DIAMOND DRILLING AND PERCUSSION DRILLING REPORT

on the

WOOD MINERAL CLAIMS

Kamloops Mining Division British Columbia

N.T.S. 092I/10E Latitude 50° 37' 00" N Longitude 120° 32' 30" W

for

operator:

GREEN VALLEY MINES INC.

2245 West 13th Avenue Vancouver, B.C. V6K 2S4

owners:

Mr. Charles Boitard

and

Mr. Victor Doucet

by

P. REYNOLDS, B.Sc., P.Geo. JUNE 22, 1994

H U & ZO < △ DK E **m e** ∢ Z C 国 Z (C) 0 0 口田 00 田ら ۍ و

TABLE OF CONTENTS

1.	SUMMARY	2
2.	INTRODUCTION	2
3.	LOCATION, ACCESS AND PHYSIOGRAPHY	2
4.	CLAIM STATUS	3
5.	HISTORY	4
6.	GEOLOGY	5
7.	PERCUSSION DRILLING	5
8.	DIAMOND DRILLING	6
9.	CONCLUSION AND RECOMMENDATIONS	7
10.	REFERENCES	8
11.	CERTIFICATES	9

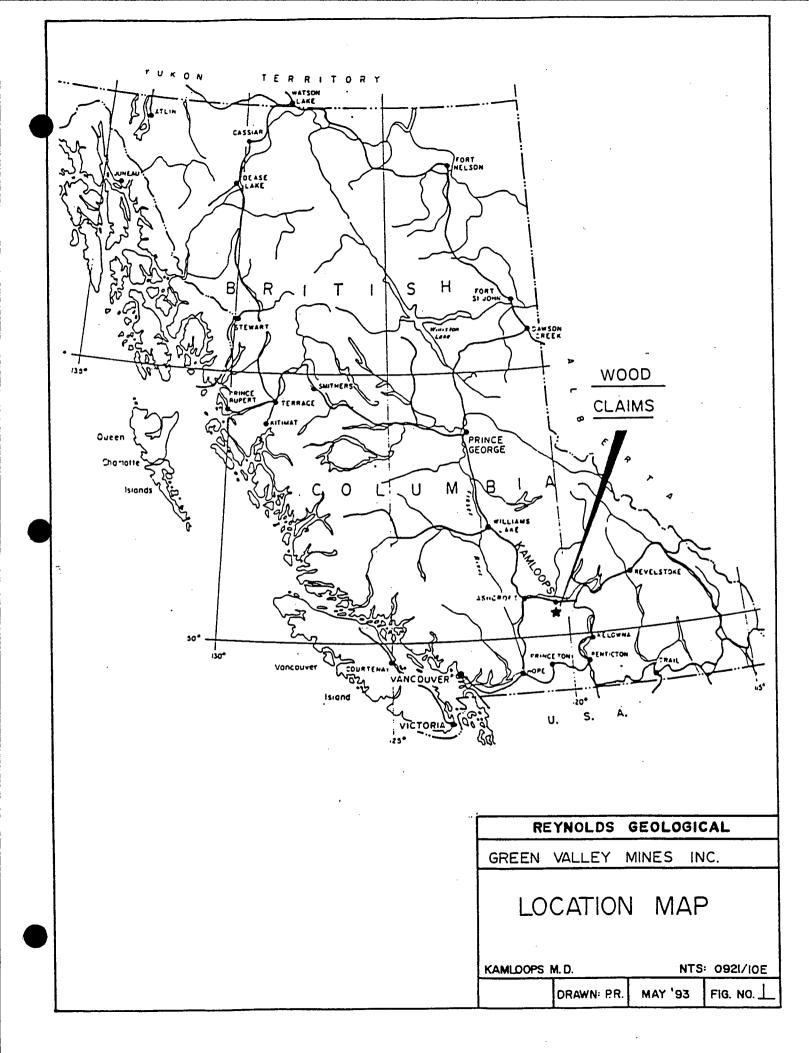
LIST OF FIGURES

FIGURE 1	LOCATION MAP	FOLLOWS PAGE 2
FIGURE 2	CLAIM MAP	FOLLOWS PAGE 3
FIGURE 3	REGIONAL GEOLOGY	FOLLOWS PAGE 4
FIGURE 4	DRILL PLAN	BACK POCKET
FIGURE 5	SECTION THROUGH DDH W93-1 & W93-2	FOLLOWS PAGE 6
FIGURE 6	SECTION THROUGH DDH C93-1	FOLLOWS PAGE 6

APPENDICES

APPENDIX I	STATEMENT OF COSTS
APPENDIX II	DRILL LOGS
APPENDIX III	ASSAY SHEETS

1. **SUMMARY**

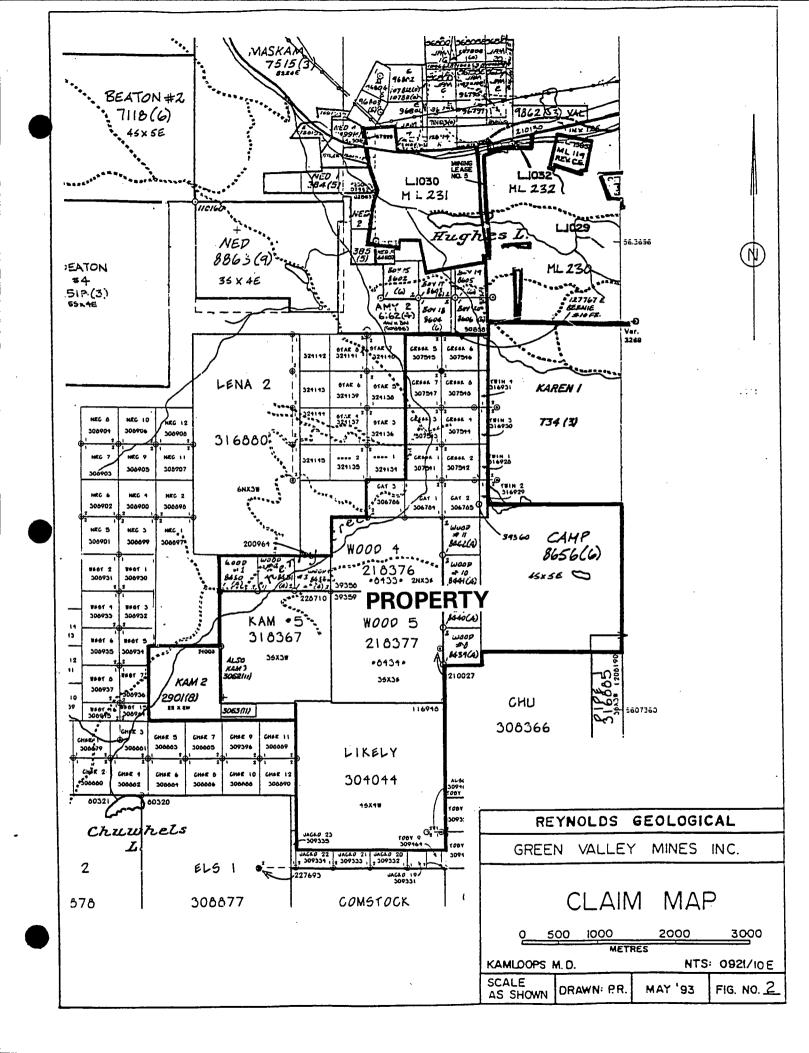

- 1.1 The Wood property consists of 30 contiguous mineral claims totalling 88 units. The claims are located approximately five kilometres southwest of the former producing Afton Mine and 18 kilometres west-southwest of the town of Kamloops, B.C. The claims are accessible by good gravel roads from Kamloops.
- 1.2 The property is underlain for the most part by andesites of the Nicola Volcanics.
- 1.3 Four percussion holes and three diamond drill holes were completed in 1993 to test for copper mineralization. No economic amounts of copper mineralization were encountered.
- 1.4 It is recommended that all previous work be compiled into a single database before any further field work is done.

2. INTRODUCTION

- 2.1 This report has been prepared at the request of Mr. Charles Boitard, President of Green Valley Mines Inc., to satisfy assessment requirements.
- 2.2 The information for the following report was obtained from sources cited under references and from the drill logs of the four percussion holes and three diamond drill holes. The drilling program was carried out by Mr. Charles Boitard between April 10 and October 5, 1993. Mr. Rod Husband, P. Geo., logged the percussion drill cuttings in Vancouver on May 17, 1994. Mr. Bob Friesen, P.Geo., logged DDH 93-1C on September 26, 1993 and Mr. Rod Husband, P.Geo., Logged DDH 93-1 and DDH 93-2 on November 4, 1993. No property examination was made by the author.
- 2.3 The registered owner of the Wood claims is Mr. Charles Boitard and Mr. Victor Doucet. The claims are being operated by Green Valley Mines Inc. The claims lie approximately 18 kilometres west-southwest of Kamloops, B.C. This area is known for its porphyry copper and molybdenum production from both volcanic and intrusive host rocks. Significant gold and silver has been recovered from these deposits.

