		LOG NO:	SEP 2 6 1994	RD.
RECEIVED		ACTION.		
SEP 1 5 1994 Gold Commissioner's Office VANCOUVER, B.C.	COMINCO LTD	FILE NO:		

EXPLORATION

WESTERN CANADA

NTS: 93E-14

۰.

ASSESSMENT REPORT

I.P./RESISTIVITY SURVEY

ON THE

DUAL PROPERTY

LATITUDE: 53° 58' N

LONGITUDE: 127° 06' W

OMINECA MINING DISTRICT, B.C.

FILMED

INGO JACKISCH

TIME PERIOD: JUNE 9 - 19, 1994 JULY 9 - 25, 1994

25

CLAIMS COVERED : DUAL 1 -7, LAD 1 GEOLOGICAL BRANCH ASSESSMENT REPORT

AUG 1994

TABLE OF CONTENTS

.

I	INTRODUCTION				1
	Claims and C	wnership	•••••		1
	Property His	story			1
	Geology				2
	Location and	l Access			2
II	GEOPHYSICAL SURVE	YS	••••••		2
	Equipment and	l Procedures			2
	Presentation	of Results			3
III	INTERPRETATION				3
IV	CONCLUSIONS .				4
	אדרואיפססא S	ימידבאבאיד			5
	AFFENDIX I C	יאידיםאים יאידיםאידי ∩ידי די	Y DENID TITLE ES		6
	APPENDIX II S.	ALEMENT OF E	OF OUNLIFICM	TTONS	7
	APPENDIX III CI	SKITTICATION	OF QUALIFICA.	I TOTAD	,

LIST OF PLATES

PLATE NO.

LOCATION MAP	811-51-1
GRID AND CLAIM MAP	811-51-2
CHARGEABILITY PLAN N=1 a=100 metres	811-51-3
INDUCED POLARIZATION/RESISTIVITY PSEUDOSECTIONS LINES 10,000N, 9000N, 8000N	811-51-4
INDUCED POLARIZATION/RESISTIVITY PSEUDOSECTIONS EASTERN PORTION OF LINES 7000N, 6000N, 5000N	811-51-5
INDUCED POLARIZATION/RESISTIVITY PSEUDOSECTIONS LINES 8000N, 7000N, 6000N	811-51-6
INDUCED POLARIZATION/RESISTIVITY PSEUDOSECTIONS LINES 5000N, 4000N, 3000N	811-51-7

PAGE

					_{N.T.S.} 93E/14
		DL	JAL PR	OPERTY	×
		Drawn	by:	Traced by:	
0 100 200	300	Berland	by: Date:	Acad. Star KEVINC	LOCATION MAP
	Km.			+	
]	
 			_1		SCALE: 1:4,000,000 DATE:SEP1 94 PLATE NO: 811-51-1

EXPLORATION

COMINCO LTD.

ASSESSMENT REPORT ON

AN I.P./RESISTIVITY SURVEY

ON THE DUAL PROPERTY

I_ INTRODUCTION

During the time period June 9 - 19 and July 9 - 25, 1994, an Induced Polarization/Resistivity [I.P./Res.] survey was carried out by an in-house Cominco Ltd. geophysical crew on the Dual Property. Geophysicist I. Jackisch and 4 summer students were present for the survey, which totalled 40.3 km.

The purpose of the geophysical survey was to test the porphyry Cu-Au potential of a large alteration zone which is coincident with an aeromagnetic and radiometric feature obtained by Aerodat, for other clients in 1993, using their helicopter system. A logging road contructed in 1992 exposed sulphide mineralization and an extensive alteration system which renewed mineral exploration interest in this area.

This report discusses the geophysical equipment and procedures, then presents and interprets the results.

CLAIMS AND OWNERSHIP

The DUAL [136 units] and LAD [12 units] CLAIMS are owned by R. Hamblin, et al. Work on the claims is currently executed by COMINCO LTD. under agreement with the owners.

The claims are listed as follows:

Mineral Claims	Tenure Nos.	Recording Date
Dual 1	313680	Sept. 21, 1992
Dual 2	313681	Sept. 21, 1992
Dual 3	313682	Sept. 22, 1992
Dual 4	313683	Sept. 22, 1992
Dual 5	313693	March 22, 1993
Dual 6	313694	March 23, 1993
Dual 7	325394	May 11, 1994
Lad 1	327114	June 23, 1994

PROPERTY HISTORY

The northern and southeastern fringes of the DUAL PROPERTY have received some preliminary work during the 1970's. I.P. surveying and diamond drilling work was carried out intermittantly on the THIRA PROPERTY [directly to the southeast of the DUAL] during the 1970 to 1989 period. In Sept. 1992 a new logging road exposed a barite vein containing coarse galena and sphalerite.

GEOLOGY

The geology on the Dual Property was established from 1:50,000 scale mapping conducted by L. Diakow, 1988. The Lower Jurassic Telkwa formation of the Hazelton Group is the oldest volcanic exposed on the property. Stocks diorite. succession of granodiorite, and monzonite cut and locally alter rocks of the Telkwa formation. Younger volcanic Lower Jurassic rocks, tentatively assigned to the Cretaceous Skeena and Kasalka groups, appear to rest unconformably on the Telkwa formation.

