LOG	NO:	OCT	0	1	1994-	مسين
ACTI	ON.					

RD.

1994 MOUNT SKINNER EXPLORATION REPORT

MOUNT SKINNER PROPERTFILE NO:

Clinton Mining Division

Latitude: 126° 25'W

Longitude: 51° 40'N

NTS: 092N 09

OWNER: Louis Bernoilles

OPERATOR: Cheni Gold Mines Inc.

200-580 Hornby St.

Vancouver, B.C.

V6C 3B6

BY: Austin Hitchins

FILMED

September 9, 1994

1

GEOLOGICAL BRANCH ASSESSMENT REPORT

SUB-RECORDER RECEIVED SEP 2 6 1094 M.R. # ______\$_____ VANCOUVER, B.C.

j____VANCO

TABLE OF CONTENTS

(1.0) INTRODUCTION	Page 4
(2.0) LOCATION AND ACCESS	4
(3.0) ENVIRONMENT	4
(4.0) HISTORY	4
(5.0) CLAIM STATUS	5
(6.0) GEOLOGY	5
(7.0) DIAMOND DRILLING	6
(8.0) MINING	6
(9.0) SURVEY CONTROL	7
(10.0) RESULTS (10.1) DIAMOND DRILLING (10.2) MINING	7 7 8
(11.0) DISCUSSION	9
(12.0) CONCLUSION	10
(13.0) REFERENCES	10
(14.0) STATEMENT OF COSTS	11
(15.0) STATEMENT OF OUALIFICATIONS	12

LIST OF FIGURES

FIGURE 1	Location Map of B.C.
FIGURE 2	Claim & Topography
FIGURE 3	Mine Longsection
FIGURE 4	Back Sampling
FIGURE 5	Back Mapping
FIGURE 6	Ore Stockpiles
FIGURE 7	Waste Muck piles
FIGURE 8	Face Mapping
FIGURE 9	Diamond Drilling Plan

DIAMOND DRILL SECTION IN MAP POCKETS

3

(1.0) INTRODUCTION

Mount Skinner is a gold property located in the west Chilcotin area of B.C. north of Tatlayoko Lake and about 250 km west of Williams Lake. The property is underlain by quartz diorites of the Coast Plutonic Complex which intrude Middle Jurassic sediments. Mineralization occurs within the Victoria quartz Vein on the SK3 claim. The property was discovered in 1990 and drilled in 1991 by Northair Mines. A 142.7 tonne bulk sample was extracted in 1992 from which 8,355 grams of gold were recovered. The present work by Cheni Gold Mines Inc. involved drilling nine BQ holes, for a total of 679.18 meters, and drifting and raising on the structure from underground.

Only a limited amount of high-grade material was encountered underground and the drill results which intersected the vein beneath the mine workings were all subeconomic. While the structure itself is consistent, the gold bearing quartz proved to be discontinuous.

(2.0) LOCATION AND ACCESS

The Mount Skinner Property is located in the west Chilcotin region of B.C. 5 km north of the northeastern end of Tatlayoko Lake which is approximately 250 km west of Williams Lake (*Figure 1 and 2*). It is within the Clinton Mining Division on NTS map sheet 92N-09 at 51° 40' N, 124° 25' W. The property is accessed by a 6 km mine road which turns off the main road from Tatlayoko Lake to Tatla Lake.

(3.0) ENVIRONMENT

The property is located at an elevation of about 1200 meters on the bluffs of Mount Skinner which overlooks Tatlayoko Lake. The mine area is of moderate topography and contains a few sloughs. It is forested by jack pine and a few large fir. Summers are relatively warm and dry, while winters tend to be mild with moderate snow accumulation.

(4.0) HISTORY

Reports of placer gold on Lingfeld creek occur in the early 1900's, but little appears to have been done until the Mount Skinner property was staked by Ottarasko Mines Ltd. in 1990. A small amount of sampling and hand trenching was done on the Victoria Vein prior to an option agreement to Northair Mines in 1991. Northair drilled six diamond drill holes for a total of 249.9 meters.

After Northair relinquished its option Ottarasko began mining the Victoria vein as an open cut. A bulk sample of 142.7 dry tonnes was shipped to the Premier mill in Stewart B.C. Milling resulted in a head grade of 59.31 g/t. At a recovery of 98.7% a total of 8,355 grams of gold was recovered.

In 1994 Cheni Gold Mines Inc. entered into an option agreement with Ottarasko and commenced the work that is the subject of this report.

SURPACE - CHENI GOLD MINES INC. VANCOUVER B.C (604) 688-2321

SURPAC2 - CHENI GOLD MINES INC. VANCOUVER B.C (604) 688-2321

(5.0) CLAIM STATUS

The following claims are part of the Mount Skinner Property:

Claim Name	Record Num	ber	Units	Expiry Date
SK1	209053		1	May 27, 2001
SK2	209085		1	June 20, 2001
SK3	209086		1	June 20,2001
SK6	209136		1	July 15, 2001
SK7	209137		1	July 15, 2001
SKINNER 1	209204		18	October 6, 1995
SKINNER 2	209205		20	October 9, 1995
SKINNER 3	209206	Reduced	1	October 14, 2003
SKINNER 4	209207		12	October 15, 1995
SKINNER 5	209334		20	February 6, 1996
TAB	209157		1	July 8, 1999

(6.0) GEOLOGY

Mount Skinner is underlain by quartz diorite of Jurassic to Tertiary age of the Coast Plutonic Complex. These rocks intrude sediments of Lower to Middle Jurassic age to the south and west. The quartz diorite is in turn intruded by a dyke swarm consisting of andesite dykes, feldspar porphyry dykes, and tuffaceous subvolcanics dykes. Most of these dykes contain sheared chill margins often containing quartz, carbonate, and epidote. Chill margins are not apparent in the tuffs, but they do contain sharp contacts.

The Victoria Vein is oriented at N50°E and dips from 70°N to 80°N in the open cut, down to 45°N in the 975 Drift. The mineralized part of the vein has a strike length of 50 meters, but the total strike length is about 70 meters. The vein continues to the steeps bluffs to the west of the workings where it forms a pronounced steep walled recessive. It is not yet known if the a fault exists in the talus below the bluffs, but air photos seem to suggest this. The mine workings are located about 5 km from the Yalakom Fault which is a major northwest striking structure that cuts across the northern part of the property.

The vein itself appears to occupy a 55° striking weakly developed shear zone that can be traced to other similar structures on there way to the cliffs on north face of Mount Skinner.

(7.0) DIAMOND DRILLING

A total of 679.18 meters of drilling were completed during the project. A Longyear 38 was used to drill BQ core. Core recovery was generally good, except for holes SK94-07 to 08 where there was significant core loss associated with the Victoria Vein (See longsection in *Figure 3*). The Victoria Vein was intersected in each hole beneath the 975 drift elevation. The core was then logged and significant sections such as the Victoria vein and smaller structures and unusual alterations split out for assay. Eco-Tech Laboratories Ltd. of Kamloops was employed for all assaying. Gold and Silver determinations were carried out using standard fire assay. Metallics for holes SK94-01 to 03 were screened and the <140 fraction reassayed. Copper, lead, and zinc determinations were done using standard atomic absorption. Drill core was labelled and stacked at the minesite. It will be moved to another location upon reclamation of the area. Collar coordinates and length of hole are listed below:

(meters)				True	(meters) Total		
Drill Hole	Northing	Easting	Azimuth	Elevation	Length	Dip	
SK94-01	10048.00	10015.00	140	1002.00	71.76	-46	
SK94-02	10070.00	10019.00	140	1002.00	78.05	-50	
SK94-03	10043.00	9981.00	157	990.00	71.65	-50	
SK94-04	10066.00	9985.00	140	990.00	75.30	-50	
SK94-05	10103.00	9985.00	140	990.00	92.91	-44	
SK94-06	10053.00	10000.00	140	997.00	60.05	-50	
SK94-07	10066.00	10000.00	140	997.00	72.26	-50	
SK94-08	10065.00	9970.00	140	990.00	81.90	-50	
SK94-09	10048.00	10030.00	140	1005.00	75.30	-50	

(8.0) **MINING**

Preparatory work prior to mining and exploration involved use of a hoe for road building to provide access to the portal and shop site. Offices and mechanical shops consisted of a trailer and three portable sea containers.

Rock work consisted of establishing a portal, driving of a 20 meter decline at 22%, a 4 meter crosscut, an 18 meter subdrift along the Victoria structure, and an 18 meter raise also driven on the structure. A subsequent TDB (take down back) was blasted in quartz vein at about 10010E (See *Figures 4 and 5* showing back sampling and mapping). The raise was driven to breakthrough into the pre-existing open cut where the vein had been mined in 1992. Both the subdrift and the raise were driven on the Victoria Vein. The decline was bolted and additionally strapped where necessary and a head cover installed over square sets at the collar.

All rounds which contained vein material were sent to the ore stockpile nearby. Rounds which contained only a small amount of quartz were saved at the waste pile. Each stockpile was sampled by taking from three to five grabs throughout the muckpile. Values are observed to be very consistent (*Figures 6 and 7*).

6

SURPAC2 - CHENI GOLD MINES INC. VANCOUVER B.C (604) 688-2321

K

	· · · · · · · · · · · · · · · · · · ·		
	10075E		10100E
			1000E1
			975E1
			950E1
			925E1
OLD MINE	S INC.		
	FIGURE	3	
No 26 Date:	8-Sep-94	MINILONG	

SURPAC2 - CHENI GOLD MINES INC. VANCOUVER B.C (604) 688-2321

K

•)

The back of the subdrift and both ribs of the raise were mapped at 1:250 scale. Back and rib samples were taken at 2 meter intervals along vein. Hanging wall, foot wall, and vein were sampled separately at each interval. More samples were taken where the structure split or the geology became more complex. Samples were sent to Eco-Tech Labs. for fire assay of gold and silver.

(9.0) SURVEY CONTROL

All survey work for spotting drill holes and pickup and layout of underground development was accomplished using chain and compass (a working theodolite was not available). This method proven sufficiently accurate for this small project. Should further work be contemplated an instrument survey will be necessary.

A new geology grid was installed on the Mt. Skinner property with the origin (10,000N 10,000E, and 1000 El) located at the southwest corner of the open cut. Grid north is 40° West of true north. All of this year's work has been referenced with this grid. Some drilling from the 1991 campaign has also been included for completeness.

(10.0) **RESULTS**

Results from both drilling and mining were discouraging. While the Victoria structure itself proved to be very consistent, the presence of quartz vein along it was erratic and not sufficiently continuous or of sufficiently high grade to contemplate stoping of the block between the 975 level and the open cut. A small high-grade pod does exist at the location of the crosscut, but has a limited strike length of between 6 and 7 meters. The vertical extent of this pod is not known, but it does not reach surface and nor does it reach the raise. Ore grade material, also of limited extent, occurs in the sill of the cut and to the east of the breakthrough. Both of these pods could be recovered using the raise though recoverable tonnage is small and cannot be reliably estimated with the present information.

(10.1) DIAMOND DRILLING

Drilling results were similarly disappointing with the highest assay being 15.53 g/t over a down hole width of 0.84 meters in hole SK94-07. The Victoria structure was intersected in each hole with the possible exception of SK94-08. Significant intersections are listed below:

Hole Number Width	Sam	ple ID	From	Down Hole To Wid	g/t th (m)	True Gold
SK94-01	66452	50.34	50.51	0.17	9.56	0.16
SK94-01	66453	50.51	50.74	0.23	12.72	0.22
SK94-02	66461	72.96	73.18	0.22	7.82	0.21
SK94-02	66462	73.18	73.67	0.49	0.00	0.47

Hole Number Width	Sample ID		From	Down Hole To Wida	g/t th (m)	True Gold
SK94-03	66466	42.10	42.63	0.53	9.46	0.51
SK94-04	66480	59.63	60.11	0.48	0.24	0.46
SK94-05	66489	91.18	91.73	0.55	1.23	0.53
SK94-06	66498	52.89	53.00	0.11	1.65	0.11
SK94-06	66499	53.00	53.30	0.30	13.71	0.29
SK94-06	66500	53.30	53.43	0.13	0.27	0.13
SK94-07	66213	66.16	67.00	0.84	15.53	0.81
SK94-08	66218	57.24	58.26	1.02	0.24	0.99
SK94-09	66230	70.62	71.16	0.54	3.46	0.52
SK94-09	66231	71.16	71.78	0.62	7.92	0.60

The 1991 drilling shows that ore grade material terminates at about the 960 meter (*Figure 3*) elevation and very likely represents the lower extension of the ore pod intersected by the crosscut. Most intersections contain quartz vein material with 1-5cm gouge contacts. Holes SK94-04 and 05 contained mainly gouge with little or no quartz.

A black mineral was observed in every intersection with the exception of SK94-09. This mineral is variously described as black chlorite (where it is not silicified) and a siliceous bluish grey to black mineral resembling silicified argentite. This mineral could merely be silicified chlorite as the silver values are too low to correspond with argentite mineralization. This mineral occurs both as a late stage breccia matrix near vein contacts, and as 1-2cm bands at one or both contacts. Pyrite clots and bands were observed in holes SK94-01 and 02.

Larger vein intersections are blocky and resulted in poor recovery. Much of these poor ground conditions is caused by late stage shearing which has fractured and faulted the vein along its length. Ground water has limonitized much of the remaining pyrite forming limonite filled vugs. Unlike the mined area the wall rocks remain is good condition and are often healed by silica flooding which tends to obscure phenocrysts.

(10.2) **MINING**

The Victoria Vein was exposed for 24.5 meters with the subdrift and slashing of the decline. At the point where the crosscut intersected the vein, the structure was observed to roll down to 40° to 50° from 75° to 80° in the open cut. This roll is clearly shown in the geological face mapping (*Figure*

٧ζ٠ X/C EAST 10% SERICITE AT DR 19 1065 EAST MALACHITE py × 40' AT DA 21 EAST X/c WEST DR 23. EAST AT DRIDEAST AT DA 26 EAST. AT DE 2 LIM ALT WEST MALACHITE LEGEND AT DA 10 EAST +++ DIORITE VEIN DRIJ FAST v v DYKE FAULT LIMONITZ JOINT ALTERATION AΤ DR 15 EAST SHEAR AT DR 17 CHENI GOLD MINES INC. EAST MT. SKINNER PROJECT 15 10 z۰ DRIFT FACE MAPPING METERS FIGURE 8 1:250 SEPT7/94

8). The degree to which the vein changed dip was not anticipated which resulted in the vein being intersected with about 1 meter of the south wall of the decline. Unfortunately two faults at the portal precluded keeping the ramp further away from the vein. Geological back mapping (*Figure 5*) shows the lack of continuity of the vein within the fault structure. All economic values occur within a 6 to 7 meter strike length between 9991E and 9997E which are probably related to high-grade found in SK91-04.

(11.1) DISCUSSION

The 1994 exploration program has shown that the Victoria vein and other structures on the property, which were examined by the author, are relatively deep epithermal type deposits of the adularia-sericite type. They are not mesothermal veins as has been previously suggested. The following observations support this argument.

1) The host rocks contain some argillic alteration, and breccia clasts tend to be heavily argillically altered. The alteration of the wall rocks is generally erratic. While hydrothermal fluids were acidic the volume of the fluid must have been insufficient to completely alter the wall rocks. Kaolin was observed in one of the faults near the portal which intersects the Victoria Vein. It occurs as a white fault gouge discontinuously along the fault.

2) Open space fillings can contain quartz crystals and may be filled with late stage calcite.

3) The quartz vein is finely crystalline though generally not chalcedonic in appearance. It is not the bull quartz commonly associated with mesothermal systems.

4) Chlorite and a black silicified mineral which is also probably chlorite occurs in the raise and in the drilling at the contacts of the vein. Chlorite can occur at the base of an adularia-sericite type orebody and/or beneath it both along structure and in the wall rocks.

