LOG NO: NOV 2 2 1994 RD.
ACTION.

SUB-RECORDER

B-RECEIVED GEOCHEMICAL, GEOPHYSICAL AND PROSPECTING

NOV - 8 1994

REPORT ON THE

LOG NO: MAR 2 9 1995

U

W.R.#.....

VANCOUVER, B.C.

ANTLER CREEK GOLD PROSPECTION:

CARIBOO MINING DIVISION, E.C.

N.T.S. 93A/14W, 93H47W FILE NO:

GEÖLOGICAL BRANCH BY ASSESSMENT REPORT

A.G. TROUP, P. g.
October 1994

CLAIMS WORKED

CLAIM NAMES	UNITS	RECORD NUMBERS	ANNIVERSARIE
KEYNOTE 1 - 4	4	322078 - 322081	OCT 18
KEYNOTE 6	1	322139	OCT 18
KEYNOTE 7 - 8	2	321626 - 321627	OCT 19
KEYNOTE 11	1	322030	OCT 19
KEYNOTE 19 - 20	2	321836 - 321837	OCT 20
KEYNOTE 23	1	321840	OCT 20
KEYNOTE 30	1	322084	OCT 20
WOLF 2 - 4	3	309437 - 309439	MAY 20
WOLF 9 - 12	4	322069 - 322072	OCT 17
WOLF 16 - 19	4	322119 - 322122	OCT 30
WOLF 26 - 27	2	322129 - 322130	OCT 31
WOLF 29	1	322132	OCT 31

LOCATION:

53°00' North Latitude

121°25' West Longitude

OWNER: OPERATOR:

Pacific Mariner Exp. Ltd. Pacific Mariner Exp. Ltd.

CONTRACTOR: Archean Engineering Ltd.

GEOCHEMICAL, GEOPHYSICAL AND PROSPECTING REPORT ON THE ANTLER CREEK GOLD PROSPECT CARIBOO MINING DIVISION, B.C.

SUMMARY:

The Antler property is a gold prospect located in central British Columbia, approximately 70 km east of Quesnel and 5 km southeast of Barkerville. The property is located in the Cariboo Mining Division and is comprised of 106 two post mineral claims and 70 mineral units in 4 claims.

In August 1994, Archean Engineering Ltd. was contracted by Pacific Mariner Exploration Ltd. to carry out an exploration program for assessment purposes over the Antler Creek property. Field work was carried out from August 10 to August 19, by a two person crew working out of the White Caps Motel in the nearby community of Wells, B.C. The program involved prospecting the claims while carrying out reconnaissance geochemical and geophysical surveys over the property.

Geochemical sampling involved taking a total of 13 stream sediment samples, 10 heavy mineral concentrate samples, 99 soil samples, and 26 rock chip samples from widely spaced sites on the property. Results of this work defined three widely separated gold anomalies that require future follow-up.

Geophysical work involved running 2.8 line km of magnetometer coverage on four lines and 1.9 line km of EM-16 coverage on three lines across three test areas on the property. Results of this work proved inconclusive. Several narrow magnetic features were detected by the survey. The test lines were run over known showings and thus the anomalies may be caused by buried metallic debris from previous exploration and placer mining activity.

It is recommended that additional exploration be carried out in the vicinity of the three target areas discovered by the present survey. This work should initially entail prospecting, basal till sampling and several additional test lines of geophysical coverage.

GEOCHEMICAL, GEOPHYSICAL AND PROSPECTING REPORT ON THE ANTLER CREEK GOLD PROSPECT CARIBOO MINING DIVISION, B.C.

TABLE OF CONTENTS:

SUMM	IARY:	ii/
TABL	E OF CONTENTS:	iii/
1.0	INTRODUCTION:	1,
1.1	LOCATION AND ACCESS:	1,
1.2	PHYSIOGRAPHY, VEGETATION AND CLIMATE:	1,
1.3	PROPERTY INFORMATION:	4 /
1.4	HISTORY:	6 /
1.5	WORK DONE BY ARCHEAN ENGINEERING LTD:	7 /
2.0	GEOLOGY:	8 /
2.1	ECONOMIC GEOLOGY:	8 /
3.0	GEOCHEMISTRY:	13 /
3.1	GEOCHEMICAL PROCEDURES:	13 /
3.2	GEOCHEMICAL RESULTS:	13 /
4.0	PROSPECTING & ROCK CHIP SAMPLING PROGRAM:	16 ,
4.1	ROCK SAMPLE RESULTS:	16 /
5.0	GEOPHYSICS:	20 /
5.1	MAGNETOMETER RESULTS:	20 /
5.2	VLF-EM RESULTS:	21 /
6.0	DISCUSSIONS & CONCLUSIONS:	29 _
7.0	REFERENCES:	30 /
8.0	STATEMENT OF QUALIFICATIONS:	31/
9.0	СОСТ СТАТЕМЕНТ	32

FIGURES AND TABLES:

FIGURE 1	LOCATION MAP:	3 /
FIGURE 2	CLAIM MAP:	5 /
FIGURE 3	GEOLOGY MAP:	9 /
FIGURE 5((A & B) SAMPLE LOCATION MAP:	Pocket
FIGURE 5((A & B) GOLD RESULTS IN SILT & CONCENTRATES	Pocket
FIGURE 6	GOLD RESULTS FOR LINES K-1 & K-2	14 /
FIGURE 7	GOLD RESULTS FOR LINE W-1	15 /
FIGURE 8	GROUSE MAG LINE 0+00 SOUTH	22 /
FIGURE 9	GROUSE MAG LINE 1+00 SOUTH	23/
FIGURE 10	KEYNOTE MAG LINE 0+00 SOUTH	24,
FIGURE 11	CHINA CREEK MAG LINE 0+00 SOUTH	25
FIGURE 12	R GROUSE VLF-EM LINE 0+00 SOUTH	26 /
FIGURE 13	GROUSE VLF-EM LINE 1+00 SOUTH	27 /
FIGURE 14	CHINA CREEK VLF-EM LINE 0+00 SOUTH	28 /
TABLE 1	LIST OF CLAIMS:	4 >
TABLE 2	ROCK SAMPLE DESCRIPTIONS	4 .

APPENDIX

GEOCHEMICAL RESULTS CERTIFICATES

GEOCHEMICAL, GEOPHYSICAL AND PROSPECTING REPORT ON THE ANTLER CREEK GOLD PROSPECT CARIBOO MINING DIVISION, B.C.

1.0 INTRODUCTION:

In August 1994, Archean Engineering Ltd. was contracted by Pacific Mariner Exploration Ltd. to carry out an exploration program for assessment purposes over the Antler Creek gold property in south central British Columbia. The primary purpose of the program was to identify target areas for future exploration on a number of recently acquired two post mineral claims. The program involved carrying out stream sediment sampling, heavy mineral concentrate sampling, rock chip sampling, soil sampling, and reconnaissance VLF-EM and magnetometer surveys over the property.

The writer initially worked in the region of the property in the early 1970's and since then has repeatedly been involved with regional and property work over the area. The present program was carried out between August 10 and August 19, 1994 by a two person crew working out of the White Caps Motel in the nearby community of Wells.

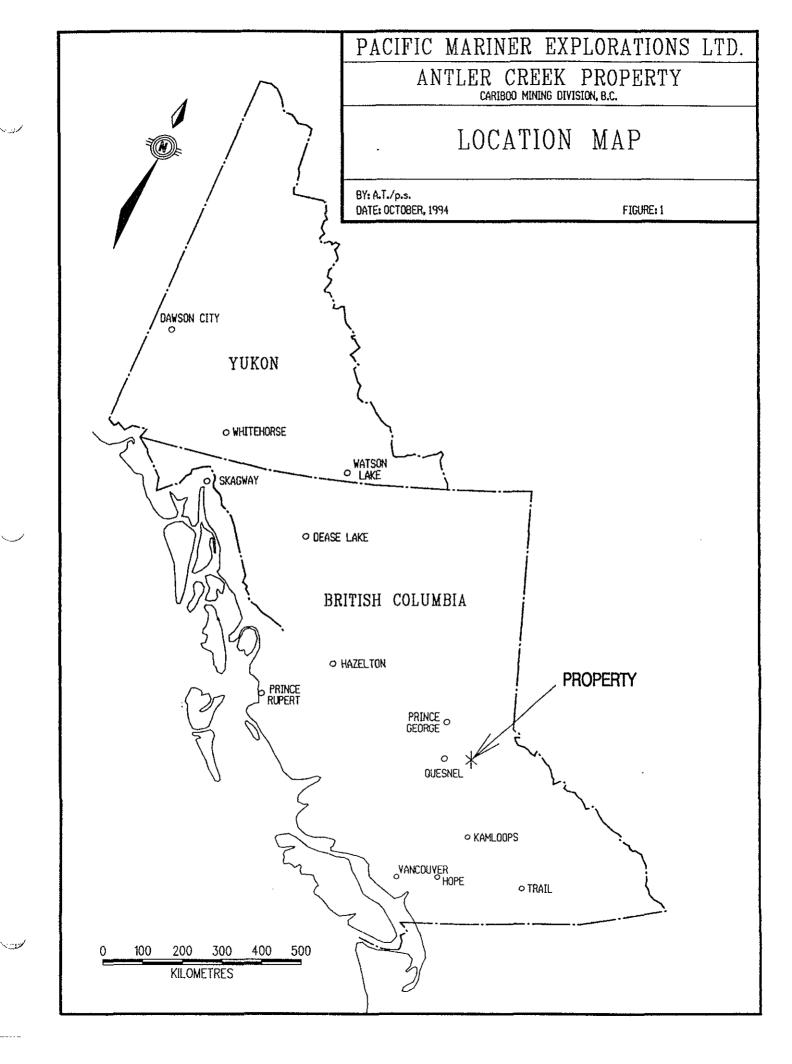
1.1 LOCATION AND ACCESS:

The Antler Creek Gold Property is located on the west side of the Cariboo Mountains in central British Columbia. The claims are located in mountainous terrain approximately 70 km east of Quesnel, B.C. and 5 km southeast of Barkerville, B.C. The centre of the property is definded by latitude 53°00'N and longitude 121°25'W.

Good access to the east side of the property is provided by the Cunningham Pass Forest Service Road which intersects Highway 26 one km north of Barkerville. Additional access to the east side of the property is provided by a network of gravel and dirt roads that service placer mining operations along Antler and Cunningham creeks and their various tributaries.

1.2 PHYSIOGRAPHY, VEGETATION AND CLIMATE:

The property is located in a transition zone between the Interior Plateau to the west and the Cariboo Mountains to the east. The Interior Plateau is a rolling upland surface at an altitude of approximately 1,500 m with a regional dip of about 14 m per km to the southwest. Over the property the surface is moderately well dissected with a local relief of about 600 m.

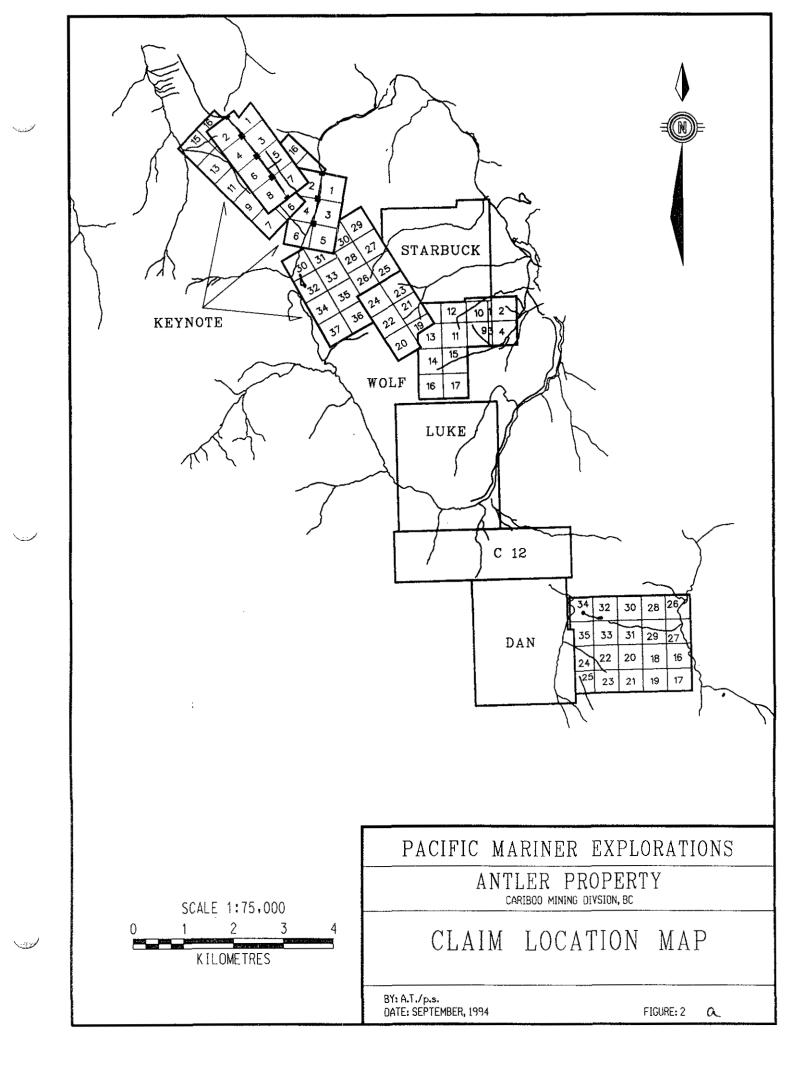

Immediately to the east over the Cariboo Mountains proper, local relief increases to over 1,800 m.

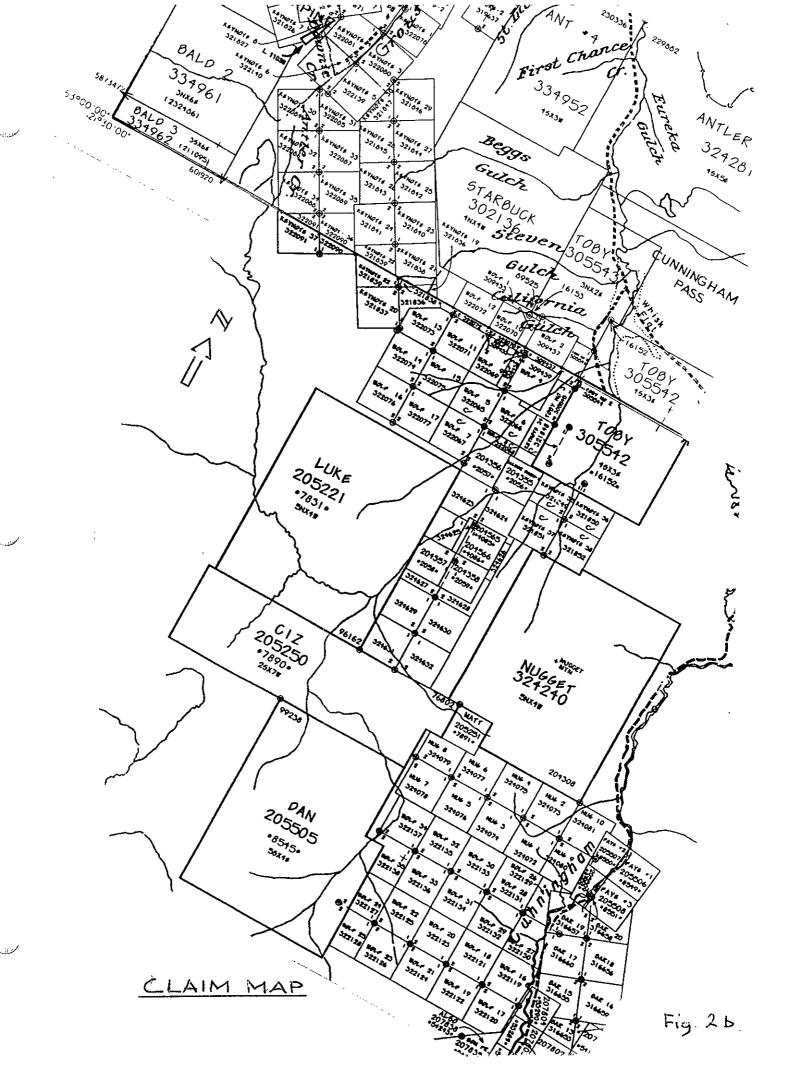
مورون 🗸

The tree line is at approximately 1,900 m and therefore the entire property is covered with mature stands of fir. In the valleys and along wet slopes black spruce, aspen, dwarf birch tag alder, willow and minor stunted buckbrush are also encountered.

