| LOG NO:  | NOV 2 8 1994 | RD |   |
|----------|--------------|----|---|
| ACTION.  |              |    | J |
|          |              |    |   |
| FILE NO: |              |    |   |

# **1994 ASSESSMENT REPORT**

# **ON THE NORTH BRUCE GROUP**

### **SULPHURETS PROPERTY - BRUCESIDE PROJECT**

Skeena Mining Division

Latitude: 56°29'N Longitude: 130°13'W NTS: 104B/8&9

OWNER:

# NEWHAWK GOLD MINES LTD. GRANDUC MINING CORPORATION

**OPERATOR:** 

NEWHAWK GOLD MINES LTD.

**REPORT BY:** 

**FR**SÉ

M. McPherson, P.Geo

November 21, 1994

GEOLOGICAL BRANCH ASSESSMENT REPORT Distribution:

- BCMEMPR (2) - Newhawk (1)

# SUMMARY

The Sulphurets Property - Brucejack Project is situated within northwest British Columbia, approximately 65km northwest of Stewart, BC. The property consists of 10 claims and 2 fractions totalling 71 units. The claims are owned by Newhawk Gold Mines Ltd. and Granduc Mining Corp. under a joint venture agreement. Newhawk is the operator.

The Sulphurets property was initially staked in 1959 by Granduc Mines Ltd. to cover various porphyry copper and precious metal vein showings between Mitchell Glacier and Brucejack Lake. Between 1960 and 1975 the property was intermittently explored by Granduc, who completed geologic mapping, geochemical sampling, geophysical surveying and limited drilling primarily over known porphyry showings. Granduc optioned the property to Esso Minerals in 1980, who completed extensive exploration between 1980 and 1985 that led to the discovery of several mineralized zones including the West Zone and Shore Zone. Esso returned the property to Granduc in 1985, and it was subsequently optioned by Newhawk Gold Mines Ltd. Since then, Newhawk has carried out detailed exploration over most of the property including detailed geologic mapping, sampling and trenching, surface and underground drilling, and exploratory underground drifting on the West Zone.

The property is underlain by Upper Triassic Stuhini Group and Lower Jurassic Hazelton Group andesitic tuffs, flows and minor sediments that have locally been extensively and pervasively quartz-sericite-pyrite altered. To date, at least forty zones of quartz +/- carbonate veining, stockwork and breccia have been discovered on the property. Mineralization consists of up to 15% disseminated pyrite within altered volcanics and trace to several percent combined tetrahedrite, sphalerite, galena, pyrargyrite and rare electrum and native gold within quartz veins.

Work in 1994 consisted of detailed mapping and sampling in the vicinity of the Gossan Hill Zone, and 7351.6m of diamond drilling, primarily on the West, R8, Shore and Gossan Hill Zones. Only one of the Gossan Hill drill holes, S94-449 (462.3m), is being filed for assessment.

Hole S94-449 was designed to test the Gossan Hill Area at depths of 100 to 250m below surface, considerably deeper than previous drilling in the vicinity. Results from this hole indicate that the Gossan Hill Zones, PM-1, PM-3, PM-3A, PM-4 and PM-4A are continuous down dip, but decrease in width, and show no significant increase in strength or grade with depth. The Tommyknocker Zone was also intersected, and also shows a marked decrease in width from surface, however it shows a corresponding significant increase in grade. The best intersection from this hole was 45.856 opt Au, 32.38 opt Ag over 0.70m from the Tommyknocker Zone.

Recommendations for further work include additional surface mapping and sampling west of Gossan Hill to try and trace the Tommyknocker Zone along strike to the west, and additional diamond drilling to follow up the significant intersection encountered in hole S94-449. A thorough compilation and interpretation of all previous drilling results from the Tommyknocker Zone needs to be completed in order to help target future drilling.

# TABLE OF CONTENTS

•

# SUMMARY

| 1.0 | INTRODUCTION                        | 1  |
|-----|-------------------------------------|----|
|     | 1.1 Location and Access             | 1  |
|     | 1.2 Property Description            | 1  |
|     | 1.3 Physiography and Vegetation     | 4  |
|     | 1.4 Property History                | 4  |
| 2.0 | GEOLOGY                             | 5  |
|     | 2.1 Regional Setting                | 5  |
|     | 2.2 Property Geology                | 7  |
|     | 2.2.1 Stratigraphy                  | 7  |
|     | 2.2.2 Structure                     | 8  |
|     | 2.2.3 Alteration and Mineralization | 9  |
| 3.0 | 1994 DIAMOND DRILLING PROGRAM       | 12 |
|     | 3.1 Introduction                    | 12 |
|     | 3.2 Results                         | 13 |
| 4.0 | CONCLUSIONS AND RECOMMENDATIONS     | 14 |
| 5.0 | REFERENCES                          | 15 |
| 6.0 | STATEMENT OF EXPENDITURES           | 17 |
| 7.0 | STATEMENT OF QUALIFICATIONS         | 18 |
|     |                                     |    |

| APPENDIX I:  | Diamond Drill Log |
|--------------|-------------------|
| APPENDIX II: | Assay Data        |

page

. .

# LIST OF FIGURES

.

| Figu | ire                   | page      |
|------|-----------------------|-----------|
| 1.1  | Property Location     | 2         |
| 1.2  | Claim Map             | 3         |
| 2.1  | Regional Geology      | 6         |
| 2.2  | Property Geology      | in pocket |
| 2.3  | Zone Map              | 11        |
| 3.1  | Drill Section 200+80N | in pocket |

# LIST OF TABLES

| Table 1.1 | Claim Status                    | 1  |
|-----------|---------------------------------|----|
| Table 3.1 | Drill Hole Specifics            | 12 |
| Table 3.2 | Significant Drill Intersections | 13 |

# 1.0 INTRODUCTION 1.1 Location and Access

The Sulphurets Property is located within the Coast Range Mountains of northwest B.C., approximately 60 kilometres northwest of the village of Stewart. It is centred at 130°13'W, 56°29'N on NTS sheets 104/ B8 and 9 (Fig. 1.1).

Access during the early summer is limited to helicopter from Stewart, BC or the Bob Quinn airstrip located on Highway 37. Later in the season supplies can be mobilized via the Granduc Road to the Tide Lake airstrip, 35 kilometres south of the property or flown by fixed wing to the Knipple airstrip 15 kilometres southeast of the property. Access from this point is then by helicopter. During previous major summer programs, overland access was by barge along Bowser Lake, then by road along the Bowser River with the final access to the camp being by tracked vehicle 16 kilometres up the Knipple Glacier. A permanent camp is located at the west end of Brucejack Lake. Access around the property is by four wheel drive all-terrain vehicle, helicopter or by foot. During the 1994 season, supplies were flown directly to the camp from Stewart BC using a Bell 206 helicopter on a casual basis from Vancouver Island Helicopters. A Hughes 500D and a Bell 205 helicopter were also used on an "as needed" basis to mobilize heavier equipment throughout the season.

### 1.2 Property Description

The Sulphurets Property has been split into two separate projects in past years, the Bruceside Project centred around Brucejack Lake and the West Zone, and the Sulphside Project, centred around Sulphurets Lake and the Sulphurets Gold Zone. The Sulphside Project was sold to Placer Dome Inc. in early 1992, however the Bruceside nomenclature still persists. The Bruceside Project is owned 60% by Newhawk Gold Mines Ltd. and 40% by Granduc Mining Corporation under a joint venture agreement. Newhawk is the operator. The property is comprised of the following mineral and placer claims, all of which lie within the Skeena Mining Division (Fig. 1.2):

| <u>Claim</u>  | Record | <u>Units</u> | Expiry Date   |
|---------------|--------|--------------|---------------|
| Red River 7   | 250986 | 4            | June 30, 2004 |
| Red River 50  | 254205 | 2            | June 29, 2004 |
| Red River 53  | 254208 | 14           | July 4, 2004  |
| Tedray No. 12 | 250388 | 15           | Aug 26, 2004  |
| Tedray 21     | 250990 | 2            | June 30, 2004 |
| Tedray 22     | 251066 | 8            | Oct 6, 2004   |
| Tedray Fr.    | 313084 | 1            | Sept 9, 2004  |
| OK# 5         | 251284 | 8            | Dec 10, 2004  |
| Goldwedge #3  | 252512 | 6            | Sept 3, 2004  |
| Malone        | 313087 | 6            | Sept 10, 2004 |
| Malone 2      | 313090 | 4            | Sept 5, 2004  |
| Malone Fr.    | 313087 | 1            | Sept 10, 2004 |
|               |        |              |               |

### **TABLE 1.1 - CLAIM STATUS**





## 1.3 Physiography and Vegetation

The topography of the Sulphurets region is typical of the Coast Range Mountains with steep glaciated U-shaped valleys and several permanent snowfields. Elevations in the area range from 750 metres at Sulphurets Glacier just west of the property, to 2560 metres on Mt. John Walker northeast of the property.

Winters tend to be severe with extensive snowfall and high winds, while summers are generally cool and wet. Vegetation consists of scrub alpine spruce and fir at lower elevations along Brucejack Creek, and alpine grasses and juniper at higher elevations. Much of the property is covered in outcrop or talus with no appreciable vegetation.

# 1.4 **Property History**

Exploration in the area dates back to the 1880's when placer gold was located on Sulphurets and Mitchell Creeks. In 1935, copper-molybdenum mineralization was located in the vicinity of the Main Copper showing on the adjacent Sulphside property. During the next twenty years the area was intermittently evaluated by a number of different parties. In 1959, Granduc Mines located gold and silver bearing veins near Brucejack Lake and in 1960 staked a series of claims totalling 246 units extending from south of Brucejack Lake north to the Mitchell Glacier. These claims covered the current Bruceside Project precious metal showings, as well as numerous copper-moly occurrences located north and northwest of Brucejack Lake.

Between 1960 and 1975 Granduc completed several exploration programs involving geologic mapping and sampling, geophysical surveying, prospecting and limited drilling primarily in the vicinity of the known copper  $\pm$  gold and molybdenum occurrences located immediately north and northwest of the current Bruceside Property boundary.

In 1980 Esso Minerals optioned the Sulphurets property from Granduc, and from 1980 to 1985 completed a comprehensive evaluation of the property that resulted in the discovery of several precious metal showings including the West, Shore, Galena Hill and Electrum Zones. For various reasons, Esso dropped their option on the Sulphurets Property in 1985, and Newhawk Gold Mines optioned it that same year.

Since 1985, Newhawk has completed extensive exploration programs including additional regional and detailed geologic mapping and sampling, rock saw and backhoe trenching, limited soil geochemical sampling, airborne geophysical surveying, and 35,241.6m of surface diamond drilling in 511 holes. In addition to surface work, a total of 5276m of exploratory underground drifting was completed on the West Zone between 1986 and 1989, and 35,981.0m of underground diamond drilling in 422 holes was completed. This work succeeded in outlining significant proven and probable reserves of 826,000 Tons grading 0.450 opt Au, 18.80 opt Ag on the West Zone, and 92.276 Tons grading 0.371 opt Au, 4.63 opt Ag on the Shore Zone (Watts, Griffis and McOuat, 1990). At least forty additional showings of precious metal mineralization have been located across the property, some of which have associated small reserves

4

(Visagie, 1993b). Based on these reserves, a feasibility study was completed by Corona Corp. in 1990, and determined that the deposit was marginally economic under existing conditions. The current exploration mandate for the property is to delineate additional areas of economic gold-silver mineralization in order to increase the reserves such that the project becomes feasible.

### 2.0 GEOLOGY

### 2.1 Regional Setting

The Sulphurets Property lies within the Stikine Terrane, along the western margin of the Intermontane Belt (Fig. 2.1). The area is underlain by Upper Triassic and Lower to Middle Jurassic Hazelton Group volcanic, volcaniclastic and sedimentary rocks, intruded by Mesozoic intermediate to felsic plutons and minor Tertiary mafic dykes and sills. Regional geologic mapping has been completed by the Geological Survey of Canada, the BC Ministry of Energy, Mines and Resources, and the Mineral Deposit Research unit at UBC.

The lithostratigraphic assemblage as compiled by Kirkham (1963), Britton and Alldrick (1988), Alldrick and Britton (1991) and Kirkham et al (in preparation) consists, from oldest to youngest, of alternating siltstone and conglomerate of the Lower Unuk River Formation; intermediate volcanic rocks and siltstones of the Upper Unuk River Formation; interbedded conglomerate, sandstone and intermediate to mafic volcanic rocks of the Betty Creek Formation; felsic flows and pyroclastic rocks, including tuffaceous rocks ranging from dust tuff to tuff breccia and localized welded ash tuff, of the Mount Dilworth Formation; and finally, alternating siltstone and sandstone of the Salmon River Formation and the Bowser Lake Group.

At least three intrusive events have occurred in the area: intermediate to felsic plutons that are probably coeval with volcanic and volcaniclastic supracrustal rocks; small stocks related to Cretaceous Coast Plutonic Complex rocks; and minor Tertiary dykes and sills.

Folding is common throughout the region, with Hazelton Group andesitic tuffs and flows southeast of Brucejack Lake being gently warped, while sediments of the Salmon River Formation and Bowser Lake Group are more tightly folded. Faulting is common, with north striking steep normal faults (ie the Brucejack Fault) and west dipping thrust faults (eg, the Sulphurets Thrust) being the most prevalent orientations.



### 2.2 Property Geology

#### 2.2.1 Stratigraphy

The Bruceside Project is underlain by two sequences of sedimentary and volcanic rocks; a Lower sequence of Upper Triassic Stuhini Group rocks that occupy the western side of the property, and an Upper sequence of Lower to Middle Jurassic Hazelton Group rocks in the central and eastern portions of the property (Fig. 2.2). Younger, more felsic flows and volcaniclastic rocks overlie the Hazelton Group rocks east of the property. All of these units have been intruded by sub-alkaline plutons of Lower to Middle Jurassic age, that range in composition from syenite to hornblende-feldspar porphyritic diorite to monzonite.

