| LOG NO:  | NOV 1 | 7 1994                   | RD.             |         |
|----------|-------|--------------------------|-----------------|---------|
| ACTION.  |       |                          |                 | J       |
|          |       | يعدية بين منفسون ال<br>م | •••<br>••<br>•• | · · · * |
| FILE NO: | 9     |                          | · · ·           |         |

MAR 1 0 1995

U

# ASSESSMENT REPORT

## ON A

| GEOLOGICAL AND | GEOCHEMICAL | - SUELCIUS<br>PER HOW |
|----------------|-------------|-----------------------|
|                | 1           |                       |

PROGRAM

| i filt Ni |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | • |  |  | Ì |  | • | • |  | Ì |  |  |  |  | l |  |  |  | i | ļ |  |  |  |  |  |  | ļ | i |  | ļ |  |  | Ì |  |  | ļ |  | • |  |
|-----------|--|--|--|--|--|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|--|--|---|--|---|---|--|---|--|--|--|--|---|--|--|--|---|---|--|--|--|--|--|--|---|---|--|---|--|--|---|--|--|---|--|---|--|
|-----------|--|--|--|--|--|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|--|--|---|--|---|---|--|---|--|--|--|--|---|--|--|--|---|---|--|--|--|--|--|--|---|---|--|---|--|--|---|--|--|---|--|---|--|

LOG NO:

## ON THE

## **BLUE GROUSE PROPERTY**

**BLUE GROUSE 1-8 CLAIMS** 

## LAKE COWICHAN AREA

# **VICTORIA MINING DIVISION**

# GEOLOGICAL BRANCH ASSESSMENT REPORT

NTS: LATITUDE: LONGITUDE: OWNER: OPERATOR: CONSULTANTS: AUTHORS:

DATE:

92C/16E 48° 50'28" North 124° 13'21" West W.R. Gilmour Predator Syndicate Discovery Consultants E.D. Harrington, B.Sc. T.H. Carpenter, P.Geo. October 26, 1994



## TABLE OF CONTENTS

| SUMMARY                                    | Page | 1 /  |  |  |  |  |
|--------------------------------------------|------|------|--|--|--|--|
| LOCATION AND ACCESS                        | Page | 2 /  |  |  |  |  |
| TOPOGRAPHY                                 | Page | 2 /  |  |  |  |  |
| PROPERTY                                   | Page | 3 /  |  |  |  |  |
| HISTORY                                    | Page | 4 /  |  |  |  |  |
| REGIONAL GEOLOGY                           | Page | 7 /  |  |  |  |  |
| WORK PROGRAMS                              | Page | 10/  |  |  |  |  |
| 1 a) SOIL SAMPLING PROGRAM /<br>b) RESULTS |      |      |  |  |  |  |
| 2 a) GEOLOGICAL SURVEY /<br>b) RESULTS     |      |      |  |  |  |  |
| CONCLUSIONS Page 14                        |      |      |  |  |  |  |
| RECOMMENDATIONS                            | Page | 15 / |  |  |  |  |
| REFERENCES                                 | Page | 16/  |  |  |  |  |
| STATEMENT OF COSTS                         | Page | 17 / |  |  |  |  |
| STATEMENTS OF QUALIFICATIONS Page 18 & 19  |      |      |  |  |  |  |

.

# FIGURES

| FIGURE 1 | Location Map                                 | Following Page 2 / |
|----------|----------------------------------------------|--------------------|
| FIGURE 2 | Claim Map (1:50,000)                         | Following Page 3 / |
| FIGURE 3 | Geology and Rock Sample Locations (1:5,000)  | In Pocket          |
| FIGURE 4 | Geology and Rock Sampling<br>- Copper Values | In Pocket /        |
| FIGURE 5 | Geology and Rock Sampling<br>- Gold Values   | In Pocket /        |
| FIGURE 6 | Soil Sampling Locations                      | In Pocket /        |
| FIGURE 7 | Soil Sampling - Copper Values                | In Pocket 🦯        |
| FIGURE 8 | Soil Sampling - Gold Values                  | In Pocket /        |

# **APPENDICES**

| APPENDIX | 1 | Rock | Sample Lo | ocations | and   | Descriptions /      |
|----------|---|------|-----------|----------|-------|---------------------|
| APPENDIX | 2 | Rock | Sampling  | Results  | /     |                     |
| APPENDIX | 3 | Soil | Sampling  | Survey - | - Ana | alytical Procedures |

#### **SUMMARY**

Work on the Blue Grouse and Sunnyside Mines began in 1906. Major mining operations began in 1952 and ended in 1960, during which period 249,298 tonnes of rock were mined. From this tonnage 6,814,623 kg of copper, 2,508,644 gm of silver and 218 gm of gold were produced.

In October of 1993, Discovery Consultants carried out an exploration program comprising geological mapping, and rock and soil sampling on the property. The purpose of the program was to evaluate the base and precious metal potential of the claims.

This report describes the 1993 work program and the program results.

## LOCATION AND ACCESS

The Blue Grouse property is located at Latitude 48°50'28" N and Longitude 124°13'21" W, near the southern shore of Lake Cowichan on Vancouver Island. The property lies approximately 40 km west of the town of Duncan, B.C., via Highway 18 to the town of Lake Cowichan and the village of Honeymoon Bay. From Honeymoon Bay a mixture of paved and gravel logging roads offer excellent two-wheel drive access to the property, which lies immediately west of Gordon Bay Provincial Park.

#### TOPOGRAPHY

Elevations range from 300 metres to 550 metres above sea level.

Ground cover is mature spruce and fir trees. There is little undergrowth in the area as Fletcher-Challenge carries out extensive silviculture programs including tree thinning, which creates a criss-cross ground cover of small trees which makes movement difficult.



DWG- 611-002

## **PROPERTY**

The Blue Grouse property consists of eight 2-post claims, Blue Grouse 1-8. These claims lie within the Victoria Mining Division were located by E.D. Harrington and J. Graham on October 18, 1993 and were recorded in Vernon on November 3, 1993. These claims were staked following the reversion of Crown-granted claims L31-41.

| <u>Claim Name</u> | Record No. | Owner of Record | Anniversary Date* |
|-------------------|------------|-----------------|-------------------|
| Blue Grouse 1     | 322298     | W.R. Gilmour    | October 18, 1999  |
| Blue Grouse 2     | 322299     | W.R. Gilmour    | October 18, 1999  |
| Blue Grouse 3     | 322300     | W.R. Gilmour    | October 18, 1999  |
| Blue Grouse 4     | 322301     | W.R. Gilmour    | October 18, 1999  |
| Blue Grouse 5     | 322302     | W.R. Gilmour    | October 18, 1999  |
| Blue Grouse 6     | 322303     | W.R. Gilmour    | October 18, 1999  |
| Blue Grouse 7     | 322304     | W.R. Gilmour    | October 18, 1999  |
| Blue Grouse 8     | 322305     | W.R. Gilmour    | October 18, 1999  |

The claims are owned by W.R. Gilmour in trust for the Predator Syndicate.

\*

Pending acceptance of this report.



DWG-611-003

#### <u>HISTORY</u>

Two former copper producers, the Blue Grouse and the Sunnyside Mines, are located on the property.

Work began on the Sunnyside property in 1906 with open cuts, stripping and 35 feet (11 metres) of tunnelling completed. A sample of the sorted ore returned 9% Cu, 0.3 oz/T Ag and trace Au (MEMPR AR 1906).

Work began on the Blue Grouse in 1915 with open cuts, pits and an adit. The first shipment of ore, comprising three car loads, was made in 1916. One car was hand sorted and returned 11.1% Cu, 1.5 oz/T Ag and 0.08 oz/T Au (MEMPR AR 1916). The other two cars contained mine-run ore and returned 4.48% Cu and 0.84 oz/T Ag (MEMPR AR 1916).