3. LOCATION, ACCESS AND PHYSIOGRAPHY

3.1 The Wood property is located on the Thompson Plateau approximately 18 kilometres west-southwest of Kamloops, B.C. The claims are centered at 50° 37' north latitude and 120° 33' west longitude on NTS map sheet 092I/10E. The claims are in the Kamloops Mining Division.

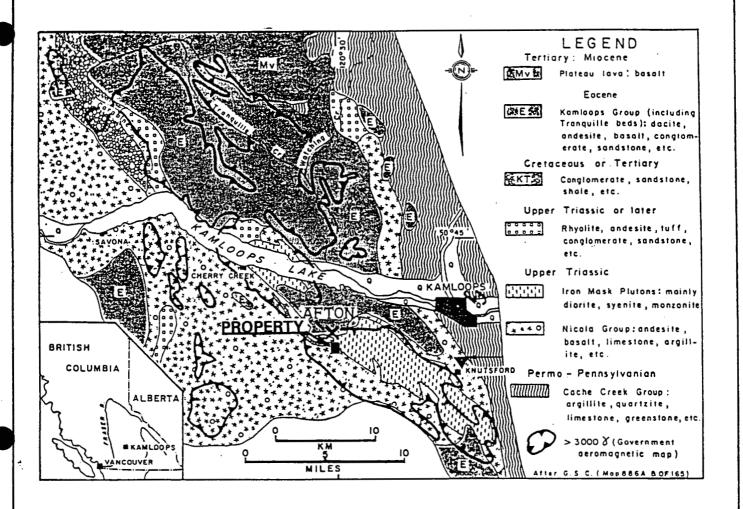


- 3.2 Access is provided by the Trans-Canada Highway and then south along the Green Mountain Road which branches off the highway approximately two kilometres west of the Afton Mine. Good dirt roads provide access to most of the claim area.
- 3.3 The property lies between elevations 700 to 900 metres above sea level. Vegetation consists of pockets of Pine within grasslands. Water for all stages of exploration is available from nearby creeks. The climate is semi-arid with an average annual precipitation of 250 to 280 millimetres.

4. CLAIM STATUS

4.1 The Wood property comprises 30 mineral claims totalling 88 units. Complete claim information is as follows:

<u>NAME</u>	<u>UNITS</u>	RECORD NO.	EXPIRY DATE *
Camp	20	218587	13 June 99
Wood #1	1	218373	4 April 98
Wood #2	1	218374	4 April 98
Wood #3	1	218375	4 April 98
Wood #4	6	218376	4 April 98
Wood #5	9	218377	5 April 98
Wood #8	1	218382	16 April 98
Wood #9	1	218383	16 April 98
Wood #10	1	218384	16 April 98
Wood #11	1	218385	16 April 98
Kam #2	. 9	216956	26 August 99
Kam #3	1	216967	10 November 96
Kam #4	1	216968	10 November 96
Kam #5	9	318367	18 June 97
Creek #1	1	307541	3 February 96
Creek #2	1	307542	3 February 96
Creek #3	1	307543	3 February 96
Creek #4	1	307544	3 February 96
Creek #5	1	307545	3 February 96


<u>NAME</u>	<u>UNITS</u>	RECORD NO.	EXPIRY DATE*
Creek #6	1	307546	3 February 96
Creek #7	1	307547	3 February 96
Creek #8	1	307548	3 February 96
Cat #1	1	306784	11 December 95
Cat #2	1	306785	11 December 95
Cat #3	1	306786	17 December 95
Twin #1	1	316928	8 April 97
Twin #2	1	316929	8 April 97
Twin #3	1	316930	8 April 97
Twin #4	1	316931	8 April 97
Likely	16	304044	14 September 95

^{*} Includes assessment currently being applied.

4.2 All claims are recorded in the name of Mr. Charles Boitard except Likely (Record No. 304044) which is recorded in the name of Victor Doucet. Any legal aspect of claim ownership is beyond the scope of this report.

5. **HISTORY**

- 5.1 The Afton orebody, located five kilometres northeast of the Wood claims, began production in 1977 and continued through 1991 when it was shut down for economic reasons. At start-up, Afton had drill proven ore reserves of 30.84 million tonnes grading 1.0% copper, 0.58 ppm gold and 4.19 ppm silver at a cut off grade of 0.25% copper (Carr & Reed, 1976). It is reported that underground reserves still exist and that with an improvement in copper and/or gold prices the mine could be re-opened.
- 5.2 In 1980, three diamond drill holes were completed on the Kam claim adjoining the west side of the Wood #5 claim. Drill core showed native copper in the fractures. In 1981, nine percussion holes were completed on the Kam claims. These holes returned anomalous copper, silver and gold values.
- 5.3 During the 1981 field season, VLF-EM surveys were carried out over part of what is now the Wood claims. These surveys delineated three anomalous electromagnetic conductor zones.

REYNOLDS GEOLOGICAL

GREEN VALLEY MINES INC.

REGIONAL GEOLOGY

KAMLOOPS M.D.

NTS: 0921/10E

SCALE AS SHOWN

DRAWN: PR.

E8' YAM

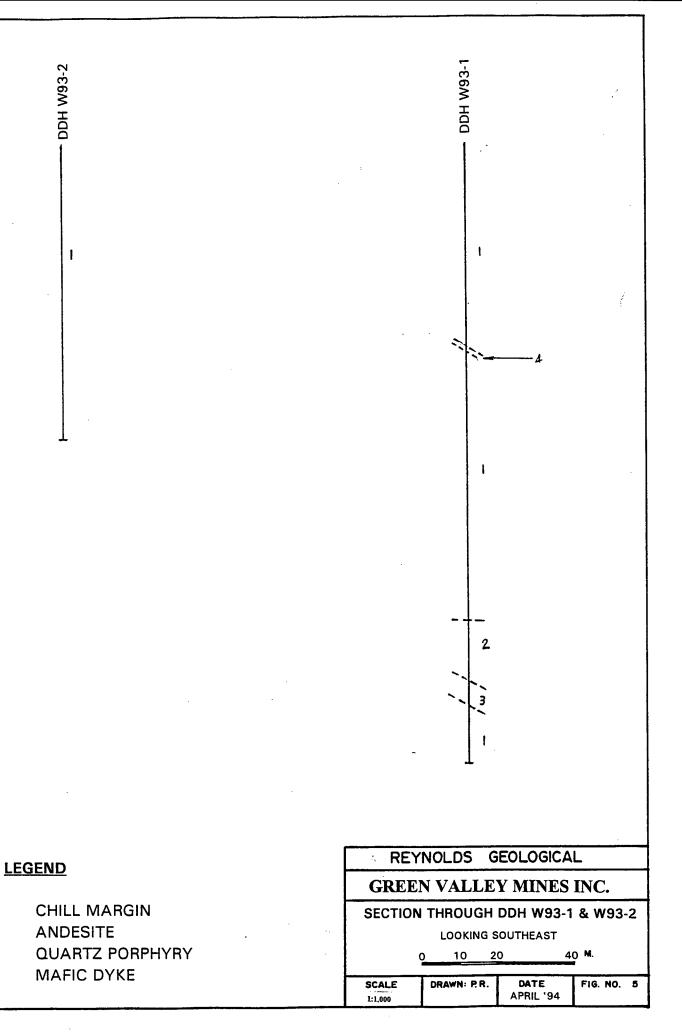
FIG. NO. 3

5.4 In 1989, five kilometres of induced polarization surveys were completed on the Wood claims by the present owner. Results from this survey were inconclusive as only two lines were surveyed.

6. **GEOLOGY**

- 6.1 The Wood claims lie within the Quesnel Trough, a 30 to 60 kilometre wide belt of Lower Mesozoic volcanic and related sedimentary rocks bounded by older sedimentary rocks of the Cache Creek Group to the east and younger Coast Intrusions to the west. In the area of the Wood claims the Quesnel Trough is dominated by Upper Triassic Nicola Group andesites, basalts, tuffs and argillites. The Nicola Group is intruded by Upper Triassic Lower Jurassic diorite, syenite and monzonite of the Iron Mask Batholith. This batholith represents a major northwest trending structure that crosscuts the north-northwesterly trending Nicola volcanics. Portions of this area are obscured by later plateau lavas.
- 6.2 Bedrock exposure in this area amounts to only about ten percent, the rest being covered by glacial drift deposited from Pleistocene ice sheets that moved from northwest to southeast.
- 6.3 No systematic, property scale geological mapping has been carried out on the property.

