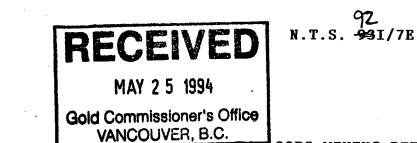
FILMED

LOG NO:	MAY 3 1 1994	RD.
ACTION.		1
		;
FILE NO:		


GENESIS PROPERTY

(Genesis 5, 9, 10-22)

1994 SOIL SURVEY

Latitude 50°25'N

Longitude 120°35'W

AMLOOPS MINING DIVISION British Columbia

GEOLOGICAL BRANCH ASSESSMENT REPORT

Vancouver, B.C. May 1994

P.L. Grexton

TABLE OF CONTENTS

Dage

r	-0-
Summary	i
Conclusions	ii
Reccommendations	ii
Location and Access	1
Topography, Vegetation and Glaciation	1
Claim Data	2
1994 Program	3
Regional Geology	4
Exploration History and Previous Results	5
Property Geology	6
1994 Results	7
Selected Bibliography	8

LIST OF APPENDICIES

Appendix I	Certificates of Analysis, Methods and Detection Limits
Appendix II	Sample Descriptions
Appendix III	Statement of Expenditures
Appendix IV	Statement of Qualifications

LIST OF TABLES

Table 1	Claim Data	page 2
---------	------------	--------

LIST OF FIGURES

following page ii Figure 1 Location Map ii Figure 2 Target Summary 2 Figure 3 Claim Map 4 Regional Geology Figure 4 5 Historical Assessment Data . . Figure 5 • . 6 Figure 6 Property Geology 7 Soil Geochemistry Copper (ppm) . Figure 7a . . . Figure 7b Soil Geochemistry Gold (ppb) 7 7 Soil Geochemistry Arsenic (ppm) Figure 7c . . . 7 Soil Geochemistry Antimony (ppm) . . . Figure 7d 7 Figure 7e Soil Geochemistry Ph .

SUMMARY:

The Genesis Property is located 35 km south of Kamloops, B.C. on N.T.S. map sheet 92I/7E. Claims cover a forested area of low, rounded hills and gentle slopes. The Coquihalla Highway crosses the western portion of the property. Access to the eastern part of the claims is available via the Lac Le Jeune Forest Service Road and a network of logging roads.

Genesis is within the Quesnellia Terrane and occupies the eastern margin of a broad, northerly belt of Nicola Gp. rocks which is bounded to the east and west by the Nicola and Guichon Batholiths, respectively. Quesnellia Terrane is host to a number of significant copper-gold porphyry deposits. Recorded historical data show moderate to strongly anomalous Cu (1200 ppm), occurring in soils over a 4 km² area in the northeast portion of the property. Government maps indicate alkaline intrusive rocks bearing similarities to the Iron Mask Batholith occur in the immediate area. A large subcircular aeromagnetic high of moderate relief is present in the western half of the property.

Comprising 39 contiguous units, the claims protect an area having good potential for hosting a copper-gold porphyry deposit. Between April 30 and May 8, 1994, the writer spent 6 days on the property. The program aimed at confirminig the copper soil anomalies found by earlier workers and to test for the presence of gold. Work consisted of the construction of 3.7 km of slope corrected, flagged grid lines and the collection of 104 soil samples. In addition, at the former 1200 ppm Cu site, one soil sample, one humus sample, one rock sample and a soil pan concentrate was collected.

The 1994 program successfully confirmed the presence of moderate to strongly anomalous Cu over the northeast portion of the property. Values of 250 to 964 ppm Cu occur over a significant portion of the sample area. These anomalies remain open in all directions. Distribution of Au is more restricted with only 7 sites yielding values of 20 to 70 ppb and one site with 110 ppb.

Additional grid construction and soil sampling is required to delineate the Cu and Au soil anomalies. Detailed mapping of bedrock is required over the grid area.

i

- 1. Moderate to strongly anomalous Cu and minor Au occur in soils over the current grid area.
- Magnitude of the anomalous Cu values is consistent with those obtained by the 1972 survey on the former Ram claims.
- 3. Both Cu and Au anomalies have not been adequately delineated by the 1994 sampling and remain open in all directions.
- 4. The geological setting of the claim area is very favourable for the formation of an economic Cu (Au) deposit.

RECCOMMENDATIONS:

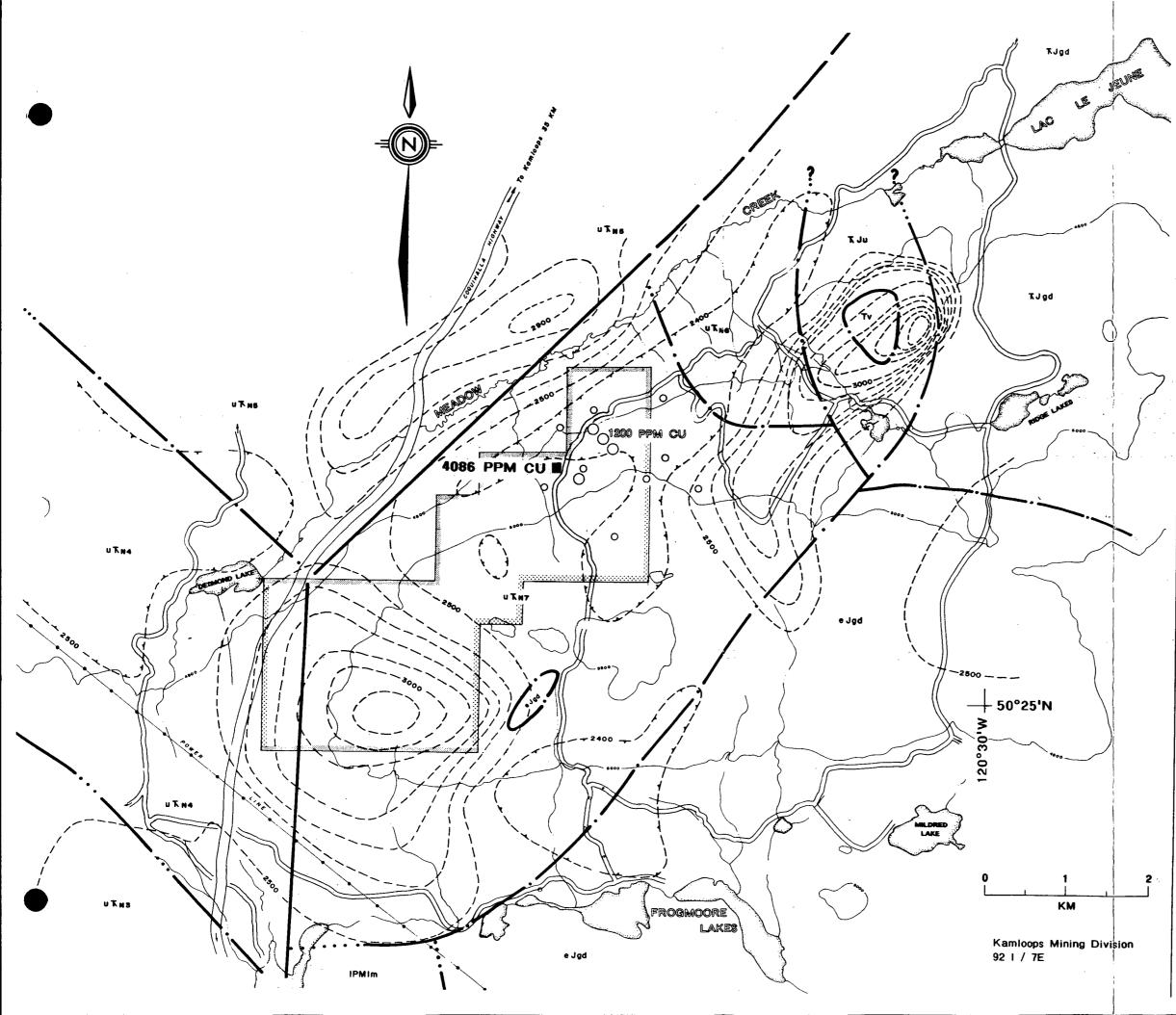
- 1. Complete grid construction and soil sampling over the rest of the property with priority given to sampling the northeastern portion of the claims.
- 2. Detailed bedrock mapping be completed over the grid area.

LOCATION AND ACCESS

Centred on latitude 50°26'N and longitude 120°35'W, the Genesis property is located immediately east of Desmond Lake, 40 km south of Kamloops, B.C. It is in the Kamloops Mining Division on N.T.S. map sheet 92I/7E.

The Coquihalla Highway crosses the western portion of the property. Access to the eastern portion of the claims is possible from Lac Le Jeune via Ridge Mountain Forest Service Road and a network of new and old logging roads. Travel time from Kamloops via either route is 35 to 45 minutes. Most roads are passable with two wheel drive. See Figures 1 and 2 for location and access.

TOPOGRAPHY, VEGETATION AND GLACIATION


Claims cover an area of low, rounded hills and gentle slopes. Second growth pine, spruce and poplar predominate. Cedar grows in small boggy areas. Deciduous undergrowths of willow and poplar occur locally. Extensive deadfall over much of the property indicates the area burned +20 years ago. Clearcut logging blocks are present on the eastern portion of the property. Property elevations range from 1280 to 1706 m asl (4200 to 5600 feet asl). A number of small creeks drain the area.

Government maps indicate ice movement through the area was from northwest to southeast. About 85% of the property is covered by glacial debris.

1

LOCATION MAP

TARGET SUMMARY

GENESIS PROPERTY

	· ·
	LEGEND
[TERTIARY
	Basalt
eJgd	JURASSIC & CRETACEOUS Nicola Batholith - Granodiorite, quartz manzanite
	TRIASSIC & JURASSIC
TJU,9d	Ultramatic intrusions of uncertain age, granodiorite
	TRIASSIC NICOLA GROUP
UTNS	Intermediate (augite, plagioclase) volcanic porphyry, sedimentary rocks
UTN4	Pillowed basalt
UTNB	Volcanic (augite) porphyry, argillite
UTNS	Sedimentary rocks
UTN7	Foliated diorite, amphibolite; metamorphic equivalents to NS & NG
	PALEOZOIC & MESOZOIC
IPMIm	Schief
	· · · ·
	Fault
	Geologic contact
	1972 SOIL SURVEY HIGHLIGHTS
0	2 500 ppm Cu MAXIMUM 1209 PPM COPPER
0	350 - 499 ppm Cu
<	AEROMAGNETIC RESPONSE- 100 GAMMA CONTOUR INTERVAL
-	GENESIS PROPERTY BOUNDARY
5000	Topographic contour, feet a.s.l.
	Creek
\bigcirc	Lake or pond
7	Lagging or secondary road

CLAIM DATA

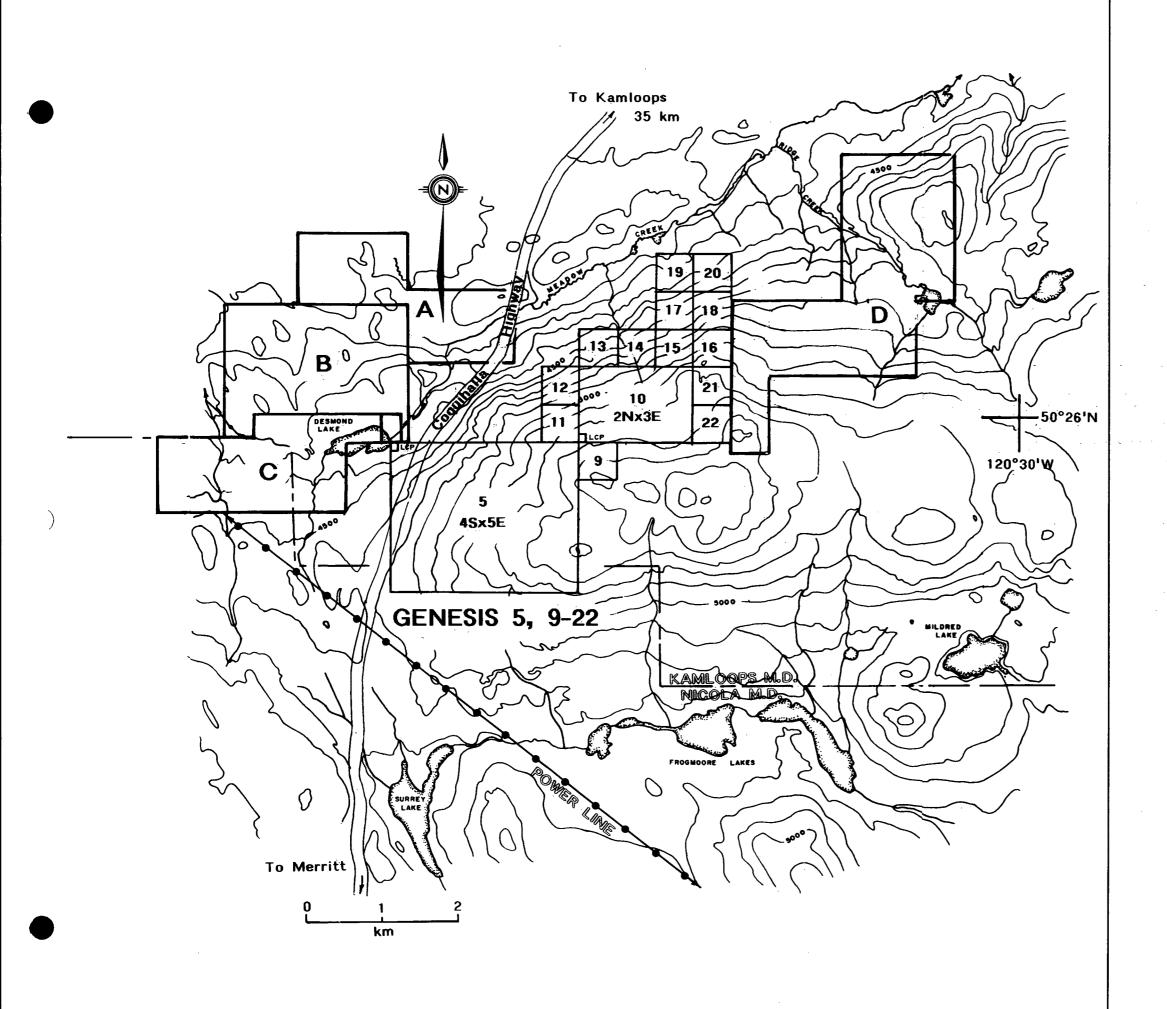

The property comprises 2 four post claims and 13 two post claims totalling 39 contiguous units. Claim statistics are presented in Table 1 below. Locations are shown on Figures 1 and 3.

