•	
FILMED	LOG NO: JUN 1 5 1994 RD. ACTION.
RECEIVED	
JUN 8 - 1994	FILE NO:
Gold Commissioner's Office VANCOUVER, B.C.	

GEOCHEMICAL REPORT

SHEAR PROPERTY

NICOLA MINING DIVISION

NTS 92H/15E

Latitude: 49° 57'N Longitude: 120° 37'W

Owner/Operator: International Northair Mines Ltd. Suite 860 - 625 Howe Street Vancouver, B.C. V6C 2T6

Report By: D.A. Visagie, P.Geo.

Date:

June 7, 1994

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

1.0	Introduction	2
2.0	Location, Physiography and Access	2
3.0	Property History	3
4.0	Regional Geology	6
5.0	Property Geology	6
6.0	1993 Work Program	9
7.0	Geochemistry	10
	 7.1 Field Procedure 7.2 Assaying 7.3 Results 7.4 Discussion of Results 	10 10 11 12
8.0	Summary and Conclusions	14
9.0	Recommendations	15
10.0	Cost Statement	15
11.0	Statement of Qualifications	16
	TABLES	
1. 2.	Assay results - hole 92-3 Assay results - hole 92-4	11 13
	APPENDICES	
1.	Assay Results	
	LIST OF FIGURES	
1.	Property Location	3
2.	Claim Location	4
3.	Regional Geology	7
4.	Property Geology and Drill Hole Location	at back of report

1.0 INTRODUCTION

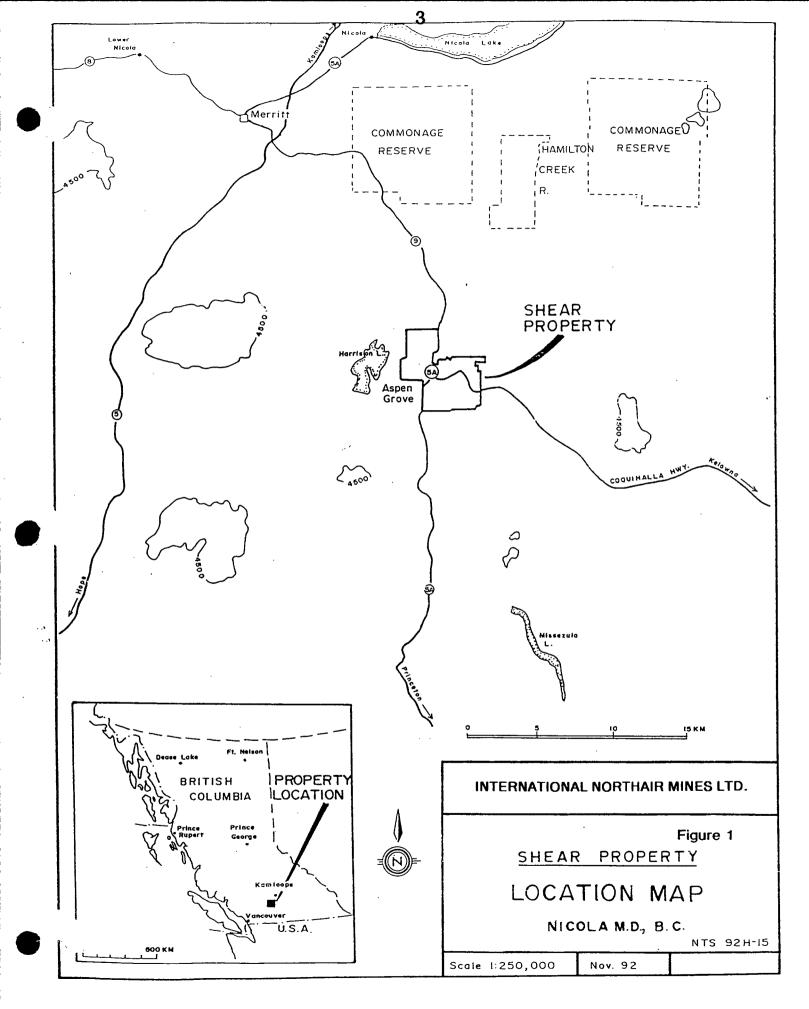
International Northair Mines' Shear property, located near Aspen Grove, B.C. hosts several porphyry style copper-gold showings. In 1992 Placer Dome Inc. completed a detailed evaluation of the property that included mapping, trenching, sampling, geophysical surveying and drilling. The results were encouraging with the best hole averaging 0.16% Cu, 0.67 gpt Au over 71. Visually some of the other holes appeared to contain higher copper than returned in assay. In addition the results of sludge samples from one of the holes 92-4, assayed at Placer's Vancouver Lab, averaged 238 gpt Ag over 36 m while drill core assays of the same section, completed at Eco-Tech Labs in Kamloops, returned largely negative results. The purpose of the 1993 assaying program was to establish the validity of the previous program's assays. As a result 79 reject samples were re-assayed while seven sections of drill core were resplit and assayed.

2.0 LOCATION, PHYSIOGRAPHY AND ACCESS

The property is centred at latitude 49° 57'N, longitude 120° 37'W occurring on NTS sheet 92H/15E. It is located immediately to the north and east of Aspen Grove, approximately 30 kilometres southeast of Merritt, 60 kilometres north of Princeton (Figure 1)

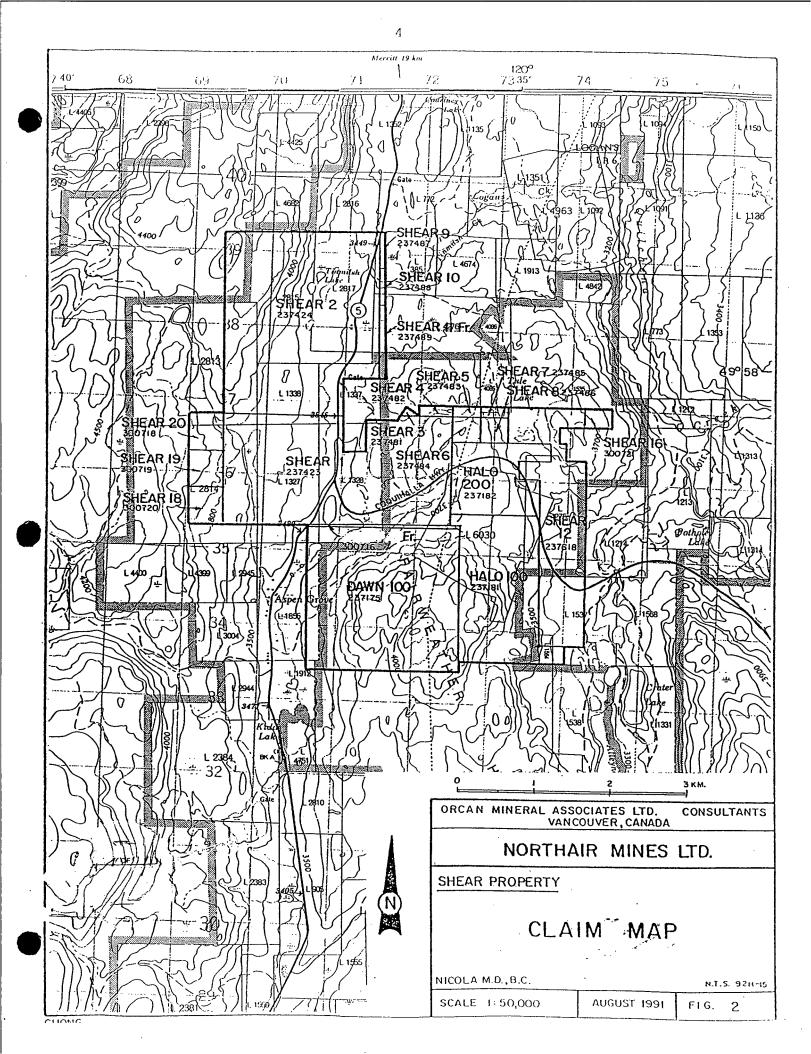
Access to the property is by Provincial Highway No.5 and the four lane Coquillhalla Okanagan connector between Aspen Grove and Peachland. A network of old ranching, mining and logging roads provides good access to most of the claims.

Local topography is characterized by gently rolling hills covered with pine and fir trees on the upper slopes. Open meadows and farm land are present in the valleys and lower slopes. Local relief is approximately 300 metres with an average elevation of 1200 metres. The property is relatively dry throughout the year.