7. PERCUSSION DRILLING


- 7.1 During the period April 10 to October 5, 1993 three percussion drill holes were completed on the Wood #5 claim and one percussion drill hole was completed on the Creek claim. All drill holes were vertical. Drill hole locations are plotted on Figure 4.
- 7.2 Drilling and sampling was supervised by Mr. Charles Boitard of Green Valley Mines Inc. Samples were taken every three metres (ten feet). Samples were obtained by riffling the chips down to approximately five kilograms of sample. A grab of this material was then sent to Rossbacher Laboratory Ltd., in Burnaby, B.C., for geochemical analysis of copper. Only a few intervals were assayed for gold. Exact analytical procedures are listed in appendix III. The four holes were logged by Mr. Rod Husband, P. Geo. Drill logs are included in appendix II.
- 7.3 The following table summarizes the drilling done in 1993:

HOLE NO.	DEPTH (m)	
W93-1	122.0	
W93-2	97.6	
W93-3	51.8	
CR93-1	91.5	

- 7.4 Percussion drill hole W93-1 returned copper values ranging from 45 ppm to 460 ppm. Rock chips were predominately andesitic in composition with moderate chlorite and epidote alteration.
- 7.5 Percussion drill hole W93-2 returned copper values ranging from 70 ppm to 128 ppm. Rock chips were predominately andesitic in composition. Moderate epidote and chlorite were noted.
- 7.6 Percussion drill hole W93-3 was abandoned at 52 metres depth. No samples were assayed.
- 7.7 Percussion drill hole CR93-1 returned assays ranging from 82 ppm to 324 ppm. Rock chips were andesitic in composition.

8. **DIAMOND DRILLING**

- 8.1 During the period September 15 to October 5, 1993 two diamond drill holes were completed on the Wood #5 claim and one drill hole was completed on the Camp claim. Drill hole locations are plotted on Figure 4.
- 8.2 Drilling was supervised by Mr. Charles Boitard, President of Green Valley Mines Inc. Diamond drill hole 93-1C was logged by Mr. Bob Friessen, P.Geo., on September 22, 1993. Diamond drill holes 93-1 and 93-2 were logged by Mr. Rod Husband, P.Geo., on November 4, 1993. Core size is NQ. The core is stored at the drill site. Drill logs are included in appendix II.
- 8.3 Diamond drill hole W93-1 was drilled vertically to a depth of 163 metres. The drill hole intersected the chill margin of an intrusive for most of its length. The chill margin consists of fine grained granodiorite with fragments of purple and green andesites. The core is highly siliceous with abundant epidote alteration. Disseminated pyrite are associated with the fragments of andesite. Disseminated native copper was seen in the core at various locations. No core was assayed. A section through diamond drill holes W93-1 and W93-2 are plotted on Figure 5.
- 8.4 Diamond drill hole W93-2 was drilled vertically to a depth of 78 metres. This hole intersected a chill margin for most of its length. The core consists of a fine grained intrusive (diorite?) consisting of hornblende and biotite in a quartz-feldspar matrix. The core contains fragments of andesite and is similar in all respects to W93-1. Disseminated native copper was noted at several locations. No core was assayed.

	SAMPLE I	NTERVAL	ASSAY	
	FROM (m)	<u>TO (m)</u>	COPPER (ppm)	
L	34.15		22	
,	38.11		13	
	38.41		15	
	38.72		15	
	39.94		87	
	46.95	47.26	126	
	47.26	48.48	233	
	50.61	50.91	84	
	37.29	69.15	670	

_

LEGEND

- 1 CHILL MARGIN
- 2 ANDESITE
- 3 QUARTZ PORPHYRY
- 4 MAFIC DYKE

REYNOLDS GEOLOGICAL

GREEN VALLEY MINES INC.

SECTION THROUGH DDH C93-1

LOOKING NORTHWEST

0 10 20 40 M.

SCALE DRAWN: P.R. DATE APRIL '94 FIG. NO. 6

8.5 Diamond drill hole C93-1 was drilled at an azimuth of 185° and dips -60°. The hole was drilled to a depth of 126 metres. The hole intersected chlorite altered andesites for its entire length. Trace amounts of fine grained, disseminated pyrite and chalcopyrite were seen in the core at various locations. Sulphide mineralization appears to be associated with areas of quartz-carbonate veining. Nine samples of core were assayed for gold and 30 element ICP. Copper values ranged from 13 ppm to 670 ppm. A section through diamond drill hole C93-1 is plotted on Figure 6.

9. CONCLUSION AND RECOMMENDATIONS

- 9.1 The 1993 drilling program failed to delineate any significant copper mineralization.
- 9.2 The Wood group of claims lies within an area favourable to the development of porphyry copper deposits. This area has been looked at by several different individuals but, to the Author's knowledge, none of this previous work has been compiled onto a single database. It is recommended that all previous work be compiled and presented in map form. This compilation should be done before any further field work is completed.

10. **REFERENCES**

Carr, J.M. and Reed, A.J. Afton: A Supergene Copper Deposit. Part of C.I.M.,

Special Volume 15: Porphyry Deposits of the Canadian

Cordillera. 1976.

Cockfield, W.E. Geology and Mineral Deposits of Nicola Map Area, British

Columbia. Geological Survey of Canada, Memoir 249,

1961.

LaRue, John Assessment Report on a Geophysical Survey Conducted on

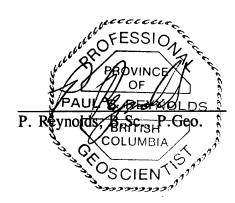
the Wood Group. British Columbia Ministry of Energy, Mines and Petroleum Resources. Assessment Report

20,116. June 6, 1990.

Reynolds, P. Percussion Drilling Report on the Beaton Mineral Claims

for Green Valley Mines Inc. September 8, 1993.

Tully, Donald Assessment report on the Hank 1 mineral claim. British


Columbia Ministry of Energy, Mines and Petroleum

Resources. Assessment Report 11,550. August 24, 1981.

11. **CERTIFICATE**

- I, Paul Reynolds, of the city of Vancouver in the province of British Columbia do hereby certify that:
- 1) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia.
- 2) I am a graduate of the University of British Columbia with a B.Sc. degree in geology.
- 3) I have practiced my profession as exploration geologist since graduation in 1987.
- 4) This report is based on a review of previous reports and diamond and percussion drill logs for the 1993 drilling. No property examination was made.
- I have no interest, directly or indirectly, in the Beaton property or in the securities of Green Valley Mines Inc., nor do I expect to receive any interest in the future.
- 6) Permission is hereby granted to Mr. Charles Boitard and Green Valley Mines Inc. to use this report in support of any filing to be submitted to the Ministry of Energy, Mines and Petroleum Resources of the Province of British Columbia for the purpose of filing assessment on the Beaton mineral claims.

Dated this 22nd day of June, 1994.

CERTIFICATE

- I, Rod W. Husband, of the city of Vancouver in the province of British Columbia do hereby certify that:
- 1) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia.
- 2) I am a graduate of the University of British Columbia with a B.Sc. degree in geology.
- 3) I have practiced my profession as exploration geologist since graduation in 1986.
- 4) I logged diamond drill holes W93-1, W93-2 and percussion drill holes W93-1, W93-2, W93-3 and CR93-1.
- I have no interest, directly or indirectly, in the Beaton property or in the securities of Green Valley Mines Inc., nor do I expect to receive any interest in the future.

Dated this 22nd day of June, 1994.

.

Rod W. Husband, B.Sc., P.Geo.

CERTIFICATE

I, Robert G. Friesen, of the city of Kamloops, in the province of British Columbia, do hereby certify that:

- I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia.
- I am a 1967 graduate of the University of British Columbia with a B.Sc. degree (geology major).
- 3) I have practised my profession as a mine/exploration geologist since 1967.
- 4) Diamond drill Hole #93-1 Camp property was logged by myself on the property on September 26, 1993 and was my only involvement with the project.
- I have no interest, directly or indirectly, in the Camp property or in the securities of Green Valley Mine Incorporated/Lakewood Mining Co. Ltd.; nor do I expect to receive any interest in the future.
- Permission is hereby granted to Mr. Charles Boitard and Green Valley Mine Incorporated/Lakewood Mining Co. Ltd. to use this diamond drill log of hole #93-1 in support of any filing to be submitted to the Ministry of Energy, Mines and Petroleum Resources for the purpose of filing assessment on the Wood Group of mineral claims.

Dated this 15th day of May, 1994.

Robert G. Friesen, B. Sc., P.Geo.