In 1917, 1500 tons of ore were shipped from the Blue Grouse and 110 tons of ore were shipped from the Sunnyside. No further work of importance was carried out at the Sunnyside. In 1918, Consolidated Mining and Smelting Co. of Trail, B.C., acquired the rights to the Blue Grouse and shipped 740 tons of ore from 1918 until 1919. From 1917 to 1919 a total of 2113 tons was shipped, averaging 6.0% Cu and 0.86 oz/T Ag (MEMPR Bull. No. 37).

In 1928, Pacific Tidewater Co. acquired the property but allowed its option to lapse in 1929.

In 1952, Cowichan Copper Co. Ltd., took over the property and continued mining operations until 1960. During this period was carried out 7,201 ft. (2195 metres) of raising, 10,759 ft.

(3279 metres) of drifting, 6,372 ft. (1942 metres) of crosscutting, 49,865 ft. (1520 metres) of underground drilling and 14,247 ft. (4343 metres) of surface drilling. From the 249,298 tonnes of rock mined during this period, 6,814,623 kg of copper (2.73%), 2,508,644 gm. of silver (10.06 gm/tonne) and 218 gm. of gold (.0009 gm/tonne) were produced.

In 1956 and 1959 self-potential surveys were carried out and indicated some anomalies to the northwest of the Blue Grouse Mine.

In 1964 Cowichan Copper carried out surface geological mapping and geochemical soil sampling.

Canex Placer acquired the property in 1976 and conducted further SP surveys but soon dropped their option.

Corrie Copper Ltd. optioned the property in 1979 and rehabilitated the workings. They concluded that there was copper mineralization of mineable grade at the 1100 level. In 1980 they carried out a vector pulse EM survey which indicated strong conductors near the Blue Grouse workings. Surface drilling, penetrating the zone immediately above the 1100 level, intersected 60 cm of chalcopyrite mineralization within a 9.1 metre band of limestone. This intersection ran 8.85% Cu, 0.35 oz/ton Ag and 0.004 oz/ton Au.

In 1981 an underground drilling program of 2,132 feet was completed on the 1100 level. Some results were as follows.

| <u>Width Ft</u> | . <u>Cu %</u> | <u>Ag (oz/ton)</u> | <u>Au (oz/ton)</u> |
|-----------------|---------------|--------------------|--------------------|
| 0.5             | 1.3           | 0.11               |                    |
| 0.5             | 2.16          |                    | 0.005              |
| 13.0            | 4.94          | 0.37               |                    |
| 47.0            | 2.85          | 0.20               |                    |
|                 |               |                    |                    |

From this program no mineable mineralization was delineated either above or below the level (EMPR Ass. Rpt. 19387).

In 1987, Shangri-La Minerals carried out an exploration program to the north and northwest of the Blue Grouse Mine consisting of geological mapping, soil sampling, ground magnetometer and airborne VLF-EM surveys.

In 1989 Daiwan Engineering Ltd. carried out an exploration program, also to the northwest, consisting of a soil sampling program, geological mapping and sampling of the tailings from the Blue Grouse mine.

#### **REGIONAL GEOLOGY**

Lake Cowichan lies at the eastern end of the Cowichan uplift, a major geanticline on Vancouver Island. The area is underlain by pyroclastic, sedimentary and volcanic rocks of the Paleozoic Sicker Group, the Mississippian to Permian Buttle Lake Formation, the Upper Triassic Vancouver Group and the Lower Jurassic Bonanza Group. Intrusions include Triassic gabbro (informally named Mount Hall) and Early to Middle Jurassic plutonic rocks. Upper Cretaceous sediments of the Nanaimo Group overlap the older rocks.

#### PROPERTY GEOLOGY

In general, the property is underlain by rocks of the Vancouver Group consisting of Karmutsen Formation volcanic rocks, overlain by limestones of the Quatsino Formation, which in turn are overlain by clastic sediments of the Parson Bay Formation. Tuffaceous argillites and breccias of the Parson Bay Formation lie immediately west of the property.

The Karmutsen volcanics (basalts) are dark green to black, fine-grained to aphanitic and generally exhibit brownish weathered surfaces. Locally the basalts are porphyritic (plagioclase and pyroxene phenocrysts) with pillow structures and amygdules common. The pillows range from 25 cm to 1 metre in diameter and are roughly ellipsoidal. Some chloritic alteration and disseminated pyrite and magnetite are present.

The Quatsino limestone is massive, dark grey and sericitic with common calcite-filled fractures and stringers. Fyles (1955) stated that the limestones in this area are right-side-up and dip 40°-50° westward.

The Blue Grouse mine occurs in basaltic flows, tuffs and agglomerates of the Karmutsen Formation which is intruded by irregular masses of dioritic feldspar porphyry. Most contacts are fractured and sheared but appear to strike northwest to northeast and dip 25°-50° eastward and westward.

Chalcopyrite, pyrite and pyrrhotite mineralization occurs in a pipe shaped replacement skarn in volcanic rock. The skarn

appears to be controlled by fracturing caused by the intersection of two shear zones - one striking 350°, dipping 45° W and the other striking 280°, dipping 35°S. The line of intersection of the two shears rakes 34° at roughly 212° (MEMPR AR 1956). The skarn is a fine to medium grained aggregate of reddish-brown garnet with local epidote and actinolite. The chalcopyrite, pyrite and pyrrhotite occur as disseminated grains and veinlets.

Post-mineral slips and faults are numerous in the mine area. Northwest-southeast and north-south strikes predominate, with dips being less than 50° west to southwest. One fault, striking west-northwest and dipping 35° south, cuts the skarn zone at the 1340 level, producing a horizontal displacement of 15 feet. The existence of near-parallel faults suggests the existence of a fault zone in which movement has been taken up on a number of irregular and discontinuous breaks, each representing a limited movement (MEMPR AR 1956).

During production, ten separate copper zones were indicated in underground workings and diamond-drill holes.

#### WORK PROGRAM

The work carried out on the property in 1993 comprised soil sampling and geological mapping with associated rock sampling.

Soil samples were taken at 50 m intervals along the claim line, which was used for ground control (Figure 4). Sample material was placed in 10x26 cm kraft sample paper bags and shipped to Bondar-Clegg Laboratories in North Vancouver, B.C. for analysis.

The highest Cu value (2332 ppm) was obtained at 9+50E. Coincident anomalous values are 203 ppm Co and 9413 ppm Mn with elevated values in Au (30 ppb), Zn (134 ppm) and As (41 ppm).

Soil samples taken at 3+50E and 5+00E returned the highest Au values, 433 and 495 ppb respectively with coincident anomalous Cu values of 398 and 441 ppm. Site 4+00E returned an anomalous Cu value of 609 ppm.

Site 0+00E exhibited anomalous Au & Cu values of 186 ppb and 382 ppm respectively, along with an elevated Zn value of 122 ppm.

Site 1+50W exhibited an anomalous Au value of 252 ppb with a coincident Pb value of 111 ppm and an elevated Zn value of 132 ppm.

#### Geological Mapping and Rock Sampling

The claim line was used as ground control and work was concentrated in the area surrounding the Blue Grouse and Sunnyside mine sites and along available logging roads. Rock

samples were sent to Bondar-Clegg Laboratories in North Vancouver, B.C., for analysis.

The area of the Blue Grouse mine is underlain predominantly by weakly calcareous, fine-grained, grey amygdaloidal basalt intruded by medium to coarse-grained dioritic quartz-feldspar porphyry with local pillow basalt and minor coarse-grained gabbro.

The pillow basalts in the area of BG24 exhibit a shear at 340°, dipping 50°W, which corresponds to the orientation of one of two intersecting shears postulated to form the mineralized pipe. Local shears formed in the interstices between pillow lavas show iron staining and weak sulphide mineralization. Sample BG24 consists of this sheared material with copper oxide bloom and roughly 1% combined pyrite and chalcopyrite. This sample is located immediately above a back-filled decline in a moderately to strongly argillically altered amygdaloidal basalt. Mineralization within the alteration zone consists of weak pyrite and chalcopyrite with trace azurite. Access to the underground workings is possible from this site.

