
FILMED

REYNOLDS GEOLOGICAL

DIAMOND DRILLING AND PERCUSSION DRILLING REPORT

on the

BEATON MINERAL CLAIMS

Kamloops Mining Division British Columbia

N.T.S. 092I/10E Latitude 50° 41' N Longitude 120° 37' W

for

operator:

GREEN VALLEY MINES INC.

2245 West 13th Avenue Vancouver, B.C. V6K 2S4

owner:

Mr. Charles Boitard 2245 West 13th Avenue Vancouver, B.C. V6K 2S4

by

P. REYNOLDS, B. ECOPIGO GICAL BRANCH
MAY 31 x 1994 SESSMENT REPORT

23,390

SUB-RECORDER

RECEIVED

JUN - 7 1994

VANCOUVER, B.C.

M.R. # \$

\$;

TABLE OF CONTENTS

1.	SUMMARY	2
2.	INTRODUCTION	2
3.	LOCATION, ACCESS AND PHYSIOGRAPHY	2
4.	CLAIM STATUS	3
5.	HISTORY	4
6.	GEOLOGY	4
7.	PERCUSSION DRILLING	5
8.	DIAMOND DRILLING	6
9.	CONCLUSION AND RECOMMENDATIONS	6
10.	REFERENCES	7
11.	CERTIFICATES	8

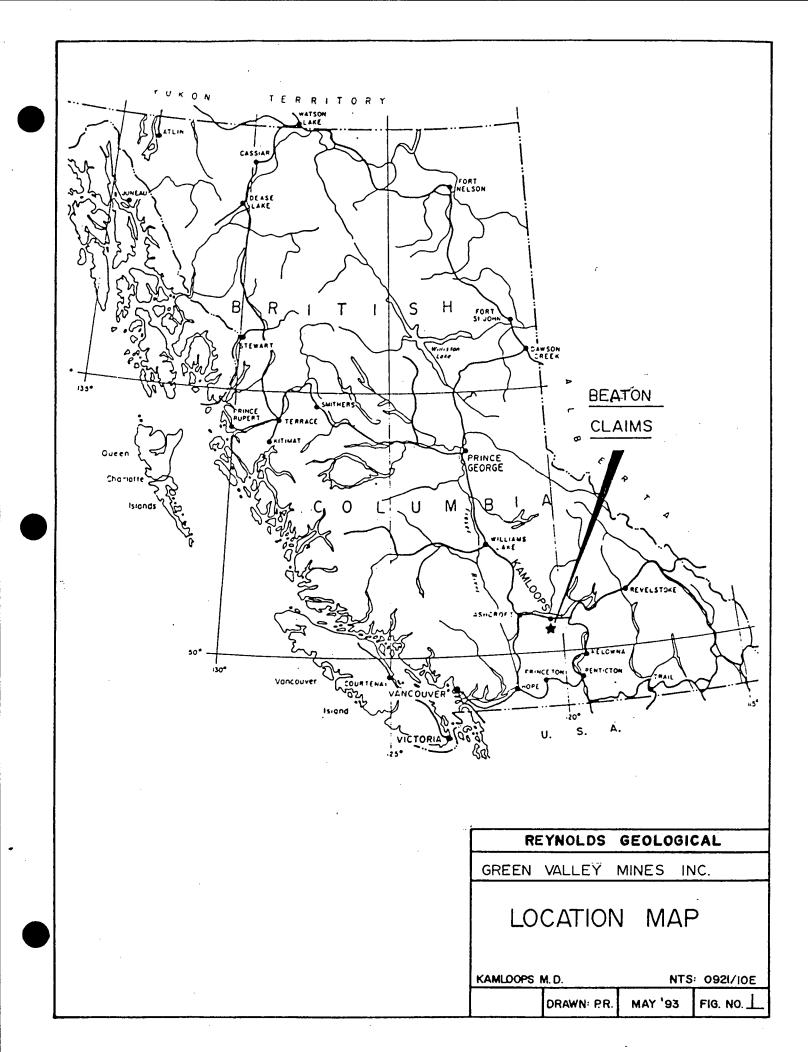
LIST OF FIGURES

FIGURE 1	LOCATION MAP	FOLLOWS PAGE 2
FIGURE 2	CLAIM MAP	FOLLOWS PAGE 3
FIGURE 3	REGIONAL GEOLOGY	FOLLOWS PAGE 4
FIGURE 4	DRILL PLAN	BACK POCKET
FIGURE 5	SECTION THROUGH DDH 93-1	FOLLOWS PAGE 5

APPENDICES

APPENDIX I	STATEMENT OF COSTS
APPENDIX II	DRILL LOGS
APPENDIX III	ASSAY SHEETS

1. **SUMMARY**


- 1.1 The Beaton property consists of 17 contiguous mineral claims totalling 95 units. The claims are located approximately five kilometres west of the former producing Afton Mine and 18 kilometres west of the town of Kamloops, B.C. The claims are accessible by good gravel roads from Kamloops.
- 1.2 The property is underlain for the most part by andesites of the Nicola Volcanics.
- 1.3 Three percussion holes and one diamond drill hole were completed in 1993 to test for copper mineralization. No economic amounts of copper mineralization were encountered.
- 1.4 It is recommended that a program of geological mapping be completed before any further drilling is done on the property.

