	93	908	85	50	-	55	145
62	-	93	117.7	4	55	•	60	125
63	-	93	DCP	= t	60	••	65	195
64	-	93	DCP	#6	65	-	70	80

•

APPENDIX E

ß J

J

Î

Ú

ð

Field Drill Logs

																		2.50	
							-	•	• •							: المناه		poge	
							PR	OJE	ЕСТ	:	Ī)	Y	TO.	N)	· <u> </u>	DF	RILL HOLE # 13 DC	
	LOCATION Day tow Camp SUMMARY COMMENTS NAdMiral DEWEY Bearing EMyISTLE Hole Diam														5/ Cle 1 <u>+</u>				
	ELEV Logged by Date Logged																		
	Date Drilled																		
	DEP COLOR STRUC PY Bi Colo PY Di COLOR																		
·	ТН	CODE			TURE	MAG	PO	CUP	Cos	Other	Ox	Zoist	Gnt	Colc	Px- Cpx	Amph		COMMENTS	Au
	Q 5		x x X X	fror	Yén -			\angle	\square			/.					Ph.	granodorite	90
	10		X X X X					/	\bigvee					\bigvee				· • •	80
	15		XX VV					7	$\overline{7}$			7		\square				diorisi L	40
			VV	`	1			7	7					17				to er	
	20		<u>v v</u> v v					\vdash			$\left - \right $			¥-7				Pheno Audesit	50
	25		V V V V	ļ				Κ,	K,			\angle		Ľ,				· · · · · · · · · · · · · · · · · · ·	30
	30		VV					\angle				\square		V,					25
	35		✓			Tr		\bigvee	\bigvee									l	45
	40		~	,		TY		\backslash									-		60
	45		V					\square	\bigvee										35
	50		V V V V					\square		1		$\overline{/}$		\overline{V}					45
	55		V V	,				10/	1/	1		Tr/			1			why starred	15
	60			,		1		11	\mathbf{I}	1		11			1			······	20
	65		VV	, ,	1	1.0		0.5/	1/			0.5/		1	1				10
	70	. 7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	1	1.0		05/	1/	1		0:5/		1/				· · · · · · · · · · · · · · · · · · ·	35
	75				bx			1.	1/		1-	1.7		1	1			Monion Rhupleto ?	35
	80		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			11		1	1/			1.2/	1	1		1			40
	85		1 V V V			11	Tr	11/	\mathbb{Z}	1		Tr/	1	1	1			L	20
	90		v v v v	/		1r	11	17/		1	1	19	1	/				L	40
-	95	XX	×× ××			11				1			1		1			feldspor Porphyny dike.	25
	100		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Tr		\overline{V}		1		\overline{V}		\overline{V}	1			/	30

						_						•						24					
ļ					•		-	-	• •						-	+ e :	•	page <u>2</u> c	f_Z_				
i. N	PROJECT :																DRILL HOLE # 23Dep #3						
		Ν.	ION .			-	S _	UMI	MAR'	Y	CC		ENT		Total Depth Angle Bearing								
	E	LEV.											· · · · ·		·······		-	Hole Diam Logged by					
			<u></u> .													<u> </u>		Date Logged Date Drilled					
		· · · · · · · · · · · · · · · · · · ·				%	%		%	%	%	%	%		%	%							
].	DEP TH	CODE	PROTO LITH	ALT	STRUC	MAG	PO	Py CuP	Bi CoS	Other	Fe Ox	Ept Zoist	Gnt.		Px- Cpx	Amph		COLOR - COMMENTS	Au				
	105	·	VV X X			Tr						/		\square				Andesito	30				
	110		хХ					1	7			7					•	Porphyry					
	115		<u>¥ x</u> X x X x			Tr +		11/	17	⁻		Tr*/		-/	· · ·			Forphyry Dorphyry Why SIEme	40				
1			1		<u> </u>	ł	Tr	11	\mathbb{F}_{7}			Tr*/		-7				Why shake	15				
ľ	120		XX XX XX			Tr	Tr	.0/	K,			Ľ_		1				· · · · · · · · · · · · · · · · · · ·	25				
ĥ	125		V V		E	0,5	Tr		\angle			Tr/	Tr	Ľ				Shewed partines	20				
•	30		VV XX		=		Tr	1.0/	\bigvee			Tr/						Volcanic?	80				
	35		+++				Tr	11/		1				/	1		¥	Homoblande (bostita?) Symmetre	30				
	140		++				Tr	1						1	1			Syente [60				
	145		++					11/	/		╏─	/		17				l					
	150		+ + + +					11/	17	<u>}</u>	-	17		//				[25				
, i	ř-		1++			 Y		17	$\mathbb{V}_{\mathbb{V}}$	{		¥_		7			1		20				
	55		4	FO,	<i>KP.</i>			1	\mathbb{K}		-	¥-7		\vdash									
	60	•						Ł	¥-,	┨──	-	$\not\vdash$	┢	K,	┢								
	65			ļ				\downarrow	¥,		 	Ľ,	┨──	Ķ,				· · · · · · · · · · · · · · · · · · ·	<u> </u>				
Ş	70				<u> </u>		<u> </u>	\mathbb{Z}	\bigvee]		\downarrow		\square									
P	75							\bigvee	\square									· · · · · · · · · · · · · · · · · · ·	1				
	80							\bigvee	\mathbb{V}	1			1	\bigvee	1			, L <u></u> ,	1				
ļ	85							\bigvee		1		\square	1		1			. L	1				
	90		1	1	1		1	1	1/	1	1	1	1	1/	1	1			1				
♥ ▲	95	<u> </u>	1		1	1		17	17	1	1-	1/	1	1/	1		 		1				
J	00	1			1	1	†	1/	17	\uparrow	t	1/	┨╴	1/	1	1	┢						
	1	1	ł	1	1	1	1	V	ι⁄	1	1	Y	1	V	1	1	1	· · · · · · · · · · · · · · · · · · ·	L				

