| LOG NO:  | OCT 2 5 1994 | RD.                                                                                                             |
|----------|--------------|-----------------------------------------------------------------------------------------------------------------|
| ACTION.  |              | -                                                                                                               |
| L        |              |                                                                                                                 |
| FILE NO: |              | ana ana ana amin' ana amin' ana amin' a |

NTS 104 A/4 w LAT. 56 10' N LONG. 130 02' W

## GEOLOGICAL, GEOPHYSICAL, AND GEOCHEMICAL REPORT ON THE STRIKE CLAIMS, STEWART, B.C.

Skeena Mining Division

RECEIVED

OCT 2 1 1994

Gold Commissioner's Office VANCOUVER, B.C.

for

Navarre Resources Corp., 310-1959 152 nd St. Surrey, B.C. V4A 9E3

by

Andris Kikauka, P.Geo.

October 18, 1994

GEOLOGICAL BRANCH ASSESSMENT REPORT

23,555

#### SUMMARY

The Strike Claim Group consists of 8 contiguous staked mineral claims comprising 92 units. The property is located 20 kilometers north of Stewart, B.C. and 3 kilometers east of the Big Missourri Mine. The Strike claims are accessible by a 4 kilometer long, 4-wheel drive road that adjoins the Big Missourri haulage road which leads to Westmin's Premier Gold Project Mill.

The claims are underlain by Lower to Middle Jurassic felsic volcanics and rythmically bedded sediments, cut by a younger Tertiary felsic and lamprophyre dyke swarm. The Lower and Middle Jurassic sequence consists of Betty Creek Formation clastic volcaniclastics, volcanic breccia, rhyolite, and sediments. limestone, Mount Dillworth Fm. dacite, rhyolite, and a pyritic marker horizon (5-15% disseminated and layered lapilli tuff with intercalated limestone, unconformably overlain by pyrite) Salmon R. Fm. argillaceous siltstone and interbedded pyritic greywacke.

Geological structure and stratigraphy suggest that the Mt. felsic volcanic sequence, which underlies the Dillworth Fm. Salmon R.Fm. argillaceous sediments is a target for a large sulphide deposit. Polymetallic sulphides hydrothermal are widespread in the Salmon R. sediments and probably represent remobilized vein and breccia mineralization coeval with the Tertiary dyke swarm complex. Geophysical response from DEEP-EM suggests a well defined target occurs in coincidence with polymetallic surface mineralization and a major extensive anticline structure.

Trenching of a recently discovered high grade vein returned an assay average of; 0.82% Cu, 7.34% Pb, 14.55% Zn, 259.10 oz/t Ag, 0.378 oz/t Au from 7 trench samples (# 52201-52207). This vein is part of an extensive quartz-polymetallic sulphide vein/breccia cluster concentrated along the axial plane of an anticlinal fold axis and a well defined DEEP-EM conductor. Geological mapping suggests VMS potential at the Mt Dillworth felsic volcanic/Salmon River sedimentary contact underlying vein swarm.

The DEEP-EM anomaly is a high order drill target since it coincides with favourable structure. stratigraphy, and The sediment-volcanic contact directly related mineralization. to the DEEP-EM anomaly may be a major sulphide deposit (similar to Eskay Creek). In addition, there are numerous quartz-sulphide veins, breccias, and quartz stockwork zones south of the DEEP-EM represent potential ore shoots (similar to anomaly that Silbak-Premier).

Diamond drilling in a fence pattern along the 900 meter long DEEP-EM conductor axis at 100 meter spacing is recommended. The intial phase of drilling includes 3000 meters of drilling from 10 drill pads along a 900 meter strike length.



LOOKING NORTHEAST AT NORTH END OF LONG LAKE, CAMP IS LOCATED NEAR ALLUVIAL FAN NEAR RIVER MOUTH, MINERAL ZONES ARE LOCATED GLACIAL ICE PATCH NEAR CREST OF BEAR RIVER RIDGE IN RIGHT BACKGROUND. ACCESS ROAD SHOWN IN CENTER OF RIGHT PHOTO.



LOOKING NORTH FROM MAIN GRID AREA AT 4,500 FOOT ELEVATION



DDH 93-2, TESTING DEEP-EM ANOMALY ZONE, MT.DILLWOTH IN BACKGROUND



CABINE AT NORTH END OF LONG LAKE, ACCESS ROAD IN SACKGROUND

# TABLE OF CONTENTS

Ŕ

| 1.0 | INTRODUCTION                         | page no.<br>1 |
|-----|--------------------------------------|---------------|
| 2.0 | LOCATION, ACCESS, & TOPOGRAPHY       | 1             |
| 3.0 | PROPERTY STATUS                      | 1             |
| 4.0 | AREA HISTORY                         | 2             |
| 5.0 | PROPERTY HISTORY                     | 3             |
| 6.0 | GENERAL GEOLOGY                      | 5             |
| 7.0 | 1994 FIELD PROGRAM                   | 7             |
| 7.1 | METHODS AND PROCEDURES               | 7             |
| 7.2 | PROPERTY GEOLOGY                     | 7             |
| 7.3 | GEOLOGICAL STRUCTURE                 | .9            |
| 7.4 | GEOPHYSICS                           | 10            |
| 7.6 | ROCK SAMPLING, PETROGRAPHIC ANALYSIS | 10            |
| 8.0 | DISCUSSION OF RESULTS                | <b>ì 1</b>    |
| 9.0 | CONCLUSION AND RECOMMENDATIONS       | <b>11</b>     |
|     | REFERENCES                           | 12            |
|     | ITEMIZED COST STATEMENT              | · ·           |

STATEMENT OF QUALIFICATIONS

LIST OF FIGURES AND APPENDICIES

FIG. 1 GENERAL LOCATION MAP

FIG. 2 CLAIM AND GRID LOCATION MAP

FIG. 3 REGIONAL GEOLOGY MAP

FIG. 4 PROPERTY GEOLOGY AND MINERALIZATION

FIG. 5 DDH SECTION 93-1

FIG. 6 . DDH SECTION 93-2

FIG. 7 DDH SECTION 93-3 & 4

FIG. 8 DDH SECTION 93-5 & 6

FIG. 9 DDH SECTION 93-7

FIG. 10 VLF-EM LOIS GRID

FIG. 11 MAGNETOMETER PROFILES LOIS GRID

FIG. 12 MAGNETOMETER READINGS LOIS GRID

FIG. 13 VLF-EM IRONCAP GRID

FIG. 14 MAGNETOMETER PROFILES IRONCAP GRID

FIG. 15 MAGNETOMETER READINGS IRONCAP GRID

FIG. 16 VLF-EM SLIPPERY IAN GRID

FIG. 17 MAGNETOMETER PROFILES SLIPPERY IAN GRID

FIG. 18 MAGNETOMETER READINGS SLIPPERY IAN GRID

APPENDIX 1 1994 ASSAY CERTIFICATES

APPENDIX 2 PETROGRAPHIC ANALYSIS

APPENDIX A 1993 ASSAY CERTIFICATES

APPENDIX B 1993 DRILL RECORDS

APPENDIX C TRENCHING (1992)

APPENDIX D DEEP-EM SURVEY COMPILATION (1990)

APPENDIX E VLF-EM DATA, LOIS, IRONCAP, AND SLIPPERY IAN GRIDS

## 1.0 INTRODUCTION

This report summarizes geological, geochemical, geophysical surveys carried out between Sept. 12-20, 1994 on the Strike claim group. The author, Mr. A. Kikauka, planned and supervised fieldwork on the subject claims.

## 2.0 LOCATION, ACCESS, TOPOGRAPHY

The Strike claim group is located between Bear River Ridge and Long Lake about 20 kilometers north of Stewart, B.C. The claim group is 8 kilometers north-northeast of Silbak-Premier where Westmin Res. operates a 2000 tpd mill. The property is within the Skeena Mining Division on N.T.S. 104 A/4 W, latitude 56 10'N, longitude 130 02' W (Fig.2).

Elevations on the claim group range from 1000-1675 meters. Slopes are moderate to gentle on the west slope of Bear River Ridge. The lower portion of the claim group has some stunted tree growth, and above this is alpine taiga (mosses, lichens, etc.). Recent recession of glacial ice has exposed extensive rock outcroppings in higher elevations (including the main mineral showings located on the south portion of the Strike 2).

The claim group is accessed by the Long Lake road located east of the Big Missourri mine. A 4-wheel drive access road from the north end of Long Lake extends 1.5 kilometers east to the Silver Crown main showings exposed at 1375-1525 meters elevation.

3.0 PROPERTY STATUS

The Strike 1-8 claim group consists of 8 contiguous claims that are owned by Navarre Resources Corporation (Fig.2). White Channel Resources Inc. retains a 15% net profit interest on the Strike 1-3 claims.

CLAIM NAME RECORD # UNITS RECORD DATE EXPIRY DATE

| Strike | 1 | 7569   | 18 | April 24 | ,89  | April | 24,95 |
|--------|---|--------|----|----------|------|-------|-------|
| Strike | 2 | 7570   | 18 | April 24 | ,89  | April | 24,95 |
| Strike | З | 7571   | 6  | April 24 | ,89  | April | 24,95 |
| Strike | 4 | 313367 | 8. | Sept. 20 | , 92 | Sept. | 20,95 |
| Strike | 5 | 313368 | 12 | Sept. 20 | ,92  | Sept. | 20,95 |
| Strike | 6 | 313369 | 18 | Sept. 20 | ,92  | Sept. | 20,95 |
| Strike | 7 | 313370 | 12 | Sept. 21 | ,92  | Sept. | 21,95 |

This 92 unit claim block covers 2250 hectares.

### 4.0 AREA HISTORY

The well mineralized Stewart Complex extends from Alice Arm to the Iskut River. Exploration activity in the Stewart-Iskut River "Golden Triangle" continues to be one of the most active in North America as shown by the large number of mining projects in the area. This includes the; Silbak-Premier, Big Missourri, SB, Red Mountain, Brucejack Lake, Doc, Golden Wedge, Eskay Creek, Kerr, Inel, Bonanza, Snip, and Rock 'n Roll projects. These properties have been the subject of major exploration and/or development programs for precious and base metals during the past decade.

The Stewart area has been exploited for minerals since 1900 when the Red Cliff deposit on Lydden Creek was mined. Since then, approximately 100 base and precious metal deposits within the Stewart Mining District have been developed.

Total recorded production from the Stewart area is 1,900,000 ounces gold, 40,000,000 ounces silver, and 100,000,000 pounds copper-lead-zinc. Most of this production comes from the famous Silbak-Premier mine which operated from 1918 to 1968. This mine was reactivated in 1987 by Westmin Resources to recover near surface bulk tonnage, low-grade gold and silver. Presently the surface reserves are exhausted and Westmin is extracting ore from various underground levels. Additional ore has also been produced from the Big Missourri and Tenajon SB deposits.

The Eskay Creek deposit contains an estimated 4,000,000 ounces 45,000,000 silver, and 120,000,000 ounces qold. ounces This deposit is buried and eluded discovery copper-lead-zinc. some 50 years of exploration on the claims. The unique for high-grade, stratiform 2-60 meter wide massive sulphide is outstanding in terms of predicability of its geology and tenor, its relatively well defined, contact controlled assay and boundary.

Exploration in the Cascade River and American Creek drainages (near the Strike property) includes drilling, trenching, mapping, underground exploration, geochemical and/or geophysical surveys on the Monitor, Spider, Silver Cliff, Betty, Virginia K, Moonlight, Mountain Boy, American Girl, Vancouver-Terminus, and Red Cliff showings. These prospects contain significant precious and base metal values in vein, replacement, breccia, and stockwork structures. Mineralization consists of sphalerite, galena, chalcopyrite, pyrite, tetrahedrite, arsenopyrite, native gold, and/or various sulphosalts in a gangue of quartz, calcite, barite, and/or chlorite.

Lac Minerals Ltd. has identified a major gold deposit on Red Mountain near the headwaters of Bitter Creek. Gold bearing sulphides (pyrite, chalcopyrite, arsenopyrite) are locallized near a feldspar porphyry-volcanic contact located near the summit

of Red Mountain. Over 2 million tons of 0.4 oz/t Au and 1.0 oz/t Ag have been outlined and a feasibility study is presently in progress.

## 5.0 STRIKE PROPERTY HISTORY

In 1956 Henry Hill and Assoc. examined a polymetallic mineral showing on the west slope of Bear River Ridge zone at an average elevation of 4,900 feet. Polymetallic mineralization is reported to outcrop intermittently over an area 2,300 feet long by 1,000 feet wide. Only the southern portion of the Silver Crown mineral trend was exposed through the receding glacial ice at this time.

In 1965 Dwight Collison of Alice Arm discovered polymetallic vein mineralization at the edge of a receding icefield that caps the Bear River Ridge. 33 short trenches were excavated and the zone was reported to have a 450 meter strike length.

The Silver Crown showings were first documented by E.W.Grove who performed extensive trace element geochemical analysis on this and other mineral deposits in the Stewart area (reported in Bulletin No. 58, B.C.D.M., 1971, pages 114-122). Pyrite samples from the Silver Crown contain relatively high Cu-Pb-Zn values, as did pyrite from the Silbak-Premier. Sphalerite from the Silver Crown has high Cu-Pb values that compare with samples from the Silbak-Premier. Galena from the Silver Crown had high Cu-Zn values similar to the Silbak-Premier. Also higher than average W-Mo-Co values were recorded in the Silver Crown as well as Silbak-Premier sulphide samples. Polished section petrological sulphide textures from the Silver Crown studies confirmed that were distinctly similar. Grove concluded that the and Premier Silver Crown may represent a Premier-type deposit that is higher in the stratigraphy.

Teuton Resources performed some prospecting in the vicinity of the Silver Crown in 1982. Some quartz-sulphide boulders were reported.

Geological mapping in the vicinity of the subject property by B.C.E.M.&P.Res.(J.P.Dupas, 1984) indicates the Silver Crown showings are proximal to a massive Triassic? augite porphyry mass. This massive stock/sill? is unconformably overlain by epiclastics and felsic pyroclastics of the Lower Jurassic Betty Creek and Mount Dillworth Formations, with formational sulphides (pyritic lapilli tuff) noted in the upper Dillworth sequence directly below the Silver Crown polymetallic vein network (Fig.3).

In 1989 White Channel Resources Inc. carried out geological mapping, geochemistry, trenching, and VLF-EM & Magnetometer surveys. Channel samples from 12 quartz-sulphide veins that were trenched gave average assay values of 0.1% Cu, 7.0% Pb, 2.0%

Zn, 1.31 oz/t Ag, and 0.044 oz/t Au, across an average width of 0.7 meters. A soil geochemical survey outlined a strongly anomalous Pb-Zn-Ag zone centered over the main showings with scattered and less defined Cu-Au zones. VLF-EM, Mag defined six conductive zones and five weak mag highs (in the order of 300-700 gamma increases) within the strongly anomalous Pb-Zn-Ag zone.

1990- Navarre Resources Corporation performed geological mapping, diamond drilling, Pulse -EM geophysics, geochemistry, and trenching on the Silver Crown showings.

Geological mapping identified several episodes of polymetallic mineralization with strong silicification and carbonate alteration. The veins and breccia zones cut limestones which results in increased calcite in the margins of mineralized zones.

A' total of 156 trenches across these two types of polymetallic veins give the following results;

WEIGHTED AVERAGES OF 156 TRENCHES:

| Cu % | РЬ % | Zn % | Ag g/t                     | ∕Au g∕t                      | Width                |
|------|------|------|----------------------------|------------------------------|----------------------|
| 0.14 | 5,09 | 2.24 | 55.12 (cut<br>175.6 (uncut | t) 0.77 (cu<br>t) 1.42 (uncu | t) 0.7 meters<br>ut) |

#### DIAMOND DRILLING:

10 diamond drill holes, totaling 943 meters, were collared from 4 drill pads in the southern portion of the grid. Drill holes 1,2,3,6,7,8 were relatively short and collared close to geochemical anomalies and trenches with significant precious metal values. Drill hole SC-07 intersected the "Baseline Vein" at 14.1-15.3 meters depth returning an assay value of 4.98 g/t Au Other holes intersected the downward across 1.2 meters. extension of surface trenches returning anomalous base and precious metal values. Drill holes SC-4,5,9,10 pentrated the River sediment-Mount Dillworth volcanic contact at Salmon 91.7 m., 94.1 m., 96.0 m., and 100.6 m. depth respectively. The contact boundary is silicified, pyritized, and contains minor carbonate alteration across a width of 10-25 meters.

#### GEOPHYSICS:

A DEEP-EM horizontal loop survey with a 2,000 watt Crone transmitter, Crone digital receiver, and 400 X 800 meter wire loops (outside the grid area) was performed in 1990. In contrast to the VLF-EM results, the DEEP-EM outlined a very well defined weak response near the baseline along 900 meters of the north portion of the grid. This zone coincides with the axial plane of the anticline fold and the surface trace of polymetallic

sulphide mineralization. The well defined DEEP-EM conductor along the baseline is extremely significant because the potential for this conductor to contain abundant sulphides is excellent. Similar well defined horizontal loop and IP responses are typical of major hydrothermal sulphide deposits in the Stewart area, e.g. 'Eskay Creek', Bronson Creek 'Bonanza', Iskut River 'Rock and Roll'. In case histories, these developed prospects give a horizontal loop or IP response that is well defined.

The DEEP-EM geophysical response of the Strike claims north grid area, combined with extensive surface mineralization, geological structure, and ground preparation suggest potential for a large polymetallic sulphide deposit.

#### GEOCHEMISTRY:

A 200 X 600 meter area in the south-central portion of the grid returned clusters of anomalous Cu-Pb-Zn-Ag values in soil samples. Au values in soils were anomalous as spot highs.

Stream sediment samples showed elevated Cu-Pb-Zn-Ag-Au in the vicinity of the soil anomalies.

1992- Navarre Resources Corp. performed Genie-EM geophysical surveys and trenching on the north portion of the main grid (Silver Crown showings).

A total of 7 trenches and 16 rock chip samples from polymetallic veins gave the following results;

ASSAY AVERAGES OF 7 TRENCHES (SAMPLE # 52201-07)

Cu % Pb % Zn % Ag oz/t Au oz/t Width

0.82 7.34 14.55 259.10 0.378 0.2 meters

ASSAY AVERAGES 16 ROCK CHIPS (SAMPLE # STRIKE 1-16)

Cu % Pb % Zn % Ag oz/t Au oz/t Width

0.31 10.02 13.8 61.94 0.221 0.5 meters

Genie-EM geophysics identified conductive trends 100 and 200 meters north of the 1990 DEEP-EM survey main grid baseline anomaly.

#### 6.0 GENERAL GEOLOGY

The Stewart Complex includes a thick sequence of Late Triassic to Middle Jurassic volcanic, sedimentary, and metamorphic rocks. These have been intruded and cut by a mainly granitic to symmitic suite of Lower Jurassic through Tertiary plutons which together

form part of the Coast Plutonic Complex. Deformation, in part related to intrusive activity, has produced complex fold structures along the main intrusive contacts with simple open folds and warps dominant along the east side of the complex. Cataclasis, marked by strong north-south structures, are prominent features that cut this sequence.

Country rocks in the Stewart area comprise mainly Hazleton Group strata which includes the Lower Jurassic Unuk River Formation, and the Middle Jurassic Betty Creek (and Mt.Dillworth) Formations. This sequence is unconformably overlain by Salmon River Formation, and the Nass River Formation (Grove, 1971,1986). Unuk River strata includes mainly fragmental andesitic volcanics, epiclastic volcanics, and minor volcanic flows.

Widespread Aalenian uplift and erosion was followed by deposition of the partly marine volcaniclastic Betty Creek Formation, the mixed Salmon River Formation, and the dominantly shallow marine Nass River Formation.

Intrusive activity in the Stewart area has been marked by the Lower and Middle Jurassic Texas Creek granodiorite with which the Big Missourri, Silbak Premier, SB, and many other mineral deposits in the district are associated. Younger intrusions include the Hyder Quartz Monzonite and many Tertiary stocks, and sills which form a large part of the Coast Range dykes, Mineral deposits such as B.C. Molybdenum at Plutonic Complex. Alice Arm. Porter-Idaho near Stewart, and a host of other deposits are related to 48 to 52 Ma (Eocene) plutons. These intrusives also form the regionally extensive Portland Canal Dyke Swarm.

More than 700 mineral deposits and showings have been discovered in a large variety of rocks and structures in the Stewart . The Silbak-Premier represents telescoped Complex. а (transitional), qold-silver epithermal base metal deposit localized along complex, steep fracture systems, in Lower Jurassic volcaniclastics unconformably overlain by shallow dipping Middle Jurassic Salmon River Formation sedimentary rocks. this example, the overlying sedimentary units form a barrier In or dam, trapping bonanza type gold-silver mineralization at a relatively shallow depth. Metallogeny of the Silbak-Premier, Big Missourri, SB, and a number of other deposits in the Stewart area related to early Middle Jurassic plutonic-volcanic events. is Overall, at least four major episodes of mineralization involving gold-silver, base metals, molybdenum, and tungsten dating from Middle Jurassic through to Tertiary have been early Lower recorded throughout the Stewart Complex.

## 7.0 1994 FIELD PROGRAM

A geologist and geotechnician performed geological mapping, VLF-EM and magnetomter geophysics, rock chip sampling, and road upgrading.

## 7.1 METHODS AND PROCEDURES

Utilizing hip chains and compasses, 3 flagged grids were established within the Strike 2,4,and 6 claims (Fig.4). A total of 4.8 kilometers of grid lines were surveyed over the Lois, Ironcap (Spider Extension), and Slippery Ian showings. The main grid area (established in 1990) was resurveyed in the area of diamond drilling.

Geological mapping was carried out at a scale of 1:2500 over the main grid areas.

A Geonics (Ronka) EM-16 VLF-EM was used to cover 4.8 kilometers of grid line on the Lois, Slippery Ian, and Ironcap (Spider Extension) grids. In phase and quadrature readings were taken at 25 meter intervals along northeast trending grid lines using Seattle, Washington (@ 24.8 kHz) for a transmitting station (Appendix E).

A Unimag G 816 magnetometer was used to cover 4.8 kilometers of grid line on the Lois, Slippery Ian, and Ironcap (Spider Extension) grids. Magnetometer data was corrected by looping traverses to original readings.

A maul and mallet were used to take 8 rock chip samples. Rock samples were dried and shipped to Acme Labs, Vancouver, B.C. for 30 element ICP and Au geochem.

Upgrading of ditches along the access road was performed with pick and shovel.

## 7.2 PROPERTY GEOLOGY

The claims are underlain by Lower to Middle Jurassic felsic volcanics and rythmically bedded sediments (a.k.a.Pajama Beds), cut by a felsic and lamprophyre dyke swarm. This sequence underlies massive augite diorite stock (porphyritic texture). PAGE 8 .

The Lower and Middle Jurassic sequence consists of Betty Creek Formation clastic sediments, volcaniclastics, volcanic breccia, rhyolite, Mount Dillworth Formation dacite, rhyolite, and a pyritic lapilli tuff marker horizon (5-15% disseminated and crudely layered pyrite) with intercalated limestone. unconformably overlain by Salmon River Formation argillaceous siltstone and interbedded pyritic greywacke. The stratigraphic section is summarized as follows;

INTRUSIVE ROCKS (TERTIARY)

4b Plagioclase pophyry - 20-60 m. thickness

4a Felsic dykes, 1-12 m. thickness

4 Lamprophyre dykes, intermediate composition (hornblende and plagioclase phenocrysts) 2-8 m. thickness

VOLCANIC AND SEDIMENTARY ROCKS (LOWER AND MIDDLE JURASSIC)

Salmon River Formation

3 Argillaceous, carbonaceous siltstone-greywacke, striped beds of dark and light colour, aka 'Pajama Beds' 600-1.000 m. thickness

Mount Dillworth Formation

2c Pyritic lapilli tuff, 5-15% disseminated and layered pyrite, 1-3 m. thickness, intercalated limestone

2b Limestone (fossilliferous)

2a Rhyodacite, minor rhyolite tuffs/flows

2 Lapilli block tuff, angular polymictic clasts

Betty Creek Formation

1d Volcaniclastic, sandstone 30-100 m. thickness

1c Volcanic siltstone, carbonaceous, 50-150 m. thickness

1b Tuffaceous sandstone, 50-250 m. thickness

1a Volcaniclastic, conglomerate, sandstone, 200-400 m. thickness

The Betty Creek Formation is characterized by thick beds of hematite bearing, red coloured clastic sediments and tuffs, deposited in a non-marine environment. The upper members of this

sequence (including the Mount Dillworth Formation) consist of a layered felsic volcanic sequence. Rhyolite flows, volcanic breccias, tuffs, and limestone forming thin beds and layers in a relatively restricted platform environment. The Salmon River striped siltstone-greywacke (Pajama Beds) unconformably overlies the felsic volcanics and is characterized by myriad of open fold flexures. A prominent north-northwest trending, shallow plunging anticline occurs adjacent to a thickening of the Mount Dillworth felsic volcanics. The anticline is traced for 1,000 meters along the north portion of the main grid baseline. In the centre of the main grid baseline (near L 3+00 S), a prominent intersection of a north and northwest trending lamprophyre and felsic dyke dyke swarm marks the central point of related polymetallic sulphide mineralization (Fig.3 and 4).

#### MINERALIZATION:

Four distinct types of sulphide mineralization are present in the main grid areas of the claims;

- Pyrite-galena-sphalerite-chalcopyrite in a gangue of quartz, calcite, and barite. The sulphides are characterized by a clean, coarse habit and crystalline quartz in vugs and cavities and occur at dykes.
- 2) Pyrite-sphalerite-galena-chalcopyrite-tetrahedrite in a gangue of quartz, calcite, and barite. These veins and breccia zones are characterized by lenses of coarse sphalerite and galena, deformed siltstone fragment inclusions in the gangue, and higher precious metal values than type 1 mineralization.
- 3) Sphalerite-galena-chalcopyrite-pyrite-tetrahedrite-electrumnative silver in a gangue of quartz and calcite. This mineralization contains higher precious metal value than type 1 & 2 and is characterized by massive lenses of sphalerite and galena.
- 4) Pyritic lapilli tuff, 5-15% disseminated and layered pyrite occurs as a volcanogenic, 1-3 meter wide marker horizon at the top of the Mount Dillworth volcanic sequence. This horizon is characterized by intercalated flow banded rhyolite and limestone (Fig.3,4).

#### 7.3 GEOLOGICAL STRUCTURE

The dominant structural features of the Strike property are north, northwest, and northeast trending fault lineaments which host abundant quartz-sulphide veins and related felsic to intermediate dykes clusters (Fig.4). This vein/dyke complex is related to intersecting fault structures. The main quartz-sulphide vein swarm strikes 330 degrees (parallel to

baseline), is hosted by argillaceous sediments, and trends along the axial plane of an anticlinal fold. Numerous parasitic slip folds occur adjacent and sub-parallel to the anticline fold axis. The anticline is developed within the argillaceous sediments and forms a prominent topographic high that can be traced for one kilometer.

## 7.4 GEOPHYSICS (FIG. 10-18)

VLF-EM surveys were performed on the Lois, Ironcap (Spider extension), and Slippery Ian grids. A sharp, well defined conductive zone was identified along the baseline of the Lois grid. The best response was L 2+00 S at the base line, which coincides with a trench and intersecting faults where galena-sphalerite mineralization is present.

A well defined conductive zone follows Joan Creek gulley on the Ironcap grid. The Ironcap prospect consists of heavily impregnated, fine grained pyrite that fills vessicles in dense, black, fine grained carbonate-mudstone. The Ironcap Grid VLF-EM conductor axis coincides with a NNW trending fault zone. The pyritic tuff is disrupted by the Joan Creek fault:

Magnetometer surveys were performed on the same grids. A sharp, poorly defined 2,500 gamma increase was located in the northeast portion of the Lois grid (Fig.11).

#### 7.6 ROCK CHIP SAMPLING AND PETROGRAPHIC ANALYSIS

Mineralized outcrop that was sampled include the Slippery Ian, BL (Baseline), and MJ showings (Fig.4). Sampled widths of quartz-sulphide mineralization from 0.2 to 1.8 meter. A vary compilation of current and previous rock sampling data from least thirty programs indicate at: quartz-sulphide vein/replacement zones occur in the main grid (Silver Crown covering an area showinas) 1.5 X 1.0 kilometers. A total of 8 rock chip samples were taken and gave the following results: SAMPLE # WIDTH(cm.) PPM Cu Pb Zn Ag PPB Au IAN 4 2366 60 21457 44354 46.0 400 BL 1 40 1684 21213 26905 237.8 4280 BL 2 180 731 25775 99999 113.7 2170 BL 3 45 832 22179 99999 75.0 2260 BL 4 20 7815 22311 99999 256.6 4510 BL 5 20 24 552 833 10.3 7. MJ 23 75 1891 22345 27243 246.0 970 MJ 24 45 153 22046 99999 101.8 580 

A full petrographic description of samples BL 1-3 is provided in appendix 2. The analysis inidcates that there is a simple polymetallic asemblage of pyrite-chalcopyrite-galena-sphalerite with trace amounts of tetrahedrite-electrum in a gangue of guartz-carbonate.

## 8.0 DISCUSSION OF RESULTS

The Silver Crown prospect located on the Strike 2 claim is a relatively recent discovery (1965) due to receding glacial ice. Geological structure and stratigraphy suggest that the Mt. Dillworth Fm. felsic volcanic sequence, which underlies the Salmon R.Fm. argillaceous sediments is a target for base and precious metal sulphide deposits.

