OG NO:	NOV 2 8 1994	RD.	1
ICTION.		Di vist lijter vis i sindersone	
			9
HE NO.			
ILE NO:			

1994 ASSESSMENT REPORT

ON THE SOUTH BRUCE GROUP

SULPHURETS PROPERTY - BRUCESIDE PROJECT

Skeena Mining Division

Latitude: 56°29'N Longitude: 130°13'W NTS: 104B/8&9

OWNER:

NEWHAWK GOLD MINES LTD. GRANDUC MINING CORPORATION

ē 🗋

OPERATOR:

NEWHAWK GOLD MINES LTD.

REPORT BY:

M. McPherson, P.Geo

November 21, 1994

Distribution:

- BCMEMPR (2) - Newhawk (1)

GEOLOGICAL BRANCH ASSESSMENT REPORT

SUMMARY

The Sulphurets Property - Brucejack Project is situated within northwest British Columbia, approximately 65km northwest of Stewart, BC. The property consists of 11 claims totalling 58 units. The claims are owned by Newhawk Gold Mines Ltd. and Granduc Mining Corp. under a joint venture agreement. Newhawk is the operator.

The Sulphurets property was initially staked in 1959 by Granduc Mines Ltd. to cover various porphyry copper and precious metal vein showings between Mitchell Glacier and Brucejack Lake. Between 1960 and 1975 the property was intermittently explored by Granduc, who completed geologic mapping, geochemical sampling, geophysical surveying and limited drilling primarily over known porphyry showings. Granduc optioned the property to Esso Minerals in 1980, who completed extensive exploration between 1980 and 1985 that led to the discovery of several mineralized zones including the West Zone and Shore Zone. Esso returned the property to Granduc in 1985, and it was subsequently optioned by Newhawk Gold Mines Ltd. Since then, Newhawk has carried out detailed exploration over most of the property including detailed geologic mapping, sampling and trenching, surface and underground drilling, and exploratory underground drifting on the West Zone.

The property is underlain by Upper Triassic Stuhini Group and Lower Jurassic Hazelton Group andesitic tuffs, flows and minor sediments that have locally been extensively and pervasively quartz-sericite-pyrite altered. To date, at least forty zones of quartz +/- carbonate veining, stockwork and breccia have been discovered on the property. Mineralization consists of up to 15% disseminated pyrite within altered volcanics and trace to several percent combined tetrahedrite, sphalerite, galena, pyrargyrite and rare electrum and native gold within quartz veins.

Work in 1994 consisted of detailed mapping and sampling in the vicinity of the Gossan Hill Zone, and 7351.6m of diamond drilling, primarily on the West, R8, Shore and Gossan Hill Zones. Only one of the Gossan Hill drill holes, S94-447 (432.2m), is being filed for assessment.

Hole S94-447 was designed to test the Gossan Hill Area at depths of 100 to 250m below surface, considerably deeper than previous drilling in the vicinity. The hole intersected the PM-1, PM-2 and PM-4? Zones of the Gossan Hill Area, and the Tommyknocker Zone. The PM Zones do not show any significant increase in grade or width with depth. A single anomalous samples of 1.939 opt Au, 1.01 opt Ag over 1.0m was returned from a weak stockwork zone lying between PM-1 and PM-2. The Tommyknocker Zone shows a distinct increase in width from surface, however is only moderately anomalous in gold and silver; 0.098 opt Au, 1.01 opt Ag/1.0m.

Recommendations for further work include additional surface mapping and sampling east of Gossan Hill to try and trace the Tommyknocker Zone along strike to the east, and additional diamond drilling to follow up the wide Tommyknocker intersection in hole S94-447. A thorough compilation and interpretation of all previous drilling results from the Tommyknocker Zone needs to be completed in order to help target future drilling.

TABLE OF CONTENTS

SUMMARY

INTRODUCTION	1
1.1 Location and Access	1
1.2 Property Description	l A
1.3 Physiography and Vegetation	4
1.4 Property History	4
GEOLOGY	5
2.1 Regional Setting	5
2.2 Property Geology	7
2.2.1 Stratigraphy	7
2.2.2 Structure	8
2.2.3 Alteration and Mineralization	9
1994 DIAMOND DRILLING PROGRAM	12
3.1 Introduction	12
3.2 Results	13
CONCLUSIONS AND RECOMMENDATIONS	14
REFERENCES	15
STATEMENT OF EXPENDITURES	17
STATEMENT OF QUALIFICATIONS	18
	INTRODUCTION1.1Location and Access1.2Property Description1.3Physiography and Vegetation1.4Property HistoryGEOLOGY2.1Regional Setting2.2Property Geology2.2.1Stratigraphy2.2.2Structure2.2.3Alteration and Mineralization1994 DIAMOND DRILLING PROGRAM3.1Introduction3.2ResultsCONCLUSIONS AND RECOMMENDATIONSREFERENCESSTATEMENT OF EXPENDITURESSTATEMENT OF QUALIFICATIONS

APPENDIX I:	Diamond Drill Log
APPENDIX II:	Assay Data

page

LIST OF FIGURES

Figu	ire	page
1.1	Property Location	2
1.2	Claim Map	3
2.1	Regional Geology	6
2.2	Property Geology	in pocket
2.3	Zone Map	11
3.1	Drill Section 199+30N	in pocket

LIST OF TABLES

Table 1.1	Claim Status	1
Table 3.1	Drill Hole Specifics Significant Drill Intersections	12 13

1.0 INTRODUCTION 1.1 Location and Access

The Sulphurets Property is located within the Coast Range Mountains of northwest B.C., approximately 60 kilometres northwest of the village of Stewart. It is centred at 130°13'W, 56°29'N on NTS sheets 104/ B8 and 9 (Fig. 1.1).

- 1

Access during the early summer is limited to helicopter from Stewart, BC or the Bob Quinn airstrip located on Highway 37. Later in the season supplies can be mobilized via the Granduc Road to the Tide Lake airstrip, 35 kilometres south of the property or flown by fixed wing to the Knipple airstrip 15 kilometres southeast of the property. Access from this point is then by helicopter. During previous major summer programs, overland access was by barge along Bowser Lake, then by road along the Bowser River with the final access to the camp being by tracked vehicle 16 kilometres up the Knipple Glacier. A permanent camp is located at the west end of Brucejack Lake. Access around the property is by four wheel drive all-terrain vehicle, helicopter or by foot. During the 1994 season, supplies were flown directly to the camp from Stewart BC using a Bell 206 helicopter on a casual basis from Vancouver Island Helicopters. A Hughes 500D and a Bell 205 helicopter were also used on an "as needed" basis to mobilize heavier equipment throughout the season.

1.2 **Property Description**

The Sulphurets Property has been split into two separate projects in past years, the Bruceside Project centred around Brucejack Lake and the West Zone, and the Sulphside Project, centred around Sulphurets Lake and the Sulphurets Gold Zone. The Sulphside Project was sold to Placer Dome Inc. in early 1992, however the Bruceside nomenclature still persists. The Bruceside Project is owned 60% by Newhawk Gold Mines Ltd. and 40% by Granduc Mining Corporation under a joint venture agreement. Newhawk is the operator. The property is comprised of the following mineral and placer claims, all of which lie within the Skeena Mining Division (Fig. 1.2):

TABLE 1.1 - CLAIM STATUS

<u>Claim</u>	Record	<u>Units</u>	Expiry Date
Red River 3	250899	2	Sept 2, 2003
Red River 4	250939	12	Nov 3, 2003
Red River 5	250940	2	Nov 3, 2003
Red River 6	250985	12	June 30, 2003
Red River 8	251022	2	Sept 29, 2003
Red River 9	251023	2	Sept 29, 2003
Red River 10	251058	12	July 12, 2003
Red River 11	251059	6	July 12, 2003
OK# 6	251285	4	Dec 10, 2003
OK# 7	251286	2	Dec 10, 2003
OK# 8	251287	2	Dec 10, 2003

1.3 Physiography and Vegetation

The topography of the Sulphurets region is typical of the Coast Range Mountains with steep glaciated U-shaped valleys and several permanent snowfields. Elevations in the area range from 750 metres at Sulphurets Glacier just west of the property, to 2560 metres on Mt. John Walker northeast of the property.

Winters tend to be severe with extensive snowfall and high winds, while summers are generally cool and wet. Vegetation consists of scrub alpine spruce and fir at lower elevations along Brucejack Creek, and alpine grasses and juniper at higher elevations. Much of the property is covered in outcrop or talus with no appreciable vegetation.

1.4 **Property History**

Exploration in the area dates back to the 1880's when placer gold was located on Sulphurets and Mitchell Creeks. In 1935, copper-molybdenum mineralization was located in the vicinity of the Main Copper showing on the adjacent Sulphside property. During the next twenty years the area was intermittently evaluated by a number of different parties. In 1959, Granduc Mines located gold and silver bearing veins near Brucejack Lake and in 1960 staked a series of claims totalling 246 units extending from south of Brucejack Lake north to the Mitchell Glacier. These claims covered the current Bruceside Project precious metal showings, as well as numerous copper-moly occurrences located north and northwest of Brucejack Lake.

Between 1960 and 1975 Granduc completed several exploration programs involving geologic mapping and sampling, geophysical surveying, prospecting and limited drilling primarily in the vicinity of the known copper \pm gold and molybdenum occurrences located immediately north and northwest of the current Bruceside Property boundary.

In 1980 Esso Minerals optioned the Sulphurets property from Granduc, and from 1980 to 1985 completed a comprehensive evaluation of the property that resulted in the discovery of several precious metal showings including the West, Shore, Galena Hill and Electrum Zones. For various reasons, Esso dropped their option on the Sulphurets Property in 1985, and Newhawk Gold Mines optioned it that same year.

Since 1985, Newhawk has completed extensive exploration programs including additional regional and detailed geologic mapping and sampling, rock saw and backhoe trenching, limited soil geochemical sampling, airborne geophysical surveying, and 35,241.6m of surface diamond drilling in 511 holes. In addition to surface work, a total of 5276m of exploratory underground drifting was completed on the West Zone between 1986 and 1989, and 35,981.0m of underground diamond drilling in 422 holes was completed. This work succeeded in outlining significant proven and probable reserves of 826,000 Tons grading 0.450 opt Au, 18.80 opt Ag on the West Zone, and 92.276 Tons grading 0.371 opt Au, 4.63 opt Ag on the Shore Zone (Watts, Griffis and McOuat, 1990). At least forty additional showings of precious metal mineralization have been located across the property, some of which have associated small reserves

4

(Visagie, 1993b). Based on these reserves, a feasibility study was completed by Corona Corp. in 1990, and determined that the deposit was marginally economic under existing conditions. The current exploration mandate for the property is to delineate additional areas of economic gold-silver mineralization in order to increase the reserves such that the project becomes feasible.

5

2.0 GEOLOGY

2.1 Regional Setting

The Sulphurets Property lies within the Stikine Terrane, along the western margin of the Intermontane Belt (Fig. 2.1). The area is underlain by Upper Triassic and Lower to Middle Jurassic Hazelton Group volcanic, volcaniclastic and sedimentary rocks, intruded by Mesozoic intermediate to felsic plutons and minor Tertiary mafic dykes and sills. Regional geologic mapping has been completed by the Geological Survey of Canada, the BC Ministry of Energy, Mines and Resources, and the Mineral Deposit Research unit at UBC.

The lithostratigraphic assemblage as compiled by Kirkham (1963), Britton and Alldrick (1988), Alldrick and Britton (1991) and Kirkham et al (in preparation) consists, from oldest to youngest, of alternating siltstone and conglomerate of the Lower Unuk River Formation; intermediate volcanic rocks and siltstones of the Upper Unuk River Formation; interbedded conglomerate, sandstone and intermediate to mafic volcanic rocks of the Betty Creek Formation; felsic flows and pyroclastic rocks, including tuffaceous rocks ranging from dust tuff to tuff breccia and localized welded ash tuff, of the Mount Dilworth Formation; and finally, alternating siltstone and sandstone of the Salmon River Formation and the Bowser Lake Group.

At least three intrusive events have occurred in the area: intermediate to felsic plutons that are probably coeval with volcanic and volcaniclastic supracrustal rocks; small stocks related to Cretaceous Coast Plutonic Complex rocks; and minor Tertiary dykes and sills.

Folding is common throughout the region, with Hazelton Group andesitic tuffs and flows southeast of Brucejack Lake being gently warped, while sediments of the Salmon River Formation and Bowser Lake Group are more tightly folded. Faulting is common, with north striking steep normal faults (ie the Brucejack Fault) and west dipping thrust faults (eg, the Sulphurets Thrust) being the most prevalent orientations.

2.2 Property Geology

2.2.1 Stratigraphy

The Bruceside Project is underlain by two sequences of sedimentary and volcanic rocks; a Lower sequence of Upper Triassic Stuhini Group rocks that occupy the western side of the property, and an Upper sequence of Lower to Middle Jurassic Hazelton Group rocks in the central and eastern portions of the property (Fig. 2.2). Younger, more felsic flows and volcaniclastic rocks overlie the Hazelton Group rocks east of the property. All of these units have been intruded by sub-alkaline plutons of Lower to Middle Jurassic age, that range in composition from syenite to hornblende-feldspar porphyritic diorite to monzonite.

The Upper Triassic rocks (Lower sequence), consist of a lower heterolithic mafic to intermediate volcanic breccia and conglomerate (Fig. 2.2; unit 1), overlain by a sedimentary layer consisting of thin to medium bedded black argillite, siltstone, fine grained sandstone, and minor grey limestone, tuffaceous mudstone, and tuffaceous pebble conglomerate (Fig. 2.2; unit 2).

The Lower to Middle Jurassic rocks (Upper sequence) consists of a lower sedimentary package of two distinct units. The lowermost unit consists of medium to thick bedded medium to coarse grained sandstone and pebble to cobble conglomerate, conspicuous internal planar laminations and rare cross-stratification (Fig. 2.2; unit 3). Overlying this is a layer of thin to medium bedded dark grey to black mudstone and argillite, that is typically highly altered (Fig. 2.2; unit 4). Overlying the sedimentary rocks is a thick sequence of monolithic andesitic volcaniclastics ranging from ash tuff to tuff breccia and lahar, and dominated by plagioclase-hornblende phyric volcanic breccia (Fig. 2.2; unit 5). This upper volcanic package is the main host to alteration and mineralization on the property. To the east, the Upper sequence is overlain by dacitic flows and volcaniclastics, and minor sedimentary rocks (Fig. 2.2; unit 6). The volcaniclastics range from fine ash and plagioclase crystal tuffs to coarse felsic breccias and conglomerates, locally supported with a distinctive hematitic mud (Davies et al, 1994).

Both lower and upper volcano-sedimentary packages have been intruded by numerous late stage plutons, which can be grouped into three main mappable units: i) a plagioclase-hornblende-phyric diorite; ii) a potassium feldspar megacrystic plagioclase-hornblende porphyry; and iii) a plagioclase and rare potassium feldspar porphyry of dacitic composition (MacDonald, 1993). Late stage, fine grained, green andesitic dykes and sills cut all units on the property, and are definitely post-mineral.

Stratigraphy typically strikes north to northwest, with moderate to steep easterly dips and facing directions, indicating a younging direction to the east (Davies et al, 1994). Contacts between individual units are sharp to gradational over several meters, and no unconformities have been identified on the property.

2.2.2 Structure

The rocks on the property have been subjected to regional deformation and weak metamorphism, and exhibit a regionally penetrative foliation of varying intensity. Foliation generally strikes west-northwest, and dips steeply to the north, and is most strongly developed in sericitic rocks and in the argillites of the Upper Triassic package. The deformation is post-mineral, and has resulted in the flattening of mineralized veins and stockwork so that they lie parallel to the foliation.

