LOG NO:	OCT 3 1 1994	RD.
ACTION.		
FILE NO:	and the second secon	

-l

ASSESSMENT REPORT

DIAMOND DRILLING

ON THE

DRIFTPILE CREEK PROPERTY (P, D, GOOF AND POOK 2, 3 CLAIMS)

LIARD MINING DIVISION

NTS 94K/4W

58° 04' N. LATITUDE, 125° 55' W. LONGITUDE

OWNER: TECK EXPLORATION LTD 350-272 Victoria St. Kamloops, B.C. V2C 2A2 R. Farmer November, 1994

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

Page No.

Summary i
Recommendations
Introduction
Location and Access
Topography and Vegetation
Claims
Previous Work
1994 Program
Geology
A. Regional Geology
B. Property Geology
C. Lithology
Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9
Unit 10
D. Structure
E. Mineralization
Diamond Drilling
Section 19N, DDH 94-68, 94-69
Section 20N, DDH 94-70
Section 21N, DDH 94-71
Section 6N, DDH 94-72, 94-73
Conclusion
References

LIST OF FIGURES

Following Page No.

Figure 1:	Driftpile Creek Property Location Map (1:1,000,000)1
Figure 2:	Claim Map (1:50,000)
Figure 3:	Regional Geology (1:670,000)5
Figure 4:	Simplified Property Geology (1:20,000)
Figure 5:	Drill Hole Location Map (1:5,000) In Pocket
Figure 6:	Drill Section 19N, DDH 94-68, 94-69 In Pocket
Figure 7:	Drill Section 20N, DDH 94-70 In Pocket
Figure 8:	Drill Section 21N, DDH 94-71 In Pocket
Figure 9:	Drill Section 6N, DDH 94-72, 94-73 In Pocket

LIST OF TABLES

Page No.

Table 1:	Claim Records	2
Table 2:	Diamond Drill Hole Data	12

APPENDICES

Appendix I:	Statement of Qualifications
Appendix II:	Cost Statement
Appendix III:	Certificates of Analyses
Appendix IV:	Analytical Procedures

Appendix V: Diamond Drill Logs

SUMMARY

Twenty six diamond drill holes were drilled on the Driftpile Creek property during 1994. Six of the holes, 94-68, 94-69, 94-70, 94-71, 94-72 and 94-73 (total 836.28 metres) are being filed for assessment and are the subject of this report.

The program was undertaken to test areas of known mineralization, other than the Main Zone area, tested in 1993. The above listed six holes comprised followup testing of two target areas, termed the Camp and South Zones, both of which had seen initial testing by previous operators between 1978 and 1982.

Drilling on the Camp Zone has determined that the dominant structure in this area is an anticline rather than a syncline, as was previously thought. Drilling has confirmed that the tonnage potential of this zone is very limited due to, it's location along the top of a narrow ridge combined with most of the anticline having been eroded. All four holes drilled on this zone failed to intersect significant mineralization.

The two holes drilled on the South zone tested a minor fold on the eastern, overturned limb of a major antiform. Although significant assay results were not obtained, a thick, strong sulphide intersection was encountered. Further drilling is warranted to test strike and dip extensions of this intersection for higher grade mineralization.

Drilling has demonstrated that folding can be expected to become isoclinal in style and locally overturned, adjacent to major thrust faults.

RECOMMENDATIONS

1. Continue drilling along strike and down dip from hole 94-73 on the South Zone, to test for higher grade mineralization.

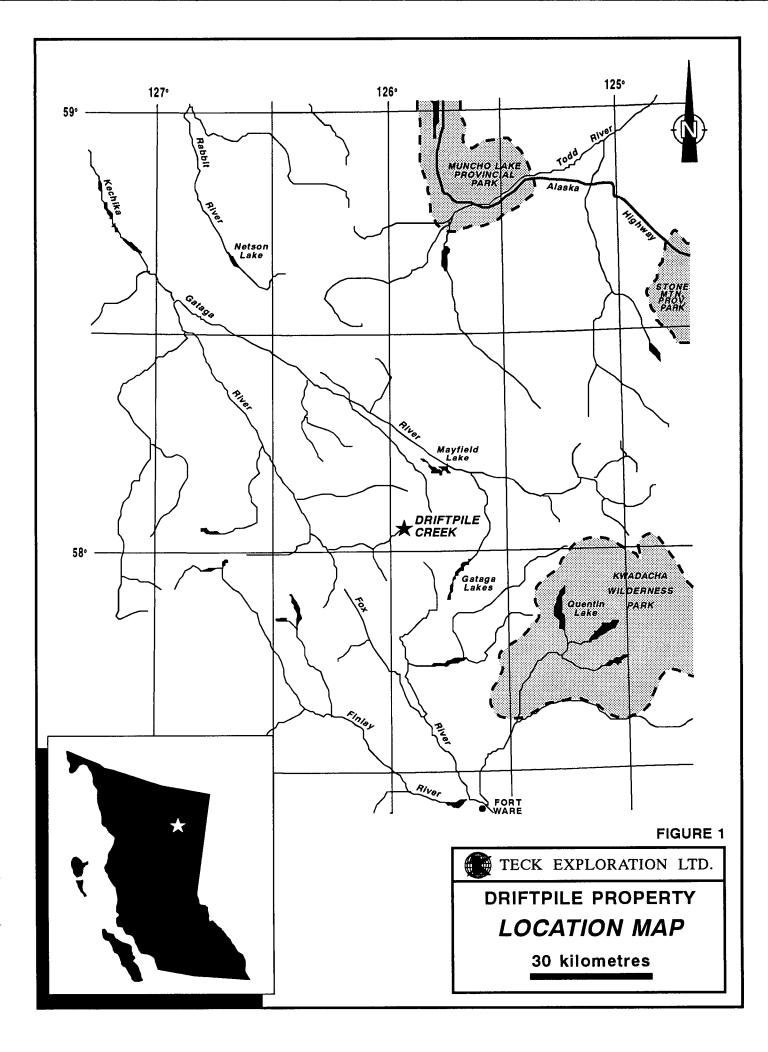
INTRODUCTION

During 1994, a 26 hole diamond drill program was completed on the Driftpile Creek property. Six holes, 94-68, 94-69, 94-70, 94-71, 94-72 and 94-73 (836.28 metres total), will be reported on and are the subject of this report.

The purpose of the 1994 program was to test areas of known mineralization on the property, other than the Main Zone area, tested in 1993. The above listed holes comprised followup testing of two target areas, termed the Camp and South Zones, both of which had seen initial testing by previous operators between 1978 and 1982. The previous drilling, combined with favourable geology/geochemistry/geophysics, indicated potential for significant mineralization in both areas.

LOCATION AND ACCESS

The property is located along Driftpile Creek, approximately 210 kilometres southwest of Fort Nelson, B.C. (figure 1). The approximate centre of the claims are located at 58°04'N latitude and 125°55'W longitude on NTS map sheet 94K/4W.


The property is only accessible by air, with the closest access point being Toad River on the Alaska Highway, 90 kilometres to the north. A rough, 600 metre long airstrip is present on the property, which is suitable for Twin Otter aircraft. A 2.5 km cat trail connects the airstrip to the camp area on the property.

For mobilization, gear is trucked to Toad River and then flown by fixed wing aircraft or helicopter, to the Driftpile airstrip. Heavy or bulky gear must then be ferried by helicopter from the airstrip to the camp area. Weekly service flights generally fly straight from Fort St. John B.C. (370km) to the Driftpile airstrip.

TOPOGRAPHY AND VEGETATION

The property lies within predominantly sub-alpine type terrain along the west flank of the Muskwa Range of the Rocky Mountains. The east-west Driftpile Creek valley, located in the central portion of the property is the main topographic feature. Elevations on the property range from 1100m to 2000m above sea level.

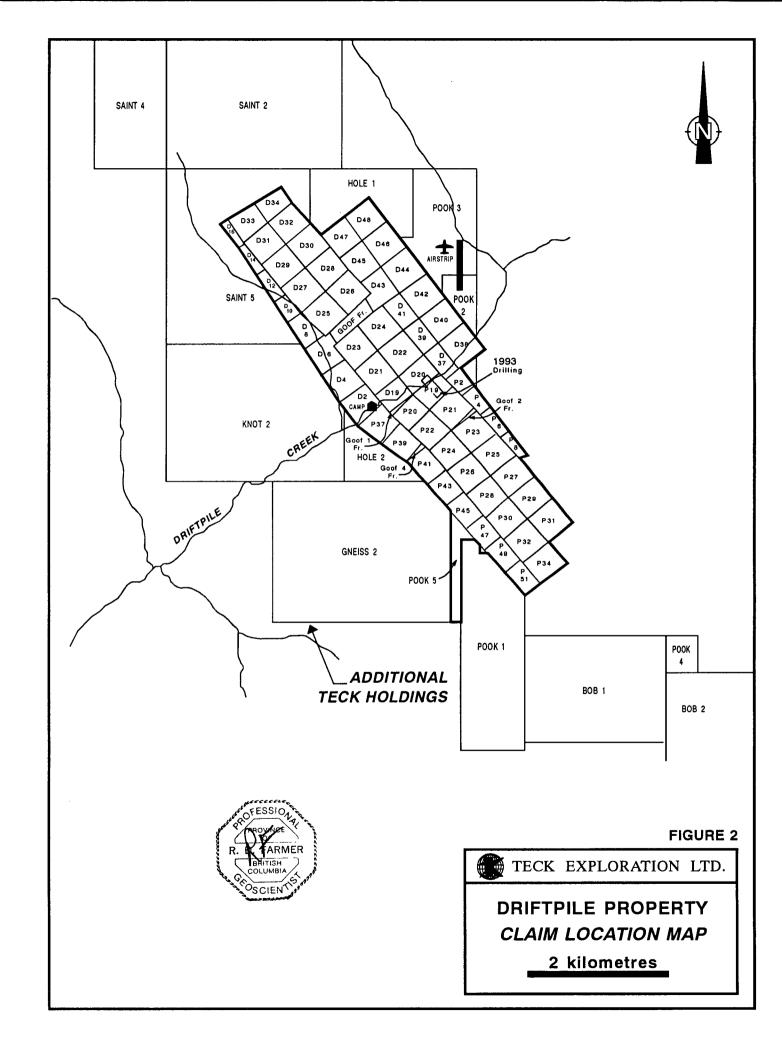
Vegetation consists of sub-alpine scrub brush and grass with sporatic stands of spruce and poplar. Timbered areas are generally hillsides at mid-elevations. Creek valleys and higher elevations are generally vegetated with scrub brush and grass. Logging activities have not yet reached the property area.

CLAIMS

The property consists of 67 "two-post" mineral claims and fractons, plus five MGS mineral claims, for a total of 112 units, covering an area of approximately 2800 hectares(figure 2). All claims are registered in the name of Teck Exploration Ltd., except for the Goof Fr. which is registered under Teck Corporation. The following table lists pertinent claim data.

TABLE 1 CLAIM RECORDS

Claim Name	Record No.	<u>Units</u>	Record date	Expiry Date
P 2*	227978	1	Aug. 12/74	Aug. 12/2000
P 4*	227979	1	Aug. 12/74	Aug. 12/2000
P 6*	227980	1	Aug. 12/74	Aug. 12/2000
P 8*	227981	1	Aug. 12/74	Aug. 12/2000
P 19*	227982	1	Aug. 12/74	Aug. 12/2000
P 20	227983	1	Aug. 12/74	Aug. 12/2000
P 21*	227984	1	Aug. 12/74	Aug. 12/2000
P 22*	227985	1	Aug. 12/74	Aug. 12/2000
P 23*	227986	1	Aug. 12/74	Aug. 12/2000
P 24*	227987	1	Aug. 12/74	Aug. 12/2000
P 25*	227988	1	Aug. 12/74	Aug. 12/2000
P 26*	227989	1	Aug. 12/74	Aug. 12/2000
P 27*	227990	1	Aug. 12/74	Aug. 12/2000
P 28*	227991	1	Aug. 12/74	Aug. 12/2000
P 29*	227992	1	Aug. 12/74	Aug. 12/2000
P 30*	227993	1	Aug. 12/74	Aug. 12/2000
P 31*	227994	1	Aug. 12/74	Aug. 12/2000
P 32*	227995	1	Aug. 12/74	Aug. 12/2000
P 34*	227996	1	Aug. 12/74	Aug. 12/2000
P 37*	227997	1	Aug. 12/74	Aug. 12/2000
P 39*	227998	1	Aug. 12/74	Aug. 12/2000
P 41*	227999	1	Aug. 12/74	Aug. 12/2000
P 43	228000	1	Aug. 12/74	Aug. 12/2000
P 45	228001	1	Aug. 12/74	Aug. 12/2000
P 47	228002	1	Aug. 12/74	Aug. 12/2000
P 49*	228003	1	Aug. 12/74	Aug. 12/2000
P 51*	228004	1	Aug. 12/74	Aug. 12/2000
D 2*	228005	1	Aug. 12/74	Aug. 12/2000
D 4*	228006	1	Aug. 12/74	Aug. 12/2000
D 6*	228007	1	Aug. 12/74	Aug. 12/2000
D 8*	228008	1	Aug. 12/74	Aug. 12/2000
D 10*	228009	1	Aug. 12/74	Aug. 12/2000
D 12*	228010	1	Aug. 12/74	Aug. 12/2000
D 14*	228011	1	Aug. 12/74	Aug. 12/2000
D 19*	228013	1	Aug. 12/74	Aug. 12/2000
D 20*	228014	1	Aug. 12/74	Aug. 12/2000
D 16*	228012	1	Aug. 12/74	Aug. 12/2000


TABLE 1 - CLAIM RECORDS - CONTINUED

Claim Name	Record No.	Units	Record Date	Expiry Date
D 21*	228015	1	Aug. 12/74	Aug. 12/2000
D 22*	228016	1	Aug. 12/74	Aug. 12/2000
D 23*	228017	1	Aug. 12/74	Aug. 12/2000
D 24*	228018	1	Aug. 12/74	Aug. 12/2000
D 25*	228019	1	Aug. 12/74	Aug. 12/2000
D 26*	228020	1	Aug. 12/74	Aug. 12/2000
D 27*	228021	1	Aug. 12/74	Aug. 12/2000
D 28*	228022	1	Aug. 12/74	Aug. 12/2000
D 29*	228023	1	Aug. 12/75	Aug. 12/2000
D 30*	228024	1	Aug. 12/74	Aug. 12/2000
D 31*	228025	1	Aug. 12/74	Aug. 12/2000
D 32*	228026	1	Aug. 12/74	Aug. 12/2000
D 33*	228027	1	Aug. 12/74	Aug. 12/2000
D 34*	228028	1	Aug. 12/74	Aug. 12/2000
D 37*	228029	1	Aug. 12/74	Aug. 12/2000
D 38*	228030	1	Aug. 12/74	Aug. 12/2000
D 39*	228031	1	Aug. 12/74	Aug. 12/2000
D 40*	228032	1	Aug. 12/74	Aug. 12/2000
D 41*	228033	1	Aug. 12/74	Aug. 12/2000
D 42*	228034	1	Aug. 12/74	Aug. 12/2000
D 43*	228035	1	Aug. 12/74	Aug. 12/2000
D 44*	228036	1	Aug. 12/74	Aug. 12/2000
D 45*	228037	1	Aug. 12/74	Aug. 12/2000
D 46*	228038	1	Aug. 12/74	Aug. 12/2000
D 47*	228039	1	Aug. 12/74	Aug. 12/2000
D 48*	228040	1	Aug. 12/74	Aug. 12/2000
Goof 1*	228041	1	Aug. 12/74	Aug. 12/2000
Goof 2*	228042	1	Aug. 12/74	Aug. 12/2000
Goof 4*	228043	1	Aug. 12/74	Aug. 12/2000
Goof Fr	320395	1	Aug. 09/93	Aug. 09/95
Pook 1	221782	18	Aug. 24/78	Aug. 24/97
Pook 2*	221783	12	Aug. 24/78	Aug. 24/2000
Pook 3*	221784	9	Aug. 24/78	Aug. 24/2000
Pook 4	221838	2	Jul. 05/79	Jul. 05/97
Pook 5	221839	4	Jul. 05/79	Jul. 05/97

* Grouped as DP Group - Total 87 Units

·

Note: Expiry date for claims in DP Group based on acceptance of this report

PREVIOUS WORK

In 1970, Geophoto Consultants Limited conducted a reconnaissance stream sediment survey in the region on behalf of a syndicate.

In 1973, the syndicate entered a joint venture with Canex Placer Ltd. to investigate the 1970 anomalies. Prospecting discovered mineralized float on the Driftpile Creek property and 153 "two-post" mineral claims and fractions were staked in 1974.

Canex Placer Ltd. conducted geological mapping, an EM survey and hand trenching in 1974 and 1975.

No work was carried out during the period 1975-1977.

In 1978, the Gataga Joint Venture (GJV), comprised of Chevron Canada Limited, Getty Canadian Metals Limited, Kidd Creek Mines Ltd., Welcome North Mines Ltd. and Castlemaine Exploration Ltd., optioned the property from the Placer Syndicate. Soil geochemistry, geological mapping, hand trenching and 1016 metres of diamond drilling in nine holes were carried out. The program from 1978 to 1982 was managed by Archer, Cathro ans Associates.

In 1979, soil geochemistry, geological mapping, hand trenching and 2416 metres of diamond drilling in 21 holes, were completed.

Soil geochemistry, geological mapping, backhoe trenching and 2020 metres of diamond drilling in 10 holes were completed in 1980.

In 1981, soil geochemistry, geological mapping, backhoe trenching, the establishment and surveying of a grid and 2003 metres of diamond drilling in 11 holes were completed. In addition a MaxMin II EM survey and a gravity survey were carried out, and construction was started on an airstrip.

The airstrip was completed in 1982, along with additional geological mapping and 1122 metres of diamond drilling in three holes.

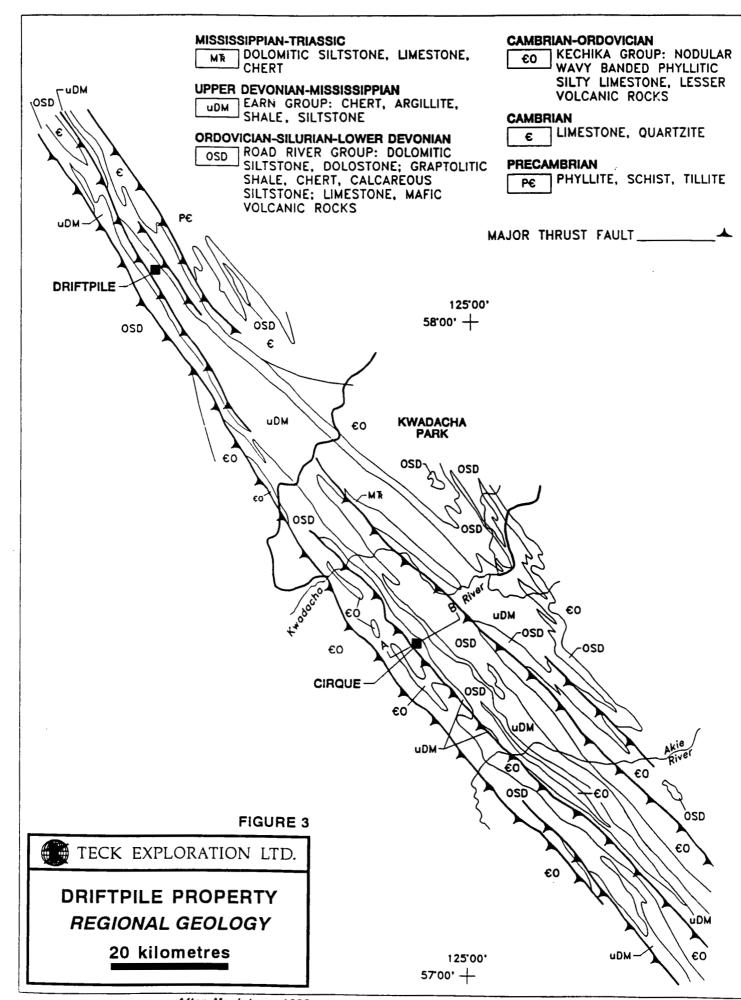
In 1992, Teck Exploration Ltd. purchased 100% interest in the Driftpile Creek property.

In 1993 diamond drilling of 4559.31 metres in 13 holes were completed.

1994 PROGRAM

During 1994, 26 NQ sized diamond drill holes were drilled. Only six (6) of the holes are being filed for assessment, and consequently only that portion of the program pertaining to the six holes will be described in this report. The six holes required 19 days to drill, from June 6-24, 1994.

The six drill holes, which are the subject of this report, include holes 94-68, 94-69, 94-70, 94-71, 94-72 and 94-73, for a total of 836.28 metres. The purpose of the program was to test zones of known mineralization other than the Main Zone, tested in 1993. The six holes described in this report tested the Camp and South Zones, and provided a followup of mineralized intersections obtained by previous operators between 1978 and 1982. The current drill program was carried out to test for the presence of high grade mineralization in these other target areas as defined by previous operators.


GEOLOGY

<u>A. Regional Geology</u> (Figure 3)

The best description of the geology of the Gataga District, including the Driftpile property area, is provided by MacIntyre (1992).

The Driftpile Creek property is located within the Rocky Mountain Fold and Thrust belt of northeastern B.C. The property is located within Paleozoic, miogeoclinal basinal facies rocks of ancestral North America affinity (MacIntyre, 1992). These rocks were deposited in the Kechika Trough, a southeast extension of the Selwyn Basin and are bounded to the east by platformal carbonates of the MacDonald Platform and to the west by carbonates of the Cassiar Platform. The Kechika Trough is underlain by predominately clastic rocks ranging from Proterozoic to Triassic in age which form a northwest trending linear belt. The Driftpile Creek property is underlain by black shale, silty shale, siliceous shale and chert of the Gunsteel Formation, Lower Earn Group, of Upper Devonian age. The Stronsay (Cirque) deposit, located 100km to the southeast (38.5 m.t. @ 8.0% Zn, 2.2% Pb, 47.2g/t Ag), is hosted by the same Gunsteel Fm. shales. Northeast directed compression has resulted in complex thrusting and related folding, resulting in difficult stratigraphic correlation. The lack of a reliable marker horizon complicates correlation.