TABLE 1

CLAIM DATA

Name		Tenure #	Dimension	Units	Staked	Expires	Owner
Genesis	5	309736	4S x 5E	20	18 05 92	18 05 95	Grexton
Genesis	9	309745		1	17 05 92	17 05 95	Grexton
Genesis	10	309734	2N x 3E	6	22 05 92	22 05 9 5	Grexton
Genesis	11	309746		1	22 05 92	22 05 95	Grexton
Genesis	12	309747		1	22 05 92	22 05 95	Grexton
Genesis	13	309748		1	22 05 92	22 05 9 5	Grexton
Gênesis	14	309749		[·] 1	22 05 92	22 05 96	Grexton
Genesis	15	309750		1	22 05 92	22 05 96	Grexton
Genesis	16	309751		1	22 05 92	22 05 96	Grexton
Genesis	17	309752		1	22 05 92	22 05 96	Grexton
Genesis	18	309753	× .	1	22 05 92	22 05 96	Grexton
Genesis	19	309754		1	22 05 92	22 05 9 5	Grexton
Genesis	20	309755		. 1	22 05 92	22 05 95	Grexton
Genesis	21	309756		1	22 05 92	22 05 95	Grexton
Genesis	22	309757		1	22 05 92	22 05 95	Grexton

2

A

JB 1-12 9977-9988 Grant Crooker

В

WRT 12 6185 Carulli Resources

С

DES 1-4 1544, 7856-7858 C. Boitard

D

RIPPLE DARK STAR SILVER STAR BLUE STAR RED STAR WHITE STAR 309991-309996 B.H. Kahlert

GENESIS PROPERTY CLAIM MAP

.

FIGURE 3

1994 PROGRAM

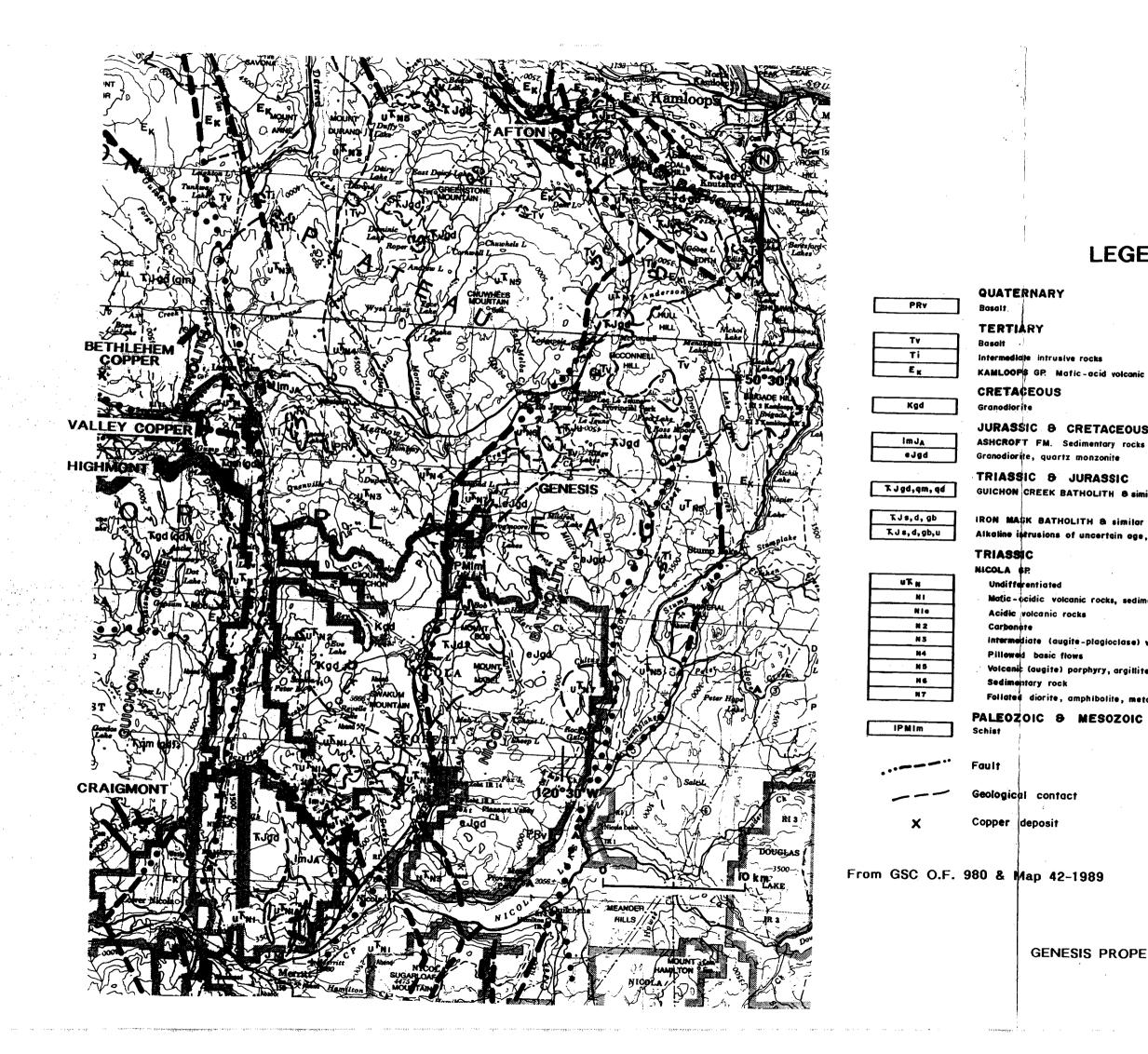
Purpose of the program was to verify Cu soil anomalies found by the 1972 survey on the Ram claims and to test for the presence of Au in soils.

Between April 30 and May 7, 1994, the writer spent six days on the property. Work consisted of grid construction and detail soil sampling in the vicinity of the 1200 ppm Cu soil anomly. With some difficulty the Ram 0+00 baseline was found and the site of the 1200 ppm Cu sample site (BL 4+00S) was located. A 3.7 km, slope corrected, flagged grid was established using a compass and hipchain. Lines were spaced 50 m apart on a north-south baseline. Soils were collected at 25 m intervals using a shovel and placed in kraft bags. At the site of the 1200 ppm Cu anomaly, a standard soil sample was collected along with a soil pan concentrate, humus and rock samples. In collecting the soil pan, material from the B_m Horizon was placed in a 12x20" plastic sample bag and later reduced by the standard panning method. The initial volume of material filled about half of the plastic bag. Material from the B Horizon and in particular the B_m Horizon was the preferred sample medium for all soil samples. A total of 104 grid soil samples were collected. Sample collection was typically slow and tedious as much of the area is underlain by moss-covered felsenmeer with poor soil development or glacial lacustrine deposits.

Samples were taken to Rossbacher Laboratory of Burnaby, B.C. They were analysed for Cu plus 31 other elements using ICP and for Au by atomic adsorption. Certificates of Analyses, methods and detection limits are in Appendix I. Results for Cu, Au, As, Sb and ph are plotted on Figures 7a-e. Sample descriptions are in Appendix II.

3

REGIONAL GEOLOGY (GSC 0.F. 980, MAP 42-1989)


According to government maps, the Genesis property is in the Quesnellia Terrane and is primarily underlain by Nicola Gp. metavolcanic rocks. Regionally, the Nicola Gp. forms a broad, northerly belt of mainly subaerial, intermediate-mafic volcanic flow, breccia and pyroclastic rocks, and their metamorphosed equivalents. Lesser clastic sedimentary and acid volcanic rocks occur. To the west this volcanic belt is bounded by Triassic-Jurassic granodiorite and quartz monzonite of the Guichon Creek Batholith. The early Jurassic Nicola Batholith of similar composition marks the eastern boundary. Smaller intrusive bodies ranging in age from Triassic to Cretaceous, are scattered throughout the area. Compositions range from diorite to syenite with local occurrences of ultramafic rocks. Mafic-acidic Tertiary age volcanic rocks are also present.

Large scale, northwest to northeast trending faults dominate the region with lesser west to northwest transverse faults. Regional geology is shown on Figure 4.

According to government Minfile data, all but 10 of the 174 mineral occurrences in the region contain Cu. Vein and porphyry style mineralization dominate. The copper may occur alone or in combination with one or more of Au, Ag, Pb, Zn, Mo and lessor W, Fl and Hg. Rocks of the Guichon and Iron Mask Batholith are of particular importance.

Government aeromagnetic maps show one large subcircular positive magnetic feature of moderate relief on the western half of the property.

4

LEGEND

KAMLOOPS GP. Matic-acid volcanic rocks, local sedimentary rocks

JURASSIC & CRETACEOUS

GUICHON CREEK BATHOLITH & similar rocks. Quartz monzonite, granodi rite, quartz diorite minor diorite

IRON MASK BATHOLITH & similar alkaline intrusions. Syenite, diorite, gabbro Alkaline intrusions of uncertain age, partly coeval with Iron Mask Batholith. Syenite, diorite, gaboro, ultramafic

Matic-Acidic volcanic rocks, sedimentary rocks

Intermediate (augite-plagioclase) volcanic porphyry, sedimentary rocks Volcanic (augite) porphyry, argittite

Follated diorite, amphibolite, metamorphic equivalents to NS & N6

GENESIS PROPERTY REGIONAL GEOLOGY

EXPLORATION HISTORY AND PREVIOUS RESULTS

Although claim records show the area to have been actively staked since the early 1970's, assessment records are only available for the Ram and Parl mineral claims. Property boundaries and highlights of previous results are shown on Figure 5.

In 1972, RioSierra Development conducted soil and ground magnetic surveys on a 30 km grid over their Ram claims in the northeast portion of the current Genesis property. Moderate to strongly anomalous Cu (maximum 1200 ppm) was found over a 4 km² area. Background was 40 ppm Cu. No additional work was recorded and the claims lapsed.

On the Parl claim, VLF-EM and ground magnetic surveys conducted by Gold Parl Resources on a 20 km grid in 1988, outlined an intrusive-volcanic contact. Results were deemed inconclusive and although additional work was recommended, the claims were allowed to expire. The Parl property covered a portion of the current Genesis 5 mineral claim.

A summary of property work for several properties adjacent to the Genesis claims is presented in the 1993 Assessment Report for the Genstar Property.

5

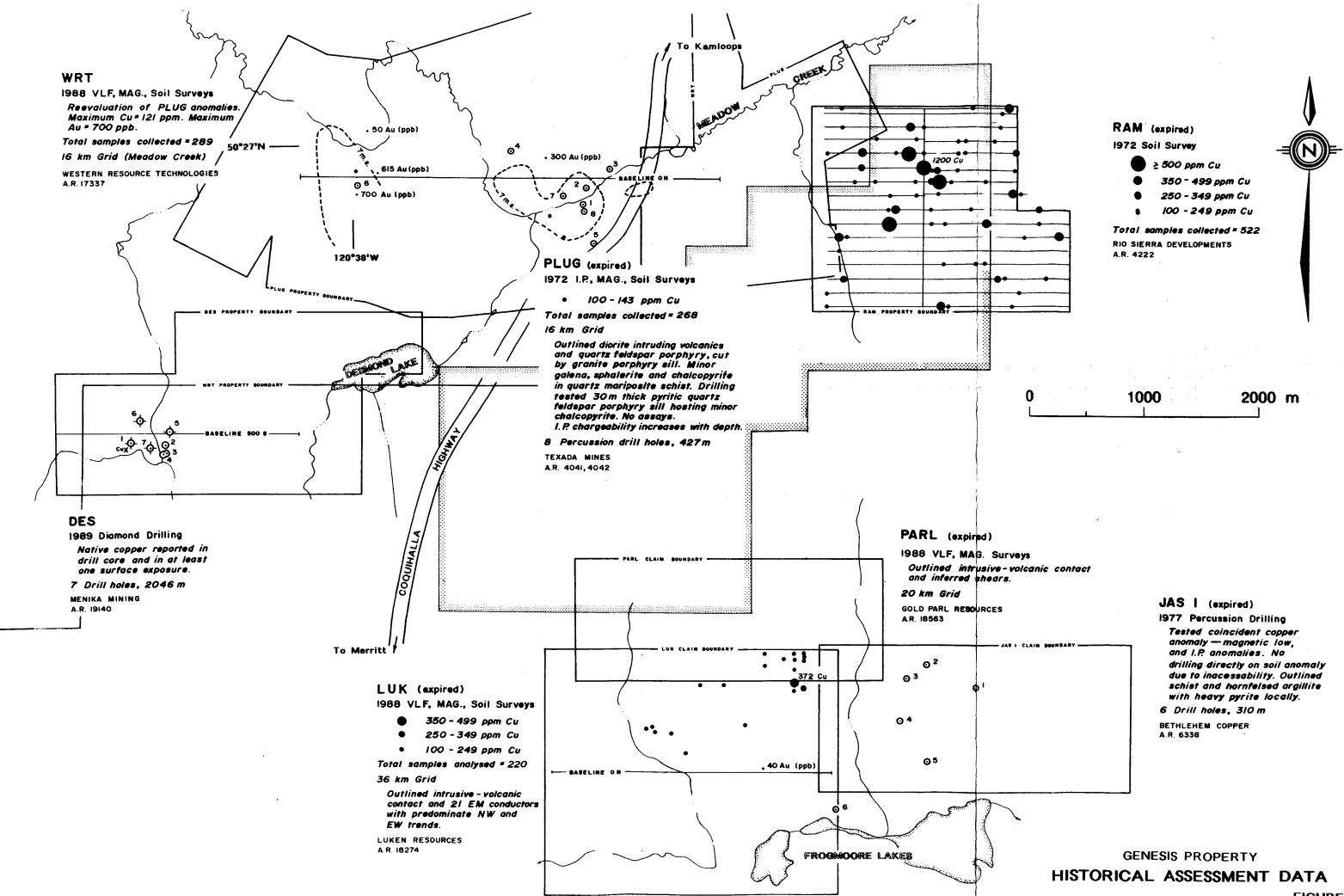


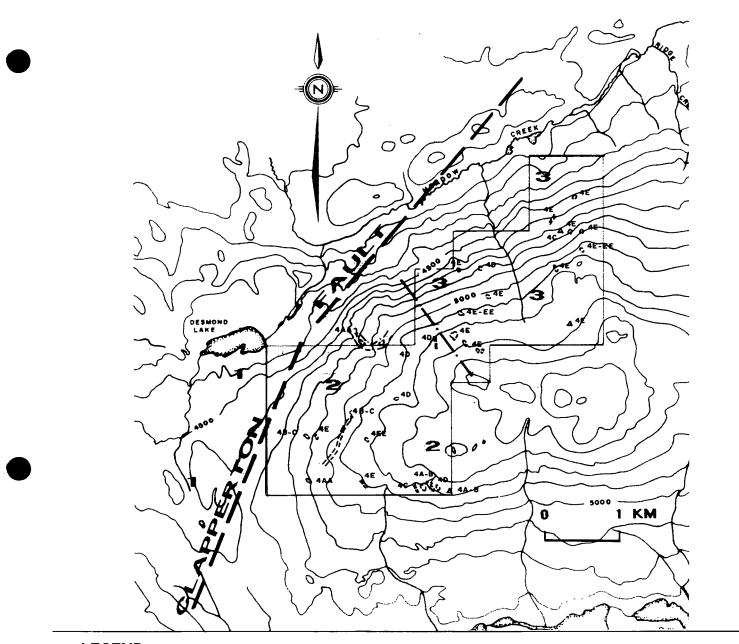
FIGURE 5

PROPERTY GEOLOGY

The claims are underlain by a (meta)volcano-sedimentary assemblage of Triassic-Jurassic age Nicola Gp. rocks which have been disrupted by a variety of intrusive dykes, sills(?) and small apophyses having compositions ranging from mafic to alkaline granite.

