# 

## APR 1 2 1994

#### 1993 Summary Report

## GOVERNMENT AGENT GRAND FORKS

.

on the

DAYTON FR. and GEM Claims

Greenwood Mining Division British Columbia

North Latitude 49°04' West Longitude 119°09'

#### NTS 82E/3

#### KAM 93-0400767-2294

#### Prepared for

STAN RUZICKA 1061 - 73rd Ave. Box #1496 Grand Forks, British Columbia VOH 1H0

> WINSLOW GOLD CORP. Suite 1290 112-4th Avenue S.W. Calgary, Alberta T2P OH3

> > Prepared by

R.E. Miller P.O. Box 2941 Grand Forks, British Columbia VOH 1HO

| LOG NO:  | APR 1 8 1994 | RD. |
|----------|--------------|-----|
| ACTION.  |              |     |
| 5.<br>1  |              |     |
| L        |              |     |
| FILE NO: |              |     |

1993 Summary Report

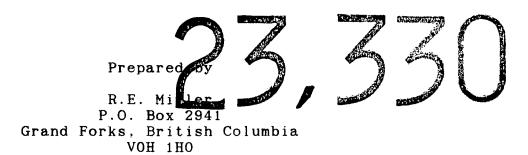
FILMED

#### on the

DAYTON FR. and GEM Claims

Greenwood Mining Division British Columbia

North Latitude 49°04' West Longitude 119°09'


NTS 82E/3

KAM 93-0400767-2294

Prepared for

STAN RUZICKA 1061 - 73rd Ave. Box #1496 Grand Forks, British Columbia VOH 1H0

> WINSLOW GOLD CORP. Suite 1290 112-4th Averue O'L OGICAL BRANCH Calgary, Alberta T2P ON SSESSMENT REPORT



December 1993

## TABLE OF CONTENTS

#### SUMMARY

- 1.0 INTRODUCTION
  - 1.1 Location and Access
  - 1.2 Topography and Climate
  - 1.3 Property and Claim Status
  - 1.4 History and Previous Work
  - 1.5 Work in 1993

## 2.0 GEOLOGY and MINERALIZATION

- 2.1 General Regional Geology
- 2.2 Local Geology
- 2.3 1993 Rotary Percussion Drill Program

## 3.0 DISCUSSION OF RESULTS

#### 4.0 CONCLUSION AND RECOMMENDATIONS

- 4.1 Conclusion
- 4.2 Recommendations

## APPENDICES

| Appendix | Α | Statement of Qualifications          |
|----------|---|--------------------------------------|
| Appendix | В | Statement of Expenditures            |
| Appendix | С | References                           |
| Appendix | D | Certificate of Analysis & Analytical |
|          |   | Procedures                           |
| Appendix | E | Field Drill Logs                     |

## LIST OF ILLUSTRATIONS

| Figure | 1 | Property Location Map               |
|--------|---|-------------------------------------|
| Figure | 2 | Claim Map                           |
| Figure | 3 | Historical Map                      |
| Figure | 4 | Regional Geology Map                |
| Figure | 5 | Geophysical Airborne Survey Outline |
| Figure | 6 | Drill Hole Location Map             |

### DAYTON FR. and GEM CLAIMS DAYTON CAMP AREA ROCK CREEK, B.C. GREENWOOD MINING DIVISION NTS. 82E/3

SUMMARY

The Dayton Fr. and Gem claims cover copper gold prospects on the west side of Rock Creek some 4.5 kilometers north of Highway 3 at the Mount Baldy turn-off which leaves the highway at the west end of the Rock Creek Canyon Bridge.

Mineralization: in quartz veins, along shear zones, in skarnification and as disseminations within intrusive bodies appears to be spacially related to Dioritic intrusions into Anarchist volcanics and metasediments.

Numerous pits, trenches and shallow shafts attest to early efforts to develop economic mineral reserves.

An I.P. Geophysical program followed by drilling on the Dayton Fr. and Gem claims is recommended.

1.0 INTRODUCTION

1.1 'LOCATION AND ACCESS

Located approximately five kilometers north of Bridesville along the Mount Baldy ski hill road, the Dayton Fr. and Gem claims lie along the south east side of the old Dayton Camp area. The claims are located within the Greenwood Mining Division of B.C. and the geographical coordinates for the center of the property is approximately

 $49^{\circ}04^{\circ}$  north latitude and  $119^{\circ}09^{\circ}$  west longitude. The property is located on the eastern half of the N.T.S. map sheet 82E/3. (Figure #1)

Jolly Creek - Rock Creek borders the east side of the claims with Rice Creek to the west and McKinney Creek to the south. The Camp McKinney gold district is located some six (6) kilometers to the northwest.

Perimeter access to the property is via Highway 3 to the west end of the Rock Creek Canyon bridge, then north 4.5 km along the improved Mount Baldy road at which point bush roads provide internal access to the Dayton Camp area.

### 1.2 TOPOGRAPHY AND CLIMATE

Relief in the general area is moderate with elevations ranging from 671 meters above sea level in the Kettle River valley to 1463 meters above sea level on Anarchist Mountain. The intervening area consists of grassy, rolling highlands with local steep gradients near the numerous drainages and in particular, along Rock Creek.

Conifers and grassland pasture are found at the higher elevations with grasslands, poplars, willows, and conifers, intermixed with crop and hay lands, at lower elevations.

Within the claims proper, the terrain is gentle and fairly open.

Climate conditions can be characterized by hot, dry summers and moderate winters with little snow cover.

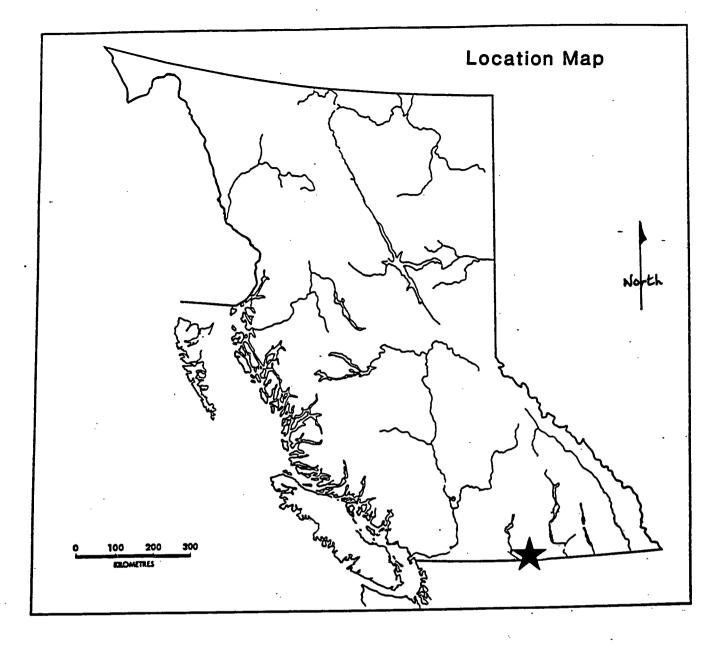
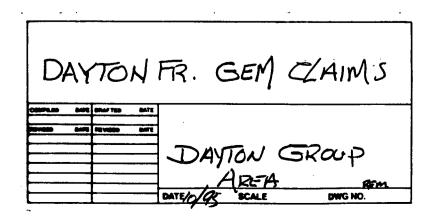




FIGURE 1.



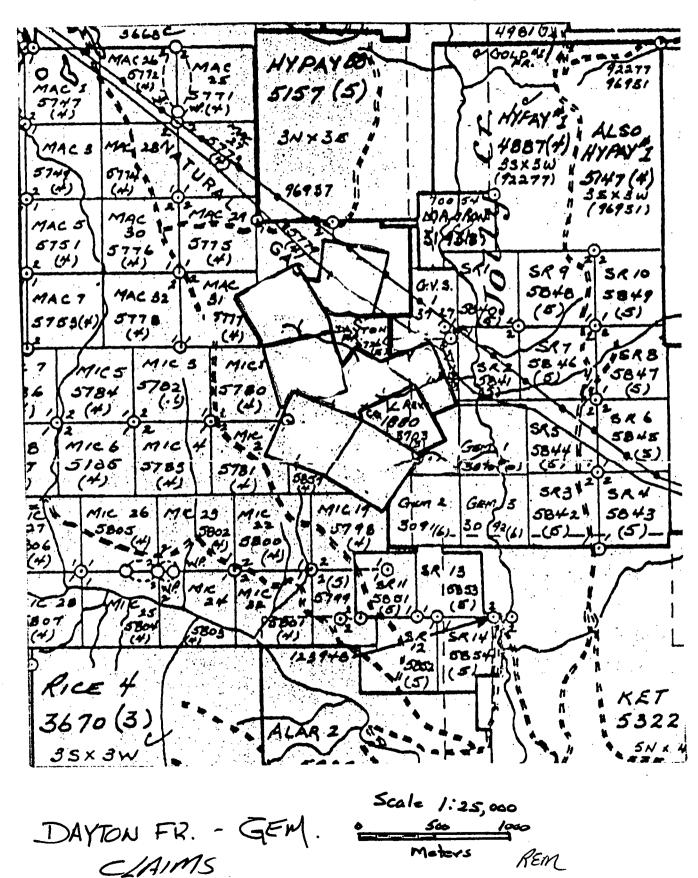
## 1.3 PROPERTY AND CLAIM STATUS

The Dayton Fr. and Gem reverted Crown granted claims are located in the Greenwood Mining Division of Southern British Columbia and are optioned from Mr. Stan Ruzicka by Winslow Gold Corporation. (Figure #2)

The following table summarizes pertinent data concerning the claims.

| CLAIM      | LOT  | RECORD # | EXPIRY<br>DATE*         |
|------------|------|----------|-------------------------|
| Dayton Fr. | 1953 | 214683   | MAY 9,1994 JULY 12,1994 |
| Gem        | 1880 | 318937   |                         |

\* Pending acceptance of this report


#### 1.4 HISTORY AND PREVIOUS WORK

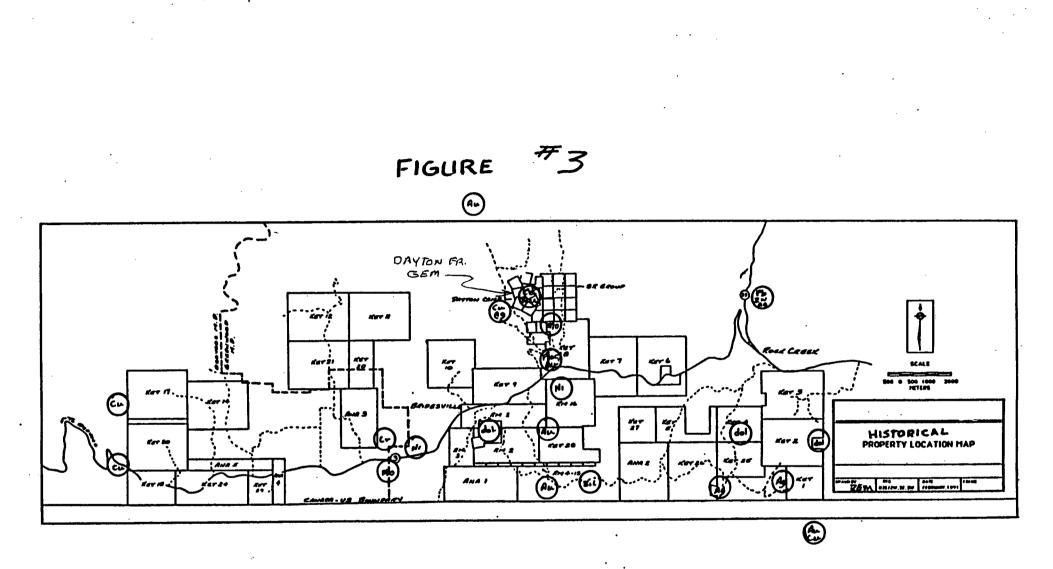
Mineral exploration and development, within the Dayton Camp area, commenced around the turn of the century with the discovery of the McKinney Creek - Rock Creek -Jolly Creek placer deposits and the lode mines of Camp McKinney. One of the early lode gold producing areas in British Columbia, Camp McKinney produced approximately 82,000 ounces of gold from 1894-1903 and various attempts to revive the camp have been made from 1903 until the present. Camp McKinney lode gold deposits along with the placer gold occurrences of McKinney, Rice, Jolly, and Rock Creeks are located. adjacent to, along side, and within, six (6) kilometers of the Dayton Camp which includes the Dayton Fr. and Gem claims. (Figure #3)

South of McKinney Camp minor turn of the century

DAYTON GROUP AREA 1

FIGURE 2




production of direct shipping, hand sorted ore was mined from the Dayton Fraction claim.

In 1955, Mr. Brian Fenwick-Wilson, a prospector, first staked a nickel showing, south of the Dayton Fr. and Gem claims, located between the Rock Creek bridge and the Rock Creek-Bridesville road, and then re-staked the ground in 1966. Since that time Newmont Mining Corp., Nickel Ridge Mines Ltd., and Utica Mines Ltd. have carried out extensive exploration programs, including drilling that has outlined a minimum of 100,000,000 tons of 0.22% nickel that appears to have sub-economic extraction recoveries of 56%.

Other small scale sporadic exploration programs, including numerous geochemical and geophysical surveys, within the area of interest, have continued through to the present time and have resulted in the development of drill targets, shafts, adits, and prospect pits for gold, chrome, molybdenum, and base metals.

Industrial mineral exploitation is limited within the area, to the Mighty-White Dolomite pit to the east of the claims, a's well various small scale gravel operations. Minor industrial mineral exploration and evaluation has been directed towards: the siliceous (meta-chert) outcrops along the Rock Mountain-Bridesville Road near the summit, and the sporadic outcropping of dolomite south of Rock Creek and south of Bridesville.

Very limited recent placer activity was noted along the Rock Creek, Jolly Creek, and McKinney Creek drainages





with no evidence of serious production efforts while windrowed piles of sand and gravel along the shores of the creeks attest to the intense historical placer mining effort.

1.5 WORK IN 1993

Claim boundaries were surveyed and flagged using compass and chain.