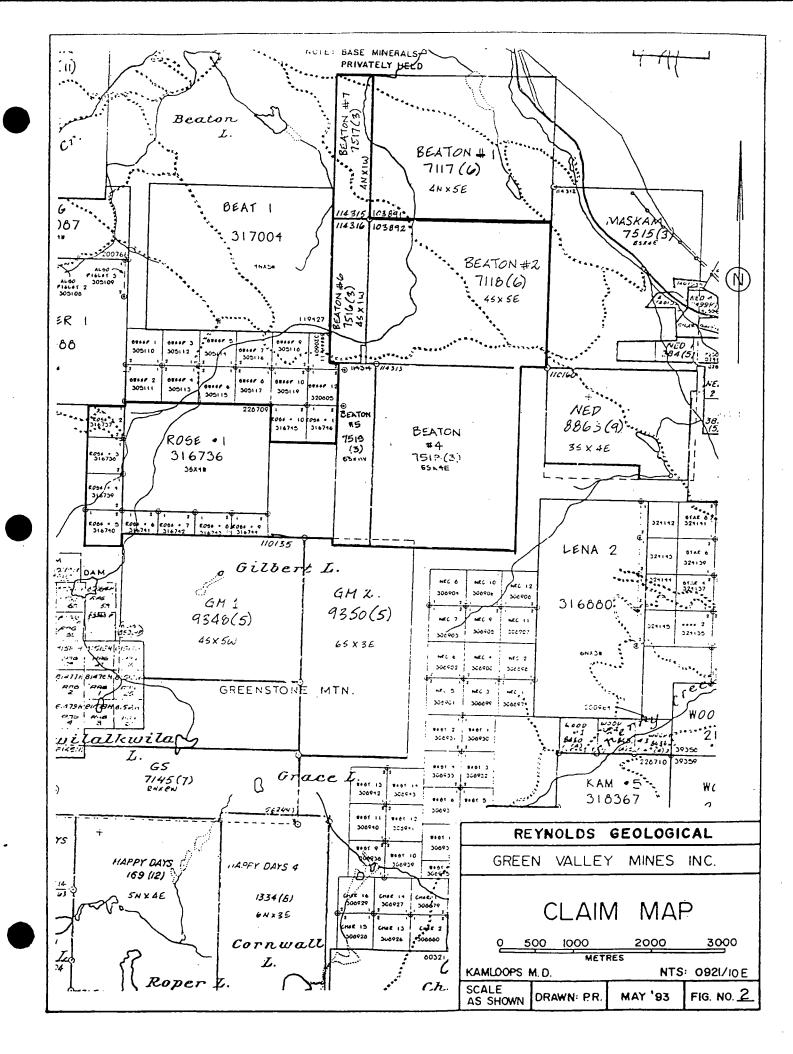
2. INTRODUCTION

- 2.1 This report has been prepared at the request of Mr. Charles Boitard, President of Green Valley Mines Inc., to satisfy assessment requirements.
- 2.2 The information for the following report was obtained from sources cited under references and from the drill logs of the three percussion holes and one diamond drill hole. The drilling program was carried out by Mr. Charles Boitard between April 10 and September 10, 1993. Mr. Rod Husband, P. Geo., logged the percussion drill cuttings in Vancouver on May 11 and May 16, 1994. The Author logged the diamond drill core on the property.
- 2.3 The registered owner of the Beaton claims is Mr. Charles Boitard. The claims are being operated by Green Valley Mines Inc. The claims lie approximately 18 kilometres west of Kamloops, B.C. This area is known for its porphyry copper and molybdenum production from both volcanic and intrusive host rocks. Significant gold and silver has been recovered from these deposits.

3. LOCATION, ACCESS AND PHYSIOGRAPHY

- 3.1 The Beaton property is located on the Thompson Plateau approximately 18 kilometres west of Kamloops, B.C. The claims are centered at 50° 41' north latitude and 120° 37' west longitude on NTS map sheet 092I/10E. The claims are in the Kamloops Mining Division.
- 3.2 Access is provided by the Trans-Canada Highway and then south along the Cherry Creek Road which branches off the highway approximately two kilometres west of the Afton Mine. Good dirt roads provide access to most of the claim area.

3.3 The property lies between elevations 700 to 885 metres above sea level. Vegetation consists of pockets of Pine within grasslands. Water for all stages of exploration is available from Beaton Creek, the main drainage on the Beaton claims. The climate is semi-arid with an average annual precipitation of 250 to 280 millimetres.

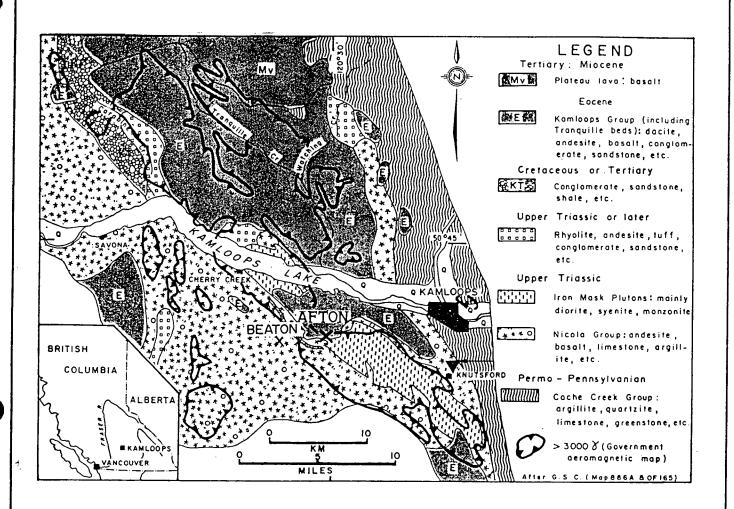

4. CLAIM STATUS

4.1 The Beaton property comprises 17 mineral claims totalling 95 units. Complete claim information is as follows:

<u>NAME</u>	<u>UNITS</u>	RECORD NO.	EXPIRY DATE *
BEATON #2	20	217821	June 15, 1997
BEATON #4	20	217973	March 8, 1996
BEATON #5	5	217974	March 8, 1996
BEATON #6	4	217971	March 8, 1996
BEATON #7	4	217972	March 8, 1996
MASKAM	20	217970	March 8, 1996
ROSE #1	12	316736	March 23, 1996
ROSE #2	1	316737	March 20, 1996
ROSE #3	1	316738	March 20, 1996
ROSE #4	1	316739	March 22, 1996
ROSE #5	1	316740	March 23, 1996
ROSE #6	1	316741	March 22, 1996
ROSE #7	1	316742	March 23, 1996
ROSE #8	1	316743	March 23, 1996
ROSE #9	1	316744	March 23, 1996
ROSE #10	1	316745	March 19, 1996
ROSE #11	1	316746	March 19, 1996

^{*} Includes assessment currently being applied.

4.2 All claims are recorded in the name of Mr. Charles Boitard. Any legal aspect of claim ownership is beyond the scope of this report.



5. **HISTORY**

- 5.1 The Afton orebody, located five kilometres east of the Beaton claims, began production in 1977 and continued through 1991 when it was shut down for economic reasons. At start-up, Afton had drill proven ore reserves of 30.84 million tonnes grading 1.0% copper, 0.58 ppm gold and 4.19 ppm silver at a cut off grade of 0.25% copper (Carr & Reed, 1976). It is reported that underground reserves still exist and that with an improvement in copper and/or gold prices the mine could be re-opened.
- 5.2 In 1972, the TT claims were explored by Bow River Resources Ltd. A magnetic survey on the TT claims reportedly revealed Coast Intrusives, and Tertiary volcanics as well as Nicola Volcanics within portions of the present day Beaton claims (Sookochoff, 1992).
- 5.3 In 1980, Asarco completed a magnetometer survey on the Red 1-4 claims, two of which occupied a portion of the northeast corner of the present Beaton claims. The resultant magnetic highs were determined to be the result of outcroppings of Nicola volcanics. Percussion drilling in 1981 revealed chalcopyrite but no economic concentrations of copper were discovered.
- 5.4 In 1983, De Baca Resources explored the Akila claim which included the southwest corner of the present day Beaton claims. One diamond drill hole was completed to test a silicified shear zone that strikes 070°. This hole reportedly returned assays of nominal copper and silver.
- 5.5 Since 1987 exploration on the Beaton claims has consisted of IP surveys, localized soil geochemical surveys and the drilling of nine percussion drill holes in 1992.