LOCATION AND ACCESS

The Dual Property is located 100 km SW of Houston, B.C., at latitude 53°58'N, longitude 127°06'W, on N.T.S. 93E14.

Access is along logging roads from Houston, B.C. The main logging road from Houston follows the Nadina River south to km 56, where one turns right to head towards the New Canamin Resources' Huckleberry property. Turn right at the turnoff going to Tagetochlain Lake, staying on this road until the Duel Lakes turnoff is intersected. The Duel Lakes road accesses the northern part of the property; a right turnoff several kms down the Hill Tout Road accesses the south part of the property.

The grid lines occur on generally flat ground, with two steep hills occurring south of Gordeau Lake. The bush varies from lightly to thickly wooded, with numerous clear cut areas.

II GEOPHYSICAL SURVEYS

EQUIPMENT AND PROCEDURES

Two Huntec Mark 4 time domain receivers and a Huntec 7.5 KW Mark 4 constant current transmitter were used for the I.P.\Res. survey. A pole/dipole electrode array was used, with the current electrode either to the east or west of the potential electrodes as indicated on the pseudosections. The standard 2 second ON/OFF alternating square wave was transmitted.

The Mark 4 receivers were set to a delay time of 120 msecs. and an integration time of 900 msecs. Data was recorded both in notepad form and on a Solid State Memory [SSM] unit, manufactured by Lloyd Geophysics Ltd., which is installed inside the receivers. The SSM dumps directly onto a personal computer running on Geosoft software.

The Huntec receiver measures the chargeability in 10 windows, each 90 msecs. in duration, for a total of 900 msecs. The instrument displays and records each of the 10 windows as well as the total chargeability, which is the value plotted on the pseudosections. This chargeability value is equivalent to the eighth slice [M7, measuring from 690 to 1050 msecs. after transmitter shutoff] of the Scintrex IPR-11 receiver.

The resistivity values [R] are in units of ohmmetres [ohmm] and are calculated from the formula:

R	=	V	K	where	Κ	Ξ	2πan[n+1]	a=100m	, n=1,2,3,4
			Γ		V	=	voltage at	receiver	[volts]
					I	Ħ	transmitte:	r current	[amperes]

The survey procedure was to reel out the wire [leading from the transmitter] to the end of the survey line, leaving a stainless steel rod at each 100 metre station. The survey line is then read back to the beginning of the line by the following procedure. The current electrode man cuts the wire at each 100 metre picket and attaches the end leading to the transmitter to the steel electrode. The wire and rods discarded by the current man are used as potential electrodes by the receiver operators [one receiver taking n=2,1 readings, the other taking n=4,3 readings]. The current electrode man moves up in 100 metre intervals and hammers the rod into the ground while the readings are in progress. When both receiver operators are finished with their readings, the current is shut off, and the current man cuts the wire for the new current station and connects the wire to the rod, then asks for the power to be turned on at the new station. This procedure is repeated in 100 metre increments until the entire line is read.

The survey lines are very widely spaced at 1000 metres. This widely spaced reconnaissance style is adequate for the large porphyry system being targeted.

PRESENTATION OF RESULTS

The I.P./Resistivity data is presented in pseudosection form on Plates 811-51-4 to -7, with chargeability and apparent resistivity plotted at a scale of 1:5000 for each survey line. A plan map of the Chargeability is presented on Plate 811-51-3 at a scale of 1:10,000. Apparent Resistivity is in units of ohm-metres, chargeability values are in units of milli-seconds [msecs.].

Chargeability anomaly bars are categorized as strong [>40 msecs.], moderate [30-40 msecs.], and weak [20-30 msecs.]. These bars are plotted on the pseudosections to highlight anomalous chargeability zones.

III INTERPRETATION

The I.P./Res. survey results show a chargeability high on the eastern periphery of the Dual Property. The responses making up

this high are tabulated below, from north to south:

Line	10,000N	from	to	none
	9000N	134+00E	open to east	14 msecs.
	8000N	121+00E	130+00E	25
	7000N	128+00E	134+00E	25
	6000N	125+00E	open to east	28
	5000N	113+00E	open to east	65
	4000N	102+00E	open to east	25

The resistivity values are very low for virtually the entire survey grid, ranging from 20 to 200 ohm-metres. A localized higher resistivity area on the eastern end of Lines 8000N and 9000N of 500 to 2500 ohm-metres coincides somewhat with higher chargeability values.

A very localized chargeability high [of 49 msecs.] occurs at station 111+00E on Line 10,000N, located just north of the north boundary of the DUAL claims. This feature is not interpreted as being due to porphyry-style mineralization, but its cause is unknown.

IV CONCLUSIONS

40.3 kms of I.P./Resistivity were surveyed by Cominco Ltd. from June 9 - 19 and July 9 -25, 1994, on the Dual Property.

The results did not detect the presence of a porphyry system and no response was seen associated with the mineralization uncovered by recent road work.

No further geophysical surveying is recommended for the Dual Property.