3.0 **PROPERTY DESCRIPTION**

The Shear property, consisting of 22 contiguous claims totalling 101 units, occurs in the Nicola Mining Division (Figure 2). International Northair Mines Ltd. holds a 60% interest in the Shear claims and a 100% interest in the Dawn and Halo claims and is acting as the operator. The following is a listing of all the claims comprising the Shear property:

<u>Claim</u>	Record #	<u>Units</u>	Expiry Date
Shear 1	237423	18	Oct 22, 1997
Shear 2	237424	20	Nov 1, 2002
Shear 3	237481	1	Feb 24, 2003


2

· · · · · · · · ·

. . .

•

Shear 4	237482	1	Feb 24, 2003
Shear 5	237483	1	Feb 24, 2003
Shear 5	237484	1	Feb 24, 2003
Shear 6	237485	1	Feb 24, 2003
Shear 7	237485	1	Feb 24, 2003
Shear 8	237486	1	Feb 24, 2003
Shear 9	237487	1	Feb 24, 2003
Shear 10	237488	1	Feb 24, 2003
Shear 11 Fr.	237489	1	Feb 24, 2003
Shear 12	237618	14	Jan 11, 2003
Shear 16	300721	1	June 1, 2003
Shear 18	300720	1	June11, 2003
Shear 19	300719	1	June11, 2003
Shear 20	300718	1 ⁻	June11, 2003
Shear 100	306912	1	Dec 11, 2002
Shear 101 Fr.	306913	1	Dec 11, 2002
Dawn #100	237175	16	Aug 28, 2003
Halo 100	237181	12	Feb 11, 2003
Halo 200	237182	6	Feb 11, 2003

3.0 PROPERTY HISTORY

The Aspen Grove area has been intermittently explored since the early 1900's when a large number of copper showings were located in the area. From 1912-1928 exploration was intense with limited production coming from the Golden Sovereign, Big Sioux and Copper King Mines.

From 1929 to the mid 1950's little exploration was completed in the area. In 1956, Noranda optioned a block of claims covering the Big Kid and Big Sioux deposits and conducted an extensive exploration including trenching, sampling, geophysical surveying, and diamond drilling. Until 1965 Noranda and associated companies intermittently worked on the claims.

In 1965, Norranco Mining and Refining staked claims covering the Big Kid and Big Sioux areas and completed a program of linecutting and geophysical surveying. In 1966 the property was optioned to David Minerals Ltd. who conducted legal surveys and drilled two holes into the Big Kid breccia zone.

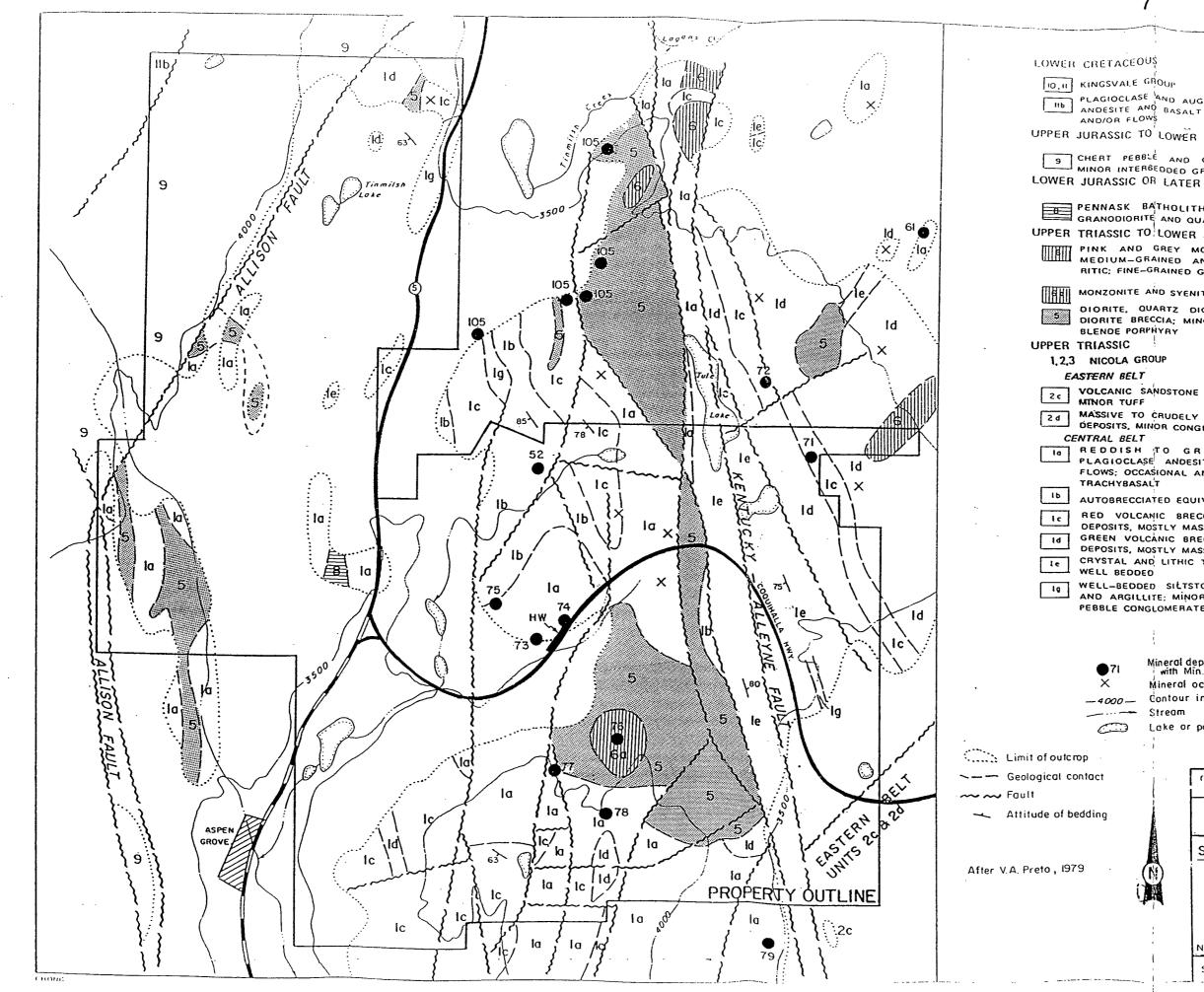
From 1970-1981 Amax completed several exploration programs consisting of mapping, sampling, gepohysical surveying and percussion drilling (23 holes).

In 1989 the Shear property was staked and in 1991 optioned along with the Dawn and Halo claims to International Northair Mines who in 1992 optioned the property to Placer Dome Inc. In 1992 Placer completed a systematic exploration program

consisting of line cutting, mapping, sampling, geophysical surveying and the drilling of 6 NQ diamond drill holes totalling 1,020 m. Although the results were encouraging Placer dropped the option in 1993.

4.0 REGIONAL GEOLOGY

The Aspen Grove area has been mapped (Figure 3) in considerable detail in the last 30 years with the most recent work being published in BCMEM&PR Bulletin 69 by V.A. Preto (1979) and on GSC maps 41-1989 and 42-1989 by J.W.H. Monger (1989).


The Shear property occurs in the southern part of Quesnellia Terrain, an area dominated by Triassic-Lower Jurassic Nicola Group rocks locally consisting of volcanics and sediments that are part of a 40 km wide x 180 km long belt that extends from the International Boundary to Kamloops Lake. To the west, Cretaceous Spences Bridge Group rocks consisting of pebble conglomerates, dacitic flows and coarse sandstones and Jurassic Eagle Plutonic Complex rocks dominate.

The Nicola Group has been subdivided into the Eastern, Central and Western Belts by Preto. According to Preto "the western belt consists mainly of an east facing sequence of calc-alkaline flows which grade upwards into pyroclastic rocks, epiclastic sediments and abundant limestones. This succession is separated from the Central Belt near Aspen Grove by the Allison fault. The Central Belt assemblage is dominated by alkaline and calc-alkaline volcanic and intrusive rocks and lesser associated sedimentary units. The Summers Creek-Alleyne fault system separates rocks of the Central Belt from those of the Eastern Belt. The latter assemblage consists of a westerly facing sequence of volcanic siltstone, sandstone, conglomerates, lahars, tuffs and minor flow units." This belt has been intruded by small dioritic plutons; granodiorites of the Pennask and Guichon batholiths, Allison Lake, Jesse Lake, and Douglas Lake stocks of Triassic and Jurassic age.