One hundred metres south is a back-filled adit surrounded by fine grained basalt and amygdaloidal basalt. These rocks have been intruded by local diabase dykes and are separated from the decline to the north by medium-grained quartz-feldspar porphyry. This area shows strong propylitic alteration (serpentinized volcanics with ≤3 mm veins of calcite - BG26) and mineralized, argillicaly altered shears in basalt. Sample BG25 consists of a

0.5m chip sample across a heavily mineralized 10 cm shear containing massive chalcopyrite in limy basalt. This shear strikes 250° and dips 60°N.

No "ore" was seen on site at Blue Grouse but grab samples BG27,28,29 and 31 are assumed to be representative of the mined material. In general these samples consist of strongly garnetiferous skarn, heavily hematized, with moderate to strong manganese staining and minor actinolite. Sulphide mineralization is massive, comprising 30%-50% of the rock and consisting of chalcopyrite, pyrrhotite and pyrite.

The Sunnyside workings are underlain by limy tuffs, basalt, and dark-grey to black, fine-grained limestone. Geological contacts appear to be generally north-south with a vertical dip. The limy volcanics exhibit local fracturing, containing calcite and white zeolite as well as epidote alteration. Mineralization is confined to sheared volcanics exhibiting strong argillic alteration. Samples of skarn showed strong garnetization with massive euhedral actinolite. Sulphide mineralization is spotty and is composed of chalcopyrite and pyrite.

Mapping of the roadcuts indicates black shales in vertical contact with the Karmutsen volcanics at the eastern end of the claim group (Figure 3). This contact trends generally east-west and passes just south of the Sunnyside workings. The black shales contain black, flattened, siliceous ellipsoids along bedding planes. The volcanics along the road immediately west of the Sunnyside consist of limy tuff and volcanic conglomerate of

the Karmutsen Formation. The rocks are well fractured and exhibit local calcite and white zeolite vein filling.

The area to the south of the Blue Grouse mine (Fig. 3) is predominantly underlain by fine-grained, grey basalt with minor fine-grained, grey amygdaloidal basalt (amygdules generally  $\leq$ 5mm). Epidote alteration is not uncommon but is very minor. Samples BG 4 and BG 5 were taken from a small gossan in finegrained basalt. Hematization is moderate to strong and sulphide mineralization is  $\leq$  2%, primarily pyrite with trace chalcopyrite.

Samples BG9 and BG10, further to the south, are taken from quartz veins in fine-grained basalt. The quartz veins ( $\leq 25$  mm) are not extensive. Epidote alteration is present as is copper bloom and weak hematite and limonite.

## **CONCLUSIONS**

The mined ore mineralization on the property appears to have been podiform (up to 10 separate mineralized zones reported). Previous reports give mixed indications on the existence of remaining mineralization. There is no evidence on surface of additional economic grade mineralization.

#### RECOMMENDATIONS

A program of additional exploration should consider the following points:

- 1. A more extensive soil sampling survey.
- 2. IP, Resistivity and/or magnetic surveys to define structures, fault dislocation and related mineralization.
- 3. Attempt to access underground workings and:
  - examine uppermost decline, which allows access to underground at present.
  - b) open lower adit, where mineralization has reportedly been developed and through mapping, sampling and diamond drilling evaluate the remaining ore potential.

Respect fully submitted, E.D. Häckfington, B.Sc. T. H. CARDENTER CIEN T.H. Carpenter, P.Geo.

Vernon, B.C. October 26, 1994

#### REFERENCES

British Columbia Ministry of Energy, Mines and Petroleum Resources (BCMEMPR) Annual Report (A.R.).

| 1906 <b>:</b> | Annual | Report, | p. | 212     |
|---------------|--------|---------|----|---------|
| 1915:         | Annual | Report, | p. | 290     |
| 1916:         | Annual | Report, | p. | 312     |
| 1917 <b>:</b> | Annual | Report, | p. | 267-268 |
| 1918:         | Annual | Report, | p. | 299,307 |
| 1928:         | Annual | Report, | p. | 364     |
| 1929:         | Annual | Report, | p. | 370     |
| 1952 <b>:</b> | Annual | Report, | p. | 213     |
| 1953 <b>:</b> | Annual | Report, | p. | 170     |
| 1954:         | Annual | Report, | p. | 166     |
| 1955 <b>:</b> | Annual | Report, | p. | 79      |
| 1956 <b>:</b> | Annual | Report, | p. | 120     |
| 1957 <b>:</b> | Annual | Report, | p. | 69      |
| 1958:         | Annual | Report, | p. | 60      |
| 1959:         | Annual | Report, | p. | 138     |
| 1960:         | Annual | Report, | p. | 115     |
| 1965:         | Annual | Report, | p. | 241     |

EMPR Ass. Rpt. No. 19387, 8896, 616

Fyles, J.T. 1955, EMPR Bull. No. 37 Geology of the Cowichan Lake

Ettlinger, A.D. and Ray, G.E. 1989: Precious metal enriched skarns in British Columbia; BCMEMPR Paper 1989-3.

MINFILE No. 092C 017

EMPR Paper 1989-3

## STATEMENT OF COSTS

| 1.  | Professional Services<br>W.R. Gilmour, P.Geo.<br>Supervision, report writing<br>1.0 day @ \$400/day \$400.00<br>K.L. Daughtry, P.Eng.<br>Supervision                                                                  |                   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|     | 0.5 days @ \$450/day 225.00<br>E.D. Harrington, B.Sc.                                                                                                                                                                 |                   |
|     | Travel - 1 day $(0 \pm 308/day)$ 308.00<br>Mapping f sampling (Oct 18 -20)                                                                                                                                            |                   |
|     | 2.5 days @ \$308/day 770.00                                                                                                                                                                                           |                   |
|     | 3 days @ \$280.00/day                                                                                                                                                                                                 | \$ 2543.00        |
| 2.  | Field Personnel<br>J. Graham<br>Travel - 1 day @ \$280/day 280.00<br>Sampling & prospecting (Oct 18 - 20)<br>2.5 days @ \$280/day 700.00                                                                              | 980.00            |
| 3.  | Transportation (4x4 vehicle)                                                                                                                                                                                          | 350.00            |
| 4.  | Meals & Lodging                                                                                                                                                                                                       | 200.00            |
| 5.  | Geochemical Analysis<br><u>Soil samples</u><br>Au geochem + 28 element ICP<br>38 @ \$13.70 520.60<br><u>Rock samples</u><br>Au geochem & 28 element ICP<br>30 @ \$15.60 468.00<br>Assorted check assays <u>115.75</u> | 1104.35           |
| 6.  | Drafting                                                                                                                                                                                                              | 600.00            |
| 7.  | Data compilation, secretarial                                                                                                                                                                                         | 400.00            |
| 8.  | Field Supplies                                                                                                                                                                                                        | 50.00             |
| 9.  | Printing, data processing, telephone & shipping                                                                                                                                                                       | 200.00            |
|     | sub tota                                                                                                                                                                                                              | 1 \$ 6427.35      |
| 10. | G.S.T.                                                                                                                                                                                                                | 449.91            |
|     | Total                                                                                                                                                                                                                 | <u>\$ 6877.26</u> |

#### STATEMENT OF QUALIFICATIONS

I, EDWARD D. HARRINGTON, of 3476 DARTMOOR PLACE, VANCOUVER, BRITISH COLUMBIA, do hereby certify that,

- 1. I am a geologist in mineral exploration.
- 2. I have been practising my profession for thirteen years in Canada and the Sultanate of Oman.
- 3. I am a graduate of Acadian University, Wolfville, Nova Scotia with a Bachelor of Science degree in Geology.
- 4. This report is based upon knowledge of the Blue Grouse property gained from examination, mapping and sampling of the property, from the study of reports on the area, and from the conduct of the work herein described.
- 5. I hold no beneficial interest in the Blue Grouse property.

tón, B.Sc. E.D. Harrin

Vernon, B.C. October 26, 1994

#### STATEMENT OF QUALIFICATIONS

I, THOMAS H. CARPENTER of 3902 14th Street, Vernon, B.C., VIT 3V2, DO HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration associated with Discovery Consultants, Vernon, B.C.
- 2. I have been practising my profession for 23 years.
- 3. I am a graduate of the Memorial University of Newfoundland with a Bachelor of Science degree in geology.
- 4. I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. This report is based upon knowledge of the Blue Grouse property gained from supervision.
- 6. I hold no interest either directly or indirectly in the Blue Grouse property.

