ARIS SUMMARY SHEET

District Geologist, Kamloops

Off Confidential: 94.10.15

ASSESSMENT REPORT 23401

MINING DIVISION: Vernon

PROPERTY:

Mona

LOCATION:

LAT 50 07 00

LONG 118 27 00

UTM 11 5552390 396332

NTS 082L01W

CLAIM(S):

Mona 1-4 Phelps Dodge

OPERATOR(S):
AUTHOR(S):

Fox, P.E.

REPORT YEAR:

1994, 26 Pages

COMMODITIES

SEARCHED FOR: Gold

KEYWORDS:

Slocan Group, Sediments, Nicola Group, Volcanics, Intrusives, Veins

Quartz, Pyrite, Chalcopyrite, Galena, Bornite, Tetrahedrite, Pyrrhotite

Malachite, Azurite

WORK

DONE:

Geochemical

ROCK 27 sample(s); ME SOIL 168 sample(s); ME

Map(s) - 1; Scale(s) - 1:10 000

FOX GEOLOGICAL CONSULTANTS LTD. JUN 7 Geologium **GEOCHEMICAL REPORT # MONA 1 TO 4 CLAIMS** JUN 3 0 1994 by Geological Survey Branch MPR P. E. Fox, Ph.D, P. Eng. Fox Geological Consultants Ltd. #1409 - 409 Granville Street Vancouver, B.C. V6C 1T8 for Phelps Dodge Corporation of Canada, Limited Suite 912 - 120 Adelaide Street West Toronto, Ontario M5H 1T1 June 15, 1994 SUB-RECORDER RECEIVED **NTS 82L1** JUN 22 1994 VANCOUVER, B.C. GEOLOGICAL BRANCH ASSESSMENT REPORT

FILMED

1409 - 409 Granville Street, Vancouver, B.C. V6C 1T8 Tel. (604) 669-5736 Fax (604) 681-3920

TABLE OF CONTENTS

	Page
SUMMARY	. 1
INTRODUCTION	. 2 .
LOCATION AND ACCESS	. 2/
CLAIMS	. 2/
REGIONAL GEOLOGY	. 5/
PROPERTY GEOLOGY	. 5/
1993 WORK PROGRAM	. 6
RESULTS	. 6/
DISBURSEMENTS	. 9/
CONCLUSIONS	. 9/
RECOMMENDATIONS	. 9/
CERTIFICATE	. 10/
List of Figures	
Figure 1 - Location Map	3 /
Figure 2 - Claim Map	
Figure 3 - Regional Geology	8/
Figure 4 - Soil, Silt and Rock Geochemistry - Gold Grids A/B	pocket
Appendix	
Appendix I - Analytical Results	11

Fox Geological Consultants Ltd. #109 - 409 Granville Street, Vancouver, B.C. V6C 1T8
Telephone (604) 669-5736 Fax (604) 681-3920

SUMMARY

The Mona property was staked on October 16, 1993 to follow-up regional work completed the previous year. The purpose of the work this year was to evaluate stream sediment anomalies obtained in numerous small tributaries draining north and south to Monashee Creek. A program of grid preparation, soil sampling, mapping, prospecting and rock sampling was conducted.

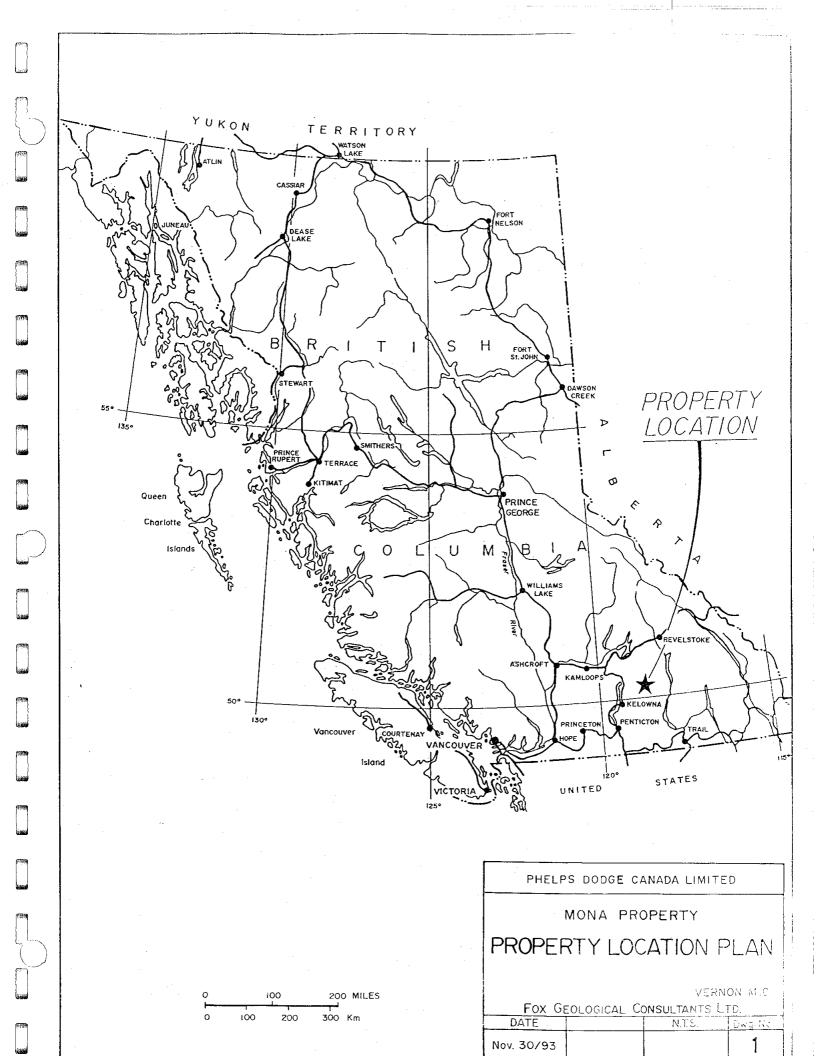
Sampling work traced anomalous stream sediments to a variety of small gossans associated with narrow sulphide-bearing quartz veinlets and rocks in a number of narrow monzonite dikes exposed on the northern slopes of Monashee Creek and on Yeoward Mountain to the south. Elsewhere, bull quartz veins in Slocan Group rocks account for much of the anomalous soils and stream sediments. In addition, downslope dispersion from old prospects and veins on Yeoward Mountain provide additional dispersion anomalies.

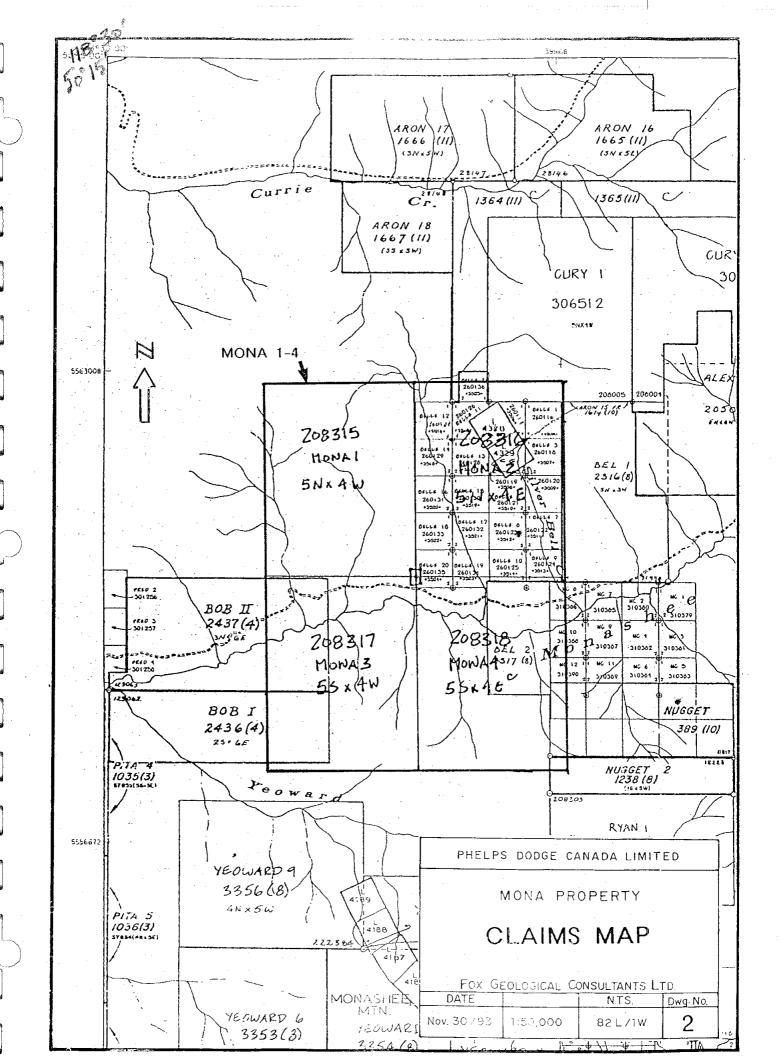
No further work is recommended.

INTRODUCTION

This report presents the results of a soil and rock geochemical survey completed on the Mona prospect between October 4 and 11, 1993. Work included collection of 168 soil samples and 27 rock samples over a grid system of 14. 1 kilometres. The Mona claims were staked to acquire potential provenance areas for stream sediment anomalies obtained during a regional program in 1992. Results are reported herein and recommendations made to discontinue work.

LOCATION AND ACCESS


The Mona 1 to 4 mineral claims, comprising 80 units, are located in the Vernon Mining Division of southern British Columbia at 50⁰12' north and 118⁰27'W. The claims, centred six kilometres northeast of Yeoward Mountain, straddle Monashee Creek immediately west of Silverbell Creek (Figures 1 and 2).


The property is readily accessible from Highway #6 at a point approximately 38 kilometres east of Vernon. Here the south fork Forest Service Road is followed some six kilometres to the property. Secondary logging roads provide access to the east and western edges of claims. The claims lie to the north of Yeoward Mountain which is characterized by moderate slopes leading up to a rounded summit. Elevations range from 2,800 to 5,700 feet. The property is sparsely forested with fir, hemlock, pine and spruce. Understorey comprises mainly tall grass and sparse sumac, salal and tag alder.