6. **GEOLOGY**

- 6.1 The Beaton claims lie within the Quesnel Trough, a 30 to 60 kilometre wide belt of Lower Mesozoic volcanic and related sedimentary rocks bounded by older sedimentary rocks of the Cache Creek Group to the east and younger Coast Intrusions to the west. In the area of the Beaton claims the Quesnel Trough is dominated by Upper Triassic Nicola Group andesites, basalts, tuffs and argillites. The Nicola Group is intruded by Upper Triassic Lower Jurassic diorite, syenite and monzonite of the Iron Mask Batholith. This batholith represents a major northwest trending structure that crosscuts the north-northwesterly trending Nicola volcanics. Portions of this area are obscured by later plateau lavas.
- 6.2 Bedrock exposure in this area amounts to only about ten percent, the rest being covered by glacial drift deposited from Pleistocene ice sheets that moved from northwest to southeast.

REYNOLDS GEOLOGICAL

GREEN VALLEY MINES INC.

REGIONAL GEOLOGY

KAMLOOPS M.D.

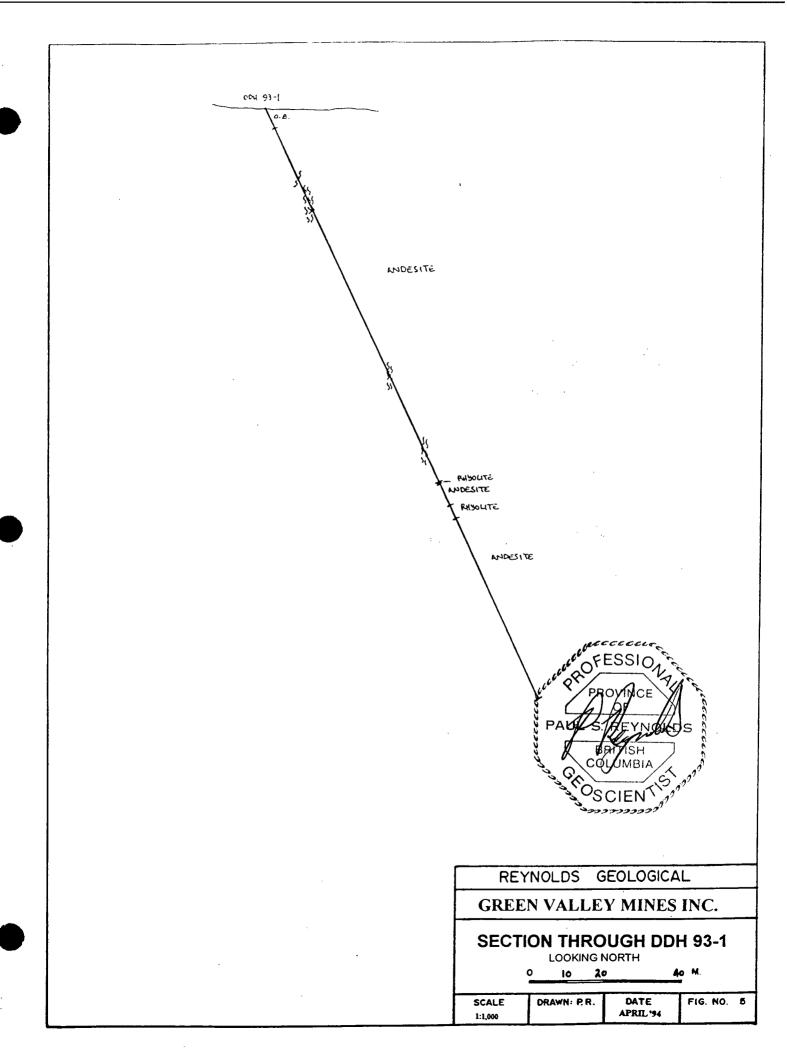
NTS: 0921/10E

SCALE AS SHOW

DRAWN: P.R.

E8' YAM

FIG. NO. <u>3</u>


6.3 No systematic, property scale geological mapping has been carried out on the property. The Beaton #2 claim is underlain by andesite of the Nicola Group and quartz monzonite of the Iron Mask pluton. A rhyolite flow was observed, by the author, near percussion drill hole 93-3.

7. PERCUSSION DRILLING

- 7.1 During the period April 10 to May 15, 1993 three percussion drill holes were completed on the Beaton #2 claim. All drill holes were vertical. The holes were drilled to test for sulphide mineralization within an area outlined by anomalous geophysical signatures as defined in previous surveys. Drill hole locations are plotted on Figure 4.
- 7.2 Drilling and sampling was supervised by Mr. Charles Boitard of Green Valley Mines Inc. Samples were taken every three metres (ten feet). Samples were obtained by riffling the chips down to approximately five kilograms of sample. A grab of this material was then sent to Rossbacher Laboratory Ltd., in Burnaby, B.C., for geochemical analysis of copper and arsenic. Only a few intervals were assayed for gold. Exact analytical procedures are listed in appendix III. The three holes were logged by Mr. Rod Husband, P. Geo. Drill logs are included in appendix II.
- 7.3 The following table summarizes the drilling done in 1993:

HOLE NO.	DEPTH (m)
93-1	125
93-2	125
93-3	101

- 7.4 Percussion drill hole 93-1 returned copper values ranging from 34 to 430 ppm copper. Five samples from PDH 93-1 were analyzed for gold. Gold values ranged from 5 ppb to 20 ppb. Alteration in this hole consisted principally of minor epidote.
- 7.5 Percussion drill hole 93-2 returned copper values ranging from 2 to 158 ppm. Only one sample was assayed for gold and the results were negligible.
- 7.7 Percussion drill hole 93-3 returned copper values ranging from 8 to 122 ppm copper. Samples from PDH 93-3 were not analyzed for gold. Alteration in this hole consisted principally of secondary epidote and chlorite.