The Upper Triassic rocks (Lower sequence), consist of a lower heterolithic mafic to intermediate volcanic breccia and conglomerate (Fig. 2.2; unit 1), overlain by a sedimentary layer consisting of thin to medium bedded black argillite, siltstone, fine grained sandstone, and minor grey limestone, tuffaceous mudstone, and tuffaceous pebble conglomerate (Fig. 2.2; unit 2).

The Lower to Middle Jurassic rocks (Upper sequence) consists of a lower sedimentary package of two distinct units. The lowermost unit consists of medium to thick bedded medium to coarse grained sandstone and pebble to cobble conglomerate, conspicuous internal planar laminations and rare cross-stratification (Fig. 2.2; unit 3). Overlying this is a layer of thin to medium bedded dark grey to black mudstone and argillite, that is typically highly altered (Fig. 2.2; unit 4). Overlying the sedimentary rocks is a thick sequence of monolithic andesitic volcaniclastics ranging from ash tuff to tuff breccia and lahar, and dominated by plagioclase-hornblende phyric volcanic breccia (Fig. 2.2; unit 5). This upper volcanic package is the main host to alteration and mineralization on the property. To the east, the Upper sequence is overlain by dacitic flows and volcaniclastics, and minor sedimentary rocks (Fig. 2.2; unit 6). The volcaniclastics range from fine ash and plagioclase crystal tuffs to coarse felsic breccias and conglomerates, locally supported with a distinctive hematitic mud (Davies et al, 1994).

Both lower and upper volcano-sedimentary packages have been intruded by numerous late stage plutons, which can be grouped into three main mappable units: i) a plagioclase-hornblende-phyric diorite; ii) a potassium feldspar megacrystic plagioclase-hornblende porphyry; and iii) a plagioclase and rare potassium feldspar porphyry of dacitic composition (MacDonald, 1993). Late stage, fine grained, green andesitic dykes and sills cut all units on the property, and are definitely post-mineral.

Stratigraphy typically strikes north to northwest, with moderate to steep easterly dips and facing directions, indicating a younging direction to the east (Davies et al, 1994). Contacts between individual units are sharp to gradational over several meters, and no unconformities have been identified on the property.

#### 2.2.2 Structure

The rocks on the property have been subjected to regional deformation and weak metamorphism, and exhibit a regionally penetrative foliation of varying intensity. Foliation generally strikes west-northwest, and dips steeply to the north, and is most strongly developed in sericitic rocks and in the argillites of the Upper Triassic package. The deformation is post-mineral, and has resulted in the flattening of mineralized veins and stockwork so that they lie parallel to the foliation.

Post mineral faulting occurs throughout the area, with steeply dipping normal faults being the most common orientation on the property. Offset on these faults ranges from negligible to several hundred meters. The two most important faults on the property are the Brucejack Fault which occupies a north trending lineament just north of camp, and the Bruce Fault, a west trending fault occupying Brucejack Creek (Fig. 2.2). Other mappable faults in the area strike northeast and northwest. The northeast faults dip steeply to the northwest and show tens of meters of normal-dextral oblique displacement. The dip and displacement of the northwest trending faults is unknown, but probably in the order of tens of meters of dextral slip.

The Brucejack Fault forms a northerly striking lineament extending from the extreme southern end of the property, north to the Iron Cap Zone; a strike length of 11 km. The fault cuts all stratigraphic and intrusive contacts, and cuts alteration zones and mineralized veins, indicating that the latest motion was post mineral. The Fault dips vertically to steeply to the west, and displacement has been estimated at 700 to 800m of reverse (west side up) motion, based on offset of stratigraphic contacts, and orientation of slickensides (Davies et al, 1994).

The Bruce Fault trends roughly east-west, and displays a curvilinear dip to the north, with dips ranging from 60 to 70 degrees. Offset on the PM5 Zone indicates displacement along the fault is in the order of tens of meters

Folding on the property is best developed in the sedimentary units of the Lower Sequence, exposed in Brucejack Creek. The folds are tight to open, have subangular to rounded hinges, and wavelengths of several tens of meters. Axial trends of folds are typically northerly, however local disharmonic folds have northwesterly and northeasterly axial trends. A large, north-northwest trending syncline has been postulated beneath the Gossan Hill area to account for stratigraphic relationships and a reversal of facing direction east of the Brucejack Fault and at the Shore Zone. This deformation is likely pre-regional cleavage development and pre-mineral, as cleavage cuts across the interpreted axial trace without deflection, and vein geometry is not significantly effected. An alternative interpretation is that the block of stratigraphy bounded by the Brucejack Fault, Shore Zone, Bruce Fault and Big Sleep Zone is a rotated fault block. This interpretation would include a pre-cursor, east-west fault structure to the Big Sleep vein system, similar to those at the West, Shore and Electrum Zones (see section 2.2.3).

#### 2.2.3 Alteration and Mineralization

Mineralization on the Bruceside property consists mainly of structurally controlled, intrusive related quartz-carbonate, gold-silver bearing veins, stockwork and breccia zones. The veins are hosted within a broad zone of potassium feldspar alteration, overprinted by sericite-quartz-pyrite +/- clay. Structural style and alteration geochemistry indicate the deposits were formed in a near surface epithermal style environment (Fig. 2.3).

Mineralization was likely a three-stage process (Lewis, 1994). Stage 1 consisted of fault-development and ground preparation. Pre-cursor structures to the West, Shore and Electrum Zones likely formed at this time, as steep northwest trending normal faults with limited displacement, cutting all rock types. Stage 2 consisted of syntectonic mineralization and alteration. Massive and stockwork veins were emplaced within a differential stress field characterized by east-west compressional stress. The main vein orientations resulting from this stress are i) east-west dilational veins such as R8 and Big Sleep; and ii) northwest trending veins localized along pre-existing structures such as the West, Shore and Electrum Zones. Underground mapping indicates the northwest trending structures, particularly R6, have been brecciated, while east-west trending structures have not. This would support the theory of reactivation along pre-existing northwest structures. Reactivation was probably sinistral in movement, and may account for the sigmoidal shape of the east-west trending Big Sleep Zone. The localization of major vein systems within the volcanic rocks as opposed to the sedimentary rocks is likely the results of preferential ground preparation within the volcanics. Stage 3 was marked by the development of northwest trending cleavage and local warping of smaller veins as a result of northeast-southwest shortening.

The central part of the property is dominated by a north-trending band of pervasive quartz-sericite-pyrite alteration 100m to 450m wide and 4.5km long. Hosted within this alteration band are over 40 zones of quartz+/- carbonate +/- adularia +/- barite veins and stockworks ranging in width from several centimetres to over 50m, and in length from several meters to several hundred meters (Fig. 2.3). Veins locally form complex shaped mineralized bodies, in which several generations of syntectonic veins, stockworks and breccias may occur (Roach and MacDonald, 1992). The larger vein systems, ie. Shore and West Zones, trend northwest and dip vertically to steeply to the northeast, with somewhat smaller zones such as Big Sleep and Gossan Hill trending easterly and dipping variably north and south. The pattern of mineralized zones forms a slightly angled "ladder" system in the central part of the property, with the Shore and West Zones, and the Electrum Zone further south, forming the ladder "legs", and the east-west trending zones such as R8, Big Sleep and Gossan Hill forming the "rungs". This area has been the focus of continued exploration, as it hosts the highest concentration of mineralization on the property.

Mineralization within the alteration zone consists of 2% to 20% disseminated pyrite and rare arsenopyrite, and within the veins consists of trace to 10% combined disseminated pyrite, tetrahedrite, arsenopyrite, chalcopyrite, galena, sphalerite, pyrargyrite, polybasite and rare native gold and electrum. Of the forty zones of mineralization discovered to date, the West Zone/R8 and Shore Zone are the most significant in terms of grade and tonnage. Other zones of significance include Gossan Hill, Tommyknocker, Big Sleep, Grace and Coogan's Bluff (Fig. 2.3).

ğ,

The Gossan Hill/Tommyknocker Zone is an area of intense quartz-sericite-pyrite alteration hosting eleven zones of quartz veining and stockwork carrying erratic gold mineralization. These zones include Marie Gold, PM-1, PM-2, PM-3 and 3A, PM-4 and 4A, PM-5, PM-6, U-Vein, Silver Streak and Tommyknocker (Fig. 2.3). They generally strike east-west, dip moderately to steeply to the north, and range in strike length from 30m to 245m, and in width from 0.5m to 20m. "Rolls" and inflections down dip are common. The Tommyknocker Zone is the southernmost vein zone at Gossan Hill, and is the most promising in terms of significant economic mineralization. It consists of a central quartz vein up to 1.0m in width, hosted within a 5m wide quartz stockwork in strong quartz-sericite-pyrite altered andesitic volcanics. Previous drilling on both the PM structures and the Tommyknocker Zone had concentrated on delineating the zone near surface, typically above the 1300m level. The 1994 exploration program concentrated on testing these zones at significantly deeper depths, at approximately the 1200m level.



# 3.0 1994 DIAMOND DRILLING PROGRAM

### 3.1 Introduction

The 1994 exploration program was designed to evaluate the highest priority targets on the property for their potential to host gold and/or silver mineralization of significant tonnage and grade. Exploration was focused in the vicinity of Gossan Hill, the area with the highest concentration of alteration and mineralization on the property, and therefore the area most likely to host mineralization of significant size. The program consisted of detailed surface mapping and diamond drilling. Only one drill hole is being reported for assessment purposes, S94-449 (fig. 2.3).

Drilling was contracted to F. Boisvenu Drilling of New Westminster, BC, using a Hagby-Brok diamond drill to recover BQTW core. The drill site for S94-449 was levelled using a D7 Cat, and the drill was moved to the site using a Hughes 500D helicopter contracted from Vancouver Island Helicopters out of . Stewart BC. Daily access to the drill was by all-terrain-vehicle. Drill core is stored on site, at the Newhawk core storage area south of the camp.

All zones of significant alteration and mineralization were split using a manual Longyear core-splitter. Split core was shipped to Eco-Tech Labs in Stewart, BC for gold and silver assay, and 9-element ICP. Samples were first dried (if necessary), crushed, sieved and pulverized to -140 mesh, and a 1/2 assay ton sub-sample taken. For gold analysis, the sub-sample was pre-concentrated by conventional fire assay, and the resulting bead digested in 3 ml 30% HNO<sub>3</sub> and 3 ml concentrated HCl (if necessary). The resulting solution was diluted to 10ml and analyzed by atomic absorption. Core carrying visible gold was cut with a rocksaw, and sent for gold metallic assay. For silver analysis, a 2.0 gram subsample was digested in 20 ml HNO<sub>3</sub> for 20 minutes, or until all the HNO<sub>3</sub> had disappeared. The digestion is then cooled, 10 ml HCl added and digested for 30 minutes. The digestion is again cooled and another 50 ml HCl added and digested for 30 minutes. For the ICP analysis, a 10 gram sub-sample was digested with 3 ml of 3:1:3 nitric acid to hydrochloric acid to water at 90° for 1.5 hours. The sample was then diluted to 20 ml with demineralized water and analyzed for Ag, Cu, Pb, Zn, Mo, As, Sb, Tl, Hg. Samples that contained > 30 ppm Ag or > 10,000 ppm Cu, Pb, As, or Zn were re-assayed for that particular element.

The drill log is located in appendix I, and assay data is located in appendix II.

| Drill Hole | Zone        | Section | Azimuth | Dip  | Length |
|------------|-------------|---------|---------|------|--------|
| S94-449    | Gossan Hill | 200+80N | 177°    | -45° | 462.3m |

# TABLE 3.1 - DRILLHOLE SPECIFICS

### 3.2 <u>Results</u>

Drill hole S94-449 collared in weakly sericite-pyrite altered andesite lapilli tuff, intruded by a feldspar +/- hornblende porphyry from 22.8m to 96.7m. The porphyry is locally moderately sericite-pyrite altered and carries up to 20% quartz-carbonate veinlets. The hole crosses into a thick package of weakly altered, poorly sorted heterolithic lapilli tuff or lahar at 96.7m, and remains in this unit until ~ 297.0m, where the unit lies in fault contact with intercalated argillite and arkosic sediments. The hole remains in the sediments for most of the remaining length, until crossing back into the heterolithic unit at 447.3m. Both the heterolithic unit and the sediments are moderate to strongly quartz +/- sericite +/- pyrite altered from ~ 230m to the end of the hole. Numerous zones of quartz stockwork and quartz breccia were intersected within this package of altered rocks.

The PM-1 Zone was intersected from 57.1m to 61.9m, but it is poorly mineralized, with only 3-5% pyrite in the altered host. More significant mineralization was intersected below the 1260m level. The hole intersected the PM-3 (254.0 - 254.9m), PM-3A (262.1 - 263.0m; 266.9 - 273.5m), PM-4/4A (329.2 - 329.85m), and the Tommyknocker Zones (395.5 - 396.0m; 398.5 - 398.7m; 426.3 - 427.0m). All of these zones are relatively narrow (typically < 2m), and show a decrease in width from surface. Mineralization consists of trace tetrahedrite, trace to 5% pyrite in the PM Zones, and <1% galena, < 1% pyrite, < 1% sphalerite, 1% tetrahedrite and significant visible gold in the Tommyknocker Zone.