		Hand Lewse poge																			
							-			-											
							PR	OJE	ECT	:]	DA	YK	32				DRILL HOLE # 930-P-4				
		ΟΟΑΤ	ION	AYTO		an p	S	UMN	AAR'	Y	, CO	мм	ENT	ſS			Total Depth Angle Vertical				
		N.				•		$-\mathcal{A}$	DMU	12A		VE	u/	EY.			Angle Bearing Hole Diam. <u>A次</u>				
	F	E. IFV					_	<i>Г</i>	1yr	LTT I	-						———— Hole Diam. <u>ん~</u> Logged by				
1	_								٢4	copf	2~	·Pil	E)				Date Logged				
	·					1 %	%	%	%	%	1%	%	%	1%	%	[%]	Date Drilled				
10 	DEP TH	CODE	PROTO	ALT	STRUC			Py Bi CuPy Col		Fe		Ept		Colc	Py-		COMMENTS AU				
	0 5		0.0						7	Other			Gn1.	disser	Cpx	Ampn					
			00.					7	K-7			/. 		17			Conglomento 20				
	10		0.0					<u>/</u>	Κ-		_	<u> </u>		¥-7			10				
	15		1º00					Ľ,	Ζ,			Ľ,		Ľ,			10				
Î	20	6	1,0.	93 VN	bx				\square					\mathbb{Z}			bx. Congl 20				
	25	۵		4+3 VN				Ter									20				
	30	٥	0.6					Tr"	7			7		$\overline{/}$			1/100				
	35	0			ļ.			Tr/	7					1			45				
	40	7	:0 ?					11	7			7		17							
ļ		•	. iO.		$\left\{ \cdot \right\}$			177 Te/	7			7		17	· · ·		30				
	45	•	0		+			Tr/	4	<u> </u>	$\left - \right $	7		\mathbb{K}			10				
N.	50	4	00		<u> </u>			TT T	Ζ,			Ľ		¥-			55				
1	55	` ► •	·0 :0 0	1					Ľ,			4		K,	 		75				
	60	₹	0.	£?				F	\angle			Ľ					V 50				
	65	D 0 0	+.0+ 0+?	bri	T-			Tr/									thyself ? 95				
	70	PA	0.: 0.:					TI/	/					\bigvee			40				
	75	* // >	0	9+3 1				2 2	\square			\square			1		40				
Ċ,	80	11.	0.0				1	2.5/		1				1			80				
	85		X X		Silic			Tr M	7	1		1		1	1		hore fels				
	90		X	,				1.1	7	1		1		1	1		altered 26				
	95		×	·				0.5/	7	1		7		17	1		altered Contact 35 clifficult to prix Contact 140 Could Still be Congl. 7				
	<u> </u>		××			<u> </u>		05/	7		-			17		$\left - \right $	Pick Contact /10				
-	100		X	<u>'</u>				190	<u>/</u>			<u> </u>		V_{-}			Congl. ? 60				