5) Strong sericite was observed to occur in 1-5cm clots within the vein. Minor Sericite was also observed in the open cut as well as in other structures on the Mt. Skinner property.

6) Limonite alteration commonly occurs within the vein and often fills vugs that must once have contained pyrite. Limonite is also common in a 1 to 2 meters alteration zone in the foot wall and hanging wall of vein in the open cut and in the underground workings as well as in a few of the drill holes.

7) Malachite stain occurs in the sheared and limonitically altered wall rock directly adjacent to the high-grade mineralization in the Victoria Vein. Oddly malachite does not occur within the vein. This could be caused by the preferential oxidation of small amounts of chalcopyrite

away from the vein. Chalcopyrite was observed in the wall rocks in contact with the highgrade area of the vein underground. It was not found near the vein the in the drilling.

8) Ore occurs in dilated portions of the structure above and on the west flank of a roll in the structure in which the vein dips down to 45°. High-grade is commonly found in the more dilated parts of epithermal veins above such rolls.

Gold in the Victoria Vein occurs in pyrite and as microscopic metallics, with coarser metallics occurring in the high-grade sections of the vein. Grab samples of both the ore and waste muck piles showed that the gold is remarkably uniform when the muck is mixed from tramming. Grades do not change by more than about 25% whether high-grade or waste - indicating the lack of a nugget effect. The consistency of the muck grabs is at odds with the variations in grades observed in the chip sampling. This suggests that the gold quantities do not change greatly on the scale of 1 to 2 meters, but value can change rapidly at distances of greater than about 2 meters. It therefore appears that the ore pods are real, though small in size, and do not contain spurious or erratic values. However, values could be more continuous vertically than along strike as is apparent from the back sampling in *Figure 3*.

(12.0) CONCLUSION

Results from the 1994 drilling and underground exploration program of the Victoria Vein have shown that the deposit appears to be epithermal in nature and that the ore becomes poddy beneath the preexisting open cut. Both drilling and underground development have shown that the structure is consistent, but that the ore bearing quartz and is itself discontinuous. A small amount of ore occurs in the drift and perhaps in a section of the open cut.

(13.0) REFERENCES

Visagie, D. EMPR 1992 Assessment Report 21396. Northair Mines Ltd.

Minfile Listing 092N 039

Mining Review, Winter 1992

(14.0) STATEMENT OF COSTS

Total Labour Supervision, 4 miners, mechanic (3 weeks)	\$79,679.00	
Transportation	\$1,675.00	
Room and board	\$12,238.00	
Total mine consumables (see breakdown on following page)	\$63,856.00	
Geologist wages (15 days @ \$215/day)	\$3,225.00	
Report generation (7 days @ \$215/day)	\$1,505.00	
Assaying	\$4,679.50	
Contractor (Diamond drilling)	\$41,411.00	
Contractors (other)	\$1,844.00	÷
Total	\$210,112.50	

مر می اور به مرد می می مرد می مرد می مرد مرد می م 5.154

. .

Ht. Skinner (Budget vs Actual) 08/31/94

CURRENT PERIOD

YEAR-TO-DATE

BUDGET	ACTUAL	VARIANCE		BUDGET	ACTUAL	VARIANCE
0	1,844	1,844	Contract revenue	0	218,745	218,745
10.816	0	10,816	Salaries	26,603	29,348	(2,745)
757	0	757	Overtime	1,652	0	1,652
2.163	0	2,163	Benefits	5,321	6,717	(1,396)
0	0	0	General holiday	0	700	(700)
17,862	0	17,862	Wages	34,498	27,570	6,928
2,294	0	2,294	Overtime	4,862	0	4,862
1,250	0	1,250	General holidays	2,205	1,790	415
3,572	0	3,572	Benefits	6,900	6,477	423
11,603	(2,922)	14,525	Incentive bonus	18,684	7,078	11,606
50,317	(2,922)	53,239	Total Labour	100,725	79,679	21,046
2,674	0	2,674	Explosives	7,775	13,091	(5,316)
1,070	0	1,070	Drill steel and bits	2,483	3,242	(759)
2.229	0	2,229	Rockbolting	3,109	1,240	1,869
0	0	0	Pipe and hose	1,100	740	360
0	0	0	Vent ducking	600	0	600
446	45	401	General hardware	2,746	533	2,213
1.337	0	1,337	Timber	1.517	1,066	451
5,153	69	5,084	Maintenance supplies	9,948	9,319	629
4,363	0	4,363	Small tools	9,001	68	8,933
5,929	2,300	3,629	Fuel	11,548	9,695	1,853
25,000	0	25,000	Contractor	50,000	41,411	8,589
4,363	0	4,363	Safety supplies	9,001	216	8,785
1,781	92	1,689	Personnel transportation	3,675	1,675	2,000
9,350	459	8,891	Room and board	19,288	12,238	7,050
1,375	0	1,375	Communications	4,750	295	4,455
6,643	1,537	5,106	Lease/rental equipment	14,143	13,330	813
1,375	71	1,304	Freight	10,800	9,761	1,039
1,375	0	1,375	Office supplies	2,800	117	2,683
0	0	0	Insurance and license	3,000	713	2,287
0	25	(25)	Miscellaneous	0	430	(430)
74,463	4,599	69,864	Total Other Expenses	167,284	119,180	48,104
124,780	1,676	123,104	Total Expenditures	268,009	198,859	69,150
(124,780)	167	124,947	Net Income (Loss)	(268,009)	19,886	287,895

(15.0) STATEMENT OF QUALIFICATIONS

I, L. Austin Hitchins of 210-3671 Chatham Ave. Richmond British Columbia, do hereby declare that:

- 1) I graduated from the University of Alberta with a Bachelor of Science degree with Specialization, majoring in geology in 1983.
- 2) I have been employed in mining and exploration continuously since 1983.
- 3) I am currently employed with Cheni Gold Mines Inc. as Senior Exploration Geologist.
- 4) I supervised the diamond drilling, surveyed the mine workings, and completed all core logging, underground mapping, and sampling.

Austin Hitchins

September 7, 1994

DRILL HOLE SK94-01 Location SKINNER

SURVEY GRID

CHENI GOLD MINES INC. ML SKINNER PROJECT DIAMOND DRILL LOG

,

PAGE 1 OF 2

COLLARS							
NORTHING	LOCAL GRID Geoology grid	DATE STARTED July 23, 1994					
EASTING	LOCAL NORTHING 10048	DATE COMPLET	ED Jı	dy 23, 19	94		
ELEVATION	local fasting 10015	LOGGED BY	Austin Hitchins				
Azimuth	Local Azimuth 140						
	Dip -46	SAMPLE	SAMPLE	GOLD	TCR%	RQD%	
Meterage		METERAGE	No.				
0.3.05	CASING					ļ	
0-3.05				ļ		ļ	
3.05 - 15.40	DIORITE				<u> </u>	<u> </u>	
	Coarse grained with 20%-60% plag and 60%-40% matics consisting				80		
	entirely of amphibole. Good cleavage with dark green colour. Contains						
	numerous mapnic ig xenolitins - all founded. Strong epidole alleration						
	associated with (-2011 shears and joints.				100		
15.40 - 17.71	ORTHOCLASE PORPHYRY DYKE				100		
	10% white sub-euhedral k-spar. Crystal 1-4cm often bleached. Some				100		
	concentrially zoned. Matrix is 85% dark green aphanitic. 5% <1mm mafic				100		
	phenos - amphibole which is rarely hexagonal. Upper contact is chilled			İ	100	1	
	contact occupied by carbonate and endote altered fractures. Lower			[100		
	contact is a carb shear which brecciates the dyke. Quartz strings and				100		
	epidote ffs throughout. 60 deg contacts.				100		
					100	1	
17.71 - 18.58	DIORITE				100		
	As above with pink hematic bleaching of plag phenos in patches.				100		
	xenoliths.				100		
					100	 	
18.58 - 19.24	ORTHOCLASE PORPHYRY DYKE				100		
	<5% <1mm K-spar phenos. Chilled throughout. Brecciated upper contact				100		
	with dionite enclaves. Lacework of epidote and calcife fis at 45 to 80 deg.				100	ļ	
	some quartz replacement.			<u> </u>	100		
19.24 - 26.34	DIORITE				100		
	As above with 65% matics. Fg-mg rounded. Matic xenoliths throughout.				100	ļ	
	Pervasive epidote and calcite shears at 40-90 deg.				100	<u> </u>	
	25.95 - 1.5cm pervasive epdote alteration of dionte.				100		
2631-3351	ORTHOCI ASE PORPHYRY DYKE			ļ	100	<u>+</u>	
20.54 - 55.54	1-5% K-spars as avove. Some zoned phenos. Matrix aphanitic. Upper	l			100	1	
	contact with extensive ep and ca shears and fracture zones with ca				100		
	stringers. Some brecciation. Chilled contacts.				100	ļ	
			l		100		
33 54 - 33 86	DIORTIF				100		
55.54 - 55.80	As above with extensive fracturing, 60% mafic.			ļ	100	<u>.</u>	
			·····		100	<u>+</u>	
33.86 - 35.70	ORTHOCLASE PORPHYRY DYKE	· · · · · · · · · · · · · · · · · · ·			100	<u>+</u> -	
	As above with <1% K-spar phenos all <1mm. Chilled sheared contacts				100	į	
	with strong ep alteration. Some ca stringers. Ep ils throughout.			+	+	<u> </u>	
35 70 - 39 40	DIORITE					<u>+</u>	
55.75 57.10	50% fafics with extensive ep alteration associated with shearing. Few small					ļ	
	xenoliths.					<u> </u>	
						<u> </u>	

DRILL HOLF SK94-01 Location SKINNER

CHENI COLD MINES INC. ML SKINNER PROJECT DIAMOND DRILL LOC

PAGE 1 OF 2

		SAMPLE	SAMPLE	COLD	TCR%	ROD%
Metorage		METERAGE	No.	<u>s/t</u>		-
	ORTHOCT ASE PORPHYRY DYKE			<u> </u>	100	
39.40 - 43.25	< 1% K-snar phenos - small. As above with ca and ep hairline ffs throughout				100	
	Lightly chilled contacts. En alteration associated with stronger brecciated				100	
	<pre></pre>				100	1
	-Still Londs				100	
43 25 - 50 34	DIORITE				100	
15.4.7 - 50.5-1	50% matics 47% plag with 3% tan clay altered specks. Generally medium			ł	100	
	oreen				100	
	500 - 50.34 - Hanging wall diorite				100	
		50.00 - 50.34	66451	0.448	100	<u> </u>
	VICTORIA VEIN			ļ	100	
50.34 - 50.74	50.34 - 50.51 - Quartz vein with 5% euhedral pyrite. Sheared upper contact			L	100	L
	with arey mineral - often replaced by py.	50.34 - 50.51	66452	9.62	100	
	50.74 - Breccia vein, Bull quartz brecciated by black siliceous mineral.				100	ĺ
	Associated with <0.5cm py bands at 80-90 deg.	50.51 - 50.74	66453	12.79	100	
					100	
	QUARTZ DIORITE				100	
50 74 63 55	Green with 10% quartz, 50% plag, and 40% brecciated. All mafies altered to			<u> </u>	100	
.30.74 - 05.33	chlorite.			<u> </u>	100	<u> </u>
	50.74 - 51.00 - Foot wall of vein, some brecciation. Specks and crackle appear		· · · · · · · · ·	0.00	100	
	to be clay alteration. Unit is brecciated lightly with pervasive chlorite	50.74 - 51.00	66454	0.034	100	
	alteration of matrix. Unaltered clots are generally all feldspar and quartz.]			100	ļ
	Elsewhere, unit is bleached dark grey. Porphyritic appearence in places due to			ļ	100	L
	alteration				100	
		1		1	100	
	ORTHOCLASE PORPHYRY DYKE				100	
63 55 - 65 67	As above with chilled and brecciated ep altered contacts at 65 deg. Ep and ca				100	
05.05	ffs throughout, Quartz diorite enclaves.				100	
		·			100	
CE CE	QUARTZ DIORITE				100	
65.67 - 66.37	Approximately 15-20% quartz, 60% plag, 25-40% altered matics. Matics			ļ	100	
*	altered to ep and ca.				100	ļ
				L	100	
	APHANITIC ANDESITE DYKE				100	
66.37 - 68.55	No phenos. Ep crackle throughout. Ep shears at contacts 40 deg and similar to				100	
	prophyry dykes above.			1	100	
					100	
	QUARTZ DIORITE			í	100	
68 55 - 69 36	As above with 20% quartz, 30% mafics which are often altered to chlorite and				100	
00.55 07.50	ep.				100	
1				<u> </u>	100	
	APHANIIIC ANDESITE DYKE			.	100	
69.36 - 70.78	As above with sharp contacts at 70 deg and 45 deg. No shearing.				100	<u> </u>
H .					100	
					100	
	EOH - 71.76M Dip test = -49 deg				100	
70.78 - 71.76					100	
				<u> </u>		
		<u></u>				
				ļ	+	
				ļ	ļ	
1				1		
1						
1				I		
			•	1		[
		h		<u> </u>	+	r
				<u> </u>	+	
1		 i	<u> </u>		+	}i
		h		<u> </u>		i
		H				ļ
		ļ				ļ
		ll	L		<u> </u>	l

DRILL HOLE SK94-02 Location SKINNER

SURVEY GRID COLLARS

CHENI GOLD MINES INC. ML SKINNER PROJECT DIAMOND DRILL LOG

PAGE 1 OF 3

Geology grid NORTHING LOCAL GRID DATE STARTED July 23, 1994 EASTING 10070 LOCAL NORTHING DATE COMPLETED July 24, 1994 10019 **ELEVATION** LOCAL EASTING LOGGED BY Austin Hitchins 140 Local Azimuth Azimuth -50 SAMPLE Dip SAMPLE GOLD TCR% RQD% METERAGE Meterage No. 0 - 2.13100 100 CASING 100 100 2.13 - 7.20 100 100 **OUARTZ DIORITE** 100 1 100 5-10% quartz phenos, 40-60% amphibole, and 40-60% plag. Coarsely 100 100 crystalline with <3mm phenos. Numerous mafic mg xenoliths. Few ep and 100 100 ca stringers at 40-80 deg. Shearing in places. Siliceous. <1% py. Siliceous. 100 100 7.20 - 9.07 100 100 ANDESITE DYKE 100 100 Dark grey aphanitic with rare <1mm euhedral orthoclase phenos. Upper 100 100 contact brecciated. Lower contact sheared with ca stringers and ep 100 100 alteration. Quartz diorite enclaves are partly digested. 100 100 9.07 - 20.74 100 100 100 100 OUARTZ DIORITE 100 30 Generally more matic. Numerous ca and ep shears, ffs, and stringers. 100 100 11.28 - 11.60 - Broken core 100 100 14.46 - 14.62 - Chilled andesite dyke with sheared ep alteration and ca 90 25 stringers at contacts (65 deg). 100 100 17.38 - 18.30 - Broken core with some grinding. 100 100 18.85 - ca stringer at 60 deg - 3cm wide. 100 100 20.74 - 21.73 20.27 - 20.53- Chilled andesite dyke with sharp 60 deg contacts. 100 100 100 100 21.22 - 21.39 66455 100 100 ANDESITE DYKE 100 100 Fg aphanitic with no phenos. Ca ffs throughout 21.73 - 22.35 100 100 21.22 - 21.39 - Ca and ep stringer zone 100 100 100 100 QUARTZ DIORITE 22.35 - 22.65 100 100 As above, 0-5 deg ca and ep ffs common. 100 100 100 100 22.65 - 23.52 100 ANDESITE DYKE 100 100 100 Chilled with ca and ep stringers throughout. Sharp 40 deg contacts 100 100 23.52 - 27.36 100 100 OUARTZ DIORITE 100 100 As above. <0.5cm ca and ep stringers at 50-80 deg. 100 100 100 100 ANDESITE DYKE 18 0 Fg mafic and aphanitic. Ep and ca ffs and stringers throughout. Few broken 100 100 diorite enclaves. Contacts sheared with ca stringers and strong ep 27.36 - 28.36 100 100 alteration. 100 100 100 100 24.15 - 25.08 - ground core 28.36 - 29.95 100 100 100 100 OUARTZ DIORITE 100 ± 100 As above. Ca stringers common. 100 100 29.95 - 31.55 100 100 ANDESITE DYKE 100 100 Fg with patches containing orthoclase phenos <1mm in size. Porphyritic in 100 100 places. Sharp irregular contacts with diorite breccia clasts. 31.55 - 33.66 100 100 100 100 **OUARTZ DIORITE** Amphibole now greenish. Minor sections of dyke material.