The Tommyknocker Zone shows a decrease in width both down-dip from surface, and along strike from previous drill holes, however there is a corresponding significant increase in gold and silver grade. The nature of the zone has also changed, from a well defined quartz stockwork/quartz vein at surface, to a more diffuse, weaker quartz stockwork in a wider, package of alteration at depth.

| Hole    | Zone         | From (m) | To (m) | Width (m) | Au (opt) | Ag (opt) |
|---------|--------------|----------|--------|-----------|----------|----------|
| S94-449 | PM-3/PM-3A   | 260.4    | 265.7  | 5.3       | 0.231    | 0.46     |
|         | includes     | 262.1    | 263.0  | 0.9       | 0.426    | 1.11     |
|         | PM-3A?       | 278.0    | 281.0  | 3.0       | 0.187    | 2.65     |
|         | includes     | 278.0    | 279.0  | 1.0       | 0.460    | 0.54     |
|         |              | 291.5    | 292.5  | 1.0       | 0.125    | 0.22     |
|         |              | 308.7    | 311.0  | 2.3       | 0.123    | 0.51     |
|         | Tommyknocker | 426.3    | 427.0  | 0.7       | 45.865   | 32.38    |

# **TABLE 3.2 - SIGNIFICANT DRILL INTERSECTIONS**

### 4.0 CONCLUSIONS AND RECOMMENDATIONS

The 1994 exploration program on the Bruceside Project consisted of detailed mapping and sampling in the vicinity of the Gossan Hill Zone, and 7351.6m of diamond drilling, primarily on the West, R8, Shore and Gossan Hill Zones. One of the Gossan Hill drill holes, S94-449 (462.3m), is being filed for assessment purposes.

Hole S94-449 was designed to test the Gossan Hill Area at depths of 100 to 250m below surface, considerably deeper than previous drilling in the vicinity. Results from this hole indicate that the Gossan Hill Zones, PM-1, PM-3, PM-3A, PM-4 and PM-4A are continuous down dip, but decrease in width, and show no significant increase in strength or grade with depth. The Tommyknocker Zone was also intersected, and also shows a marked decrease in width from surface, however it shows a corresponding significant increase in grade. The best intersection from this hole was 45.856 opt Au, 32.38 opt Ag over 0.70m from the Tommyknocker Zone.

Recommendations for further work include additional surface mapping and sampling west of Gossan Hill to try and trace the Tommyknocker Zone along strike to the west, and additional diamond drilling to follow up the significant intersection encountered in hole S94-449. A thorough compilation and interpretation of all previous drilling results from the Tommyknocker Zone needs to be completed in order to help target future drilling.

### **5.0 REFERENCES**

- Alldrick, D.J., and Britton, J.M. (1991): Sulphurets Area Geology. BC Ministry of Energy, Mines and Petroleum Resources, Open File Map 1991-21.
- Britton, J.M., and Alldrick, D.J. (1988): Sulphurets Map Area. <u>In</u> Geological Fieldwork 1987, BC Ministry of Energy, Mines and Petroleum Resources, Paper 1988-1, pp. 199-209.
- Davies, A.G.S., Lewis, P.D. and MacDonald, A.J. (1994): Stratigraphic and Structural Setting of Mineral Deposits in the Brucejack Lake Area, northwest British Columbia (104B/8). In Geological Fieldwork 1993, BC Ministry of Energy, Mines and Petroleum Resources, Paper 1994-1.
- Kirkham, R.V. (1963): The Geology and Mineral Deposits in the vicinity of the Mitchell and Sulphurets Glaciers, northwest British Columbia; unpublished M.Sc thesis, University of British Columbia, 122p.
- Kirkham, R.V. (1991): Provisional Geology of the Mitchell-Sulphurets Region, northwest British Columbia, Geological Survey of Canada Open File 2416.
- Kirkham, R.V. (1992): Preliminary Geological Map of the Brucejack Creek Area, British Columbia, Geological Survey of Canada Open File 2550.
- Kirkham, R.V., Ballanytne, S.B., and Harris, D.C. (in prep): Sulphurets Area, British Columbia; Preliminary Geology, Geochemistry and Mineralogy of a Deformed Porphyry Copper-Molybdenum-Precious Metal System.
- Lewis, P.D. (1993): 1993 South Bruceside Area Mapping; a preliminary in-house report prepared for Newhawk Gold Mines Ltd.
- Lewis, P.D. (1994): Structural Geology Compilation Brucejack Lake Area; an in-house report prepared for Newhawk Gold Mines Ltd.
- MacDonald, A.J.M (1993): Lithostratigraphy and Geochronometry Brucejack Lake, Northwest British Columbia (104B/8,9). <u>In</u> Geological Fieldwork 1992, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1993-1, pp 315-323.
- Roach, S. and MacDonald, A.J. (1992): Silver-gold mineralization West Zone, Brucejack Lake, northwest British Columbia; <u>In</u> Geological Fieldwork 1991, BC Ministry of Energy, Mines and Petroleum Resources, Paper 1992-1, pp. 503-511.
- Visagie, D.A. (1992): 1991 Summary Report Sulphurets Joint Venture; Bruceside Property, an inhouse report prepared for Newhawk Gold Mines Ltd.

- Visagie, D.A. (1993a): 1992 Summary Report Sulphurets Joint Venture; Bruceside Property, an inhouse report prepared for Newhawk Gold Mines Ltd.
- Visagie, D.A. (1993b): 1993 Summary Report Sulphurets Joint Venture; Bruceside Property, an inhouse report prepared for Newhawk Gold Mines Ltd.
- Watts, Griffis and McOuat (1990): Report on Ore Reserves for the West Zone Sulphurets Property; a report prepared for Newhawk Gold Mines Ltd.

| - 1 | _ |
|-----|---|
| Ľ   | 7 |
| Α.  | • |

•

# 6.0 STATEMENT OF EXPENDITURES

.

| Labou  | ır                   |              |            |                    |      |       | \$<br>2,760  |
|--------|----------------------|--------------|------------|--------------------|------|-------|--------------|
| Luoov  | J. Watkins (Geolog   | ist) Au      | g. 6-11    | 6 days @ \$300/day | \$ 1 | 1,800 |              |
|        | J. Franks (Assistant | ) Au         | g. 6-11    | 6 days @ \$160/day | \$   | 960   |              |
| Room   | & Board              |              | 1          |                    |      |       | \$<br>1,440  |
|        | 36 man-days @ \$40   | /day         |            |                    |      |       |              |
| Helico | opter Support        |              |            |                    |      |       | \$<br>1,789  |
|        | 2.4 hours @ \$745.5  | 2/hour (Hugh | nes 500D)  |                    |      |       |              |
| Drilli | ng                   |              |            |                    |      |       | \$<br>27,542 |
|        | 500' @ \$15.90/ft    |              |            |                    | \$   | 7,950 |              |
|        | 500' @ \$16.90/ft    |              |            |                    | \$   | 8,450 |              |
|        | 500' @ \$18.90/ft    |              |            |                    | \$   | 9,450 |              |
|        | 16' @ \$21.50/ft     |              |            |                    | \$   | 344   |              |
|        | core boxes:          | 76 boxes (   | @ \$7.50/b | ox                 | \$   | 570   |              |
|        | tropari rental:      | 0.25 mo. (   | @\$1100/n  | no.                | \$   | 275   |              |
|        | stanby:              | 15.5 man     | hours @ \$ | 30/hr.             | \$   | 465   |              |
|        |                      | 2.5 machin   | ne hours @ | ð \$15/hr.         | \$   | 38    |              |
| Assay  | ing                  |              |            |                    |      |       | \$<br>3,713  |
|        | 199 samples @ \$18   | .66/sample   |            |                    |      |       |              |
| Suppl  | ies                  |              |            |                    |      |       | \$<br>300    |
|        | Sample bags, tape e  | etc.         |            |                    |      |       |              |
| Repor  | rt Preparation       |              |            |                    |      |       | \$<br>1,000  |
| -      | includes writing, dr | afting, etc. |            |                    |      |       | <br>         |
| ΤΟΤΑ   | AL                   |              |            |                    |      |       | \$<br>38,544 |

#### STATEMENT OF QUALIFICATIONS 7.0

I, Margaret D. McPherson, DO HEREBY CERTIFY THAT:

- I am presently employed as a geologist with Newhawk Gold Mines Ltd. located at #860 625 1. Howe Street, Vancouver, B. C. V6C 2T7.
- I graduated from the University of British Columbia in 1987, with a Bachelor of Science 2. degree in Geology.
- I have been employed in the mineral exploration industry since 1985. 3.

5

The work described in this report was done under my supervision. 4.

ROVINCE Margaret D. McPherson

November 15, 1994

M. D. MCPHERSON BRITISH

CIEN

18

# **APPENDIX I**

.

. .

# **Diamond Drill Logs**

.