CLAIMS

The Mona 1 to 4 claims, situated in the Vernon Mining Division, are wholly owned by Phelps Dodge Corporation of Canada, Limited. Claim data are summarized below.

Claim Name	No. of Units	Record Numbers	Expiry Date
Mona 1	20	314198	October 16, 1994
Mona 2	20	314199	October 18, 1994
Mona 3	20	314200	October 21, 1994
Mona 4	20	314201	October 20, 1994

REGIONAL GEOLOGY

The Mona area lies within the Omineca Structural Belt, here consisting of pelitic sediments and volcanics underlain to the south by northwest-southeast belt of Palezoic sediments and volcanic rocks. The Palezoic sequence is intruded farther south by plutonic rocks of Jurassic age (Figure 3).

The oldest rock unit in the area is the Carboniferous to Permian Thompson Assemblage comprising argillaceous sediments, volcaniclastic rocks and limestone pods, the individual members of which are interdigitated on a relatively fine scale. The sequence is believed to have undergone sub-greenschist facies metamorphism coeval with Jurassic/Cretaceous orogenic events, though some deformation may have preceded deposition of the Upper Triassic sediments.

Thompson Assemblage rocks are unconformably overlain by Upper Triassic Slocan Group pelite and carbonate sediments and Upper Triassic/Lower Jurassic Nicola Group volcaniclastic, +/- pelite and carbonate sediments. Slocan Group rocks comprise shale, argillite, massive siltstone, phyllite, tuff, minor conglomerate, limestone, greenstone and andalosite-staurolite-kyanite-bearing schist, Nicola Group lithology is dominated by andesite, breccia, tuff, agglomerate, greenstone, chloritic phyllite and minor argillite, limestone and sericite schist. Regional metamorphism of these rocks is relatively low grade and, like the Thompson Assemblage, is believed to be related to Mesozoic orogenic events.

The Thompson Assemblage has been intruded by Plutonic rocks of the Upper Jurassic Valhalla Complex. These are predominantly massive granodiorites but their composition varies widely. Locally, Tertiary plateau basalts overlie all the previously mentioned rocks.

The current geological structure of the Southern Omineca Belt and Northern Washington State is a product of Eocene extension and crustal thinning superimposed on a thickened and deformed Palezoic and Mesozoic crust. High grade gneiss complexes long buried during a period of prior compression, are now exposed by Eocene extensional faults. Extension was accompanied by high angle faulting, alkalic volcanic activity, syntectonic intrusives and widespread hydrothermal activity.

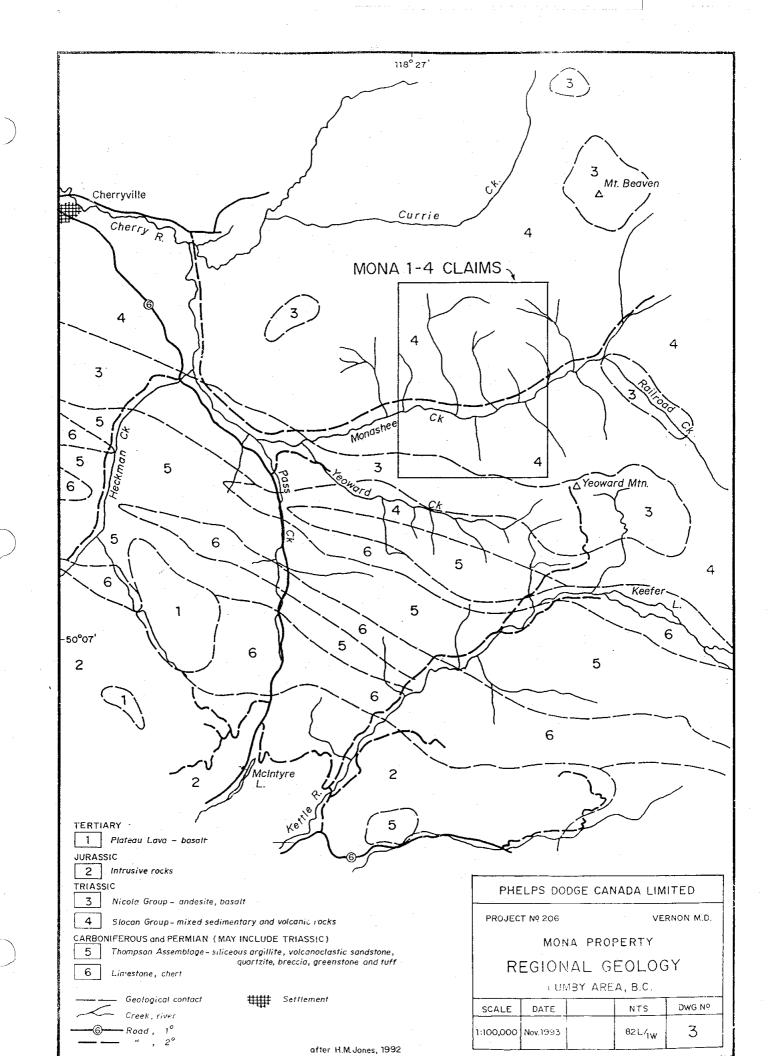
PROPERTY GEOLOGY

Bedrock geology is given in Figure 3. Most of the property is underlain by Slocan Group sediments, including interbedded shale, siltstone, argillite and limestone. Nicola Group basalt, tuff and greenstone overlie the Slocan Group sediments at the southern portion of the claims. Quartz monzonite sills and dykes of the Upper Valhalla Complex intrude the forementioned units.

Sedimentary units north of Monashee Creek strike 303° and 002° dipping from 80° NE to 30°E. To the south, the sediments strike 070° to 090° dipping 20° to 43° south, indicating southeast plunging anticline. Intrusives trend northwest. Bull white quartz float, up to 0.3 metres, with limonitic selvages is common. Bull quartz veins up to 3 cm. strike 321° dipping 58° to 70° NE in argillite, and strike 015° dipping 90° in quartz monzonite. Phyllite hosted bull white quartz veins of the Silverbell showing are irregular, discontinuous and range from 5 cm. to 1.5 metres. These veins are malachite and azurite-stained containing up to 10% sulphides including, pyrite, chalcopyrite, galena, bornite and tetrahedrite. Mineralization over the remainder of the property includes pyrite up to 3%, minor trace chalcopyrite, galena, pyrrhotite as disseminations and occasional fracture coatings.

1993 WORK PROGRAM

The 1993 work program on the Mona property was completed between October 4 and 11, 1993. Work included establishing two grids, one north of Monashee Creek comprising three east-west flagged compass lines spaced 400 metres apart and the other consisting of two north-south lines to the south of Monashee Creek. A soil traverse along the access road provided coverage between the two grids. A total of 168 "B" horizon soil samples were collected at 100 metre stations along both grid and traverse lines as well as 27 rock samples.


Samples were analyzed for gold by FA/AA methods and an additional 31 elements by ICP methods by Acme Analtyical Laboratories Ltd., 852 East Hastings Street, Vancouver, B.C. Assay results are presented in Appendix I and gold values are plotted in Figure 4.

RESULTS

Geochemistry results are plotted on Figure 5. Arbitrary assignment of a median plus one standard deviation anomaly, for soil and rock samples, yields the following table.

Sample	Type	Remarks	Ag (ppm)	As (ppm)	Sb (ppm)	Au (ppb)
38043	Chip	Hornblende monzonite.	0.2	110	2	109
37144	Grab	Hematitic quartz veined argillite.	0.4	34	5	46
37247	Grab	Limonitic monzodiorite.	1.0	19	2	104
37248	Grab	Limonitic quartz monzodiorite with quartz stringers.	0.3	17	2	51
38033	Grab	5% pyrrhotite in calcsilicate.	0.4	6	2	130
38044	Grab	Silverbell copper rich.	290.0	31	611	6637
38045	Grab	Silverbell lead rich.	297.6	47	459	34010
36352	Soil	100 metres.	0.8	21	5	22
36358	Soil	700 metres at creek sample 37337.	0.5	12	2	110
36397	Soil	3900 metres crossed creek at 3925 metres.	0.6	29	3	21
36401	Soil		0.3	47	2	28
36405	Soil		1.2	51	3	19
36435	Soil		1.1	20	2	80
36438	Soil		0.7	30	3	31
36439	Soil		0.1	22	2	23
36460	Soil		0.6	36	2	18
36461	Soil		0.8	78	2	20
36462	Soil		1.1	134	2	29
36468	Soil		0.9	58	2	40
36470	Soil		0.7	34	2	64
36471	Soil		0.6	16	2	21
37205	Soil		1.5	94	4	21
38038	Soil	50 metres east of 35283.	1.7	85	2	16
38039	Soil	25 metres east of 35283.	2.1	174	2	36
38042	Soil	50 metres west of 35283.	0.6	42	3	27

Anomalous zones include rock and soil samples on the western ridge and north slope of Yeoward Mountain, selective rock samples from the Silverbell showing and soil samples in Silverbell Creek on line 100N.

DISBURSEMENTS

Project disbursements are presented below.

Accommodation & Board	739
Laboratory - Soils	2,337
Labour Contract General	6,895
Publications & Maps, Report Preparation	192
Transportation - Ground - Truck	<u>135</u>
Total Disbursements	\$ <u>10,298</u>

CONCLUSIONS

The Yeoward Ridge anomaly is associated with small, restricted zones of altered, pyritic, locally pyrrhotitic monzonite dikes and downhill dispersion from the old Silverbell deposit. The property has been adequately prospected and does not warrant further work.

RECOMMENDATIONS

No further work is recommended for the Mona prospect.

Prepared by:

FOX GEOLOGICAL CONSULTANTS LTD.

P. E. Fox, Ph.D., P. Eng. June 15, 1994

CERTIFICATE

- I, Peter Edward Fox, certify to the following:
- 1. I am a consulting geologist residing at Vancouver, B.C.
- 2. I am a Professional Engineer registered in the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. My academic qualifications are:

B.Sc. and M.Sc., Queens University, Kingston, Ontario Ph.D., Carleton University, Ottawa, Ontario

4. I have been engaged in geological work since graduation in 1966.

Peter E. Fox, Ph.D., P. Eng.