Syenite, monzonite and diorite stocks and dykes are fairly common in the Central Belt. These alkalic stocks and complexes have good porphyry copper-gold potential as exemplified in the Princeton area at the Copper Mountain and Ingerbelle Mines.

5.0 **PROPERTY GEOLOGY**

The Shear property is hosted by Triassic-Lower Jurassic Nicola Group rocks locally consisting of volcanic flows, pyroclastics, minor sediments and a variety of intrusive bodies ranging in composition from granite to syenite. This is a structurally complex part of the Nicola Group occurring at the triple junction between the Kentucky-Alleyne, Allison and Quilchena fault zones. Extensional tectonics in the Lower Mesozoic resulted in strong interrelationships between faulting, sedimentation, intrusive activity, volcanism, hydrothermal alteration and copper-gold mineralization.

7

PLAGIOCLASE AND AUGITE-PLAGIOCLASE ANDESITE AND BASALT PORPHYRY SILLS AND/OR FLOWS UPPER JURASSIC TO LOWER CRETACEOUS S CHERT PEBBLE AND COBBLE CONGLOMERATE; MINOR INTERSEDDED GRIT AND SANOSTONE PENNASK BATHOLITH: BIOTITE-HORNBLENDE UPPER TRIASSIC TO LOWER JURASSIC PINK AND GREY MONZONITE AND SYENITE. MEDIUM-GRAINED AND GENERALLY PORPHY-RITIC: FINE-GRAINED GREY DACITE MONZONITE AND SYENITE BRECCIA DIORITE, QUARTZ DIORITE, MONZONITE, AND DIORITE BRECCIA; MINOR FINE-GRAINED HORN-VOLCANIC SANDSTONE AND SILTSTONE. MASSIVE TO CRUDELY LAYERED LAHAR DEPOSITS, MINOR CONGLOMERATE REDDISH TO GREEN AUGITE-PLAGIOCLASE ANDESITE AND BASALT FLOWS: OCCASIONAL ANALCITE-BEARING AUTOBRECCIATED EQUIVALENTS OF 1. RED VOLCANIC BRECCIA AND LAFAR DEPOSITS, MOSTLY MASSIVE GREEN VOLCANIC BRECCIA AND LAHAR DEPOSITS, MOSTLY MASSIVE MINERAL DEPOSITS CRYSTAL AND LITHIC TUFF. GENERALLY 105 Blue Jay WELL-BEDDED SILTSTONE, SANDSTONE, 76 Big Kid AND ARGILLITE: MINOR GRITSTONE AND 52 Tab PEBBLE CONGLOMERATE 72 Golden Sovereign 71 Big Dutchman 61 June 74 Big Sioux Mineral deposit with Min. File Nº. 73 Giant Mineral occurrence 75 Maggie Contour in feet 77 Blue Bird Stream 78 Copper Belle Lake or pond Copper Standard 79 HW Highway Showing 500 1500 METRES 1000 4070 20 NORTHAIR MINES LTD. SHEAR PROPERTY (N!) **REGIONAL GEOLOGY** NICOLA M.D., B.C. FIG.> SCALE 1:25,000 AUGUST 1991

Faulting has divided the property into three geological domains: West, Central and East.

The West area, occurring immediately to the west of Highway 5 covers the north end of the Allsion Fault system. Much of the lower ground from Aspen Grove valley northwards is covered by thick glacial and lacustrine deposits. Mapping has shown the area to be underlain by massive andesitic flows that have been intruded by a series of dioritic intrusive and breccia. These intrusives are zoned with a central zone of monzonite and quartz monzonite.

In the extreme northwestern portion the Nicola volcanics are in contact with Cretaceous Kingvale Group rocks locally consisting of pebble conglomerates, dacitic flows and coarse sandstone.

Copper mineralization is largely restricted to the northern area, west of the highway. It occurs within fractured volcanics, proximal to northerly structures and locally narrow siliceous dykes. Secondary copper mineralization consisting primarily of malachite with local chalcocite commonly forms high grade, low tonnage deposits.

The Central area, occurring between the Allision and Kentucky-Alleyne faults, is underlain by pyroxene and plagioclase rich andesitic flows along with thick, interbedded coarse fragmentals including lahar. Much of the area is underlain by intrusive rocks centred on the Big Kid breccia.

The Big Kid breccia appears to be a steeply dipping intrusive breccia pipe that is approximately 300 m in diameter. Composition is variable with varying proportions of monzonite, diorite and volcanic fragments occurring within an altered microdiorite to syenomonzonite matrix. Silicification and carbonate alteration is widespreade with variable chalcopyrite and pyrite occurring in the matrix. A significant pyrite halo that is best developed in the north and east appears is formed around the pipe.

The breccia pipe intrudes a 2.2 km long, elongate, north trending, diorite-microdiorite body. A number of small satellite bodies occur near the margins. The presence of numerous volcanic inclusions and the geophysical data strongly suggests much of the area represents a roof zone. Compositionally the intrusive rocks are monzonites to monzodiorites and are chemically similar to the surrounding rocks. Potassic monzonite to syenomonzonite dykes are common within and proximal to the Big Kid breccia as well as at the Shear road cut located at Highway 5A. These are younger than the diorites and have associated potassic alteration in the form of K-feldspar. Weak disseminated and structurally controlled copper mineralization is peripheral and probably related to this more alkalic intrusive phase. The Big Kid breccia, surrounding the intrusives and roof zone volcanics represents a high level intrusive hydrothermal system with good potential for alkalic porphyry copper-gold zones.

The southeastern margin of the intrusive complex is bounded by the Kentucky-Alleyne Fault Zone. This zone consists of two major north trending structures located 100 to 200 m apart enclosing fractured volcanics and monzonitic to dioritic intrusives similar to those occurring to the west. Some of the faulting post dates intrusive activity.

A number of copper showings such as Amax Locality 6 and the Copper Belle are associated with the margins of the fault zone and parallel structures. Most feature fracture controlled chalcocite, local bornite, and a variety of secondary minerals including malachite, azurite, native copper and digenite along with minor pyrite and chalcopyrite. The host is predominantly andesitic volcanics. Subsidiary west to northwest trending structures appear to be an important control for mineralization. Copper values of up to several per-cent can be obtained from these showings however they are generally gold poor and have limited tonnage.

The East belt, occurring to the east of the Kentucky-Alleyne Fault is underlain primarily by fragmental volcanic rocks, epiclastics and immature sediments along with minor volcanic flows. A thick sequence of generally well bedded volcanic north striking, steeply dipping, sandstones, crystal and fine lithic tuffs lie immediately east of the fault zone. To the east, on higher ground, coarse lapilli tuffs and massive lahar deposits dominate.

Copper mineralization in the East area is similar to that along the Kentucky-Alleyne Fault with subsidiary west trending structure appearing to control copper mineralization. Chalcocite-native copper veins yield high copper, low gold values with the potential tonnage being small.

6.0 1993 WORK PROGRAM

In 1992 Placer Dome Inc. completed a drill program on the property that tested various zones of copper-gold mineralization. The best results occurred in hole 92-1 where a 71 m section located between 173 and 244 metres averaged .16% Cu and .67 g/t Au. Hole 91-3 visually appeared to be of a much higher grade but only assayed marginally higher in copper with a 63 metre section assaying .22% Cu and .11 g/t Au. In hole 92-4 core recovery was poor and as a result sludge samples were initially taken and assayed at Placer's Lab. The assays were highly anomalous in silver with a 36 metre section located between 66 and 102 m averaging 238 g/t Ag. However follow-up assaying of corresponding drill core completed at Eco-Tech Labs returned largely negative values. The drill hole locations are plotted on Figure 4.

The purpose of the 1993 program was to compare the above results with those of another lab. In order to do so the re-assaying of selected rejects for holes 92-3 and 4 and the re-splitting and assaying of a section of the drill core from hole 92-4 was undertaken with the samples being sent to Vangeochem Labs. As a result 79 rejects and 7 core samples were collected and assayed.

7.0 GEOCHEMISTRY

All of the samples were sent to Vangeochem Labs, Vancouver for analysis.