nder Thair

COLLAR M. 6. 216.681° - 43.88° EDM

| NEWHAWK COLD MINES LTD.     DEPTH BEARING     DP     SUMPEY TYPE     ZONE (6053M)     LIC     LICHTH:     4.62.3     HOLE NO: 5.90, -4.92       Diamond Drill Hole Record     32.5     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25     1.25 </th <th></th> <th colspan="4">GROUP</th> <th>1</th> <th>je de la compre</th> <th>ι.</th> <th></th> <th></th> <th>,</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | GROUP    |      |              |                      | 1                | je de la compre | ι.         |           |        | ,                |                   |                       |                                              |         |         |                  |                         |          |                                              |       |     |                       |           |                      |          |             |                    |          |              |          |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------|--------------|----------------------|------------------|-----------------|------------|-----------|--------|------------------|-------------------|-----------------------|----------------------------------------------|---------|---------|------------------|-------------------------|----------|----------------------------------------------|-------|-----|-----------------------|-----------|----------------------|----------|-------------|--------------------|----------|--------------|----------|-----------|
| Interval     CORR SUZE     BQTW.     SHEET NO. / of 22       Diamond Drill Hole Record     23.5 millions     -45     UITUDE: -430.05N     Recovers:     LOCCE DV: Survey       SULPHURETS PROPERTY     23.5 millions     -45     Departure: 74:00.05N     Recovers:     LOCCE DV: Survey       13.5 millions     -45     Departure: 74:00.05N     Recovers:     LOCCE DV: Survey       20.5 millions     -45     Departure: 74:00.05N     Recovers:     LOCCE DV: Survey       20.5 millions     -45     Departure: 74:00.05N     Recovers:     LOCCE DV: Survey       20.5 millions     -45     Departure: 74:00.05N     Recovers:     LOCCE DV: Survey       10.5 millions     -45     -45     Departure: 74:00.05N     Recovers:     Locce DV: Survey       10.5 millions     -45     -45     Departure: 74:00.05N     Recovers:     Locce DV: Survey       10.5 millions     -45     -45     -45     Departure: 74:00.05N     Recovers:     Core DV: Survey       10.5 millions     -45     -45     -45     -45     Core DV: Survey     Recovers:     Core DV: Survey       10.5 millions     -45     -45     -45     -45     -45     -45     -45       10.5 millions     -45     -45     -45     -45     -45     -45 <td></td> <td>NE</td> <td></td> <td><b>N</b>/K</td> <td></td> <td>DEPTH</td> <td>BEARING</td> <td>DIP</td> <td>SUR</td> <td>VEY TY</td> <td>PE</td> <td colspan="5">ZONE: GOSSAN HILL</td> <td></td> <td colspan="7">LENGTH: 462.3</td> <td colspan="8">HOLE NO .: 594 - 449</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | NE       |      | <b>N</b> /K  |                      | DEPTH            | BEARING         | DIP        | SUR       | VEY TY | PE               | ZONE: GOSSAN HILL |                       |                                              |         |         |                  | LENGTH: 462.3           |          |                                              |       |     |                       |           | HOLE NO .: 594 - 449 |          |             |                    |          |              |          |           |
| Diamond Drill Hole Record     32.3 h 1 50.5 - 42     Umpart     UTTUDE - 4640.695N     RECOVERY:     LOCCED BY: 5. Lock       SULPHURETS PROPERTY     23.5 - 103.5 - 43     DEPARTURE: 33.5 - 33.6 €     STARTED: Aug5/94 - 1145     SAMPLED BY: -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |          | **** |              | GOLD MINES ETD.      | COLLAR           | 177             | -45°       | ร์        |        |                  |                   | CLAIM: Red RIVES 50   |                                              |         |         | CORE SIZE: BQTW. |                         |          |                                              |       |     | SHEET NO. 1 of 22     |           |                      |          |             |                    |          | -            |          |           |
| SULPHURETS PROPERTY     IBAS -43     DEPARTURE: 33/5.356 @     STATED: Aug 5/44. Tight SAMPLED BY: The Part Sample DY: The Part Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Dia      | amon | d Dril       | Hole Record          | 32.3m<br>123.7m  | 175             | -95        | S Tropart |        |                  |                   | LATITUDE: -4690.695N  |                                              |         |         |                  | RECOVERY:               |          |                                              |       |     | LOGGED BY: S. Watking |           |                      |          |             |                    |          |              |          |           |
| Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interv |         | SU       | LPH  | URETS        | S PROPERTY           | 215.2m<br>300.5m | 181.0           | -45        | 45        |        |                  |                   | DEPARTURE: 3315.336 E |                                              |         |         |                  | STARTED: Aug5/94- night |          |                                              |       |     | SAMPLED BY: Sim Fachs |           |                      |          |             |                    |          | na T         |          |           |
| Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interval<br>Interv | •       |          |      |              |                      | 395.0            | 193.5           | -38        |           |        |                  | ELEV              | ATION                 | 1: 1                                         | 444     | .27     | 28               | $\sim$                  | CON      | IPLET                                        | ED: A | ugi | 2/94-                 | 10:00     | Р                    | URP      | OSE:        | 40                 | ist.     | Tom          | inyle    | nocl      |
| Interval<br>Interval<br>Interval     Rock<br>Prom     Color Asiste     Color Asiste     Rock<br>Prom     To     Int     Asiste     Color Asiste     Rock<br>Asiste     Rock<br>Asiste     Sample From     To     Int     Asiste     Color Asiste     Rock<br>Asiste     Rock       0     188 Avec     Anote site     Ano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |      | · ·          |                      |                  | <u> </u>        | <u>г</u>   | <u> </u>  |        | Alte             | ratio             | n                     |                                              | Min     | erali   | izatio           | on                      |          | Assa                                         | y Dat | a   |                       | <u> </u>  | <u> </u>             |          |             |                    |          | Cor          | re Dat   | a         |
| rom to Type Geologic Description From to type Geologic Description O 186 du FL Andeside Alexas massive And the description C 186 du FL Andeside Alexas massive And the description C 186 du FL Andeside Alexas massive And the description C 186 du FL Andeside Alexas massive And the description C 186 du FL Andeside Alexas massive And the description C 186 du FL Andeside Alexas massive And the description C 186 du FL Andeside Alexas C 186 du FL Andeside C 186 du FL Andesid                                                                                                                                                                                                                                                                                                                                                                                                                         |         | (met     | ers) |              |                      |                  |                 |            |           |        |                  | X                 |                       | Ţ                                            |         |         |                  |                         |          |                                              |       | -   |                       |           |                      | Τ        |             |                    |          |              |          | Reco      |
| 0 188 here Andeside flow, marsive trainwerk tr<br>lig, withorn, 5/ 12-corb<br>Vilet @ 20-30 three<br>line spithed to the chloride<br>(for notic phinos, v mall<br>lisor phinos, lower indext<br>charp, possible tright charr<br>@ To, weak sor (9)<br>@ Weat b the fillinger pophymy,<br>uk-nod so, all doste m<br>alk group of the chart<br>@ To weak sor (9)<br>@ Do weak sor (9)<br>@                                                                                                                                                                                                             | · · · · | From     | То   | Rock<br>Type | Geologic Description |                  |                 |            | From      | To     | SIL              | CHLC<br>CARB      |                       |                                              | %<br>Py | %<br>Co | %<br>Mag         | %<br>Mo                 |          | Sample                                       | From  | 10  | INC                   | Au<br>opt | Cu<br>%              | Aucheck  | cu<br>check | Ag<br>opt          | M0<br>%  | %            | Kun      | very<br>% |
| f.a. uniform, 5/ gb-carb         Intel @ 20-30 Hhru.         fine spituled to all chlorite         citer national planes, v. mall         lagilli at fildsper perphyse, v. mall         u matrixe, albed closts, in         citer quanes, s. /. coub(qb)         v. Matr. b lance 230         v. matrixe, s. J. coub(qb)         v. Matr. b lance 230         citer quanes, s. J. coub(qb)         v. matrixe, supportant graduational         course, cubard graduational         classt supportand doorse         lagilli to agglomeente <td></td> <td>0 /</td> <td>188</td> <td>ANFL</td> <td>Andesite flows;</td> <td>mass</td> <td>sive</td> <td></td> <td></td> <td></td> <td>٦</td> <td>r.mi</td> <td>bruk</td> <td><u>.                                    </u></td> <td>4.</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 0 /      | 188  | ANFL         | Andesite flows;      | mass             | sive            |            |           |        | ٦                | r.mi              | bruk                  | <u>.                                    </u> | 4.      |         |                  |                         |          |                                              |       |     |                       |           |                      |          |             |                    |          |              |          |           |
| Villet @ 20 - 30 thru<br>fine spring to de chlorida<br>citer matic planos, v. mall<br>isour planos, lower contact<br>citery, possible tright chan<br>citery, possible tright citery, citer                                                                                                                                                                                                                                                                                                                                                     |         |          |      |              | fig, whiter          | ,51              | 13-00           | No 1       |           |        |                  |                   | <u> </u>              |                                              |         |         |                  |                         |          |                                              |       |     |                       |           | ļ                    | _        | _           | ļ                  |          | ļ'           | ļ        | ļ'        |
| Anter spatial to de chloride<br>c/br matic phinos, v small<br>ligen phinos, v small<br>charp, possible tright charv<br>C To, weak sor ((y))<br>over secon at bettern 1860866 med 3<br>criterit<br>186828 ANIT Ariterite legilli tuff !<br>legilli of filoper perphysican<br>uit mod ser alti abstern<br>alt query of tuff, chlorite<br>eltis grines 5% corb(qts)<br>Violet be lance 30°<br>(O 216 broken over 10cm<br>possible low angle shoor<br>low a cutat queditorial<br>28 274 MNP Americe perphysican<br>class supported doorse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | <b> </b> |      |              | Vulet @ 20-          | <u>zo: +1</u>    | m.              |            |           |        |                  |                   |                       |                                              |         |         |                  |                         |          |                                              |       |     |                       |           |                      |          |             | ┣━┛                |          | '            |          | <u> </u>  |
| Cast rockie phinos, v. mall<br>is gav planua, lover centract<br>chavp, possible tight clear<br>Cover 20 cm at bettern 18,6 18,6 mal 3<br>contact<br>18,8228 AHLT Andenite lapilli tuff: - nature and 12<br>lapilli at feldoper pophyny,<br>uit - mod ser alloi cleate in<br>all games 5% coublets<br>vinlets to lance 3°<br>Cover 20 cm and cleate<br>alloi at mal cleate<br>alloi at mal cleate<br>couble couple show<br>possible low angle show<br>lower context graduational<br>cleast supported doorse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |      |              | fine spitted in      | 5 dk             | ehlovi 4        | <u>~a</u>  |           |        |                  |                   |                       |                                              |         |         |                  |                         |          |                                              |       |     |                       |           |                      |          | -           | ┣─-┦               |          | <sup> </sup> |          | ├         |
| (Speer planet, blear centration<br><pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |      |              | after marin phe      | <u></u>          | V. Sma          |            |           |        |                  | _                 |                       |                                              |         |         |                  |                         |          |                                              |       |     |                       |           |                      |          |             | ┝──┤               |          | !            |          |           |
| C To useak sor (1)<br>C To useak sor (1)<br>over 20 cm at lettern 18.6 18.6 md 3<br>contact<br>18.8228 AHLT Amerite lapilli tuff! - noduk ad 12<br>lapilli af fildoper perphysica<br>uk-mod ser alter cluster in<br>all group cg tuff chluste<br>alter games 5% could (95)<br>Vinlete bo I cm (2 30)<br>C 21 6 broken over 10 cm<br>possible low angle shoor<br>low-or context graduational<br>2.8 274 ANPP Amerite perphysica<br>lapilli to ogglomeete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |      |              | - spar prenos        | lover            | conta           | Cr<br>None |           |        |                  |                   |                       |                                              |         |         |                  |                         |          |                                              |       |     |                       |           | ┼──                  | +        |             | $\left  - \right $ |          |              |          |           |
| over 20 cm at bitem 18.6186 med 3<br>civitant<br>18.8228 ANIT Anterite lapilli tuft: - noduk und 12<br>lapilli at feldoper porphyny,<br>uk-mod ser alti closte m<br>ak gray cg tuft, chlurte<br>eltis gimes 5% covb(gts)<br>Vinlete to I cm (C 30°,<br>CO 216 broken over 10 cm<br>possible low angle shoar<br>low a contact gradutinal<br>28.274 ANPP Anterite porphyny probable<br>lapilli to ogglomente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |      |              | @ 70 wee             | uk So            | r (n)           | - al       |           |        |                  |                   |                       |                                              |         |         |                  |                         |          |                                              |       |     |                       |           | 1                    | +        |             |                    |          |              |          |           |
| Contact<br>18.8228 ANLT Anterite lapilli tuff:<br>lapilli of feldoner porphyry,<br>ule-mod ser altie doste in<br>alt grang cg tuff, chluite<br>altie games, 5% covb(gts)<br>Valett of lance 30°,<br>0 216 broken over want<br>possible low angle shoor<br>low or contact graduational<br>low or contact graduational<br>28.874 ANPP Andersite porphyry opophyle<br>low of supported doarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |      |              | over 20cm            | at b             | ottem           | ,<br>      | B.6       | 1B.6   |                  | Wig               | Y                     |                                              | 3       |         |                  |                         |          |                                              |       |     | _                     |           |                      |          |             |                    |          |              |          |           |
| 18.8/228 AHLT Anderite lapilli tuff:<br>lapilli of foldoper porphyry,<br>ule most ser alter closter in<br>alter geners 5% covb(qtz)<br>Vinlete to I cm @ 30°<br>@ 216 broken over Wenn<br>possible low angle shoar<br>low and shoar<br>28.274 ANPP Anderite porphyry probably<br>alter to agalometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |          |      |              | crutant              |                  |                 |            |           |        |                  |                   |                       |                                              |         |         |                  |                         |          |                                              |       |     | _                     |           |                      |          |             |                    |          |              |          | ļ         |
| lapilli af feldoper porphyry<br>uk-mod ser altid obster in<br>altig geness 5% corb(gb)<br>vinlete to lance 30°<br>(Co 216 protein over loan<br>possible low angle shoor<br>lawer antart gradutional<br>28274 ANPP Anterite porphyry probable<br>lapilli to ogebmarte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 18.8     | 22.8 | ANLT         | Anderite lapi        | Ili tu           | H :             |            |           |        | - M              | adjuk             | high                  |                                              | 1-2     |         |                  |                         |          |                                              | L     |     |                       |           | ļ                    | <u> </u> |             |                    |          | '            | ļ        |           |
| Let mod sex all & doste in<br>dk query cg tuft, chlorite<br>alt & games 5% covb(qbz)<br>vn lete ob lance 30°,<br>216 broken over 10cm<br>possible low angle shoor<br>lower antast quadatonal<br>28274 ANPP Andesite porphyny probable<br>clast supported doorse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |          |      |              | lapilli of felds     | par por          | phyrn           | 0          |           |        |                  |                   |                       |                                              |         |         |                  |                         |          |                                              |       |     |                       |           |                      |          |             | ┣                  |          |              |          | <u> </u>  |
| dk gray cg tuft, chlorite<br>altie grines 5% coub(gtz)<br>Vinlete to I cm @ 30°<br>(@ 216' broken over 10 cm<br>possible low angle shoar<br>lower contact gradutional<br>28274 AMPP Andesite porphyny probable<br>clast supported doorse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |      |              | uk-modser alt        | <u>Labs</u>      | te u            | <u></u>    |           |        |                  | _                 |                       | _                                            |         |         |                  |                         |          |                                              |       |     |                       |           |                      |          |             | ┢╾╌┦               |          |              | <u> </u> | _         |
| 28274 ANPP Andesite porphyny probable mel mod Kl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |          |      | . <u> </u>   | dk query eq          | tuft,            | chun            | she 1      |           |        |                  | _                 |                       | ├                                            |         |         |                  |                         |          |                                              |       |     |                       |           |                      | +        | <u> </u>    | ┝┥                 |          | <sup> </sup> |          |           |
| 2.8 274 ANPP Andersite porphyny probable mel mod KI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |          |      |              | alts games           | <u> </u>         | ovb(9           | <u>-</u>   |           |        |                  | +-                |                       | <u> </u>                                     |         |         |                  |                         |          |                                              |       |     |                       |           | +                    | +        | +           | <b>  </b>          | ┝─┦      |              |          |           |
| possible low angle show<br>lower entact quadational<br>28 274 ANPP Andersite parphyny probable<br>clost supported doarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |      |              | @ 216 brik           | C S              |                 |            |           |        |                  |                   |                       | <u> </u>                                     |         |         |                  |                         |          |                                              |       |     | l                     |           | <u> </u>             | +        | <u> </u>    |                    |          |              |          | -         |
| 2.8 27.4 ANPP Andersite parphyny probable med mod KI<br>clost supported doorse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |      |              | Possible la          | <u></u>          | ale sh          | voa        |           |        |                  |                   |                       | <b> </b>                                     |         |         |                  |                         |          |                                              |       |     |                       |           | <u> </u>             | 1        |             |                    |          |              |          |           |
| 2.8 274 ANPP Andersite parphyney probable mel mod Kl<br>clost supported doarse<br>lapilli to agglomoute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |      |              | lover contac         | t ana            | dation          | el.        |           |        |                  |                   |                       |                                              |         |         |                  |                         |          |                                              |       |     |                       |           |                      |          |             |                    |          |              |          |           |
| lapilli to ogglomante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2       | 2.8      | 27.4 | ANPP.        | Andersite parp       | shyny            | · prot          | able       |           |        | . v <sub>1</sub> | 121               | mod                   |                                              | Ł١      |         |                  |                         |          |                                              |       |     |                       |           | $\bot$               | ļ        | 1           |                    | ļ        |              |          | <u> </u>  |
| lapilli to ogglomante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |          |      |              | clast support        | ed d             | <u>oanse</u>    | <u>.</u>   |           |        |                  |                   |                       |                                              |         |         |                  |                         | <u> </u> |                                              |       |     |                       |           | <u> </u>             | <u> </u> |             | ļ                  | <u> </u> | <b></b>      | <b>_</b> | <b></b>   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |          |      |              | lapilli to ogg       | lomain           | to              |            |           |        |                  |                   |                       |                                              |         |         |                  |                         | L        | <u>.                                    </u> |       |     |                       |           |                      | <u> </u> | <u> </u>    |                    |          | L            | L        |           |

\_\_\_\_\_ ( \_\_\_\_\_

. . . . . . . . . . . .

. .