Polymetallic sulphide showings are widespread and scattered, yet can be traced along major strutural linears within the Salmon R. sediments (Fig.5). This polymetallic mineralization may represent remobilized vein and breccia mineralization coeval with the Tertiary dyke swarm complex. Geophysical response from DEEP-EM (Appendix D) suggests a well defined conductor occurs in coincidence with extensive polymetallic surface mineralization and a large scale anticline fold axis. DDH 93-1 and 93-2, located in the area of the DEEP-EM conductor, failed to penetrate into the underlying Mt. Dillworth Fm., however syngenetic, bedded pyrite was encountered, suggesting potential for massive sulphide lenses within the EM anomaly zone.

Felsic tuff and limestone occurs at the Mt. pyritic Dillworth-Salmon R. Fm. contact. adjacent to the DEEP-EM anomaly polymetallic sulphide/dyke swarm, suggesting a buried and sulphide deposit may be located at this contact. DDH 93-3 to 93-7 intersected silicified and carbonate-rich zones of and/or sulphide mineralization near at the polymetallic This contact was not Mt.Dillworth-Salmon River Fm. contact. and 93-2 but it occurs regularily at intersected on DDH 93-1 about 250-350 foot depth in drill holes 93-3 to 93-7.

9.0 CONCLUSION AND RECOMMENDATIONS

The Strike property has potential to host an economic base and precious metal deposit based on the following facts:

1) Similar structure, stratigraphy, and mineralization as other major deposits in the region (e.g. Silbak-Premier, Eskay Ck.).

2) Extensive hydrothermal mineral and alteration activity

3) Mineralization is localized along a volcanic-sediment contact which coincides with a large scale anticline fold.

4) Four distinct types of sulphide mineralization (multiphase) coccur within main grid area.

5) Thirty quartz-sulphide vein/replacement zones located in the main grid area contain apreciable Cu-Pb-Zn-Ag-Au.

6) Easy access to the property and a short distance to an operating mill facility are important economic factors for future development on the Strike Claim Group.

Diamond drilling in a fence pattern along the main exposure of surface mineralization, located 50-100 meters east of the baseline from 1+50 S to 5+00 S, and along the 900 meter long DEEP-EM conductor axis is recommended. 400-600 foot deep drill holes should be collared close to vein clusters and/or intersecting mineral trends (e.g. L 3+00 S). 700-900 foot deep drill holes should be collared north DDH 93-2 (L 1+50 N) to test massive sulphide potential of DEEP-EM conductor.

The intial phase of drilling includes 3000 meters of drilling from 10 drill pads along a 900 meter strike length (from L 4+00 S to L 5+00 N). Downhole Pulse-EM (with multiple transmitter coils to assess conductor geometry) is recommended.

Contingent on phase 1 drill results, a follow up program of 5000 meters of fill-in drilling is recommended.

REFERENCES

Alldrick, D.J., 1987, Stratigraphy and Petrology of the Stewart Mining Camp, B.C. Min.of E.M.& P.Res. Report of Geological Fieldwork.

1988, Geological Setting of Precious Metal Deposits in the Stewart Area, 1989, Volcanic Centers in the Stewart Complex.

Cremonese, D., 1982, Assessment Report on the Elk and Moose Claims, B.C. Assessment Report file.

Dupas,J.P., 1984, Geology of the Spider Claim Group on Long Lake, B.C. Min.of E.M.& P.Res.

Grove,E.W., 1971, Geology and Mineral Deposits of the Stewart Area, B.C.D.M. Bull. No. 58, 1986, Geology and Mineral Deposits of the Unuk R., Salmon R. Anyox Area, B.C. Min. of E.M.& P.Res., Bull. No. 63

Kikauka,A., 1990, 1992, Assessment Reports on the Strike Claims, Navarre Res. Corp., B.C. Assessment Report File.

Plumb, W.E., 1956, Report on the M.J. Mineral Deposits, Bear River Ridge, for Henry Hill and Associates, Internal Report

Yacoub, F., 1989, Assessment Report on the Strike Claims, White Channel Resources Inc., B.C. Assessment Report File. ITEMIZED COST STATEMENT- STRIKE CLAIMS, SEPT.12-20, 94

FIELD CREW:

| Α. | Kikauka (geologist), 9 days    | \$<br>2,925.00 |
|----|--------------------------------|----------------|
| Ρ. | Matson (geotechnician), 9 days | 2,025.00       |

FIELD COST:

| Assays, 8 rock samples                       | 140.00   |
|----------------------------------------------|----------|
| Food and accommodation                       | 1,050.00 |
| Geophysical equipment rental, VLF-EM         | 375.00   |
| Magnetometer                                 | 300.00   |
| Equipment and supplies                       | 525.00   |
| Mob/Demob (truck rental, fuel, meals, wages) | 1,150.00 |
|                                              |          |

Report

800.00

Total= \$ 9,290.00

#### CERTIFICATE

1.

I, Andris Kikauka, of Box 370, Brackendale, B.C., hereby certify that;

I am a graduate of Brock University, St. Catharines, Ont., with an Honours Bachelor of Science Degree in Geological Sciences, 1980.

2. I am a Fellow in good standing with the Geological Association of Canada.

3. I am registered in the Province of British Columbia as a Professional Geoscientist.

4. I have practised my profession for fifteen years in precious and base metal exploration in the Cordillera of Western Canada, U.S.A., South America, and for three years in uranium exploration in the Canadian Shield.

5. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence on the subject properties.

6. I have a direct interest in the subject claims and securities of Navarre Resources Corp.

Andris Kikauka, P. Geo.,

A. Kikomh

October 18, 1994\*











- TERTIARY INTRUSIVE ROCKS
- Plagioclase porphry, granodiorite 4 Portland Canal dyke swarm
- MIDDLE JURASSIC VOLCANIC AND SEDIMENTARY ROCKS Salmon River Formation
- Argillaceous, carbonaceous siltstone, shale, з sandstone, minor conglomerate and limestone Mount Dillworth Formation
- 2d Felsic pyroclastic sequence of lower dust tuff, middle welded tuff, upper siliceous lapilli tuff, capped by pyritic lapilli tuff (5-15% pyrite) with intercalated limestone 2c Felsic pyroclastic sequence of lower dust tuff,middle welded tuff,upper siliceous tuff 1 Andesitic to dacitic tuffs/flows,conglomerate siltstone, sandstone, minor limestone

FAULT www.













DDH-93-5

- TERTIARY INTRUSIVE ROCKS
  - 4 Plagioclase porphry, granodiorite Portland Canal dyke swarm
  - MIDDLE JURASSIC VOLCANIC AND SEDIMENTARY ROCKS Salmon River Formation
  - З Argillaceous, carbonaceous siltstone, shale, sandstone, minor conglomerate and limestone Mount Dillworth Formation
    - 2d Felsic pyroclastic sequence of lower dust tuff, middle welded tuff, upper siliceous lapilli tuff, capped by pyritic lapilli tuff (5-15% pyrite) with intercalated limestone
  - 2c Felsic pyroclastic sequence of lower dust tuff,middle welded tuff,upper siliceous tuff 1 Andesitic to dacitic tuffs/flows,conglomerate siltstone, sandstone, minor limestone

FAULT

1.1







|                |                    |         |         |         |        |       |        |           |          |         |          |         |         |          |          |        |         |                  |                  | . •   |                   |                 |                                            |           |                               |
|----------------|--------------------|---------|---------|---------|--------|-------|--------|-----------|----------|---------|----------|---------|---------|----------|----------|--------|---------|------------------|------------------|-------|-------------------|-----------------|--------------------------------------------|-----------|-------------------------------|
|                | 157318             | -57295  | -57302  | 57315   | 57301  | 57315 | 57286  | - 57294   | 57243    | - 57222 | - 57209  | 57262   | - 57308 | e 57590  | - 28 776 | 88109- | 58125   | 58249            | 28611            | 69825 | J 57372<br>۲      | 0+0             | 205                                        |           |                               |
|                | 1 <sup>57345</sup> | S7365   | 57364   | 57415   | 57318  | 57334 | -57261 | 5725B     | 57236    | -57203  | - S7 381 | S7286   | 57311   | - 57 333 | - 57484  | STS22  | L57436  | L                | 1+0              | 505   |                   | 2               |                                            |           |                               |
|                |                    |         |         | •       | 7      |       |        | and and a | DAJELINE |         |          |         |         | 3        |          | ~      |         |                  |                  |       |                   |                 |                                            |           |                               |
| 57275<br>57275 | 57272              | 57407   | -57319  | - 57323 | - 5733 | 57310 | -57350 | 57279     | 57220    | 57281   | + 57403  | F 57339 | - 57397 | - 5727   | 57414    | - 5736 | 1 57896 | L                | 2+0              | 05    |                   | Ś               | O<br><br>SCAL                              | .E 1      | 50 m<br>                      |
|                | f57312             | - 57228 | - 57239 | 57237   | 5723S  | 57218 | 57271  | 95725     | 56911    | 2 6752  | S6681    | 56633   | 56841   | 56826    | 57269    | 21692  | l 56969 | L 3              | +00              |       |                   | A.CO            | OFESSI<br>OF<br>A. KIK<br>BRITIS<br>COLUME |           | )<br>6.12                     |
|                |                    |         |         |         |        |       |        |           |          |         |          |         |         |          |          | -      | 1       | STI<br>1AC<br>NS | RIK<br>TN<br>TRU | ET    | CL<br>OME<br>NT : | AIN<br>TE<br>UN | ЧS,<br>RRR<br>ЛМА<br>GA                    | LO<br>EAD | 15 GRU<br>11NGS<br>G-816<br>S |














STRIKE CLAIMS SLIPPERY IAN SHOWING MAGNETOMETER READINGS (IN GAMMAS)

CORRECTED BY LOOPING , INSTRUMENT G-816 UNIMAG

100m.

SCALE 1 : 2000

|        | -                 | _     |          |        |            |       | . 4      | BĄ:      | SEL       | INE        | RE.   | ADIA  | JGS              |       |                                                      |                               | _      |   |     |   |    |
|--------|-------------------|-------|----------|--------|------------|-------|----------|----------|-----------|------------|-------|-------|------------------|-------|------------------------------------------------------|-------------------------------|--------|---|-----|---|----|
|        | htigs             | 62995 | 56707    | 56490  | 19152      | 86595 | 18493    | 56728    | 4059      | 81695      | 56634 | 56295 | 26986            | 56538 | 04045                                                | 26660                         | 56285  |   |     |   |    |
|        |                   | •     |          | .,     | - •        | •1    | v        | vi       | ч         | •          |       |       |                  |       | •                                                    | •                             |        |   |     |   |    |
| -      |                   |       | <u> </u> | ~      |            |       |          |          | ~         |            |       | ~     | _                | ~     |                                                      |                               | ~      |   | _   |   |    |
|        | N 00+             |       |          |        | r 0 + 20 N |       |          |          | - 0 4 0 N |            |       |       | 50510-           |       |                                                      | •                             | 1400 5 |   |     |   |    |
| -      |                   |       |          |        |            |       |          |          |           |            |       |       | ~                |       |                                                      |                               | ~      |   |     |   |    |
| 56622  | 1                 |       | 5        | 619    | ° 1        |       | :        | 573      | 66        |            |       | 5623  | "1               |       | -                                                    | 567/                          |        |   |     |   |    |
| 56468  | 1                 |       | 5        | 6224   | 7          |       | 5        | 728      | 8         |            | :     | 5668  | 6                |       | :                                                    | 5673                          | 19-    |   |     |   |    |
| 55458  |                   |       | 5        | 622    | 21         |       | 5        | 698      | 9         |            | 1     | 5671  | 4                |       | :                                                    | 5650                          | 2-     |   |     |   |    |
| 56368  | 24                | •     | 5        | 609    | 6          |       | 1        | 5719     | 0-        |            | 4     | 56624 | 21               |       | :                                                    | 5644                          | 7      |   |     |   |    |
| 56198  |                   |       | :        | 5610   | 2          |       | 4        | 5701     | 28-       |            |       | 5641  | 84               |       | :                                                    | 5649                          | 9      |   |     |   |    |
| 55981  |                   |       | •        | 5630   | 6          | ÷ .   | -7       | 568      | 14-       |            |       | 5656  | <i>i</i>         |       |                                                      | 5623                          | 6      |   |     |   |    |
| 6043   | $\left\{ \right.$ |       |          | 563 8  | "          |       | :        | 5660     | 11        |            |       | 5641  | 18-              |       |                                                      | 5621                          | 4      |   |     |   |    |
| 6829   | 1                 |       |          | 562    | 77-        |       | :        | 5662     | 4         | 9 40       | 51.0  | 5603  | 5                | • .   | :                                                    | 5683                          | 7-     |   |     |   |    |
| -      |                   |       |          |        |            |       | <b>h</b> | <b>h</b> |           | <u>- P</u> |       |       |                  |       | <b>h</b>                                             |                               | - {    |   |     |   |    |
| 56465  | 1                 |       |          | 5631   | 6          |       | 4        | 5731     | -6-       |            |       | 5660  | ++               |       |                                                      | s6 <i>8</i> 4                 | 101    |   |     |   |    |
| 56292  |                   |       | :        | 5623   | 8          |       | 4        | 5730     | 4         |            |       | 5670  | 7                |       |                                                      | 5652                          | 3      |   |     |   |    |
| 6374   |                   |       |          | 5629   | 11         |       | 4        | 5729     | 10-       |            |       | 5711  | 5                |       |                                                      | 5662                          | 2-     |   |     | ~ | /  |
| 6448   |                   |       |          | 5600   | 3          |       | 2        | 730      | ۰ I       |            |       | 564   | 11               |       | :                                                    | 5650                          |        |   |     | • |    |
| 16411  |                   |       |          | 5642   | 7          | :     |          |          |           |            |       |       |                  |       |                                                      | _                             |        |   |     |   |    |
| 6245   |                   |       |          | 563    | 81         |       |          |          |           | _          |       |       | _                |       |                                                      | . ´                           |        |   |     |   |    |
| 7389   | 1                 |       | i        | 5629   | 2          |       |          |          | <u> </u>  |            |       | ier   |                  | ****  |                                                      |                               |        |   |     |   |    |
| 6314   | 4.                |       | -        | 5682.4 | 4 J        | /     | /        |          | •         | ଓ          | ۱۵۵   |       | ALAN OR          | OFES  | SIO                                                  |                               |        |   |     |   |    |
| S6301. | -                 |       |          | /      |            |       |          |          |           |            |       |       | ľ, č             | A K   | IKAI                                                 | SAT<br>Ika                    | F      |   |     |   |    |
| 6541   |                   | _     | /        |        |            |       |          |          |           |            |       | 1     | ן <sup>ה</sup> כ | BRI   | TISH                                                 | 2                             | Ne son |   |     |   |    |
| 56308  |                   |       |          |        |            |       |          |          |           |            |       |       | 30.00 C          | 05C   | IEN                                                  | جمبر ( <del>:</del> )<br>مرجع | •      | F | -16 | 2 | 18 |
| 6185   | ]                 |       |          |        |            |       |          |          | ·         |            |       |       |                  |       | 12 <b>1</b> 9 19 19 19 19 19 19 19 19 19 19 19 19 19 | •                             |        | , | 1   |   | 10 |
|        |                   |       |          |        |            |       |          |          |           |            |       |       |                  |       |                                                      |                               |        |   |     |   |    |

# APPENDIX (1)- 1994 ASSAY CERTIFICATES

| ACME ANALYTICAL                                               | LA                       | BORA                               | ATORI                                     | es l'.<br><u>Na</u>                       | rD.<br>.vari                            | се<br>31                  | 852<br><u>Re:</u><br>0 -   | : E. HA<br>GEOCI<br>Source<br>1959 - 1                | STIN<br>IEMI<br>I <u>CO</u><br>2nd S     | GS<br>CAI<br><u>TP</u> .<br>t., | ST.<br>Al<br><u>Pl</u><br>Surre | VA<br>NZ<br>ROJ<br>Y BO   | NCC<br>E<br>LEC<br>V4      | DUVER<br>SIS (<br>CT S'<br>A 963          | B.<br>CER<br>CRI<br>Sut    | C.<br>TI:<br><u>KE</u><br>mit: | V6,<br>FIC<br>Ficd b      | A 1R6<br>ATE<br>ile #<br>y: A. Ki                | 94<br>kauka                          | рно<br>-31                            | NE (                                      | 604)25                                         | 3-3                                   | 158                                 | FA                              | <u>x (</u> (                     |                          | 253-17<br><b>AA</b>                 | 16 |
|---------------------------------------------------------------|--------------------------|------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|---------------------------|----------------------------|-------------------------------------------------------|------------------------------------------|---------------------------------|---------------------------------|---------------------------|----------------------------|-------------------------------------------|----------------------------|--------------------------------|---------------------------|--------------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------------|------------------------------------------------|---------------------------------------|-------------------------------------|---------------------------------|----------------------------------|--------------------------|-------------------------------------|----|
| SAMPLE#                                                       | Mo<br>ppm                | Cu<br>ppm                          | Pb<br>ppm                                 | Zn<br>ppm                                 | Ag<br>ppm                               | Ni<br>ppm                 | Со<br>ррп                  | Mn I<br>ppm                                           | 'e As<br>% ppm                           | U<br>ppm                        | Au<br>ppm                       | Th<br>ppm                 | Sr<br>ppm                  | Cd<br>ppm                                 | Sb<br>ppm                  | Bi<br>ppm                      | V<br>ppm                  | Ca<br>X                                          | PL<br>% ppr                          | a Cr<br>n ppn                         | r Mg<br>n X                               | Ba Ti<br>ppm %                                 | 8<br>ppm                              | Al<br>X                             | Na<br>%                         | К<br>%                           | W<br>ppm                 | Au*<br>ppb                          |    |
| 94 IAN 4<br>94 BL 1<br>RE 94 BL 1<br>94 BL 2<br>94 BL 3       | 20<br>25<br>25<br>4<br>7 | 2366<br>1684<br>1715<br>731<br>832 | 21457<br>21213<br>20251<br>25775<br>22179 | 44354<br>26905<br>27566<br>99999<br>99999 | 46.0<br>237.8<br>226.8<br>113.7<br>75.0 | 7<br>24<br>24<br>8<br>5   | 29<br>28<br>28<br>22<br>11 | 13 6.<br><2 8.0<br><2 8.1<br><2 2.2<br>21 1.2         | 78 16<br>59 9<br>36 12<br>36 3<br>28 <2  | <5<br>5<br><5<br>9<br><5        | 2<br>3<br>4<br>~2<br>2          | 3<br>3<br>~2<br>~2        | 5<br>2<br>3<br>4<br><1     | 687.9<br>646.7<br>649.6<br>658.8<br>537.2 | 13<br>86<br>85<br>43<br>42 | <2<br>3<br>3<br>6<br><2        | 14<br>2<br>~2<br>~2<br>~2 | .06 .0<br>.01<.0<br>.01<.0<br><.01 .0<br><.01 .0 | 26 3<br>01 <<br>01 <<br>01 <<br>01 < |                                       | 5 .09<br>9 .03<br>8 .03<br>4 .01<br>2<.01 | 19<.01<br>13<.01<br>13<.01<br>15<.01<br><2<.01 | <2<br><2<br><2<br><2<br><2<br><2<br>3 | .32<br>.08<br>.08<br>.02<br>.01<    | .01<br>.01<br>.01<br>.01<br>.01 | .08<br>.05<br>.05<br>.01<br><.01 | 2<br>3<br>2<br><1<br><1  | 400<br>4280<br>4310<br>2170<br>2260 |    |
| 94 BL 4<br>94 BL 5<br>94 MJ 23<br>94 MJ 24<br>Standard C/AU-R | 14<br>8<br>3<br>31<br>19 | 7815<br>24<br>1891<br>153<br>58    | 22311<br>552<br>22345<br>22046<br>42      | 999999<br>833<br>27243<br>99999<br>125    | 256.6<br>10.3<br>246.0<br>101.8<br>6.6  | 11<br>7<br>23<br>11<br>72 | 21<br>3<br>16<br>14<br>32  | 345 1.4<br>11867 1.9<br>27 4.3<br>810 1.4<br>1036 3.9 | 48 35<br>29 19<br>38 10<br>20 4<br>26 41 | <5<br>40<br><5<br><5<br>14      | 3<br>2<br>2<br>2<br>2<br>7      | <2<br>18<br>3<br><2<br>37 | 15<br>725<br>5<br>44<br>51 | 640.8<br>4.0<br>663.6<br>666.2<br>17.2    | 652<br>4<br>49<br>26<br>19 | <2<br>4<br>4<br><2<br>19       | 2<br>4<br><2<br>3<br>61   | .30<.0<br>26.92 .0<br>.06 .0<br>.89 .0<br>.49 .0 | 01 <br 15 <br 03 <br 13 <br 90 40    | 2 8<br>3 2<br>2 6<br>2 7<br>5<br>9 59 | 8.06<br>2.18<br>5.01<br>7.14<br>9.93      | 8<.01<br>32<.01<br>12<.01<br>20<.01<br>182 .08 | 3<br><2<br><2<br>4<br>34              | .06<<br>.13<br>.06<<br>.11<<br>1.88 | .01<br>.01<br>.01<br>.01<br>.06 | .03<br>.01<br>.06<br>.09<br>.15  | <1<br>3<br>3<br><1<br>10 | 4510<br>7<br>970<br>580<br>480      |    |

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU\* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Samples beginning 'RE' are duplicate samples.</u>

## APPENDIX 2- PETROGRAPHIC ANALYSIS (1994)



# Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

Navarre Resources Corporation 310-1959 - 152 Street Surrey, B.C. V4A 9E3 Tel 531-9639-Fax 531-9634

JOB #940485 Oct 20/94

Attention: Eric Gilstead/Andres Kikauka

#### Re: Petrographic descriptions 94 BL-1,2,3

Petrographic descriptions completed. Four additional polished sections were prepared and examined in order to locate gold/electrum grains and tetrahedrite (freibergite?)

Gold/electrum occurs as <u>minute</u> grains in sphalerite with similar appearing grains of chalcopyrite and pyrite.

It is probable that additional grains of gold/electrum and possible other silver bearing minerals would be detected.

Because of your apparent immediate need for this report I am sending it as is. A photomicrograph is included to show grains of gold/electrum. Additional photomicrographs would have been useful to illustrate the interrelationships of the sulphides pyrite, sphalerite, galena, chalcopyrite, tetrahedrite, which all relate to recovery etc.

Yours truly,

KenV

K.E. Northcote, Ph.D., P.Eng.

#### 94 BL-1

Near massive sulphide mineralization in brecciated quartz gangue

#### Summary description

Gangue predominantly interlocking quartz containing lesser clusters of iron-stained sericite. Scattered composite clusters of very fine quartz and sericite which may represent vestiges of lithic fragments.

Mineralized by interstitial, and replaced by strong pyrite, lesser galena, still lesser chalcopyrite and traces (+) of tetrahedrite and sphalerite.

Microscopic description Transmitted light

#### Ganque

- Quartz; 50-55%, subhedral/anhedral (<.01 to 4.0 mm), most crystals (0.5 to 2.0 mm). Interlocking subhedral and irregular crystals forming a near continuous groundmass. Mineralized by interlocking interstitial and sulphide replacement.
- Sericite; <0.5%, anhedral (microcrystalline to 0.1 mm). Felted clusters, pseudomorphs after (7) (to 0.6 mm) Iron-stained. Also as abundantly disseminated sericite grains ad clusters of grains in irregular segregations of very fine interlocking quartz. Silicified lithic fragments???

No anticipated carbonate or barite noted in this section.

#### Reflected light Sulphides

- Pyrite; 30-35%, euhedral/subhedral/anhedral, (<.01 to >2.0 mm) Compact interlocking clusters, continuous irregular masses to several mm/cm? Intergrown with, contains inclusions of, and cut by microveinlets of chalcopyrite and galena.
- Galena; 10-12%, anhedral (<.01 to >3.0 mm). Interstitial to pyrite, associated with but cut by discontinuous microveinlets of chalcopyrite. Also as inclusions and microveinlets with chalcopyrite cutting pyrite. Few minute discontinuous chalcopyrite veinlets cut galena. Rimmed by and cut by veinlets semi-opaque secondary material. Associated traces of covellite.

Sphalerite; <<0.5%, anhedral (<.05 to 0.1 mm). Medium grey, semitranslucent. Isolated grains and associated with galena.

Chalcopyrite; 0.5-1%, anhedral (<.01 to 2.0 mm). Irregular grains with galena interstitial to pyrite, isolated grains and microveinlets in pyrite. Isolated grains in gangue.



### [1] Continued

Tetrahedrite(?); traces, anhedral (<.01 to .02 mm). Isolated grain with galena at pyrite contact, a second with chalcopyrite in galena at pyrite contact.

#### [2] 94 BL 2 Sulphide mineralized quartz vein

#### Summary description

Groundmass gangue of interlocking quartz, locally sheared, fractured. Very minor small interstitial grains epidote/clinozoisite? which also fills microfractures in pyrite.

Sulphide mineralization interstitial to and partly replacing quartz, some fracture control. In order of relative abundance sulphides are galena, pyrite, sphalerite and very minor chalcopyrite.

#### Microscopic description Transmitted light

- Quartz; 35-40%, anhedral/subhedral (<.05 to >3.0 mm). Interlocking crystals. Varied intensity shearing and fracturing. Fairly uniform opaque dusting. Interstitial mineralization and partial replacement by sulphides.
- Epidote/clinozoisite? <0.5%, anhedral/subhedral (<.01 to mm). Scattered grains interstitial to quartz and as crackle fracture fillings in pyrite. Too fine grained for positive identification. [Colourless, moderate <u>high</u> (+) R.I., second order birefringence. Biaxial (+)/(-)? with large 2V]

#### Reflected light

- Galena; 40-45%, anhedral (<.0025 mm to masses several mm/cm). Interstitial to and partially replacing quartz. Interstitial to pyrite. Contains blebs and intergrowths of sphalerite. As abundantly disseminated minute blebs and in microfractures in pyrite.
- Pyrite; 10-15%, subhedral/anhedral (<.0025 to >2.0 mm). Isolated crystal, compact intergrowths. Some crystals contain abundant microgranular to very fine blebs of galena; few minute blebs of chalcopyrite. Cut by microveinlets of galena.
- Sphalerite; 2-3%, anhedral (<.0025 to >0.5 mm). Close association with galena, blebs in galena.

Chalcopyrite; <<0.5%, anhedral (<.0025 to .02 mm). Few minute blebs in pyrite.

#### [3] 94 BL-3 Sulphide mineralised quartz vein

#### Summary description

Groundmass composed of interlocking quartz crystals showing varied intensity shearing. Contains loose clusters of altered angular to subangular lithic fragments showing a range of intensity of sericite alteration and dusting. Some fragments retain vestiges of original lithic fabric.

Mineralized, in order of relative abundance by sphalerite, pyrite, galena, chalcopyrite. Interstitial, replacement and fracture control.

#### Microscopic description Transmitted light

Quartz; 55-60%, subhedral/anhedral (<.05 to >2.0 mm). Interlocking crystals form a near continuous groundmass. Local shearing fracturing. Contains felted sericite clusters, altered lithic fragments. Varied intensity dusting traversed by clear microveinlets. Fracture controlled, interstitial infilling and replacement by sulphides.

Sericite; probably represent altered lithic fragments, see below.

Lithic fragments; 4-5%, angular (<.05 to >1 mm). Varied shapes. Some retain vestiges of original textures. Microgranular feldspathic (?) aggregates. Dusted, varied intensity of <u>microcrystalline sericite</u>. Grades to felted and foliated sericite clusters. In clusters of fairly widely separated fragments in patches within gangue.

#### Reflected light

Sphalerite; 20-22%, anhedral (<.01 to continuous masses several mm). Very irregular outlines, shows some shear/fracture control in gangue. Contains minute flecks of chalcopyrite, galena with galena microveinlets. Disseminated minute grains of euhedral pyrite showing beaded microfracture control. Note: No gold detected in this polished section. Gold grains

were detected, however, as minute grains similar occurrence as chalcopyrite and pyrite in sphalerite in polished section #3B.

Pyrite; 8-10%, euhedral/subhedral (<.0025 to 3.0 mm, generally <0.5 mm). Disseminated crystals tight packed clusters of crystals in gangue, with some fracture control. Associated interstitial galena, sphalerite. Many crystals contain abundant very fine to microgranular blebs of <u>galena</u>. Pyrite also occurs as beaded veinlets of minute crystals in sphalerite.

#### [3] Continued

Galena; 5-6%, anhedral (<.0025 to >5.0 mm). Interstitial to pyrite, sphalerite. Discontinuous rims, fracture fillings of covellite on some grains not obviously associated with chalcopyrite !! Forms minute blebs in pyrite, sphalerite, microveinlets in pyrite, sphalerite.

Chalcopyrite; 1-1.5%, anhedral (<.0025 to >2.0 mm) [a] As larger compact clusters (to >0.5 mm) in and associated with sphalerite, lesser galena. Some fracture control in gangue with sphalerite, lesser galena. [b] As minute grains disseminated in sphalerite. Some conspicuous fracture control in sphalerite. Note: Gold has a similar mode of occurrence in PS 3B but was not detected in this section.