Post mineral faulting occurs throughout the area, with steeply dipping normal faults being the most common orientation on the property. Offset on these faults ranges from negligible to several hundred meters. The two most important faults on the property are the Brucejack Fault which occupies a north trending lineament just north of camp, and the Bruce Fault, a west trending fault occupying Brucejack Creek (Fig. 2.2). Other mappable faults in the area strike northeast and northwest. The northeast faults dip steeply to the northwest and show tens of meters of normal-dextral oblique displacement. The dip and displacement of the northwest trending faults is unknown, but probably in the order of tens of meters of dextral slip.

The Brucejack Fault forms a northerly striking lineament extending from the extreme southern end of the property, north to the Iron Cap Zone; a strike length of 11 km. The fault cuts all stratigraphic and intrusive contacts, and cuts alteration zones and mineralized veins, indicating that the latest motion was post mineral. The Fault dips vertically to steeply to the west, and displacement has been estimated at 700 to 800m of reverse (west side up) motion, based on offset of stratigraphic contacts, and orientation of slickensides (Davies et al, 1994).

The Bruce Fault trends roughly east-west, and displays a curvilinear dip to the north, with dips ranging from 60 to 70 degrees. Offset on the PM5 Zone indicates displacement along the fault is in the order of tens of meters

Folding on the property is best developed in the sedimentary units of the Lower Sequence, exposed in Brucejack Creek. The folds are tight to open, have subangular to rounded hinges, and wavelengths of several tens of meters. Axial trends of folds are typically northerly, however local disharmonic folds have northwesterly and northeasterly axial trends. A large, north-northwest trending syncline has been postulated beneath the Gossan Hill area to account for stratigraphic relationships and a reversal of facing direction east of the Brucejack Fault and at the Shore Zone. This deformation is likely pre-regional cleavage development and pre-mineral, as cleavage cuts across the interpreted axial trace without deflection, and vein geometry is not significantly effected. An alternative interpretation is that the block of stratigraphy bounded by the Brucejack Fault, Shore Zone, Bruce Fault and Big Sleep Zone is a rotated fault block. This interpretation would include a pre-cursor, east-west fault structure to the Big Sleep vein system, similar to those at the West, Shore and Electrum Zones (see section 2.2.3).

Š

2.2.3 Alteration and Mineralization

Mineralization on the Bruceside property consists mainly of structurally controlled, intrusive related quartz-carbonate, gold-silver bearing veins, stockwork and breccia zones. The veins are hosted within a broad zone of potassium feldspar alteration, overprinted by sericite-quartz-pyrite +/- clay. Structural style and alteration geochemistry indicate the deposits were formed in a near surface epithermal style environment (Fig. 2.3).

ğ

Mineralization was likely a three-stage process (Lewis, 1994). Stage 1 consisted of fault-development and ground preparation. Pre-cursor structures to the West, Shore and Electrum Zones likely formed at this time, as steep northwest trending normal faults with limited displacement, cutting all rock types. Stage 2 consisted of syntectonic mineralization and alteration. Massive and stockwork veins were emplaced within a differential stress field characterized by east-west compressional stress. The main vein orientations resulting from this stress are i) east-west dilational veins such as R8 and Big Sleep; and ii) northwest trending veins localized along pre-existing structures such as the West, Shore and Electrum Zones. Underground mapping indicates the northwest trending structures, particularly R6, have been brecciated, while east-west trending structures have not. This would support the theory of reactivation along pre-existing northwest structures. Reactivation was probably sinistral in movement, and may account for the sigmoidal shape of the east-west trending Big Sleep Zone. The localization of major vein systems within the volcanic rocks as opposed to the sedimentary rocks is likely the results of preferential ground preparation within the volcanics. Stage 3 was marked by the development of northwest trending cleavage and local warping of smaller veins as a result of northeast-southwest shortening.

The central part of the property is dominated by a north-trending band of pervasive quartz-sericite-pyrite alteration 100m to 450m wide and 4.5km long. Hosted within this alteration band are over 40 zones of quartz+/- carbonate +/- adularia +/- barite veins and stockworks ranging in width from several centimetres to over 50m, and in length from several meters to several hundred meters (Fig. 2.3). Veins locally form complex shaped mineralized bodies, in which several generations of syntectonic veins, stockworks and breccias may occur (Roach and MacDonald, 1992). The larger vein systems, ie. Shore and West Zones, trend northwest and dip vertically to steeply to the northeast, with somewhat smaller zones such as Big Sleep and Gossan Hill trending easterly and dipping variably north and south. The pattern of mineralized zones forms a slightly angled "ladder" system in the central part of the property, with the Shore and West Zones, and the Electrum Zone further south, forming the ladder "legs", and the east-west trending zones such as R8, Big Sleep and Gossan Hill forming the "rungs". This area has been the focus of continued exploration, as it hosts the highest concentration of mineralization on the property.

Mineralization within the alteration zone consists of 2% to 20% disseminated pyrite and rare arsenopyrite, and within the veins consists of trace to 10% combined disseminated pyrite, tetrahedrite, arsenopyrite, chalcopyrite, galena, sphalerite, pyrargyrite, polybasite and rare native gold and electrum. Of the forty zones of mineralization discovered to date, the West Zone/R8 and Shore Zone are the most significant in terms of grade and tonnage. Other zones of significance include Gossan Hill, Tommyknocker, Big Sleep, Grace and Coogan's Bluff (Fig. 2.3).

The Gossan Hill/Tommyknocker Zone is an area of intense quartz-sericite-pyrite alteration hosting eleven zones of quartz veining and stockwork carrying erratic gold mineralization. These zones include Marie Gold, PM-1, PM-2, PM-3 and 3A, PM-4 and 4A, PM-5, PM-6, U-Vein, Silver Streak and Tommyknocker (Fig. 2.3). They generally strike east-west, dip moderately to steeply to the north, and range in strike length from 30m to 245m, and in width from 0.5m to 20m. "Rolls" and inflections down dip are common. The Tommyknocker Zone is the southernmost vein zone at Gossan Hill, and is the most promising in terms of significant economic mineralization. It consists of a central quartz vein up to 1.0m in width, hosted within a 5m wide quartz stockwork in strong quartz-sericite-pyrite altered andesitic volcanics. Previous drilling on both the PM structures and the Tommyknocker Zone had concentrated on delineating the zone near surface, typically above the 1300m level. The 1994 exploration program concentrated on testing these zones at significantly deeper depths, at approximately the 1200m level.

3.0 1994 DIAMOND DRILLING PROGRAM

3.1 Introduction

The 1994 exploration program was designed to evaluate the highest priority targets on the property for their potential to host gold and/or silver mineralization of significant tonnage and grade. Exploration was focused in the vicinity of Gossan Hill, the area with the highest concentration of alteration and mineralization on the property, and therefore the area most likely to host mineralization of significant size. The program consisted of detailed surface mapping and diamond drilling. Only one drill hole is being reported for assessment purposes, S94-447 (fig. 2.3).

Drilling was contracted to F. Boisvenu Drilling of New Westminster, BC, using a Hagby-Brok diamond drill to recover BQTW core. The drill site for S94-447 was levelled using a D7 Cat, and the drill was moved to the site using a Hughes 500D helicopter contracted from Vancouver Island Helicopters out of Stewart BC. Daily access to the drill was by all-terrain-vehicle. Drill core is stored on site, at the Newhawk core storage area south of the camp.

All zones of significant alteration and mineralization were split using a manual Longyear core-splitter. Split core was shipped to Eco-Tech Labs in Stewart, BC for gold and silver assay, and 9-element ICP. Samples were first dried (if necessary), crushed, sieved and pulverized to -140 mesh, and a 1/2 assay ton sub-sample taken. For gold analysis, the sub-sample was pre-concentrated by conventional fire assay, and the resulting bead digested in 3 ml 30% HNO₃ and 3 ml concentrated HCl (if necessary). The resulting solution was diluted to 10ml and analyzed by atomic absorption. Core carrying visible gold was cut with a rocksaw, and sent for gold metallic assay. For silver analysis, a 2.0 gram subsample was digested in 20 ml HNO₃ for 20 minutes, or until all the HNO₃ had disappeared. The digestion is then cooled, 10 ml HCl added and digested for 30 minutes. The digestion is again cooled and another 50 ml HCl added and digested for an analyzed by atomic absorption. For the ICP analysis, a 10 gram sub-sample was digested with 3 ml of 3:1:3 nitric acid to hydrochloric acid to water at 90° for 1.5 hours. The sample was then diluted to 20 ml with demineralized water and analyzed for Ag, Cu, Pb, Zn, Mo, As, Sb, Tl, Hg. Samples that contained > 30 ppm Ag or > 10,000 ppm Cu, Pb, As, or Zn were re-assayed for that particular element.

The drill log is located in appendix I, and assay data is located in appendix II.

Drill Hole	Zone	Section	Azimuth	Dip	Length
S94-447	Gossan Hill	199+30N	170°	-45°	432.2m

TABLE 3.1 - DRILLHOLE SPECIFICS

3.2 <u>Results</u>

Drill hole S94-447 was designed to test the Gossan Hill Zones (PM-1, PM-2, PM-5) and the Tommyknocker Zone at considerably deeper depths below previous drilling in the vicinity. The hole intersected variably quartz-sericite-pyrite altered, poorly sorted andesitic lapilli tuff throughout most of its length, except for an interbed of coarse clastic sediment between 151.6m and 161.9m. Several zones of quartz stockwork and quartz breccia were intersected, and correspond to the PM-1 Zone (79.6m - 88.2m), the PM-2 Zone (161.9 - 165.7m), and the PM-4? Zone (241.2 - 244.4m). These zones are weakly mineralized, carrying trace to 2% pyrite, trace tetrahedrite and rare galena and sphalerite, and typically carry less than 0.100 opt Au. The exception to this is a 1.0m intersection (127.5 - 128.5m) carrying 1.939 opt Au, 1.01 opt Ag from a very weak zone of quartz stockwork at 127.5m to 134.3m. There is no significant increase in size or strength of mineralization from surface, in any of these zones.

The Tommyknocker Zone was intersected in the footwall of the Bruce Fault, at the 1195m level. The upper part of the zone, from 356.9m to 375.8m, consists of a moderate to strong quartz stockwork in strongly quartz-sericite-pyrite altered andesite tuff. Individual veins are up to 15cm wide and carry trace pyrargyrite, rare electrum, trace sphalerite and tetrahedrite, and 1% pyrite. Assays returned weakly anomalous gold and silver values from this section (Table 3.2). From 375.8m to 393.8m, the zone consists of a moderate to strong quartz stockwork hosted within very fine grained purple chert. Mineralization in this section of the zone consists of disseminated to semi-massive pyrite. As the upper contact of the Tommyknocker Zone has been cutoff by the Bruce Fault, the true thickness of the zone is unknown. However, based on this intersection, the Tommyknocker Zone shows an increase in width, from a 5-6m wide stockwork at surface, to a 20-40m wide stockwork 200m below surface. Offset along the Bruce Fault is estimated a 20-50m of reverse slip displacement.

Hole	Zone	From (m)	To (m)	Width (m)	Au (opt)	Ag (opt)
S94-447	PM1/PM2	127.5	128.5	1.0	1.939	1.01
	Tommyknocker	359.9	360.9	1.0	0.044	8.46
	Tommyknocker	393.1	304.1	1.0	0.098	1.01

TABLE 3.2 - SIGNIFICANT DRILL INTERSECTIONS

4.0 CONCLUSIONS AND RECOMMENDATIONS

The 1994 exploration program on the Bruceside Project consisted of detailed mapping and sampling in the vicinity of the Gossan Hill Zone, and 7351.6m of diamond drilling, primarily on the West, R8, Shore and Gossan Hill Zones. One of the Gossan Hill drill holes, S94-447 (432.2m), is being filed for assessment.

Hole S94-447 was designed to test the Gossan Hill Area at depths of 100 to 250m below surface, considerably deeper than previous drilling in the vicinity. The hole intersected the PM-1, PM-2 and PM-4? Zones of the Gossan Hill Area, and the Tommyknocker Zone. The PM Zones do not show any significant increase in grade or width with depth. A single anomalous samples of 1.939 opt Au, 1.01 opt Ag over 1.0m was returned from a weak stockwork zone lying between PM-1 and PM-2. The Tommyknocker Zone shows a distinct increase in width from surface, however is only moderately anomalous in gold and silver; 0.098 opt Au, 1.01 opt Ag/1.0m.

Recommendations for further work include additional surface mapping and sampling east of Gossan Hill to try and trace the Tommyknocker Zone along strike to the east, and additional diamond drilling to follow up the wide Tommyknocker intersection in hole S94-447. A thorough compilation and interpretation of all previous drilling results from the Tommyknocker Zone needs to be completed in order to help target future drilling.

5.0 REFERENCES

Alldrick, D.J., and Britton, J.M. (1991): Sulphurets Area Geology. BC Ministry of Energy, Mines and Petroleum Resources, Open File Map 1991-21.

15

- Britton, J.M., and Alldrick, D.J. (1988): Sulphurets Map Area. <u>In</u> Geological Fieldwork 1987, BC Ministry of Energy, Mines and Petroleum Resources, Paper 1988-1, pp. 199-209.
- Davies, A.G.S., Lewis, P.D. and MacDonald, A.J. (1994): Stratigraphic and Structural Setting of Mineral Deposits in the Brucejack Lake Area, northwest British Columbia (104B/8). In Geological Fieldwork 1993, BC Ministry of Energy, Mines and Petroleum Resources, Paper 1994-1.
- Kirkham, R.V. (1963): The Geology and Mineral Deposits in the vicinity of the Mitchell and Sulphurets Glaciers, northwest British Columbia; unpublished M.Sc thesis, University of British Columbia, 122p.
- Kirkham, R.V. (1991): Provisional Geology of the Mitchell-Sulphurets Region, northwest British Columbia, Geological Survey of Canada Open File 2416.
- Kirkham, R.V. (1992): Preliminary Geological Map of the Brucejack Creek Area, British Columbia, Geological Survey of Canada Open File 2550.
- Kirkham, R.V., Ballanytne, S.B., and Harris, D.C. (in prep): Sulphurets Area, British Columbia; Preliminary Geology, Geochemistry and Mineralogy of a Deformed Porphyry Copper-Molybdenum-Precious Metal System.
- Lewis, P.D. (1993): 1993 South Bruceside Area Mapping; a preliminary in-house report prepared for Newhawk Gold Mines Ltd.
- Lewis, P.D. (1994): Structural Geology Compilation Brucejack Lake Area; an in-house report prepared for Newhawk Gold Mines Ltd.
- MacDonald, A.J.M (1993): Lithostratigraphy and Geochronometry Brucejack Lake, Northwest British Columbia (104B/8,9). <u>In</u> Geological Fieldwork 1992, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1993-1, pp 315-323.
- Roach, S. and MacDonald, A.J. (1992): Silver-gold mineralization West Zone, Brucejack Lake, northwest British Columbia; <u>In</u> Geological Fieldwork 1991, BC Ministry of Energy, Mines and Petroleum Resources, Paper 1992-1, pp. 503-511.
- Visagie, D.A. (1992): 1991 Summary Report Sulphurets Joint Venture; Bruceside Property, an inhouse report prepared for Newhawk Gold Mines Ltd.

- Visagie, D.A. (1993a): 1992 Summary Report Sulphurets Joint Venture; Bruceside Property, an inhouse report prepared for Newhawk Gold Mines Ltd.
- Visagie, D.A. (1993b): 1993 Summary Report Sulphurets Joint Venture; Bruceside Property, an inhouse report prepared for Newhawk Gold Mines Ltd.
- Watts, Griffis and McOuat (1990): Report on Ore Reserves for the West Zone Sulphurets Property; a report prepared for Newhawk Gold Mines Ltd.