DRILL HOLE	SK94-02
Location	SKINNER

CHENI GOLD MINES INC. Mt. SKINNER PROJECT DIAMOND DRILL LOG

PAGE 1 OF 3

		SAMPLE	SAMPLE	GOLD	ICR%	RQD%
Mcterage		METERAGE	No.	<u>et</u>		
33.66 -36.75	QUARTZ DIORITE				100	100
	As above. Light shearing. Ep its associated with shearing. Minor 5cm dykes				100	100
36 75 - 38 15	ANDESITE DYKE				100	100
50.15	7cm ca vein with ep alteration at upper contact. Lower contact sheared.				100	100
					100	100
38.15 - 40.70	QUARTZ DIORITE				100	100
	60-70% amphibole. Numerous 1-2mm ca and ep stringers. Some with				100	100
	nematite atteration. 5% quartz prenos.				100	100
40.70 - 41.48	ORTHOCLASE PORPHYRY DYKE (ANDESITE)				100	100
	20% distinct to indistinct feldspars which are apparently K-spar. Chilled		·		100	100
	contacts with epidot alteration of shears				100	100
11 10 15 61					100	100
41.48 - 43.64	QUARTZ DIORITE				100	100
	43 60- 44.00 - Chilled andesite dyke. No phenos				100	100
					100	100
45.64 - 55.23	ORTHOCLASE PORPHYRY DYKE				100	100
	Grey aphanitic matrix with 5% <5mm sub to euhedral K-spars which are				100	100
	white and sometimes hexagonal with zoning. Generally porphyntic				100	100
	Unper contact sharp at 50 deg				100	100
	55.08 - 55.23 - Quartz-carbonate vein at 45 deg marking	55.08 - 55.23	66456	Tr	100	100
	lower contact. Ep alteration of host and breccia clasts				100	100
					100	100
55.23 - 60.39	QUARTZ DIORITE			".	100	100
	As above with numerous quariz-carbonale-epidole stringers				100	100
	57.60 - 58.37 - Andesite dyke	59 00 - 59 13	66457	Tr	100	100
	59.00 - 59.13 - Quartz-carbonate stringer zone with	0,000 0,000		<u> </u>	100	100
	epidote alteration				100	100
				···	100	100
00.39 - 00.49	ANDESTIC DINE Chilled yfa with brossisted contracts. Minor epidete ffa				100	100
	Chilled vig with oreceased contacts. Millior epidole fis.				+100	100
60.49 - 60.67	APLITE DYKE	60.49 - 60.67	66458	Tr	100	100
	Phenos consist of 90% quartz and 10% green amphibole. Medium to				100	100
	coarse grained.				100	100
60 67 - 66 27	ΑΙ ΤΈΡΩΝ ΟΙ ΑΡΤΖ ΓΙΟΡΙΤΈ				100	100
00.07 - 00.27	Phenos consist of 60-70% amphibole with 10% quartz. Brecciated with black				100	100
	siliceous matrix. Ep flood alteration with small 1-2cm aplite dyke at 62.70.				100	100
	Patchy silica flooding.				100	100
					100	100
66.27 - 72.96	OKINULASE PORPHYRY DYKE	 			100	100
	throughout				100	100
	68.00 - 68.50 - Siliceous white zone. Possible flooding or	68.00 - 68.50	66459	Γr	100	100
	vein. Definite vein material at 68.00 - 2cm with limonite		· · · · · · · · · · · · · · · · · · ·		100	100
	and argillic alteration of host				100	100
	68.60 - 69.21 - Ground and broken core.				100	0
	70.00 - 70.57 - Oround and broken core.	72 00 - 72 06	66160	0.03	50	0
		12.00 - 12.20	00400	0.05	100	100
72.96 - 73.67	VICTORIA VEIN				100	100
	72.96 - 73.18 - Bull quartz vein with py bands and clots to 5%. Grey mineral.	72.96 - 73.18		7.861	100	100
	73.18 - 73.67 - Light grey brecciated and healed vein. Flooding?	73.18 - 73.67		Tr	100	100
	Broccated and filled with black succeds mineral.		·····		100	100

DRILL HOLE	SK94-02
Location	SKINNER

CHENI GOLD MINES INC. ML SKINNER PROJECT DIAMOND DRILL LOG

PAGE 3 OF 3

M		SAMPLE METER ACE	SAMPLE	COLD	TCR%	RQD%
73 67 75 49		73 67 75 42	46492	<u></u>	100	100
13.01 - 13.42	Come and an intermular with 70% phones of which 60% are foldenes and	13.01 - 13.42	00483	0.05	100	100
	(ney nig equipiantia with 70% pitches of which 60% are recuspan and				100	100
	share Lower contact is irregular, but share intruded diorite				100	100
	starp. Lower contact is integrial, out starp. Intract diotite.				100	100
75 42 - 75 83	AT TERED DIORITE				100	100
15.42 - 15.05	No must a heros. Silica flooded and bloached with herosciption and				100	100
	healing Dark gray matix Matics altered to modium groen 1.596 m				100	100
	acaning is an grey main. Manes are ed to meanant great. 1-570 py.				100	100
75.92 76.00	OPTHOCI ASE DODDLIVEV DVKE	}			100	100
15.65 - 10.00	Madium groon matrix with 20% distinct white K-spar phonon				100	100
	producing cut that is with 2070 distinct white R-spat phonos.				100	100
76.00 - 78.05	ALTERED DIORITE				100	100
10.00 - 10.05	As above 1-5% nv. Specks of tan clay alteration				100	100
	As above. 1-570 py. Speeks of can elay and allow					
		-			L	
		h				
•						
					{	
•						
l						
			i			
		i			·	
ļ					<u>†</u> i	
					†i	
					j	
1						
		l			<u>├</u>	
		1				
					<u> </u>	
					[
and the second s			1		<u> </u>	

•

DRILL HOLE SK94-03 Location SKINNER

CHENI GOLD MINES INC. ML SKINNER PROJECT DIAMOND DRILL LOG

PAGELOF 3.00

SURVEY GRID COLLARS

NORTHING	LOCAL GRID	Geology grid	DATE STARTED	July 24, 1994
EASTING	LOCAL NORTHING	10043	DATE COMPLETED	July 25, 1994
ELEVATION	LOCAL EASTING	9981	LOGGED BY	Austin Hitchins
Azimuth	Local Azimuth	157		
	D.	ξΛ	44 x x 44 x 44 444	

	1)th	SAMPLE	SAMPLE	COLD	TCR%	RQD%
Meterage	CASD C	METERAGE	No	1/12		T-2-
0 - 1.85	CASING				10	10
1.05 0.70			<u> </u>	<u> </u>		
1.85 - 2.70	QUARTZ VEIN					
	Numerous limonite trachine. Munor black chiorite, Lower contact marked			ļ	95	60
	by joint at about 4.5 deg.					÷
0 70 6 60			·			
2.70 - 0.50	ANDESTIE DYKE			·		
j -	Massive grey apriantic with rew caris. Unit broken. United lower contact		 		90	30
	L'HORIE ERCIAVE AL 3,04 - 0.1.5.	ij		<u> </u>		
6 60 07 00		ļ	· •			+
0.30 - 27.88	QUARTZ DIORITE			 	100	100
	while to green with 20% quartz, 30-30% plag, and 30-50% amphibole.	 		ļ	+	
	Coarse grained. Chloritic alteration in places. Usually silica flooded. << 1% py.	-	ļ	ļ	·	ļ
	weak of alteration along shears, precelated areas, and joints. New	ļ	ļ	ļ		ļ
	CHIOLICE SHOAPS.	J				<u> </u>
	17.50 - One affected by since flooding and chlorite afteration	l				<u> </u>
	of maries. Frictios indistrict and bleached out.				- 	ļ
27 99 20 20	ANTI-GOTTE DYVE			<u> </u>	1100	100
27.00 - 29.20	As above with an first throughout. Contrasts shilled and beakers. Small	}			100	100
	diorite malayer present					
	dionic dictaves present.					
20 20 30 72		}			100	100
29.20 - 30.72	Permaine chlorite alteration of matical Derivative silico flooding throughout				100	100
	sharrad in place. Chloritic sharra common			<u> </u>		
	Sincared in places. Childriche sincars contanion			<u> </u>		
30 72 32 10	ANTI-COPTE DAVE			<u> </u>	100	70
50.72 - 52.10	PROPERTIE DIRE Broken Limonite alteration of joints. Cound on stringers throughout	 		<u> </u>	1100	/0
	Broccisted areas with an alteration. Lower contact contains 1 are most a voin	J				
	with must 65 dee contrate	l		<u> </u>		
	with vags. 05 acg contacts.	h				
32 10- 32 01				 	100	100
52.10 52.71	As shown Light precision throughout White to dark argu	h		<u> </u>	100	100
	AS above. Light of ecclation unoughout, while to dark grey.	}	·····			ļ
32 91 - 36 00	ANDESTIF DYKE	}		ļ	100	100
52.91 - 50.00	Ma Almost tuffaceous Sharp S0 dec contacts Strong en alteration				100	100
	associated with shearing and procession	<u> </u>			+	
36 00 - 41 42	ALTERED OUARTZ DIORITE	41 00 - 41 42	66464	0.35	100	100
	Variably altered by mantz flooding and chlorite. Sections with strong limonite	11.00 - 11.12	00101	0.35	100	100
	alteration - offen broken					
		i	-			
41 42 - 42 10	TUFFACEOUS ANDESITE DYKE	41 42 42 10	66165	Те	100	100
11.12 12.10	Fo to mo Tan colored Broken with limonite alteration of fractures	41.42-42.10	00403		100	100
	No my Few quartz stringers					
	i vo py. Pew quartz, su ingers.				<u> </u>	
42 10 - 42 63	VICTORIA VEIN	 +			+	
12.00 - 12.05	Quartz yoin with limonite alteration of matrix of bracciated areas. Banda	4210 4262	66166	0.52	100	100
	of black chlorite at contacts (1.3 cm) and center of yoin Usually as	42.10-42.05	00400	3.52	100	100
	breecia matrix. Py and ny bands associated with black chlorite	H			<u> </u>	
	or event man in. I y and py bands associated with black theories				+	
					1	
		1			+	
		 				
		1				
		!			<u> </u>	ز

DRILL HOLE SK94-03 Location SKINNER

CHENI GOLD MINES INC. ML SKINNER PROJECT DIAMOND DRILL LOG

PAGE 1 OF 3

SURVEY GRID COLLARS

NORTHING	LOCAL GRID	Geology grid	DATE STARTED	Jut	v 24, 19	94	
EASTING	LOCAL NORTHING	10043	DATE COMPLETE	D Jul	y 25, 19	94	
ELEVATION	LOCAL EASTING	9981	LOGGED BY	Aus	tin Hitc	hins	
Azimuth	Local Azimuth	157					
	Dip	-50	SAMPLE s	SAMPLE	GOLD	TCR%	RQD%

Meterage		MEIERAGE	No.	g/t		
0 - 1.85	CASING				0	0
1. 85 - 2 .70	QUARTZ VEIN					
	Numerous limonite fracture. Minor black chlorite. Lower contact marked by joint at about 45 deg.				95	60
2.70 - 6.50	ANDESITE DYKE Massive grey aphanitic with few ca ffs. Unit broken. Chilled lower contact Diorite enclave at 5.64 - 6.15.				90	30
6.50 - 27.88	QUARTZ DIORITE White to green with 20% quartz, 30-50% plag, and 30-50% amphibole. Coarse grained. Chloritic alteration in places. Usually silica flooded. <<1% py. Weak ep alteration along shears, brecciated areas, and joints. Few chloritic shears.				100	100
1	17.50 - Unit affected by silica flooding and chlorite alteration of matics. Phenos indistinct and bleached out.					
27.88 - 29.20	ANDESITE DYKE As above with ca ffs throughout. Contacts chilled and broken. Small diorite enclaves present.				100	100
29.20 - 30.72	ALTERED QUARTZ DIORITE Pervasive chlorite alteration of mafics. Pervasive silica flooding throughout. Sheared in places. Chloritic shears common.				100	100
30.72 - 32.10	ANDESITE DYKE Broken. Limonite alteration of joints. Ca and ep stringers throughout. Brecciated areas with ep alteration. Lower contact contains 1 cm quartz vein with vugs. 65 deg contacts.				100	70
32.10- 32.91	ALTERED QUARTZ DIORITE As above. Light brecciation throughout. White to dark grey.				100	100
32.91 - 36.00	ANDESITE DYKE Mg. Almost tuffaceous. Sharp 50 deg contacts. Strong ep alteration associated with shearing and brecciation.				100	100
36.00 - 41.42	ALTERED QUARTZ DIORITE Variably altered by quartz flooding and chlorite. Sections with strong limonite alteration - often broken.	41.00 - 41.42	66464	0.35	100	100
41.42 - 42.10	TUFFACEOUS ANDESITE DYKE Fg to mg. Tan colored. Broken with limonite alteration of fractures. No py. Few quartz stringers.	41.42 - 42.10	66465	Tr	100	100
12.10 - 42.63	VICTORIA VEIN Quartz vein with limonite alteration of matrix of brecciated areas. Bands of black chlorite at contacts (1-3cm) and center of vein. Usually as breccia matrix. Py and py bands associated with black chlorite.	42.10 - 42.63	66466	9.52	100	100
						<u> </u>