#### [4]

Four additional polished sections made in an effort to locate and identify anticipated gold and silver-bearing minerals.

#### Polished Sections 1, 2, 3A and 3B

All mineralized by major components: Pyrite, sphalerite, galena and lesser chalcopyrite showing varied relative abundances section to section. Interrelationships of sulphides and gangue as described in 94 BL 1 to 3.

#### PS #1

Galena Pyrite Sphalerite Chalcopyrite; minute grains disseminated in quartz gangue. Minute blebs in sphalerite. Clusters and microveinlets in galena.

Tetrahedrite; traces(+), anhedral (<.05 to 0.15 mm). As irregular clots and microveinlets in galena. Close association with chalcopyrite, microveinlets cutting chalcopyrite in galena and with chalcopyrite in microfractures in pyrite.

#### P\$ #2

Galena Pyrite Sphalerite Chalcopyrite

Tetrahedrite; traces, anhedral (<.05 to <0.2 mm). Widely scattered blebs in galena, irregular to ovoid shapes some contain rounded inclusion(?) galena, and in one a minute pyrite crystal.

#### PS #3A

Pyrite Galena Sphalerite

#### PS #3B

Sphalerite Pyrite Galena, discontinuous microfractures in sphalerite Chalcopyrite

Electrum/Gold bearing sphalerite, noted 3 gold grains Ag bearing, tarnishes very quickly [a] .005 mm [b] .0075 mm [c] .01 mm Minute grains in sphalerite. Associated blebs of chalcopyrite and traces pyrite. See photomicrograph 94RXXI-13.



.

| Suggested paragenesi | s of metallic minerals |
|----------------------|------------------------|
| Pyrite               |                        |
| Sphalerite           |                        |
| Galena               |                        |
| Chalcopyrite         |                        |
| Tetrahedrite         |                        |
| Electrum/gold        | ?                      |
|                      |                        |



94 R XXI-13 Reflected light

Scale 0.1 mm

#### [1] Polished Section 3B Three gold/electrum grains

Sphalerite groundmass contains 3 grains of gold/electrum (.005, .0075, .010 mm), bright gold colour but tarnishes quickly [centre] with similar but paler chalcopyrite grains widely disseminated in sphalerite. Bright white irregular patch is internal reflection in sphalerite.



# APPENDIX A- 1993 ASSAY CERTIFICATES

PIONEER LABOR RIES INC.

5-730 EATON WAY NEW WESTMI

furnace AA finished to 1 ppb detection.

CANADA V3M 6J9

TELEPHONE 4) 522-3830

NAVARRE RESOURCES CORP. Project: Strike Project Sample Type: Cores/Rocks GEOCHEMICAL ANALYSIS CERTIFICATE Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm.

\*Au Analysis- 10 gram sample is digested with aqua regia, MIBK extracted, graphite

ER, BC

Analyst

Report No. 9380790 Date: November 04, 1993

| ELEMENT      | Mo  | Cu   | Pb           | Zn    | Ag    | Ni   | Co  | Mn           | Fe         | As  | U   | Au  | Th  | Sr  | Cd    | Sb  | Bi  | V   | Ca   | P    | La  | Cr  | Mg   | Ba  | Ti  | В   | AL   | Na  | κ    | W   | Au*   |
|--------------|-----|------|--------------|-------|-------|------|-----|--------------|------------|-----|-----|-----|-----|-----|-------|-----|-----|-----|------|------|-----|-----|------|-----|-----|-----|------|-----|------|-----|-------|
| SAMPLE       | ррп | ppm  | ppm          | ppm   | ppm   | ppm  | ppm | ppm          | <b>x</b> ' | ppm | ppm | ppm | ppm | ppm | ppm   | ppm | ppm | ppm | *    | *    | ppm | ppm | *    | ppm | *   | ppm | %    | *   | %    | ppm | ppb   |
| 86072        | 7   | 75   | 1629         | 953   | 5.3   | 31   | 10  | 516          | 3.07       | 8   | 5   | ND  | 2   | 33  | 12.8  | 3   | 3   | 12  | .49  | .039 | 2   | 46  | .41  | 51  | .01 | 3   | .69  | .01 | . 16 | 1 - | 55    |
| <b>B6073</b> | 8   | 57   | 1777         | 527   | 3.4   | 21   | 6   | 1190         | 2.72       | 15  | 5   | ND  | 2   | 110 | 6.9   | 2   | 2   | 11  | 1.68 | .058 | 4   | 55  | .64  | 34  | .01 | 2   | .59  | .01 | . 13 | 1   | 210   |
| B6074        | 4   | 337  | 74           | 105   | 2.0   | 6    | 5   | 12 <b>31</b> | 1.34       | 2   | 5   | ND  | 2   | 90  | 1.6   | 2   | 2   | 4   | 1.38 | .038 | 5   | 59  | .36  | 233 | .01 | 2   | .29  | .01 | .17  | 1   | 25    |
| B6075        | 10  | 26   | 3767         | 489   | 6.8   | 34   | 9   | 576          | 4.19       | 22  | 5   | ND  | 2   | 38  | 7.7   | 4   | 2   | 7   | .56  | .017 | 2   | 58  | .25  | 43  | .01 | 3   | .39  | .01 | . 15 | 1   | 80    |
| B6076        | 4   | 31   | 206          | 455   | 5.7   | 22   | 9   | 3119         | 4.43       | 22  | 5   | ND  | 2   | 176 | 6.4   | 2   | 2   | 11  | 3.24 | .019 | 2   | 33  | 1.12 | 71  | .01 | 2   | .52  | .01 | .16  | 1   | 42    |
| 36077        | 12  | 41   | 1213         | 1861  | 5.6   | 21   | 12  | 128          | 4.66       | 8   | 5   | ND  | 2   | 17  | 28.6  | 3   | 3   | 5   | .15  | .012 | 2   | 85  | .09  | 35  | .01 | 2   | .27  | .01 | .12  | 1   | 65    |
| 36078        | 5   | 300  | 215          | 190   | 4.8   | 26   | 8   | 562          | 4.48       | 18  | 5   | ND  | 2   | 34  | 2.4   | 2   | 2   | 13  | .43  | .024 | 3   | 42  | .53  | 57  | .01 | 4   | .84  | .01 | .17  | 1   | 28    |
| 36079        | 7   | 30   | 72           | 66    | 4.2   | 23   | 11  | 681          | 2.85       | 10  | 5   | ND  | 2   | 44  | .5    | 2   | 3   | 12  | .59  | .043 | 4   | 41  | .49  | 60  | .01 | 2   | .70  | .01 | . 15 | 1   | 58    |
| 36080        | 17  | 839  | 2269         | 24367 | 9.8   | 15   | 6   | 138          | 1.81       | 9   | 5   | ND  | 2   | 20  | .2    | 4   | 2   | 6   | .21  | .013 | 2   | 104 | .08  | 22  | .01 | 2   | . 19 | .02 | .07  | 1   | 320   |
| 86081        | 8   | 331  | 8678         | 29405 | 172.8 | 5 11 | 23  | 1577         | 3.32       | 23  | 5   | ND  | 2   | 55  | .2    | 21  | 2   | 4   | 1.09 | .028 | 2   | 78  | .24  | 26  | .01 | 2   | . 18 | .01 | . 10 | 1   | 480   |
| 86082        | 11  | 406  | 9489         | 19481 | 263.9 | 15   | 25  | 776          | 2.79       | 23  | 5   | NÐ  | 2   | 50  | .2    | 59  | 2   | 4   | .86  | .039 | 3   | 81  | . 18 | 29  | .01 | 2   | .23  | .01 | .11  | 1   | 1800  |
| 86083        | 5   | 117  | 1673         | 5795  | 86.5  | 6    | 7   | 532          | 4.67       | 3   | 5   | ND  | 2   | 52  | 71.8  | 32  | 2   | 23  | .65  | .073 | 9   | 54  | .59  | 122 | .01 | 4   | 1.47 | .01 | .12  | 1   | 320   |
| 86084        | 6   | 186  | 295 <b>9</b> | 4216  | 15.1  | 10   | 15  | 958          | 3.68       | 14  | 5   | ND  | 2   | 199 | 49.4  | 2   | 2   | 10  | 5.47 | .058 | 5   | 42  | .25  | 44  | .01 | 2   | .58  | .01 | .13  | 1   | 130   |
| B6085        | 10  | 175  | 14722        | 28726 | 341.3 | 5 16 | 12  | 390          | 2.57       | 21  | 5   | ND  | 2   | 48  | .2    | 46  | 2   | 5   | .55  | .049 | 5   | 75  | .15  | 45  | .01 | 3   | .33  | .01 | .18  | 1   | 2420  |
| 4J-7         | 2   | 3183 | 4107         | 45235 | 101.8 | 3 23 | 1   | 11           | 16.69      | 10  | 5   | ND  | 2   | 3   | .2    | 35  | 2   | 2   | .01  | .001 | 2   | 44  | .01  | 4   | .01 | 3   | .06  | .01 | .04  | 1   | 405   |
| 4J-8         | 2   | 2085 | 3892         | 21492 | 111.0 | 19   | 2   | 11           | 18.12      | 11  | 5   | ND  | 2   | 2   | .2    | 49  | 2   | 2   | .01  | .001 | 2   | 49  | .01  | 2   | .01 | 2   | .07  | .01 | .03  | 1   | 280   |
| 4J-9         | 12  | 688  | 16148        | 5576  | 20.7  | 14   | 5   | 36           | 5.95       | 5   | 5   | ND  | 2   | 21  | 101.5 | 5   | z   | 4   | .01  | .004 | 3   | 112 | .01  | 28  | .01 | 3   | . 19 | .01 | .13  | 1   | 130   |
| 1J-10        | 16  | 1095 | 7553         | 15457 | 9.4   | 10   | 3   | 32           | 1.53       | 5   | 5   | ND  | 2   | 3   | .2    | 3   | 2   | 3   | .01  | .002 | ż   | 138 | .01  | 20  | .01 | 2   | .11  | .01 | .08  | 1   | 280   |
| 4J-11        | 7   | 3084 | 19788        | 62868 | 41.8  | 15   | 8   | 56           | 4.05       | 5   | 5   | ND  | 2   | 10  | .2    | 8   | 2   | 2   | .01  | .003 | 2   | 119 | .01  | 21  | .01 | 4   | .09  | .01 | .06  | 1   | 1200  |
| 1J-12        | 6   | 1142 | 1004         | 223   | 47.7  | 18   | 5   | 30           | 3.25       | 10  | 5   | ND  | 2   | 3   | 3.6   | 4   | 2   | 4   | .01  | .002 | 2   | 94  | .01  | 41  | .01 | 2   | . 16 | .01 | . 12 | 1   | 920   |
| 1J-13        | 6   | 430  | 20054        | 76432 | 34.5  | 26   | 6   | 96           | 3.00       | 16  | 5   | ND  | 2   | 28  | .2    | 1.1 | 2   | 4   | .20  | .008 | 2   | 76  | .07  | 21  | .01 | 2   | . 19 | .01 | .10  | 1   | 205   |
| 1J-14        | 10  | 2248 | 20595        | 87089 | 66.4  | 12   | 4   | 1190         | 2.74       | 11  | 5   | ND  | 2   | 7   | .2    | 8   | 2   | 5   | .06  | .011 | 2   | 98  | .10  | 34  | .01 | 2   | .17  | .01 | . 12 | 1   | 1040  |
| IJ-15        | 21  | 159  | 6240         | 290   | 19.9  | 14   | 2   | 57           | 2.46       | 30  | 5   | ND  | 2   | 8   | 4.7   | 5   | 2   | 4   | .03  | .021 | 2   | 127 | .02  | 43  | .01 | 3   | .17  | .01 | . 13 | 1   | 250   |
| 1J-16        | 6   | 2327 | 2616         | 2219  | 31.8  | 38   | 2   | 18           | 19.76      | 18  | 5   | ND  | 2   | 2   | 32.1  | 4   | 2   | 2   | .01  | .005 | 2   | 89  | .01  | 7   | .01 | 3   | .10  | .01 | .07  | 1   | 1280  |
| 1J-17        | 8   | 77   | 18175        | 99999 | 221.7 | ' 4  | 15  | 29           | .38        | 2   | 5   | 12  | 2   | 3   | .2    | 192 | 2   | 2   | .03  | .005 | 2   | 38  | .01  | 7   | .01 | 2   | .03  | .01 | .02  | 2   | 11800 |
| 1J-18        | 18  | 667  | 15334        | 2085  | 33.1  | 28   | 16  | 34           | 14.35      | 42  | 5   | ND  | 2   | 7   | 37.6  | 7   | 6   | 3   | .07  | .024 | 2   | 58  | .01  | 14  | .01 | 2   | .17  | .01 | .09  | 1   | 210   |
| 1J-19        | 24  | 5205 | 17243        | 17099 | 65.3  | 15   | 24  | 39           | 8.50       | 12  | 5   | ND  | 2   | 2   | .2    | 13  | 13  | 2   | .02  | .002 | 2   | 99  | .01  | 13  | .01 | 2   | .09  | .01 | .03  | 1   | 2280  |
| 1J-20        | 17  | 28   | 994          | 1935  | 2.9   | 6    | 3   | 78           | 1.11       | 7   | 5   | ND  | 2   | 6   | 32.2  | 2   | 2   | 3   | .05  | .006 | 2   | 139 | .02  | 132 | .01 | 2   | .14  | .01 | .09  | 1   | 150   |
| 1J-21        | 16  | 335  | 20361        | 62718 | 199.9 | 5    | 4   | 329          | 1.25       | 4   | 5   | 27  | 2   | 14  | .2    | 84  | 2   | 2   | .25  | .007 | 2   | 90  | .06  | 20  | .01 | 2   | .09  | .01 | .05  | 2   | 23500 |
| (J-22        | 11  | 365  | 22702        | 38621 | 191.5 | 8    | 3   | 131          | 1.72       | 8   | 5   | 26  | 2   | 7   | .2    | 158 | 2   | 2   | .10  | .002 | 2   | 143 | .03  | 13  | .01 | 2   | .08  | .01 | .04  | 1   | 28800 |
|              |     |      |              |       |       |      |     |              |            |     |     |     |     |     |       |     |     |     |      |      |     |     |      |     |     |     |      |     |      |     |       |

| LEMENT<br>AMPLE | No<br>Ppin | ppa | Pb<br>ppn | Zn<br>ppm | Ag<br>ppm | Nî<br>ppm | Co | Kin<br>Lippa | Fe<br>X | As<br>ppm | U<br>jepin | Au<br>ppm | Th<br>Ppa | Sr<br>ippna | ca<br>ppm | Sb | Bi<br>ppa | V<br>ppm | Ca<br>X | P<br>2 | La<br>ppin | Cr<br>ppm | Ng<br>X | 8a<br>ppin | 1i<br>2 | iß<br>"ppar | AL<br>1 2 | Na<br>¥ | <b>x</b> | W<br>ppm | Au<br>ppb |
|-----------------|------------|-----|-----------|-----------|-----------|-----------|----|--------------|---------|-----------|------------|-----------|-----------|-------------|-----------|----|-----------|----------|---------|--------|------------|-----------|---------|------------|---------|-------------|-----------|---------|----------|----------|-----------|
| <b>6066</b>     | . 3        | 264 | 509       | 100       | 4.2       | 8         | 8  | 1056         | 4,02    | 3         | 5          | ND        | 2         | 48          | .4        | 2  | z         | 11       | .81     | -047   | 5          | 63        | .48     | 38         | .01     | 2           | .48       | .02     | .14      | 1        | 128       |
| 6067            | 1          | 127 | 45        | 73        | 2.2       | 6         | 10 | 1851         | 4.52    | 4         | 5          | HD        | 2         | 101         | _2        | 2  | 2         | 8        | 1.90    | -002   | 2          | 48        | 1.10    | 75         | .01     | 2           | .97       | .04     | .14      | 1        | 29        |
| 6068            | 4          | 201 | 93        | 44        | 3.8       | 7         | 9  | 585          | 2.47    | 3 -       | 5          | HD        | 2         | 50          | .2        | 2  | 2         | 6        | .50     | .004   | 6          | 71        | .49     | 47         | .01     | Ζ           | .47       | .03     | .14      | 1        | . 55      |
| 5069            | 1          | 250 | 20        | 103       | 2.1       | 7         | 8  | 770          | 2.97    | 2         | 5          | ND        | 2         | 68          | .2        | 2  | z         | 11       | .67     | .005   | 13         | 26        | 1.21    | 87         | .01     | 2           | 1.50      | .05     | .17      | 1        | 2         |
| 5070            | 3          | 30  | 17        | 97        | 2.4       | 4.        | 10 | 751          | 3.49    | 8         | 5          | NÐ        | 2         | 79          | .3        | 2  | 2         | 12       | 1.00    | _010   | 9          | 38        | 1,13    | 42         | .01     | 2           | .76       | .03     | .16      | 1        | 13        |
| 5071            | . 3        | 12  | 15        | 53        | .7        | 5         | 8  | 867          | 2,36    | 5         | 5          | ND        | 2         | 74          | .2        | 2  | 3         | 7        | .86     | -006   | 6          | 50        | .74     | 42         | -01     | 2           | .67       | ,03     | . 16     | 1        | 8         |

PAGE 3

|         |     |       |                |       |      |      |     |      |      |      |     |     |     | 6   |       |                  |     |     |              |       |     |               |      |                |     |     |      |     |      |     |             |
|---------|-----|-------|----------------|-------|------|------|-----|------|------|------|-----|-----|-----|-----|-------|------------------|-----|-----|--------------|-------|-----|---------------|------|----------------|-----|-----|------|-----|------|-----|-------------|
| ELEMENT | N   | u     | Pb             | 2n    | Ag   | Nī   | Co  | Hn   | Fe   | As   | U   | Au  | Th  | Sr  |       | Sb               | Bi  | ۷   | <b>C</b> .,  | P     | La  | Cr            | Mg   | Ba             | Tī  | B   | AL   | Na  | ĸ    | u l | Au          |
| SAMPLE  | ppr | n ppm | ppn            | ppm ' | ppet | )ppm | ppm | ppm  | x    | ppm  | ppm | ppm | ppm | ppm | ppn   | ppa <sup>-</sup> | ppa | ppa | 2            | x     | ppn | <b>ppm</b>    | X    | ppa            | *   | ppn | x    | 2   | 2    | ppn | ppb         |
| 86031   | 15  | 40    | <del>9</del> 9 | 417   | 3.2  | 22   | 6   | 1077 | 3.88 | 23   | 5   | ND  | 2   | 257 | 5.0   | 4                | 2   | 28  | 2.90         | .085  | 4   | 41            | 1_12 | 62             | .01 | 4   | 1.31 | .82 | . 19 | 1   | 1           |
| 86032   | 5   | 26    | 10             | 135   | .6   | 9    | 7   | 651  | 3.68 | 14   | 5   | NED | 2   | 237 | .7    | 2                | 2   | 20  | 3.82         | .075  | 6   | 23            | .98  | 87             | .01 | 4   | 1.64 | .02 | . 19 | 1   | 1           |
| 86033   | 6   | 62    | 12947          | 1793  | 8.5  | 25   | 10  | 196  | 3.64 | 16   | 5   | ND  | 2   | 34  | 27.7  | 8                | 2   | 7   | .39          | .011  | 2   | 82            | .14  | 37             | .01 | 4   | .28  | .01 | -20  | 1   | 67          |
| 86034   | 5   | 107   | 1745           | 4607  | 3.2  | 49   | 11  | 724  | 3.94 | 11   | 5   | ND  | 2   | 191 | 61.8  | 4                | 2   | 23  | 2.06         | .027  | 3   | 74            | .73  | 56             | -01 | 5   | .94  | _01 | .20  | 1   | 21          |
| 86035   | 12  | 101   | 2041           | 7753  | 7.9  | 28   | 8   | 332  | 3.03 | 23   | 5   | ND  | 2   | 40  | 140.5 | 5                | 2   | 18  | .39          | .032  | 4   | 76            | .51  | 53             | -01 | 3   | -80  | .02 | .17  | 2   | 36          |
| 86036   | 2   | 346   | -7504          | 10783 | 7.4  | 4    | 4   | 1057 | 1.36 | 5    | 5   | ND  | 2   | 106 | 203.8 | 2                | 2   | 5   | 1.44         | .054  | 7   | 57            | .41  | 46             | .01 | 2   | .35  | .03 | .27  | 15  | 64          |
| 86037   | 2   | 166   | 683            | 5268  | 2.1  | 6    | 4   | 796  | 1.47 | 2    | 5   | ND  | 2   | 96  | 80.3  | 2                | 2   | 6   | 1.09         | - 058 | 9   | 43            | .33  | 128            | -01 | 2   | .46  | .02 | .29  | 1   | 25          |
| 86038   | 2   | 60    | 61             | 170   | -9   | 13   | 11  | 1180 | 3.93 | 2    | 5   | ND  | 2   | 125 | .8    | 2                | 2   | 27  | <b>1.9</b> 1 | . 138 | 14  | 55            | 1.22 | <del>9</del> 9 | .01 | 2   | 1.38 | .03 | .20  | 1   | 4           |
| 86039   | 4   | 163   | 162            | 488   | 1.0  | 9    | 9   | 1379 | 3.28 | 2    | 5   | ND  | 2   | 138 | 12.5  | 2                | 2   | 21  | 2.14         | .137  | 17  | 64            | 1.08 | 86             | .01 | 2   | 1.05 | .04 | .20  | 1   | 1           |
| 86040   | 6   | 80    | 152            | 181   | 2.1  | 26   | 8   | 532  | 2.46 | 36   | 5   | MD  | 2   | 66  | 2.5   | 2                | 2   | 8   | .85          | .083  | 5   | 70            | .27  | 58             | .01 | 3   | .54  | .02 | .27  | 1   | 15          |
| 86041   | 2   | 165   | 53             | 380   | .4   | 6    | 4   | 681  | 1.35 | 2    | 5   | ND  | 2   | 87  | 5.0   | 2                | 2   | 5   | 1.21         | .055  | 7   | 63            | .34  | 43             | .01 | 2   | .44  | .03 | .27  | 1   | 1           |
| 86042   | 2   | 108   | 176            | 24    | .3   | 6    | 4   | 546  | 1.14 | 2    | 5   | КD  | 2   | 77  | .2    | 2                | 2   | 5   | .99          | .060  | 8   | 56            | .28  | 41             | .01 | 2   | .45  | .03 | .28  | 1   | 1           |
| 86043   | 5   | 367   | 186            | 1005  | 4.4  | 19   | 9   | 577  | 3.42 | 10   | 5   | ND  | 2   | 42  | 18.9  | 2                | 2   | 10  | .56          | .030  | 2   | 51            | .47  | 57             | .01 | 3   | .85  | .01 | .25  | 1   | 39          |
| 86044   | 7   | 33    | 174            | 255   | 7.6  | 37   | 11  | 391  | 3,72 | 9    | 5   | ND  | 2   | 50  | 3.3   | 3                | 2   | 12  | .55          | .042  | 2   | 35            | .36  | 56             | .01 | 3   | .71  | _01 | .26  | 1   | 57          |
| 86045   | 6   | 20    | 81             | 84    | 4.8  | 29   | 11  | 334  | 3.95 | 6    | 5   | ND  | 2   | 34  | .6    | 2                | 2   | 14  | .25          | .030  | 4   | 57            | .47  | 59             | .01 | 3   | .74  | .02 | .25  | 1   | 46          |
| 86046   | 10  | 21    | 110            | 68    | 8.2  | 37   | 18  | 93   | 4.56 | 13   | 5   | ND  | 2   | 26  | .6    | 4                | 2   | 7   | - 18         | .034  | 3   | 55            | .11  | 43             | .01 | 3   | .48  | .01 | .28  | 1   | 103         |
| 86047   | 8   | 32    | 113            | 170   | 6.2  | 13   | 8   | 701  | 2.93 | .10  | 5   | ND  | 2   | 61  | 2.4   | 2                | 2   | 8   | .83          | .021  | 2   | 67            | .35  | 47             | .01 | 3   | ,50  | .01 | .22  | 1   | 51          |
| 86048   | 18  | 14    | 45             | 21    | 2.9  | 10   | 7   | 137  | 1.50 | 6    | 5   | ND  | 2   | 28  | .2    | 2                | 2   | 6   | -30          | .016  | 2   | 136           | ,13  | 34             | .01 | 2   | .29  | .01 | .17  | 1   | 32          |
| 86049   | 13  | 7     | 76             | 47    | 2.1  | 9    | 7   | 334  | 2.10 | 8    | 5   | NÐ  | 2   | 37  | .6    | 2                | 2   | 6   | .39          | .029  | 4   | <b>9</b> 5    | . 14 | 56             | .01 | 2   | .36  | .02 | .23  | 1   | 22          |
| 86050   | 4   | 7     | 24             | 96    | .3   | 9    | 8   | 1096 | 2.88 | 12   | 5   | ND  | 2   | 103 | .3    | 2                | 2   | 17  | 1.55         | .118  | 12  | 60            | .71  | 49             | .01 | 2   | .88  | .03 | .27  | 1   | 3           |
| 86051   | 5   | 5     | 23             | 41    | .2   | 10   | 4   | 1141 | 1.93 | 3    | 5   | ND  | 2   | 127 | .2    | 2                | 2   | 8   | 1.38         | .059  | 6   | 85            | .46  | 54             | .01 | 2   | .45  | .02 | .22  | 1   | 3           |
| 86052   | 10  | 13    | 170            | 207   | 2.7  | 13   | 11  | 616  | 3.69 | 19   | 5   | ND  | 2   | 68  | 2.4   | 2                | 2   | 7   | .92          | .076  | 6   | 42            | .38  | 67             | .01 | 3   | .61  | .02 | .26  | 1   | 15          |
| 86053   | 16  | 15    | 180            | 437   | 5.8  | 24   | 34  | 945  | 3.82 | 20   | 5   | ND  | 2   | 88  | 5.6   | 2                | 2   | 5   | 1.42         | .118  | 8   | 35            | .26  | 40             | .01 | 2   | .41  | .02 | .28  | 1   | 72          |
| 86054   | 14  | 7     | 363            | 843   | 1.8  | 6    | 14  | 1576 | 2.50 | 9    | 5   | ND  | 2   | 147 | 10.9  | 2                | 2   | 4   | 2.65         | .097  | 6   | 71            | .40  | 48             | .01 | 2   | .ठ   | .03 | .17  | 1   | 24          |
| 86055   | 2   | 6     | 54             | 146   | .4   | 6    | 8   | 2243 | 3.57 | 4    | 5   | ND  | 2   | 145 | 1.1   | 2                | Z   | 12  | 2.56         | .083  | 8   | 50            | .83  | 135            | .01 | 2   | .42  | .03 | .21  | 1   | 3           |
| 86056   | 2   | 31    | 40             | 144   | .4   | 5    | 6   | 2052 | 3.87 | 2    | 5   | ND  | 2   | 121 | 1.1   | 2                | 2   | 14  | 2.12         | -059  | 7   | 59            | .75  | 55             | .01 | 2   | .70  | .02 | . 18 | 1   | 1           |
| 86057   | 14  | 220   | 3272           | 683   | 4.8  | 24   | 9   | 279  | 2.34 | 7    | 5   | ND  | 2   | 25  | 11.0  | 4                | 2   | 9   | .28          | .015  | 4   | <del>99</del> | .25  | 57             | .01 | 3   | .53  | -01 | .24  | 1   | 44          |
| 86058   | 10  | 165   | 5114           | 11075 | 8.1  | 19   | 9   | 387  | 3.08 | 12   | 5   | ND  | 2   | 85  | 199.3 | 7                | 2   | 7   | .69          | .017  | 3   | 74            | .33  | 51             | .01 | 3   | .41  | .01 | .18  | 10  | 63          |
| 86059   | 8   | 13    | 47             | 170   | 3.6  | 30   | 6   | 1456 | 3.91 | 25   | 5   | ND  | 2   | 121 | 1.9   | 2                | 2   | 10  | 2.70         | .116  | 12  | 48            | .43  | 67             | .01 | 3   | .75  | .04 | .20  | 1   | 5           |
| 86060   | 13  | 8     | 481            | 666   | 3.6  | 8    | 8   | 2456 | 1.91 | 7    | 5   | ND  | 2   | 249 | 9.1   | 2                | 2   | 2   | 5.31         | .058  | 7   | 57            | .30  | 77             | .01 | 2   | .22  | .02 | .16  | 1   | 41          |
| 86061   | 10  | 81    | 518            | 345   | 5.8  | 14   | 19  | 364  | 2.00 | . 12 | 5   | ND  | z   | 47  | 6.0   | · 2              | 3   | 5   | .63          | .084  | 11  | 81            | .16  | 67             | .01 | 3   | .37  | .03 | .20  | 1   | 57          |
| 86062   | 8   | 161   | 715            | 1914  | 8.9  | 10   | 24  | 2453 | 3.30 | 13   | 5   | ND  | 2   | 178 | 30.0  | 2                | 2   | 5   | 2.89         | -084  | 7   | 66            | .55  | 50             | .01 | 3   | .30  | .03 | .20  | 1   | 74          |
| 86063   | 5   | 488   | 329            | 475   | 3.3  | 5    | 10  | 727  | 5.01 | 2    | 5   | ND  | 2   | 96  | 5.3   | 2                | 2   | 23  | 1.64         | .076  | 9   | 56            | .65  | 38             | -01 | 2   | 1.29 | .03 | . 14 | 1   | J <b>39</b> |
| 86064   | 3   | 275   | 178            | 80    | 6.5  | 4    | 6   | 312  | 3.66 | 2    | 5   | ND  | 2   | 39  | .2    | 2                | 2   | 14  | .51          | .059  | 7   | 93            | .44  | 43             | .01 | 2   | .39  | .02 | .13  | 1   | 320         |
| 86065   | 3   | 242   | 19             | 107   | 1.4  | 5    | 5   | 524  | 4.05 | 2    | 5   | ND  | 2   | 54  | .2    | 2                | 2   | 18  | .59          | -088  | 15  | 51            | -55  | 39             | .01 | 2   | .68  | .03 | . 16 | 1   | 30          |

.