7.1 Field Procedure

Reject samples were sorted and selected samples stored in nylon bags and sent for anlaysis. The drill core samples were split, identified and stored in plastic bags and sent for analysis.

7.2 Assaying

All assaying was completed by Vangeochem Labs with the seventy-nine reject and seven drill core samples being analyzed using the 30 element Inductively Coupled Plasma (I.C.P.) method with the gold content being determined by atomic abosrption. In addition fifty-two samples were geochemically analyzed.

The following is an outline of the procedure used for the preparation and analysis of the samples:

Samples dried (if necessary), crushed or sieved to pulp size and pulverized to approximately -140 mesh.

For the 30 element I.C.P. analysis a 10 gram sample is digested with 3 ml of 3:1:3 mitric acid to hydrochloric acid to water at 90° C for 1.5 hours. The sample is then diluted to 20 mls with demineralized water and analyzed. The leach is partial for AL, B, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, Sb, Ti, U and W.

For gold determination by atomic absorption, a 10 gram sample that has been ignited overnight at 600° C is digested with hot dilute aqua regia and the clear solution obtained is extracted with Methl Isobutyl Ketone (MIKB). Gold is determined in the MIKB extract by atomic absorption using a backgorund detection (detection limit 5 ppb).

For copper assaying, the samples are digested by aqua regia then analyzed by atomic absorption.

7.3 Resullts

All of the results are tabulated in Tables 1 and 2.

Summary Assay Results-Hole 92-3 Table 1.

Sample	From To Int E		Cu Assaying (I	PPM) Au	Assaying (PPB)
No.	From To	Int E.T.	Van.	Van. ICP	E.T. Van.
		Origi	nal Check	Check	Orginal Check
25778	82 85	3 282	270	344	30 30
25779	85 88	3 307	390	505	25 10
25780	88 91	3 6083	8500	10572	320 310
25781	91 94	3 3252	3640	4253	150 160
25782	94 97	3 2153	1090	1313	90 120
25972	97 100	3 1498	1498	1498	140 140
25983	100 103	3 1000	2250	2626	85 60
25984	103 106	3 1517	1570	1821	55 80
25985	106 109	3 1749	2060	2401	100 110
25986	109 112	3 1436	1460	908	50 150
25987	112 115	3 2369	2320	2786	70 90
25988	115 118	3 1575	1620	1923	95 100
25989	118 121	3 2102	2230	2765	75 80
25990	121 124	3 1322	1590	1892	75 100
25991	124 127	3 214	206	275	25 50
25992	127 130	3 2948	3080	3782	100 210
25993	130 133	3 3438	3800	4565	190 220
25994	133 136	3 1440	1480	1784	100 50
25995	136 139	3 1636	1660	1925	90 130
25996	139 142	3 2062	2310	2615	130 120
25997	142 145	3 5623	5400	6568	270 330
25998	145 148	3 684	850	974	80 90
25999	148 151	3 2123	2200	2520	60 50
25800	151 154	3 478	540	641	30 60
25801	154 157	3 668	730	849	35 40
25802	157 160	3 472	510	929	15 30
25803	160 163	3 833	840	975	25 20
25804	163 166	3 1749	1780	2017	70 20
25805	166 169	3 2581	2700	3095	90 90
25806	169 172	3 3405	3070	3483	230 230
25807	172 175	3 2089	2210	2457	105 170
25808	175 178	3 8014	8700	9256	565 600
25809	178 181	3 1823	2170	2506	140 160

25810	181	184	3	821	930	1153	180	350
25811	184	187	3	1662	2000	2164	230	140
25812	187	190	3	511	700	808	50	60
25813	190	193	3	1449	1720	1959	255	90
25814	193	196	3	514	640	735	40	30
25815	196	199	3	802	1000	1128	60	20
25816	199	202	3	684	760	873	55	20
25817	202	205	3	1286	1440	1638	65	30
25818	205	208	3	854	920	1048	50	10
25819	208	211	3	2859	3000	3467	45	120
25820	211	214	3	1628	1670	1887	35	50
25821	214	217	3	236	300	327	35	20
25822	217	220	3	320	620	690	90	20
25823	220	223	3	687	950	1082	195	50
25824	223	226	3	1048	1390	1622	40	30
25825	226	229	3	263	380	415	30	20
25826	229	232	3	434	460	470	115	80
25827	232	235	3	106	210	178	40	70
25828	235	238	3	837	1210	1336	130	30
25829	238	241	3	1010	1300	1465	115	100

E.T.: Eco-Tech Analysis by 30 element I.C.P. - Gold GeochemVan: Vangeochem Analysis - Cu, Au GeochemVan I: Vangeochem Analysis by 30 element I.C.P.Significant Results: Hole 92-3

Fro	m To	Int		Cu %	, D		Au (PPB)
Μ	Μ	М	E.T.	Van	Van I	Е.Т.	Van
82	88	6	.03	.03	.04	28	20
88	145	57	.23	.25	.28	116	137
145	163	18	.09	.11	.11	41	48
163	181	18	.33	.34	.38	200	228
181	202	21	.09	.11	.12	124	101
202	214	12	.17	.18	.20	39	53
214	241	27	.05	.08	.08	87	58

7.4 Discussion Of Results

A review of the results for hole 92-3 shows the samples assayed at Vangeochem by I.C.P. to be approximately 10% higher than those assayed at Eco-Tech. The cause of this is not known. At Vangeochem samples geochemically assayed for copper returned slightly lower values than those on which I.C.P. was completed. In general the values are within an acceptable level of variance. Gold assays are comparable.

			TABLE 2	DRILL HO	LE SUMMAF	IY - 92-4								
SAMPLE	INTERSEC	TION M		COPP	ER (ppm)	GOL	.D (ppb)	S	SILVER	(ppm)	RE-SPLIT	CORE		
	From (m)	To (m)	Int. (m)		Van I.C.P.			Eco Tech		Placer Sludge	Sample	Cu (ppm)	Au (ppb)	Ag (ppm)
25846	39	42	3.0	227	193	35	30	0.1	<0.1	15				
25847	42	45	3.0	224	261	25	20	0.1	0.1	30				
25848	45	48	3.0	113	104	45	20	0.1	<0.1	44				
25849	48	51	3.0	3 3	11 -	45	30	0.1	<0.1	29				
25850	51	54	3.0	534	696	40	20	0.1	0.1	36				
25851	54	57	3.0	169	194	30	-	0.1	<0.1	46				
25852	57	60	3.0	262	176	20	-	0.1	<0.1	102				
25853	60	63	3.0	250	354	45	-	0.1	0.2	96				
25854	63	66	3.0	30	26	15	-	0.1	<0.1	35				
25855	66	69	3.0	680	955	55	30	0.1	Q.9	157	14261	659	30	1.0
25856	69	72	3.0	372	458	20	-	0.1	0.7	133	14262	161	20	0.2
25857	72	75	3.0	115	122	30	-	0.1	<0.1	253	14263	168	20	0.4
25858	75	78	3.0	73	54	25	-	0.1	<0.1	289	14264	125	<5	0.4
25859	78	81	3.0	335	353	45	-	. 0.1	0.4	288	14265	65	<5	0.4
25860	81	84	3.0	107	73	25	-	0.1	<0.1	317	14266	184	<5	0.2
25861	84	87	3.0	156	158	30	-	0.1	<0.1	331	14267	13	<5	0.2
25862	87	90	3.0	96	71	25	-	0.1	<0.1	277				
25863	90	93	3.0	. 14	<1	25	-	0.1	<0.1	256				
25864	93	96	3.0	78	83	10	-	0.1	<0.1	216				
25865	96	99	3.0	57	44	25	-	0.1	<0.1	147				
25866	99	102	3.0	185	163	10	-	0.8	<0.1	190				
25867	102	105	3.0	156	174	15	-	0.6	<0.1	38				
25868	105	108	3.0	59	54	15	-	0.1	<0.1	59				
25869	108	111	3.0	117	124	25	-	0.1	<0.1	41				
25870	111	114	3.0	72	40	5	40	0.4	<0.1	17				
25871	114	117	3.0	239	242	20	-	0.1	<0.1	15				
25872	117	120	3.0	148	186	15	20	0.1	<0.1	80				

4 .