Report by : Ingo Gackisch Geophysicist, P.Geo Hem Warmi Ita Approved for Release by : J.M. Hamilton, P.Eng/P.Geo Manager, Exploration Cominco Ltd. Western Canada

Distribution:

[2] Mining Recorder

- [1] Western District, Central Files
- [1] Geophysics File, Vancouver, B.C.
- [2] Owner

APPENDIX I

IN THE MATTER OF THE B.C. MINERAL ACT

AND IN THE MATTER OF A GEOPHYSICAL PROGRAMME

CARRIED OUT ON THE DUAL PROPERTY

LOCATED 100 KMS SW OF HOUSTON, B.C.

IN THE OMENICA MINING DIVISION OF THE

PROVINCE OF BRITISH COLUMBIA,

MORE PARTICULARLY

N.T.S. 93E/14

<u>STATEMENT</u>

I, Ingo Jackisch, of 424 Somerset Street, in the City of North Vancouver, in the Province of British Columbia, make oath and say:

- That I am employed as a geophysicist by Cominco Ltd. and, as such have a personal knowledge of the facts to which I hereinafter depose;
- That annexed hereto and marked as "Exhibit A" to this statement is a true copy of expenditures incurred on a geophysical survey on the DUAL Property;
- 3. That the said expenditures were incurred from June 9 19 and July 9 25, 1994, for the purpose of mineral exploration on the above noted property.

Ingé Jackisch Geophysicist Cominco Ltd.

Dated this 7 day of <u>Aeptember</u> , 1994 at Vancouver, B.C.

STATEMENT OF EXPENDITURES

DUAL PROPERTY - JUNE 9-19 AND JULY 9-25, 1994

1. SALARIES I. JACKISCH \$10440 A. ROBULACK 3250 J. ALLARDYCE 2889 T. DIXON 2919 I.B. MAWER 1284 J.S. ARMSTRONG 1500

\$22282.00

REPORT WRITING, DRAFTING \$8455.00 EQUIPMENT RENTAL I.P. RECEIVER \$2500 I.P. TRANSMITTER 3125 MISC. 1250

\$5500.00

\$6875.00

5.	EXPENSE	ACCOUNTS	I. JACKISCH	\$5359.68
			A. ROBULACK	1276.22
			J. ALLARDYCE	892.68
			T. DIXON	856.94
			I.B. MAWER	340.34
			J.S. ARMSTRONG	590.61

6. MOTEL

4.

7. LINECUTTING

TRUCK RENTAL

\$9316.47 \$968.87

•

23,267.00

TOTAL \$76,664.34

APPENDIX III

CERTIFICATION OF QUALIFICATIONS

I, INGO JACKISCH, of 424 Somerset Street, in the City of North Vancouver, in the Province of British Columbia, do hereby certify:

- i. THAT I graduated with a B.Sc. in Geophysics from the University of British Columbia in 1975.
- ii. THAT I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- iii. THAT I have been actively practising Geophysics from 1975 to 1994, and have been an employee of Cominco Ltd. from 1980 to 1994.