T. H. CARPENTER RETURN T.H. Carpenter P.Geo. SCIEN

Vernon, B.C. October 26, 1994

# **APPENDIX 1**

## **ROCK SAMPLE LOCATIONS AND DESCRIPTIONS**

·

# ROCK SAMPLE LOCATIONS AND DESCRIPTIONS

| Sample No. | Location              | Description                                                                                                                                      |
|------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| BG 1       | 580W, 000N            | Fine-grained rusty volcanic. Very well broken. No visible mineralization                                                                         |
| BG 2       | 005W, 017N            | Fine-grained dark grey amygdaloidal basalt. Quartz-carbonate blebs. Rusty with local bleached fractures.                                         |
| BG 3       | 034W, 010S            | Fine-grained grey basalt with moderate epidote alteration.                                                                                       |
| BG 4       | 065W, 015S            | Gossan                                                                                                                                           |
| BG 5       | 075W, 012S            | Gossan in trench. Pyrite 1-2%. Trace chalcopyrite.                                                                                               |
| BG 6       | 230W, 060S            | Weak skam contact between amygdaloidal and fine grained basalt.<br>Euhedral epidote. Weakly`magnetic.                                            |
| BG 7       | 235W, 055S            | Grab. Skarn.                                                                                                                                     |
| BG 8       | 220W, 095N            | Grab. Skarn. Pyrite 2-3%. Trace chalcopyrite.                                                                                                    |
| BG 9       | 200E, 370S            | Quartz vein ≤ 25mm in basalt. Intense local hematite with minor epidote. No effervescence. No visible mineralization.                            |
| BG 10      | 215E, 350S            | Quartz stringer $\leq$ 10 mm with epidote, hematite and limonite. Cu bloom.                                                                      |
| BG 11      | Sunnyside             | Skarn float from workings. Strongly hematized with actinolite.<br>Chałcopyrite 4%, pyrite 3%.                                                    |
| BG 12      | Sunnyside             | Massive skarn in limy tuff breccia. Massive pyrite 2%, trace chalcopyrite. Cu bloom. Stringers of calcite.                                       |
| BG 13      | Sunnyside             | Skarn in limestone. Cu bloom. Pyrite, chalcopyrite ≤ 2%.                                                                                         |
| BG 14      | Sunnyside             | Sheared argillic zone. Chip sample (7m). Cu bloom, local sulphides ≤ 1%.                                                                         |
| BG 15      | Sunnyside             | Gossan in fine grained basalt. Well fractured with calcite and white zeolite stringers.                                                          |
| BG 16      | Sunnyside             | Gossanous shear in limy basalt. Brecciated. Cu bloom.                                                                                            |
| BG 17      | Sunnyside             | Sheared gossan. Chip sample (1.0 m). Weak Cu bloom.                                                                                              |
| BG 18      | Sunnyside             | Sheared gossan. Weak Cu bloom.                                                                                                                   |
| BG 20      | Sunnyside             | Sheared gossan. Chip sample (1.0 m). Strong Fe and Mn stain.                                                                                     |
| BG 21      | Road Traverse         | Volcanic conglomerate with skarn between boulders. Limy. Dark<br>green with weak to moderate Fe and Mn stain. Trace pyrite<br>boulders, ≤ 20 cm. |
| BG 22      | Road Traverse         | Dark green alteration (skarn). Well fractured with carbonate stringers.                                                                          |
| BG 23      | Road Traverse         | Weak skarn in tuff with carbonate-filled fractures. Very well fractured.                                                                         |
| BG 24      | Blue Grouse Mine Site | Weak gossan in shear in pillow basalt. Cu bloom. Fe and Mn stain.<br>Sulphides 1%.                                                               |

| Sample No. | Location  | Description                                                                             |
|------------|-----------|-----------------------------------------------------------------------------------------|
| BG 25      | Mine site | Chip sample (0.5 m). Massive chalcopyrite in shear in limy basalt.                      |
| BG 26      | Mine site | Grab. Dark grey propylitic alteration, with carbonate stringers. Well sheared.          |
| BG 27      | Mine site | Grab. Skam. Vuggy with calcite stringers and Mn stain.                                  |
| BG 28      | Mine site | Grab. Massive chalcopyrite, bornite. Weakly magnetic.                                   |
| BG 29      | Mine site | Grab. Skarn in basalt. Massive sulphide. Pyrite 7%, chalcopyrite 3%. Strongly magnetic. |
| BG 30      | Mine site | Grab. Crushed waste rock. No visible mineralization. Weakly magnetic.                   |
| BG 31      | Mine site | Skarn. Grab. Red garnets. Cu bloom. Pyrite ≤ 2%, trace chalcopyrite.                    |
|            |           |                                                                                         |

. .

÷

د

## **APPENDIX 2**

# **ROCK SAMPLING RESULTS**

4

2

Date of Report: 93.11.19 Project 611

Blue Grouse

File: ROCK\_93.WK3

# Rock Sampling Results 1993

Reference: B-C v93-01138.0(.6)