DRILL HOLE SK94-04 Location SKINNER

SURVEY GRID

CHENI GOLD MINES INC. MI. SKINNER PROJECT DIAMOND DRILL LOG

COLLARS July 25, 1994 LOCAL GRID Geology grid DATE STARTED NORTHING 10066 DATE COMPLETED July 26, 1994 EASTING LOCAL NORTHING 9985 **ELEVATION** LOCAL EASTING LOGGED BY Austin Hitchins 140 Local Azimuth Azimuth -50 SAMPLE SAMPLE TCR% ROD% Dip COLD METERAGE No Meteray CASING 0 - 01.83 1.83 - 38.65 OUARTZ DIORITE About 5% quartz phenos with 40-60% plag and 40-60% amphibole. Epidote stringers and alteration associated with shearing. <1% py. 5.18 - 1 cm quartz stringer at 45 deg 7.97 - 8.03 0.07 7.97 - 8.03 - Quartz vein with ankerite. Brecciated with late 66469 quartz stringers. Black chlorite. 8.76 - 2cm quartz vein with ep alteration 12.14 - 12.62 - Andesite dyke - grey anhanitic. Quartz-carbonate veins at contacts. 16.75 - 16.85 - Quartz ep vein. Possible inclusion of pyrite. 20.50 - 20.89 - Andesite dyke. Upper contact with 40% quartz ep vein. Lower contact irregular. 21.74 - 22.48 - Broken core 100 20 25.50 -25.66 - Erratic andesite dyke with chilled margin. 26.52 - 27.12 66470 0.10 Ep alteration along quartz stringers. 27.12 - 27.21 - Silica flooded OD with black chlorite stringers 27.12 - 27.21 66471 0.10 and specks of clay alteration. Malachite stain. 0.10 27.21 - 27.34 - Hanging wall vein. Brecciated with 95% 27.21 - 27.34 66472 black silica. Limonite and weak argillic alteration of fragments and host. 27.34 - 28.16 - Quartz Diorite with strong to medium silica 27.34 - 28.16 66473 Tr flooding. Patchy limonite alteration. Limonite stringer filling. 100 30 30.75 - 31.40 - Broken core. 31.70 - 31.83 - Andesite dyke at 60-80 deg. 31.93 - 5cm andesite dyke at 75 deg. 32.30 - 34.10 - Medium linionite alteration of shears and brecciated areas 36.20 - 36.70 66474 0.03 36.20 - 36.70 - Extreme silica flooding - vein-like with strong ep alteration of shears 100 100 38.65 - 38.92 APLITE DYKE Mg with 20% amphibole and 80% plag. Sharp contacts. 100 100 38.92 - 43.22 ANDESITE DYKE Grey aphanitic fg. No phenos. Ep associated with stringers and shears. Contacts at 40-70 deg marked by quartz-epidote stringers. Few digested diorite enclaves. 39.33 - 1 cm quartz-carbonate vein at 40 deg. Ep alteration. 100 QUARTZ DIORITE 100 43.22 - 57.88 As above. More affected by ep shearing. Chlorite ffs throughout. Weak breccistion throughout. 46.13 - 46.64 - Felsic dyke with 50% mafics. 50% plag. Sharp contacts. Fresher appearance. 47.43 - 48.88 - Andesite dyke with fault gouge (mud) at about 48.20. Patchy limonite and ca alteration. 48.70 - 48.88 66475 48.70 - 48.88 - Quartz and ep shear zone, vein are folded. Tr 49.60 - 50.30 - Andesite dyke with sharp 35 deg contacts. Ep alteration of upper contact. Lower contact is sheared and is irregular 50.80 - 51.10 - Andesite dyke

DRILL HOLE SK94-04 Location SKINNER

CHENI GOLD MINES INC. Mt. SKINNER PROJECT DIAMOND DRILL LOG

PAGE 2 OF 3

Merse METERACE No. Meteral No.			SAMPLE	SAMPLE	GOLD	TCR%	RQD%
52.00 - 52.45 - Androite dyke, with digened diorie enclaves. 55.40 - 360 - Androite dyke, with erratic contacts. 55.30 - 360 - Androite dyke, with erratic contacts. 55.30 - 360 - 46478 Tr 57.88 - 59.63 ALTERED QUARTZ DIORITE 55.63 - 66478 100 58.63 - 60.11 STRUCTURE (VICTORIA VEIN) 55.63 - 66478 100 100 59.63 - 60.11 STRUCTURE (VICTORIA VEIN) 55.63 - 60.11 66478 0.24 100 100 50.61 - 66.93 ALTERED QUARTZ DIORITE Sites flooded fhroughout. Light breeciation throughout, with chlorite matrix 60.11 - 61.00 66482 0.24 100 100 60.11 - 61.00 Fitteme alist flooding obscuring primary 61.77 - 61.95 66482 0.02 - <td>Meterape</td> <td></td> <td>METERAGE</td> <td><u>Nø.</u></td> <td>B/t</td> <td></td> <td>,</td>	Meterape		METERAGE	<u>Nø.</u>	B/t		,
55.40 - 2cm apile dyke. 55.90 - 560 / Anderid dyke with ematic contracts. 55.90 - 566 / 66476 / Tr 57.88 - 59.63 ALTERED QUARTZ DIORTFE 0.03 / 5667 - 5647 / 0.03 / 5667 - 5647 / 0.03 / 5667 - 5647 / 0.03 / 5667 - 5647 / 0.03 / 5667 - 5647 / 0.03 / 5667 - 5647 / 0.03 / 5667 - 5647 / 0.03 / 5667 - 5647 / 0.03 / 5667 - 5647 / 0.03 / 5667 - 5647 / 0.03 / 5667 - 5647 / 0.03 / 5667 / 567 / 5647 / 0.03 / 5667 / 5647 / 0.03 / 5667 / 567 / 5647 / 0.03 / 5667 / 567 / 5647 / 0.03 / 5667 / 567 / 5647 / 0.03 / 5667 / 5647 / 0.03 / 5667 / 567 / 5647 / 0.03 / 5667 / 567 / 5647 / 0.03 / 5667 / 5647 / 0.03 / 5667 / 5647 / 0.03 / 5667 / 5647 / 0.03 / 5667 / 5647 / 0.03 / 5667 / 567 / 5647 / 0.03 / 5667 / 567 / 5647 / 0.03 / 5667 / 567 / 5647 / 0.03 / 5667 / 567 / 567 / 5647 / 0.03 / 5667 / 567 / 5667 / 567 / 5667 / 567 / 5667 /		52.00 - 52.45 - Andesite dyke with digested diorite enclaves.				_	
5.30 5.00 - Addeste dyke with errubic contracts. 5.90 - 500 - 100 57.88 - 59.63 ALTERED QUARTZ DIORITE		55.40 - 2cm aplite dyke.	66.00	16176		ļ	
56.07 - 30.81 - Stringer 2006. 20.33 - 30.81 20.33 - 30.81 57.88 - 59.63 JLATERED QUARTZ DIORITE 30.01 - 30.86 66479 Tr 100 100 59.63 - 60.11 STRUCTURE (VICTORIA VEIN) Consisting of 20 m goage at 59.63. Orey silics in fracture controlled breccis of altered doritie. 50.63 - 60.11 66480 0.24 100 100 60.11 - 66.93 ALTURED QUARTZ DIORITE Silication throughout, with chlorite matrix which is aliceous and varies from whe to green. 60.11 - 61.00 66481 0.07 100 1		55.90 - 56.00 - Andesite dyke with erratic contacts.	55.90 - 56.67	66477	<u> </u>		
57 88 - 59.63 ALTERED QUARTZ DIORTTF 59 63 - 60.11 Software plag plenes which are indistinct. 59 63 - 60.11 Software plag plenes which are indistinct. 59 63 - 60.11 Software plag plenes which are indistinct. 59 63 - 60.11 Software plag plenes which are indistinct. 60.11 - 66 93 ALTERED QUARTZ DIORTFE Slice Boolded Unoughout. Light breeciation throughout, with choice matrix which is milecous and varies from white barene. 60.11 - 61 00 Extreme silica flooding obseuring primary textures. 61.77 - 61.95 - Slice appearance with 30% plag phones - senite. 5% emphibole -1% y Larger fieldary cores altered to clay. No shearing or vouing. Few healed fractures. EOH = 75.30m Dip text = -54 deg		56.67 - 56.81 - Stringer zone.	56.81 - 57.88	66478	0.03	÷	
97.68 - 39:03 ALT RELE QUART 2. DOINT I: 100 100 59.63 - 60.11 STRUCTURR (VICTORIA VEIN) 59.63 - 60.11 66.480 0.24 100 100 50.11 - 66.93 ALTERED QUARTZ DIORTHE 59.63 - 60.11 66.480 0.24 100 100 50.11 - 66.93 ALTERED QUARTZ DIORTHE 50.11 - 61.00 66.480 0.07 100 100 50.11 - 61.00 50.11 - 61.00 66.481 0.07 100 100 66.93 - 75.30 ANDESTIE DYKE Turn volamits matrix 2% py. 100 100 100 66.93 - 75.30 NDESTIE DYKE Turn volamits matrix 2% py. 100 100 100 66.93 - 75.30 DIP test = -54 deg 100 100 100 100 EOH = 75.30m Dip test = -54 deg 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	57.00 50.62		59.00 - 59.63	66470	0.05 Tr	100	100
59.63 - 60.11 STRUCTURE (VICTORIA VEN) Consisting of 2xm gauge at 95.63m. Grey silica in fracture controlled breceta of altered donte. 59.63 - 60.11 66480 0.24 100 100 60.11 - 66.93 ALTTRED QUARTZ DORTTE Slice flooded throughout, tight breceiation throughout, with chlorite matrix which is aliceous and varies from white to a green. 50.63 - 60.11 66480 0.24 100 100 60.11 - 66.93 ALTTRED QUARTZ DORTTE Slice flooded throughout, tight breceiation throughout, with chlorite matrix which is aliceous and varies from white to a green. 60.11 - 61.00 Extures 61.77 - 61.95 Slicified white breceia zone with bleached chloritic matrix. 3% py. 59.63 - 60.11 66482 0.07 66.93 - 75.30 ANDESITE DYKE Turn volcanic appearance with 30% plag phonos - scruite. 5% amphibole clift of tactures. 100 100 EOH = 75.30m Dip test = -54 deg 100 100 100 100 100 101 test = -54 deg 100 100 100 100	57.88 - 59.63	ALTERED QUARTZ DIORITE	.19.00 - 19.03	00479		100	100
59 63 - 60.11 STRUCTURE (VICTORIA VERN) Consisting of 20m gouge at 59 63m. Grey silica in fracture controlled breecia of altered diorite. 59 63 - 60.11 66480 0.24 100 60.11 - 66.93 ALTFIRED QU'ARTZ DIORITE Silical on throughout, with chlorite matrix which is alliceous and varies from white to green. 100 100 100 61.1 - 61.00 Coll 1 - 61.00 Coll 100 100 100 100 66.93 - 75.30 ANDESITE DYKE Structures. 100 100 100 100 66.93 - 75.30 ANDESITE DYKE Structures. 100 100 100 100 66.93 - 75.30 ANDESITE DYKE Tur volcaniz operance with 30% plag phenos - seruite 5% amphibole. 100 100 100 c11w volcaniz operance with 30% plag phenos - seruite 5% amphibole. 100 100 100 100 c11w volcaniz operance with 30% plag phenos - seruite 5% amphibole. 100 100 100 100 c11w volcaniz operance with 30% plag phenos - seruite 5% amphibole. 100 100 100 100 c11w volcaniz operance with 30% plag phenos - seruite 5% amphibole. 100 100 100 100 c11w volcaniz opera		Dark greenish whiti green plag phenos which are mustifier.				+	
Consisting of 2 cm gouge at 59.63m. Grey silica in fracture controlled breecia of altered diorite. ALTERED QUARTZ DIORITE Silica Booded throughout. Light breeciation throughout with chlorite matrix which is allocous and varies from white to green. 60.11 - 61.00 ALTERED QUARTZ DIORITE Silica Booded throughout. Light breeciation throughout with chlorite matrix which is allocous and varies from white to green. 61.17 - 61.95 Silicited white breecia zone with bleached chlorite matrix 2% py. 65.93 - 75.30 ANDESIFE DYKE Tan volcanic appearance with 30% plag phenos - seruite. 5% amphibole. 1/20 Contracting of the service altered to clay. No shearing or venuing. Fow healed fractures. EOH = 75.30m Dip test = -54 deg	59 63 - 60 11	STRUCTURE (VICTORIA VEIN)	59.63 - 60.11	66480	0.24	100	100
breecia of altered diorife. ALTERED QUARTZ DIORITE Silica Boold diroughout. Light breeciation throughout. with chlorite matrix which is aliceous and varies from while to green. 60.11 - 61.00 66.93 - 75.30 ANDESITE DYKE Tan volcanic appearance with 30% plag phenos - senite. 5% amphibole. 61.77 - 61.95 <190 - 100	57.05 - 00.11	Consisting of 2 cm gouge at 59 63m Grey silica in fracture controlled				1	
60.11 - 66.93 ALTERED QUARTZ DIORITE Siles Booded throughout. Light brecciation throughout, with chlorite matrix which is alliceous and varies from white to green. -<		breccia of altered diorite.				1	· · · ·
60.11 - 66.93 ALTERED QUARTE 100 100 Silica Blood duroughout. Light brecciation throughout. with chlorite matrix which is siliceous and varies from while to green. 60.11 - 61.00 66481 0.07 6.93 - 75.30 ANDESITE DYKE 61.73 - 61.95 66482 0.03 - 7an volacinic appearance with 30% plag phenos - soruito. 5% amphibolo. 100 100 100 FOH = 75.30m Dip test = -54 deg - - - - FOH = 75.30m Dip test = -54 deg - - - - - - - - - - - -							
Silica flooded throughout. Light breeciation throughout, with chlorite matrix which is silicous and varies from white to green. 60.11 - 61.00 66/81 0.07	60.11 - 66.93	ALTERED QUARTZ DIORITE				100	100
which is siliceous and varies from while to green. 60.11 - 61.00 66.81 0.07 61.77 - 61.95 Silicified white breceia zone with bleached chloritie matrix. 2% py. 61.77 - 61.95 66.82 0.03 66.93 - 75.30 ANDESITE DYKE 100 100 100 Tan voleanic appearance with 30% plag phenos - seruite. 5% amphibole. 100 100 100 <190		Silica flooded throughout. Light brecciation throughout, with chlorite matrix			.	1	
60.11 - 61.00 - 65.93 61.77 - 61.95 - 51icified white breccia zone with bleached chloritic matrix. 2% py. 66.93 - 75.30 ANDESITE DYKE Tun volcanic appearance with 30% plag phenor - seruite. 5% amphibole. <1% py. Larger fiddspar cores altered to clay. No shearing or veining. Few healed fractures.		which is siliceous and varies from white to green.					
10:77 - 61.95 -51.95 -66.92 0.03 66.93 - 75.30 ANDESITE DYKE		60.11 - 61.00 - Extreme silica flooding obscuring primary	60.11 - 61.00	66481	0.07	ļ	ļ
66.93 - 75.30 ANDESITE DYKE Turn volcanic appearance with 30% plag phenos - seruite. 5% amphibole. 120 c:1% py. Larger fieldspar cores altered to clay. No shearing or veining. Few healed fractures. 120 EOH = 75.30m Dip test = -54 deg 120		textures.	(1.55 (1.05	66100	0.03		ļ
chloribe matrix. 2% py. 100 66.93 - 75.30 ANDESITE DYKE Tan volcanic appearance with 30% plag phenos - seruite. 5% amphibole. 100 < 1/% py. Larger feldspar cores altered to clay. No shearing or votining. Few healed fractures.		61.77 - 61.95 - Subcified white breccia zone with bleached	61.77 - 61.95	66482	0.03		<u> </u>
66.93 - 75.30 ANDESITE DYKE The volcaric appearance with 30% plag phenos - seruite. 5% amphibole. 100 -1% pp: Lurgor feldepar cores ultered to clay. No shearing or veining. Few healed fractures. 100 EOH = 75.30m Dip test = -54 deg 100 Image: Second se		chloritic matrix. 2% py.					
00.55 7 0.50 100 100 100 Tan volcaric appearance with 30% plag phenos - seruite. 5% amphibols.	66.03 75.20	ANDESTEE DYKE				100	100
Close transformed to the provide state of the state of	00.93 - 73.30	Tan volcanic appearance with 30% plac phonos - servite 5% amphihala		L		1.00	
healed fractures. EOH = 75.30m Dip test = -54 deg		< 1% ny Larger feldsnar cores altered to clay. No shearing or veining. Few			,	+	
EOH = 75.30m Dip test = -54 deg		healed fractures.					
EOH = 75.30m Dip test = -54 deg							
		EOH = 75.30m Dip test = -54 deg					
						1	ļ
						<u> </u>	ļ
							<u>+</u>
					<u> </u>	+	÷
			.				†
				·····		1	
			· · · ·				
				L		-	
			ļ	ļ			
			ļ		ļ	+	.
						<u> </u>	+
			ll	 	<u> </u>	+	-
					<u> </u>		+
						1	<u>+</u>
				+	t	1	1
							1
				ļ		ļ	ļ
				 	ļ	ļ	<u></u>
					 		ļ
				<u> </u>			+
	<u> </u>		<u> </u>	<u>l</u>	<u> </u>	<u> </u>	1