PAGE 2

PIONEER LABORA LIES INC.

5-730 EATON WAY NEW WESTMIN R, BC

C CANADA V3M 6J9

TELEPHONE ( 522-3830

WAVARRE RESOURCES CORP. Project: Strike Project Sample Type: Soils/S.Sed./Rocks

. 1

GEOCHEMICAL ANALYSIS CERTIFICATE Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. \*Au Analysis- 10 gram sample is digested with aqua regia, NIBK extracted, graphite furnace AA finished to 1 ppb detection.

An Analyst

Report No. 9330787 Date: October 17, 1993

| ELEMENT      | Ko   | Cu     | РЬ    | Zn             | Åg           | Ni   | Co  | Kn   | Fe         | As  | U   | Au  | Th  | Sr  | Cd     | sb   | Bi  | ٧          | Ca   | P     | La  | Cr  | Kg   | Ba  | Ti         | B  | AL   | Na  | ĸ    | v   | Au*    |
|--------------|------|--------|-------|----------------|--------------|------|-----|------|------------|-----|-----|-----|-----|-----|--------|------|-----|------------|------|-------|-----|-----|------|-----|------------|----|------|-----|------|-----|--------|
| ANPLE        | ppra | ppm    | ppm   | ppm            | ppa          | ppin | ppn | ppa  | <b>x</b> * | ppn | ppe | ppn | ppm | ppn | ppin   | ppm  | ppm | ppin       | x    | x     | ppa | ppm | X    | ppm | .2         | pp | 1 %  | x   | 2    | ppn | рры    |
| 015 BL 0+005 | 1    | 283    | 220   | 435            | 4.5          | 9    | 26  | 6150 | 9.22       | 6   | 13  | MD  | 2   | 19  | 4.1    | 2    | 3   | 78         | .17  | . 166 | 32  | 7   | 1.43 | 615 | .01        | 2  | 23.د | .01 | .17  | 1   | 68     |
| OIS BL 0+505 | 2    | 11     | 58    | 99             | .4           | 3    | 11  | 3627 | 3.94       | 2   | 5   | MD  | 2   | 17  | .5     | 2    | 2   | 5 <b>9</b> | .09  | . 199 | 13  | 5   | .55  | 126 | .01        | 2  | 2.33 | .01 | .16  | 1   | 1      |
| 015 BL 1+005 | 5    | 33     | 68    | 138            | 2.8          | 21   | 25  | 2385 | 6.84       | 77  | 5   | HD  | 2   | 6   | .3     | 2    | 3   | 62         | .03  | . 119 | 18  | 32  | .99  | 48  | .02        | 2  | 3.33 | .02 | .09  | 1   | 19     |
| 015 BL 1+505 | 3    | 173    | 331   | 642            | 5.0          | 10   | 24  | 4641 | 8.15       | 12  | 16  | NID | 3   | 107 | 5.0    | 2    | 2   | 61         | .59  | . 186 | 22  | 12  | .38  | 591 | .01        | 2  | 4.84 | .01 | .15  | 1   | - 85   |
| OIS BL 2+005 | 4    | 19     | 276   | 240            | 4.0          | 6    | 16  | 2023 | 7.44       | 14  | 5   | ND  | 2   | 13  | 1.4    | 2    | 4   | 52         | .09  | .128  | 22  | 9   | .40  | 79  | .01        | 2  | 2.95 | .01 | .10  | 1   | 38     |
| OIS BL 2+50S | 5    | 52     | 224   | 981.           | 2.0          | 10   | 12  | 1825 | 7.01       | 7   | 50  | ND  | 2   | 50  | 5.0    | 3    | z   | 55         | .36  | . 147 | 23  | 11  | .51  | 128 | .03        | 3  | 3.61 | .02 | .07  | 1   | 1      |
| 01S BL 3+00S | 1    | 14     | 85    | 54             | 1.0          | 1    | 1   | 90   | 1.63       | 3   | 12  | ND  | 2   | 7   | -9     | 4    | 2   | 45         | .05  | -024  | 12  | 3   | .05  | 47  | .06        | 2  | .88  | -01 | .03  | 1   | 35     |
| JS-1         | t    | 39     | 23    | 106            | .5           | 6    | 9   | 1298 | 3.75       | 12  | 5   | ND  | 7   | 18  | .4     | 3    | 2   | 38         | .38  | .080  | 25  | 7   | .74  | 174 | ,07        | 3  | .96  | .01 | .14  | 1   | 1      |
| JS-2         | 2    | 28     | 19    | 103            | .3           | 21   | 9   | 698  | 3.54       | 185 | 5   | ND  | 4   | 18  | .3     | 2    | 2   | 28         | .29  | .058  | 19  | 11  | .68  | 117 | .06        | 2  | 1.01 | .01 | .07  | 1   | 5      |
| JS-3         | 2    | 46     | 15    | 167            | .3           | 60   | 17  | 915  | 4.62       | 45  | 5   | ND  | 2   | 17  | .3     | 2    | 5   | 28         | . 17 | .054  | 17  | 23  | 1.13 | 97  | .01        | 2  | 1.66 | -01 | .04  | 1   | 10     |
| JS-4         | 1    | 21     | 9     | <del>9</del> 9 | .4           | 24   | 8   | 574  | 3.16       | 25  | 5   | HD  | 3   | 16  | .2     | 2    | 2   | 21         | .22  | .045  | 16  | 12  | .71  | 150 | .04        | 2  | 1.16 | .01 | .06  | 1   | 1      |
| 18-5         | 1    | 13     | 8     | 48             | .4           | 4    | 5   | 571  | 2.54       | 4   | 5   | ND  | 6   | 40  | .2     | 2    | 2   | 33         | .49  | _065  | 20  | 7   | .45  | 137 | . 12       | 3  | .74  | .01 | .09  | 1   | 1      |
| JS-6         | 2    | 29     | 43    | 108            | .6           | 8    | 9   | 830  | 3.58       | 13  | 5   | ND  | 5   | 26  | .4     | 2    | 3   | 32         | .29  | .068  | 28  | 9   | .52  | 175 | . 10       | 3  | 1.71 | .05 | .13  | 1/  | 6      |
| J-1:         | 43   | 386    | 17313 | 2715           | 159.6        | 3    | 1   | 91   | 13.51      | 136 | 5   | 45  | 3   | 14  | 17.8   | 129  | 2   | 6          | .03  | .005  | 2   | 70  | .02  | 54  | .01        | 2  | .16  | .02 | .08  | 1   | 35600  |
| 1-2          | 15   | 587    | 25332 | _15833         | <u>153.3</u> | 5    | 2   | 75   | 1.32       | 16  | 5   | 25  | 4   | 14  | 279.8  | 132  | 2   | 2          | .16  | .002  | 2   | 168 | .01  | 13  | <b>_01</b> | 2  | .07  | .01 | .05  | 2   | 15280  |
| 1-3          | 14   | 1482   | 17557 | 11211          | 173,7        | 5    | 1   | 39   | 13.94      | 273 | 5   | 4   | 3   | 32  | 152.7  | 1578 | 2   | 2          | .02  | .023  | 4   | 42  | .02  | 21  | .01        | 2  | . 16 | .01 | .11  | 2   | 1920   |
| 3-4          | 52   | 19     | 1467_ | 474            | 41.2         | 6    | 1   | 37   | 1.37       | 57  | 5   | HD  | 3   | 29  | 4.9    | 13   | 2   | 3          | .07  | .065  | 11  | 126 | .01  | 69  | -01        | 3  | .24  | .05 | . 18 | 1   | 88     |
| 1-5          | 8    | 1207   | 5446  | 64910          | 16.9         | 12   | 7   | 48   | 2.10       | 18  | 5   | ND  | 3   | 3   | 1359.1 | 2    | 2   | 2          | .03  | .013  | 2   | 105 | .01  | 13  | _01        | 2  | .10  | .01 | -06  | Ż   | 2050   |
| 1-6          | 3    | 588    | 13735 | 16984          | 87.5         | 43   | 5   | 69   | 14.08      | 27  | 5   | ND. | 3   | 11  | 344.6  | 46   | 2   | 3          | .08  | .005  | 2   | 44  | .03  | 2   | .01        | 2  | .14  | .01 | .11  | 1   | 210    |
| 'IDER 2      | 1    | 999999 | 443   | 469            | 335.0        | 5    | 20  | 1105 | 8,46       | 10  | 5   | ND  | 2   | 5   | 17.5   | 2    | 2   | 69         | .06  | .111  | 2   | 13  | 1.98 | 11  | .01        | 2  | 2.40 | .01 | .01  | 2   | 150    |
| IDER 3       | .,25 | 464    | 10265 | 2307           | 45.5         | 3    | 5   | 296  | 5.33       | 16  | 5   | ND  | 2   | 5   | 38.4   | 5    | 7   | 7          | .02  | _038  | 2   | 136 | -03  | 56  | .01        | 2  | .20  | .01 | .14  | 1   | 520    |
| IIS 5        | 145  | 886    | 1427  | 59             | 48.6         | 10   | 33  | 457  | 9.03       | 11  | 5   | ND  | 2   | 2   | .6     | 4    | 30  | 3          | .01  | .006  | 2   | 85  | .02  | 11  | .01        | 2  | .16  | .01 | .15  | 1   | . 1750 |

PAGE 1

| ACRE | ANALY<br>A                                         | AL J                   | LABOI                                   | RATOR                                 | IES                                   | LTD.                                    | 501                    | 85<br><u>Na v</u><br>905   | 2 E<br>G)<br>(ar)<br>V Per    | . HAI<br>SOCH<br>Ce R<br>Wer S        | STI<br>EM<br><u>ØS</u>      | NGS<br>ICA<br>Our<br>Vance | ST<br>L                                 | • V<br>AN2<br>• CC | ANY<br>ALY<br>PT<br>V60 | VER<br>Den E                               | R B<br>CEI<br>110<br>Subr | .C.<br>RTI<br>e #                 | V6<br>FIC<br>93<br>1 by:       | A 1<br>ATI<br>-2:<br>And           | R6<br>3<br>217<br>515 K              | ikeu                       | PHC<br>ka                 | DNE (                              | 604                                 | 253-                            | 31:                 | 58                                        | FAX                                                  | (604                        |                              | 3+1716<br><b>A</b> A<br>L |
|------|----------------------------------------------------|------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|------------------------|----------------------------|-------------------------------|---------------------------------------|-----------------------------|----------------------------|-----------------------------------------|--------------------|-------------------------|--------------------------------------------|---------------------------|-----------------------------------|--------------------------------|------------------------------------|--------------------------------------|----------------------------|---------------------------|------------------------------------|-------------------------------------|---------------------------------|---------------------|-------------------------------------------|------------------------------------------------------|-----------------------------|------------------------------|---------------------------|
|      | SAMPLE#                                            | No<br>ppm              | Cu<br>ppm                               | Pb<br>ppm                             | Zn<br>ppm                             | Ag<br>ppm                               | N1<br>ppm              | Co<br>ppm                  | Hn<br>ppm                     | Fe<br>X                               | As<br>ppm                   | U<br>ppm                   | Au<br>ppm                               | Th<br>ppm          | Sr<br>ppm               | Cdi<br>ippm                                | Sb<br>ppm                 | 81<br>ppm                         | V<br>ppm                       | Ca<br>X                            | P<br>%                               | La<br>ppm                  | Cr<br>ppn                 | Hg<br>X                            | 9a<br>ppm                           | ti i<br>Xpp                     | 3 (<br>N            | AL N<br>X                                 | a K<br>Z Z                                           | ۲<br>ppm                    | Au <sup>a</sup><br>ppb       |                           |
|      | IAH-1<br>IAN-2<br>IAN-3<br>SPIDER-1<br>RE SPIDER-1 | 6<br>2<br><1<br>2<br>2 | 3862<br>18826<br>7780<br>14316<br>14273 | 24757<br>28745<br>25120<br>213<br>199 | 71186<br>99999<br>99999<br>762<br>712 | 125.4<br>103.0<br>183.5<br>10.0<br>10.0 | 13<br>7<br>8<br>6<br>6 | 43<br>60<br>54<br>22<br>21 | 32<br>31<br>30<br>227<br>1204 | 11.08<br>4.06<br>7.41<br>7.92<br>7.76 | 53<br>109<br>56<br>16<br>14 |                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 88888<br>8         | 1<br>4<br>1<br>65<br>65 | 1659.9<br>3512.6<br>3555.4<br>13.4<br>12.4 | 13<br><2<br><2<br>3<br>3  | 5 2 2 2 2<br>2 2 2 2<br>2 2 2 2 2 | 2<br>7<br>3<br>188<br>185<br>2 | .03<br><.01<br>.01<br>2.55<br>2.48 | .004<br>.012<br>.007<br>.112<br>.109 | <2<br><2<br><2<br>13<br>13 | <1<br><1<br><1<br>10<br>9 | .02<br><.01<br>.01<br>1.17<br>1.13 | 14<.<br>15<.<br>13<<br>104<<br>105< | .01<br>.01<br>.01<br>.01<br>.01 | 3 .<br>4 2.<br>3 2. | 05<.0<br>06<.0<br>05<.0<br>34 .0<br>31 .0 | 1 .02<br>1 .02<br>1 .03<br>1 .03<br>13 .14<br>13 .15 | 2<br>1<br>2<br>5 <1<br>5 <1 | 1190<br>150<br>820<br>6<br>5 |                           |
|      |                                                    |                        |                                         |                                       |                                       |                                         |                        |                            |                               |                                       |                             |                            |                                         |                    | _                       |                                            |                           |                                   |                                |                                    |                                      |                            |                           |                                    |                                     |                                 |                     |                                           |                                                      |                             |                              |                           |

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR NN FE SR CA P LA CR NG BA TI B W AND LIMITED FOR NA K AND AL. ASSAT RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZM AS > 1X, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU\* AWALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning <u>'RE'</u> are duplicate samples.

.....

DATE RECEIVED: AUG 30 1993 DATE REPORT MAILED: SAN

123/73 SIGNED BY. A. M. T. D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ሆ ጦ ፕ

T • Ċ. P  $\mathbf{C}$ Dit.

| P.02/05                    | ACHE<br>AA<br>L, L                              |     |                         | (CAL                      | LAU                                         | <del>ока</del> та                           | JRIE                                         | s LT<br><u>Na</u>                  | D.<br>Var                                       | <u>ra 1</u><br>501 <del>,</del> 90 | 852<br>(<br><u>Res</u> (<br>)5 W (   | E.<br>GEO<br><u>our</u><br>Pende | HASI<br>CHE<br><u>Ce</u><br>r St.     | (ING:<br>MIC<br><u>Cor</u><br>/ <sup>Yan</sup>                                        | s st<br>Ali<br>D'i<br>couva                                                                 | A<br>PRÒ<br>RC                    | JEC<br>V6C 1                        | UVER<br>IS<br>TS                                                                                               | B.C<br>CER<br>TRT<br>Submi                                                                       | C.<br>FIF<br>KE<br>ited ()    | VGA<br>ICA<br>Fi<br>Syi A            | 1R6.<br>TE<br>le<br>ndk1s            | ₿.9.<br>Xika        | РВС<br>3=2<br>"ка               | )NE ( (<br>136                     | 504)                      | 253                                  | -315                     | 8:(                               |                                  | 604)                            | 253<br>4                | -1716<br>A                   |  |
|----------------------------|-------------------------------------------------|-----|-------------------------|---------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|------------------------------------|-------------------------------------------------|------------------------------------|--------------------------------------|----------------------------------|---------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|--------------------------------------|---------------------|---------------------------------|------------------------------------|---------------------------|--------------------------------------|--------------------------|-----------------------------------|----------------------------------|---------------------------------|-------------------------|------------------------------|--|
|                            | SAMPLE#                                         | ••• | Ho<br>ppm               | Cu<br>ppm                 | Pb<br>ppm                                   | Zn<br>ppn                                   | Ag<br>ppm                                    | Hi<br>ppm                          | Co<br>ppm                                       | Mn<br>ppm                          | Fe<br>%                              | As<br>ppm                        | U<br>maqa                             | Au<br>ppm                                                                             | Th<br>ppm                                                                                   | Sr<br>ppm                         | Cd<br>ppm                           | sb<br>ppm                                                                                                      | 8i<br>ppm                                                                                        | ¥<br>ppm                      | Ca<br>X                              | P<br>X                               | Le<br>ppm           | Cr<br>ppm                       | Kg<br>X                            | 8a<br>ppm                 | TÎ<br>X                              | B<br>ppm                 | Al<br>X                           | Na<br>X                          | K<br>X                          | W<br>ppm                | Au*<br>ppb                   |  |
| 3-2545<br>                 | LOIS-1<br>LOIS-2<br>LOIS-3<br>LOIS-4<br>RE LOIS | -4  | 1<br>6<br>1<br><1<br><1 | 68<br>221<br>26<br>7<br>8 | 15249<br>21460<br>1821<br>264<br>244        | 58206<br>19720<br>4438<br>630<br>580        | 38.8<br>23.7<br>3.4<br>4.2<br>4.4            | 9<br>9<br>5<br>4<br>8              | 34<br>26<br>5<br>21<br>18                       | 1017<br>88<br>1123<br>915<br>908   | 8.27<br>7.64<br>1.62<br>6.04<br>6.08 | 40<br>12<br>15<br>5<br>10        | 5<br>5<br>5<br>5<br>5<br>5            | 2 2 2 2<br>2 2 2 2<br>2 2 2 2<br>2 2 2 2 2<br>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 20<br>11<br>47<br>150<br>150      | <.2<br><.2<br>72.1<br>5.6<br>5.3    | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | 3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | <2<br><2<br>5<br>58<br>58     | .36<<br>.05<<br>1.18<br>1.77<br>1.77 | .001<br>.001<br>.054<br>.100<br>.101 | <2<br><2<br>10<br>9 | 3<br>8<br>5<br>9<br>9           | .06<br><.01<br>.31<br>1.49<br>1.49 | 13<br>9<br>99<br>47<br>44 | <.01<br><.01<br><.01<br><.01<br><.01 | <2<br>6<br>~2<br>3<br>~2 | .08<br>.06<br>.47<br>2.27<br>2.30 | <.01<br>.01<br>.01<br>.02<br>.01 | .09<br>.04<br>.25<br>.19<br>.18 | <1<br>3<br><1<br>2<br>1 | 420<br>670<br>27<br>36<br>37 |  |
| 716 TO 1-636               | DAT                                             | B 1 | RECE                    | IVED                      | ICP -<br>This I<br>Assay<br>- Sami<br>D: Ai | .500 (<br>LEACH<br>RECON<br>PLE TY<br>UG 25 | GRAM S<br>Is par<br>Hended<br>Pe: RC<br>1993 | ANPLE<br>TIAL<br>FOR<br>ICK<br>DAT | IS D<br>FOR P<br>ROCK<br>AU <sup>4</sup><br>B R | IGEST<br>IN FE<br>AND C<br>ANAL    | ED WI<br>SR CA<br>ORE S<br>YSIS      | TH 3M<br>P LA<br>AMPLE<br>BY AC  | IL 3-1<br>CR M<br>S [F<br>ID LE<br>D: | I-2 HC<br>1G BA<br>CU PB<br>EACH/A                                                    | IL-HNO<br>TI 8<br>IZN A<br>IA FRO<br>30                                                     | 13-H20<br>W AND<br>IS > 1<br>W 10 | D AT 9<br>D LINI<br>1%, AG<br>GN SA | 75 DEG<br>ITED f<br>3 > 30<br>WPLE.<br>SIGN                                                                    | i. C F<br>OR NA<br>PPN<br><u>Sam</u><br>IBD I                                                    | OR ON<br>K AN<br>& AU<br>ples | E HOU<br>O AL.<br>> 100<br>begin     | R AND                                | IS D                | ILUTE<br><u>are d</u><br>. TOYE | D TO<br><u>uplic</u><br>, C.LI     | 10 ML<br>ates<br>Eong,    | WITH<br>ample                        | WATE                     | R.                                | IED B                            | .C. A                           | SSAYE                   | RS                           |  |
| 00<br>1                    |                                                 |     |                         |                           |                                             |                                             |                                              |                                    |                                                 |                                    |                                      |                                  |                                       | /                                                                                     | 1                                                                                           |                                   |                                     |                                                                                                                |                                                                                                  |                               |                                      |                                      | ľ                   |                                 |                                    |                           |                                      |                          |                                   |                                  |                                 |                         |                              |  |
| 4<br>0                     |                                                 |     |                         |                           |                                             |                                             |                                              |                                    |                                                 |                                    |                                      |                                  |                                       |                                                                                       |                                                                                             |                                   |                                     |                                                                                                                |                                                                                                  |                               |                                      |                                      |                     |                                 |                                    |                           |                                      |                          |                                   |                                  |                                 |                         |                              |  |
| 9                          |                                                 |     |                         |                           |                                             |                                             |                                              |                                    |                                                 |                                    |                                      |                                  |                                       |                                                                                       |                                                                                             |                                   |                                     |                                                                                                                |                                                                                                  |                               |                                      |                                      |                     |                                 |                                    |                           |                                      |                          |                                   |                                  |                                 |                         |                              |  |
|                            |                                                 |     |                         |                           |                                             |                                             |                                              |                                    |                                                 |                                    |                                      |                                  |                                       |                                                                                       |                                                                                             |                                   |                                     |                                                                                                                |                                                                                                  |                               |                                      |                                      |                     |                                 |                                    |                           |                                      |                          |                                   |                                  |                                 |                         |                              |  |
|                            |                                                 |     |                         |                           |                                             |                                             |                                              |                                    |                                                 |                                    |                                      |                                  |                                       |                                                                                       |                                                                                             |                                   |                                     |                                                                                                                |                                                                                                  |                               |                                      |                                      |                     |                                 |                                    |                           |                                      |                          |                                   |                                  |                                 |                         |                              |  |
| LABS                       |                                                 |     |                         |                           |                                             |                                             |                                              |                                    |                                                 |                                    |                                      |                                  |                                       |                                                                                       |                                                                                             |                                   |                                     |                                                                                                                |                                                                                                  |                               |                                      |                                      |                     |                                 |                                    |                           |                                      |                          |                                   |                                  |                                 |                         |                              |  |
| щω                         |                                                 |     |                         |                           |                                             |                                             |                                              |                                    |                                                 |                                    |                                      |                                  |                                       |                                                                                       |                                                                                             |                                   |                                     |                                                                                                                |                                                                                                  |                               |                                      |                                      |                     |                                 |                                    |                           |                                      |                          |                                   |                                  |                                 |                         |                              |  |
| ц<br>С                     |                                                 |     |                         |                           |                                             |                                             |                                              |                                    | ·                                               |                                    |                                      |                                  |                                       |                                                                                       |                                                                                             |                                   |                                     |                                                                                                                |                                                                                                  |                               |                                      |                                      |                     |                                 |                                    |                           |                                      |                          |                                   |                                  |                                 |                         |                              |  |
| 10:14                      |                                                 |     |                         |                           |                                             |                                             |                                              |                                    |                                                 |                                    |                                      |                                  |                                       |                                                                                       |                                                                                             |                                   |                                     |                                                                                                                |                                                                                                  |                               |                                      |                                      |                     |                                 | ·                                  |                           |                                      |                          |                                   |                                  |                                 |                         |                              |  |
| 00,00                      |                                                 |     |                         |                           |                                             |                                             |                                              |                                    |                                                 |                                    |                                      |                                  |                                       |                                                                                       |                                                                                             |                                   |                                     |                                                                                                                |                                                                                                  |                               |                                      |                                      |                     |                                 |                                    |                           |                                      |                          |                                   |                                  |                                 |                         |                              |  |
| с<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц |                                                 | •   |                         |                           |                                             |                                             |                                              |                                    |                                                 |                                    |                                      |                                  |                                       |                                                                                       |                                                                                             |                                   |                                     | ي مري موجو م                                                                                                   |                                                                                                  |                               |                                      |                                      |                     |                                 |                                    |                           |                                      |                          |                                   |                                  |                                 |                         |                              |  |