An extensive blanket of glacial ground moraine covers most of the property. Rock exposures account for less than 1% of the property and are confined to creek beds, abandoned meltwater channels and the flanks and crests of hills.

The climate is typical of the central interior, with short, warm, summers and moderately long, cold, winters. Temperatures range from in excess of 25°C in August to minus 30°C in January. The average annual precipitation is 75 cm with most of this falling as snow in late fall, winter and early spring. The snow free period lasts from mid-may to mid-October.

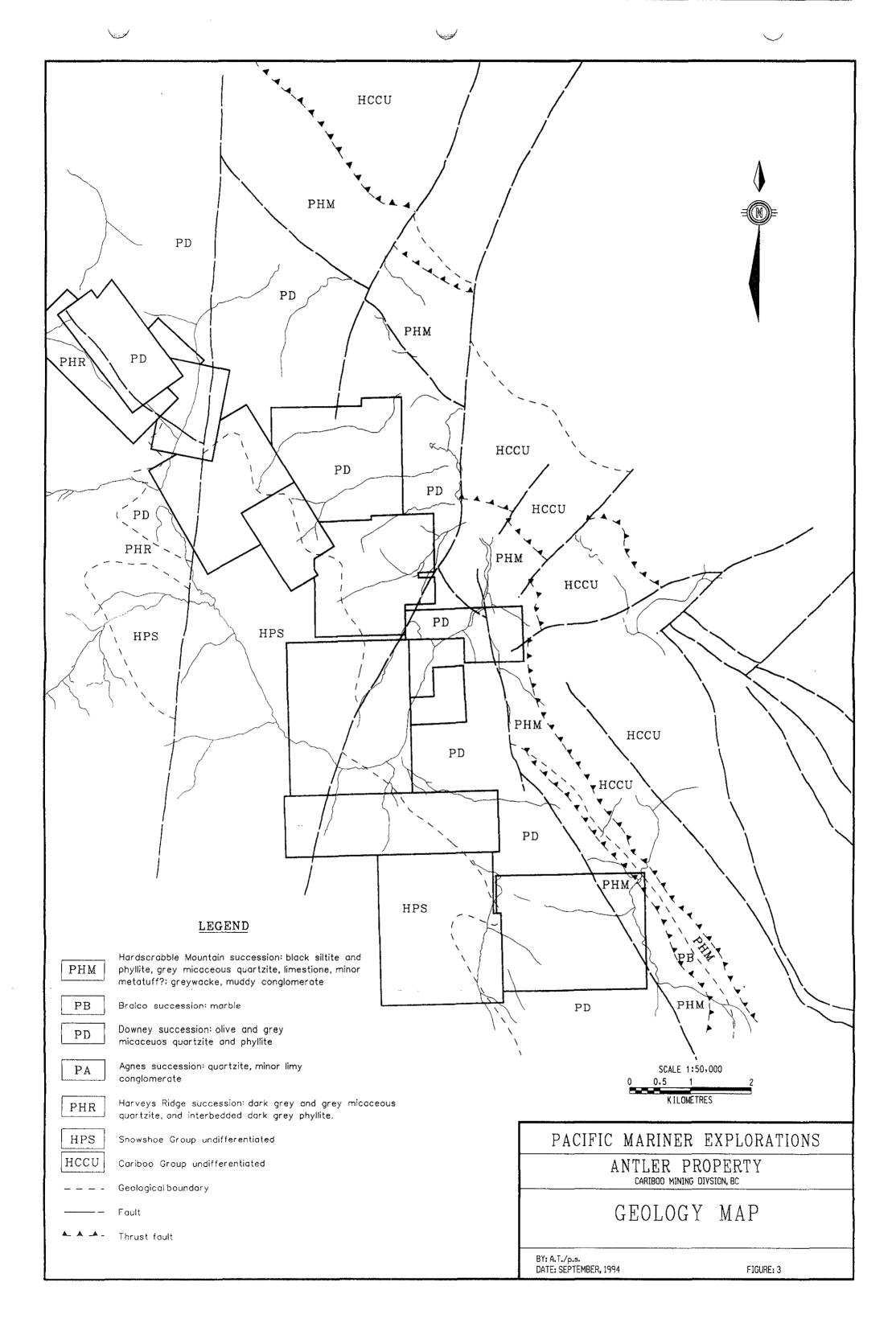



1.3 PROPERTY INFORMATION:

The property is located in the Cariboo Mining Division and is comprised of 106 two post mineral claims and 70 mineral units in 4 claims. Pertinent claim information is given in Table 1 below.

TABLE 1
LIST OF CLAIMS

CLAIM NAMES	UNITS	RECORD	NUMBERS	ANNIVERSARIES
KEYNOTE 1 - 4	6	322078 -	322081	OCT 18
KEYNOTE 5 - 6	2	322139 -	322140	OCT 18
KEYNOTE 7 - 16	8	321626 -	321635	OCT 19
KEYNOTE 17 - 18	2	322082 -	322083	OCT 18
KEYNOTE 19 - 30	12	321836 -	321847	OCT 20
KEYNOTE 30 - 37	8	322084 -	322091	OCT 20
KEYNOTE 34 - 38	4	321848 -	321852	OCT 21
WOLF 1	1	309433		MAY 20
WOLF 2 - 4	3	309437 -	309439	MAY 20
WOLF 5 - 8	4	322065 -	322068	OCT 14
WOLF 9 - 17	9	322069 -	322077	OCT 17
WOLF 16 - 25	20	322119 -	322128	OCT 30
WOLF 26 - 35	20	322129 -	322138	OCT 31
SILVER				
DAWN 1 - 4	4	204355	204358	OCT 21
SURE				
SHOT 1 - 2	2	204565 -	204566	OCT 1
MATT	1	205251		AUG 26
STARBUCK	16	302136		
LUKE	20	205221		AUG 5
CIZT	14	205250		AUG 26
DAN	20	205505		JULY 20


1.4 HISTORY:

The Antler Creek area has been of interest to gold seekers since placer gold was discovered on Antler Creek in the winter of 1860. As with most placer areas a rush took place immediately following the first discovery. Placer gold production from the camp reached its peak of about four million dollars a year by 1863. By 1885 revenue from the placer mines had declined until only the most hardy individuals remained.

In 1876 in an effort to stabilize the economy of the area a four ton stamp mill was erected at Richfield. The mill treated ore from the Bonanza Ledge at the head of Lowhee Creek, Blackjack Canyon on Williams Creek, and from Six-Mile Creek a tributary of Swift River. The provincial government financially assisted these early efforts to develop the numerous quartz veins of the area, and in 1885 the Geological Survey of Canada undertook the first systematic geological investigations of the camp.

The first lode mine of significance was the Cariboo Gold Quartz mine located near Wells, 8 km northwest of the Antler Creek Property. Production from quartz-pyrite veins commenced in 1933 and continued until the mine closed in 1967. In 1934 the Island Mountain Mine located 1 km west of Wells was developed and produced gold until 1954 from quartz-pyrite veins and stratiform massive pyrite lenses. In 1980 the Mosquito Creek Mine located immediately north of the Island Mountain deposit was developed and produced gold from stratiform massive pyrite lenses until 1987. Combined production from the three producers totaled 1,232,063 ounces of gold and 149,520 ounces of silver.

The first reported work within the boundaries of the Antler Creek Property was the staking of the Independence and Hard Cash claims near the head of Grouse Creek in 1916 by E.E.Armstrong. A small rush developed that lead to the staking of more than 30 Crown Grants that have been worked and held until 1993. In 1993 most of these Crown Grants were allowed to lapse and the ground was re-staked by prospector Colin Little. The claims staked by Mr. Little have recently been acquired by Pacific Mariner Exp. Ltd.

1.5 WORK DONE BY ARCHEAN ENGINEERING LTD.:

`\==

The following field work was completed by Archean Engineering Ltd. during the period from August 10 through August 19, 1994:

- (a) Reconnaissance stream sediment sampling was carried out over the entire property.
- (b) Reconnaissance heavy mineral concentrate sampling was carried out over the entire property.
- (c) Reconnaissance soil sampling was carried out over three lines on the Keynote and Wolf claims.
- (d) Four reconnaissance lines of magnetometer coverage were run over the Keynote and Wolf claims.
- (e) Three reconnaissance lines of VLF-EM coverage were run over the Keynote and Wolf claims.
- (f) Prospecting and rock chip sampling was carried out over the accessible portions of the property.
- (g) Six previously reported showings; the Warspit, Tipperary, Independence, Hard Cash, Lord Dufferin, and China Creek showings were located and sampled.
- (h) The initial posts of the adjacent Warspit and Toby claims were located on the ground and tied in to the boundary of the Keynote and Wolf claims.

2.0 GEOLOGY:

The Antler Creek property is located within the Barkerville Terrane of the Omineca belt. The Barkerville Terrane is bounded on the east by the Pleasant Valley Thrust across which it adjoins the Hadrynian to Lower Paleozoic Cariboo Terrane rocks. To the west it is in thrust contact with Triassic Quesnellia Terrane rocks. The Barkerville Terrane is underlain by an unknown basement and overlain by the tectonically emplaced Slide Mountain Terrane.

The strata of the Barkerville Terrane have been divided into one formal and several informal units. The Snowshoe Group is the formal unit and is made up of 14 subdivisions. The Antler Creek property is underlain by only two of these sub-units, the Downey succession and the overlying Hardscrabble Mountain succession.

The Downey succession is here comprised of olive and grey micaceous quartzites, phyllite, marble, limestone, calcareous quartzite and tuff. The unit is characterized by its abundant marble and tuff. The quartzite commonly is brown weathering because of abundant porphyroblasts of ankerite and siderite.

The Hardscrabble Mountain succession consists of black siltite, phyllite, muddy conglomerate and minor grey micaceous quartzite, limestone and very minor metatuff. It overlies the Downey succession and follows this unit along the Pleasant Valley Thrust.

The rocks have all been subjected to low-grade regional metamorphism and intense deformation but they still commonly show bedding and other sedimentary features. Deformation has impressed a marked secondary foliation on almost all clastic rocks and some carbonate rocks. Most rocks have a marked dimensional orientation involving mica, quartz, feldspar, and even carbonate minerals.

2.2 ECONOMIC GEOLOGY:

Previous exploration has located a number of gold showings over and immediately adjacent to the Antler property. Mineralization is comprised of free gold associated with two sets of quartz veins, referred to in the literature as the "A veins" and the "B veins" (Johnson & Uglow, 1926). The A veins are large northwest striking bodies of milky white quartz that tend to follow the foliation of the host rocks. They are sparsely mineralized with pyrite and seldom carry significant gold values. The B veins strike northeasterly and crosscut the earlier A veins. They are generally narrow, from a centimetre or less up to 1.5 metres in width. They usually carry significant concentrations of pyrite, arsenopyrite, galena and siderite and locally may be mineralized

with pyrrhotite, sphalerite and scheelite. Often the best gold grades occur at the junction between the two sets of veins. The more important showings are described briefly below.

WARSPIT ADIT (Minfile 93H048)

The Warspit Showing is situated 2.0 km north of Mt. Proserpine on the Keynote 12 mineral claim (also the Warspit 3 claim). The Warspit claim was staked in 1917 over two northwest striking A quartz veins up to 3.8 metres in width. The A veins are intersected by several narrow northeast striking B veins up to 0.9 metres in width. The veins contain variable amounts of pyrite, arsenopyrite, galena and sphalerite. They have been explored with more than 400 metres of underground workings, several thousand metres of trenching, and numerous pits, shafts and diamond drill holes. An adjacent, 9.0 metre thick bed of white, silicified and pyritized quartzite has been traced by underground drifting and surface drilling for 120 metres.

A selected sample taken from the junction of an A and B vein in 1926 assayed 22.8 g/T gold. A selected sample of the altered quartzite intersected in a drill hole assayed 3.4 g/T gold.

TIPPERARY SHOWING (Minfile 93H051)

The Tipperary Showing is located 500 m south of the Warspit Adit on the north side of Mt. Proserpine. A northwest striking quartz vein up to 1.2 m wide cuts argillite and quartzite. The vein carries small amounts of disseminated pyrite, arsenopyrite and galena. Minor gold values and silver values up to 377 g/T have been reported.

INDEPENDENCE SHOWING (Minfile 93H051)

The Independence workings are located 400 m west of the Hard Cash Adit on the north slope of Mt. Proserpine. The Independence claim was located in 1916 and since then has been extensively explored by drilling, trenching and 400 m of underground drifting in two adits, the Bell and Newberry adits. Numerous small occurences of A and B quartz veins have been reported over an area measuring 250 m by 400 m. The best reported assay was 14.88 g/T gold across 81 cm intersected by drilling in 1984.

HARD CASH ADIT (Minfile 93H052)

The Hard Cash Adit is located on the west side of Grouse Creek one km south of Shy Robin Gulch. The Hard Cash claim was located by E. Armstrong in 1916 and was considered one of the more important claims in the camp. The claim was explored by

prospecting, trenching and drilling until 1946. In 1939 a 300 m adit was driven west from Grouse creek (Sutherland Brown, 1957). The face of this adit stopped approximately 100 m east of the portal of the Newberry adit on the adjacent Independence claim. The adit passed through grey micaceous quartzites and phyllite and one 25 m wide bleached and silicified alteration zone. The only gold bearing quartz veins encountered were two small B veins near the face and an irregular cluster of small veins near the portal. The latter were weakly mineralized with pyrite and galena. The best reported assay was 2.74 g/T gold across 1.2 m of barren looking quartz.

LORD DUFFERIN ADITS (Memoir 149)

The Lord Dufferin Workings are located along Grouse Creek 750 m upstream from the Hard Cash Adit. Here a two metre wide vein of white quartz carrying minor amounts of disseminated pyrite strikes northwest across the creek. On the west side of the creek an adit was driven along the vein for 10 m to where it was cut off by a fault. On the east side of the creek the vein was followed with an adit for 55 m. Near the face the vein became very narrow and split up into stringers. A 1926 government report states that a 10 ton sample of the quartz averaged \$7 -\$8 per ton.

SPITFIRE SHOWING (BCMM REPORT 1946)

The Spitfire Showing is located on the north side of Wolf Creek, 215 m (700 feet) above the elevation of China Creek, and south of the head of California Gulch. The showing is comprised of a stockwork of narrow quartz veins exposed over a zone measuring 180 m in length by 100 m in width. The veins strike 050°/90° and occur in groups of two to three veins spaced about one metre apart. Individual veins are generally less than 15 cm in width and less than 10 metres in length. They are mineralized with pyrite that is usually oxidized to limonite at surface. Fine flower gold can be panned from the oxidized portions of the veins.