Vancouver, B. June 15, 1994

APPENDIX I

Analytical Results

0.5 gm sample is digested with 3 mls 3-1-2 $\rm HCl$ - $\rm HN0_3$ - $\rm H_20$ at 95 degree cent. for one hour and is diluted to 10 mls with water. This leach is near total for base metals, partial for rock forming elements and very slight for refractory elements. Solubility limits Ag, Pb, Sb, Bi and W for high grade samples.

ACME ANAL

CAL LABORATORIES LTD.

852 E. HASTINGS ST. VA

GEOCHEMICAL ANALYSIS CERTIFICATE

Phelps Dodge Corp. PROJECT 206 File # 93-2851 Page 1

1409 - 409 Granville St., Vancouver BC V6T 1T2 Submitted by: Ian Bilquist

		000000000																												********	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	ppm U	Au ppm	Th ppm	ppm ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	В	Al %	Na %	K %	ppm W	Au** ppb
36351 36352 36353 36354 36355	1 2 1 1 2	17 23 17 26 11	10 12 13 12 10	97 116 80 176 96	1.4 .8 .9 1.3	18 20 21 27 23	7	226 884 375 1749 532	2.27 2.32 2.29	12 21 18 7 8	13 <5 10 <5 <5	<2 <2 <2 <2 <2	3 2 4 3 2	23 43 52 63 23	.8 .9 .3 1.2	2 5 4 <2 <2	<2 <2 3 2 3	21 25 25 32 20	.57 .47 .60	.182 .114 .226 .081 .157	12 14 10 14 11	10 17 16 26 14	.22 .42 .29 .43 .21	133 168 215 227 150	.11 .06 .13 .09	6 5 4	2.90 1.88 3.76 2.32 3.06	.06 .03 .04 .03	.07 .12 .09 .16	<1 1 2 <1 <1	13 22 5 6 4
36356 36357 36358 36359 36360	1 1 2 2 1	20 16 28 30 17	9 9 8 7 8	144 89 236 84 94	.6 .5 1.0	29 17 32 24 22	8 5 10 6 6	642 594 256 148 240	2.02 2.86 2.07	6 10 12 7 9	<5 <5 <5 <5	<2 <2 <2 <2 <2	3 2 2 3 3	25 24 21 11 14	.5 .4 1.1 .3	<2 <2 2 <2 2	<2 2 <2 <2 <2 <2	30 23 27 20 24	.22 .22 .10	.118 .114 .082 .026 .092	14 13 13 12 16	22 15 18 14 18	.43 .31 .39 .33 .44	223 155 217 135 140	.10 .08 .02 .04	3 4 2	2.74 2.21 1.80 1.63 2.04	.03 .03 .01 .02	.13 .09 .12 .05	<1 <1 <1 <1 <1	9 2 110 7 5
36361 36362 36363 36364 36365	1 1 1 1	14 17 14 9 14	11 11 12 10 10	126 104 114 89 105	1.3 .5 .3 .2	33 22 26 20 22	8 7 6 5 6	365 548 461 412 380	2.30 2.10 1.84	9 11 13 7 10	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 2 <2 2 2	30 17 30 18 19	.7 .4 .5 .3	2 <2 <2 <2 <2	<2 <2 <2 2 <2	32 25 24 24 25	.16 .32 .14	.157 .108 .121 .101 .126	12 11 11 10 10	23 18 19 17 19	.49 .33 .37 .31	183 129 161 130 105	.11 .07 .09 .08	3 4 2	2.94 2.01 2.40 1.85 1.96	.03 .02 .03 .02	.10 .08 .11 .07	<1 <1 <1 <1 <1	7 3 <1 <1 7
36366 36367 36368 36369 36370	2 2 1 2	22 22 18 10 10	12 12 11 10 9	111 86 135 111 117	.4 .9 .7 1.0 1.0	22 20 22 16 20	6 6 5	1000 320 323 528 1181	2.32 2.44 1.70	18 17 13 9 13	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	18 18 21 33 26	.6 .5 .4 .8 1.5	5 3 <2 <2 <2 <2	<2 <2 2 2 3	16 18 20 17 19	.22 .21 .44	.061 .118 .164 .198 .368	14 12 13 10 8	11 9 10 8 10	.18 .21 .19 .15	181 170 191 228 188	.02 .05 .05 .07	3 4 3	1.17 2.20 2.47 2.16 3.48	.01 .02 .02 .03	.10 .08 .08 .08	<1 <1 <1 <1 <1	5 1 1 1 2
36371 RE 36371 36372 36373 36374	4 6 2 1	34 35 43 24 14	9 11 13 13	137 139 103 112 161	.2 .4 .5 .3	30 30 26 34 30	8 9 6 9	246 : 240 : 204 : 408 : 947	2.63 2.46 2.46	19 20 17 12 6	<5 5 <5 9 <5	<2 <2 <2 <2 <2	2 3 5 4 <2	14 14 15 15 21	.7 .6 .5 .4	2 3 4 <2 <2	<2 <2 <2 2 <2	20 21 15 23 23	.13 .14 .15	.079 .077 .042 .183 .125	16 16 19 9	12 12 10 13	.37 .37 .36 .26	142 142 34 131 248	.02 .02 .01 .13	3 2 4	1.34 1.32 .64 3.83 2.35	.01 .01 .01 .03	.08 .08 .06 .08	<1 <1 <1 <1 <1	4 1 <1 <1 <1
36375 36376 36377 36378 36379	1 1 1 1 2	22 11 14 12 22	13 10 10 9 10	160 140 108 120 104	.8 .5 .9 .5	35 22 28 20 23	7 5 6 5 7	887 373	1.69	11 9 10 6	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 <2 <2 <2	30 22 30 24 27	.7 .5 .5	2 <2 <2 <2 <2	2 <2 <2 2 3	22 20 21 20 22	.20 .31 .26	.116 .155 .157 .060	11 10 11 12 12	14 12 12 11 18	.29 .21 .25 .28 .36	243 210 223 178 130	.05 .08 .10 .05	3 3 2	1.92 2.27 2.62 1.53 1.52	.02 .03 .04 .02	.14 .11 .11 .13	<1 <1 <1 <1 <1	<1 <1 <1 7 <1
36380 36381 36382 36383 36384	1 2 2 1 2	18 28 18 17 19	9 7 7 7 9	143 80 155 106 183	.5 .2 .2 .1	27 23 26 26 27	7 6 7 7 6	503 (270 (360 (980 712	2.29 2.21 1.98	7 11 9 3 10	<5 6 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 4 2 <2 <2	22 15 21 31 23	.4 .2 .6 .8	<2 2 <2 <2 <2 <2	<2 <2 3 <2 <2	27 26 26 27 25	.16 .19 .36	.131 .035 .147 .081	13 20 15 14 10	20 25 20 26 14	.40 .53 .42 .46 .28	223 82 122 191 185	.10 .08 .06 .10	3 2 3	2.33 1.14 1.61 1.97 1.68	.03 .02 .02 .03	.16 .17 .11 .16	<1 <1 <1 <1 <1	<1 <1 <1 4 3
STANDARD C/AU-S	18	50	38	125	6.9	70	29	1035	3.91	40	15	. 7	35	53	18.1	14	20	59	.50	.086	39	59	.90	185	.09	34	1.88	.10	. 16	11	49

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 TO P4 SOIL P5 ROCK AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE.

Samples beginning 'RE' are duplicate samples.

DATE RECEIVED:

D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS.