8. **DIAMOND DRILLING**

- 8.1 During the period September 7 to September 10, 1993 one diamond drill hole was completed on the Beaton #2 claim. The drill hole was drilled at azimuth 025° and dips 65° from the horizontal. The hole was drilled to a total depth of 173 metres. The drill hole location is plotted on Figure 4.
- 8.2 Drilling was supervised by Mr. Charles Boitard, President of Green Valley Mines Inc. The hole was logged by the author on May 28, 1994. Core size is NQ. The core is stored at the drill site. Drill logs are included in appendix II.
- 8.3 Diamond drill hole 93-1 intersected unaltered dark green and purple andesites for most of its length. Minor rhyolite flows were encountered near the bottom of the hole. One interval (112.5-116.46 m) consisted of highly bleached andesite with minor pyrite mineralization. Graphite was noted on the fractures in this interval. No core was assayed. A section through DDH 93-1 is plotted on Figure 5.

9. CONCLUSION AND RECOMMENDATIONS

- 9.1 The 1993 drilling program failed to delineate any significant copper mineralization however, previous percussion drilling results (PDH 92-8) contained elevated levels of gold, barite and arsenic indicating potential epithermal mineralization (Reynolds, September 8, 1993). No systematic, property scale geological mapping has been carried out on the property due to the owner's belief that there is no outcrop. The author made a very cursory inspection of the property and noted several outcroppings of andesite and one outcropping of rhyolite all within 200 metres of DDH 93-1. One outcropping of andesite, located approximately 20 metres at a bearing of 210° from station 1600S, 600E, is mineralized with trace amounts of chalcopyrite.
- 9.2 It is recommended that a program of geological mapping be initiated before any further drilling is done. In conjunction with the drilling, all previous work should be compiled and presented in map form.

10. **REFERENCES**

Carr, J.M. and Reed, A.J. Afton: A Supergene Copper Deposit. Part of C.I.M.,

Special Volume 15: Porphyry Deposits of the Canadian

Cordillera. 1976.

Cockfield, W.E. Geology and Mineral Deposits of Nicola Map Area, British

Columbia. Geological Survey of Canada, Memoir 249,

1961.

Reynolds, P. Percussion Drilling Report on the Beaton Mineral Claims

for Green Valley Mines Inc. September 8, 1993.

Sookochoff, L. Compilation Report for Green Valley Mine Inc. on the

Beaton Claims. Unpublished report, 1992.

11. **CERTIFICATE**

- I, Paul Reynolds, of the city of Vancouver in the province of British Columbia do hereby certify that:
- I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia.
- 2) I am a graduate of the University of British Columbia with a B.Sc. degree in geology.
- 3) I have practiced my profession as exploration geologist since graduation in 1987.
- 4) This report is based on a review of previous reports and by the authors diamond drill log 93-1.
- 5) I have no interest, directly or indirectly, in the Beaton property or in the securities of Green Valley Mines Inc., nor do I expect to receive any interest in the future.
- Permission is hereby granted to Mr. Charles Boitard and Green Valley Mines Inc. to use this report in support of any filing to be submitted to the Ministry of Energy, Mines and Petroleum Resources of the Province of British Columbia for the purpose of filing assessment on the Beaton mineral claims.

Dated this 31st day of May, 1994.

CERTIFICATE

- I, Rod W. Husband, of the city of Vancouver in the province of British Columbia do hereby certify that:
- 1) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia.
- 2) I am a graduate of the University of British Columbia with a B.Sc. degree in geology.
- 3) I have practiced my profession as exploration geologist since graduation in 1986.
- 4) I logged percussion drill holes 93-1, 93-2 and 93-3.
- I have no interest, directly or indirectly, in the Beaton property or in the securities of Green Valley Mines Inc., nor do I expect to receive any interest in the future.

Dated this 31st day of May, 1994.

Rod W. Husband, B.Sc., P.Geo.

APPENDIX I STATEMENT OF COSTS

STATEMENT OF COSTS

Percussion Drilling	351 metres @ \$31/metre	10,881
Diamond Drilling	173 metres @ \$65/metre	11,245
Assays		2,426
Truck Rental		2,000
Supervision		3,500
Room and Board		1,500
Draughting and Reporting		3,000
Reproduction		500
Supplies		500
Work Permit		500

TOTAL \$36,052

APPENDIX II
DRILL LOGS

PROPERTY Roman

HOLE No. BEATON 93-1

DIF	ST		
	Ar	ngle	_
	ding	Corrected	Hole No 9
+			Section
1			Date Begun_
			Date Finishe
		l	Date Logged

Hole No. 93-1 Sheet No. 10F3	l at	Total Depth 390'
Section	Dep	Logged By R+t
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size PERCUSSION
Date Land 1/1/94		

FROM	TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	ŢΟ	WIDTH OF SAMPLE			
0	10		SLICHTLY RELOAD BROWN SANTH QUICKLY AND ANDESTE							
			FRACMENTS SIZE FROM DOST TO ZEM							
ļ										
10	20		SILIETOUS ANDREWS DUCKALL COLORS POSTY BROWN					 		
ļ			Composition: ~30% guran characters 70% Applicates							
			(SPICE MOSTER BUT MINOR ADRAIT), LIMONITE STAINING							
			MICRO FRACTURE OF LIMONITE IN PROBLETE NOTES.						<u> </u>	
			NO NOTHERBIE SULFINES (FILE ASTINDADO) (MINION)					 		
										-
20	30	,	As PREvious					 		<u> </u>
30	40		p. • • • • • • • • • • • • • • • • • • •					 		
40	5 0		" LEANER BROWN COLOUR SCIENCE MONE CA							
50	60		11 " MORE GREEN PURCUITE ~ 90% LLOS (MUSON)							
			LINDOUTE MINOR PYRITE POTEL							
60	90		AS 10-20 BUT PROFESTE AND PRINKISH FOODER							
			MASTIN DO DOTHERBIE CLEEKEE ONEY MILHOR					 		
			LIMONITY BARREL FREE CONT					 ļ		
	l									

HOLE NO: BEATON 93-1

PAGE NE:

2 of 3

	PTH TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE			
90	230		DARK CARELL ANDESTILE COMPOSITION LIMONITE (VIA)			_				
		;	EPINOTE ALTERATION (Mai) NO NETHETRELE							
			5017-665							
ļ			•							
230	270		BROWNY COLOUR CAANNO BIONITIC COMPOSITION							
			QZ, FELD MASKS, EPIDETE ALTERATION (MOD)							
			MINOR PYRITY AS SMALL INCLUSIONS IN QUARTE							
	ļ 		GRAINS LIMONITE (LOW- MOD) COLOUR GRADES							
			LIGHTER TOWARDS 270'							
			•							
270	310		LIGHT BLOWN - TAN COLONE GRANITIC COMPOSITION							
			QZ FELD MUSE, BIO MAINS MINOR LIMONITE		ļ	· · · · · · · · · · · · · · · · · · ·				
			MINDR PY, CP NOTED	·	ļ			×		
 -		:								
310	320		BROWNSH PURPLE COLOUR ANIESTIC COMPOSITION				,			
			OR MARIES MINOR EPIODIC ALTERATION						 <u> </u>	<u> </u>
			NO SULFIDES NOTICED							
320	330		AS 310-370 - BARKER GREEN IN COLOR.							
								7500		
330	360		BROWNISH PURPLE IN COLOR AS 310-320'							
			MINOR LIMONITE MINOR EPIDOTE ALTERATION				·			
			NO SULFIDES NOTHED							
						·		:.		
	Ll			ł			L		 L	!