ngo Jackisch, B.Sc. P.Geo. Geophysicist

Sept., 1994

line 80																		
	RESISTIVITY			E	86+00			84+00			00 E	82+0		00 E	80+0		0 E	78+
Dipole	OHM-METRES		•	· · · · ·		•			- •	Ť			r					
, a																		
		n=1	- 40	179		322	179		127		103	141		138	174		142	127
```		n=2		61	101	ł	11	141		108		102	127		181	172		1 <b>46</b>
		n=3		48		4	<b>80</b>		104		82	97		155	161		153	103
S		n=4			35		51	67		84		85	1 18		133	141		101
	īD	Roa																
·//////// w		1		E	86+00		E + +	84+00			00 E	82+0		00 E	80+0	+	0 E	78+
Scale 1 50_0_50_100																		
(mete		n=1	2.1	5.8		6.1	5.3		3.3		3.1	3,5		2.8	3.3		4	5.1
Contour Interval: Chargeabl Resistivity — 5		n=2		14	5.2		6	3.6		1.8		3.1	3.6		2.1	3.5		4.4
		n=3		1.4	`	4	21		3.1		2.5	3.5		4.1	2.4		4.8	1
		n=4			1.8		0	3.2		3		2.8	3.2		3.5	4.3		3.2
POLE D																		
Date: 94, Interpretation: Td=																		
HUNTEC N												<u>·</u>						

78+00 E 80+00 E			82-	-00 E	<b>+</b>		84+00	E	<b></b>		86+00	) E			88+00	E		4		RESISTIVITY OHM-METRES						
<b>9</b> 5		108		<b>90</b>		123		110	170		127		149		117		114		189		166		97	n=1		
	118		100		113		124	13	0	127		125		174		120		99		153		113		n=2		
109		113		105		103		125	98		119		138		1 <b>59</b>		ĸ		91		107			n=3		
	¥		117		<b>9</b> 5 1 <b>08</b> 101				\$5		128		119		124		83		63				n=4			
<b>-</b>	78+00	) E		35 108 101 80+00 E 82+00 E						· · · · · · · · · · · · · · · · · · ·	84+00	) E			86+00	) E		• • • •	88+00	) E			Road I	CHARGEABILITY MILLISECONDS	2	
4		3.9		3.6		4.5		4.8	8.8		IJ		5		3.2		33		3.5		3.7		2.8	n=1		
	43		3.9		3.8		4.7			L.		u		5		3.1		3		3.3		ы		n=2		C
4		3.8		4.1		3.8	•	· )	3.5		4.6		4.4		4.4		IJ		2.8		3.3			n=3		
	3.3		4.4	3.5 3.1 3.1 2.4				24		4.3		3.2		41		2.7		2.1				n=4				
																		, .						i		

<b>.</b>	78+00 E 8			80+00 E			82+00 E			84+00	E			86+00	E		<b>ş</b>	88+00	E			90+00	) E				RES	
																							·		·			OHM
121		123		131	74		87	70		65		56		69		58		<b>58</b>		66		84	•	78		76	n=1	
	98		<b>\$</b> 7		102	86		84	50		67		58		85		71		78		73		76		84		n=2	
71		92		80	110	, I	87	73		49		60		65		71		82		84		85		87			n=3	
	71		\$3		101	108		71	70		52		59		72		79		89		<b>96</b>		\$2				n=4	

78+00 E				80+00	) E			82+00	) Ε	···	······	84+00	D E			86+00	E			8+00	E			90+00	) E	ROAD   CH	IAR	
									·				·		·		·				•		·	·			1	AILL
5 👡		·		1.3		3.2		2.5		1.8		2.5		3		2.2		1.5		4.5		3.5		2		55 ~ 24	n=1	
	4		42		4.5		2		3		2.5		2		3		2.9	1	1.7		3		4.7		1	7.1	n=2	
3.0		42		2.9		2.9		2.9		2.9		4.8		2.6		2.5	(	5.9	I	3.5	·	3		2.2		3	n=3	
)	3.8		4.5		4		1.2		1		1.5		4		3		3	,	1.1		2.8		3.4		4.5		n=4	

٩

DUAL.
Drawn by: Tri
Reveal by Date Re



$\sim \sqrt{2} \sim 2 \sin \theta / \theta$	:	

		· · · · · · · · · · · · · · · · · · ·									·	<u> </u>		
													·	
RESISTIVITY		92+00 E	94+00 E	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E 118
OHM-METRES		-								· · ·				
	n=1 ²¹⁰	70	79 71	85 156	254 243	464 324	652 330	202 283	90 . 18D	115 127	144 116	135 119	128 129	180 207 208
₽	n=2 ¹⁹⁹	77	15 70. 73 73 14	77 144 5 120 147	156 128 3	21 2296 J	518 452 1 231 218	<b>278</b> 167	116 106	127 129	146 97	106 134 1	4 123 13	10 257 191 1
	n=4	<b>8</b> 1	<b>6</b> 5 70	117 149	111 1 <b>55</b> 1	17 191 2	203 122 2	245 102 1	113 74	5 144	л н л н	103 141 1	38 134 25	2749 2001 1461 . 77 199 201 :
	ROAD													
	, I <del>K</del>	LK-→ 92+00 E	94+00 E	96+00 E	98+00 E	100+00 E	102+00 F	104+00 F	106+00 F	108+00 F	110+00 F	112+00 5	114+00 E	116±00 F
MILLISECONDS	/		•+ ·	······		+	+	++	++	+ -+ -++	+	+		
and the second	n=1 ³	2.1	2.7 2	.7 5 3.1	3.2 2.3	5 34	4.7 3	45 1.7	45 3.5	3 21	2.7 25	3.2 3	3 41	6.8 6.8 7.8