NARMARKO STATISTICS

Results for hole 92-4 are summarized in Table 2. The results indicate that the original Eco-Tech assay results correspond well with the results of the re-assaying of the reject samples as completed at Vangeochem for copper, gold and silver. In general the copper values at Vangeochem are approximately 10% higher, gold values slightly lower while silver values are within an acceptable level of variance. The assay results for the re-split core correspond with those of the reject samples. The results of the drill core contradict with those of the sludge samples assayed at Place Dome's Vancouver Lab with the sludge samples assaying much higher in silver than the drill core. The results appear to indicate that a mix-up of samples was made by Placer Dome at it's lab.

8.0 SUMMARY AND CONCLUSIONS

The Shear property hosts a porphyry copper-gold deposit. Previous drilling by Placer Dome returned encouraging values with the best hole 92-2 averaging .16% Cu and 0.67 g/t Au over 71 m. Visually other holes appeared to be be higher grade however the assays were lower than expected with the most promising hole, 92-3 averaging .22% Cu, .11 g/t Au over 63 m. Sludge samples taken from hole 92-4 that were assayed at Placer Dome's Vancouver lab returned highly anomalous silver values with a 38 m section averaging 238 g/t Ag. Core assays for the same section, completed at Eco-Tech Labs in Kamloops, returned negative results with none of the samples assaying > 1 g/t Ag. The discrepancy in the results was not explained.

The purpose of the 1993 sampling program was to determine if possible the source of these discrepancies. To do this 79 reject samples representing the sections needed to be tested in holes 92-3 & 4 were re-assayed. In addition 7 drill core from hole 92-4 were re-split and assayed. All of the drill core and reject samples were sent to Vangeochem Labs for assaying.

The copper assays, using I.C.P. for hole 92-3, indicate that Vangeochems results are approximatley 10% higher than those at Eco-Tech. Samples that were geochemically analyzed for copper at Vangeochem assayed close to the original values as determined by Eco-Tech. Gold values correspond well between Eco-Tech and Vangeochem. The comparison of silver values for hole 92-4 shows agreement between Eco-Tech and Vangeochem. The comparison of silver values for hole 92-4 shows agreement between Eco-Tech and Vangeochem. The core that was re-split returned low silver values with no anomalous zones being located.

It appears that in the logging of drill core pyrite was confused with chalcopyrite resulting in the over estimation of grade. The sludge samples do no appear to come from the Shear property. The results probably result from the mixing-up of samples at the Placer lab.

9.0 **RECOMMENDATIONS**

It is recommended that no further assaying of drill core or reject samples be undertaken as the dicrepancies in the results has been explained.

10.0 COST STATEMENT

1. Assay	ving						\$ 1912.09*
Date	Certificate #	Sample	Prep	Gold	ICP	Cu Geochem	
Oct 26 Oct 26	930113NA 930111NA	7 79 52		7.50 7.50	6.50 6.50	2.50	
2. Repor	t						<u>\$ 700.00</u>
Drafting, W	riting, Xeroxii	ng, etc.					
		Sub to	otal				\$ 2612.09
3. Manag	gement Overh	nead (10%)					<u>\$ 261.20</u>
		ΤΟΤΑΙ	L				\$ 2878.29

* - includes 7% G.S.T.

11.0 STATEMENT OF QUALIFICATIONS

I, D.A. Visagie of 860 - 625 Howe Street, Vancouver, British Columbia, do hereby declare that:

- 1. I graduated from the University of British Columbia with a Bachelor of Science Degree, majoring in Geology, in 1976.
- 2. I am a registered member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 3. The work undertaken on the Shear Property was under my supervision.

Dated at Vancouver, British Columbia, this <u>6</u> day of <u>Jun</u>, 1994.

aie,

1630 Pandora Btreet ver, B.C. V5L 1L6 Phi (604)251-5656 T..... (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

ANALYST:

REPORT #: 930111 PA	NO	RTHAIR MI	NES LTD				PROJEC	T: None	6i ven			DATE	IN: OCT	19 1993	DATE	OUT: OC	CT 26 199	I3 A1	TENTION:	MR. DAV	E VISAGII	E			PAGE 1	OF 3
Sample Name 25778 25779 25780 25781 25781	Ag pp= 0.4 0.2 4.1 2.5 1.2	A1 1.99 2.14 2.45 2.17 2.28	As ppa 42 55 81 65 64	*Au ppb 30 10 310 160 120	Ba ppm 30 34 43 35 38	Bi ¢3 {3 {3 {3 {3} {3} {3} {3} {3} {3}	Ca 7 5.27 5.80 6.51 5.44 6.24	Cd pp= <0.1 <0.1 <0.1 <0.1 <0.1	Co ppm 27 27 129 117 28	Cr ppm 31 26 25 31 19	Cu pp= 344 505 10572 4253 1313	fe 1 5.91 6.22 >10 9.39 8.40	K Z <0.01 <0.01 <0.01 <0.01 <0.01	Mg 1.89 2.09 1.93 2.02 2.00	Mn pp# 1427 1456 1396 1470 1391	No ppm {1 { 9 14	Na I 0.04 0.05 0.07 0.04	Ni ppm 9 5 12 10 5	P 1 0.16 0.17 0.17 0.18 0.16	Pb \$2 {2 {2 {2 {2 {2} {2} {2} {2} {2}	Sb pp= <2 <2 <2 <2 <2 <2 <2 <2	Sn ppm <2 <2 <2 <2 <2 <2 <2	Sr ppm 57 61 74 60 56	U ppm <5 <5 <5 <5 <5	W 9pm (3 (3 (3 (3 (3 (3	Zn ppe 83 83 105 90 74