Archer, Cathro and Associates carried out extensive work on the Driftpile property during the period 1977-1982, including regional and detailed mapping and diamond drilling. From this work, Carne and Cathro (1982), identified three main mineralized horizons hosted by the Devonian shales.

After MacIntyre, 1983

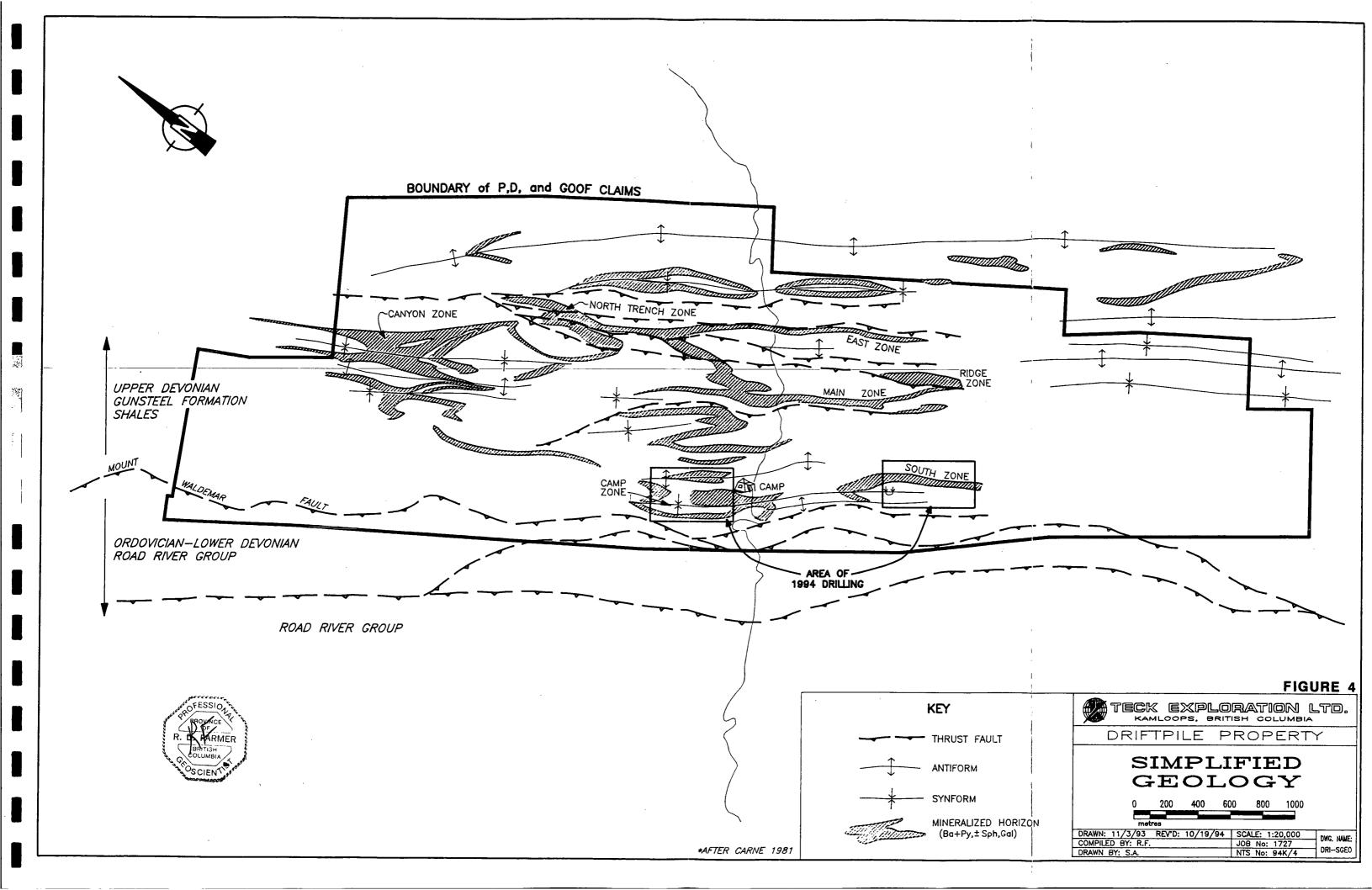
.....

í

•

;

B. PROPERTY GEOLOGY


The Driftpile Creek property is underlain by a northwest trending belt of black shale, silty shale, siliceous shale and chert of the Upper Devonian Gunsteel Formation. The Gunsteel Fm. shales are bounded to the west by the Mount Waldemar fault, which thrusts Lower Devonian to Ordovician rocks of the Road River Group over the Gunsteel stratigraphy. The Mount Waldemar Fault occurs near the western boundary of the P, D and Goof claims (figure 4). Paleozoic carbonates of the MacDonald Platform are present east of the property. The geology is dominated by northwest trending thrust faults and related folding with, generally, northwest trending axes. These fold and thrust patterns result in an erratic, juxaposed distribution of lithologies in an east-west direction, whereas lithological units tend to be laterally continuous in a northwest-southeast direction, parallel to the structural grain.

Mineralized horizons are widespread on the property and consist of baritic and/or pyritic shale, locally containing concentrations of sphalerite and galena. Barite varies from massive and laminated through blebby laminations with shale, to nodular laminations with shale. This variation likely represents a trend from proximal to distal environment of formation, respectively. There appears to be at least two mineralized horizons, however stratigraphic relationships are difficult to resolve due to structural complexity and lack of a reliable marker horizon.

In the claims area outcrop exposure is generally poor, except along creeks and on higher ridge tops. The most common lithology is grey to black, massive, poorly laminated, often featureless shale. As mineralized horizons are approached, the shales tend to become thinner bedded and more strongly laminated. Carbonate concretions and pyrite and/or barite laminations also increase towards mineralized horizons. Siliceous shale and chert are generally present in the stratigraphic footwall to mineralization, or may represent a lateral equivalent to mineralization. Where stratigraphic relationships are preserved, contacts between units tends to be gradational over several metres to tens of metres. In drill core younging indicators are often present, the most common being grading and load or flame structures. Other indicators present occasionally include cross-lamination and cleavage refraction.

C. LITHOLOGY

The following section describes lithologic units used on maps and drill sections included with this report. Units are numbered from stratigraphically highest to lowest, although uncertainity remains as to the relative positions of some units, and will be described in that order in the following section. In all cases contacts between units are gradational, usually over several metres to tens of metres, except where complicated by

faulting.

UNIT 1

This unit, termed nodular shale, consists of grey to black, thick bedded (massive), poorly to moderately laminated shale and mudstone which generally contain abundant nodules. Nodules consist of calcite, with varying content of pyrite, and are generally 5mm or less in diameter. Laminations, where present consist of black shale, grey siltite or coarse grey iron carbonate-rich silty layers. Laminations are generally 2cm or less in thickness, although thicker ones are occasionally present. White carbonate concretions, 2-4cm in diameter are occasionally present, however are not diagnostic of this unit. This unit occupies the highest stratigraphic position currently recognized on the property and as such tends to only be exposed in the core of synclinal structures. Drilling in 1994 indicates that a gradation is present between this unit and unit 2, below, and that a distinction cannot always be made between these two units.

UNIT 2

Unit 2 is not a distinctive lithology and generally includes undifferentiated stratigraphy. This unit is generally grey in colour, soft (non-siliceous) and is a thick bedded, massive mudstone with poor shale laminations. Pyrite-carbonate nodules and concretions may be present and when present this unit is difficult to distinguish from unit 1. Nondistinctive mudstones of unit 2 are the most common lithology on the property.

UNIT 3

Concretionary shale of Unit 3 consist of moderately well laminated grey to black shales with abundant, light grey concretions 2-10cm in diameter. This unit is very distinctive both on surface, where concretions readily weather out, and in drill core. When a high percentage of sulphide laminations are present, this unit is termed Unit 6-pyrite laminated turbidite or, Unit 7-transition zone. Drilling in 1994 has shown that this unit can also be present in the immediate footwall to mineralization. Concretionary shale seems to be the host for mineralization and is present when mineralization is weak or not present.

UNIT 4

Cryptic Pyrite Laminated Mudstone of Unit 4 is a common lithology in drill core where it is easily recognized. Unit 4 is grey to black, massive mudstone which is variably graphitic and siliceous (nonsiliceous to very siliceous or cherty) and contains distinctive millimetre scale pyrite laminations which often give the rock a "stripped" appearance when wet. Pyrite laminations vary from very fine, almost single grain width, lines to brownish bands several millimetres thick. Cryptic Pyrite Laminated Mudstone (CPLM) seems to be related to mineralization, both the upper and lower horizons. There is some suggestion that CPLM may represent a distal expression of mineralization as it tends to occur above or lateral to stronger mineralization. There is an intimate association between CPLM and homogeneous and siliceous shale/mudstone with radiolaria and or amoeboid chert textures of units 9 and 10.

UNIT 5

Unit 5 is a well laminated turbidite. The lithology consists of massive mudstone beds 40cm or less separated by well laminated intervals which are 10-20cm thick. The thickness of massive mudstone beds and therefore the frequency of laminated sections increases towards the base of the unit. Laminated sections commonly contain large carbonate concretions, and in general the number of concretions increase towards the bottom of the unit, while average size tends to decrease. Laminations, in the laminated intervals consist primarily of black shale and grey siltite, although coarser iron-carbonate and pyrite laminations are locally present. Pyrite laminations tend to increase towards the base of the unit. This unit represents the beginning of a recognizable hanging wall stratigraphy related to both mineralized horizons. The contact with underlying Unit 6 is gradational and selection of it's location is arbitrary, based on thickness of mudstone interbeds (and corresponding frequency of laminated sections), frequency of concretions and pyrite laminations.

UNIT 6

Well Laminated - Pyrite Laminated Turbidite of Unit 6 is similar to Unit 5 but, pyrite has become a dominant type of lamination and massive mudstone beds are now 5-10cm in thickness. The lithology is now a well bedded/laminated distal turbidite. Bedding/lamination can be rhythemic, giving the impression of turbiditic pulses. Concretions are now very common associated with the laminated sections and are generally 4cm or less in diameter. Within the laminated sections, laminations are generally a few millimetres to one or two centimetres thick and often consist of alternating

black shale and grey siltite. Laminations tend to be contorted, likely a result of soft sediment deformation. The concretions, possibly of late diagenetic origin, disrupt bedding.

UNIT 7

The Transition Zone, Unit 7, represents the uppermost part of the main mineralized zone and is termed transition because it represents a transition from sulphide bearing shale stratigraphy to a sulphide dominant mineralized sequence. Contacts with both overlying and underlying stratigraphy are gradational, usually over at least several metres. The upper contact is generally taken at the last larger mudstone interbed and/or the first coarse grained carbonate bed. These coarse grained carbonate beds consist of tightly packed, circular, grey carbonate patches and probably represent beds of amalgamated concretions, and can be up to several metres thick. Within the Transition Zone the concretions, which are now very common, begin to recrystallize as coarse carbonate, usually beginning in the center and progressing towards the margins. This recrystallization gradually becomes more complete towards the base of the Transition Zone. The Transition Zone is generally very graphitic, and at times may be baritic. The main difference between Well Laminated-Pyrite Laminated Turbidite and Transition Zone is the difference in thickness of mudstone beds (thinner in TZ), the greater concentration of sulphide, and the beginnings of recrystallization of concretions, in the Transition Zone. In areas where the mineralization is weaker, as in some of the 1994 holes, there is often not a clear distinction between Transition Zone and Mineralized Zone.

UNIT 8

Unit 8 is the main mineralized zone and consists of 35% - 80+% sulphide in a carbonate matrix, with minor black, graphitic shale laminations. Sulphides are primarily pyrite with local sphalerite and galena. The mineralized zone generally consists of fine grained, finely laminated sulphide with patches and irregular bands of white to black carbonate (recrystallized concretions). Sulphide laminations often display grading and are intensly contorted due to soft sediment deformation. Locally, near the base of the mineralized unit, fine grained massive sulphide with no carbonate patches and only very poor laminations is present. This massive zone, when present, is generally very high grade. This unit will be described further in the section of this report entitled "Mineralization". Occasional beds of unmineralized shale or weakly mineralized coarse carbonate are present and can vary from a few centimetres to several metres thick.

UNIT 9

Unit 9 is associated with the footwall to mineralization, both the main mineralized horizon and the upper horizon. Rocks of this unit consist of massive, homogeneous black shale/mudstone, which can be siliceous or nonsiliceous. Concretions and nodules are not present and laminations are rare to absent, which serves to distinguish this unit from other map-units. A second variety observed in 1994 drilling has been termed a laminated chert. This lithology consists of thin (<3cm) laminations of grey chert, black chert and siliceous black shale. Radiolarians are not present. This is a very distinctive lithology and when present, occurs in the immediate footwall to mineralization. The upper contact with the mineralized zone is sharp and conformable, when not complicated by faulting. Although this unit tends to be black and carbonaceous it is generally not Although always in the footwall to mineralization it may not necessarily graphitic. represent the immediate footwall, at times unit 10 below forms the immediate footwall and unit 9 occurs deeper in the footwall or not at all. As such units 9 and 10 could possibly be combined into one broader litho-stratigraphic assemblage, though for the time being they will be mapped separately.

UNIT 10

Map-unit 10 consists of siliceous to cherty shale/argillite and local chert. A distinctive feature of this unit is the local presence of radiolaria-bearing chert beds and white "amoeboid textured" chert patches. Radiolarian chert beds are generally 0.5-4cm thick and contain tiny, circular, white radiolaria. These beds are quite distinctive. Similarly, the "amoeboid chert" patches are very distinctive, consisting of irregular, splotchy, white chert patches 0.5-5cm in size, hosted in black siliceous to cherty argillite. The patches often display a very fine chalcedonic-like internal banding which is circular and appears to be nucleuated around something. The origin of these cherty patches is uncertain. Rocks of units 9 and 10 are intimately associated with cryptic pyrite laminated turbidite of unit 4.

D. STRUCTURE

Thrust faulting and related folding dominate the structure at Driftpile. Thrust faults are very common on the property, with a half dozen or more known across the two kilometre width of the property (figure 4). Continued drilling will likely identify many more. Thrusts have a general northwest strike and are northeast directed. The most significant thrust on the property is the Mount Waldemar fault, along the west boundary of the P, D

and Goof claim boundary, which forms the western boundary of the Devonian Gunsteel shales. The Mount Waldemar fault has brought older rocks of the Road River Group over Gunsteel stratigraphy. Most of the other thrusts on the property likely have relatively minor movement. For example, thrusts intersected during the current drilling, have on the order of 150-200 metres of movement (see figure), and it is likely that most of the other thrusts on the property have a similar degree of movement. Root thrusts in this part of the Rocky mountain fold and thrust belt tend to be flat lying, with second or third order thrusts having steep dips.

Three phases of deformation have been recognized (McClay and Insley, 1985) and include; asymetric folding on northeast axes of phase 1, complex, generally northeast verging thrusts and folds of phase 2, and late stage kink folds of phase 3. Structures related to phase 2 are the dominant, preserved structures. Phase 2 folds have a very strongly developed penetrative cleavage. Fold axes tend to be horizontal or flat lying, and folds tend to be open, upright and somewhat symmetrical away from thrusts and tight and asymetric adjacient to thrusts. Tight, asymetric folds are often overturned.

Drilling in 1994 has identified complex, overturned folds in the South Zone area (DDH 94-73, figure 8). The axial plane has a moderate west dip in this area. Folds were likely developed during the early stages of thrusting and overturned by continued or reactivated movement.

E. MINERALIZATION

At least two mineralized horizons are present. Both exhibit a siliceous, poorly bedded, locally radiolarian-bearing footwall and a pyritic, concretion bearing turbidite hangingwall. The two horizons have only been recognized together in the Main Zone area, drilled in 1993. In this area the two horizons are on the order of 150-200 metres apart, stratigraphically. While both horizons are hosted by similar stratigraphy, the upper horizon consists of barite+pyrite +/- sphalerite and galena, whereas the lower horizon consists of laminated to massive pyrite +/- sphalerite and galena. The presence of significant amounts of massive and laminated to blebby textured barite is diagnostic of upper horizon mineralization, at least in this area. While intervals of sulphide-rich mineralization can be present in the upper horizon, barite has not been recognized in the lower horizon. The 1994 drilling on the Camp and South Zones intersected lower horizon style mineralization.

The lower mineralized horizon consists of finely laminated pyrite with varying amounts of interbedded graphitic black shale. A distinctive feature of the mineralization is abundant light grey coloured concretions. These concretions generally decrease in size and show increasing recrystallization downwards through the mineral zone. Concretions are primarily composed of carbonate, although some silica may locally be present towards the base of the mineralized horizon. Pyrite laminations are strongly deformed, both as a result of soft sediment deformation and transposition along cleavage planes. Total sulphide content tends to increase towards the base of the horizon. Locally near the base of the mineralized interval a zone of stony, massive, non-laminated sulphide is present. When present, this massive sulphide is rich in galena/sphalerite, often occurring as irregular masses or base metal rich bands. Base metals tend to be enriched towards the base of the mineralized horizon. Sphalerite and galena occur as fine grained masses as a matrix to framboidal pyrite, as discrete aggrates or bands and locally as coarse grains within concretions. In general the entire mineralized zone carries 1-2% Zn with enriched sections towards the base. Visible barite is not common, however when present occurs towards the top of the zone.

DIAMOND DRILLING

A total of 26 diamond drill holes were drilled in 1994, of which six holes, totalling 836.28 metres, are being filed for assessment and are being reported on here. The holes were drilled to test known mineralized zones outside of the Main Zone area, tested in 1993. The six holes in question, 94-68, 94-69, 94-70, 94-71, 94-72 and 94-73 tested two other zones termed the Camp Zone and South Zone and were drilled between June 6 and 24, 1994. Advanced Drilling Ltd. of Surrey, B.C. was contracted to drill the NQ sized core. Selected portions of the core were split (sawed with a diamond saw), and sent to Min-En Laboratories in North Vancouver, B.C. for analysis. A total of 98 samples were collected and analyzed for Zn, Pb, Ag and Ba by fire assay and for 31 elements by ICP. Sample locations and lengths are plotted on the drill sections (figures 6 to 9), and complete results are listed on the Certificates of Analyses located in Appendix III.

Drill hole locations are plotted on figure 5 and Table 2 summarizes pertinent drill hole data. Drill logs are included in Appendix V.

	DIAMOND DRILL HULE DATA					
HOLE NO.	GRID LOCATION	ELEVATION	AZIMUTH	DIP	TOTAL LENGTH	NO. OF SAMPLES
94-68	19+00N,6+50W	1278m	055°	-60°	172.86m	
94-69	19+00N,5+00W	1290m	235°	-60°	66.16m	16
94- 70	20+00N,4+50W	1312m		-90°	86.89m	16
94-71	21+00N,4+50W	1337m		-90°	242.38m	15
94-72	6+00N, 5+10W	1357m	235°	-75°	141.46m	1
94-73	6+00N, 5+10W	1357m	055°	-55°	126.53m	50
			Total		836.28 metres	98 Samples

TABLE 2 DIAMOND DRILL HOLE DATA

Drill core is stored on the property where it has been stacked at the camp site. Core recovery averaged 80%-100% and drilling was completed quickly and efficiently.

Holes 94-68 to 94-71 were drilled on the Camp Zone to follow-up mineralization intersected by previous operators. Hole 79-18 intersected 30.5 metres of mineralization containing two zones of significant grade; a) 3.4m @ 6.4% Zn, incl. 0.9m @ 8.2% Zn and, b) 2.4m @ 10.23% Zn, incl. 0.7m @ 24.5% Zn. This hole was interpretated as penetrating the east limb of a synform.

SECTION 19N, DDH 94-68, 94-69 (Figure 6)

The first hole, 94-68, was collared west of the collar for 79-18 and drilled at -60° towards grid east to intersect the down dip extension of mineralization encountered in 79-18. The hole intersected footwall stratigraphy consisting of cryptic pyrite laminated mudstone and grey chert with local radiolaria-bearing chert over its entire length. The drilled section is not faulted and vergence data suggest an antiform to the west at the top of the hole. This suggests that hole 79-18 did not penetrate the east limb of a syncline, but rather the east limb of an anticline. No samples were collected from hole 68.

Hole 94-69 was then collared east of 79-18, at 5+00W, and drilled towards grid west. Below 3.66 metres of overburden the hole collared into mineralization. Mineralization is of the sulphide-carbonate type (laminated pyrite with carbonate concretions), typical of the lower horizon. Mineralization continues to 12.54 metres, but weakens down hole. Minor sphalerite and galena are present within concretions however no base metals are visible associated with pyrite. Mineralization weakens and grades downward into a thin concretionary shale unit, which passes down hole into typical footwall consisting of cryptic pyrite laminated mudstone with abundant rad-chert beds. Bedding at the top of the hole is flat and cleavage vergence data suggests a synformal closure. Grades do not exceed 2% zinc throughout this intercept.

It would seem that hole 94-69 intersected the mineralized horizon near a synclinal closure and that the intercept in 79-18 is along the west limb of the syncline, not the east limb as previously interpreted. As such the potential of the Camp Zone area is greatly reduced, as much of the mineralized horizon has been eroded.

SECTION 20N, DDH 94-70 (Figure 7)

Drill hole 94-70 was drilled to test the mineralized horizon dowdip to the east, and was collared as a vertical hole in light of the flat dips encountered in the area. Hole 94-70 collared into grey, nonsiliceous shale of unit 2 with local pyrite laminations and

concretions, under 3.05 metres of overburden. A fault zone was intersected from 4.14m to 5.18 metres which contains mineralized fragments consisting of nested concretions and pyrite laminations with minor sphalerite and galena.