APPENDIX I STATEMENT OF COSTS

STATEMENT OF COSTS

Percussion Drilling	363 metres @ \$31/metre	11,253
Diamond Drilling	358 metres @ \$65/metre	23,270
Assays		1,470
Truck Rental		2,500
Supervision		4,500
Room and Board		2,500
Drill Logging, Draughting and	Reporting	4,500
Reproduction		500
Supplies		500
Work Permit		500
Mob/demob		1,500
GST		3,710

TOTAL \$56,703

APPENDIX II
DRILL LOGS

CONVERSION TABLE

<u>FEET</u>	<u>METRES</u>	FEET	<u>METRES</u>
10	3.05	360	109.76
20	6.10	370	112.80
30	9.15	380	115.85
40	12.20	390	118.90
50	15.24	400	121.95
60	18.29	410	125.00
70	21.34	420	128.05
80	24.39	430	131.10
90	27.44	440	134.15
100	30.49	450	137.20
110	33.54	460	140.24
120	36.59	470	143.29
130	39.63	480	146.34
140	42.68	490	149.39
150	45.73	500	152.44
160	48.78	510	155.49
170	51.83	520	158.54
180	54.88	530	161.59
190	57.93	540	164.63
200	60.98	550	167.68
210	64.02	560	170.73
220	67.07	570	173.78
230	70.12	580	176.83
240	73.17	590	179.88
250	76.22	600	182.93
260	79.27	610	185.98
270	82.32	620	189.02
280	85.37	630	192.07
290	88.41	640	195.12
300	91.46	650	198.17
310	94.51	660	201.22
320	97.56	670	204.27
330	100.61	680	207.32
340	103.66	690	210.37
350	106.71	700	213.41

DIAMOND DRILL LOG

Drill Hole No: 93-1

Property: Camp Property

Date Logged: 26th September, 1993

Collar Location:

Azimuth: Approx. 185°

Dip: -60°

Total Depth: 126.2m

Owner: Green Valley Mines/ Lakewood Mining 22 Sept/93

Core Size: NQ

Logged by: Bob Friesen

Comments: Short log description at drill site. Hole started (?); completed 26 Sept. 1993

From	To	Core Description	Comments
0	19.5m	Casing	
19.5m	19.8m	Dark green, medium-grained serpentinized fragmental rock (volcanic breccia?); core broken up. No visible sulfides.	Throughout entire drill hole no sharp lithological contacts observed. With few exceptions (mainly veins) all major intervals recorded in this log are gradational and are interpreted to represent various alterations and alteration overprints.
19.8m	21.6m	Fault zone; green - red/brown gouge equivalent of above. Shear fabric 45° – 60° to core axis. No visible sulfides.	
21.6m	25.75m	Red/green (FeO stain) "mylonitic" zone with approx. 50% aligned quartz/feldspar(?) veinlets and stretched fragments. No visible sulfides. @ 23.2m tectonized fabric aligned 40° to core axis. @ 24.7m tectonized fabric aligned 40° - 50° to core axis. 23.8m - 24.7m: 70% quartz/feldspar(?) veining Hazy thin quartz cross veining throughout Parting surfaces serpentinized throughout 25.45m - 25.9m: Fault zone (gouge).	
25.75m	30.5m	Dark green/grey highly serpentinized medium - coarse grained fragmental (volcanic breccia?). Fragments angular to sub rounded. Locally shot through with swarms of soft white (carbonate?) veinlets to 0.3cm thick @ 40° - 50° to core axis. No visible sulfides Fault zone at 29.6m - 30.2m (gouge).	

Page 1 of 4

From	<u>To</u>	Core Description	Comments
30.5m	33.5m	Bleached equivalent of above unit. Remnant fragmental texture remains. Bleaching coincides with appearance of lighter clay(?) minerals and light green mineral*. No visible sulfides. Fault zone at 33.2m - 33.5m (gouge).	According to Charlie Boitard, this is the same mineral described in previous drill holes as "mariposite". No positive identification has been made though.
33.5m	38.1m	Dark grey/green fragmental as above but with up to 20% green mineral* generally associated with altered fragmental component. @36.6m - 38.1m: rock becomes dominantly light green color as green mineral content increases. 1" fragments at 37.2m - 37.5m are black (chloritic?). Overall, this zone is sheared and is 75% gougey material. No visible sulfides.	
38.1	39.3m	Competent light buff/brown fragmental. Bleached wall rock fragments to 4cm due to intruding soft white (carbonate?) veins. Overall, core is 80% fragments and 20% veins. Trace red oxide staining. No visible sulfides.	
39.3m	40.5m	As above but vein material is rusty (FeO or ankerite). Contacts are sheared. No visible sulfides.	
40.5m	42.4m	Greenish fragmental rock. Fragments are silicified due to veining. Core is moderately broken. No visible sulfides.	
42.4m	43.6m	As above but further crushed by faulting. Fragments not as well silicified. Minor drusy texture. No visible sulfides.	
43.6m	46.9m	As above but rock is intruded by quartz/carb(?)/feldspar(?) veining and associated rusty alteration (FeO or ankerite). No visible sulfides. @ 43.9m sharp vein contact at 45° to core axis	
46.9m	54.3m	Gray/green volcanic(?) altered by silicification and local quartz veins to 1" thick. @ 46.9m - 47.2m: Ouartz vein with trace fine grained disseminated chalcopyrite and bornite. @ 48.2m - 48.5m: Quartz veining. Overall, foliation fabric is 50° - 60° to core axis with veins and veinlets normal to foliation. Trace very fine grained disseminated chalcopyrite, pyrite associated with quartz veins.	Sample taken for assay @ 46.9m - 47.2m (0.3m) Sample taken for assay @ 47.2m - 48.5m (1.3m) Sample taken for assay @ 50.6m - 50.9m (0.3m)

R. G. FRIESEN
R. G. FRIESEN
COLUMBIA
CO

From	To	Core Description	Comments
54.3m	57.0m	As above but core is very rusty. Healed shear zone @ 55.5m - 55.8m with very trace fine grained disseminated pyrite.	
57.0m	60.45m	As above but competency increases as rusty alteration decreases down core and becomes grey/green volcanic(?) rock with laminated fabric 60° to core axis. Core is moderately hard but not silicified. @58.5m - 58.7m: Shear zone with sharp contacts at 60° - 65° to core axis and perpendicular to laminated fabric. @59.1m - 60.5m core has a mottled texture due to abundant irregular quartz veins. Also becomes increasingly more rusty. No visible sulfides.	
60.45m	64.9m	Hard (silicified) dark green/black fine grained rock (possibly a silicified, chloritic volcanic rock); moderately foliated @ 70° - 75° to core axis. Numerous elongated garnet/epidote inclusions generally < 0.6cm thick by 5 - 8cm long aligned into foliation fabric. Local intense rusting at 62.5m - 62.65m. Last 1.2m of interval becomes less silicified and more soft. No visible sulfides.	
64.9m	66.4m	Bleached equivalent of above due to increased silicification. Gradational contact. Overall a mottled texture. Trace fine grained disseminated pyrite, possibly some chalcopyrite.	
66.4m	67.7m	Soft, almost crumbly, dark green strongly chloritic rock with moderate to strong foliation 60° - 70° to core axis. Fine - medium grained.	
67.7m	74.7m	regularly bleached rock. Bleaching associated with hazy, irregular quartz veins and associated wallrock silicification. Trace fine grained, disseminated chalcopyrite, bornite in veins and silicified intervals @ 68m - 68.3m very vuggy interval in quartz vein. Vugs lined with fine grained drusy quartz. @ 68.6m foliation fabric is 60° - 65° to core axis.	Sample taken for assay @ 68.0m - 68.9m (0.9m)

From	<u>To</u>	Core Description	Comments
74.7m	84.4m	Interval of decreasing bleaching by veining and silicification and increasing chloritization with minor serpentinite. Medium to coarse grained hematite blebs to 2cm dia around 81.7m in vein breccia interval. Local irregular, narrow quartz/carbonate(?) veining (best @ 81.4m - 81.7m) and abundant rusty intervals @ 78.3m - 80.8m, 82.3m - 82.9m, and 83.8m - 84.4m — not always associated with veining.	
84.4m	126.2m	Massive green chloritic volcanic rock with very trace fine grained, disseminated hematite and stretched garnets (vitreous dark red mineral) to 0.5cm dia. No visible sulfides. Quartz veins in this interval are not generally associated with significant wallrock bleaching and silicification as found in upper intervals. @89m - 89.9m: Quartz veins; minor bleaching, irregular contacts @91.1m - 91.4m: Quartz vein - no associated wallrock alteration @91.7m - 92.4m: very rusty interval; core badly fractured. @92.7m - 93.6m: Swarm of quartz veinlets with some bleaching and wallrock silicification. @107.15m - 107.9m: Irregular quartz veining; some rusty wallrock. @109.1m - 112.8m: Very rusty zone (FeO, ankerite?); at 110.6m foliation fabric 45° - 50° to core axis. @118.9m - 120.1m: Rusty zone as above. @120.7m - 121.6m: Irregular, barren quartz vein. Contacts are subparallel core axis. @124.3m - 124.6m: Rusty interval. Foliation 50° - 60° to core axis. @125.0m - 125.9m: As above.	Below 114.3m foliation becomes less distinct and rock becomes more massive chloritic.
126.2m	1	End of Hole	