| PIONEER 1                                 | LABO                      | DR    | IES 1     | INC.       |         |              | 5-                                          | 730 I                                                   | EATON                                              | WAY                                           | -                                             | new                      | i we                                          | (<br>Stml                              | E                              | R, B                                    | С                              | CA                       | NADA                                         | V3                                       | M 6                             | <b>J</b> 9                                 |           |           | T                 | zlei                | Peone                                        |                             | 1)5      | 22-3 | 830    |
|-------------------------------------------|---------------------------|-------|-----------|------------|---------|--------------|---------------------------------------------|---------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------|-----------------------------------------------|----------------------------------------|--------------------------------|-----------------------------------------|--------------------------------|--------------------------|----------------------------------------------|------------------------------------------|---------------------------------|--------------------------------------------|-----------|-----------|-------------------|---------------------|----------------------------------------------|-----------------------------|----------|------|--------|
| NAVARRE 1<br>Project: Str<br>Sample Type: | RESOUI<br>Tike<br>: Cores | RCES  | CORE      | <b>?</b> . |         | GE<br>I<br>E | O Huiti<br>Huiti<br>Ba, T<br>HAU A<br>Furna | CH<br>i-e(enne<br>ted to<br>Ií, B,<br>Analysi<br>ace AA | BMI<br>Ent ICF<br>10 al<br>Vanc<br>is-10<br>finish | CAnaly<br>With H<br>Limit<br>gram :<br>wed to | Li<br>ysis<br>Nater<br>ted f<br>sampl<br>1 pp | 5<br>for<br>e is<br>b de | A N<br>500 g<br>This<br>Ka,<br>5 dig<br>2tect | IAI<br>Irams<br>leach<br>Kan<br>Jested | ample<br>ispa<br>d Al.<br>with | IS<br>is díg<br>rtial<br>Dete<br>aqua r | Jeste<br>for<br>ectio<br>regia | C<br>Kn,<br>n Li<br>, MI | ER S<br>th 3 m<br>Fe, Ca<br>mit fo<br>BK ext | FIP<br>Lofa<br>, P, Li<br>r Au<br>racted | yua r<br>a, Cr<br>is 3<br>, gra | C A<br>regia,<br>, Ng,<br>i ppm.<br>ophite | TE        |           | Ana<br>Rep<br>Dat | lyst<br>ort<br>e: 0 | <u><u><u></u></u><br/>No. 934<br/>ctober</u> | <u>Sein</u><br>30786<br>17, | <u>~</u> |      |        |
| ELEMENT                                   | No                        | Cu    | Pb        | Zn         | Ag      | Nî           | Co                                          | Kin                                                     | <br>Fe                                             | As                                            |                                               | Au                       | Th                                            | Sr                                     | Cd                             | sb                                      | Bi                             | V                        | Ca                                           | P                                        | La                              | Cr                                         | Mg        | Ba        | ті                | B                   | AL                                           | Wa                          | ĸ        | v    | Au#    |
| SAMPLE                                    | ppa                       | n bbw | ppa       | ррв        | ppn     | ppm          | ppr                                         | n ppm                                                   | *                                                  | ppm                                           | pps                                           | i ppi                    | a ppa                                         | a ppm                                  | ppa                            | . bbw                                   | pp                             | ppr                      | x .                                          | x                                        | ppn                             | a ppen                                     | ×         | ppn       | X                 | ppri                | 1 7                                          | x                           | x        | ppm  | ppb    |
| 86001                                     | 3                         | 31    | 18        | 86         | 2.7     | 19           | 5                                           | 853                                                     | 3.11                                               | 12                                            | 5                                             | NÐ                       | 2                                             | 406                                    | .5                             | 2                                       | 2                              | 13                       | 3.30                                         | .013                                     | 3                               | 39                                         | - 96      | 42        | .01               | 2                   | .71                                          | .01                         | . 15     | 1    | 2      |
| 86002                                     | 6                         | 16    | 14        | 75         | 1.5     | 16           | 5                                           | 1259                                                    | 2_61                                               | 7                                             | 5                                             | ND                       | 2.                                            | 413                                    | .6                             | 2                                       | 2                              | 12                       | 4.40                                         | .024                                     | 3                               | 65                                         | -82       | 42        | .01               | 2                   | .41                                          | .02                         | .13      | i    | 1      |
| 86003                                     | 4                         | 11    | 15        | 67         | 1.5     | 11           | 4                                           | 1473                                                    | 3.54                                               | 7                                             | 5                                             | ND                       | 2                                             | 500                                    | .6                             | 2                                       | 2                              | 12                       | 5.25                                         | .019                                     | 2                               | 63                                         | 1.37      | 31        | .01               | 2                   | .22                                          | -02                         | .11      | 1    | 2      |
| 86004                                     | 3                         | 12    | 9         | 110        | .8      | 10           | 2                                           | 781                                                     | 2.66                                               | 6                                             | 5                                             | ND                       | 2                                             | 275                                    | .6                             | 2                                       | 2                              | 10                       | 3.40                                         | .012                                     | 2                               | 104                                        | 1.03      | 27        | .01               | 2                   | .21                                          | -02                         | .08      | 1    | 1      |
| 86005                                     | 5                         | 55    | 13        | 113        | .6      | 36           | 12                                          | 757                                                     | 4.07                                               | 24                                            | 5                                             | ND                       | 2                                             | 253                                    | .4                             | 4                                       | 2                              | 15                       | 2.68                                         | .022                                     | 2                               | .47                                        | .61       | 66        | .01               | 4                   | .64                                          | .03                         | .20      | 1    | 1      |
| 86006                                     | . 7                       | 20    | 14        | 100        | E       | 75           | 44                                          | 674                                                     | 1 20                                               | •0                                            | e                                             |                          | •                                             | 47/                                    |                                |                                         | -                              | 40                       | • 10                                         | 0/0                                      |                                 | .74                                        | 87        | 90        | 10                | r                   | 01                                           | 07                          | 24       | •    | ,      |
| 86007                                     | ר.<br>ד                   | 40    | 144<br>11 | 1/5        |         | 23           | 17                                          | 210<br>117                                              | 4.20                                               | 21                                            | 2<br>E                                        | ND                       | 2                                             | 124                                    | .4<br>E                        | 2<br>2<br>2                             | 2                              | 18                       | 1.47,<br>• •                                 | .049                                     | ي. د<br>د                       |                                            | 20,       | 69<br>70  | -01               | 2                   | .01<br>7/                                    | το.<br>Σο                   | .21      |      | د<br>۱ |
| B6008                                     | 2                         | 40    | 41<br>8   | 105        | ••      | رد<br>77     | 12                                          | 447                                                     | 4.14<br>7.00                                       | 20                                            | 2<br>E                                        | NU<br>MO                 | 2                                             | 226                                    |                                | ्र<br>इ.स.                              | 2                              | 10                       | 2.04                                         |                                          | 2                               | ~ 24                                       | .05<br>70 | 17<br>Al. | .01               | 5                   | .14                                          | .00                         | .22      | 1    | 2      |
| 86009                                     | 4                         | 47    | 11        | 155        | •C<br>6 | 20           | 10                                          | 101                                                     | 2.77                                               | 11                                            | ך<br>ד                                        |                          | 2                                             | 224                                    | .2                             | ~)<br>                                  | 2                              | 19                       | 2.43                                         | .030                                     | 2                               | 48                                         | -17       | 604<br>60 | .01               | 5                   | 1.06                                         | .02                         | 18       | 1    | 2      |
| 56010                                     | 2                         | 38    | 15        | 126        | 1.3     | 36           | 14                                          | 541                                                     | 3.94                                               | 14                                            | 5                                             | ND                       | 2                                             | 261                                    | .3                             | 7                                       | 2                              | 18                       | 2.43                                         | .076                                     | 6                               | 34                                         | .80       | 64        | .01               | 4                   | 1.01                                         | .02                         | .20      | 1    | 2      |
| 36011                                     | 1                         | 23    | 3         | 76         | र       | 17           | 1                                           | 1102                                                    | 1 70                                               | 5                                             | 5                                             | ND                       | -                                             | 1206                                   |                                | , ,                                     | 2                              |                          | 16.20                                        | 005                                      | 2                               | 20                                         | 45        | 41        | <b>ก</b> 1        | 2                   | 66                                           | חו                          | .08      | 1    | 1      |
| 36012                                     | 10                        | 30    | 6         | 122        | 1.5     | 21           | 6                                           | 963                                                     | 3 27                                               | 17                                            | 5                                             | มก                       | 2                                             | 272                                    | 0                              | 3                                       | 2                              | 17                       | 4.52                                         | .046                                     | 5                               | 41                                         | 1.02      | 81        | .01               | 5                   | 1.38                                         | .02                         | .20      | 1    | 2      |
| 36013                                     | 14                        | 80    | 275       | 462        | 5.9     | 30           | 10                                          | 677                                                     | 2 85                                               | 12                                            | 5                                             | <u>п</u> р               | 2                                             | 37                                     | 5.8                            | 5                                       | 2                              | 8                        | .67                                          | .018                                     | Ĩ                               | 83                                         | .28       | 47        | .01               | 4                   | .44                                          | .01                         | .20      | 1    | 71     |
| 36014                                     | 4                         | 54    | 135       | 816        | 1.8     | 41           | 12                                          | 1005                                                    | 3.45                                               | 18                                            | 5                                             | 140                      | 2                                             | 98                                     | 10.3                           | 2                                       | 2                              | 15                       | 1.45                                         | .055                                     | 5                               | 40                                         | .77       | 113       | .01               | 4                   | .86                                          | .01                         | .29      | 1    | 12     |
| 16015                                     | 3                         | 532   | 90        | 118        | 3.6     | 8            | 6                                           | 1932                                                    | 2.96                                               | 2                                             | 5                                             | ND                       | 2                                             | 130                                    | .7                             | 2                                       | 2                              | 12                       | 2.36                                         | .116                                     | 15                              | 42                                         | .88       | 174       | .01               | 3                   | _50                                          | .04                         | .28      | 1    | 3      |
| 6016                                      | 10                        | 63 .  | 1900      | 3630       | 4.4     | 26           | 8                                           | 478                                                     | 2.38                                               | 14                                            | 5                                             | ND                       | 2                                             | 51                                     | 55.5                           | 3                                       | 2                              | 7                        | .70                                          | .025                                     | 3                               | 95                                         | .29       | 85        | .01               | 4                   | .38                                          | .01                         | .24      | 1    | 21     |
| 6017                                      | 4                         | 53    | 1089      | 1087       | 6.2     | 31           | 8                                           | 702                                                     | 3.44                                               | 12                                            | 5                                             | ND                       | 2                                             | 65                                     | 16.3                           | 4                                       | 2                              | 13                       | .82                                          | -016                                     | 3                               | 51                                         | .58       | 69        | -01               | 4                   | .73                                          | .01                         | .23      | 1    | 47     |
| 6018                                      | 7                         | 36    | 727       | 1323       | 5.9     | 32           | 8                                           | 307                                                     | 3.03                                               | 11                                            | 5                                             | ND                       | 2                                             | 48                                     | 19.3                           | 4                                       | 2                              | 10                       | -41                                          | -020                                     | 4                               | 51                                         | .44       | 70        | .01               | 5                   | .65                                          | .01                         | .24      | 1    | 34     |
| 6019                                      | 2                         | 32    | 41        | 145        | 3.1     | 30           | 9                                           | 519                                                     | 3.42                                               | 8                                             | 5                                             | ND                       | 2                                             | 97                                     | 1.2                            | 5                                       | 2                              | 14                       | 1.10                                         | .025                                     | 5                               | 33                                         | .87       | 85        | .01               | 5                   | 1.25                                         | .01                         | .23      | 1    | 7      |
| 6020                                      | 2                         | 39    | <b>98</b> | 291        | 3.8     | 32           | 10                                          | 395                                                     | 3.68                                               | 6                                             | 5                                             | ND                       | 2                                             | 43                                     | 2.7                            | 2                                       | 2                              | 21                       | -25                                          | ,051                                     | 6                               | 41                                         | .94       | 76        | .01               | 4                   | 1.46                                         | .02                         | .21      | 1    | 8      |
| 6021                                      | 8                         | 54    | 715       | 1422       | 4.7     | 26           | 7                                           | 642                                                     | 3.08                                               | 10                                            | 5                                             | ND                       | 2                                             | 49                                     | 22.8                           | 3                                       | 2                              | 11                       | .75                                          | .032                                     | 4                               | 84                                         | .55       | 60        | .01               | 4                   | .80                                          | .01                         | .22      | 1    | 23     |
| 6022                                      | 9                         | 53    | 1134      | 3686       | 6.1     | 30           | 7                                           | 308                                                     | 4.22                                               | 15                                            | 5                                             | ND                       | 2                                             | 22                                     | 58.5                           | 5                                       | 2                              | 14                       | .22                                          | .015                                     | 4                               | 68                                         | .40       | 47        | .01               | 6                   | .75                                          | .01                         | .21      | 1    | 33     |
| 6023                                      | 3                         | 46    | 499       | 953        | 5.0     | 27           | 6                                           | 688                                                     | 3.23                                               | ģ                                             | 5                                             | ND                       | Z                                             | 113                                    | 11.9                           | 3                                       | z                              | 18                       | 1.34                                         | .062                                     | 6                               | 58                                         | .77       | 83        | .01               | 4                   | 1.12                                         | .02                         | .22      | 1    | 10     |
| 5024                                      | 9                         | 93    | 146       | 617        | 5.7     | 50           | 19                                          | 263                                                     | 4.00                                               | 29                                            | S                                             | ND                       | 2                                             | 50                                     | 9.1                            | 4                                       | 2                              | 14                       | .47                                          | .025                                     | 4                               | 42                                         | .54       | 65        | .01               | 5                   | .95                                          | .01                         | .27      | 1    | 32     |
| 5025                                      | 6                         | 339   | 176       | 1122       | 1.7     | 8            | 6                                           | 1083                                                    | 1.47                                               | 3                                             | 5                                             | ND                       | Z                                             | 120                                    | 15.4                           | 3                                       | 2                              | 6                        | 1.84                                         | _061                                     | 8                               | 38                                         | .58       | 58        | .01               | 3                   | .39                                          | .02                         | .30      | 1    | 2      |
| 5026                                      | 1                         | 291   | 128       | 398        | 2.5     | 5            | 5                                           | 576                                                     | 1.10                                               | 3                                             | 5                                             | ٨n.                      | 3                                             | 78                                     | 5.8                            | 4                                       | 2                              | 5                        | _91                                          | .055                                     | R                               | 44                                         | .25       | 112       | -01               | 3                   | .42                                          | .01                         | .30      | 1    | 5      |
| 5027                                      | 10                        | 641   | 3850      | 107        | 14_5    | - 19         | 18                                          | 103                                                     | 3.75                                               | 12                                            | 5                                             | ND                       | 2                                             | 22                                     | 2.0                            | 6                                       | 2                              | 5                        | _16                                          | .020                                     | 2                               | 85                                         | .07       | 42        | _01               | 5                   | .30                                          | .01                         | .19      | 1    | 110    |
| 028                                       | 20                        | 306   | 633       | 150        | 6.7     | 18           | 22                                          | 263                                                     | 3.43                                               | 12                                            | 5                                             | MD.                      | 2                                             | 33                                     | 2.2                            | - 4                                     | 2                              | 4                        | .39                                          | .029                                     | 2                               | 82                                         | .09       | 45        | .01               | 4                   | .26                                          | .01                         | .20      | 1    | 79     |
| :029                                      | 25                        | 29    | 230       | 578        | 3.1     | 26           | 13                                          | 937                                                     | 3.08                                               | 15                                            | 5                                             | HO                       | 2                                             | 89                                     | 7.7                            | 3                                       | 2                              | 12                       | 1.01                                         | .039                                     | 5                               | 75                                         | .44       | 72        | .01               | 3                   | .37                                          | .04                         | .20      | 1    | 51     |
| -030                                      | 10                        | 11    | 308       | 518        | 1.6     | 8            | 4                                           | 677                                                     | 1.92                                               | 5                                             | 5                                             | ND                       | 2                                             | 68                                     | 6.7                            | 2                                       | 2                              | 7                        | .81                                          | .034                                     | 5                               | 81                                         | .33       | 37        | .01               | 2                   | _40                                          | .06                         | .14      | 1    | 13     |
|                                           |                           |       |           |            |         | -            | -                                           |                                                         |                                                    | -                                             | -                                             |                          | -                                             |                                        |                                |                                         | -                              |                          |                                              |                                          | -                               | -                                          |           |           |                   |                     |                                              |                             |          |      |        |

APPENDIX B- 1993 DIAMOND DRILL RECORDS

| L        | Diam                  | ond    | Drill Record          | Hole No. 93-/                |                                        | Core     | e siz      | e Na                 | ર            |     | Pg     | - ) a  | ,f 3         | >        |             |
|----------|-----------------------|--------|-----------------------|------------------------------|----------------------------------------|----------|------------|----------------------|--------------|-----|--------|--------|--------------|----------|-------------|
| Colla    | r co-o                | rd. 0  | +44 W Dip $-45$       | Logged by A. Kikauka         | Compa                                  | ny nam   | ne         | Navarr               | re Res.      |     | Pr     | oject  | Sti          | -ike     |             |
| Eleva    | tion                  | 4250   | Ft. Azimuth 060       | Date logged Sept. 12,93      | Drill                                  | contr    | actor      | Jake .               | 5 John       | , D | ate co | nmence | d <i>Sep</i> | t. 3 ,   | ,93         |
|          |                       |        |                       |                              | Final                                  | depth    | 1 <b>4</b> | 185 F                | <del>/</del> | D   | ate fi | nished | Sept         | : 10 ; 4 | 93          |
| <b></b>  |                       |        |                       |                              | ······································ |          |            | <u>+</u>             | <del></del>  |     |        |        |              |          | <del></del> |
| FROM     | то<br><del>f+</del> . | RECOVY |                       | DESCRIPTION                  | FROM                                   | 54<br>TO | WIDTH      | No.                  |              |     |        | SSAYS  |              | T        |             |
| 0.0      | 10.0                  | 0%     | Casing                |                              |                                        |          |            |                      |              |     |        |        |              |          |             |
| 10.0     | 24.2                  | 90%    | Argillaceous silts    | one interbedded pyritic      |                                        |          |            |                      |              |     |        |        |              |          |             |
|          |                       |        | greywacke (0.5-3.     | o (m. wide beds). bedding    |                                        |          |            |                      |              |     |        |        |              |          |             |
|          |                       |        | @ 30-40° to cord      | e axis                       |                                        |          |            |                      |              |     |        |        |              |          |             |
| 24.2     | 28.0                  | 95%    | Intermediate dyke.    | subhedral 1-3 mm. horn       | e-                                     |          |            |                      |              |     |        |        |              |          |             |
|          |                       |        | blende and atz.       | 3% fine arain calcite        |                                        |          |            |                      |              |     |        |        |              | ŀ        | ·-          |
| 28.0     | 203,0                 | 98%    | Araillaceous siltste  | ne.interbedded pyritic       |                                        |          |            |                      |              |     |        |        |              |          |             |
| <u>.</u> |                       |        | greywacke (5-252      | pyrite as 1-3 cm. wide bed   | s)                                     |          |            |                      |              |     |        |        |              |          |             |
| 28.0     | 65.0                  |        | Bedding @ 20-50°      | to core axis                 |                                        |          |            |                      |              |     |        |        |              |          |             |
| 65.0     | 94.0                  | •      | " @ 60-70°            | 4f K 4j                      |                                        |          |            | $\sim 100 R_{\odot}$ |              |     |        |        |              |          | •           |
| 94.0     | 120.0                 |        | " @ 40-60°            | u n H                        |                                        |          | :          |                      |              |     |        |        |              |          |             |
| 120.0    | 170.0                 |        | " @ 10-30°            | le je li                     |                                        |          |            |                      |              |     |        |        |              |          |             |
| 170.0    | 203.0                 |        | " @ 40-70°            | 19 XC 14                     |                                        |          |            |                      |              |     |        |        |              |          |             |
|          |                       |        | 20% gtz 2% calcite as | 1-5 cm. wide veins @ 10-60   | 0                                      |          |            |                      |              |     |        |        |              |          |             |
|          |                       |        | to care axis at 5     | 5-63 ft. and 110-120 ft. and |                                        |          |            |                      |              |     |        |        |              |          |             |
|          |                       |        | 149-158 ft. minor     | limestone @ 194.0-195.0+     | 4.                                     |          |            |                      | ļ            |     |        |        |              |          |             |
|          |                       |        |                       |                              |                                        |          |            |                      |              |     |        | ,      |              |          |             |

-

| <b>Diamond Drill</b>  | Record      | Hole No. 93-1                          | core size NQ                 | pg. 2 of 3                             |
|-----------------------|-------------|----------------------------------------|------------------------------|----------------------------------------|
| Collar co-ord. 0+44 W | Dip -45     | Logged by A. Kikauka                   | Company name Navarre Rescu   | irces Project Strike                   |
| Elevation 4250 FH.    | Azimuth 060 | Date logged Sept. 12 93                | Drill contractor Jake & John | Date commenced Sept. 3, 93             |
|                       |             | ······································ | Final depth 485 ft.          | Date finished Sept. 10, 93             |
|                       |             |                                        |                              | ······································ |

| FROM       | то                 | RECOVY | DESCRIPTION                                           |       | SAN   | MPLE  |       |        |                                       |     | SSAYS |        |         |
|------------|--------------------|--------|-------------------------------------------------------|-------|-------|-------|-------|--------|---------------------------------------|-----|-------|--------|---------|
| <i>H</i> . | <del>, ft</del> .  |        |                                                       | FROM  | то    | WIDTH | No.   | ppm Cu | РЬ                                    | Zn  | Ag    | ррь Ац |         |
| 203.0      | 210.0              | 987.   | Intermediate dyke 1-4 mm. plagioclase and minor       |       |       |       |       |        |                                       |     |       |        |         |
|            |                    |        | K-spar phenocrysts                                    |       |       |       |       | -      |                                       |     |       |        |         |
| 210.0      | 2 <del>4</del> 6.0 | 982    | Argillaceous siltstone, interbedded pyritic grey-     | 210.0 | 215.0 | 5,0   | 86001 | 31     | 18                                    | 86  | 2.7   | 2      | · · · . |
|            |                    |        | wacke (1-4 cm. wide beds, 5-25% pyrite), at contact   |       |       |       |       |        |                                       |     |       |        |         |
|            |                    |        | with dukes 5 ft. wide at 2 calcite breccia vein       | 241.0 | 246.0 | 5.0   | 86002 | 16     | 14                                    | 75  | 1.5   |        |         |
|            |                    |        | zone with 1-3% pyrite 2-5% praphite (sheared)         |       |       |       |       |        | · · · · · · · · · · · · · · · · · · · |     |       |        |         |
| 246.0      | 256.8              | 987.   | Intermediate dyke 3% fine grain calcite, green        |       |       |       |       |        |                                       |     |       |        |         |
|            |                    |        | colour, banded coarse and fine grain texture 2 mm.    |       |       |       |       |        |                                       |     |       |        |         |
| 256.8      | 485.0              | 987.   | Argillaceous siltstone, interbedded pyritic greywacke |       |       |       |       |        |                                       |     |       |        | ·       |
|            |                    | ÷      | 1-4 cm, wide beds of 5-50% pyrite throughout          |       |       |       |       |        |                                       |     |       |        | · ·.    |
| 275.0      | 298.0              |        | Bedding @ 50-65° to core axis                         |       |       |       |       |        |                                       |     |       |        |         |
| Z98.0      | 402.5              |        | " a 5-15° to core axis                                |       |       |       |       |        |                                       |     |       |        |         |
| 416.5      | 431.6              |        | i @ 30-50° to core axis                               |       |       |       |       |        |                                       |     |       |        |         |
| 439.5      | 485.0              |        | " @ 0-15° to core axis                                |       |       |       |       |        |                                       |     |       |        |         |
|            |                    |        | 40% gtz 1% cal. 2% graphite 2% pyrite                 | 256.8 | 262.8 | 6.0   | 86003 |        | 15                                    | 67  | 1.5   | 2      |         |
|            |                    |        | 60% at 2, 1% col 5% areabite (sheared) 2% are ite     | 262.8 | 269.0 | 6.2   | 86004 | 12     | 9                                     | 110 | 0.8   | . 1    |         |

| D      | iam        | ond    | Drill        | Reco                                   | ord         |                                        | Hole No.            | 93-1        |              |         | core     | size   | NQ     |               | pa        | ge 3   | of      | 3      |              |            |
|--------|------------|--------|--------------|----------------------------------------|-------------|----------------------------------------|---------------------|-------------|--------------|---------|----------|--------|--------|---------------|-----------|--------|---------|--------|--------------|------------|
| Collar | co-0       | rd. C  | +00N<br>+44W | Díp                                    | -4          | 5                                      | Logged by           | A. Kikauk   | ka N         | Comp    | any nar  | ie , j | Vavarr | e Res         | • • • • • | I      | Project | : St.  | rike         |            |
| Elevat | ion        | 425    | o ft.        | Azimuti                                | <u>n 06</u> | 0                                      | Date logg           | ed Sept. 12 | 93           | Dril    | 1 contr  | actor  | Jake 2 | John          |           | Date o | commenc | ed Se  | ot. 3        | 9          |
|        |            |        |              |                                        |             |                                        |                     | U -         | $\mathbf{V}$ | Fina    | l depth  |        | 485    | <del>f†</del> |           | Date f | inishe  | d Sep  | <i>t. 10</i> | ,93        |
| FROM   | то         | RECOVY |              |                                        |             | DES                                    | SCRIPTION           |             | 1. <u></u>   |         | SA       | MPLE   |        | <u> </u>      |           |        | ASSAYS  |        |              |            |
| ft.    | <u>ft.</u> |        |              | · · · · · · · · · · · · · · · · · · ·  |             |                                        |                     | .)          |              | FROM    | то       | HTOW   | No.    | ppm Cu        | PL        | Zn     | Ag      | ррь Ац |              | <u> </u>   |
|        |            |        | 30% gtz      | , 1% ca                                | leite       | 1% graph                               | ite (shear e        | d) 270 py   | rite         | 273.6   | 277.3    | 4.3    | 86005  | 55            | 13        | 113    | 0.6     | 1 -    |              | ·   ·      |
|        |            |        | 107, gi      | tz as                                  | 1-3 cm      | . wide ve                              | <u>zins tr. gra</u> | phite 1%    | yrite        | 277.3   | 282.5    | 5.2    | 86006  | 40            | 14        | 109    | 0.5     | 2      |              |            |
|        |            |        | Same         | 2 as                                   | abore       |                                        | <u>.</u>            |             |              | 282.5   | 289.5    | 7.0    | 86007  | 42            | 11        | 145    | 0.4     | /      |              |            |
|        |            |        | 50% g        | tz. 17                                 | 's cal.     | 27. chl                                | orite 1%            | graphite 3  | 2. pyrita    | 2 231.5 | 291.8    | 2.3    | 86008  | 40            | 8         | 105    | 0.2     | 2      |              |            |
|        |            |        | /            |                                        |             |                                        |                     |             |              |         |          |        | · ·    | <u> </u>      |           |        |         |        |              |            |
|        |            |        | 20%          | gtz 1                                  | 20 cal      | 1. 32                                  | yrite               |             |              | 400.5   | 405.5    | 5.0    | 86009  | 43            | 11        | 111    | 0.4     | 2      | ••           |            |
|        |            |        | 302          | gtz.                                   | 22, 00      | il. 22                                 | pyrite              |             |              | tor. 5  | 410.5    | 5.0    | 86010  | 38            | 15        | 126    | 1.3     | 2      |              | <u> </u>   |
|        |            |        |              |                                        |             |                                        |                     |             |              |         |          |        |        |               |           |        |         |        |              | <u> </u> . |
|        |            |        | 5-10         | Cin. wi                                | de atz      | zchlori                                | te vein             | 39. pyrite  | <b>-</b>     | 432.0   | 439.5    | 7.5    | 86011  | 23            | 3         | 76     | 0.3     |        |              | +          |
|        |            |        | 485          | of                                     | +. Ec       |                                        |                     |             |              |         |          |        |        |               |           |        |         |        |              | +          |
|        |            |        |              |                                        |             |                                        |                     |             | ····         |         |          |        |        |               |           |        |         |        |              | f          |
|        |            |        |              | ······································ |             |                                        |                     |             |              |         |          |        |        |               |           |        |         |        |              |            |
|        |            |        |              |                                        |             |                                        |                     |             |              |         |          |        |        |               |           |        |         |        |              |            |
|        |            |        |              |                                        |             |                                        | <u></u>             |             |              |         | <u> </u> | <br>   |        |               |           |        |         |        |              |            |
|        |            |        |              |                                        |             | ······································ |                     |             |              |         |          |        |        |               |           |        |         |        |              |            |

:

| Ľ     | Dian   | ond    | Drill Record Hole No. 93-2                              | NQ    | cor    | e si  | 2e     |         |          | page   | 1 0      | F 2   |          |               |
|-------|--------|--------|---------------------------------------------------------|-------|--------|-------|--------|---------|----------|--------|----------|-------|----------|---------------|
| Colla | r co-o | rd.    | 0+90 E Dip -60 Logged by A. Kikauka                     | Compa | ny nam | e     | Nava   | rre Re: | source   | es I   | roject   | Str   | ike      |               |
| Eleva | tion   | 428    | 0 Ft Azimuth 240 Date logged Sept. 19,93                | Drill | contr  | actor | Jake : | 5 John  |          | Date o | ommenc   | ed Se | pt. 11   | , 93          |
|       |        |        |                                                         | Final | depth  | 5     | 95 f   | ŀ       |          | Date f | inishe   | d Sep | +. 18    | 93            |
|       |        |        |                                                         | ;     |        |       |        |         | <u></u>  |        |          |       |          |               |
| FROM  | то     | BECOVY | DESCRIPTION                                             |       | SA     | MPLE  |        |         |          |        | ASSAYS   |       |          |               |
|       | ft.    |        |                                                         | FROM  | то     | WIDTH | No.    |         |          |        |          |       | <u> </u> | <u> </u>      |
| 0.0   | 20.0   | 0%     | Casing                                                  |       | <br>   |       |        |         |          |        |          |       | <u>+</u> | <u></u>       |
| 20.0  | 347.1  | 98%    | Argillaceous siltstone, interbedded                     |       |        |       |        |         |          |        | ·        |       |          |               |
|       |        |        | purific areuwacks (0.5-5.0 cm. wide beds)               |       |        |       |        |         |          |        |          |       |          |               |
| 20.0  | 41.0   |        | Bedding @ 40-65° to core axis                           |       |        |       |        |         |          |        |          |       |          |               |
| 41.0  | 54.0   |        | i @ 10-30° " " "                                        |       |        | :     |        |         |          |        |          |       |          |               |
| 54.0  | 95.0   |        | " @ 40-65° " " "                                        |       |        |       |        |         |          |        |          |       |          |               |
| 95.0  | 110.0  |        | n @ 10-30° " " "                                        |       |        |       |        |         |          |        |          |       |          |               |
| 10.0  | 258.0  |        | x @ 30-60° " " "                                        |       |        |       |        |         | <u> </u> |        |          |       |          |               |
| 258.v | 347.1  |        | 1. @ 70-90° " " "                                       |       |        |       |        |         |          |        |          |       |          |               |
|       |        |        | 10% - 30% quartz as 0.2-5.0 cm. veins with 3% calcite @ |       |        |       |        |         |          |        |          |       |          |               |
|       |        |        | 21.0-23.0 ft. 50.0-51.0 ft. 60.0-70.0 ft.               |       |        |       |        |         |          | -      |          |       |          |               |
|       |        |        | 10 cm wide quartz-chlorite vein @ 110.0 ft.             |       |        |       |        |         | <br>     |        | ļ        |       |          |               |
| 347.1 | 349.1  | 982    | Intermediate dyke, green colour, 120 Fine               | _     |        |       |        |         |          |        | <u> </u> |       |          |               |
|       |        |        | grain calcite, 1-5 mm. quartz veins @ 40°               | _     |        |       |        |         |          |        |          |       |          |               |
|       |        |        | to core axis                                            |       |        |       |        | ļ       |          | _      |          |       |          | <del></del> - |
| 349-1 | 512.0  | þ      | Argillaceous siltstone, interbedded pyritic             |       |        |       |        |         |          |        |          |       |          |               |

| Diamond Drill Record           | Hole No. 93-2           | Nil Core size -              | page Z of 2                |
|--------------------------------|-------------------------|------------------------------|----------------------------|
| Collar co-ord. $0+90E$ Dip -60 | Logged by A. Kikauka    | Company name Navarre Resour  | ces Project                |
| Elevation 4280 Ft. Azimuth 240 | Date logged Sept. 19 93 | Drill contractor Jake & John | Date commenced Sept. 11 93 |
|                                |                         | Final depth 595 ft.          | Date finished Sept. 18 93  |
|                                | . –                     |                              | /                          |

| FROM  |                 | BECOVY  | DESCRIPTION                                 |       | SA    | MPLE        |       |        |     |     | ASSAYS | <u>.</u>  |             |
|-------|-----------------|---------|---------------------------------------------|-------|-------|-------------|-------|--------|-----|-----|--------|-----------|-------------|
| f+.   | <del>f</del> f. | 1.20011 |                                             | FROM  | TO    | WIDTH       | No.   | ppm Cu | Pic | Zn  | Ag     | pob tu    |             |
|       |                 |         | greuwacke (0.5-5.0 cm. wide beds).          |       |       |             |       | "      |     |     |        | <i>''</i> | <br>        |
| 349.1 | 395.0           |         | Bolding @ 70-90° to core axis               |       |       |             |       |        |     |     | · · ·  |           | <del></del> |
| 395.0 | 405.0           |         | " 30-60° " " "                              |       |       |             |       |        |     |     |        |           |             |
| 405.0 | 512.0           |         | 11 60-80° " " "                             |       |       |             |       |        |     |     |        |           |             |
|       |                 |         | weak graphitic shear zone @ 349.1-350.0 ft. |       |       | :<br>:<br>: |       |        |     |     |        |           | <br>        |
|       |                 |         | limestone nodule @ 482.0-495.0              |       |       |             |       |        |     |     |        |           | ·-          |
| 512.0 | 513.0           | 60%     | Intermediate dyke, green colour. fault      |       |       | <br>        |       |        |     |     |        |           |             |
|       |                 |         | rubble zone broken around poor recovery     |       |       |             |       |        |     |     |        |           |             |
| 513.0 | 595.0           |         | Aruilloceous siltstone interbedded pyritic  |       |       |             |       |        |     |     |        |           |             |
|       |                 | -       | grenwacke (0.5-8.0 cm. bede up to 30%       |       |       |             | i di  |        |     |     |        |           |             |
|       |                 |         | fine grain pyrite).                         |       |       |             |       |        |     |     |        |           |             |
| 513.0 | 595.0           |         | Bedding @ 50-80° to core axis               |       |       |             |       |        |     |     |        |           |             |
|       |                 |         | 15% quartz as 1-8 cm. wide reins @ 50-80°   | 586.0 | 589.0 | 4.0         | 86012 | 30     | 6   | 122 | 1.5    | 2         |             |
|       |                 |         | to core axis                                |       |       |             |       |        |     |     |        |           |             |
|       |                 |         | Weak graphitic shear @ 567.0-570.0 ft.      |       |       | -           |       |        |     |     |        |           |             |
|       | 595.0           |         | EOH                                         |       |       |             |       |        |     |     |        |           |             |