Below the fault, moderately laminated grey, non-siliceous shale continues to 17.0 metres. Lamination types include; siltite, black shale, Fe-carbonate and pyrite. Lamination frequency, along with the relative abundance of pyrite laminations and concretions, increase down hole. Fe-carbonate laminations become less frequent down hole. By about 17 metres the lithology has become a well laminated turbidite. Massive interbeds are now 5-20 cm thick, and lamination frequency, along with pyrite content and abundance of concretions continue to increase down hole, grading into a pyritic, well laminated turbidite by 29.4 metres.

The mineralized horizon was intersected from 37.26m to 53.6 metres. Mineralization is very weak and "transition-like", consisting of 20% pyrite as laminations, 50% black shale beds and 30% partially recrystallized concretions. Minor yellow sphalerite is present in concretions and derceases down hole. A concretion rich zone is present from 49.11-53.6 metres, consisting of 70% concretions in a black shale matrix, with only minor pyrite.

Concretionary shale consisting of abundant concretions within variably siliceous black shale with only very minor pyrite, underlies the mineralization to 67.93 metres. White siltite laminations are moderately common throughout this interval. Siliceous, graphitic cryptic pyrite laminated mudstone with occasional radiolaria-bearing chert beds was intersected from 67.93m-79.15 metres. The bottom contact is a large fault (79.15-81.61m).

Below the fault soft, grey, non-siliceous shale containing infrequent Py-carbonate nodules together with silite and black shale laminations, is present to the end of the hole, at 86.89 metres. This unit is similar to distal hanging wall stratigraphy intersected at the top of the hole, suggesting that the fault may be repeating stratigraphy, and that a second intersection of the mineralized horizon may be possible at depth.

All samples from hole 94-70 contained less than 2% zinc.

SECTION 21N, DDH 94-71 (Figure 8)

Below 4.27m of overburden hole 94-71 intersected thick bedded, poorly laminated, soft, non-siliceous grey shale of unit 2 to 144.6 metres. Pyrite-carbonate nodules are common at the top of the interval and grade downhole to first baritic nodules then disappear altogether before the bottom of the interval. Lamination frequency generally increases downhole. Two faults are present, one at 61.29-62.5 metres and the second

at 81.99-86.0 metres. The latter fault is the much stronger one and is possibly the same fault intersected near the bottom of hole 94-70. In this case the fault has moved upsection relative to hole 94-70, resulting in the mineralized stratigraphy not being intersected above the fault in 94-71. Stratigraphy immediately below the fault in hole 94-71 (ie at 90 metres) is roughly equivalent to stratigraphy at the bottom of hole 94-70. If correct, the fault would be a thrust with moderate(?) westerly dip.

By 144.6 metres lamination frequency has increased to the point where the lithology is now termed a well laminated turbidite, with moderately common pyrite laminations, increasing downhole. At 170.02 pyrite laminations and concretions have increased to the point where the lithology is termed a well laminated - pyrite laminated turbidite. Massive interbeds (between laminated intervals), are now 10 cm or less thick. Minor yellow sphalerite and trace galena are now present in concretions.

From 183.56 to 201.0 metres the mineralized horizon was intersected. Mineralization is again very weak as defined by a low overall total sulphide content. Concretions are moderately recrystallized, and the zone is strongly graphitic. There are no visible base metals associated with pyrite, but minor sphalerite persists associated with concretions.

Below the mineralized interval, concretionary shale of unit 3 is present to 216.11m. This unit appears to represent the host lithology to mineralization, but without significant mineralization (perhaps prior to the onset of mineralizing activity?). The unit is intensiv graphitic and contains only minor pyrite.

From 216.11-236.83 metres a typical footwall lithology consisting of laminated chert is present. Grey and black chert beds to a few centimetres thick are interbedded with black non-siliceous to cherty shale. An occasional rad-chert bed is present and occasional pyrite laminations are present. In the interval 220.3-223.9 metres sphalerite veins to 1cm are present. The veins are oriented parallel to both cleavage and bedding, but are dominantly cross cutting. The veins occur at a frequency of 2-3 per metre. Although present in several holes, it is not clear if this veining represents an early "feedertype" system or perhaps a late re-mobilization. From 236.83m to the end of the hole (at 242.38m) siliceous cryptic pyrite laminated mudstone with occasional rad-chert beds is present.

Based on younging indicators the stratigraphy is right way up throughout hole 94-71. Although bedding dip directions cannot be resolved in a vertical hole, bedding dips flatten down hole. A crenulation cleavage developed in the middle portion of the hole probably indicates the presence of F_2 minor folding.

Holes 94-72, 73 were drilled on the South Zone (figure 5), and were drilled to test along strike to the south from weak mineralized intercepts obtained by previous operators. A southward increasing Pb/Pb+Zn ratio and strong gravity anomaly are -16-

present in the area (Carne and Cathro, 1982 and Farmer, et al 1993).

SECTION 6N, DDH 94-72, 73 (Figure 9)

Hole 94-72 was drilled towards grid west looking for a synclinal closure interpreted by previous operators. The hole intersected footwall stratigraphy for its entire length of 141.46 metres. The hole collared into siliceous to cherty black shale with abundant rad chert beds. Weakly developed cryptic pyrite laminations are locally present. Around 26.77 metres (gradational contact), siliceous cryptic pyrite laminated mudstone becomes the dominant lithology. Local zones rich in rad chert beds persist down hole. The interval is strongly graphitic and rare pyrite lams to 2cm are present. At 75.28 metres the dominant lithology becomes a laminated chert, which continues to the end of the hole. Grey and black chert beds are common, and become increasingly so down hole. After 114.0 metres minor hydrozincite is present, locally, on fractures. In the interval 136.34-137.48 metres beds of laminated semi-massive, subhedral pyrite are present.

Younging and vergence data are not clear for this hole however, near the bottom the stratigraphy may be overturned, with the result that the hole may be heading upsection towards the mineralized horizon at this point. The strongly laminated chert containing thick beds of subhedral pyrite is usually an indicator of proximal footwall stratigraphy.

Hole 94-73 was drilled from the same collar as 94-72, but angled towards grid east. The hole collared into the same footwall siliceous black shale with abundant rad chert beds as hole 72. Minor sphalerite veinlets and bands are present in the interval 5.49-8.0 metres, and hydrozincite is present on fractures throughout the interval. Laminated chert is present from 23.45-26.25 metres. The hole then intersects a structurally complex sequence of stratigraphy by passing through the mineralized horizon into hanging wall turbidites, then back through the mineralized horizon into footwall cherts, and finally through the mineralized horizon once again into an overturned hanging wall turbidite sequence which becomes increasingly distal down hole to the end of the hole at 126.53 metres.

Stratigraphic relationships suggest that the three mineralized intercepts represent a single horizon repeated by tight, overturned folding. This interpretation is supported by younging and vergence data. Each successive intercept of mineralization is thicker and contains a higher total sulphide content. The third mineralized intercept (64.27-99.55 metres), contains an estimated 40-60% sulphide (pyrite), with a central zone (78-90 metres) of 50-60% pyrite. This core zone of greatest pyrite content coincides with the best visible base metal mineralization, where considerable sphalerite is present in concretions and minor sphalerite is visible as small grains within pyrite.

Vergence and younging data suggests that hole 94-73 intersected an anticline/syncline pair which represents a minor fold on the east, overturned limb of a major anticline, whose axis would be located west of the hole collar.

Best results are from the third intercept where 36.28 metres graded an average of 3.01% zinc, with the best individual result being 5.13% zinc over 1.0 metres.

The tight, overturned style of folding encountered in hole 94-73 is likely due to the nearby Mt. Waldemar Fault. The longer lived movement history on major thrusts, such as the Mt. Waldemar have the effect of converting open, upright folds to a tight/isoclinal, and overturned style.

CONCLUSION

This report describes the results of six diamond drill holes totalling 836.28 metres. Two zones of known mineralization were tested by the drilling, four holes on the Camp Zone and two holes on the South Zone.

Drilling on the Camp Zone has determined that the dominant structure is an anticline, not a syncline as previously thought. Previous drill intercepts were on the east limb of the anticline and the closure has been eroded. Further drilling in this area is not warranted, as tonnage potential is very limited.

Drilling on the South Zone has shown that, once again, the main structure is an anticline, not a syncline, which in this area is overturned to the east. Although significant grade was not identified, a thick, strong sulphide body was intersected. Further drilling is warranted to test the strike and dip continuation of this mineralized zone.

Adjaceint to major thrusts, the folding style tends to be isoclinal and overturned, as opposed to, open and upright away from these faults. Folding likely develops during the early stages of thrusting, and long-lived movement on major structures compresses and locally overturns the developing folds.

-18-

REFERENCES

Abbott, J.G., Gordey, S.P. and Tempelman-Kluit, D.J. (1986):	Setting of Stratiform, Sediment Hosted Pb-Zn Deposits in Yukon and Northeastern B.C. CIM Special Volume 37, pp 1-18.
Boyle, P. (1977):	Report on Geochemical Surveys on the Driftpile Pass Property. EMPR Assessment Report No. 6736.
Carne, R.C. and Cathro, R.J. (1978):	Assessment Report on Geological and Geochemical Surveys and Diamond Drilling. EMPR Assessment Report No. 6896.
Carne, R.C. and Cathro, R.J. (1982):	Summary Report, 1978-1982 Exploration by the Gataga Joint Venture on the Driftpile Creek Property. Inhouse report, Archer, Cathro and Associates.
Farmer, R., Oliver, J. and Evans, G. (1993):	1993 Summary Report, Diamond Drilling on the Driftpile Creek Property. Inhouse Report, Teck Explorations Ltd.
Insley, M.W. (1990):	Sedimentology and Geochemistry of the Driftpile Ba-Fe-Zn-Pb Mineralization, Northeastern B.C. Ph.D. Thesis, University of London.
Kowalchuk, J.M. (1975):	Progress Report Driftpile Property, British Columbia. EMPR Assessment Report No. 5812.
MacIntyre, M.W. (1982):	Geologic Setting of Recently Discovered Stratiform Barite-Sulphide Deposits in Northeast B.C. CIM Bulletin, 75, No. 840, pp 99-103.
MacIntyre, D.G. (1992):	Geological Setting and Genesis of Sedimentary Exhalitive Barite and Barite-Sulphide Deposits, Gataga District, Northeastern B.C. CIM Explor. Mining Geol., Vol. 1, No. 1, pp 1-20.

McClay, K.R. and Insley, M.W. (1985)	: Structure and Mineralization of the Driftpile Creek Area Northeastern B.C. British Cloumbia MEMPR, Geological Fieldwork; Paper 1986-1.
McClay, K.R., Insley, M.W. and Anderton, R. (1989):	Inversion of the Kechika Trough, Northeastern B.C. In: Inversion Tectonics. Edited by M.A. Cooper and G.D. Williams. Geological Society Special Publications No. 44, pp 235-257.
Wise, H.M. (1974):	Report on the Geology and Geochemistry of the Driftpile Property, Driftpile Creek, B.C. EMPR Assessment Report No. 5359.

-19-

APPENDIX I

ł

Ì

Į

į

-

Statement of Qualifications

4

I, Randy Farmer, do hereby certify that:

- 1) I am a geologist and have practised my profession for more than 13 years.
- 2) I graduated from Lakehead University in Thunder Bay, Ontario with an Honours Bachelor of Science degree, (Geology), in 1980.
- 3) I supervised the drilling program on the Driftpile Creek Property and authored the report contained herein.
- 4) All data contained within this report and conclusions drawn from it are true and accurate to the best of my knowledge.
- 5) I hold no personal interest, direct or indirect, in the Driftpile Creek Property which is the subject of this report.
- 6) I am a Professional Geoscientist registered in the Province of British Columbia (Registration No. 20192).

Randy Farmer, P. Geo. Project Geologist October, 1994

APPENDIX II

1

Í

Ĩ

Ĩ

ſ

7

Ĩ

1

.

ć

Cost Statement

∢,

DRIFTPILE CREEK PROPERTY

COST STATEMENT

1.	<u>CONTRACT COSTS</u> Advanced Drilling Ltd, Surrey, B.C. June 6-24, 1994 Six (6) Diamond Drill Holes				
	A.	Footage Costs i) Overburden - 84ft @ \$17.45/ft ii) Bedrock (NQ Core) - 2659ft @ \$16.95/ft .			
	В.	Materials Left in Holes (Casing and shoes) All 6 Holes		\$1168.20	
	C.	Sperry Sun and/or Acid Tests 1 @ \$100.00 ea		\$100.00	
	D.	Cat Time Drill Access and Pad Preparation 43 hrs @ \$35.00/hr	••••••	\$1505.00	
	E.	Consumables Drill Additives (Mud and Grease) All 6 Holes		\$1819.00	
			Subtotal:	\$51,128.05	
2.	ANAL	YTICAL			
	Drill C	n Labs, North Vancouver, B.C. * ore Samples, Analysed for: Pb, Zn, Ag, Ba and 30 elem. ICP 98 Samples @ \$28.35/Sample		\$2778.30	
			Subtotal:	\$2778.30	

I

I

3. <u>GEOLOGY</u>

Includes; Core logging, Sampling, Drill Supervision

Α.	R. Farmer (Geologist) June 6-24, 19 Days @ \$260.76/Day		\$4954.44
В.	D. Nikirk (Technician) June 6-24, 19 Days @ \$224.75/Day		\$4270.25
		Subtotal:	\$9224.69

4. BOARD

	Subtotal:	\$950.00
Camp cost, June 6-24, 1994 38 mandays @ \$25.00/Manday		\$950.00

5. FIXED WING TRANSPORTATION

North Cariboo Air, Fort St. John, B.C.

Date	<u>Cost</u>	Description
June 10	\$3272.06	Twin Otter - Fly groceries and drill crew to property from Fort St. John.
June 17	\$1071.18	Cesena 206 - Fly groceries and supplies to property from Fort St. John.

÷

Subtotal: \$4343.24

6. DRAFTING

Steve Archibald (Draftsman)	
3 Days @ \$200.00/day \$60	0.00

Subtotal: \$600.00

7. REPORT WRITING AND TYPING

R. Farmer (Geologist)	
4 Days @ \$260.76/Day	 \$1043.04

RF--

Subtotal: \$1043.04

TOTAL COST \$70,067.32

APPENDIX III Certificate of Analysis

1

1

·

.

-

ίų.

LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

MINER**A**L

4V-0596-RA1

Company:**TECK EXPLORATION**Project:1727Attn:Fred Daley / Randy Farmer

ENVIRONMENTS

Date: JUN-29-94

copy 1. Teck Exploration, Kamloops, B.C.

We hereby certify the following Assay of 9 core samples submitted JUN-21-94 by R. Farmer.

Number	Ag g/tonne	Ba %	Pb %	Zn %	
45001	2.8	. 15	. 38	2.23	
45002	2.2	. 14	. 17	1.95	
45003	2.5	. 13	. 42	1.74	
45004	2.9	.08	.36	2.07	
45005	3.1	. 09	.24	2.33	
45006	2.7	.08	.22	1.85	
45007	2.4	. 08	. 33	1.64	
45008	2.0	.08	.06	1.39	
45009	2.1	. 09	. 06	1.03	

Certified by

MIN-EN LABORATORIES

COMP: TECK EXP PROJ: 1727 ATTN: Fred Dal SAMPLE NUMBER 45001 45002 45003 45004 45005 45006	ey / R AG PPM .1 .1 .1 .1 .1 .1	andy AL .32 .41 .30 .22 .27	AS PPM 20 15 26 31 24	В РРМ 135 155 127 132 140	BA PPM 39 43 53 71 56 29 79	1.1 1.2 .8 1.0 .8 1.1	9 10 12 10 10	% 4.56 3.40 5.13 8.98 4.55 3.42	PPM 81.2 76.5 70.5 85.9 95.1 81.7	705 CO PPM 8 9 8 8 9 9 9	WES1 TEL CU PPM 17 24 19 15 19	% 10.91 10.83 9.27 10.63 11.60	ST., 980-5 K % .21 .25 .21 .17 .19	NORTH 5814 LI PPM 7 9 7 6 7 7	MG FAX: MG .07 .06 .07 .06	COUVER (604) MN PPM 4286 2988 4872 6321 4473	, B.C 980-90 MO PPM 6 9 7 6 7 8	. V7M 621 NA % .01 .01 .01 .01 .01 .01	NI PPM 60 69 60 61 67	P PB PPM PPM 390 2826 450 1409 420 3337 390 2929 350 1897 360 1914	PPM 8 4 9 8 7	PPM 230 139 239 271 226 75	TH PPM 13 15 11 2 14 15	.01 .01 .01 .01	42.4 52.2 45.0 33.8 49.4	ZN PPM > 10000 > 10000 > 10000 > 10000 > 10000	15 4 21 32 16	DATE k * SN	: 94/0 (ACT: W PPM F 13 11 11 12 13	CR 52 53 52 45 48
45007 45008 45009	.1 .1 .1 .1	.28 .25 .42 .40	27 28 28 29	127 118 144 118	79 91 144	1.1	8 9	3.99	69.8 60.4 41.3	9 9 8	17 24 25	11.46 10.17 10.67 6.57	.17 .26 .25	6 9	.05 .06 .08	5507 3818 3175 5057	10 16	.01 .01 .01	68 69 92 83	310 2568 420 472 440 422	5	183 117 193	15 13 15 9	.01 .01 .01	42.3 :	>10000 >10000 >10000 8235	22 12 3 26		12 10 9 8	50 62 57
																													<u></u>	

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

4V-0601-RA1

Company:**TECK EXPLORATION LTD**Project:1727Attn:F. Daley / R. Farmer

Date: JUN-29-94 copy 1. Teck Exploration Ltd., Kamloops, B.C.I

We hereby certify the following Assay of 7 rock samples submitted JUN-24-94 by R. Farmer.

Sample Number	Ag g/tonne	Ba %	Pb %	Zn %	
45010	3.1	. 15	. 16	. 48	
45011	4.1	. 13	1.52	.38	
45012	3.5	. 10	1.05	. 23	
45013	3.6	. 09	1.91	.44	
45014	3.4	. 12	.72	. 43	
45015	3.3	. 20	.34	. 11	
45016	4.2	.11	1.21	.54	

Certified by

MIN-EN LABORATORIES

COMP: TECK EX PROJ: 1727										15 W	IN-EN /EST 15TH TEL:(604	ST.,	NORT	H VAN		R, B.	c. v7		2									DATE	V-0601-R. : 94/06/2 (ACT:F31
ATTN: F. Dale SAMPLE NUMBER 45010 45011 45012 45013	AG PPM	AL % .64 .42 .43 .51 .39	AS PPM	B PPM 121 85 81 95 87	PPM	PPM	BI PPM 2 3 2 2	CA C % PP .33 32. .36 28. .32 17. .34 36. .26 34.	98 57 26) I P	CU FE PM % 01 3.65 68 3.06 54 2.20 61 2.14 64 2.83	K %	LI PPM 12 7 7 8 5	MG % .10 .06 .06 .07	MN PPM 43 74 74 104 81	MO PPM 65 51 36 45	NA % .01 .01 .01 .01	165 124 94 93	560	PPM 1377 >10000 9528 >10000	SB PPM 11 22 20 32 12	SR PPM 32 30 26 28 23	TH PPM 12 8 7 8 8 8	.01	213.9	ZN PPM 4293 3588 2211 4323 4021	GA PPM	SN	W CR PPM PPM 11 105 8 99 9 120 14 191
45014 45015 45016	1.9 2.1 2.9	.39 .57 .32	32 52 35	87 129 71	205 262 292	.9 1.3 .7	1 2 1	.52 5. .26 44.)	64 2.83 95 3.74 56 2.30	.21 .31 .17	5 7 4	.04 .06 .04		56 54 38	.01 .01 .01	116 165 89		6310 3133 >10000	12 9 19	23 53 24	11	.01	68.0	4021 979 4863	1 1 1	1	7 81 7 115 9 109
																													
										1																			
																									<u></u>				
																									<u>.</u>			<u> </u>	

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

4V-0608-RA1

SMITHERS LAB .: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2N0 TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

TECK EXPLORATION LTD Company: 1727

Project: Attn:

Fred Daley

Date: JUL-07-94 Copy 1. Teck Exploration, Vancouver, BC

We hereby certify the following Assay of 16 rock samples submitted JUN-24-94 by RANDY FARMER.