, in the second						_																
			-		•		-	-	• •				-			• • :	•	poge	<u>2 of 2</u>			
							PR	OJE	ECT	:							DI	RILL HOLE #	-			
	L	Ν.					S	UMN	MAR	Y	CO	MM	ENT	S			Total Depth Angle Bearing					
		N E														—— Hole Diam						
Ĩ	E	LEV		<u> </u>	<u></u>				· · · - · - · -							·	<u> </u>	Logged by				
									····· _ ···									Date Logged Date Drilled				
		1					% %											COLOR				
	DEP TH	CODE	PROTO LITH	ALT	STRUC	MAG	PO	///		Other	Fe Ox	Zoist	Gnt.	Coic	Px- Cpx	Amph		COMMENT				
	105		++++					Tr/	∇					\square			Ь	Natic partings	280			
	110		++					11	$\overline{7}$					\square				Matic partings				
	 	1	++ ++					11	-		$\left - \right $	<u> </u>		$ \downarrow $					70			
(115	×2	++		Myla	Aue		V_{-}	\angle					\square					65			
	120	2	+ + + +		Mylo			11/	/										140			
-			++		101410			11/	17			Tr/				╏──┤		why stand	······			
Î	125		++			1.0		K_	Κ,	 		Tr/		$\langle - \rangle$					35			
	130		+++++			1.0		Tr	V					\vee					40			
	35		+++++		,			\bigvee	\bigvee			\square		\bigvee				[6			
	40		++++					∇	$\overline{/}$	1		\square		\bigvee			-		65			
	145	-	+++++					Tr*	\square			\square		∇					45			
	150		+++					Trat		1		$\overline{/}$		\overline{V}								
	55		+++					TI"	∇	1		\square		$\overline{/}$				L	155			
1	160	+	+++++					T.		1		\bigvee		\bigvee	1			. L	225			
	165		+++++					T.		1		\bigvee			1				80			
	170		+++					11/		1					1		Y	7	30			
	175		XX		1	1	-	TY	1/	1		1	1	17	1		Pl	Ladesper porphyny				
)		l			bre		Tr	51/	⊬	<u> </u>		\vdash	┨──	¥-7				Iddspor porphyry	80			
1	180	0~7 1	X X X X		myle	1.400	Tr	Ti ¹	K,		-	K		¥,				·	<u> </u>			
	185	227	λχ́χ			0.5		1.17	Ķ,		-	K,		Ķ,	_				110			
	190	b 1	ΙŶΧ					Pr /	\downarrow	_	-	\downarrow	 		_				120			
	1 95	ر م	X X X X		<u> </u>			F (/	\swarrow		<u> </u>				ļ			w/ horn fels	275			
	zoc				V	V		Tr/	\bigvee			V		V			Ŷ	horn fels	165			

ي ا		·																	20				
		Hand lorse page _1_ of 1														1							
	PROJECT : DAYTON DRILL HO																1						
	Ŀ	LOCATION DAYEN CAMP SUMMARY COMMENTS N ADMINIZIAL DEWEY E MYRTZE																					
	E	Ŀ. LEV.							[<u>ηγ</u> /4	17.E							———— Hole Diam. <u>4½"</u> ———— Logged by					
	-																	Date Logged Date Drilled					
		······		 			% % % % % % % % % RUC Py Bi Fe Ept Colc Px - RE MAG PO CuPy Cos Other Ox Zoist Gat disser Cpx Amph										·						
N	DEP TH	CODĖ			T S	TRUC	MAG	PO	CuPy	Cos	Other	Fe Ox	Zoist	Gnt.	Colc	Px- Cpx	Amph		сомм	COLOR ENTS	Au		
	. 0 5		X X X X	07			17		T.	Z			_		\square			phanen choriste	ific	L	60		
	10		XX XX						Tr/	Z			<u> </u>		\square				•	······	185		
	15		XX XX						7.3	Z			\angle		\angle					L	210		
	20		XX XX						Tr	\angle			\angle		\angle					·	220		
	25		X X X X						Ľ	\angle					\angle					L	260		
	30		XX XX	1 1			¥		\square									xil de	size creasing	L	136		
	35		X X X X X X X X	Pro	34		1.0								/				V '		125		
	40		XX				1.0									· .				· · · · · · · · · · · · · · · · · · ·	155		
	45		XX				Tr		\square		<u> </u>		\square							L	150		
Į)	50		X X X X	3 8				 												·····	160		
	55		V V V X					 										Shean An	ed Volcania Idesite?		145		
	60	•	V V V X	1 1									\square					kon	idesite? ises of eno clivicit	ې	125		
	65		V V V X			<u></u>	Tr						\angle		\square					L	195		
	70		V V V X	1 1	¥	`	k											\bigvee		•••••••	80		
	75	E	0.,	4/															•	· · · · · · · · · · · · · · · · · · ·	1		
	80)												 					,	·	1		
	85	ļ						 												·	1		
ſ	90			<u> </u>									\mathbb{Z}							·····	1		
	95					<u></u>			\downarrow									L		······	1		
	100								V	V			V		\bigvee					L	1		