HOLE NO: 393-1

PAGE NE:

30+3

,			<u></u>	,		,					,
DEP FROM	TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
360		<u> </u>			<u> </u>		OF GAME CE		 		
50	710		SALT ! PEPPER COLOR DIOPITIC COMPOSITION		-	 					
			MINOR EPIDOTE MINOR LIMONITE			 			ļ		 -
			NO NOTICEABLE SULFINES]	<u> </u>	 					ļ
									ļ	ļ	<u> </u>
				ļ							
					ļ						
			EOH								
										<u> </u>	
					 					<u> </u>	
				<u> </u>	ļ						
					ļ	ļ				ļ	ļ
							! 			 	
					.				ļ		ļ
					ļ	ļ				ļ	ļ
								:			
							715 715	÷			
							14.7 14.74				
								:,			
						ļ ———					,
					 					 	
		-			 	ļ ——···					
					 	 				 	
					 	<u> </u>			ļ		
						<u> </u>					
							A.1				
		L		<u> </u>	L	نـــــا	L				

PERCUSSION DELL RECORD

PROPERTY BEATON

HOLE No 13 93-2

core Size PERCUSSISI

	DIP TEST				
	An	gle			1.5 +
Footage	Reading	Corrected	Hole No. 893-2 Sheet No. 10F2	Lat	
			Section	Dep	
	 		Date Begun	Bearing	
			Date Finished	Elev. Collar	
			Date Logged MAY 16/94		

DE	PTH	1			,		Maria de la como	!			
FROM	TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
							OF SAMPLE		 	 	
	 -										
ļ	ļ										
30	90		MARIC GARRY - ANDESTIC COMPOSITION								
			ABUNDANT EPIDOTE ALTERATION			· · · · · · · · · · · · · · · · · · ·			<u> </u>	 	
			MINOR LIMONITE, NO MOTHERABLE SULFINGES					 -		 	
			2011/126							 	
90	100	-	TRASMON BETWEEN BANKGREEN AND					····	 -		
			LIGHT BROWN TAN COLURS CONTACT ZONE?					·····	 		-
			LIGHT TOPOGOD TAND COLONS CONTACT ZONE.						 	ļ	
									 		
/	4.							·		<u> </u>	
100	160		LIGHT BROWN TAN COLOUR GRANITIC COMPOSITION					····			
			QUARTE, FELDSPAR, BIOTITE CHEORITE EN ALTERATION	,					1		
			OF MAFKS - VIFEW MATIES								
			NO NOTICEABLE SULFIDES								
											<u> </u>
160	170		AS PREVIOUS BUT MORE MARIES (MOD)								
			· SALT : PEPPER COLOUR						 	ļ	
		r	NO SULFIDES NOTICED							 	
			THE TOURS NOTICED				,				

DIAMON DRILL RECORD

HOLE NO: B 93-2

PAGE NE:

2 of 2

FROM	PTH	RECOVERY	DESCRIPTION	SAMPLE Na	[500:]	70	WIDTH	 		1	T
FROM	10	ALGOVERY	DESCRIPTION	JAMPLE No.	PROM	10	OF SAMPLE			 	
170	260		GREENISH BROWN - BROWNISH PURPLE COLDUR								
			MINDR ALTERATION (EFILETE) ANDESTIL								
			COMPOSITION NO NOTHERABLE SULFIDES								
		·									
260	280		BROWNISH (LIGHT) COLOUR DIDERTY COMPOSITION	<u> </u>							
			V. MINOR EDIDOTE AITERESIEN								
			NO DOTKEABLE SULFIDES.								
280	340		MARK GARRI COLOUR ANSSONE CONFORTING								
			MOD EPIDOTE CHICKITE ALTERATOR					*****	1		
			NO POTHERRY CHIEFE								
									 	<u> </u>	
									,		
340	4/12		SALT AND PEPIER COLOUR DIORITIC COMPOSITIO	, ,				:		<u> </u>	
					-		jes		 	 	1
			MOD EAROTE CHIORITE ALTERATION			 		· · ·	 		
-		 	CHALLO NOTEL 360-370 (DNE SICEK) AND			-			 		
-			380-390' AND MINOR PYRITE NOTED.		\vdash		 		<u> </u>	 	
	L			ļ	ļ <u> </u>						
	·		· · · · · · · · · · · · · · · · · · ·		 				 		-
			<u> </u>					-	ļ		· ·
	·		EOH			<u> </u>			ļ	_	
		· ·									
							erikati e e e	;			
		<u> </u>		L	L	١	Ll		L		l

PERCUSSION . DELL RECORD

PROPERTY BEMON

HOLE No. 393-3

	DIP TEST				
	An	gle	Hole No. 893-3 Sheet No. 10 = 2	_	
Footage	Reading	Corrected	Hole No. Dr Sheet No. 102 2	Lat	Total Depti Logged By
	<u> </u>		Section	Dep	Logged By
			Date Begun	Bearing	Claim
			Date Finished	Elev. Collar	Core Size_
			Date Logged MAY 16 194		

DE F	TH	RECOVERY	DESCRIPTION	SAMPLE No.	5001		WIDTH		T		1
FROM	10			SAMPLE NA	FROM	10	OF SAMPLE			-	
	7.										ļ
40	70		REDDISH BROWN COLOUR GRANDBORITIC								
			COMPOSITION - MOD LIMONITE MINOR		ļ						
			[PIDOTE/CHLOAITE ACTERATION								
			NO NOTICIABLE GULFHIBES		<u> </u>						
70	120		LIGHT BROWN / TAN COLOUR								<u> </u>
			GRAINTIC COMPOSITION QZ FELIS MINOR MAFILS								
		·	MINOR LIMONITE ALTERMIAN						1		
			NO OBLIOUS SULFIDES					<u> </u>			
			752 -110150 - 11015		ļ				 	+	
120	130		CALL BULL DEDUCA COLUMN TALL THE				:.		 	 	
150			SALT AND PEAPER COLOUR - TRASITION FROM				. ,			 	
			OPPER TO LOWER UNITS MODITIC COMPOSITION					'		 	
			MINOR EP/CHLORITE ALTERATION						<u> </u>	 	
			NO OBVIOUS SULFIPS					·	}	 	ļ
									ļ	ļ	
								···	ļ		
130	160		BROWNISH PURPLE COLOUR ANDESITIC COMP.								
			MINOR LIMONITE & EPKHLORITE ALTERATION								
	j							:			
			NO OBVIOUS SULFIACS					·:·	<u> </u>	L	l