Sample	Ag	Ag	Ba	Pb	Zn	
Number	g/tonne	oz/ton	%	%	%	
45017	2.6	. 08	.11	.07	1.34	
45018	2.5	. 07	.12	. 17	1.22	· · ·
45019	2.7	. 08	.12	. 10	1.12	
45020	2.9	.08	. 10	.13	1.90	
45021	2.4	.07	. 10	.25	1.63	
45022	2.5	.07	. 12	.23	1.42	
45023	2.6	.08	.13	.22	1.05	
45024	2.4	.07	.11	.13	1.47	
45025	2.3	. 07	.13	.28	.89	
45026	3.1	. 09	.13	.27	1.43	
45027	2.8	.08	. 13	. 15	1.46	
45028	2.6	.08	.13	. 16	.92	
45029	2.5	.07	.14	. 14	.88	
45030	3.8	.11	.15	.07	1.31	
45031	2.9	.08	.10	.19	.93	
45032	3.0	. 09	. 15	.21	1.02	

£Ħ117 Certified by

MIN-EN LABORATORIES

N: Fred Dal		<u> </u>	46	В	BA	BE	BI	CA CD	со	TEL:(CU	604)98	10-581 K	4 F	AX:(604)98 MG MN	0-962 MO		NI		PB	SB	SR	ТН	TI	v		rock		(ACT:
AMPLE UMBER	AG PPM	%	AS PPM	PPM	PPM	PPM	PPM	% PPM	PPM	PPM	FE %	%	PPM	<u>% PPM</u>	PPM	NA %	PPM	PPM	PPM		PPM	PPM	%	PPM	PPM	PPM	PPM I	PPM
5017 5018 5019 5020 5021	.1 .1 .1 .1	.42 .37 .44 .34 .36	11 17 12 18 14	94 93 101 101 106	95 72 98 93 68	.5 .3 .6 .2	4 4 4 5 3	3.66 46.7 3.22 42.7 3.53 45.3 5.10 77.8 3.55 70.6	6 7 7 8	17 19	7.34 8.09 7.49 9.69 11.31	.25 .24 .28 .21 .23	10 8 9 9 9	.09 3473 .07 2942 .08 3304 .11 4868 .08 3310	5 5 5 5 4	.01 .01 .01 .01 .01	47 52 52 56 62	480 450 1 490 430 1 430 1	243 829 044	1 1 1 1	235 155 181 272 195	46634	.01 .01 .01 .01	40.2	9512 9278 >10000 >10000	11 6 10 17 1	1 1 1 1	12 11 12 17 16
5022 5023 5024 5025 5026	.1 .1 .1 .1 .1	.31 .33 .25 .28 .23	12 16 19 17 26	97 91 87 79 84	102 160 124 174 130	.3 .5 .4 .5	45656	3.03 53.9 3.82 40.5 5.51 63.1 4.22 37.9 6.90 58.0	7 6 5 6	20	9.04 5.69 6.46 5.07 5.57	.23 .25 .20 .21 .17	7 7 5 6 5	.05 2467 .06 3272 .06 4042 .06 3527 .07 4819	5 6 5 6 7	.01 .01 .01 .01 .01	60 51 50 46 49	460 1 530 1 490 1 520 2 480 2	747 007 104	1 3 3 3 5	149 173 227 181 237	65241	.01	27.0	>10000 8388 >10000 6984 >10000	1 14 17 15 23	1 1 1 1	13 11 14 9 13
027 028 029 030 031		.28 .26 .23 .15 .14	15 25 25 31 45	88 77 69 72 60	121 210 188 103 115	.4 .4 .1 .1	4 6 8	4.63 60.9 6.44 36.3 9.94 37.7 15.00 59.7 15.00 42.2	6 5 5 6 5	22 16 16 11 10	6.37 4.36 3.78 7.15 4.70	.19 .18 .16 .12 .10	5 5 5 4 4	.06 3418 .07 4009 .09 3208 .09 5275 .13 5467	7 6 7 4 7	.01 .01 .01 .01 .01	52 47 43 49	540 1 510 1 480 1 370 380 1	191 048 477	1 4 6 3 6	186 214 201 174 264	3 1 1 1	.01 .01 .01 .01	40.1 32.3 31.5	>10000 7271	12 21 18 28 34	1 1 1 1	14 9 13 10
5032		.23	35		131	.1		5.49 39.8	7	16	6.15			.11 2835	15	.01		460 1			184			23.8		12	1	10
																												<u></u>
		3e																•										
									4																			
						<u> </u>			<u> </u>																<u> </u>			
								<u>.</u>																				

LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS **VANCOUVER OFFICE:**

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

NINERAL

Company:TECK EXPLORATION LTD.Project:1727Attn:Fred Daley

ENVIRONMENTS

Date: JUL-07-94

4V-0624-RA1

copy 1. TECK Exploration, Vancouver, BC

We hereby certify the following Assay of 15 ROCK samples submitted JUN-24-94 by Randy Farmer.

Sample	Ag	Ag	Ba	Pb	Zn	
Number	g/tonne	oz/ton	%	%	%	
45033	2.4	. 07	. 14	.21	.91	
45034	2.7	. 08	. 11	.23	.36	
45035	2.3	. 07	. 13	.22	.73	
45036	2.5	. 07	. 11	. 12	.99	
45037	2.1	. 06	. 15	. 20	.93	
45038	1.9	. 06	. 13	. 16	.74	
45039	2.7	. 08	. 10	. 05	.61	
45040	2.3	.07	. 10	. 18	1.02	
45041	2.7	.08	. 09	. 13	.90	
45042	2.8	. 08	. 09	. 09	.67	
45043	2.5	.07	.07	.06	.76	
45044	2.6	.08	.07	.22	.65	
45045	1.2	.04	. 10	1.59	.28	
45046	1.1	.03	. 09	1.09	.27	
45047	1.3	.04	.11	.55	.17	

Certified by

MIN-EN LABORATORIES

COMP: TECK EXF	LORATIO	ON LT	D.												IC													FILE			24-RJ
PROJ: 1727 ATTN: FRED DAL	EY									705		ST 15TH			H VANCOU				1172									* го			/07/07 T:F31;
SAMPLE NUMBER	AG PPM	AL %					B I PPM	%	PPM	CO PPM	CL PPN	FE K	K %	L I PPM	MG MI % PPI	N M M PP	0 1	NA		P PPM	PB PPM	SB PPM	SR PPM	TH PPM	TI %	V PPM	ZN PPM		SN	W	CR PPM
45033 45034 45035 45036 45037	.1 .1 .1 .1 .1	.46 .40 .73 .51 .61	24 21 15 17 13	100 94 132 115 130	231	.6 .5 .9 .8 1.0	46555 555	3.08 5.44 3.64 3.31 3.11	40.9 14.9 35.1 45.7 42.8	65677	25 20 24 23	6.78 5.07 4.53 6.60 5.58	.26 .24 .39 .29 .35	8 7 10 8 8	.09 2167 .10 356 .12 2789 .09 264 .09 2380	1 9 5 0	7.0	D1	45 50 57 56	510 490 600 520 550	1706 1852 1848 985 1587		192 516 235 217 193	93799	.01 .01	50.7 64.3	7627 2957 6348 8444 7921	6 19 16 10 10	1 1 1 1	9 6 10 10 9	40 51 63 52 44
45038 45039 45040 45041 45042	.1 .1 .1 .1	.69 .53 .54 .42 .48	12 21 19 20 21	132 123 123 106 112	251 186 235 255 280	1.0 .8 .7 .8	5 6 6 4	2.78 4.58 3.63 4.25 4.11	33.5 29.9 52.7 47.1 35.9	66667	27 21 23 20 20	4.99 6.55 5.62 5.56 6.86	.38 .29 .30 .25 .28	97767	.10 1973 .09 372 .08 2879 .09 3425 .09 2978	B		01 01 01	51 56 53 49 60	600 490 530 470 430	1337 397 1400 979 695	8 6 8 6 5	140 278 203 225 221	8 6 9 6 6	.01 .01 .01	65.6 70.5 45.1	6190 5189 8563 7223 5444	9 18 13 17 11	1 1 1 1	9 9 11 10 8	55 67 55 56 51
45043 45044 45045 45046 45047	.1 .1 .7 .6	.46 .55 .49 .57 .56	29 35 25 13 13	99 108 92 94 81	248 242 243 282 371	.8 .8 .7 .7 .7	5 2 2	3.16	40.5 36.2 20.3 21.8 12.0	7 7 5 4 4	- 23	5.78 5.94 1.34 1.37 1.45	.25 .28 .28 .30 .28	7 8 6 9 11	.10 2484 .11 1738 .06 144 .08 93 .12 23	42	2 .0 0 .0 3 .0 1 .0 9 .0	01 01 01	90 57 56	490 420 570 5 590 530	457 1704 >10000 9381 4367	6 9 19 15 10	198 163 55 42 66	7 8 7 6	.01	76.8	6345 5547 2523 2445 1349	10 3 2 1 3	1 1 1 1	9 8 7 6 6	65 54 75 62 74
																													÷		
																						,									
				<u></u>																							<u> </u>		<u>,</u>		
																												<u></u>			
												<u>.</u> .																			
																						_									

LABORATORIES (DIVISION OF ASSAYERS CORP.) SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS **VANCOUVER OFFICE:**

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

4V-0625-RA1

SMITHERS LAB .: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2N0 TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

INERAL

TECK EXPLORATION LTD. Company: 1727

ENVIRONMENTS

Project: Attn:

Fred Daley

Date: JUL-08-94 Copy 1. TECK Exploration, Vancouevr, BC

We hereby certify the following Assay of 50 ROCK samples submitted JUN-28-94 by Randy Farmer.

Samp 1 e	Ag	Ag	Ba	Pb	Zn	
Number	g/tonne	oz/ton	%	%	%	
45048	2.0	.06	.11	.20	1.82	
45049	2.2	. 06	.08	.25	2.30	
45050	2.6	. 08	.06	.72	1.98	
45051	2.2	. 06	. 08	. 56	1.33	
45052	2.6	.08	.07	1.20	1.79	
45053	2.1	.06	.11	.64	2.20	
45054	2.1	. 06	. 09	.61	2.06	
45055	2.7	. 08	. 08	. 29	1.61	
45056	2.6	. 08	.08	. 64	3.04	
45057	2.0	.06	. 14	.78	2.26	
45058	2.5	.07	. 12	.20	2.11	
45059	2.3	. 07	. 10	1.71	2.67	
45060	2.0	. 06	. 14	. 09	2.22	
45061	2.2	. 06	.18	.23	2.08	
45062	.9	.03	1.45	. 29	1.78	
45063	2.2	.06	. 12	. 55	3.15	
45064	2.8	. 08	.11	.61	2.76	
45065	2.3	. 07	. 12	. 56	2.63	
45066	2.2	. 06	. 09	. 57	2.82	
45067	2.6	.08	. 12	. 54	2.77	
45068	2.6	.08	.09	.64	2.86	
45069	2.4	.07	. 11	. 39	3.41	
45070	2.5	.07	. 15	.73	3.09	
45071	2.2	. 06	. 14	. 47	3.53	

Certified by

MIN-EN LABORATORIES

LABORATORIES (DIVISION OF ASSAYERS CORP.) SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

4V-0625-RA2

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2N0 TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

Company:	TECK EXPLORATION LTD.
Project:	1727
Attn:	Fred Daley

ENVIRONMENTS

Date: JUL-08-94 copy 1. Teck Exploration Ltd., Kamloops, B.C.

We hereby certify the following Assay of 24 rock samples submitted JUL-04-94 by F. Daley.

Samp I e	AG	AG	BA	PB	ZN	
Number	g/tonne	oz/ton	%	%	%	
45072	2.1	.06	.31	.49	3.82	
45073	2.3	. 07	. 45	.97	3.30	
45074	2.3	. 07	2.16	.71	2.48	1 I I I I I I I I I I I I I I I I I I I
45075	2.1	. 06	11.30	. 47	3.48	
45076	2.1	. 06	8.31	. 64	3.00	
45077	2.2	.06	5.02	. 59	5.13	
45078	2.3	. 07	1.33	.73	3.62	
45079	2.4	.07	. 79	. 87	2.92	
45080	2.5	.07	. 54	1.00	3.09	
45081	2.3	.07	.78	.97	2.45	
45082	2.3	.07	1.49	.54	.83	
45083	2.0	.06	1.01	. 22	4.71	
45084	2.5	. 07	1.06	.20	3.78	
45085	1.9	.06	1.62	. 53	1.00	
45086	2.0	.06	. 53	1.10	2.99	
45087	2.3	.07	. 50	1.14	2.91	
45088	2.1	.06	.61	.90	3.19	
45089	2.3	.07	1.23	.70	3.64	
45090	2.0	. 06	1.63	. 92	5.02	
45091	2.9	. 08	.95	. 55	2.01	
45092	2.4	.07	.36	.95	1.74	
45093	2.3	.07	.25	1.03	3.37	
45094	3.0	.09	.30	.74	3.55	
45095	2.7	. 08	.24	.41	2.56	

Certified by

MIN-EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

4V-0625-RA3

Company:	TECK EXPLORATION LTD.
Project:	1727
Attn:	Fred Daley

Date: JUL-08-94 copy 1. Teck Exploration Ltd., Kamloops, B.C.

-IIs

MIN-EN LABORATORIES

We hereby certify the following Assay of 2 rock samples submitted JUL-04-94 by F. Daley.

Sample	AG	AG	BA	PB	ZN	
Number	g/tonne	oz/ton	%	%	%	
45096	2.9	.08	.27	.69	2.63	· · · · · · · · · · · · · · · · · · ·
45097	2.5	.07	.30	.44	2.46	

Certified by

COMP: TECK EXP PROJ: 1727	LORATI	ON LT	D.								EN L2 5th st.							2						FILE NO			-RJ1+2+3 94/07/08
ATTN: Fred Dal	ey										604)980	•			•	-9621								* (rock		ACT:F31)
SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA CD % PPM	CO PPM	CU PPM	FE %	K %		MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM	SB SR PPM PPM	TH TI PPM %	V PPM	ZN PPM		SN PPM PI	W CR PM PPM
45048 45049 45050 45051 45052	.1 .1 .1 .1	.44 .36 .33 .50 .38	23 25 33 28 23	107 108 102 98 94	50 57 118 81 22	1.0 .8 .6 .9 .8	43 53	.43 93.6 .30 >100.0 .88 >100.0 .96 67.9		25 16 11 13 10	10.96 11.80 10.58 8.05 10.57	.24 .20 .17 .25 .19	9	.09 .14 .16	4633 4649 5852 5937 6717	12 6 5 6 4	.01 .01 .01 .01 .01	108 75 62 60 61	370 350 290 420 340	1725 2034 5718 4962 >10000	3 136 4 190 11 216 11 180 13 195	7 .01 8 .01 1 .01 6 .01 6 .01	71.1 51.0 54.5 66.6	>10000 >10000 >10000 >10000 >10000	3 6 23 25 22	1 1 1 1	19 79 21 47 19 42 14 49 17 38
45053 45054 45055 45056 45057	.1 .1 .1 .1	.46 .38 .23 .25 .40	14 18 23 14 15	118 103 74 96 111	15 13 119 52 52	.8 1.0 .6 .5	43	.11 96.7 .64 72.2 .23 >100.0 .43 >100.0	9 8 6 7 8	15 15 10 10	11.51 12.21 7.51 10.70 10.19	.25 .21 .13 .14 .21	8 7 6 5 8	.07 .10 .07 .07	4417 4612 6755 5708 3990	7 3 4 3 7	.01 .01 .01 .01 .01	68 66 51 56 60	390 340 320 300 380	5484 4999 2170 4797 6164	6 86 4 103 5 219 5 202 8 153	6 .01 6 .01 1 .01 3 .01 6 .01	48.8 38.9 38.5	>10000 >10000 >10000 >10000 >10000	5 3 28 9 4	1 1	21 48 19 40 14 40 26 32 21 43
45058 45059 45060 45061 45062	.1 .1 .1 .5	.27 .27 .37 .38 .61	15 29 26 27 23	95 97 115 102 197	41 45 53 51 83	.6 .5 .7 .8	43 33 43 3	.92 >100.0 .12 >100.0 .05 >100.0 .12 >100.0 .87 >100.0	8 8 9 8 5	11 13 16 23 42	11.73 10.54 12.20 8.90 2.26	.15 .14 .20 .20 .27	6 7 8 8 9	.09 .07 .07 .07	5247 4967 3757 3792 442	3 9 11 16 28	.01 .01 .01 .01 .01	61 60 78 91 88	270 350 310 390 680	1497 >10000 613 1807 2520	1 151 14 198 1 134 4 121 13 71	4 .01 5 .01 5 .01 6 .01 8 .01	18.1 22.1 46.3 166.8		5 7 4 1	1 1 1 1	18 33 25 42 20 46 20 52 20 87
45063 45064 45065 45066 45067	.1 .1 .1 .1	.25 .20 .21 .15 .19	21 15 13 8 9	126 111 117 110 113	19 30 14 12 9	.7 .6 .7 .6	33 22 12 22	.05 79.8 .80 90.1	10 9 10 9	8 9 7 8	>15.00 14.13 >15.00 >15.00 >15.00	.12 .10 .10 .08 .09	3 2 3	.07 .06 .05 .05	4822 5270 5242 5162 5197	1 1 1 1	.01 .01 .01 .01 .01	64 59 62 67 63	290 280 280 200 270	4598 4838 4508 4506 4284	1 159 1 230 1 33 1 24 1 62	4 .01 2 .01 7 .01 5 .01 6 .01	29.9 47.4 36.8 42.5	>10000 >10000 >10000 >10000 >10000 >10000	1 1 1 1	1 1 1 1	31 52 25 34 24 40 25 45 25 36
45068 45069 45070 45071 45072	.1 .1 .1 .1 .1	.17 .16 .17 .20 .14	8 11 6 8 8	113 116 118 136 118	13 11 10 13 15	.7 .7 .5 .6	2 2 2 2 1 3	.05 >100.0 .18 >100.0 .80 >100.0 .62 >100.0	9 9 10 9	6 6 9 8	14.83 >15.00 >15.00 >15.00 14.76	.08 .08 .08 .10 .08	3 3	.05 .05 .05 .04	5365 4812 5034 4358 4024	1 1 1 1	.01 .01 .01 .01 .01	57 59 57 61 55	220 220 230 220 230	4883 2950 5736 3452 3329	1 47 1 24 1 43 1 116 1 121	5 .01 6 .01 7 .01 5 .01 1 .01	26.3 27.6 48.8 32.4	>10000 >10000 >10000 >10000 >10000 >10000	1 1 1 1	1 1 1	25 38 29 34 28 41 31 35 31 39
45073 45074 45075 45076 45077	.1 .1 .1 .1 .1	.13 .36 .35 .49 .53	23 14 9 10 23	116 86 365 185 110	16 37 96 186 87	.9 .7 .7 .7 .8	13 34 23 65	.49 >100.0 .74 >100.0 .25 >100.0 .24 >100.0 .35 >100.0	10 11 10 9 10	5 4 5 6	>15.00 >15.00 >15.00 >15.00 14.93	.06 .04 .02 .03 .05	2 3 2 5 8	.07 .05 .08 .09	4586 5101 3703 3866 4440	1 1 1 8	.01 .01 .01 .01 .01	57 65 62 52 53	190 170 170 200 310	6999 5437 2976 4101 4262	1 194 1 49 1 11 1 9 5 34	2 .01 2 .01 3 .01 4 .01 2 .01	21.3 23.3 23.4 25.5	>10000 >10000 >10000 >10000 >10000	4 1 1 4	1 1 1 1	24 33 21 38 29 36 24 38 44 39
45078 45079 45080 45081 45082	.1 .1 .1 .1 .1	.20 .12 .12 .10 .29	15 15 5 18 25	98 92 126 94 96	26 14 12 10 18	1.1 1.0 .1 .7 .7	13 14 13 25		11 10 12 10 9	4 5 4 12	>15.00 >15.00 >15.00 >15.00 12.54	.06 .06 .06 .06 .11		.05 .04 .04 .06	4077 4522 4542 4633 4022	1 1 1 8	.01 .01 .01 .01 .01	65 57 66 64 65	170 180 200 180 350	5290 6443 8114 7169 4077	1 70 1 80 1 207 1 89 1 156	1 .01 4 .01 1 .01 1 .01 1 .01	11.8 10.5 8.5 17.1	>10000 >10000 >10000 >10000 6993	1 1 1 3	1 2	30 43 23 32 29 34 19 31 10 46
45083 45084 45085 45086 45087	.1 .1 .1 .1 .1	.15 .13 .29 .11 .10	15 29 32 24 26	115 91 91 109 105	13 20 19 8 8	.6 .8 .9 .6 .6	24 14 13 13	.52 >100.0 .27 >100.0	11 9 9 11 10	3 11 5 4	>15.00 14.70 13.71 >15.00 >15.00	.06 .05 .09 .05 .05	4 3 5 2 2	.05 .05 .03 .05	5134	1 3 7 1	.01 .01 .01 .01 .01	65 56 69 66 59	250 250 330 150 190	1674 1420 4014 8201 8672	1 116 1 115 1 139 1 146 1 78	1 .01 1 .01 3 .01 2 .01 1 .01	10.6 15.8 7.9 8.6	>10000 >10000 8463 >10000 >10000	1 2 1 1	1 1 1	44 30 31 35 10 42 25 34 24 30
45088 45089 45090 45091 45092	.1 .1 .1 .1 .1	.12 .18 .34 .23 .20	9 11 10 6 24	110 98 108 81 137	8 18 16 25 17	.8 .7 .8 .7 .9	1 3 1 2 1 3 1 4	.99 72.7	11 10 10 10 9	4 5 4 6	>15.00 >15.00 >15.00 >15.00 >15.00 >15.00	.05 .05 .04 .05 .09	2 4 3 3	.05 .05 .05 .05	4257 4038 3364 4502 4454	1 1 2 1	.01 .01 .01 .01 .01	67 60 56 56	170 160 190 140 210	6610 5199 6369 3901 6983	1 64 1 63 1 41 1 60 1 208	1 .01 3 .01 2 .01 2 .01 1 .01	11.5 12.9 16.5 33.2	>10000 >10000 >10000 >10000 >10000 >10000	1 1 1 1	1 4	27 40 30 34 44 50 16 37 16 45
45093 45094 45095 45096 45097	.1 .1 .1 .1 .1	.17 .13 .23 .25 .32	17 25 24 25 26	131 113 121 123 132	11 16 9 18 13	.8 .9 1.0 1.2 1.3		.13 >100.0 .88 >100.0 .29 68.9 .34 51.6 .83 34.9	9 9 8 8 8	6	>15.00 >15.00 12.29 11.66 10.52	.08 .07 .11 .11 .14	2 2 4 3 4	05	4228 4926 5477 5030 4414	1 1 3 3 3	.01 .01 .01 .01 .01	58 59 58 54 52	240 250 340 330 380	7756 5680 3182 5445 3292	1 159 1 139 1 164 4 147 3 259	1 .01 1 .01 3 .01 1 .01 1 .01	25.7 39.4 46.9	>10000 >10000 >10000 >10000 >10000 >10000	1 13 10 10	1 3	30 39 33 47 25 43 24 48 24 47

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

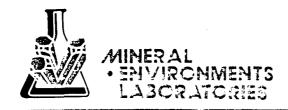
Assay Certificate

4V-0651-RA1

• •	TECK EXPLORATION LTD.	Date: JUL-18-94
Project:		copy 1. TECK Exploration, Vancouver, B.C.
Attn:	Fred Daley	

We hereby certify the following Assay of 21 drill core samples submitted JUL-06-94 by RANDY FARMER.