CHINA CREEK SHOWING

The China Creek Showing is located in the bed of China Creek 500 m upstream from the junction with Wolf Creek. The showing was discovered in 1979 by Stan Brewer, a local placer miner currently working on Stevens Creek. The showing consists of several massive pods of galena up to 1.5 m in length by 0.5 m in width emplaced in the north-northeast trending Antler Fault Zone. The Antler Fault is reported to be the largest fault in

the map area exhibiting a right lateral offset of about 3.0 km (Sutherland Brown 1957). Exposures in placer cuts along China Creek show the fault to be about 16 m wide in this area.

GISCO SHOWING (BCMM REPORTS 1946-47)

The Gisco Showing is located along Antler Creek between Nugget and Victoria Gulch. The showing was discovered in 1946 and tested with a number of trenches and drill holes. It consists of several narrow quartz veins striking $080^{\circ}/70^{\circ}N$ from which free gold can be panned. The largest vein, the Gisco Vein, was found on the west side of Antler Creek. It averaged 30 cm in width and was 12 m in length. A selected surface sample containing 15% pyrite and 5% galena assayed 0.3 g/T gold and 61 g/T silver. A small chalcopyrite vein found immediately north of the Gisco Vein assayed 0.3 g/T gold, 355 g/T silver and 26.9 % copper.

In 1947 a hole drilled on the east side of the creek, 50 m downstream from the Gisco Vein, intersected several 10 to 25 cm wide quartz veins. One of these veins assayed 27.5 g/T gold. The veins intersected in the drilling belong to a cluster of small veins that occur along both margins of a limestone unit that crosses Antler creek at this location.

ZONE SHOWING (BCMM REPORT 1947)

The Zone Showing is located 180 m southeast of the bridge that crosses Antler Creek near the mouth of Nugget Gulch. A group of five sub-parallel veins striking $025^{\circ}/90^{\circ}$ occur on the south side of a low ridge. The veins range from 5 to 45 cm in width and are weakly mineralized with pyrite, arsenopyrite and small amounts of fine free gold.

PITTMAN SHOWING (BCMM REPORT 1947)

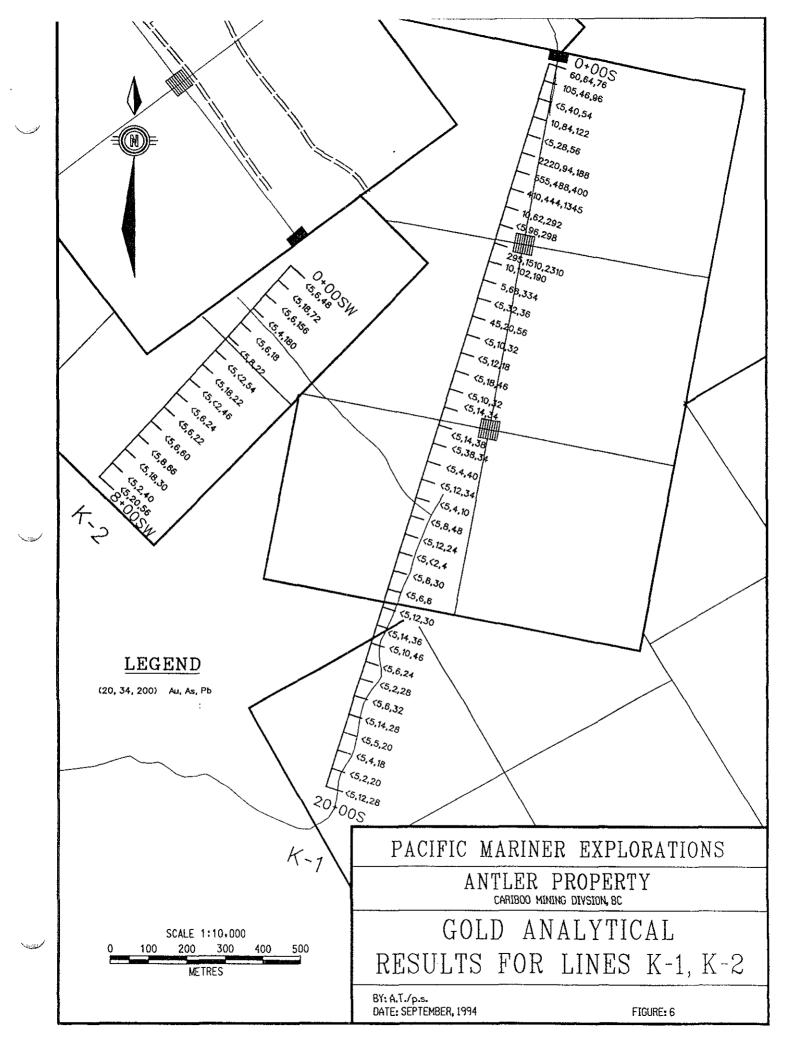
The Pittman Showing located near the mouth of Victoria Creek was discovered in 1947. The showing consists of replacement mineralization in limestone. The rock is locally well mineralized with pyrite, galena and sphalerite but gold and silver values are low. A hand picked piece taken in 1947 assayed trace gold, 37 g/T silver, 4.9 % lead and 34.9 % zinc.

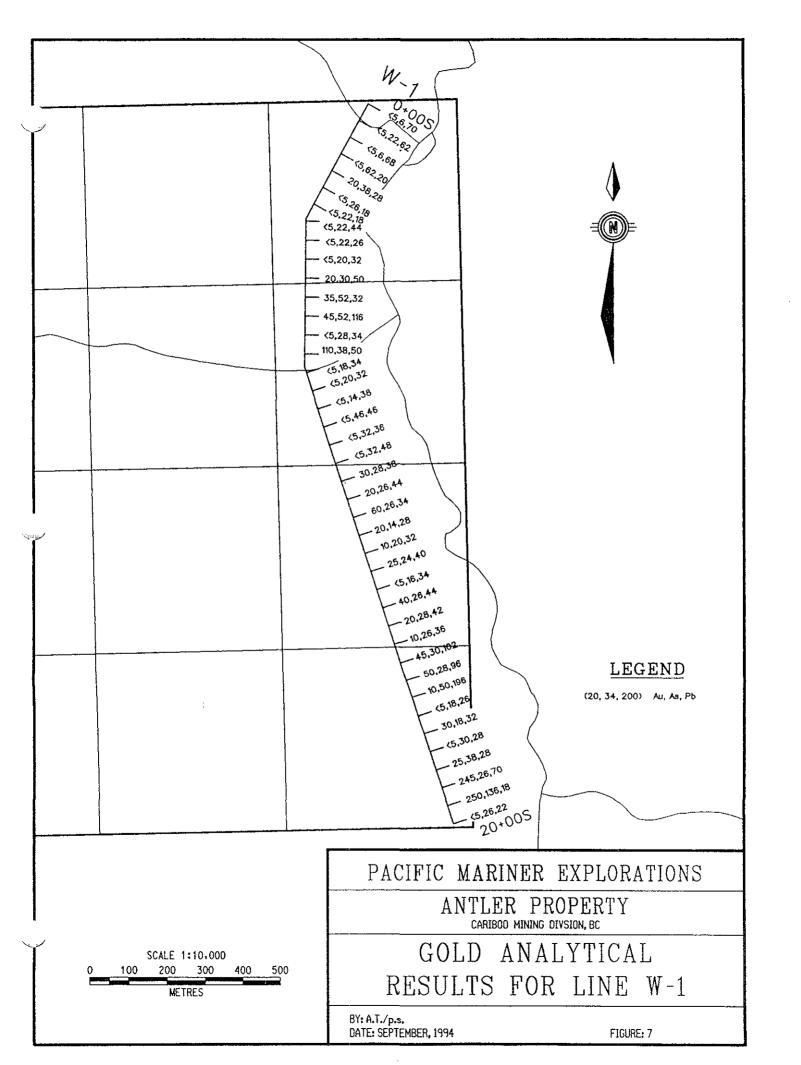
The showing was tested with 130 m of drilling in four flat holes in 1947. The holes crossed narrow widths of sparsely pyritized quartz from which the highest assay was 2.0 g/T gold.

3.0 GEOCHEMISTRY:

In August Archean Engineering Ltd. undertook an orientation geochemical sampling survey over the Antler Creek Property. This program resulted in the collection of 13 stream sediment samples, 10 heavy mineral concentrate samples, and 99 soil samples. Sample locations are shown on Figure 4.

3.1 GEOCHEMICAL PROCEDURES:


Stream sediment samples were taken along 13 first order streams draining the Antler Creek property. In the field active stream sediment was placed in craft paper envelopes and air dried. The samples were sent to Chemex Labs Ltd. in Vancouver. In the laboratory the samples were dried at 80°C then sieved to minus 80 mesh and the coarse fraction discarded. The fine fraction was analysed for gold by atomic absorption after fire assay preconcentration. Analyses for an additional 32 elements were obtained by routine ICP methods.


Panned heavy mineral concentrate samples were collected at 10 of the stream sediment sample sites. In the field the samples weighing approximately 50 kg were wet screened to minus 10 mesh and then hand panned to a concentrate of approximately 250 q. The concentrates were sent to Orex Laboratories in Burnaby where further concentrated by heavy liquid separation ferromagnetic separation. The non-magnetic, plus fractions were then sent to Chemex Labs Ltd. where they were ring pulverized to minus 150 mesh. The pulverized samples were analysed for gold and 32 additional elements in similar fashion to the stream sediment samples.

Soil samples were taken from the C soil horizon, at 50 metre intervals, along three reconnaissance lines run over the Keynote and Wolf claim groups. The samples were sent to Chemex Labs Ltd. in Vancouver. In the laboratory the samples were screened to minus 35 mesh, and ring pulverized prior to analysis. Analyses for gold and 32 additional elements were obtained in similar fashion to the stream sediment samples.

3.2 GEOCHEMICAL RESULTS:

Gold values in stream sediments are shown on Figure 5 at a scale of 1:10,000. The stream sediment results show four streams draining this property to contain anomalous gold concentrations with values up to 290 ppm. The highest value was obtained from a small stream draining the Wolf 27 & 29 claims, along Cunningham Creek, near the south end of the property. Several anomalous soil samples occur near this sample station and are possibly reflecting the same source. Three anomalous values up

to 105 ppb are clustered over a 1.0 $\rm km^2$ area between Wolf Creek and the head of California Creek. This area encompasses the Spitfire showing suggesting that mineralization in this area may be more widespread than previously believed.

Gold values in heavy mineral concentrates are shown on Figure 4. The results show very high gold concentrations, 21,960 ppb, in California Creek, approximately 100 m above the upstream end of former placer mining operations. Gold concentration in the 400 to 600 ppb range were also obtained from Grouse Creek and from the small tributary to Cunningham Creek draining the Wolf 27 & 29 Claims.

Soil sample results are shown on Figures 6 and 7, at a scale of 1:10,000. The results show highly significant gold concentrations to exist along the K1 and W1 soil lines.

Along the K1 soil line scattered anomalous gold concentrations occur between 0+00 S and 5+50 S. The highest gold values, up to 2,220 ppb, occur near the mouth of the Hard Cash adit situated at 3+50 S on this soil line. The results show anomalous arsenic values up to 1,500 ppm and anomalous lead values up to 2,310 ppm to coincide with this gold soil anomaly.

Along the W1 soil line consistently anomalous gold values occur between 10+50 S and 19+50 S with scattered anomalous values along the rest of the line. The highest gold concentrations, up to 250 ppb, occur between 19+00 and 19+50 S. The results show elevated arsenic values up to 136 ppm and elevated lead values up to 196 ppm to accompany the anomalous gold values.

4.0 PROSPECTING & ROCK CHIP SAMPLING PROGRAM:

In the course of prospecting the property 23 rock chip samples were taken from showings, quartz veins and angular blocks of mineralized float. Wherever possible the samples were taken perpendicular to the strike of the mineralized zones. Samples were taken by hand using hammers and chisels. On exposed faces weathered rock was removed in an attempt to minimize the affect of surface leaching.

The samples were sent to Chemex Laboratories Ltd. in North Vancouver, B.C. where they were assayed for gold by stand fire assay methods. Analyses for an additional 24 elements were obtained by conventional ICP methods.

4.1 ROCK SAMPLE RESULTS:

Rock sample descriptions and gold assays are given in Table 2 and sample locations are shown on Figure 4. The results show only background gold concentrations for all 23 samples. ICP analyses for an additional 32 elements are given in Appendix 1.

TABLE 2

ROCK SAMPLE DESCRIPTIONS AND GOLD ASSAYS

Sample No.	Gold oz/t	Description .
RA-1	0.002	Angular quartz boulders to 1.0 m diameter with seams of semi massive pyrite. Found in McCallum Creek. Possibly dump material from Tipperary showing.
RA-2	0.002	Angular quartz boulders to 0.3 m diameter with 1 - 2 % pyrite Found in upper Stevens Creek
RA-3	0.002	Quartz-ankerite-pyrite veinlets in carbonatized andesite boulders exposed in placer workings in upper Stevens Creek.
RA-4	0.002	Quartz-calcite veinlets in carbbonatized andesite bedrock exposed in the bed of China Creek 30 m west of Antler Shear zone.
RA-5	0.006	1.5 m wide quartz-carbonate vein exposed at mouth of Hard-Cash adit. Station 3+50 S along K-1 soil line. Vein strikes 1250/900.
RA-6	0.006	1.0 m wide quartz vein explored by Lork Dufferin Adits. Station 11+00 S along K-1 soil line. Grab sample of quartz with fresh pyrite taken from quartz on dump.
RA-7	0.002	0.4 m wide quartz vein exposed in old trench on Keynote 1 claim. Station 10+00 W along G-0 geophysical line. Vein strikes 030 /90 .
RA-8	0.002	Grab sample from mouth of Warspit adit. Quartzite with 1.0 % pyrite.
RA-9	0.002	10 cm quartz vein at station 3+00 S on W-1 soil line. Vein strikes 160 ⁰ /75 ⁰ W.

TABLE 2 (cont'd)

Sample No.	Gold oz/t	Description .
RA-10	0.002	80 cm quartz vein at station 3+80 S on W-1 soil line. Vein strikes 140°/80°W.
RA-11	0.002	10 cm quartz vein at station 6+40 S on W-1 soil line. Vein strike unknown.
RA-12	0.002	80 cm wide, horizontal, quartz-carbonate vein at station 16+50 S on W-1 soil line.
RA-13	0.002	Angular quartz-carbonate boulders to 1.0 m diameter. Prospecting station on Wolf claim group. See Figure 4.
RA-14	0.002	Angular quartz-carbonate boulders to 1.0 m diameter. Prospecting station on Wolf claim group 105 m south of RA-13.
RA-15 d	0.002	10 cm quartz-carbonate vein in grey phyllite. Prospecting station on Wolf claim group 300 m south of RA-14. Vein strikes 120°/45° E.
RA-16	0.002	40 cm quartz-carbonate vein in grey phyllite. Prospecting station on Wolf claim group 40 m south of RA-15. Vein strikes $080^{\circ}/45^{\circ}$ N.
RA-17	0.002	3 cm quartz-carbonate-pyrite vein in grey phyllite. Prospecting station on Wolf claim group 100 m south of RA-16. Vein strikes 130°/90° N.
RA-18	0.002	30 cm quartz-carbonate vein in grey phyllite. Prospecting station on Wolf claim group 15 m south of RA-17. Horizontal Vein.

TABLE 2 (cont'd)

Sample No.	Gold oz/t	Description .
Toby-1	0.002	50 cm quartz vein exposed in cat trench over the Toby showing on the west side of Antler Creek. See Figure 4. The vein strikes $160^{\circ}/90^{\circ}$ and carries disseminated pyrite and galena.
Toby-2	0.002	1.0 m chip sample across black phyllite with 5 % disseminated pyrite. Station is 50 m south of Toby-1 over the Toby showing.
Toby-3	0.002	20.0 m chip sample across black phyllite with 5 % disseminated pyrite. Station is immediately north of Toby-2 over the Toby showing.
Toby-4	0.002	1.0 m quartz vein exposed by placer workings. The vein is located 5 m east of Toby-2 and is possibly the strike extension of the Toby-1 vein. The vein strikes $140^{\circ}/65^{\circ}$ N.
Toby-5	0.002	Sample of massive pyrite found in dredge tailings. Prospecting station located 200 m north of Toby-1.