6.0 STATEMENT OF EXPENDITURES

Labour				\$	2,050
M. McPherson (Geologi	ist) July 25-29	5 days @ \$250/day	\$ 1,250		
J. Franks (Assistant)	July 25-29	5 days @ \$160/day	\$ 800		
Room & Board				\$	1,200
30 man-days @ \$40/day					,
Helicopter Support				\$	1.566
2.1 hours @ \$745.52/hou	ur (Hughes 500D)		x		
Drilling				\$	26.128
500' @ \$15.90/ft			\$ 7,950	Ť	20,120
500' @ \$16.90/ft			\$ 8,450		
418' @ \$18.90/ft			\$ 7,900		
core boxes: 71	boxes @ \$7.50/b	oox	\$ 533		
tropari rental: 0.2	25 mo. @ \$1100/1	mo.	\$ 275		
stanby: 33	.0 man hours @ \$	530/hr.	\$ 990		
2.0) machine hours (@ \$15/hr.	\$ 30		
Assaying 178 samples @ \$18.66/sa	ample			\$	3,321
Sunnlies				P	300
Sample bags, tape etc.				ф.	500
Report Preparation includes writing, drafting	g, etc.			\$	1,000
TOTAL				=== \$	35,565

. 17

7.0 STATEMENT OF QUALIFICATIONS

I, Margaret D. McPherson, DO HEREBY CERTIFY THAT:

- 1. I am presently employed as a geologist with Newhawk Gold Mines Ltd. located at #860 625 Howe Street, Vancouver, B. C. V6C 2T7.
- 2. I graduated from the University of British Columbia in 1987, with a Bachelor of Science degree in Geology.
- 3. I have been employed in the mineral exploration industry since 1985.
- 4. The work described in this report was done under my supervision.

ESSIC OVINCE M. D. MCPHERSON BRITISH COLUMBI Margaret D. McPherson

November 15, 1994

APPENDIX I

1

Diamond Drill Logs

-	7H 10 6R	e Attia Ond	R		F	1													1													
	NIE	 :\л/н	A 1.A/IC /		DEPTH	BEARING	DIP	SUF	VEY T	YPE	Z	ONE	≣: <u>C</u> o	0554	ž	HIL	L		LENC	STH:	43:	2.2	\sim		Н	OLE	NO.:	S	94	- 42	17	
		. • • • • 1/	1		COLLAR	170° +1.1e	-45	4	MPA	55	c	:LAIM	1: Rf	ed R	<i>'</i> /v	r5	١		COR	e size	B	QTK	<		SHEET NO. 1 of 18							
	Di	amon	d Drill	Hole Record	29.9m	172° true	-46	·	Тгора	ini	L	ATITI	UDE:	- 4	171	7.71	8N		RECO	OVER	<i>(</i> :				L	000	ED E	N:Y:M	M	PHE	Rem	,
	SU	LPH	URET		215.80	1780	- 469	,	h)FPA (271 10	25. 7	342	54.	49-	16	STAR	TFD	Jam	74/		11	S		FD 1	<u>.</u>				
					340.gm	275	-46							<u></u>	44	x. 6	<u>q</u> <		CON			<u>/</u>	Many	<u>h7</u>			OSE+	Cri	· FA n	MS,	<u>HAU</u> -6'	16 1
		<u> </u>			432,2m	194* ::	-43			ΤΑΙ	tera	tion		<u>v. </u>	Mi	nera	lizat	ion		Assa	v Dat	viy 2	76	AMI				580			re Dat:	3
	inte (me	rval ters)								<u> </u>	~		<u> </u>	1		T	T	Γ			<u> </u>	<u> </u>	[T ·	<u> </u>	T		<u> </u>				
`\	-	17 <u>2</u>	Rock	Coologia Description						-	HLO	e e	ARB	len	%	%	%	%		Sample	From	То	Int	Au	Cu	Au	Cu	Ag	Mo %	RQD	Run	Reco very
)	From 0.0	10	Type	Geologic Description				From	To	<u> </u>	Ū	S	J	1	Py	Ср	Mag	Mo							/ <u>*</u>			opr	<i>^</i> •	<u> </u>		
	0.0	0.0	unse	CASING										.									<u> </u>		+	+	<u> </u>	\vdash				
	b1	16.9	Alloc	a lacide Elas (bbl	physic).						5		5	<u> </u>	1.2		-									\vdash	<u> </u>	\square				
	2.0	<u> </u>	Front	Medium to deck anone	fre co	med wat	face.				2		5	1	2										1	+	<u> </u>	┝──┤			 	
	(\mathcal{M}^{2}	p	texture UP to 30%	maded	nale area	<u>0117</u>							1.							<u>.</u>			1	1	\square	<u> </u>					
				laths Imm × 3mm -	have blende	? Not e	was f										<u> </u>							1						[]		
				erwal to be fs. Mou	1. pervasive	cb. alte	ration										<u> </u>									1						
				and 1-33 dissid + stri	BCT PY - MI	1. Gacture	2																									
				40-50°. 1-33 white	cality frac	Whe fill .	25mm																									
			ļ	wide typically; 2 250,	40°. Wal	bleacht.	4																									
7			ļ	holds to Cacherce. Ur	it is mass. W	e; no fla	~			-							ļ								ļ					į		
كنمه		 		banding or toliation	Relative	y fresh.				.						ļ								ļ		ļ						
	ļ,			V.V. weakly magnetic	-												ļ	<u> </u>						ļ		ļ						
					<u>.</u>												<u> </u>													┟┦		
1	15.8	30.0	Fier	FS-hol phyric Andes.	te Fim						5	•	2	2	1-3									<u> </u>				\vdash		┟────┦	┟────┤	
/				V. s. milar to previous in	terval, bit	wf tin																		<u> </u>				\vdash				
				bloachiling around hachur	<u>LS. Bleach</u>	1 Sections	pale_		· ·																			┝╼─┤				
				gy beige, ~ 20% of interva	r addelin	frahure	(Irl.			+									┼──┤						+	+'		\square				
				white phanes - 102	A Ormanso	1 lima	tre			-						†		<u> </u>							+	++						
				factures un chalth	to vinte R	backed se	ection							+	 	1	1	<u> </u>						<u> </u>	<u> </u>							
				I a d . La none r 14		201710100		1									1	<u> </u>							1							

. .

and a construction of the second s

•

NEW SULF	/ HAW PHUR	' K GO I ETS PR	L D MINES LTD. COPERTY																		Hole Page	No	51	4-	9497 of	18	
			· · · · · · · · · · · · · · · · · · ·			Al	terat	ion			Mine	eraļi	zatio	n	Assa	y Dat	a								Cor	re Dat	ta
Inter (met	val ers)		~				ğ		8						Sample	From	То	Int	A	Cu	An	C	Ag	Ma	ROD	Run	
rom	То	Rock Type	Geologic Description	From	То	SIL	E	SER	Š	cy	% Py	% Ср	% Mag	% Mo		m	~	~	opt	%	check	chéck	opt	%	%		
5-8	30.0	FLOW	16.6- 1819m: Pervasive bleachang to pulse berge.	16.6	18.4		5		2	4	7								ļ	<u> </u>	ļ						\downarrow
			Py blebs to 7% - replacing phenocysts?							_																	
	. *		21.85m-23.9mi v. wherease, white cancely																							 	_
			xtalline q2>> co vens. vens to 8cm wide a		<u> </u>											<u> </u>				<u> </u>	ļ					<u> </u>	_
			35: NUSX in reins, but accasional chlorite fragments																								_
ω.υ	34.2m	FLOW	Bleached Fs-hip Flax:				5	2?	2-3	4	3.4			_	123700	30.0	31.5	1.5	0.011		1		.))				
			shap us as ~80°; Not failted. Pale buge - green	ļ								-			12375	31.5	32.9	1.4	0.013	·			,01				
			colour of prominent to while large for the phonos - v.			 		-+							12375	232.9	34.2	1.3	D.011				,05				_
			fine grid matrix + N-fine phenocosts. Phenos																	+	+	\vdash					_
			modily clo altered, mod cy-ch)-ser-clo alteration?		+												┝───		╂		–	┝──┤	 				_
			1-2% garca venters to 1cm 2 30-50°. No sx in			<u> </u>										+				+							-
			vens								-+										+						
4.1	71.7	5	Andreile fr- 11) is our Franci			4	5.		2.3	_	3				12375	3 34.2	35.7	1.5	0.000		+		.03				-
	1010	1 0014	NU ACROD From a Chord, Some as 0.6-15.8m.				×					_			123754	135.7	37.8	2.1	.002	_			.02				
	-		local pleadary by out as michae 158-20 m.			1																					
			2-27 while calche foll to low wide a		1																						_
			35-50°; revely 2 20°. No sx in veinlets.																								
			Conclud fs-hbl phenos, Dh to light green hbl																								
			ore up to 3mm long loths: while FX me														ļ									 	_
			1×1mm to 1×2mm. total ~ 35% pheros. Massire			<u> </u>				· .						<u> </u>	<u> </u>	L	<u> </u>			<u> </u>				ļ	
			no folicition or flow bonding. Fr-matrix weaking	ļ		 									_							<u> </u>					
			CONCEPTIONS												1		I		l	1							

•

· · · · · · · · · · · · · · · · · · ·	• • •
	Hole No. 594 - 447

Page <u>3</u>

_____ of ____8

NEWHAWK GOLD MINES LTD. SULPHURETS PROPERTY

		T	r		Alteration							Min	erali	izati	on		Assa	y Da	ta								Cor	e Data	a 1
Int (m	erva ieter	1. s)	Rock				HLOR	X	ARB		%	%	%	%		Sample	From	То	int 🕋	Au	Cu %	Au check	Cu check	Ag opt	M0 %	RQD %	Run	Reco very %	
Fron	n	б	Туре	Geologic Description	From	То	5	0	S			Ργ	Ср	Mag	Mo			200	1202	. 4		+		<u> </u>	.2.6				<u> </u>
34, ;	27	6,2	Fian	37.8 -39.2m: Stong bleaching gradational													125/50	500	3912		0.013	-							
				10 starts , 5% while to pale by gzverns															<u> </u>			+	+						+
				to 2 cm 2 45° No SX interns																		\vdash	<u> </u>		\vdash				┢
		× .										_										+	┼──					<u> </u>	+
				55.7-57.6m: strong blenchild. No th											<u> </u>			<u> </u>	<u> .</u>			┼┷							
				vehity.																									+
																<u> </u>	171		+		1	+	+						+
				• •			1	2	600	niy	10	147	<u>:-</u>	2.	β <u>m</u>	. Gr	da-	pral	Im	fer c	et - the c	4			<u>'</u> +				–
	Τ																					+		-					+
					<u> </u>			 								L				<u> </u>					<u> </u>				
					· .	ļ											<u> </u>			ļ									
											ļ				L					 		<u> </u>			ļ		· ·		+
															ļ	ļ	.		_		<u> </u>								
																				<u> </u>	_			<u> </u>		 			+
-						l		<u> </u>				L				ļ			<u> </u>										
																				<u> </u>						ļ		ļ	
	1))																		ļ		<u> </u>			
	-			+ with	1 apr	f																				ļ	ļ	ļ	<u> </u>
	-+				11												12375	6 70.0	71.5	1.5	0.005				11			<u> </u>	<u> </u>
-	-+																1237	5771.5	72.9	5 1.0	0.00	,			,11				
	-				1												12375	8 72.5	573,-	11.2	0.00				105		L	<u> </u>	<u> </u>
	+					1	1		1								12375	9 73.	174.0	1.2	0 040				12			<u> </u>	
					-	-					1	<u> </u>	1				12376	10 74.9	76:	2 1.3	000	8			• ħ	<u> </u>			
-	+								1		1							1										. <u> </u>	
\vdash							-	1	1		1	1	1	1		Τ									<u> </u>			<u> </u>	
	+				1		-		1	1				1	1		1											<u> </u>	

. .

NEWHAWK GOLD MINES L	TD.
SULPHURETS PROPERTY	

()

			· · · · · ·				tera	tion		· · · ·	Mir	nera	lizat	ion		Assay	/ Dat	a								Cor	e Dat	a
Inte (me	rval ters)				-		Ŋ	~	RB		9%	5ç %	tet %	9)		Sample	From	То	Int	Au	Cu	Au	Cu	Ag	Mo	RQD	Run	Reco very
From	То	коск Туре	Geologic Description	From	То	SIL	<u>5</u>	SEF	5	3	Py	Ce	Mag	Mo			Μ	M	m	opt	%	check	check	opt	%	70	<u> </u>	*
			71.9m: 5cm 92.p, ven 2 60°				<u> </u>			ļ		ļ							.							·	<u>.</u>	<u></u>
·						<u> </u>			ļ		. 	ļ	<u> </u>	ļ													 	<u> </u>
76.2	79.6	FILM	FS- WBI Dimetic flaw.			2	3	3-5	1	1	5		ļ			123776	76.2	-77.6	1.4	0,01	<u>}</u>			.18			<u> </u>	
			Similar to priviais interval but the blinching to							<u> </u>	ļ	_	<u> </u>	1		123762	77.b	<u>78.b</u>	1.0	0.020		<u> </u>		,25				
			pale m-aren. The pervasive se all P2													123763	78.b	79.6	1.0	0.015		<u> </u>		18			ļ	
			light in strangers. Still 1-23 vehilits but								ļ									 	 						 	
	+		any dominantly go not calcite; 2 35-95. Typical															0			L						 	
	1		white there but locally adarless and 4-170	ľ																	ļ	<u> </u>					ļ	<u> </u>
			and lase che alteration Notes + original kxtre	s.																							ļ	ļ
	-		pjuict socie episation - such a g												1												 	<u> </u>
19.1	887	0761	Malorate OZSW1			35	Z	7.8	41	4	10		te			123769	79.0	80.6	10	0.030				.29			ļ	<u> </u>
	<u> </u>	UL COP	while and colorclose as we had all trace white							Τ	ŀ		Τ			1237.65	80.6	81.6	1.0	0.017				,21			L	<u> </u>
			calcila long Zim tu 30- Vastis			_										123766	81.6	82.6	1.0	0.027				,80				
			Contract , where she is seen as alter flari	1			1		1			1				123767	82.6	836	1.0	0.035				27			L	
			some as the more and the all a since	1		-	1		1	-						12376	:3.6	89.9	0.8	0.043				,88				
	-		25-407 when here 2 40° when the to			1	1		\square	1						12376	84.4	89.9	0.5	0.025	F			,29				
		+	1 5 W/ Crish to family	1		-					1				1	123770	84.9	85.4	0.5	0.024-				,45				
			(To the py +) (are time tet. Host shonging				+	·		+			-		†	123771	854	86.3	0.9	5.019				1.00				
-			alta bit not at Thousand Shingly boxy								1-	+	1.	-†		123772	863	87.2	0.9	0010				159				
			STIM - 83.7, WORS MILTORASC.	-				+		+					1	h3772	87.2	88.2	1.0		<u> </u>			,25				
								+	+			+				12777				1.013	1		1					
		<u> </u>	THOST Change Non than to cranaled ipill.		+					+-												+-	+					T
			NHT NHT WIX N "BSWM				+		+		+-			+	†	1				-†	<u>†</u>	+						
				1			+-		+					+	1					1	1	-						1
			rivit. Worly minualized, bit good zoro.				+	+	-			+-				<u> </u>					+		1					-
	_							+	+			+																1
1		1	1	1	1	1	i	1	1			1	1	1	1	L	1	1	L	1	1		الم معالم الم			L		-

,

.