DRILL HOLE SK94-05 Location SKINNER

CHENI GOLD MINES INC. ML SKINNER PROJECT DIAMOND DRILL LOG

PAGE 1 OF 3

SURVEY GRID COLLARS

NORTHING	LOCAL GRID	Geology grid	DATE STARTED	July 2	7, 1994		
EASTING	LOCAL NORTHING	10103	DATE COMPLETE	D July 2	8, 1994		
ELEVATION	LOCAL EASTING	9985	LOGGED BY	Austin	Hitchins		
Azimuth	Local Azimuth	140					
	Dip	-44	SAMPLE s	ample g	OLD TOP	(% 1	RQD%

Meterage		METE
0 - 1.83	CASING	
1 93 - 4 93	CURTHINE ASE DOUDHYRY DYKE	
1.03 - 4.2.7	10% K-spar phenos. Indistinct and sometimes concentrically zoned.	
	Aphanitic grey fg matrix. <1% py. Ca and ep ffs throughout. K-spars = $2-3mm$.	
4.93 - 5.15	CARBONATE VEIN	4.93 - 5
	Marks contact. Breccia clasts of dyke and diorite. 35 deg contacts. Ep	
	alteration of clasts	ļ
		į
5.15 - 10.68	QUARTZ DIORITE	ł
	60% feidspars with 35% green chloritic(?) allered amphiboles. 5% quartz.	ļ
	Ca and ep its inrolghout at 65-90 deg. <1% py.	
	9.07 - grittang	
10.68 - 10.93	ORTHOCLASE PORPHYRY DYKE	
	As above with chilled vfg matrix. 10% indistinct K-spar phenos. Sheared	
	ep contacts. Ep and ca ffs throughout.	
10.93 - 11.67	QUARTZ DIORITE	
	As above with fresher appearance.	
		ļ
11.67 - 12.37	ORTHOCLASE PORPHYRY DYKE	
	Chilled contacts with 10% 2-3mm K-spar phenos. Ep and ca shears and	
	is an oughout. Lower contact orecetated by ca su tigers marking contact.	
12 37 - 19 87	OUARTZ EYE ANDESITE DYKE	
	Seraite volcanic appearance with 70% phenos of which 90% are feldspar	
	with 10% mg-fg matics. Upper contact not chilled. Few <1 cm irregular	
	mafic clots. Ep alteration associated with fracturing, ca and ep stringers	
	common	·
19.87 - 20.82	QUARTZ DIORITE	
	70% plag, 5% quartz and 25% malics. Few fractures.	
00.00 01.00	OBTINOT AND DUVEN DVICE	
20.82 - 21.92	Chilled unpersonce throughout En ffs throughout 10% 1.2cm indigting	
	K-soars Sharn 40 deg contacts	
	ix-spina. Shin p +0 deg contacto.	
21.92 - 24.88	OUARTZ DIORITE	1
	50% plag with 10% quartz and 40% amphibole. Few Ep and ca shears	
	and $t\bar{ts}$. <1% py	
24.88 - 26.5	QUARTZ EYE ANDESITE	
	As above. Upper contact sharp at 45 deg with ep alteration. Lower contact	
	80 deg with ca and hm stringers and ep alteration.	
0.00 07 44		
26.50 - 27.44	QUARTZ DIORITE Lisht hencointign throughout Databasen on ulteration	
	Light breectation introlighout. Pateny op aneration.	
27 44 - 27 68	ANDESITE DYKE	
	Dark grey aphanitic, No phenos, Brecciated irregular contacts.	
ļ	Chilled and fractured	
		J

LOGGED BY	Austin Hitchins			
SAMPLE METERAGE	SAMPLE	GOLD	TCR%	RQD%
1			T	Ī
			1	
t			<u>†</u>	t
			+	<u> </u>
∦				i
102 516	((104			
4.93 - 3.13	00484	<u>, 1</u> Г		
 			<u> </u>	
			<u> </u>	ļ
l			 	
l				ļ
			·	L
				İ
·			90	90
			1	
			1	
t				
			<u> </u>	
∦ +				
J+				
l			ļ	
 				
1				
	· · · · · · · · · · · · · · · · · · ·		<u> </u>	
]				
 				
l				
∦ ∤				
l				
∦	· · · ·			
h				
┣				
ļ				
			1	

DRILL HOLE SK94-05 Location SKINNER

CHENI GOLD MINES INC. Mt. SKINNER PROJECT DIAMOND DRILL LOG

PAGE 2 OF 3

Meterage		SAMPLE METERAGE	SAMPLE	GOLD #t	TCR%	RQD
27.68 - 28.58	QUARTZ DIORITE Numerous ep shears < 1 cm. Hm alteration of joints. Broken core in places. 29.90 - 29.39 - Andesite dyke.				95	95
28.58 - 29.54	ORTHOCLASE PORPHYRY DYKE ffs throughout. 5-10% K-spar phenos.		· · ·		100	100
29.54 - 32.41	ALTERED QUARTZ DIORITE Affected by light brecciation. Weak limonite alteration. Few specks of clay alteration near vein. 29.98 - 30.70 - Brecciated vein-stringer zone with black siliceous matrix. Clay specks in diorite host to 2%.	29.98 - 30.70	66485	0.10	100	100
32.41 - 35.50	TUFFACEOUS ANDESITE DYKE Equigranular mg tuffaceous tan colored appearance. Few phenos of feldspar >1mm. Massive. Sharp, but irregular contacts without veins or shearing.					
35.50 - 51.24	QUARTZ DIORITE As above. 40% matics, 50% plag, 10% quartz. Brecciated zones with chloritic matrix. Few altered zones with silica flooding. Minor ep alteration associated with <2cm shears. Few broken areas. 47.38 - 3cm aplite dyke with ep alteration of contacts. 48.28 - 48.75 - Aplite dyke with brecciated contacts Possibly a vein	48.28 - 48.75	66486	0.07	95	95
51.24 - 57.27	TUFFACEOUS ANDESITE DYKE As above. Light tan colored. Few fractures (hackly) at 0-20 deg. Few ca ffs.				100	100
57.27 - 67.50	ALTERED QUARTZ DIORITE As above with moderate quartz flooding. Sheared zones with siliceous chloritic matrix. 62.90 - 63.18 - Aplite dyke resembling a quartz vein. Grey minuralized data associated with an aboving. Interpolate	62.90 - 63.18	66487	0.03		
	contacts. Lower contact broken. 59.00 - 61.00 - Broken core				70	40
67.50 - 72.51	ANDESITE DYKE Tan colored with 20-30% white plag phenos. Light alteration. Aphanitic matrix and seriate. Few enclaves of altered quartz diorite. Unit is extensively broken due to limonite and chloritic joints at 0-70 deg. Few ca ffs. No py					
72.51 - 79.64	ALTERED QUARTZ DIORITE Extensive shearing with light brecciation with light ep in association 77.36 - 77.50 - Heavy brecciation and quartz flooding zone with ca matrix and grey mineral. Limonite alteration of matrix.	77.36 - 77.50	66491	0.14	100	100
79.64 - 87.50	TUFFACEOUS ANDESITE DYKE As above. Massive grey to tan. Limonite alteration in lower 2m. Often broken due to limonite and chlorite jointing at 0-70 deg. 85.19 - 85.53 - Ouartz diorite enclave.				100	100
	81.40 - 85.00 - Broken core.				75	50

DRILL HOLE	<u>SK94-05</u>
Location	SKINNER

CHENI GOLD MINES INC. ML SKINNER PROJECT DIAMOND DRILL LOG

PAGE J OF 3

		SAMPLE METERAGE	SAMPLE	GOLD	TCR%	RQD%
Meterage			190	- Wi		1
07.3V • 91.73	As above. Grev. Silica flooded with obscured phenos. Brecciated throughout	∦			<u> </u>	t
	88.00 - 88.53 - Chilled andesite porphyry dyke. Few					
	orthoclase phenos to 3-5%.	90.55 - 91.18	66488	0.07		
	91.18 - 91.73 - Sheared and brecciated zone with black	91.18 - 91.73	66489	1.24		
	chloritic matrix. Minor quartz with py clots. Some gouge.					
	Possible Victoria Vein.					
91.73 - 92.91	ANDESITE DYKE					
	Grey aphanitic, No phenos. Broken sections. Gouge near EOIL Ca ffs	91.73 - 92.91	66490	0.20	 	
	throughout.					
						i
	EOH = 92.91 m Dip test = -48 deg				ļ	
					 	ļ
		ļ				
						└ ∥
						L
						<u> </u> !
		↓		<u>.</u>		<u> </u> ¦
						├ ──-
					<u> </u>	i
					<u> </u>	
						<u>+</u>
					<u> </u>	
					<u>;</u>	
					<u> </u>	İ — İ
					İ	
					1	
		1			L	
		l			_	Ļ
					ļ	ļ!
					ļ	<u> </u>
		ļ			<u> </u>	
					 	
						<u> </u>
				İ		
						──┤
		 				+
				ļ		i
		.	 	 		┼──┤
		.				┝──┤
		 	<u> </u>	<u> </u>	·	
			I	L	i	ليسيل

DRILL HOLE SK94-06 Location SKINNER

CHENI GOLD MINES INC. ML SKINNER PROJECT DIAMOND DRILL LOG

PAGE 1 OF 3

<u>ه</u>ر ا

Tr

0.10

Tr

Тг

90 20

66496

66492

Τr

Tr

90

80

70 70

100 100

.

SURVEY GRID COLLARS

00121-00							
NORTHING	LOCAL GRID	Geology grid	DATE STARTED	July	28, 19	94	
EASTING	LOCAL NORTHING	10053	DATE COMPLETE) July	29, 19	94	
ELEVATION	LOCAL EASTING	10000	LOCCED BY	Aust	in Hitch	nins	
Azimuth	Local Azimuth	140					
	Dip	-50	SAMPLE s4	MPLE	GOLD	TCR%	RQD%

Meterage		METERAGE	No.
0 - 1.83	CASING		
1 02 4 00			
1.83 - 4.90	Grey vfo chilled with 5% 0.5-2mm K-spar phonos. Occasionally zoned		
	Fractured throughout and healed with ca. Upper contact with 3cm ca and co		
	vein at 70 deg. Lower contact sharp. Few enclaves of quartz diorite.		
4.90 - 10.00	QUARTZ DIORITE		
	50% feldspars, 40% amphibole, 10% quartz with ca and ep ffs throughout.		
	Coarse grained. <1% py		
	5.78 - 6.02 - ca>ep breccia vein at 40 deg.	5.78 -6.02	66496
10.00 - 12.12	ORTHOCLASE PORPHYRY DYKE		
	As above. 2-4mm bleach K-spars. Chilled, vfg. Brecciated areas with ep		
	alteration associated with ca veining. Contacts at 45 deg. Marked by		
	1 cm ca and ep stringers.	ļ	
10.10.04.02			
12.12 - 24.83	QUARIZ DIORITE As above with moderate on alteration of sheared areas. Zones of pervasive		·
	here cristion and en alteration. Some ca veins		
	13.30 13.52 - ca breccia vein at 40 deg with ep.	13.30 - 13.52	66492
	13.52 - 13.90 - Broken core with malachite, ep, and minor	13.52 - 13.90	66493
	limonite alteration throughout.		
	15.75 - 16.25 - 2 ca/ep veins at 35 deg. Brecciated zone	15.75 - 16.25	66494
	with ep alteration and shears throughout.		
	17.97 - 18.56 - Andesite dyke. No phenos. Grey and chilled.		
	Stringers Inroughout.		
	Brecciated contacts 2.3 cm quartz-carbonate >> en veins	It	
	common.		
	21.12 - 21.95 - Andesite dyke as above.		
24 83 - 27 88	ORTHOCT ASE PORPHYRY DYKE		
24.05 - 27.00	10% K-spar phenos. Aphanitic grev matrix. Ca and ep stringers at 1-3mm		
	throughout. Sheared 40-60 deg contacts.		
27.00 47.17			
2/.88 - 4/.1/	QUARTZ DIORITE As above. Breccisted and sheared sections with en alteration common		
	Few diorite xenoliths. Generally becoming more mafic		
	31.73 - 31.98 - ca and ep vein brecciating host, at 45 deg.	31.73 - 31.98	66495
1	34.90 - 35.38 - Andesite dyke with ca and ep stringers at		
	36.24 - 36.70 - Andesite dyke. Upper contact at 45 deg.		
	Lower contact erratic.	1	
	35.67 - 37.88 - Few broken sections.		
4717-48.97	HORNBLENDE PORPHYRY DYKE		
	Grey aphanitic matrix with 10% sub to cuhedral homblende phenos.		
	No feldspars. No indications of selective alteration.		
18 07 - 52 80	OUARTZ DIORTIE		
10.77 - 52.09	Medium to coarse grained. Ca and co stringers common	 +	
	51.78 - 52.89 - Broken core.		
	52.05 - 52.89 - Sampled. 2% py.	52.05 - 52.89	66497
L			

DRILL HOLE	SK94-06
Location	SKINNER

.

CHENI GOLD MINES INC. ML SKINNER PROJECT DIAMOND DRILL LOG

PAGE 2 OF 3

Maria		SAMPLE METERAGE	SAMPLE	GOLD	TCR%	RQ. So
52.89 - 53.43	VICTORIA VEIN			M		
	52.89 - 53.00 - Breccia vein with 80% black siliceous matrix. 20% quartz	52.89 53.00	66498	1.66	1	
	53.00 - 53.30 - Bull white quartz vein with 1mm vugs. Limonite alteration	53.00 - 53.30	66499	13.79	 	
	53.30 - 53.43 - Brecciated vein with 30-40% bleached siliceous matrix. 60-70% quartz clasts.	53.30 - 53.43	66500	0.28		
53.43 - 60.05	ALTERED QUARTZ DIORITE Brecciated and silica flooded Matrix is grey due to resilicified chlorite					
	<1% py. 53.43 - 53.96 - Sheared and brecciated. 5% py.	53.43 - 53.96	66201	0.07		
	53.96 - 54.95 - 3% py and heavy fracturing - healed. 54.95 - 55.39 - Stringer zone with black siliceous vein	<u>53.96 - 54.95</u> 54.95 - 55.39	66202 66203	0.35		
	material. 5-10%py 55.79 - 55.98 - Chilled andesite dyke with sharp contacts at 30-70 deg					
	56.38 - 57.15 - Chilled andesite dyke with sharp contacts at 45 deg.			<u> </u>		
	57.15 - 57.28 - 4cm banded quartz vein with bands of black siliceous mineral.	57.15 - 57.28	66204	0.69		
	EOH = 60.05 Dip test = -49 deg					
					<u> </u>	
		·····				
						<u> </u>
			·			
						<u> </u>