HOLE NO:

1893-3

PAGE NE:

20FZ

65	274	Υ	Y	,	12 / 2						
FROM	TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE		1		
160			LIGHT BROWN - TAN -> WHITISH COLOUR				OF SAMPLE			 	
,			CRANITIC CONPOSITION V. FEW MARIES						 	<u> </u>	
			MINON LIMONITH ATTERNION			· · · · · · · · · · · · · · · · · · ·				<u> </u>	
			FA CHIORITE ALTERATION OF MARIES							<u> </u>	
			NO OBVIOUS SULFIPES								
180	190		SALT AND PEPPER COLOUR DIORITIC	. — ·	·						
			COMPOSITION EPIDOTE CHLORITE ALTERATION								
	· ·		(MANOR) TRANSMOND RETWEEN UNITS.		ļ						
			NO OBVIOUS SULFIBES								
				·							
											
190	270	-	DARK GREEN COLOUR								
			ANDESTIC COMPOSITION								
			MOD EPIDOTE KHLOPITE ALTERATION				٠.			ļ	
			AND OBVIOUS SULFINES				81 h	1		 	
						-	% :- % :-	i		ļ	ļ
	2.00							·	ļ <u>.</u>	ļ	
270	330		BROWNISH PURPLE COLOUR						<u> </u>	ļ	
			ANDERTIC COMPOSITION				,	· · · · · · · · ·			
			MINOR LIMONITE & EXPLETE ALTERATION							 	
			SMALL PHICHALCOPYRITE GIVAINS NOTED								
			EOH								
			EUH								
-									·		
1											

DIAMOND DRIE RECORD

PROPERTY BEATON

HOLE No. 93-1

	DIP TEST				
	Αń	gie	(m 1)	•	177 07
Footage	Reading	Corrected	Hole No. 93-1 Sheet No. 10F 3	Lat	Total Depth 1 12101 m
	ļ		Section	Dep	Total Depth 172, 87 m Logged By P. REYNOLDS
			Date Begun 7 SEPT 93	Bearing	Claim BEATON
	<u> </u>		Date Finished 10 SEPT 93	Elev. Collar	Core Size NQ
	J	لـــــــــــــــــــــــــــــــــــــ	Date Logged 28 may 94	AZ: 025°	DIP: -65°

DEF FROM	TH(m)	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE			'
0	6.40		OVERBURDEN							
6.40	10884		DARK GREEN & PURPLE ANDESITE AND							
			VOLCANICLASTICS. WITH FRAGMENTS TO							
			10mm IN SIZE. CALCITE FILLED FRACTURES	-					 	
			@ 30° TO C-A.						 	
			10.67-10.98 GOOGE						 	
-			11.28-11.59 6006E							
			15.85 3cm CALCITE VEIN (2 45° TO CA.					!		
			17.07 BROKEN LORE							
		·	17.68-19.82 FRAC'S (@ 30" + 50" TO CA.	 					 	
			20.12-20.73 SHEAR ZONE						 	
			20.43-20.58 7 m CALCITE - QUARTZ						 	
			VEIN @ 30° TO C.A.							
			23.48 frm CALLITE VEIN @ 30" TO CA.						 	
 _			23.78-28.66 SHEARED WIR, SHEARING						 	
			@ 40°-45° το CA.							
			35.37-60.06 VARIABLY SHEARED W/R.						 	
			SHEARING @ 30" + 60" TO CA.							
<u> </u>			38.41-39.02 QTZ FRAG'S.							
	1		·							
<u> </u>									 J	

DIAMOND DRILL RECORD

HOLE NE: PAGE NE: 2 of 3 93-1 WIDTH DEPTH (1)
FROM TO RECOVERY SAMPLE No FROM TO DESCRIPTION OF SAMPLE 60.06-66.77 RELATIVELY UNSHEARED WIR. 66.77-68.60 MODERATELY SHEARED WR WITH VEINS + PLEBS OF QTZ, UP TO 15% SiOz. SHEARING @ 30° TO C.A. 68.60-73.17 MODERATELY SHEARED WIR. SHEARING (O-30" TO C.A. 73.17-77.13 UNSHEARED W/R. 77.13-79.27 INODERATELY - INTENSELY SHEARED WR. SHEARING @ 30" TO C.A. 77.44 - 77.74 Sim QTZ VEIN @ 30" TO C.A. 79.27- 90.55 UNSHEARED WR. 79.57 3-5 mm CALCITE VEINLETS WITH υς το 5% Py 90.55-96.65 SAME AS 79.27-90.55 BUT WITH BROWN STAINING: LIGHTLY SHEARED NEAR BUTTOM. 96.65-98.17 MODERATELY SHEARED WIR. CALCITE FILLED SHEARS. 198.17-101.22 INTENSELY SHEARED WIR. 99.70 minor by. 101.22 - 105.79 NODERATELY SHEARED WIR. SILICEOUS FRAC'S, 105.79 - 108.84 MODERATELY SHEARED WIR WITH MINER QTZ FRAG'S AND TRACE VERY FINE PURITE:

ĎΙΑ	MON		L RECORD	HOLE N		,	· · · · · · · · · · · · · · · · · · ·	PAGE N	I		
					<i>9</i> 3-)	·		30F	3	·
FROM	PTH(m)	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
108.8	109.45		RHYOLITE					···			
	109.76	1	SAME AS 6.40-108.84, MODERATELY SHEARED								
	110.37		RHYOLITE								<u> </u>
	112.50		SAME AS 109.45-109.76			L.				<u> </u>	
	116.46	I	ANDESITE - HIGHLY BLEACHED WITH								
			GRAPHITIC FRAC'S (a 45° TO CA. MINOR						ļ		
			SILICIFICATION. TRACE TO 1% PYRITE.								
116.46	119.62		RHYOLI TE.								
			119.51-119.62 GOVGE								
119.87	120.A3		RHYOUTE								
	149.24		AMDESITE - RECATIVELY UNSILEARED.				!				<u> </u>
			146.95 - 147.56 MODERATE SHEARING @ 45° TO C.A.								<u> </u>
			148.48-149.24 MODERATE SHEARING (& ASC TO C.A.								
149.24	172.67		GREEN & PURPLE ANDESITE								
			171.65-172.26 HIGHLY SHEARED WIR.					-			
172.8	7		E.O.H.								
										I	
			ci-FESSIO. S								
			Love A Track								
			OF A								
			PART S. BAYNONS					"			
			EMITISH .								
			G SIMUS M S 201								
		·	OSCIEN								
l .			333,133992								
IL	1 1			1	1				L		l

APPENDIX III ASSAY SHEETS

2225 Springer Avenue Burnaby , B.C. Canada

GEOCHEMICAL ANALYTICAL METHOD DESCRIPTIONS 1993

A. SAMPLE PREPARATION

Soil and Silts:

Sanples are dried and sifted to minus 80 mesh using nylon or stainless steel screens.