Page 2

ACME ANALYTIC

ACME ANALTTICAL																														UME ANAL		الـ
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ní ppm	Co	Mn ppm	Fe %	As	U	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	ppm B	Al %	Na %	K %		u** ppb] .
36385 36386 36387 36388 36389	1 3 1 2 3	25 36 14 22 30	9 11 14 7 13	169 112 170 104 144	.2 .7 1.0 .3	35 33 16 24 25	10 7 8	373 ; 214 ; 2682 ; 330 ; 367 ;	3.13 2.23 2.51	9 27 17 8 13	<5 <5 <5 6 <5	<2 <2 <2 <2 <2	2 2 <2 2 3	30 21 25 18 15	.4 .4 1.7 .4	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	34 24 23 33 33	.18 .25 .19	.102 .027 .220 .049	11 11 10 17 18	25 19 11 28 18	.57 .37 .17 .65	184 204 242 119 149	.08 .04 .10 .09	4 3. 4 1. 3 2. 2 1. 4 2.	86 74 71	.02 .02 .03 .02	.12 .09 .07 .13	<1 <1 <1 <1 <1	5 5 1 3 5	Road
36390 36391 36392 36393 36394	3 2 1 2 4	24 15 22 14 32	10 11 15 11 14	128 190 252 161 109	.3 .4 .6 .6	20 28 36 20 35	7 9 8 7 9	439 278 417 492 345	2.63 2.36 2.48	11 14 18 11 22	6 <5 6 9 6	<2 <2 <2 <2 <2	3 2 3 3 5	10 19 42 13 12	.4 .7 1.8 .7	2 2 4 <2 2	<2 <2 <2 <2 <2	30 35 24 31 20	.18 .44 .13	.056 .126 .090 .163 .058	18 12 13 13 22	17 15 15 14 24	.45 .33 .31 .28	95 200 213 187 92	.05 .06 .06 .07	3 1. 5 2. 4 2. 3 2. 3 1.	18 01 19		.10 .12 .14 .10	<1 <1 <1 <1 <1	3 3 14 6 8	tia
RE 36394 36395 36396 36397 36401	4 3 4 4	30 29 23 47 52	13 13 15 16 16	106 157 104 105 144	.2 .4 .1 .6	34 48 30 39 37	9 10 11 12 10	338 292 282 508 376	3.13 3.29 3.50	23 22 23 29 47	7 <5 <5 <5 <5	<2 <2 <2 <2 <2	5 3 4 4 3	12 21 15 25 11	.2 .3 <.2 .3 .4	2 <2 <2 3 2	<2 <2 <2 <2 <2	20 24 24 22 20	.17 .13 .29	.057 .092 .076 .057	21 18 23 23 21	24 31 30 31 14	.44 .43 .51 .55	88 173 137 82 123	.02 .04 .02 .03	3 1. 4 2. 4 1. 4 1. 3 1.	09 31 09	.01 .02 .01 .01	.06 .11 .07 .09	<1 <1 <1 <1 <1	8 14 7 21 28	erse
36402 36403 36404 36405 36406	5 3 2 4 1	38 44 12 50 24	15 13 13 16 11	125 169 141 195 218	1.3 .7 1.1 1.2 .8	31 40 27 41 25	11 13 8 10 13	529 849 305 423 667	3.24 2.69 3.63	32 41 24 51 16	<5 <5 15 10 <5	<2 <2 <2 <2 <2	<2 <2 2 3 2	23 24 17 23 18	.7 .8 1.1 1.3	2 2 <2 3 2	3 <2 2 <2 <3	21 25 25 25 25 43	.30 .17 .20	.053 .054 .194 .100 .346	17 10 7 10 8	18 16 10 12 14	.36 .31 .15 .25	133 134 136 180 133	.02 .04 .14 .07	4 1. 4 1. 4 5. 4 2. 5 3.	98 24 78	.01 .02 .03 .03	.11 .08 .04 .06	<1 <1 <1 <1 <1	11 7 2 19 2	
36407 36408 36409 36410 36411	2 1 2 1 3	71: 12: 18: 17: 28:	15 10 10 8 9	451 243 248 214 411	.1 .6 1.7 .7	63 23 27 22 42	8 8 7	1678 669 471 605 1511	2.03 1.99 1.94	7 11 12 12 11	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 2 2 2 <2	34 23 16 28 33	4.9 2.2 3.6 7.8 6.5	<2 2 2 3 3	<2 <2 <2 <2 <2	97 32 27 29 50	.15 .32	.105 .113 .173 .147 .095	8 11 13 12	22 14 13 21 23	.37 .24 .24 .37 .62	159 141 109 165 276	.16 .12 .09 .11	8 2. 4 2. 3 2. 3 2. 6 2.	47 58 17	.04 .03 .03 .03	.09 .07 .07 .10	<1 <1 <1 <1 <1	5 3 <1 1	1 100
36412 36413 36414 36415 36416	13 4 4 3 2	59 36 54 42 23	12 12 16 15 12	353 159 201 123 80	.4 .9 1.1 .7	55 36 43 29 22	. 11	828 599 427 811 525	2.76 3.20 2.95	26 14 26 30 17	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 2 3 <2 <2	29 18 21 30 12	3.8 .9 1.0 .6	5 2 6 4 3	2 <2 <2 2 2	67 23 23 11 15	.17 .18 .41	.076 .074 .046 .076	14 16 16 15 16	18 13 11 8 11	.51 .31 .30 .22	289 230 272 154 126	.04 .04 .03 .01	6 2. 3 1. 5 2. 4 1.	86 21 79	.02 .02 .02 .01	.12 .10 .08 .09	<1 <1 <1 <1 <1	3 <1 3 3	Z
36417 36418 36419 36420 36421	1 1 2 1 1	10 19 32 20 13	13 11 12 9 11	79 83 86 86 106	1.0 .4 .6 1.1	23 27 35 33 25	5 6 8 6 6	611 356 210 210 573	2.06 2.41 1.92	13 10 14 9 11	<5 <5 <5 6 <5	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2	29 21 16 17 17	.5 .2 <.2 .2 .4	3 <2 2 3 3	2 2 2 <2 <2	20 22 23 22 23	.20 .17 .17	.154 .086 .081 .077 .120	8 11 11 12 9	9 11 16 15 17	.16 .23 .33 .29	182 185 206 154 92	.12 .06 .06 .07	4 2. 3 2. 4 2. 3 1. 3 1.	04 53 83		.08 .10 .13 .10	<1 <1 <1 <1 <1	1 3 2 <1 4	The state of the s
STANDARD C/AU-S	19	61	37	129	7.1	72	32	1043	3.99	42	24	. 8	36	53	19.4	15	21	62	.50	.087	41	61	.91	185	-09	33 1.	89	.10	.16	9	52	

Page 3

44

ACME ANALYTICAL																											<u>. </u>		ACME ANA	. PT I CAL)ك
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn	Fe %	As ppm	ppm	Au ppm	Th ppm	Sr	Cd ppm	Sb ppm	Bi ppm	V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B Al	Na %	K %	W ppm	Au** ppb	
36422 36423 36424 36425 36426	2 1 2 1 3	26 12 18 15 26	10 13 12 13 14	145 157 111 107 149	1.2 .6 1.2 1.3	44 25 27 27 38	8 7 7 6 9	346 761 380 390 508	2.10 2.06 2.09	9 7 7 13 18	6 <5 18 18 <5	<2 <2 <2 <2 <2	3 2 4 3 2	22 36 20 33 39	.3 .8 .4 .4	4 4 4 5 5	2 2 <2 <2 2	29 22 19 20 16	.33 .23 .30	.083 .122 .062 .108	14 10 13 9	30 15 11 10 9	.51 .26 .24 .16	189 324 237 180 247	.10 .08 .07 .12	3 2.32 5 2.24 4 2.33 4 3.02 4 2.02	.03 .03 .03 .04 .03	.17 .11 .10 .08	<1 1 <1 <1 <1	2 4 <1 3 2	L loo N
36427 36428 36429 36430 36431	1 4 2 2 2	11 45 26 28 15	12 11 16 16 15	117 224 109 80 90	.9 .7 .5 .4	20 31 22 26 30	6 11 9 8 8	1061 761 665 274 560	3.24 2.86 2.66	12 18 23 33 19	7 <5 8 5 <5	<2 <2 <2 <2 <2	2 <2 3 4 2	28 28 20 12 15	.6 2.4 .4 <.2 .5	5 4 3 3 4	2 2 3 2 2	19 29 17 15 21	.42 .28 .11	.161 .068 .087 .050	10 17 19 21 11	11 20 14 11 13	.17 .56 .33 .24	215 117 146 114 127	.10 .03 .02 .04 .10	4 2.32 5 1.51 3 1.51 3 1.39 3 2.67	.03 .02 .02 .02 .03	.08 .12 .11 .08 .10	<1 <1 <1 <1	5 8 9 3 6	
36432 36433 36434 36435 36436	2 2 2 2	16 30 18 27 19	11 12 16 15 14	96 111 110 81 87	.5 .4 .5 1.1	27 29 22 33 22	7 10 9 9	329 242 1781 183 267	3.09 2.34 2.68	18 21 20 20 23	\$ \$ \$ \$ \$	<2 <2 <2 <2 <2	2 2 <2 3 4	19 20 25 20 17	.2 .2 .5 .3	<2 2 3 2 4	<2 <2 <2 3 <2	20 22 22 21 23	.21 .26 .19	.083 .063 .096 .113	13 16 16 14 18	11 18 13 14 16	.23 .31 .22 .25 .36	170 173 224 160 154	.06 .03 .04 .06	3 1.90 4 1.89 3 1.39 3 2.81 3 2.80	.02 .02 .02 .02	.07 .11 .09 .10	<1 <1 <1 <1 <1	4 6 3 80 14	100
36437 36438 36439 36440 36441	3 3 3 2 1	21 39 30 54 55	12 25 12 14 23	70 107 103 134 196	.3 .7 .1 .4	22 36 33 40 33	8 17 9 9 23	150 733 222 585 1633	3.77 3.13 2.71	22 30 22 23 29	<5 <5 <5 <5	<2 <2 <2 <2 <2	4 2 4 2 <2	11 27 14 34 59	<.2 .5 .3 .5	4 3 2 2 <2	<2 <2 2 2 <2	18 21 18 20 23	.33 .13 .37	.036 .067 .039 .052	21 18 21 19 11	14 28 31 14 15	.33 .48 .45 .21	74 113 72 223 298	.03 .03 .02 .01	2 1.45 5 1.64 3 1.11 4 1.08 6 2.06	.01 .02 .01 .01	.06 .11 .07 .17	<1 <1 <1 <1 <1	8 31 23 8 6	Z
36442 RE 36442 36443 36444 36445	4 4 3 2 2	-46 49 11 23 17	15 14 14 14 11	136 141 80 214 272	.8 .8 .6 1.5	31 33 22 52 32	9 9 10 10 9	522 540 139 889 567	3.37 2.96 3.02	35 38 12 33 23	<5 <5 25 <5 7	<2 <2 <2 <2	3 3 2 <2 2	23 25 38 20 18	1.0 1.0 .9 1.3 1.8	4 4 <2 <2 2	3 <2 2 <2 <2	19 21 20 24 32	.30 .32 .19	.075 .080 .031 .237	17 18 6 9	16 18 13 13	.35 .37 .15 .22	126 131 90 205 199	.03 .04 .11 .09	4 1.29 5 1.32 4 5.12 4 3.81 4 3.60	.02 .02 .03 .03	.08 .08 .03 .07	<1 <1 <1 <1 <1	9 13 5 4 2	
36446 36447 36448 36449 36450	1 2 3 4 3	35 21 14 34 20	15 11 10 10	180 261 226 231 283	.6 .9 .7 .7	30 25 24 32 35	17 8 8 8 12	339 : 770 : 466 : 376 : 610 :	2.54 2.50 2.97	4 16 16 15	37 <5 <5 <5 <5	<2 <2 <2 <2 <2	3 <2 2 2 <2	19 17 13 24 18	1.3 2.2 1.7 2.7 2.4	<2 3 3 3 5	3 <2 3 <2 <2	51 35 33 35 44	.18 .15 .25	.133 .175 .146 .129	7 11 10 10 7	12 16 14 15 17	.20 .34 .33 .61	84 225 176 175 193	.21 .05 .05 .03	5 4.71 3 2.11 3 1.90 4 1.90 5 2.71	.04 .02 .02 .02 .03	.06 .08 .07 .09	<1 <1 <1 <1	6 1 1 <1	1 96 N
36451 36452 36453 36454 36455	2 2 2 2 1	8 11 24 20 24	13 13 11 15 16	135 126 145 175 172	.9 .7 1.0 1.4 1.3	17 25 51 31 34	8 7 7 8 10	397 360 471 603 507	2.52 2.47 2.77	12 14 7 14 13	11 20 <5 <5 <5	<2 <2 <2 <2 <2	<2 3 <2 <2 <2 <2	14 22 25 32 20	.9 1.2 1.2 .7	<2 5 2 2 5	<2 <2 2 <2 3	26 28 19 30 28	.22 .34	.137 .158 .111 .225	6 10 10 10	11 14 15 16 17	.15 .25 .43 .30 .42	111 129 181 207 360	.15 .15 .04 .11	3 3.60 4 4.03 4 1.83 4 3.72 4 3.14	.03 .04 .02 .03	.05 .07 .08 .07	<1 1 <1 1 <1	1 <1 <1 2 <1	V
STANDARD C/AU-S	17	58	37	128	6.6	69	27	1017	3.89	39	17	7	37	52	16.8	14_	17	55	.49	.085	38	57	.89	183	.09	33 1.88	.10	.17	11_	52	_