Nicola Gp. volcanic rocks have been divided into three main groups. Maroon and green andesite-basaltic flows and pyroclastic rocks occur near Desmond Lake in the west. A central zone is dominated by foliated, intermediate rocks varying texturally from volcanic to subvolcanic to fine grained intrusive equivalents. Foliation trends northwesterly with moderate to steep southeasterly dips. The Clapperton Fault trends northeast across the western edge of the claims, to form the boundary between maroon and green volcanics and the foliated volcanic rocks.

Intrusive rocks and their finer equivalents are present east of Clapperton Fault. Compositions vary from diorite to alkaline granite. In the northeastern section of the property diorite is most common with lesser quartz diorite. Quartz monzonite and the more alkaline varieties of intrusive rocks were rarely noted.


In Nicola Gp. rocks, trace to 1% pyrite is common west of Clapperton Fault and in the central area of foliated rocks. In the northeastern portion of the property pyrite is conspicuously absent from most exposures occurring only locally in trace amounts and up to 3% in spotty occurrences. It is often associated with epidote as fine fracture-fillings and stringers. Near 123N/84W, float of massive andesite with 15% pyrite found in 1993, ran 4080 ppm Cu with 50 ppb Au. Source of this material has not been determined.

Intrusive rocks generally host trace amounts of pyrite. No other sulfide mineralization has been found on the property.

Within Nicola Gp. rocks, pervasive and fracture-related chloritization is ubiquitous while epidote and pervasive saussuritization are common. Carbonate, sericite, biotite, silicification and fracture-fillings of potassium feldspar occur locally. Alteration of intrusive rock types consists of widespread chloritization and saussuritization with local occurrences of epidote, carbonate, potassium feldspar, sericite and bleaching.

A more detailed description of property geology is presented in the 1993 Genstar Property assessment report. General property geology is shown on Figure 6.

6

LEGEND

INTRUSIVES

4	Α	alkaline granite B	granite	Ç	quartz	monzonite	D	quartz	diorite	Ę	diorite
4	AA	alkaline rhyolite					DD	dacite		EE	dacite
	_										

NICOLA GROUP

- **3** Nonfoliated volcanic rocks
- 2 Foliated volcanic rocks
- 1 Maroon & green andesite-basalt

---- Geologic contact

🗕 Fault

- Outcrop , subcrop
- Δ Local float

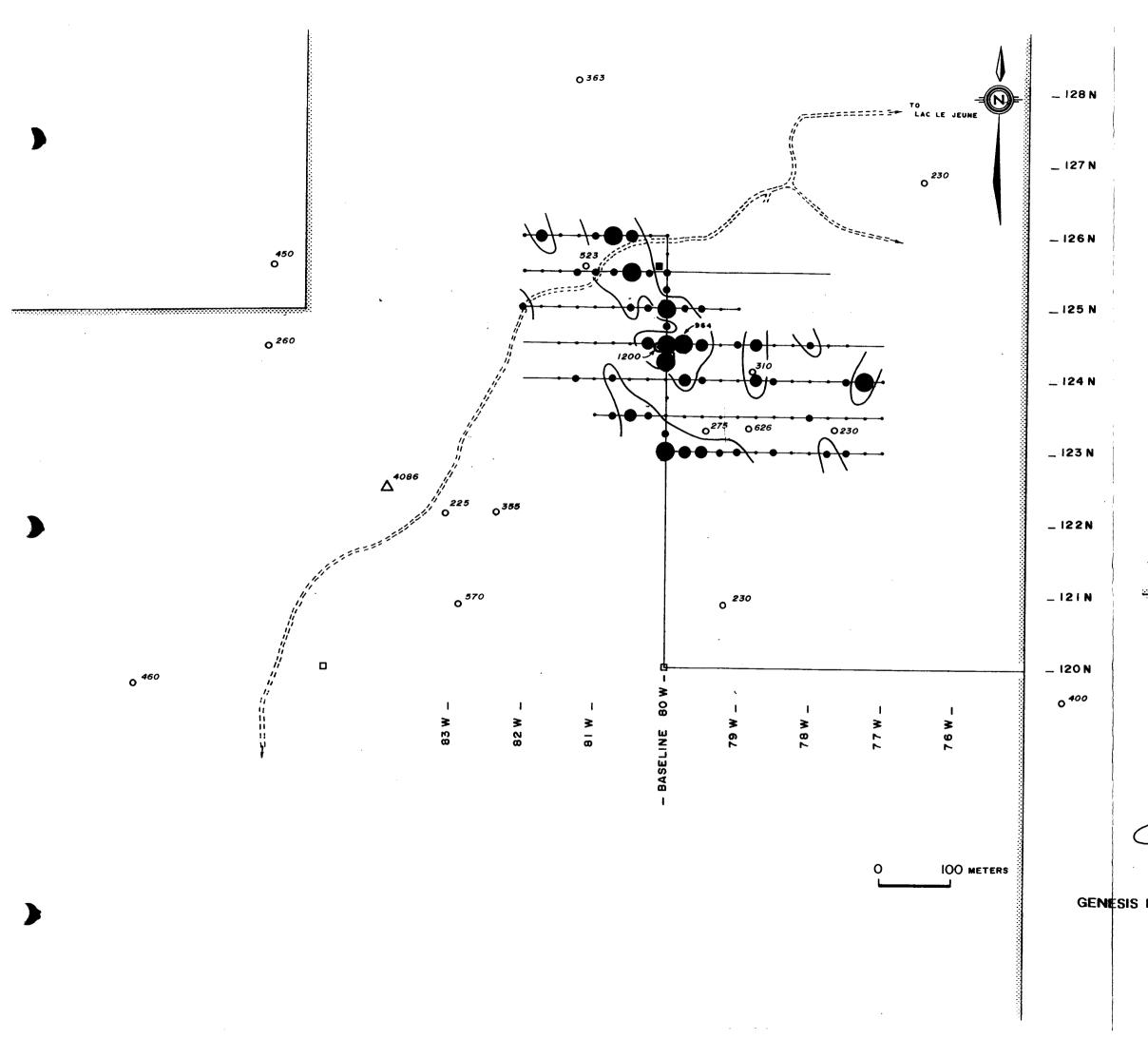
Dyke, sill

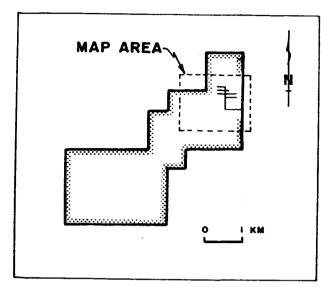
GENESIS PROPERTY PROPERTY GEOLOGY

FIGURE 6

1994 RESULTS

Copper is moderately to strongly anomalous over a significant portion of the grid area. Of the 104 samples collected, 37 returned values of greater than or equal to 150 ppm with 8 of +500 ppm and a maximum of 964 ppm. Resampling of Ram BL 0+00/4S (1200 ppm Cu) found 747 ppm Cu in soil, 1781 ppm Cu in humus and 141 ppm Cu in a pan concentrate. Two main groupings of Cu are present. A 100 m wide zone trends northwest for 300m from Line 124N/79+75W. This anomaly remains open to the north. A more poorly defined and weaker anomaly trends southerly from L124N/80+75W for 100m. This anomaly is open to the south.

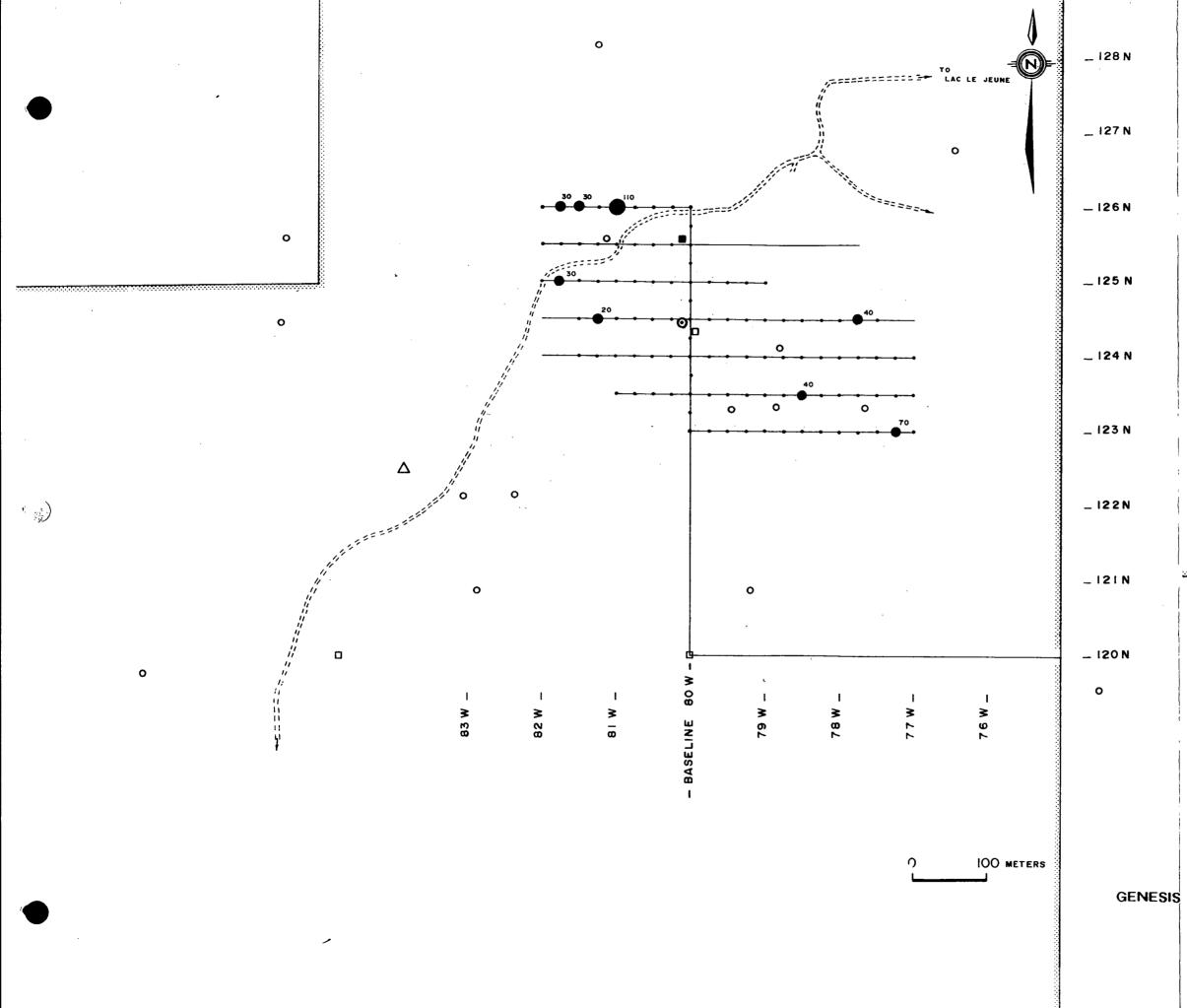

Anomalous Au of 20 to 70 ppb occurs at 7 sites. The best value of 110 ppb was found at L126N/81W. Anomalous Cu and Au are only coincident at two sample sites.

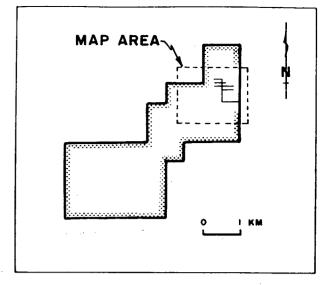

Weakly anomalous As of 20 to 28 ppm is present as an irregular anomaly in the central portion of the grid area. Values of less than 10 ppm are considered as background. Anomalous As and Au are mutually exclusive.

Sixteen grid sample sites had weakly anomalous Sb of 5 to 9 ppm. More than 70% of samples ran less than or equal to 2 ppm Sb. The best value of 10 ppm Sb was from the Ram 1200 ppm Cu site.

Majority of samples ran less than 6 ppm Mo.

Ph values varied from 4.9 to 6.0 over the grid area. Roughly two thirds of the samples have ph values of greater than 5.5.