DRILL HOLE SK94-07 Location SKINNER

SURVEY GRID COLLARS

CHENI GOLD MINES INC. ML SKINNER PROJECT DIAMOND DRILL LOG

PAGE 1 OF 2

NORTHING	LOCAL GRID Geology grid	DATE STARTED) շո	y 29, 19	94	
EASTING	LOCAL NORTHING 10066	DATE COMPLE	DATE COMPLETED July 30, 1994			
ELEVATION	local easting 10000	LOGGED BY	Aus	stin Hitc	hins	
Azimuth	Local Azimuth 140					
	 Dip -50	SAMPLE	SAMPLE	GOLD	TCR%	RQD%
Metrage		METERAGE	No.	g/1		
0 - 1.83	CASING				ļ	
1.83 - 26.59	DIORITE 50% also 50% muchibale Ne guesta <10% mu Control cominged Numerous				+	
	bealed on and ca fractures. Areas of light precision associated with					
	en alteration					j
	8.66 - 8.80 - Andesite dyke. Grey vfg with sheared ca				1	
	veins at 40 deg contacts.			<u></u>		
	12.06 - 12.22 - Andesite dyke with sharp contacts at 60 deg.	1.76.1100		0.1.4		
	14.76 - 14.98 - ca and ep vein zone. Shear related	14.70 - 14.98	66205	<u>0.14</u> Tr		
	to en	10.5.5 - 10.44	00200		+	
	19.09 - 19.40 - ca and ep vein - shear related	19.09 - 19.40	66207	0.86		
	22.72 - 23.45 - Andesite dyke. Ca stringers throughout. Few					
	irregular quartz replacement clots. Few 0.5cm mafic clots					
	23.48 26.58 - Broken core				95	60
26 59 - 39 90	ANDESTEDYKE				50	70
20.36 - 36.60	Grey aphanitic, No phenos, vfg. Ep and ca ff's throughout. Brecciated in					-/ ·
)	places. Zone of grinding at 26.80m. Contacts sharp, but erratic				1	
	30.00 - 31.24 - Altered diorite with minor quartz flooding.				<u> </u>	
1	Light brecciation with siliceous chloritic matrix.					
	31.24 - 31.42 - Quartz aplite dyke with erratic contacts. Mg	·			+	
	with 5% quart, 10% amphibole, and 85% tendspars. < 1% py				+	
38.80 - 43.99	OUARTZ DIORITE				1	
	5% quartz, 55% feldspar, 40% amphibole. Ep and ca ffs common. <1% py					
	43.73 - 43.83 - Quartz vein associated with andesite dyke.	13.73 - 43.83	66208	0.07		
	Perhaps an altered diorite enclave.	ļ				
12 00 15 28	ANDESTEDVE	 			+	
43.99 - 45.20	Erratic contacts. No phenos. 1-3mm ca ffs common.				1	
45.28 - 55.30	QUARTZ DIORITE				ļ	
	10% quartz, 45% feldspars, 45% amphibole. Ep and ca stringers common.					
	Fis to 0.5cm. Few breccaled areas.	\			150	100
	hematite				1	100
55.30 - 59.47	ANDESITE DYKE				<u> </u>	
	Aphanitic grey with sections of variably digested quartz diorite enclaves.					ļ
	Upper contact erratic.	50.47 50.67	66200	0.10	+	
	59.47 - 59.67 - Qualiz veni a. tower contact.	59.47 - 59.07	00207	0,10		
59.47 - 66.16	ALTERED OUARTZ DIORITE				1	
	Brecciated with silica and chlorite matrix. Quartz flooding in patches. Healed					
	chloritic fractures throughout.					
	59.63 - 60.06 - Contains tan specks of clay alteration	59.63 - 60.06	66210			
	62.20 - 65.50 - 1 cm quartz vein at 60 deg with grey mineral at contacts. Shared chloritic contacts	02.20 - 03.30	00211	0.31	 	
	65.47 - 66.16 - Hanging wall of vein. Few 1mm grev siliceous	65.47 - 66.16	66212	0.21		†
	stringers.					
					1	
		L				

DRILL HOLE	E SK94-07
Location	SKINNER

CHENI GOLD MINES INC. Mt. SKINNER PROJECT DIAMOND DRILL LOG

PAGE 2 OF 2

N.		SAMPLE	SAMPLE	GOLD	778%	RQD9
Meterage 66 16 - 67 00(2)	VICTORIA VEIN	66.16 -67.00	66213	15.62	40	0
00,10 - 07.00(7)	Broken core with poor recovery. Minor grinding. Some gouge. Quartz vein with black siliccous mineral at about upper contact. Limonite on joints. Vein is 0.23m in the core box					
67.00(?) - 72.26	ANDESITE DYKE Seraite volcanic texture with 40% plag phenos. Few matics. Aphanitic tan				90	70
	matrix. Broken sections. 5% porosity. Ca joints and ffs throughout. 67.00(?) - 67.78 Broken core.	67.00 - 67.78	66214	0.52	90	50
	EOH = 72.26 Dip test not taken.					<u> </u>
		······			 	
					i 	
					<u> </u>	
			<u>.</u>			i +
			·			
					1	
					 	+
					+	<u>∔</u>
						<u> </u>
					1	
L <u></u>				<u> </u>	<u> </u>	<u> </u>

DRILL HOLE SK94-08 Location SKINNER

CHENI GOLD MINES INC. Mt. SKINNER PROJECT DIAMOND DRILL LOG

PAGE 1 OF 2

90

50 20 65

98 30

SURVEY GRID COLLARS

NORTHING	LOCAL GRID	Geology grid	DATE STARTED	July 30, 19	94
EASTING	LOCAL NORTHING	10065	DATE COMPLETED	July 31, 19	94
ELEVATION	LOCAL EASTING	9970	LOGGED BY	Austin Hitch	nins
Azimuth	Local Azimuth	140			
	Dip	-50	SAMPLE SA	MPLE GOLD	TCR% RQD%

Meterage		METERAGE	No.	g/t	
0 - 1.83	CASING				1
					+
18.3 - 31.68	ALTERED QUARTZ DIORITE				100
	5% Quartz, 50% teldspars, 50% maries inolign percentages are variable.				
	Unit is since flooded and subsequentry lightly breectated urroughout.				
	Siliceous heated chloritic matrix often sheared. Ep $<1-2$ cm shears common.				100
	1.85 - 2.50 - Broken core, with nm on joints.				00
	8.23 - 8.32 - Broken core.	}			1 99
	11.71 - 14.50 - Broken core with this on joints.	 			+99
	15.70 - 14.55 - 1000 following and since upter this equipment	l			+
	10% maile, 50% relispar and minor quarte. Ca su ingers				<u>+</u>
	LA S2 - 15 65 Previo zono Dionite und drite meteriul ou	14 52 15 65	66715	0.10	+
	14.55 - 15.05 - Directia Zone. Diorne and dyke material as	14.55 - 15.05	00215	0.10	+
	with cubic ov to 3mm. Ca breecias and stringers common				
	11.46 - 11.50 - Andesite ddre at 50 deg with brechinted	 			+
	contacta Gray and the No phonon				+
*	18.61 - 18.98 - Andesite date Contacts at 50 deo	¶			1
	19.30 - 3 cm andexite dyke at 40-60 deg				+
	28.77 - 3 cm andesite dyke at 45-7- deg				1
	20.77 = 500 and $control oyne at 45 = 7 = 0.02$				+
31 68 - 34 88	ANDESITE DYKE (SERATTE)				1
51.00	Service with 60% phenos to 2mm of which 90% are feldspar and 10%				1
	amphibole Volcanic appearance Chilled 80 deg contacts Some brecciation	1			+
	of diorite. Sheared areas with heavy epidote alteration. Ep ffs throughout.				+
		1			1
34.88 - 35.70	ALTERED OUARTZ DIORITE				1
	As above with moderate cp alteration along fractures and shears.	l			1
					+
35.70 - 44.10	ANDESITE DYKE				T
	Seriate. As above, but phenos are indistinct due to dark green alteration.				
	Ca and ep ffs common. Lower contact 5cm gouge with 50 deg upper				
	irregular contact.				
	43.95 - 44.43 - Diorite enclaves with moderate limonite				
	alteration associated with jointing.				
44.10 - 48.94	ALTERED QUARTZ DIORITE	1			
	Light brecciation. Pervasive silica flooding. Ca>>ep ffs common. Few				1
	chloritic <3mm shears at all angles.				<u> </u>
	45.16 - 45.46 - Argillic alteration of shears	45.16 - 45.46	66216	0.14	_
		ļ			_
48.94 - 51.82	TUFFACEOUS ANDESITE DYKE				<u> </u>
1	Mg grey with 85% feldspars and 15% mafics. Seraite. Phenos <0.5mm				
	Few ca ffs.			[
			·····		
51.82 - 54.44	ANDESITE DYKE	ļ			
	Scraite as above with phenos obscured by greenish alteration. Sheared				
	ep alteration zones. Sharp 60 deg contacts. Quartz diorite enclaves present.				
		J			+
54.44 - 57.24	ALTERED QUARTZ DIORITE	 			1.00
	Heavy brecciation and flooding obscuring primary textures. Specks of	ļ			100
	clay alteration throughout.	57.01 57.04	(())7	0.14	
	57.01 - 57.24 - Broken core.	p7.01 - 57.24	00217	0.14	1/0
	· ·	l			+
1		JI	l	L	1

.

CHENI GOLD MINES INC. ML SKINNER PROJECT DIAMOND DRILL LOG PAGE 2 OF 2

		SAMPLE	SAMPLE	GOLD	TCR%	کارک
Meterage		METERACE	<u>No.</u>	R^t	7	1
57.24 - 58.26	PROBABLE VICTORIA STRUCTURE	57.24 - 58.26	66218	0.24		<u> </u>
	Broken core, some grinding. Core loss. Mainly brecciated siliceous diorite			ļ	<u> </u>	ļ
	with limonitic matrix. Minor grey mineral in bands of quartz stringers.					ļ
	Few stringers in zone. No obvious vein. Strong argillic alteration.	· · · · · · · · · · · · · · · · · · ·		L	<u> </u>	<u> </u>
				L		L
58.26 - 58.50	ALTERED QUARTZ DIORITE	58.26 - 58.50	66219	0.10	1	
	As above.					ŗ
				1		1
58 50 - 60 30	ANDESITE DYKE			1	1	1
50.50	Service with tan matrix 1 arge < 5mm feldspars to 90% 10% matics	h		1	1	1
	For quartz calcite ffs and stringers		t		+	<u>†</u>
	rew qualiz calche its and sunigers.		 	+	+	ļ
60 20 72 00			t	<u> </u>		t
00.30 - 72.00	A share with assesses mall deles		<u> </u>	·	+	<u> </u>
	As above, while minerous small dykes.	C1 60 62 60	66220	017	+	<u> </u>
	61.60 - 61.77 - Sheared and sinca flooded zone. Vein-like with	01.00 - 03.00	00220	0.17		÷
	50 deg contacts.	·	ļ			
	63.37 - 63.60 - Broken core - sheared and jointed.		L	.l	.	·
	63.77 - 63.87 - Grey aphanitic andesite dyke. Ca stringers.			<u> </u>	1	L
	64.65 - 65.09 - Massive, tuffaceous andesite dyke. Ca ffs			İ		L
	common. Sharp 50 deg contacts.		L			
	65.88 - 66.16 - Aphanitic andesite dyke with digested quartz					
	diorite at contacts.				1	
	66.41 - 67.52 - Andesite dyke with ca ffs and stringers			1	1	1
	throughout 50-80 deg Broken in places				99	80
	60.00 - 60.33 - Anderste dyke with digested and altered					
	augest diopite at the contrasts			<u>†</u>		<u> </u>
	quaiz diome ai die comacis.			+		
	THAT WILL AND A DRAWN THE AND COUNT DURAT					<u> </u>
72.00 - 76.62	DIGESTED QUARTZ DIORITE IN ANDESITE DYKE			ļ		
	Grey to green dyke with pervasive variably digested fragments of QD.	[ļ		ļ
	Often sheared with ep alteration in association.					ļ
				<u> </u>		
76.62 - 77.58	TUFFACEOUS ANDESITE DYKE			<u> </u>		
	Tan mg massive with about 60 deg contacts. Not chilled.					
77.58 - 78.50	ANDESITE DYKE				1	1
	Grey aphanitic sheared with digested quartz diorite (fragments common).			1	-	1
	Minor grinding at 78 35		•	1	+	t
	Indiana at 70.00				+	İ
78 50 - 81 00	ALTERED OLARTZ DIORTE		<u> </u>		+	<u>├</u> ──
10.30 - 01.30	Often grouigh En ghours common		<u>+</u>	<u> </u>	+	<u> </u>
	Onen greytsh. Ep shears continon.		ł	1		
			 	İ		į
	EOH = 81.90m Dip test = -51 deg	ļ	ļ	<u> </u>		
		ļ	ļ	ļ	_	
			<u> </u>		ļ	
						L
					j	İ
			1			
				1	1	1
					1	
				t		
			<u> </u>	†	+	
						<u> </u>
			<u> </u>	+		
		.		<u> </u>		<u> </u>
				.		
		ļ	ļ	<u> </u>		1
				<u> </u>	1	L
					1	
				1	1	1
		1		1	·····	1

DRILL HOLE SK94-09

Location SKINNER

SURVEY GRID COLLARS

CHENI GOLD MINES INC. ML SKINNER PROJECT DIAMOND DRILL LOG

PAGE 1 OF 2

NORTHING LOCAL GRID Geology grid		Geology grid	DATE STARTE	D Ju	by 31, 19	94		
EASTING	LOCA	AL NORTHING	10048	DATE COMPLE	TED Au	gust I, I	994	
ELEVATION	LOCA	AL EASTING	10030	LOOGED BY	Au	stin Hitc	hins	
Azimuth	Loca	l Azimuth	140					
	Dip		-50	SAMPLE	SAMPLE	GOLD	TCR%	RQD%
Meterage				METERAGE	No.	<u>s/1</u>		
0 - 1.83	CASING							
]			ļ	ļ
1.83 - 22.33	QUARTZ DIORITE			ļ			100	100
	10% quartz, 45% pla	ag, 45% amphit	ole. Fresh appearance. Coarse grained.	}				
	Qtz/ep/ca snears thro	ugnout. E.p/cat	preccia zones at 0.5m. Few areas where				+	<u> </u>
		- 12 30 - Broke	n core. L'imonite on joint surfaces		<u> </u>		05	20
	19.00	- 22.33 - Severa	al <0.05m aphanitic grey andesite dykes				12-	20
	with	very irregular c	ontacts.				<u>†</u>	
	19.97	- 20.19 - ca and	ep vein zone. <1% py	19.97 - 20.19	66221	0.03		
	20.74	- 21.25 - Strong	ca and ep vein and stringer zone.	20.74 - 21.25	66222	Tr	L	
							İ	
22.30 - 24.70	TUFFACEOUS ANI	DESITE DYKE		ļ			100	100
	rg, grey with 50% pl	lag and 50% ma	tics. <1% py. Few ca and qtz tis and	 				<u> </u>
	SU III I I I I I I I I I I I I I I I I I	23.41 Ouart	r vein ut 80 den	23 21 22 41	66223	Tr		<u> </u>
	23.31	- 23.41 - Qualu	e veni al 80 ucg.	25.51 - 25.41	00225		+	
24.70 - 45.27	OUARTZ DIORITE						100	100
	As above. Fresh appe	arance. Few str	ingers.					
	31.80	- 32.00 - Aphan	itic grey andesite dyke with ep and ca					
	crack	le breccia throu	ghout. Sharp 45-50 deg contacts.				<u> </u>	ļ
	No pl	henos.						
	34.20 -	- 34.60 - Andes	ite dyke as above with sharp brecciated				+	
	35 54	СІ <u>S</u> - 35 71 - Ардес	ite duke with few castringers				+	
	40.80	- 40 92 - Andes	ite dyke widi iew ca su inguis.				†	
	40.00	- Unit increasin	g in epidote 0.05cm shears at 50/m.	.			<u>†</u>	
	44.82	- 45.27 - Dark g	rey pervasive alteration. Ep ffs at					
	20 de	g common.						
				ļ			<u> </u>	
45.27 - 52.78	ANDESITE DYKE	·	and an exchange and the impact			<u> </u>	100	100
	Grey vig apriamitic m	Grey vig aphanitic massive with ca and ep it's breccias and stringers					·	<u> </u>
	ienclaves	with shoug ch	and ta and anon I'ew quartz morne		ŀ┦		<u> </u>	
	45.27	- 45.40 - Ouarta	vein with breccia fragments + ep alt	45.27 - 45.40	66224	0.03	1	
	48.50 -	- 48.84 - Quarta	epidote vein at about 10 deg.	48.50 - 48.84	66225	0.03		
							<u> </u>	ļ
52.78 - 70.62	QUARTZ DIORITE						100	100
	As above with section	ns with 70% m	afics. Ep and ca shears common.					ļ
	incipient shearing thr	Signout Few v	veak dyke-like intrusions.	52 62 52 06	66226	T-		
	55.05	- 33.90 - Ep-qu - 57.27 - Chille	d andesite duke. Chert-like annearance	33.03 - 33.90	00220	11		
	Uppe	r contact sharp.	Lower contact gradational.				1	
	63.30	- 63.60 - Epido	le quartz vein zone	63.30 - 63.60	66227	0.35		
	68.60	- 68.87 - Brecci	a. Some aplite clasts with 10% mafics.	68.60 - 68.87	66228	Tr		
	Silica	a flooding of ad	jacent diorite. Grey volcanic matrix				ļ	
	(Chle	oritic). Minor li	nonite.					
	68.87	- 70.20 - Aplite	dyke. 10% matics with 50% quartz, and	69.21 - 70.62	66229	0.03	<u> </u>	ļ
	40%	reidspars. Fract	urea inrougnoui.	 				ł
				ļ			+	<u> </u>
							1	<u> </u>
							1	1
								·
								J