The 1990 Crownex grid and anomalous field data points related to geochemical gold values, ground magnetometry and surface workings were re-established and selected areas were tested with eight Rotary Percussion drill holes.

2.0 GEOLOGY AND MINERALIZATION

2.1 GENERAL GEOLOGY

Permo-triassic Anarchist Group rocks comprised of Amphibolite, greenstone, quartz-chlorite schist, quartzbiotite schist, minor serpentinite and thin bedded to massive limestones occur throughout most of the general area. Knob Hill Group rocks mainly chert, greenstone and marble, are found south of Rock Creek and north of Buckhorn Mountain in Washington state. (Figure #4)

Kobau group rocks, similar in age to the Anarchist group, are found west and south the survey block where they are mainly comprised of amphibolite, greenschist, quartzite, chert, greenstone, and minor marble.

Nelson plutonic rocks of cretaceous Jurassic age



consisting of: massive hornblende-biotite granodiorite, quartz diorite and granite, intrude the eugeosynclinal Anarchist Formation.

Smaller plugs, dikes, and sills? of biotite granodiorite, diorite and granite, of Jurassic to Cretaceous age belonging to the Okanogan batholith, are found to the south, northeast, and northwest of the Dayton Fr. and Gem claims.

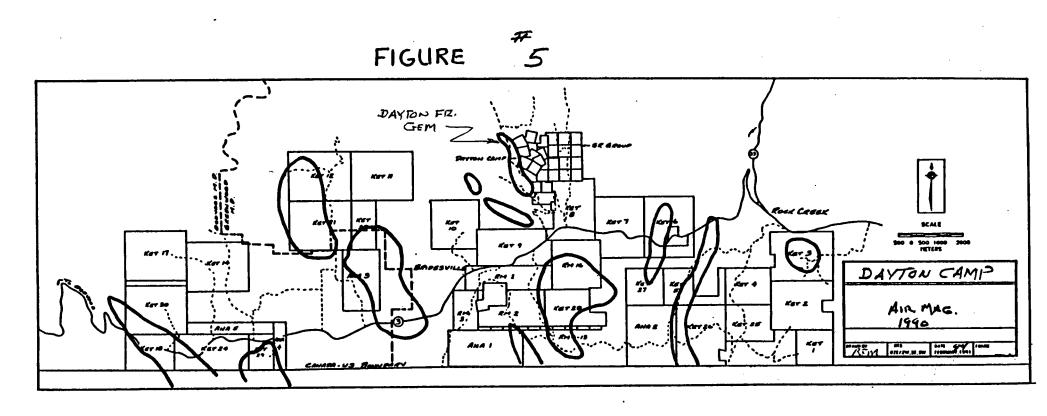
Eocene age rocks of the Yellow Lake and Kitley Lake formation are found trending north-south on the east side of Jolly Creek and can, in part, be traced to the south near the International border. These Tertiary rocks are composed of phonolite, trachyandesite, trachyte, and a sequence of cobble conglomerate and minor sands.

Tight folds were noted in the metasedimentarymetavolcanic sequence along with strong north-east and north trending faults. In between the northerly trending fault zones, minor east-west faulting has occurred. Phyllitic to mylonitic fabrics as well as some breccia zones were proximal to most of the predominate faulting.

Propylitic alteration is common in the greenstonediorite contact areas. Skarnification is evident at Dayton Camp near the contacts between granodiorite and lime rich rocks specifically at the LeRoi-War Eagle workings. Massive silicification was observed south of Dayton Camp near the Old Nik prospect where sulfides occur in metaquartzite and/or metachert and/or siliceously replaced

metasedimentary beds. Extensive quartz veining and bleaching along with the introduction of magnesite was traced in a general north-south direction along the high ridge area south of Dayton Camp. Hornfelsic development occurs near granodiorite contacts with fine grained clastics? and/or greenstones at Dayton Camp. Epidote in the Osoyoos granodiorite pluton to the west is common and sanded dolomite with a strong hydrogen sulfide odor was found to outcrop in an east-west belt, south of Dayton Camp near the International boundary.

Pyrite and/or base metal and/or precious metal in quartz veins, mineralized calcite veins, shear zones and breccias are common. Nickel rich pyrrhotite with pyrite and chalcopyrite and possible trace amounts of pentlandite are found with massive silicification, (replacement?), metachert, metaquartzite? outcrops in the Old Nik claim and Anarchist Summit areas. Pyrite with calcite and epidote veining along with disseminated magnetite is common in the chloritic greenstones and meta-andesites throughout the general area.' Massive garnet, epidote, pyrrhotite and magnetite skarn at the Le Roi- War Eagle claim in the Dayton Camp, is associated with metasomatic contact aureoles that usually carry anomalous copper and gold values. Magnetite is commonly disseminated in the serpentinite as is pyrite and pyrrhotite in the greenstone, neither of which appears to carry interesting gold mineralization but both of which occur locally within the


general area.

### 2.2 LOCAL GEOLOGY

Geology of the property taken from grid line observations, consists of metavolcanic and metasedimentary rocks of the Permian Anarchist Formation and intrusive rocks of the Jurassic-Cretaceous Nelson batholith and Tertiary Coryell intrusive and Eocene coarse sediments are prominent along the eastern edge of the property.

Propylitic Greenstone hosting diorite and feldspar porphyry intrusives, calcite veins, mineralized quartz veins, zones of disseminated pyrite, and thin beds of metasediments that include chert pebble conglomerates, metaquartzite, and metasiltstones are found within the Dayton Fr. and Gem claim boundaries. Rocks of the metasediment package increase in abundance to the north east, strike north west, and dip to the north east. Minor production of hand sorted copper-gold ore from the Dayton Fr. is related to two geologic settings. At the northern end of the claim a 40 foot plus shaft was sunk on an eastwest Ankeritic quartz vein and on the south end high grade? gold was mined from a 4-5 foot wide northwest shear zone in diorite near a greenstone-diorite contact.

Government airborne magnetic maps and ground magnetic readings show a northwest trending mag high along the west side of the claims.(Figure #5) Anomalous ground magnetics appear to be associated with disseminated



GENERAL LOCATION OF AIRBORNE MAGNETIC ANOMALIES

0

DAYTON FR. GEM CLAIMS

magnetite in intrusive rocks, mainly granodiorite and diorite. Within the greenstones most of the high readings are related to a mix of pyrite and pyrrhotite and/or chalcopyrite with minor magnetite along shear zones and diorite-greenstone contacts.

2.3 1993 ROTARY PERCUSSION DRILL PROGRAM

Collar locations for Rotary Percussion drill holes on the Dayton Fr. and Gem claims are shown on Figure #6. (in pocket) Pertinent drill hole data is listed in the following table:

DAYTON FR. - GEM DRILL HOLES

| HOLE<br>NUMBER | ANGLE      | DEPTH<br>FEET | *ANOMALOUS<br>GOLD INTERCE         | PT                                   |
|----------------|------------|---------------|------------------------------------|--------------------------------------|
|                |            |               | Ftg.                               | Ft/ppb                               |
| 93DCP #1       | -90        | 150           | 15-20<br>25-30                     | 5/165<br>5/120                       |
|                |            |               | 65-70<br>135-140                   | 5/140<br>5/100                       |
| 93DCP #7       | <b>-90</b> | 185           | 0-15<br>20-40<br>45-90<br>95-185   | 15/338<br>20/206<br>45/146<br>90/219 |
| HOLE<br>NUMBER | ANGLE      | DEPTH<br>FEET | *ANOMALOUS<br>GOLD INTERCE<br>Ftg. | PT<br>Ft/opt                         |
| 93DC2 #1       | -90        | 90            | 1 0 9 0                            | rtyopt                               |
| 93DC2 #2       | -90        | 100           |                                    |                                      |
| 93DC2 #7       | -90        | 60            |                                    |                                      |
| 93DC2 #14      | -90        | 80            |                                    |                                      |

 93DC2 #15
 -90
 190

 93DCG #2
 -90
 170

\*ANOMALOUS GOLD INTERCEPT is defined as any gold assay greater that 99 ppb or 0.009 opt.

The Rotary Percussion drill was capable of drilling vertical holes only and because of an undersized air compressor was limited to about 200 feet of vertical capability. Both of these limitations have since been solved. Drill steel is measured in Imperial Units and the composite sample interval is five feet.

## 3.0 DISCUSSION OF RESULTS

Drill holes 93DCP #1 and DCP #7 were collared within a north west trending geochemical gold in soil anomaly with an associated positive ground mag response. 93DCP #1 was drilled at the southern end of the gold in soil anomaly and 93DCP #7 was spotted well within the anomaly. Anomalous geochem gold assays were reported for the total hole depth in 93DCP #7 of 185 feet transecting the rock types encountered.

Drill holes 93DC2 #1 and 93DC2 #2 were drilled near the copper-gold production shaft that produced from an east-west trending ankeritic quartz vein. Both holes intersected altered diorite and volcanics but did not appear to intersect the vein system. Because the drill rig had no angle capability further drilling on this steeply

dipping structure was not warranted.

93DC2 #7 was drilled along, and apparently outside of, the north west trending gold bearing zone that hosts 93DCP #7. The hole was stopped when only a thin zone of moderate pyrite mineralization was encountered at the diorite-volcanic contact.

Drill holes 93DC2 #14 and #15 were drilled to evaluate an area of prospect pits associated with ground mag highs. Alteration and sulfidé mineralization was weak. Zones selected for assay did not return any anomalous values.

93DCG #2 was collared 35 meters north east of 93DC2 #8 to investigate the continuity and/or strike of the strong gold assay in hole 93DC2 #8. The assays from 155 to 170 feet have not been completed but overall the hole is not as altered or well mineralized as 93DC2 #8. Geologically though, at 155-170 feet, there appears to be a complex contact between Andesite and diorite that has been intruded by feldspar porphyry similar to 93DC2 #8.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

Drill holes that are collared within gold in soil anomalies, high ground mag trends, and/or anomalous I.P. responses encounter sulfide zones of mainly pyrite which at times is accompanied by elevated gold values.

In addition, any further investigation of the

"Production shaft" Ankeritic quartz vein and other surface prospects will require angle hole capability to better evaluate the geology.

## 4.2 RECOMMENDATIONS

Based on the general observation that strong alteration and intense sulfide mineralization have a good chance of being associated with better gold values, an Induced Polarization survey is recommended as the next step in developing drill targets.

Submitted by FESSIC PROVINCE R. E. D. MILLE BRITIS R.E. Miller P. Geo. SCIEN 1 ×.

# APPENDIX A

# Statement of Qualifications

I

ģ

## STATEMENT OF QUALIFICATIONS

I ROBERT E. MILLER, of Spokane, Washington U.S.A., DO HEREBY CERTIFY:

1. THAT I am a geologist with Greenwood Gold Inc. with a business address of 367 Gold Street, Greenwood, British Columbia. VOH 1J0.

- THAT I am a graduate from Brigham Young University with a Bachelor of Science degree in Geological Engineering (1969).
- 3. THAT I have practised my profession continuously since graduation.
- 4. THAT I personally conducted the 1993 exploration program discussed in this report.

DATED this 12 th day of March, 1994.

Mille-

Robert E. Miller P. Geo. Geological Engineer

# APPENDIX B

# Statement of Expenditures

## DAYTON FR. and GEM EXPENDITURES

Manpower

1

| Bob Miller 5 man days<br>\$200.00 x 5                  | \$1000.00 |
|--------------------------------------------------------|-----------|
| Kim Anschetz 6 man days<br>\$110.00 x 6                | \$ 660.00 |
| Stan Ruzicka 2 man days<br>\$150.00 x 2                | \$ 300.00 |
| Derek Ruzicka 2 man days<br>\$100.00 x 2               | \$ 200.00 |
| Vehicle - 2 4x4 pick-ups<br>5.5 days @ \$65.00/day x 2 | \$ 715.00 |

## Drilling

| \$15.00 per foot x 1025      |             |
|------------------------------|-------------|
| Trays, sample bags, shipping |             |
| Assays, reclamation          | \$15,375.00 |

## Office

| Report preparation<br>Report typing 15 hours x | \$11 00 | \$ 300.00   |
|------------------------------------------------|---------|-------------|
| Compilation and binding                        | \$11.00 | \$165.00    |
|                                                |         |             |
| 1                                              | 「otal   | \$18,715.00 |

# APPENDIX C

## References

#### REFERENCES

- Basil, Chris. 1990 Airborne Magnetic and VLF-EM Survey Report on the Ket 1-22 and Ket 24-32 Mineral Claims, Assessment Report for Crown Resources Corp..
- Miller, Bob. 1990 Geologic Report on the Dayton Fraction, GVS 32, Gem 1-3, Gem Fraction, SR 1-10 and SR 11-14. Assessment for Crown Resources Corp..
- Miller, Bob and Kushner, W.R.. 1990 Summary Report on the Homestake and Daisy Fraction Claims. Assessment Report for Crown Resources Corp..
- Open File: Mineral Occurances; Penticton. West of Sixth Meridian, British Columbia. Map 2 of 6, scale 1:250,000.
- Templeman-Kluit, D.J.. (1989) Geology, Penticton, British Columbia. Geolgical Survey of Canada. Map 1736A, Scale 1:250,000.

# APPENDIX D

Certificate of Analysis and Analytical Procedures

### ASSAY PROCEDURES

Gold FA-AA ppb

A 10 gram sample is fused with a neutral flux inquarted with 6 mg of Au-free silver and then cupelled.

Silver beads for AA finish are digested for 1/2 hour in 0.5 ml HNO3, then 1.5 ml HCl is added and digested for 1 hour. The samples are cooled and made to a volume of 5 ml, homogenized and run on the AAS with background correction.

Detection limit: 5 ppb.

Au (oz/T)

Gold analysis is carried out by standard fire assay techniques. In the sample preparation stage the screens are checked for metallics which, if present, are assayed separately and calculated into the results obtained from the pulp assay.

A 0.5 assay ton sample is fused with a neutral flux inquarted with 2 mg. of Au-free silver and then cupelled.

Silver beads for AA finish are digested for 1/2 hour in 1 ml HNO3, then 3 ml HCl is added and digested for 1 hour. The samples are cooled and made to a volume of 10 ml, homogenized and run on the AAS with background correction.