Page 4

AA

HOLL THEIL TIONE																																==
SAMPLE#	Mo		Pb ppm		-		Co ppm		Fe %						Cd	Sb ppm	Bi ppm	V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	В	Al %	Na %	K %		Au** ppb	
36456 36457 RE 36457	1 2 <1	19 27 26	8 8 9	95 109 104	.9 .9 1,1	33 33 31	10	576	2.21 2.25 2.15	9	<5	<2	2	19	.5	<2	<2	19	.18 . .20 .	050	14	16	.28	159	.05	3 7 3 5	1.77	.02		1 1 1	<1 <1 <1	

Page 5

22

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	. U	Au ppm	Th ppm	Sr ppm	Cd	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B	Al %	Na %	K %	pp≡.	\u** ppb
37144	20	56	29	39		23	5	90 7	2 61	34	<5	<2	3	14	₹	5	<2	6	11	.029	4	7	.06	44 -	<.01	3	.35	.02	. 13	<1	46
37145	3	8	4	15	.2	23 8	3	1487		7	<5	<2	<2	929	.2	2	<2	_	21.15		2	3		21 -		<2	.13			1	2
37146	<1	28	11	83	.7	-20	5	290 2	2.89	5	<5	<2	2	105	.4	2	<2	9	1.50	.045	8	17	1.54	140 -	<.01	2	1.66	.01	.16	<1	7
37147	<1	13	6	41.	.3	9	8	686	2.16	12	<5	<2	<2	555	.2	3	<2	4	15.14	.133	5	7	. 19	82 -	<.01	2	.23	.01	.10	<1	12
37148	1	71	5	130	.7	20	15	365	3.46	19	<5	<2	<2	235	3.5	<2	<2	34	13.28	.064	3	17	.67	71 •	<.01	2	1.07	.02	.07	<1	1
RE 37148	2	74	4	133	.8	20	15	368	3.50	17	<5 ·	<2	<2	236	3.7	<2	<2	35	13.43	.063	3	19	.68	72 -	<.01	<2	1.08	.02	.07	<1	1
STANDARD C/AU-R	18	64	38	127	6.8	66	31	1031	3.98	39	14	7	34	52	18.0	14	19	54	.51	.086	39	60	.91	183	.09	33	1.90	.06	.14	11	493

ACME AN

PHONE (604) 253-3158

GEOCHEMICAL ANALYSIS CERTIFICATE

Phelps Dodge Corp. PROJECT 206 File # 93-2892

Page 1

SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	-	Ni ppm	Co ppm	Mn ppm		As ppm	U ppm	Au ppm	Th ppm p		Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %		La ppm	Cr ppm	Mg %		Ti % p	B pm	Al %	Na %	K %	₩ W	Au** ppb	
34645 36398 36399 36400 36500	1 2 1 11 2	20 4 23 22 21	10 <2 3 4 147	52 16 36 17 270	.5 <.1 .2 1.4	10 7 14 15 13	3 1 14 3 5	169 150 932 557 534	2.37 .33 3.53 1.01 1.66	3 <2 21 10 12	8 <5 <5 7 <5	<2 <2 <2 <2 <2		10 96 208 4 22	<.2 .2 .2 <.2 2.7	<2 <2 2 4 <2	<2 <2 <2 <2 <2 <2	8 <2 8 2 4	.91 6.34 .06	.029 .004 .027 .003 .033	10 <2 3 <2 15	8 1 9 6 10 9	.32 .01 .40 .02 .42	226<. 7<. 34<. 43<. 73<.	01 01 01	4 2 <2 <2 3	.03	.02 .06 .01	.07 .02	<1 1 1 3 <1	5 3 5 1 14	
37149 37150 37244 37245 37246	1 2 2 1 2	9 19 5 9 11	4 13 14 10 6	87 56 10 54 49	<.1 .4 .1 .4	24 25 7 7 13	13 6 1 6 4	564 773 504 780 342	3.20 1.73 .57 2.56 3.12	13 30 4 7 3	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2	<2	76 187 29 233 6	<.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	18 3	3.56 .16 2.59	.007	5 17 2 20 12	30 2 35 9 10 44	.52 .06 .59	62 . 68<. 23<. 77<.	01 01 01	2 2 3	2.23 1.23 .14 1.10 1.30	.01 .01 .03	.12 .05 .27		7 3 1 <1 3	
37247 37248 37249 37250 38032	9 3 1 2	216 119 11 8 34	10 5 11 5 13	55 88 69 53 43	1.0 .3 .3 <.1 .1	8 30 7 8 7	10 20 7 5 6	677 639 1608 943 587	10.90 5.03 3.52 2.30 3.75	19 17 19 3 19	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 7 2 5	32 86 23 24 74	<.2 .5 <.2 <.2	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	9	1.23 .54 .27	.087 .026	5 11 29 7 14	19 7 40 7 7		67 116 82< 31 85	22 01 02	2 4 2	1.72 1.95 1.59 .93 1.36	.05 .03 .02	.26 .22 .07	<1. <1 <1	104 51 2 <1 21	
38033 38034 38035 RE 38035 38036	1 2 3 3 5	58 88 159 152 94	6 3 7 6 2	31 16 88 83 28	.4 .3 .5 .4	8 21 25 25 13	9 26 27 26 11	562 170 253 248 263	3.52 1.73 3.55 3.44 3.25	6 22 3 4 6	<5 6 <5 <5 <5	<2 <2 <2 <2 <2 <2	6 3 3 2 2	157 119	.2 <.2 1.2 1.0 <.2	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	35 36		.147	17 9 11 10 7	8 10 11 11		72 . 136 . 129 .	19	3 5 11 9 2	.74 .68 .67	.03 .03 .03	.33 .14 .25 .23 .22	1 1 <1 <1 <1	130 7 4 3 3	
38037 38043 38044 38045 STANDARD C/AU-R	_		6 5 19615 24023 39	67 51 5840 12183 126	.2 .2 290.0 297.6 7.1	7 5 10 13 71	5 5 2 2 30	647 533 131 94 1044	4.24 3.92 .93 1.14 3.95	19 110 31 47 39	<5 <5 <5 <5	<2 <2 4 27 7		24	<.2 <.2 108.6 176.5 18.0	459	<2 2 5 12 19	53 25 2 <2 <2 58	.93 .14 .12	.060 .111 .010 .004 .086	12 10 6 2 39	7 14 13	1.62 1.10 .04 .04 .92	67 82 11<. 9<. 183	11 01 01	4 2 2		.04 .02 .01	.18 .03 .01	<1 <1	14 109 6637 34010 499	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE. - SAMPLE TYPE: P1 ROCK P2 TO P3 SOIL Samples beginning 'RE' are duplicate samples.