5.0 GEOPHYSICS:

In order to determine if geophysical methods could be used to locate gold mineralization on the property, four test lines of magnetometer coverage, and three test lines of VLF-EM coverage were run over selected target areas. Line locations are shown on Figure 4.

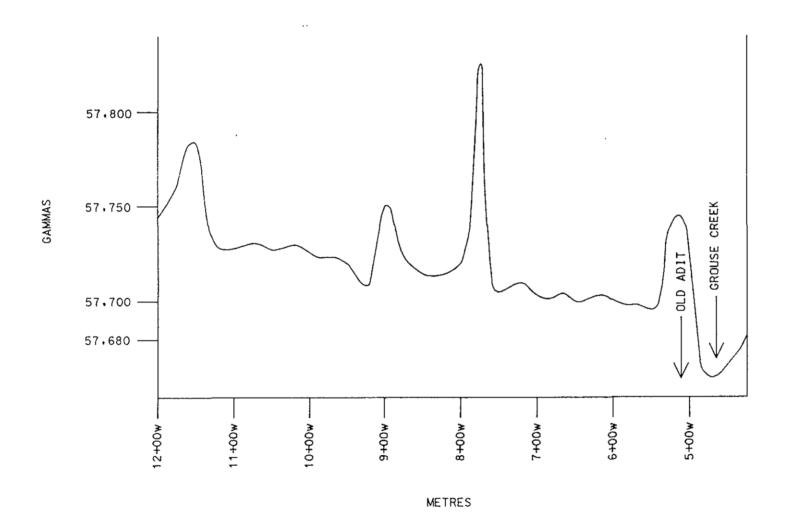
The magnetometer survey was carried out using a GEM GE6 proton precession magnetometer manufactured by GEM Systems of Toronto, Ont. This instrument measures variations in the earth's magnetic field to an accuracy of plus or minus 1 gamma. Corrections for diurnal variations were made by completing loops and taking readings at a base station at one hour intervals.

The VLF-EM survey was carried out using a Geonics EM-16 unit. All three survey lines were run in an east-west direction. Readings were taken facing $090^{\rm O}$ using the Seattle Washington transmitting station NLK operating at 24.8 kHz.

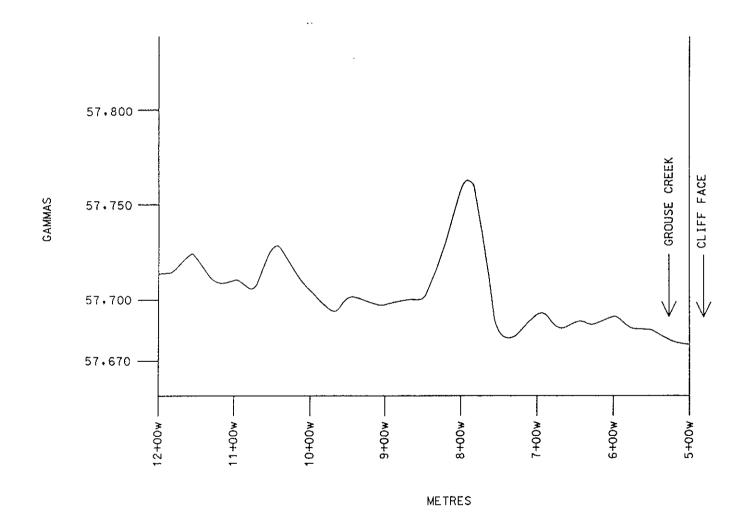
5.1 Magnetometer Results:

Magnetometer results for four lines run over the property are shown on Figures 8 - 11 all at a scale of 1:500. The results show little evidence of magnetic features of the type usually associated with hydrothermal activity along faults or shear zones.

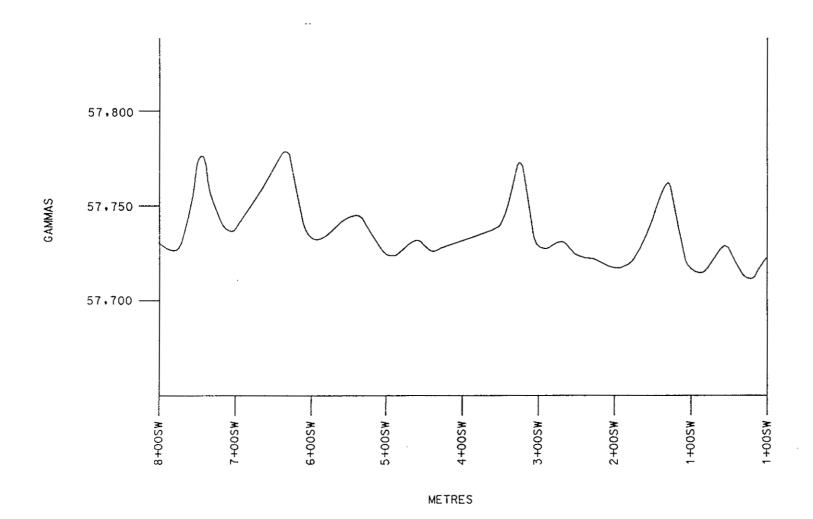
Grouse lines 0+00 and 1+00 south shown in Figures 8 and 9 show three sharp magnetic spikes located at 5+25w and 7+75w on line 0 and at 8+00w on line 1 south, in the vicinity of the Hard Cash adit on upper Grouse Creek. These anomalies are possibly due to magnetic debris around the mine workings but several short 25 m step out lines should be run to investigate these anomalies.

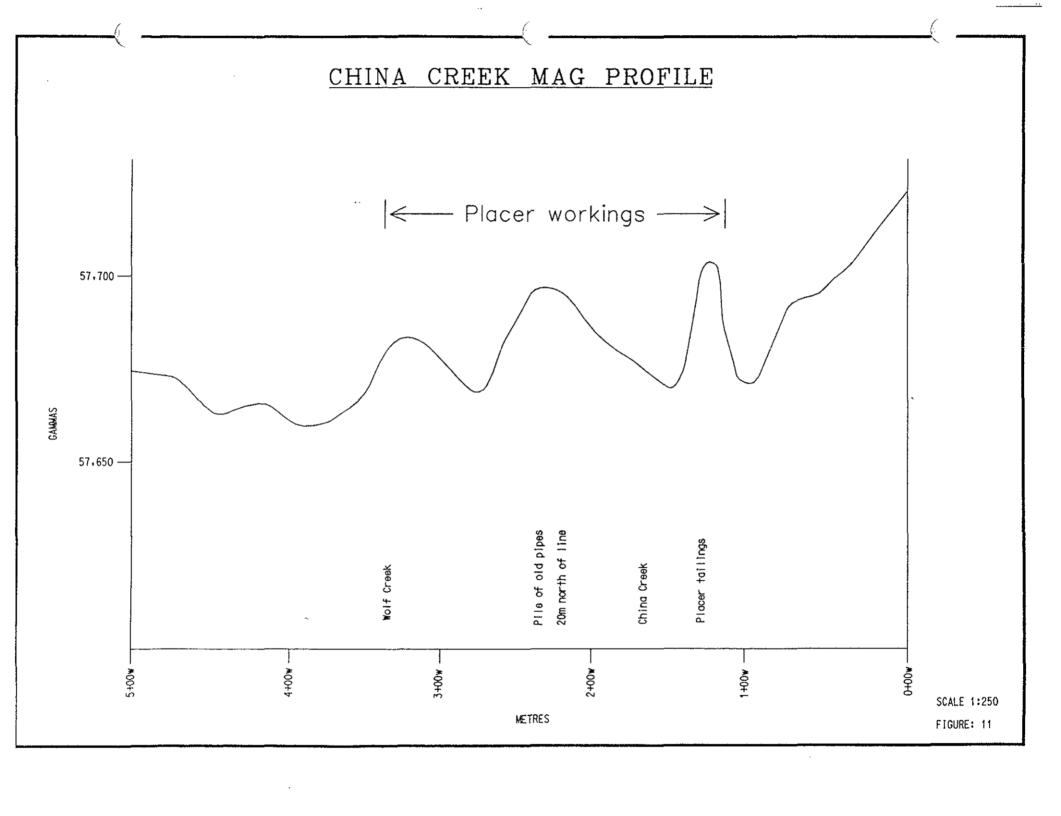

The China Creek Line run across the China Creek Showing in the Antler Shear Zone is shown in Figure 12. This line shows a broad magnetic low across China and Wolf creeks with three narrow magnetic spikes. The magnetic anomalies are probably due to metallic debris from former placer operations.

The Keynote Line run along the K-1 soil line is relatively flat with several narrow, weak, magnetic spikes. These are possibly reflecting narrow pyrrhotite enriched zones in the underlying quartzites.

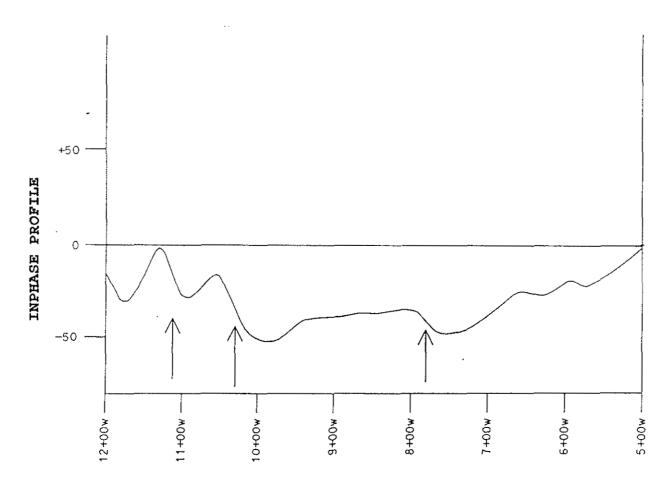

5.2 VLF-EM Results:

VLF-EM results are shown on Figures 12 - 14. The survey results show several weak to moderate conductors but do not display features of the type generally associated with hydrothermal activity along shear zones. Most of the conductors occur in the vicinity of graphite rich phyllite units. A single weak conductor located at 7+75w on Grouse Line 0+00 coincides with a magnetic anomaly and thus may be reflecting pyrrhotite mineralization along a narrow shear zone. This anomaly should be investigated with additional 25 m spaced step out lines.

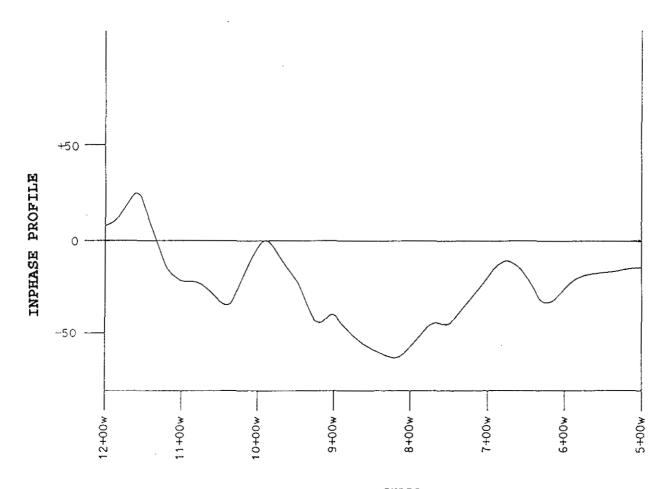

GROUSE MAG LINE 0+00 SOUTH



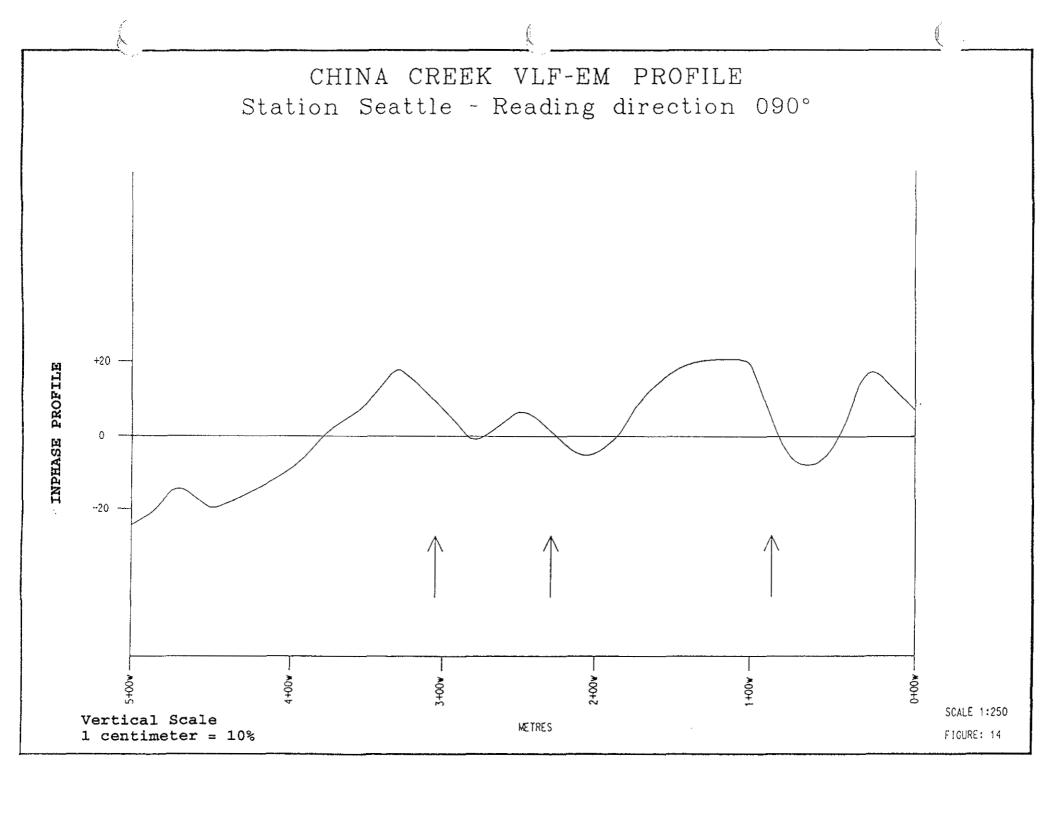
GROUSE MAG LINE 1+00 SOUTH



KEYNOTE MAG LINE 0+00


GROUSE VLF-EM LINE 0+00 SOUTH Station Seattle - Reading direction 090°

Vertical Scale
0.5 centimeters = 10%


METRES

GROUSE VLF-EM LINE 1+00 SOUTH Station Seattle - Reading direction 090°

Vertical Scale
0.5 centimeters = 10%

METRES

6.0 DISCUSSIONS AND CONCLUSIONS:

The results of work completed to date over the Antler Creek Property may be summarized as follows:

- (a) The property is underlain by the same geologic units that host the former Cariboo Gold Quartz, Island Mountain and Mosquito Creek gold mines just 15 km to the northwest.
- (b) Although hampered by an extensive blanket of glacial till, previous exploration programs discovered nine widely spaced showings on the property.
- (c) Stream sediment sampling completed by Pacific Mariner Resources Ltd. in 1994 shows very high gold concentrations in streams draining upper California Creek and the south Cunningham Creek area.
- (d) Reconnaissance soil sampling completed in 1994 revealed anomalous gold concentrations in the vicinity of the Hard Cash Showing and over a new anomaly along Cunningham Creek.
- (e) Panned concentrate samples showed highly anomalous gold concentrations in California creek, and anomalous gold concentrations in the Grouse Creek and Cunningham Creek areas.
- (f) A reconnaissance magnetometer survey carried out during the present program showed several narrow, unexplained anomalies in the vicinity of the Hard Cash Adit.
- (f) A reconnaissance VLF-EM survey carried out during the present program gave inconclusive results.