Detection Limit 0.002 oz/T

### ASSAYING **GEOCHEMISTRY** ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING



JULY 13, 1993

CERTIFICATE WALYSIS ETK 93-175 \*\*\*\*\*\* -----

\_\_\_\_\_

4 .

LABORA

SAMPLE IDENTIFICATION: 94 ROCK SAMPLES RECEIVED JULY ?, 1993 PROJECT #: 41- DAYTON

| 1  | -93 DCP |               |        |     |            |                              |
|----|---------|---------------|--------|-----|------------|------------------------------|
|    | -23 DCE | #1-           | 0 - 5  | 5   | 45         |                              |
| 2  | -93 DCP | #1-           | 5 - 3  | 10  | <b>4</b> Q |                              |
| 3  | -93 DCP | #1-           | 10 - 3 | 15  | 20         |                              |
| 4  | -93 DCP | #1-           | 15 - 2 | 20  | 165        |                              |
| 5  | -93 DCP | <b>#1</b> - 3 | 20 - 2 | 25  | 40         |                              |
| 6  | -93 DCP | #1- :         | 25 - 3 | 30  | 120        |                              |
| 7  | -93 DCP | #1-           | 30 - 3 | 35  | 70         |                              |
| 8  | -93 DCP | #1-           | 35 - 4 | 40  | 65         | AT AT AT AT                  |
| 9  | -93 DCP | #1-           | 40 - 4 | 45  | 60         | A AT TIS DIRECTION           |
| 10 | -93 DCP | #1-           | 45 - 1 | 50  | 15         | FEED DOCUMENT THIS DIRECTION |
| 11 | -93 DCP | #1-           | 50 -   | 55  | 25         | FEED DOCUMENT HISANT         |
| 12 | -93 DCP | #1-           | 55 -   | 60  | 10         | ALESSAGE                     |
| 13 | -93 DCP | #1-           | 60 -   | 65  | >5         | FAX MESSAGE                  |
| 14 | -93 DCP | #1-           | 65 -   | 70  | 140        |                              |
| 15 | -93 DCP | #1-           | 70 -   | 75  | 5          | 1 auter-                     |
| 16 | -93 DCP | #1-           | 75 -   | 80  | 5          | TUBOD 112-234                |
| 17 | -93 DCP | #1-           | 80 -   | 85  | 20         | COMPANY                      |
| 18 | -93 DCP | #1-           | 85 -   | 90  | 60         | COMP                         |
| 19 | -93 DCP | #1-           | 90 -   | 95  | 30         | FAX NO SOLDA                 |
| 20 | -93 DCP | #1-           | 95 -   | 100 | 25         | FROM SES                     |
| 21 | -93 DCP | #1-           | 100-   | 105 | 40         | NO. OF PAGES B               |
| 22 | -93 DCP | #1-           | 105-   | 110 | 50         | RE-                          |
| 23 | -93 DCP | #1-           | 110-   | 115 | 20         |                              |
| 24 | -93 DCP | #1-           | 115-   | 120 | 15         |                              |
| 25 | -93 DCP | #1-           | 120-   | 125 | 55         |                              |
|    | -93 DCP |               | 125-   | 130 | 25         |                              |
|    |         |               |        |     |            |                              |
|    |         |               |        |     |            |                              |
|    |         |               |        |     |            |                              |
|    |         |               | •      |     |            |                              |

# JULY 13, 1993

-4

PAGE 2

|                |                   |                   | TION              |                              | <b>AU (</b> ppb ) |                       |  |  |
|----------------|-------------------|-------------------|-------------------|------------------------------|-------------------|-----------------------|--|--|
| 27<br>28<br>29 | -93<br>-93<br>-93 | DCP<br>DCP<br>DCP | #1-<br>#1-<br>#1- | 130-<br>135-<br>140-<br>145- | 135<br>140<br>145 | 20<br>100<br>20<br>10 |  |  |

| -                                     |     |
|---------------------------------------|-----|
| 31,-93 DCP #2- 0 - 5                  | 60  |
| 32 - 93 DCP #2 = 5 - 10               | 105 |
| 33 493 DCP #2- 10 - ¥5                | 55  |
| 34 - 23 DCP $#2 - 15 - 20$            | 15  |
| $35 - 9\sqrt{3}$ DCP #2- 20 -/25      | 15  |
| 36 -93 DCP #2- 25 -/ 30               | 255 |
| 37 -93 DCF #2- 30 / 35                | 40  |
| 38 -93 CP #2- 35/- 40                 | 55  |
| 39 - 93 DCP $#2 - 40 - 45$            | 25  |
| 40 -93 DCF #2- 45 - 50                | 35  |
| 41 -93 DCR #2- 50 - 55                | 30  |
| 42 -93 DCP #2- \$5 - 60               | 10  |
| 43 - 93  DCP + 2 - 60 - 65            | 15  |
| $44 - 93$ DCP $\frac{1}{2} - 65 - 70$ | 35  |
| 45 -93 DCP 42-/ 70 - 75               | 5   |
| 46 -93 DCP #2- 75 - 80                | 30  |
| 47 -93 DCP #24 80 - 85                | 20  |
| 48 -93 DCP #2- 85 - 90                | 55  |
| 49 -93 DCP #2- 90 - 95                | 10  |
| 50 -93 DCP 2- 95 - 100                | 390 |
| 51 -93 DCP #2- 100- 105               | 65  |
| 52 -93 DCP #2- 105- 110               | 140 |
| 53 -93 DCP #2- 110- 115               | 165 |
| 54 -93 DOP #2- 115- 120               | 45  |
| 55 -93 DCP #2- 120- 125               | 40  |
| 56 -93 DCP #2- 125- 130               | 145 |
| 57 -93 pcp #2- 130-135                | 90  |
| 58 -93 002 #2- 135- 140               | 55  |
| 59 -93 U:P #2- 140- 145               | 10  |
| 60 -98 DCP #2- 145- 150               | 10  |
| 61 -93 DCP #2- 150- 155               | 20  |
| 52 -93 DCP #2- 155- 160               | 10  |
| 63 -93 DCP #2- 160- 165               | 15  |
| 64 -93 DCP #2- 165- 170               | 10  |
|                                       |     |

JULY 16, 1993

PAGE 4

|                |               |                                                                                                                     |       | Au    |
|----------------|---------------|---------------------------------------------------------------------------------------------------------------------|-------|-------|
|                | SCRIPTI       |                                                                                                                     |       | (ppb) |
| *****          |               | , \$\$\$\$\$\$\$\$\$\$ <b>\$</b> \$\$ <b>\$</b> \$ <b>\$</b> \$ <b>\$</b> \$ <b>\$</b> \$ <b>\$</b> \$ <b>\$</b> \$ |       |       |
|                | DCP \$7       | 0 -                                                                                                                 | 5     | >500  |
| 66 - 93        | DCP #7        | 5 -                                                                                                                 | 10    | 150   |
| 67 - 93        | DCP #7        | 10 -                                                                                                                | 15    | 295   |
| 66 - 93        | DCP #7        | 15 -                                                                                                                | 20    | 80    |
| 69 - 93        | DCP #7        | 20 -                                                                                                                | 25    | 120   |
| 70 - 93        | DCP #7        | 25 -                                                                                                                | 30    | 320   |
| 71 - 93        | DCP #7        | 30 -                                                                                                                | 35    | 180   |
| 72 - 93        | DCP #7        | 35 -                                                                                                                | 40    | 205   |
| 73 - 93        | DCP #7        | 40 -                                                                                                                | 45    | 55    |
| 74 - 93        | <b>DCP #7</b> | 45 -                                                                                                                | 50    | 130   |
| 75 - 93        | DCP #7        | 50 -                                                                                                                | 55    | 110   |
| 76 - 93        | DCP #7        | 55 -                                                                                                                | 60    | 130   |
| 77 - 93        | DCP #7        | 60 -                                                                                                                | 65    | 145   |
|                | DCP #7        | 65 -                                                                                                                | 70    | 165   |
|                | DCP #7        | 70 -                                                                                                                | • •   | 170   |
| 80 - 93        | DCP #7        | 75 -                                                                                                                | 80    | 155   |
| 81 - 93        | DCP #7        | 80 -                                                                                                                | 85    | 150   |
| 82 - 93        | DCP #7        | 85 -                                                                                                                | •••   | 160   |
| 83 - 93        | DCP #7        | 90 -                                                                                                                |       | 95    |
| 84 - 93        | DCP #7        | 95 -                                                                                                                |       | 165   |
| 85 - 93        | •             | 100 -                                                                                                               |       | 130   |
| 86 - 93        | DCP #7        | 105 -                                                                                                               | 110   | 155   |
| 87 - 93        | DC₽ #7        | 110 -                                                                                                               | 115   | 260   |
| 88 - 93        |               |                                                                                                                     |       | 440   |
| 89 - 93        | DCP #7        |                                                                                                                     |       | 180   |
| 90 - 93        | DCP #7        |                                                                                                                     |       | 145   |
| 91 - 93        | DCP #7        |                                                                                                                     |       | 185   |
| 92 - 93        | DCP #7        |                                                                                                                     |       | 320   |
| 93 - 93        | DCP #7        | •                                                                                                                   | 145   | 255   |
| 94 - 53        | COP #7        | 145 -                                                                                                               |       | 245   |
| 95 - 93        | DCP #7        |                                                                                                                     |       | 180   |
| 96 - 93        | DCP #7        |                                                                                                                     |       | 215   |
| 97 <b>- 93</b> | DCP #7        |                                                                                                                     | 165   | 205   |
| 98 - 93        | DCP #7        |                                                                                                                     | - 170 | 310   |
| 99 - 93        | DCP #7        | **                                                                                                                  |       | 175   |
| 100- 93        | DCP #7        |                                                                                                                     |       | 275   |
| 101- 93        | DCP #7        | 180 -                                                                                                               | 185   | 105   |
|                |               |                                                                                                                     |       |       |

- -

NOTE: > = GREATER THAN

tt ECO-TECH LABORATORIES LTD. FRANK J. DE220TTI, A.SC.T. B.C. Certified Assayer



# **Chemex Labs Inc.**

Analytical Chemists \* Geochemists \* Registered Assayers 994 West Glendale Ave., Suite 7, Sparks, Nevada, U.S.A. 89431 PHONE: 702-356-5395

| To: N | IILLER, R. |
|-------|------------|
|-------|------------|

N 15607 TIMBERWOOD CR. SPOKANE, WASHINGTON 99208

Comments: CC: BOB MILLER

| C                             | ERTIFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CATE A9325689                                                                                                                                      |                                                                                                              |                                                                              | ANALYTICAL P                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROCEDUR                                                                                                                                                |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| /ILLER, R<br>Project:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N CAMP                                                                                                                                             | CHEMEX<br>CODE                                                                                               | NUMBER                                                                       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                             | METHOD                                                                                                                                                 |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed to our lab in Vancouver, BC.<br>printed on 9-DEC-93.                                                                                            | 17<br>2118<br>2119<br>2120<br>2121<br>2122<br>2123                                                           | 7<br>7<br>7<br>7<br>7<br>7<br>7                                              | Au ppb<br>Ag ppm: 32 element, soil & rock<br>Al %: 32 element, soil & rock<br>As ppm: 32 element, soil & rock<br>Ba ppm: 32 element, soil & rock<br>Be ppm: 32 element, soil & rock<br>Bi ppm: 32 element, soil & rock                                                                                                                                                                                                                                  | AAS<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES                                                                                  |
|                               | SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PLE PREPARATION                                                                                                                                    | 2124<br>2125<br>2126                                                                                         | 777                                                                          | Ca %: 32 element, soil & rock<br>Cd ppm: 32 element, soil & rock<br>Co ppm: 32 element, soil & rock                                                                                                                                                                                                                                                                                                                                                     | ICP-AES<br>ICP-AES<br>ICP-AES                                                                                                                          |
|                               | NUMBER<br>SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DESCRIPTION                                                                                                                                        | 2127<br>2128<br>2150<br>2130<br>2131                                                                         | 7<br>7<br>7<br>7<br>7                                                        | Cr ppm: 32 element, soil & rock<br>Cu ppm: 32 element, soil & rock<br>Fe %: 32 element, soil & rock<br>Ga ppm: 32 element, soil & rock<br>Hg ppm: 32 element, soil & rock                                                                                                                                                                                                                                                                               | ICP-ABS<br>ICP-ABS<br>ICP-ABS<br>ICP-ABS<br>ICP-ABS                                                                                                    |
| 205<br>234<br>229             | 7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Geochem ring to approx 150 mesh<br>Splitting charge<br>ICP - AQ Digestion charge                                                                   | 2132<br>2151<br>2134<br>2135<br>2136<br>2137<br>2138<br>2139<br>2140<br>2141<br>2142<br>2143<br>2144<br>2143 | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | K %: 32 element, soil & rock<br>La ppm: 32 element, soil & rock<br>Mg %: 32 element, soil & rock<br>Mn ppm: 32 element, soil & rock<br>Mo ppm: 32 element, soil & rock<br>Na %: 32 element, soil & rock<br>Ni ppm: 32 element, soil & rock<br>P ppm: 32 element, soil & rock<br>Sb ppm: 32 element, soil & rock<br>Sc ppm: 32 element, soil & rock<br>Sc ppm: 32 element, soil & rock<br>Ti %: 32 element, soil & rock<br>Ti %: 32 element, soil & rock | ICP-ABS<br>ICP-ABS<br>ICP-ABS<br>ICP-ABS<br>ICP-ABS<br>ICP-ABS<br>ICP-ABS<br>ICP-ABS<br>ICP-ABS<br>ICP-ABS<br>ICP-ABS<br>ICP-ABS<br>ICP-ABS<br>ICP-ABS |
| race m<br>lements<br>ligestic | tor with the second sec | ICP package is suitable for<br>in soil and rock samples.<br>hich the nitric-aqua regia<br>ssibly incomplete are: Al,<br>Ga, K, La, Mg, Na, Sr, Ti, | 2146<br>2147<br>2148<br>2149                                                                                 | 7<br>7<br>7<br>7<br>7                                                        | U ppm: 32 element, soil & rock<br>V ppm: 32 element, soil & rock<br>W ppm: 32 element, soil & rock<br>Zn ppm: 32 element, soil & rock                                                                                                                                                                                                                                                                                                                   | ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES                                                                                                               |

A9325689

UPPER

LIMIT

10000

15.00

10000

10000

100.0 10000

15.00

100.0

10000

10000

10000

15.00

10000 10000

10.00

10000

15.00

10000

10000

5.00 10000

10000

10000 10000

10000

10000

5.00 10000

10000

10000

10000

10000

200

21. 1.