| Sample ID    | Cu<br>ppm | Cu<br>X | Ag<br>ppm | Ag<br>opt | Au<br>ppb    | Pb<br>ppm | Zn<br>ppm | Zn<br>% | Cd<br>ppm | Mo<br>ppm | As<br>ppm | Sb<br>ppm | Bi<br>ppm | Ni<br>ppæ | Co<br>ppm |
|--------------|-----------|---------|-----------|-----------|--------------|-----------|-----------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|              | 24        |         | <0 2      |           | <br>(5       | <br>4     |           |         | <br>(1 0  |           |           |           | ·         | <br>4     | 10        |
| 8602         | 111       |         | (0.2      |           | (5           | 11        | 75        |         | <1.0      | (1        | (5        | 15        | (5        | 96        | 35        |
| B603         | 287       |         | (0.2      |           | <5           | <2        | 44        |         | (1.0      | (1        | 18        | .5        | (5        | 32        | 11        |
| B604         | 2743      |         | 4.7       |           | <5           | 18        | 135       |         | <1.0      | (1        | 39        | 5         | <5        | 3         | 16        |
| B605         | 10316     |         | 12.8      |           | (5           | 14        | 192       |         | 2.2       | ä         | 124       | <5        | (5        | (1        | 16        |
| B606         | 485       |         | (0.2      |           | 22           | <2        | 56        |         | <1.0      | (1        | 14        | . (5      | (5        | 87        | 29        |
| B607         | 124       |         | <0.2      |           | <5           | 9         | 54        |         | (1.0      | 6         | <5        | <5        | (5        | 56        | 24        |
| B608         | >20000    |         | 42.2      |           | 12           | 35        | 2332      |         | 16.1      | 40        | 38        | 8         | <5        | 97        | 41        |
| B609         | 2700      |         | <0.2      |           | 7            | 7         | 125       |         | (1.0      | (1        | <5        | <5        | (5        | 41        | 32        |
| BG10         | 4761      |         | <0.2      |           | (5           | 4         | 67        |         | (1.0      | (1        | 12        | 7         | <5        | 28        | 18        |
| B611         | 12286     |         | 5.4       |           | <5           | 13        | 767       | ,       | 5.5       | 3         | 11        | 7         | <5        | <1        | 30        |
| B612         | 10072     |         | 12.2      |           | 135          | 64        | >20000    | 4.80    | 358.4     | 26        | <5        | 17        | <5        | 3         | 34        |
| B613         | >20000    | 2.58    | 3.0       |           | 9            | 29        | 489       |         | 3.1       | 7         | 102       | 6         | <5        | 1         | 90        |
| B614         | >20000    | 2.50    | 7.4       |           | 20           | 31        | 431       |         | 4.5       | 11        | 19        | ۲5        | <5        | (1        | 15        |
| B615         | >20000    | 19.12   | 10.5      |           | 45           | 76        | 882       |         | 1.8       | 68        | 11        | <5        | <5        | 478       | 483       |
| BG16         | 9503      |         | 1.0       |           | 32           | 8         | 82        |         | <1.0      | 14        | 15        | <5        | <5        | 7         | 23        |
| B617         | >20000    | 2.36    | 1.5       |           | 13           | 30        | 102       |         | <1.0      | 34        | 11        | <5        | <5        | 65        | 19        |
| <b>B</b> G18 | 16161     |         | 0.4       |           | 7            | 21        | 93        |         | <1.0      | 20        | 42        | 6         | <5        | 36        | 37        |
| B620         | 5981      |         | <0.2      |           | <5           | 19        | 70        |         | 1.3       | 11        | 51        | <5        | . <5      | 2         | 31        |
| BG21         | 308       |         | <0.2      |           | ` <b>∢</b> 5 | 3         | 82        |         | 1.3       | 10        | <5        | <5        | <5        | 56        | 38        |
| B622         | 1426      |         | <0.2      |           | <5           | 12        | 38        |         | 1.1       | 5         | <5        | 6         | <5        | 26        | 14        |
| <b>B</b> 623 | 79        |         | <0.2      |           | <5           | <2        | 31        |         | <1.0      | 14        | <5        | 12        | <5        | 106       | 22        |
| B624         | >20000    | 3.61    | 9.8       |           | 15           | 34        | 267       |         | 4.3       | 31        | 38        | <5        | <5        | 223       | 68        |
| <b>B</b> 625 | >20000    | 3.62    | 17.0      |           | 20           | 22        | 841       |         | 6.2       | 33        | 23        | <5        | <5        | 145       | 96        |
| B626         | 723       |         | <0.2      |           | 25           | 4         | 99        |         | . 1.3     | 20        | 30        | <5        | <5        | 214       | 45        |
| BG27         | 1481      |         | 11.9      |           | 13           | 7845      | 6050      |         | 21.9      | 15        | 26        | 8         | <5        | 139       | 64        |
| B628         | >20000    | 15.82   | >50.0     | 3.21      | 72           | 105       | 1638      |         | 14.4      | 76        | 145       | <5        | <5        | 45        | 118       |
| B629         | 13279     |         | 15.2      |           | 24           | 27        | 573       |         | 10.7      | 9         | 172       | <5        | <5        | 45        | 102       |
| BG30         | 1780      |         | <0.2      |           | 8            | 10        | 225       |         | 2.0       | 2         | 26        | <5        | <5        | 126       | 32        |
| B631         | 14903     |         | 1.7       |           | <5           | 29        | 180       |         | 4.0       | 22        | 5         | <5        | <5        | 5         | 14        |
| n 1, 1       |           |         |           |           |              |           |           |         |           |           |           |           |           |           |           |
| vup11cate:   |           |         |           |           |              |           |           |         |           |           | ۰.        |           |           |           |           |
| B609         | 2700      |         | <0.2      |           | 8            | 5         | 113       |         | <0.1      | 2         | 7         | <5        | <5        | 40        | 3(        |
| B627         | 1456      |         | 11.9      |           |              | 7448      | 5772      |         | 20.3      | 12        | 22        | ۲5        | 6         | 135       | 61        |

÷.

.

٤,

I

I

Project 611

Blue Grouse

## Rock Sampling Results 1993 (Part 2)

| Sample ID  | Cr<br>ppm | Fe<br>% | Mn<br>ppm    | Ba<br>ppm | P pm | Sr<br>ppm | Y<br>ppe     | La<br>ppm    | Te<br>ppm  | Sn<br>pp∎ | W<br>ppe | Al<br>X | Mg<br>X | Ca<br>X | Na<br>Z | 1             |
|------------|-----------|---------|--------------|-----------|------|-----------|--------------|--------------|------------|-----------|----------|---------|---------|---------|---------|---------------|
| <br>B601   | 19        | 3.57    | 970          |           | 7    |           | 8            | 5            | <10        | <20       | <20      | 2.56    | 1.38    | 0.08    | 0.03    | 0,1           |
| 8602       | 144       | 4.73    | <b>9</b> 91  | 10        | 102  | 9         | 9            | <۱           | <10        | (20       | <20      | 3.69    | 4.73    | 0.57    | 0.04    | 0.0           |
| B603       | 99        | 1.98    | 610          | 10        | 23   | 207       | 3            | <1           | <10        | <20       | <20      | 2.59    | 0.88    | 4.87    | 0.02    | 0.0           |
| B604       | 47        | 8.16    | 681          | 9         | 4    | 47        | 2            | <1           | <10        | <20       | <20      | 0.98    | 0.33    | 2.46    | <0.01   | <0.0          |
| B605       | 38        | 7.73    | 1046         | 7         | <1   | 27        | 2            | <1           | <10        | <20       | <20      | 0.95    | 0.23    | 9.84    | <0.01   | <0.0          |
| B606       | 140       | 4.03    | 386          | 7         | 94   | 36        | 8            | <1           | <10        | <20       | <20      | 2.07    | 2.42    | 3.10    | 0.05    | 0.0           |
| BG07       | 121       | 3.55    | 404          | 9         | 103  | 82        | 6            | <1           | <b>KÍO</b> | <20       | <20      | 4.82    | 1.98    | 8.93    | 0.06    | 0.0           |
| BG08       | 29        | 9.84    | 948          | 15        | <1   | <1        | 5            | <1           | 15         | <20       | <20      | 0.28    | 0.09    | 6.92    | <0.01   | <0.0          |
| B609       | 160       | 5.40    | 719          | 3         | 77   | 124       | 5            | <1           | <10        | <20       | <20      | 2.00    | 1.32    | 1.22    | 0.02    | <0.0          |
| 8610       | 148       | 4.36    | 565          | 3         | 70   | 191       | 5            | <1           | <10        | <20       | (20      | 1.50    | 0.58    | 2.26    | 0.02    | <0.0          |
| B611       | 11        | 7.12    | 8385         | 6         | <1   | 11        | <1           | <li>(1)</li> | <10        | <20       | <20      | 0.11    | 0.26    | 2.76    | <0.01   | <0.0          |
| B612       | 12        | 4.47    | 4590         | <2        | 14   | 50        | 3            | <1           | 57         | <20       | 450      | 0.56    | 0.38    | 10.00   | <0.01   | <0.0          |
| B613       | 24        | 8.90    | 3030         | <2        | - <1 | 2         | 1            | <1           | <10        | <20       | <20      | 0.12    | 0.16    | 10.00   | <0.01   | <0.0          |
| B614       | 19        | >10.00  | 3718         | 13        | 5    | 4         | <b>&lt;1</b> | <1           | <10        | <20       | <20      | 0.33    | 0.20    | 10.00   | <0.01   | <0.0          |
| B615       | 7         | >10.00  | 291          | <2        | <1   | 6         | <1           | <1           | 67         | <20       | <20      | 0.20    | 0.11    | 0.46    | <0.01   | <0.0          |
| BG16       | 43        | >10.00  | 1548         | 12        | 32   | 152       | 12           | 6            | 23         | <20       | <20      | 2.55    | 1.34    | 6.53    | 0.02    | 0.0           |
| B617       | 35        | >10.00  | 2174         | 7         | 20   | 37        | 9            | <1           | <10        | <20       | <20      | 1.39    | 0.82    | 8.66    | <0.01   | <0.(          |
| B618       | 10        | >10.00  | 2805         | 20        | <1   | 15        | 9            | 1            | 15         | <20       | <20      | 0.85    | 0.46    | 4.11    | <0.01   | <0.0          |
| B620       | 17        | >10.00  | 3958         | 5         | <1   | 1         | 5            | <1           | <10        | <20       | <20      | 0.66    | 0.19    | 10.00   | <0.01   | (0.0          |
| B621       | 86        | >10.00  | 1205         | 88        | 229  | 38        | 16           | -5           | <10        | 22        | <20      | 3.25    | 2.07    | 3.64    | 0.04    | 0.0           |
| B622       | 96        | 9.90    | 1395         | 45        | 15   | 27        | 6            | 3            | <10        | <20       | <20      | 1.16    | 0.53    | 6.59    | 0.05    | 0.0           |
| B623       | 160       | 6.31    | 498          | 22        | 74   | 106       | 6            | 2            | <10        | <20       | <20      | 3.62    | 2.48    | 3.39    | 0.09    | 0.0           |
| B624       | 166       | >10.00  | 908          | 7         | 27   | 51        | 7            | 2            | 12         | <20       | <20      | 1.51    | 1.06    | 6.48    | <0.01   | <0.0          |
| B625       | 77        | >10.00  | 2297         | 29        | 485  | 37        | 10           | 1            | <10        | <20       | <20      | 1.64    | 0.93    | 10.00   | 0.03    | 0.0           |
| B626       | 402       | 9.96    | 972          | 6         | 113  | 150       | 10           | <1           | <10        | <20       | <20      | 5.33    | 7.05    | 6.07    | 0.08    | <b>(0.</b> )  |
| BG27       | 126       | 9.92    | 3437         | 6         | 36   | 49        | 10           | <1           | 20         | <20       | 70       | 1.42    | 1.21    | 2.90    | 0.02    | <b>&lt;0.</b> |
| B628       | 27        | >10.00  | 1140         | <2        | <1   | <1        | <1           | <1           | 52         | 20        | <20      | 0.11    | 0.09    | 4.30    | <0.01   | <0.           |
| BG29       | 35        | >10.00  | 347          | 15        | 3    | 30        | 4            | <1           | <10        | <20       | <20      | 0.58    | 0.13    | 3.89    | <0.01   | <b>(0.</b> )  |
| B630       | 147       | 8.80    | 578          | 31        | 98   | 86        | 9            | 2            | <10        | <20       | <20      | 2.39    | 1.71    | 3.58    | 0.13    | 0.            |
| B631       | 42        | >10.00  | 2075         | 5         | <1   | <1        | <1           | <b>(1</b>    | <10        | <20       | <20      | 0.09    | 0.06    | 10.00   | <0.01   | <b>&lt;0.</b> |
| Duplicate: |           |         |              |           |      |           |              |              |            |           |          |         |         | ·       |         |               |
| B609       | 146       | 6.45    | 674          | 5         | 77   | 127       | 5            | <1.2         | <10        | <20       | <20      | 2.12    | 1.41    | 1.1     | 0.02    | <b>K</b> .    |
| PC27       | 120       | 9 04    | <b>22</b> 07 | ۲         | 26   | 49        | 10           | 11           | - 11       | 120       | 60       |         | 1 10    | 2.45    | 0 02    | ,             |