B. Frusén 193 30. Sept 193

Restamped Restamped Restamped May 94

DIAMOND DELL RECORD

	14/	0-0	•	
PROPERTY	VV	00D		

HOLE No. DAH 93-1

	DIP TEST	
	- An	gle
Footage	Reading	Corrected
	1	
	1	L

Hole No. DDH 93-1_ Sheet No	l at	Total Depth
Hole No. District Sheet No.		Logged By ROD HUSBAND
Section	Dep	Logged By ROD 110301100
Date Begun Aug /93	Bearing	Claim
Date Finished Aug 193	Elev. Collar	Core Size
Date Logged Nov 4/93		

FROM	DEPTHAT RECOVE		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	:		
0	22		CASING							
22	423		CHILL MARGIN OF INTRUSIVE FINE GRAINED					 		
		·	DIORITIC TEXTURE HORNBLENDE CRYSTALS TO							
			5 mm LONG EPIDOTE CHLORITE ALTERED							
			GREEN COLOUR ARUNDANT SILICIFICATION							
			MINOR FRALTURES (< 1 PER 10 cm) TO					 		
			-2 mm MINOR QUARTZ SERBCITE ALT ALOW				·			
			FRACTURES. 30°-50° TO CORE AXIS					 		
			FRAGMENTS OF THE PURPLE AND GREEN		·			 		
			ANDESITES WITHIN THE INTRUSIVE?					 		<u> </u>
			FRAGMENTS TO 4CM-OFTEN HAVE DISSEM							
			SULPHIDES (PY) TO 10% IN FRAGMENTS							
			50 - PINK FELDSPAR ALONG NARROW (IMM)							
			FRACTURE @ 45° 70 CORE							
			60'-90' - FAULT ZONE · ABUNDANT GOUGE					 		
			AND FRACTURES @ 90° TO CORE CLAY							
			ALTERMION LIGHT BROWN COLOUR					 		

DIAMOND DRILL RECORD WOOD

HOLE NE:
DDH 93-1
PAGE NE:
2

DEF	TH	RECOVERY	DESCRIPTION	SAMPI F M.	FROM	ro	WIDTH OF SAMPLE				
ROM	το	RECOVERY	DESCRIPTION	SAMI CE VE			OF SAMPLE		 	 	
										 	
			60' - 2' WIDE FAULT							ļ	
			126 - LARGE FRANCIST OF ANNESITE SCM								
			ABONDANT SULPHIDES (PY) IN FRAG.								
			MISONDAM SIDEPATIDES (F.) 1/3 (a.g.								
			/								
			166' - LARGE FRAGMENT W ~10% PY							 	
							<u> </u>	<u> </u>	 		
176	177.	<u> </u>	MAFIC NYKE -V. FINE GRAINED BLACK NIKE							 	
			PINK FELOSPAR ALONG FRACTURES @ 65°		<u>. </u>		<u> </u>	ļ	<u> </u>	 	ļ
											ļ
			203' - NATIVE COPPER ALONG PRACTURE								
			203 MAINE COPPER MEDIOS TRINCTONS								
					 						
			230' - TEXTURE BELOMES COMPRER MORE		 						
			INTRUSIVE IN NATURE.	<u></u>							
					 				 	-	
			270' - MINOR SULPHIDES - DISSEMINATED PY						 -	 	ļ
					<u> </u>		ļ	<u> </u>	 		
			280'- 5" (15cm) QZ FRACTURE FILL @		<u> </u>				<u> </u>	<u> </u>	ļ
			30°			.			L		<u> </u>
			32								İ
			201								
			290' - VOLENVIC CLASTS AND EPIDOTE		 	_					
			STRINGERS BECOME MORE ARUNDANT		 -			 	 	 	
							ļ		 	 	
-			322'- NATIVE COPPER - PURPLE ANDESITE		-		ļ			 	
			CLASTS		<u> </u>		<u></u>			<u> </u>	
						<u> </u>					
			2.44						1		1
]	414 - DISSEM INATED PY LIGO IN INTRUSIVE?	L	<u></u>	L	<u> </u>	L	L		J

IAI	NON	DRIL	L RECORD W∞D	HOLE N	3-1	. ,:	PAGE NR: 3				
DEF	TH OT	RECOVERY	DESCRIPTION		T		WIDTH OF SAMPLE				
423	464	100%	PURPLE AND GREEN ANDESITE SILICEOUS								
			MINOR ED FRACTURES @ 50° TO CORE	-							
464	483	100%	INTRUSIVE DYKE FELDSPAR OZ POR PHYRY @ 60°					,			
			MINOR ALTERATION - FRESH LOOKING								<u> </u>
			NO SULPHIDES .		ļ	 			-	ļ	ļ
				 		-	 	· · · · · · · · · · · · · · · · · · ·	 		
483	5	100	BRECCIATED VOLENNIC - MOTTLES TEXTURE	1	 	<u> </u>					
			AB FRACTURES W/ CLAY ALTERATION @ 65°		 	 			 	 	-
			TO CORE IN SILICEOUS MATRIX FINE		<u> </u>						ļ
			GRAINED CHILL MARGINI?								
			EOH								
			4) 4/ //		ļ		ļ		ļ <u>.</u>	ļ	ļ
			[Kyrold	<u> </u>							
			FOR ROD W HUSBAND.		-						
											ļ
			·	<u> </u>					ļ 		ļ
				<u> </u>	ļ						ļ
				<u> </u>	-						
	·				 						<u> </u>

DIAMOND DELL RECORD

PROPERTY_	doow	
"NOFEN		

HOLE No. DOH 93-2

DIP TEST					
	Ar	ngle	.03.5		Total Depth 255
Footage	Reading	Corrected	Hole No. <u>93 - 2</u> Sheet No	Lat	Total Depth
			Section	Dep	Logged By ROD HUSBAND
			Date Begun	Bearing	Claim
	ļ		Date Finished	Elev. Collar	Core Size
L	1	<u> </u>	Date Logged		

FROM	TOF	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE			
0	32.5		CASING							
32.5	255		CHILL MARGIN OF INTRUSIVE FINE GRAINED							
			DIORITIC TEXTURE HBL LATHS TO 5mm					,		
			PURPLE AND GREEN ANDESITE CLASTS							
			WITHIN INTRUSINE MARGIN ABUNDANT EPIDOTE							
			ALTERATION HIGH DEGREE OF SILICIFICATION							
			MINOR <3% SULPHIES (PY) OZ STRINGERS							
			TO 3mm @ 45 to 70° TO CORE 6 / PER						 	
			10cm		<u></u>					
			75' - NATIVE COPPER IN ANDESITE CLAST						 	
			80'- 2cm QZ STRINGER @ 45°						 	
		·	80'-105' - OZ STRINGERS TO 4cm+						 	
			124.5' - NATIVE COPPER						 	
			137' - QZ STRINGER @ 70°						 	

DIAMOND DRILL RECORD Wood

HOLE NE: DOH 93-2 PAGE NE:

DEP FROM	TH	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	το	WIDTH OF SAMPLE				
			145' - 2cm GOOGE								
			172' - 30cm FAULT GOUGE		ļ				ļ		ļ
					ļ					ļ	<u> </u>
			185'- GCM FAULT GOUSE	ļ	ļ						
-			204'- 02 STRINGER 4cm @ 65° TO CORE					· · · · · · · · · · · · · · · · · · ·		 	
		· ·	2007	<u></u>							
			225'- NATIVE COPPER		-						-
			255 - EOH		<u> </u>						
			253							<u> </u>	
			b) h) /1				· · · · · ·				
			1 Kyrold								
			·								
			FOR ROD W HUSBAND								
	·	····									
-					 						
										·	
					2						
\vdash											
	ı										[

PROPERTY VOOD 5

HOLE No. Was 5 93-1

	DIP TEST] ·			
	An	gle	j	105021 /052		1/m1
Footage	Reading	Corrected]	Hole No. W5 93-1 Sheet No. 10F2	Lat.	Total Depth 400
				Section	Dep	Logged By RAL
			}	Date Begun	Bearing	Claim
				Date Finished	Elev. Collar	Core Size PERCUSSIC
	<u> </u>		J	Date Logged MAY 17/94		