25783 25784 25785 25786 25787	1.8 1.2 1.7 1.2 1.6	2.56 2.33 2.08 1.21 2.67	64 58 40 27 42	60 80 110 150 90	33 39 27 29 61	(3 (3 (3 (3 (3	6.36 5.66 7.44 3.66 5.10	<0.1 <0.1 <0.1 <0.1 <0.1	52 42 39 12 34	35 21 20 10 32	2626 1821 2401 908 2786	8.42 7.68 6.74 3.69 7.49	<0.01 <0.01 <0.01 <0.01 <0.01	2.21 2.02 1.85 1.23 2.44	1505 1418 1278 762 1430	9 8 2 (1 5	0.04 0.05 0.06 0.04 0.06	8 6 4 1 12	0.17 0.16 0.15 0.10 0.18	<pre><2 <2 <</pre>	<2 <2 <2 <2 <2 <2 <2	<pre></pre>	66 57 82 36 70	<5 <5 <5 <5	<3 <3 <3 <3 <3 <3	88 78 67 40 100
25788 25789 25790 25791 25792	1.5 1.6 1.4 0.2 2.0	2.34 2.95 2.21 2.30 2.80	58 43 43 40 40	100 80 100 50 210	29 44 123 43 35	<3 <3 <3 <3 <3	5.77 5.91 7.27 6.02 5.16	<0.1 <0.1 <0.1 <0.1 0.7	35 30 19 15 38	28 63 18 12 18	1923 2765 1892 275 3782	7.84 7.64 6.53 5.24 8.22	<0.01 <0.01 <0.01 <0.01 <0.01	2.17 2.83 2.05 1.98 2.44	1428 1594 1482 1293 1463	4 1 1 (1 (1	0.04 0.03 0.02 0.04 0.09	8 20 7 3 13	0.17 0.19 0.17 0.18 0.19	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	60 69 136 74 62	<5 <5 <5 <5 <5	<pre><3 <3 <3 <3 <3 <3 <3 </pre>	85 107 83 66 100
25793 25794 25795 25796 25796 25797	2.8 1.5 1.2 1.8 3.4	3.03 2.34 2.42 2.27 2.20	53 54 42 48 39	220 50 130 120 330	38 28 44 33 32	(3 (3 (3 (3 (3	5.45 6.28 6.79 6.47 5.95	<0.1 <0.1 <0.1 <0.1 <0.1	55 24 23 25 27	69 22 20 22 23	4565 1784 1925 2615 6568	9.58 7.33 7.36 7.53 7.54	<0.01 <0.01 <0.01 <0.01 <0.01	2.89 2.02 2.02 2.08 1.99	1713 1404 1357 1416 1315	<i 1 10 6 2</i 	0.06 0.06 0.04 0.05 0.05	26 4 6 9 8	0.18 0.17 0.17 0.17 0.17	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	67 62 86 68 61	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	114 83 80 88 92
25798 25799 25800 25801 25802	1.0 1.5 0.7 0.8 0.4	1.49 2.13 2.32 2.30 2.61	32 43 30 34 34	90 50 60 40 30	60 32 54 42 37	<pre><3 <3 <3 <3 <3 <3 <3 <3 </pre>	6.16 7.25 6.14 6.01 6.28	<0.1 <0.1 <0.1 <0.1 <0.1	18 15 15 16 19	13 19 21 19 23	974 2520 641 849 629	5.76 7.91 6.53 6.22 5.60	<0.01 <0.01 <0.01 <0.01 <0.01	1.93 1.96 2.13 1.94 2.05	1548 1514 1434 1432 1409	1 13 <1 6 <1	0.04 0.07 0.05 0.06 0.05	1 6 5 5 3	0.16 0.16 0.16 0.16 0.16	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	102 84 62 65 77	<5 <5 <5 <5 <5	<pre><3 <3 <3 <3 <3 <3 <3 </pre>	66 74 72 65 65
25803 25804 25805 25806 25807	0.6 1.4 1.5 3.4 2.1	2.45 2.40 2.26 2.29 2.02	35 33 44 51 42	20 20 90 230 170	30 40 26 35 76	(3) (3) (3) (3) (3)	5.09 6.04 5.75 5.54 5.85	<0.1 <0.1 <0.1 <0.1 <0.1	15 19 21 40 20	21 19 24 35 21	975 2017 3095 3483 2457	5.47 6.24 7.25 8.19 6.89	<0.01 <0.01 <0.01 <0.01 <0.01	1.80 1.97 2.20 2.09 2.18	1206 1390 1343 1315 1356	2 17 3 5 <1	0.05 0.06 0.06 0.07 0.06	6 9 8 9 4	0.18 0.16 0.17 0.17 0.16	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	120 79 63 59 91	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	66 72 79 89 88
25808 25809 25810 25811 25812	6.2 1.9 0.9 0.9 0.6	2.28 2.14 2.62 1.93 2.40	48 46 46 40 55	600 260 350 140 60	37 32 39 61 27	<3 <3 <3 <3 <3	5.77 6.81 7.43 5.67 5.46	<0.1 <0.1 <0.1 <0.1 <0.1	55 24 23 20 20	16 21 29 16 44	9256 2506 1153 2164 808	8.85 7.49 7.65 7.22 7.81	<0.01 <0.01 <0.01 <0.01 <0.01	2.14 2.07 2.35 1.95 2.28	1289 1358 1483 1223 1370	5 2 3 3 1	0.07 0.07 0.08 0.08 0.08	10 11 B 5 9	0.17 0.18 0.18 0.17 0.17	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<pre>{2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {</pre>	70 94 86 77 62	(5 (5 (5 (5 (5	<3 <3 <3 <3 <3 <3	97 70 70 68 72
25813 25814 25815 25816	0.8 0.5 0.7 0.5	2.17 2.05 2.37 2.01	47 39 38 32	90 30 20 20	44 36 58 43	<3 <3 <3 <3	6.25 6.01 5.00 5.65	<0.1 <0.1 <0.1 <0.1	21 15 21 16	25 25 136 20	1959 735 1128 873	7.05 6.04 6.11 5.54	<0.01 <0.01 <0.01 <0.01	2.06 2.00 2.61 1.87	1294 1348 1287 1215	4 <1 <1 <1	0.06 0.05 0.05 0.06	7 4 62 3	0.17 0.16 0.17 0.16	<2 <2 <2 <2	<2 <2 <2 <2 <2	<2 <2 <2 <2	69 83 70 76	(5 (5 (5 (5	<3 (3 (3 (3	59 63 67 62
Minimum Detection Maximum Detection 〈 - Less Than Minimum	0.1 50.0 >-	0.01 10.00 Greater 1	3 2000 Than Maxi	5 10000 eus	1 1000 is - Ins	3 1000 ufficier		0.1 1000.0 e ns	l 20000 - No Sam	1 1000 ple	1 20000 *Au Ana	0.01 10.00 lysis Do	0.01 10.00 ne By Fin	0.01 10.00 re Assay	l 20000 Concentr	1 1000 ration /	0.01 10.00 AAS Fini	1 20000 sh.	0.01 10.00	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