Hole No. _________ Page 4 ____ of ____18___

والحين فأما السادمان

				Alteration					Mir	neral	izat	ion		Assa	y Dat	a		·					Т	Cor	e Datz	3		
Interv	val						×					Sp	let	91														Rees
		Rock			<u> </u>		HLO	æ	ARB	a	%	%	%	×.		Sample	From	То	Int	Au opt	Cu %	Au check	Cu check	Ag opt	Mo 1 %	RQD %	Run	very %
From	To	Туре		From	To	<u>s</u>	- 0	- S	0	2	Py_	Ср	Mag	Mo			M 18 2	8	15			<u> </u>		.73	-+			
88.2	11.5	ANNT	ANDESITE LAPILLI TURE:		<u> </u>	7	1	_	~		2	-		+		125/74	0012	87.1 90 6	<u>n.a</u>	0.026				22				i
├			very poorly sorted. Milium to dark grey. Smile.	15cm	<u> </u>	12	· -	2	3		3	Iare		+		125117	89.7	91 5	na	0.011				18				
			28 to 40% angular to subangular heteroltrite		<u> </u>											165/16	7110	1.5	01	5.020				<u>• 10</u>	-+			
	<u>× .</u>		tragmonts; figd beige till, ounded FUPP etc.																									
			Local sections strongly to physic -look like FHPP.		<u>-</u>											<u> </u>						<u> </u>						
			Caldbe vivilize Tags (up to SOCO), 220 mble																									
			g2 vensto 3 cm 2 50° well preserved original		ļ	_						<u> </u>				<u> </u>								-+	-+			
			textures. VINH Foliation 2 60' . venscorry			<u> </u>							 			ļ												
			rove to sp. V. will ser-py alth, why chalth.										 		ļ	L	·				ļ							
			will then sed menta, bands of fight siltor ash.			<u> </u>							 	<u> </u>	<u> </u>	_												
			Typically & ISan wille Beddy / bandry 270"			_							ļ	ļ														j
			j. j.		ļ					ļ	L	<u> </u>			ļ	<u> </u>					<u> </u>							
91.5	113.8	ANUT	Andesite Copilli Liff:			$ _{1}$	2	5	2	L	<u>35</u>	-				123777	11.5	93.0	1.5	0.007	╡			'0 4				
			Sular to previous interval but lose white az-rams.													ļ						<u> </u>	ļ					
			And see + in alternation. Pale-med green- gren.													ļ	L				ļ							
			In pervasive se-on. 12 colorebox toutite					ĺ							ļ						Ì							ļ
		1	as issulets Elementer boi com teron.								ļ									L		L						ļ
•			Still and surfed but althe blues textures.																								ا ا	ļ
			1 Lo Gladen I The certifie to anderate		1	-						1																
			Eggspeats are flattand / to foliation									1				1											ļ	
			<u></u>		1				1			1																ĺ
1120	ut I	4-05	Ashing to congranit sediment: so the of 10 clip?	+	1	1		3	∠		2.3	1	1														 	L
11/10	TTOPP	1.00	maccone and bridged can con the funder			1	<u> </u>	Ť		1		1	T															
			INVISING COT BRUNCH DIAL SILE 2000 SMITHS	1	1	-	-			1		1	1	-								1						L
			Dam. Norson shar will developed ginace bedaing			1	1-			1			1			1					1							
			by charge is gradienting in upsup. my			-		<u> </u>		†	1	+	+	-	†		†				1						7	
			alteration.		1					<u> </u>		<u> </u>		_			1	I	L			<u> </u>			L.	!		لىمىد

1

.

.

Hole N	0. cad \$1.7	
Page	of18	

ſ				Alteration M							Mir	neral	izati	ion		Assay	/ Dat	a								Cor	re Dat	a
Interv (meter	∘al ⊧rs)	Rock					HLOR	ä	ARB		%	Sf %	kt %	9) %		Sample	From	То	Int K	Au	Cu %	Au check	Cu	Ag	Mo %	RQD %	Run	Re
From	То	Туре	Geologic Description	From	To	12	Ū	SE SE	0		Py	Cp-	Mag	Mo	-		101				\vdash				<u> </u>	'	┼───	+
116.61?	39.3	AND	Andeste (apilli titt:	<u> </u>	<u> </u>	μ	2	35			3-5		<u> </u>							┟────┤	$\left - \right $		<u> </u>		├			┝
		158	Smlar to 91.5-113.8, Variable 10-40%, subagular	L	<u> </u>	ļ			ļ	_	 	[[┟────┤	┝	!	<u> </u>	<u> </u>		'		+
			Ighti to boon. Frathered 11 to whit following 2 55°		ļ					ļ	ļ	. 				<u> </u>						├ ───	ļ!		┟┦			╀
	- V		whe server althe increasing to mad 2 ~ 119.8m							L	\vdash			ļ		123778	126.0	127.9	1.5	<u>200. p</u>			<u> </u>	100	ļ	 		+
			1-27 where a very 2 50°. 4. poort surred													<u> </u>						ļ		 	ļ!	 		_
		ł	Mod to pale an - preon. Orighal textures visible																				ļ'	L		 	 	
			Tr. on the vertices									L								ļ!			ļ		\vdash	 	<u> </u>	
																						ļ		<u> </u>	ļ!		ļ	1
			127.5-134.3: -5-107 , late az waststrager	127,4	1343	10	2	5	41		5	sore	rare			123299	127.5	128.5	1.0	1.939				1.01		ļ		4-
			tracell Steer lat 15cm 10 2 127. bon voins		1	T	1.									123780	12815	130.0	1.5	0.00f				,20				
		<u> </u>	information of the second by (is odd)		1		1			1						123781	130.0	131.5	1.5	0.015	FT			.zb				
+			Com N. p. Jar vine : sp. 1000 + 1 - sp. pristo										1			123782	131.5	133.0	1.5	6.017				,22	{ }			
			5mm. VEMS 10 25 10			1		†		-			1	1		12783	122.0	124.2	1.3	500				.10				
1242	121 0	024			+	45	2	17	1,	+	5	11	1	1.		10384	134.7	1353	1.0	5 012				27				Τ
157,5	126.3	(175W)	STRONG GESS to DESX		+	10	<u> </u>	+-	<u> '</u>			1				172785	125.3	136 2	1.0	0.009		-	1	. 10	1			T
			white, msv ge of the white calling in vers								+	<u> </u>	+		├	12578	121 3	136.8	0.5	0.000	1		<u> </u>	.41				T
		<u> </u>	to Asim Typicity < 2cm. Breashed					+		-{	+					123/00	1000			0.00-5			1	<u> </u>				T
			134. 4-135.2m. Vencing tr. py, horeysp.	┼───				+				+		+							<u> </u>			<u> </u>			+	t
 		<u> </u>	fet as 1-2mm flecks, Vens & 30,50 medaminantly	/ 				+			+	-								<u> </u>			+	<u> </u>				+
		ļ	Host modily silicitized but not go + looded. ANLT					<u> </u>						+								 	+					╋
			terturos still visible. Sime host as 116.6-134.3.		∔		╂				1											┼──	+		+		+	┢
		<u> </u>		 	<u> </u>	-	<u> </u>			·		<u> </u>	+			· ·	121 1					┢	+	19	+		+	+
136.8	149.35	ANUT	- Acheste light Tilt.			3-4	1-1-2	3.5	<u>1+</u>	·	3					125 /6	136.8	137.8	1.0	0.029		┼	<u>+</u>	1.16	<u> </u>		+	+-
		/se	Some as 116:10-134.3. Med prey to pale green boyly sorted.			_ _	_		ļ							123788	137,8	1139.3	1.2	0.022	 		+	16	+		+	+
			Heterolatic frage to Altra 15cm. Mod serpy 192	<u> </u>				<u> </u>	_							175789	1591.3	140,6	1.2	0.03B				10	+-		·	+-
			a Hh, 1-3. Site gy 2 30-500	_					ļ			_	<u> </u>		 	ļ	 		ļ				+		·			+-
	i	1		1	1		1	1	1		1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1

يعد ددمر

Hole No.	594-447	
Page	7 of18	

						Al	tera	tion		Mir	neral	izat	ion		Assa	y Dat	ta								Co	re Data	a
Inte (me	rval ters)	- Rock	Geologic Description		To	61L	CHLOR	ier	ARB	%	5ρ %	kt %	9) %		Sample	From	To	Int	Au	Cu %	Au check	Cu check	Ag opt	M0 %	RQD %	Run	Reco very %
110.11		Type	40 h - 14 2 San Az 1 2 20° Tan	14n L	1412	20	2	5	, U	 2	AS -	7	MO	<u> </u>	12200	MAL	1012	6.7	0.00	<u> </u>	+		.15			+	<u> </u>
			10.0 - 111. SM. Shoring CBW ~ 20: VAL		<u> ''''2</u>		2	-		 5	-				122001	141 7	142.0	1.5	0.026		+		.10			+	
			tt 210 py in vein.												1270	142.9	1417	15	<u>p.010</u>		+		\overline{x}			<u>}</u> ──┦	
			alt dances doubt for ~ 14730							 					12792	144.2	1452	1.5	0.007		,		14				
·	<u></u>	1	NA COLORIS TANKING NAM TITISTIC					•		 					12704	145.9	147 2	1.5	0.000			-	17			<u>├</u>	
			prur gray.			-						├──			1049	1477	149.2	1.	0.01	\vdash			21				
										 					125715	1415	2.171	dr.02	0.005		┢	$\left \right $	141				\vdash
149.35	1504	QZBX	INTROPHE O'Z BX/VN:			۶s		2.3		2				·	123796	149.35	150.4	1.05	0.004		-		1.))				
			853 while two barry MSV. 92. Host France 4.	1													-										
			Willia Hid. VCD 40', LCD 50° Trave five and								ч.	·					1										
			ven; otherwise being																								
																						[ĺ
150.4	151.6	ANT	ANDESME LARIUM TUFF			1	•	1-2		1.2					123797	150.4	طعا	1.2	0.00E				.2)				
		1	Similarto previous intervals but vindialth.																								
			Shong orrand textures - v poorly surred																								Ĺ
151.6	16).9	SEOS	poorly sorted sediment:			3		2	١	2	tr	tr			123798	151.6	1531	1.5	0.009				:70				
			Middlimity regise needs services to polymicke												123719	153)	154.6	1.5	0.00%				,44				
			fore public conditionarie. Genular texture Visportin												123800	154.6	156.1	1.5	0.004				,29				
			Sorted. Medium only while silledfield, you will seried	ł											123801	156.1	158.)	2.0	0.004-				.21				ļ
			190 white ac f. MI 220,40'. Some tragments												123802	158.	1601	2.0	0.004				,20				
			show standor grisser- an alteration, veins locally												12385	1661	161.9	1.8	0005				,25			L	
			rainy 0, 5% SO ft Im pervasive se from -																								l ·
			159 m; a shart listy original textures.																								
			No beddy preserved Too port Sorted.							·																	
			·																			1	1				-·*

,

NEWHAWK GOLD MINES	LTD.
SULPHURETS PROPERTY	

<u> </u>				<u> </u>		A	tera	tion	1		N	Min	eral	izat	ion		Assa	y Dai	ta								Co	re Dat	ta
(meters))	Rock					LOR	~		2		*	96	₩ ₩	5)		Sample	From	То	Int	Au	Cu	Au	Cu	Ag	мо	RQD	Run	Rec
From To	0	Туре	Geologic Description	From	То	SIL	ਤ	SER	1	5 3	2 6	Py -	.с́р	Mag	Mo			~	m	M	opt	%	check	check	opt	%	%	<u> </u>	*
			156.6-157 ilm: Fault Zon. Baluncort. Scm																							L			
			drill mid! or sindy guge? 235°																					ļ					
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																										
161.9165	.7	<u>6267</u>	INTERSE QEBX /QZVN.			15		3.5	1tr	: Hr	. 2	2					123 804	161.9	162.8	0.9	0.003				.08				
			while to med aren silica. Med - du gray silicified		1												123805	162.8	163.7	0.9	0.002				ı0،				
			fragment = no organal textures - OZ is massive.														123806	163.7	169.7	1.0	0.003				.85				
			sharp V.C. 2 65, gode-tional LC. Nosx in														123807	164.7	1657	1.0	0.003				.16				
			boxx fillights fragments. Toge els enterchires																										
			165.2m -> Scm broken rore. Story zue boily minid.											•															
			· · · · · · · · · · · · · · · · · · ·																										
165.7 170	1.2	ANT	Andesite Lealth Fritte			2		5	<1		2.	-3					123908	1657	166.7	1.0	0.00A				.12				
			Poorly syled. 15-353 subserved a hoterallittic lealli							-							123809	166.7	1687	2.0	0.003				11				
			to loca. N. wk foliolien 2 55° local stand														123 810	168.7	170.2	1.5	0.003				.16				
			orleased contract may and to serveral con.														: .			[
			Orginal textures blurred by w- and provence ser			1													1		1		1	_					
	- 1		Funde az. 41 % is factus fill by is discid												ļ-	·				[
					1	1		<u> </u>	1		T				2				•		<u> </u>								\square
170.7 172	.7	CLIMA.	Chart (Fauil Zave :		1	7		1.	3	+	3	ŝζ	tr		1	1.	123811	1722	17),2	1.0	0.003				.13				
11-2-172		6.17	the Med on the angle chart of 10% while ac			1		<u> </u>	+			-			<u> </u>		123812	D1.2	172.7	1.5	0.003	1			.18				
		ZFLIC	Actives is to dea us additional arts ~ ISM.		1						1					<u> </u> -	1000-			<u> </u>	1.00.2	1	<u> </u>						1
			IC Fulled Interiol has ~ 253 bolion (and t		1	1			1	1	1	-			†						1		1						
			San Sardie 2 70° Cla 66 Fore Velic Can	· ·		1		<u> </u>	+										†		1	1	1						
		····	It so al chart has allosof sent may		1	1					-												—						
			A the 3 content of the second	1			 	1	†			\neg																	
			-v) - Scm					<u> </u>	+	-					1		1												
			174.0-174.2 m: boku 124 Son Fault		1				1				·							Į									[

.

•

Hole No. <u>\$94-447</u> Page <u>8</u> of <u>8</u>

.

.

659' block should be 64a' block

,

Hole No. 594-447 9 18 of _ Page _

	Inter (met	rval lers)					A	ltera	ation	1		M	inera	lizat	tion		Assa	y Da	ta										
-			Rock					õ					59	tet	9	1		Í	T	1	1	T		1			Cor	e Dat	a
ľ	727	187.6	AWT	Geologic Description	From	To	8	Ē	SER	UAD O		% Ру	% Ср	% M2g	% Mo		Sample	From	To	int	Au	Cu %	Au	Cu	Ag	Mo	RQD	Run	Reco
				174.9 - 178m: 5-103 thege very 2 40°, 10°.		+	1ª		5	1		2-3					123913	1866	187.6	1.0	0.002		1		34	~+	~		*
E.					1		+					+	 	 		<u> </u>		L							-				
) [1	7.6	199.7~	CHERT	Chert:	+ -	1	90			<u>.</u>	+		<u> </u>	I				· ·											
			925~	Pale towed and classifier 1 (1)	<u> </u>		115		·	41	+-	35	4r_			1	123814	187.6	188 6	1.0	0 002	\square			20				
				187.6- 1926 Las distant grantler textures.		<u> </u>											123815	188.L	1896	1.0	0.005			[30		-+		
				31 mille 235 SAL ATT ATSU of white MSN got to	L	L											1201	1041	1411	10	200.0		├		21	_			
				summer 233,30". overprint Chert. Sw													122016	187.6	170.6	1.0	0.002				11				
				Carries H. Sp. Care lically booken ie. 2 189.0-													┠}					-+							
-	-+-			101,1 m, 191,4-191,00m, M-silvingly Fractured 570°					-1		1-						-						$- \downarrow$						
				Cherthosts 5-10% life 92 >> ca vems thanhand	ł.			-+	-+		1	$\left - \right $				' r -	┝──┤						2						
				Similar to interval in 594-444. Shap LC					-+		<u> </u>														T				_
-		-+		2 70-96" to CA.				-+	-+		-1		+				123817 1	982 1	99,7	1.5 t	003	T		11	9				-
199	1.7 2	ale 18	58/-	MOD. 97-ser-on atting & Andreste lepillingt.			iā la						-+										-						-1
Ľ.			150	Unit more uniform them are diard and the			10-14	/	-8			1	rare	tr			123818 1	91.7 2	0].Z	1.5	D14			1	1				
			1	hole Pole a to any on To have all				\rightarrow	-+								123819 2	01.7 2	0.7	.5	000	-+-	-+-	-1-2	c				-
				obtiscoled to all the the set of the										T			22020 2	m.7/2	12		1003	-+-			3-				_
				to 1 Strand by CIHERATUA. 10-20% he toolitise ipili													22021	ash	1.2		010	-+		-1.0	<u>-</u>				_
				1 to 1. M with tolling D-SO - Eugs Flattened										-+-		[2022	M-2 0	05.7		.005			1.1	3		!		
-				1 to this will gesnot 5-10% white years]												LJBLL J	05/20	9.2 1	<u>,5 b</u>	015			.2	2				
	+-			2) 30°, 65° . News rain role sp ir te - water Seminal			1							-+		(Y.	2382320	7.2 20	8.7 1	.5 0	.009			1.24	7				-
			C	lid to storgly silicified.						-+-						12	23824 20	18.7 21	3.72	.0 .	009			1.20	7				-
															_	<u>/2</u>	3805 21	2 212	,5 1.	8 0.	006	T		,40	1	1-	1-		-
				214.0-214.5m 5. 92 Flort + 100 - 214.5m 5	14.00	un de		+								2	13826212	1.5/21	101.	5 0	009			1.30	5				-
	4			veins 265° 45° To bet.	D-Up	17533	20 -		-1						-	123	3827 21	40 21	1.5 0	50		+	-	1.20	1		-		- I ·
	_			i i i i i i i i i i i i i i i i i i i					- <u> </u> -							12	3828 214	5 21	a0 1.	5 6	nal .		1-	.44	il				-
				220.4												12	3829 211		51	5 0		-	-+	49	+				-
				THE TO THE IN AV WITH				-				T		-1-		103	so his	5 219	0 1	5						·			