DE F	THET TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE			<u> </u>
30	50		DIRTY BROWNISH GREEN COLOUR		-					
			ANDESTIL COMPOSITION							
			POWDERY GRAINS -> CLAY ALT?							
			MOD - ABUND ED /CHL ALTERATION					-		
			NO OBUIOUS SULPHIDES					· · · · · · · · · · · · · · · · · ·		
50	60		LIGHTER BROWNISH GREEN COLOUR							
			ANDESITH COMPOSITION							
			MERY POWDERY APPEARANCE				<u>- 1</u>	; ;		
			MODERATE EP/CHLORITE ALTERATION				6. gj			
			MUSCOVITE BIOTITE NOTED					:		
			NO OBUIDUS SULPHIDES							
							1 3			
60	120		GREENISH GREY COLOUR							
			AND ESTIC COMPOSITION						 	
			ABUNDANT EP/CHI ALTERATION							
			NO OBVIOUS SULPHIACS							
	·									
120	140		GREY COLOUR							
			ANDES IT'S COMPOSITION						 	
			ARONDAND FINE MUSCOUITE							

HOLE NO: W93-1

PAGE NE:

DoF_

				I	~ (- 1				
DE	PTH TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE			
120	140	(couri)	MODERATE EP/CHL ALTERATION			· · · · ·				
			NO BUIDDS SULPHIDES							
			300,000							
140	150		GREYISH GREEN LOLOUR							
173			ANDESITIC COMPOSITION							
		`	MODERATE EP/CHL ALTERATION							
			ABUNDANT FINE MUSCOLITE							
			NO OBVIOUS SULPHIDES							
15	160		AS 120'-140'							
160	280		FROM GREYISH GREEN TO DARK GREEN							
			COLOUR ANDESITIC COMPOSITION							
			ABUNDANT EP/OHL ALTERATION							
			NO OBVIOUS SULPHIDES							
280	400		SALT AND PEPPER COLOUR TO GREENISH COLOR							
	'		DIORITIE? COMPOSITION MORE QZ FELDSA	1						
		·	THAN ABOVE SECTIONS					. ;		
			MODERATE EPICHL ALTERATION INCREASING							
			TOWARDS BOTTOM							
			NO OBVIOUS SULPHIPES							
			(01/					:		
			2 1 1							
			P Harle							
Щ.	لــــــا	Lk	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L			·		 	

FOR ROD W. HUSBAND

PROPERTY WOOD 5

HOLE No. W 93-Z

	DIP TEST				
	Ar	ngle	. 192 7		
Footage	Reading	Corrected	Hole No. W93-Z Sheet No. 10FZ	Lat	Total Depth.
		<u> </u>	Section	Dep	Total Depth.
			Date Begun	Bearing	Claim
			Date Finished	Elev. Collar	Core Size
	1	li	Date Logged MAY 17 /94		

	PTH TO _{FT}	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
80	100	<u> </u> '	BROWNISH COLOUR								
	<u> </u>	<u> </u>	ANDESITIC COMPOSITION								
,	<u> </u>		MODERATE LIMONITE AND EPIDOTE /CHORITE								
	ا	<u> </u>	ALTERATION	-		· · · · · · · · · · · · · · · · · · ·					·
			NO OBVIOUS SULPHIDES								
ן טט	110		GREY ISH GREEN COLOUR								
	ا ا		ANDESTTIC COMPOSITION								
			POWDERY COVER ON GRAINS - CLAY ALTERATION	,							
	,		MODERATE ED CHL ALTERATION				अब्र				
			NO DRUIOUS SULPHINES				4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	1:			
			<u> </u>				· 数		ļ		Ĺ
110	120	<u> </u>	LIGHT BROWN TO LIGHT GREYGREEN COLOUR	<u> </u>			· 治療物 3	!			
			VERY POWDERY ANDESTIC COMPOSITION	1				<u> </u> :			<u> </u>
		 	ABUNDANT CLAY ALTERATION? MOD EDIDOTE								
			CHLORITE ALTERATION						<u> </u>		<u> </u>
			NO OBUIOUS SULPHIBES								
120	200		GRENISH GREEN COLOUR			<u></u>					
			ANDESITIC COMAOSITION								
		i	ABUNDANT EP/CHLORITE ALTERATION				enil in Angle in terms Angle in the angle in	I			
								;			

DIAM D DRILL RECORD

HOLE NO: W93-2

PAGE NE:

								_1		7	
FROM	PTH TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
120	200	cont)	U. LITTLE CLAY ALTERATION								
			BIOTITE NOTED	ļ							
			NO OBVIOUS SULPHIDES								
										ļ	
									ļ		
200	320		GREEN TO GREENISH GREY COLOUR							ļ	
-			ANDESTITE COMPOSITION							 	
			ABUNDANT EPODOTE CHLOPITE ALTERATION								
-			VERY FEW PYRITE CURES NOTES						<u> </u>	 	
ļ] 		
			EO H	ļ							
											
			P Hamles								
			- Hegaries .								
			FOR ROO W. HUSBAND				.;	· · ·			
-	•						.,				
								•			
		<u> </u>									
-											
								· 			
}							1,00				
			_				*****				

DIAMOND RILL RECORD

PROPERTY	WOOD	5	

HOLE No. W93-3

	DIP TEST				
:	An	gle	1 1012 . 3 /00/		1701
Footage	Reading	Corrected	Hole No. <u>W93-3</u> Sheet No. 10F/	Lat	Total Depth 170' Logged By RM
	-		Section	Dep	Logged By 12 H
			Date Begun	Bearing	Claim
			Date Finished	Elev. Collar	Core Size PERCUSSION
			Date Logged MAY 17/94		

DEF FROM	TH <i>F</i> 1 TO	RECOVERY	DESCRIPTION	SAMPLE Na	FROM	то	WIDTH OF SAMPLE				
150	170		BROWNISH GREEN COLDUR								
			ANDESITE COMPOSITION								
			MOD - ABUNDANT EP/CHL ALTERATION								
			MINOR LIMON 176								
			NO OBUIOUS SULPHIAES		ļ						
}										<u> </u>]
			HOLE ABANDONED								<u> </u>
								(P) :			
			— D H //		ļ		13 + 5		ļ	· · · · · · · · · · · · · · · · · · ·	
			Jegnes			· · · · · · · · · · · · · · · · · · ·					<u> </u>
							1. W		<u> </u>	 	
			FOR ROD W. HUSBAND.								
						-					
	ľ						412.00			}	

ΡI	₹0	PEI	RTY	CREEK
~ ,	10			

HOLE No. C 93-/

	DIP TEST				,
	An	gle	1002		3 <i>0</i> 0'
Footage	Reading	Corrected	Hole No. CR93-1 Sheet No. 10F	Lat	Total Depth 300' Logged By R#
	ļ		Section	Dep	Logged By RA
	<u> </u>		Date Begun	Bearing	Claim
			Date Finished	Elev. Collar	Core Size PERGUSSION
	1	l	Date Logged MAY 17/94		

DE!	THPT TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE			
10	22 D		GRETISH GREEN COLOUR			<u> </u>				
			ANDESITIC COMPOSITION			ļ				
			EPIDOTE - CHORITE ALTERATION		ļ	ļ				
			MINOR LIMONITE			<u> </u>				
ļ			MUSCOVITE BIOTITE V. SMALL FLAKES	-	ļ	<u> </u>	ļ	_		
			OZ FELD EP CHL MOST COMMON.	<u> </u>	 	-				
ļ			POWDERY APPEARANCE TO GRAINS - CLAY		 	<u> </u>	ļ			
			ALTERATION			ļ 		:		
			NO OBUOSIS SULPHIDES	-		l 	(설명) (공항	: [İ	
<u></u>							1. P. A.	i		
					-	<u> </u>	14 - 8097 1 - 9 - 1 - 1 18 - 6	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		
220	300		DARKER GREEN IN COLOUR			<u> </u>	19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	1		
		_	ANDESITIC COMPOSITION	 	-		14 66 15 66			
			ABUNDANT EPIDOTE CHUDRITE ALTERATION	 			. "	!		
ļ			OZ FELD FA CHL BI						· ·	
			VERY LITTLE LIMONITE					 		
			NO POWDERY APPEARANCE				·	_		
	•		NO OBVIOUS SULPHIDES					- 		
					 			 		
			They rold			<u> </u>		4		
		İ	EOH FOR ROW W. HUSBAND.							

APPENDIX III ASSAY SHEETS

CERTIFICATE OF ANALYSIS

To:

GREEN VALLEY MINING LTD.