DRILL HOLI	E <u>SK94-09</u>
Location	SKINNER

CHENI GOLD MINES INC. Mt. SKINNER PROJECT DIAMOND DRILL LOG

PAGE 2 OF 2

Matarian		SAMPLE METERAGE	SAMPLE	GQLD prit	TCR%	R.(1%
70.62 - 71.16	VICTORIA VEIN Quartz vein with numerous joints with limonite on surfaces. Limonite vugs. 2cm gouge on upper contact at 70-80 deg.	70.62 - 71.16	66230	3.48	100	100
71.16 - 75.30	ALTERED QUARTZ DIORITE Greenish grey, cg. Ca stringers common. Areas of brecciation often jointed. 71.16 - 71.78 - Broken core.	71.16 - 71.78	66231	7.97	100	50
	EOH = 75.30 Dip test = -51 deg					
						+ +
		· · · · · · · · · · · · · · · · · · ·				
				· 		+ +
						+
L	<u>l</u>]		!		<u></u>

Date:		August 10, 1994			
Project:		Mt. Skinner Drift Sampling			Gold g/t
			WIDTH		Weighted
SAMPLE	C #	DESCRIPTION	Meters	Gold g/t	Average
66151	AT 25	FUX.	03	0.02	>
66152	111 25	SHEAR	0.5	0.03	$\frac{3}{1002/16m}$
6153			0.0	0.03	3 0.03/1.0m
66154		FW	0.3	0.03	} }
	172.00				
66155	AI 23	HW	0.4	0.03	}
66156		FAULT AND SHEAR	0.7	0.24	} 0.48/1.95m
66157	ļ	VEIN AND FAULT	0.25	3.17	}
66158		FW	0.6	0.03	}
66159	AT 21	HW	0.55	0.03	}
66160		VN	0.4	22.52	} 6.21/1.45m
66161		FW	0.5	0.03	}
66162	AT 19	HW	0.9	0.10	}
66163		FAULT	0.08	0.10	} 0.03/2.28m
66164		FW	1.3	0.03	}
66165	AT 17	HW STRUCTURE	0.5	0.66	<u>۲</u>
66166		HW	12	0.00	5 2 () () () () () () () () () () () () ()
66167	1	VEIN	0.35	5.65	<u>} 0.75/2.0511</u>
66168		FW	0.6	0.03	}
66169	AT 15	HW	12	0.14	<u>ک</u>
66170			0.1	6.04	$\frac{3}{20.55/1.7m}$
66171		FW	0.1	0.80	} 0.33/1./m }
66177	AT 10		12	0.10	·
66172		ЕЛПТ	1.5	0.10	} } 0.10/1.05m
66174		FW	0.03	0.88	} 0.10/1.95m }
66175	ATO		0.5	2 1 4	>
00175	AIO		0.3	3.14	}
00170	d 	VEIN + FAULT + SHEAK	0.2	15.03	<u>} 3.34/1.4m</u>
		<u>r</u> w		0.17	}
					· · · · · · · · · · · · · · · · · · ·

Date:	August 10, 1994			
Project:	Mt. Skinner Drift Sampling cont.			Gold g/t
SAMPLI	E # DESCRIPTION	WIDTH Meters	Gold g/t	Weighted <u>Average</u>
C1 (70		0.5	6.00	·
010/0		0.5	57.24	} 20 62/1 7m
61679 61680		0.0	0.50	20.02/1./m
01000		0.0	0.39	\$
61681	AT 4 HW	07	0.21	}
61682	VEIN	0.9	4.86	3 66.79/1.9m
61683	FW	0.3	407.86	}
66184	AT 2 HW	0.8	4 34	3 44 76/1 1m
66185	VEIN IN FW	0.3	152.47	}
66186	AT 0 WALL HW	0.7	6.31	} 0.187/1.05m
66187	FW VEIN + FAULT + SHEAR	0.35	6.76	}
		-		
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
	-			
i 				

Date:	August 10, 1994			
Project:	Mt. Skinner Drift and Raise samplin	8		Gold g/t
**** ********** **********************		WIDTH		Weighted
SAMPLE	# DESCRIPTION	Meters	Gold g/t	Average
66401	Drift face at B.S.+22.7m (collar of portal). Sheared	0.3	0.21	
	diorite. No quartz. 20% limonite gouge.			
	Victoria Vein			
		_		
	Raise Sampling			
66402	AT 1 LR (Left Rib) FW (foot wall) VEIN	0.35	1.45	3 0.276/1.75n
N/S	HW FILL	14	N/S	}
)
66403	AT 3 LR HW	0.3	0.66	}
66404	VEIN	0.8	11.65	} 6.73/1.4m
66405	FW	0.3	0.59	}
CANC		Δ.	0.17	1
00400		0.0	0.17	<u>}</u>
00407		0.35	0.80	<u>} 0.69/2.55m</u>
00408	I W	0.33	0.00	3
66409	AT 5 LR HW	0.6	0.31	}
66410	VEIN	0.2	10.41	} 0.238/1.0m
66411	FW	0.2	0.55	}
66412	AT 5 RR HW	0.8	1.72	}
66413	VEIN	0.2	13.83	} 3.40/1.3m
66414	FW	0.3	0.79	}
CA15		0.7	0.14	>
00415	AT / LK HW	0.7	0.14	}
66416		0.3	1.52	<u>} 0.45/1.35m</u>
66417	F W	0.35	0.14	}
66418	AT 7 RR HW	0.9	0.34	}
66419	VEIN	0.2	0.48	} 0.35/1.3m
66420	FW	0.2	0.14	}
66421	AT 9 IR HW	07	0.07	}
66422	VEIN	0.25	3.07	} 0.76/1.35m
66423	FW	0.4	0.55	}
66424	AT RR HW	0.7	0.10	}
66425	FAULT GOUGE	0.03	0.31	} 0.14/1.33m
66426	FW	0.6	0.21	}

Date:			August 10, 1994			
Project:			Mt. Skinner Raise sampling			Gold g/t
				WIDTH		Weighted
SAMPLE	E #		DESCRIPTION	Meters	Gold g/t	Average
	1	Raise	sampling continued		į	
						······
66427	AT 11	LR	HW	0.6	0.14	}
66428	1	L	VEIN + FAULT	0.2	35.69	} 5.83/1.3m
66429			FW	0.5	0.69	}
	1					<u></u>
66430	AT 11	RR	HW	0.8	0.03	}
66431			FAULT GOUGE	0.2	1.07	} 0.17/1.6m
66432	}		FW	0.6	0.03	}
						,
66433	AT 13	IR	HW	04	0.03	3
66434			FAULT GOLIGE	0.25	0.69	$\frac{1}{3017/105m}$
66135			FW	0.25	0.03	} 0.1771.00M
00433		····	1 W	0.4	0.05	\$
66136	AT 13	DD	HW	0.0	0.03	1003/105m
66137			EW FALL T GOLIGE	0.5	0.03	<u>} 0.03/1.05/11</u>
00457			FW FAOLI GOODE	0.15	0.21	<u>}</u>
66129	AT 15	DD	LIW/		0.03	1002/115m
66420	AIIJ			0.15	0.03	<u>} 0.05/1.15111</u>
00439	l.		FW FAULT		0.21	}
1						
					j	
	<u> </u>				!	
					•	
					•	
	 					
	Í				·	
<u> </u>						
					i	
					1	
					•	
	1				······	
					÷	
	1					
	1				i i	
					·····-	
						· · · · · · · · · · · · · · · · · · ·
	·				· · · · · · · · · · · · · · · · · · ·	
	╢			·····	، ج	
IL	JL			I		

Date:	August 10, 1994	_		
Project:	Mt. Skinner Muck Grabs Ore Pad			Gold g/t
		WDTH		Weighted
SAMPLE	# DESCRIPTION	Meters	<u>Gold g/t</u>	Average
· · · · · · · · · · · · · · · · · · ·	See map of locations - Figure 6]		
6151	Sampled July 22 - Surface muck	Grah	2 ()3	2
56152	Sampled July 22 - Dullace muck	Grah	3.03	<u>}</u> {
6153		Grah	1.52	<u>β</u> 3303 α/t
6154		Grab	1.52	<u>} 3.03 gr</u>
6155	· · · · · · · · · · · · · · · · · · ·	Grab	7.52	<u>}</u>
30133		UI4U	1.52	\$
56156	Sampled July 23 day shift. 30% vein	Grab	88.99	}
56157	with grey mineral. Crosscut round.	Grab	129.61	}
56158		Grab	147.40	} 130.44 g/t
56159		Grab	113.92	}
56160		Grab	172.26	}
56161	July 23 night shift, 10% quartz from slash	Grab	43,86	}
56162	<u> </u>	Grab	28.76	3 38 89 g/t
56163		Grab	44.03	}
56164	July 23 ore from day and night shift rounds	Grab	62.65	}
66165	35% quartz	Grab	72.51	}
56166		Grab	59.24	} 66.06 g/t
56167		Grab	74.82	}
56168		Grab	61.03	}
66169	July 24 subdrift day shift	Grab	20.03	}
56170		Grab	25.58	31.55 g/t
66171		Grab	49.07	}
56172	July 24 subdrift night shift	Grab	19.41	······································
56173	July 28 and 29 day and night shift raise muck.	Grab	7.28	3
56174	About 40% quartz	Grab	7.24	3
66175		Grab	8.45	} 7.55 g/t
6176	l	Grab	7.17	}
56177		Grab	7.62	}
6178	Tuby 29 night subdrift nightshift with 10, 15% quarty	Grah	2 02	1
KG170	sury 27 mgm suburnt mgmshint with 10-1570 qualle	Crah	3.73	1360 -14
66180		Grab	3.20	}
		<u></u>	L	L

Date:	August 10, 1994			
Project:	Mt. Skinner Waste Pad Muck Grabs			Gold g/t
		WIDTH		Weighted
SAMPLE	# DESCRIPTION	Meters	Gold g/t	Average
	See location map figure 7			
6181	PILE A	Grab	6.45	}
6182		Grab	2.03	} 3.17 g/t
6183		Grab	1.03	}
6184	РПЕВ	Grab	10.59	}
6185		Grab	7.90	} 8.69 g/t
6186		Grab	7.59	}
6187	PILE C	Grah	7.00	2
6188		Grab	3.00	$\frac{3}{3648 a/t}$
6189		Grab	8.52	}
6100		Crah	0.66	
6101		Grab	0.00	<u>}</u>) 0 72/t
6102		Grab	0.41	<u>} 0.72 g/t</u>
0192		Grab	1.07	}
6193	PILE E	· Grab	4.07	}
6194		Grab	1.07	} 1.97 g/t
6195		Grab	0.72	}
6196	Grabs from uppers in north subdrift.	Grab	2.62	}
6197		Grab	2.72	} 2.28 g/t
6198		Grab	1.48	}
6199	August 1 ore pad pile	Grab	4.86	
6200	August 1 low grade pile	Grab	2.86	
				an i Nanco

CHENI	GOLD MINES	S ETK 535			· ·	18-AL		18-Aug-94	
			Au	Au	Ag	Ag	Cu	Pb	Zn
ET #.	Tag #		(g/t)	(oz/t)	(g/t)	(oz/t)	%	%	<u>%</u>
71	66190		0.66	0.019	0.3	0.01	· · · · · · ·	· ·	
72	66191		0.40	0.012	0.3	0.01			
73	66192	· · · · ·	1.05	0.031	0.6	0.02			
74	66193	•	4.03	0.118	3.3	0.10		· · · ·	
75	66194	· · · · · · · · · · · · · · · · · · ·	1.05	0.031	1.0	0.03			
76	66195		0.71	0.021	0.7	0.02		· ·	•
77	66199		4.82	0.141	3.9	0.11			
78	66200		2.84	0.083	2.2	0.06			· · · ·
79	66402		1.43	0.042	1.1	0.03			· ·
80	66403	• ,	0.66	0.019	2.1	0.06			stjere
-81	66404		11.58	0.338	9.4	0.27	• • •		
82	66405		0.60	0.017	1.0	0.03			· • •
83	66406	· ·	0.17	0.005	< 1	< .01	· · · · ·	·	
84	66407		0.85	0.025	0.8	0.02	· ·		
85	66408		0.85	0.025	0.9	0.03			1
86	66196		2.60	0.076	3.8	0.11			
87	66197	· · · ·	2.72	0.079	3.81	0.11		• • •	
88	66198		1.48	0.043	2.53	0.07	······	•• •	• •
89 -	66013	· · · ·	0.05	0.001	<.1	< 01	<.01	<.01	<.01
90	66455	· · ·	0.11	0.003	< 1	< 01	< 01	< 01	< 01
91	66456	•	< 03	< 001	< 1	< 01	< 01	< 01	< 01
92	66457	• •	< 03	< 001	< 1	< 01	< 01	< 01	< 01
93	66458	•	< 03	< 001	< 1	< 01	< 01	< 01	< 01
Q4	86459		< 03	< 001	<1	< 01	< 01	< 01	< 01
05	66463	· .	< 03	< 001	< 1	< 01	< 01	< 01	< 01
08	66464		0.33	0.001	ne	0.02	< 01	< 01	< 01
- 07	88485	· · · · ·	< 63	< 001	< 1	< 01	< 01	< 01	< 01
91 (09	88487	: .	03 0.27	0.001		< 01	0.01	< 01	< 01
90	66468		0.27	0.000	~ 1	~ 01	0.01	< 01	< 01
100	86460	•	0.33	0.010	0.1	0.00	0.05	< 01	 .01
100	66470	•	0.00	0.002	< 1	0.00 < 01		< 01	< 01
107	66470	•	0.09	0.003		0.01	~ 01	< 01	< 01
102	86470		0.10	0.000	V.Z.	0.01		< 01	~ 01
103	88472	· · · · · ·	. 0.09	0.000	~ 1	- 01	< 01	~.01	<.01
104	004/J		<.03	<.001	S. 1	<.01	<.UI	. <.01	<.01
105	00474	· · ·	0.04	0.001	0.2	0.01	S.01	<.01	<.U1
100	004/3		<.03	S.001	< .1	5.01	5.01	<.UT	<.U1
107	004/0	· · · ·	<.03	<.001	5 .1		5.01	S.V1	0.01
108	004//	· · · ·	0.05	0.001	<.1	<.01	<.01	<.01	<.01
109	66478		0.04	0.001	<.1	<.01	<.01	<.01	<.01
110	66479		<.03	<.001	0.4	0.01	<.01	<.01	<.01
111	66480		0.24	0.007	<.1	<.01	<.01	<.01	<.01
112	66481	·· · · · ·	0.07	0.002	<.1	<.01	<.01	<.01	<.01
113	66482	· · ·	0.05	0.001	<.1	<.01	<.01	<.01	<.01
114	66483		0.04	0.001	· <.1	<.01	<.01	<.01	<.01

Frank J.Pezzottla.Sc.T.B.C.Certified Assayer

EGO. TEO' LABORATORIES LTD.

2604 573 4557

ECO-TECH KAM.