;

#### NEWHAWK GOLD MINES LTD. SULPHURETS PROPERTY

1

₹) j

| Inte | mual            |       |                              | [    |      | A   | tera | tion |      |   | Mi       | nera    | lizat     | ion |   | Assa                                  | y Da | a  |     |         |    |       |       |     |    | Сог | re Dat | a         |
|------|-----------------|-------|------------------------------|------|------|-----|------|------|------|---|----------|---------|-----------|-----|---|---------------------------------------|------|----|-----|---------|----|-------|-------|-----|----|-----|--------|-----------|
| (me  | erval<br>eters) | Rock  |                              |      |      |     | LOR  |      | 88   |   |          |         | ~         |     |   | Sample                                | From | То | Int | Au      | Cu | Au    | Cu    | Âg  | Mo | ROD | Run    | Reco      |
| From | То              | Туре  | Geologic Description         | From | To   | SIL | F    | SER  | S    |   | 70<br>Ру | %<br>Ср | 70<br>Mag | Mo  |   |                                       |      |    |     | opt     | %  | check | check | opt | %  | %   |        | ver)<br>% |
|      |                 |       | dark green 5 every white     |      |      |     | nad  | Ink  | mod  |   | 41       |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
| ļ    |                 |       | Beldspars to Zmm this        |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
|      |                 |       | 3/ carb(gb) vulte            |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
|      | <u></u>         |       | 30°, lower contact           |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
|      |                 |       | Gradational                  |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
| Z7.4 | 1-16.6          | HELT  | Hetrolithic lapilli tuff:    |      |      |     |      |      |      |   | 21       |         |           |     |   |                                       |      |    |     |         |    |       | [     |     |    |     |        |           |
|      |                 |       | similar to before but        |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
|      |                 |       | 55 with lapilli size black   |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
|      |                 |       | aveillite? hasp; des         |      |      |     |      |      |      |   | ŀ        |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
|      |                 |       | rave serieite alt's anderite |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     | Γ       |    |       |       |     |    |     |        |           |
|      |                 |       | parphyny frags to 5 cm fo    |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
|      |                 |       | andesite flow frags, and     |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
|      |                 |       | probable large block of      |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     | I      |           |
|      |                 |       | fspar porphyre, all in       |      |      | {   |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
|      |                 |       | a 40% golmes of equinsort    | A    |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     | Í      | Ì         |
|      | ļ               |       | tuff, porphyny content-1     |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
|      |                 |       | bags increases down hold     |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
| •    |                 |       | from 34.0 to 39.2: 10-15%    | 34.0 | 39.2 |     |      |      | 15   | · |          |         |           |     |   | · · · · · · · · · · · · · · · · · · · |      |    |     | <b></b> |    |       |       |     |    |     |        |           |
|      |                 |       | coleite-rich vis to sam      |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
|      |                 |       | @ 40° lower contact          | 39.2 | A66  |     |      |      | 5    | 1 |          | [       |           |     | 1 |                                       |      |    |     | Ţ       |    |       |       |     |    |     |        | <b>—</b>  |
|      |                 |       | gradutional                  |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     | [       |    |       |       |     |    |     |        |           |
| 16.6 | 54,0            | ANIPP | Anderite Dorphyrun:          |      |      |     | And  | stra | - ha | 2 | 1        |         |           |     |   |                                       | [    |    |     |         |    |       |       |     |    |     |        |           |
|      |                 |       | as before but less           |      |      |     |      | 3    | -    | 1 | [        |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
|      |                 |       | exidence of agglomeratic     |      |      |     |      |      |      |   |          |         |           |     |   |                                       |      |    |     |         |    |       |       |     |    |     |        |           |
|      |                 |       | bleecks scattered ratchy     |      |      |     |      |      |      |   |          |         |           |     |   | 1                                     | †    |    |     | ļ       |    |       |       |     |    |     |        |           |
|      |                 | -     | apple green coincide altin   |      |      |     |      |      |      |   |          |         |           | [   |   |                                       |      |    | 1   |         |    |       |       |     |    |     |        |           |

Hole No. 579 Page \_2 \_ of \_22

۰.

۰.

€ )

|              |                | [        |                                |          |          | A  | tera | tion |          | <u> </u>    | Mir           | nera | lizat    | ion      |   | Assa   | y Dat | a    |                    |          |          |             |             |           |         | Cor      | e Dat    | a            |
|--------------|----------------|----------|--------------------------------|----------|----------|----|------|------|----------|-------------|---------------|------|----------|----------|---|--------|-------|------|--------------------|----------|----------|-------------|-------------|-----------|---------|----------|----------|--------------|
| Inte<br>(mei | rvai<br>lers)  |          |                                | ļ        |          |    | ~    |      |          | T           |               |      | Γ        | 1        | Γ |        |       |      |                    |          | Ι        |             |             |           |         |          | [        |              |
| from         | To             | Rock     | Geologic Description           |          |          | =  | ОНГО | З.   | ARB      |             | %             | %    | %        | %        |   | Sample | From  | То   | Int                | Au       | Cu<br>%  | Au<br>check | Cu<br>check | Ag<br>opt | M0<br>% | RQD<br>% | Run      | Reco<br>very |
|              | 10             | iype_    | Val calation with Numino       | From     | 10       | s  | -    | s    |          | +           | Py_           | Lp   | mag      | Mo       |   |        |       |      |                    | <u> </u> | -        |             |             |           |         |          |          |              |
|              |                |          | of care rean ming              |          |          |    |      |      |          | +           |               |      |          |          |   |        |       | -    |                    | +        |          |             |             |           |         |          |          | ├──          |
|              |                |          | -+ KIO (0) 40                  |          |          |    |      |      |          | +           |               |      |          |          |   |        |       |      |                    |          |          | ·           | ┼           |           |         |          |          |              |
| EA.          | 75             | 101      | Buser contract gradettmal      |          |          |    |      |      | <u> </u> |             |               |      |          | +        | + |        | 540   |      |                    |          |          |             | -           | 27        |         |          |          |              |
| 0.10         | <u>p+.&gt;</u> | 31       | Service - pyrite a ltd andbite |          | <u> </u> |    |      | sing | Sig      | \$ <b> </b> | <u>B-&gt;</u> |      |          |          |   | (2+245 | 010   | 55.5 | 1.2                | 0.004    | <b> </b> | ┼           |             | . 2/      |         |          | <u> </u> | <u> </u>     |
|              |                | AN MP.   | parphyny apple queen           | <b> </b> |          |    |      |      |          | +           | <u> </u>      |      | <u> </u> | <u> </u> |   | 246    | 555   | 36.5 | 1.0                | 0.030    |          |             |             | 11        |         |          |          |              |
|              |                |          | with remnant white (carb)      |          | I        |    |      |      |          |             |               |      | ļ        | ļ        | ļ | 277    | 56.5  | 575  | 1.0                | 0.015    |          |             |             | ,01       |         |          |          | <b> </b>     |
|              | <u> </u>       |          | feldspar megacoysts, 10-20/    |          |          |    |      |      |          | <u> </u>    |               |      | ļ        |          |   |        |       |      |                    |          |          | ļ           | ļ           |           |         |          |          | <b> </b>     |
|              |                |          | calcite I (gtz) vulte to       |          |          |    |      |      |          |             |               |      | ļ        | ļ        |   |        |       |      |                    | L        |          | <b> </b>    |             |           |         |          |          | <b> </b>     |
|              | ļ              | ļ        | San thro, lower crutaret       |          |          |    |      |      |          | 1           |               |      | ļ        | <u> </u> |   |        |       |      |                    |          |          | ļ           |             |           |         |          |          | L            |
|              |                | L,       | gradatinal                     |          |          | Ŀ  |      |      |          |             |               |      |          |          |   |        |       |      |                    |          |          | ļ           |             |           |         |          |          | Í            |
| <u>57.S</u>  | 61.9.          | SP/      | Sericite-pyrite altal          |          |          | 10 |      | sta  | 549.     |             | 8-5           |      |          |          |   | 278    | 575   | 59.D | 15                 | 0.012    |          |             |             | .32       |         |          | i<br>    | ļ            |
|              | (              | ptsw/    | anderite parphyny w            |          |          |    |      |      | -        |             |               |      |          |          |   | 279    | 59.0  | 605  | 1.5                | 0.001    |          |             |             | .23       |         |          |          |              |
|              |                | ANPP     | 25/qb-carb stockwork           |          |          |    |      |      |          |             |               |      |          |          |   | 280    | 60.5  | 61.9 | 1.4                | 0.009    |          |             |             | ,27       |         |          |          | ĺ            |
|              |                |          | lower contact gradational      |          |          |    |      |      |          |             |               |      |          |          |   |        |       |      |                    |          |          |             |             |           |         |          |          |              |
| 61.9         | 63.9           | ANPP     | andersite perphyry as          |          |          | 3  | MK   | mad  | stra     |             | 1-2           |      |          |          |   | 23     | 61.9  | 63.9 | 2.0                | 0.006    | 2        |             |             | .16       |         |          |          | ľ.           |
|              |                | SP.      | belove with natchy             |          |          |    |      |      |          | T           |               |      |          |          | 1 |        |       |      | 11 <sup>1</sup> 12 |          |          |             |             |           |         |          |          | [            |
|              |                |          | moderate service - ourite      |          |          |    |      |      |          | 1           |               |      |          |          |   |        |       |      |                    |          | [        |             |             |           |         |          |          |              |
| ,            | 1              |          | alt 10/ carblate) mina         |          |          |    |      |      |          | 1           |               |      |          | <u> </u> |   |        |       |      |                    |          |          | 1           |             |           |         |          |          |              |
|              | 1              |          | P 60 2 80 1                    |          |          |    |      |      |          | +           |               |      | 1        |          |   |        |       |      |                    |          |          | 1           |             |           |         |          |          |              |
|              | ·              |          | intert shore 85°               |          |          |    |      |      |          | +           |               |      | 1        |          |   |        |       |      |                    |          |          | <u> </u>    |             |           |         |          |          |              |
| 639          | 60             | CON      | Cala'to avial                  |          |          |    |      |      | 100      |             |               | -    |          | 1        | 1 | 289    | (29   | 451  | 12                 | 0.006    |          |             |             | .3        |         |          | <b></b>  |              |
|              | <u></u>        |          | @ sco                          | [        |          | [] |      |      |          | 1           | [             | †    | 1        | 1        |   |        |       |      |                    | 1 1.000  | <u> </u> |             |             |           |         |          |          |              |
| 651          | 8/2            | NPP      | Andraile maga course           |          |          |    | wk   |      | nod      | 1           | 1,            |      |          |          |   |        |       |      |                    | ÷        |          |             |             |           |         |          |          |              |
|              | 1200           | 1.4.1.   | when it is the second          |          | <u> </u> |    |      | -14  | 1.00     | '¦          | <u>`</u> -    |      | 1        | <u> </u> |   |        |       |      |                    |          |          | +           |             |           |         |          |          |              |
|              | ·              |          | parti - Barris and             |          |          |    |      |      |          | ┿           |               |      |          |          |   |        |       |      |                    |          |          |             |             |           |         |          |          |              |
|              | ·              |          | and flows it it                |          | <u> </u> |    |      |      |          | +           |               |      |          |          |   |        |       |      |                    |          |          |             |             |           |         |          |          |              |
| L            | 1              | <u> </u> | uni corra he                   | L        | 1        |    |      |      | L        |             |               | l    |          | 1        | 1 |        |       |      | L                  | 1        |          | L           |             |           | _,      |          |          |              |

.

Ň

Hole No. <u>594-999</u> Page <u>3</u> of <u>2-2</u>

1. A. A.

• .

. .

| Г  |                |             |       |                           |      |    | Al          | terat     | ion |          |   | Min | eral | izati    | ion      |          | Assa     | y Dat    | a    |          |          |          |          |       |     |    | Cor          | re Data       | 3            |
|----|----------------|-------------|-------|---------------------------|------|----|-------------|-----------|-----|----------|---|-----|------|----------|----------|----------|----------|----------|------|----------|----------|----------|----------|-------|-----|----|--------------|---------------|--------------|
|    | Inter<br>(mete | val<br>ers) | Bock  |                           |      |    |             | ILOR      | ~   | RB       | - | %   | %    | %        | %        |          | Sample   | From     | то   | Int      | Au       | Cu       | Au       | Cu    | Ag  | Mo | RQD          | Run           | Reco<br>very |
|    | From           | Το          | Туре  | Geologic Description      | From | То | SIL         | <u>5</u>  | SEI | <u>5</u> |   | Ру  | Ср   | Mag      | Mo       |          | <b></b>  | [        |      |          | opt      |          | check    | check | ορι | %  | 70           | <u>├</u> ───┘ | *            |
|    |                |             |       | coarse blocky flow        |      |    |             |           |     |          |   |     |      | Ļ        | <u> </u> |          | ļ        |          |      |          |          |          |          |       |     |    | l            |               |              |
|    |                |             |       | ar agglomerate 10%        |      |    |             |           |     |          |   |     |      | <b> </b> |          | ļ        |          |          |      |          | <b> </b> | <u> </u> |          |       |     |    | ii           | <sup> </sup>  | -            |
|    |                |             |       | calcite (gtz) vning to    | []   |    |             | $\square$ |     |          | L |     |      | ļ        | <u> </u> | <b>[</b> | <u> </u> | [        |      |          | <b> </b> | ļ        |          |       |     |    | <b>/</b>     | ļ             |              |
| >1 |                | . * .       |       | 2 cm. most @ 70°-8°       |      |    |             |           |     |          |   |     |      |          |          |          | L        | <u> </u> |      | ļ        |          |          | <u> </u> |       |     |    | J            | <u> </u>      |              |
|    |                |             |       | lower contact gradational |      |    |             |           |     |          |   |     |      | ļ        |          | ļ        |          |          |      | <u> </u> |          |          | ļ        |       |     |    | <sup> </sup> |               |              |
|    | 863            | 687-        | ANPP. | Anderite por phyry: weak  |      |    | 10          |           | nod | mod.     |   | 2.  |      |          |          |          | 2784     | 86.3     | 88,7 | 2.4      | 0.02     |          |          |       | .24 |    | <u> </u>     | ļ!            |              |
| [  |                |             |       | to moderate parasine      |      |    |             |           |     |          | L |     |      |          | ļ        |          |          |          |      |          | ļ        |          |          |       |     |    | jł           |               |              |
|    |                |             |       | servicite alt'd and x-cut |      |    |             |           |     |          |   |     |      |          | ļ        | ļ        |          | L        |      |          | ļ        |          |          |       |     |    |              |               |              |
| ĺ  |                |             |       | hy 20% carb (gk) vos      |      |    |             |           |     |          |   |     |      |          | <u> </u> | L        |          | L        |      | L        |          |          |          |       |     |    |              |               |              |
|    |                |             |       | to same lover intact      |      |    |             |           |     |          |   |     |      |          |          |          |          | L        |      | <br>     | ļ        |          | ļ        |       |     |    |              | ļ             |              |
|    |                |             |       | avadational.              |      |    |             |           |     |          |   |     |      |          | L        |          |          |          |      |          |          | ļ        |          |       |     |    |              | ļ             |              |
| ĺ  | 887            | 967         | ANPP. | Andersite our phymes : as |      |    | <i>:</i> :_ |           | wk  | mad.     |   | 21  |      |          |          | L        | L        |          |      |          |          |          |          |       |     |    |              |               |              |
| [  |                |             | 1     | halove patcher v. meak    |      |    |             |           |     |          |   |     |      |          |          |          | <u> </u> |          |      |          | <u> </u> |          |          |       |     |    |              |               | ļ            |
| ľ  |                |             |       | segurite altid 5/ carb    |      |    |             |           |     |          |   |     |      |          | <u> </u> |          |          |          |      |          |          |          | L        |       |     |    |              |               | ļ            |
| Ì  |                |             | 1     | (at2) valets @ 80°        |      |    | Γ           |           |     |          |   |     |      |          |          |          |          |          |      |          |          |          |          |       |     |    |              |               |              |
| )  |                |             | 1     | love entart cradatimal    |      |    |             |           |     |          |   |     |      |          |          |          |          |          |      |          |          |          |          |       |     |    |              |               |              |
|    | 27             | 991-        | HEIT  | Hebrolithic lasil; tuff   |      |    |             |           |     |          |   |     |      |          |          |          |          |          |      |          |          |          |          |       |     |    |              |               |              |
| ĺ  | <u>.</u>       | 11.0        | 1.0   | the same the second       |      |    |             |           |     |          |   |     |      |          | 1        | 1        |          |          |      |          |          |          |          |       |     |    |              |               |              |
|    |                |             | 1     | T small angilar black     |      |    |             |           |     |          | T |     |      |          |          |          |          |          |      |          |          |          |          |       |     |    |              |               |              |
|    |                |             |       | artillite deste ser altid | 1    |    |             |           |     |          |   |     |      |          |          |          |          |          |      |          |          |          |          |       |     |    |              | L             | L            |
| ĺ  |                |             | 1     | for as to 3 cm and        |      |    | 1           |           |     |          | Γ |     |      | Τ        |          |          |          |          |      | 1        |          |          |          |       |     |    | L            |               |              |
|    |                |             |       | the marking x-rut         |      |    |             |           |     |          |   |     |      |          |          |          |          |          |      |          |          |          |          |       |     |    |              |               | ļ            |
|    |                |             |       | by 10% carblate valute    |      |    |             |           |     |          |   |     |      |          |          |          |          |          |      |          |          |          |          |       |     |    | L            | ļ             | ļ            |
|    |                |             |       | the less                  | 1    | 1  | 1           |           |     |          | Γ |     |      |          |          |          |          |          |      |          |          |          |          |       |     |    |              |               | L            |
|    |                |             |       | love intert andatimal     | 1    |    | 1           |           |     |          |   |     |      |          | 1        |          |          |          |      |          |          |          |          |       |     |    |              | ļ             |              |
|    |                |             |       |                           |      |    | -           |           |     |          |   |     |      |          |          | 1        |          | T        |      |          |          |          |          |       |     |    |              |               |              |