DETECTION LIMIT

5

0.2

10

0.5

0.01

0.5

2

1 1

1

0.01

10

10

5

1

1

2

1

1 0.01

10 10

1

2

10

10 2

0.01

0.01

1 0.01

0.01 2



# **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: MILLER, ROBERT

P.O. BOX 2941 GRAND FORKS, BC V0H 1H0 \*\*

Page Number :2 Total Pages :2 Certificate Date: 05-JAN-94 Invoice No. : I9326812 P.O. Number : Account :LJP

Project : DAYTON CAMP Comments:

|                                                                                             |                                                                |                                                              |                                                                            | enuer,   |    | CERTIFIC | ATE OF A | NALYSIS | A93          | 26812 | -   |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|----------|----|----------|----------|---------|--------------|-------|-----|
| SAMPLE                                                                                      | PREP<br>CODE                                                   | Au<br>oz/T                                                   |                                                                            |          |    |          | ,;       |         |              |       |     |
| 939C2#4 035-040<br>93DC2#4 045-050<br>93DC2#4 050-055<br>93DC2#4 055-060<br>93DC2#6 000-005 | 208 234<br>208 234<br>208 234<br>208 234<br>208 234<br>208 234 | 0.005<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001            |                                                                            |          |    |          |          |         |              |       |     |
| 93DC2#6 005-010<br>93DC2#6 010-015<br>93DC2#6 015-020<br>93DC2#6 020-025<br>93DC2#6 025-030 | 208 234<br>208 234<br>208 234<br>208 234<br>208 234<br>208 234 | 0.002<br>< 0.001<br>< 0.001<br>0.002<br>0.001                |                                                                            | 10,0     | 42 | TA 1.t   | 31,90    |         |              |       |     |
| 93DC2#6 030-035<br>93DC2#6 035-040<br>93DC2#6 040-045<br>93DC2#6 045-050<br>93DC2#6 050 055 | 208 234<br>208 234<br>208 234<br>208 234<br>208 234<br>208 234 | 0.011<br>0.186<br>0.004<br>0.003<br>0.002                    | · 935<br>· 93<br>• 93<br>• 93<br>• 93<br>• 93<br>• 93<br>• 93<br>• 93<br>• | 1. 1     |    |          |          |         |              |       |     |
| 93DC2#6 055-060<br>93DC2#6 060-065<br>93DC2#6 065-070<br>93DC2#6 070-075<br>93DC2#6 075-080 | 208 234<br>208 234<br>208 234<br>208 234<br>208 234<br>208 234 | 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001 |                                                                            |          |    |          |          |         |              |       |     |
| 93DC2#14 060-065<br>93DC2#14 065-070<br>93DC2#14 070-075<br>93DC2#14 075-080                | 208 234<br>208 234<br>208 234<br>208 234<br>208 234            | 0.002<br>< 0.001<br>< 0.001<br>< 0.001                       |                                                                            |          |    |          |          |         | , <b>,</b> , |       |     |
|                                                                                             |                                                                |                                                              |                                                                            |          |    |          |          |         |              |       |     |
|                                                                                             |                                                                |                                                              |                                                                            |          |    |          |          |         |              |       |     |
|                                                                                             |                                                                |                                                              |                                                                            |          |    |          |          |         |              |       |     |
|                                                                                             | L                                                              | J`                                                           | L                                                                          | <u> </u> |    | <u> </u> | l        |         | N:           | wh !  | Ima |



# **Chemex Labs Ltd.**

•

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: MILLER, ROBERT

P.O. BOX 2941 GRAND FORKS, BC VOH 1H0

\*\*

Page Number :1 Total Pages :2 Certificate Date: 06-JAN-94 Invoice No. :19326886 P.O. Number : Account :1 IP LJP Account

Project : Comments: DAYTON-CAMP

|                                                                                                  |                                                                                                                                                   |                                                                              |      |             |    | CERTIFICATE OF ANALYSIS |  |    | A93                                   | A9326886 |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------|-------------|----|-------------------------|--|----|---------------------------------------|----------|--|--|
| SAMPLE                                                                                           | PREP<br>CODE                                                                                                                                      | Au<br>oz/T                                                                   |      |             |    |                         |  |    |                                       |          |  |  |
| 93DCG#3-000-005<br>93DCG#3-005-010<br>93DCG#3-010-015<br>93DCG#3-015-020<br>93DCG#3-020-025      | 208 234<br>208 234<br>208 234<br>208 234<br>208 234<br>208 234                                                                                    | < 0.001<br>0.002<br>0.003<br>0.003<br>0.003                                  |      |             |    |                         |  |    |                                       |          |  |  |
| 93DCG#3-029-030<br>93DCG#3-030-835<br>93DCG#3-035-040<br>93DCG#3-040-045<br>93DCG#3-045-050      | 208 234<br>208 234<br>209 234<br>208 234<br>208 234<br>208 234                                                                                    | < 0.001<br>< 0.001<br>0.010<br>0.003<br>0.007                                | .05  | . eV)<br>eV | // | /                       |  |    |                                       |          |  |  |
| 93DCG#3-050-055<br>93DCG#3-055-060<br>93DCG#3-060-065<br>93DCG#3-065-070<br>93DCG#3-070-075      | 208 234<br>209 234<br>208 234<br>208 234<br>208 234<br>208 234                                                                                    | < 0.001<br>< 0.001<br>0.011<br>0.007<br>0.005                                | 101- |             | N  | /                       |  |    |                                       |          |  |  |
| 93DCG#3-075-080<br>93DCG#3-080-085<br>93DCG#3-085-090<br>93DCG#3-090-095<br>93DCG#3-095-100      | 208 234<br>208 234<br>208 234<br>208 234<br>208 234<br>208 234                                                                                    | 0.003<br>0.002<br>0.002<br>0.002<br>0.001                                    |      |             |    |                         |  |    |                                       |          |  |  |
| 93DC2#5-089-085<br>93DC2#5-085-090<br>93DC2#5-090-095<br>93DC2#5-095-100<br>93DC2#15-000-005     | 208 234<br>208 234<br>208 234<br>208 234<br>208 234<br>208 234                                                                                    | 0.004<br>0.003<br>< 0.001<br>0.003<br>< 0.001                                |      |             |    | -                       |  |    |                                       |          |  |  |
| 93DC2#15-005-010<br>93DC2#15-010-015<br>93DC2#15-015-020<br>93DC2#15-020-025<br>93DC2#15-025-030 | 208         234           208         234           208         234           208         234           208         234                           | 0.001<br>< 0.001<br>< 0.001<br>0.001<br>< 0.001                              |      |             |    |                         |  |    | · · · · · · · · · · · · · · · · · · · |          |  |  |
| 93DC2#15-030-035<br>93DC2#15-035-040<br>93DC2#15-040-045<br>93DC2#15-045-050<br>93DC2#15-050-055 | 208 234<br>208 234<br>208 234<br>208 234<br>208 234<br>208 234                                                                                    | <pre>&lt; 0.001 &lt; 0.001 &lt; 0.001 &lt; 0.001 &lt; 0.001 &lt; 0.001</pre> |      |             |    | , .                     |  |    |                                       |          |  |  |
| 93DC2#15-055-060<br>93DC2#15-060-065<br>93DC2#15-065-070<br>93DC2#15-070-075<br>93DC2#15-075-080 | 208         234           208         234           208         234           208         234           208         234           208         234 | 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001                 |      |             |    |                         |  | ., | 1                                     |          |  |  |

CERTIFICATION: Mrs Vinh



# **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: MILLER, ROBERT

Г

P.O. BOX 2941 GRAND FORKS, BC VOH 1H0 \*\*

Page Number :2 Total Pages :2 Certificate Date: 06-JAN-94 Invoice No. : I 9326886 P.O. Number : Account : LJP

Project : DAYTON-CAMP Comments:

|                                                                                                                                                                             |            | CERTIFICATE OF ANALY | SIS A9326886     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|------------------|
| PREP<br>SAMPLE CODE                                                                                                                                                         | Au<br>oz/T |                      |                  |
| 93DC2#15-080-085       208       234         93DC2#15-085-090       208       234         93DC2#15-090-095       208       234         93DC2#15-095-100       208       234 | < 0.001    |                      |                  |
|                                                                                                                                                                             |            |                      |                  |
|                                                                                                                                                                             |            |                      |                  |
|                                                                                                                                                                             |            |                      |                  |
|                                                                                                                                                                             |            |                      |                  |
|                                                                                                                                                                             |            |                      |                  |
|                                                                                                                                                                             |            | CERTIFIC             | ATION: Mach Vinh |

# APPENDIX E

# Field Drill Logs

· ·

|   |           | •            |                   |       |               |              | -       | -            | • •       | • }-                 | f.       |                 | b.      |              | -        |                     |                                                                                 |
|---|-----------|--------------|-------------------|-------|---------------|--------------|---------|--------------|-----------|----------------------|----------|-----------------|---------|--------------|----------|---------------------|---------------------------------------------------------------------------------|
|   |           |              |                   |       |               |              | PR      | OJI          | ECT       | ; <u> </u>           | 11       | DA              | YTO     | e            |          |                     | poge of <u>シ</u><br>DRILL HOLE # <u>タステラギノ</u>                                  |
|   | L         |              |                   |       | re CAr        | nР           |         |              | MAR       |                      |          |                 |         |              |          |                     | Total Depth<br>Angle                                                            |
|   | _         | Ε.           |                   |       | ······        |              |         |              |           |                      |          |                 |         |              |          |                     | Bearing<br>Hole Diam <i>14_`</i>                                                |
|   | E<br>     | LEV.         |                   |       |               |              | •       |              |           |                      |          |                 |         |              |          |                     | Logged by <del>Ren</del><br>Date Logged                                         |
|   |           |              |                   |       |               | %            | %       | %            | %         | %                    | 2        | %               | %       | %            | %        | %                   | Date Drilled                                                                    |
|   | DEP<br>TH | CODÉ         | PROTO<br>LITH     | ALT   | STRUC<br>TURE | MAG          | PO      | D.           |           | Elizy<br>Bx<br>Other | Fe<br>Ox | Ept<br>Zoist    | Gnt.    | Colc         |          | 41.1                | COMMENTS AU                                                                     |
|   | Q5        | V            | V V<br>V V        | ProPS |               |              | 1.      | 11           |           |                      |          | 7               |         |              |          |                     | Avolosit - VFre XII.me Lakgrangen<br>W/ hiblender Pheno's 45                    |
|   | 10        | Ý            | ~~                |       |               | $\downarrow$ | V       | 1            |           |                      | V        |                 |         |              |          | ~                   | V SAA 40                                                                        |
|   | 15        | v            | V V<br>V V        |       |               | 1%           |         | 1.           |           |                      | ~        | 1.              |         | 7            |          | 55%                 | SAA / Korger & Stendo                                                           |
| í | 20        | $\checkmark$ | ~~<br>~~          |       |               | 4            | _       | 1            |           |                      | *        | $\checkmark$    |         |              |          | <i>3</i> ⊂ <i>6</i> | 3AA 165                                                                         |
|   | 25        | Vbx          | VV<br>J           |       | 64            | 1%           |         | 1.7          | 7         | 2%                   | 1        | $\square$       |         |              | ~7       | 60%                 | V SAA /with blue-gray                                                           |
|   | 30        | 4            | V V<br>AJ         |       | br            | V.           |         | 17           |           | V                    | Ţ.       | /               |         |              | 510      | 640                 | V ONE Fing of grano-<br>dioric, Er XIIINE dioric 120<br>minutor OK and Sulfids. |
|   | 35        | Vox          |                   |       | bř            | 3%           |         | TI           | 7         | 5%                   | ·<br>/   |                 |         | /            |          |                     | V blue grung chips                                                              |
|   | 40        | $\downarrow$ |                   |       | br<br>br      |              |         | ¥/           | /         | 1                    | V        |                 |         |              |          | 40%<br>V            | Andeschic                                                                       |
|   | 45        | $\vee$       | νv                |       | J.            | 101          |         | 1.7          |           | · · ·                | -        |                 |         | 1            | V        | 1.01                | 65                                                                              |
|   | 50        | ¥            | vy                |       |               | 3%           |         | V            |           | 1x<br>↓              |          | /               |         | 4            |          | 60%<br>V            | ۲ L                                                                             |
|   | 55        | Vsk          | V V<br>V V        |       |               |              | Tr      | 0.3/         |           |                      |          | 14/             |         | 1            |          |                     | why struct 15                                                                   |
|   | 60        | $\sim$       |                   |       | <u></u>       | 1%           | V       | V            |           | 4%<br>↓              |          | ×/              |         | 4            | Tr       | 7₀%<br>↓            | wely skud                                                                       |
|   | 65        | vsk          | vv.               |       |               |              |         | 0.5/         |           | •                    |          | 1r <sup>†</sup> |         |              |          |                     | V wrystend 10                                                                   |
|   | 70        |              | ~~                |       |               | 5%           | Tr<br>V | *            |           |                      |          | ↓/              | 1r<br>↓ | /            | 2°6<br>↓ | 75%<br>1            | When Stened                                                                     |
|   | 75        | <b>D</b> 3K  | 1<br>1<br>1       |       | <b>`</b>      | ¥            |         | 1.7          | $\square$ |                      |          | $\square$       | v       | //           |          | V                   | 140<br>WK145 Frad - 140                                                         |
|   | 80        |              | VV                |       | f?            | 2%           |         | $\checkmark$ |           |                      |          |                 |         | /            | 1.       |                     | -1                                                                              |
| ₿ |           | 2            | VV<br>V~          |       | F.<br>f?      | *            |         | 1.7          |           |                      |          |                 |         |              |          | ¥                   | fuit?                                                                           |
|   | 85        | 4            | <u>- V</u><br>V V |       | +1            | 1%           |         | *            |           |                      |          | $\square$       |         | /            |          | 70%                 | t Hematic 20<br>Slicks                                                          |
|   | 90        | √<br>√       | vv<br>vy          |       | 1 1 1         | <u>v</u>     |         | /<br>1:7     |           |                      |          |                 |         |              |          | V                   |                                                                                 |
|   | 95        | ↓<br>↓       | VV                |       |               | 1×           |         |              | $\square$ |                      |          |                 |         |              |          | <u>75</u> 7         |                                                                                 |
|   | 00        | V            | VV                | V     |               | V            |         | 2            |           |                      |          |                 |         | $\mathbb{Z}$ | V        | $\checkmark$        | 25                                                                              |