Sample	Ag	Ag	Ba	Pb	Zn	
Number	g/tonne	oz/ton	%	%	%	
45098	16.9	. 49	.74	. 02	.53	


APPENDIX IV Analytical Procedures

-

Ŗ

- •

Division of Assayers Corp. Ltd.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR 31 ELEMENT TRACE ICP

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vancouver, using the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.

0.5 gram of the sample is digested for 2 hours with an aqua regia mixture.

After cooling samples are diluted to standard volume. The solutions are analyzed by computer Jarrell Ash ICP (Inductively Coupled Plasma Spectrometers). Reports are formatted and printed using a laser printer.

4

OFFICE AND LABORATORIES: 705 WEST FIFTEENTH STREET, NORTH VANCOUVER, B.C. CANADA V7M 1T2 PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9621

Division of Assayers Corp. Ltd.

Ag, Cu, Pb, Zn, Ni, AND Co ASSAY PRODEDURE

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The -1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to -1/8 mesh. The whole sample is then riffled on a Jones Riffle down to a statistically representative 500 gram sub-sample (in accordance with Gy's statistical rules.) This sub-sample is then pulverized in a ring pulverizer to 95% minus 140, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

A 0.200 to 2.000 gram sub-sample is weighed from the pulp bag for analysis. Each batch of 70 assays has a natural standard and a reagent blank included. The samples are digested using a HNO3 - KCIO3 mixture and when reaction subsides, HCL is added before it is placed on a hotiplate to digest. After digestion is complete the flasks are cooled, diluted to volume and mixed.

The resulting solutions are analyzed on an atomic absorption spectrometer using the appropriate standard sets. The natural standard digested along with this set must be within 2 standard deviations of it's known or the whole set is re-assayed. If any of the assays are >1% they are re-assayed at a lower weight. 10% of samples are assayed in duplicate.

OFFICE AND LABORATORIES: 705 WEST FIFTEENTH STREET, NORTH VANCOUVER, B.C. CANADA V7M 1T2

PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9621

Division of Assayers Corp. Ltd.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK:

PROCEDURE FOR Ba ASSAY

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to - 1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 gram sub-sample (in accordance with Gy's statistical rules.) This sup-sample is then pulverized on a ring pulverizer to 95% - 150 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

Samples are weighed and fused at 1200 C with lithium metaborate prior to being dissolved in nitric acid. The resulting solutions are analyzed by ICP. The CANMET standards are employed as check standards with each set of 24 samples. Reports are formatted and printed using a laser printer.

OFFICE AND LABORATORIES: 705 WEST FIFTEENTH STREET, NORTH VANCOUVER, B.C. CANADA V7M 1T2 PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9621 APPENDIX V Diamond Drill Logs

4

All All	5	TECK EXPLORATIONS	LIMITED)				HOL	E No.	(74-	<u>68</u>							
COMPA	NY . CT .	ND DRILL LOG The Advanced Drilling 1727 NRIFTPILE CREEK	GRID COOF	ар. <u>19</u> -	•	<u>tsl</u> 50W		LETED ED 	<u></u>	PTH	DIP /	AZ. >55°	DE CA WA	NGTH PTH C SING F NTERLI	DF ON REMAIN NE LE MS:	/B: NING: ENGTH	<u>6.10</u> :	<u>m</u>	
DEPTH	õ			ΞRΥ	STRUC		STRUCT		METALLIC MINERALS (%		MPLE	E DA	ATA			RESU	LTS		
(metres) FROM	GRAPHIC	DESCRIPTION		RECOVE	ANGLES - bedding - cleavage	FAULTS	VERGENCE (DIRECTION TO ANTIFORM)	YouNGING			FROM	то	LENGTH						
0.0 -		CASING - OVERBURDEN																	
6.10		<u></u>																	
6.10 -		GREY LIMESTONE - MASSIVE AN	D NON -																
9.02		LAMINATED. BARREN, WHITE									ļ								
		QUARTE VEINING.	<u>.</u>																
9.02 -		CRYPTIC PYRITE LAMINATED	MULSTON)E			@14.5m			1	1									
153.5		- GREY TO BLACK AND VARIAG			@20.5m	3cm Gouge	WEST												
		GRAPHITIC			b. 20°	e 30°T. CA.													
		- LOCALLY CONTAINS LAM			cl. 25°					<u> </u>									
		TO INTERBEDS DOF BLACK															-+		
		GREY SILTITE, RADIOLARIAN C	CHERT		@ 26m b. 35°			UPHOLE											
		- IN GENERAL IS A GRADAT		· •	0. 35	<u> </u>													
		DOWN HOLE .	<u>profect</u>																
		->@ 26.6m, 60cm CALCAREOU	S SILTITE			·				<u> </u>		<u></u>							
		BED - MASSIVE TO POORLY LAM	INATED						l										
		INTERNALLY																	
						<u> </u>													
		·····				 				1									

)	TECK EXPLORATIONS LIMIT	ED			ŀ	IOLE No	. 94-68	3					PA	GE	2 0	of <u>S</u>	>
DEPTH (metres) ROM	GRAPHIC	DESCRIPTION	RECOVERY	STRUC ANGLES	VEINS+	STRUC VERGENCE (DIRECTION		METALLIC MINERALS (%)	5	SAMPL	E DAT	7A			RE	SULTS	r	 T
то	В Н		REO	- BEDDING(b) - CLE ANAGE(CI) < TO CORE AXIS		ANTI FORM)			SAMPLE NO.	FROM	то	LENGTH						
.02 -		@ 34m - GRAPHITE CONTENT																
153.5		INCREASING DOWN HOLE, LOCAL		@ 47.85m														
O'THO		INTERVALS (BEDS?) ARE SILICEOUS.		b. 20°		WEST												
		- WEAK 'AMOEBOID'STYLE SILICA		CI. 45°										Ι				
		PATCHES BEGIN TO APPEAR AROUND													L			
		34m		@56.7m														
		- GOOD CRYPTIC PYRITE LAMINATED		b. 020°		WEST												
		MUDSTONE IS DOMINANT LITHOLOGY		CI. 250000.														
		AFTER 39 m.											Ċ					
		- SILICA CONTENT CONTINUES TO		@ 66.0m														
		INCREASE DOWN HOLE		b.65°		EAST												
		- OCCIASIONAL PY-CARB NODS TO		C1. 40°					T									
		2cm AND RARE Py LAM. TO O.Scm							T									Γ
				@ 76.3m														
		- AFTER 72m BEGIN TO GET:		b. 75°		EAST								Τ				
		OCCASIONAL GREY AND BLACK CHERT		C1. 30°0000														
		BEDS TO 2cm							1					<u> </u>				\square
		- AFTER 85m, O.Scm BLACKCHERT		@ 85 m					1									
		REDS ARE COMMON EVERY 5CM.		b. 45°														
		12cm GREY CHERT BEDS STILL		b. 45° Cl. 25°орос														
		PRESENT																Ē
					-													
		- GREY CARBONATE REDS TO YOCM		@97.3m														
		ARE COMMON AFTER 100 M. BUT		b. 50°		EAST			1									F
		INCREASING SILICA DOWNHOLE		U.15°				· · · · · ·						·				Γ
		CONTINUES							1									
									1					†				
								· · · · · · · · · · · · · · · · · · ·						r				
														†				<u> </u>
						 												\vdash
		······································				†		·		<u> </u>				<u> </u>				-
			-	•		<u> </u>				<u> </u>								h-

 1

. . t

)	TECK EXPLORATIONS LIMIT	TED			ŀ	IOLE No	. 94-6	•8_				PA	GE (3 (of <u>3</u>	>
DEPTH (metres)	GRAPHIC		VERY	STRUC	VEINS &	STRUC	TURE	METALLIC MINERALS (%)		SAMPL	E DAT	Ā		RES	SULTS		
FROM TO	GRAI	DESCRIPTION	RECOVERY	(b) BEDDING (ci) (LEAVAGE) TO CORE AKIS	Thucis	(DIRECTION TO ANTI FORM)			SAMFLE NO.	FROM	то	LENGTH					
9.02 -										ľ							
153.5		- 100-140 m - STILL CRYPTIC		@118m													
CONTID		PYRITE LAMINATED MUDSTONE.		b.050°		WEST											
		RAD CHERT BEDS ABSENT		CI. 20°0000													
		BLACK AND GREYCHERT BEDS															
		TO 2cm Common			@130.0m												
				@ 132.6m													
		-@ 113.7- 4cm Py-CARB BED		b. 30°	Goucee	WEST											
		-@ 128-130 M-CARBONATE BED		cl. 25°	45°												
				(BEDS DIP													
		-@ 140m Py LAMINATIONS		NORTH)?													
		WITH COARSE ACICULAR PURITE															
		GRAINS AND POSSIBLE Ba/CALCITE															
		- PY MAY REPLACE BARITE/CALCITE?															
		- LOCAL RAD AND GREY CHERT		L								<u> </u>					
		BEDS AND AMOEBOID SILICA															
		PATCHES .															
												l					
153.5-		LITHOLOGY IN NOW DOMINATED		@ I71m													
172.84		BY MASSIVE GREY CHERT		b. 85°			UPHOLE ?										
		-LOCAL RAD CHERT BEDS		CI. 20°0000													
		- CRYPTIC PYRITE LAMINATED															
		MUDSTONE STILL PRESENT															L
		AS INTERBEDS.							<u> </u>								
		<u> </u>															L
																	L

					•											_	_		
	Ť	TECK EXPLORATIONS	LIMITED)				ноі	LE No.		94-	-69			-		/ 01	_	
COMP PROJE	ANY CT	ADVANCED DRILLING 1727 Y DRIFTPILE	GRID COOF	n. <u>19</u>		<u>sl</u> 2001		LETED ED :	<u>Cor</u>			AZ_ 235°	DE CA W/	PTH SING TERL	OF O' REMAI	VB: NING:_ ENGTH	6.1 6 , 3.6	.6m	
DEPTH	U			RY	STRUC	TURE	STRUC	TURE	METALLIC		MPL	E DA	ATA			RESU	JLTS		
(metres)	Ŧ	DESCRIPTION		N N	ANGLES	VEINS+	VERGENCE	YOUNGING	MINERALS (%)									
FROM	GRAPHIC	DESCRIPTION		RECOVERY	(b) BEDDING (ci)CLEAVAGE Z TO CORE ANS	FAULTS	(DIRECTION TO ANTIFORM)			SAMPLI NO.	FROM	то	LENGTH	•					
0.0 -		CASING - OVERBURDEN	_																
3.66																			
					<u> </u>							,							
3.66-		MINERALIZED ZONE									ļ	ļ		ļ			\vdash		
11.2		6									┣━━	 					├		
		-SULPHIDE/CARBONATE WITH					· · · · · · · · · · · · · · · · · · ·					<u> </u>		 			i	-+	
		PARTIALLY RECRYSTALLIZED C	ONCRETIONS	·····			 										i		
		30-40% LAMINATED PYRITE - YELLOW/ORANGE SPHALERITE	A. 15								<u> </u>	<u> </u>					-+	+	
		GALENA IN CONCRETIONS AN					<u>├</u> ──				i –	<u> </u>							
		IN CONCRETIONS, NO VISIBLE		2									<u> </u>			_			
		ASSOCIATED BASE METALS. M		2	1					1		1							
		STRONGEST TOWARDS TOP.								1	<u> </u>	1						-	
11.2-		WEAKENING MINERALIZAT	TION																
12.54		- WEAKLY RECRYSTALLIZED C							YELLOW Sph										
		AND PYRITE BANDS IN BLACK	K MOB.		ļ				IN CONCR.		L						\square	\square	
		SILICEOUS SHALE. OCCASION	AL GREY						.		L						$ \longrightarrow $		
		CARBONATE BED TO LOCM.								<u> </u>		ļ							
												1					$ \longrightarrow $		
					L							1					L	-+	
		· · · · · · · · · · · · · · · · · · ·																-+	
																	-+		[
					1					1	1	1	í I		I I			I	

ning and and and the and and the sub-

• ſ .

DEPTH	ο		۲	STRU	CTURE	STRU	CTURE	METALLIC	5	SAMPL	E DAT	A			RE	SULTS		
(metres) FROM TO	GRAPHIC	DESCRIPTION	RECOVERY	ANGLES (b) BEDDING (c) CLEAVAGE (c) TO COREAKIS	FAULTS	VERGENCE (DIRECTION TO ANTIFORM		MINERALS (%)	Sample NO.	FROM	то	LENGTH				<u> </u>		Γ
12.54-		CONCRETION ARY SHALE												├───	┢╌──╸	+		╆┯╸
12.97		(VERY WEAK MINERALIZATION)			@ 12.97m										<u> </u>	+		\vdash
		-10-20% PYRITE LAMINATIONS			Gougee									<u> </u>		<u> </u>	i	┢
		AND LOCAL CONCRETIONS. NO			200										<u> </u>	1		+
		VISIBLE BASE METALS.		1	~		· · · · · · · · · · · · · · · · · · ·								<u> </u>			\vdash
															<u> </u>	+	<u> </u>	⊢
															-	1		1
2.97 -		CRYPTIC PYRITE LAMINATED		@17.25m												<u> </u>		1
29.2		MUDSTONE, WITH LOCAL		b. 50°			-						•		<u> </u>	<u> </u>		\vdash
		RAD CHERT BEDS		q. 40°000		CLOSURE		······································							<u> </u>	1		
		- GRAPHITIC AND LOCAL PY LAMS		FLAT BEDS				••••••••••••••••••••••••••••••••••••••				1						1
		To Icm.		FOLD CLOSURE				T. 198.202										t
		- WERKLY TO MODERATELY SILICEOUS						······································							F			1
		- AFTER 34m CHERTY SECTIONS		@23.5m	MOUS MENT		-									1		1
		COMMON, INTERBEDDED WITH		b 85°	ALONG ELEV.													
		GRAPHITIC SECTIONS			OFFSETS		DOWNHOLE ?											\square
		- AMDEBOID' SILICA PATCHES		EAST DIP	REDS E.SIDE													1
		COMMON AFTER 24M.			DOWN.													\square
29.2 -		MORE SULPHIDE - RICH SECTION														1		\square
32.34		- 10-20% VEAY FINE GAMINED Py				·										1		
		ASSOCIATED WITH SOFTER GRAPHITIC																
		SECTIONS NOT WITH CHERTY																
		SECTIONS. LOCAL GREY MASSIVE CHERT																
		Beds.																\square
									·									
32.34-		SPHALERITE - RICH FRACTURES		@ 36.9m														
39.32		TO ICM WHICH CROSS CUT BEDDING		b. 70°														
		AND Py-lams, AND APPROXIMATE		C1.25000		CLOSURE		If Sph.										
		THE CLEANAGE ORIENTATION.		SHALLOW				· · · · · · · · · · · · · · · · · · ·										
		3-5 MINERALIZED FRACTURES PER METRE		WEST DIP														
												-						

									•									
)	TECK EXPLORATIONS LIMIT	FED			ŀ	IOLE No	. 94-6	,9					PA	GE	3 (rt 3	>
DEPTH (metres)	<u>v</u>		RҮ	STRUC		STRU		METALLIC	:	SAMPL	E DAT	A			RE	SULTS		
	표	DECODIFICIAL	9	ANGLES		VERGENCE	YOUNGING	MINERALS (%)										
FROM TO	GRAPHIC	DESCRIPTION	Ľ	(b.) BEDDING (CI-) CLEANAGE > TO CORE ANS	FAULTS	(DIRECTION TO ANTI FORM)			SAMFLE NO.	FROM	то	LENGTH						
39.32-		STILL CRYPTIC PYRITE LAMINATED		Q46m														
66.18		MUDSTONE WITH RAD CHERT BEDS		046m		CLOSURE	DOWNHOLE		1					<u> </u>				
				Cl. 30°000		Carrante	POPPOINCE							<u> </u>				
		- CRYPTIC PY TEXTURE DIES OFF										1		<u> </u>			·	
		AFTER 60m, AND BECOMES A		@ 48.4m					+				<u> </u>	<u> </u>				
		BLACK SILICEOUS SHALE WITH		e 48.4m b. 65°														
		RAD BEDS.		cl. 30°				······································							[
		-GRAPHITIC, OCCASIONAL EUHEDRAL						····	<u> </u>								$ \square$	
		PY LAM. (Py-Lam FREQ HAS		@ 59.5m		CLOSURE		<u> </u>					. —					
		DECREASED AS WELL.	-	@ 59.5m b.060°														
				C1.0400000														
				beds flat				<u>.</u>								f		
								· · · · · · · · · · · · · · · · · · ·	1			<u> </u>						
				@ 64.8m														
				6. 20°		EAST						1						
		TAIL		cl. 400000					1									
	_	EUA																
									1						\square			i l
																		1
															[]			
_																		
									1						-+			

rages came being state with state mine being state state state state and state state state state state

SAMPLE NO.	FROM (m)	TO (m)	LENGTH (m)	CR (%)	Ag (g/t)	Ag (oz/t)	ва (%)	Pb (%)	Zn (%)
110.	(m)		(a)	(%)	(9/1)	(02/1)	(6)	(8)	(6)
45001 45002	3.66 4.66	4.66 5.66	1.00 1.00	95 100	2.80 2.20	.08 .06	.15 .14	.38 .17	2.23 1.95
45003	5.66	6.66	1.00	100	2.50	.07	.13	.42	1.74
45004	6.66	7.66	1.00	100	2.90	.08	.08	.36	2.07
45005	7.66	8.66	1.00	100	3.10	.09	.09	.24	2.33
45006	8.66	9.66	1.00	100	2.70	.08	.08	.22	1.85
45007	9.66	10.66	1.00	100	2.40	.07	.08	.33	1.64
45008	10.66	11.66	1.00	95	2.00	.06	.08	.06	1.39
45009	11.66	12.54	.88	100	2.10	.06	.09	.06	1.03
45010	32.34	33.34	1.00	100	3.10	.09	.15	.16	.48
45011	33.34	34.34	1.00	100	4.10	.12	.13	1.52	.38
45012	34.34	35.34	1.00	100	3.50	.10	.10	1.05	.23
45013	35.34	36.34	1.00	100	3.60	.11	.09	1.91	.44
45014	36.34	37.34	1.00	100	3,40	.10	.12	.72	.43
45015	37.34	38.34	1.00	75	3,30	.10	.20	.34	.11
45016	38.34	39.32	.98	100	4.20	.12	.11	1.21	.54

DDH 94-69

																			_
A. All	2	TECK EXPLORATIONS	LIMITED)				НОГ	E No.	(74-	-7(2		PA	GE	/ 0	13	
COMPA PROJE	ANY CT	ND DRILL LOG ADVANCED DRILLING 1727 Y DRIFTPILE CREEK	GRID COOF	. <u>20</u>		<u>Asl</u> 50W	: COMP : LOGG OGGED BY	ARED LETED ED 			DIP 90° -		DE CA WA	SING F	DF OV REMAIN NE LE	/ B : NNG : _ ENGTH	:	05	
DEPTH	U			RY	STRUC	TURE	STRUC	TURE	METALLIC	-	MPLE	E DA	ATA			RESU	ILTS		
(metres)	PHIC	DESCRIPTION		VE VE	ANGLES	VEINS+	VERGENCE	YOUNGING	MINERALS (%)										
FROM TO	GRAI	DESCRIPTION		RECOVI	(b.) BEDDING (cl.) CLEAUAGE (C TO COREANS	FAULTS	(DIRECTION TO ANTI FORM)			SAMPLI NO.	FROM	то	LENGTH						
0.0 -																			
3.05		CASING - OVER BURDEN)								L		ļ						
3.05 -		GREY, NON-SILICEOUS SHI									ļ							<u> </u>	
4.14		LOCAL PY-LAMS AND CONC	RETIONS.																
4.14 -		FAULT ZONE - CONTAINS M																	
5.18		FRAGMENTS CONSISTIN				FAULTING													
		NESTED CONCRETIONS				AT 75°													
		PYRITE LAMINATIONS AND L				/													
		MINOR GALENA AND VELL								ĺ									_
518-		GREY, NON-SILICEOUS SHALE W	ITH		@ 5.4m														
17.0		SILTITE AND FE-CARB LAMS, PY-CAR			b. 020°														
		RARE CONCRETIONS			cl. 0200000														
		- INCREASING GREY SILTITE AND BLAC																	
·		LAMS, AND PY-LAMS AND CONCRETIONS	DOWNHOLE															 	
		DECREASING FE-CARB LAMS.						UPHOLE?			 					-+			
177.0					0.01			LOADS@13.7m											-
17.0 -		GRADATIONAL CONTACT TO WE			<u>© 18.4m</u> b. 80°														
29.4		LAMINATED TURBIDITE BED	<u>55-20cm</u>		<u>ь. 80°</u> Ц. <i>15°ор</i> р													<u> </u>	
		THICK, COMMON PY-LAMS AND CONCRE POSSIBLE BARITE WITH CARBONATE IN	Denning		M. Doppo	·	·												
		PARALLEL VEINS.	DEDUNG																
		INKALLEL VEINS.				L						_							

)	TECK EXPLORATIONS LIMIT	ED			ŀ	IOLE No	. 94-=	70					PA	ЭЕ ,	2 (əf <u>3</u>	
DEPTH	~		≻	STRUC	TURE	STRUCT	TURE	METALLIC	5	SAMPL	E DAT	A			RE	SULTS		
(metres)	HC		Æ	ANGI ES	VEINS+	VERGENCE		MINERALS (%)										
FROM TO	GRAPHIC	DESCRIPTION	RECOVERY	(b.) BEDDING (ci.) CLEANAGE < TO COREANS	FAULTS	(DIRECTION TO ANTIFORM)			SAMFLE NO.	FROM	то	LENGTH						
29.4 -		PYRITIC WELL LAMINATED		@29.5m														
37.26		TURBIDITE		b. 80°														
		- MAXIMUM BED THICKNESS NOW		CI. 10°0000														\square
		10cm (AUG.Scm)		1														
		- CONCRETIONS BECOMING WEAKLY		@36.3m				····										
		ALTERED (RECAYSTALIZED).		b. 65°					Î								\square	
		- TR Gal. AND YELL SPHALERITE		cl. 10°														
		APPEARS IN CONCRETIONS AT 36.3m																
													•					
-															L			
37.26-		MINERALIZED ZONE																
49.11		- VERY WEAK (TRANSITION - LIKE)						· · · ·										Ē
		- 20% PY AS LAMINATIONS, 50% SHALE						TR. YELLOW	·									
		(BLACK) BEDS AND 30% PARTIALLY						Sph.										ļ
		RECRYSTALIZED CONCRETIONS . LOCAL	<u>.</u>	L[ļ		L
		WEAK YELL SPhalerite IN CONCRETIONS																
		AND VEINS CUTTING CONCRETIONS WHICH													ļ!			L
		SEEMS TO DECREASE DOWNHOLE													ļ	L]		ļ
49.11		CONCRETION-RICH ZONE (70%)													<u> </u>		l	J
53.6		WEAK, LOCAL PYRITE, BLACK SHALE															ل ــــــــــــــــــــــــــــــــــــ	·
		MATRIX. RARE CONCRETION SHOWS													<u> </u>			
		INTERNAL PLANAR BANDING.													j	\vdash		
																	 	
53.6-		CONCRETIONARY SHALE		@62.0m					.				-]	<u> </u>	·	j
67.9 B		- UERY WEAK PYRITE, DECREASING DOWNHOLE		b. 30°											<u> </u>			
		- BLACK SHALE MATRIX WITH WHITE		CI. 005°														
		SILTING LAMSI																
67.93-		SILICEOUS CRYPTIC PYRITE LAMINATED		@ 72.0m				- · · · · · · · · · · · · · · · · · · ·								-+		
79.15		MUDSTONE		b. 25°														1
		- LOCAL RAD CHEAT BEDS AND AMOEBOID		CI. 005°														
		SILICA PATCHES. MODERATELY GRAPHITIC						-										
				<u> </u>					- · · · ·									

.