.

| Γ     | Diam    | ond    | Drill          | Rec     | ord   |          | Hole No.                              | 93-3        |            | NQ             | Core            | size          | و            |        |        | pag              | je l   | of       | •       |
|-------|---------|--------|----------------|---------|-------|----------|---------------------------------------|-------------|------------|----------------|-----------------|---------------|--------------|--------|--------|------------------|--------|----------|---------|
| Colla | r co-o: | rd. (  | +29 5<br>+57 E | Dip     | -6    | 0 .      | Logged 1                              | y A. Kika   | uka L      | Compa          | ny namo         | 2             | Navai        | rre Re | source | s P              | roject | : St     | 5       |
| Eleva | tion    | 430    | o ft.          | Azimut  | h O   | 60       | Date log                              | ged Sept. 2 | 6 43       | Drill<br>Final | contra<br>depth | actor ,<br>35 | Jake<br>5 ft | έJoh.  | 1      | Date c<br>Date f | ommeno | ed Se    | eg<br>N |
|       |         |        |                |         |       |          |                                       | <u></u>     | ¥          |                |                 |               |              |        | I      |                  |        | 7        |         |
| FROM  | IQ.     | RECOVY |                |         |       | Ð        | ESCRIPTION                            |             |            | FROM           | SAI<br>TO       | VPLE<br>WIDTH | No.          | pom Cu | P6     | Zn               | ASSAYS | oop fr   | J       |
| 0.0   | 7.0     |        | Cas            | ina     |       |          |                                       |             |            | 1              |                 |               |              | /      |        |                  |        | //       | Ī       |
| 7.0   | 80.0    | 98%    | Ara            | illace  | ous   | sillstor | re inte                               | rbedded     | pyritic    |                |                 |               |              |        |        |                  |        |          |         |
|       |         |        | are.           | wack    | e (1  | .5 - 5.0 | cm. wid                               | beds 3-     | 157. py.). |                |                 |               |              |        |        |                  |        |          |         |
| 7.0   | 25.0    |        | Beda           | lina    | Q     | 45-55    | · + · ·                               | ore axis    | 1/         |                |                 |               |              |        |        |                  |        |          |         |
| 25.0  | 70.0    |        | 4              | 5       | Q     | 60°-70   | ,0 n                                  | li - V      |            |                |                 | 1             |              |        |        |                  |        |          |         |
| 70.0  | 80.0    |        | 11             |         | Q.    | 45° - 59 | <b>1</b> 0 11                         | q 11        |            |                |                 |               |              |        |        |                  |        |          |         |
|       |         |        | 30% 9          | uartz   | as j. | 10 cm. i | ide veir                              | s 32 cal    | cite,      | 8.9            | 12.4            | 3.5           | 86013        | 80     | 275    | 462              | 5.9    | 71       |         |
|       |         |        | 27. 0          | hlorite | ., 2% | pyrite   |                                       |             |            |                |                 |               |              |        |        |                  |        |          |         |
| 80.0  | 85.0    | 99.7,  | Inte           | rmedi   | ate   | dyke     | light q,                              | een colour  | sharp      |                |                 |               |              |        |        |                  |        |          |         |
|       |         | ÷      | 45°            | contai  | t u   | ith sedi | ments.                                | 1-3 mm. 1   | lagioclase | 2              |                 |               | . / :        |        |        | <u> </u>         |        | <u> </u> |         |
|       |         |        | phen           | OCTV    | sts   |          | · · · · · · · · · · · · · · · · · · · | ľ           | 5          |                |                 |               |              |        |        |                  |        | L        |         |
| 85.0  | 91.2    | 98%    | Ara            | llace   | zous  | siltst   | one inter                             | bedded e    | yritic     |                |                 |               |              |        |        |                  |        | <u> </u> |         |
|       |         |        | arey           | wack    | 2     |          | ,                                     | •           | /          |                |                 |               |              |        |        |                  |        |          |         |
|       |         |        | 15%            | gtz. a  | is 1  | 0 cm. V  | eins, 3%                              | oy. 27, chl | orite      | 87.2           | 91.Z            | 4.0           | 86014        | 54     | 135    | 816              | 1-8    | 12       |         |
| 912   | 990     | 987    | Tate           | radi    | te    | diko     | light                                 | core calo   | ur sharp   |                |                 |               |              |        |        |                  |        |          |         |

| <b>Diamond Drill Record</b>      | Hole No. 93-3-          | NQ cure size                 | page 2 of 4                |
|----------------------------------|-------------------------|------------------------------|----------------------------|
| Collar co-ord. $1+57E$ Dip $-60$ | Logged by A. Kikanka    | Company name Navarre Resour  | ces Project Strike         |
| Elevation 4300 ft. Azimuth 060   | Date logged Sent. 26 93 | Drill contractor Jake & John | Date commenced Sept. 19 93 |
|                                  |                         | Final depth 355 ft.          | Date finished Spot. 219    |
|                                  | ·                       |                              | /                          |

•

:

| FROM  | то    | BECOVY | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | SA    | MPLE                                  |       |        |      |      | ASSAYS |        |         |
|-------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---------------------------------------|-------|--------|------|------|--------|--------|---------|
| F4.   | FT.   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FROM  | то    | HTOW                                  | No.   | ppm Cu | P6   | 26   | Ag     | pph Au |         |
|       |       |        | ioclase phenocrysts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |                                       |       |        |      |      |        | ·/     |         |
|       |       |        | 10% quartz 1 % calcite 3% py. tr. cp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96.0  | 99.8  | 3.8                                   | 86015 | 532    | 90   | 118  | 3.6    | 3      |         |
| 99.8  | 127.0 | 982    | Argillaceous siltstone, interbedded pyritic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |                                       |       |        |      |      |        |        |         |
|       |       |        | greywacke, 3-15% quartz veins and veinlets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |                                       |       |        |      |      |        |        |         |
|       |       |        | throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |                                       |       |        |      |      |        |        | <br>    |
|       |       |        | Quartz breccia Vein (siltstone clasts in quartz-calcite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.8  | 102.4 | 2.6                                   | 86016 | 63     | 1900 | 3630 | 4.4    | 21     | <br>· - |
|       |       |        | matrix) 60% quartz 5% py. trace Sp. qq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |                                       |       |        |      |      |        |        |         |
|       |       |        | 10% quartz 3% py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 111.0 | 1/6.0 | 5.0                                   | 86017 | 53     | 1089 | 1087 | 6.2    | 47     | <br>    |
|       |       |        | 15% quartz as 1-8 cm. veins, 3% py. fine & coarse gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116.0 | 121.0 | 5.0                                   | 86018 | 36     | 727  | 1323 | 5.4    | 34     |         |
|       |       | ÷      | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121.0 | 125.8 | 4.8                                   | 86019 | 32     | 41   | 145  | 3.1    | 7      |         |
|       |       |        | same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 125.8 | 130.6 | 4.8                                   | 86020 | 39     | 98   | 291  | 3.8    | 8      |         |
|       | -     |        | Quartz vein 60% gtz., 8% py fine and course or.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130.6 | 134.2 | 3.6                                   | 86021 | 54     | 715  | 1422 | 4.7    | 23     |         |
| 127.0 | 127.2 | . 98%  | Intermediate duke, green, sharp contact @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |       |                                       |       |        |      |      |        |        |         |
|       |       |        | 55° to core axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                                       |       |        |      |      |        |        |         |
| 127.2 | 146.6 | 95%    | Argillaceous siltstone interbedded puritic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |                                       |       |        |      |      |        |        |         |
|       |       |        | arenwacks (1-5 cm. wide beds with 3-20% surite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                       |       |        |      |      |        |        |         |
| ····· | -i    |        | July the provide t | -     | ·     | · · · · · · · · · · · · · · · · · · · | ·     |        | 1    |      |        |        |         |

| D           | iam     | ond                                    | Drill     | Reco     | rd        | ٢          |            | ·                   |                                   | Na   | Cor    | e si.    | Le     |                    | pa     | ge ?   | 3 of   | 4        |                      |                     |
|-------------|---------|----------------------------------------|-----------|----------|-----------|------------|------------|---------------------|-----------------------------------|------|--------|----------|--------|--------------------|--------|--------|--------|----------|----------------------|---------------------|
|             |         |                                        | + 2 4 5 T | MUU      | <u> </u>  |            | Hole No.   | 93.3                |                                   | npan | v name | <u> </u> | Maria  | rea Fra            | Source |        |        | <u> </u> | 1                    | • <del>•••••</del>  |
| Collar      | : co-or | <u>d.</u>                              | +57E      | Dip      | -60       |            | Logged by  | A. K. Kauka         | Dr                                | 111  | contra | ctor     | Th     | s T)               |        |        |        |          | <u>Fike</u>          | 10                  |
| Elevat      | 101     |                                        | 500 +7.1  | Azimuth  | 060       | 0          | Date logge | <u> JEPT. 26.95</u> | Fi                                | nal  | depth  | 3        | 55 f   | <u>c Jon</u><br>t. | n      | Date f | inishe | d Se     | <u>201.</u><br>07. 2 | 1 <u>7</u> ,<br>1 5 |
|             |         |                                        |           |          |           |            |            |                     | 11                                |      |        |          |        | r                  | l      |        |        | 7        |                      |                     |
| FBOM        | то      | RECOVY                                 | <u></u>   |          |           | DESCI      |            |                     |                                   |      | SAN    | APLE     |        |                    |        |        | ASSAYS |          |                      | ******              |
| <i>+</i> +. | f4.     |                                        |           | Y        |           |            | ·          |                     | FR                                | M    | то     | WIDTH    | No.    | ppm Ca             | Pb     | Zn     | - Âg   | 276 Au   |                      | 1                   |
|             |         |                                        | 10% gt.   | 2 as 1.5 | Fun ville | e veins    | 32 py.     | 120 calite Trace    | $\frac{2}{1}$ (p) $\frac{13}{13}$ | 2    | 138.6  | 4.4      | 86022  | 53                 | 1154   | 3686   | 6-1    | 33       |                      |                     |
|             |         |                                        | 59. gt    | Zas C.   | 2-1.5 cm  | n. wide ve | ins 270 p  | tr sp.              | /38                               | -6   | 143.0  | 4.4      | 56023  | 46                 | 499    | 953    | 5.0    | 10       |                      |                     |
|             |         |                                        | 157.91    | 2 65 1-  | -8 cm. wi | ide reins  | 5% p.      | 22 calcite, tr.     | cp 143                            | .0   | 146.6  | 3.6      | 86024  | 93                 | 146    | 617    | 5.7    | 32       |                      | <b></b>             |
| 46.6        | 155.5   | 95%                                    | Inter     | media    | te dyke   | e, light   | f green,   | sharp contac        | 7                                 |      |        |          |        |                    |        |        |        |          |                      |                     |
|             |         |                                        | @ 60      | ° +0     | core c    | axis.      | Fine ar    | ain terture         |                                   |      |        |          | i<br>i |                    |        |        |        |          |                      |                     |
|             |         | ······································ | 87        | cuartz   | . 17° c   | alcite     | as 1-8     | in. wide rein       | 15 140                            | -6   | 157.0  | 4.6      | 86025  | 339                | 176    | 1122   | 1.7    | z        |                      | ••                  |
|             |         |                                        | trace     | V<br>cQ. | SP.       |            |            |                     | 151                               | 0    | iss.s  | 4.5      | 86026  | 291                | 128    | 398    | 2.5    | 5        |                      |                     |
|             |         | 30%                                    | brok      | en grus  | und, fa   | ault z     | me 154     | .5-159.5 ft.        |                                   |      |        |          |        |                    |        |        |        |          |                      | -                   |
| 155.5       | 168.8   | 85%                                    | Quar      | tz bro   | eccia Vi  | lein, 5    | 02 que     | tz 20% silts        | tone 15:                          | 5.5  | 162.1  | 6.6      | 86027  | 641                | 3850   | 107    | 14.5   | 110      |                      |                     |
|             |         |                                        | clast     | s (in q  | liartz m  | natrix), 5 | : 20 py. + | r. sp. 94.          | 162                               | /    | 168.8  | 6.7      | 86028  | 306                | 633    | 150    | 6.7    | 79       |                      |                     |
|             |         |                                        | VULAA     | y te     | xture     | , shar     | o conto    | ct @ 60° 7          | to                                |      |        |          |        |                    |        |        |        |          |                      |                     |
|             |         |                                        | Core      | axi      | ·<br>د .  | , ,        |            |                     |                                   |      |        |          |        |                    |        |        |        |          |                      |                     |
| /68.8       | 252.5   | 97%                                    | Aryi      | llaceou  | is silts  | stone,     | interb     | edded pyriti        | د                                 |      |        |          |        |                    |        |        |        |          |                      |                     |
|             |         |                                        | dreyn     | vacke    | ( 0.5 -   | -10.0 C    | m. wide    | beds with 5         | -50%                              |      |        |          |        |                    |        |        |        |          |                      |                     |
|             |         |                                        | Pyrite    | 2)       |           |            |            |                     |                                   |      |        |          |        |                    |        |        |        |          |                      |                     |
|             | tt      |                                        | 117       |          |           |            | 4          | 2.0 /               | 110                               | 0    | 172 0  | 5 0      | 81020  | - 6                |        | 570    | 21     | 51       |                      | 1                   |

-

•

|       |        |        |        |             |            |        |               | Hole No.     | <u> </u>    | -3      |        |       |        |            |        | •      |        | ~      |         |          |                 |
|-------|--------|--------|--------|-------------|------------|--------|---------------|--------------|-------------|---------|--------|-------|--------|------------|--------|--------|--------|--------|---------|----------|-----------------|
| Colla | c co-o | rd. 1  | +57 E  | Dip         | -6         | 0      |               | Logged t     | <u>y A.</u> | Kikaul  | ca L   | Сотра | ny nam | e <u>.</u> | Navar  | re Re  | source | es I   | rojeci  | E Str    | -:1             |
| Eleva | tion   | 430    | o ft.  | Azimut      | h (        | 60     |               | Date log     | gged S      | ept. 26 | 93     | Drill | contra | actor      | Jake : | E John | n      | Date o | comment | ed S.    | .e <sub>j</sub> |
|       |        |        |        |             |            |        |               |              |             | ·       | V      | Final | depth  | 3          | 55 f-  | +      |        | Date f | inishe  | ed Sef   | <del>,†</del> . |
| FROM  | то     | RECOVY |        |             |            |        | DESC          |              |             |         |        |       | SA     | MPLE       |        | 1      |        |        | ASSAYS  |          |                 |
| -++.  | 4+     |        |        |             | <u></u>    |        |               | <del> </del> |             |         |        | FROM  | TO     | WIDTH      | No.    | ppm Cu | РЬ     | Zn     | Ag      | ppt Au   | Γ               |
|       |        |        | weak   | c fan       | 17         | broken | , 41          | ound         | Q 17        | 5.0 ft  | -      |       |        |            | · ·    |        |        |        |         | <u> </u> |                 |
|       |        |        | beddi  | na l        | <u>a 5</u> | 0-80°  | to            | core         | axis        | Harvia  | ghout  |       |        |            |        |        |        |        |         |          |                 |
|       |        |        | stron  | y Faw       | 1 + 2      | ine    | 195.0         | -198.0       | 30%         | reciile | 109    | 191.0 | 148.0  | 7.0        | 86030  | 11     | 308    | 518    | 1.6     | 13       |                 |
|       |        |        | atz    | 1<br>as 0,1 | 2 cm       | . wide | veir          | 15, 32       | spy-        |         | /      |       |        |            |        |        |        |        |         |          |                 |
|       |        |        | weak   | Faul        | t 202      | e at   | contac        | t with       | lim         | estone  | 10%    | 247.3 | 252,5  | 5.2        | 86031  | 40     | 99     | 417    | 3.2     | 1        |                 |
|       |        |        | quarta | 2 45        | <u> </u>   | 5 0    | m. w          | ide ve       | ins         | 22 ch   | lovite |       |        |            |        |        |        |        |         |          |                 |
|       |        |        | 22     | pyrite      | 2          |        |               |              |             |         |        |       |        | <br>       |        |        |        |        |         |          | ļ               |
| 252.5 | 295.0  | 917    | Lime   | estone      | <u> </u>   | mpure  | mini          | or are       | näleo.      | is bed. | s i-30 | 252.5 | 2585   | 6.0        | 86032  | 26     | 10     | 135    | 0.6     | 1        |                 |
|       |        |        | Cm. 6  | vide,       | ab         | und an | t c.          | rinoic       | l ste       | ns wel  | 1      |       |        |            |        |        |        |        |         |          | <u> </u>        |
|       |        |        | preser | ived        | as         | 1-2    | Cm.           | clast        | s, 3        | 7º dis  | Semina | tel   |        |            | · · ·  | ļ      |        |        |         |          |                 |
|       |        |        | pyrit  | Le. as      | 1-3        | mm.    | ble           | os           |             |         |        |       |        |            |        |        |        |        |         |          |                 |
| 295.0 | 375.0  | 99%    | _Vol   | canic       | las        | tic,   | yree          | in col       | our,        | polym   | ictic  |       |        |            |        | ļ      |        |        |         |          |                 |
|       |        |        | suba   | ngula       | r          | 3-60   | <u>ה רו מ</u> | n. cla       | sts,        | 1700    | liss-  |       |        |            |        |        |        |        |         |          | <u> </u>        |
| ļ     |        |        | emin   | ated        | - PY       | rite   | <u>, tr</u>   | ace (        | halc        | pyrite  |        |       |        |            |        |        |        |        | <br>    |          | <u> </u>        |
| L     |        |        | quar   | t2 - c      | alci       | te ve  | inle          | <u>ts 1</u>  | -5 "        | m. Wil  | le     | _     |        |            |        |        |        |        |         |          |                 |
|       | 3550   |        | FOU    |             |            |        |               |              |             |         |        |       |        |            |        |        |        | ł      |         |          | 1               |

· ----- · · · ·

| D      | iam   | ond          | Drill Record                | Hole No. 93-4                  | N NC       | CDr   | re si   | 20     |       |        | وم     | . 1    | ot .   | 5      |       |     |
|--------|-------|--------------|-----------------------------|--------------------------------|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|-------|-----|
| Collar | co-01 | 0+<br>rd. j+ | 29 S<br>57 E Dip -75        | Logged by A. Kikauka           |            | Compa | ny namo | ≥ N    | avarr | e Re   | source | es P   | roject | : Sti  | -ike  |     |
| Elevat | ion   | 4,30         | 0 Ft. Azimuth 060           | Date logged Sept. 27, 9        | 3          | Drill | contra  | actor. | Jake  |        |        | Date c | ommenc | ed Se  | pt. 2 | 1.9 |
|        |       |              |                             |                                |            | Final | depth   |        | 706   | ft.    |        | Date f | inishe | d Sep  | t. 29 | + 4 |
| FROM   | то    | RECOVY       | O                           | ESCRIPTION                     |            |       | SAI     | MPLE   |       |        |        |        | ASSAYS |        | ·     |     |
|        |       |              |                             |                                |            | FROM  | то      | WIDTH  | No.   | ppm Cu | Pb     | 2,     | Ag     | pph Au |       |     |
| 0.0    | 5.0   | 0%           | Casing                      |                                | <u> </u>   |       |         |        |       |        |        |        |        |        |       |     |
| 5.0    | 153.5 | 97%          | Argillaceous siltston       | e interbedded pyri             | tic        |       |         |        |       |        |        |        |        |        |       |     |
|        |       |              | areywacke (0.5-3.0          | cm. wide beds)                 |            |       |         |        |       |        |        |        |        |        |       |     |
| 5.0    | 50.0  |              | Bedding @ 50-70°            | to core axis                   | <u></u>    |       |         |        |       |        |        |        |        |        |       |     |
| 50.0   | i18.0 |              | " @ 30-50"                  | n 11 11                        |            |       |         |        |       |        |        | ·      |        |        |       |     |
|        |       |              | " @ 45-60"                  | 6 11 11                        |            |       |         |        |       |        |        |        |        |        |       | ••  |
|        |       |              | 15% quartz as 1-15 cm. vei  | ns, 4% py., 3% chl., 2% ca     | ί., tr. cp | 75.3  | 80.2    | 4.9    | 86033 | 62     | 12947  | 1793   | 8.5    | 67     |       |     |
|        |       |              | 12% guartz as 1-40 cm. vei. | 15. 37. p. 27. cel., 2% chl. t | r. ср.     | 118.5 | 123.4   | 4.9    | 86034 | 107    | 1745   | 4607   | 3.2    | 21     |       | -   |
|        |       |              | 15% quartz as 1-20 cm. vei. | 15, 5%, y. tr. sp. ga., 2%.    | g. raph.   | 148-6 | 153.5   | 4.7    | 86035 | /0/    | 2041   | 7753   | 7.9    | 36     |       |     |
| 153.5  | 207.0 | 98%          | Intermediate dyke, 1        | ight green to grey colou       | ir E       |       |         |        |       |        |        |        |        |        |       |     |
|        |       |              | fine grain texture 153.     | 5-172.0 and 192.3-207.0 f      | t., dark   |       |         |        |       |        |        |        |        |        |       |     |
|        |       |              | green porphyritic textu     | re 1-4 mm subhedral h          | ornblen    | de    |         |        |       |        |        |        |        |        |       |     |
|        |       |              | à plagioclase phenocrys     | ts 173.0-192.3, urgillad       | eous       |       |         |        |       |        |        |        |        |        |       |     |
|        |       |              | siltatone inclusion (ém     | K. Fault zone) 172.0-173.0     | έ          | <br>  |         |        |       |        |        |        |        |        |       |     |
|        |       |              | 182-8-183.6 8 192.3-19      | 3.4 ft., 3-8 % quarte          | 2 a s      |       |         |        |       |        | <br>   |        |        |        |       |     |
|        |       |              | veins 0.2 - 10.0 cm. wid    | e throughout duke 3-20         | Im:        |       |         |        |       |        |        |        |        |        |       | i   |

•

| <b>Diamond Drill Record</b>      | Hole No. 93-4           | NQ core size         | ציק            | . 2 of 3           |    |
|----------------------------------|-------------------------|----------------------|----------------|--------------------|----|
| Collar co-ord, $1+57F$ Dip $-75$ | Logged by A. Kikauka    | Company name Nev     | arre Resources | Project Strike     |    |
| Elevation 4,300 ft. Azimuth 060  | Date logged Sept. 27,93 | Drill contractor Jak | دو Date        | commenced Sept. 21 | 93 |
|                                  |                         | Final depth 406      | Ft. Date       | finished Sept. 24  | 93 |

5

.

| P        |       |        |                                                               |       | <b>E A</b> |       | م <del>ال بد موجد الدري</del> ت |        |             |          |        |        |  |          |
|----------|-------|--------|---------------------------------------------------------------|-------|------------|-------|---------------------------------|--------|-------------|----------|--------|--------|--|----------|
| FROM     | то    | RECOVY | DESCRIPTION                                                   | FROM  | TO         | WIDTH | No.                             | oom Cu | Pb          | 25       | ASSATS | and Au |  |          |
| <b>}</b> | e-    |        | 1-8 cm. w. de quarte-calcite ins. 45° to core axis,           | 159.3 | 164.6      | 4.5   | 86036                           | 346    | 7504        | 10783    | 7.4    | 64     |  |          |
|          |       |        | trace - 12 sp. ga. in gtzcal. ganque 3% py.                   |       |            |       |                                 |        |             | <u> </u> |        |        |  |          |
|          |       |        | 1-3 cm. 12 cal. Vns., 30-40° to core axis tr. sp. 4a., 220 py | 164.6 | 169.4      | 4.8   | 86037                           | 166    | 683         | 5268     | 2.i    | 25     |  |          |
|          |       |        | 5% gtz. as 1-8 cm. vns. tr. sp. qu cp. 2% gruph. 3% py.       | /82.8 | 187.8      | 5.0   | 36035                           | 60     | 6/          | 170      | 0.9    | 4      |  | I<br>    |
|          |       |        | same as above                                                 | 187.8 | 192.3      | 4.5   | 86039                           | /63    | 162         | 488      | 1.0    | 1      |  |          |
|          |       |        | same as above                                                 | 192.3 | 197.0      | 4.7   | 86040                           | 80     | 152         | i 81     | 2-1    | 15     |  |          |
|          |       |        | 5% gtz us 1-5 cm vns. 3% py. tr. cp.                          | 197.0 | 202.0      | 5.0   | 86041                           | 165    | 53          | 380      | 0.4    | 1      |  |          |
|          |       |        | Same as above                                                 | 202.0 | 207.0      | 5.0   | 86042                           | 108    | <i>i</i> 76 | 24       | 0.3    | 1      |  | -        |
| 207.0    | 228.3 | 97%    | Argillaceous siltstone, interbedded pyritic                   | 207.0 | 2/2.8      | 5.8   | 86043                           | 367    | 186         | 1005     | 4.4    | 39     |  |          |
|          |       |        | preywacke (0.5-5.0 cm. wide beds) bedding                     | 212.8 | 217.8      | 5.0   | 36044                           | 33     | 174         | 255      | 7.6    | 57     |  |          |
|          |       |        | @ 40-60° to core axis. 8-15% atz. as 1-25                     | 217-8 | 223.0      | 5.2   | 86045                           | 20     | 81          | 84       | 4.8    | 46     |  |          |
|          |       |        | cm. wide vns., 1-3% calcite 3-8% py tr sp ga.                 | 223.0 | 228.3      | 5.3   | 86046                           | 21     | 110         | 68 .     | 8.2    | 103    |  | <u>.</u> |
|          |       |        | im wide gtz. breccia vn. (ith siltstone clasts)               |       |            |       | [                               |        |             |          |        |        |  |          |
|          |       |        | @ 210.8-212.8 ft.                                             |       |            |       |                                 |        |             |          |        |        |  |          |
| 228.3    | 245.5 |        | Quartz breccia vein, Juggy, 1-6 cm. siltstone                 | 228.3 | 234.8      | 6.5   | 86047                           | 32     | 113         | 170      | 6.2    | 51     |  | !        |
|          |       |        | clasts (angular) in quartz-calcite matrix 32 og tr. 4         | 234.8 | 240.3      | 5.5   | 86048                           | 14     | 45          | 21       | 2.9    | 32     |  |          |