## **APPENDIX 3**

## SOIL SAMPLING SURVEY

## ANALYTICAL PROCEDURES AND RESULTS

## **Geochemical Analysis**

by Bondar-Clegg :

|        |            | LOWER           |                   |                               |
|--------|------------|-----------------|-------------------|-------------------------------|
| ELEMEN | т          | DETECTION LIMIT | EXTRACTION        | METHOD                        |
| Au     | Gold       | 5.0 ppb         | fire-assay        | atomic absorption             |
| Ag     | Silver     | 0.2 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Al*    | Aluminum   | 0.02 %          | HNO3-HCI hot extr | ind. coupled plasma           |
| As     | Arsenic    | 5.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Ba*    | Barium     | 5.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Bi     | Bismuth    | 5.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Ca*    | Calcium    | 0.05 %          | HNO3-HCI hot extr | ind. coupled plasma           |
| Cd     | Cadmium    | 1.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Co*    | Cobalt     | 1.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Cr*    | Chromium   | 1.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Cu     | Copper     | 1.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Fe*    | Iron       | 0.01 %          | HNO3-HCI hot extr | ind. coupled plasma           |
| Hg∎    | Mercury    | 0.010 ppm       | HNO3-HCI leach    | cold vapour atomic absorption |
| K*     | Potassium  | 0.05 %          | HNO3-HCI hot extr | ind. coupled plasma           |
| La*    | Lanthanum  | 1.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Mg*    | Magnesium  | 0.05 %          | HNO3-HCI hot extr | ind. coupled plasma           |
| Mn*    | Manganese  | 0.01 %          | HNO3-HCI hot extr | ind. coupled plasma           |
| Mo*    | Molybdenum | 1.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Na*    | Sodium     | 0.05 %          | HNO3-HCI hot extr | ind. coupled plasma           |
| Ni*    | Nickel     | 1.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| РЬ     | Lead       | 2.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Sb*    | Antimony   | 5.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Sn*    | Tin        | 20.0 ppm        | HNO3-HCI hot extr | ind. coupled plasma           |
| Sr*    | Strontium  | 1.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Te*    | Tellurium  | 10.0 ppm        | HNO3-HCI hot extr | ind. coupled plasma           |
| V*     | Vanadium   | 1.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| W*     | Tungsten   | 10.0 ppm        | HNO3-HCI hot extr | ind. coupled plasma           |
| Y      | Yttrium    | 1.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |
| Zn     | Zinc       | 1.0 ppm         | HNO3-HCI hot extr | ind. coupled plasma           |

• Please note: certain mineral forms of those elements above marked with an asterisk will not be soluble in the HNO3/HCl extraction. The ICP data will be low biased.

• Please note: Hg will only be analysed upon request.