2245 W 13TH AVE.,

VANCOUVER, B.C.

Project:

CAMP

Type of Analysis:

ICP

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6262

Certificate:

93189 C

invoice:

50002

Date Entered:

93-10-08

File Name:

MEN93189.C

Page No.:

1

93-1 112 1 22 93-1 125 2 33 93-1 126 1 15 93-1 127 1 15 93-1 131 3 87 93-1 154-155 26 126 93-1 155-159 2 233 93-1 166-167 6 84 93-1 1223-2268 3 670	\$ 26, 1 36 3 78 6 46 6 67	9.2 9.3 0.2 0.3 0.2 0.4 0.3	89 46 53 84 250 657 72 29	15 17 34 36 25 55 25 28	671 573 723 1051	2.35 2.46 3.55 2.63 2.50 4.02 3.36 4.25	2 2 2 2 2 2 2 2 2 2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	HID HID HID HID HID HID HID HID	35 15 15 15 15 15 15 15 15 15 15 15 15 15	#96 397 267 #36 259 425 462 242 152	1 1 1 1	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		46 2.4 37 6. 56 8.4 38 6.4 35 6. 66 5. 33 5.	01 0.0: 86 0.0: 58 0.0: 56 0.0: 66 0.0: 67 0.0: 17 0.0: 21 0.0: 22 0.1: 97 0.1:	1 3 4 7 3 7 3 8 1 2 1 3 2 3	56 48 13 13	4,18 3,08 5,26 6,40 2,76 2,25	219 165 902 96 138 158 379 486		0:20 0:32 0:36 0:36 0:84 1:63 0:62	0.04 0.04 0.06 0.05 0.04 0.05	0.01 0.01 0.01 0.01 0.01 0.01 0.01	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	5 5 5	
93-1 126 1 15 93-1 127 1 15 93-1 131 1 87 93-1 154-155 26 126 93-1 155-159 2 233 93-1 166-167 8 84	15. 30 50 53 \$ 26. 1 36 3 78 6 46 6 67	9.3 6.2 6.3 0.2 0.4 0.3 0.1	46 53 58 250 657 72 29	17 24 16 25 55 25 28	568 871 573 723 1051 622 1079	2:46 3:35 2:83 2:50 4:02 3:33 4:25	2 2 2 2 2 2 2	\$ 5 5 5 5 5	ND NO NO NO NO NO	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	287 #38 259 425 482 242	1 3 3 1 1 1 1	1 1 1 1	1 1 1	37 6. 56 8.4 36 6.6 35 6. 66 5.	.58 0 0-4 .66 0 0-6 .67 0 0-7 .17 0 0-7 .21 0 0-7 .27 0 1	4 7 3 7 3 8 1 2 1 3 2 3	18. 13. 13. 363 843 32	3,22 4,18 3,08 5,26 6,40 2,76 2,25	165 992 96 138 158 379 486	0,01 D.01 O.01 O.01 O.01	0.32 0.35 0.36 0.84 1.63 0.62	0,04 0,06 0,05 0.04 0.05 0.06	0.01 0.01 6.01 0.01 0.01 0.01		1 1 1 1 1 1	5 5 5 5 5 5 5	
93-1 131 1 87 93-1 154-155 26 126 93-1 155-159 2 233 93-1 166-167 8 84	\$ 26, 1 36 3 78 6 46 6 67	0,3 0.2 0.4 0.3 0.1	848. 250 657 72 29	36, 25 55 25 25 28	573. 723 1051 622 1079	2;63 2.50 4.02 3.38 4.25	2 2 2 2	3 5 5 5	ND ND ND ND	26 26 26 26 26 26 26 26 26 26 26 26 26 2	259 425 482 242	3 1 1 1	1	1 1 5 1	36 6. 35 6. 66 5. 33 5.	07 0.0 .17 0.0 .21 0.0 .27 0.1	3 8 1 2 1 3 2 3	13 363 843 32	3,08 5.26 6.40 2.76 2.25	96 138 158 379 486	0.01 0.01 0.01 0.01	D,36 0.84 1.63 0.62	0.05 0.04 0.05 0.06	6,01 0.01 0.01 0.01		1 1 1 1	\$ 5 5 5	
93-1 154-155 26 126 93-1 155-159 2 233 93-1 166-167 8 84	3 78 6 46 6 67	0.4 0.3 0.1	657 72 29	\$5 25 28	1051 822 1079	4.02 3.38 4.25	2 2	5 5	ND ND ND ND	NO	482 242	1 1 1	1	1 5 1	66 5. 33 5.	.21 0.0 . <i>27</i> 0.1	1 3 2 3	843 32	6.40 2.76 2.25	158 379 486	0.01 0.01	1.63 0.62	0.05 0.06	0.01 0.01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	5 5	
93-1 166-167 8 84	6 46 6 67	0.3	72 29	25 28	622 1079	3.36 4.25	2	5	ND ND	NO	242	1	•	5 1	33 5.	. 27 0.1	2 3		2.25	379 486	0.01	0.62	0.06	0.01	,	1	5	
		0.1	29	28	1079	4.25	_	_	ND			1	1	1				55			0.01	0.75	0.06	0.01	,	1	5	
									*********	× 100 0000 000	************					*************	5 0.000000000000										~~~	
										·····	***********		22.00.00.00.00				\$20.00000000000000000000000000000000000											
									***********		section to the		584000000000000			× 0.000000000000000000000000000000000	\$20.00000000000000000000000000000000000											
									**********		*********					2014-00000000000000	\$20,000,000,000										*********	
																					*******		*******	********	*****			
		30,000,000	90000000000	000000000	98.6382383	2000000000		(0000000000		000000000000000000000000000000000000000	0000000000	***********	(percentarions	**********	.0.700.0000000000	0,000,000,000,000	100000000000000000000000000000000000000	30000000000	30000000000	00005000000		506.0000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	.0000000000	**********	***********	2000-00-00-00-00
•																												
								********									entral contract to the contrac					de respectore	.0000000000	×2500000077	00000000	50000000000000	6166060000000	w0000000000

CERTIFIED BY:

: Assbar

CERTIFICATE OF ANALYSIS

To: GREEN VALLEY MINING LTD.

2245 W 13TH AVE., VANCOUVER, B.C.

Project: CAMP

Type of Analysis: Geochemical DDH 93 H

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:

93189 C

involce:

40246 **Date Entered: 93-10-01**

File Name:

MEN93189.C

Page No.: 1

			(CAMP)	
PRE FIX	SAMPLE	NAME	PB Au	
^ ^	93-1 93-1 93-1	125	NA 5 5	
A A A	93-1 93-1		5 5 5	
A A A	93-1	155-159 166-167 273-226.8	5 5 5	
			9	
	ou M			
				

CERTIFIED BY:

CERTIFICATE OF ANALYSIS

To: GREEN VALLEY MINING LTD.

2245 W 13TH AVE., VANCOUVER, B.C.

Project: W

Type of Analysis: Geochemical

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

 Certificate:
 93045 W

 Invoice:
 40117

 Date Entered:
 93-05-24

 File Name:
 MEN93045.G1

Page No.: 1

PRE FIX	SAMPLE NAME	PPM Mo	PPM Cu	PPM As	PPM Ni	
1.1	W 93-1 30-40		62	6		
 1, 2, 36 	W 93-1 40-50		45	7		
. 425	V 93-1 50-60		63	7		
1.000	W 93-1 60-70		60 57	5		
^ A ∰	W 93-1 70-80		56	2	Mariana, nadi	
Α .	W 93-1 80-90		112	4		
	W 93-1 90-100 W 93-1 100-110		98	3		
	W 93-1 100-110 W 93-1 110-120		104 82	2 4		
	W 93-1 110-120 , W 93-1 120-130	2	88	4	10	
9	w 93-1 120-130 W 93-1 130-140	2 2	148	8	10	
	w 93-1 130-140 W 93-1 140-150	1	460	12	16	
٠.	w 93-1 140-150 W 93-1 150-160	2	190	12	10	
- 17	W 93-1 160-170	_ 2	258	10	16	
1.00	w 93-1 170-180	1	158	8	16	
	W 93-1 180-190	1	100	6	18	
,	W 93-1 190-200	1	146	4	14	
_	W 93-1 200-210	1	266	11	16	
$\overline{}$	W 93-1 210-220	1	242	12	20	
	W 93-1 220-230	1	180	8	16	
	W 93-1 230-240	14.5	g garawan gagagg	6	18	
	w 93-1 240-250	1	132	8	16	
	w 93-1 250-260		1991 i especial	7	the second second	· 그리를 통해 보는 사람들이 되는 사람들이 되었다. 그리는 사람들이 되는 것 같아.
	V 93-1 260-270	: 1	172	8	20	그는 그렇게 하는 것이 하는 사람들이 모든 사람들이 하고 있었다.
	V 93-1 270-280	1	140	8	20	이 그렇게 하는 사람이 되어 가장 하는 것이 되었다.
	w 93-1 280-290	1	70	4	18	
A 1	√ 93-1 290-300	1	62	5	18	
A \	₩ 93-1 300-310	1	172	5	16	
A 1	¥ 93-1 310-320	1	76	4	16	
A 1	W 93-1 320-330	1	130	6	20	
A 1	y 93-1 330-340	.1	164	7	20	
	y 93-1 340-350	1	142	5	18	
A \	93-1 350-360	1.3	164	4	- 16	
	93-1 360-370	1	176	6	16	
	√ 93-1 370-380 .	1	144	7	16	
	93-1 380-390	1	150	6	18	
A 1	93-1 390-400	1	192	5	24	
	37					