Page 2

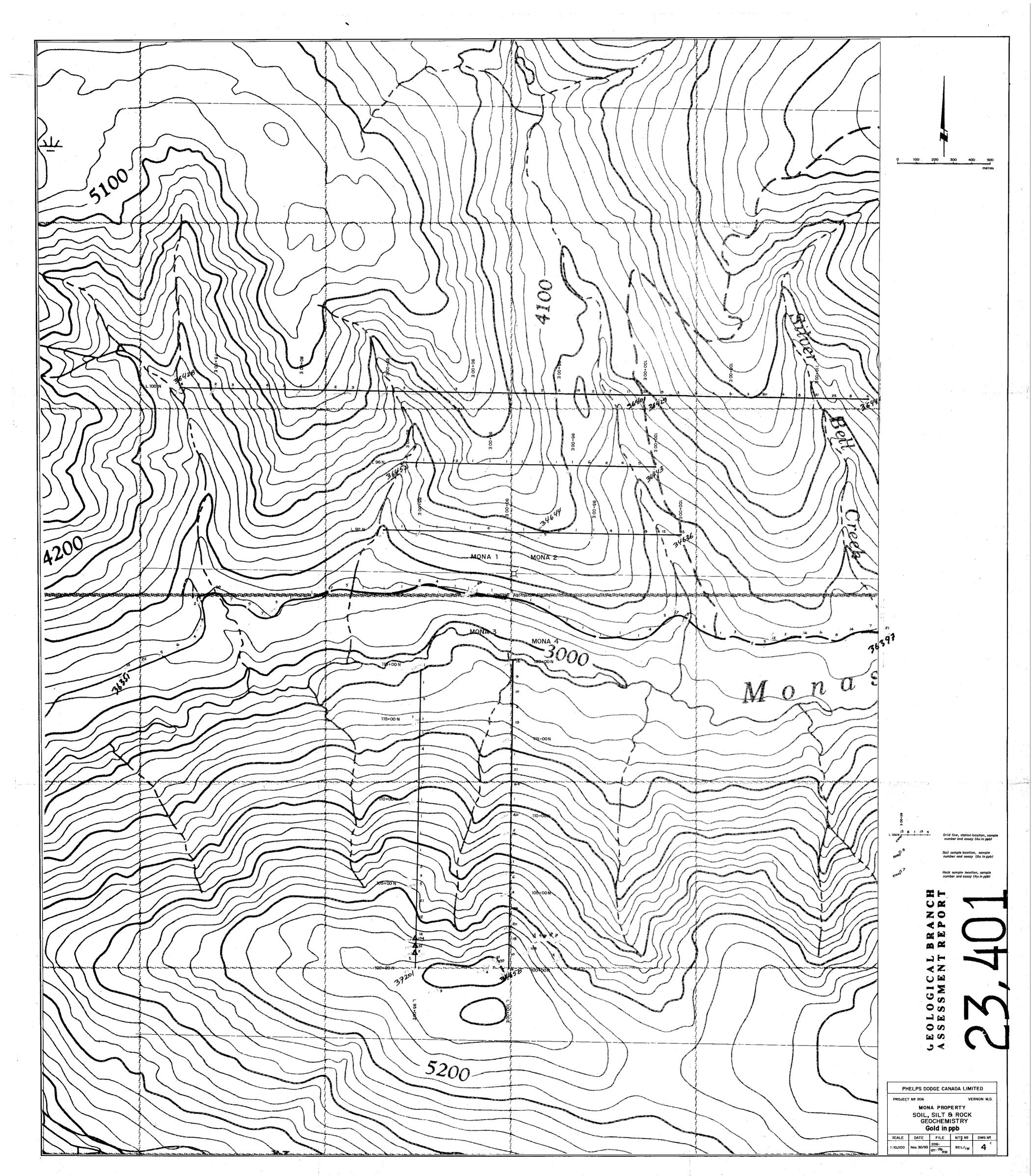
ACME ANALYTICAL																														ACHE ANAI	YTICAL	
SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Tí %	ppm B	Al %	Na %	K %	ppm	Au** ppb	_
34636 34637 34638 34639 34640	3 5 2 2 2	24 66 15 9 14	20 14 9 11 12	150 166 114 74 120	1.6 .8 .6 1.9	32 39 29 27 24		531 1457 203 201 580	3.15 1.98 1.64	18 28 11 13	<5 <5 <5 8 <5	<2 <2 <2 <2 <2	2 3 <2 3 <2	27 35 13 16 25	.3 1.7 .4 .6	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	20 28 24 18 24	.10 .17	.070 .083	7 11 7 5 7	13 23 14 9 14	.19 .43 .29 .12	148 160 157 101 162	.09 .04 .09 .14	6 <2 3	3.00 1.31 2.45 4.13 2.02	.01 .01 .01 .02	.04 .09 .05 .03	2 <1 <1 1	13 12 9 <1 4	192
34641 34642 34643 34644 34658 36458	1 2 1 1 2	9 19 21 22 32	9 10 12 12 16	139 175 106 110 78	.6 .7 .6 .4 1.2	29 32 27 32 17	6 7 6 7 13	263 265 307 237 429	1.89 2.03 1.96	<2 10 8 8 28	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 2 <2 2 2	18 16 20 19	1.2 .6 .3 .2	<2 <2 <2 <2 <2	<2 2 2 <2 <2 <2	23 24 23 20 33	.12 .22 .16	.154 .126 .110 .054 .084	7 7 6 10 8	19 14 17 15 18	.29 .37 .41 .34	143 184 109 227 113	.09 .06 .07 .04	4 3 2	2.14 1.90 2.08 1.99 3.18	.02 .01 .01 .01	.09 .06 .07 .07	<1 1 <1 <1 1	<1 <1 2 <1 13	Z.
34659 34660 34661 34662 34663	2 5 5 11 2	33 63 30 50 24	15 17 17 23 21	107 120 243 377 118	.3 .6 .8 1.1 1.6	18 15 26 54 19		425 243 1399 1131 483	4.57 4.19 3.95	49 36 78 134 44	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	11 7 30 21 19	.4 .3 2.5 4.3 1.0	<2 <2 <2 <2	<2 2 <2 <2 <2 <2	37 50 86 43 28	.06 .51 .20	.094 .116 .061 .093 .072	9 8 10 13	22 22 28 23 16	.59 .30 .57 .64	93 54 116 132 86	.04 .05 .04 .04	<2 <2 <2	2.26 1.98 1.99 2.04 3.01	.01 .01 .01 .01	.05 .06 .06 .05	1 1 2 <1	10 18 20 29 4	<u>ا</u> ا
34664 34665 34666 34667 34668	1 1 1 2 <1	20 11 10 24 12	47 16 11 19 26	135 76 83 111 79	1.5 .5 1.1 1.5	20 15 17 23 13	13 6 6 7 5	724 304 246 197 289	1.90 2.13 2.18	77 21 24 24 58	<5 <5 <5 6 7	<2 <2 <2 <2 <2	3 2 2 3 3	20 25 35 20 23	.8 .5 .5	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	30 22 21 23 18	.26 .34 .15	.082 .172 .228 .086 .081	13 6 6 10 12	19 13 14 14 12	.42 .20 .22 .24	104 65 94 88 81	.05 .10 .12 .11	<2 2 <2	2.06 3.18 3.15 4.00 3.29	.01 .02 .02 .02	.06 .04 .05 .03	<1 1 <1 1	6 <1 <1 2 40	00 11
34669 RE 34669 34670 34671 34672	1 <1 <1 1 <1	9 8 8 6 12	13 10 15 12 10	46 45 58 63 72	1.4 1.3 .7 .6 1.5	13 13 13 14 16	3 3 5 4 4	281 284 164 385 239	1.40 1.90 1.48	22 20 34 16 17	<5 5 <5 <5 <5	<2 <2 <2 <2 <2	2 2 2 <2 2	49 49 15 25 19	.2 <.2 <.2 .2	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	13 13 16 16 16	.38 .11 .22	.171 .171 .081 .125 .123	8 8 10 7 6	6 7 10 9 7	.11 .11 .29 .15 .13	89 89 101 101 122	.13 .12 .05 .10	2 <2 <2	3.70 3.68 2.04 2.57 1.56	.03 .03 .01 .02	.05 .05 .05 .05	1 <1 <1 1	<1 <1 64 21 <1	
34673 34674 34675 34676 34677	2 1 2 3 5	10 23 19 25 39	9 9 15 16 16	72 94 128 105 139	1.1 1.0 .3 .7	18 34 20 22 27	4 6 7 7 8	170 241 225 312 316	1.63 2.16 2.49	12 13 34 44 51	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2	2 2 2 2 2	25 29 18 21 19	.2 .3 .4 .5	<2 <2 <2 <2 <2	<2 <2 <2 <2 2	14 16 14 16 14	.25 .15 .18	.110 .065 .100 .048 .093	6 9 13 16 15	8 11 11 12 12	.15 .24 .51 .58 .61	100 110 104 98 101	.08 .06 .03 .01	<2 <2 <2	2.20 2.04 1.64 1.38 1.39	.02 .02 .01 .01	.05 .06 .06 .06	<1 -1 <1 <1	<1 13 4 10 9	
34678 36478 37201 37202 37203 37204	5 1 2 2 2	37 24 16 35 23	15 12 18 20 11	105 71 75 108 101	1.3 .5 .6 .8 1.6	28 12 9 16 12	10 10 9 13 7	536 : 498 : 476 : 321 : 287 :	2.47 3.42 3.58	46 24 73 76 31	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 <2 <2 <2 <2	25 15 13 11	.9 .3 .3 .4 .7	2 <2 <2 <2 <2	<2 <2 <2 <2 <2	14 30 35 47 22	.23 .11 .10	.080 .091 .049 .046 .102	17 5 12 6 9	15 17 14 23 11	.55 .32 .31 .48 .39	59 80 88 92 75	.01 .05 .03 .07	<2 <2 <2	1.32 2.68 2.09 2.37 1.78	.01 .01 .01 .01	.05 .04 .04 .04	<1 1 1 1 <1	15 <1 2 14 2	1-95
STANDARD C/AU-S	17	60	38	128	6.9	66	30	1042	3.99	39	14	7	35	52	18.2	14	18	54	.51	.086	39	60	.93	184	.08	33	1.91	.06	.14	9	48	m๎