page 1

Date of Report: 93.11.17 Project 611

Blue Grouse

File: ROCK\_93.WK3

Soil Sampling Results 1993

Reference: BC v93-01137.0

| Sample ID      | Cu<br>ppm | Ag<br>ppm | Au<br>ppb | Pb<br>ppm | Zn<br>ppm | Cd<br>ppm | Mo<br>ppm | As<br>ppm | Sb<br>ppm    | Bi<br>ppm | Ni<br>pp∎ | Co<br>ppm | Cr<br>ppm | Fe<br>% | Mn<br>ppæ   |
|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|-----------|---------|-------------|
|                |           | <0.2      | 12        | 19        | 115       | <1.0      |           |           | <br>(5       | <br>ز5    |           | <br>28    | 86        | 4.88    | 1074        |
| 9 + 50₩        | 130       | <0.2      | 9         | 14        | 104       | <1.0      | 4         | 13        | <5           | <5        | 84        | 28        | 89        | 4.90    | 940         |
| 9 + 00W        | 115       | <0.2      | 6         | 9         | 69        | <1.0      | <1        | <5        | <5           | <5        | 49        | 18        | 66        | 3.97    | 762         |
| <b>8 + 50₩</b> | 74        | <0.2      | 6         | 27        | 95        | <1.0      | <1        | <5        | <5           | 5         | 63        | 23        | 42        | 4.21    | 1406        |
| 8 + 00W        | 71        | <0.2      | 24        | 19        | 89        | <1.0      | <1        | 12        | <5           | <5        | 67        | 23        | 43        | 4.27    | 1467        |
| 7 + 50W        | 54        | <0.2      | 18        | 18        | 70        | <1.0      | 1         | 11        | <5           | <5        | 37        | 16        | 58        | 3.79    | 1073        |
| 7 + 00W        | 38        | <0.2      | <5        | 19        | 97        | <1.0      | 2         | 20        | <5           | <5        | 12        | 11        | 21        | 4.30    | <b>9</b> 20 |
| 6 + 50₩        | 14        | <0.2      | 27        | 16        | 28        | <1.0      | <1        | <5        | <5           | <5        | 36        | 5         | 68        | 4.36    | 173         |
| 6 + 00W        | 29        | <0.2      | <5        | 23        | 70        | <1.0      | 2         | <5        | <5           | <5        | 9         | 5         | 22        | 3.90    | 200         |
| 5 + 50W        | 52        | <0.2      | 150       | 28        | 125       | <1.0      | 2         | 15        | <5           | <5        | 15        | 12        | 28        | 4.76    | 890         |
| 5 + 00W        | 9         | <0.2      | <5        | 23        | 29        | <1.0      | <1        | <5        | . <b>≺</b> 5 | <5        | 10        | 2         | -78       | 4.91    | 59          |
| 4 + 50W        | 60        | <0.2      | <5        | 24        | 76        | <1.0      | <1        | <5        | <5           | <5        | 24        | 16        | 50        | 3.46    | 1127        |
| 4 + 00₩        | 41        | <0.2      | 34        | 17        | 93        | <1.0      | 4         | 18        | · <5         | <5        | 17        | 10        | 33        | 4.68    | 474         |
| 3 + 50₩        | 49        | <0.2      | 29        | 22        | 77        | <1.0      | <1        | <5        | <5           | <5        | 11        | 11        | 25        | 5.17    | 727         |
| 3 + 00W        | 44        | <0.2      | <5        | 47        | 144       | <1.0      | <1        | <5        | <5           | <5        | 21        | 7         | 45        | 4,76    | 391         |
| 2 + 50W        | 68        | <0.2      | 6         | 57        | 102       | <1.0      | 2         | 25        | <5           | <5        | 23        | 13        | 43        | 4.53    | 1542        |
| 2 + 00₩        | 79        | <0.2      | 36        | 25        | 93        | <1.0      | 1         | <5        | <5           | <5        | 35        | 14        | 60        | 4.53    | 675         |
| 1 + 50W        | 7.2       | <0.2      | 252       | 111       | 132       | <1.0      | <1        | <5        | 8            | <5        | 24        | 10        | 59        | 4.3     | 484         |
| 1 + 00₩        | 58        | <0.2      | 14        | 25        | 74        | <1.0      | <1        | <5        | <5           | <5        | 25        | 9         | 57        | 5.1     | 313         |
| 0 + 50₩        | 79        | <0.2      | 13        | 78        | - 142     | <1.0      | <1        | < 5       | . <5         | <5        | 30        | 10        | 56        | 5.01    | 404         |
| 0 + 00         | 382       | <0.2      | 186       | 29        | 122       | <1.0      | <1        | 7         | <5           | <5        | 64        | 23        | 86        | 4.91    | 804         |
| 0 + 50E        | 40        | <0.2      | 14        | 14        | 89        | (1.0      | <1        | <5        | <5           | <5        | 39        | 15        | 73        | 3.19    | 1222        |
| 1 + 00E        |           |           | n/a       |           |           |           |           |           |              |           | <b>1.</b> |           | ,         |         |             |
| 1 + 50E        |           |           | n/a       |           |           |           |           | _         | · · · -      |           | ·         |           |           |         |             |
| 2 + 00E        | 129       | <0.2      | <5        | 14        | 92        | <1.0      | <1        | 8         | <5           | <5        | 37        | 18        | 54        | 3.62    | 1092        |
| 2 + 50E        | 52        | <0.2      | <5        | 20        | 144       | <1.0      | <1        | 11        | 9            | <5        | . 44      | 16        | 58        | 3.71    | 846         |
| 3 + 00E        | 28        | <0.2      | 12        | 18        | 77        | <1.0      | <1        | <5        | <5           | <5        | 20        | 22        | 41        | 2.61    | 2583        |
| 3 + 50E        | 398       | <0.2      | 433       | 15        | 111       | <1.0      | <1        | <5        | <5           | <5        | 58        | 25        | 75        | 4.37    | 1534        |
| 4 + 00E        | 609       | <0.2      | 14        | 12        | 69        | <1.0      | <1        | <5        | <5           | <5        | 58        | 23        | 63        | 4.25    | 656         |
| 4 + 50E        | 153       | <0.2      | <5        | 15        | 75        | <1.0      | <1        | <5        | <5           | <5        | 36        | 17        | 39        | 4.31    | 1112        |
| 5 + 00E        | 441       | <0.2      | 495       | 11        | 84        | <1.0      | 2         | <5        | <5           | <5        | 52        | 16        | 76        | 4.34    | 529         |
| 5 + 50E        | 101       | <0.2      | 30        | 25        | 90        | <1.0      | 1         | <5        | <5           | <5        | 31        | 12        | 44        | 3.44    | 650         |
| 6 + 00E        | 110       | <0.2      | <5        | 28        | 89        | <1.0      | <1        | <5        | <5           | (5        | 36        | 12        | · 58      | 3.55    | 1435        |
| 6 + 50E        |           |           | n/a       |           |           |           |           |           |              |           |           | _         |           |         |             |
| 7 + 00E        | 141       | <0.2      | <5        | 42        | - 59      | <1.0      | (1        | (5        | (5           | <5        | 20        | 6         | 34        | 3.91    | 556         |
| 7 + 50E        | 368       | <0.2      | 68        | 68        | 70        | <1.0      | 1         | 13        | <5           | 5         | 32        | 23        | 40        | 3.15    | 3372        |
| 8 + 00E        | 108       | <0.2      | 20        | 18        | 76        | <1.0      | <1        | · 7       | <5           | <5        | 28        | 10        | 67        | 4.70    | 576         |
| 8 + 50E        | 211       | <0.2      | <5        | 38        | 99        | <1.0      | <1        | <5        | <5           | <5        | 35        | 12        | 69        | 4.59    | 1864        |
| 9 + 00E        | 170       | <0.2      | <5        | 17        | 106       | <1.0      | <1        | <5        | <5           | <5        | 46        | 14        | 78        | 4,12    | 653         |
| 9 + 50E        | 2332      | 1.7       | 30        | 12        | 134       | <1.0      | 7         | 41        | <5           | 12        | 45        | 203       | 131       | 3.52    | 9413        |

Project 611

Blue Grouse

Soil Sampling Results 1993 (Part 2)