CERTIFIED	BY	:	

CERTIFICATE OF ANALYSIS

To: GREEN VALLEY MINING LTD

2245 W 13TH AVE., VANCOUVER, B.C.

Project: WOOD

Type of Analysis: Geochemical

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:

93052 W 40130

Invoice: **Date Entered: 93-06-28**

File Name:

MEN93052.C1

Page No.:

1

PRE		PPM	PPM						•
FIX	SAMPLE NAME	Cu	Zn						
٨	W93-2 80-90	70	54						
٨	W93-2 90-100	82	63				J. P. S. Dr. Below Byt.		
A	W93-2 100-110	100	74						
A	W93-2 110-120	116	74						
٨	W93-2 120-130		67						
A	W93-2 130-140	102	65						annone teneralist con the transfer soft
A	W93-2 140-150	120	68						
A	W93-2 150-160	118	58						
A	W93-2 160-170	104	64						
A	W93-2 170-180	110	64						
A	W93-2 180-190	104	66				n typn enwegy i v Nefer enfil enfolkliger		
A	W93-2 190-200	110	66				13. Th		
٨	W93-2 200-210	102	64						
100000000	W93-2 210-220	112	66						
A	W93-2 220-230	100	64						
A	W93-2 230-240	110	68					, , , , , , , , , , , , , , , , , , , ,	
	W93-2 240-250	128	62						
	W93-2 250-260	102	56						
A	W93-2 260-270	93	58						
A	W93-2 270-280	104	58						
		122	52		용이 발생하다. 후 기가 경기 첫 기가		: :		
	W93-2 290-300		60			수요 1 시간 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
٨	W93-2 300-310	96	68	- 14일 등을 하는 것이 되었다. - 1일 기가 되었다.	이 사람들의 경				
454 1999							,		경우 여기 학
1	23				1000年,李明皇				

CERTIFIED BY:

toploo

CERTIFICATE OF ANALYSIS

To: GREEN VALLEY MINING LTD.

2245 W 13TH AVE., VANCOUVER, B.C.

Project: " C " CREEK -

Type of Analysis: Geochemical

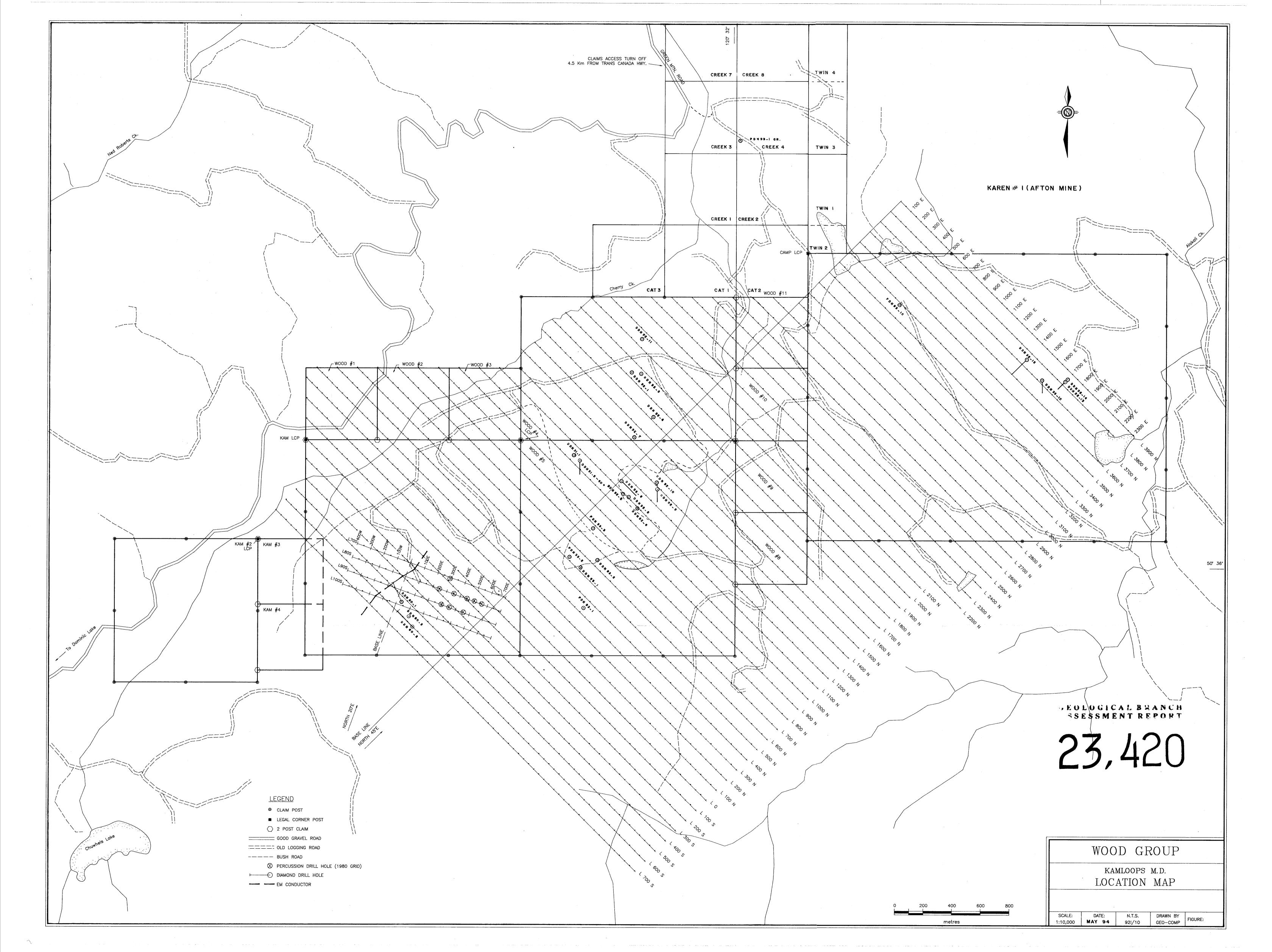
2225 Springer Ave., Burnaby, British Columbia, Can. V58 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:

93052 C

Invoice:

40112


Date Entered: 93-06-28 File Name:

MEN93052.C2

Page No.: 1

PRE		PPM	PPM	
FIX	SAMPLE NAME	Cu	Ag	
٨	C93-1 10-20	120		
	C93-1 10-20	160	0.2	
	C93-1 20-30	102 126	0.1 0.2	
	C93-1 40-50	143	0.2	
·	C93-1 50-60	116	0.3	
	C93-1 60-70	98	0.1	
	C93-1 70-80	104	0.2	
	C93-1 80-90	116	0.2	·
	C93-1 90-100	106	0.2	
Α .	C93-1 100-110	108	0.3	
٨	C93-1 110-120	82	0.1	
20.00	C93-1 120-130	101	0.2	
A .	C93-1 130-140	98	300 15 40 10 00 5 .	
A	C93-1 140-150	118	0.2	
A (C93-1 150-160	98	Maria de la companya de la companya de la companya de la companya de la companya de la companya de la companya	
A (C93-1 160-170	160	0.3	
<u> </u>	C93-1 170-180	320	0.4	
	C93-1 180-190	324	0.3	
A (C93-1 190-200	206	0.2	
A (C93-1 200-210	180	0.2	
۸ (C93-1 210-220	166	0.2	
A (C93-1 220-230	160	0.2	
A (293-1 230-240	158	0.3	
A (240-250	214	0.4	
A (250-260	230	0.3	그는 그 이렇게 하는 그는 그를 가지 않는 것이 없다는 그는 그를 가지 않는 것이 없다.
	260-270	234	0.3	
A C	293-1 270-280	200	0.2	
	280-290	184	0.1	
۹ (293-1 290-300	152	0.2	
	-5.			
	29			
	٠.			
				•
		•		

CERTIFIED BY