The results discussed above are encouraging and show that three widely separated areas of anomalous gold values in soils or stream sediment exist on the Antler Creek Property. Additional exploration should be carried out over these three areas. This work should initially entail prospecting, basal till sampling and several additional test lines of geophysical coverage.

Respectfully submitted at Vancouver, British Columbia

A.G. Troup,

7.0 REFERENCES:

V::::::/

- B.C. Minister of Mines Annual Report for 1917, p.129; 1929, p.190; 1932, p.91; 1946, p.A94; 1947, p.A114-115...
- B.C. Energy Mines and Petroleum Resources, Annual Report for 1986, p.A53.
- De Carle, R.J., 1988; Report on Combined Helicopter Borne Magnetic, Electromagnetic and VLF Survey, Antler Creek Property, Barkerville Area, Cariboo District, B.C.: Private Report for Rise Resources Ltd. by Aerodat Surveys Ltd., Feb. 1988.
- Gonzalez, R.A. and Akhurst, K., 1988; Geochemical, Geophysical and Drilling Report on the Antler Creek Prospect, Cariboo Mining Division, B.C.: Archean Engineering Assessment Report for Rise Resources Ltd.
- Hanson, G., 1935: Barkerville Gold Belt, Cariboo District, Central, B.C.: G.S.C., Memoir 181.
- Johnson, W.A. & Uglow, W.L., 1926; Placer and Vein Gold Deposits of Barkerville, Cariboo Districe, B.C.: Canada Department of Mines, Memoir 149.
- Minfile 1991; Minfile Numbers 93H006, 93H007, 93H010, 93H048, 93H049, 93H050, 93H051, 93H052: B.C. Ministry of Energy, Mines and Petroleum Resources, Mineral Resources Division, Minfile Master Report 1991.
- Newton, D., 1989; R.C. Drilling Report on the Antler Creek Property, Cariboo Mining Division, B.C.: Archean Engineering Assessment Report for Rise Resources Ltd.
- Skerl, A.C., 1948; Geology of the Cariboo Gold Quartz Mine, Wells, B.C.: Economic Geology, Vol.XLIII, p.571-597.
- Struik, L.C., 1988: Structural Geology of the Cariboo Gold Mining District, East-Central, B.C.: G.S.C. Memoir 421.
- Sutherland Brown, A., 1957: Geology of the Antler Creek Area, Cariboo District, B.C.: BCDM Bulletin No.38.
- Tipper, H.W., et. al., 1979; Parsnip River, British Columbia, Sheet 93: G.S.C. Map 1424A.

8.0..STATEMENT OF QUALIFICATIONS:

`---

I, Arthur G. Troup, do hereby certify that:

- 1) I am a consulting geologist with Archean Engineering Ltd. of 3605 Creery Avenue, West Vancouver, B.C.
- 2) I am a graduate of McMaster University in Hamilton, Ontario with an M.Sc. in Geology.
- 3) I am a registered member of the Association of Professional Engineers of the Province of British Columbia.
- 4) I have practiced my profession in Canada and abroad since 1964.
- 5. I have based this report on work done by myself or under my supervision. I was physically on the property for the purpose of carrying out the program from August 10th to 19th, 1994. Data obtained from the Geological Survey of Canada, B.C. Dept. of Mines, and assessment reports and other support documents provided by Pacific Mariner Exploration Ltd., were also used as background and reference data.

Dated at Vancouver, British Columbia, this 14th day of October 1994.

Arthur G.

9.0 COST STATEMENT

CONTRACT GEOCHEMISTRY, GEOPHYSICS AND PROSPECTING: Archean Engineering Ltd.	6,541.78
ASSAYING AND GEOCHEMICAL ANALYSIS: Chemex Labs Ltd.	2,787.00
CRAFTING CHARGES: Digital Geographics Ltd.	1,070.00
REPORT PREPARATION: Archean Enginering Ltd.	2,247.00
	12,645.78

APPENDIX

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6

INVOICE NUMBER

I9424337

BILLIN	C INE	ODNAA	TION
BILLIN	G INT	ORIVIA	LION

Date:

7-SEP-94

Project:

P.O. No.:

Account: LVH

Comments:

Billing:

For analysis performed on

Certificate A9424337

Terms:

Payment due on receipt of invoice

1.25% per month (15% per annum) charged on overdue accounts

Please Remit Payments to:

CHEMEX LABS LTD.

212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1

O.	mada V/J 201		

# OF SAMPLES	ANALYSED FOR CODE - DESCRIPTION	UNIT SAMPLE PRICE PRICE	AMOUNT
13	201 - Dry, sieve to -80 mesh ICP-32 100 - Au ppb FA+AA	1.10 6.25 7.95 15.30	198.90
		Total Cost \$ (Reg# R100938885) GST \$ TOTAL PAYABLE (CDN) \$	198.90 13.92 212.82

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6

A9424337

Comments: CC: A.G. TROUP

CERTIFICATE

A9424337

(LVH) - PACIFIC MARINER EXPLORATION LTD.

Project: P.O. #:

Samples submitted to our lab in Vancouver, BC. This report was printed on 7-SEP-94.

	SAMPLE PREPARATION								
CHEMEX	NUMBER SAMPLES	DESCRIPTION .							
201 229	13	Dry, sieve to -80 mesh ICP - AQ Digestion charge							
* NOTE	1:								

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

1 A I A A	VTICAL	DDOC	EDURES
AIVAL	-Y HCAL	- PROG	EDURES

	UMBER AMPLES DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
100 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 21128 2150 2130 2131 2132 2151 2134 2135 2137 2138 2139 2140 2141 2142 2143 2144 2145 2144 2145 2146 2147 2148 2149	Au ppb: Fuse 10 g sample Ag ppm: 32 element, soil & rock As ppm: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock K %: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Na %: 32 element, soil & rock Na %: 32 element, soil & rock So ppm: 32 element, soil & rock P ppm: 32 element, soil & rock So ppm: 32 element, soil & rock Topm: 32 element, soil & rock Topm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock Topm: 32 element, soil & rock	FA-AAS ICP-AES	5 0.2 0.01 2 10 0.5 2 0.01 0.5 1 1 0.01 10 0.01 5 1 0.01 10 2 2 2 1 1 0.01 10 2 2 2 1	10000 200 15.00 10000

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W. HASTINGS ST, VANCOUVER, BC V6B 1N6

Page Nb. ser : 1-A
Total Pages :1
Certificate Date: 07-SEP-94
Invoice No. : 19424337
P.O. Number :

Account :LVH

Project:

Comments: CC: A.G. TROUP

																				
							CE	RTIFI	CATE	OF A	NAL'	YSIS		49424	337					
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	ppm Cd	Co	Cr ppm	Çu	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn mqq
ssa-01 ssa-02 ssa-03 ssa-04 ssa-05	201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	< 0.2 < 0.2 0.2 0.2 1.4 < 0.2	1.10 1.42 1.04 1.42 1.51	54 14 20 6 10	60 70 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.05 0.36 0.55 0.61 0.67	< 0.5 < 0.5 0.5 1.0 < 0.5	16 12 14 8 15	13 15 10 16 18	36 26 27 25 32	3.66 3.18 3.09 2.01 3.71	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.08 0.04 0.07 0.03 0.07	30 20 20 20 20 20	0.23 0.38 0.33 0.27 0.49	655 505 1545 320 1100
SSA-06 SSA-07 SSA-08 SSA-09 SSA-10	201 229 201 229 201 229 201 229 201 229	< 5 290 < 5	< 0.2 < 0.2 0.2 0.2 < 0.2	1.03 0.51 1.42 1.62 1.37	14 62 28 12 26	120 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.32 0.18 0.71 1.08 0.66	< 0.5 0.5 < 0.5 < 0.5 0.5	13 17 19 17 21	17 4 17 17 33	30 40 43 40 61	3.44 4.71 6.03 5.82 4.62	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.06 0.04 0.07 0.05 0.04	30 30 20 10 30	0.42 0.21 0.48 0.49 0.83	715 1120 2200 805 690
SSA-11 SSA-12 SSA-13	201 229 201 229 201 229	20	0.6 0.6 < 0.2	0.82 0.45 1.61	6 < 2 20	10	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2		0.5 < 0.5 < 0.5	4 3 14	11 11 21	29 21 31	1.85 1.03 4.07	< 10 < 10 < 10	< 1 < 1 < 1	0.03 0.04 0.03	20 10 20	0.20 0.38 0.38	250 470 485

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6

Project:

Comments: CC: A.G. TROUP

Page N Total Pages : 1
Certificate Date: 07-SEP-94
Invoice No. : 19424337
P.O. Number :

:LVH

Account

CEDTIEICATE OF ANALVEIC A0/12/1227

									С	ERTIF	ICATE	OF A	NALY	/SIS	A9424337
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	p ppm	ppm	Sb ppm	Sc ppm	Sr Ti	Tl ppm	U ppm	V mqq	W	Zn ppm	
SA-01 SA-02 SA-03 SA-04 SA-05	201 229 201 229 201 229 201 229 201 229		< 0.01 < 0.01 0.01 0.01 0.01	30 24 37 17 29	650 810 1030 1400 1060	148 30 40 78 24	2 < 2 < 2 < 2 < 2	1 1 1 2	6 0.01 21 < 0.01 43 < 0.01 36 < 0.01 36 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	19 18 10 11 26	< 10 10 < 10 < 10 < 10	90 80 108 78 82	
5A-06 5A-07 5A-08 5A-09 5A-10	201 229 201 229 201 229 201 229 201 229 201 229	1 1 1 1 2	< 0.01 < 0.01 0.01 0.01 0.01	32 42 39 36 52	720 610 1100 1180 1220	24 98 76 42 40	< 2 < 2 < 2 < 2 < 2	2 2 3 2 3	20 0.02 16 < 0.01 54 < 0.01 78 < 0.01 38 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	22 8 24 23 28	< 10 10 20 10 10	72 150 114 166 198	
SA-11 SA-12 SA-13	201 229 201 229 201 229	< 1 < 1 1	0.01 0.01 0.01	25 25 25	1780 1630 640	12 22 36	< 2 < 2 < 2	1 < 1 2	68 < 0.01 131 < 0.01 26 0.02	< 10 < 10 < 10	< 10 < 10 < 10	6 8 38	< 10 < 10 < 10	84 74 90	
											•				

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

OF PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6

INVOICE NUMBER

I9424338

BILLING	INFORMATION
Date:	8-SEP-94

Project:

P.O. No.:

Account: LVH

Comments:

Billing:

For analysis performed on

Certificate A9424338

Terms:

Payment due on receipt of invoice

1.25% per month (15% per annum) charged on overdue accounts

Please Remit Payments to:

CHEMEX LABS LTD.

212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1

# OF SAMPLES	ANALYSED FOR CODE - DESCRIPTION	UNIT PRICE	SAMPLE PRICE	AMOUNT
99	203 - Dry, sieve to -35 mesh 205 - Geochem ring to approx 150 mesh ICP-32	1.10 2.50 6.25		
	100 - Au ppb FA+AA	7.95	17.80	1762.20
	(Reg# R100	Tota 938885)	l Cost \$ GST \$	1762.20 _123.35
	TOT	AL PAYABLE	(CDN) \$	1885.55

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 DESCRIPTION OF THE PROPERTY OF THE PROPERTY

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6

A9424338

Comments:

CERTIFICATE

A9424338

(LVH) - PACIFIC MARINER EXPLORATION LTD.

Project: P.O. #:

Samples submitted to our lab in Vancouver, BC. This report was printed on 8-SEP-94.

	SAMPLE PREPARATION						
CHEMEX	NUMBER SAMPLES	DESCRIPTION					
203 205 229	99 99 99	Dry, sieve to -35 mesh Geochem ring to approx 150 mesh ICP - AQ Digestion charge					
* NOTE	1:						

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

ΔΝΔΙ	YTICAL	PROCEDURES
MINML	-	I IIOCEDOILEO

	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
100 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2150 2131 2132 2151 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2148 2149	99999999999999999999999999999999999999	Au ppb: Fuse 10 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cc ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Gd ppm: 32 element, soil & rock Gd ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Na %: 32 element, soil & rock Nppm: 32 element, soil & rock P ppm: 32 element, soil & rock P ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Tl ppm: 32 element, soil & rock	FA-AAS ICP-AES	5 0.2 0.01 2 10 0.5 2 0.01 0.5 1 1 0.01 10 0.01 10 0.01 11 10 0.01 11 10 2 2 1 1 0.01 10 2 2 2	10000 200 15.00 10000 100.0 10000 100.0 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

J: PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6

Project : Comments:

Page Nb. er :1-A Total Pages :3 Certificate Date: 08-SEP-94 Invoice No. : I 9424338 P.O. Number :