Rock samples:

Samples are dried, crushed to 1/8 inch, split, and pulverized to minus 100 mesh.

B. METHOD OF ANALYSIS

Multi element Atomic Absorption:

0.5 gram of sample is digested with a 15:85 mixture of Nitric-Perchloric acid for four hours. The resulting extract is analyzed by Atomic Absorption Spectroscopy for any, or all of the following elements: Mo, Cu, Ni, Co, Mn, Fe, Ag, Zn, Pb, Cd, As.

ICP Emission Spectroscopy:

0.5 Gram of sample is digested with Aqua Regia, and the resulting extract analyzed for 30 elements.

CERTIFICATE OF ANALYSIS

To: GREEN VALLEY MINING LTD.

2245 W 13TH AVE., VANCOUVER, B.C.

Project: **BEATON**

Type of Analysis: Geochemical

2225 Springer Ave., Burnaby, British Columbia, Can. V58 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:

93045 B

Invoice: Date Entered: 93-05-25

40117

File Name:

MEN93045.G

Page No.:

тур	e of Analysis	: Geochemical	Page No.: 1
PRE FIX S	AMPLE NAME	PPM PPM Cu As	
	-3 50-60 -3 60-70 -3 70-80 -3 80-90	104 4 88 4 84 6 48 6 16 8 10 7 8 4 8 5	
A B 93-3 A B 93-3 A B 93-3 A B 93-3 A B 93-3 B 93-3 B 93-3	3 120-130 3 130-140 3 140-150 3 150-160 3 160-170 3 170-180 3 180-190 3 190-200 4 200-210	60 6 74 2 74 3 82 7 14 8 16 10 98 8 104 4 106 3	
A B 93-3 A B 93-3 A B 93-3 A B 93-3 A B 93-3 A B 93-3 A B 93-3	210-220 220-230 230-240 240-250 250-260 260-270 270-280 280-290 290-300 300-310	112	
	310-320 320-330	94 8 108 4	

CERTIFIED BY ;

CERTIFICATE OF ANALYSIS

To: GREEN VALLEY MINING LTD.

2245 W 13TH AVE., VANCOUVER, B.C.

Project: **BEATON**

Type of Analysis: Geochemical

2225 Springer Ave., Bumaby, British Columbia, Can. V58 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:

93036

Invoice:

40103

Date Entered: 93-05-05

MEN93036.G

Page No.:

File Name: 2

PRE	CAMPLE MANE	PPM	PPM	PPB	
FIX	SAMPLE NAME	Cu	As	Au	
 1.00 he 	B 93-1 400-410	329	38	5	
A ::	B 93-2 30-40	100	13	1.	
2 2 3 60	B 93-2 40-50	118	16		
	B 93-2 50-60	122	13		
	B 93-2 60-70	136	9		
	B 93-2 70-80	128	9		,
	B 93-2 80-90	130	7		
	B 93-2 90-100	94	9		
	B 93-2 100-110	6	9		
	B 93-2 110-120	6	8		
74 4 4	B 93-2 120-130	2	8	· .	
	B 93-2 130-140	2	10	. 1	
	B 93-2 140-150	3	8		
5 % 1	B 93-2 150-160	5	7		
	B 93-2 160-170	60	8		
	B 93-2 170-180	52	8		
	3 93-2 180-190	70	8		
	3 93-2 190-200	68	9		
	3 93-2 200-210	70	9		
	3 93-2 210-220	74	9		
	3 93-2 220-230	96	10		
	93-2 230-240	98	10		
	3 93-2 240-250	52	8		
	3 93-2 250-260	80	7		
	93-2 260-270	110	5		
	93-2 270-280	98	5		
	3 93-2 280-290	108	7		
	3 93-2 290-300	128	6		
	93-2 300-310	156	4		
	93-2 310-320	158	8		
	93-2 320-330	106	2		
	93-2 330-340	102	7		
	93-2 340-350	94	2		
	93-2 350-360	90	5		
A B	93-2 360-370	76	12	•	
A B	93-2 370-380	88	8		
С В	93-2 380-390	97	8	5	en de la companya de La companya de la co
4 В	93-2 390-400	80	6		
4 B	93-2 400-410	110	7		

CERTIFIED BY

CERTIFICATE OF ANALYSIS

To: GREEN VALLEY MINING LTD.

2245 W 13TH AVE., VANCOUVER, B.C.

Project: **BEATON**

Type of Analysis: Geochemical

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:

93036

Invoice: **Date Entered: 93-05-05**

40103

File Name:

MEN93036.G

Page No.: 1

PRE FIX	SAMPLE NAME	PPM Cu	PPM As	PP8 Au			
A B	93-1 00-10 93-1 10-20 93-1 20-30	98 94 100	7 6 8				
A B	93-1 30-40 93-1 40-50	100 100 116	9 7				
	93-1 50-60 93-1 60-70	150 112	12 6				
	93-1 70-80 93-1 80-90	112 92	6 8				
99.01.61	93-1 90-100 93-1 100-110	126 120	7 12				
A B	93-1 110-120 93-1 120-130	112 104	12 11				
АВ	93-1 130-140 93-1 140-150	108 110	5 11				
A B	93-1 150-160 93-1 160-170	112 108	7 8				
A B	93-1 170-180 93-1 180-190	114 116	5 9				
A B	93-1 190-200 93-1 200-210	116 118	8 22			٠	
A B	93-1 210-220 93-1 220-230 93-1 230-240	134 120 144	11 9			•	•
A B	93-1 240-250 93-1 250-260	130 110	8 10 8				
A B	93-1 260-270 93-1 270-280	118 64	13 11				
	93-1 280-290 93-1 290-300	36 34	5 7		. فردن		
A B	93-1 300-310 93-1 310-320	130 73	29 . 5	20 ~			
A B	93-1 320-330 93-1 330-340	90 78	6				
A B	93-1 340-350 93-1 350-360 93-1 360-370	98 92	11 5				2000. 多班 斯 斯
с в	93-1 360-370 93-1 370-380 93-1 380-390	94 430 324	7 72 50	20 5) i 		
	93-1 390-400	396	41	5		-	

CERTIFIED BY: Northand

CERTIFICATE OF ANALYSIS

To:

GREEN VALLEY MINING LTD.