•

Hole No. <u>594-44</u> Page <u>d</u> of <u>22</u>

ine na 1986 en fressingen an andra andrise af 1997 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 19

the state of the second state of the second state of the second state of the

· · · ·

| Interval |               |                                 |          |            | Al  | terat | tion |              |     | Min                               | eral | izati | ion |          | Assa         | y Da     | a     |     |       |    |              |              |     |    | Cor | e Dat   | a        |
|----------|---------------|---------------------------------|----------|------------|-----|-------|------|--------------|-----|-----------------------------------|------|-------|-----|----------|--------------|----------|-------|-----|-------|----|--------------|--------------|-----|----|-----|---------|----------|
| (meters) | Roi           | ×                               |          | 1. <i></i> |     | Ĩ     | ~    | RB           |     | %                                 | %    | %     | 96  |          | Sample       | From     | То    | Int | Au    | Cu | Au           | Cu           | Ag  | Mo | RQD | Run     | Reco     |
| From To  | <u>, Ty</u>   | e Geologic Description          | From     | To         | SIL | £     | SEI  | <del>ک</del> |     | Py                                | Ćp   | Mag   | Mo  |          | <u> </u>     |          | ļ     |     | opt   | %  | check        | check        | opt | %  | %   | <b></b> | %        |
| 99.6 m   | <u>,2 HEr</u> | 1/ Hetrolithic lapill tuff with | <u> </u> | ļ          | 5   | mod.  | wk   | mad          |     | 1-2                               |      |       |     | 17       | 24-284       | 99.6     | 1010  | 1.4 | 0.012 |    |              |              | .14 |    |     | Ļ       |          |
|          | QCS           | 1 gt - corb stuck and ming      |          | <u> </u>   |     |       |      |              |     |                                   |      |       |     |          | 285          | 101.0    | 1025  | 1.5 | 0.016 |    |              |              | ,25 |    |     | İ       |          |
|          |               | 20% decreasing to 10%           |          |            |     |       |      |              |     |                                   |      |       |     |          | 286          | 1025     | 104.0 | 1.5 | 0.033 | ,  |              |              | .16 | ·  |     |         |          |
|          |               | vning + stuck with deph,        |          |            |     |       |      |              |     |                                   |      |       |     |          | 28₹          | 104.0    | 1055  | 1.5 | 0.009 |    |              |              | ,22 |    |     |         | <u> </u> |
|          |               | meak patchy sericite            |          |            |     |       |      |              |     |                                   |      |       |     |          | 2 <i>B</i> B | 05.5     | 1070  | 1.5 | 0.013 | ,  |              |              | -13 |    |     | ĺ       |          |
|          |               | alto parcasine we to            |          |            |     |       |      |              |     |                                   |      |       |     |          | 289          | 1070     | 108.5 | 1.5 | 0.010 | ,  |              |              | .01 |    |     | 1       |          |
|          |               | moderate chlorite               |          |            |     |       |      |              |     |                                   | -    |       |     | ······   | 2510         | 108.5    | 110.0 | 1.5 | 0.029 |    |              |              | ,   |    |     |         |          |
| 1125115  | 1 481         | Hetrolithic lasilli tuff as     |          |            | 4١  | mod   |      | uk           |     | 41.                               |      |       |     |          | 291          | 110.0    | 111.5 | 1.5 | 0.021 |    |              |              | ,08 |    |     |         |          |
|          |               | before I St. carblabl           |          |            |     |       |      |              |     |                                   |      |       |     |          | 292          | 1115     | 112.5 | 1.0 | 0.120 |    |              |              | .ß  |    |     |         |          |
|          |               | vulet low contact               |          |            |     |       |      |              |     |                                   |      |       |     |          |              | 1        |       |     |       |    |              |              |     |    |     |         |          |
|          |               | gradational.                    |          |            |     |       |      |              |     |                                   |      |       |     |          | -            |          |       |     |       |    | [            |              |     |    |     |         |          |
| 115.113  | S.GANP        | Anderite mahun teinly           |          |            |     | mod.  |      | ulc          |     | 31                                |      |       |     |          |              | 1        |       |     |       |    |              |              |     |    |     |         |          |
|          |               | uniture in case prote           |          | ľ          |     |       |      |              |     |                                   |      |       |     |          |              | 1        |       |     |       |    |              |              |     |    |     |         |          |
|          |               | closte al la analyite           | 1        | <b> </b>   |     |       | ·    |              |     |                                   |      |       |     |          | 1            | 1        |       |     |       |    | <u>├</u> ──┤ |              |     |    |     |         |          |
|          |               | scattered carb(ct)              |          |            |     |       |      |              |     |                                   |      |       |     |          | -            | -        |       |     |       |    |              |              |     |    |     |         | ·        |
|          |               | vulate @ 40° louger intert      | L        |            |     |       |      |              |     |                                   |      |       |     |          | -            |          |       |     |       |    | <u>├</u> ──┤ |              |     |    |     |         |          |
|          |               | Ore dealer is lessed (Miles)    |          |            |     |       |      |              |     |                                   |      |       |     |          | 1            |          |       |     |       |    | <u></u>      | <u>├</u> ──┤ |     |    |     |         |          |
| 311 154  | 12 115        | F 19 1: 11: La : 11: Lull:      |          |            |     |       |      | Ir           |     | $\overline{\mathbf{x}}^{\dagger}$ |      |       |     |          |              |          |       |     |       |    |              |              |     |    |     |         |          |
| 136/13   | ····          | There is a start and the second |          |            | 2\  | moa   |      | VY IC        |     | =1+                               |      |       |     |          |              |          |       |     |       |    |              | $\vdash$     |     |    |     |         |          |
|          |               | as before with seathing         | ·        |            |     |       |      |              |     |                                   |      |       |     |          |              | +        |       |     |       |    | ┝──┤         |              |     | +  |     |         |          |
|          |               | parpinging bucks , Pare         |          |            |     |       |      |              |     |                                   |      |       |     |          |              |          |       |     |       |    |              |              |     |    |     |         |          |
|          |               | 1 Den wide book of              |          |            |     |       |      |              |     |                                   |      |       |     |          |              |          |       |     |       |    |              |              |     |    |     |         |          |
|          |               | headed fig tuille Th            |          |            |     |       |      |              |     |                                   |      |       |     |          |              |          |       |     |       |    |              | ├            |     | -+ |     |         |          |
|          |               | > currined corb(qR) values      |          |            |     |       |      |              |     |                                   |      |       |     |          |              |          |       |     |       |    | <u> </u>     | ┝ト           |     | -+ |     |         |          |
|          |               | <u>( </u>                       | ·        |            |     |       |      |              |     |                                   |      |       |     | <b>_</b> | +            | <u>-</u> |       |     |       |    | <u>├</u>     | ·            |     |    |     |         |          |
|          |               | broken                          |          | <u> </u>   |     |       |      |              |     | -+                                |      |       |     |          |              |          |       |     |       |    |              | ├            |     |    |     |         |          |
|          |               |                                 | 1        |            |     |       |      |              | - 1 |                                   |      |       |     |          |              | 1        |       |     |       |    | 1 1          | 1            |     |    |     |         |          |

......

•

Hole No. <u>594-449</u> Page <u>5</u> of <u>22</u>

Hole No. <u>594 - 499</u> Page \_\_\_\_\_\_ of \_\_\_\_

|                      |             |                                    |      |    | A        | terat    | tion     |          |          | Min      | ieral    | lizat      | ion      |   | Assa     | y Dat | a        |          |          |         |    | r  |            |          | Cor          | e Data     | 3<br>             |
|----------------------|-------------|------------------------------------|------|----|----------|----------|----------|----------|----------|----------|----------|------------|----------|---|----------|-------|----------|----------|----------|---------|----|----|------------|----------|--------------|------------|-------------------|
| Interval<br>(meters) | Real        |                                    |      |    |          | HLOR     | ~        | ARB      | ·        | %        | %        | %          | %        |   | Sample   | From  | То       | Int      | Au       | Cu<br>% | Au | Cu | Ag<br>opt  | M0<br>%  | RQD<br>%     | Run        | Reco<br>very<br>% |
| From To              | ь Тур       | Geologic Description               | From | То | 12       | Ċ        | S        | <u>č</u> |          | Pγ       | Ср       | Mag        | Mo       |   | <b> </b> |       |          |          |          |         |    |    |            |          |              | <u> </u>   | -                 |
| 154.2156             | S FLT       | ? Broken badly @ BO°,              |      |    | he       | mad      |          | mod      |          |          |          | ļ          | <u> </u> |   |          |       |          |          |          |         |    |    | <u> </u>   |          |              |            |                   |
| ·                    |             | possible fault                     |      |    | <b> </b> |          |          |          |          |          |          | ļ          |          |   |          |       |          |          |          |         |    |    | <u></u>    |          | <sup>1</sup> |            | -                 |
| 1565 20              | 6.0 ANT     | E Anderite fulf: massive           |      |    | 1        | wk       |          | wk       | ╡        | ۷۷       |          |            |          |   | $\vdash$ |       |          |          |          |         |    |    |            |          | <sup> </sup> |            | <u> </u>          |
|                      |             | uniform with fine                  |      |    |          | ļ        | ļ        |          |          |          |          |            |          |   |          |       |          |          |          |         |    |    |            |          |              |            |                   |
|                      |             | Lapilli grading - down             |      |    |          | <u> </u> |          |          |          |          |          | ļ          | -        |   |          |       | _−       |          |          |         | +  |    |            |          |              |            |                   |
|                      |             | have to ig tuff 5                  |      |    |          |          |          |          | Ļ        |          | ļ        |            |          |   |          |       |          |          |          |         |    |    |            |          | <u> </u>     |            |                   |
|                      |             | vore la pilli rare black           | ļ    |    | <b>_</b> | <u> </u> |          |          |          |          |          |            |          |   |          |       |          |          |          |         |    |    | <u> </u>   |          |              |            |                   |
|                      |             | avgillite hag to 3mm               |      |    |          |          | L        |          |          | <b> </b> |          |            | 4        | _ | _        |       |          | ļ        |          |         |    |    |            |          |              | <u> </u>   |                   |
|                      |             | scattered corb (gtz)               | ĺ    | ļ  |          |          | ļ        | <br>     |          |          |          |            | _        | _ |          |       | <u> </u> |          |          |         |    |    |            |          |              |            |                   |
|                      |             | vinlete @ Bo                       |      |    |          | 1        | <u> </u> |          | <u> </u> |          | ļ        |            |          |   |          |       |          |          | <u> </u> |         |    |    | <u> </u>   |          |              |            | -                 |
|                      |             | lower contact very quadational     |      | ļ  |          | 1        | <b> </b> |          | _        |          |          |            |          |   | 4        |       |          |          | <u> </u> |         |    |    |            |          |              | +          |                   |
|                      |             | to wook parasing sourcite          |      |    | <u> </u> |          |          |          | ļ        | ļ        | <u> </u> |            |          |   |          |       |          | <u> </u> |          |         |    |    |            |          |              | +          |                   |
|                      |             | + Pine duis Du                     |      |    |          |          |          | ļ        |          |          | ļ        |            |          |   |          |       | <b>_</b> | ļ        | <u> </u> |         |    |    |            |          |              | ┼──        | ┼──               |
| 201-020              | 20 11       | Andre to tult as above             |      |    | m        | 4        | mest     | mk       | _        | 2.       |          | _ <b> </b> |          | z | 2.93     | 206.0 | 2075     | 1.5      | 0.059    |         | +  |    | 101        |          |              | +          | +                 |
| 20002                | 2049.<br>SP | betwith user' & moderate pervasu   |      |    |          |          |          |          |          |          |          |            |          |   | 294      | 1207: | 5209     | 1.5      | 0.017    |         |    |    | 1.07       | <u> </u> | <u> </u>     | <u> </u>   |                   |
|                      |             | - and the + 21/ Punis aliss Pulite |      |    |          |          |          |          |          |          |          |            |          |   | 245      | 209.0 | 2098     | 0.8      | 0.010    | 1       |    |    | -4         |          | <b> </b>     | +          |                   |
|                      |             | sil abteach valets                 | T    | T  |          |          |          |          |          |          |          |            |          |   |          |       |          |          | ļ        |         |    |    |            |          | <b>_</b>     |            | +-                |
| ,                    |             | and signification lower            |      |    |          |          |          |          |          |          |          |            |          |   | _        |       |          |          |          |         |    |    |            |          | <b>_</b>     | - <u> </u> |                   |
|                      |             | with story attimal                 |      |    |          |          |          |          |          |          |          |            | _        |   |          |       | _        |          |          | 1       |    |    |            |          |              |            |                   |
|                      |             | Consten greeces.                   |      |    |          |          |          |          |          |          |          |            |          |   |          |       |          |          |          |         |    |    | ;          |          |              |            |                   |
| 7090 71              | 175 410     | A have duft as above               | 1    |    | 30       |          | mod      | mod      | X        | З        |          |            |          |   | 296      | 209   | 32105    | 31.0     | 0.021    |         | _  |    | <u>.16</u> | <u>,</u> |              | <u> </u>   |                   |
| 20,0 21              | MNCTIN      | Anapsit hiff as the                |      |    |          |          | Ţ        | T        |          |          |          |            |          |   | 297      | 2108  | 2117     | 50.95    | \$ 0.012 | 4       |    |    | 12         | -        |              | <u> </u>   |                   |
|                      |             | Mine 20-80 Tothe sild              | -    | -  |          |          |          |          |          |          |          |            | _        |   |          |       | _        |          |          |         |    |    |            |          | .            |            |                   |
|                      |             | 2 -27 day h                        |      | 1  |          |          |          |          |          |          |          |            |          |   |          |       |          |          | <u> </u> |         |    |    |            | _        | .            |            |                   |
|                      |             | - Ras labring share? at            | -    | -  | - -      |          |          |          |          |          |          |            |          |   |          |       |          |          |          |         |    |    |            |          | -            |            |                   |
|                      |             | mean of fame, some for             | 1    |    | _        |          |          |          |          |          |          |            |          |   |          |       |          | <u> </u> |          |         |    | _  |            |          | <u> </u>     |            |                   |
|                      |             | where antocs.                      |      |    |          |          |          |          |          |          |          |            |          |   |          |       |          |          |          |         |    |    |            |          |              |            |                   |