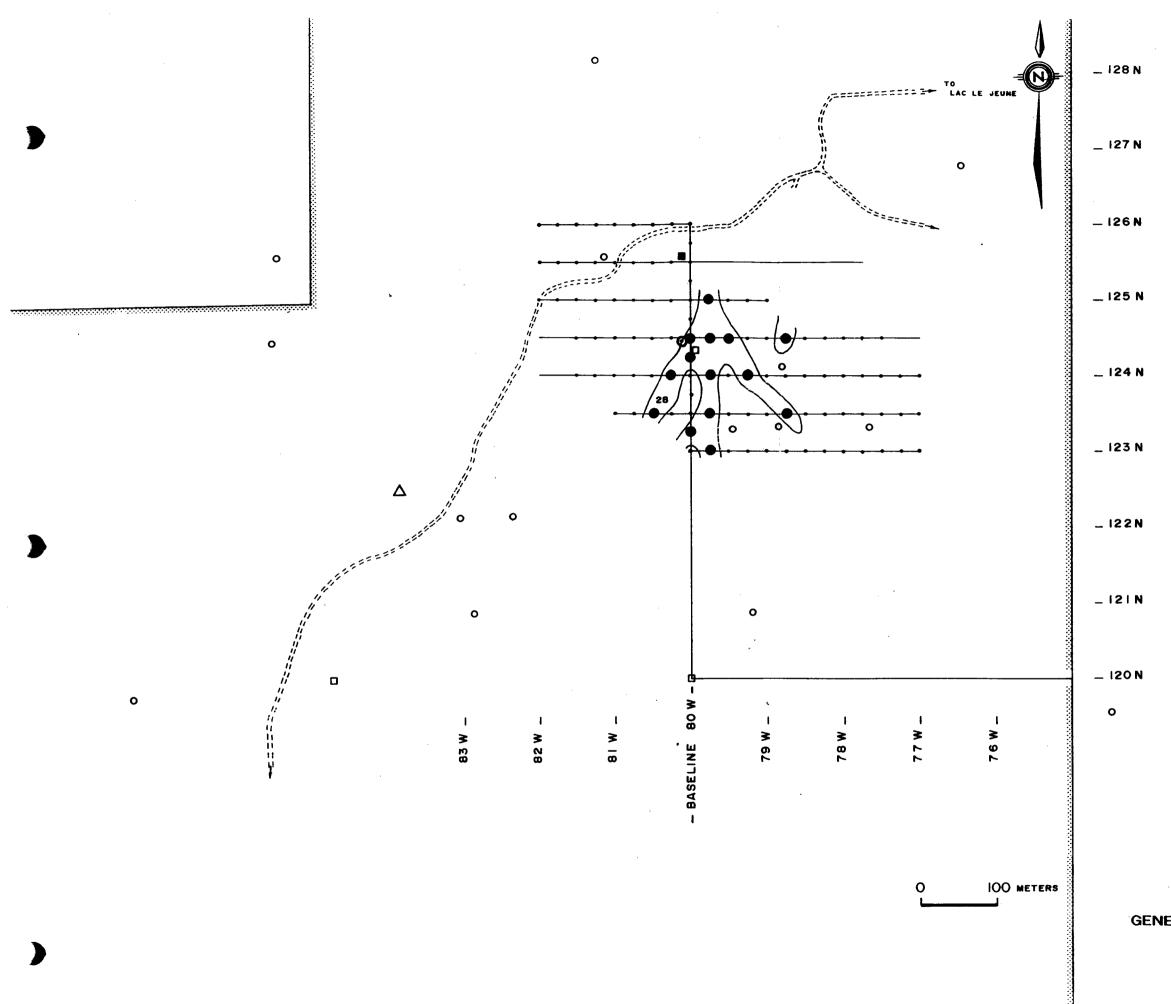




LEGEND

 0 1972 RAM Soil Sample (≥225 ppm Cu) △ 1993 Rock Sample (15% pyrite, 4086 ppm Cu) • 1994 Soil Sample Road Property Boundary □ Genesis Claim Post ■ Ram Claim Post 1994 SURVEY RESULTS > 500 ppm • 250 - 499 ppm • 100 - 249 ppm • 150 ppm contour 	400	(a) A set of the se
 I994 Soil Sample Road Property Boundary Genesis Claim Post Ram Claim Post 1994 SURVEY RESULTS ≥ 500 ppm 250 - 499 ppm 100 - 249 ppm 		1972 RAM Soil Sample (≥225 ppm Cu)
 Road Property Boundary Genesis Claim Post Ram Claim Post 1994 SURVEY RESULTS 250 - 499 ppm 100 - 249 ppm 	Δ	1993 Rock Sample (15% pyrite, 4086 ppm Cu)
 Property Boundary Genesis Claim Post Ram Claim Post 1994 SURVEY RESULTS ≥ 500 ppm 250 - 499 ppm 100 - 249 ppm 	•	1994 Soil Sample
 □ Genesis Claim Post ■ Ram Claim Post 1994 SURVEY RESULTS ≥ 500 ppm 250 - 499 ppm 100 - 249 ppm 	F. 22-11	Road
■ Ram Claim Post 1994 SURVEY RESULTS ≥ 500 ppm 250 - 499 ppm 100 - 249 ppm	<u></u>	Property, Boundary
1994 SURVEY RESULTS ≥ 500 ppm 250 - 499 ppm 100 - 249 ppm	D	Genesis Claim Post
 ≥ 500 ppm 250 - 499 ppm 100 - 249 ppm 		Ram Claim Post
 250 - 499 ppm 100 - 249 ppm 	1994 :	SURVEY RESULTS
• 100 - 249 ppm	• ?	2 500 ppm
\sim	• 2	250 – 499 ppm
150 ppm conteur	• 1	00 - 249 ppm
		50 ppm conteur

GENESIS PROPERTY SOIL GEOCHEMISTRY COPPER (ppm)



LEGEND

0	1972 RAM Soil Sample (≥225ppm Cu)
Δ	1993 Rock Sample (15% pyrite, 50 ppb Au)
•	1994 Soit Sample
F; ====	Road
<u></u>	Property Boundary
۵	Genesis Claim Post
	Ram Claim Post
_	SURVEY RESULTS
•	
•	10 – 99 ppb

GENESIS PROPERTY SOIL GEOCHEMISTRY GOLD (ppb)

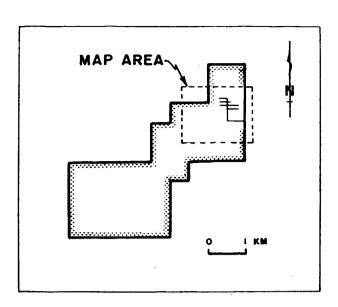


FIGURE 7c

GENESS PROPERTY SOIL GEOCHEMISTRY ARSENIC (ppm)

ο	1972 RAM Soil Sample (2225 ppm Cu)
Δ	1993 Rock Sample (15% pyrite, 4086 ppm Cu)
•	1994 Soil Sample
=====	Road
	Property Boundary
D	Genesis Claim Post
-	Ram Claim Post
	urvey Results 20 ppm

LEGEND

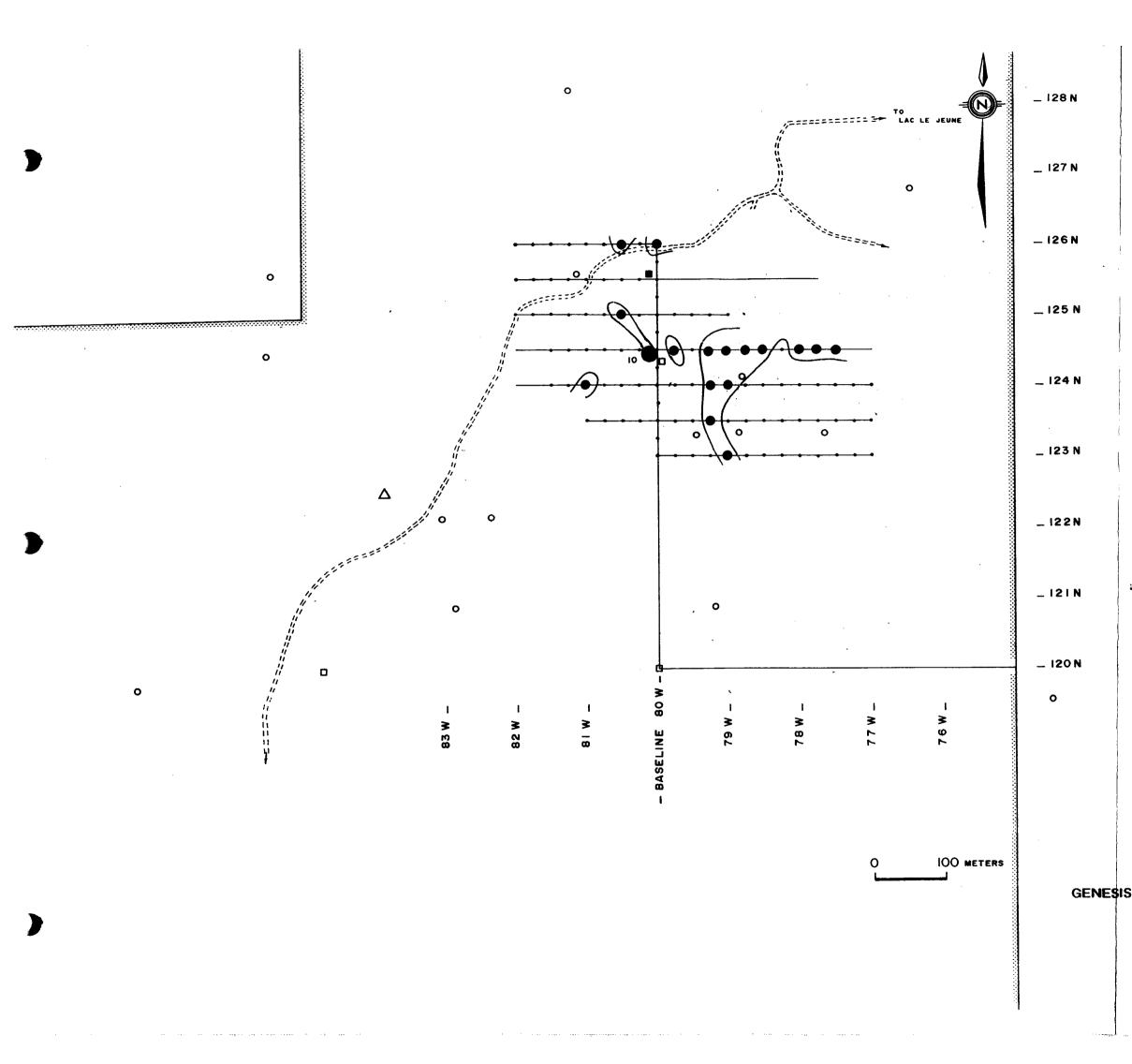
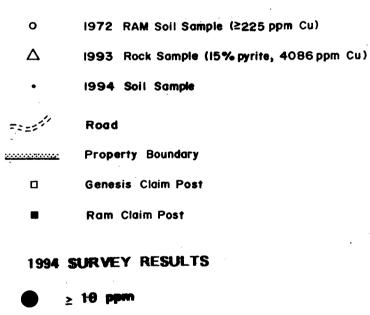
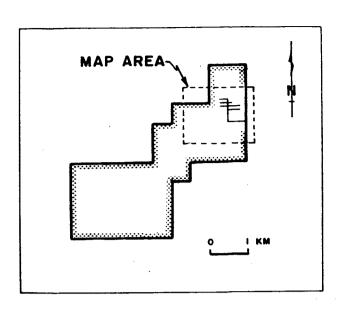
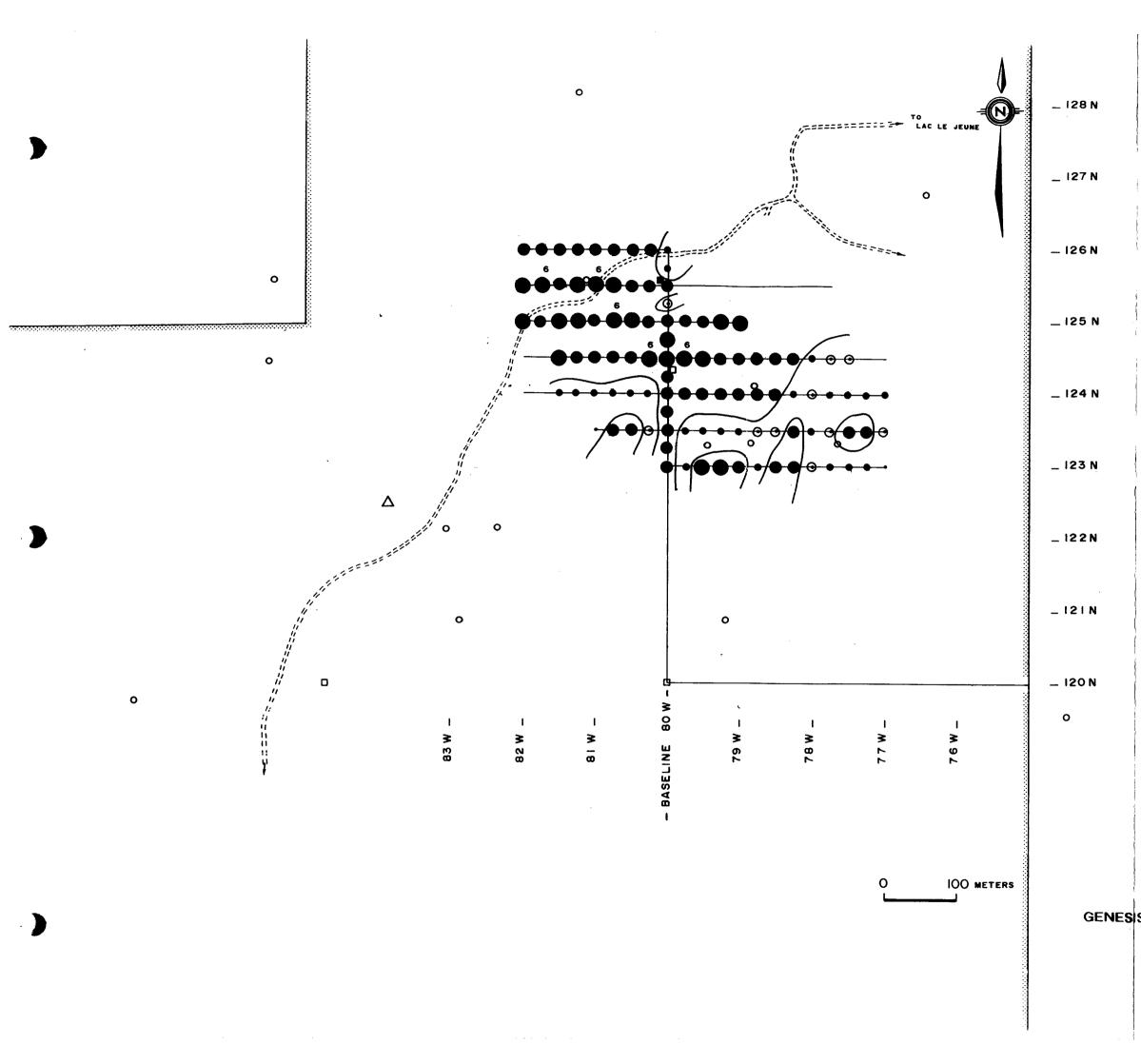
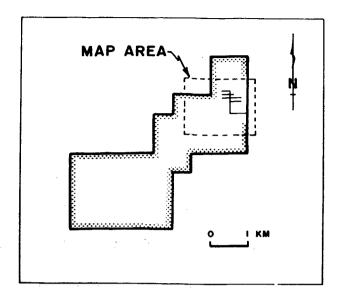



FIGURE 7d


GENESIS PROPERTY SOIL GEOCHEMISTRY ANTIMONY (ppm)


– 9 ppm


5

LEGEND

--.