	n=2 23	35	2.5 3.8	23 25	3.4 2.2 3	32 4	4 3	\$ 44	3 3.2	12 22	<b>š</b> 1	1.3 2.8 ;	u u u	8 62 64
	n=3	32	<b>3 3.5</b> 1.	9 2.7 3	28 35	3 39	3.2 5.7	35 37	2.6 3.8	1 <b>35</b>	25 28	3 4	. 15	5.6 5.1 8.5
	n=4	11	š.1 25	5 12	1.2 4	<b>1 4</b>	4 sú	3.5 3	1 .00	-1 1	2 3	-2 ( 9	10	5 4.1 5.5
eosoft Softwire for the	Earth Sciences					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					1.		
											, <u>1999</u> , 1999, 1999, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 19			<del></del>
		• • •	94+00 E	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E 118
		n=1	<b>16</b> 122 10	00 157 94	122 138	221 388	506 286	314 271	<u> </u>	344 427	370 228	326 330	202 207	173 254 440
		n=2 n=3	123 as 15 1	11z 10/ 14 <b>9</b> 6 138	117 2071 22 221 328	318 <u>376</u>	449 299 3 	252 408	454 332 · · · · · · · · · · · · · · · · · ·	300 308 	341 298 265 442	385 429 2 445 706	10 318 24 205 751	8 252 445 4
		n=4	\$7	83 113	251 341 3	84 401 1	1 <b>H 247 2</b>	103 362 1	294 343	273 193	185 376	542 324 2	<b>1 233</b> 31	500 500 s
		ROAD												
	CHARCEARU		<b>94</b> +00 E	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 F	110+00 F	112±00 F	114+00 F	116-100 5 116
	MILLISECONDS		F		····	<u>↓</u> ····· <b>↓</b> ···· <b>↓</b> ···· <b>↓</b>	<u>+</u>	<b>↓</b>	++++	+++	+			
		n=1	SJ 5J 7.	J 42 54	<b>1.2</b> 7	5.8 5.8 (	4.3 / 5.2	5 3.4	3.6 j 5.9	м 17	57 64	5.1 5.6	_ u _ u	3.1 2.8 3.1 /
		n=2	5.8 KJ	6.5 B	7.4 5.4 5	5.5 7.2	) <b>u</b> (	<b>u u</b> ;	24 5	7.7 6.6	7. <b>5</b> &1	7.1 7 4	<b>8 3.9 4</b> 1	u u u
		n=3	5.8	45 50	· · · · · · · · · · · · · · · · · · ·	6.7 6.8	45 43	5.8 47	L7	7.5 5.7	7 5	82 6	42 5	5.0 4.2 7.9
		n=4	5	4.2 4	2 33 - 1	L7 62 !	57 55 5	5.3 5 5	7.7 - 10 7	8 7	9 8	10 7.7 5	ىتى 23 م	1~ 5.4 7.5
	Cancoll Collware for 1	ha Earth Salani	~~~					-						
			RESISTIVITY OHM-METRES	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E 118
	· · · ·			n=1 // E	<b>5% 101</b> 17 101 1	124 189	256 243 229 271 2	219 204 258 227	212 225 304 358	244 258 334 341	257 297 385 279	100 158 256 257 1	161 229 15 251 24	
				n=3 \$7	<b>56</b> 118	189 200-	229 250	285 334	427 384	433 455	350 239	253 134	306 243	256 205 336
				n=4	91 111 1	l <b>a</b> 1 <b>77</b> 1	i <b>as 19</b> 5 2	269 340	45 40	453 446	370 <b>329</b>	271 366 3	70 317 25	4 156 169 5
				ROAD					B/L 10,000E					
			CHARGEABILITY	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E 118
			MILLISECONDS	· · · · · ·	· · · ·	T + + + +						· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	
				n=1 12 12	7.4 (	3.1 5.2 /	7.2 6.5	8 9.4	7.1 10	10 <b>8.</b> 1	7.A 6.B	7.5 65		- 30,10,10
				n=2 8.3	5.3 7.1	u u	73 72	7.8 84	9.3 11	12 9.1	\$.7 6.5	1.5 1.6	11 11 34	
				n=3 5.3	6 k1	43 7.8	7 7.4	• ( 11	13 13	LI 15	<b>) 11 11</b>	"	~ < / ±	- 30 22 12
				n=4	5 3.5	5 <b>1</b> 3	7.5 0	5.4 BJ	14 14	84 87 /	10 11	12 7 28 7 7	13 - <u>1</u> 3 21	
						-								
			Geosoff Software for the	Earth Sciences							·····			

		<u></u>												
·	92+00 E	94+00 E	96+0	O E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 F	110+00 F	112+00 F	114+00 F	116400 F
				++	+				-++		-+			
70		79 71	U	150 2	54 243	464 324	452 339	202 283	90 100	115 127	144 116	135 119	129 129	160 207
190	Π	<b>5</b> 5 70	77 144	150	128	321 256	318 452	189 254	140 109	127 129	148 97 1	106 134	141 123 130	157
\$7	73	73 15	120	147 1	<b>08</b> 203	191 299	231 218	229 107	113 74	138 147	<b>N</b> 54	111 157	127 124	246 338
	<b>\$1</b>	<b>65</b> 70	117 140	111	1 <b>95</b>	117 191	203 122	246 102	1 <b>06 8</b> 1	85 144	<b>57 58</b> 1	103 141	136 134 257	199
₩ LK	~>													