| Γ          |               |         |              |                               |       |          | Al | tera | tion                                    |     |          | Min                     | era | lizat    | ion |     | Ass   | ay Da        | ta       |      |         |         |             |             |            | Co       | re Dat                                       | а        |
|------------|---------------|---------|--------------|-------------------------------|-------|----------|----|------|-----------------------------------------|-----|----------|-------------------------|-----|----------|-----|-----|-------|--------------|----------|------|---------|---------|-------------|-------------|------------|----------|----------------------------------------------|----------|
|            | mete          | rs)     |              |                               |       |          |    | R    |                                         | [   |          |                         |     |          |     |     |       | Ť-           | T        |      |         |         |             |             |            |          | T                                            | Γ        |
| Fr         | om            | To      | Rock )       | Geologic Description          |       |          | =  | CHLO | H                                       | ARB |          | %                       | %   | %        | %   |     | Sampl | e From       | То       | Int  | Au      | Cu<br>% | Au<br>check | Cu<br>check | Ag Mo      | RQD<br>% | Run                                          | Reco     |
| 5          | 175           | 230.5   |              | the tradition (a a : 1): tull | FIOIN | 10       |    | يلد  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |     |          | <b>ry</b><br>- <b>X</b> | Ср  | mag      | Mo  |     | 000   | 2117         | 2000     | 1.05 | 0.063   |         |             |             | 12         | +        |                                              | 1        |
|            |               |         | 5 <b>P</b> . | erading box locilli           |       | <u> </u> |    |      | maa                                     | V7V | 1        |                         |     | <u> </u> | -   |     | h 92  | 013 0        |          | 1    | 0.07    | [       |             |             | 13         | 1        |                                              | t        |
|            |               |         |              | till to locilli tull          |       |          |    |      |                                         |     |          |                         |     | $\vdash$ |     |     | 200   | 213.2        | 216.2    | 1.5  | 0.000   |         |             |             | 12         |          | ┼──                                          | $\vdash$ |
| -          |               | r .     |              | acconsiste with               |       |          |    |      |                                         |     |          |                         |     |          |     |     |       | bu 7         | h11-     | 1.5  | 0.001   |         |             |             | 12         |          |                                              | <u> </u> |
|            | -†            | · · · · |              | the share all it appeals we   |       | <u> </u> |    |      |                                         |     |          |                         |     |          |     | (30 | 001   | 0,           | 2107     |      | 0.00    |         |             | •           |            |          |                                              |          |
|            |               |         |              | Speck of arta parprophy,      |       |          |    |      |                                         |     |          |                         |     |          |     |     | 002   | 0.0-         | 216+     | 1.0  | 0.00    |         |             |             |            | 1        |                                              | <u> </u> |
| F          |               |         |              | - Josephing including :       |       |          |    |      |                                         |     | $\vdash$ |                         |     |          |     |     | 003   | <u> 18.4</u> | -213.4   | 1.0  | (1 01)  |         |             |             | 10         |          |                                              |          |
|            |               |         |              | alta parputry, tog tuft,      |       |          |    |      |                                         |     | $\vdash$ |                         |     | <u> </u> |     |     | 004   | ×19.4        | 221.2    | 1.   | 20,00   |         |             |             | 14         |          | <u> </u>                                     | -        |
| -          |               |         |              | Last -il and scarbyed         |       |          |    |      |                                         |     |          |                         |     | -        |     |     | 005   | KX1.4        | 2221     | 1.5  | 0.004   |         |             |             |            |          |                                              | -        |
| $\vdash$   | -+            |         |              | Back Silicons argining        |       |          |    | _    |                                         |     |          |                         |     |          |     |     | 006   | 120.         | 227.2    |      | < 0.00) |         |             |             | 1041       |          | ┣───┦                                        |          |
|            |               |         |              | all unsorted un groutes-      |       |          |    |      |                                         |     |          |                         |     |          |     |     | 1007  | 224,2        | 223,7    | 10   | DIUB    |         |             |             | <u>101</u> |          | ┝───┦                                        |          |
| -          |               |         |              | Mass of eg turp wear          |       |          |    |      |                                         |     |          |                         |     |          |     |     | 008   | 225.7        | 227.2    | 1.5  | 0.005   |         |             | -+          | MF         |          |                                              | $\vdash$ |
| $\vdash$   |               |         |              | to moderall periodswer        |       |          |    |      |                                         |     |          |                         |     |          |     |     | 009   | 224.4        | 123.1    | 1.5  | 0.001   |         |             |             |            | <u> </u> |                                              |          |
| -          |               |         |              | service + 2-51 disc My        |       |          |    |      |                                         |     |          |                         |     |          |     |     | 010   | 728-         | 229.6    | 0.9  | 0.006   |         |             |             |            |          | ┝──┦                                         |          |
|            |               |         |              | seathical get carb volets     |       |          |    | -    |                                         |     |          |                         |     |          |     |     | 011   | 729,6        | 230.5    | 0.0  | 0.020   |         |             |             | 05         |          | ┝───┦                                        |          |
|            | $\rightarrow$ |         |              | most @ 50-60. buer            |       |          |    |      |                                         |     |          |                         |     |          |     |     |       |              | · .      |      |         |         |             |             |            |          |                                              | <u> </u> |
|            |               |         |              | gradiotimal.                  |       |          |    |      |                                         |     |          |                         |     |          |     |     |       |              |          |      |         |         |             |             |            |          | <u> </u> ]                                   |          |
|            |               |         |              | @209.0: 13cm gtz vn.          | 209.0 | 209.13   | 86 |      |                                         | 5   |          | 5                       |     |          |     |     |       |              | <u> </u> |      |         |         |             |             |            |          | ┟╼───┤                                       |          |
|            |               |         |              | with comb gtz + 5/            |       |          |    |      |                                         |     |          |                         |     |          |     |     |       |              |          |      |         |         |             |             |            |          | <u> </u>                                     | ļ        |
| -          |               |         |              | disc py i cove @ 80°          |       |          |    |      |                                         |     |          |                         |     |          |     |     |       |              | <u> </u> |      |         |         |             |             | _          |          | ļ                                            | ĺ        |
| <u>230</u> | 1.5 2         | 3254    | SP/          | mod to strong peruagine       |       |          | wk |      | sta                                     |     |          | 2                       |     |          |     |     | 012   | 2305         | 231.5    | 1.0  | 0,002   |         |             | !           | 10         |          |                                              |          |
|            |               |         | IELT         | soricite + py masking         |       |          |    |      |                                         |     |          |                         |     |          |     | 150 | OB    | 231.5        | 232.5    | 1.0  | 0.02    |         |             | <u>`</u>    | <u>B</u>   |          | ļ                                            | į        |
|            |               |         |              | claestic taxture.             |       |          |    |      |                                         |     |          |                         |     |          |     |     |       | <b> </b>     |          |      |         |         |             |             |            |          | ļ]                                           |          |
| -          |               |         |              | 21 den ily                    |       |          |    |      |                                         |     |          |                         |     |          |     |     |       | <u> </u>     |          |      |         |         |             |             |            |          | $ \vdash                                   $ | ļ        |
|            |               |         |              | lover contast gradutinal      |       |          |    |      |                                         |     |          |                         |     |          |     |     |       |              |          |      |         |         |             |             |            |          |                                              |          |
| -          |               |         |              | <u>N</u>                      |       |          |    |      |                                         |     |          |                         |     |          |     |     |       | <u> </u>     |          |      |         |         |             |             |            |          |                                              | ļ        |
|            |               |         | İ            |                               |       |          |    |      |                                         |     |          |                         |     |          |     |     |       |              |          |      |         |         |             |             |            |          |                                              |          |

.

Hole No. \_ \_ of <u>2</u>2 Page 7

. .

÷.,

,. **•** 

. .