2245 W 13TH AVE.,

VANCOUVER, B.C.

Project:

BEATON

Type of Analysis:

ICP

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

> Certificate: Invoice:

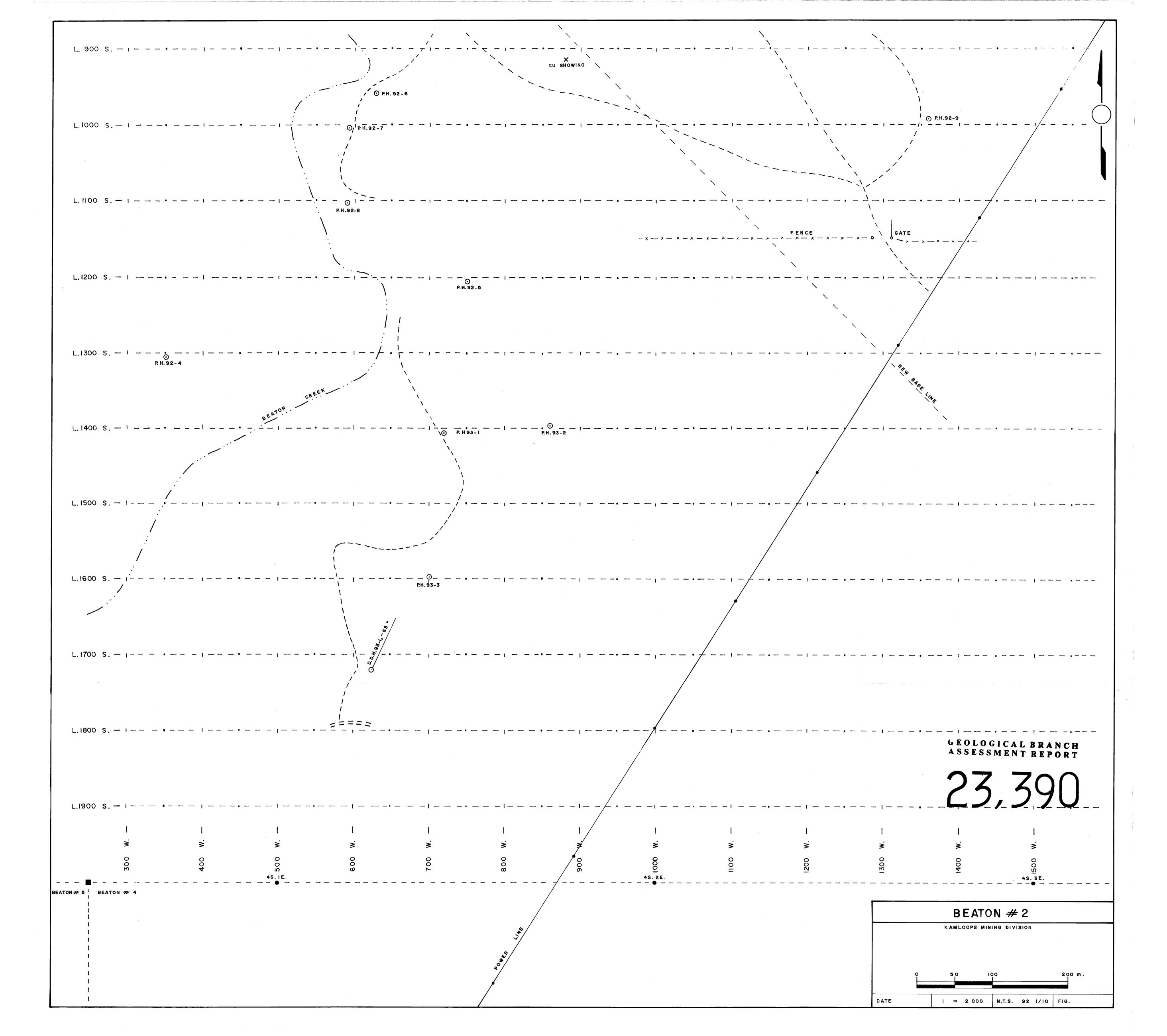
93036 40103

Date Entered:

93-05-05

File Name:

MEN93036.I


Page No.:

1

																·						·				· ··	. j.				
PRE FIX SAMPLE	PF E NAME A	PM PPA 40 CL	J PB	PPM ZN	PPM AG	PPM N I	PPM F	PPM MAN F	% PF	PM PPM AS U	PPM AU	PPM HG	PPM SR	PPM CD	PPM SB	PPM Bl	РРM V	% CA	X P	PPM LA	PPM CR	% MG	PPM Ba	% T (X AL	% NA	% K	% S1	PPM W	PPM BE A	PPB U AA
893-1 30 893-1 37 893-1 38 893-1 39 893-1 40 893-2 38	70-380 30-390 90-400 00-410	6 447 9 337 3 412	29	160 131 91 95	0.5 0.4 0.2	48 56 28 33	67 1: 70 1: 58 1: 58 1:	228 6.7	13 7 17 9 12 4	29 5 72 5 50 5 41 5 38 5 8 5	ND ND ND	ND ND ND ND	157 228 246 193 169 245	1 1 1 1	3 18 16 15 16	1 5 7 3	203 224 239 241	6.53 5.48 4.88 4.86	0.23 0.25 0.13 0.13	. 13	32 34 14 19	2.50 2.22 2.52 2.38	279 334 850 1349	0.06 0.06 0.07 0.06	0.57 0.59 0.36 0.32	0.08 0.07 0.06 0.06	0.12 0.20 0.35 0.16	0.01 0.01 0.01 0.01 0.01 0.01	3 5 3 4	1 1 1	20 5 5 5
	er Programme Pro																											- कुर्स - 1 - 14 - 3			
								٠.				10.61 10.11 10.11		Ř. 1) 1.	\$ %. \$2.7	ja P							-			Light of the second of the sec		eredgeld Life en ef en e		man G	
													u men e u un e general u general			e de la companya de l										100 100 100 100 100 100 100 100 100 100					

CERTIFIED BY:

1. Arraban