Page 3

ACME ANALYTICAL																											<u>.</u>		······································	ALME ANAL	TITCAL	الـ
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr	Mg %	Ва ррп	Ti %	B ppm	Al %	Na %	K %		Au** ppb	
37205 37206 37207 37208 37209	5 3 2 2 1	49 28 15 21 6	12 14 14 14 14	232 121 70 73 44	1.5 .9 3.6 1.5 1.7	25 20 15 19	12 9 7 8 5	641 3 349 2 241 2 486 2 261 1	.79 .11	94 30 20 21 28	<5 <5 8 <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2	23 18 21 17 23	2.4 .8 .6 .5	4 <2 <2 2 3	<2 <2 <2 <2 <3	31 28 22 26 19		.111 .140 .129	12 13 8 10 7	14 18 11 18 9	.57 .53 .21 .36	70 85 68 80 71	.01 .04 .10 .08	3 2 2	1.21 1.84 3.21 2.14 2.86	.01 .01 .03 .02	.06 .05 .03 .04	1 <1 1 <1 2	21 5 2 <1 <1	
37210 37211 37212 37213 37214	1 1 1 1	9 13 11 8 20	12 13 14 12 9	51 116 79 73 65	1.3 3.6 1.4 1.6	13 14 13 17 20	4 4 4 5	798 1 747 1 498 1		18 20 19 18 15	<5 <5 <5 7 5	<2 <2 <2 <2 <2	3 2 <2 2 3	24 14 33 29 21	.2 .8 .2 .6	<2 <2 <2 <2	<2 <2 <2 <2 <2	19 18 18 17 16	.09 .22 .24	.172 .215 .123 .210 .125	7 10 8 7 12	8 9 8 9 12	.15 .15 .18 .14	100 112 127 147 88	.10 .10 .08 .11	3 ; 2 ; 2 ;	2.55 2.67 2.19 3.15 2.29	.02 .02 .02 .03	.04 .05 .05 .08	1 <1 <1 <1	<1 <1 7 <1 4	77 5
37215 37216 37217 37218 RE 37218	1 1 2 2 1	15 15 26 18 18	17 13 14 13 10	122 143 100 126 128	.6 .9 2.7 2.0 1.9	18 23 22 21 21	7 7 6 7 8	547 1 457 2 546 2 270 2 274 2	.07 .56	22 18 13 9	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 <2 <2	34 30 45 22 22	.3 .4 1.7 .5	2 <2 <2 2 <2	<2 <2 <2 2 <2	17 21 37 29 29	.22 .45 .25	.147 .163 .208 .122 .123	8 8 13 10	12 13 26 22 23	.21 .26 .34 .40 .41	189 197 178 121 126	.06 .09 .10 .07	3 4 3	1.68 2.58 2.37 2.34 2.40	.02 .03 .02 .02	.08 .09 .12 .10	1 <1 1 <1	<1 <1 5 <1 <1	
37219 38023 38024 38025 38026	2 1 2 1 1	23 13 28 12 11	8 15 11 10	95 236 97 111 150	.6 .3 .1 .8 .7	25 36 26 25 32			.16	14 7 12 12 10	<5 <5 <5 9 <5	<2 <2 <2 <2 <2	2 <2 2 3 2	28 25 10 14 26	1.2 .7 <.2 .4 .3	4 <2 3 <2 <2	<2 <2 <2 2 <2	36 25 21 22 21	.26 .10 .16	.070 .065 .031 .139 .211	16 7 12 7 7	32 16 18 12 13	.78 .32 .47 .22 .26	90 346 198 155 228	.07 .08 .03 .11	3 3 3	1.36 1.97 1.38 2.79 2.39	.02 .02 .01 .03	.10 .12 .09 .07	<1 <1 <1 <1 <1	<1 <1 <1 4 <1	1 0 d
38027 38028 38029 38030 38031	1 1 1 1	16 16 29 12 17	8 11 14 11	139 161 108 68 72	.6 .4 1.5 .6 .7	32 28 34 29 32	5 7 5 5	181 1 572 1 592 2 307 1 118 2	.71 .12 .84	6 7 7 12 11	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 2 2 2 2	18 20 35 17 13	.4 .5 .7 .2	2 <2 2 <2 <2	<2 <2 2 <2 2	17 19 21 15 16	.40 .17	.086 .122 .058 .194 .097	8 9 12 7 6	13 13 18 7 9	.23 .26 .29 .14 .12	181 227 267 156 132	.05 .06 .05 .09	3 3 3	1.73 2.02 2.07 2.75 2.95	.02 .02 .02 .03	.09 .11 .12 .08 .06	1 <1 1 <1	<1 1 <1 <1 2	2
38038 38039 38040 38041 38042	2 2 3 2 2	59 25 29 16 21	23 19 13 16 21	162 98 103 112 121	1.7 2.1 1.0 .4	27 15 22 15 18		2849 2 498 3 378 2 413 2 381 3	.00 .80 .71	85 174 56 38 42	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 <2 2 <2 <2	98 23 33 22 22	3.2 .9 .8 .4	2 <2 2 <2 3	<2 <2 <2 <2	21 26 29 34 39	.18		8 7 9 7 9	15 11 16 16 20	.37 .34 .48 .41	210 83 76 76 82	.03 .07 .06 .06	2 3 2	1.47 2.52 2.05 1.75 2.02	.02 .02 .02 .02	.13 .06 .08 .05	1 <1 <1 <1	16 36 6 5 27	
STANDARD C/AU-S	18	62	38	126	7.3	70	30	1035 3	.96	42	18	8	36	53	18.6	14	18	60	.51	.086	41	60	.91	185	.09	34	1.89	.10	.16	9	49	

Phelps Dodge Corporation of Canada, Limited
Project 206
MONA

Field Notes and Select Geochemical Results


Sample	Project	Property	Type	Remarks	North	East	Ag	As	Sb	Au
38032	206	MONA	CHIP	1% PO IN SILICEOUS ROCK			0.1	19	2	21.0
38034	206	MONA	CHIP	2% PO IN CALCSILICATE			0.3	22	2	7.0
38035	206	MONA	CHIP	2% PO IN CALCSILICATE			0.5	. 3	2	4.0
38036	206	MONA	CHIP	TRACE PO IN CALCSILICATE			0.3	6	2	3.0
38037	206	MONA	CHIP	SILTITE			0.2	19	2	14.0
38043	206	MONA	CHIP	HORNBLENDE MONZONITE			0.2	110	2	109.0
36400	206	MONA	GRAB	LIMONITIC BULL QUARTZ VEIN			1.4	10	4	1.0
37144	206	MONA	GRAB	HEMATITIC QUARTZ VEINED ARGILLITE			0.4	34	5	46.0
37145	206	MONA	GRAB	CALCITE CEMENTED ARGILLITE BRECCIA			0.2	7	2	2.0
37146	206	MONA	GRAB	PYRITIC CALCAREOUS ARGILLITE			0.7	5	2	7.0
37147	206	MONA	GRAB	CALCAREOUS WACKE/ARGILLITE			0.3	12	3	12.0
38033	206	MONA	GRAB	5% PO IN CALCSILICATE			0.4	6	2	130.0
38044	206	MONA	GRAB	SILVER BELL COPPER RICH			290.0	31	611	6637.0
38045	206	MONA	GRAB	SILVERBELL LEAD RICH			297.6	47	459	34010.0
36351	206	MONA	SOIL	O M. ROAD SIDE SAMPLE			1.4	12	2	13.0
36352	206	MONA	SOIL	100M			0.8	21	5	22.0
36353	-206	MONA	SOIL	200M			0.9	18	4	5.0
36354	206	MONA	SOIL	300M			1.3	7	2	6.0
36355	206	MONA	SOIL	400M			0.5	8	2	4.0
36356	206	MONA	SOIL	500M			0.6	6	2	9.0
36357	206	MONA	SOIL	600M			0.6	10	2	2.0
36358	206	MONA	SOIL	700M AT CREEK SAMPLE 37337			0.5	12	2	110.0
36359	206	MONA	SOIL	100M			1.0	7	2	7.0
36360	206	MONA	SOIL	200M			0.7	9	2	5.0
36361	206	MONA	SOIL	300M			1.3	9	2	7.0
36362	206	MONA	SOIL	400M			0.5	11	2	3.0
36363	206	MONA	SOIL	500M			0.3	13	2	1.0
36364	206	MONA	SOIL	600M			0.2	7	2	1.0
36365	206	MONA	SOIL	700M			0.3	10	2	7.0
36366	206	MONA	SOIL	800M CROSSED CREEK @ 825M			0.4	18	5	5.0
36367	206	MONA	SOIL	900M			0.9	17	3	1.0
36368	206	MÓNA	SOIL	1000			0.7	13	2	1.0
36369	206	MONA	SOIL	- 1100M			1.0	9	2	1.0
36370	206	MONA	SOIL	1200M			1.0	13	2	2.0
36371	206	MONA	SOIL	1300M			0.2	19	2	4.0
36372	206	MONA	SOIL	1400M			0.5	17	4	1.0
36373	206	MONA	SOIL	1500M O/C @ 1470M			0.3	12	2	1.0
36374	206	MONA	SOIL	1600M			0.7	6	2	1.0

San	Project	Property	Туре	Remarks		\bigcup	North	East	Ag	As	Sb	Au		
36375	206	MONA	SOIL	1700M					0.8	11	2	1.0		
36376	206	MONA	SOIL	1800M					0.5	9	2	1.0		
36377	206	MONA	SOIL	1900M					0.9	10	2	1.0		
36378	206	MONA	SOIL	2000M					0.5	6 .	2	7.0	**	
36379	206	MONA	SOIL	2100M					0.3	9	2	1.0		
36380	206	MONA	SOIL	2200M					0.5	7	2	1.0		
36381	206	MONA	SOIL	2300M					0.2	11	2	1.0		
36382	206	MONA	SOIL	2400M.					0.2	9	2	1.0		
36383	206	MONA	SOIL	2500M					0.1	3	2	4.0		
36384	206	MONA	SOIL	2600M O/C @ 2	2610M				0.5	10	2	3.0		
36385	206	MONA	SOIL	2700M CROSSE	CREEK @ 2715	М			0.2	9	2	5.0		
36386	206	MONA	SOIL	2800M					0.7	27	2	5.0		
36387	206	MONA	SOIL	2900M					1.0	17	2	1.0		
36388	206	MONA	SOIL	3000M		•			0.3	8	2	3.0		
36389	206	MONA	SOIL	3100M					0.2	13	2	5.0		
36390	206	MONA	SOIL	3200M O.C @ 3	3190M				0.3	11	2	3.0		
36391	206	MONA	SOIL	3300M					0.4	14	2	3.0		
36392	206	MONA		3400M					0.6	18	4	14.0		
36393	206	MONA	SOIL	3500M					0.6	11	2	6.0		
36394	206	MONA	SOIL	3600M					0.2	22	2	8.0		
36395	206	MONA		3700M					0.4	22	2	14.0		
36396	206	MONA	SOIL	3800M					0.1	23	2	7.0		
36397	206	MONA			O CREEK @ 3925	M			0.6	29	3	21.0		
38038	206	MONA		50M EAST OF :		• •			1.7	85	2	16.0		
38039	206	MONA		25M EAST OF					2.1	174	2	36.0		
38040	206	MONA		RESAMPLE 3528					1.0	56	2	6.0		
38041	206	MONA		25M WEST OF					0.4	38	2	5.0		
38042	206	MONA		50M WEST OF					0.6	42	3	27.0		
34645	206	MONA	GRAB		IN BLACK ARGI	LLITE	9200	9205	0.5	3	2	5.0		
34636	206	MONA	SOIL	TRACE TIMITE	IN DEADN ANGI	CCITC	9200	10000	1.6	18	2	13.0		
34637	206	MONA		CREEK @ 99+30	nF .		9200	9900	0.8	28	2	12.0		
34638	206	MONA	SOIL	CKEEK & 33+30	JL .		9200	9800	0.6	11	2	9.0		
34639	206	MONA	SOIL				9200	9700	1.9	13	2	1.0		
34640	206	MONA		GREY BASALT I	DIIDDI E		9200	9600	0.7	12	2	4.0		
34641	206	MONA	SOIL	PYRITIC BASAL			9200	9500	0.6	2	2	1.0		
				PIRTITO BASAI	LIIC KUDDLE		9200				2			
34642	206	MONA	SOIL					9400 9300	0.7 0.6	10 8	2	1.0 2.0		
34643	206	MONA	SOIL				9200			8 -	2	1.0		
34644	206	MONA	SOIL				9200	9200	0.4		2	28.0		
36401	206	MONA	SOIL				10000	10000	0.3	47 33				
36402	206	MONA	SOIL				10000	9900	1.3	32	2	11.0		
36403	206	MONA	SOIL				10000	9800	0.7	41	2	7.0		
36404	206	MONA	SOIL				10000	9700	1.1	24	2	2.0		