NEWHAWK GOLD MINES LTD.		
SULPHURETS PROPERTY		

						Alte	erati	ion		Min	eral	izat	ion		Assay	y Dat	a								Cor	e Data	3
Inter (met	val ers) To	Rock Type	Geologic Description	From	То	SIL	CHLOR	SER	CARB	% Py	ج م %	₩1 %	91 %		Sample	From	To S	Int <	Au opt	Cu %	Au check	Cu check	Ag opt	M0 %	RQD %	Run	Reco very %
131.0	229.0	181	5-1-MANI, 02-Ser-a, alth+will azea SW:			15-20		1-8	2	5-7		rand			123832	220.0	221.0	1.0	- 009				2.72				
		1	Similar to previous interval but will show pervisione												123833	991.0	222,5	1.5	. 010	1			.67				
			cilicification + slaht 1 in 97 veine 2 10-15%												23834	22.5	229,0	1.5	.013				1,27				
	. *		N. little calcite invense, white acvence 2 30-45":							_					123835	2240	225 S	1.5	109				158				
			Count rave fine let + rave my construct							 					12383	२२५९	2270	1.5	.006				.49				
			additional and ~ 30cm							 					123837	227.0	2280	1.0	006				.61				
										 					17838	7.7%.0	239.0	1.0	.034	,			2,15				
												Ę			12.20	peo.e											
729 ()	241.2	DCP	Malcale as ser so alteration of a deale hall dist.			7-12		5-7	+2	5-7		rare			122839	229.0	2395	1.5	.07	<u> </u>			34				
			Incolly well preserved or with texture pair to												17 2890	230,5	232.0	1.5	.ര(.51				
			anding one to are ston. While great of 5-10%												23841	232.0	233.5	1.5	ad				28				
			will as so winds to low winds in 30° 40'.												123142	233.5	235.5	2.0	.004				21				
			(no coaled to-17 and Wealter alth +							 					123843	2355	232,5	2.0	<u>, , , , , , , , , , , , , , , , , , , </u>				29				
			retain than incruise interval y similar to 199.7							 					123844	275	2315	2.0	007				. 19	-			
			4 27 Los												123845	229 C	241,2	1.7					61				
																22			100+				· · ;				
7411	2444	OKS Jan	the Dave Civil wild ford later a			50	4	5	2	 25	16.0		c. : [i	<u>.</u>	12294L	2412	242.8	1.6	0.01				.45				
- 17,0			the country successful fallets and area					<u> </u>	-		lyn.	TAC_	<u>101</u>		172847	747.8	244.4	1.6	0.00	[97				
			Note activity stars) and 22 and 10							 								~	0.019								
			VIAL OF A STATE IN A VIEW OF																	<u> </u>							
			Darch' w 32 min they fill																								
	-		50 50 1 -5 0 012/31/ 011				+																				
144.4	244,0	(.52)	with-mind ag-sector allocation;			5		5	4	 F-S					123848	244.4	2464	2.0	0,007				54 -		-		
			Andrew of the local school and a water local and				-+	-													\square						
			of when all similar to 187.6-199.70 2.3%			1					·				L												
			white gr a So. Up ministry 25]

Page 10 of 18

Hole No. 594-447

2 . . .

.

second construction and second

...

Hole No	594-447	
Page	1) of <u>18</u>	š

.....

	Inte	rval					A	tera	tion	_		Mir	nera	lizat	ion		Assa	y Da	ta								Co	re Dat	
	(me	ters)	Deal					Ĩ							Γ	[1			Γ	1	Ţ	Τ		T				Ť
	From	То	коск Туре	Geologic Description	From	To	E	GHE	SER	CARB	a	% D.	%	%	%	ar	Sample	From	To	Int 🔨	Au	Cu	Au	Cu	Ag	Mo	RQD	Run	Rec
`	246.9	297.2	QC BX	STANG QZ=CA BRECCIA:		1						<u> 'y</u>		Mag	Mo	<u> </u>	177640	201 4	202	10			-		Dec				 "
Ē				02>>>cq. white to v. pale gorn missive az.								[<u> </u>		10501-1	v 18. 1	07/4	0.0	0.010	<u> </u>	+		558	$\left - \right $			┢
				Vens 2 45°; carly 10°. Came to- as tet so										<u> </u>	<u> </u>				<u> </u>							\vdash			
Ì,		.* .		locally + 1 Jopy in vers. Host strongly slicified	1	1								 	<u> </u>							┢			$\left - \right $	-+		<u> </u> '	
-				or oussible cherter,	1			_														<u> </u>	┟──┦			\vdash		\vdash	
					f	1												······					┼──┤			ił-			
	A77.2	276.0	ANAT.	Andesite (call: Tiff		+	2	12	2.4	<u> </u>	1:	2 6									<u> </u>								
			25	N. WH 07-ser- in alt's and 1-27 white area	<u> </u>		-	1-2	5			22					175850	247.2	ZA8.)	1.5	0.011				. 60				
_	•			year to I (m; barren with fullation a) 60"																	ļ		<u> </u>						
				Lodili Sitemation the foot this a win 5 he																			┢						
				Dominant 10/11 120 dillanca les 115		ŀ																							
				V Pale and I want all the		<u> </u>																	<u> </u>						
				dullar than a live and a logit and the					·							·							└──]					
				will respired for when a 250 3.																			┝━━━╋						
ľ				Well preserver was verise i zoorom.	┢───┤																								
·.				2610-261.1.51.1.1.1.1.1.1.1.1				\dashv																					
				Four Zant Storgh Ballin are INIBLE																									
Ī				INUL CONE Fractures & 450, take in							-																		
ŀ				2151 2150	<u> </u>												124551 2	60	<u>3650</u>	1.0	0.003				13	i			
ľ				103.0-203. The - 3's black firely (ahedral) h	·												129552	1650	266.0	1.0	0.003			1	08				
ŀ				marty, injune fre					·																				
ŀ				maging the CI line																									
-				270.5-271.0m: 5+000 tac. Ure // To C.A.				_												·									
ŀ						·		_																					
-					<u> </u>		_						·																
-			·						<u>. </u>		!			$- \downarrow$										- ["					

- ۲-د

1.00	a 1					A	tera	tion			Mi	nera	lizat	tion		Assa	/ Dat	a								Co	ore Dat	a
(met	ers)	Rock	Geologic Description			-	HLOR	E.	ARB	- (A)	%	sp %	4e4 %	5) %		Sample	From	То	Int	Au	Cu %	Au	Cu	Ag	Mo	RQD	Run	Rec
2160	28/0	A create	A the Type of the	From	10	s l		2				Ep	Mag	Mo	 	 	141	m	<u>m</u>		⊢ ″-				/*	ļ.,~	+	– *
01010		ANIE	mastic cotton the general alter			4		2		1+2	<i>b</i>	╂──		╂						<u>}</u> -					<u> </u>	┼───		┢
		125	V. tive gramed, whitein, readrebess. Du								-										<u> </u>				<u> </u>			╞
		 	grey. Fine py discid throughait. Its white gc	<u> </u>			 		ļ	+	<u> </u>				<u> </u>					ļ	ļ		ļ	ļ		 	∔	
	- 51 5 - 15		Machine fill- barren 2 90° ravely 20°.			<u> </u>			 	+					_─	-										┨───		
			281,8m: 1.5cm ange . Fault Zou 2 35°.																								+	╞
												ĺ		ļ														
288.0	291.4	AND	Andeste lopill. HE IV. IL OSP atta			1	1	34	4		3	_	L															
		-OSI	Contact gradational from previous interval.																									
			Mus area widh gren lopli ~ 10-30%. Some as																									
			247.2-276.0m									Γ																
			et i j																									
291.9	302.0	Arnf	Source. 45 276.0-288.0m			41		2	21	1.2	1-2																	<u> </u>
		1	Slight & maltin, local vivitaint Gament									Γ									-					[
			atting. Ms. No bedding, no follation.							1																		
200	1710	A										ļ														'	<u> </u>	
202,0	24.5	MNUT!	Acdusic Lepill - 34+			<u> </u>	1-2	3.9	4	12	<u>d</u>															ļ		├
			Durned are Orland Extens poorly pressived.							_			<u> </u>	ļ						· ·								
			Vill for series Attin Leours illy 10-353							4																		
			sumption light to 2m. Decision convert																									J
			Composition but looks training liner. MSN not									ļ		<u> </u>														L
			foliated. Local boligaring built toppically galing																									
			mully factured. 2175 calible Birdine Sill											L													l	
			303.8-309 - bokker corp. No an												1	·												
		·····	305. 2-305.3x 1 1. 11																									•
		,	305.7-306.0m i "				1	Ĩ						l								j		.				

.

الرابي الرومير ويترون والمتروم ومترو والمنافع المراجع المراجع

Hole No. 594-447 Page 12 of 18

and the second second

NEWHAWK GOLD MINES	LTD.
SULPHURETS PROPERTY	

 \bigcirc

				[<u> </u>	Alt	erat	ion			Mir	nera	lizat	ion		Assa	y Dat	a								Co	re Dat	a
Inter (met	val ers)	Rock					ľ0ľ		KB KB		٩,	ev.	9,	~		Sample	From	То	Int	Au	Cu	Au	Cu	Ag	Мо	RQD	Run	Reco
From	То	Туре	Geologic Description	From	To	SIL	3	SER	S	02	Py Py	Ср	Mag	Mo			Μ	m	m	opt	%	check	check	opt	%	%		×ery %
302.0	<u> 321 S</u>	Arnt	310.85-311.0m: Fault, Stong Shearly 2 35.				`								L													
			Mip. Silicities Scm HW.																									
																						•						
	£ .		· Cocally lephli withing V.V. famt.						•		_																	
			- Gadational L.C. W/ imalteration.																									
			· · · ·		•																							
3215	347.8	COSP	Med. 107-service althe in Amartine.			2-3	3	5	41		3-1	7																\square
		<u></u>	Similar all to region intrue Lit the alteration.	· .				-			-																	
		-	to Pala-mod an access to implact of Farst levilli							•																		
			withous 412 or factor fill with foliation a										· ·	1														
			40° : Clatter of logilly Booner sections look									•															1	
• ·			Elalacitic . Fractured as 50° (mod) local booken care																									
			was servit may orable voins to day of conda, w	100																								
			330.1-330.3m: boke core				_							1														
			330.2.: bolin ore													12483	3321	337.7	0,6	800.0				,12		÷	<u> </u>	
			331,2-331.7m: bolin NHL (are to 1)?													124554	337.7	339.Z	1.5	0.041				168				
					·									1		124555	B39.1	340.7	1.5	D.02R				,34				
•			Rose and by ach heds - and almal antarte													12455	2407	342,2	1.5	6.029				,28				
			Contraction of the start of the													11450	247.2	3427	1.5	0 021				.24	,			
			337.1-337.7. while Hillion (07=CD SIDELL 109/11 11)	337.1	357.7	40		2	40	5.	2			1		1		• • •		<u></u>							[
			~5% all have and the valuated in a								-		1														[
			Addaila? the 2 per 1 (22 Vale (235° +				+						1			17 440	2017	245.2	1.5	0.022				,19				
			Though R Only Doesn't Fire very w 55 1				+									12454	45.2	2467	1.5	0.028				.20				
	··		() · · · · · · · · · · · · · · · · · ·													12456	3467	347.8	1.1	0.024				.18				
														+			~ ~ ~ /											

,

NEWHAWK GOLD MINES LTD.

SULPHURETS PROPERTY

-		<u> </u>				A	tera	tion			Mi	inera	aliza	tion		7	Assay	/ Dat	a			<u> </u>		_			Co	re Dat	а
Inte (me	erval eters)						¥					SC	k	1 5)							1								
-	1	Rock	Coologie Description	<u> </u>	-		HE I	8	ARB	1m	%	%	%	· ′%	6 ^{E10}	ς. P	ample	From	То	Int /~	Au	Cu %	Aucheck	Cu check	Ag	M0 %	RQD %	Run	Reco very
From	To	Туре		From	10	<u>s</u>	02	2		+-	1 <u>Py</u>	Ep	Ma	8-11	0			1.1	<u>m</u>		<u> </u>								-
12 14	8356.0	DAY HE	MARIC DYNE				63	12	<u> - '</u>	┿	1-2	·	+	+									<u> </u>						ł
		<u> </u>	Mid-pale grey-berge, og the grained with			-					┨╌	+		+	+	╉								-					
			10-15% med green chl-ser: alt'd phenocrysts							+	┨──			+														┼───	├
<u> </u>			to 5mm - probably hbl. Not ralcareaus.					<u> </u>		-	-														-				<u> </u>
	_	<u> </u>	Irolis bleached; whise in 1th. 2120 gc ventit				_				<u> </u>					_							ļ	<u> </u>					
			D25, 20". We flow bandly or follation 250°												_									<u> </u>				ļ	ļ
			Trace mli villa barite? w/98.						L				_									ļ	 	ļ				ļ!	
			Rere fragmentis (m/c) to Iscm. VCD bo shap																		ļ							ļ!	L
			Not chilled																										
				•						1	1					Τ													
3540	39. 69	0.CP	Simi as 37.1.5- 247.8m				[Γ																		
										1																			
2566	Sod - c	K. urt				20	<u>†</u>	5	15	3.5	2.0	-		1							1		<u> </u>						
		mut	Public Active Dest () 2 7			_در ـ		1	12	<u> </u>	<u> </u>	4																	
			1000 prollencert Friture () >> + the daw	hoch	pr-	\searrow	1.	<u>}</u>			+-	+				1.	2000	24 1	20.00	. ~	1	<u> </u>			15		·	<u>}</u> '	[
			Million gg. Malaral is growing) my	1-2-	\vdash	\vdash											2736	1.6.0	7 4000	0.82	0010				115				<u> </u>
		074	KOM'	\leftarrow				-	-	+	+	+,						201 00							1				<u> </u>
3568	375.8	WESN .	MOD-Shang gz stock work in ANTE.			195		1	4	Ψ.,	12	<u>++</u> .	+11	1 (00	r m	12	29562	22685	351.9	1.05	0.012				190				┣
			11-5 pro pervasion Silicification stang ar altin.		-		<u>.</u>							_			24563	357,9	358.1	1.0	0.018	×			139			ļ	┝
			vehs while to pole grey typically Smin - 2con willy		20.00	تصعلا	·	Ļ	<u> </u>	_			<u> </u>			1	24569	358.9	359.9	1.0	0.015	1			.6/			l	
			lucally & ISon. Trace white ca haz verns.	ļ	<u> </u>				L		<u> </u>					17	24565	359.9	360.9	1.0	104	<u>¶</u>	ļ		8.41	2		SA	\mathbb{P}^{\sim}
			Medging hust - luss of must texpres, vens lucilly						<u> </u>			_				!;	24566	3629	361.1	1.0	0.014.	ļ			164				
			well minid up tr. provingle, rare electron,														24567	361.9	362.9	1.0	0.009	1	L		48				
			41- 170 co tet 170 pg.													۲;	24568	362.9	3639	1.0.	bois		ļ		.51				
			TOMMY MNOCHER.													r	29569	363.9	364.9	1.0	0.015				152			ļ	İ
			30-40% relas (1) 40°													þ	24570	364.9	3 <i>b</i> 5.9	1.0	0.008	l			.25				
				1	1	1	1	1		1	Τ		1	1	T	h	14571	zheu	shh a	11					.24	·			i i