| Ľ       | Diam        | ond    | Drill          | Reco                                          | ord                  |                     | Hole No. 93-9 NQ Core Size                    |                     |              |        |         |       |        |         |            | pg: 3 of 3      |            |        |        |          |  |  |
|---------|-------------|--------|----------------|-----------------------------------------------|----------------------|---------------------|-----------------------------------------------|---------------------|--------------|--------|---------|-------|--------|---------|------------|-----------------|------------|--------|--------|----------|--|--|
| Colla   | r co-o      | rd.    | +29 5<br>+57 E | Dip                                           | -7                   | 5                   | Logged by                                     | A. Kikanka          |              | Compan | ny name | 2     | Nava   | rre Res | source     | s P             | roject     | 5+     | rike   |          |  |  |
| Eleva   | tion        | 4 30   | ic ft.         | Azimuth                                       | h 06                 | 50                  | Date logged                                   | 1 Sept. 27,9        | 3            | Drill  | contra  | actor | Jake   |         |            | Date c          | ommenc     | ed Sa  | pt. 21 | 43       |  |  |
|         |             |        |                |                                               |                      |                     |                                               | 1 2-                |              | Final  | depth   |       | 406    | F+.     |            | Date f          | inishe     | d Sec  |        | , 93     |  |  |
|         |             |        |                |                                               |                      | _                   |                                               |                     |              | 1      |         |       |        |         |            |                 |            |        |        |          |  |  |
| FROM    | то          | RECOVY |                |                                               |                      | DE                  | SCRIPTION                                     |                     |              |        | SAI     | MPLE  |        |         |            | ASSAYS          |            |        |        | ·····    |  |  |
|         |             |        |                |                                               |                      |                     |                                               |                     |              | FROM   | TO      | WIDTH | No.    | ppm Cu  | <u>Pb</u>  | Z <sub>ri</sub> | Ag         | ppb Au |        |          |  |  |
|         | · · · · · · |        | Quar           | tz br                                         | eccia                | vein 1              | cont.)                                        |                     |              | 240.3  | 245.5   | 5.2   | 86049  | 7       | 76         | 47              | 2.1        | 22     |        |          |  |  |
| 245.5   | 265.0       | 987    | Inter          | media                                         | te d                 | yke lia             | ht green                                      | colour, fine        | grain        |        |         |       |        |         |            |                 |            |        |        |          |  |  |
|         |             |        | tostu          | 18 01                                         | caillac              | Rous si             | Hstone inc                                    | lusion @ 260.5      | J<br>3-262.5 |        |         |       |        |         |            |                 |            |        |        |          |  |  |
|         |             |        | (::4           | 59 01                                         | J deit               | )                   |                                               |                     |              |        |         |       |        |         |            |                 |            |        |        |          |  |  |
|         |             |        | win            | , <u>, , , , , , , , , , , , , , , , , , </u> | aparre               | <u>e</u> /          | <u>г.                                    </u> | 10.2                |              | 745-5  | 246 6   | 1.7   | 81.150 | 7       | 74         | 01              | <u>7</u> 2 | 2      |        |          |  |  |
|         |             |        | 12%            | gtz. a                                        | <u>s 1-8</u>         | im. w. c            | e Vas. Tr.                                    | <u>sp. ga. 1010</u> | <u>, py</u>  | 272.5  | 277.8   | 7.3   | 86050  |         | <u>4</u> T | 76              |            |        |        |          |  |  |
|         |             |        | 15%            | 04. 10%                                       | Po gtz               | , tr. 5             | p. g.a. 3%                                    | graphite            |              | 261.6  | 266.6   | 5.0   | 86051  | 5       | 23         | 41              | 0.2        | 3      |        |          |  |  |
| 265.0   | 298.0       | 97%    | Argil          | laceo                                         | ius si               | Itstone             | interbe                                       | dded pyri           | tic          |        |         |       |        |         |            |                 |            |        |        |          |  |  |
|         |             |        | are            | wacks                                         | e (o.                | 3-3.0 0             | m. wide b                                     | eds) beddi          | ina          |        |         |       |        |         |            |                 |            |        |        | -        |  |  |
|         | ٦           |        | J.J            | 40.6                                          | ~ · +                |                     | avic 1º                                       | 7 to as ve          | intete       |        |         |       |        |         |            |                 |            |        |        |          |  |  |
| 1200    |             | 89.0   | 2              | 10-60                                         | <u>) 70</u><br>11. 4 | II ON               |                                               | - 80 110/           |              | 200    | 3.12    | 50    | 86052  | 13      | 170        | 207             | 2.7        | 15     |        |          |  |  |
| 278.0   | 5/5.0       | 78/5   | <u>Fyriti</u>  | $c  ap_i $                                    | 11114                | $\frac{1\Gamma}{0}$ | - py. qs 0.1                                  | 0.0 mm. biel        | 1            | 17 2   | 205.0   | ~     | 8: 63  | 15      | (20        | 437             | <u> </u>   | 77     |        |          |  |  |
| <b></b> |             |        | throw          | ghout                                         | 1-5                  | mm. gtz             | 2. Veinlets                                   | throughout          | <b></b>      | 203.0  | 303.0   | 5.0   | 36053  | 13      | 180        | 137             | 3.8        | 12     |        |          |  |  |
|         | <u> </u>    |        | shear          | · Zone                                        | , brok               | en grou             | nd a conta                                    | act with volc       | anics.       | 308.0  | 313.0   | 5.0   | 86054  | 7       | 363        | 843             | 1.8        | 24     |        | <b> </b> |  |  |
| 313.0   | 406.0       | •      | Volce          | anicla                                        | stics                | <u>s</u> green      | , polymict                                    | ic subangula        | ar 3-60      |        |         |       |        |         |            |                 |            |        |        |          |  |  |
|         |             |        | mm c           | lasts                                         | 1-5 ,                | nm. atz.            | cul. veinle                                   | ts +-10/m. th       | roughout     | L      |         |       |        |         |            |                 |            |        |        |          |  |  |
|         | +           |        | 109            | atz.                                          | 22 64                | $\frac{1}{1}$       | <u>ри.</u>                                    |                     |              | 326.0  | 331.2   | 5.2   | \$6055 | 6       | 54         | 146             | 0.4        | 3      |        |          |  |  |
|         | 406.0       | EOH    | <i>p</i> .     | 7                                             | 1                    |                     | 7                                             |                     | ;            | 331.2  | .336.4  | 5.2   | 86056  | 31      | 40         | 144             | 0.4        | 1      |        |          |  |  |

.

;

| ]     | Dian    | ond      | Drill Record Hole No. 93-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NQ                                                                                                               | core     | 2 Si     | Ze       | ŕ       | pg. 1 of 4 |           |                |              |          |  |  |
|-------|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------|----------|----------|---------|------------|-----------|----------------|--------------|----------|--|--|
| Colla | ar co-0 | rd. /    | +35 S Dip -60 Logged by A. Kikauka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Compa                                                                                                            | ny nam   | ie .     | Navar    | re Re   | source     | es I      | Project Strike |              |          |  |  |
| Eleva | ation   | 432      | 0 ft Azimuth 210 Date logged Oct. 1 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drill                                                                                                            | contr    | actor    | Jak      | ٩       |            | Date c    | ommence        | d Sept. 25,9 |          |  |  |
| •     |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Final                                                                                                            | depth    |          | 502      | Ft.     |            | Date f    | inished        | Sept         | 4. 30,93 |  |  |
|       |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                |          | ··       |          |         |            |           |                |              |          |  |  |
| FROM  | Το      | RECOVY   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | SA       | MPLE     |          |         |            |           | ASSAYS         |              |          |  |  |
|       |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FROM                                                                                                             | то       | WIDTH    | No.      | pom Cu  | <u> </u>   | <u>2n</u> | - tig          | yeb Au       |          |  |  |
| 0.0   | 5.0     | 0%       | Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |          |          | <u> </u> |         | <u> </u>   | +         |                |              |          |  |  |
| 5.0   | 59.6    | 98%      | Argillaceous siltstone, interbedded pyritic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |          |          |          |         | ļ          |           |                |              |          |  |  |
|       | 1       |          | Les marke (beds 1-5 cm wide) bedding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  |          |          |          |         |            |           |                |              |          |  |  |
| ·     |         |          | gray watche (stand ) = time area (), the stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |          |          |          |         |            |           |                |              |          |  |  |
|       | +       |          | (a) 40-60° TO COLE AXIS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 0                                                                                                             | И        | 15       | 8/057    | 270     | דרצ        | /02       | 48             | 44           |          |  |  |
|       |         |          | 25% gtz. 0.5-12.0 cm. wide veins, 5% py. Tr. sp.ga.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.5                                                                                                             | 17.0     | 1.5      | 06057    | 220     | 3214       | - 60      | 1.0            |              |          |  |  |
| 59.6  | 64.9    | 98%      | Intermediate dyke, porphyritic texture, 1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |          |          |          | ļ       | <u> </u>   |           |                |              |          |  |  |
|       |         |          | mm subhedral plagioclase phenocrysts 3% gtz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |          |          |          |         |            |           |                |              |          |  |  |
|       | 1       | [        | as 03-10 cm wide voins @ 50-60° to core axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |          |          |          |         |            |           |                |              |          |  |  |
|       |         | <u> </u> | $\frac{1}{2} = \frac{1}{2} + \frac{1}$ |                                                                                                                  |          |          |          |         |            |           |                |              |          |  |  |
|       |         | ~ ~      | Tault Zone, broken ground 67.1-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | <u> </u> |          |          |         | <u> </u>   |           | +              |              |          |  |  |
| 64.9  | 1 95.0  | 97%      | Argillacenus siltstone, interbedded pyritic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | ļ        |          |          |         |            |           | +              |              |          |  |  |
|       |         |          | greywacke bedding @ 50-70° to core axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                         | <u> </u> | <u> </u> |          |         |            |           |                |              |          |  |  |
| 95.0  | 113.0   | 982      | Intermediate dyke green colour porphyritic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                                                                                         |          |          |          | <u></u> |            |           |                |              |          |  |  |
|       |         |          | texture 1-3 mm subhedral planiclase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second |          |          |          |         |            |           |                |              |          |  |  |
|       |         |          | to 1 do to 0 2 los ilai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |          |          |          |         |            |           |                |              |          |  |  |
|       |         |          | phenocrysis, I=T 10 giz as U. L= 1.0 cm. wide vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |          | +        |          |         |            |           |                |              |          |  |  |
| 113.0 | 0 173.  | 982      | Argillaceous siltstone, interbedded pyritic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |          |          |          |         |            |           | +              |              |          |  |  |
|       |         |          | greywacke bedding @ 30-55° to core axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |          | <u> </u> | <u> </u> |         | <b> </b>   |           |                |              |          |  |  |

•

.

| D        | Dian     | ond          | Dril         | Re       | cord           | ]         | Н         | lole No.             | 93-5     | <u> </u>                              | NQ C          | ore      | size       |        |                            |            |          | Pg.    | 2.     | F 4         | ł             |
|----------|----------|--------------|--------------|----------|----------------|-----------|-----------|----------------------|----------|---------------------------------------|---------------|----------|------------|--------|----------------------------|------------|----------|--------|--------|-------------|---------------|
| Colla    | r co-o   | it<br>rd. 11 | 35 S<br>35 E | Díp      |                | · 60 ·    | L         | ogged by             | A. Kika  | uka L                                 | Сотра         | ny nam   | <u>e</u> / | lavarr | e Re                       | source     | s P      | roject | : St   | rike        | ·····         |
| Eleva    | tion     | 4,320        | o ft.        | Azim     | uth            | 210       | D         | ate logge            | 1 Oct. 1 | 93                                    | Drill         | contra   | actor      | Jake   | Date commenced Sept. 25, 9 |            |          |        |        |             |               |
| <b>.</b> |          |              |              |          |                |           |           |                      |          |                                       | Final         | depth    | 5          | 02 1   | Ft.                        |            | Date f   | inishe | ed Se  | st. 31      | D <i>,</i> 93 |
|          |          |              |              |          |                |           | , <u></u> |                      |          |                                       | ,<br>         |          | <u></u>    |        |                            |            |          |        |        |             |               |
| FROM     | то       | RECOVY       |              |          |                |           | DESCR     | IPTION               |          |                                       | 5ROM          | SAI      |            |        |                            |            |          | ASSAYS |        | <del></del> |               |
| 1.2 0    | 1 - 7 7  |              | Δ            |          |                | ·H. +     | 1         | +)                   |          |                                       |               | 10       |            |        | ppm Ca                     | <u> 76</u> | <u> </u> | Ag     | pp6 44 |             | <b></b>       |
| 115.0    | ( / 5.0  | 18%          | Main         | aceo     | sus s          | . 111510n |           | <u>on[.]</u>         |          |                                       | •             | <u> </u> |            |        |                            |            |          |        |        |             |               |
|          |          |              | Sever        | ral n    | arrou          | J INT. d  | lykes     | <u>(م) ۱۱۹</u>       | 8-121.2  | , 122.5 - 12                          | <u>&gt;'q</u> |          |            |        |                            |            |          |        | ┼───┤  |             |               |
|          | <br>     |              | and          | 127      | .5 - jz        | 28.4 F    | Τ. ω.     | th sharf             | contacts | a 50-6                                | <u>0°</u>     |          |            |        |                            |            |          |        |        |             | <u> </u>      |
|          |          |              | to           | ore      | axi            | 5         |           |                      |          |                                       |               | ļ        | -          |        |                            |            |          |        |        |             | ļ             |
|          |          |              | 1270         | jtz.     | as 1-          | 20 cm. w  | ide ve    | eins, 5%             | py. tr.  | Sp. ga.                               | 146.5         | 151.5    | 5.0        | 86058  | 165                        | 5114       | 11075    | 8.1    | 63     |             |               |
| 173.0    | 181.5    | 982          | Inte         | rmed     | liate          | dyke      | shar      | p cont               | it B 3   | 50° to                                |               |          |            |        |                            |            |          |        |        |             | ·-            |
|          |          |              | CARE         | . 0X     | 15             | ,         | ,         |                      |          |                                       |               |          |            |        |                            |            |          |        |        |             |               |
| 181.5    | 2490     | 972          | Arai         | llac     | eous           | s silt    | ston      | e int                | erbeda   | led                                   |               |          |            |        |                            |            |          |        |        |             | -             |
|          | - 1.0    |              |              | tic      | oreu           | wacke     | he        | dding                | @ 30-    | 50° to                                |               |          |            |        |                            |            |          |        |        |             |               |
|          |          | · · · ·      | 67           |          | <del>J J</del> | weak      | ,         | ohitis               | shears   | a                                     |               |          |            |        |                            |            |          |        |        |             |               |
|          | 1        |              | 193.         | 0 ~ 1    | 93.2           | and       | 24:       | 7. <del>4</del> - 24 | z.s ft.  | Fault                                 |               |          |            |        |                            |            |          |        |        |             |               |
|          |          |              | zone         | bro      | oken           | Ground    | d at      | basal c              | intact   | with tu                               | ff            |          |            |        |                            |            |          |        |        |             |               |
| 249.0    | 267.0    | 982          | Puri         | tic      | 100            | Ili tu    | ff d      | acitic               | COM POS  | ition                                 |               |          |            |        |                            |            |          |        |        |             |               |
|          |          |              | fine         | ast      |                | ff @      | 249       | 0-251                | 3 ft.    | 3-15%                                 |               |          |            |        |                            |            |          |        |        |             |               |
|          | <u> </u> |              | ov.it.       |          |                | - 20.0    |           | blebs                | dissemin | ated and                              |               |          |            |        |                            |            |          |        |        |             |               |
|          | 1        |              | mino         | <u> </u> | ein            | textur    | re        |                      |          | · · · · · · · · · · · · · · · · · · · | 261.0         | 267.0    | 6.0        | 86059  | 13                         | 47         | 170      | 3.6    | 5      |             |               |
## Diamond Drill Record ·

NQ core size pg. 3 of 4 93-5 Hole No. 1+35 5 1+35 E Dip Navarre Resources Project Strike Company name -60 Logged by A. Kikauka Collar co-ord. Jake Drill contractor Date commenced Sept. 25,93 Elevation 4,320 ft. Azimuth 210 Oct. 1 93 Date logged Final depth 502 ft. Date finished Sept. 30, 93

| FROM TO RECOVY | DESCRIPTION |        | SA                                                       | MPLE  |       |      |       | <i>k</i> | SSAYS |      |           |        |                                           |
|----------------|-------------|--------|----------------------------------------------------------|-------|-------|------|-------|----------|-------|------|-----------|--------|-------------------------------------------|
| FHOM           |             | RECOVI |                                                          | FROM  | TO    | HTOW | No.   | ppm Ch   | РЬ    | Z4-  | Ag        | pph Au |                                           |
| 2 67.0         | 281.4       | 987    | Limestone with 20-50% arenaceous beds,                   |       |       |      |       |          |       |      |           |        |                                           |
|                |             |        | numerous brachiopod shell clasts and abundant            |       |       |      |       |          |       |      |           |        |                                           |
|                |             |        | well preserved winoid stems as 1-2 cm. clasts            | 267.0 | 271.8 | 4.8  | 86060 | 8        | 481   | 666  | 3,6       | 41     | <br>                                      |
|                | 1           |        | 3-10% ctz. us 0.3-3.0 cm. wide veins @ 50° to core axis  | 271.8 | 276.6 | 4.8  | 86061 | 81       | 518   | 345  | 5.8       | 57     |                                           |
|                | †           |        | minor calcite veins 3-10% py, tr. cp. ga. sp.            | 276.6 | 281.4 | 4.8  | 86062 | 161      | 715   | 1914 | 8-9       | 74     |                                           |
| 281.4          | 502.0       | 982    | Volcaniclastic, maroon and green colour, polymidi        | c     |       |      |       |          |       |      |           |        | <br>                                      |
|                |             |        | subangular 3-80 mm. clasts minor arenaceous beds         |       |       |      |       |          |       |      |           |        | <br>                                      |
|                | 1           |        | Bleached zone 1-4 cm. gtz. veins vuggy, @ 60-80° to c.a. | 281.4 | 235.9 | 4.0  | 86063 | 488      | 329   | 475  | 3.3       | 139    | <br>-                                     |
|                | 1           |        | Green colour @ 281.4-319.8. 335.0-344.7. 349.0-354.0     | - ·   |       |      |       |          |       |      |           |        | <br>                                      |
|                |             |        | 367.0-383.0 Ft.                                          |       |       |      |       |          |       |      | . <u></u> |        | <br>· · · · · · · · · · · · · · · · · · · |
|                |             |        | Maroon colour @ 319.8-335.0, 344.7-349.0, 354.0-367.0,   |       | İ     |      |       |          |       |      |           |        | <br>·                                     |
|                |             |        | 383.0-502.0 ft.                                          |       |       |      |       |          |       |      |           |        |                                           |
|                |             |        | Bleached and silicified 1-4 cm. vuggy atz. veins         | 306.2 | 310.6 | 4.4  | 86064 | 275      | 178   | 80   | 6.5       | 320    |                                           |
|                |             |        | @ 60-80° to core axis 3-8% disseminated                  | 310.6 | 315.2 | 4.6  | 86065 | 242      | 19    | 107  | 1.4       | 30     | <br>                                      |
|                | 1           |        | and vein purite. tr. cp.                                 | 315.2 | 319-8 | 4.6  | 86066 | 263      | 509   | 100  | 4.2       | 128    |                                           |
|                |             |        | ,                                                        |       |       |      |       |          |       |      |           |        |                                           |

| Dia       | mond       | Drill | Recor     | d                                      |               | 92 5           | <b>_</b>                              | NQ core | 2 5120  | 2     |       |                 |        |        | pg. ·      | 4. ot    | - 4       |          |
|-----------|------------|-------|-----------|----------------------------------------|---------------|----------------|---------------------------------------|---------|---------|-------|-------|-----------------|--------|--------|------------|----------|-----------|----------|
| Collar co | -ord       | +355  | Din       | -60                                    | Hole No.      | 75-5<br>A Kika |                                       | Compan  | ny name | <br>2 |       | Re              | source | s I    | Project    | 57       | rik       | e        |
| Elevation | 432        | 0 ft  | Azimuth   | 210                                    | Date logge    | a Oct. 1       | 93                                    | Drill   | contra  | actor | Jak   | e               |        | Date c | commenc    | ed Se    | ot 2      | 5.9      |
| <b></b>   |            |       | A         |                                        | ·             |                |                                       | Final   | depth   |       | 502   | <del>f†</del> . |        | Date f | inishe     | d Se     | st. 31    | 0,93     |
| T0        |            |       | <u></u>   |                                        |               |                |                                       |         | SAI     | MPLE  |       |                 |        |        | ASSAYS     |          |           |          |
| FHUM TU   | RECOVI     |       |           |                                        |               | ·              |                                       | FROM    | TO      | WIDTH | No.   | ppm Cu          | P6     | 27:    | Ag         | opb Au   |           | <u> </u> |
|           |            | 20%   | gtz. as   | 1-5 cm                                 | wide ve       | ins, 17, co    | dcite,                                | 344.7   | 346.2   | 1.5   | 86067 | 127             | 45     | 73     | 2.2        | -29      | · · ·     |          |
|           |            | 7%    | pyrite    | as cours                               | e grain Ve    | eins @ 6       | 0-70°                                 |         |         |       |       |                 |        |        | ļ          |          |           | <u> </u> |
|           |            | to .  | ore axi   | S                                      |               |                |                                       |         |         |       |       |                 | ļ<br>  |        |            |          |           |          |
|           |            |       |           |                                        |               |                |                                       |         |         |       |       |                 |        |        |            |          |           |          |
|           |            | 35%   | gtz. as   | s 0.1-18 c                             | m. wide ve    | ins 57         | py.                                   | 367.2   | 370.6   | 3.4   | 86068 | 201             | 93     | 44     | 3.8        | 55       |           |          |
|           |            | COAr  | se arain  | n (-3 m                                | m blebs an    | d stringer     | -5                                    |         |         |       |       |                 |        |        |            |          |           | ·.       |
|           |            | 87.   | atz as    | 0.2-6 c                                | m. wīdo, veir | 15 @ 60°       | to cor                                | e 370.6 | 375.8   | 4.8   | 86069 | 250             | 20     | 103    | 2./        | 2        |           |          |
|           |            | axis  | 37.,      | y tr. co                               |               |                |                                       |         |         |       |       |                 |        |        |            |          |           | -        |
|           |            | 54.   | ne as a   | abore                                  |               |                | _                                     | 375.8   | 380.8   | 5.0   | 86070 | 30              | 17     | 97     | 2.4        | 13       |           |          |
|           |            | 202   | a.tz. as  | 0.i-10 cu                              | . wide veins  | 4% py 6        | oarse                                 | 380.8   | 385.0   | 4.2   | 86071 | 12              | 15     | 53     | 0.7        | 8        |           |          |
|           |            | and   | fine      | arain) o                               | 1-7.0 mm.     | blebs          |                                       |         |         |       |       |                 |        |        |            |          |           |          |
|           |            |       |           | J                                      |               |                |                                       |         |         |       |       |                 |        |        |            |          |           |          |
|           |            | Enc   | reasing   | finer                                  | rain Sizo     | textur         | e ih                                  |         |         |       |       |                 |        |        |            | 1        |           |          |
|           |            | last  | - 100 -   | ft (40                                 | 2-502 +       | (+,)           | •                                     |         |         |       |       |                 |        |        |            |          | - <u></u> |          |
| 50        | 2.0        | FOF   |           |                                        |               |                |                                       |         |         |       |       |                 |        |        |            |          |           |          |
|           | <u>-,4</u> |       | . <u></u> |                                        |               |                | · · · · · · · · · · · · · · · · · · · | -       |         |       |       |                 |        |        |            |          |           |          |
| L         | l          | 1     |           | ······································ |               |                | · · · · · · · · · · · · · · · · · · · |         | •       | L     | L     | 1               | +      |        | . <u>I</u> | <u> </u> |           |          |

- -- --

| Diamo         | nd Drill         | Record          | [         | Hole No.     | 13-6          | Ν            |        | Q co     | re si    | 22       |          |           |                | pg.      | 1 .f   | 3               |              |
|---------------|------------------|-----------------|-----------|--------------|---------------|--------------|--------|----------|----------|----------|----------|-----------|----------------|----------|--------|-----------------|--------------|
| Collar co-ord | 1+35 E<br>1+35 5 | Dip -4          | -5        | Logged by A  | Kikauka       | $\mathbb{N}$ | Compa  | ny nam   | e W      | hite Cha | nnel Re  | esource   | s j            | Projec   | t Sth  | rike            |              |
| Elevation 4   | 320 ft.          | Azimuth 2       | .10 °     | Date logged  | Oct. 20 93    |              | Drill  | contr    | actor    | Jake &   | Paul     |           | Date of        | commen   | ced Or | $\frac{1}{t.1}$ | 9.           |
|               |                  |                 |           |              |               |              | Final  | depth    | 45       | 6 fee    | <i>t</i> |           | Date i         | Einish   | ed Oct | : 15,           | 9            |
|               |                  |                 |           |              |               |              |        |          |          |          |          |           |                |          |        |                 |              |
| FROM TO RE    | COVY             |                 | DES       | CRIPTION     |               |              | E FROM | SA<br>TO | MPLE     |          |          | 1 01      | T              | ASSAYS   |        |                 |              |
| 00 50         | 07. (01          |                 |           | · · · · ·    |               |              |        |          | - MOCH   | NO.      | fpm Cu   | <u>P6</u> | $\frac{1}{2n}$ | 1 Ag     | opb Ay |                 | +            |
| 5 5 67        |                  | ing             | -1+-+     | · 4. 1       | 111           | +-<br>       |        |          | <u> </u> |          |          |           |                |          |        |                 | +            |
| 5.6 51.7 6    | 1% Argil         | laceous         | SILLSTONE | e interb     | edged pyri    | 112          |        |          |          |          |          |           |                |          |        |                 | +            |
|               | greyw            | iacke (0.5      | 5-3.0 cm. | wide bed     | (s), 5% im    | pure         | 1<br>1 |          |          |          |          |           |                |          |        | <u></u>         | ╀            |
|               | limes            | tone, bea       | dding @   | 30-65° +     | o core axi    | <u>s,</u>    |        |          |          |          |          |           |                | <u> </u> |        |                 | $\downarrow$ |
| 5             | 152 brok         | en ground       | d 35.0-   | 46.0         |               |              |        |          |          |          |          |           |                |          |        |                 |              |
|               | 15% atz          | 2. as 0.2-11    | Lm. V15 @ | 60° to cor   | eaxis. 47. pu | 1. tr. ga    | 9.0    | 14.7     | 5.7      | 86672    | 75       | 1629      | 953            | 5.3      | 55     |                 |              |
| 59.7 61.6 9   | 8% Inter         | mediate,        | dyke ligh | tareen. s    | ubhedral 1-   | -3 mm        |        |          |          |          |          |           |                |          |        |                 | T            |
|               | bornt            | plende, t       | race cale | ite. 10%     | lo quartz a   | at           |        |          | <br>     |          |          |           |                |          |        |                 | T            |
|               | LADRA            | untact          | 52 044    | tr. cp.      | 1             |              | 56.1.  | 61.6     | 5.5      | 86073    | 57       | 1777      | 527            | 3.4      | 210    |                 | t            |
| 61.6 114.7 9  | 72 Arail         | acrous 5        | siltstone | interbed     | ded ouriti    |              |        |          |          |          |          |           |                |          |        |                 | ſ            |
|               | aren             | work. (o.       | 5-30 (m   | uide beds)   | hedding       | .+           |        |          |          |          |          |           |                |          |        |                 | F            |
|               | 3 29             | conta c         |           | 201011 30037 | , Ochaing a   | 4            |        |          | [        |          |          |           |                |          |        |                 | F            |
|               | 202 Bak          | <u>20 10 CC</u> | C Da C    | 1            |               |              |        |          |          |          |          |           |                |          |        |                 | ┝            |
|               | Droke            | - ground        | 63-88+    | <u>T.</u>    |               |              |        |          |          |          |          |           |                |          |        |                 | ┡            |
| 14.7 137.5    | 18% Inter,       | mediate.        | dyke, li  | ght green,   | 1-3 mm sub    | shedra       |        |          |          |          |          |           |                |          |        |                 | L            |
|               | hornbl           | ende, 3-1       | 12 % atz  | as 0.1-5.0   | cm. wide vns  |              |        |          |          |          |          |           |                |          |        |                 | L            |
| 1 1           | ł                | -               | r         |              |               |              |        |          |          |          |          | 1         | 1              | 1        | 1 I    |                 | 1            |