CHENI GOLD MINES ETK 535

18-Aug-94

ET #.	Tag #		Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)		
159	61654		<.03	<.001	<.1	<.01		
160	61656		0.23	0.007	0.1	0.00		
161	61657		3.16	0.092	4.9	0,14		
162	61658		<.03	<.001	<.1	<.01	····	
163	61661	· · · · ·	0.04	0.001	0.5	0.02		
164	61662		0.11	0.003	0.3	0.01	· · · · · ·	
165	61663		0.10	0.003	0.1	0.00	1.1.1	
168	61664		<.03	<.001	<.1	<.01	· · ·	and the second second second second second second second second second second second second second second second
167	61665	· · · ·	0.65	0.019	5.5	0.16	· · · · ·	
168	61668		< 03	<.001	<.1	<.01	1	
169	61670	· · · · · · · · ·	6.82	0.199	2.8	0.08	··· ·· ·	
170	61671		0.31	0.009	0.6	0.02		
171	61672	· ·	0.09	0.003	<.1	<.01	·	
172	61675		3.13	0.091	2.5	0.07	di sere	
173	61676	· · · · ·	14.96	0.436	11.9	0.35		
174	61677	· · · ·	0.17	0.005	< 1	<.01		
175	61678		0.69	0.020	0.2	0.01		
178	61680		0.60	0.017	0.2	0.01	••••	
177	61681		0.22	0.008	<.1	< 01		
178	61684		4.33	0.126	1.7	0.05		
179	61685		151.62	4.422	81.2	. 2.37	•. • •	
180	66231		7.91	0.231	3.1	0.09	· ·· · ·	

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. / B.C.Certified Assayer

XLS/Cheni

FEED FAX THIS END FAX To: Act Hitches Dept: Chen Fax No.: 684-0642. No. of Pages: S From: Sandy Date: AJG 24. Company: e. why of had Comments on plo. to d 535 Result. So have Paget: thou are 11 184 2005

ED. TEDA LABORATORIES LTD.

08/24/94

10:08

2604 573 4557

ECO-TECH KAM.

004/005

		: 			· · · ·		· · · · ·	
CHENI	GOLD MINES ETK 535	 		··· · ·	· · · ·	18	3-Aug-94	
: •		Au	Âu	Aa	Aa	Си	Pb	Zn
ET #.	Tao #	(a/t)	(oz/t)	(q/t)	(oz/t)	%	%	%
115	66484	<.03	<.001	<.1	<.01	<.01	<.01	<.01
116	66485	0.12	0.003	<.1	<.01	< 01	<.01	<.01
117	66486	0.06	0.002	<.1	<.01	<.01	<.01	<.01
118	66487	0.04	0.001	<.1	<.01	<.01	<.01	<.01
119	66488	0.06	0 002	0.1	0.00	<.01	<.01	<.01
120	66489	1.22	0.036	0.9	0.03	0.05	<.01	<.01
121	66490	0.20	0.006	<.1	<.01	0.01	<.01	0.10
122	66491	0.13	0.004		0.00	<.01	<.01	<.01
123	21/2 hammer lengths 22'	0.20	0.008	<.1	<.01		an di tang ang Ang ang ang ang	
124	4 hammer lengths 18'	7.21	0.210	3.7	0.11	a se se se se se		· · · · ·
125	66401	0.20	0.008	0.1	0.00	· · · · ·		
126	66409	0.30	0.009	1.3	0.04			• • • • •
127	66410	10.37	0.302	13.2	0.39			
128	66411	0,56	0.016	1.4	0.04			•
129	66412	1.71	0.050	D.9	0.03	·. ·		
130	66413	13.75	0.401	9.8	0.29		• • • • • •	
131	66414	0.78	0.023	0.2	0.01	· ··· ·		
132	66415	0.13	0.004	1.4	0.04			
133	66416	1.52	0.044	1.6	0.05	· · · ·		
. 134	66417	0.15	0.004	2.3	0.07	· · · · ·	al ne e Le ne	1
135	66418	0.36	0.010	0.6	0.02			
136	66419	0.48	0.014	2.5	0.07	••••		
137	66420	0.13	0.004	0.3	0.01	· ·		
138	66421	0.06	0.002	2.9	0.09	:		
139	66422	3.06	0.089	6.7	0.20			
140	66423	0.54	0.016	0.4	0.01			· · ·
141	66424	0.11	0.003	<.1	<.01		• • •	
142	66425	0.31	0.009	1.8	0.05			
143	66426	0.22	0.006	<.1	<.01			
144	66427	0.14	. 0.004	0.9	0.03	· · · · · · · · · · · · · · · · · · ·		··· ·
. 145	66428	35.50	1.035	23.6	0.69			
146	66429	0.70	0.020	. 0.3	0.01		· · · ·	
147	66430	0.03	0.001	<.1	< 01		· · · ·	
148	66431	1.05	0.031	0.7	0.02			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
149	66432	0.05	0.001		<.01			
- 150	00433	0.04	0.001	U.Z	0.01			
- 151	00434	U.68	0.020	1.0	0.05			
152	00435	<.03	<.001	< 1	<.U1		· · · · · · · · · · · · · · · · · · ·	
153	00430	0.04	0.001	<.1	<.U1			
154	00437	U.12	0.003	<,1 	<.UT			· · · - ·
155	00438	<.03		<.1	<.01		· · · · · · · ·	
156	00439	0.20		<.1	<.UT			· · ·
15/	010J2 61853	<.03		S.I.	NUI 2 01			· · · ·
158	61033	<.US	U	5.1	∽.UI			· . · ·

Frank J.Pezzotti,A.Sc.T.B)C.Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

18-Aug-94

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK 535

CHENI GOLD MINES

Suite 200-580 Hornby Street Vancouver, B.C. V2C 7C3

Attention: Austin Hitchens

108 CORE samples received August 2,1994 Project #: Mt. Skinner P.O. # MS-4-055

		Au	Au	Ag	Ag	Cu	Pb	Zn
ET #.	Tag #	(g/t)	(02/t)	(g/t)	(oz/t)	%	%	%
1	66201	0.06	0.002	· <.1	<.01	<.01	<.01	<.01
2	66202	0.33	0.010	<.1	<.01	<.01	<.01	<.01
3	66203	0.09	0.003	<.1	<.01	<.01	<.01	<.01
4	66204	0.68	0.020	0.4	0.01	0.11	<.01	<.01
5	66205	0.14	0.004	<.1	<.01	<.01	<.01	<.01
6	66206	<.03	<.001	<.1	<.01	<.01	<.01	<.01
7	66207	0.87	0.025	<.1	<.01	<.01	<.01	<.01
. 8	66208	0.08	0.002	<.1	<.01	<.01	< 01	<.01
9	66209	0.12	0.003	<.1	<.01	<.01	<.01	<.01
10	66210	<.03	<.001	<.1	<.01	<.01	<.01	<.01
11	66211	0.30	0.009	0.3	0.01	<.01	<.01	<.01
12	66212	0.19	0.006	0.2	0.01	<.01	<.01	<.01
13	66213	15.54	0.453	19.5	0.57	0.01	<.01	<.01
14	66214	0.50	0.015	0.9	0.03	<.01	<.01	<.01
15	66215	0.10	0.003	0.2	0.01	0.01	<.01	<.01
16	66216	0.13	0.004	0.2	0.01	<.01	<.01	<.01
17	66217	0.15	0.004	0.3	0.01	<.01	<.01	<.01
18	66218	0.24	0.007	1.1	0.03	0.02	<.01	<.01
19	66219	0.10	0.003	0.2	0.01	<,01	<.01	<.01
20	66220	0.17	0.005	0.5	0.02	<.01	<.01	<.01
21	66221	0.04	0.001	<.1	<.01	<.01	<.01	<.01
22	66222	<.03	<.001	<.1	<.01	<.01	<.01	<.01
23	66223	<.03	<.001	<.1	<.01	<.01	<.01	<.01
24	66224	0.03	0.001	<.1	<.01	<.01	<.01	<.01
25	66225	0.04	0.001	<.1	<.01	<.01	<.01	<.01
26	6622 6	0.04	0.001	. <.1	<.01	<.01	<.01	<.01

Frank J.Pezzott, A.Sc.T.B.C.Certified Assayer

08/18/94 17:48 2 604 5/3 455	08/18/94	17:48	2 604	573	455
-------------------------------------	----------	-------	--------------	-----	-----

ECO-TECH KAM.

CHENI GOLD MINES ETK 535

		Au	Au	Ag	Ag	Cu	Pb	Zn
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	%	%	%
27	66227	0.33	0.010	<.1	<.01	<.01	<.01	<.01
28	66228	<.03	<.001	<.1	<.01	<.01	<.01	<.01
29	66229	0.05	0.001	<.1	<.01	<.01	<.01	<.01
30	66230	*	*	6.6	0.19	<.01	<.01	<.01
31	66492	0.10	0.003	0.6	0.02	0.18	<.01	<.01
32	66493	<.03	<.001	1.0	0.03	0.28	<.01	0.01
33	66494	<.03	<.001	<.1	<.01	<.01	<.01	<.01
34	66495	<.03	<.001	<.1	<.01	<.01	<.01	<.01
35	66496	<.03	<.001	<.1	<.01	<.01	<.01	<.01
36	66497	<.03	<.001	<.1	<.01	<.01	<.01	<.01
37	66498	٠	٠	1.2	0.04	<.01	<.01	<.01
38	66499	٠	٠	10.1	0.30	0.04	<.01	<.01
39	66500	0.26	0.008	0.4	0.01	0.04	<.01	<.01
40	61651	<.03	<.001	<.1	<.01			
41	61655	<.03	<.001	<.1	<.01			
42	61659	•	*	10.9	0.32			
43	61660	0.06	0.002	16.8	0.49			
44	61666	5.86	0.171	0.7	0.02			
45	61667	5.62	0.164	1.6	0.05			
46	61669	0.13	0.004	1.2	0.04			
47	61673	0.86	0.025	1.0	0.03			
48	61674	<.03	<.001	<.1	<.01			
49	61679	*	•	48.6	1.42			
50	61682	4.84	0.141	6.2	0.18			
51	61683	•	٠	221.0	6.45			
52	61686	6.26	0.183	3.5	0.10			
53	61687	6.72	0.1 <u>98</u>	9.0	0.28			
54	66173 Ore, Rse	7.23	0.211	5.8	0.17			
55	66174 July 28/29	7.20	0.210	6.2	0.18			
56	66175	8.41	0.245	5.3	0.16			
57	66176	7.12	0.208	5.4	0.16			
58	6617 <u>7</u>	7.58	0.221	5.6	0.16			
59	66178 Ore, Rse	3.90	0.114	2.6	0.08			
60	66179 July 29	3.87	0.113	2.0	0.06			
61	66180	3.20	0.093	1.8	0.05			
62	66181 Warte	6.41	0.187	1.6	0.05			
63	66182	2.02	0.059	0.5	0.02			
64	66183	1.03	0.030	<.1	<.01			
65	66184	*	•	4.5	0.13			•
66	68185 * A	7.85	0.229	3.3	0.10			
67	6618 <u>6</u>	7.53	0.220	4.6	0.13			
68	66187	6.97	0.203	3.4	0.10			
69	66188 Č	3.86	0.113	2.0	0.06			
. 70	66189	8.47	0.247	3.6	0.11			
	-	_	TA	, ch				

Frank J.Pezzoni, A.Sc.T.B.C.Certified Assayer

CHENI GOLD MINES ETK 94-498

مور به المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع مراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ال

5-Aug-94

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Cu %	Pb %	Zn %
29	LOT 2 66171	48.80	1.423	-	-	-	•	-
30	LOT 2 66172	19.31	0.563	-	-	-	-	-
31	LOT 3 66101	0.20	0.006	-	-	-	-	-
32	LOT 3 66102	79.10	2.307	-	-	-	-	-
33	LOT 3 66103	11.57	0.337	-	-	-	-	-
34	LOT 3 66104	12.32	0.359	-	-	-	-	-
35	LOT 3 66105	29.30	0.854	-	-	-	-	-
36	LOT 3 66106	1.46	0.043	-	-	-	-	-
37	LOT 3 66009	1.29	0.038	-	-	-	-	-
38	LOT 3 66010	0.19	0.006	-	-	-	-	-
39	LOT 3 66011	5.99	0.175	-	-	-	-	-
40	LOT 3 66012	39.93	1.164	-	-	-	-	-

XLS/chenigold

TU ECO-TECH LABORATORIES LTD. Frank J. Pezzetti, A/Sc.T. B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

۰.

CERTIFICATE OF ASSAY ETK 498

.

CHENI GOLD MINES 200-580 HORNSBY STREET

VANCOUVER, B.C. V6C 3B6

ATTENTION: A. HITCHINS/ J. VINCENT

40 ROCK samples received July 27,1994

				1W1 🗠 1	ALLIC					
		Au	Au	Au	Au	Ag	Ag	Cu	РЬ	Zn
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(g/t)	(oz/t)	%	%	%
1	LOT 1 66451	0.44	0.013	•	-	0.4	0.01	0.04	0.01	0.02
2	LOT 1 66452	9.57	0.279	-	-	6.7	0.20	0.09	<.01	<.01
3	LOT 1 66453	12.72	0.371	-	-	10.8	0.32	0.60	<.01	0.04
4	LOT 1 66454	0.03	0.001	-	-	<.1	<.01	0.01	<.01	0.01
5	LOT 1 66460	0.04	0.001	-	-	<.1	<.01	0.01	<.01	0.02
6	LOT 1 66461	7.82	0.228	-	-	4.3	0.13	<.01	0.01	<.01
7	LOT 1 66462	<.03	<.001	-	-	<.1	<.01	<.01	0.01	<.01
8	LOT 1 66466	9.45	0.276	-	-	3.2	0.09	<.01	<.01	<.01
9	LOT 2 66151	2.04	0.059	-	-	-	-	-	-	-
10	LOT 2 66152	3.01	0.088	-	-	-	-	-	-	-
11	LOT 2 66153	1.51	0.044	-	-	-	-'	-	-	-
12	LOT 2 66154	1.13	0.033	-	-	-	-	-	-	-
13	LOT 2 66155	7.47	0.218	-	-	-	-	-	-	-
14	LOT 2 66156	88.50	2.581	-	-	-	-	-	-	-
15	LOT 2 66157	128.90	3.759	-	-	-	-	-	-	-
16	LOT 2 66158	146.60	4.275	133.34	3.889	-	-	-	-	-
17	LOT 2 66159	113.30	3.304	126.94	3.702	-	-	-	-	-
18	LOT 2 66160	171.30	4.996	158.01	4.608	-	-	-	-	-
19	LOT 2 66161	43.60	1.272	-	-	-	-	-	-	-
20	LOT 2 66162	28.60	0.834	-	-	-	-	-	-	-
21	LOT 2 66163	43.80	1.277	-	-	-	-	-	-	-
22	LOT 2 66164	62.30	1.817	-	-	-	-	-	-	-
23	LOT 2 66165	72.10	2.103	-	-	-	-	-	-	-
24	LOT 2 66166	58.90	1.718	-	-	-	-	-	-	-
25	LOT 2 66167	74.40	2.170	-	-	-	-	-	-	-
26	LOT 2 66168	60.70	1.770	-	-	-	-	-	-	-
27	LOT 2 66169	19.91	0.581	· _	-	-	-	-	-	-
28	LOT 2 66170	25.43	0.742	-	-	-	-	-	-	-

METALLIO

UTU. J. Pezzotti, A.S.T., B.C. Certified Assayer Frank

5-Aug-94

GEOLOGICAL BRANCH ASSESSMENT REPORT				
23,527				
AO SCALE 1: 100		GOLD ASSAYS (g/t)	CHENI GOLD MINES INC.	
7 AREA OF INFLUENCE 2 DRAWN 3	10030E CROSS SECTION		MOUNT SKINNER PROJECT	
10030ECHECKEDDATE:8-Sep-94APPROVED			CROSS SECTION AND PLAN	