Í

	;	TECK EXPLORATIONS LIMIT	ГED			ŀ	IOLE No	. 94-7	0				 PA	GE	3	of 3	
DEPTH (metres)	임님		VERY	ANGLES		STRUC	TURE	METALLIC MINERALS (%)		SAMPL	E DAT	Ā		RE	SULTS		<u></u>
FROM TO	GRAPHIC	DESCRIPTION	RECOVERY	(b.) BEDDING (CI.) CLEANAGE < TO CORE AND	FAULTS	(DIRECTION TO ANTIFORM)											
79.15 -		FAULT ZONE - BADLY GROUND							l					1	1	1	<u> </u>
81.61		ANGLE UNKNOWN		•													
81.61-		SOFT GAEY SHALE WITH RARE		@ 81.9m	82.5-84.43,								 				
86-89	Ļ	PY-CARB NODS AND LOCAL GREY		b. 25°	SEVERAL			····			L						
		SILTITE - BLACK SHALE LAMS.		Cl. 300000	GOUGE ZONES									ļ	ļ	ļ	<u> </u>
	ļ	- HANGING WALL STRATIGRAPHY ?		ļ	NO ANGLES						L		L				I
				ļ									 				Ļ
<u> </u>			ļ	<u> </u>	86-86.5m				ļ	Ļ			 		Ļ		ļ
		Eott			Gouse - No				ļ				 		ļ	ļ	
					ANGLE				ļ				 	ļ			<u> </u>
			┨							ļ	ļ		 <u> </u>	ļ	<u> </u>		Ļ
			 	ļ		<u> </u>				<u> </u>			 ļ			ļ	ļ
		NOTE: DIP DIRECTIONS UNCERTAIN								<u> </u>	ļ		 <u> </u>				
		AS CANNOT ORIENT VERTICAL											 				
		HOLES.		<u> </u>	ļ								 				
		· · · · · · · · · · · · · · · · · · ·	<u> </u>										 		<u> </u>		ļ
														<u> </u>			
		·····													 		
			· · ·							<u> </u>			 				
				<u> </u>			·					<u> </u>	 		<u> </u>		<u>├</u> ───
													 		<u> </u>		
	·=		<u> </u>					·······					 	<u> </u>			
				1									 				
													 		<u> </u>		
								· · · · · · · · · · · · · · · · · · ·			-						
		······································	<u> </u>	1									 				
			<u>† </u>							-			 	-			
													-				
			1	1	· ·								 				
			1	1					· · · ·			I	 	·	· · · · · · · · · · · · · · · · · · ·		

DDH 94-70

· · · ·

SAMPLE #	FROM (m)	TO (m)	LENGTH (m)	CR (%)	Ag (g/t)	Ag (oz/t)	8a (%)	ዖb (%)	Zn (%)
45017	37.26	38.26	1.00	90	2.60	00	11	07	1 24
						.08	.11	.07	1.34
45018	38.26	39.26	1.00	95	2.50	.07	.12	.17	1.22
45019	39.26	40.26	1.00	100	2.70	.08	.12	.10	1.12
45020	40.26	41.26	1.00	95	2.90	.08	.10	.13	1.90
45021	41.26	42.26	1.00	90	2.40	.07	.10	.25	1.63
45022	42.26	43.26	1.00	90	2.50	.07	.12	.23	1.42
45023	43.26	44.26	1.00	95	2.60	.08	.13	.22	1.05
45024	44.26	45.26	1.00	90	2.40	.07	.11	.13	1.47
45025	45.26	46.26	1.00	95	2.30	.07	.13	.28	.89
45026	46.26	47.26	1.00	90	3.10			.20	1.43
						.09	.13		
45027	47.26	48.26	1.00	90	2.80	.08	.13	.15	1.46
45028	48. 26	49.26	1.00	100	2.60	.08	.13	.16	.92
45029	49.26	50.26	1.00	95	2.50	.07	.14	.14	.88
45030	50.26	51.26	1.00	100	3.80	.11	.15	.07	1.31
45031	51.26	52.26	1.00	95	2.90	.08	.10	.19	.93
45032	52.26	53.26	1.00	95	3.00	.09	.15	.21	1.02

. 19 - 10

	_														_				
(ħ	TECK EXPLORATIONS	LIMITED)				ног	COLLAR -90	GE	/ 。	» r 4							
COMP. PROJE	ANY ECT	ADVANCED DRILLING	CLAIM ELEVATION GRID COOF NORTHING	ad. 2	1337m/ 1+00N-4	<u>fsL</u> <u>f50</u> ω		LETED ED :	<u>Coll</u>				DE CA WA	PTH C Sing F Mterli	GTH :	2 <u>7m</u> Fm			
DEPTH	U			RY	STRUC	TURE	STRUC	TURE			MPLE	E DA	TA		TH : <u>242.3</u> H OF OVB : <u>4</u> . G REMAINING : <u>4.2</u> RLINE LENGTH : <u></u> LEMS :	JLTS			
(metres)	APHIC	DESCRIPTION		Ч	ANGLES	VEINS+	VERGENCE		MINERALS (%)					ENGTH : 242.38					
FROM	ι α μ	DESCRIPTION		Ū.	(b.) BEDDING (CL) CLEAVAGE	FAULTS	(DIRECTION TO ANTI FORM)			SAMFLE NO.	FROM	то	LENGTH						
0.0 -	ļ														242.3 8 DF OVB : <u>4.27</u> REMAINING : <u>4.27</u> NE LENGTH : <u></u> AS :				
4.27		CASING - OVERBURDEN								<u> </u>									
-			$\begin{array}{c c c c c c c c c c c c c c c c c c c $																
4.27 -					<u>ci. 010°</u>		·								$ \longrightarrow $				
59.8										[
			NTS CLAIM ELEVATION												-+				
			DRILL LOG NCED DRILLING CLAIM ELEVATION BRID COORD 21400N-44 GRID COORD 21400N-44 NORTHING EASTING EASTRUCE EAND					ļ 					·						
·		BLACK SHALE, GREY SILTITE AND RARE	DRILL LOG ANCED DRILLING CLAIM ELEVATION T27 CRIPTION RIPTION																
			DRILL LOG ANCED DRILLING ANCED DRILLING GRID COORD 21+00N - 4+5 MORTHING EASTING BRIPTION BRIPTI			@ 25.8m									ł				
			DRILL LOG 1337 mA ANCED DRILLING GRID COORD. 21400N-44 GRID COORD. 21400N-44 GRID COORD. 21400N-44 MORTHING GRIPTION ZEFTPILE CREEK CRIPTION ZERIPTION ZERIPTION <tr< td=""><td></td><td></td><td>UPHOLE</td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td>—</td><td></td><td>[</td></tr<>			UPHOLE		<u> </u>						+	—		[
		BARITIC	ANCED DRILLING GRID COORD. 21400N-44 NORTHING EASTING ANGLES STRUC ANGLES (b) BESDING (c) CLEANAGE C (c) CLEANAGE C										$ \rightarrow $						
			ANCED DRILLING GRID COORD 21400N-445 727 NORTHING EASTING CARPTILE CREEK CRIPTION CRIPACINA CRIPTION CRIPTION CRIPTION CRIPTION CRIPTI									+		+	+				
		CONCRETIONS ARE MORE FREQUENT	RIPTION RIPTION ANGLES Chi BENDING Chi BENDING Chi Chi BENDING Chi Chi BENDING Chi Chi BENDING Chi Chi BENDING Chi Chi BENDING CHI CHI CHI CHI CHI CHI CHI CHI CHI CHI CHI CONS AND LOCAL PY-CARB. NODULES CHI CONS AND LOCAL	GULDI											+		+		
		Q 50 8 - 540 - # 10000	b. 004° 5. THICK G. THICK Cl. 010° RARE MAB. NODULES @17.37m												+			+	[
					<u>h</u> . 006									<u> </u>			-+		
		LATTS FARTICEL ID CORE AND	E KTO COARE AXIS @ 11.2B m B. 004° b. 004° B. 004° LG. THICK Cl. 010° D. RARE B. 070° RE Py-lam. Cl. 004° EMSES B. 070° PARTIALLY @ 30.0m B. 050° Cl. 020° ENT. Q.1.000 TFE-CARB B. 000° ENT. Q.1.000 TFE-CARB B. 006° EXIS. Q.17.0m											+					
59.8-		DIACK SHALE INTO CATUR	1505													-+	-+]
61.20		RENE TO ZEM PASSIALE DAN	STERI											<u> </u>	-+		+		
V																-+		-+	[
		JUNE OF THE CHICKI DEDS	DRILL LOG JANCED DRILLING JANCED DRILLING I727 RIFTPILE CREEK SCRIPTION REFTPILE CREEK SCRIPTION Basting CLAIM ECOORD 21400N-44500 NORTHING EASTING SCRIPTION Basting ING - OVERBURDEN Basting Basting Basting Basting Basting Basting Basting											-+	-+	-+			
60.20		FAMET FANE - WITH GOVE E AN	6 FAULT			VEINSIN									+	<u> </u>		-+	
61.29			DRILL LOG NTS NCED DRILLING I337 mAsL SRID COORD 21+00N- 4+50M 27 FTRIE CREEK STRUCTURE ANGLES VEI Childen String EASTING STRUCTURE ANGLES VEI Childen String STRUCTURE ANGLES VEI Childen String STRUCTURE BESTING STRUCTURE ANGLES VEI Childen String STRUCTURE BESTING STRUCTURE STRUCTURE MORTHING EASTING STRUCTURE ANGLES VEI Childen String STRUCTURE STOCOM STO	FAULT@ 45°											+	+			
		DACCON, PROPAGE OF E	DRILL LOG VANCED DRILLING I727 DRIFTPLE CREEK BRIFTPLE CREEKER BRIFTPLE CREEKER </td <td></td>																

and when they are give the and and the test that the time

)	TECK EXPLORATIONS LIMIT	ED			I	IOLE No	. <u>94-7</u>	1					PAG	GE	2	of 4	,
DEPTH			≻	STRUC	TURE	STRUC	TURE	METALLIC	6	SAMPL	E DAT				RE	SULTS		
(metres)	Η		E.	ANGLES	_	VERGENCE	YOUNGING	MINERALS (%)										
FROM TO	GRAPHIC	DESCRIPTION	RECOVERY	(b.) BEDDING (ci.) CLEAVAGE (CI.) CLEAVAGE	FAULTS	(DIRECTION TO ANTIFORT			SAMFLE NO.	FROM	то	LENGTH						
61.29-		GREY SHALE SIMILAR TO ABOVE		@ 69.8m														
81.99		- MODERATELY WELL AMINATED		b. 035°														
		(BLACKSHALE, SILTITE, LOCAL FE-CARB)																
		CARBONATE - Py +- Ba? NODS		@78.4m														
		COMMON, RARE CONCRETION		h. 060°					1									
				CI 0020		1			1	<u> </u>								
81.99 -		FAULT ZONE - CORE GROUND																
86.0		FEWER QUARTZ VEINS THAN IN			20													
		FAULT ABOVE, LOCAL BLEBBY			ANGLE													
		CARBONATE VEINS.		@96.0m													1	
				h. 040°					1								1	
36.0 -		SAME GREY SHALE - MODERATELY		CI. 010°								[
144.6		WELL LAMINATED - 10-30 cm				1	Uphole @		1							_		
		MASSIVE BEDS SEPARATED BY		@115.5m			98.0m		1									
		BLACKSHALE-SILTITE-FE-CARB-LOCAL		b. 055°														
		PY, LAMINATED SECTIONS.		(1.005°		1	UPHOLE @											
		LAMINATION FREQUENCY.				1	104.0m					<u> </u>						
		CONCRETIONS AND PY LAMS		@ 131.0m			(LOADS)		1									
		INCREASE DOWNHOLE - THICKNESS		b. 045°		1											[
		OF MASSIVE (NTERBEDS		Cl. 015000					1	<u> </u>								
		DECREASES.		470														
		- NODULES ARE MORE BARITE																
		Rich.							1									
				@147.5n				······································								_		
44.6 -		GRADATIONAL CHANGE TO		b. 060°		-		······										
170.02		WELL LAMINATED TURBIDITE		Cl. 010														
110101		- MODERATELY COMMON PY LAMS	_	C12.015	COENULA	IDAL CLEU.			<u> </u>			<u> </u>						
		- NODULES, BOTH BARITE AND						· · · · · · · · · · · · · · · · · · ·									 	
		PY-CARBONATE STILL COMMON		@160.9m		1						 					<u> </u>	
		- CONCRETIONS INFREQUENT AT		0. 075°			- <u>-</u>								<u> </u>			
		TOP, BUT INCREASE TOWARDS		U. 005°					1				-		-		-	
		BOTTOM OF INTERVAL . MASSIVE		C12 0200	CRENULA	TION CLEV.												
		INTERBEDS NOW =/Scm.						····										
-		10.0RB400 1000 -13C#1		t		 			<u> </u>									

)	TECK EXPLORATIONS LIMIT	ED			H	IOLE No	. 94-7	1					PA	GE	3 4	of 4	,
DEPTH (metres)	<u>o</u>		RY	STRUC		ST RUCT		METALLIC	5	SAMPL	E DAT	A			RES	SULTS		
	H	DESCRIPTION	ž	ANGLES	VEINS+	VERGENCE	YOUNGING	MINERALS (%)										
FROM TO	GRAPHIC	DESCRIPTION	RECOVERY	(b.) BEDDINC (cl.) CLEANAGE 2 TO CORE ANS	FAULTS	(DIRECTION) TO ANTIFORM)			SAMPLE NO.	FROM	то	LENGTH						
170.02-		WELL LAMINATED - PYRITE		@ 175.0m														
183.56		LAMINATED TURBIDITE		6.040°				- YELLOW Sph.										
		- MASSIVE INTERBEDS NOW < 10cm		CI. 000°				TREAL IN										
		- ABUNDANT CONCRETIONS AND						CONCRETIONS										i
		PYRITE LAMINATIONS			-													
		- ALTERNATING GREYSHALE- BLACK																
		SHALE - PYRITE-CARBONATE LAMINATION	5															
		- NO OBVIOUS BARITE.																
													•					
183.56-		- 30 CM AMALGAMATED																
183.86		CONCRETION BED, MINOR PY.																
																		i .
183.86-		MINERALIZED ZONE																
201.0	_	- INCREASED CONCRETION	_	@ 194.0m														
		RECRYSTALLIZATION, BUT WEAK		b. 030°				YELLOW Sph										
		SULPHIDE CONCENTRATION		CI. 010°				IN CONCRETTONS										1
_		- NO CHANGES IN PY CONCENTRATION)															
		OR DEGREE OR RECRYSTALIZATION OF																
		CONCRETIONS TO ENABLE A SEPARATIO	n					·										
		BETWEEN TRANSITION / MINERALIZED																
		ZONES.																
		- No VISIBLE Pb/Zn Assoc WITH																
		Py																
		-STRONGLY GRAPHITIC.																
201.0-		CONCRETION ARY SHALE																
216.11		- ESSENTIALLY A GRADATION																
		FROM MINERALIZATION ABOVE TO																
		SIMILAR HOST WITH ONLY MINOR																
		SULPHIDE																
		-INTENSLYGRAPHITIC																
		- DECREASING RX OF CONCRETIONS																
		DOWNHOLE																

,

•••

(Canal)		TECK EXPLORATIONS LIMIT	' FD					<u></u>						ف حصد بيره		,,		,
)		ЕD			ŀ	HOLE No	. <u>94-7</u>	/	_				PA	GE	4 0	# 4	
DEPTH	с		۲	STRUC				METALLIC	5	SAMPL	E DAT	A			RES	SULTS		
(metres) ROM TO	GRAPHIC	DESCRIPTION	RECOVERY	ANGLES (b.) BEDDING (cl.) CLEAVAGE (TO COREALIS	FAULTS	VERGENCE (DIRECTION TO ANTIFORM)	YOUNGING	MINERALS (%)	Sample NO.	FROM	то	LENGTH						
16.11 -		BLACK, SOFT, GRAPHITIC		@ 216.4m														
218.54		LAMINATED SHALE /SILTITE AND		b. 060°			UPHOLE											
		GREY CHERT (< 1cm)		Cl. 010°0000			(GRADING)										ĺ	
		- RARE CONCRETIONS.		″														
18.54 -		SILICEOUSTO CHERTY BLACK			<u></u>													
236.83		SHALE WITH GREY AND BLACK																
		CHERT LAMS. RARE RADS		@ 227.68														<u> </u>
		* DISTINCTIVE LAMINATED CHERT		b. 070°					· ·				•	· ·				
		- RARE LARGE CONCRETION +		CI. 0200000				· ·										
		LOCAL PY-LAM											<u> </u>					<u> </u>
	-	-@ 220.3-223.9 - SPHALERITE				• • •		SPA VEINS TO			-	· · ·		<u> </u>				
		VEINS TO ICM, ORIENTED ALONG						1cm										·
		CLEANAGE, BUT IN PART BEDDING																
		PARALLEL. 2-3 per meter.	·									1		<u> </u>				
		Then a of the merch.												<u> </u>				
36.83~		WEAK CRYPTIC PYRITE		@239.68														
242.38		LAMINATED MUDSTONE WITH		b. 060°														
		RARE RAD CHERT BEDS	·	CJ. 005°								1		<u> </u>				
		- SILICEOUS AND GRAPHITIC WITH		4.002														1
	_	RARE PY-LAM.										\vdash						·
								······										
																		[
		EOH	<u> </u>						1			<u> </u>		<u> </u>				
												<u> </u>						·
										-		<u> </u>						
	_											-		<u> </u>				
					<u></u>													
												<u> </u>						
								··										
— I												<u> </u>						
												<u> </u>						
				<u> </u>								I						

SAMPLE #	FROM (m)	TO (m)	LENGTH (m)	CR (%)	Ag (g/t)	Ag (oz/t)	8a (%)	የb (%)	Zn (१)
45033	188.06	189.77	1.71	90	2.40	.07	.14	.21	.91
45034	189.77	190.77	1.00	85	2.70	.08	.11	.23	.36
450 35	190.77	191.77	1.00	95	2.30	.07	.13	.22	.73
45036	191.77	192.77	1.00	85	2.50	.07	.11	.12	.99
45037	192.77	193.77	1.00	80	2.10	.06	.15	.20	.93
45038	193.77	194.77	1.00	85	1.90	.06	.13	.16	.74
45039	194.77	195.77	1.00	90	2.70	.08	.10	.05	.61
45040	195.77	196.77	1.00	90	2.30	.07	.10	.18	1.02
45041	196.77	197.77	1.00	90	2.70	.08	.09	.13	.90
45042	197.77	198.77	1.00	90	2.80	.08	.09	.09	.67
45043	198.77	199.77	1.00	90	2.50	.07	.07	.06	.76
45044	199.77	201.00	1.23	90	2.60	.08	.07	.22	.65
45045	220.59	221.59	1.00	95	1.20	.04	.10	1.59	.28
45046	221.59	222.59	1.00	95	1.10	.03	.09	1.09	.27
45047	222.59	223.59	1.00	90	1.30	.04	.11	.55	.17
			•						