	92+00 E	94+00 E	96+0	Ю Е	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E
									·					
2.1		27 27	3	<b>3.1</b> - 2	3.2 2.3	5 34	4.7 3	45 3.7	45 33	3 21	2.7 25	32 3	3 41	u u
23	3.5	2.6 3.6	23 25	3.4	22	32 4	u 3	-5 44	3 12	22 22	<b>S</b> 1	1.3 2.8	u u u	<b>L</b> 2
3.2	3	3.5 1.1	2.7	3 7	2.8 3.5	3 39	3.2 5.7	3.5 3.7	2.6 3.8	1 35	25 24	3 4	· L5	54 5.1
	11	£1 25	5 32	1.2	4	1 4	4 51	3.5 3	<b>1</b>	-1 1	2 3	-2 1 9	10 11 6.5	; <b>( 4.1</b>
		· · ·						· · · · · · · · · · · · · · · · · · ·						
		·										·		
<del> </del>														
IVITY	. <b>p</b>	94+00 E	96+0	0 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E
ETRES	х										• • • •			
	n=1 *	122 101	i <b>137</b>	94 1	22 138	221 368	506 286	314 271	541 556	344 427	370 228	328 330	282 267	173 254
	n=2	125 85	112 107	117	201	289 282	410 200	357 273	464 332	300 309	<b>341 290 3</b>	<b>185 429</b>	250 318 240	22
	n=3	<b>35 94</b>	<b>50</b>	1 <b>38</b> 2	121 328	318 378	232 302	252 408	316 380	200 225	256 42	442 308	285 251	316 484
·	n=4	\$7	63 113	251	341	384 401	184 247	203 362	286 383	273 1\$3	185 376 8	542 324	250 233 317	609
	ROAD													
	•	94+00 E	96+0	0 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E
CONDS			1						· · · ·					
	n=1 34	5.8 7.4	i <b>6.2</b>	<b>LI</b> I	1.2 7	5.8 5.8	( ⁴³ ( ⁵²	5 34	3.6 5.9	M 17	5.7 E.4	5.1 5.8	_ 4 <b>9</b> 44	3.1 2.8
	n=2	5.8 8.3	1.5 I	74	54	5.5 7.2	u /	53 53	24 5	7.7 <b>Li</b>	7.8 &1	7.1 7	48 3.9 4.2	3.3
	n=3	5.4 5	45	5.9	• • • )	6.7 6.8	45 43	5.8 47	\$J	7.5 6.7	7 5	8.2 6	47 5	50 42
	n=4	5	42 4	2	<b>u</b> -	L7 L2	57 5.5	5.3 5	7.7 - 10	8 7	<b>9 8 1 1</b>	1 <b>0</b> 7 <i>.]</i>	5.8 5.8 ⁽ ).	- 5.8
														-
e for the E	anth Colonnae					·····		<del></del>						
										<u></u>				
		RESISTIVITY	96+0	ю е	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E
		OHM-METRES												·
			n=1 7		96 100	124 189	26 23	218 294	212 285	248 258	257 287	100 136	181 229	250 (38
			n=2 🕅	\$7	101	121 161	229 278	248 257	304 358	<b>334 348</b>	385 279 2	250 257	195 251 246	310
			n=3	\$7	55 118	189 200	229 250	25 334	427 384	433 485	350 230	253 734	300 243	238 205
			n=4	91	111	147 177	195	289 340	<b>465 403</b>	458 486	370 529	271 268	<b>370</b> 317 <b>254</b>	1 <b>59</b>
			ROAD						DJL 10,0001 1	Ê				
		CHARGEABILITY	96+0	Ю Е	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E
		MILLISECONDS	a.											
			n=1 ¹²	12	7.4 • (	\$1 <u>52</u>	7.2 6.5	8 9.4	7.1 10	10 & 1	7.A 6.B	7.5 4.5	13/1/ - 1	- ³⁰ \ \"i
			n=2 83	5.3	7.1		7 <b>.3 7.2</b>	7.5 54	9.3 11	12 8.1	9.7 8.5	u u	21 41 34	28
					6 8.1	43 7.5	7 7.4	• ( 11	13 13	1.1 1.5	/ 11 11		2 / 2	_ 30 / 2
			n=3	5.5				· <b>\</b>						/
			n=3 n=4	s	3.5	u	7.3 8	8.4 83	14 14	SL SJ	10 11	12 23	43 53 28	<b>n</b>
			n=3 n=4	5.3 5	3.5	u	7.3 8	8.4 83	14 14	SU 8J	10 11	12 23	43 53 28	~ 2

	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·						<u></u>		
						· · · · · · · · · · · · · · · · · · ·						***** * - <u></u>
92+00 E	94+00 E	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E 1
· · · ·			· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		<u> </u>	₩ <u>₩₩₩₩</u> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
1 210 70	70 7	85 156	234 243	<b>464 524</b> .	452 J 330	202 283	<b>99</b> 1 <b>80</b>	115 127	144 116	135 1 19	129 129	180 207 209
2 19 77	85 70	77 144	156 128 32	1 2290	318 452 180	254	110 100	127 129	146 97 106	<b>13</b> 4 1	4 123 139	<b>257 191</b>
3. 97	73 73 B	5 120 147	108 203	181 286	231 218	228 107	113 74	138 147	<b>50 54</b>	111 157	127 124	246 300 188
4 51	<b>65 70</b>	117 140	188 195 11	7 191	203 122 244	192	108 81	85 144	<b>57 50 103</b>	141 1	38 134 257	199 201