LEGEND

0	1972 RAM Soil Sample (≥225 ppm Cu)
Δ	1993 Rock Sample (15% pyrite, 4086 ppm Cu)
•	1994 Soil Sample
FREE	Road
<u></u>	Property Boundary
	Genesis Claim Post
	Ram Claim Post

1994 SURVEY RESULTS

	5.9 - 6.0
\bullet	5.6 - 5.8
0	5.5
•	5.2 - 5.4
•	4.9 - 5.1

GENESS PROPERTY SOIL GEOCHEMISTRY PH

SELECTED BIBLIOGRAPHY

Elwell J.P. 1973: Geochemical and Magnetometer Survey, Ram Claim Group, MPR Assessment Report 4222

Kahlert B.H., and Grexton P.L 1993: Preliminary Mapping, Sampling, Magnetic Surveys, Genstar Property EMPR Assessment Report 22992

Kim H. 1989: Diamond Drilling Program on the Des Claims, EMPR Assessment Report 19140

Lammle C. 1972 Geochemical Report on the Des 1-98 Mineral Claims, MPR Assessment Report 4057

Laroth Engineering Ltd. 1889: Geochemical, VLF-EM and Magnetometer Surveys on the Luk #1 Mining Claim EMPR Assessment Report 18274

MacQuarrie D., and Boitard C. 1984: Geophysical Report on a Induced Polarization Survey, Des Claims, EMPR Assessment Report 13302

MacQuarrie D. 1981: Geophysical Report on a Induced Polarization Survey, Des Claims, EMPR Assessment Report 9854

Mark D. 1980: Report on Magnetometer and VLF-EM Surveys, Des Mineral Calims EMPR Assessment Report 8032

Monger, J., and MacMillan W. 1989: Geology, Ashcroft, British Columbia, G.S.C. Map 42-1989, Sheet 1

Nordin G, and DeLeen J. 1972: Magnetometer and Geochemical Report on the Plug Claims, MPR Assessment Report 4041

Scott A. 1972: Induced Polarization Survey of the Plug Claims, MPR Assessment Report 4042

VenHuizen G. 1989: VLF-EM and Magnetometer Surveys on the Parl #1 Mining Claim, EMPR Assessment Report 18563

8

APPENDIX I

Certificates of Analysis, Methods and Detection Limits

ł

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

To :	LYNN GREXTON
	920 EAST 28 th AVE.
	VANCOUVER, B.C.
Project:	Genesis

Type of Analysis: ICP

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:	94107
invoice:	50162
Date Entered:	94-05-18
File Name:	GRE94107.I
Page No.:	1

Ъ

PRE		РРМ	РРМ	РРМ	РРМ	PPM	PPM	PPN	PPM	×	PPM	PPM	PPM	PPM	PPM	PPM	¥	*	PPM	PPM	×	PPM	¥	ž	×	e	e	PPM	PP	A PPB			
FIX	SAMPLE NAME	MO	CU	PB	ZN	AG	NI	CO	MN	FE	AS	SR	00	SB	81	V	Â	P	LA	CR	MG	BA	τĩ	AL	NA	ĸ	SI	W		E AU AA	рн		
				. 2						-									-								_ •						
S	BL80W 12300N	3	590	18	21	0.2	38	12	284		16	21	1	1	1		0.70		6	8	0.34	86	0.12	2.29	0.02	0,10	0.01	4	1	1 5			
S	BL80W 12325N	3	188	17	39	0.2	28	16		2.89	21	23	1	1	1		0,67		,	13	0.66			2.08				6		1			
S	BL80W 12350N	2	92	14	34	0.2	22	15	358		17	21	1	1	1		0,39	***********	6		0.59		100000000	2.15				2		1 5			
5	BL80W 12375N	2	36	12	22	0.3	8	16		1.59	9	12	1	1	1		0.29		2		0.11			2,22		000000000		2	1	15	5.6		
S	BL80W 12400N	4	81	16	49	0.2	18	17		2.78	15	19	888 9 88	8883 1 88		•••••	0.33		4		0 49			2.52			••••••••••	3	9999999	S	5.6	19939999999	
s	BL80W 12425N		518	18	40	0.2	28	18		2.23	21	22	1	1	1		0.71		5		0.38			2.83				8	1	1 5			
s	BL80W 12450N	-	723	13	21	0.2	41	29		3.01	23	26,	1	. 1	1	40		0.04	6		0.40			2.65			0.02	7	1	5	5.9		
S	BL80W 12475N	2	106	14	34	0.1	13	15	213		9	11	.1	1	1		0.26		3		0.15			1.86				2	1	5	•		
S	BL80W 12500N	3	552	17	42	0.1	28	49		3.52	19	37	2		1		0.89		5		0.81			2.15				4	1	5			
S	BL80W 12525N	2 2	108	15 3333	29	0.2	19	16	er en anter ant	2.19	12	19			1 83332838	0000000000	0.42	0000000000	2 3333233	0000000000	0.34	0000000000	00000000	1,81	0.02	0000000000	0.02	1	1 2000000	5 چندیندی	5.7		
S	BL80W 12550N	2	145	4 q	34	0.1	15	16 13	237		*1	18		1	1		0.27		4		0.49			2.08				4	1	5	5.5 5.3		
\$	BL80W 12575N	2	69		34	0.1	19			3.11	12	28						0.05						1.57				5					
2	BL80W 12600N	3	41	9	26 37	0.1	13 27	12 16	426		8 12	30		•			0.47	0.06	3		0.55			1.54				3		5 5	5.3 5.1		
S	L123N 7700W	2	41 54	11	37 53	0.2	23		521		12	21					0.15		•		0.73			3.93				4		5 70			
S S	L123N 7725W L123N 7750W	4	143	13 15		∞	15 27	17 25		2.52		12 16	2000008-000 •	0000000	56066666 4		0.24		·····		0.35			3.29				∞∞∞⊋: 5	9999999 1		5.3		********
s	L123N 775W		210	21	64	0.3	34	41		3.87	10	20		1			0.32		4		0.96			3.28				5		5	5.4		
s	L123N 7800W	4	58	16	59	0.2	17	25		2.28	ġ	18		÷	÷			0.11	3		0.35			2.11				6		5	5.5		
s	L123N 7825W		357	15	48	0.1	38	25		3.55	11	27	1	1			0.53		6		0.81	-	· –					5	1		5.6		
s	L123N 7850W	3	133	16	41	0.1	23	20	379		11	27	1	1	1		0.54		6		0.62			2.76				8	1		5.6		
s	L123N 7875W	2	29	6	47	0.2	- 1	14	473	0000000000	7	10			i i i i i i i i i i i i i i i i i i i		8666666666	0.19	2	844444444	0.16	200000000		1.05			0000000000000	i i i i i i i i i i i i i i i i i i i		Š	5.4		
S	L123N 7900W	4	222	15	31	0.2	18	16	544		15	24	1	5	1			0.03	6		0.39			2.15				6	1	5	5.7		
S	L123N 7925W		213	8	32	0.2	26	19	402		14	24	1	2	1			0.03	7		0.62			2,63			~~~~~~~~~~	5		5	5.9		
s	L123N 7950W	4	388	14	46	0.2	29	20		3.52	18	29	1	•	1			0.02	в		0.79			2.67				8		5	5.9		
s	L123N 7975W	4	401	16	31	0.1	36	17		3.25	21	33	1	4	1		0.84	0.03	5	18	0.67			2.10				4	•	5	5.4		
S I	123+50N 7700W	2	34	16	64	0.3	10	23	426	2.26	9	15	1	4	1			0.17	3	8	0.34	65	0.13	1.99	0.02	0.10	0.02	4	1	5	5.5		
I S I	123+50N 7725W	5	40	11	55	0.2	22	32	828	3.24	12	25	1	1	1	68	0.35	0.08	3	13	0.65	133	0.17	2.33	0.02	0.12	0.02	3	1	5	5.7		
s ı	123-50N 7750W	5	41	10	62	0.1	14	27	284	2.79	6	16	1	1	1	42	0.19	0.20	7	8	0.46	90	0.16	3,50	0.03	0.12	0.02	5	1	5	5.7		
S I	L123+50N 7775W	3	37	11	52	0.1	9	28	757	2.46	5	14	1	1	1	42	0.19	0.14	3	7	0.30	71	0.14	2.40	0.02	0.10	0.02	3	1	5	5.5		
S I	123+50N 7800W	3	100	16	49	0.1	24	21	450	3.39	13	26	1	1	1	72	0.44	0.07	6	19	0.76	115	0.17	2.68	0.02	0.12	0.02	4	1	5	5.4		
S I	123+50N 7825W	3	31	8	47	0.2	13	16	734	2.01	10	11	1	1	1	33	0.23	0.22	3	5	0.31	75	0.10	2.47	0.02	0.08	0.01	6	1	5	5.5		
S	123+50N 7850W	4	71	8	35	0.2	21	18	379	3.34	15	29	1	1	1	80	0.53	0.05	5	16	0.72	76	0.17	1.97	0.01	0.0B	0.02	6	1	40	5.5		
5 1	L123+50N 7875W	4	98	12	43	0.2	18	30	355	3.57	20	18	1	2	1	60	0.29	0,16	4	10	0.47	88	0.15	2.49	0.02	0.10	0.02	8	1	5	5.6		
S I	123+50N 7900W	2	83	8	36	0.2	18	27	308	2.85	13	15	1	4	1	53	0.33	0.04	1	6	0.67	59	0.20	2.07	0.02	0.10	0.02	6	1	5	5.2		
S I	123+50N 7926W	3	96	13	36	0.1	20	38	260	2.69	11	18	1	5	1	49	0.35	0.06	3	9	0,36	131	0,17	2.82	0.02	0.10	0.02	8	1	5	5.2		
S I	L123+50N 7950W	4	92	14	38	0.3	17	23	284	2.75	18	17	1	1	1	44	0.48	0.18	4	10	0.41	74	0.14	2.75	0.02	0.10	0.02	11	1	5	5.4		
ls ı	123+50N 7975W	5	91	12	58	0.2	20	26	734	4.17	22	20	1	4	1	99	0.61	0.09	5	11	1.10	85	0.20	3.04	0.02	0.10	0.02	7	1	5	5.4		
IS I	123+50N 8025W	5	184	13	68	0.1	28	24	568	3.20	18	28	1	1	1	62	0.63	0.08	9	16	0.74	168	0.17	3.00	0.03	0.13	0.02	10	1	5	5.6		
ls ı	123+50N 8050W	4	300	14	62	0.2	28	21	686	3.62	28	32	2	3	1	80	0.92	0.09	7	18	1.10	83	0.20	2.25	0.02	0.15	0.02	7	1	5	5.7		
ł	123+50N 8075W		108	7	48	0.3	20	23	450	3.00	9	19	1	1	1	57	0.30	0.12	7	12	0.64	105	0.14	2.79	0.02	0.12	0.02	6	<u>'1</u>	5	5.5		

CERTIFIED BY :

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

To: LYNN GREXTON 920 EAST 28 th AVE.

VANCOUVER, B.C.