Account :LVH

CERTIFICATE OF ANALYSIS A9424338

									<u> </u>					· · ·	·					
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
K1 00+00s	203 205	60	< 0.2	1.69	64	160	< 0.5	< 2	0.06	< 0.5	19	132	31	4.32	< 10	< 1	0.30	30	0.29	990
K1 00+50s	203 205	105	< 0.2	1.23	46	140	< 0.5	< 2	0.15	< 0.5	13	173	31	4.15	< 10	< 1	0.26	30	0.24	525
K1 01+00S	203 205	< 5	< 0.2	1.16	40	120	< 0.5	< 2	0.13	< 0.5	16	107	44	4.22	< 10	< 1	0.19	30	0.22	750
K1 01+50S	203 205	10	1.2	1.50	84	170	0.5	< 2	0.14	0.5	127	78	199	12.15	< 10	< 1	0.23	20	0.20	3310
K1 02+00s	203 205	< 5	< 0.2	1.11	28	100	< 0.5	< 2	0.02	< 0.5	19	58	52	4.28	< 10	< 1	0.15	30	0.14	1850
K1 02+50s	203 205	2220	0.2	1.08	94	140	< 0.5	< 2	0.04	< 0.5	27	91	63	6.51	< 10	< 1	0.27	40	0.08	2510
K1 03+00s	203 205	555	1.4	0.89	488	180	< 0.5	< 2	0.02	0.5	15	100	36	5,62	< 10	< 1	0.32	40	0.04	1310
K1 03+50S	203 205	410	3.2	0.94	444	190	< 0.5	< 2	0.06	2.0	44	66	49	6.31	< 10	< 1	0.24	30	0.11	4140
K1 04+00s	203 205	10	1.2	1.16	62	140	< 0.5	< 2	0.02	< 0.5	18	97	32	4.03	< 10	< 1	0.20	30	0.07	2880
K1 04+50S	203 205	< 5	0.4	1.17	96	90	< 0.5	< 2	0.06	1.0	20	85	44	5.07	< 10	< 1	0.16	20	0.17	1390
K1 05+00s	203 205	295	3.6	0.75	1510	80	< 0.5	< 2	0.05	0.5	19	117	49	5.36	< 10	< 1	0.24	30 30	0.03	1705 1660
K1 05+50s	203 205	10	0.8	0.88	102	160	0.5	< 2	0.08	0.5	24	147	61	5.08	< 10	< 1	0.38	30	0.07	1000
K1 06+00s	203 205	5	1.4	0.78	68	90	< 0.5	< 2	0.04	< 0.5	14	94	29 33	4.41 4.28	< 10	< 1 < 1	0.21 0.28	40	0.36	770
K1 06+50s	203 205	< 5	< 0.2	1.47	32	130	< 0.5	< 2 < 2	0.15 0.02	< 0.5 < 0.5	16 14	95 65	33 44	4.04	< 10 < 10	< 1	0.28	40	0.03	725
K1 07+00s	203 205	45	< 0.2	0.83	20	100	< 0.5	· · · ·	0.02	· 0.5		- 63		4.04	V 10	· ·	V+20	**		
K1 07+50s	203 205	< 5	< 0.2	0.96	10	70	< 0.5	< 2	0.02	< 0.5	19	41	41	5.84	< 10	< 1 < 1	0.13 0.12	20 20	0.13 0.13	1745 365
K1 08+00s	203 205	< 5	0.2	0.56	12	50	< 0.5	< 2	0.10	< 0.5	4	80	20 31	2.55 3.56	< 10 < 10	< 1	0.12	20	0.13	1155
K1 08+50s	203 205	< 5	0.2	0.75	18	110	< 0.5 < 0.5	< 2	0.09 0.15	< 0.5 < 0.5	12 11	45 49	35	3.28	< 10	< 1	0.10	20	0.13	1085
K1 09+00S K1 09+50S	203 205 203 205	< 5 < 5	0.8 < 0.2	1.05 0.58	10 14	80 30	< 0.5	< 2 < 2	0.13	< 0.5	7	59	30	4.04	< 10	< 1	0.06	20	0.14	350
K1 09+30S	203 203		· 0.2	0.38	1.3				V, V2											
K1 10+00S	203 205	< 5	0.4	0.90	14	80	< 0.5	< 2	0.12	< 0.5	15	47 56	27 29	3.64 3.87	< 10	< 1 < 1	0.13 0.15	20 30	0.18	1760 1085
K1 10+50s	203 205	< 5	< 0.2	0.44	38	80 70	< 0.5 < 0.5	< 2 < 2	0.06	< 0.5 < 0.5	23 20	74	51	4.27	< 10 < 10	< 1	0.13	40	0.16	530
K1 11+00s	203 205	< 5	< 0.2	0.81	4 12	70	< 0.5	< 2	0.02	< 0.5	20 6	109	17	2.56	< 10	< 1	0.12	20	0.10	435
K1 11+50S K1 12+00S	203 205	< 5 < 5	0.2 < 0.2	0.58 1.55	4	230	< 0.5	< 2	0.17	< 0.5	14	242	22	3.26	< 10	< 1	0.46	30	0.11	2790
K1 12+008	203 203			1.33	*															
K1 12+50S	203 205	< 5	0.4	0.60	8	110	< 0.5		< 0.01	< 0.5	12	52	57	7.05	< 10	< 1	0.13	30	0.05	490 1640
K1 13+00s	203 205	< 5	< 0.2	1.09	12	150	< 0.5	< 2	0.09	< 0.5	15	64	31	4.32	< 10	< 1	0.18	30	0.24	1640 75
K1 13+50s	203 205	< 5	< 0.2	0.45	< 2	90	< 0.5		< 0.01	< 0.5	1	97	3	0.62	< 10	< 1 < 1	0.19 0.19	40 30	0.02	1190
K1 14+00s	203 205	< 5	< 0.2	0.52	8	80	< 0.5		< 0.01	< 0.5	27 2	71 92	57 4	5.00 1.19	< 10 < 10	< 1	0.19	40	0.01	185
K1 14+50S	203 205	< 5	< 0.2	0.39	6	100	< 0.5	< 2	0.02	< 0.5		94	4	1.19	< 10		V.10	40	0.01	100
K1 15+00s	203 205	< 5	0.2	1.22	12	290	< 0.5	< 2	0.16	< 0.5	13	61	. 19	3.44	< 10	< 1	0.16	30	0.27	930 720
K1 15+50s	203 205	< 5	< 0.2	0.60	14	80	< 0.5	< 2	0.02	< 0.5	15	105	48	4.33	< 10 < 10	< 1 < 1	0.17 0.19	40 30	0.08	575
K1 16+00s	203 205	< 5	0.2	1.05	10	160	< 0.5 < 0.5	< 2 < 2	0.19 0.21	< 0.5 < 0.5	14 14	69 61	28 24	3.42 3.41	< 10 < 10	< 1	0.19	30	0.34	1005
K1 16+50S	203 205 203 205	< 5 < 5	< 0.2 < 0.2	1.12 0.61	6 2	310 180	< 0.5	< 2	0.17	< 0.5	13	94	22	3.13	< 10	< 1	0.13	30	0.13	2030
X1 17+00S	403 203	\ 3	· 0.2	0.01	4	100	` 0.5			- 0.5	13				· 10	· · ·				
K1 17+50s	203 205	< 5	0.8	1.66	6	300	< 0.5	< 2	0.22	< 0.5	13	64	38	4.07	< 10	< 1	0.18	40	0.27	730
K1 18+00s	203 205	< 5	< 0.2	1.10	14	190	< 0.5	< 2	0.18	< 0.5	17	82	47	3.65	< 10	< 1	0.19	60	0.34	935
K1 18+50s	203 205	< 5	< 0.2	1.07	6	170	< 0.5	< 2	0.11	< 0.5	6	105	. 8	2.44	< 10	< 1	0.19	40	0.27	995
K1 19+00s	203 205	< 5	0.4	0.85	4	140	< 0.5	< 2	0.15	< 0.5	8	69	16	2.81	< 10	< 1	0.19	30	0.23	840
K1 19+50s	203 205	< 5	0.2	0.93	2	320	< 0.5	< 2	0.19	< 0.5	7	78	15	2.16	< 10	< 1	0.22	30	0.21	860

CERTIFICATION:__

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 . J: PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6 Page Nh., per . 1-tll Total Pages :3 Certificate Date: 08-SEP-94 Invoice No. :19424338 P.O. Number : Account :LVH

Project : Comments:

									CE	RTIF	CATE	OF A	NALY	'SIS	A9424338
SAMPLE	PREP CODE	Mo	Na %	Ni ppm	ppm b	Pb ppm	Sb ppm	ppm Sc	Sr Ti ppm %	T1 ppm	ppm U	mqq V	mqq	Zn ppm	
K1 00+00s K1 00+50s K1 01+00s K1 01+50s K1 02+00s	203 205 203 205 203 205 203 205 203 205 203 205	1 1 1 2 1	0.03 0.02 0.01 0.02 0.01	51 34 33 163 38	510 620 620 1930 590	76 96 54 122 56	< 2 < 2 < 2 < 2 < 2	2 1 1 7 < 1	13 0.01 22 0.01 11 0.02 26 < 0.01 9 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 10 < 10	24 20 35 16 12	10 < 10 < 10 50 < 10	68 84 84 170 84	
K1 02+50s K1 03+00s K1 03+50s K1 04+00s K1 04+50s	203 205 203 205 203 205 203 205 203 205 203 205	1 2 1 1 < 1	0.02 0.02 0.02 0.01 0.01	55 37 69 26 40	980 750 730 910 690	188 400 1345 292 298	< 2 < 2 < 2 < 2 < 2	1 < 1 2 < 1 1	14 < 0.01 8 < 0.01 20 < 0.01 14 < 0.01 10 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	10 13 11 15 10	20 < 10 20 < 10 < 10	138 176 246 142 236	
K1 05+005 K1 05+508 K1 06+008 K1 06+508 K1 07+008	203 205 203 205 203 205 203 205 203 205 203 205	4 1 1 < 1 3	0.01 0.01 0.01 0.02 0.02	38 42 26 34 25	790 760 830 920 870	2310 190 334 36 56	< 2 < 2 < 2 < 2 < 2	< 1 1 < 1 2 1	11 < 0.01 21 < 0.01 9 < 0.01 15 < 0.01 16 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	7 8 9 11 8	< 10 < 10 < 10 < 10 < 10	262 198 176 90 56	
K1 07+50s K1 08+00s K1 08+50s K1 09+00s K1 09+50s	203 205 203 205 203 205 203 205 203 205 203 205	2	0.02 < 0.01 0.01 0.01 < 0.01	27 17 26 30 23	2930 1080 760 1290 640	32 18 46 32 34	< 2 2 < 2 < 2 < 2	< 1 < 1 < 1 1	8 < 0.01 9 < 0.01 10 < 0.01 16 < 0.01 4 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	12 12 14 11 10	10 < 10 < 10 < 10 < 10	88 50 72 74 68	
K1 10+00S K1 10+50S K1 11+00S K1 11+50S K1 12+00S	203 205 203 205 203 205 203 205 203 205 203 205	1 3 1 < 1 < 1	0.01 0.02 0.01 0.01 0.03	27 30 43 15 31	1390 900 620 810 1190	38 34 40 34 10	< 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1	9 < 0.01 11 < 0.01 6 < 0.01 7 < 0.01 29 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	13 8 8 12 19	< 10 < 10 < 10 < 10 < 10	80 74 96 42 76	
K1 12+50s K1 13+00s K1 13+50s K1 14+00s K1 14+50s	203 205 203 205 203 205 203 205 203 205 203 205	3 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	33 31 3 48 7	1010 1530 210 750 320	48 24 4 30 6	2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	19 < 0.01 13 < 0.01 6 < 0.01 6 < 0.01 10 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	13 11 6 4	10 < 10 < 10 < 10 < 10	110 66 10 100 20	
K1 15+00S K1 15+50S K1 16+00S K1 16+50S K1 17+00S	203 205 203 205 203 205 203 205 203 205 203 205	< 1 < 1 1 1	0.01 0.01 0.01 0.01 0.01	25 31 31 29 20	1020 460 1140 710 1460	30 36 46 24 28	< 2 < 2 < 2 < 2 < 2	1 1 1 1 < 1	19 < 0.01 14 < 0.01 20 < 0.01 20 0.01 25 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	.17 6 13 17 17	< 10 < 10 < 10 < 10 < 10	100 90 92 78 80	
K1 17+50s K1 18+00s K1 18+50s K1 19+00s K1 19+50s	203 205 203 205 203 205 203 205 203 205 203 205	1 1 < 1 < 1 1	0.01 0.01 0.01 0.01 0.01	43 45 13 18 18	1530 830 1040 1310 1600	32 28 20 18 20	< 2 < 2 < 2 < 2 < 2	2 1 < 1 < 1 < 1	26 < 0.01 22 < 0.01 14 < 0.01 18 < 0.01 20 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	17 10 20 11 14	10 < 10 < 10 < 10 < 10	150 134 50 54 58	•

CERTIFICATION: tout sichler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6

Project : Comments:

Page Na. Jul 12-A Total Pages 13 Certificate Date: 08-SEP-94 Invoice No. : 19424338 P.O. Number :

Account :LVH

	- 			·····						CE	RTIF	CATE	OF A	NAL'	YSIS		19424	338		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
K1 20+00s K2 0+00sW K2 0+50sW K2 1+00sW K2 1+50sW	203 205 203 205 203 205 203 205 203 205	<pre></pre>	< 0.2 < 0.2 < 0.2 1.2	1.88 1.50 1.46 1.28 1.68	12 6 18 6 4	290 220 200 230 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.16 0.04 0.04 0.07 0.11	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 7 14 8 8	221 252 186 139 183	14 15 22 19 20	4.37 2.84 4.41 3.03 3.04	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.40 0.33 0.42 0.39 0.22	40 60 50 80 20	0.33 0.15 0.09 0.07 0.27	2220 225 725 215 320
K2 2+00SW K2 2+50SW K2 3+00SW K2 3+50SW K2 4+00SW	203 205 203 205 203 205 203 205 203 205	< 5 < 5 < 5 < 5	0.4 0.4 1.4 0.2 0.6	1.35 1.48 2.07 1.49 1.64	6 8 < 2 4 18	250 300 420 410 270	< 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.12 0.07 0.05 0.08 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 13 30 11 13	303 195 210 179 218	11 19 31 22 30	3.42 3.41 3.70 3.86 5.15	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.34 0.29 0.28 0.28 0.34	40 30 30 30 40	0.15 0.17 0.17 0.18 0.22	325 475 2050 1150 565
X2 4+50sW X2 5+00sW X2 5+50sW X2 6+00sW X2 6+50sW	203 205 203 205 203 205 203 205 203 205	< 5 < 5 < 5 < 5 < 5	0.6 0.6 0.6 1.0 3.0	1.10 1.34 1.99 1.71 1.56	< 2 6 6 6 8	140 180 210 490 570	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.01 0.01 0.03 0.20 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 4 15 7 28	185 206 177 195 241	16 27 32 28 32	1.34 3.44 4.21 3.43 3.26	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.35 0.35 0.37 0.30 0.27	60 40 40 30 20	0.04 0.11 0.47 0.21 0.12	60 260 1480 695 1560
K2 7+00sW K2 7+50sW K2 8+00sW W1 00+00s W1 00+50s	203 205 203 205 203 205 203 205 203 205	<pre></pre>	3.6 3.6 1.2 1.0 0.4	2.11 1.57 1.12 1.62 1.46	18 2 20 6 22	580 600 630 440 170	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.54 0.31 0.02 0.49 0.98	0.5 < 0.5 < 0.5 2.0 0.5	10 2 10 23 39	242 111 160 98 117	36 35 12 90 71	2.68 2.58 5.12 8.42 5.95	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.20 0.23 0.25 0.29 0.31	10 30 20 30 20	0.17 0.10 0.09 0.35 0.44	1875 130 1195 6700 875
W1 01+00s W1 01+50s W1 02+00s W1 02+50s W1 03+00s	203 205 203 205 203 205 203 205 203 205	< 5 < 5 20 < 5 < 5	0.4 0.4 0.2 < 0.2 < 0.2	1.35 1.14 1.88 0.78 1.75	6 62 38 26 22	170 180 160 70 130	0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.22 0.53 0.26 0.19 0.20	< 0.5 0.5 < 0.5 < 0.5 < 0.5	28 54 21 29 26	82 40 150 15 48	79 198 44 54 53	4.92 7.47 5.45 4.70 4.62	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.43 0.25 0.36 0.07 0.34	20 20 60 30 50	0.17 0.22 0.34 0.27 0.52	465 595 870 430 375
W1 03+508 W1 04+008 W1 04+508 W1 05+008 W1 05+508	203 205 203 205 203 205 203 205 203 205 203 205	< 5 < 5 < 5 20 35	1.2 0.4 0.4 0.2	1.37 2.22 1.67 1.60 1.44	22 22 20 30 52	190 200 170 110 230	0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.32 0.20 0.29 0.18 0.28	1.5 < 0.5 < 0.5 < 0.5 < 0.5	26 27 23 26 24	92 90 111 136 133	82 60 54 69	5.33 5.65 4.98 6.70 5.88	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.31 0.29 0.22 0.16 0.24	40 30 40 30 50	0.24 0.37 0.38 0.34 0.40	765 685 995 1840 900
W1 06+00S W1 06+50S W1 07+00S W1 07+50S W1 08+00S	203 205 203 205 203 205 203 205 203 205 203 205	45 < 5 110 < 5 < 5	< 0.2 < 0.2 < 0.2 0.2 < 0.2	3.62 1.67 1.85 1.45 1.69	52 28 38 18 20	140 120 140 200 140	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.12 0.20 0.15 0.16 2.72	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	45 26 22 23 19	176 130 145 154 57	106 57 58 62 49	7.85 5.86 5.68 5.09 4.59	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.25 0.25 0.29 0.30 0.23	20 40 50 40 20	0.92 0.49 0.52 0.39 0.91	2690 1075 980 795 730
W1 08+50s W1 09+00s W1 09+50s W1 10+00s W1 10+50s	203 205 203 205 203 205 203 205 203 205	< 5 < 5 < 5 < 5 30	0.2 0.2 < 0.2 < 0.2 < 0.2	2.22 1.86 2.03 1.93 1.66	14 46 32 32 28	220 220 160 160 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.16 0.43 0.24 0.16 0.18	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	22 35 24 27 23	208 161 147 123 91	58 94 52 68 55	5.20 7.06 5.41 5.95 5.12	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.41 0.45 0.34 0.35 0.25	40 30 50 40 50	0.37 0.51 0.51 0.52 0.51	790 1725 850 865 780