KIK												
92+00 E	94+00 E	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E 1
₽ <b>~~~~~</b> ₽ <u>₽</u> ~~~~~₽ <u>₽</u> ~~~~~₽ <u>₽</u> ~~~~~	* <u></u>	┝╍╍╼╄╍╍╼╊╶╌╼╈ ╵		┝╾╺╍╌╸╋╧╶┉┈╶╸┫╺╴╺╼╶╸╸╸	-++++-		-++++	<u>+ _ + + + </u> + +	-++++-		<u>├</u>	
1 3 21	2.7 2	.7 3 3.1	32 23	5 34	47 3	45 17	45 35	3 21	27 23	32 3	3 41 -	62 IR 78
2 23 33	2.6 3.6	2.3 2.5	34 22 3.	2 4	44 3	44	3 12	22 22	<b>š</b> 1 1, <b>š</b>	2.8	u u	L2 L4
3 32	<b>š 3.5</b> 1.	<b>9</b> 2.7 3	2.1 3.5	3 3.9	3.2 5.7	3.5 3.7	2.6 3.8	1 35	2.5 2.8	3 4	· · · ·	5.5 <u> </u>
4 3.t	<b>L</b> 1 2.5	5 <u>5</u>	1.2 4 1	t − − − − − − − − − − − − − − − − − − −	4 51 35	3	1.10	-1 1	2 3 -2	,	1011 85	4.1 LS -
						· · · · · · · · · · · · · · · · · · ·						
clences						······	····					
RESISTIVITY OHM-METRES	94+00 E	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E 1
n=1	<b>96 122 1</b> 0	<b>30 157 94</b>	122 138	221 <b>348</b>	506 286	314 271	<u>541</u> 558	384 427	378 228	326 330	232 257	173 254 449
n=2	125 85	112 107	117 201 29	9 282	418 299 357	275	454 332	300 308	341 298 385	429 2	0 318 249	252 445
n=3	95 <u>1</u>	4 90 138 	1 221 328	310 370	232 302	252 408	316 380	200 225	256 442	442 308	295 251	-316 484 488
n=4	3/		يى اجتر اتي 1	•• •01	104 247 253	342		273 193	185 376 / 542	324 2	● 233 317	600 509
Road I											· ·	
	94+00 E	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E 1
MILLISECONUS	•	3										
n=1	<b>31 51</b> 7	3 L2 L1	1.2 7	5.8 5.8	43 ( 52	5 3.4	3.4 5.9	LA L7	5.7 E4	5.1 5.8	4.9 4.4	3.1 2.8 3.1
n=2	5.8 E.3	6.5 B	7.4 5.4 5.	5 72	u 53	53	24 5	7.7 6.8	7.6 &1 7.1	7 4	J 33 42	u u
n=3	5.8	5 45 50	• • • • • • • • • • • • • • • • • • • •	6.7 6.8	45 44 5	5.8 47	NJ	7.5 6.7	7 5	8.2 6	47 5	5.8 4.2 7.9
n=4	5	42 4	2 <u>13</u> .	7 62	57 5.5 5.3	\$	7.7 - 10	8 7	<b>3 8</b> 10	7.3 5	s ss (`u-	- 5.8 7.5
Coffunna for the Earth Colan	A40	······································					·····					-
	·								: 		·	····
	PECISTIVITY	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	11 <b>4+00</b> E	116+00 E 1
	OHM-METRES	▶ <u>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u>	┉┈╼┈╂┉┈┈╸╸	┝─── <b>─</b>	-+++++++		·· <del> </del> · · · · · · · · · · · · · · · · · · ·	<b>++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++</b>	-+++++++		/·····	
		n=1 77 🖬	<b>96 10</b> 0	124 189	<b>76</b> 2 <b>6</b> 3	219 204	212 283	248 758	257 147	100	161 220	<b>100 . 178 .</b> 518
		n=2 ¹¹	<b>57</b> 101 12	ti 161	229 278 256	227	304 358	534 541	385 279 256	257 1	<b>15</b> 251 246	318 428
		n=3 \$7	<b>96</b> 118	180 200	229 250	285 354	427 384	433 455	350 200	253 734	339 243	238 205 338
		n=4	<b>9</b> 1 111 14	07 1 <b>77</b>	185 195 2/9	310	465 408	<b>451</b> 484	370 329 221	286 3	70 317 254	158 169
		ROAD					B/L 10.000E	· ·				
		 	88±00 F	100±00 F	102+00 5	104100 5		108.00 5	110 00 5	110.00 5		
	CHARGEABILITY											
			• • ·	•								
		n=1 12 12		<u>31</u> <u>52</u>	7.2 6.5	8 9.4	7.1 10	10 <b>B.</b> 1	7.4 <b>G</b>	7.5 6.5		
		n=2 ••	/.i 5 6 k1 /	43 7.8	7 7.4	9 11	13 13	14 8.1 13 8.5				<b>30 12 12 13</b>
		n=4	5 3.5	u	7.3 8 8.4	83	14 14	SA SJ	10 11 12		a Ja a	
	Geosoft Software for the	Earth Sciences		·····	<u></u>	·····						
			• •									





r					<u></u>					<u> </u>							
		86+00 5	88+00 F	90+00 E	92+00 E	94+00 E	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E
RESISTIVITY OHM-METRES	<mark>₽</mark>					·_ • ··· · · · · · · · · · · · · · · · ·	+ + +	+	······································	<u>+</u> ++ −+							
	n - 1 ²² 23	26 30	27 60	<b>45</b> 57	121	134 175	191 177	158 138			73 112	123 302	101 58	64 52	<b>36 55</b>	49 59	41 27