Pandora Stree uver, B.C. VSL 1L6 Ph:(604)251-5656: (604)254-5717 1630 Pandora Stree

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is directed with 5 el of 3:1:2 KCL to KWB, to W20 at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for AI, Ba, Ca, Cr, Fe, K, Ng, Mn, Ka, P, Sn, Sr and W.

-				۸.	5 gram s	ample is			el of 3 is parti								iluted to W.	10 al	vith vat	er.		ANALY	ST: _	1	10	
REPORT #: 930111 PA	NOF	THAIR H	INES LTD				PROJEC	T: None	6i ven			DATE	IN: OCT	19 1993	DATE	OUT: OC	T 26 1993	AT	TENTION:	MR. DAV	E VISAGIO		~	1.0	PAGE 2	DF 3
Sample Name 25817	Ag ppm 1.8	Al I 1.90	As ppe 35	ŧAu ppb 30	Ba pp n 66	Bi ppm (3	Ca I 4.55	Cd ppa 0.8	Co ppe 18	Cr pp= 16	Cu ppa 1638 1048	Fe 1 5.16	K Z (0.01 (0.01	Ng I 1.58 1.80	Hn pp= 1011 1170	Ho ppm <1 2	Na I 0.05 0.08	Ni ppe 8 6	P I 0.16 0.16	Pb ppm (2 (2	Sb pp= {2 {2	Sn ppn (2 (2	Sr pp n 151 69	U ppm (5 (5	W ppm {3 3	Zn pp= 52 53
25818 25819 25820 25821	1.0 1.7 0.9 0.5	2.14 2.05 2.21 2.30	58 41 40 70	10 120 50 20	50 38 56 62	(3 (3 (3 (3	4.71 5.40 4.55 6.78	<0.1 <0.1 <0.1 <0.1	24 35 17 30	21 17 23 16	3467 1887 327	7.03 6.52 5.93 6.98	<0.01 <0.01 <0.01	1.91 1.52 2.06	1180 947 1271	7 3 3	0.06 0.11 0.07	4 5 1	0.14 0.17 0.15	<2 <2 <2 <2	<2 <2 <2 <2	<2 <2 <2 <2	49 73 71	<5 <5 <5	(3 (3 (3	57 52 58
25822 25823 25824 25825 25825 25826	0.5 1.0 1.0 0.5 0.3	1.49 1.85 2.21 1.70 1.23	32 35 43 30 32	20 50 30 20 80	218 168 55 137 275	<pre><3 <3 <3 <3 <3 <3 <3</pre>	7.02 5.95 5.04 4.84 4.98	<0.1 <0.1 <0.1 <0.1 <0.1	16 27 17 13 10	17 20 27 16 9	690 1082 1622 415 470	4.85 5.76 6.73 4.73 4.59	<0.01 <0.01 <0.01 <0.01 <0.01	1.90 1.98 1.98 1.91 1.68	1304 1328 1278 1243 1011	<1 <1 <1 <1 <1	0.04 0.08 0.06 0.05 0.04	2 5 6 (1 (1	0.16 0.15 0.16 0.16 0.16	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	148 98 64 79 88	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	52 64 72 74 47
25827 25828 25829 25846 25846	0.1 0.8 0.8 <0.1 0.1	1.39 1.68 1.20 0.83 0.77	31 36 24 21 32	70 130 100 30 20	342 179 231 149 214	<pre><3 <3 <3 <3 <3 <3</pre>	6.57 6.75 6.60 8.89 9.17	<0.1 <0.1 <0.1 <0.1 <0.1	11 17 13 28 28	13 24 13 28 23	178 1336 1465 193 261	4.72 5.54 5.20 5.85 5.74	<0.01 <0.01 <0.01 <0.01 <0.01	1.80 1.91 1.90 3.09 3.12	1128 1179 1147 1667 1790	<1 <1 <1 <1 <1	0.05 0.05 0.03 0.01 0.01	1 4 7 8 7	0.15 0.16 0.16 0.16 0.16	<2 <2 <2 2 2 <2	<2 <2 <2 <2 <2 <2 <2	<pre>{2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {</pre>	86 87 137 113 122	<5 <5 <5 <5 <5	(3) (3) (3) (3) (3)	34 42 40 79 76
25848 25849 25850 25851 25852	<0.1 <0.1 <0.1 <0.1 <0.1	0.85 0.78 0.81 1.53 1.85	18 27 29 28 44	20 30 20 <5 <5	165 70 85 94 46	(3 (3 (3 (3 (3	8.73 9.30 9.07 4.88 2.52	<0.1 <0.1 <0.1 <0.1 <0.1	27 25 28 20 23	10 9 9 5 8	104 11 696 194 176	5.79 5.56 5.00 5.12 6.40	<0.01 <0.01 <0.01 <0.01 <0.01	2.76 2.89 2.79 1.97 1.58	1704 1701 1602 931 695	<1 <1 <1 <1 <1	0.02 <0.01 <0.01 0.04 0.11	5 2 1 (1 5	0.19 0.18 0.18 0.20 0.19	2 3 <2 <2 <2	<pre>{2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {</pre>	<2 <2 <2 <2 <2 <2	128 117 118 70 158	<5 <5 <5 <5 <5	<pre><3 <3 <3 <3 <3 <3</pre>	87 96 81 52 48
25853 25854 25855 25856 25857	0.2 <0.1 0.9 0.7 <0.1	2.10 0.97 0.8B 2.25 1.97	40 31 38 52 50	<5 <5 30 <5 <5	58 95 71 128 116	<pre><3 <3 <3 <3 <3 <3 </pre>	3.33 6.03 7.04 4.56 2.96	<0.1 <0.1 <0.1 <0.1 <0.1	24 8 116 45 29	7 6 4 15 8	354 26 955 458 122	5.35 3.56 6.56 5.75 6.53	<0.01 <0.01 <0.01 <0.01 <0.01	2.43 1.52 1.35 1.57 1.25	898 845 905 888 569	<1 <1 <1 <1 1	0.08 0.04 0.08 0.09 0.11	1 (1 1 2 (1	0.22 0.20 0.18 0.18 0.18	<2 <2 6 <2 <2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	52 61 77 64 133	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	63 27 79 84 67
25858 25859 25860 25861 25862	<0.1 0.4 <0.1 <0.1 <0.1	2.16 1.68 1.49 1.69 2.59	52 39 43 44 45	(5 (5 (5 (5 (5	48 45 43 214 55	(3 (3 (3 (3 (3	3.75 5.18 3.68 2.59 4.48	<pre><0.1 2.3 <0.1 <0.1 <0.1 <0.1</pre>	24 72 34 19 25	6 4 6 7 5	54 353 73 158 71	6.07 6.78 6.32 5.90 6.83	<0.01 <0.01 <0.01 <0.01 <0.01	1.54 1.24 0.99 1.11 2.56	705 787 655 477 1001	<1 <1 2 <1 <1	0.10 0.07 0.12 0.12 0.07	4 (1 (1 (1 2	0.19 0.18 0.18 0.18 0.18 0.17	<2 <2 2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	132 75 82 152 74	<5 <5 <5 <5 <5	<pre><3 <3 <3 <3 <3 <3 <3</pre>	65 69 52 53 88
25863 25864 25865 25866 25867	<0.1 <0.1 <0.1 <0.1 <0.1	2.91 2.59 2.38 2.60 2.98	48 50 39 50 54	<5 <5 <5 <5 <5	296 438 451 198 58	<pre><3 <3 <3 <3 <3 <3 <3</pre>	3.12 3.37 3.32 3.20 3.33	<0.1 1.5 <0.1 <0.1 <0.1	22 37 27 42 40	6 5 8 11 6	<1 83 44 163 174	6.75 6.62 6.29 5.97 6.40	<0.01 <0.01 <0.01 <0.01 <0.01	2.08 2.15 2.22 2.16 2.49	796 836 765 851 977	<1 <1 <1 <1 <1	0.08 0.08 0.07 0.07 0.06	1 3 3 1 2	0.18 0.19 0.19 0.20 0.20	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	81 78 104 102 95	<5 <5 <5 <5 <5	<pre><3 <3 <3 <3 <3 <3 <3</pre>	88 104 68 72 90
25868 25869 25870 25871	<0.1 <0.1 <0.1 <0.1	2.77 3.04 2.83 3.10	51 47 42 47	<5 <5 40 <5	43 127 95 160	<3 <3 <3 <3	4.21 4.48 4.35 4.06	<0.1 <0.1 <0.1 0.2	27 38 20 38	5 5 9 3	54 124 40 242	6.67 7.10 5.91 5.55		2.42 2.57 2.06 2.47	970 999 820 1102	(1 (1 (1) (1)	0.06 0.08 0.07 0.06	<1 3 4 1	0.19 0.18 0.19 0.20	<2 <2 <2 <2	<2 <2 <2 <2 <2	<2 <2 <2 <2	78 104 87 87	<5 <5 <5 <5	<3 (3 (3 (3	79 78 60 92
Minigum Detection Maxigum Detection	0.1 50.0	0.01	3 2000	5 10000	1 1000	3 1000								0.01			0.01 10.00		0.01 10.00	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

) - Greater Than Maximum is - Insufficient Sample ns - No Sample #Au Analysis Done By Fire Assay Concentration / AAS Finish.

Maxigue Detection < - Less Than Minigua

1630 Pandora Street aver, B.C. V5L 1L6 Pht (604)251-5656 raxt (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

ANALYST:

λ .S gra≪ sample is digested with 5 cl of 3:1:2 KCL to HKO₂ to H₂O at 95 ℃ for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Ma, P, Sn, Sr and W.

REPORT #: 930111 PA	NO	RTHAIR H	INES LTD				PROJE	CT: None	6i ven			DATE	IN: OCT	19 1993	DATE	E OUT: O	CT 26 19	93 A	TTENTION	: NR. DAV	E VISAGI	E	/	100	PAGE 3	OF 3
Sample Name	Ag ppæ	Al I	As pp e	₹Au ppb	Ba pp n	Bi ppe	Ca I	Cd pga	Co ppm	Cr ppe	Cu ppe	Fe I	K Z	Hg I	Mn pp n	flo ppe	Na I	Ni ppm	P I	Pb ppe	Sb ppe	Sn ppa	Sr ppe	U ppe	W ppe	Zn ppe
25872	0.1	2.86	50	20	127	(3	5.97	(0.1	40	4	185	5.85	<0.01	2.05	1131	(1	0.07	<1	0.20	<2	<2	<2	84	<5	<3	76
Kinimum Detection Maximum Detection ⟨ - Less Than Minimum	0.1 50.0 >-	0.01 10.00 Greater	3 2000 Than Max	5 10000 ieue	1 1000 is - In	3 1000 sufficie	0.01 10.00 nt Sampl	0.1 1000.0 e ns	1 20000 - No Sar	i 1000 mple	1 20000 ≇Au Ana	0.01 10.00 Lysis Do	0.01 10.00 ne By Fi	0.01 10.00 re Assay	1 20000 Concenta	1 1000 ration /	0.01 10.00 AAS Fin	1 20000 ish.	0.01 10.00	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

• VGC VANGEOCHEM LAB LIMITED

.

÷

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

	REPORT NUMBER: \$30111 GA	JOB NUNBER: 930111	NORTHAIR MINES LTD.	PAGE 1 OF 3
	SAMPLE #	Cu	Au	
		ppm	ppb	
	25778	270	30	
	25779	390	10	
	25780	8500	310	
	25781	3640	160	
1	25782	1090	120	
	25783	2250	60	
	25784	1570	80	
	25785	2060	110	
	25786	1460	150	
	25787	2320	90	
	25788	1620	100	
	25789	2230	80	
	25790	1590	100	
	25791	206	50	
_	25792	3080	210	
	25793	3800	220	
	25794	1480	50	
	25795	1660	130	
	25796	2310	120	
	25797	5400	330	
	25191	. 5400	330	
	25798	850	90	
	25799	2200	50	
	25800	540	60	
	25801	730	40	
	25802	510	30	
	25803	840	20	
	25804	1780	20	
	25805	2700	90	
	25806	3070	230	
	25807	2210	170	
	25808	8200	600	
	25809	2170	260	
	25810	930	350	
	25811	2000	140	
	25812	700	60	
-	25813	1720	90	
	25814	640	30	
	25815	1000	20	
	25816	760	20	
	DETECTION LIMIT	1	5	
	nd = none detected		is = insufficient sample	· .