,

Hole No. <u>599-447</u> Page 14 18 Page

NEWHAWK GOLD MINES LTD.
SULPHURETS PROPERTY

				· · ·		Al	terat	ion			Min	eral	izati	on		Assay	/ Dat	a								Cor	e Data	а
Inter (met	val ers)	Rock			,		llor	~	RB		%	sp %	tet %	5) %	elec.	Sample	From	То	Int	Au	Cu	Au	Cu	Ag	мо	RQD	Run	Reco
rom	То	Туре	Geologic Description	From	То	SIL	히	SE .	Š	4	Ру	Ср	Mag	Mo			m	m	m	opt	%	check	check	opt	%	%		*
56.85	375.4		Best min is 360.6 - 360.7 el, 12pg, 12, let in													124572	366.9	367.9	1.0	0.026				.92				
			12mgv ; nd 374.6-374.8m; 20cm gv / py ag, kt							<u> </u>						129573	367.9	368.9	1.0	0.012				.34				
																124514	368.9	369.9	1.0	0.008				,81				
			365.1-365.2m: broken care, Noble, tricy, small fault													129575	369.9	370.9	1.0	0.057				.72				
			, , , ,										·			124576	370.9	371.9	1.0	0.004				130				
																124577	321.9	272.9	1.0	nto.o				.55				
																124578	37),9	\$73.9	1.0	0.010				.52				
																124579	373 9	3749	1.0	0.024				6.39				
											-					n.4560	274.9	325.8	0.9	0.05				.99				
75.R	393.3	035	An M-Clain Other to Chart			6		1.7	21		5-7	40	1			124581	3258	3768	1.0	0.005				.35				
<u></u>			The similar to organist atend 25.35% white to			~							<u>'</u>			129587	376.8	377.8	1.0	n.00%				,29				
			pale a az tare white calify which to zran													124583	377.8	3788	1.0	0.008				3.60				
			+ say occasionally to 30 m (line) is medan													12984	278.8	379.8	1.0	0.077		÷		0.41				
			at mile chard Fine against fait child													1.4<4<	274.8	3218	1:0	0.036				151				
			lasting proper (AUT), the grane tant (estic		 :									···		120	250 8	281.8	1.0	0.000				3				· · · ·
			RAME production resident structures													10 00.0	2010	20710	10	0.001				.15				
			GE SHIP-OR'S TO TON JUNE (MULTUR HXNER													12-087	20-0	26718	10	1.000	T			.09				
			Py Aissa tu simmasi in pulst string s. Veins D										—			124588	262.8	2028	1.0	0.07	1	<2	Nº (1)	. 1	4			
			To there poisot sp. are locally strangly brites:													124589	<u>383.8</u>	207.8	1.0	0.006	+			6	· · ·			
			ac orthilas Kappal.			<u>}</u>								· ·		129590	3898	هد <u>هن</u>	1.0	0.005	<u></u>			.61	\rightarrow			
																124591	385.8	3868	1.0	0.00			•.	.07				
		· ·	Broken core 2: 376.0-376.2 m													124592	386.8	38 18	1.0	0.005				,25				
			377.7-378.0_ nishle ; tr. cy													124593	387.8	38818	1.0	0.003				.17				
			5784-378.6m abble.													124599	388.8	5891.8	1.0	0.003				10				
			383.4-385.5 m. Nor recovery; +1+2.			-		。 								139515	89.8	390.9		0.004								
			fractures 2 60-70'						× 					·	<u></u>	12459b	91.9	392.0	1.1	0.0r1				-74				
			· · · · ·					· .				į.	.			124597	92.0	393.	1.1	0.014				. 41)			

Hole No. _ 594 - 447

Hole No. <u>594-447</u> Page <u>16</u> of <u>18</u>

						A	terat	ion			Mir	ieral	izati	ion		Assa	y Da	ta								Cor	e Data	3
Inte (me	rval ters)	Rock					HLOR	ER	ARB		%	%	%	%		Sample	From	То	Int	Au opt	Cu %	Au check	Cu check	Ag opt	M0 %	RQD %	Run	Reco very
From	To	Туре		From	To	~	-	~			Ру	Ср	Mag	Mo	+	1×has	202	264)	10	6 010				0				<u> </u>
	L		Solucione: Sorria-388.6 m. Kicy on preces. Pitz		<u> </u>						<u> </u>		<u> </u>	<u> </u>		PETEI	593.	3999.	1.00	0.012	2			, 0,				
			391.6-391.7m																									
										L			L		ļ					ļ								
393.8	394.1	FLT2	Foult Zow: 1: 11											ļ	Ļ	 	ļ	<u> </u>]				
			extremely bruther /shatt'd core make UC of matic																	·								_
			dubo, Fachines a) 30-40											<u> </u>													ļ	ļ
			<u> </u>																									L
394	3043	NYUF	Matur Butice.											<u> </u>			1										ļ	L
	1		aller to say a line and and								·						· ·							·]]		<u> </u>
		$\overline{)}$				—									T							•						
			14			-				1-											Γ							
				1						1-	 		-		1													
						1				+	<u>† </u>		<u> </u>	\square				<u> </u>										
		<u> </u>			1	-				┢──	├	-	<u> </u>	+							1							
394.	394.1	DAME	Matte Dyke:							+				+—				+					$\left - \right $					<u>, </u>
		ļ	Olive green, two grand. Not ral carerus. Trace ep					<u> </u>							+													1-
			flecks. 212 white califier stringers + blebs.			+							+	-			+				+							
	·		Post mneral.				<u> </u>			+				+							+		-					
							ļ		<u> </u>	<u> </u>	 																	-
314	395.2	QZSW	Same as 375, 8-393.8m	_			<u> </u>		L	<u> </u>			-					- -										
				_								ļ	ļ					<u> </u>		I	ļ	ļ						
395.2	408.5	SOSP	stong az-ser-on alteration												_													ļ
			Pale to med an green to an trine. Fine gramed.						İ																	L		1
			0-10% & Subanally kelli, Mast original textures																									
		·	destand Adesite toff last week filiation	1.																								
			2 50 co about a discide accossibility of			-									1													
			0 JU . competition ry 40501 - or constraining co	-					1	1		~				1					1					1		

1

A ...

						A	terat	tion			Mir	nera	lizat	ion		Assa	y Dat	a		·						Coi	re Dat	a
Inter (mete	val ers)	Rock				L	HLOR	æ	ARB		%	Sf %	+e} %	9) %	leba	Sample	From	То	Int	Au	Cu %	Au	Cu	Ag	Mo %	RQD %	Run	Rec ver
From	To	Туре	Geologic Description	From	То	S	Ŭ	<u>۲</u>	0	109	Py	€₽-	Mag	Mo	Ī			m	m ac	0.000	-	<u> </u>		18			┼───	+
395,2	408.5		vehilets Som to San vide. Locally extremely			10		1-0	d		76	+C	14	14		124591	599.7	3952	0,5	0.040		┼	$\left \right $	44				┼─
			well min'd. Vens a 50-60° to CA.	<u> </u>		<u> </u>							┼			124600	3022	396.2	1.0	0.050		+		47				+
			Local mottled texture of dher grey patches look				L									12960	396.2	39/2	1.0	D-032		+		۲ ۲۱ ۲۴		<u> </u>		+
	18 4		silicified bit orest.												ļ	12460	397.2	598.2	1.0	0.021		–		108				+
				<u> </u>	 _					ļ					ļ	12963	398.2	399.2	1.0	0.032		–−	-	.10			ļ	<u> ·</u>
			Well mid 2: 395.7-395. 8mi spilin 5mm 92							<u> </u>					•	129604	399,2	400.2	1.0	0.023	4	\vdash		19			↓	<u> </u>
			Strikar w Zo			 					<u> </u>					12-960	400.2	401.2	1.0	0.018		_		,09			 	₋
			-		ļ											129606	401,2	412-2	1.0	0.031	ļ	<u> </u>		.10				_
			317.1m bother and.													24607	402,2	403.2	1.0	0.022	<u> </u>	<u> </u>		• 11				ļ
																12.4608	405.2	404.2	1.0	0.027	<u> </u>	<u> </u>		• 11			ļ	
			397.1-317,4 m: 3cm bord is 30° w 28 conse													129609	404.2	105.2	1.0	0.02.4	2			,10				<u> </u>
			50-61-5-62													124610	405.2	4062	1.0	0.03				.41			L	\perp
																124611	406.2	107.2	1.0	0.031				,22				
			4B.Smilimon I I' Asid tet.									ŀ				129612	407,2	4085	1.3	0.013	3			.14				
																1												ľ
4185	4227	DC P	NSha QI-SC- QA gitte :	1		1		7-8	1		4.5	tr	-			129613	4085	410.0	1.5	0.01				,08				
	1.000		used find advise till the shades to agricult		1	1										129614	410.0	411.5	1.5	0.011				•]]				
	•		HOST I GO LAZZ WILL OF ANY TO PREVIOUS	1			1						-		1	124615	411.5	413.0	1.5	0.015	;			.16				
			The share of all finter MSI	1												129616	412.0	414:5	1.5	0.010)			·09				
		<u> </u>	reach here the week will a week a week and		1					1		1	1		1	1296	414.5	416.0	1.5	0.005	1			,07				-
			lait of for and all for fine decision	-	<u>†</u> -	1				1		<u> </u>	1		1	1246 K	416.0	417.5	1.5	0.008				14				
		+	fact of white and the hore of the		1	-				1	1	†—	+		<u> </u>	129619	th7.5	419.0	1.5	0.007	1	1		, 18				
			Trucinics. Mid gray-grant gy- auger		1	-					<u> </u>		+	1	†	12961	419.0	420.5	1.5	0.01	1	1		,25	\$			—
		+	And Anz Si hall a he Canll		+	†				\top		<u>†</u>	+	+		124621	420,5	421.5	1.0	0.019	1			,2	h			
			(14						f	+		+			+	nAb21	4215	423.0	1.5	0.019	3			•13				
	· · · · ·		tavit.		+	-	†			+		1	-	+	1	124623	123.0	4.4	1.5	0.01	3	1		12				

•

Γ							Al	tera	tion			Mir	nera	lizat	ion		Assay	/ Dat	a								Co	re Dat	a
	Interv (mete	/al ers)	Rock					LOR	~	ß		9/	%	%	a		Sample	From	То	Int	Au	Cu	Au	Cu	Ag	мо	RQD	Run	Reco
F	rom	То	Туре	Geologic Description	From	То	SIL	Э	SEF	১		Py	Ср	Mag	Mo			m	м	m	opt	%	check	check	opt	%	%	<u> </u>	%
																						<u> </u>							
																								Į					
				······································												\square													
Ĩ											\square		1	1		1												1	
F		,			1						\square			1			rz4624	4:45	4260	1.5	0.015				.07			[
											+	\vdash					124626	476 N	4070	15	0.012				0				
F						}					\vdash			<u> </u>			124426	12010	1213	16	0.01-		<u> </u>		107			┼───	-
-											┢		+	+			641020	4200	1210	1.5	0.010				12				
┢															-		129621	721.0	150.5	1.5	0.012				21			<u> </u>	
╞	+					 					<u> </u>						124628	130.5	432.2	<u> </u>	0.025	<u>}</u>			16				
-											ļ	ļ	<u> </u>		ļ							ļ		<u> </u>					
					ļ		ļ				┢					<u> </u>				·		,	ļ	ļ		•		 	
											 		ļ									ļ							
												L																	
																					_								
1														1															
-		~									+			1	-								1						
					·								1	+	1								· · ·	<u> </u>					
+					╂						+		+	\vdash	+														
-										···	\vdash	<u> </u>		+								<u> </u>							
-																													
															-								–−					<u> </u>	
-											_					·							<u> </u>						
-						 	 					ļ				ļ							 	<u> </u>					
.											ļ	L									ļ								
.						l				ļ	<u> </u>				ļ													ļ	
						Ľ					1		1															1	Į

.

Hole No. <u>594-447</u> Page <u>18</u> of <u>18</u>

- - - - -

APPENDIX II

- -

ASSAY DATA

A SALL GEOCHEAT ANALYTICAL CHERTER ENVIRONMENTAL TESTERS

17-Aug-94

10041 E. Trans Conam Herv., H.R., 2, Kamboops, B.C. V2C 2J3 Phone (604) 573-47 Fax (604) 573-47

CERTIFICATE OF ASSAY ETS3033

NEWHAWK GOLD MINES

625 HOWE ST- SUITE 860 VANCOUVER, B.C. V6C-2T6

Attention: Fred Hewett/M. McPherson

64 rock samples received July 29, 1994 Sample run date: August 8, 9, 1994 Samples Submitted By: M. McPherson Client Project Number: Sulphurets Shipment Number: 17

		Au	Au	Ag	Ag
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)

13	123751	0.46	0.013	2.5	0.07
14	123752	0.38	0.011	1.7	0.05
15	123753	0.07	0.002	0.9	0.03
16	123754	0.07	0.002	0.8	0.02
17	123755	0.46	0.013	8.8	0.26
18	123756	0.27	0.008	3.9	0.11
19	123757	0.23	0.007	3.9	0.11
20	123758	0.31	0.009	1.7	0.05
21	123759	1.67	0.049	4.0	0.12
22	123760	0.28	0.008	3.7	0.11

Frank J.Pezzotti, A.Sc.T., B.C. Certified Assayer

Page 1

Newhawk Gold Mines ETS3033

17-Aua-94	Ļ
-----------	---

- 2

		Au	Au	Ag	Ag
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)
23	123761	0.51	0.015	6.2	0.18
24	123762	0.70	0.020	8.0	0.23
25	123763	0.51	0.015	6.0	0.18
26	123764	1.03	0.030	9.9	0.29
27	123765	0.59	0.017	7.1	0.21
28	123766	0.93	0.027	27.3	0.80
29	123767	1.22	0.035	9.3	0.27
30	123768	1.47	0.043	30.1	0.88
31	123769	0.86	0.025	10.0	0.29
32	123770	0.82	0.024	15.5	0.45
33	123771	0.64	0.019	34.4	1.00
34	123772	0.36	0.010	20.3	0.59
35	123773	0.53	0.015	8.7	0.25
36	123774	0.89	0.026	7.7	0.23
37	123775	0.39	0.011	7.6	0.22
38	123776	0.68	0.020	6.2	0.18
39	123777	0.23	0.007	3.2	0.09
40	123778	0.18	0.005	1.6	0.05
41	123779	66.50	1.939	34.5	1.01
42	123780	0.24	0.007	6.7	0.20
43	123781	0.53	0.015	9.0	0.26
44	123782	0.59	0.017	7.4	0.22
45	123783	0.26	0.007	3.3	0.10
46	123784	0.59	0.017	9.2	0.27
47	123785	0.30	0.009	3.5	0.10
48	123786	0.32	0.009	14.0	0.41
49	123787	0.99	0.029	6.5	0.19
50	123788	0.76	0.022	5.3	0.16
51	123789	1.29	0.038	5.5	0.16
52	123790	0.90	0.026	5.1	0.15
53	123791	0.33	0.010	3.5	0.10
54	123792	0.26	0.007	12.6	0.37
55	123793	0.20	0.006	4.9	0.14
56	123794	0.74	0.021	5.9	0.17
57	123795	0.17	0.005	7.1	0.21
58	123796	0.15	0.004	38.2	1.11
50	123797	0 27	0.008	7.3	0.21

25.5

. . .