Sal	Project	Property	Type	Remarks				North	East	Ag	As	Sb	Au		
36405	206	MONA	SOIL					10000	9600	1.2	51	3	19.0		
36406	206	MONA	SOIL					10000	9500	0.8	16	2	2.0		
36407	206	MONA	SOIL					10000	9400	0.1	7.	2	5.0		
36408	206	MONA	SOIL					10000	9300	0.6	11	2	3.0		
36409	206	MONA	SOIL	CLAIM LINE	E MONA 1&2	2		10000	9200	1.7	12	2	1.0		
36410	206	MONA	SOIL					10000	9100	0.7	12	3	1.0		
36411	206	MONA	SOIL					10000	9000	1.0	11	. 3	1.0		
36412	206	MONA	SOIL					10000	8900	0.4	26	5	3.0		
36413	206	MONA	SOIL					10000	8800	0.9	14	2	1.0		
36414	206	MONA	SOIL					10000	8700	1.1	26	6	3.0		
36415	206	MONA	SOIL					10000	8600	0.7	30	4	3.0		
36416	206	MONA	SOIL					10000	8500	0.4	17	3	1.0		
36417	206	MONA	SOIL					10000	8400	1.0	13	3	1.0		
36418	206	MONA	SOIL					10000	8300	0.4	10	2	3.0		
36419	206	MONA	SOIL					10000	8200	0.6	14	2	2.0		
36420	206	MONA	SOIL					10000	8100	1.1	9	3	1.0		
36421	206	MONA	SOIL					10000	8000	0.4	11	3	4.0		
36422	206	MONA	SOIL					10000	7900	1.2	9	4	2.0		
36423	206	MONA	SOIL					10000	7800	0.6	7	4	4.0		
36424	206	MONA	SOIL	•				10000	7,700	1.2	7	4	1.0		
36425	206	MONA	SOIL					10000	7600	1.3	13	5	3.0		
36426	206	MONA	SOIL		•			10000	7500	0.8	18	5	2.0		
36427	206	MONA	SOIL					10000	7400	0.9	12	5	5.0		
36428	206	MONA	SOIL					10000	7300	0.7	18	4	8.0		
36429	206	MONA	SOIL					10000	10100	0.5	23 .	. 3	9.0		
36430	206	MONA	SOIL					10000	10200	0.4	33	3	3.0		
36431	206	MONA	SOIL					10000	10300	1.0	19	4	6.0		
36432	206	MONA .	SOIL					10000	10400	0.5	18	2	4.0		
36433	206	MONA	SOIL					10000	10500	0.4	21	2	6.0		
36434	206	MONA	SOIL					10000	10600	0.5	20	3	3.0		
36435	206	MONA	SOIL				-	10000	10700	1.1	20	2	80.0		
36436	206	MONA	SOIL					10000	10800	0.8	23	4	14.0		
36437	206	MONA	SOIL					10000	10900	.0.3	22	4	8.0		-
36438	206	MONA	SOIL					10000	11000	0.7	30	3	31.0		
36439	206	MONA	SOIL					10000	11100	0.1	22	2	23.0		
36440	206	MONA	SOIL					10000	11200	0.4	23	2	8.0		
36441	206	MONA	SOIL					10000	11300	0.9	29	2	6.0		
36442	206	MONA	SOIL					9600	10000	0.8	35	4	9.0		
36443	206	MONA	SOIL.					9600	9900	0.6	12	2	5.0		
36444	206	MONA	SOIL					9600	9800	1.5	33	2	4.0		
36445	206	MONA	SOIL					9600	9700	1.0	23	2	2.0		
36446	. 206	MONA	SOIL					9600	9600	0.6	4	2	6.0		

	Sale	Projec	t Property	Type	Remarks	North	East	Ag	As	Sb	Au))
	35447	206	MONA	SOIL		9600	9500	0.9	16	3	1.0			
	36448	206	MONA	SOIL		9600	9400	0.7	16	3	1.0			
	36449	206	MONA	SOIL		9600	9300	0.7	15	3	1.0			
	36450	206	MONA	SOIL		9600	9200	0.8	19	5	1.0			
	36451	206	MONA	SOIL		9600	9100	0.9	12	2	1.0			
	36452	206	MONA	SOIL		9600	9000	0.7	14	5	1.0			
	36453	206	MONA	SOIL		9600	8900	1.0	7	2	1.0			
	35454	206	MONA	SOIL		9600	8800	1.4	14	2	2.0			
	36455	206	MONA	SOIL		9600	8700	1.3	13	5	1.0			
	36456	206	MONA	SOIL		9600	8600	0.9	16	2	1.0			
*	36457	206	MONA	SOIL		9600	8500	0.9	9	2	1.0			
	38023	206	MONA	SOIL	GREY BLACK ARGILLITE/SILTITE	9200	9100	0.3	7	2	1.0			
	38024	206	MONA	SOIL		9200	9000	0.1	12	3	1.0			
	38025	206	MONA	SOIL		9200	8900	0.8	12	2	4.0			
	38026	206	MONA	SOIL		9200	8800	0.7	10	2	1.0			
	38027	206	MONA	SOIL		9200	8700	0.6	6	2	1.0			
	38028	206	MONA	SOIL		9200	8600	0.4	7	2	1.0			
	38029	206	MONA	SOIL		9200	8500	1.5	7	2	1.0			
	38030	206	MONA	SOIL		9200	8400	0.6	12	2	1.0			
	38031	206	MONA	SOIL		9200	8300	0.7	11	2	2.0			
	36500	206	MONA	GRAB	PYRITIC QUARTZ MONZONITE	10900	10000	0.5	12	2 -	14.0			
	37149	206	MONA	GRAB	SILTSTONE	10282	10000	0.1	13	2	7.0			
	37150	206	MONA	GRAB	PYRITIC AGRILLITE BRECCIA	10620	10000	0.4	30	2	3.0			
	37244	206	MONA	GRAB	LIMONITIC QUARTZ VEIN IN QTZ M DIORT	11480	9500	0.1	.4	2	1.0			
	37245	206	MONA	GRAB	PYRITIC LIMONITIC QZ MONZODIORITE	11087	9500	0.4	7	2	1.0			
	37246	206	MONA	GRAB	LIMONITIC BULL QUARTZ IN PHYLLITE	10547	9500	0.1	3	2	3.0			
	37247	206	MONA	GRAB	LIMONITIC MONZODIORITE	10185	9500	1.0	19	2	104.0			
	37248	206	MONA	GRAB	LIMONITIC QZ MONZODIORITE W QZ STRIN	10139	9500	0.3	17	2	51.0			
	37249	206	MONA	GRAB	LIMONITIC PHILLITE	10097	9500	0.3	19	2	2.0			
	37250	206	MONA	GRAB	QZ CARBONATE VEINS IN MONZODIORITE	10097	9500	0.1	3	2	1.0			
	36458	206	MONA	SOIL		10000	10000	1.2	. 28	2	13.0			
	36459	206	MONA	SOIL		10100	10000	0.3	49	2	10.0			
	36460	206	MONA	SOIL		10200	10000	0.6	36	2	18.0			
	36461	206	MONA	SOIL		10300	10000	0.8	78	2	20.0			
	36462	206	MONA	SOIL		10400	10000	1.1	134	2	29.0			
	36463	206	MONA	SOIL		10500	10000	1.6	44	2	4.0			
	36464	206	MONA	SOIL		10600	10000	1.5	77	. 2	6.0			
	36465	206	MONA	SOIL		10700	10000	0.5	21	2	1.0			
	36466	206	MONA	SOIL		10800	10000	1.1	24	2.	1.0			
	36467	206	MONA	SOIL		10900	10000	1.5	24	2	2.0			
	36468	206	MONA	SOIL		11000	10000	0.9	-58	2	40.0			
	36469	206	MONA	SOIL		11100	10000	1.4	22	2	1.0	 		

		_										200	
Sale	Project	Property	Туре	Remarks			North	East	Ag	As	Sb	Au	
36470	206	MONA	SOIL				11200	10000	0.7	34	2	64.0	
36471	206	MONA	SOIL				11300	10000	0.6	16	2	21.0	
36472	206	MONA	SOIL				11400	10000	1.5	17	2	1.0	
36473	205	MONA	SOIL				11500	10000	1.1	12	2	1.0	
36474	206	MONA	SOIL		*		11600	10000	1.0	13	2	13.0	
36475	206	MONA	SOIL				11700	10000	0.3	34	2	4.0	
36476	206	MONA .	SOIL				11800	10000	0.7	44	2	10.0	
36477	206	MONA	SOIL				11900	10000	0.8	51	2	9.0	
36478	206	MONA	SOIL				12000	10000	1.3	46	2	15.0	
37201	206	MONA	SOIL				10000	9500	0.5	24	2	1.0	
37202	206	MONA	SOIL				10100	9500	0.6	73	2	2.0	
37203	206	MONA	SOIL				10200	9500	0.8	76	2	14.0	
37204	206	MONA	SOIL				10300	9500	1.6	31	2	2.0	
37205	206	MONA	SOIL				10400	9500	1.5	94	4	21.0	
37206	206	MONA	SOIL				10500	9500	0.9	30	2	5.0	
37207	206	MONA	SOIL				10600	9500	3.6	20	2	2.0	
37208	206	MONA	SOIL				10700	9500	1.5	21	2	1.0	
37209	206	MONA	SOIL				10800	9500	1.7	28	3	1.0	
37210	206	MONA	SOIL				10900	9500	1.3	18	2	1.0	
37211	206	MONA	SOIL				11000	9,500	3.6	20	2	1.0	
37212	206	MONA [®]	SOIL				11100	9500	1.4	19	2	7.0	
37213	206	MONA	SOIL			•	11200	9500	1.6	18	2	1.0	
37214	206	MONA	SOIL				11300	9500	0.7	15	2	4.0	
37215	206	MONA	SOIL				11400	9500	0.6	22	2	1.0	
37216	206	MONA	SOIL				11500	9500	0.9	18	2	1.0	
37217	206	MONA	SOIL				11600	9500	2.7	13	2	5.0	
37218	206	MONA	SOIL				11700.	9500	2.0	9	2	1.0	
37219	206	MONA	SOIL				11800	9500	0.6	14	4	1.0	