| Sample ID | Ba<br>ppm | V<br>ppm | Sr<br>ppm | Y<br>DDm | La<br>ppm | Te  | Sn<br>ppm  | W            | A1<br>% | Mg<br>X | Ca<br>X | Na<br>X | K<br>X        |
|-----------|-----------|----------|-----------|----------|-----------|-----|------------|--------------|---------|---------|---------|---------|---------------|
|           |           |          |           |          |           |     |            |              |         |         |         |         |               |
| 10 + OOW  | 62        | 147      | 23        | 5        | 3         | <10 | <20        | <20          | 5.68    | 1.50    | 0.15    | <0.01   | 0.06          |
| 9 + 50W   | 59        | 146      | 27        | 4        | 3         | <10 | <20        | <20          | 5.67    | 1.52    | 0.18    | <0.01   | 0.06          |
| 9 + 00₩   | 80        | 123      | 25        | 7        | 5         | <10 | <20        | <20          | 3.59    | 1.10    | 0.23    | 0.01    | 0.06          |
| 8 + 50₩   | 86        | 91       | 60        | 4        | 3         | <10 | <20        | <20          | 4.38    | 1.29    | 0.19    | 0.01    | 0.05          |
| 8 + 00W   | 88        | - 93     | 63        | 4        | 3         | <10 | <20        | <20          | 4.38    | 1.36    | 0.22    | <0.01   | 0.05          |
| 7 + 50W   | 80        | 111      | 56        | 4        | 4         | <10 | <20        | <20          | 3.51    | 0.81    | 0.23    | 0.01    | · 0.04        |
| 7 + 00₩   | 64        | 104      | 16        | 3        | 4         | <10 | <20        | <20          | 4.18    | 0.62    | 0.10    | 0.01    | 0.07          |
| 6 + 50W   | 33        | 102      | 7         | 1        | 3         | <10 | <20        | <20          | 1.49    | 0.36    | 0.04    | 0.01    | 0.05          |
| 6 + 00₩   | 46        | 83       | 8         | 2        | 4         | <10 | <20        | <20          | 2.96    | 0.38    | 0.04    | 0.01    | 0.06          |
| 5 + 50W   | 65        | 78       | 8         | 4        | 4         | <10 | <20        | <20          | 6.11    | 0.59    | 0.05    | 0.01    | 0.08          |
| 5 + 00W   | 25        | 109      | 4         | 1        | 3         | <10 | <20        | <20          | 0.54    | 0.07    | 0.03    | 0.01    | 0.05          |
| 4 + 50₩   | 103       | 92       | 41        | 2        | 3         | <10 | <20        | <20          | 4.10    | 0.46    | 0.18    | 0.02    | 0.09          |
| 4 + 00₩   | 68        | 107      | 21        | · 2      | 4         | <10 | <20        | <20          | 4.14    | 0.47    | 0.08    | 0.01    | 0.06          |
| 3 + 50W   | 54        | 97       | 34        | 2        | 4         | <10 | <20        | <b>〈20</b> 】 | 5.29    | 0.59    | 0.13    | 0.01    | 0.05          |
| 3 + 00W   | 50        | 111      | 12        | 1        | 3         | <10 | <20        | <20          | 3.40    | 0.50    | 0.06    | 0.01    | 0.04          |
| 2 + 50W   | 70        | 106      | 20        | 2        | 3         | <10 | <20        | <20          | 3.82    | 0.67    | 0.14    | 0.02    | <b>`0.</b> 07 |
| 2 + 00₩   | 74        | 121      | 20        | 2        | 3         | <10 | <20        | <20          | 4.35    | 0.97    | 0.10    | 0.02    | 0.08          |
| 1 + 50W   | 32        | 132      | 13        | 2        | - 4       | <10 | <b>〈20</b> | <20          | 2.55    | 0.85    | 0.17    | 0.02    | 0.03          |
| 1 + 00₩   | 37        | 132      | 13        | 1        | 2         | <10 | <20        | <20          | 3.79    | 0.73    | 0.11    | 0.01    | 0.04          |
| 0 + 50W   | 42        | 132      | 16        | i        | 2         | <10 | <20        | <20          | 3.44    | 0.78    | 0.22    | 0.02    | 0.04          |
| 0 + 00    | 37        | 127      | 22        | 8        | 3         | <10 | <20        | <20          | 5.78    | 1.63    | 0.23    | 0.02    | 0.04          |
| 0 + 50E   | 107       | 96       | 33        | 2        | 3         | <10 | <20        | <20          | 2.18    | 0.80    | 0.41    | 0.01    | 0.03          |
| 1 + 00E   |           |          |           |          |           |     |            |              |         |         |         |         |               |
| 1 + 50E   |           |          |           |          |           |     |            |              |         |         |         |         |               |
| 2 + 00E   | 69        | 117      | 67        | 3        | 3         | <10 | <20        | <20          | 3.02    | 0.73    | 0.68    | 0.03    | 0.03          |
| 2 + 50E   | 155       | 102      | 20        | 2        | 4         | <10 | <20        | <20          | 4.43    | 0.66    | 0.24    | 0.01    | 0.07          |
| 3 + 00E   | 107       | 102      | 42        | 3        | 4         | <10 | <20        | <20          | 2.16    | 0.49    | 0.78    | 0.02    | 0.04          |
| 3 + 50E   | 34        | 163      | 65        | 5.       | 2         | <10 | <20        | <20          | 3.47    | 1.26    | 0.97    | 0.03    | 0.03          |
| 4 + 00E   | 30        | 145      | 56        | 9        | 3         | <10 | <20        | <20          | 5.61    | 1.29    | 0.82    | 0.03    | 0.03          |
| 4 + 50E   | 42        | 170      | 48        | 3        | 1         | <10 | <20        | <20          | 3.38    | 0.69    | 0.67    | 0.02    | 0.03          |
| 5 + 00E   | 44        | 160      | 37        | 2        | 2         | <10 | <20        | <20          | 4.42    | 1.01    | 0.47    | 0.02    | 0.0           |
| 5 + 50E   | 37        | 105      | 53        | 2        | 2         | <10 | <20        | < 20         | 2.57    | 0.68    | 0.60    | 0.02    | 0.03          |
| 6 + 00E   | 51        | 113      | 44        | 2        | 2         | <10 | <20        | (20          | 2.54    | 0.74    | 0.49    | 0.02    | 0.0           |
| 6 + 50E   |           |          |           |          |           |     |            |              |         |         |         |         |               |
| 7 + 00E   | 46        | 143      | 70        | 2        | 2         | <10 | <b>{20</b> | <b>{20</b>   | 1.44    | 0.32    | 0.44    | 0.02    | 0.02          |
| 7 + 50E   | 60        | 80       | 50        | 3        | 1         | <10 | <20        | <20          | 2.35    | 0.59    | 0.52    | 0.01    | 0.04          |
| 8 + 00E   | 30        | 132      | 24        | 2        | 1         | <10 | <20        | <20          | 3.88    | 0.54    | 0.22    | 0.01    | 0.03          |
| 8 + 50E   | 58        | 147      | 33        | 2        | 3         | <10 | <20        | <20          | 2.98    | 0.53    | 0.26    | 0.01    | 0.03          |
| 9 + 00E   | 39        | 118      | 24        | 2        | 2         | <10 | <20        | <20          | 4.20    | 0,86    | 0.23    | 0.01    | 0.04          |
| 9 + 50E   | 29        | 104      | 18        | 24       | 11        | <10 | (20        | (20          | 8.18    | 0.38    | 0.34    | (0.01   | 0.0           |

page la

:

| Date of Report                                  | <b>t:</b> 93.1 | 1.17      | ٩         | roject    | 611       |           |           | B         | lue Gro   | use       |           |           |           |         |           |
|-------------------------------------------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|-----------|
| File: ROCK_93.WK3 Soil Sampling Results<br>1993 |                |           |           |           |           |           |           |           |           |           |           |           |           |         |           |
| Reference: B                                    | C. v93-01      | 137.0     | :=======  | 2222222   | =======   |           |           |           | ======    | ======    | ======    |           |           |         |           |
| Sample ID                                       | Cu<br>ppm      | Ag<br>ppm | Au<br>ppb | Pb<br>ppm | Zn<br>ppm | Cd<br>ppm | Mo<br>ppm | As<br>ppm | Sb<br>ppm | Bi<br>ppm | Ni<br>ppm | Co<br>ppm | Cr<br>ppm | Fe<br>% | Mi<br>ppi |
| 10 + 0.0E                                       | 143            | <0.2      | <5        | 23        | 146       | <1.0      | <1        | <5        | <5        | <5        | <b>49</b> | 29        | 102       | 4.25    | 277       |
| Duplicate:                                      |                |           |           |           |           |           |           |           |           |           |           |           |           |         |           |
| 3+50W                                           | 43             | <0.2      |           | 22        | 74        | <1.0      | <1        | 13        | <5        | <5        | 11        | 10        | 24        | 4.51    | 71        |
| 2+00E                                           | 129            | <0.2      |           | 12        | 90        | <1.0      | <1        | <5        | <5        | <5        | 36        | 17        | 51        | 3.50    | 104       |
| 5+50E                                           |                |           | 264       |           |           |           |           |           |           |           |           |           |           | e       |           |
|                                                 |                | •         |           |           |           |           |           | •         | Ŧ         | •         |           |           | ٠         |         |           |

Project 611

## Blue Grouse

## Soil Sampling Results 1993 (Part 2)

| Sample ID      | Ba<br>ppm | V<br>ppa | Sr<br>pp≞ | Y<br>ppm | La<br>ppm | Te<br>ppm | Sn<br>ppm     | ¥<br>ppa | - A1<br>Z | Mg<br>X | Ca<br>X | Na<br>Z | K<br>X |  |
|----------------|-----------|----------|-----------|----------|-----------|-----------|---------------|----------|-----------|---------|---------|---------|--------|--|
| 10 + 00E       | 43        | 111      | 20        | 2        | 2         | <10       | <20           | <20      | 2.88      | 0.75    | 1.16    | 0.02    | 0.03   |  |
| Duplicate:     |           |          |           |          |           |           |               |          |           |         |         |         | •      |  |
| 3+50W          | 48        | 93       | 33        | 2        | 3         | <10       | <20           | <20      | 4.61      | 0.54    | 0.14    | <0.01   | 0.04   |  |
| 2+00E<br>5+50E | 67        | 115      | 68        | 3        | 3         | <10       | <b>&lt;20</b> | <20      | 3.01      | 0.71    | 0.67    | 0.03    | 0.03   |  |