64

123700

0.38 0.011/ 3.7 0.11 FT Frank J.Pezzotti, A.Sc.T., B.C. Certified Assayer

م ..

ASSAMMA GEOCHEMISTRU ANALYTICAL CHEMISTR ENVIRONMENTAL TESTING

10041 E. Trans Canada Hory - R.R. #2. Kamloops, B.C. V2C 2J3 Phone (604) 573 5765 Fax (604) 573 4557

CERTIFICATE OF ASSAY ETS3041

NEWHAWK GOLD MINES 625 HOWE ST- SUITE 860 VANCOUVER, B.C. V6C-2T6

Attention :Fred Hewett/M. McPherson

39 rock sample received July 30, 1994Sample run date:August 9, 10, 1994Samples Submitted By:M. McPhersonClient Project Number:SulphuretsShipment Number:18

		Au	Au	Ag	Ag
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)

16	123798	0.30	0.009	24.0	0.70	
17	123799	0.21	0.006	15.0	0.44	
18	123800	0.13	0.004	9.8	0.29	
19	123801	0.15	0.004	7.2	0.21	
20	123802	0.14	0.004	7.0	0.20	
21	123803	0.18	0.005	8.7	0.25	
22	123804	0.09	0.003	2.7	0.08	
		N.F	-			

تملا.

Frank J.Pezzotti, A.Sc.T., B.C. Certified Assayer

25-Aug-94

Newhawk Gold Mines ETS3041

25-Aug-94

		Au	Au	Ag	Ag
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)
23	123805	0.07	0.002	2.4	0.07
24	123806	0.12	0.003	8.4	0.25
25	123807	0.10	0.003	5.6	0.16
26	123808	0.13	0.004	4.2	0.12
27	123809 📆	0.09	0.003	3.9	0.11
28	123810	0.09	0.003	5.6	0.16
29	123811	0.09	0.003	4.5	0.13
30	123812	0.10	0.003	6.1	0.18
31	123813	0.08	0.002	11.8	0.34
32	123814	0.12	0.003	10.2	0.30
33	123815	0.10	0.003	7.3	0.21
34	123816	0.06	0.002	3.7	0.11
35	123817	0.09	0.003	6.6	0.19
36	123818	0.49	0.014	8.1	0.24
37	123819	0.31	0.009	8.5	0.25
38	123820	0.36	0.010	7.8	0.23
39	123821	0.21	0.006	4.5	0.13
QC DATA					
Resplit Assays:					
R/S 4	13619	0.37	0.011	5.8	0.17
Repeat Assays:					
1	14414			15.5	0.45
9	13624	0.51	0.015		
9	13624	0.46	0.013		
39	123821			4.7	0.14
Standard:					
	CANMET MA-1b	17.12	0.499	1.2	0.04
Blanks:					
	Blank	<.03	<.001		

NOTE: Average values are reported where repeat assays are performed. Screened "Metallic Assays" are performed on sample resplits screened to -140 mesh.

ECD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/NewhawkS

ASSAVING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

23-Aug-94

. .

10041 E. Trans Canada Hwy., R.R. *2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETS3043

÷.

NEWHAWK GOLD MINES #860-625 HOWE STREET VANCOUVER, B.C. V8Y-3A5

Attention: Fred Hewett/Margaret McPherson

57 rock samples received July 31, 1994 Project: Sulphurets Samples Submitted By: M.McPherson Shipment Number: 19

		Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	
1	123822	0.50	0.015	9.1	0.27	
2	123823	0.32	0.009	8.2	0.24	
3	123824	0.32	0.009	8.2	0.24	
4	123825	0.22	0.006	15.0	0.44	
5	123826	0.30	0.009	10.1	0.30	•
6	123827	0.34	0.010	9.9	0.29	
7	123828	0.29	0.008	15.1	0.44	
8	123829	0.33	0.010	16.7	0.49	
9	123830	0.37	0.011	20.3	0.59	
10	123831	0.50	0.015	41.0	1.20	
11	123832	0.32	0.009	93.1	2.72	
12	123833	0.36	0.010	22.8	0.67	
13	123834	0.45	0.013	43.4	1.27	
14	123835	0.31	0.009	20.0	0.58	
15	123836	0.21	0.006	16.7	0.49	
16	123837	0.22	0.006	21.0	0.61	
17	123838	1.18	0.034	73.6	2.15	
18	123839	0.23	0.007	11.8	0.34	
19	123840	0.20	0.006	17.3	0.51	
20	123841	0.13	0.004	9.7	0.28	
21	123842	0.15	0.004	7.1	0.21	
22	123843	0.24	0.007	10.0	0.29	
23	123844	0.36	0.010	6.5	0.19	
24	123845	0.24	0.007	20.8	0.61	
25	123846	0.36	0.010	15.5	0.45	
		Ar	$ \rightarrow $			

Frank J. Pezzotti, A.Sc.T. B.C.Certified Assayer

NEWHAWK GOLD MINES ETK 3043

NEWHAWK GOLD N			23	3-Aug-94		
		Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	
26	123847	0.43	0.013	33.4	0.97	
27	123848	0.23	0.007	18.6	0.54	
28	123849	0.34	0.010	122.7	3.58	
29	123850	0.38	0.011	20.7	0.60	
30	123851 124551	0.12	0.003	4.5	0.13	
31	123852 124552	0.10	0.003	2.7	0.08	
32	123853 194553	0.26	0.008	4.1	0.12	
33	12385 4 174554	1.42	0.041	23.3	0.68	

. Y.

41	124555	1.30	0.038	11.8	0.34
42	124556	1.00	0.029	9.7	0.28
43	124557	0.71	0.021	8.3	0.24
44	124558	1.13	0.033	6.6	0.19
45	124559	1.32	0.038	6.9	0.20
46	124560	0.83	0.024	6.1	0.18
47	124561	0.36	0.010	5.2	0.15
48	124562	0.40	0.012	13.7	0.40
49	124563	0.63	0.018	13.5	0.39
50	124564	0.52	0.015	23.1	0.67
51	124566	0.49	0.014	21.9	0.64
52	124567	0.32	0.009	16.5	0.48
53	124568	0.50	0.015	17.6	0.51
54	124569	0.50	0.015	17.7	0.52
55	124570	0.28	0.008	8.6	0.25
56	124571	0.39	0.011	8.3	0.24
57	124572	0.89	0.026	14.4	0.42

2 Frank J. Pezzotti, A.Sc.T. B.C.Certified Assayer

. .

ANALYTICAL OST ESTAT ANALYTICAL OST ESTAT ENVIRONMENTAL TESTING

24-Aug-94

10041 E. Trans Carada Hvisi, R.R. (2) Karrolautis, B.C. 72C 23³⁷⁻³³⁵ and catal 8796755 Fax (605) 573 (2077)

CERTIFICATE OF ASSAY ETS3042

NEWHAWK GOLD MINES #860-625 HOWE STREET VANCOUVER, B.C. V8Y-3A5

Attention: Fred Hewett/Margaret McPherson

69 rock samples received August 1, 1994 Project: Sulphurets Samples Submitted By: M.McPherson Shipment Number: 20

		Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	

13	124573	0.40	0.012	11.7	0.34
14	124574	0.28	0.008	27.7	0.81
15	124575	0.23	0.007	24.8	0.72
16	124576	0.18	0.005	10.1	0.30
17	124577	0.35	0.010	19.0	0.55
18	124578	0.36	0.010	17.7	0.52
19	124579	0.81	0.024	219.1	6.39
20	124580	0.50	0.015	16.9	0.49
21	124581	0.17	0.005	12.0	0.35
22	124582	0.26	0.008	10.0	0.29
23	124583	0.28	0.008	123.4	3.60
24	124584	0.91	0.027	14.2	0.41
25	124585	1.25	0.036	17.5	0.51

Frank (Lipezzotti, A.Sc.T. B.C.Certified Assayer

Page 1

NEWHAWK GOLD MINES ETS3042

.

24-Aug-94

• •

		Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	
26	124586	0.32	0.009	18.1	0.53	
27	124587	0.19	0.006	5.0	0.15	
28	124588	0.15	0.004	3.2	0.09	
29	124589	0.20	0.006	4.9	0.14	
30	124590	0.16	0.005	2.4	0.07	
31	124591	0.04	0.001	1.3	0.04	
32	124592	0.18	0.005	7.8	0.23	
33	124593	0.09	0.003	4.7	0.14	
34	124594	0.12	0.003	3.5	0.10	
35	124595	0.13	0.004	1.8	0.05	
36	124596	0.57	0.017	12.0	0.35	
37	124597	0.48	0.014	25.2	0.74	
38	124598	3.36	0.098	34.7	1.01	
39	124599	0.68	0.020	6.0	0.18	
40	124600	1.04	0.030	15.0	0.44	
41	124601	1.11	0.032	16.7	0.49	
42	124602	0.71	0.021	23.3	0.68	
43	124603	1.09	0.032	5.6	0.16	
44	124604	0.79	0.023	6.6	0.19	
45	124605	0.63	0.018	3.2	0.09	
46	124606	1.05	0.031	3.3	0.10	
47	124607	0.77	0.022	3.9	0.11	
48	124608	0.92	0.027	3.7	0.11	
49	124609	0.75	0.022	3.3	0.10	
50	124565	1.52	0.044	290.0	8.46	
51	124610	1.08	0.031	14.0	0.41	
52	124611	1.06	0.031	7.5	0.22	
53	124612	0.43	0.013	4.7	0.14	
54	124613	0.38	0.011	2.7	0.08	
55	124614	0.39	0.011	3.9	0.11	
56	124615	0.51	0.015	5.4	0.16	
57	124616	0.36	0.010	3.2	0.09	
58	124617	0.28	0.008	2.3	0.07	
59	124618	0.26	0.008	4.9	0.14	
60	124619	0.23	0.007	6.1	0.18	
61	124620	0.38	0.011	8.5	0.25	
62	124621	0.64	0.019	10.0	0.29	
63	124622	0.52	0.015	4.4	0.13	
64	124623	0.43	0.013	4.1	0.12	
65	124624	0.50	0.015	2.4	0.07	
66	124625	0.41	0.012	2.3	0.07	
67	124626	0.54	0.016	3.5	0.10	
68	124627	0.43	0.013	7.8	0.23	
69	124628	0.87	0.025	8.8	0.26	

i • • •

1.11

Frank J.Pezzotti, A.Sc.T. B.C.Certified Assayer

· Page 2 로(과)· 해외가 Laboratonies LTD.

NEWHAWK GOLD MINES ETS 3043

23-Aug-94

		Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	
QC DATA						
Resplit Assays:						
RS/7	123828	0.31	0.009	13.0	0.38	
RS/54	124569	0.58	0.017	2.8	0.08	
Repeat Assays:						
1	123822	0.47	0.014			
1	123822	0.52	0.015			
46	124560	0.83	0.024			
46	124560	0.83	0.024			
In House Std.:						
	1993 STD	2.71	0.079	1.8	0.05	
		2.63	0.077	1.2	0.04	
		2.69	0.078			
Blanks:						
	Blank	<.03				

1 × 3

NOTE:

Average values are reported where repeat assays are performed. Screened "Metallic Assays" are performed on sample resplits screened to -140 mesh.

B ECO-TECH LABORATORIES LTD.

EQO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

FEED FAX THIS END

FAX
To: NACCICIA
Dept.:
Fax No.:
No. of Pages:
From:
Date:
Company:
Fax No.:
Comments:
Post-it ax pad 7903E

Page 3

Newhawk Gold Mines	ETS3033					17-Aug-94
		Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	<u>(oz/t)</u>	
QC DATA	· · · · ·					
Resplit Assays:	1					
R/S 30	123768	1.28	0.037			
R/S 50	123788	0.77	0.022			
Repeat Assays:						
1	13607	0.21	0.006	3.9	0.11	
1	13607	0.22	0.006			
38	123776	0.69	0.020			
38	123776	0.67	0.019			
39				3.2	0.09	
Standard:						
	CANMET MA-1b	17.00	0.496			
In House Standard: 1	991			1.3		
Blanks:						
	Blank	<.03	<.001			
No						

. . .

NOTE:

.

Average values are reported where repeat assays are performed. Screened "Metallic Assays" are performed on sample resplits screened to -140 mesh.

> ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

NEWHAWK GOLD MINES ETS 3042

24-Aug-94

		Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	
QC DATA						
Resplit Assays:						
RS/9	13646	0.52	0.015	4.2	0.12	
RS/65	124624	0.57	0.017	2.6	0.08	
Repeat Assays:						
1	13638	0.51	0.015	4.6	0.13	
1	13638	0.48	0.014			
39	124599	0.68	0.020	5.8	0.17	
39	124599	0.67	0.020			
In House Std.:						
	1993 STD	2.64	0.077			
	1993 STD	2.70	0.079			
	1991 STD			1.5	0.04	
	1991 STD			1.4	0.04	
Blanks:						
	Blank	<.03	<.001			

NOTE:

Average values are reported where repeat assays are performed. Screened "Metallic Assays" are performed on sample resplits screened to -140 mesh.

Ì ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

GECCARADA ANALYTICAL CHEDISTET ENVIRONMENTAL TEREDA

17-Aug-94

10041 E. Trans Canada Hwy,, R.R. 72, Kamioeris, B.C. V2C 203 (hone geores/57.957). Facilities from 67.946 a

CERTIFICATE OF ANALYSIS ETS 3033

NEWHAWK GOLD MINES #860-625 HOWE STREET VANCOUVER, B.C. V8Y-3A5

ATTENTION: Fred Hewett/Margaret McPherson

64 rock samples received July 29, 1994 Sample run date: August 8, 9, 1994 Samples Submitted By: M. McPherson Client Project Number: Sulphurets Shipment Number: 17

		Ag	As	Cu	Hg	Мо	Pb	Sb	TI	Zn
Et #.	Tag #	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	<u>(ppm)</u>

		0.8	270	9	<5	1	26	<5	<10	86
13	123751	1.8	600	79	<5	1	20	15	<10	68
14	123752	1.2	215	65	<5	2	12	15	<10	59
15	123753	0.6	100	74	<5	<1	28	10	<10	76
16	123754	0.4	140	90	<5	<1	34	20	<10	89
17	123755	6.8	710	73	<5	4	26	<5	<10	17
18	123756	2.8	170	83	<5	<1	40	15	<10	77
19	123757	2.8	235	80	<5	<1	26	15	<10	50
20	123758	1.0	195	72	<5	<1	34	20	<10	80
21	123759	2.8	1110	75	<5	19	40	10	<10	93
22	123760	2.6	355	94	<5	2	24	10	<10	. 80
23	123761	4.6	620	75	<5	2	26	10	<10	81

Frank J. Pezzotti, A.Sc.T., B.C. Certified Assayer

Page 1

NEWHAWK GOLD MINES ETS-3033

17-Aug-94

		Ag	As	u Cu	Hg	Мо	Pb	Sb	TI	Zn
Et #.	Tag #	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
24	123762	6.0	610	95	<5	2	28	10	<10	67
25	123763	4.4	530	93	<5	3	28	5	<10	217
26	123764	7.4	790	76	<5	2	22	5	<10	61
27	123765	5.6	820	66	<5	5	28	<5	<10	75
28	123766	17.6	1305	192	<5	1	38	20	<10	336
29	123767	7.2	1635	75	<5	3	34	5	<10	121
30	123768	19.2	1150	148	<5	<1	58	20	<10	127
31	123769	7.6	675	35	<5	2	26	10	<10	87
32	123770	12.4	590	34	<5	7	48	<5	<10	320
33	123771	21.6	275	36	<5	14	40	20	<10	192
34	123772	16.4	540	33	<5	7	44	15	<10	81
35	123773	6.8	765	21	<5	3	62	<5	<10	55
36	123774	7.8	870	28	<5	4	52	10	<10	99
37	123775	5.8	720	38	_<5	3	70	15	<10	215
38	123776	4.2	645	21	<5	3	76	10	<10	260
39	123777	2.6	420	40	<5	<1	32	10	<10	121
40	123778	1.2	355	20	<5	<1	18	<5	<10	13
41	123779	26.4	195	19	<5	3	40	<5	<10	121
42	123780	5.0	320	24	<5	2	166	<5	<10	696
43	123781	7.0	410	48	<5	<1	334	10	<10	1291
44	123782	5.6	340	49	<5	2	22	15	<10	65
45	123783	2.0	375	22	<5	4	22	<5	<10	54
46	123784	7.2	395	37	<5	4	40	10	<10	318
47	123785	2.2	565	26	<5	8	36	<5	<10	99
48	123786	10.6	400	102	<5	3	298	40	<10	1639
49	123787	4.6	815	36	<5	2	36	<5	<10	102
50	123788	3.8	1135	24	<5	1	32	<5	<10	56
51	123789	4.2	930	21	<5	3	26	<5	<10	41
52	123790	3.8	990	21	<5	2	34	<5	<10	64
53	123791	2.4	790	19	<5	4	28	<5	<10	59
54	123792	9.8	835	134	<5	2	34	15	<10	/1
55	123793	3.8	595	37	<5	1	36	<5	<10	142
56	123794	4.4	835	47	<5	<1	88	5	<10	394
57	123795	5.4	550	57	<5	6	64	10	<10	158
58	123796	23.8	790	432	<5	3	78	130	<10	261
59	123797	5.6	510	33	<5	5	192	10	<10	139

2 ° - S

. .