Genesis Project:

Type of Analysis: ICP 2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate: 94107 Invoice: 50162 Date Entered: 94-05-18 File Name: GRE94107.I Page No.: 2

PRE		PPM	РРМ	РРМ	РРМ	PPM	PPM	PPM	РРМ	x	PPM	РРМ	РРМ	PPM	РРМ	PPM	x	×	РРМ	РРМ	x	РРМ	×	×	×	×	×	PPM	PPM	PPB		
FIX	SAMPLE NAME	MO	cu	PB	ZN	AG	NI	со	MN	FE	AS	SR	ω	SB	BI	v	CA	Ρ	LA	CR	MG	BA	τı	AL	NA	ĸ	SI	Ŵ	BE	AU AA	рн	
s	L123+50N 8100W	2	19	6	46	0.2	15	17	355	2,68	2	9		1		47	0.12	0.12	2	10	0.43	50	0.10	2 17	0.01 (09	0.02	2		5	4.9	
s	L124N 7700W		80	q	73	0,4	15	39		2.39	5	10	1	1			0.13		4		0.24		0.14				0.01	6	1	5	5.2	
s	L124N 7725W	5	736	8	32	04	71	45		3.12	19	20	1	1	· 1		0.60		7		0.55				0.03 0		0.02	10	•	5	5.4	
s	L124N 7750W	2	31	12	75	0.2	15	12	1420	2.37	16	14	1	•	1	45	0.24	0.11	2	6	0.33	77	0.12	1.40	0.01 0	1.10	0.02	5	1	5	5.4	
s	L124N 7775W	4	113	15	61	0.3	30	29	450	3.81	10	24	1	•	1	75	0.35	0.09	4	19	0.80	196	0.19	3.60	0.02 ().12	0.02	8	1	5	54	
s	L124N 7800W	2	21	7	53	0.2	9	25	1207	2.42	2	15	1	1	1	43	0.24	0.15	2	5	0.27	94	0.12	1.76	0.02 0).10	0.02	4	1	5	5.5	
s	L124N 7825W	3	57	10	41	0.2	18	18	450	2.84	12	21,	1	- 1	1	57	0.39	0.12	3	13	0.54	123	0.13	2.15	0.02 0).10	0.02	5	1	5	5.4	
s	L124N 7850W	2	191	11	74	0.2	28	44	615	4.05	13	19	1	1	1	73	0.49	0.22	4	9	1.23	129	0.25	3.52	0.02 0	. 30	0.01	8	1	5	5.6	
s	L124N 7875W	4	363	6	44	0.2	24	51	450	3.50	16	26	1	1	1	63	0.77	0.04	5	13	0.69	81	0.16	2.40	0.02 0	.16	0.02	8	1	5	5.8	1
s	L124N 7900W	1	30	8	17	0.2	8	11	237	2.32	11	21	1	5	1	51	0.41	0.07	2	10	0.39	76	0.12	1.30	0.01 0	0.16	0.01	1	1	5	5.8	
s	L124N 7925W	4	70	15	54	0.2	16	34	615	2,49	21	72	1	8	1	40	0.54	0.18	5	8	0.32	72	0.11	2,25	0.02 0	9,09	0.02	6	1	5	5.8	
S	L124N 7950W	2	110	10	41	0.1	22	18	426	3.29	16	37	1	2	٦.	75	0.59	0.09	7	17	0.79	99	0,15	1 . 93	0.02 0	1.12	0.01	4	1	5	5.6	
S	L124N 7975W	4	259	19	49	0.3	19	21	544	2.68	20	23	1	1	3	46	0.65	0.11	10	11	0.53	114	0.15	2.85	0.03 0	1.11	0.01	10	1	5	5.7	
S	L124N 8025W	2	65	11	- 33	D.1	18	18	260	2.67	22	26	1	1	1	59	0.65	0.04	3	15	0.56	79	0.15	1,60	0.02 (),18	0.02	6	1	5	5.2	
S	L124N 8050W	3	49	11	65	0.1	18	23	284	2.51	19	14			ા	36	0,29	0.29	4	11	0.43	70	0.13	2.81	0.02 0	.08	0,02	7		5	54	
S	L124N 8075W	4	157	14	63	0.1	19	22	260	2.52	11	14	1	1	1	39	0.16	0.28	6	8	0.33	103	0.15	3.45	0.02 0	0.09	0.01	9	1	5	5.4	
S	L124N 8100W	4	86	13	65	0.1	25	27	615	3.34	19	29	1	3	1	71	0.35	0.11	6	15	0.70	183	0.15	2.89	0.02 0	0.11	0.02	7	1	5	5.4	
s	L124N 8125W	3	129	16	62	0.2	26	32	473	3.21	15	16	1	. 5	1	60	0.21	0.18	5	10	0.59	134	0.16	3.04	0.02 0	0.09	0.02	6	1	5	5.4	
S	L124N 8150W	3	83	9	65	0.2	20	22	331	3.11	15	12	1	1	1	52	0.16	0.29	6	15	0.56	81	0.17	3.67	0.02 0	0.08	0.01	9	1	5	5.4	
	L124+50N 7750W	2	45	22	48	0.1	21	19	deren anderen a	2.50	13	22	1	6	1	00000000	0.33		3	11	0.49	000000000	addeedeese	verana and	0.02 0).12	0.02	5	1 	000000000000	5.5	
S	L124+50N 7775W	3	70	1.6	63	0.1	23	24		3.18	12	17	1	7	1		0.23		4		0.66		0.17			1.10		8	1	40	S 5	
S	L124+50N 7800W	4	104	14	65	0.1	73	26	663	3.21	6	22	1	5	1	63	0,32	0 13	4	13	0,60	153	0.15	2.80	0.02 0	09	0,02	3	1	5	5.4	
30000000	L124+50N 7825W	3	88	8	47	0.2	19	26		2.83	8	14	1	1	1			0.07	2		0.48		0.17		0.02 0			4	1	5	5.6	
S	L124+50N 7850W	3	69	14	51	0.2	19	28		3,02	16	17	1	5	1		0.25		6	10	0.51		0.16		0.02 0			4	1	5	5.8	
\$	L124+50N 7875W	5	287	21	60	0.2	61	38	876	4.97	28	15	2	7	an ta s	116	0.64	0.06	4	110	2.37				0.02 (12	880) (5.6	
S	L124+50N 7900W	3	217	20	51	0.4	23	28	426	2.94	12	20	1	8	1	50	0.40	0.08	8	13	0.53				0.03 0	0.12	0.02	7	1		5.8	
S	L124+50N 7925W	3	53	9	105	0.3	18	27	876	2.99	7	16	1	5	1	46	0.25	0.29	3	9	0.38	145	0.12	2.30	0.02 0	. 10	0.02	6	1	5	5.6	
S	L124+50N 7950W	4	390	21	57	0.4	20	24	473	2.94	21	23	1	-4	1			0.14	11	12	0.59		0.16			0.11		8	1	5	5.9	
s	L124+50N 7975W	5	964	17	39	0.3	62	34		2.64	23	21	1	5	1			0.08	5		0.68				0.03 0			7	1	5	6.0	ľ
20000000	L124+50N 8025W	3	252	11 500000000	68	0.2	28	56	estates e	3.07	1.9	20	1	• • • • • • • • • • • • • • • • • • • •	5		0.54		3		0.54	5600000ee	0000000000	000000000	0.02 0	\$56666666		5 5	1	5 2000-000-000	6.0	
S	L124+50N 8050W	3	53	14	43	0.1	17	18		2.68	14	19	1	3	3	51	0.49		3		0.43				0.02 0			S	1	5	5.8	
S	L124+50N 8075W	3	82	6	46	0.2	20	18		3.10	18	29	1	1	-4			0.18	5	15	0,69				0.02 0			5	1	5	5.8	
S	L124+50N 8100W	3	43	10	40	0.2	16	17	355	2.52	13	22	1	1	1	47	0.34	0.15	3	12	0.52	160	0.12	2,05	0.02 0	1,15	0.02	3	1	5	5.8	
100000000	L124+50N 8125W	2	40	8	37	0.1	18	14	331	2.93	13	31	1	1	1	69	0.45	0.06	. 4	. 16	0.66	113	0.18	1.59	0.02 0	1,14	0.02	2	1	20	5.8	
S	L124+50N 8150W	3	51	5	68	0.2	- 72	33		2.98	17	19	1 .	- 1 -	1	- 53	0,28	0.25	5		0.51				0.02 0		0.02	5	<u>1</u>	5	5.9	
S	L125N 7900W	3	51	14	32	0.3	12	23		2.72	18	15	1	2	1			0.15	3	9	0.40				0.02 0		0.02	5	1		5.9	
S	L125N 7925W	4	80	14	53	0.3	17			2.56	13	18	1	4	1		0.47	0.12	4	-	0.31	106	0.13	2.64	0.02 0	. 29	0.02	7	1	5	5.9	
s	L125N 7950W	3	144	12	33	0.1	17	19	237	2.69	16	19	1	1	1			0.05	4	10	0.47				0.02 0			6	1	5	5.6	
s	L125N 7975W	4	189	15	41	0.4	23	23		3.53	25	29	1	1	1			0.03	10		0.68				0.02 0			7	1	5	5.8	
S	L125N 8025W	3	108	14	42	0.2	30	28	308	2,99	17	22	1	3	1	56	0.44	0.03	3	16	0.71	129	0.16	2.15	0.02 0	.12	0.02	5	1	5	5.8	

CERTIFIED BY :

 \mathbf{r}

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

To: LYNN GREXTON 920 EAST 28 th AVE. VANCOUVER, B.C. Project: Genesis

Type of Analysis: ICP

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

 Certificate:
 94107

 Involce:
 50162

 Date Entered:
 94-05-18

 File Name:
 GRE94107.I

 Page No.:
 3

PRE		РРМ	РРМ	PPM	PPM	РРМ	PPM	PPM	РРМ	x	PPM	PPM	PPM	PPM	PPM	PPM	x	x	PPM	PPM	x	PPM	x	×	×	×	×	PPM	PPM	PPB		
FIX	SAMPLE NAME	MO	cu	PB	ZN	AG	NI	CO	MN	FE	AS	SR	œ	SB	81	v	CA	Ρ	LA	CR	MG	BA	τı	AL	NA	к	\$I	w	BE .	AU AA	рн	
s	L125N 8050W				60	0 1		31	497			16		<u> </u>			0.34		4		0.27				0.02			6	1		5 9	
s S	L125N 8050W		151 50	13			19	36		2.49	19 15	10					0.55		4		0.33				0.02					-	5.9 6.0	
		5		14 9	63	0.2	22				12						0.11				0.21				0.02		842668				5.8	
S	L125N 8100W L125N 8125W	6	58	2	43 55	0.2	13 15	18 24	308 450	2.44	14	8 19					0.27		3		0.51				0.02			р			5.9	
S	L125N 8125W	4	64 92	•	74	0.2	22	39	497		14	16		2			0.22		5		0.51				0.02			9			5.9	
S S	L125N 8175W	6 S	90	18 14	80 80	0.3	20	38 38		3.41	14		0000-5000 1	::::::≉::::: ?	100090000 1	*******	0.33		000000 92 000 5		0.60				0.02			000008000 10	Recordos: 1	00000 -9 000 5	5.8	000000000000000000000000000000000000000
s	L125N 8200W	5	232	0	39	0.2	50	21		2.55	18	15	1	-	÷		0.38		5		0.35				0.02			7	1	30	5.9	
S	L125+50N 8025W	3	215	6	51	0.2	27	23		3.50	17	26	1		· ·			0.11	4		0.81				0.02			5	1		5.7	
-	L125+50N 8050W	3	705	13	54	0.3	42	32	852		15	22	1	1	1		0.77		5		0.35			-	0.02			7	1	5	5.8	
s	L125+50N 8075W	3	173	A	35	0.2	25	21	544		16	36	1	1	1		0.76		8	21	0.95				0.02			6	1	5	5,9	
	1125+50N 8100W	3	48	10	42	0.2	20	ાંડ		3.26	N	37	88 1 8	- i -		79	0.57	0.10	6	17	0.72	102	0.17	1.50	0.02	0.13	0.02	6	1	5	6.0	
s	L125+50N 8125W	5	157	8	38	0.3	19	18	331	2.59	8	21	1	1	•	52	0.34	0.08	5	12	0.53	141	0.13	2.16	0.02	0.13	0.02	6	1	5	5.9	
S	L125-50N 8150W	2	49	17	33	0.2	19	15	331	2.33	17	24	1	1	1	46	0.66	0.10	4	10	0.46	128	0.12	1.76	0.02	0.13	0.02	7	1	5	5.8	
s	L125+50N 8175W	3	99	13	33	0.2	20	19	450	3,70	16	27	1	1	3	61	0.74	0.03	3	17	0.68	69	D 16	1.91	0.02	0,13	0.02	5	1	5	6.0	
S	L125+50N 8200W	2	56	2	29	0.1	17	14	331	2.55	10	22	1	1	1	53	0.42	0.04	2	14	0.50	73	0.12	1.48	a.01	0.12	0.02	3	1	5	5.9	
S	L126N 8025W	2	41	13	42	0.2	17	19	497	2.52	13	24	1	2	1	51	0.36	0.10	3	10	0.46	119	0.11	1.79	0.01	0.12	0.02	6	1	5	5.7	
s	L126N 8050W	3	309	18	35	0.2	25	19	521	3.40	17	30	1	1	4	72	0.74	0.04	7	16	0.74	88	0.15	1.82	0.02	0.10	0.02	7	1	5	5.7	
S	L126N 8075W	3	503	11	50	0.1	34	31	544	3.18	13	25	1	1	1	57	0.63	0.04	6	13	0.67	158	0.16	2.48	0.02	0.13	0.02	7	1	5	5.8	
S	L126N 8100W	2	231	10	38	0.2	23	20	379	2.30	9	17	1	2	1	37	0.38	0.04	2	8	0.37	94	0.12	2.01	0.02	0.14	0.01	5	1	110	5.8	
S	L126N 8125W	3	40	16	58	0.2	16	19	402	2.34	7	12	1	2	2	37	0.23	0.13	2	6	0.31	63	0.11	1.72	0.01	0.12	0.02	2	1	5	5.7	
S	L126N 8150W	3	74	7	55	0,1	29	22	450	3,18	14	23	1	4	1	58	0.43	0.19	3	13	0.71	119	Q.13	2.18	0.02	0.14	0.02	4	1	30	5.6	
S	L126N 8175W	4	312	18	49	0.2	31	39	450	3.67	16	29	1	6	2	66	0.87	0.04	6	16	0,76	137	0,15	2.44	0.02	0.16	0.02	7	1	30	5.7	
5	L126N 8200W	3	37	15	51	0.3	17	18	426	2.53	g	13	1	1	1	41	0.21	0.27	4	8	0.31	73	0.12	2.66	0.02	0.10	0.02	6	1	5	5.8	
s	1200+5	3	747	12	43	0.2	38	33	544	3.21	16	29	1	10	1	52	0.85	0.05	5	14	0.69	108	0.16	2.32	0.03	0.12	0.02	6	1	5	5.8	
A1	1200-R	2	31	13	44	0.1	41	21	544	2.49	29	21		4	1	38	0.47	0.04		40	1.54	14	0.16	1.69	0.04	0.03	0.02	5	1	5	ND	
PC	1200-P	1	141	8	28	0.1	24	26	568	3.57	8	.24	1	7	2	70	0.46	0.04	2	23	0.77	28	0.12	1.00	0.01	0.08	0.01	2	1	30	ND	
S	1200-H	2	1781	20	14	0.1	18	10	426	1.00	40	39	1	7	1	17	3.06	0.08	11	4	0.21	53	0.03	0.84	0.01	0.10	0.02	6	1	50	6.2	

CERTIFIED BY :

Rossbacher Laboratory L

GEOCHEMICAL ANALYSTS & ASSAYERS

2225 S. SPRINGER AVE., BURNABY, B.C. CANADA TELEPHONE: 200-6010 AREA CODE: 604

METHODS OF ANALYSIS, 1990

GEOCHEMICAL:

- Gold: 10 Grams of -80 mesh soil, or -100 mesh pulverized silt or rock sample is roasted at 550 °C, and digested with Aqua Regia. The dissolved Gold is then extracted with Methyl Isobutyl Ketone, and the resulting solution analysed using Atomic Absorption spectroscopy.
- Multi Element ICP: 0.5 Grams of sample is digested with a 3-1-2 dilute Aqua Regia mixture, and analysed using Inductively Coupled Plasma Spectroscopy.