522 2500 VERESENENT REPORT CEOLOGICAL BRANCH

39300 N ----

e la serie de l

1

39100 N ----

39000 N _____

38800 N

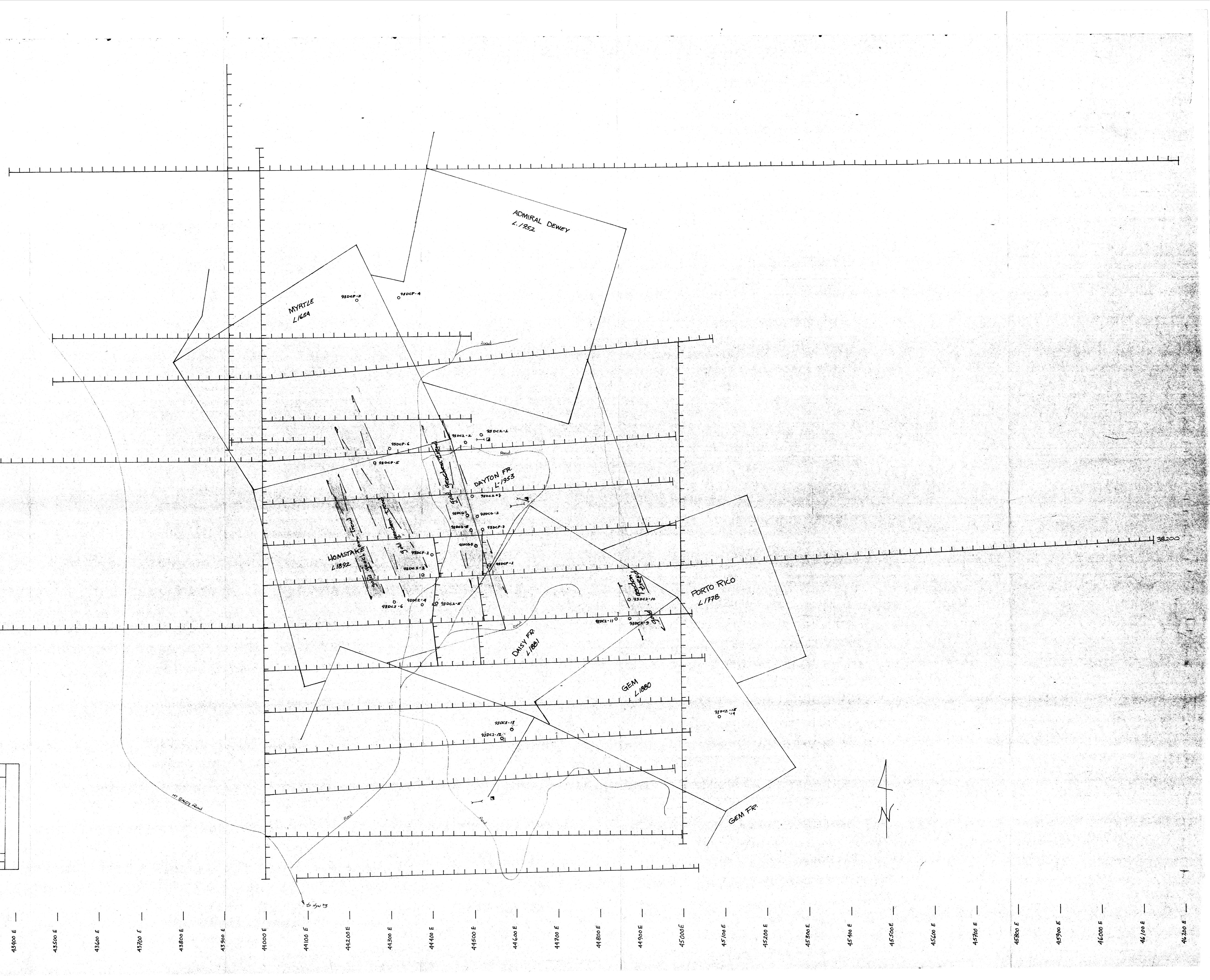
38700 N _____ 38600 N _____ 38500 N ____

38400 N

38200 N ____

38300 N

38000 N ____


.37900 N ____ 37800 N ___

37700 N ____

37600 N _____ 37500 N ____

37400 N

DAYTON CAMP AREA Claim boundries with drill hule Collar boatens and workerlying grid. Claims Chines Almiral Dawly W. Hallauer Myethe Homestake D. Cerinazzo Day Fr S. Ruzick Gem Sale 1:2520 Fig. 7 Metres