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6 Page Nu. Jer: 2-B
Total Pages: 3
Certificate Date: 08-SEP-94
Invoice No.: 19424338
P.O. Number:
Account: LVH

Project : Comments:

September 19 Septe									CE	RTIFI	CATE	OF A	NALY	SIS	A9424338
SAMPLE	PREP CODE	Mo	Na %	Ni ppm	ppm P	Pb ppm	Sb mqq	Sc ppm	Sr Ti	T1 ppm	U	V ppm	M	Zn ppm	
K1 20+00S K2 0+00SW K2 0+50SW K2 1+00SW K2 1+50SW	203 205 203 205 203 205 203 205 203 205	1 1 1 < 1 < 1	0.03 0.02 0.04 0.05 0.03	23 15 25 17 30	1600 490 890 580 920	28 48 72 156 180	< 2 < 2 < 2 < 2	1 1 1 1	23 < 0.01 16 < 0.01 15 < 0.01 17 < 0.01 29 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	29 28 32 16 51	< 10 < 10 < 10 < 10 < 10	80 62 72 82 66	
K2 2+00SW K2 2+50SW K2 3+00SW K2 3+50SW K2 4+00SW	203 205 203 205 203 205 203 205 203 205 203 205	1 < 1 1 2 3	0.03 0.02 0.02 0.02 0.02	17 22 22 22 22 21	920 740 1160 820 580	18 22 54 22 46	< 2 < 2 < 2 < 2 < 2	1 1 1 1	22 < 0.01 16 < 0.01 15 < 0.01 17 < 0.01 14 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	24 24 33 31 33	< 10 < 10 < 10 < 10 < 10	56 66 86 94 68	
K2 4+50SW K2 5+00SW K2 5+50SW K2 6+00SW K2 6+50SW	203 205 203 205 203 205 203 205 203 205 203 205	1 2 2 2 2 2	0.03 0.02 0.03 0.02 0.01	7 15 25 22 23	370 780 1050 1220 1580	24 22 60 66 30	< 2 < 2 < 2 < 2 < 2	< 1 < 1 1 1	14 < 0.01 12 < 0.01 14 < 0.01 25 < 0.01 29 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	14 38 37 34 35	< 10 < 10 < 10 < 10 < 10	16 44 76 74 94	
K2 7+00SW K2 7+50SW K2 8+00SW W1 00+00S W1 00+50S	203 205 203 205 203 205 203 205 203 205 203 205	1 4 12 15	0.01 0.01 0.01 0.02 0.03	28 17 12 157 143	3760 1360 1350 1010 1110	40 56 34 70 62	< 2 < 2 < 2 < 2 < 2	6 2 < 1 7 8	75 0.01 25 0.01 17 < 0.01 47 < 0.01 36 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	24 32 55 42 48	< 10 < 10 < 10 10	120 102 52 326 418	
W1 01+00s W1 01+50s W1 02+00s W1 02+50s W1 03+00s	203 205 203 205 203 205 203 205 203 205	22 8 < 1 1	0.02 0.04 0.04 0.01 0.03	82 90 47 63 54	370 2440 740 640 630	68 20 28 18 18	< 2 < 2 < 2 < 2 < 4	4 5 4 3 4	28 < 0.01 51 < 0.01 26 < 0.01 16 < 0.01 18 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	23 29 25 11 16	10 20 10 10 < 10	228 208 136 196 80	
W1 03+50s W1 04+00s W1 04+50s W1 05+00s W1 05+50s	203 205 203 205 203 205 203 205 203 205 203 205	7 1 < 1 < 1 2	0.03 0.04 0.02 0.02 0.02	65 55 49 55 57	840 910 860 810 1160	44 26 32 50 32	< 2 < 2 < 2 < 2 < 2	6 4 6 4 4	34 < 0.01 25 < 0.01 26 < 0.01 18 < 0.01 27 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	31 28 21 16 27	20 10 10 10	432 142 118 114 132	
W1 06+008 W1 06+508 W1 07+008 W1 07+508 W1 08+008	203 205 203 205 203 205 203 205 203 205	2 1 < 1 1 1	0.03 0.03 0.03 0.03 0.01	91 42 44 44 46	840 760 630 580 790	116 54 50 34 32	< 2 < 2 < 2 < 2 < 2	7 4 4 3 3	17 < 0.01 22 < 0.01 21 < 0.01 25 < 0.01 54 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	23 25 20 21	10 10 10 < 10 10	134 76 88 92 132	
W1 08+50s W1 09+00s W1 09+50s W1 10+00s W1 10+50s	203 205 203 205 203 205 203 205 203 205 203 205	< 1 1 < 1 1 < 1	0.04 0.04 0.03 0.03 0.02	60 58 48 52 45	610 620 700 650 640	38 46 36 48 38	< 2 < 2 < 2 2 < 2	3 6 4 5 3	26 < 0.01 37 < 0.01 26 < 0.01 22 < 0.01 22 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	22 25 25 27 21	10 10 < 10 10 < 10	108 122 102 100 86	

CERTIFICATION: Start Suchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

J: PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6

Page Number: 3-A
Total Pages: 3
Certificate Date: 08-SEP-94
Invoice No.: 19424338
P.O. Number:

:LVH Account

Project : Comments:

										CE	RTIFIC	CATE	OF A	NALY	rsis	ļ	\9424	338		
	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
W1 11+50S 20 W1 12+00S 20 W1 12+50S 20	03 205 03 205 03 205 03 205 03 205	20 60 20 10 25	< 0.2 < 0.2 < 0.2 0.2 < 0.2	1.41 1.33 1.76 1.88 1.58	26 26 14 20 24	60 80 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.11	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	22 23 20 20 23	54 49 60 70 84	51 59 46 55 54	4.63 4.65 4.62 4.82 4.72	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.17 0.14 0.23 0.17 0.20	60 40 40 40 40	0.52 0.52 0.62 0.53 0.59	645 685 725 755 810
W1 14+00S 20 W1 14+50S 20 W1 15+00S 20	03 205 03 205 03 205 03 205 03 205	< 5 40 20 10 45	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.02 1.82 1.65 1.79 1.69	16 26 28 26 30	80 80 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.43 0.05 1.56	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	26 23 20 20 24	58 75 69 55 87	46 55 51 50 54	4.64 5.13 4.68 4.71 5.63	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.17 0.18 0.18 0.27 0.19	30 40 50 40 40	0.68 0.62 0.48 0.53 0.42	455 1140 660 670 785
W1 16+50S 20 W1 17+00S 20 W1 17+50S 20	03 205 03 205 03 205 03 205 03 205	30	0.4 0.3 < 0.2 < 0.2 < 0.2	1.41 0.71 2.31 2.16 1.90	28 50 18 18 30	80 90 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.20 0.48 0.06 0.01 0.02	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 33 21 20 24	68 37 64 59 51	59 54 39 48 57	4.83 10.50 4.77 5.04 4.95	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.17 0.15 0.20 0.16 0.20	60 20 40 40 60	0.46 0.27 0.79 0.74 0.58	815 3340 590 445 555
W1 19+00S 20 W1 19+50S 20	03 205 03 205 03 205 03 205	250	< 0.2 < 0.2 0.2 < 0.2	1.96 2.48 1.46 2.67	38 26 136 26		< 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2	0.03 0.02 0.03 0.04	< 0.5 < 0.5 < 0.5 < 0.5	21 32 29 21	91 72 47 73	46 104 48 68	4.80 5.52 4.49 4.66	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	0.23 0.31 0.26 0.32	50 50 40 60	0.56 0.58 0.28 0.87	605 900 800 535

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6

Page Nr. Der : 3-B Total Pages :3 Certificate Date: 08-SEP-94 Invoice No. : 19424338 Invoice No. : P.O. Number :

:LVH

Account

Project: Comments:

PREP										С	ERTIF	ICATE	OF A	NALY	/SIS	A9424338	
M1 11+50S	SAMPLE	1															
W1 14+00S	W1 11+50s W1 12+00s W1 12+50s	203 205 203 205 203 205	< 1 1 < 1	0.01 0.02 0.01	46 44 51	710 700 4 50	34 28 32	< 2 < 2 < 2	3 3 4	17 < 0.01 53 < 0.01 15 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	15 20 20	< 10 10 10	84 96 84		
W1 16+50S	W1 14+00s W1 14+50s W1 15+00s	203 205 203 205 203 205	< 1 < 1 < 1	0.01 0.01 0.02	47 43 44	950 450 600	44 42 36	< 2 < 2 < 2	4 3 4	32 < 0.01 11 < 0.01 50 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	20 19 22	< 10 < 10 < 10	84 80 84		
W1 19+00S 203 205 < 1 0.02 48 370 70 < 2 4 10 < 0.01 < 10 < 10 40 10 120 W1 19+50S 203 205 < 1 0.02 63 490 18 < 2 3 8 < 0.01 < 10 < 10 12 < 10 60	W1 16+50s W1 17+00s W1 17+50s	203 205 203 205 203 205	1 < 1 < 1	0.01 0.01 0.01	56 52 47	1580 400 420	196 26 32	< 2 < 2 < 2	6 3 2	43 < 0.01 10 < 0.01 6 < 0.01	< 10 < 10 < 10 < 10	< 10 < 10 < 10	23 20	20 < 10 10	106 88 102 90		
	W1 19+00s W1 19+50s	203 205	< 1 < 1	0.02 0.02	48 63	370 490	70 18	< 2 < 2	4 3	10 < 0.01 8 < 0.01	< 10 < 10	< 10 < 10	40 12	10 < 10	120 60		

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 . O: PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6

INVOICE NUMBER

I9424339

BILLING I	NFORMATION	
Date: Project: P.O. No.:	8-SEP-94	
Account: Comments:	LVH	

Billing:

For analysis performed on Certificate A9424339

Terms:

Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts

Please Remit Payments to:

CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1

		PRICE PRICE	TRUOMA
23	207 - Assay pulv, screen -150, roll 226 - 0-5 lb crush and split ICP-32 398 - Au oz/T	4.00 2.05 6.25 9.50 21.8	0 501.40
	(Reg#	Total Cost R100938885 } GST	
		TOTAL PAYABLE (CDN)	\$ 536.50

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W, HASTINGS ST. VANCOUVER, BC V6B 1N6

A9424339

Comments: CC: A.G. TROUP

CERTIFICATE

A9424339

(LVH) - PACIFIC MARINER EXPLORATION LTD.

Project: P.O. #:

Samples submitted to our lab in Vancouver, BC. This report was printed on 8-SEP-94.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
207 226 229	23 23 23	Assay pulv, screen -150, roll 0-5 lb crush and split ICP - AQ Digestion charge
* NOTE	1:	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

Α	NAI	YT	ICAL	PROCEDURES	5
---	-----	----	------	-------------------	---

398 23	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
	398 2118 2119 2120 2121 2122 2123 2124 2125 2126 2130 2131 2131 2132 2151 2134 2135 2136 2137 2138 2139 2140 2141 2142 2144 2144 2144 2144 2144	SAMPLES 23 23 23 23 23 23 23 23 23 23 23 23 23	Au oz/T: 1/2 assay ton Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock K %: 32 element, soil & rock K %: 32 element, soil & rock Ma ppm: 32 element, soil & rock Ma ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock P ppm: 32 element, soil & rock P ppm: 32 element, soil & rock P ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Tl ppm: 32 element, soil & rock Tl ppm: 32 element, soil & rock U ppm: 32 element, soil & rock	FA-AAS ICP-AES	0.002 0.2 0.01 2 10 0.5 2 0.01 0.5 1 1 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 10 10 10 10 10 10 10 10	20.00 200 15.00 10000 10000 100.0 10000 100.0 10000

SAMPLE

RA-01

RA-02

RA-03 RA-04

RA-05

RA-06

RA-07

RA-08

RA-09

RA-10

RA-11

RA-12

RA-13

RA-14

RA-15

RA-16

RA-17

RA-18

TOBY-1

TOBY-2

TOBY-3

TOBY-4

TOBY-5

PREP

CODE

207 226

207 226

207 226

Au

< 0.002 < 0.2

0.006 < 0.2

0.006 < 0.2

< 0.2

0.2

0.2

0.2

0.4

3.4

oz/T

207 226 < 0.002 < 0.2

207 226 < 0.002 < 0.2

207 226 < 0.002 < 0.2

207 226 < 0.002 < 0.2

207 226 < 0.002 < 0.2

207 226 < 0.002 < 0.2

207 226 < 0.002 < 0.2

207 226 < 0.002 < 0.2

207 226 < 0.002 < 0.2

207 226 < 0.002 < 0.2

207 226 < 0.002 < 0.2

207 226 < 0.002 < 0.2

207 226 < 0.002 < 0.2

207 226 < 0.002 < 0.2

226 < 0.002

207 226 < 0.002

207 226 < 0.002

207 226 < 0.002

207 226 < 0.002

207 226 < 0.002

207

Aq

mqq

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

A1

0.09

1,13

0.19

0.03

0.14

0.01

0.06

0.27

0.37

0,15

0.60

0.17

0.37

0.16

0.53

0.11

1.77

0.05

0.42

2.70

3.30

0.24

1.67

As

mqq

< 2

< 2

< 2

< 2

804

150

30

134

6

12

< 2

14

< 2

2

32

< 2

< 2

28

58

4

54

Ва

60

10

10

20

240

140

100

20

30

10

10

30

30

10

10

30

130

< 10

< 10

mqq

Вe

mqq

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

30 < 0.5

10 < 0.5

50 < 0.5

J: PACIFIC MARINER EXPLORATION LTD.

141

146

232

101

11

52

3

41

112

71

6.43

13.40

1.31

304 > 15.00

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6

Project:

< 2

< 2

< 2

2

0.67

0.60

< 0.5

< 0.5

1.02 < 0.5

0.45 < 0.5

Comments: CC: A.G. TROUP

Page Núl. Jer :1-A Total Pages :1 Certificate Date: 08-SEP-94

Invoice No. : 19424339 P.O. Number :LVH Account

		CERTIFICATE OF ANALYSIS							9424	339		
Bi	Ca	Cd	Ço	Cr	Cu	Fe	Ga	Hg	K	ррш	Mg	Mn
ppm	%	ppm	ppm	ppm	ppm	%	ppm	pm	%	ррш	%	ppm
< 2 < 2 < 2 < 2 < 3	0.01 0.49 >15.00 12.30 0.21	0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 10 5 3 3	215 209 33 75 199	16 386 58 24 3	7.84 3.33 4.49 7.76 2.37	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 <	0.01 0.01 0.05 0.01 0.07	< 10 < 10 < 10 < 10 < 10	0.01 0.55 0.86 2.85 0.02	1225 1075 2270 3330 285
< 2	0.16	< 0.5	1	219	3	0.77	< 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	0.01	< 10	0.03	65
< 2	0.18	< 0.5	3	176	4	2.93	< 10		0.01	< 10	0.03	815
< 2	0.20	< 0.5	1	258	10	0.99	< 10		0.12	< 10	0.09	150
< 2	0.30	3.5	23	213	56	5.80	< 10		0.15	< 10	0.06	2270
< 2	0.54	< 0.5	3	181	4	2.65	< 10		0.05	< 10	0.15	1145
< 2 < 2 < 2 < 2 < 2 < 2	0.18 >15.00 1.67 0.71 11.75	< 0.5 0.5 < 0.5 < 0.5 1.0	10 3 12 3 6	211 22 130 172 23	10 10 47 2 70	5.31 6.99 4.42 1.62 10.65	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.15 0.09 0.05 0.01 0.11	10 < 10 10 < 10 < 10	0.11 3.11 0.10 0.11 1.08	650 3170 1130 550 2680
< 2	0.42	< 0.5	5	212	6	4.85	< 10	< 1	0.01	< 10	0.08	825
2	0.89	< 0.5	30	73	60	7.19	< 10	< 1	0.13	10	0.49	1205
2	>15.00	< 0.5	< 1	31	3	1.78	10	< 1	0.01	< 10	1.31	1090
< 2	1.59	< 0.5	3	210	8	1.38	< 10	< 1	0.01	< 10	0.33	480

< 10

< 10

< 10

< 10

CERTIFICATION: Hawk Buchler

0.02

0.02

< 1 < 0.01

< 1 0.04

< 1

< 1

10

< 10

< 10

< 10

2,17

1.74

0.26

0.47

815

1140

680

750

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

PACIFIC MARINER EXPLORATION LTD.