|   |             |              |            |     |               | <u> </u>     | <u></u> |            |           |       | •             |           | <u></u> |           |         |                 |                                           |
|---|-------------|--------------|------------|-----|---------------|--------------|---------|------------|-----------|-------|---------------|-----------|---------|-----------|---------|-----------------|-------------------------------------------|
|   |             |              |            |     |               |              | -       | -          | •••       |       |               |           | -       |           | -       | 1 <b>6</b>      | poge _2_ of _2_                           |
|   |             |              |            |     |               |              | PR      | OJI        | ECT       | :     | $\mathcal{D}$ | ayt       | ton     | •         |         |                 | DRILL HOLE # <u>93 DCP #1</u>             |
|   | L           |              |            |     |               | mφ           | S       | UMI        | MAR       | Y     | СС            | мм        | ENT     | S         |         |                 | Total Depth<br>Angle90                    |
|   |             |              |            |     |               |              | -       |            |           |       |               |           |         |           |         |                 | Bearing<br>Hole Diam <u>4 '/4 ''</u>      |
|   | Ε           |              | <u></u>    |     |               |              |         |            |           |       | <u></u>       |           |         |           | ··-     |                 | Logged byREM                              |
|   | -           |              | ······     |     |               |              |         |            |           |       |               |           |         |           |         | ·····           | Date Logged<br>Date Drilled               |
|   | DEP         | CODĖ         | PROTO      |     | STRUC         | %            | %       | %<br>&y    | %<br>Bi   | %     | %<br>Fe       | %<br>Ept  | %       |           | %<br>87 | %               | COLOR                                     |
|   |             | m            | LITH       | ALT | STRUC<br>TURE | MAG          | PO      | CUP<br>TY/ | Cos       | Other | Ox            | Zoist     | Gnt.    | Colc      | Срх     | Amph            | COMMENTS AU<br>Andresits - Macro clierit? |
|   | <b>/</b> 05 | -<br>-<br>-  | УX         |     |               | 1%           |         | Ľ,         | Ľ,        |       |               | <u>/</u>  |         | Ľ,        | Tr.     | 75%             |                                           |
|   | /10         |              | VV<br>X X  |     |               | V            |         | */         | $\angle$  |       |               |           |         | $\angle$  |         | $\checkmark$    | 1 50                                      |
|   | /15         | 5aa<br>90    |            |     |               | 1%           |         | 0.5/       |           |       |               |           |         |           |         | 4               | SAA Leucocradie dikes? 20                 |
|   | 120         | 1            | × + >      |     |               | V            |         | *          | $\bigvee$ |       |               |           |         | $\square$ |         | $\checkmark$    | 15                                        |
|   | 25          | saa          | ///++      |     |               | Tr           |         | 1.0/<br>Ki | $\square$ |       |               |           |         | $\square$ |         | Ţ               | 55                                        |
| 1 | <b>/</b> 30 |              | VV<br>+ *  |     |               | V            |         | V          | $\square$ |       |               | 7         |         | 7         |         | 4               | 25                                        |
|   | /35         | V            | ~~         |     |               | 10           |         | 0.5        |           |       |               |           |         | 1         |         | 70%             | ANDOS: 6                                  |
|   | 140         | 1            | ~~         | *   |               | $\checkmark$ |         | */         | /         |       |               |           |         | *         |         | <u>a u</u><br>1 |                                           |
|   | 145         |              | V V<br>V V |     |               |              |         | 1.1        | 7         |       |               |           |         |           |         | 7.0             |                                           |
|   | <b>1</b> 50 | $\downarrow$ | VV<br>VV   |     |               | 4%           |         | 4          | //        |       |               | 7         |         |           |         | 75%<br>1        |                                           |
|   |             |              | VV         | ¥   | <u> </u>      | V            |         | /          |           |       |               |           |         | //        | ¥       | *               |                                           |
|   | 55          |              | · ·        |     |               |              |         | 7          |           |       |               | /         |         |           |         | -               |                                           |
|   | 60          | •            |            |     |               |              |         |            | /         |       |               |           |         |           |         |                 | L                                         |
|   | 65          |              |            |     |               |              |         | 4          |           |       |               | 4         |         |           |         |                 |                                           |
| ÷ | 70          |              |            |     | · ·           |              |         | $\angle$   | Ľ,        |       |               | $\square$ |         | $\square$ |         |                 |                                           |
|   | 75          |              |            |     |               |              |         | $\angle$   | Z         |       |               | $\square$ |         | $\angle$  |         |                 |                                           |
|   | 80          |              |            |     |               |              |         | $\angle$   | Z,        |       |               | $\angle$  |         | $\angle$  |         |                 | · · · · · · · · · · · · · · · · · · ·     |
|   | 85          |              |            |     |               |              |         | $\square$  | $\angle$  |       |               | $\angle$  |         | $\angle$  |         |                 |                                           |
|   | 90          |              |            |     | ļ             |              |         | $\square$  | $\angle$  |       |               | <u> </u>  |         | /         | <br>    |                 |                                           |
|   | 95          |              | <br>       |     |               |              |         | $\square$  |           |       |               |           |         |           |         |                 |                                           |
|   | 00          |              |            |     |               |              |         | $\square$  |           |       |               |           |         | $\square$ |         |                 |                                           |

|    |           |                    |                                         |       |               |              | <u> </u>     |              |                | $f_{\alpha}$         |          |                               |      |                          |            |      |                                                               | • .              |
|----|-----------|--------------------|-----------------------------------------|-------|---------------|--------------|--------------|--------------|----------------|----------------------|----------|-------------------------------|------|--------------------------|------------|------|---------------------------------------------------------------|------------------|
|    |           |                    |                                         |       |               |              | DD           |              |                | -                    |          | Ter                           |      |                          |            |      | pogeo<br>#DRILL HOLE # <u>משכף</u>                            |                  |
|    | L         | N.                 |                                         |       | <u>  (a</u> , | njO          |              |              |                | •                    |          | <u>алу Г</u><br>Э <b>ММ</b> І |      |                          |            |      | Total Depth90<br>Angle                                        |                  |
|    | E<br>     |                    |                                         |       |               |              |              |              |                | •                    |          |                               |      |                          |            |      | Hole Diam. <u>4 ''</u><br>Logged by <i>REI</i><br>Date Logged | <u>n</u> 7       |
| 6  |           |                    |                                         |       |               | %            | %            | %            | %              | %                    | _√<br>%  | %                             | %    | %                        | %          | %    | Date Drilled                                                  |                  |
|    | DEP<br>TH | CODĖ               | PROTO<br>LITH                           | ALT   | STRUC<br>TURE | MAG          | PO           | Py<br>CuP    | Bi<br>CoS      | Bl of<br>Bl<br>Other | Fe<br>Ox | Ept<br>Zoist                  | Gnt. | Colc<br>Vo<br>Colc       | Px-<br>Cpx | Amot | COMMENTS                                                      | Au               |
|    | Q5        | int<br>atz<br>dior | +++++++++++++++++++++++++++++++++++++++ | Propl |               | ·.           |              | f**/         | $\mathbb{Z}$   |                      | マレ       | /                             |      | $\overline{\mathcal{A}}$ |            | 15%  |                                                               | لى 5             |
|    | 10        | $\checkmark$       | +++++++++++++++++++++++++++++++++++++++ |       |               |              |              | ₩/           |                |                      | )        | <u>/</u>                      |      |                          | V          | V    | $\checkmark$                                                  | S                |
| )t | 15        | int<br>br          | ťδ                                      |       | bx            | Tr           | 0.5%         | 1./          |                |                      | V<br>H   |                               |      |                          | 1.1        | 40%  | grandioits up<br>Matic partings                               |                  |
|    | 20        |                    | +V<br>VA                                |       | $\downarrow$  |              | $\downarrow$ | */           |                |                      | ↓        |                               |      | $\bigvee$                | Ţ          |      | V                                                             | ch               |
| Ì  | 25        | int<br>gran<br>dio |                                         |       | -             |              | Tr           | 5%           |                |                      |          |                               |      | $\bigvee$                | 11         |      | ł                                                             | GVY              |
|    | 30        | KSPP<br>P          | ΓY                                      |       |               |              |              | $\checkmark$ | $\bigvee$      |                      |          |                               |      | $\bigvee$                |            |      | V Seyondie [                                                  | ,<br>370         |
|    | 35        | V<br>V             |                                         |       | b×.           |              | 1,           | 27/          | $\overline{/}$ | 1.0%                 |          | $\square$                     |      |                          | Π          |      | Andoste !                                                     | ( <del>J</del> o |
|    | 40        | 4                  | 10                                      |       | $\downarrow$  | $\downarrow$ | V            | $\square$    | $\square$      | $\downarrow$         |          | $\square$                     |      | $\square$                |            |      |                                                               | <u>ک</u> ور      |
|    | 45        | く<br>と''           | X                                       |       |               |              | 05           | 14           | $\bigvee$      |                      |          | $\bigvee$                     |      |                          |            | 65%  | $\mathbf{V}$                                                  | 5-               |
|    | 50        | $\bigvee$          | X X<br>X                                |       |               |              | L            | *            |                |                      |          |                               |      | $\bigvee$                |            |      |                                                               | 135              |
|    | 55        | dio                | Х<br>УУ                                 |       |               |              | Tr           | 21/          |                |                      |          |                               |      |                          | 1          | 30%  |                                                               | 10               |
|    | 60        |                    | X X                                     |       |               |              | ¥            | $\mathbb{V}$ |                |                      |          | $\bigvee$                     |      | $\bigvee$                |            | ļ    |                                                               | 30               |
| ). | 65        |                    | XX                                      |       | by            |              | Tr           | 27/          |                | 1                    |          | $\bigvee$                     |      |                          |            | 60%  |                                                               | 145              |
|    | 70        |                    | Х<br>Х                                  | Sile  | $\downarrow$  |              | V            | $\checkmark$ | $\bigvee$      |                      |          | $\bigvee$                     |      | $\bigvee$                | 1          | Y    |                                                               | Ez-              |
|    | 75        | H fe is            |                                         | Rol   | 1             |              | T,           | 57/          |                | 1                    |          | $\square$                     |      | $\bigvee$                | 1.         | 30%  | Horn Fele                                                     | え                |
|    | 80        | $\checkmark$       | · · · ·                                 |       |               |              | V            | V            | $\square$      | 1                    |          | $\bigvee$                     |      | $\overline{V}$           | 11         | V    |                                                               | 105              |
| ľ  | 85        | V                  | <br>V<br>V                              |       |               |              | 101          | 39%          | $\square$      |                      |          | $\mathbb{Z}$                  |      |                          | $\prod$    | 55%  | Ander D                                                       | C <sup>2</sup> / |
| Ì  | 90        |                    | レレ                                      |       |               | ×            | V            |              | $\square$      |                      |          | $\bigvee$                     |      | /                        | $\prod$    |      |                                                               | 160              |
|    | 95        |                    | ~~                                      | ,     |               |              | Tr           | 37           | $\bigvee$      |                      |          | $\bigvee$                     |      | $\bigvee$                | 11         | 17   |                                                               | Fz-              |
| þ  | 100       |                    | ~                                       |       |               |              | 1            | V            | $\overline{/}$ |                      |          | $\nabla$                      | Ň    | Y                        | 11         | Ţ    | 9                                                             | 15               |

.