DDH 94-71

(ĸ	TECK EXPLORATIONS	LIMITED)	<u></u>		<u></u>	ног	E No.		94	-72	2		PA	GE	3.05	12
COMP PROJE	ANY CT	ND DRILL LOG ADVANCED DRILLING 1727 Y DRIFTPILE CREEK	CLAIM ELEVATION GRID COOF NORTHING	n] RD[67	357m As 100N-5+1	<u>L</u> 0W	: COMP : LOGG LOGGED BY	ared leted ed :		 РТН		AZ.	LE DE CA WA	NGTH : PTH C SING F	DF OV REMAIN	141.48, ovb :3.05 maining : length :	5	
DEPTH	<u>ں</u>			ERΥ	STRUC	TURE	STRUC	TURE	METALLIC		MPLE	E DA	ATA		I	RESU	1.4 8 m 3.05	
(metres) FROM	GRAPHIC	DESCRIPTION		RECOVE	ANGLES (6) BEDDING (c) CLEAVAGE < TO COAE ALIS	VEINS+ FAULTS	VERGENCE (DIRBETION TO ANTIFORM)	YOUNGING			FROM	то	LENGTH			<u>141.48m</u> ovb: <u>3.05</u> maining: <u></u> : Length: <u></u> ::		
0.0 -					DATE : COLLARED COLLAR -75° 235° 1357m AsL : COMPLETED 6+00N-5+10W : LOGGED LOGGED BY : RF CORE SIZE : NQ STRUCTURE STRUCTURE MAGLES VEINS+ VERGENCE Younging METALLIC SAMPLE DATA RESULTS													
3.05		CASING - OVERBURDEN	LOG NTS															
		<u> </u>																
325-				$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
26.77		LOCAL, WEAK CRYPTIC PYAITE LI	AMINATIONS		0.0						ļ							
		AND COMMON RADCHERTBEI	LL LOG Date : collared Depth DIP AZ Length : 141.46m CLAIM															
		AMOEBOID" & SILICA PATCHES																
		- QUARTE VEINS IN FIRST 18 MET			0.00.00		DATE : COLLARED											
		CONTAIN TRACE BROWN SPHA	LERITE							<u> </u>				LENGTH : 141.48m DEPTH OF OVB : 3.05 CASING REMAINING : WATERLINE LENGTH : PROBLEMS : RESULTS				
0/77										[H :			
<u>26.77 -</u> 75.28		BECOMES MODERATELY SILICE			0.015		}			DEPTH DIP AZ. LENGTH : 141.48m Collar -75° 235° DEPTH OF OVB : 3.05 CASING REMAINING :								
75.20		CRYPTIC PYRITE LAMINATED MUDS			0.115(1)	DATE : COLLARED												
		WITH AMOE BOID TEXTURES AND																
		RAD CHERT BED. STRONGLY GA RARE PURITE LAM.	Office ($\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
		- LOCAL ZONES MORE RAD-RICH	<u> </u>		4.010 oppo			DaubullerE										
		- RARE-PY-LAM TO 2cm - Co	ACEL		@ / 0.1-+			NUMPULE			†				-+			
		SUBHEDRAL IN CENTER, FINEG				· · ·		DOUNHALE										
		ON MARGINS.					·	L'OWNINGE							-+		-+	
		<u> </u>																
		······································			@ 66.7m													
				_	4.060°			DOWNHOLE										
					4. 010° oppo.													
					MINON				······································									

	,	FECK EXPLORATIONS LIMIT	ED			l	HOLE No	. 94-72						PA	GE į	2 0	ゕZ	-
DEPTH	~		≿	STRU	CTURE	STRU	TURE	METALLIC	6	SAMPL	E DAT	ΓA			RES	SULTS		
netres)	HK		Ű	ANGLES	VEINS+	VERGENCE	YOUNGING	MINERALS (%)							•			
IOM TO	GRAPHIC	DESCRIPTION	RECOVERY	(b.) BEDDING ((1)CLEANAGE C TO CORE ANS	FAULTS				SAMPLE NO.	FROM	то	LENGTH						
5.28-		LAMINATED CHERT		@86.0m														Ť
141.48		- GREY AND RARE BLACK CHERT		4.030°					1			-						T
		LAMINATIONS		d. 005°														
		- STILL LOCAL RADBEDS, NO										1						Γ
		AMOEBOID TEXTURES		@96.6m														Γ
		- STRONGLY GRAPHITIC		b. 075°														Γ
		- BECOMING INCREASINGLY		Q. 005°			_											
		CHERTY DOWN HOLE												· .				
		- AFTER 114.0m LOCALMINOR		@ 106.1 m					· ·									Γ
		HYDROZINCITE ON FRACTURES		b. 075°														
				c .005°	@109.0-													
		-@ 130.4-131.0 m - YELLOW Sph IN			112.25m													
		QUARTE VEIN PARALLEL TO CORE AXIS			Several							li						
				@123.75m														
		-@ 136.34-137.48m - SULPHIDE		b. 020°	GOUGES				L					L				
		RICH ZONE AS SEMI-MASSIVE		C1. 010 000	@ 10°-20°		l					ļ						1
		SUBHEDRAL PYRITE LAMINATED		,.	To C.A.													
		REDS TO 5CM IN LAMINATED													<u> </u>			┢
		CHERT. 10-15% Py OVER ENTIRE		@133.4m			L		L					\bot				L
		INTERVAL		<u>ь.020°</u>			<u></u>						ļ	L.—				╞
				CI.015°			ļ					<u> </u>		L	 			L
		- BROKEN - VEINED ZONE @												L				⊢
		139.0-140.0 M - POSSIBLE FAULT?		L			L			L				L	Ļ			┢
							ļ					_			<u> </u>			┢
	_ /	EoH.		L			ļ		<u> </u>					L	Į			╞
							<u> </u>		Ľ				ļ		ļ			┡
		NOTE: AT BOTTOM, HOLE COULD BE		ļ		<u> </u>	<u> </u>		ļ			 			<u> </u>			┡
		HEADING UPSECTION TOWARDS		ļ	ļ	ļ	<u> </u>		I			<u> </u>		L	<u> </u>			┡
		MINERALIZED HORIZON - SULPHIDE		Į	ļ				L			<u> </u>			L			┡
		BEDS AND LAMINATED CHERT		ļ			<u> </u>		<u> </u>			ļ		┣	 			┡
		USUALLY PROXIMAL FOOTWALL		 			 	·				i		<u> </u>	 			┡
		INDILATORS?		1	1	1	1		1			1		I				1

1

(

· ---- · ---

SAMPLE #	FROM (m)	TO (m)	LENGTH (m)			Ag (oz/t)	ва (%)	Pb (%)	Zn (%)	
45098	136.34	137.48	1.14	80	16.90	.49	.74	.02	.53	

DDH 94-72

					· ·													
	2	TECK EXPLORATIONS	LIMITED)				НОГ	E No.	C	74-7	73						,
COMP PROJE	ANY CT	ND DRILL LOG Advanced Dailling 1727 Y DRIFTPILE CREEK	CLAIM ELEVATION GRID COOF NORTHING	[] RD. (64	357 m As 100N - 5+	L	: COMP : LOGG OGGED BY	LETED ED <u>R</u> F	(orr	PTH	DIP /	AZ. 955°	DE CA WA	PTH O SING F TERLIN	OF OVE REMAINE NE LEF	B : ING : NGTH :	6. 5 .49 5.49 5.4	9
DEPTH	U			Ъ	STRUC	TURE			METALLIC		MPLE	E DA	ATA		F	RESUL	LTS	
(metres)	APHIC	DESCRIPTION		ΥE	ANGLES		VERGENCE	YOUNGING	MINERALS (%	2								
FROM	GRAF	DESCRIPTION		RECO	(b.) BEDDING (cl.) CLEAVAGE < TO CORE ANS	FAULTS	(DIRECTION TO ANTIFORM)			SAMPLI NO.	FROM	то	LENGTH				26. 93 <u>5.49</u> : <u>5.4</u>	
0.0 —					@11.9m							AZ. LENGTH: 126.53 m 055° DEPTH OF OVB: 5.49 CASING REMAINING: 5.49 WATERLINE LENGTH: PROBLEMS: RESULTS						
5.49		CASING - OVERBURDEN			6. 080°		COLLAR -55° 055° COMPLETED COLLAR -55° 055° CASING REMAINING: 5.49° WATERLINE LENGTH: PROBLEMS: CORE SIZE: NQ RE METALLIC MINERALS (%) SAMPLE FINST VERGENCE YOUNGING MINERALS (%) SAMPLE MULTS SAMPLE METALLIC SAMPLE NO. FROM TO ENSTH WEST SAMPLE WEST SAMPLE WEST SAMPLE WEST SAMPLE WEST SAMPLE											
					Cl. 030°0000													
5.49 -		SILICEOUS TO CHERTY, GRAPHITH			0.10	@14.7m												
23.45		SHALE WITH ABUNDANT RADCH LOCAL AMOEBOID TEXTURES.	HERT BEDS,		26.8m			<u> </u>		+	-						+	
		HYDROZINCITE ON FRACTUR	FS	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
		5.49-7.0 m - LOCAL SPHALER				7			DEPTH DIP AZ. LENGTH: 126.53 m COLLAR -55° 055° DEPTH OF OVB: 5.49 CASING REMAINING: 5.49 CASING REMAINING: 5.49 RF PROBLEMS: NQ PROBLEMS:									
		VEINLETS AND BANI								DEPTH DIP AZ. LENGTH: 12.6.53 m Coluar -55° 055° DEPTH OF OVB: 5.49 Casing Remaining: 5.49 WATERLINE LENGTH: 5.49 PROBLEMS:								
										ļ					H: [26. 93 H OF OVB: <u>5.49</u> B REMAINING: <u>5.49</u> RLINE LENGTH:			
23.45-		LAMINATED CHERT			@24.17m					PTH DIP AZ. LENGTH: 12.6.53 m LAR -55° 055° DEPTH OF OVB: 5.49 LAR -55° 055° DEPTH OF OVB: 5.49 LAR CASING REMAINING: 5.49 MATERLINE LENGTH: PROBLEMS: PROBLEMS:	'							
26.25		- BLACK SILICEOUS SHALE WIT			h. 070°		CLOSURE!											
		GREY CHERT BEDS AND RARE RA - RARE `BANDED' CONCRETION	OCHERT BED		Cl. 025 oppo				DEPTH DIP AZ. LENGTH: 12.6.93 m CDLLAR -55° 055° DEPTH OF OVB: 5.49° CASING REMAINING: 5.49° CASING REMAINING: 5.49° WATERLINE LENGTH: PROBLEMS: Q									
		- PY INCREASES DOWN HOLE																
	-	- TY INCREASES DOWN THUE						··		+								
26.25-		MINERALIZED ZONE																
30.45		- WEAK, PYRITIC; SEVERAL 10-30	Dem															
		CONCRETION-RICH BEDS															\rightarrow	
		- YELLOW Sph IN CONCRETIONS,															-+	
		MOD. THE RECRYSTALIZE	D.														-+	
· · · · · · · · · · · · · · · · · · ·																	-+	
																	-+	

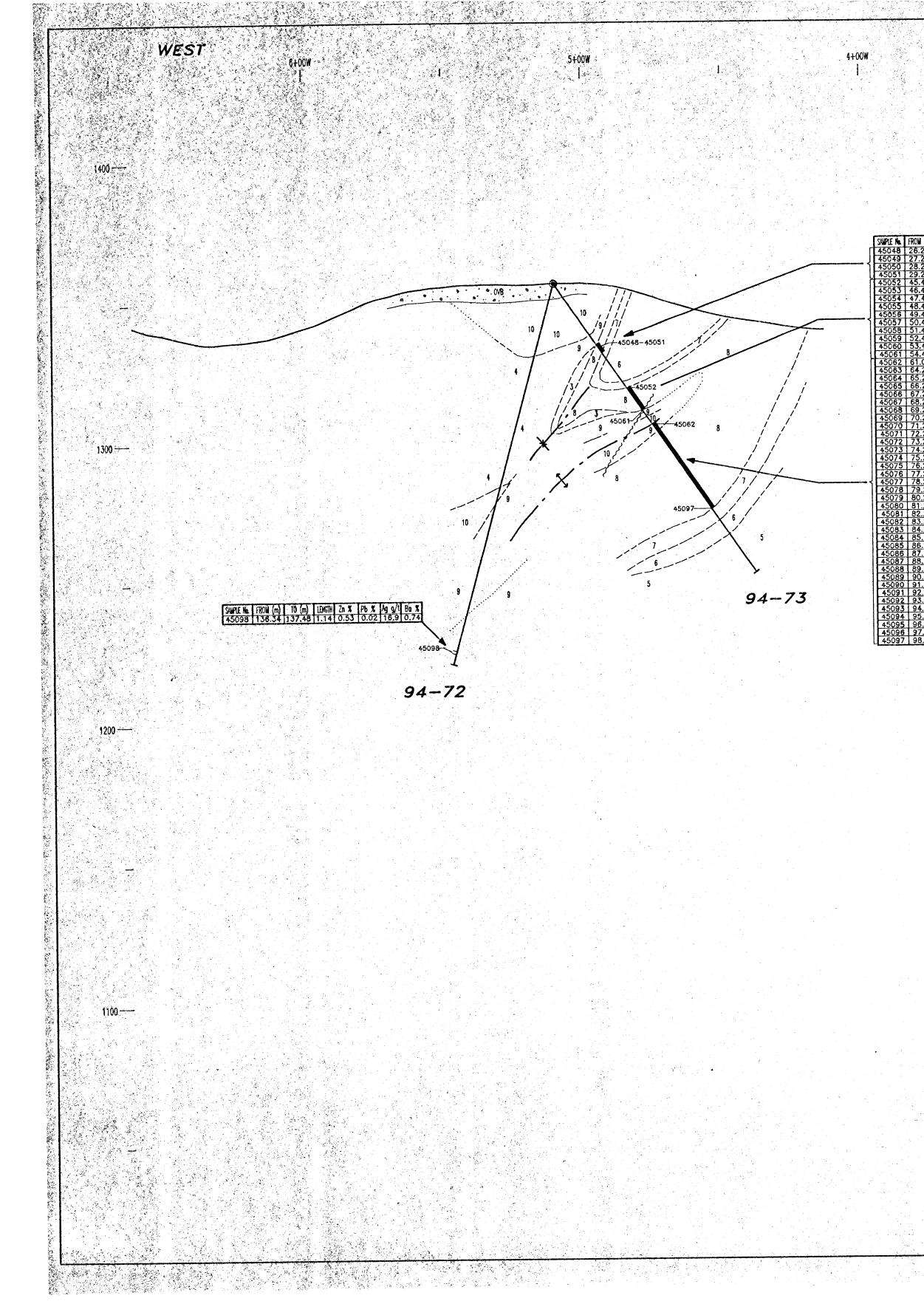
NUME CALLS CALLS

1

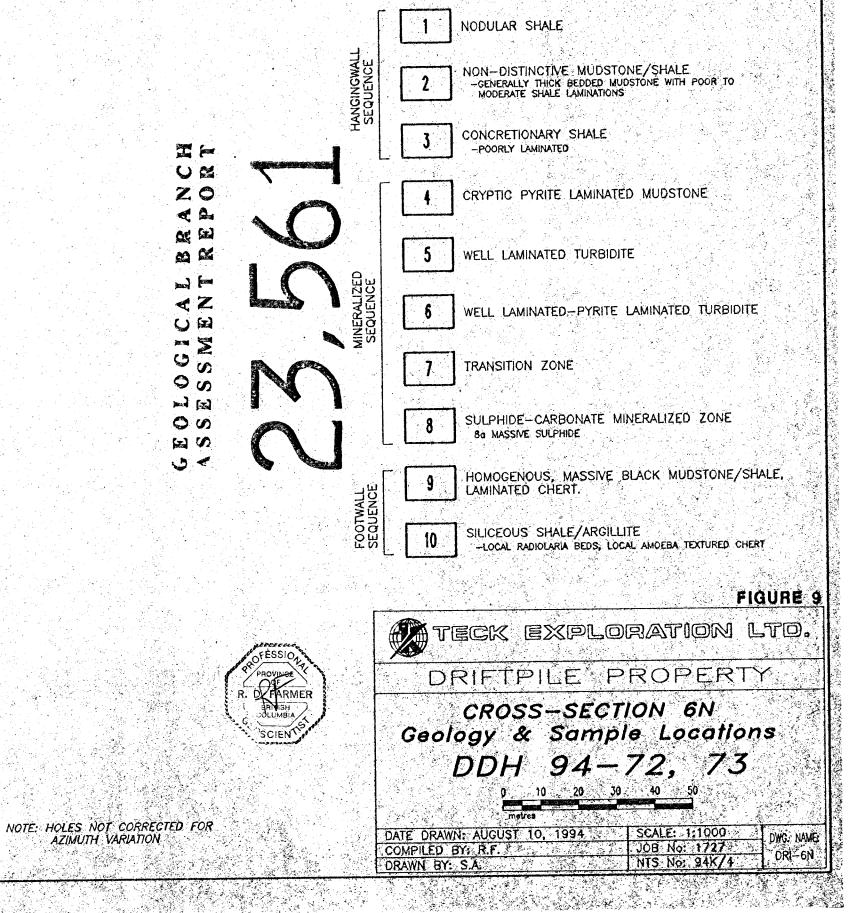
Katie	/	TECK EXPLORATIONS LIMIT				/	HOLE No	94-7	73					PA		2 0	א נ	7
DEPTH	0		۲۲	STRUC		STRUC		METALLIC	5	SAMPL	E DAI	ΓA			RE	SULTS		
(metres)	H	DESCRIPTION	VEF	ANGLES	VEINS +	VERGENCE	YOUNGING	MINERALS (%)			_							
FROM TO	GRAPHIC	DESCRIPTION	RECOVERY	(b) BEDDING (c)) CLEANAGE < TO COREANS	FAULTS.				SAMFLE NO.	FROM	то	LENGTH						
30.45-		TRANSITION ZONE																Γ
32.75		- PY-LAMINATIONS AND CONCRETION		@32.0m b. 075°														Γ
		RICH BEDS SEPARATED BY BLACK																
		SHALE BEDS (MAX 5cm THICK)		Cl. 040° pps		CLOSURE?	@ 35.5m											
							DOWNHOLE											
32.75-		PYRITE LAMINATED TURBIDITE																Γ
43.0		-SHALE INTERREDS TO 10CM, REDUCED PY-LAMS		@40.66m														
		REDUCED PY-LAMS		h. 070°			@42.9m							<u> </u>				
		- RARE DARK SPHALERITE ASSOCIATED		Cl. 045%	GOUCE ZONE		UPHOLE						•					
		WITH CONCRETIONS. BEDDING			e <i>5</i> 5°													
		SUB PARALLEL TO C.A. IN CENTER																
		OF INTERJAL																
														[
13.0 -		TRANSITION ZONE																
45.48		-SAME AS ABOUE, TR. SOHALERITE																
	_	AND GALENA IN CONCRETIONS																
														L.—				
15:48-	_	MINERALIZED ZONE															L!	
55.32		- STRONGER SULPHIDE CONTENT												L	<u> </u>			
		THAN 1ST INTERCEPT ABOUE						-									i!	
		- INCREASED SPHALERITE IN												L			l	
		CONCRETIONS, BOTH VELLOW AND												L				
		DARK, NO INCREASE TOWARDS												I				L
		BASE SULPHIDE CONTENT					L							I				
		AUERAGES 25-30%.												<u> </u>				
		- CONCRETION + PY CONTENT																L
		DECREASE TOWARDS BASE +																
		BECOMES MORE SILICEOUS.												Ĺ				1
														L				Ĺ
																		L
																		L
																		Ē

no ann ann ann ann ann a

)	TECK EXPLORATIONS LIMIT	ED			ŀ	HOLE No	. 94-73	3					PA	GE	3 (of C	/
DEPTH	0			STRUCTURE		METALLIC	5	SAMPLE DATA					RESULTS					
(metres) FROM TO	GRAPHIC	DESCRIPTION	RECOVERY	ANGLES (b.) BEDDING (c.) CLEANAGE (TO COREANS	VEINST FAULTS	VERGENCE	Younging	MINERALS (%)	SAMFLE NO.	FROM	то	LENGTH		<u> </u>				
532-		LAMINATED CHERT IN BLACK		1			·								1	1		-
64.27		GRAPHITIC SHALE, LOCAL RAD BEDS		@ 57.15-	0 59.28	WEST?	@ 57.0m											┝
Dire!		CONCENTRATED IN CENTER OF		b. 030°		NEAR CLOSURE?		· · · · · · · · · · · · · · · · · · ·							<u> </u>			⊢
		INTERVAL		Cl. 045 000	BOUCED		411000					+	<u> </u>					⊢
		-OCCASIONAL PYLAMS INCREASE			45°		@ 60.4m		1			1						┢━
		TOWARDS BOTTOM OF INTERVAL		@ 62.8m		l	UPHOLE											F
		-261-62m - DARK AND YELLOW		b 065°	@ 62.96m	EAST	@63.0m					1	<u> </u>					F
		SPHALERITE IN CROSS CUTTING VEINS		c1 045°	NO ANGLE		DOWNHOLE		İ			1						-
					/00/14000		200101002		· ·									┢─
4.27 -	_	MINERALIZED ZONE						,										⊢
99.55		- GOOD SULPHIDE MINERALIZED										1						⊢
		ZONE, 40-60% Py + CONCRETIONS		1								1			-			F
		- BEST SULPHIDE @ 78-90m (50-60%)						······					<u> </u>	1				F
		- STRONG SPHALERITE IN CONCRETIONS							h									Γ
		AND MINOR VISIBLE IN PYRITE						·							1			
		- ALL AS LAMINATED PY. NO MASSIVE.		· · ·														
9.55-		TRANSITION ZONE							<u> </u>		,							┢
103.78		- 3-8 CM BLACK SHALE BEDS		1				·····	<u> </u>	-								<u>_</u>
10 - 10		SEPARATING CONCRETION / PY-LAM						· · · · · · · · · · · · · · · · · · ·				<u> </u>						<u> </u>
		SECTIONS . AY CONCRETIONS DECREASE										<u>├</u> ──-		<u> </u>				_
		DOWNHOLE,				······		····				<u> </u>						\square
		Product			@107.9m							<u>+</u>						\square
3.78-		PYRITE LAMINATED TURBIDITE		1	2cm							<u> </u>			<u> </u>			
109.8				@109.7m	GOUGE @			·				<u> </u>		<u> </u>	†			—
		-CONTINUED DECREASE OF AV-lang		b. 070°		EAST												ī —
		AND CONCRETIONS DOWN HOLE. BARITE		Cl. 040°					1			<u> </u>						<u> </u>
		NODS COMMON TOWARDS RASET		·····								<u> </u>		<u> </u>				ī —
		GRADUAL INCREASE IN THICKNESS										<u> </u>		<u> </u>				<u> </u>
		OF SHALE INTERBEDS DOWN HOLE										<u> </u>		1				-
								<u>.</u>										Γ
								· · · · · · · · · · · · · · · · · · ·				<u> </u>	-					
								••••••••••••••••••••••••••••••••••••••					.					_
				T								· · · · ·		t				7