ASSAY :

- Gold (A.A.): 30 gram -100 mesh#) mample is roasted at 550 °C and digested with Nitric Acid, followed by a double digestion with Aqua Regia. The resulting solution is extracted using Methyl Isobutyl Ketone, and analysed using Atomic Absorption Spectroscopy.
- Gold (F.A.): 15 or 30 gram -100 mesh sample is fused using standard Fire Assay fluxes, the resulting Au/Ag/Lead button is cupelled, and the Au/Ag bead analysed using Atomic Absorption, or a Gravimetric finish.

Various Elements:

- Silver 3.0 to 6.0 grams is digested with Aqua Regia, taken to dryness, and dissolved in 25 % HCl.
- Copper 0.5 to 2.0 grams is digested with HND₂-HCl-HClO₄ mixture , taken to HClO₄ fumes, and dissolved in 10 % HClO₄.
- Lead 0.5 to 2.0 grams is digested with HNO₃-HClO₄, taken to dryness, and dissolved in 50% HNO₃.
- Zinc 0.5 grams is digested with HNO_{2} -HClO_-HCl mix, taken to HClO_ fumes, dissolved in H_2O, or HNO_3. Each solution is subsequently analysed for the required

element by Atomic Absorption Spectroscopy.

GEOCHEMICAL ANALYTICAL METHODS CURRENTLY IN USE AT ROSSBACHER LABORATORY LTD.

A. SAMPLE PREPARATION

- 1. Geochem. Soil and Silt: Samples are dried and sifted to minus 80 Mesh, through stainless steel or nylon screens.
- 2. Geochem. Rock:
 - Samples are dried, crushed to minus 1/4 inch, split, and pulverized to minus 100 mesh.

B. METHODS OF ANALYS IS

- Multi element: (Bo, Cu, Ni, Co, Mn, Fe, Ag, Zn, Pb, Cd, As):
 0.50 Gram sample is digested for four hours with
 a 15:85 mixture of Nitric-Perchloric acid. The
 resulting extract is analyzed by Atomic Absorbtion
 spectroscopy, using Background Correction where
 appropriate.
- 2. Antimony:

0.50 Gram sample is fused with Ammonium Iodide and dissolved. The resulting solution is extracted into TOPO/MIBK and analyzed by Atomic Absorbtion spectroscopy.

3. Arsenic: (Generation Method)

0.25 Gram sample is digested with Nitric-Perchloric acid. Arsenic from the solution is converted to arsine, which in turn reacts with silver D.D.C. The resulting solution is analyzed by colorimetry.

4. Barium:

0.20 Gram sample is repeatedly digested with HC104-HNOs and HF. The solution is analyzed by atomic absorbtion spectroscopy.

5. Biogeochemical:

Samples are dried and ashed at 550° C. The resulting ash analyzed as in *1, Multielement Analysis.

6. Bismuth:

0.50 Gram sample is digested with Nitric acid. The The solution is analysed by Atomic absorbtion spectroscopy.

Jan. 1990.

METHODS OF ANALYSIS (CONT'D)

7. Chronium:

0.25 Gram sample is fused with Sodium Peroxide. The solution is analyzed by atomic absorbtion spectroscopy.

8. Fluorine:

0.50 Gram sample is fused with Carbonate Flux, and dissolved. The solution is analysed for Fluorine by use of an Ion Selective Electrode.

9. Gold AR/AAS:

10.0 Gram sample is roasted at 550°C and dissolved in Aqua Regia. The resulting solution is subjected to a MIBK extraction, and the extract is analzed for Gold using Atomic Absorbtion spectroscopy.

9A Gold FA:

10.0 Gram sample is fused with appropriate fluxes, and the resulting lead button is cupelled to produce a gold/silver bead. The bead is dissolved in Aqua Regia and analyzed for gold by AAS.

10. Mercury:

1.00 Gram sample is digested with Nitric and Sulfuric acids. The solution if analyzed by Atomic Absorbtion spectroscopy, using a cold vapor generation technique.

11. Partial Extraction and Fe/Mn oxides:

0.50 Gram sample is extracted using one of the following: hot or cold 0.5 N. HC1, 2.5% E.D.T.A., Ammonium citrate, or other selected organic acids. The solution is analyzed by use of Atomic Absorbtion spectroscopy.

12. pH:

An aqueous suspension of soil, or silt is prepared, and its pH is measured by use of a pH meter.

13. Rapid Silicate Analysis:

0.10 Gram sample is fused with Lithium Metaborate, and dissolved in HNO3. The solution is analyzed by Atomic Absorbtion for SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, TiO2, P2O5, and MnO.

14. Tin:

0.50 Gram sample is sublimated by fusion with Ammonium Iodide, and dissolved. The resulting solution is extracted into TOPO/MIBK and analysed by atomic absorbtion spectroscopy.

15. Tungsten:

1.00 Gram sample is sintered with a carbonate flux, and dissolved. The resulting extract is analyzed colormetrically, after reduction with Stannous Chloride, by use of Potassium Thiocyanate.

16. ICP :

()

0.5 Gram sample is digested with Aqua Regia, and analyzed using a JOBIN YVON MODEL JY 32 1987 ICP Emission Spectrophotometer for Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, La, Mg, Mo, Mn, Ni, P, Pb, Sb, Si, Sr, Ti, U, V, W, Zn.

TRACE LEVEL GEOCHEMICAL ANALYSIS

				م المراجع . محمد المراجع المراجع المراجع المراجع المراجع . المراجع المراجع المراجع المراجع المراجع المراجع .	°0'	
A. ATOMIC ABSORPTION MULTI E	I EMENT PACKAGE	e c	NOBEL METAL	S GEOCHEMIC	AL ANALYSI	
Digestion by HCIO ₄ / HNO ₃₁ or Ac		a all fairs the second	a state of the second			
First element \$2:25			Gold: Aqua Regi	a/AA Finish 💱		5 ppb \$4.75
Subsequent element \$0.75			Gold, Fire Assay	/AA Finish	3월 2012년 1	5 ppb \$7.25
			Gold & Platinum			
ELEMENT DETECTION			an a		2 ppb, 15 ppb,	2 ppb 🛬 💲 15,00 🗧
LIMIT						
Arsenic 2 ppm	1.0%	D.,	SPECIFIC ELEN	ACNITO		
Copper 1 ppm	1.0%	.	SPECIFIC ELE	VIEINIS.	er H. al	
Molybdenum	1.0%		ELEMENT	DETECTION	UPPER	PRICE
* Lead 2 ppm	1.0%			LIMIT	LIMIT	
Zinc `	No + 1.0%					
* Silver 0.1 ppm +	20 ppm		Antimony A	1 ppm 👘 👔	0.1%	\$4,00
Nickel 2 2 ppm	S 1.0%		Arsenic 👬 😤	va1ppm a st	-1.0% st.	4,00
Cobalt	1.0%		Barium	. 10 ppm	5,1.0% <u></u>	(1.50 ···
Cadmium 0.2 ppm	1.0%		Beryllium At	0.1 ppm	0.1%	Aug. 8, 85.00
'Manganese 5	1.0%		Bismuth	2ppm 👬	0.1%	4,00
Iron Chromium 2 2 pom	10.0% 0.1%		Chromium 3	5 ppm	1.0% 1.0%	4.50 5.00
 Chromium 2 see ppm * Background correction applied. 	, U.1%		Lithium	Calippin 🦷 🖓	1.0%	4.50
			L.O.I.	0.01%	100%	4.00
			Mercury	10 ppb	0.01%	• 2.75
B. ICP MULTI ELEMENT PACKAGE			Rubidium	1 ppm	1.0%	5.00
a. Digestion by Agua Regia			Selenium 3	1 ppm	0.1%	5.00
6 elements \$5.00			Strontium	1 ppm	1.0%	4.50
12 elements \$6.00			Sulfur	0.1%	100%	7.00
All elements \$7.00			Tellurium	0.1 ppm	0.1%	6.00
b. Digestion by HCIO ₄ / HNO ₃ /	HF mixture		Thallium	0.5 ppm	0.1%	5.00
(Total)			Tin	2 ppm	0.1%	4.25
24 elements \$12.00			Tungsten	2 ppm	0.1%	4.25
* Aluminum 0.01% * Magn	oolum : 0.010/	a de la compañía de l				
		1 1 B	an an an Araba an Araba. Ta an Araba an Araba an Araba			
Arsenic 3 ppm Mercu	4.1					
	denum 1 ppm	E.	PH ANALYSIS.			
*Beryllium 1 ppm Nickel		and a state				20-5 S
	ohorus 0.001%		Soil, Silt and Wa	ter	· ·	\$4.00
* Boron 1 ppm * Silicor	-	an an an airte. An an				
Cadmium 0.5 ppm Sodiu		1 ¹ - 1		1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	· · ·	
* Calcium 0.01% * Stront	ium 1 ppm			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
* Chromium 1 ppm * Titaniu		, F	SPECIFIC GRAV	VITY.		
Cobalt 1 ppm Tungs						
Copper 1 ppm Uraniu						\$4.50
iron 0.01% Silver		e ser				1

Elements for which the digestion is possibly incomplete are marked with an asterisk.

3 ppm

1 ppm

2 ppm

Gold

Lead

* Lanthanum

Vanadium

Zinc

1 ppm

1 ppm

.

DISCOUNT POLICIES

All prices are on an individual basis, discounts may be negotiated fc

2

167

APPENDIX II

Sample Descriptions

LES GENESIS 1994

Page / of 7

		Туре	Depth	Thickness	Horizon	DES	CRIPT	TION	FRA	GME	NTS				_	A	NAL	SES		
SAMPLE #	LOCATION	(ype	(cm)	(cm)	Horizon	Colour	Particie Size	Organice	Rock Type	*	Roundnes	Slope	COMMENTS	pn	AU ppb	Ag ppm	CU ppm	ppm	ppm	PPI
L123N 77W		S	45	10	B	med Brn	Gritty Sandy Silt	0	Mixed	10	SubA EubR	NW	Mixed & Glacial							
77+25W			38	5	B	dark Or. Brn	Sandy		A	70		Mod WNW	Pour Developed over Volc Ote & Fel.							
77 † 50 V			25	10	B	Med Brn	Gritty Silt	W	A	90		· //	и и							
77+75 W			40	5	Bm		<u>*</u> η	0	A	60		. 11	ч,							
78 W			30	10	BM		silt	W	A	60		Mod NW	over AoteT							
78+25 W			40	10	BM		И	0	A ⋫D;	25	4	11	epidote							
78+50W			48	10	BM	V	Gritty SiH	0	4	10	А Е 5.5А	H	Some glacial rx							
78+75 W			10	8	BF	Med Orange Brn	"	Mod to Stray	A	90	A	Mod N	Poorly doveloped over otc							
79 ѵ			50	5	ß	L+ Brn	Clayley Silt		A	15	A	Gentle	epidote alt.							
79+25W			45	10	Βm		Gritty Clayey Silt	0	A e Glacier	10	At SubA SubR	v	Some Glucial							
79450W			40	9	Bm		V	Ò	A	30	A	Gentle NE	weakly Saturated							
79175W			40	5	Bm	\checkmark	Griffy Silf	O	A	5	A	n	strongly staturated.							
123,50N			35	5	B.	Med Brn	ų	W	A	90	A	Mod N-NW	Poor over A							
77+25W			20	5	B	ŋ	n	\mathbb{W}	A	90	A	Mod NN.W	ч +							
77150W			12	5	ß	Dark Orany Brn	2 4	Ŵ	A	95	A	Mod NW	4 4							
77+75W	,	Y	20	8	B	Lt- Med Brn	V	0	A	75	A	ų	Poor over A T/Folsomerc/OFC			1				

GENESIS 1994

Page 2_ of **7**

		Туре	Depth	Thicknes	Horizon	DES	CRIPI	TION	FRA	GME	NTS				-	A	NAL	SES		
SAMPLE #	LOCATION		(cm)	(cm)	1011201	Colour	Particle Size	Organics	Rock Type	%	Roundnes	Slope	COMMENTS	pn	Au _{ppb}	Ag ppm	CU ppm	ppm	p p m	ppn
78 W		5	38	5	BG	4-11 Bm	Gritty Silf	0	Aę Mix	୫୦	A. 5-5 R	Mod NW	Over AT; & Glacial	ľ						
78+25W			28	8	BM	Med Brn	silt	W	A	85		u	over A Felsenmere E ote							
78+50 W			38	10	BG	4-M Brn	silt	Ø		40		Genty Nw	over AFel,							
78+75			35	5	BF	DK On Barv	Grify Cluy Silt	W		60		Mod NNW								
79 W			35	4	Bm	Lt- Mrn	Griffy Silf	Ŵ		50		ч	over A Fel. ep, py, mag, he m							
79+25W			38	5	B	Lt BRN	silt	S	V	8		Gentle N	(very"light")							
79+50W			38	5	B	Med OR BRN	11	0	Apy	70		very Gentle N	over volc Fel.							
79+75W			20	5	B	DK-M BRN	Gritty Silt				V	4	V 11 4							
80+25W			38	10	BG	Med Brn	Griffy	0	A	30	Af SubR	4								
80+50W			45	10	BM	и	Grilly silt	0	A	15	Ag 5.54	very gentle N-Nov								
80+75W			30	5	BM	u	И	0	?.	5	Ad Supr	#	Some glacial							
31W			20	4	ß	Lt OR BRN	b	W	A ?	>	4	Gentle N	Pourly Devi over A-Di Subcrop							
124N			35	5	ุท	Meu OR BRN	IJ	0	A	60	•	Mod N-NW	over Atalus lote							
77+25w			32	5	4	Med BrN	clay siH	very W	A	60	A	w-mod NW	over ATOR Fel,							
77+50W			10	з	V	11	si H	Mod		-	-	۲	-over A ote -poor							
7	4																			