64

123700

2.8

495

87

<5

69 <10

. .

Frank J. Pezzotti, A.Sc. T., B.C. Certified Assayer

28

<1

Page 2

10041 E. Trans Canada Hwy , H.R. F2, Kambops, B.C. V2C 2J3 Phone (604) 573-5760 Fax (604) 573-576

CERTIFICATE OF ANALYSIS ETS 3041

.

NEWHAWK GOLD MINES LTD. #860-625 HOWE ST. VANCOUVER , B.C. V6C-2T6

ATTENTION: Theresa Rau

39 rock samples received July 30,1994 Sample run date: August 17, 1994 Samples submitted by: M.McPherson Project: Sulphurets Shipment: 18

•	Ag	As	Cu	Hg	Мо	Pb	Sb	TI	Zn
Et #. Tag #	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)

16	123798	18.6	460	120	<5	3	66	55	<10	170
17	123799	11.4	405	64	<5	5	82	25	<10	237
18	123800	7.2	265	48	5	1	170	35	<10	321
19	123801	5.0	655	34	<5	<1	98	15	<10	176
20	123802	5.0	465	28	<5	2	54	15	<10	180
21	123803	6.8	425	24	<5	2	30	25	<10	77
22	123804	2.2	165	9	<5	2	<2	5	· <10	44
23	123805	1.4	50	10	<5	5	<2	<5	10	21
24	123806	6.0	375	27	<5	1	<2	15	<10	39
25	123807	4.0	225	19	<5	3	<2	10	<10	65
26	123808	2.6	340	17	<5	14	<2	10	<10	11
27	123809	2.4	210	18	<5	4	14	20	<10	23
28	123810	3.8	135	18	<5	5	56	20	<10	102
29	123811	3.2	115	14	<5	· 4	54	10	<10	278
30	123812	4.8	165	22	<5	5	170	10	<10	562

18-Aug-94

NEWHAWK GOLD MINES LTD. ETS3041

18-Aug-94

		Ag	As	Cu	Hg	Мо	Pb	Sb	TI	Zn
Et #	. Tag #	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
31	123813	9.8	205	46	<5	<1	202	25	<10	494
32	123814	8.6	600	25	<5	8	428	25	<10	1773
33	123815	5.8	340	23	<5	3	50	15	<10	73
34	123816	2.2	105	12	<5	7	<2	5	<10	95
35	123817	4.0	165	19	<5	3	46	5	<10	83
36	123818	6.8	535	50	<5	2	20	25	<10	88
37	123819	6.8	285	30	<5	1	14	15	<10	261
38	123820	5.6	500	29	<5	2	26	<5	<10	46
39	123821	4.0	550	21	<5	<1	<2	10	<10	60
QC DA	TA:									
R/S 4	13619	4.6	770	16	<5	2	20	35	<10	116
Repea	t:		005					-		
1	14414	11.6	285	90	<5	<1	6	5	<10	1534
39	123821	3.2	540	22	<5	<1	6	<5	<10	64
Standa	ard 1991:									
		1.2	75	83	<5	<1	22	20	<10	80
		1.2	75	84	<5	<1	26	10	<10	74

2 · · ·

df:3034

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

. Star

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETS 3043

ł

NEWHAWK GOLD MINES #860-625 HOWE STREET VANCOUVER, B.C. V8Y-3A5 23-Aug-94

. .

ATTENTION: Fred Hewett/Margaret McPherson

57 rock samples received July 31, 1994 Project: Sulphurets Samples Submitted By: M.McPherson Shipment Number: 19

		Ag	As	Cu	Hg	Мо	Pb	Sb	TI	Zn
<u> </u>	Tag #	<u>(ppm)</u>	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1	123822	8.0	385	53	<5	2	22	20	<10	72
2	123823	7.0	415	37	<5	<1	38	10	<10	66
3	123824	7.8	290	37	<5	<1	42	10	<10	93
4	123825	14.4	255	56	<5	<1	28	30	<10	66
5	123826	9.2	280	35	<5	2	22	20	<10	53
6	123827	9.2	290	35	<5	<1	24	10	<10	44
7	123828	14.4	215	62	<5	1	22	20	<10	32
8	123829	15.8	105	73	<5	<1	26	20	<10	38
9	123830	18.6	105	189	<5	7	30	50	<10	57
10	123831	28.8	110	225	<5	<1	36	65	<10	60
11	123832	>30	145	481	<5	3	38	205	<10	84
12	123833	20.4	105	94	<5	2	34	35	<10	143
13	123834	>30	195	115	<5	4	20	55	<10	52
14	123835	18.8	305	260	<5	<1	10	65	<10	34
15	123836	15.4	135	58	<5	3	30	15	<10	80
16	123837	20.6	250	139	<5	2	16	35	<10	21
17	123838	>30	160	40	<5	<1	6	20	<10	19
18	123839	10.8	140	36	<5	2	16	10	<10	20
19	123840	16.4	180	39	<5	2	10	15	<10	34
20	123841	8.8	145	33	<5	<1	8	10	<10	23
21	123842	6.4	160	69	<5	2	8	<5	<10	21
22	123843	9.4	210	297	<5	<1	10	<5	<10	35
23	123844	6.0	200	76	` <5	1	10	<5	<10	26
24	123845	18.6	290	120	<5	3	20	20	<10	37
25	123846	14.0	245	60	<5	6	72	5	<10	83
26	123847	>30	135	105	<5	5	42	30	<10	48
27	123848	16.6	150	55	<5	<1	60	15	<10	19
28	123849	>30	110	194	<5	4	120	100	<10	132
29	123850	19.2	290	97	<5	<1	34	20	<10	56

NEWHAWK GOLD MINES ETS3043

23-Aug-94

. .

		Aa	As	Cu	Ha	Мо	Pb	Sb	TI	Zn
Et #.	Tag #	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
30	123851 - 124551	4.2	95	98	<5	3	10	<5	<10	15
31	1 2385 2 124552	2.6	100	120	<5	<1	<2	<5	<10	12
32	123853 124553	4.0	120	51	<5	2	22	10	<10	57
33	123854 124554	21.2	1265	132	<5	5	158	40	<10	343
41	124555	11.6	775	96	<5	7	116	15	<10	282
42	124556	9.4	600	98	<5	2	128	5	<10	310
43	124557	8.2	505	192	<5	4	86	<5	<10	250
44	124558	6.4	580	94	<5	2	68	<5	<10	154
45	124559	6.4	395	98	<5	7	138	<5	<10	207
46	124560	6.2	335	87	<5	5	88	<5	<10	223
47	124561	5.4	480	55	<5	6	66	<5	<10	179
48	124562	13.8	500	37	<5	10	94	<5	<10	95
49	124563	13.2	90	29	<5	11	58	5	<10	16
50	124564	23.0	80	48	<5	4	88	10	<10	92
51	124566	21.4	80	43	<5	10	78	10	<10	571
52	124567	16.4	110	40	<5	3	30	5	<10	64
53	124568	17.2	185	41	<5	3	40	5	<10	28
54	124569	17.2	230	42	<5	4	40	15	<10	98
55	124570	8.4	95	25	<5	10	36	<5	<10	41
56	124571	8.2	95	44	<5	7	70	5	<10	458
57	124572	14.2	145	136	<5	3	98	15	<10	65
QC/DAT	٨:									
Resplit #	:									
R/S7	123828	13.6	210	60	<5	2	22	20	<10	31
R/S54	124569	15.4	215	37	<5	4	36	10	<10	104
Repeat #	2									
1	123822	8.4	375	53	<5	1	20	15	<10	68
39	13636	3.0	410	19	<5	5	46	5	<10	89
Standard	1:									
		1.0	75	88	<5	<1	20	5	<10	80
		1.2	65	87	<5	<1	18	5	<10	76

з· .

. . .

> ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/NewhawkS df/3049

ASSANNO GEOCHEMISTRO ANALYTICAL CHEMISTRO ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy - R.R. 12, Kamioops, B.C. V2C 2J3 Phone (604) 573 5706 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETS 3042

.

NEWHAWK GOLD MINES #860-625 HOWE STREET VANCOUVER, B.C. V8Y-3A5

ATTENTION: Fred Hewett/Margaret McPherson

69 CORE samples received August 1, 1994 Project: Sulphurets Samples Submitted By: M. McPHERSON Shipment Number: 20

		Ag	As	Cu	Hg	Мо	Pb	Sb	TI	Zn
Et #.	Tag #	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)

13	124573	11.2	95	103	<5	17	50	20	<10	57
14	124574	27.4	45	39	<5	3	74	15	<10	32
15	124575	24.6	135	35	<5	6	78	20	<10	62
16	124576	9.8	165	26	<5	5	22	10	<10	28
17	124577	18.8	300	46	<5	5	38	20	<10	44
18	124578	17.8	495	49	<5	3	162	25	<10	306
19	124579	>30	165	147	<5	<1	592	155	<10	6214
20	124580	17.0	245	56	<5	11	1096	20	<10	1255
21	124581	11.8	645	25	<5	16	184	20	<10	484
22	124582	9.6	480	22	<5	5	754	10	<10	2144
23	124583	>30	950	159	<5	7	1206	140	<10	2424
24	124584	13.6	360	27	<5	18	434	20	<10	822
25	124585	16.8	225	34	<5	7	278	15	<10	654
26	124586	18.0	465	45	<5	4	642	15	<10	1625

23-Aug-94

NEWHAWK GOLD MINES ETS 3042

.

23-Aug-94

		Ag	As	Cu	Hg	Мо	Pb	Sb	ТІ	Zn
Et #.	Tag #	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
27	124587	4.4	55	20	<5	4	48	<5	<10	233
28	124588	3.2	40	18	<5	11	20	<5	<10	55
29	124589	5.4	85	19	<5	3	22	<5	<10	105
30	124590	2.0	125	10	<5	7	18	<5	<10	30
31	124591	1.2	45	13	<5	6	32	<5	<10	22
32	124592	7.6	60	31	<5	16	66	<5	<10	76
33	124593	5.2	40	26	<5	10	6	5	<10	15
34	124594	4.2	30	20	<5	6	2	5	<10	11
35	124595	2.6	40	11	<5	2	12	5	<10	30
36	124596	13.2	35	59	<5	4	50	30	<10	132
37	124597	25.6	65	102	<5	5	64	45	<10	178
38	124598	>30	355	131	<5	3	504	20	<10	687
39	124599	5.6	140	33	<5	4	66	<5	<10	129
40	124600	14.8	250	110	<5	<1	844	10	<10	2210
41	124601	16.2	235	99	<5	4	1580	15	<10	1977
42	124602	22.2	215	123	<5	<1	5348	15	<10	6875
43	124603	5.4	295	42	<5	4	232	<5	<10	417
44	124604	6.0	325	57	<5	2	878	<5	<10	2111
45	124605	2.8	210	65	<5	5	108	<5	<10	329
46	124606	2.8	165	96	<5	3	68	5	<10	194
47	124607	3.6	290	42	<5	12	76	<5	<10	234
48	124608	3.4	250	26	<5	9	316	<5	<10	694
49	124609	3.0	215	22	<5	4	86	<5	<10	301
50	124565	>30	240	355	<5	2	434	280	<10	1945
51	124610	12.2	245	35	<5	3	92	10	<10	298
52	124611	6.8	680	35	<5	2	72	5	<10	265
53	124612	4.6	260	71	<5	<1	54	10	<10	166
54	124613	2.4	200	59	<5	1	92	<5	<10	148
55	124614	3.4	255	35	<5	2	88	<5	<10	193
56	124615	4.6	295	26	<5	15	210	<5	<10	484
57	124616	2.8	235	33	<5	11	40	<5	<10	68
58	124617	2.0	390	133	<5	3	22	5	<10	104
59	124618	4.6	185	44	<5	6	42	<5	<10	143
60	124619	6.2	560	40	<5	7	54	5	<10	135
61	124620	8.0	140	113	<5	6	62	15	<10	161
62	124621	9.8	225	102	<5	8.	~ 152	15	<10	274
63	124622	4.4	400	56	<5	7	24	5	<10	71
64	124623	3.8	420	37	<5	7	34	<5	<10	41
65	124624	2.8	285	45	<5	7	40	<5	<10	231
66	124625	2.6	165	28	<5	6	32	<5	<10	137
67	124626	4.0	195	50	<5	14	44	5	<10	176
68	124627	8.0	475	73	<5	3	36	<5	<10	50
69	124628	8.2	180	126	<5	6	38	<5	<10	52

÷

. .

17-A	ug-94
------	-------

<u> </u>	Tag #	Ag (ppm)	As (ppm)	Cu (ppm)	Hg (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	TI (ppm)	Zn (ppm)
QC/DAT	A:									
Resplit	<i>#:</i>									
R/S 30	123768	19.8	1150	141	<5	. 2	54	15	<10	117
R/S 50	123788	4	1180	25	<5	<1	36	<5	<10	59
Repeat	#:									
1	13607	2.8	355	16	<5	<1	62	10	<10	169
39	123777	2.6	440	39	<5	1	36	10	<10	127
Standar	d:									
		1.0	75	89	<5	<1	24	15	<10	84
		1.2	75	91	<5	<1	56	15	<10	88

Herrow Mar

df:3033 XLS/NewhawkS ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

.. .

NEWHAWK GOLD MINES ETS 3042

.

23-Aug-94

		Ag	As	Cu	Hg	Мо	Pb	Sb	TI	Zn
Et #.	Tag #	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
QC/DAT/	۹:	_								
Repslit :		- .								
R/S9	13646	4.2	260	12	<5	<1	158	5	<10	359
R/S65	124624	2.8	280	43	<5	9	38	<5	<10	224
Repeat #	:									
1	13638	5.0	365	26	<5	<1	94	15	<10	100
39	124599	5.6	150	32	<5	4	70	<5	<10	131
Standard:		1.0	70	86	<5	<1	20	5	<10	79
		_ 1.2	70	80	<5	<1	22	5	<10	80

, s

.

XLS/NewhawkS f#3044

ø

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer . .