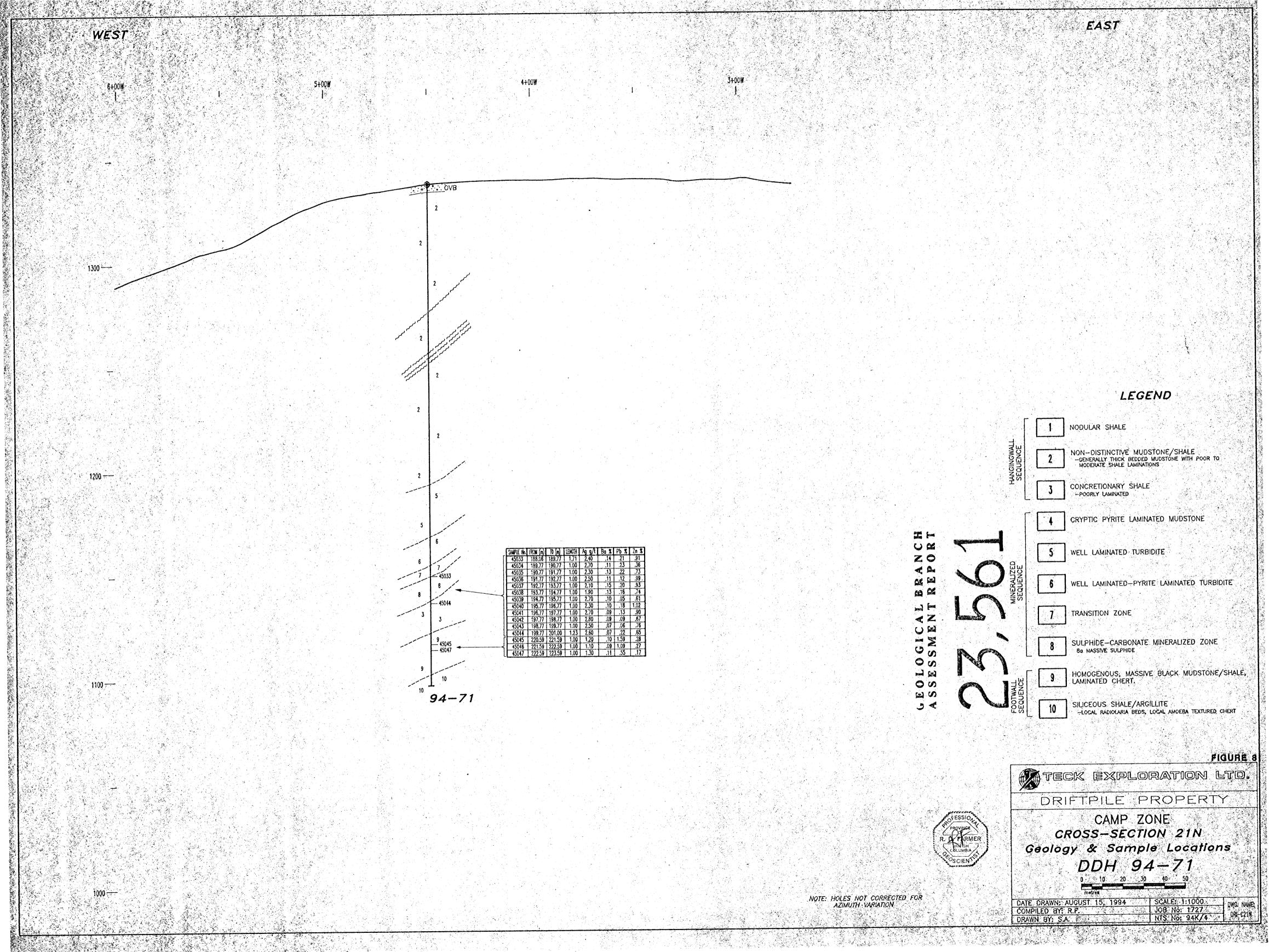

1

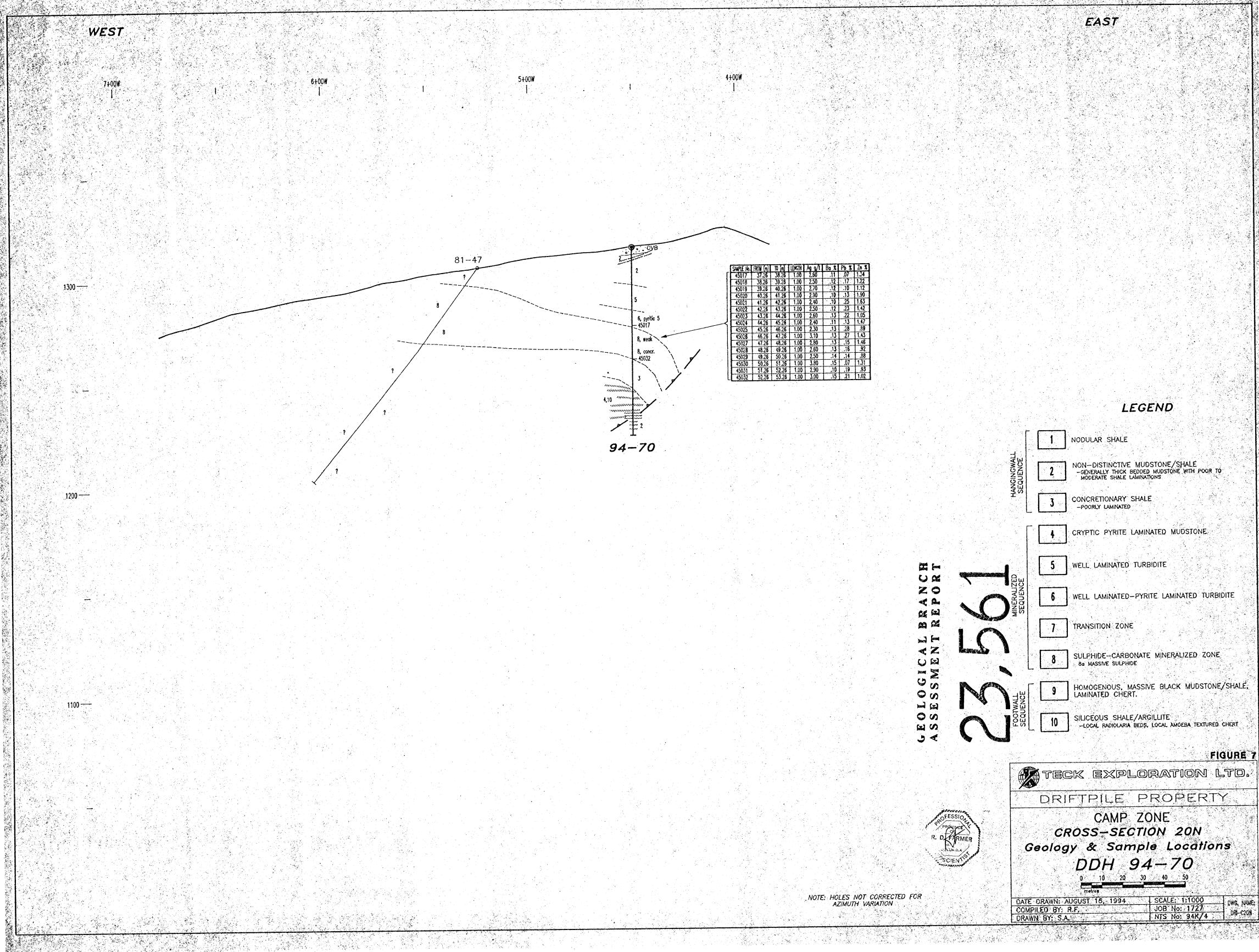
TECK EXPLORATIONS LIMITED HOLE No. 94-73 PAGE 4 0											of 4							
DEPTH	0			STRUCTURE			METALLIC	5	SAMPLE DATA				RESULTS					
(metres) ROM TO	GRAPHIC	DESCRIPTION	RECOVERY	ANGLES (b.) BEDDING (cl.) CLEAVAGE (cl.) CLEAVAGE	VEINS+ FAULTS	VERGENCE	E YOUNGING	MINERALS (%)	SAMFLE NO.	FROM	то	LENGTH						
09.8 -		WELL LAMINATED TURBIDITE																
126 53				@ 124.1m			@117.8m											
		- CONCRETIONS, PY-LAMS, Ba NODS		b. 060°		EAST	DOWNHOLE		1									
		- CONCRETIONS, PY-LAMS, BA NODS DECREASE DOWN HOLE.		CI. 045°														\square
		- GREY SILTITE LAMS BECOME					@ 123.0m											
	_	Common					DOWNHOLE											
		- RARE FE-CARB LAMINATIONS																ĺ
									·				·					
		EOH.	<u> </u>															L
									L									<u> </u>
						I												
				<u> </u>		ļ			<u> </u>								\square	<u> </u>
		······		ļ														
									ļ								\vdash	
																	┝───┦	<u> </u>
																	\vdash	į
																	┝	
				· .														
		······	·	· · · · · · · · · · · · · · · · · · ·													┝───┦	
		· · · · · · · · · · · · · · · · · · ·			···· •	<u> </u>									····		⊢l	
																	<u> </u>	
												├ ──						
																		į
-							+	· · · · · · · · · · · · · · · · · · ·									 	
												┨╼──┨						
												┝──┤					┌──┤	<u> </u>
		······································				<u> </u>	<u>+</u>					├}						,
												┝──┤						
			<u> </u>									┝──┤					·	
		· · · · · · · · · · · · · · · · · · ·					┥───┤					├					 	
												├					 	
<u> </u>				 			<u>├────</u>		[┝───┤				L		

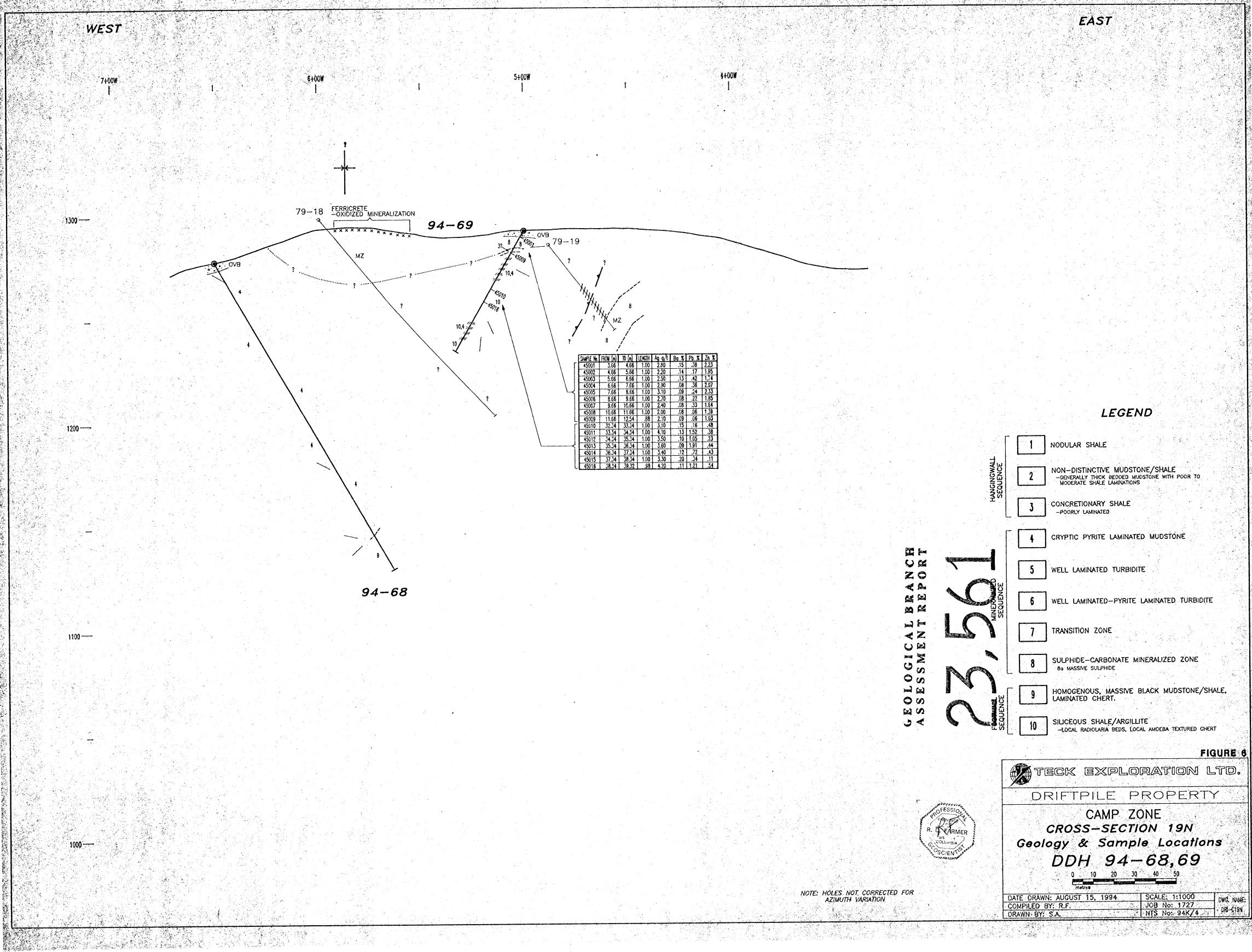

DDH 94-73

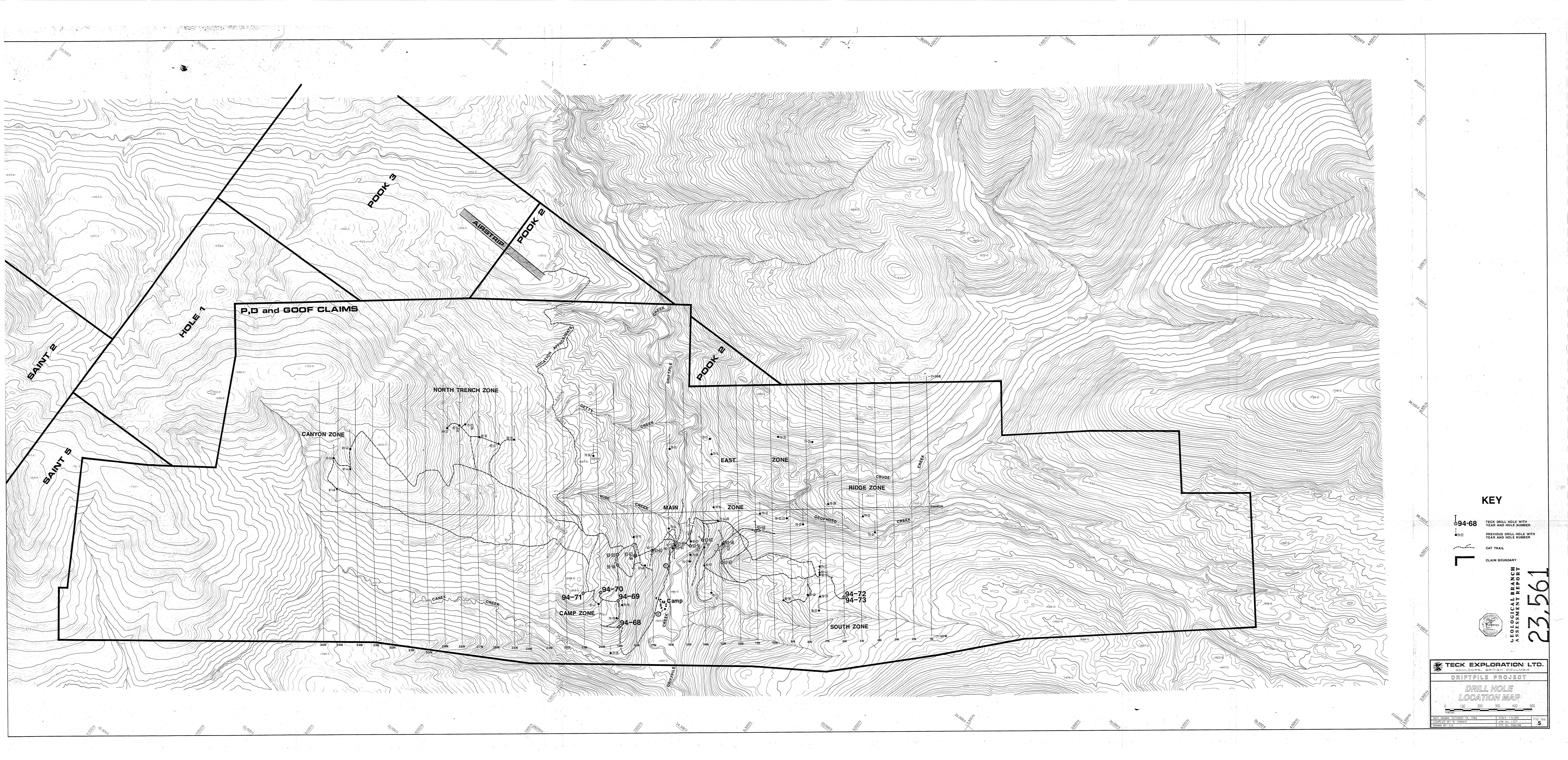
SAMPLE #	FR0M (m)	TO (m)	LENGTH (m)	CR (%)	Ag (g/t)	Ag (oz/t)	Ba (%)	Pb (%)	Zn (%)
45048	26.25	27.25	1.00	90	2.00	.06	.11	.20	1.82
45049	27.25	28.25	1.00	90 95	2.00	.00	.08	.20	2.30
45050	28.25	29.25	1.00	99	2.20	.08	.08	.72	1.98
45051	29.25	30.45	1.20	99	2.20	.06	.08	.56	1.33
45052	45,48	46.48	1.00	99	2.60	.08	.07	1.20	1.79
45053	46.48	47.48	1.00	95	2.10	.06	.11	.64	2.20
45054	47.48	48.48	1.00	95	2.10	.06	.09	.61	2.06
45055	48.48	49.48	1.00	95	2.70	.08	.08	.29	1.61
45056	49.48	50,48	1.00	95	2.60	.08	.08	.64	3.04
45057	50.48	51.48	1.00	95	2.00	.06	.14	.78	2.26
45058	51.48	52.48	1.00	95	2.50	.07	.12	.20	2.11
45059	52.48	53.48	1.00	99	2.30	.07	.10	1.71	2.67
45060	53.48	54.48	1.00	95	2.00	.06	.14	.09	2.22
45061	54.48	55.32	.84	95	2.20	.06	.18	• .23	2.08
45062	61.00	62.00	1.00	90 90	.90	.03	1.45	.29	1.78
45063	64.27	65.27	1.00	99	2.20	.06	.12	.55	3.15
45064 45065	65.27 66.27	66.27 67.27	1.00	99 00	2.80	.08	.11	.61	2.76
45066	67.27	68.27	1.00 1.00	99 99	2.30	.07	.12	.56	2.63
45066	68.27	69.27	1.00	99 99	2.20 2.60	.06 .08	.09 .12	.57 .54	2.82
45068	69.27	70.27	1.00	99 99	2.60	.08	.12	.54 .64	2.77 2.86
45069	70.27	71.27	1.00	99	2.40	.08 .07	.05	.39	3.41
45070	71.27	72.27	1.00	99	2.50	.07	.11	.73	3.09
45071	72.27	73.27	1.00	99	2.20	.06	.13	.47	3.53
45072	73.27	74.27	1.00	99	2.10	.06	.31	.49	3.82
45073	74.27	75.27	1.00	95	2.30	.07	.45	.97	3.30
45074	75.27	76.27	1.00	95	2.30	.07	2.16	.71	2.48
45075	76.27	77.27	1.00	95	2.10	.06	11.30	.47	3.48
4507 6	77.27	78.27	1.00	99	2.10	.06	8.31	.64	3.00
45077	78.27	79.27	1.00	99	2.20	.06	5.02	.59	5.13
45078	79.27	80.27	1.00	99	2.30	.07	1.33	.73	3.62
45079	80.27	81.27	1.00	99	2.40	.07	.79	.87	2.92
45080	81.27	82.27	1.00	99	2.50	.07	.54	1.00	3.09
45081	82.27	83.27	1.00	99	2.30	.07	.78	.97	2.45
								- /	
45082	83.27	84.27	1.00	95 95	2.30	.07	1.49	.54	.83
45083	84.27	85.27	1.00	99 99	2.00	.06	1.01	.22	4.71
45084	85.27	86.27	1.00	99 05	2.50	.07	1.06	.20	3.78
45085 45086	86.27 87.27	87.27 88.27	1.00	95 90	1.90	.06	1.62	.53	1.00
45087	88.27	89.27 89.27	1.00	99 00	2.00	.06	.53	1.10	2.99
45088	89.27	90.27	1.00 1.00	99 95	2.30 2.10	.07	.50 .61	1.14 .90	2.91 3.19
45088	90.27	91.27 91.27	1.00	95 99	2.30	.06 .07	1.23	.90	3.64
45090	91.27	92.27	1.00	99 99	2.00	.07	1.23	.92	5.02
45090	92.27	93.27	1.00	99 99	2.00	.08	.95	.55	2.01
45092	93.27	93.27 94.27	1.00	99 99	2.40	.08	.36	.95	1.74
45093	94.27	95.27	1.00	99	2.30	.07	.25	1.03	3.37
45094	95.27	96.27	1.00	95	3.00	.09	.30	.74	3.55
45095	96.27	97.27	1.00	99	2.70	.08	.24	.41	2.56
45096	97.27	98.27	1.00	99	2.90	.08	.27	.69	2.63
45097	98.27	99.55	1.28	99	2.50	.07	.30	. 44	2.46

.




LEGEND


1.4.2


EAST