S GENESIS 1994

Page _ of _7_

DESCRIPTION	FRAGMENTS	ANALYSES
Colour Particle Organia Size	Rock % ROUNDINGS SIOPE COMMENTS	ph Au Ag Cu ppb ppm ppm ppm ppm ppm pp
3 Liter Sitty O	At Ang Gentle - over A, T Glacial Mix 80 Suby NW - poor to mod sample	
M BRN II M	A 90 Brighter 4 - Down; over ote S/on Fel	
BRN SiH	AE 20 Sy - poor; over Mix 20 R - poor; over ot /Fe/	
11 11 sitt 1	A 1 A " - Neurby ote A	
Lt Gritty BRN Sitty 4	Mix 25 Sub Gentle - Glacial; neurby R N A Fel. Some Angular A	
II Griffy Siff II	Mix 10 V N Glacial	
, Med sitt W	A 85 A Gentle - Oven A othe / Jel N - poor sumple	
1 BRN Silt O	Mix 5 SBR " Glacial	
Med II O	A 10 A Wenk - over A Fel.	
V Lt- Gritty Med Clay O BRN Sitt	Mix 10 Susp N Glacial	
Med Grithy BRN Sitt O	A 80 A 4 - over A Talas/Fe/	
G " siH O	1 35 A 11 " " +	
G BRN Clay O	A EMix 30 EAns V EGlacial	
3 BRN Silt W	A 85 A 11 " "	
? 4 clay silt -	A- Di Bo A Gentle " 4	
	3 BRN Silt Clay	3 BRN SIIT VV 14 85 14 11 11 11

TALUS FINES & SOIL SAMPLES

GENESIS 1994

Page <u>7</u> of <u>7</u>

		Туре	Depth	Thickness	Madaa	DES	CRIPT	TION	FRA	GME	NTS	[A	NAL	SES		
SAMPLE #	LOCATION		(cm)	(cm)	HOLIZON	Colour	Particle Size	Organics	Rock Type	*	Roundnes	\$10pe	COMMENTS	ph	AU ppb	Ag	CU ppm	ppm	pp m	ppn
L124+50N 77+50W		. 5	22	4	B		1	(nuts)	A	10	A	fente N	-thin over AT/Fel				•			
77+75.W		1	30	5	BM	Med BRN Yellowi	Sandy Silt	D	Mix	go	subil EA	W to Mod NW	-Glacial dominates A							
78W			35	ę	h		Griff		At Mix	60	A	Mod	- over A Fel/ote E E Glacial							
78+25W			30	5	n	"	3 	W (2005)	٨	85	h	h	-over A Fellote							
78+50W	t , "ntrin no norkonska		35	5	H	v	Sandy Silt	0	11	40	ч	Gentice N	- 4 11 4							
78+75W			38	10	6	Med BRN - Greyis	Gritty b Sitt	0	A Z carb. velbs	50	1	very Gentle	-over A Fel; "soil " in part crumbly rock							
79w			35	g	н	Med Briv		W-M (Roots)		10	4	Gente NW	-over A ote E Fel. - soil pockets mod well developed							
79125W			25	4	N	Med DKOM BRAJ	u.	M (Root)	A	90	7	И	- very poor over A ote & Fel							
79+50W			36	8	B	med BRN	clay	D	Mix EA	40	AE SUBR	и	-Glacial & ATal. /Fel	1						
79175W			38	8	B	Med OR. BRN	silt	Very Weak	A	5	A	Very Gentle N-NW								
80+22 W			38	8	BG	Mou	Gritty silt	0	A	75	ji .	Gent4 NW	-ote A within 3m							
80420M			30	5	B	¥	"	0	A	80	ų	Gente N	- difficult sample over Talus/FC1							
80+75W			45	5	ßG	Lt Bru to Greyi	Gritty Clay sh silt	0	À	5	11	1/	-moderately water saturated							
91 W			35	5	B	Med -Lt BRN	Gritty Silty Sund	102	Mix	20	Sub R	V	Glacial							
91425W			38	5	ßG	L+BRA L+GY	Grity Cluy Silt		Mix	40	4	Ŋ	4 11		<u> </u>					
81450W		V	35	5		Med RRN		W (R.55)	Mix	15	SUSR TOL	Gentle	4 4	Π						

GENESIS 1994

Page <u>5</u> of <u>7</u>

LOCATION	Type		Th (at a sec a		DESCRIPTION		<i>-</i> ~ ~	UME	NTS	1		1			NAL				
		Depth (cm)	Thickness (cm)	Horizon	Colour	Particie Size	Organics	Rock Type	*	Roundnes	Siope	CO mments	pn	AU ppb	Ag ppm	CU ppm	ppm	ppan	ppn
	5	30	8	B	DE or. BNN	Griffy silf	Mod (Raits)	A EMix	95	Az SUBA	Gentle - Weyk Nav								
		25	4	v	Mail	silt	W- M (Roots)		95	A	Gentle NW			,					
		32	5	r	Lt BRN	Gritty Silt	1		5	Aq Sub K	Gentle	-Glacial & A ote/te/ -poor sample							
		38	5	V	Med BAN	4	0	Mix	5	SUB R	Gentle Nto NW	Glucial						<u> </u>	
		32	8	RG		Grity Clay sitt	0	M ⁱ x	3	ما <i>ن</i> ک	wedk - Gentle								
		28	4	ß	Med- DL OR BRN	Grilly	Mod (Roots)	A	90	A	heak NW	-noorly developed over A Fel., 5mW							
		32	8	¥	Med - DK BRN	11	Ŋ	A	95	A	ц	pourly developed over A Fel.; epidote							
		32	5	11	Mada	silt	-	_	(-	Weak Mod N	-over A otc/Fel							
		30	4	•	Med	Gritty		At Mix	80	A E SUBR	Mod N	-over Aote/Felt glacial blds							
		38	5	lı	h	silt		A	70	A	ů,	-over Aok							
		22	5	ч	¥	Si 1t	weak (Roots)	A	95	A	houk -Mod N	poorly developed over A Fel							
		15	ک	H	Med- Lt B	Silt	-	_	1	-	wouk N	on Road			-				
		38	8	BG	Lt-Med BRN	Griffy Sandy	-	Mix E A	75	SUBA SUBR	heyk Nu	Glacial & A Fload							
		32	8	み	Med BRN	Grilly Silt	Very Weyk Roots	A	40	A e Sub A	v	-difficult over A Tal,							
	V	45	8	₿G	Lt Grey BR	Gritty Clay Silt	-	A	3	A	heuk Gentle N-NW	-over A Fel / Tal.							
			32 38 32 32 28 32 32 32 30 32 38 22 15 38 32	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25 4 V BRN 32 5 " Lt 32 5 " BRN 32 5 " BRN 32 5 " BRN 32 8 5 " BRN 32 8 7 BRN BRN 32 8 R BRN BRN 28 4 B BRN BRN 28 4 B BRN BRN 32 8 4 B BRN 32 8 4 B B 32 5 " Med B 32 5 " B B B 32 5 " H B B 33 7 " Med B B B 32 5 " " H B B B B B B B B B B B B B B	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TALUS FINES & SOIL SAMPLES

GENESIS 1994

Page 6 of 7

		Туре	Depih	Thickness	Horizon	DES	CRIPT	TION	FRA	GME	NTS					A	NAL	SES		
SAMPLE #	LOCATION		(cm)	(cm)		Colour	Porticie Size	Organics	Rock Type	*	Roundnes	Siope	COMMENTS	on	AU ppb	Ag ppm	Cu ppm	ppm	p p m	ppn
L125750N		3	35	-	n_	L+Gre	Clay		Mix		รบษ	weak -Gentle	-Glacial; not	ľ						
<u>81 W</u>			52	5	₿G	BRN '	Silt			20	R.	NNW	disturbed							
81+25W			40	5	BG	и	Gritty Clay silt	-	"	5	4	l-ent -Genth NG	-Glacial, not disturbed							
81+50W			38	5	BG	Med BRN	Grilly Silt	Weak Roots	-	-	-	Weat Gentlo NE								
81+75W			30	5	h	L+ ByQIN	× H	-	Mix	5	Sus R	Weak Gentle								
82W			30	5	ßG	Lt Gy BRN	Chuy Silt	-	-	-	-	Weak Gente Nw	e-Glacial, Hardpan							
L126 N B0+25W			40	5	н	Med Brw	Gritty Silt	0	A	5	A	weak -Mod Nw	-Downslope from disturbed area							
80+50w			38	5	v	4	,t	Y	Az Mix	8	A - 5-5A	heyk	-possible Glacial (week contribution)							
80+75W			40	5	,	v	p	и	И	5	A- Susr	4	e Glucial							
81 W			35	8	B	4	silt	v	A	2	A	+								
81+2500			22	5	B	Dr on BN	<i>I</i>	W (Root)	¥	60	A	+	over Fel/Tal							
B1720 W			25	5	BG	BRN	Griffy Silf	u	И	70	A	Weyle -Mod	ų <i>v</i>							
81+75W			38	5	"	¥	Griffy Cluy Silt	ч	At Mix	25	A E 505A -345R	veuk - Mod NE								
82W			23	5	BM	DK- Med OR BON	, si H	v	5	-	1	¥	-over Aote							
1200 5	1200 ppm Cu site ; BLYS	V	42	5	BM	Med BRN	Gritty cluy silf	0	Die A	15	A	Gent6 N	-epidok alt -within Im of picket							
1200 H	и 11 ч	Humus							4											
1200 P	u ll u	Pun																		

ES GENESIS 1994

Page 7 of 7

SAMPLE #	LOCATION	Type	Depth (cm)	Thickness (cm)	Horizon	DESCRIPTION		FRAGMENTS					ANALYSES							
						Colour	Particie Size	Organics	Rock Type	*	Roundnes	Slope	COMMENTS	pn	AU ppb	Ag ppm	Cu ppm	ppm	ppm	pp.
BL 80W 123 N		5	38	8	B	med Brn		0	-	-	-	slight N	Water Saturated							
123+25 N		-1	38	5	B	H; Brn	11	h	Mixed Volc	5	Sub Ang ESubR	И	Glacial 8							
123750N			45	8	ßm	И	и	V	17	15	n	Gentle N	11							
123775N			30	12	В <i>г —</i> <i>В</i> G	Lt Brn to Buff	silf	W	A	80	Angulan	Gentle to weak	pourly developed over other telsenmeen (hight)							
124 N			20	4	B	med Orange Brn	gritty silt	"	ļ	-	"	Gentle NW	poorly developed							
124725 N			25	8	B	H-M BRN	silf	\sim	۷	80	*	Gentle								
124450N			38	5	BF	Med- DK BRN	sìH	0	11	5	4	very gentle Nw	-weak epidote alt							
124175N			20	4	BM	Med - Dr or BRN	siH	Wi (Rost)	11	-	4	Gentle Weak N	-difficult sample; over Felsenmeer, poor							
125 N			35	8	BM	Lt BRN	Gritty cluy silt	н	-	1	-	fiente N	water saturates							
125+25N			35	5	Bm		Grilly Silt	1/	A	70	A	weyk NW	- difficult, sver Volc Felsonmerc, otc 15 m E (A).							
122420N			35	2	BG	Med Ben	Griffy Silf	1	Mix	5	Sub R	lveak −Gentle Nw	were rocky: difficult						L.	
125+75 N	····		38	5	BG	LtGy BRN	Gritty Cluy Sndysj	-	Mix	20	Sub R	Genth -Weak Nw	-Glacial							
126 N		V	35	8	BG	Lt- Med BRN	Griffy silf	-	Mix	20	รบ๖ R	Weuk NW	-Glacial, possibly weakly disturbed.							

Type: S= soil B= undivided B horizon Horizon: $B_{\rm F}$ = iron-rich B horizon B_{G}^{F} water saturated most of year, red-brown mottles, B horizon B_{M}^{G} brown horizon, appearance only slightly different from M underlying parent material underlying parent material Colour: Brn= brown Or= orange Gy= grey Lt= light M, Med= medium Dk = dark**Organics:** 0= nil W= weak A= intermediate volcanic Rock Type: Mix= mixed glacial Roundness: A= angular R = roundedSlope: Gentle...Weak (W).....Moderate (Mod)....Steep Fel= felsenmeer Comments: T, Tal= talus otc= outcrop poor= poorly developed soil

KEY

APPENDIX III

Statement of Expenditures

EXPENDITURES

WAGES: L. Grexton 8 days-\$200/day							
FOOD & LODGING: including Sagebrush Motel, Kamloops	(Apr. 30-May 7/94)	347.08					
TRANSPORTATION: Mazda Pickup Rental-\$198/week Fuel Mileage-\$0.15/km Coquihalla Highway Toll		226.30 85.60 158.20 20.00					
FIELD SUPPLIES: (flagging, sample bags, topofil etc)		54.00					
ANALYSES: Rossbacher Laboratory, Burnaby, B.C. 105 Soil samples-\$14.00 each 1 Pan concentrate sample-\$13.00 each 1 Rock sample-\$15.25 each		1498.25					
REPORT: Compilation, Drafting 2 days-\$160/day Writing, typing 2 days-\$200/day Reproduction							
MISCELLANEOUS (10%)		\$4741.43 474.14					
۰. ۲	Total Expenditures:	\$5215.57					

APPENDIX IV

Statement of Qualifications

Statement of Qualifications

I, Lynn Grexton, graduated from the University of Waterloo, Waterloo, Ontario with an Honours Applied Bachelor of Science Degree, Earth Science major, in May 1980. I have worked as an exploration geologist for major companies and consulting firms in the Canadian Cordillera since that time. I have a direct interest of 60% in the Genesis mineral claims discussed in this report.

Vancouver, British Columbia May **25**, 1994

Lynn Grexton, Geologist