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 930111 GA	JOB NUMBER: 930111	NORTHAIR NINES LTD.	PAGE 2 OF 3
SAMPLE #	Cu	Au	
	ppm	ррр	
25817	1440	30	
25818	920	10	
25819	3000	120	
25820	1670	50	
25821	300	20	
25822	620	20	
25823	950	50	
25824			
	1390	30	
25825	380	20	
25826	460	80	
25827	210	70	
25828	1210	130	
25829	1300	100	
25846		30	
25847		20	
25848		20	
25849		20	
25850		20	
25850			
25851		nd	
£000£		nd	
25853		nd	
25854		nd	
25855		30	
25856		nd	
25857		nd	
25858		nd	
25859		nd	
25860		nd	
25861		nd	
25862	-	nd	
25863		nd	
25864			
		nd	
25865		nd	
25866		nd	
25867		nd	
25868		nd	
25869		nd	
25870		40	
25871	<u> </u>	nd	
DETECTION LIMIT	1	. 5	
nd = none detected		= insufficient^sample	

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: \$30111 GA	JOB NUNBER: 030111	NORTHAIR MINES LTD.	PAGE 3 OF 3
SAMPLE #	Cu	Au p`pb	
25872	PPm 	20	

.

DETECTION LIMIT nd = none detected ---

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is migrated with 5 of 3:1:2 HCL to HHO2 to HgO at 55 °C for 90 minutes and is diluted to 10 of with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Ng, Nn, Na, P, Sn, Sm and W.

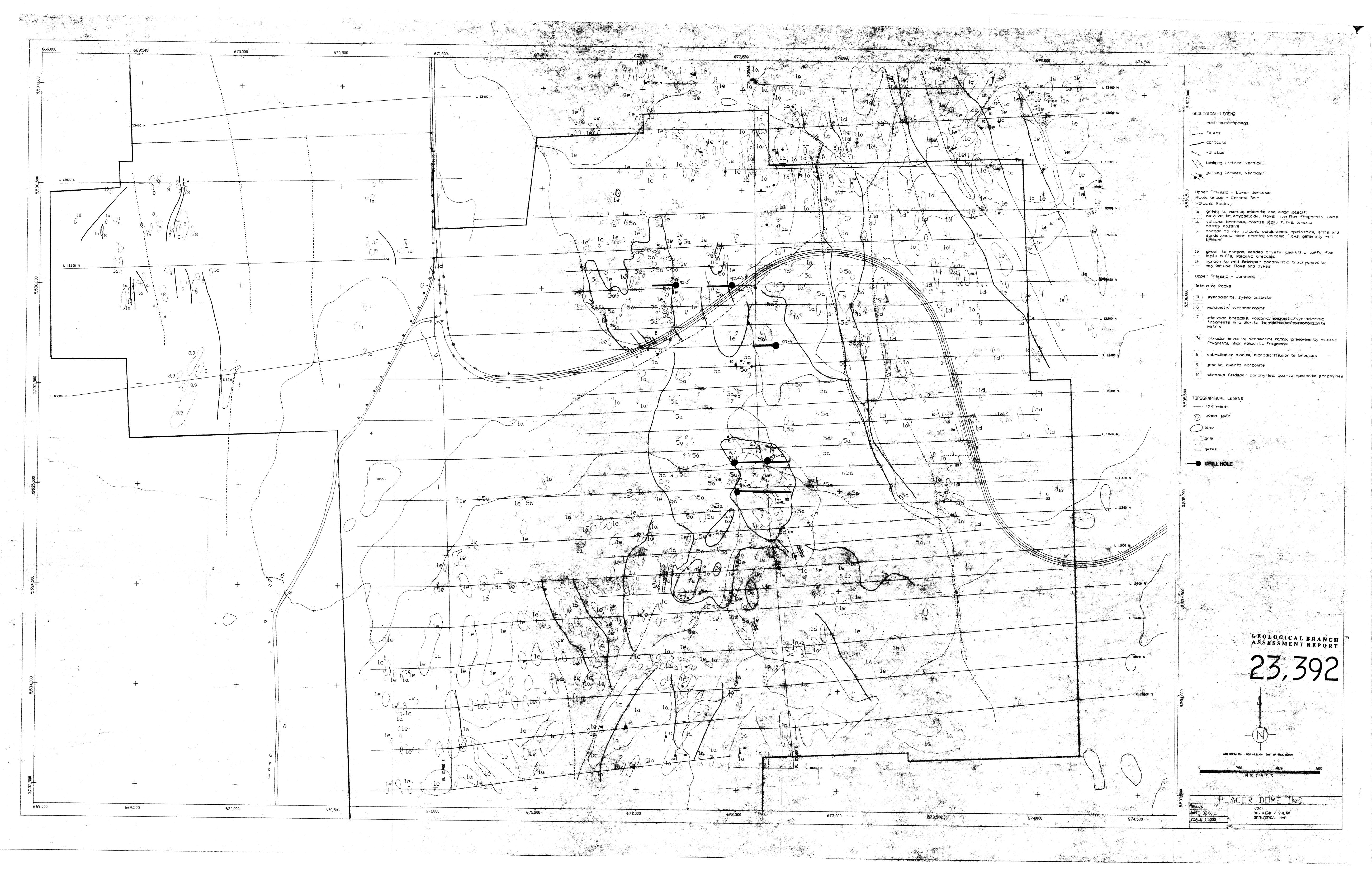
REPORT #: 930113 PA	NOR	THAIR M	INES LTD				PROJE	CT: None	6i ven			DATE	IN: OCT	19 1993	DATE	OUT: 00	CT 26 199	3 (A)	TENTION	MR. DAV	E VISAGI	E		U	PAGE 1	OF 1
Sample Name	Ag	A1	As	€Au	Ba	Bi ppm	Ca 7	Cd ppm	Co ppe	Cr ppa	Cu pps	Fe	K	Ng z	Mn ppe	No ppe	Na Z	Ni ppe	P Z	Pb ppe	Sb pp s	Sn ppa	Sr ope	U pga	W ppe	Zn ppe
14261	00 n	0.67	рр е 36	ррb 30	βp∎ 68	(3	6.30	(0.1	59	9	659	4.72	<0.01	1.23	833	<1	0.07	2	0.15	10	<2	<2	71	<5	<3	76
14262 14263	0.2 0.4	1.58 1.94	55 52	20 20	45 32	<3 <3	2.36 3.50	<0.1 <0.1	25 26	13 10	161 168	5.99 5.96	<0.01 <0.01	1.20 1.55	541 683	1	0.11 0.08	2	0.17 0.17	8 (2	<2 <2	<2 <2	122 105	<5 <5	<3 <3	62 64
14264 14265	0.4 0.4	1.87 1.26	60 47	<5 <5	35 35	(3 (3	4.30 3.76	<0.1 <0.1	37 34	8 8	125 65	6.61 5.96	<0.01 <0.01	1.51 0.98	760 665	1 1	0.08 0.11	1 1	0.18 0.17	<2 <2	<2 <2	{2 {2	103 77	(5 (5	<3 <3	71 53
14266	0.2	1.63	46	<5	277	(3	2.51	(0.1	17	13	184	5,98	(0.01	1.15	482	2	0.10	1	0.18	<2	<2	<2	121	<5	<3	58
14267	0.2	2.38	61	<5	31	<3	4.58	<0.1	26	6	13	7.09	<0.01	2.77	1100	<1	0.06	(1	0.17	(2	<2	<2	66	<5	<3	93
Minimum Detection	0.1	0.01	3	5	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1 10000	5	3 1000	1 20000
Maximum Detection く - Less Than Minimum	50.0 >-(10.00 Greater	2000 Than Maxi	10000 inun	1000 is - Ins	1000 sufficies	10.00 nt Sampl	1000.0 e ns	20000 - No San	1000 ple	20000 ‡Au Ana	10.00 Lysis Do	10.00 ne By Fi	10.00 re Assay	20000 Concentr	1000 ation /	10.00 AAS Fini	20000 sh.	10.00	20000	2000	1000	10000	100	1000	20000

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 030113 GA	JOB NUMBER: 030113
SAMPLE #	Au
14261	99b 30
14262 14263	20 20
14264 14265	nd nd
14266	nd
14267	nd


NORTHAIR MINES LTD.

PAGE 1 OF 1

DETECTION LIMIT ad = none detected

5

- -----