|            |             |              |                                         |       | •             |     | -                 | -            | • •            | - · ·<br> | ·            | }                 | -    |           |                    | • • • • •    | <b>-</b> . | •                          |                         | ige2_c                          |                |
|------------|-------------|--------------|-----------------------------------------|-------|---------------|-----|-------------------|--------------|----------------|-----------|--------------|-------------------|------|-----------|--------------------|--------------|------------|----------------------------|-------------------------|---------------------------------|----------------|
|            | 1           | ንሮልት         | ION -                                   |       |               | ۰.  |                   |              | ECT<br>MAR'    |           |              | <u>yta</u><br>MMI |      |           |                    |              | D          |                            | al Depti                | <u>93 DCP "</u><br>h <u>190</u> |                |
|            |             | Ν.           |                                         |       |               |     | -                 |              |                | •         |              |                   |      | <u> </u>  |                    | <del>;</del> |            |                            | gle<br>aring<br>le Diam | <u> </u>                        |                |
|            | EI          | _EV .        |                                         |       |               |     | <u> </u>          |              |                |           |              |                   |      |           | ,                  |              |            | Lo<br>Da                   | gged by<br>te Logg      | ed                              | 1<br>          |
|            |             |              |                                         |       |               | %   | %                 | %<br>P       | %<br>Bi        | %         | %            | %                 | %    | %<br>Calc | %                  | %            |            | Da                         | te Drille               | ed                              |                |
|            | DEP<br>TH   |              | СПП                                     |       | STRUC<br>TURE | MAG | <b>P</b> 0        | CuPy         | Cos            | Other     | Fe<br>Ox     | Zoist             | Gnt. | Colc      | Px-<br>Cpx         | Amph         |            | 1 Autor                    | СОММЕ                   | ENTS                            | Au             |
|            | <i>ļ</i> 05 | ~<br>-+      | vv                                      | 7YUV4 |               |     |                   | Z            | Z              |           |              | /                 |      | $\angle$  | 1%                 | 10%          |            | CINdosi<br>Kighty<br>Siliz | alter                   | /·                              | 宅              |
|            | 10          |              |                                         |       |               |     |                   |              | $\angle$       |           |              | <u> </u>          |      | Z         |                    |              |            | 5//12                      |                         |                                 | 133            |
|            | 115         |              |                                         |       |               |     | , <sup>5]</sup> . | 1%           | $\angle$       |           |              | $\square$         |      | $\square$ |                    |              |            |                            |                         | ·                               | 72             |
|            | 20          |              |                                         |       |               |     | ł                 |              |                |           |              | $\square$         |      | $\square$ |                    |              |            |                            |                         | L                               | T <sub>Y</sub> |
| Ì          | 125         |              |                                         |       |               |     | Tr                | 274          |                |           |              |                   |      | $\bigvee$ | 37                 | 6070         |            |                            |                         | L                               | 8              |
|            | 130         |              | ~~~                                     |       |               |     | 1                 | $\checkmark$ | $\bigvee$      |           |              |                   |      | $\bigvee$ |                    | Į↓.          |            |                            |                         | L                               | 14             |
|            | 135         |              |                                         |       |               |     | 1.                | 5%           |                |           | V<br>H       |                   |      | $\bigvee$ | Tr                 | 50%          |            |                            |                         | (                               | 18             |
| Ì,         | 140         |              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |       |               |     | 1                 |              | $\square$      |           | ↓            | $\square$         |      | $\bigvee$ |                    | 1            |            |                            |                         |                                 | 32             |
|            | i45         |              | V<br>V                                  |       |               |     | <b>1</b> ,†       | 87/          | $\square$      |           |              | $\square$         |      | $\bigvee$ |                    | 35%          |            | Sheaved                    | •                       | L                               | 733            |
|            | 150         |              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |       |               |     | V                 | V            | $\square$      |           |              | $\overline{/}$    |      | $\nabla$  | +                  | <b>↓</b>     |            |                            |                         | L                               | 73             |
| Ī          | 155         |              | V.V                                     |       |               |     | Tr                | 3%           |                |           | ک<br>۲       | $\square$         |      |           | 181                | 55%          | 6          |                            |                         | ,<br>,                          | Se             |
| •          | /60         |              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |       |               |     | $\downarrow$      | 1            | $\square$      | 1         | $\downarrow$ | /                 |      |           |                    | T            |            |                            |                         | L                               | ₹,             |
|            | 165         |              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |       | 1             |     | Tr.               | 3%           | $\overline{/}$ | 1         |              | $\square$         |      |           | 57                 | 000          |            |                            |                         | L                               | 2              |
|            | 170         |              | ~v<br>                                  | 5110  | 1             |     | V                 | $\mathbb{V}$ |                | 1         |              | $\overline{/}$    |      |           | 1                  | V            |            | hornto                     | k                       | L                               | ЗŽ,            |
|            | 175         | bio<br>Hfels | 1                                       |       |               |     |                   | 05%          | /              | 1         |              |                   | 1—   | 17        | 1                  | 101          | <u></u>    | ·biotil<br>horr            | s.<br>Lek               | L                               | 123            |
| <u>;</u> , | 180         |              |                                         |       | 1             | 1   | Ú,                | $\mathbb{V}$ | 1              |           |              | ľ/                | 1    | 1         |                    |              | ]          | x11.                       | ter .                   | T                               | 1/2            |
|            | 185         |              | , ,<br>                                 |       |               |     |                   | r]           | 1              | 1         |              | $\mathbb{V}$      |      | 1         | $\uparrow\uparrow$ |              |            | <u> </u>                   |                         | Ţ                               | 105            |
| Î          | 190         | >            | <br>                                    |       |               |     |                   |              |                |           |              | $\mathbb{Z}$      |      |           | $\prod$            | V            |            | 8                          |                         | T                               |                |
|            | 95          |              |                                         |       |               |     |                   | $\mathbb{Z}$ |                |           |              |                   | 1    |           | 1                  |              |            |                            |                         | L <u>.</u>                      | 1              |
| Ų          | 200         |              |                                         |       |               |     |                   | V            |                |           |              | V                 |      |           | 1                  |              |            | •                          |                         | L                               | 1              |

| :"<br>   |     |         |          |          |               |     |    |                |           |       |     | •              |          |                |            |           |           |                   | <u> </u>         |                            |                         |
|----------|-----|---------|----------|----------|---------------|-----|----|----------------|-----------|-------|-----|----------------|----------|----------------|------------|-----------|-----------|-------------------|------------------|----------------------------|-------------------------|
|          |     |         |          |          | •             |     | -  | ۲ -            | lañ       | 26    | 'nç |                |          |                | -          | المندة ال |           |                   | pc               | ige (                      | of                      |
|          |     |         |          |          |               |     | PR | OJ             | ЕСТ       | :7    | )a_ | yto            | N        |                | _          |           | DRIL      | L HOL             | -E #             | <u>930:2</u>               | <u>, <del>*</del> )</u> |
| 1        | L   |         | TION .   |          |               |     | S  | UMN            | MAR       | Ϋ́    | СС  | MM             | ENT      | S              |            |           |           | Tot<br>An         | al Dept<br>gle   | ige<br><u>G3D22</u><br>h90 |                         |
|          |     | N.<br>E |          |          |               |     |    |                | ·         |       |     |                |          |                |            |           |           | Be                | oring<br>1e Diam | Ag<br>REP                  | ,                       |
|          | E   |         | <u> </u> |          |               |     |    |                |           |       |     |                |          |                |            |           |           | Lo                | gged by          | REP                        | 7                       |
|          | 1   |         |          |          | ·             |     |    |                |           |       |     |                | · ·      |                | ·          |           | · <u></u> |                   |                  | ed<br>ed                   |                         |
| Ė.       | DEP |         | PROTO    |          | STRUC         | %   | %  | %<br>Py_       | %<br>Bi   | %     | %   | %<br>Ept       | %        | %<br>Colc      | %          | %         |           |                   |                  | COLOR                      | <u> </u>                |
|          | TH  | CODE    |          | ALT      | STRUC<br>TURE | MAG | PO | CuPy           | Cos       | Other | Ox  | Zoist          | Gnt.     | Colc           | Px-<br>Cpx | Amph      |           |                   | COMMI            | ENTS                       | Au                      |
|          | 05  | 010     | X X<br>X | L        |               |     |    | $\angle$       | $\angle$  |       | 4   | /              |          | $\angle$       |            |           |           | orite             |                  | •                          | 1                       |
|          | 10  |         | XX       |          |               |     |    | /              | $\bigvee$ |       |     |                |          | $\bigvee$      |            |           |           | 1                 | •                | L                          | -<br> .                 |
|          | 15  |         | XX       |          |               |     |    | $\bigvee$      | $\nabla$  |       |     |                |          |                |            |           |           |                   |                  |                            | 1                       |
|          | 20  |         | XX       |          |               |     |    | $\nabla$       | $\square$ | N     |     | $\square$      |          | $\bigvee$      |            |           |           |                   |                  | L                          | 1                       |
|          | 25  |         | ×Χ       |          |               |     |    | $\square$      | $\square$ |       |     | $\square$      |          | $\square$      |            |           |           |                   |                  |                            | -                       |
|          | 30  |         | XX       |          |               |     |    | $\overline{/}$ | $\square$ |       |     |                |          | $\overline{/}$ |            |           |           |                   |                  | L                          | 1                       |
|          | 35  |         | ΎΥ<br>X  |          |               |     |    | $\overline{/}$ |           | 1     |     | $\square$      |          | 7              |            |           |           | 1                 |                  | l                          | 1                       |
| <b>K</b> | 40  |         | XX       |          |               |     |    | 17             |           |       |     |                |          |                |            |           | •         | V                 |                  | L                          |                         |
|          | 45  | alt     | K<br>X   |          |               |     |    | 11             |           |       | T   |                |          | ľ              | · · · ·    |           |           | nesije<br>cligrit |                  | τ                          | -                       |
|          | 50  |         | L's      |          |               |     | -  | 11/            |           |       |     | $\overline{/}$ |          |                |            |           | magn      |                   | V                | [                          | 1                       |
|          | 55  | and.    | ×<br>×   | +        |               |     |    |                |           |       |     |                |          | 7              |            |           |           | Volcan            | 112              | ~                          | $\frac{1}{1}$           |
| ŝ        | 60  |         | 24       |          |               | †   |    | 7              | /         |       |     | 7              |          |                |            |           |           | An                | desit            | ?<br>;=                    | 1                       |
|          | 65  |         |          |          |               |     |    | 17             | 17        |       |     | 7              |          |                |            |           |           |                   | ugwes            | 1234                       |                         |
|          | 70  |         |          |          | <br>,         |     |    | 17             |           |       |     | 7              |          | 7              |            |           |           |                   |                  | L                          |                         |
|          | 75  |         |          |          |               |     |    | 1              |           | 1     |     | 7              | <u> </u> | ľ              |            |           |           | . <u></u>         |                  | L                          |                         |
|          | 80  |         | ~~       |          |               |     |    | 7              |           |       |     | ľ/             |          | 7              | <u> </u>   |           |           |                   |                  | L                          |                         |
| ļ        | 85  |         | VV       |          |               |     |    | 17             | 1         | 1     |     | 17             |          | 17             |            |           |           | <u> </u>          |                  | L                          |                         |
| Í        | 90  |         | V        | <u> </u> |               |     |    | 17             |           | 1     |     | 17             |          | 17             |            |           |           |                   | <del></del>      | L                          | <u> </u>                |
| ;∎       | 95  |         | ĐI       | <u>↓</u> | †             | 1   |    | 1              | [         | 1     |     | 17             | 1        | 17             | 1          |           | <b>  </b> | <u>.</u>          |                  | L                          | 1                       |
| Į        | 100 |         |          | [        |               |     |    | ľ              | /         |       |     | Ĭ7             | ,<br>,   | ľ              |            |           |           |                   |                  | l                          | +                       |

|            |     |                     |               |                 |               |     |    |              | _            |          |          |              |          |                     |          |          |              |                              | الجب الشد        |              | -     |
|------------|-----|---------------------|---------------|-----------------|---------------|-----|----|--------------|--------------|----------|----------|--------------|----------|---------------------|----------|----------|--------------|------------------------------|------------------|--------------|-------|
|            |     |                     |               |                 |               |     | -  | -            | • •          | - ·<br>- | •        | <u></u>      |          |                     |          | ، هينه ، |              |                              | ро               | ige _/       | of _/ |
|            |     |                     |               | ·               |               |     | PR | OJE          | ЕСТ          | :        |          | )au          | 170      | 2                   |          |          | DRIL         |                              |                  | <u>93007</u> |       |
| ł          | L   |                     | FION -        |                 |               |     | S  |              | MAR          |          |          |              |          | S                   |          |          |              | An                           | gle              | h00          |       |
|            |     | N.<br>E             | <u></u>       |                 |               |     | -  |              | HA           | <u>D</u> | <u> </u> | ns.          | e        |                     |          |          | · <u></u>    | Bea                          | oring<br>le Diam | -15<br>RE    |       |
|            | E   |                     |               |                 |               |     |    |              |              |          |          |              |          |                     |          | -        | , <u>,</u> _ | Log                          | gged by          | RE           | m     |
|            |     |                     |               |                 |               |     |    |              |              |          |          | ·····        |          |                     |          |          |              |                              |                  | ed<br>ed     |       |
|            | DEP | CODE                | PROTO<br>LITH | ΔΙΤ             | STRUC<br>TURE | %   | %  | %<br>fy/     | %<br>Bi      | %        | %<br>Fe  | %<br>Ept     | %        | %<br>Colc           | %<br>Px- | %        |              | <u> </u>                     |                  | COLOR        | -     |
|            |     | · · · ·             | 1V/N          |                 | TURE          | MAG | P0 | CuPy         | Cos          | Other    | Ox       | Žoist        | Gnt.     | disse               | Срх      | Amph     |              | rile                         | COMMI            |              | Au    |
|            | Q5  | dio                 | X X<br>X X    |                 |               |     |    | /            | K-           |          |          | <u> .</u>    |          | $\langle - \rangle$ |          |          | and          |                              | •                | L            |       |
|            | 10  |                     | XX            |                 |               |     |    | <u>/</u>     | Ľ            |          |          | $\angle$     |          | $\square$           |          |          |              |                              |                  | T            | ·.    |
|            | 15  |                     | XX            |                 |               |     |    | Ľ            | Ľ            |          |          | $\angle$     |          | Д                   |          |          |              |                              |                  | ······       |       |
|            | 20  |                     | XX            |                 |               |     |    | $\bigvee$    |              |          |          |              |          |                     |          |          |              |                              |                  |              | -     |
|            | 25  |                     | XX<br>XX      |                 |               |     |    | /            |              |          |          |              |          |                     |          |          |              |                              |                  | L            | -     |
| ų.         | 30  | mag<br>skn          | XA            | ma              | qtz<br>bx     |     |    | 17           | 7            |          |          |              |          |                     |          |          | V            |                              |                  | L            | -     |
|            |     | mg                  |               |                 | · ·           |     |    | 7            | 7            |          |          | 7            |          | /                   |          |          | magne        | site sto<br>diori            | te               | [            | -     |
|            |     |                     | $\approx$     | <u>m</u> .<br>1 |               |     |    | 7            | 7            |          | -        | /            |          | /<br>/              |          |          | <i>a</i>     |                              |                  | L            |       |
| )          | 40  |                     | XX            |                 |               |     |    | 7            | $\mathbb{Z}$ |          |          |              |          | //                  |          |          |              | ;                            |                  | ι            | _     |
| Ì          | 45  |                     | A             |                 |               |     |    | $\mathbb{K}$ | $\mathbb{Z}$ | .<br>    |          | 47           |          | //                  |          |          |              | <u> </u>                     |                  | [            |       |
|            | 50  | dio                 | X             | <u> </u>        |               |     |    | Κ,           | $\mathbb{Z}$ |          | <b> </b> | Ľ-,          |          | $\vdash$            |          |          | hight        | V alter                      | ud .             | ·            |       |
| Î          | 55  |                     | XX            |                 | br            |     |    | /<br> {{}}   | $\angle$     | ļ        |          | Κ,           |          | K,                  |          |          | fine         | y alter<br>c grai.<br>nesite | -ed              | · · · ·      |       |
| Ì-         | 60  |                     | XX            |                 | bo            | ļ   |    | Ki           |              |          |          | Ľ            |          | $\square$           |          | <br>     | aite         | negite                       | . bx             |              |       |
| <b>.</b> , | 65  | 4K                  | えいえ           | mg              | bx            |     |    |              | $\bigvee$    |          |          | $\bigvee$    |          |                     |          |          |              |                              |                  | L            | -     |
|            | 70  |                     | XX            |                 |               |     |    | $\bigvee$    |              | 1        |          |              |          | $\bigvee$           |          |          |              | - dwnitic                    | 2                | L            | -     |
| <u> </u>   | 75  | diu                 | X             |                 |               |     |    | 11           |              | 1        |          | 7            | 1        | /                   | 1        |          | qtz u        | einiz.<br>vidic              | 3 <sup>.</sup>   |              | -     |
| ~          | 80  |                     | X             |                 |               |     |    | F./          | //           | 1        | -        | ľ7           | <u> </u> | ľ7                  |          |          | very         | a Hene                       | 9                | l            |       |
|            | 85  | <u>}-</u> }−        | X             |                 |               | 1   |    | k.           | 17           | 1        | ┢        | 17           |          | 17                  | <b> </b> |          |              |                              |                  | L            |       |
|            |     | $\uparrow \uparrow$ | X             |                 |               |     |    | K.           | K-/          | ┨──      | ┢        | 7            |          | K-/                 | ┨──      |          |              | •                            |                  | L            | +     |
|            | 90  | 11                  | X             |                 | <u> </u>      |     |    | V<br>K./     | $\not\vdash$ | ┨──      |          | $\not\vdash$ | <b> </b> | $\not\vdash$        |          |          |              |                              |                  | [            |       |
|            | 95  | ╂╂                  | Êx            | ·               |               |     |    |              | K,           | _        |          | K,           |          | K                   |          |          | ┣- \ -       | -                            |                  | T            |       |
|            | 100 | V                   | X             | 1               |               |     |    | V            | V            |          |          | V            |          | V                   |          | 1        |              |                              |                  |              |       |