|       |          |                |                                        |            |             |                  |                          |                |          | And the second |         |          |          |         |        |        |        |        |              |          |
|-------|----------|----------------|----------------------------------------|------------|-------------|------------------|--------------------------|----------------|----------|------------------------------------------------------------------------------------------------------------------|---------|----------|----------|---------|--------|--------|--------|--------|--------------|----------|
| L     | Diam     | iond           | Drill                                  | Rec        | ord         |                  | Hole No.                 | 93-6           | N.       | NG                                                                                                               | L_ Cor  | e siz    | e        |         |        |        | fg.    | 2 of   | 3            |          |
| Colla | r co-o   | 1+3<br>rd. 1+3 | 5 E<br>5 S                             | Dip        | - 45        |                  | Logged by                | A. Kikauka     |          | Compa                                                                                                            | ny name | e W      | hite Cha | nnel Re | source | s F    | roject | : S1   | rike         |          |
| Eleva | tion     | 4 320          | , <del>,</del> +.                      | Azimut     | :h 21       | ٥°               | Date logge               | 1 Oct. 20 93   | N        | Drill                                                                                                            | contra  | actor    | Jake     | 5 Pa    | u      | Date c | ommenc | ed O   | d I          | , 93     |
|       |          | ,              |                                        |            |             |                  |                          |                | V        | Final                                                                                                            | depth   | 4        | 56 f.    | ect     |        | Date f | inishe | ed Ou  | <u>†. 15</u> | 93       |
|       | TO       | 2500100        |                                        |            |             |                  |                          |                |          | <u> </u>                                                                                                         | SAI     | MPLE     |          |         |        |        | ASSAYS |        |              |          |
| FROM  | 10       |                |                                        |            |             |                  |                          |                |          | FROM                                                                                                             | то      | WIDTH    | No.      | epm Cu  | PL PL  | Zn     | .4 g   | له عمر | [            | <u> </u> |
| 137.5 | 171.8    | 97%            | Arai                                   | llace      | OUS S       | iltston          | e inter                  | bedded pyri    | fic      |                                                                                                                  |         |          |          |         | · .    |        | · .    |        | L            | <u> </u> |
|       |          |                | greyi                                  | Jacke      | . (0.       | 5 - 4.0          | convide.                 | beds) bed      | ding     |                                                                                                                  |         |          |          | <br>    |        | <br>   |        |        | L            |          |
|       |          |                | ) /<br>@5                              | 0-60       | <u>° to</u> | o Core           | axis at 1                | 37.5 - 145.0 f | +        |                                                                                                                  |         |          |          |         | ļ      | <br>   | <br>   |        |              |          |
|       |          |                | heid                                   | ing G      | D 10-1      | $2a^{\circ} + a$ | Core axis                | at 145.0 - 171 | . 8      |                                                                                                                  |         |          |          |         |        |        |        |        |              |          |
|       |          | 60%            | 2 Fault zone broken around 165.8-166.3 |            |             |                  |                          |                |          |                                                                                                                  |         |          |          |         |        |        |        |        |              |          |
|       |          |                | 202                                    | atz        | 20          | 1-8 cm           | wide uns 8               | 2 pu tr ce     | •        | 145.1                                                                                                            | 150.j   | 5, o     | 86075    | 26      | 3767   | 431    | 6.8    | 80     |              | •-       |
|       |          |                | 102                                    | rta        | R5 1        | -4 (m            | wide vas                 | 42 04          |          | 150.1                                                                                                            | 155.0   | 4,9      | 86076    | 3i      | 206    | 455    | 5.7    | 42     |              |          |
|       | <u> </u> |                | 502                                    | y tz       | as 1-       | 120 cm           | . wide uns               | Q 60° to co    | 12,      | 155.0                                                                                                            | 160.0   | 5.0      | 86077    | 41      | 1213   | 1861   | 5.6    | 65     |              |          |
|       | <b></b>  |                | avis                                   | 82         |             | tr n             | 52 00 50                 | <u> </u>       |          |                                                                                                                  |         |          |          |         |        |        |        |        |              |          |
|       |          |                | 12 2                                   |            | 17          | - (m             | a vins @ 60              | -70° to core a | xis      | 168.0                                                                                                            | 171.8   | 3.8      | 86078    | 300     | 215    | 190    | 4.8    | 28     |              |          |
| 171.8 | 174.8    | 982            | Tate                                   | The med    | ; +,        | duka             | share 60                 | " contact (upp | (مرما    |                                                                                                                  |         |          |          |         |        |        |        |        |              |          |
|       |          | 1010           |                                        | 45"        |             | tact             | (lower)                  | - crup hor cyp |          | <br>                                                                                                             |         |          |          |         |        |        |        |        |              |          |
| 174.8 | 182.5    | 972            | Ara                                    | lace       | <u> </u>    | : Hata           | e into-h                 | ded a riti     | ć        | 1                                                                                                                |         |          |          |         |        |        |        |        |              |          |
|       |          |                | J                                      |            | e h         | od dia           | $\bigcirc 10-20^{\circ}$ | to care mi     | <u> </u> |                                                                                                                  |         |          |          |         |        |        |        |        |              |          |
| 182.5 | 181.4    | 997            | Tuto                                   | r mod      | into        | duko             | sharp 55°                | contacts       | <u> </u> | 1                                                                                                                |         |          |          |         | 1      |        |        |        |              |          |
| 102-7 | 100.7    | 10 10          | 150                                    | . t.       | · 1-3       | $m \sim 1$       | e uns. @ ho'             | to care avis   |          | 185.7                                                                                                            | 1905    | 4.8      | 86079    | 30      | 72     | 66     | 4.2    | 58     |              | <u> </u> |
| ٤     | L        | I              |                                        | $p \leq d$ | <u></u>     | L(n . u)(0       |                          | LU CUIE AXIJ   |          |                                                                                                                  |         | <u> </u> |          | ł       | -      | A      | ł      | L      | ł            | <b></b>  |

| Ī        | Diam    | ond    | Drill Record                  | . 93-6               | NG     | Cor     | e 5;2       | e        |             |          | Pg       | . 3      | of 3      | , .<br>           |          |
|----------|---------|--------|-------------------------------|----------------------|--------|---------|-------------|----------|-------------|----------|----------|----------|-----------|-------------------|----------|
| Colla    | ar co-o | rd.  - | 355<br>35E Dip $-45$ Logged   | by A. Kikauka        | Compa  | ny nam  | e WI        | nite Cha | nnel Re     | source   | s P      | roject   | Str       | ike               |          |
| Eleva    | ation   | 4.32   | D ft. Azimuth 210° Date lo    | ogged 0 t. 20 93     | Drill  | contra  | actor       | Jake     | È Pau       | 1        | Date c   | ommenc   | ed Oct    | L.   . (          | 93       |
| <b>_</b> |         |        |                               |                      | Final  | depth   | 45          | 6 fee    | +           |          | Date f   | inishe   | d Oct     | <u> </u>          | 93       |
|          |         |        |                               |                      | <br>T  | <u></u> |             |          | <del></del> |          | ···      |          |           |                   |          |
| FROM     | то      | RECOVY | DESCRIPTION                   |                      | 1 5POM | SAI     |             | No       |             |          |          | ASSAYS   |           |                   | <b></b>  |
|          |         |        |                               |                      |        |         |             |          | PPIN C.     | <u> </u> | <u> </u> | <u> </u> | <u> </u>  |                   | <u> </u> |
| 186.4    | 336.6   | 972    | Argillaceous siltstone, Inte  | erbedded pyritic     |        |         | · · · · ·   |          |             |          | · ·      |          | · · · · · | · <u>·</u> ······ |          |
|          |         |        | greywacker bedding @ 200      | -45° to core axis    |        |         |             |          |             |          |          |          |           |                   | <u> </u> |
|          |         |        | 30 2 atz. 8% pu tr. sp. gg.   | ·                    | 244.0  | 247.6   | 3.6         | 86080    | 839         | 2269     | 24367    | 9.8      | 320       |                   | L        |
| 336.6    | 346.6   | 99%    | Pyritic Lapilli tuff 23 lime  | stone, 32 disseminat |        |         | }           |          |             |          |          |          |           |                   |          |
|          |         |        | purito as 1-2 mm blets        |                      |        |         | :<br>:<br>: |          |             |          |          |          |           |                   |          |
|          |         |        | 209, atz as 2-48 cm 105, @    | 75° to core axis     | 336.6  | 341.6   | 5.0         | 86081    | 331         | 8678     | 29405    | 172.8    | 480       |                   | • •      |
|          |         |        | 102 1.52 SP 20 disservin      | ateil                |        |         | 1           |          |             |          |          |          |           |                   |          |
|          |         |        | Same us above                 |                      | 341.6  | 346.6   | 5.0         | 86082    | 406         | 9489     | 19481    | 263.9    | 1800      |                   | -        |
| 346.6    | 456.0   |        | Volconiclastic areen-area     | to red colour poly-  |        |         |             |          |             |          |          |          |           |                   |          |
|          |         |        | mictic subanaular 3-60 mm     | n. clasts, 1-5 mm.   |        |         |             |          |             |          |          |          |           |                   |          |
|          |         |        | ctz. cal. veinlets 0.1-5.0 c. | n. wide 1-10/m.      |        |         |             |          |             |          |          |          |           |                   | L        |
|          |         |        | @ 50-70° to core axis f       | rom 380 to 420 ft.   |        |         |             |          |             |          |          |          |           |                   | L        |
|          |         |        | 122 gtz as 1-12 cm. vns       | @ 70° to core axis   | 346.6  | 352.2   | 5.6         | 86083    | 117         | 1673     | 5795     | 86.5     | 320       |                   | ļ        |
|          |         |        | 5% py. tr. 50. ga.            |                      | 352.2  | 357.7   | 5.5         | 86084    | 186         | 2959     | 4216     | 15.1     | 130       |                   | <b></b>  |
|          | 1       |        | Same as above                 |                      |        |         |             |          |             |          |          |          |           |                   |          |
|          | 456,    | 1      | EOH                           |                      |        |         |             |          |             |          |          |          |           |                   |          |

.

| Diamond Drill Record            | Hole No. 93-7          | Na core Size                        | P.g. 1 of 2               |
|---------------------------------|------------------------|-------------------------------------|---------------------------|
| Collar co-ord. 1-35 E Dip - 55  | Logged by A Kikauka    | Company name White Channel Resource | ces Project Strike        |
| Elevation 4,320 ft. Azimuth 270 | Date logged Cct. 25.93 | Drill contractor P Dliver           | Date commenced Cct. 16 93 |
|                                 |                        | Final depth 334 ft.                 | Date finished Oct. 23,93  |

.

| FROM TO RECOV |       | RECOVY | DESCRIPTION                                          |      | SA | MPLE  |     |          |   | _   | ASSAYS | _    |    |
|---------------|-------|--------|------------------------------------------------------|------|----|-------|-----|----------|---|-----|--------|------|----|
|               |       |        |                                                      | FROM | то | HTOIW | No. |          | ļ |     |        | <br> |    |
| 0.0           | 9.0   | C12    | Casina                                               |      |    |       |     |          |   |     |        |      |    |
| 9.0           | 94.6  | 97%    | Arailloceous siltstore interbodded puritie           |      |    |       |     |          |   |     |        |      |    |
|               |       |        | neruwacke (0.5-40 cm wide beds with 10-307.          |      |    |       | -   |          |   |     |        |      |    |
|               |       |        | disseminated queite blebs 1-2 mm wide).              |      |    |       |     |          |   |     |        |      |    |
|               |       |        | 370 incure limestone heds                            |      |    |       |     |          |   |     |        |      |    |
| 9.0           | 48.0  |        | Bedding @ 50°-80° to core axis                       |      |    |       |     |          |   |     |        |      | •. |
| 48.c          | 60.0  |        | " @ 10°-30° · · "                                    |      |    |       |     |          |   |     |        |      |    |
| 60.0          | 94.6  |        | " @ 45°-70° " " "                                    |      |    |       |     |          |   |     |        |      | -  |
|               |       |        | 1-3% gtz calcite - chlorite, 1-5 mm wide. throughout |      |    |       |     |          |   |     |        |      | L  |
|               |       |        | intermediate duke 83.0'- 83.7'                       |      |    |       |     |          |   |     |        |      |    |
| 94.6          | 126.0 | 982    | Intermediate duke light oreen subhedral 1-3          |      |    |       |     |          |   |     |        |      |    |
|               |       |        | mm. hornblande, trace calcite, argillaceous          |      |    |       |     | <br>     |   | · . |        |      |    |
|               |       |        | siltstone inclusion @ 101.8'- 105.8' sharp           |      |    |       |     |          |   |     |        |      |    |
|               |       |        | contacts with sediments a 70° to core axis.          |      |    |       |     |          |   |     |        |      |    |
| 126.0         | 148.2 | 98%    | Argillaceous siltstone, interbedded puritie          |      |    |       |     |          |   |     |        |      |    |
|               |       |        | arenvacke (0.5-40 cm. wide beds)                     |      |    |       |     | <u> </u> | ļ |     |        |      |    |

.

# Diamond Drill Record

.

| Diamond Drill Record                                                                              | N'a core size                                                            | pg. 2 of 2                |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------|
| Collar co-ord. $1+35 \in$<br>$1+35 5$ Dip $-55$ LoggElevation $4320 + 4$ Azimuth $270^\circ$ Date | <u>aged by A. Kikcukc</u><br>te logged Oct. 23 93<br>Final depth 334 ft. | Date commenced Oct. 16 93 |

| FROM     | то     | RECOVY | DESCRIPTION                                      | SAMPLE |          |                 |          |          |       |       | - ASSA     | <u></u>    |          |          |
|----------|--------|--------|--------------------------------------------------|--------|----------|-----------------|----------|----------|-------|-------|------------|------------|----------|----------|
| 126.0    | 148.2  | 98%    | Araillacons siltston (cat) Bill O in al          | FROM   | TO       | ודסוש           | H No.    | ppn c    | u 0   | h Z   | <u> </u>   | to acto Ai | 1        |          |
|          |        |        | to core avis 1-39 to a lat PL 1                  |        |          |                 |          | _        |       |       |            |            | <u> </u> |          |
|          |        |        | Veinlets 1-5 11 H H + 6                          |        |          |                 |          |          |       |       | _ <u> </u> |            |          |          |
| 148.2    | 153.2  | 979    | Totas ali + 11 11 11 11 12 10 veins/m.           |        | ╂───     |                 |          |          |       |       |            |            |          |          |
|          |        | />     | Finite the state decided aren-arean colour       |        |          | <br>            |          |          |       | _     |            |            |          |          |
|          | (      |        | the grain lexine Sharp contacts @ 65°            |        | <u> </u> |                 | <u> </u> |          | _     |       |            |            |          |          |
| 153.2    | 330.0  | 979    | An lle a lt t                                    |        |          |                 |          | <u> </u> |       |       |            |            |          | <u> </u> |
|          |        |        | Arainaceous sillstone, interbedded paritic       |        |          | ļ               |          |          |       |       |            |            |          |          |
|          |        |        | line + 1 il                                      |        |          |                 | <u> </u> |          |       |       |            |            |          |          |
| 153.2    | 220.0  |        | Bedlin a line a l                                |        |          |                 |          |          |       | _     |            |            |          |          |
| 220.0    | 265.0  |        | - Care axis                                      |        |          |                 |          |          |       |       |            |            |          |          |
| 265.0    | 330.0  |        |                                                  |        |          |                 |          |          |       |       |            | :          |          |          |
|          |        |        | Tata = 1 + 1 + 0 = 0                             |        |          |                 |          |          |       |       |            |            |          |          |
| 330.0    | 374    | 982    | Proti Lailli d ff 201.0-201.8 contact @ 600      |        |          |                 |          |          |       |       |            |            |          |          |
|          | - 27.0 | 15 (1  | 19711, Clapilli Futt, 2% fossiliterous limestone |        |          |                 |          |          |       |       |            |            |          |          |
|          |        |        | 10 to disseminated purite, 20% gtz. as 1-25      |        |          |                 |          |          |       |       |            |            |          |          |
| <b>l</b> | 334.0  | (<br>E | on ins to loo to core axis 1% sp. ga. diss. 3    | 30.0   | 334.c    | <del>4.</del> 0 | 86085    | 175      | 14722 | 28726 | 341.3      | 2420       |          |          |

#### APPENDIX C- 1992 TRENCHING



APPENDIX C NAVARRE RESOURCES STRIKE PROJECT

## TRENCHING



| SAMPLE NO. | WIDTH(m.) | <u>%Cu</u> | <u>%Fb</u> | <u>%Zn</u> | oz/t Ag | oz/t Au |   |
|------------|-----------|------------|------------|------------|---------|---------|---|
| 52201      | 0.20      | 2.1        | 9.0        | 27.4       | 531.0   | 0.456   |   |
| 52202      |           | 1.5_       | _6.9_      | 29.3.      | 379.0   |         | _ |
| 52203      | 0.20      | 0.3        | 2.7        | 6.0        | 34.1    | 0.168   |   |
| 52204      | 0.18      | 1.0        | 11.7       | 9.7        | 414.0   | 0.432   |   |
| 52205      | 0.20      | 0.6        | 9.1        | 15.4       | 212.0   | 0.444   |   |
| 52206      | 0.28      | 0.1        | 6.0        | 4.0        | 55.4    | 0.154   |   |
| 52207      | 0.22      | 0.2        | 6.7        | 10.2       | 188.0   | 0.416   |   |

#### GEOLOGICAL LEGEND

TERTIARY PORTLAND CANAL DYKES

4b Intermediate composition lamprophyre, hornblende pheno. MIDDLE JURASSIC SALMON RIVER FM.

3a Argillaceous siltstone, interbedded greywacke, limestone

QUARTZ-SPHALERITE-GALENA-CHALCOPYRITE-PYRITE-TETRAHEDRITE

52206

301





\_\_\_\_

52207

3a

...

\_\_\_\_\_



. .

4m.

APPENDIX D- DEEP-EM COMPILATION MAP (1990)





## APPENDIX E- VLF-EM DATA FROM LOIS, IRON CAP, & SLIPPERY IAN GRIDS

| VLF-EM  | SURVE | EY- | STRIKE | E CLAIMS, | IRONCAP | GRID | SEPT., | 94 |
|---------|-------|-----|--------|-----------|---------|------|--------|----|
| TRANSMI | TTER  | SEA | ATTLE, | 24.8'kHz  | •       |      |        |    |
|         |       | t   |        |           |         |      |        |    |

| LINE 0+00 N                                                                                                    | IN PHASE | QUADRATURE      |                                      |
|----------------------------------------------------------------------------------------------------------------|----------|-----------------|--------------------------------------|
| 1+00 W                                                                                                         | -30      |                 |                                      |
| Q+75 W                                                                                                         | -26      | +8              |                                      |
| 0+50 W                                                                                                         | -26      | +' <del>`</del> | · · · ·                              |
| 0+25 W .                                                                                                       | -32      | +10             |                                      |
| 0+00 E                                                                                                         | -28      | +12             |                                      |
| 0+25 E                                                                                                         | -40      | +12             | •                                    |
| 0+50 E                                                                                                         | -30      | +16             | JOAN CREEK                           |
| 0+75 E                                                                                                         | -14      | +14             |                                      |
| 1+00 E                                                                                                         | -8       | +10             |                                      |
|                                                                                                                | . •      |                 |                                      |
| LINE 1+00 N                                                                                                    |          |                 |                                      |
| 1+00 W                                                                                                         | -33      | +1              |                                      |
| 0+75 W                                                                                                         | -31      | +4              |                                      |
| 0+50 W                                                                                                         | -29      | +7              | •                                    |
| 0+25 W                                                                                                         | -20      | +13             |                                      |
| 0+00 W                                                                                                         | -19      | +16             |                                      |
| 0+25 E                                                                                                         | -21      | +14             |                                      |
| 0+50 E                                                                                                         | -24      | +16             | •                                    |
| 0+75 E                                                                                                         | -30      | +18             | •                                    |
| 1+00 E                                                                                                         | -41      | +18             | JOAN CREEK                           |
| 1+25 E                                                                                                         | -34      | +12             |                                      |
|                                                                                                                |          |                 | 1 ·                                  |
| LINE 2+00 N                                                                                                    |          |                 | Г                                    |
| 1+00 W                                                                                                         | -28      | 0               | · · · · ·                            |
| 0+75 W                                                                                                         | -29      | • • • •         |                                      |
| 0+50 W                                                                                                         | -29      | +5              | · •                                  |
| 0+25 W                                                                                                         | -26      | +5              |                                      |
| 0+00 W                                                                                                         | -21      | +14             | · ·                                  |
| 0+25 E                                                                                                         | -21      | +14             |                                      |
| 0+50 E                                                                                                         | -19      | +20             | •                                    |
| 0+75 E                                                                                                         | -19      | +21             |                                      |
| 1+00 E                                                                                                         | -22      | +20             | · .                                  |
| 1+25 E                                                                                                         | -28      | +20             |                                      |
| 1+50 E                                                                                                         | -35      | +14             |                                      |
| 1+75 E                                                                                                         | -42      | +10             | •                                    |
| 2+00 E                                                                                                         | -45      | +10             | JOAN CREEK                           |
| 2+25 E                                                                                                         | -43      | +11             |                                      |
| · · · ·                                                                                                        |          | · • • • •       |                                      |
| LINE 3+00 N                                                                                                    | 1        |                 |                                      |
| 0+00 E                                                                                                         | ÷23      | +8              |                                      |
| 0+25 E                                                                                                         | -20      | +9              |                                      |
| 0+50 E                                                                                                         | -18      | +12             | ч                                    |
| 0+75 E                                                                                                         | -20      | · +9            | ~                                    |
| 1+00 E                                                                                                         | -21      | +17             |                                      |
| 1+25 E                                                                                                         | -23      | +18             | •                                    |
| 1+50 E                                                                                                         | -30      | +18             |                                      |
| 1+75 E                                                                                                         | -36      | +16             |                                      |
| 2+00 E                                                                                                         | -42      | +8              | JOAN CREEK                           |
| 2+25 E                                                                                                         | -47      | +15             | ann ann 2 11 11 - Tan Ta San Inn 2 7 |
| 2+50 E                                                                                                         | -49      | ·               |                                      |
| and the full of the second |          | 1, at and       |                                      |









VLF-EM SURVEY- STRIKE CLAIMS, IRONCAP GRID, SEPT., 93 TRANSMITTER- SEATTLE 24.8  $\rm kHz$ .

| LINE | 4+00 | N   | IN PHASE | QUADRATU       | SE .                                    |
|------|------|-----|----------|----------------|-----------------------------------------|
| 0+00 | E    |     | -23      | · +8           |                                         |
| 0+25 | E    |     | -22      | +7             |                                         |
| 0+50 | Ε    |     | -20      | +8             | •                                       |
| 0+75 | E    |     | -24      | +8             |                                         |
| 1+00 | E    |     | -20      | +8             | •                                       |
| 1+25 | E    |     | -23      | +14            | ۰<br>۱                                  |
| 1+50 | Е    |     | -21      | +18            | ,                                       |
| 1+75 | E    |     | -30      | +18            | ,                                       |
| 2+00 | E    |     | -36      | +18            | JOAN CREEK                              |
| 2+25 | Е    |     | -46      | . +9           | ,                                       |
| 2+50 | E .  |     | -47      | +10            | ·                                       |
| LINE | 5+00 | N   |          |                |                                         |
| 0+00 | E    |     | -23      | < <b>+8</b> .  |                                         |
| 0+25 | E    |     | -22      | +7             |                                         |
| 0+50 | E .  |     | -20      | +6             | · · ·                                   |
| 0+75 | E    |     | -21      | +5             |                                         |
| 1+00 | Е    |     | -20      | +8             |                                         |
| 1+25 | Е    |     | -20      | +12            |                                         |
| 1+50 | E ,  |     | -23      | +12            |                                         |
| 1+75 | E    | ••• | -23      | +16            |                                         |
| 2+00 | E    |     | -31      | +16            |                                         |
| 2+25 | Ε    |     | -42      | +15            | JOAN CREEK                              |
| 2+50 | E.   |     | -44      | +15            |                                         |
| 2+75 | E    |     | -48      | +13            |                                         |
| LINE | 6+00 | N   |          |                |                                         |
| 0+00 | E    |     | -17      | +8             |                                         |
| 0+25 | Ε    |     | -19      | +8             | ,                                       |
| 0+50 | E .  |     | -17      | +8             | · .                                     |
| 0+75 | Е    |     | -18      | +8             |                                         |
| 1+00 | E    | . 1 | -17      | `+8            |                                         |
| 1+25 | Е    |     | -19      | ° ( <b>+</b> 9 |                                         |
| 1+50 | E    |     | -23      | +11            |                                         |
| 1+75 | E    |     | -24      | +13            | , ·                                     |
| 2+00 | E    |     | -30 .    | +17            | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |
| 2+25 | Ε    |     | -34      | +20            |                                         |
| 2+50 | E    |     | -37      | +17            | JOAN CREEK                              |
| 2+75 | E    |     | -46      | +14            |                                         |
| 3+00 | Ε    |     | -43      | +11            |                                         |
| LINE | 9+00 | N   |          | · ·            |                                         |
| 0+00 | E    |     | -7       | +15            |                                         |
| 0+25 | E    |     | -8       | +12            |                                         |
| 0+50 | E,   |     | -10      | +13            | •                                       |
| 0+75 | E .  |     | -9       | +16 .          |                                         |
| 1+00 | Е    |     | -14      | +13            | · · ·                                   |
| 1+25 | E    | •   | -16      | +9             |                                         |
| 1+50 | E    |     | -15      | +12            | JOAN CREEK                              |
| 1+75 | E    |     | -24      | +10            |                                         |
| 2+00 | E    |     | -31      | +6             |                                         |
| 2+25 | Ē    |     | -43      | +4             |                                         |
|      |      |     |          |                |                                         |



VLF-EM SURVEY- ŚTRIKE CLAIMS, IRONCAP GRID, SEPT., 94 TRANSMITTER- SEATTLE 24.8 kHz

| LINE | 10+00 | N. I | N PHASE | • | QUADRATUR | ε            |
|------|-------|------|---------|---|-----------|--------------|
| 0+00 | E     |      | -8      |   | +16       | · .          |
| 0+25 | E     |      | -10     | - | +14       |              |
| 0+50 | Ε     |      | -11     |   | +15       |              |
| 0+75 | E     |      | -14     |   | +16       |              |
| 1+00 | E     |      | -18     |   | +13       | JOAN CREEK   |
| 1+25 | Ε     |      | -30 -   |   | +13       |              |
| 1+50 | E     |      | -32     |   | +12       | •            |
| 1+75 | E     |      | -37     | - | +10       | CANYON CREEK |
| 2+00 | E     |      | -41     |   | +7        |              |
|      | • •   |      | 1       |   |           | ۱.           |
| LINE | 11+00 | N ·  |         |   |           | •            |
| 0+00 | E .   |      | -8      |   | +16       |              |
| 0+25 | E     |      | -8      |   | +13       |              |
| 0+5Ò | E     |      | -10     |   | +16       | · ·          |
| 0+75 | Ε     |      | -11     |   | +18       | JOAN CREEK   |
| 1+00 | E     |      | -21     | - | +17       | 'n           |
| 1+25 | E     | •    | -29     | • | +12       | CANYON CREEK |
| 1+50 | Ε     |      | -36     |   | +10       | , ·          |
| 1+75 | E     | :    | -47     | 1 | +12       | · · · ·      |
|      |       |      |         | • |           |              |









. . .

\_

| VLF-EM  | SURVE | EY- 🗄 | STRIKE | CLAI | MS, | LOIS | GRID, | SEPT., | 94 |
|---------|-------|-------|--------|------|-----|------|-------|--------|----|
| TRANSMI | TTER  | SEA   | TTLE,  | 24.8 | kHz |      |       |        |    |

| LINE 0+00 S<br>1+00 W<br>0+75 W<br>0+50 W<br>0+25 W<br>0+25 E<br>0+25 E<br>0+50 E<br>0+75 E<br>1+00 E<br>1+25 E<br>1+50 E | IN PHASE<br>-9<br>-4<br>+6<br>+12<br>+14<br>+16<br>+4<br>-5<br>-2<br>-3<br>-6 | QUADRATURE<br>-26<br>-22<br>-27<br>-23<br>-30<br>-31<br>-24<br>-25<br>-25<br>-18<br>-19 |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| LINE 1+00 S<br>1+00 W<br>0+75 W<br>0+50 W<br>0+25 W<br>0+00 E<br>0+25 E<br>0+25 E<br>0+50 E<br>0+75 E<br>1+00 E           | +4<br>+6<br>+13<br>+10<br>+5<br>-2<br>-3<br>-5<br>-6                          | -33<br>-26<br>-26<br>-24<br>-32<br>-28<br>-30<br>-24<br>-10                             |
| LINE 2+00 S<br>1+25 W<br>1+00 W<br>0+75 W<br>0+50 W<br>0+25 W<br>0+00 E<br>0+25 E<br>0+25 E<br>0+50 E<br>0+75 E<br>1+00 E | +18<br>+10<br>+8<br>+5<br>-4<br>-13<br>-10<br>-15<br>-18<br>-20               | -28<br>-28<br>-27<br>-33<br>-28<br>-32<br>-28<br>-30<br>-28<br>-30<br>-28<br>-26        |
| LINE 3+00 S<br>1+00 W<br>0+75 W<br>0+50 W<br>0+25 W<br>0+00 E<br>0+25 E<br>0+25 E<br>0+50 E<br>0+75 E<br>1+00 E           | +3<br>-2<br>-8<br>-13<br>-15<br>-14<br>-24<br>-25<br>-26                      | -26<br>-28<br>-30<br>-30<br>-28<br>-32<br>-32<br>-26<br>-30<br>-26                      |

### VLF-EM SURVEY,STRIKE CLAIMS, SLIPPERY IAN GRID, SEPT., TRANSMITTER- SEATTLE 24.8 kHz 94`

| LINE 1+00 N<br>1+50 W<br>1+25 W<br>1+00 W<br>0+75 W<br>0+50 W<br>0+25 W<br>0+00 W<br>0+25 E<br>0+50 E<br>0+75 E<br>1+00 E | IN PHASE<br>-26<br>-30<br>-28<br>-32<br>-29<br>-35<br>-28<br>-36<br>-30<br>-30<br>-30<br>-32 | QUADRATURE<br>-13<br>-16<br>-16<br>-21<br>-19<br>-14<br>-16<br>-14<br>-14<br>-14<br>-17<br>-18 |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| LINE 0+50 N<br>1+00 W<br>0+75 W<br>0+50 W<br>0+25 W<br>0+00 E<br>0+25 E<br>0+50 E<br>0+75 E<br>1+00 E                     | -31<br>-30<br>-32<br>-34<br>-32<br>-31<br>-32<br>-31<br>-32<br>-31<br>-30                    | -21<br>-22<br>-21<br>-22<br>-22<br>-22<br>-20<br>-20<br>-16                                    |
| LINE 0+00 N<br>0+50 W<br>0+25 W<br>0+00 W<br>0+25 E<br>0+50 E<br>0+75 E                                                   | -34<br>-34<br>-34<br>-35<br>-35<br>-28                                                       | -23<br>-26<br>-21<br>-19<br>-19<br>-20                                                         |
| LINE 0+50 S<br>0+75 W<br>0+50 W<br>0+25 W<br>0+00 W<br>0+25 E<br>0+50 E<br>0+50 E<br>0+75 E<br>1+00 E                     | -27<br>-28<br>-26<br>-31<br>-26<br>-26<br>-28<br>-31                                         | -20<br>-20<br>-22<br>-21<br>-21<br>-21<br>-22<br>-22<br>-22                                    |
| LINE 1+00 S<br>0+50 W<br>0+25 W<br>0+00 W<br>0+25 E<br>0+50 E<br>0+75 E<br>1+00 E                                         | -21<br>-20<br>-22<br>-28<br>-28<br>-34<br>-30                                                | -19<br>-22<br>-16<br>-20<br>-22<br>-24<br>-22                                                  |