	n=2 ¹⁸	13 25	59 70	32 82	76 <b>8</b> 1	131 <b>156</b>	) 106 1	48 150			112 16	2 213 45	50 8	51 25	50 48	50 4	17 38 111
	n=3 11	15 52	85 19	4 63	5 <b>56</b>	87 127	<b>\$2</b> 134	173			186	212 32	28 52	55 44	49 44	49 . 46	48 152
	n=4	14 34	71 41	47 45	57 80	97 . B	136	150			20	5 32 27	7 <b>34 4</b>	) 47 48	43 45	51 51	56 204 524
		RD						B/ /0,00	L LK	LK	2			-			
CHARGEABILITY	<b>.</b>	86+00 E	88+00 E	90+00 E	92+00 E	94+00 E	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E
MILLISECONDS													Ì				
	n=1 ¹ 1.1	1.4 .90	1 3.1	3.1 3.	.7 \$7	7.3 84	8.4 5.4	5.8 6.1			343	2 5.9	12 - 4	3.8 ÅI =	3	1.5 <b>2.8</b>	23 1
	n=2 ⁰	1.3 .90	1.5 2.9	1.8 4.2	( <u>5.1</u> 45	<b>6.9</b> 7.	3 3.1	4.2 5.9			11 2				25 20	4 27	2 .70 2
	n=3 -4	<b>0</b> 1.7	3.3 29	2.9 3.	JB 42	3.0 62	21 47	<u>5.1</u>			33	7.3 4	2 2		2 1.	7 1	1.8 3.5 3.6
	n=4	-3.1 1.4	5.1 1. <b>9</b>	3 3	است السن	7.4 -		-									
Geosoff Software for the	Earth Sciences	<u> </u>		<u></u>													
						· ·											
	RESISTIVITY	<b></b>	88+00 E	90+00 E	92+00 E	94+00 E	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	11 <b>4+00 E</b>	116+00 E
	OHM-METRES																az 187
		n=1 ⁹² 78	57 81	••	59 55	<b>\$4 \$</b> 5	96 90	105 71	85 75	128 154	137 97	123 131	232 91	68 74 86 71 8	96 117 1 115 1	104 202 95 102	30 132 114 257 4
		n=2 ⁿ	57 63	86 70	79 87	<b>9</b> 0	95 94 92 101	104 78 80 92	81 75 80 <b>66</b>	79 99 85 18	104 100	<b>\$</b> 1 <b>77</b>	<b>B</b> 5 103	89 77	112 <b>8</b> 8	107 109	317 517
		n=3 ⊅	60 75	74 89	50 (89	54 S4	a 98	82 94	89 73	59 68	74 106	<b>17</b> 71	83 90	<b>96 8</b> 5 1	56 101	113 114	324 555 4
				-						CK RP					RD		
				R0+00 F	97±00 E	94+00 F	95±00 F	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E
	CHARGEABILITY MILLISECONDS	<u>►</u>	88+00 E		<b>32</b> +00 E		+				···	<u>+</u>		· · · · · · · · · · · · · · · · · · ·			
			42 43	74	3.3 20	28 5.7	- 3.6 3.2	3.4 4	3.5 3.1	. 43 47	4.3 3.8	5.7 5.1	7.4 3.8	3.2 4.5	11 4	3.2 1	2.6 4.8
		n=1	21 37	7.1 3	3.3 2.8	34	3 1	25 32	3.6 2.7	27 45	5.2 4.9		11 31	24 41	42	3 1.7	3 3.3
		n=3 34	i 3 3.4		1.6 3.5	3.4 3.5	3.4 3.5	2.9 4	2.1 5	2.8 (5.2	<b>5.5 5</b> .7	£7 3.4	3.1 4.2	3 3.3	3.8 2.5	2.1 1.3	45 32
		n=4	2.6 3	3.6 4.3	1.5 4	3.9	3.1 2.8	2.4 3.8	2 2	1.9 3.1	5 57	6.2 Ś	4.1 3.1	3.6 3.1	.3 2.6	1.8 1.9	5.5 / 4.6
	Concell Software for the	Forth Sciences															
	Geosoff Software for fin					<u></u>		<u>.</u>									
	•	RESISTIVITY		90+00 E	92+00 E	94+00 E	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E	114+00 E	116+00 E
		OHM-METRES		,													
			n=1 🗳 🖤	8 56	81 <b>6</b> 3	<b>2</b> 12	<b>17</b> 1	164 580	725 182	111 <b>154</b>			<b>97</b> 140	113 105	107 287	175 245	190 236
			n=2 ⁴²	61 66	73 👪		71 128	136 206	207 184	162 120			117	91 <b>80</b>	118 171	147 136 137	194 203 214 282
			n=3 5	2 57	<b>80</b> 93	91 <b>95</b>	102 112	183 100	122 141	243	76 171	74	b	105 👪	141 115	106 130	152 255
			n=4	59 71	<b>6 52</b>		<b>192</b>										
			ROAD		CI I	K KU I					HAKE	LAKE -					116±00 F
			l ,	90+00 E	92+00 E	94+00 E	96+00 E	98+00 E	100+00 E	102+00 E	104+00 E	106+00 E	108+00 E	110+00 E	112+00 E		
		MILLISECURUS												A1 ••	34 44	30 11	3.1 3.7
			n=1 ^{4,1}	1) 32	12 4.1	13 15	2.9 3.5	48 41	7.1 4.1	1.5 3.8 4.5 1.7			22 23 57	د ب ۲۹ ۲۵	1.4 3.1		27 2
			n=2 32	1.9 2.7 4.2 4.6	3.1 2.5 3.3 3.5	9 27 <u> </u>	2.0 4 3.1 2.5	3.9 1.2	23		5 5.1		23	<b>3.8</b> 1.5	15 IS	2	1.7 52
			n=3	2 35	29 2	, <u>u</u>	25 24	ş 1.9	1.6 2.3	3		2		<b>3.4</b> 1.9	AA 3.9	<b>.80 1.9</b>	.40 .53
													:				
		Goosoft Software for the	Earth Sciences	<u></u>													