|          |          |                   |                                         |          |               |              |            |              |                            |          |           | •         |      |                   |         |                |          | _        |      |                  |        |                                       | • •                |
|----------|----------|-------------------|-----------------------------------------|----------|---------------|--------------|------------|--------------|----------------------------|----------|-----------|-----------|------|-------------------|---------|----------------|----------|----------|------|------------------|--------|---------------------------------------|--------------------|
|          |          |                   | He                                      | ind      | ėns           | e            | -          | -            | <i></i> .                  |          |           |           |      |                   |         | • • :          | •        |          |      |                  | ро     | ge                                    | of 🔟               |
|          |          |                   |                                         |          |               |              | PR         | OJE          | ECT                        | : _      | $\square$ | >Ay       | TOM  | ر                 | <u></u> |                | (        | DRIL     |      |                  |        | <u>9300:</u>                          |                    |
|          | L        |                   |                                         | )ayto    | <u>م</u> .    | _            | S          | UMN          | MAR                        | Y        | CC        | MM        | ENT  | S                 |         |                |          |          | -    | Angle            |        | <u> </u>                              |                    |
|          |          | Ε.                |                                         |          |               |              | _          |              |                            |          |           |           |      |                   |         |                |          |          | H    | Bearin<br>Hole D | )iam   | . <u> </u>                            |                    |
| ŀ        | E        | LEV.              |                                         |          | <u> </u>      |              | - <u>-</u> |              |                            |          |           |           | -    |                   |         |                |          | <u> </u> | t    | _ogge            | d by   | ed                                    | י)                 |
| <u>,</u> |          |                   |                                         |          |               | %            | 0/         | %            |                            | 0/       | 67        | 0/        | 0/   | 0/                | 87      | %              |          |          | _ C  | Date D           | Drille | ed                                    |                    |
|          | DEP      | CODĖ              | PROTO                                   | ALT      | STRUC<br>TURE | 70           | %          | <b>Py</b>    | e%<br>Bi                   | Blive    | Fe        | Ept       | 70   | %<br>Colc<br>Volc | Px-     | <i>%</i>       | -        |          |      | 0.0              | MMF    |                                       |                    |
|          |          | V.                |                                         |          | TORE          | MAG          |            |              | Z                          | G.F.SI   | UX.       |           | Gnt. | disse             | Срх     | Amph           |          |          |      |                  |        | <u> </u>                              |                    |
|          |          | Rhy br<br>Microso | 1+.                                     |          | \$            |              |            | K-/          | K7                         |          | ۲         | 7         |      |                   |         |                |          | Rhy      | ette | by<br>to         |        |                                       | ╉╾┥                |
|          |          | dio               | XX,                                     |          |               | Tr           |            | /.<br>1./    | K                          | Tr.      |           | /         |      |                   |         | 5°.            |          | 10       | ien  | to               |        |                                       |                    |
| Ľ        | 15       | dia               | <u></u>                                 |          |               | Tr           |            | Ľ,           | Ľ                          |          |           | 4         |      | 4                 |         | 60.            |          |          |      |                  | •      |                                       |                    |
|          | 20       | dw                | ХХ<br>ХУ                                |          |               | V            |            | Ž            | Ľ                          |          |           | $\square$ |      | $\angle$          |         | 40 <b>.</b> °  |          |          |      | -                |        |                                       |                    |
| Ì        | 25       | 1.0               | ХХ<br>ХХ                                |          |               | 0.5          |            | V.           | $\bigvee$                  |          |           |           |      |                   |         | Ð.             | 1        | V        |      |                  |        |                                       | 1                  |
|          | 30       | V                 | V V<br>V V                              |          |               | Tr           | Tr         | 1.           |                            |          |           |           |      |                   |         | 60.            |          | An       | desi | t ?              |        |                                       |                    |
|          | 35       | ~                 | V /<br>V /                              |          |               | 1.0          |            | 57           | $\overline{7}$             |          | IT        | 7         |      | /                 |         | 70°.           |          |          |      |                  |        | [                                     |                    |
|          | 40       | V                 | 1<br>1<br>1<br>1<br>1<br>1              | 1        |               | /<br>        | 1.         | 03/          | 17                         |          |           | 7         |      | 7                 |         | Ĺ              |          | 1        |      |                  |        |                                       | 1                  |
| - 1      |          | Vbx               | ~~                                      |          |               | *            |            | o.5/         | //                         |          | *         | 7         |      | 7                 |         | 30.            |          | -{-      |      |                  |        | (                                     | ┨──┤               |
|          |          | V.                | V.                                      |          |               | 11           |            | 1.           | $\mathbb{V}_{\mathcal{I}}$ | <u>.</u> | -         | 7         |      | /_/               |         | <i> 5.</i><br> |          | +        |      |                  |        | L                                     | $\left  - \right $ |
| -<br>-   | 50       |                   | A<br>VV                                 |          |               | Tr+          |            | /<br>/v/     | Ł                          |          | V         | Ý-        |      | K-,               |         | $\downarrow$   |          |          | by.  |                  |        |                                       | <u> </u>           |
| ß        | 55       | ~                 | 10                                      | ļ        |               | 1 <u>.</u>   |            | //           | $\downarrow$               |          | L         | Κ,        |      | 4                 |         | 40°            |          |          |      |                  |        | ,                                     |                    |
| -        | 60       | 4                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |          |               | $\downarrow$ |            | 4/           | $\mathbb{Z}$               |          |           | Ľ         |      |                   |         | 50             |          | ¥        |      |                  |        | · · · · · · · · · · · · · · · · · · · |                    |
|          | 65       |                   | E                                       | \$H      |               |              |            | $\vee$       | $\bigvee$                  |          |           | $\bigvee$ |      |                   |         |                |          |          | -    |                  |        |                                       |                    |
|          | 70       |                   |                                         |          |               |              |            |              |                            | 1        |           | $\square$ |      |                   | 1       |                |          |          |      |                  |        |                                       |                    |
|          | 75       |                   |                                         |          |               | 1            |            |              | 17                         | 1        |           |           | 1    | [                 | 1       |                |          |          |      |                  |        | [                                     |                    |
| -        | 80       |                   |                                         | 1        |               |              |            | 17           | 17                         | 1        | ┢         | 17        | 1    | ľ7                | 1       |                |          |          |      | · .              |        | L                                     | ╡┈┥                |
|          | <u> </u> |                   | · · ·                                   |          |               |              |            | 17           | 17                         |          | -         | 17        |      | 7                 |         |                |          |          |      |                  |        |                                       | $\left  - \right $ |
|          | 85       |                   |                                         |          |               |              |            | $\mathbb{K}$ | $\not\vdash$               |          | -         | K         |      | K-/               |         |                | <b> </b> |          |      |                  |        | L                                     | +                  |
| ľ        | 90       |                   |                                         | <b>_</b> | <u> </u>      |              |            | K            | K-                         |          | _         | K,        |      | K,                | ┢       |                |          |          |      |                  |        | L ·                                   | ╉╼╍┥               |
|          | 95       |                   |                                         | <b> </b> |               |              |            | K,           | K,                         |          | <b> </b>  | K,        |      | K,                | ┨       |                |          |          | •    |                  | -      | r                                     |                    |
|          | 100      |                   |                                         |          |               |              |            | V            | $\bigvee$                  |          |           | V         |      | V                 |         |                |          |          |      |                  |        | L                                     | 1                  |

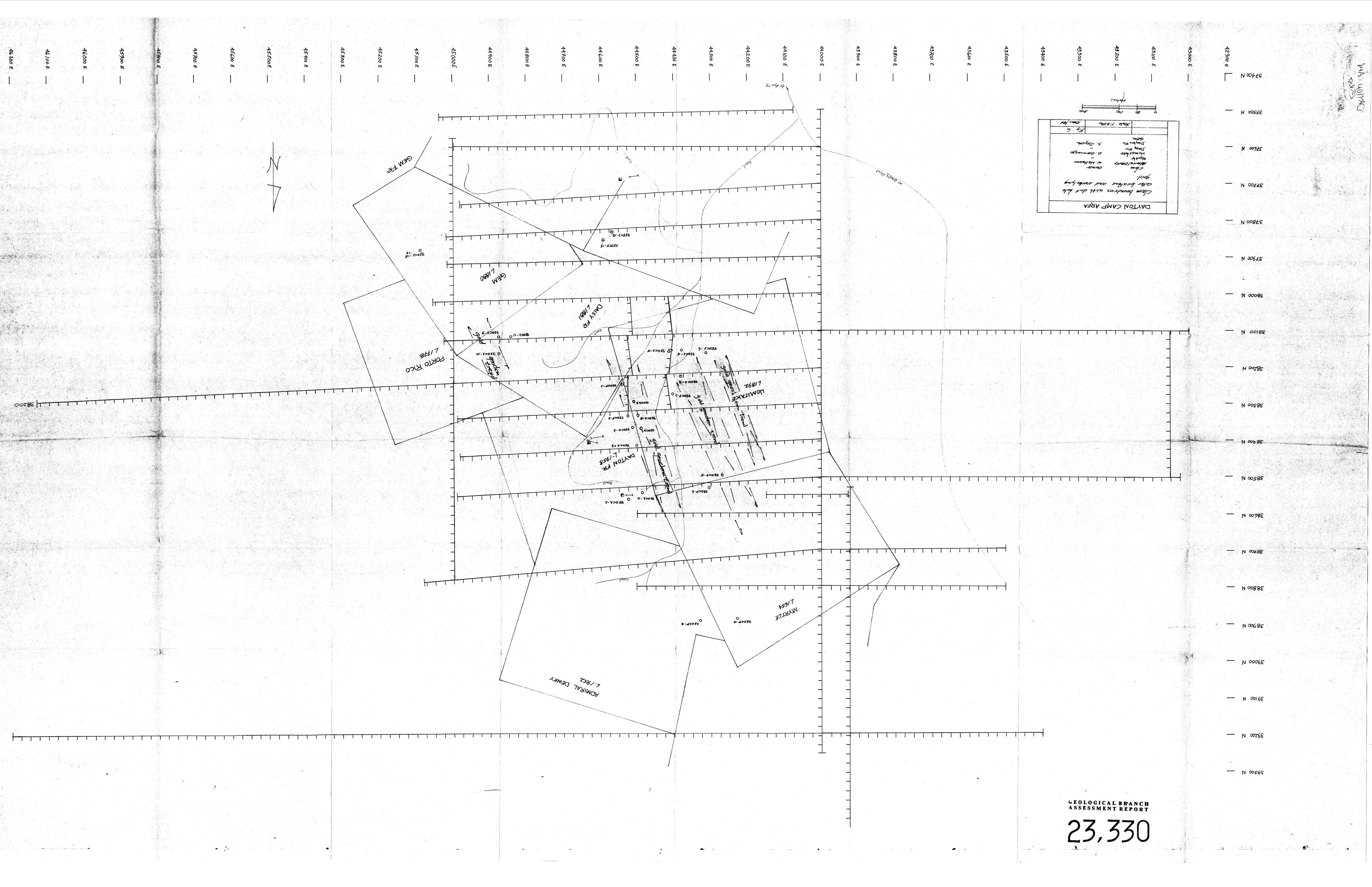
2-HAUD LONCE • • • • • • page \_\_\_\_ of \_\_ PROJECT: Dayton DRILL HOLE # 93DC2 #19 Total Depth \_\_\_\_\_\_\_\_ SUMMARY COMMENTS LOCATION \_\_\_\_\_ Angle Ν\_\_\_\_\_ Bearing Hole Diam. \_\_\_\_\_\_\_ 35-65 Need to Ε\_\_\_\_\_ Logged by <u>REM</u> find m Serface - New ELEV \_\_\_\_\_ Date Logged \_\_\_\_ rock typa Date Drilled \_\_\_\_\_ 
 %
 %
 %
 %
 %
 %
 %
 %