1000 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N6

Project:

Comments: CC: A.G. TROUP

Page Number :1-B Total Pages :1 Certificate Date: 08-SEP-94 Invoice No. : 19424339

P.O. Number :LVH Account

ÇE	RTIFI	CATE	OF A	A9424339			
Ti	T 1	U	ν	W	Zn		

										-11111	CAIL	<u> </u>		0.0	A3424000
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	p p p p	Pb ppm	gb	Sc ppm	Sr Ti ppm %	T1 ppm	U ppm	V ppm	mqq	Zn ppm	
RA-01 RA-02 RA-03 RA-04 RA-05	207 226 207 226 207 226 207 226 207 226	1 < 1 < 1	< 0.01 0.01 0.01 0.01 0.01 < 0.01	20 19 7 5	190 130 400 80 70	134 8 6 8 10	< 2 < 2 8 6 < 2	1 10 1	1 < 0.01 13 < 0.01 457 < 0.01 255 < 0.01 7 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	3 9 7 6 1	10 10 20 30 < 10	162 58 90 26 14	
RA-06 RA-07 RA-08 RA-09 RA-10	207 226 207 226 207 226 207 226 207 226 207 226	< 1 •	< 0.01 < 0.01 < 0.01 0.01 0.02	4 11 7 66 12	10 870 80 1110 300	72 46 28 62	< 2 < 2 < 2 < 2 < 2	< 1 2 < 1 5	3 < 0.01 10 < 0.01 20 < 0.01 35 < 0.01 14 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	< 1 1 1 16 2	< 10 < 10 < 10 20 < 10	2 22 < 2 544 44	
RA-11 RA-12 RA-13 RA-14 RA-15	207 226 207 226 207 226 207 226 207 226 207 226	1 < 1 2 < 1 < 1	0.04 0.01 0.05 0.03 0.06	29 9 12 7 24	800 120 560 120 310	2 6 56 12 16	< 2 8 < 2 < 2 12	4 3 7 1 4	20 < 0.01 252 < 0.01 21 < 0.01 14 < 0.01 327 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	8 9 8 2 10	10 30 10 < 10 30	76 56 48 16 106	
RA-16 · RA-17 RA-18 TOBY-1 TOBY-2	207 226 207 226 207 226 207 226 207 226 207 226	2 · · · · · · · · · · · · · · · · · · ·	< 0.01 0.06 0.01 0.01 0.01	15 13 < 1 13 50	150 1220 10 570 260	< 2 2 14 34 12	< 2 < 2 2 < 2 < 2	4 12 1 2 6	14 < 0.01 30 < 0.01 841 < 0.01 70 < 0.01 25 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	1 99 8 15 113	10 10 20 < 10 10	14 68 14 40 94	
TOBY-3 TOBY-4 TOBY-5	207 226 207 226 207 226		0.01 < 0.01 < 0.01	42 15 100	2920 80 1630	34 < 2 94	< 2 < 2 6	6 1 1	46 < 0.01 21 < 0.01 31 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	350 15 225	30 < 10 40	138 6 244	
												.•			
															•

CERTIFICATION: Krut Buchler

Analytical Chemists * Geochemists * Registered Assaye 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

HASTINGS MANAGEMENT CORP.

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

INVOICE NUMBER

I9425231

BILLING INFORMATION

Date:

30-SEP-94

Project:

P. MARINER

P.O. No.:

Account: JCL

Comments:

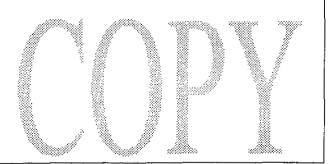
Billing:

For analysis performed on

Certificate A9425231

Terms:

Payment due on receipt of invoice


1.25% per month (15% per annum)

charged on overdue accounts

Please Remit Payments to:

CHEMEX LABS LTD.

212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1

# OF SAMPLES	ANALYSED FOR CODE - DESCRIPTION	UNIT PRICE	SAMPLE PRICE	AMOUNT
10	235 - Pan con ring to approx 150 mesh 448 - Au FA mg 866 - fusion wt. gm	5.30 11.00 0.00	16.30	163.00
	(Reg# R100	Tota	l Cost \$ GST \$	163.00 11.41
	TOT	AL PAYABLE	(CDN) \$	174.41

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 HASTINGS MANAGEMENT CORP.

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

A9425231

Comments: CC: A. TROUP

CERTIFICATE

A9425231

(JCL) - HASTINGS MANAGEMENT CORP.

Project: P.O. #: P. MARINER

Samples submitted to our lab in Vancouver, BC. This report was printed on 30-SEP-94.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
235	10	Pan con ring to approx 150 mesh

ANALYTICAL PROCEDURES								
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION	METHOD	DETECTION LIMIT	UPPEF LIMIT		
448 866	10 10	Au mg Fusion weight	in grams	FA-GRAVIMETRIC BALANCE	0.001	50.000		
			,					

Analytical Chemists " Geochemists " Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-964-0221 To: HASTINGS MANAGEMENT CORP.

1000 - 675 W. HASTINGS VANCOUVER, BC V6B 1N6

Project: P. MARINER CO: A. TROUP

Page Number 1 Total Pages 1 Certificate Date30-SEP-94 Invoice No. I-9425231

P.O. Number : Account :

CERTIFICATE OF ANALYSIS A9425231 Au SAMPLE PREP Au FA fusion DESCRIPTION CODE mg wt. gm PCA-01 235 ND. < 0.002 5.18 PCA-02 235 < 0.002 4.51 WD. PCA-03 235 ___ < 0.002 4.90 NO. PCA-04 235 --< 0.002 3.19 ND. PCA-05 235 0.094 4.28 21,960 PCA-06 ND. 235 < 0.002 11.77 460 550 570 PCA-07 235 --15.31 0.007 PCA-08 235 0.002 3.64 PCA-09 --235 0.002 3.52 PCA-10 __ 235 < 0.007 7.65 NÒ

CERTIFICATION:	

ARIS SUMMARY SHEET

Regional Geologist, Prince George Off Confidential: 95.10.17

ASSESSMENT REPORT 23590 MINING DIVISION: Cariboo

PROPERTY: Antler Creek

LOCATION: LAT 53 00 00 LONG 121 25 00

UTM 10 5873225 606258 NTS 093H03W 093A14W

CAMP: 038 Cariboo - Barkerville Camp

CLAIM(S): Wolf, Keynote

OPERATOR(S): Pacific Mariner Ex.

AUTHOR(S): Troup, A.G. REPORT YEAR: 1994, 57 Pages

COMMODITIES

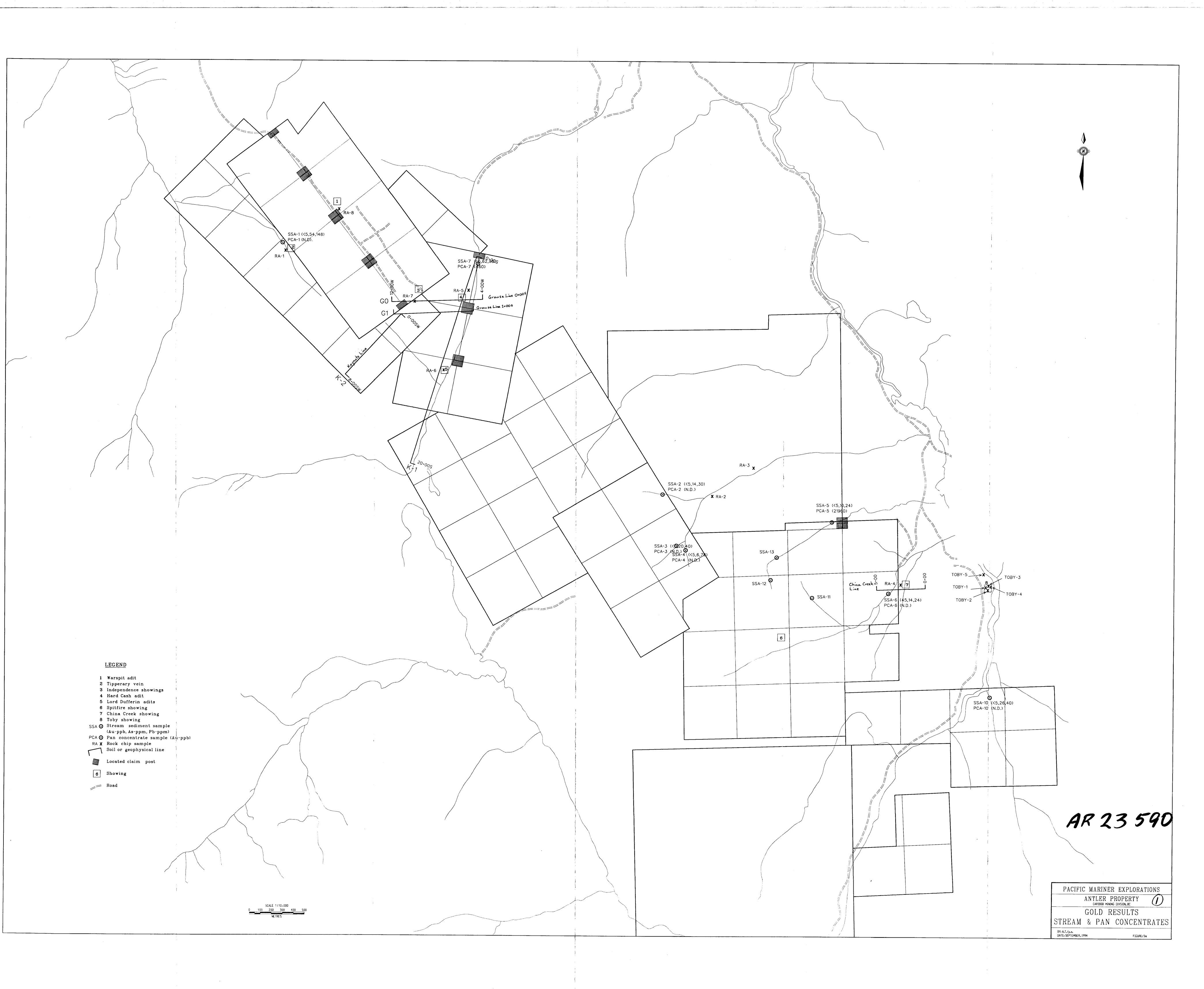
SEARCHED FOR: Gold

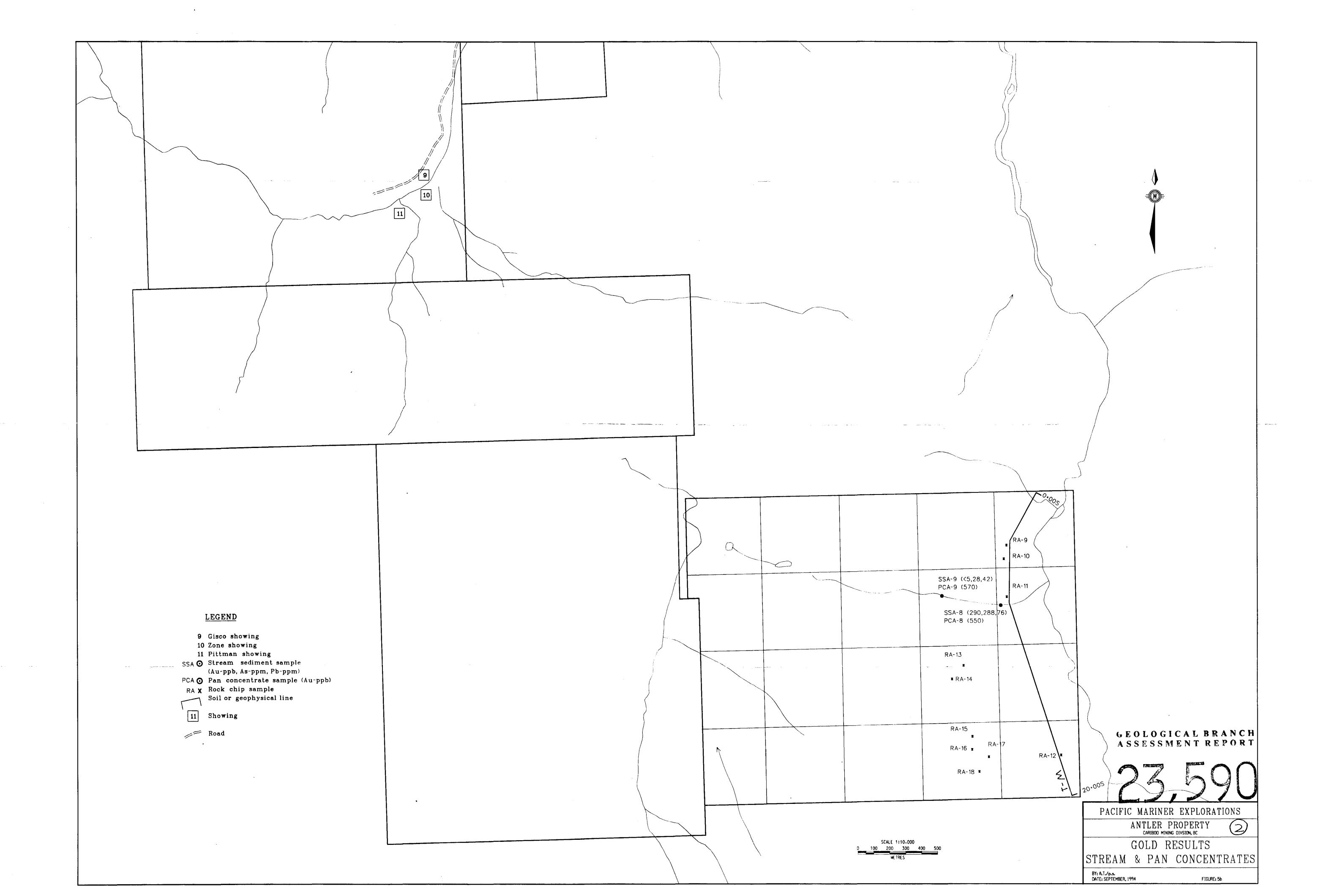
KEYWORDS: Barkerville Terrane, Metasediments, Veins, Quartz, Pyrite, Arsenopyrite

Pyrrhotite, Siderite, Galena, Sphalerite, Scheelite, Gold

WORK

DONE: Geochemical, Geophysical


EMGR 1.9 km; VLF HMIN 12 sample(s); ME


Map(s) - 2; Scale(s) - 1:10 000

MAGG 2.7 km

ROCK 15 sample(s); ME SOIL 97 sample(s); ME

MINFILE: 093H 048,093H 052,093H 053