 STRUC
 Py
 Bi
 Fe
 Ept
 Calc
 Px 

 TURE
 MAG
 PO
 CuPy
 CoS
 Other
 Ox Zoist
 Gnt
 Gisser
 Cpx
 Amph
 COLOR PROTO ALT STRUC DEP Au CODE COMMENTS TH gran grandorit + X+ 05 + x+ 10 Ŧ 15 XJ + 20 Xt t 25 x t Contact with diorite 0 x± 30 biotite Hornfels kχ 6700 35 3:0 durit X marble? Afels -,~ , - · Elustic melicer? 40 - , -. -45 \*1 -,-. 50 \_ , \_ . . . \_ , \_ 55 . - , - . -, - , 60 - . . - . -.-65 . -Feldspar porphyry 170 fe19 ++ 70 por + 75 7 +1 80 Íth 85 90 95 00

|             |     |            |                 |       |       | ···  |          |              |                                       |            |                    |              |      |            |           |           |         | 24.                   |                                       |                 |
|-------------|-----|------------|-----------------|-------|-------|------|----------|--------------|---------------------------------------|------------|--------------------|--------------|------|------------|-----------|-----------|---------|-----------------------|---------------------------------------|-----------------|
|             |     |            |                 |       | •     |      | -        | -            | F                                     | ten        | $\dot{\mathbf{v}}$ | 6            | n    | <b>-</b> . | •         | • • :     | •       |                       | ige c                                 |                 |
|             |     |            |                 |       |       |      | PR       | OJE          | ЕСТ                                   | :          | Ĵ                  | Da           | yto  | N          |           |           | DRILL   | HOLE #                | 930cj±                                | 15              |
| ļ           | L   |            | ION _           |       |       |      | S        | UMN          | AAR'                                  | Y          | Со                 | мм           | ENT  | S          |           |           |         | Total Dept            | h <u>190'</u>                         |                 |
|             |     | N _        |                 |       |       | _    | _        |              |                                       |            |                    |              |      |            |           |           |         | - Bearing             |                                       |                 |
| ,           | FI  | E_<br>LEV_ |                 |       |       |      | -        |              |                                       |            |                    |              |      |            |           |           |         | - Hole Diam           | REM                                   |                 |
|             |     |            |                 |       |       |      |          |              |                                       |            | -                  |              |      |            |           |           |         | . Date Logg           | ed                                    |                 |
|             |     |            |                 |       |       |      |          |              |                                       |            | 1.001              |              |      |            | ~~~~~     |           |         | Date Drill            | ed                                    |                 |
|             | DEP | CODÉ       | PROTO           | A 1 T | STRUC | - %a | <b>%</b> | 2%           | °∕₀<br>Bi                             | %          | %<br>Fe            | %<br>Ept     | ~~   | Coic       | 70<br>Px- | %         |         |                       | COLOR                                 | 1.              |
|             | тн  |            |                 |       | TURE  | MAG  | PO       | CuPy         | Cos                                   | Other      | 0x                 | Zoist        | Gnt. | Colc       | Срх       | Amph      |         | COMM                  |                                       | Au              |
| A. A.       | Q5  | dia        | XX<br>XX        |       |       |      |          | $\angle$     | $\angle$                              |            |                    | /            |      | /-         |           |           | ک       | into                  |                                       |                 |
| 1944 - 194  | 10  |            | ХХ<br>ХХ        |       |       |      |          |              |                                       |            |                    |              |      |            |           |           |         | ·                     | L                                     |                 |
|             | 15  |            | XX              |       |       |      |          | 7            | 7                                     |            |                    | 7            |      | 7          |           |           |         |                       | L                                     |                 |
|             |     |            | XX<br>XX        |       |       |      |          | 7            | 7                                     |            |                    | 7            |      | 7          |           |           |         | 1                     | τ                                     |                 |
| 1           | 20  |            | XX<br>XX        |       |       |      |          | 7            | 7                                     |            |                    | 7            |      | 7          |           |           |         |                       | ·                                     | <u>↓</u>  <br>┥ |
|             | 25  |            | XX<br>XX        |       | 1     |      |          | $\mathbb{Z}$ | / / / / / / / / / / / / / / / / / / / |            |                    | $\not\vdash$ |      | 47         |           | . <u></u> |         | <u> </u>              | t                                     |                 |
| D 1         | 30  |            | <u>х^</u><br>ХХ |       |       |      |          | 4            | 4                                     |            | -                  | Κ,           |      | Κ_         |           |           |         |                       | 1                                     |                 |
|             | 35  |            | XX              |       | ·     |      |          | K,           | Ľ,                                    |            |                    | K,           |      | 4          | ļ         |           |         |                       | T                                     | <b>_</b>        |
|             | 40  |            | XX<br>XX        | <br>  |       |      |          | V,           | $\square$                             |            |                    | $\mathbb{Z}$ |      | $\angle$   |           |           | · /     |                       | <del></del>                           |                 |
|             | 45  |            | Хх              |       |       |      |          |              |                                       |            |                    |              |      | $\angle$   |           |           |         |                       | ·                                     |                 |
| Y           | 50  |            | X X             |       |       |      |          | 5.           |                                       |            |                    | $\bigvee$    |      |            |           |           |         |                       | · · · · · · · · · · · · · · · · · · · |                 |
| Ń           | 55  | mag<br>SK  | XV              | Ms    | bx    |      |          | Tr/          |                                       | ]          |                    | $\bigvee$    | ]    | $\bigvee$  | 1         |           | pire    | traces<br>te + chalco | L                                     |                 |
| E.          | 60  |            | X               | 1     |       |      |          | T.           |                                       | 1          |                    | $\bigvee$    |      |            | 1         |           | altered | disrite ?             | L                                     | -               |
| ļ           | 65  |            | vv<br>X         | V     |       |      |          | T            | 17                                    |            |                    |              | 1    |            | 1         |           | Trace   | Bottom of h           | ale                                   | -               |
|             | 70  |            | vv<br>x         | +     |       | 1    | 1        | 11           | 17                                    | 1          |                    | 1            | 1    | 1          | $\square$ | 1         | M       | cro clorut            | Marchan G                             |                 |
| •<br>•<br>• |     |            | VV              |       |       |      |          | Tr/          | 1/                                    | 1          | $\uparrow$         | 1            | 1    | ľ7         | 1         | 1         |         | er phone              |                                       | -               |
|             | 80  | <u> </u>   | L'L             |       | 1     |      |          | 11/          | 1/                                    | $\uparrow$ | ╀                  | ľ/           | 1    | /          | 1         |           |         | · · ·                 | L                                     | -               |
| ľ           | 85  |            | X               | <br>· |       |      |          | Tr/          | 17                                    | $\uparrow$ | ╞                  | 17           | 1    | 17         | 1         |           |         |                       | L                                     | -               |
|             | 90  |            | X               |       |       |      |          | 11/          | 1/                                    | $\uparrow$ | ╀                  | 1/           | +    | /          | 1         |           |         |                       | L                                     | +               |
|             | 1   |            | X               |       |       |      |          | Fr/          | 17                                    | 1          | ╀                  | 17           | ┨──  | 1/         | +         |           |         |                       |                                       |                 |
|             | 95  |            | X<br>VV         |       |       |      |          | 11           | $\not\vdash$                          | +          | ┢                  | $\mathbb{K}$ | ┨╌   | Ł,         | -         |           | ┣ ─     |                       | [                                     | +               |
| at i        | 100 |            | X               | 1     |       |      |          | V            | V                                     |            |                    | V            |      | V          |           |           |         |                       |                                       | <u> </u>        |

|             |              |                                         |                                         |          |          |     |          |           |              |       |          |           |      |                 |            |          |                                                      | · |
|-------------|--------------|-----------------------------------------|-----------------------------------------|----------|----------|-----|----------|-----------|--------------|-------|----------|-----------|------|-----------------|------------|----------|------------------------------------------------------|---|
|             |              |                                         |                                         |          | •        |     | PR       | -<br>O.IF | гст          | •     | T        |           | tor  | <br>ა           |            | • • :    | pogeof<br>DRILL HOLE # <u>93 DC2</u>                 |   |
| ŀ           | L            | OCAT                                    | 10N .                                   |          |          |     |          |           | /AR`         |       | v        |           |      |                 |            |          | Total Depth90'<br>Angle                              |   |
| ļ           |              |                                         |                                         |          |          |     |          |           |              |       |          | <u></u>   |      |                 |            |          | Bearing                                              | - |
|             | E            | LEV _                                   |                                         |          |          |     |          |           |              |       |          |           | -    |                 |            |          | Logged by <u>REM</u>                                 | - |
|             |              |                                         |                                         |          |          |     |          |           |              |       |          |           |      |                 |            |          | Date Logged<br>Date Drilled                          | - |
| P           | DEP          |                                         | PROTO                                   | 1        | STRUC    |     | %        | %<br>Py/  | %<br>Bi      | %     | %        | %<br>Ept  | %    | %<br>Colc<br>vo |            | %        | COLOR                                                |   |
|             | TH           | CODE                                    |                                         | ALT      | TURE     | MAG | PO       | CuPy      | Cos          | Other | Dx<br>Ox | zoist     | Gnt. | Colc            | Px-<br>Cpx | Amph     | - COMMENTS A                                         | 1 |
|             | ) <i>0</i> 5 |                                         | $\overline{\mathbf{x}}$                 | Mg       |          |     |          | 11        | $\angle$     |       |          | <u> </u>  |      | $\square$       |            |          | Anderte?                                             |   |
|             | 110          |                                         | ×v                                      |          |          |     |          | 11/       | $\backslash$ |       |          |           |      | $\square$       |            |          | highly altered                                       |   |
|             | 115          |                                         | VV                                      | V        |          |     |          | 11/       | $\square$    |       |          |           |      | $\square$       |            |          | ·                                                    |   |
| Ĩ           | 120          |                                         | VV<br>X                                 |          |          |     |          | *         |              |       |          | 7         |      | $\mathbb{Z}$    |            |          |                                                      |   |
|             | 125          |                                         | VV<br>X                                 |          |          |     |          | 11        |              |       |          | $\square$ |      | $\square$       |            |          |                                                      |   |
| ļ           | 130          |                                         | X                                       |          |          |     |          | */        |              |       |          |           |      |                 |            |          | ······                                               |   |
| ľ           |              | le uco<br>er cr-150<br>H blor<br>H blor |                                         |          | ·        |     |          |           | 7            |       |          |           |      |                 |            |          | Holend altering 1                                    |   |
| R           | 140          |                                         | +++++++++++++++++++++++++++++++++++++++ |          |          |     |          | 7         | 7            |       |          |           |      |                 |            |          | lencocratic<br>fine crystallize<br>Horbene por phyry |   |
| <b>/</b>    | 145          |                                         | ++                                      |          |          |     |          | ľ         | 7            |       |          |           |      |                 |            | i        | Harbene par phyry                                    |   |
| ľ           | 150          |                                         | +++                                     |          |          |     |          | 7         | 7            |       |          |           |      |                 |            |          |                                                      |   |
|             | 155          |                                         | t-<br>++                                |          | <u> </u> |     |          | 7         |              | }     |          |           |      |                 |            |          |                                                      |   |
|             | 160          |                                         | ++                                      |          |          |     | <b> </b> | ľ7        | /            |       |          | 7         |      | /               |            |          | L                                                    |   |
| ĵ,          | 165          |                                         | ++                                      |          |          |     |          | ľ7        | 7            |       |          | 7         |      | /               |            |          |                                                      |   |
| )           | 170          |                                         | +++                                     |          |          |     | ,        | 17        | 7            |       |          | 7         |      | ľ7              |            |          | <br>                                                 |   |
| • ?/<br> }. | 175          |                                         | ++                                      |          |          |     |          | 1         | 7            | 1     |          | 1         |      | ľ7              |            |          | · · · · · · · · · · · · · · · · · · ·                |   |
|             | 180          |                                         | ++<br>++                                | 1        |          | 1   |          | 17        | 7            | 1     |          | ľ7        |      | 7               |            |          | ·                                                    |   |
|             | 185          |                                         | +++++++++++++++++++++++++++++++++++++++ |          | +        |     |          | 17        | 7            | 1     |          | 1         |      | 1               |            |          |                                                      |   |
|             | 190          |                                         | ++                                      | 1        | 1        | 1   |          | 1         | 7            |       | †        | 1         |      | 1/              |            | <u> </u> | L                                                    |   |
| ₩ /         | 95           | <u> </u>                                |                                         | <u> </u> | 1        | 1   | 1        | 17        | 7            | 1     | <b>†</b> | 1         |      | 1               |            |          | L                                                    |   |
|             | 00           |                                         |                                         |          |          | 1   | 1        | ľ7        | 7            | 1     |          | 1         | <br> | ľ7              |            |          |                                                      |   |


Hand lesse page \_\_\_\_\_ of \_\_\_\_ PROJECT: Dayton DRILL HOLE # 930002 Total Depth \_\_\_\_\_ SUMMARY COMMENTS LOCATION \_\_\_\_\_ Angle Not Sent for Assay Bearing \_\_\_\_\_ Ν\_\_\_\_\_ Ε\_\_\_\_\_ Hole Diam. Logged by \_\_\_\_\_ ELEV \_\_\_\_\_ Date Logged \_\_\_\_\_ Date Drilled \_\_\_\_\_ 
 %
 %
 %
 %
 %
 %
 %
 %

 STRUC
 Py
 Bi
 Fe
 Ept
 Calc

 TURE
 MAG
 PO
 CuPy
 Cos
 Other
 Ox
 Zoist
 Gnt
 Gisser
 % % COLOR CODE PROTO ALT DEP STRUC Px-Au COMMENTS TH. Cox Amph 0-155-05 CK green <u>cr phene Andesita</u> (Micro durita Textt.) 10 15 20 155-165 25 Valcanie ? w/ 30 have bland forphyry and fell porphyry Frag @ 160-165, 35 40 45 165-170. Amplobalet=/ Alter volton== 50 55 60 . EGH\_ 65 70 Very Hold For Jagging Hold For Jagging And Ason, ... 75 80 85 90 95 00

ᡔᢁᢄᡰ᠋᠋᠋᠋᠋᠋᠋᠋᠋᠋᠋᠋᠋᠋᠋᠋᠋

المحيي بمكتب الأربيك سار بتستكرك والأكاك فتقتر الماسين