|               |               |          |                               |      |    | Alt      | erati              | ion           |           | 1  | Min      | eral | izati    | on           |          | Assa      | / Dat         | a          |      |        |          |    |    |      |          | Cor   | e Data | 3            |
|---------------|---------------|----------|-------------------------------|------|----|----------|--------------------|---------------|-----------|----|----------|------|----------|--------------|----------|-----------|---------------|------------|------|--------|----------|----|----|------|----------|-------|--------|--------------|
| Inter<br>(met | rval<br>ters) | Rock     |                               |      |    |          | ILOR               | ×             | <b>KB</b> |    | %        | %    | %        | %            |          | Sample    | From          | То         | Int  | Au     | Cu       | Au | Cu | Ag   | Mo       | RQD   | Run    | Reco<br>very |
| From          | То            | Туре     | Geologic Description          | From | То | 15<br>IS | 5                  | SE            | 2         | -+ | Ру       | Ср   | Mag      | Mo           | tet.     |           |               |            |      | ορι    | 70       |    |    |      | <u>~</u> |       |        | -            |
| 232.5         | 254.0         | HELT     | Alt'S herolithic lapilli tuff |      |    |          | -+                 | $\rightarrow$ |           | _  | ]        |      |          |              | 15       | 10014     | 2325          | 234        | 1.5  | 0.002  |          |    |    | .01  | +        |       |        |              |
|               |               | QSP.     | as before, percessive         |      |    |          |                    |               |           |    |          |      |          |              |          | 015       | 2340          | <u>23)</u> | 1.5  | 0.004  |          |    |    | 15   | -+       |       |        |              |
|               |               |          | altin partly masking          |      |    |          | _                  |               |           | _  |          |      |          |              | <b>_</b> | OB        | 2 <u>35</u> 5 | 237        | 1.5  | 0.004  |          |    |    | 111  |          |       |        |              |
|               | .8 .          |          | primary textures some         |      |    |          |                    |               |           | _  |          |      |          |              |          | 017       | 237.0         | 238 s      | 1.5  | 2010   | <u> </u> |    |    | 123  | -+       |       |        |              |
|               |               |          | fragments very stong          |      |    |          |                    |               |           |    |          |      |          |              |          | 018       | \$88.5        | 240        | 1.5  | 0.005  |          |    |    | 19   |          |       | ┝──┘   |              |
|               |               |          | sovicite alta 5/ ab+          |      |    |          |                    |               |           |    |          |      |          |              |          | 019       | 2400          | 241.5      | 1.5  | 000)   |          |    |    | . 10 |          |       |        |              |
|               | 1             |          | carb vulats ' xus to 3 5mm.   |      |    |          |                    |               |           |    |          |      |          |              |          | 020       | 241.5         | 2425       | 1.0  | 0.007  | 1        |    |    | . 10 |          |       |        |              |
|               | 1             |          | potety <9 Dy . = rave         |      |    |          |                    |               |           |    |          |      |          |              |          | 021       | 242.5         | 28.S       | 1.0  | 0.003  | ·        |    |    | .06  |          |       |        |              |
|               |               |          | amber schalevite best         |      |    |          |                    |               |           |    |          |      |          |              |          | 022-      | 435           | 2440       | 0.5  | 0.018  | L        |    |    | .25  |          |       |        |              |
|               |               |          | in abt carb VNI               |      |    |          |                    |               |           |    |          |      |          |              |          | 623       | 244.0         | 245        | 1.05 | 0.00A  |          |    |    | .20  |          |       |        |              |
| <u> </u>      |               |          | Vod @ to-Bo                   |      |    |          |                    |               |           |    |          |      |          |              |          | 024       | 245.0         | 2465       | 1.5  | 2017   |          |    |    | ,21  |          |       |        | ļ            |
|               |               |          | 2 24 3 - 6 : Sen-             |      |    |          |                    |               |           |    |          |      |          |              |          | 25        | 246.5         | 24B        | 1.5  | 0.011  |          |    |    | .20  |          |       |        |              |
|               | +             |          | E to the territ               |      |    |          |                    |               |           |    |          |      |          |              |          | 226       | 248.0         | 249.5      | 1.5  | 0.008  |          |    |    | •18  |          |       |        |              |
|               | +             |          | Plan Bol or co                |      |    |          |                    |               |           |    |          |      |          |              | <u> </u> | 027       | 241).5        | 251        | 1.5  | 0.008  | Ś        |    |    | .19  |          |       |        |              |
|               |               |          | to the lating                 |      |    |          |                    |               | -         |    |          |      |          | 1            | 1        | 028       | 251.D         | 252.5      | 1.5  | 0.000  | 1        |    |    | , lb |          | -     |        | <u> </u>     |
|               |               |          | - Ibuer contact gradultinel   |      |    |          |                    |               |           |    |          |      |          |              |          | 029       | 252.5         | ZAC        | 1.5  | 0.020  |          |    |    | .13  |          |       |        |              |
|               | 7540          |          |                               |      |    | on       |                    | 2             |           |    | <        |      |          |              | 4        | 630       | 2540          | 740        | 0:0  | 0.02   | 1        |    |    | ,11  |          |       |        |              |
| 229,0         | 1201.9        | QIVN     | Bob yiz uning most            |      |    | 00       |                    | 219           | ~~        | -  |          |      |          |              | <u> </u> |           |               |            |      |        |          |    |    |      |          |       |        |              |
|               |               | <u> </u> | Co to agg t satt fry          |      |    | -        | $\left  - \right $ |               | +         |    |          |      | <u> </u> | <u> </u>     | +        |           |               |            |      |        |          | -  |    |      |          |       |        |              |
|               | +             |          | host, S/ patring Py           | +    |    | -        | -                  | [             |           |    |          |      |          |              | f        | 031       | 2540          | 264        | 1.5  | 0.033  | 3        | 1  |    | ,18  |          |       |        |              |
|               |               |          | fr tetra bedra te louror      |      |    |          |                    |               |           |    |          |      |          | +            | +        | 032       | 714           | 27.9       | 1.5  | 0.027  | 2        |    |    | .15  |          |       |        |              |
|               |               |          | crutact brokens.              |      |    |          | $\left  - \right $ |               |           |    |          |      |          | $\mathbf{t}$ | 1        | 033       | 679           | 259.4      | 15   | 0.02   | 4        |    |    | 13   |          |       |        | 1            |
| 054           |               |          |                               |      | +  | 10       |                    | مد            |           |    | ~        |      |          | 1            | t        | 034       | 5594          | 2604       | 1.0  | DUE    | 1        |    |    | .1   |          |       |        |              |
| 259           | 31262.1       | QSY.     | gtzt sort py alto             |      |    | 10       |                    | 2'4           | WE        |    | <u> </u> |      |          |              | 112      | 031       | 5604          | 7191       | 1.71 | 0.18   | ť        | +  | +  | .24  |          | *     |        |              |
| Į             |               |          | fig to aphanitic possible     |      |    | ·        |                    |               |           |    |          |      |          |              |          | <u>ř-</u> |               | Kari       |      | I VIIO | <b>-</b> |    |    | /    |          | ····· |        |              |
|               |               |          | fine bed luft or sed -, vaque |      |    |          |                    |               |           |    |          |      |          |              |          |           |               |            |      |        |          |    |    |      |          |       |        |              |

,

. .... . . .

Hole No. <u>\$99-949</u> Page <u>8</u> of <u>2-2</u>

. . . . . . . . .

. . . . . . . . . . . . . . . .

Mineralization Core Data Alteration Assay Data Interval CHLOR (meters) Cu Au Cu Ag Mo % check check opt % CARB Sample From To RQD Run Reco Int Au % Py % % % Cp Mag Mo Rock very % SER % SIL opt Geologic Description From To Type From To 1.11 4 0.426 70% 40 150 036 262 1 2630 0.9 2621 263.0 GTZN imagelow at vnive bands abt p 20-20 low corport .36 35× 263.0 264.5 1.5 0,24 263.02669 QSP/ Ŧ. sha to 40 42 ANTE 0258 2645 2657 1.7 0.135 11.0 16 0257 2657 2665 1.2 . 033 7250 carh unira J wark <u>جن</u>الك most lous 040 266.9 268.5 1.6 0.03A . 0 cont racero -11 OA1 2685 2700 1.5 2669 2735 GTSW 0,006 white gt steckworl A0 -50 ANPÉ 0A2 270,0 2715 1.5 .017 10 maga cry stee cm .14 DA3 271.5 272.5 ,006 por phynu 1.0 andeside and/oc 1.06 04×2725/2735/1.0 103 bloz pseudo need cupto marpha 100 40 NO thursde 3-51 107 any imagular lou 735274.0507 de contact sharp lower 0 60

594-449 Hole No. of \_ 2.2 Page

Assay Data Core Data Alteration Mineralization Interval CHLOR (meters) Reco CARB То Int Cu Au Cu M0 % RQD Run Sample From Au Ag % Py % % Cp Mag br. % very % Rock % SER SIL opt % check check opt From To Geologic Description From To Mo Type 1,50 0AS 5 27405 275 0.95 .018 and <11. .12 pervasive gtz + ser + py alta sla 274,05 2865 Q>P .09 101 ANTPP. 5 20% grading odb 275 276 1.0 .11 . 006 276 277 1.0 rA7 107 hite at vning 12 .018 278 1.0 ఉ శకి-రం OAB 277 54 ,460 ¥ OA9 278 279 1.0 Driman . 0A3 .16 050 279 280 10 magacytu mæ 101 20 øs۱ 280,0 280,5 0.5 5 干 14.29 052 .13 2805 2810 0.5 soars 053 281.0 281.5 0.5 .06 24 la. ost. 16 281.12821 1.0 1028 hiss Ry gradine to 71 ? 655 282 tors 1.0 ,018 08 056 283.5 284.5 1.0 Coved with 557 2845 285 1.0 1011 .09 rabod vit 053 285.528.5 1.0 .017 کا gradationa ·Ib tr. ,010 28,5 297.0 QSP/ 659 strs tr. 7 286.5 287.3 1.0 stra Dereasive + SOX + 1052 060 19 AFELT 0,32.5 2835 1.0 ١o ۱BI 15 061 88.5089.5 1.0 ,127 21 062 189.5 2905 1 45° 1.0 60 ,019 .17 იცა 1.0 290.529/.5 22 \* 21.5 292.5 1.0 125 n64 œ .18 605 129 1.0 2925 293.5 -lastic 5 13 1019 990 1.0 293.5294.5 ~ Q.r 16 .013 662 294.529551 1.0 TOU Dhym 800 275.5 2970 1.5 1009 .60 lower contact 5 hn s

Hole No. 594-44 10\_ 01 22 Page \_\_\_\_

. .

<u>ج</u>

| NEWHAWK GOLD MINES LTD. |  |
|-------------------------|--|
| SULPHURETS PROPERTY     |  |

,

.

Hole No. <u>554-445</u> Page <u>11</u> of <u>2-2</u>

.

|                    |               |               | [     |                                 | [    |    | Alt      | terat    | tion     |             |   | Mir      | eral | izati    | on |          | Assa    | y Dat    | a       |          |          |            |       |          |     |    | Co       | re Dat   | a          |
|--------------------|---------------|---------------|-------|---------------------------------|------|----|----------|----------|----------|-------------|---|----------|------|----------|----|----------|---------|----------|---------|----------|----------|------------|-------|----------|-----|----|----------|----------|------------|
|                    | Inter<br>(met | val<br>ers)   | Rock  |                                 |      |    |          | HLOR     | 2        | KB          |   | %        | %    | %        | %  |          | Sample  | From     | То      | Int      | Au       | Cu         | Au    | Cu       | Ag  | Mo | RQD      | Run      | Rei<br>ve  |
|                    | From          | То            | Туре  | Geologic Description            | From | To | <u>s</u> | Ċ        | SE       | 5           |   | Py       | Ср   | Mag      | Mo |          |         |          |         |          | opt      | 70         | UIBLK | UBA      |     | /* |          | ┼───     | Ļ          |
|                    | 297.0         | 297.5         | FLT   | strong fault to gazza @60°      |      |    | 10       |          | nod      | wk          |   | ю        |      |          |    |          | 500     | PSTC     | 2975    | 0.5      | 102      | ' <u> </u> |       |          | .30 |    |          |          | ┝          |
|                    |               |               |       | to 275.2.                       |      |    |          |          |          |             |   |          |      |          |    |          |         |          |         | <u> </u> |          | ļ          |       |          |     |    |          | <b> </b> | ┢          |
|                    |               |               |       | from 275:2-275:4: 92 + py       |      |    |          |          |          |             | Ļ |          |      |          |    |          | <b></b> |          |         |          | <b> </b> | ļ          |       |          |     |    |          | <b> </b> | ┢          |
| 3                  |               | r .           |       | heeled at bx 5 TO/R             |      |    | ļ        |          |          |             |   |          |      |          |    |          |         |          |         |          | ļ        |            | ļ     |          |     |    |          |          | –          |
| م <sup>20</sup> مد |               |               |       | from 2759-2750 grades           |      |    |          |          |          |             |   |          |      |          |    |          |         |          |         |          | <u> </u> | ļ          |       |          |     |    |          | <b>_</b> | -          |
|                    |               |               |       | to sorieite altit               |      |    |          |          |          |             | · |          |      |          |    |          |         |          |         |          |          |            |       |          |     |    |          | <b> </b> | ļ          |
|                    | 2975          | 300.9         | ARGT/ | intercalated argillite and.     |      |    | wk       |          | mor      | 14K<br>mod. |   | 5        |      |          |    |          | 070     | 775      | 297.0   | 15       | ,029     | [          | ļ     |          | ,17 |    |          | L        | ļ          |
|                    |               |               | ARKS  | fig unifim textured arkose;     |      |    |          |          | <u> </u> |             |   |          |      |          |    |          | off     | 201.0    | 800.0   | 1.0      | .005     | <u>;</u>   |       | <u> </u> | ,06 |    |          | ļ        | ļ          |
|                    | 1             |               |       | servicite alter a arkose        |      |    |          |          |          |             |   |          |      |          |    |          | dr      | 300.0    | 800.9   | 0.9      | .06      | d          |       |          | 130 |    |          | ļ        | $\perp$    |
|                    |               |               | 1     | sections mad to strongly altil. |      |    |          |          |          |             |   |          |      |          |    |          |         |          |         |          |          |            | L     |          | ļ   |    |          | ļ        | <u> </u>   |
|                    |               |               | 1     | 10% Pine at toorb strock work   |      |    |          |          |          |             |   |          |      |          |    |          |         |          |         |          |          |            |       |          |     |    |          | ļ        |            |
|                    |               |               |       | best doveloped in arkose,       |      | 1  |          |          |          |             |   |          |      |          |    |          |         |          |         |          |          |            |       |          |     |    |          | ļ        |            |
|                    |               |               |       | 5% on hat is article            |      |    |          |          |          |             | 1 |          |      |          |    |          |         |          |         |          |          |            |       |          |     |    | l        |          |            |
|                    |               |               | •     | billi codita i france 20°th     |      |    |          |          |          |             |   |          |      |          |    |          |         |          |         |          |          |            |       |          |     |    |          |          |            |
|                    |               |               |       | toring contart flows d          |      | 1  |          |          |          |             |   |          | -    |          |    | <b>·</b> |         |          |         |          |          |            |       |          |     |    |          |          |            |
|                    |               |               |       | GO, louse gracer frames         |      | 1  | 1        |          |          |             |   |          | [    |          |    |          | 1       |          |         |          |          |            |       |          |     |    |          |          |            |
|                    |               |               |       | arrose against all the          | 1    | 1  | 1        | <u> </u> |          |             |   |          |      |          |    |          |         |          |         |          |          |            |       |          |     |    |          |          |            |
|                    | Poria         | 7,27          | 100-  | and 20                          |      |    | 1        |          |          |             | 1 |          | 1    |          |    |          | 013     | RODS     | 3021    | 1.7      | ,0)0     |            |       |          | 137 |    |          |          |            |
|                    | 20.7          | <u>(2057)</u> | AKGI. | argilite place minar            |      |    | 1        |          |          |             |   |          |      |          |    |          | 074     | 8621     | 3433    | 1.2      | ,00      | 2          |       |          | 17  |    |          |          | Γ          |
|                    |               |               |       | indicational grad arriage       |      |    | 1        | -        |          |             |   |          | †    |          | 1  |          |         |          | <u></u> |          |          | 1          | 1     |          |     |    |          |          |            |
|                    |               |               |       | bed 10-0, Stratt                | 4    |    | 1        |          |          |             |   | -        |      |          | 1  | <u> </u> | 1       |          | 1       |          |          |            | 1     |          |     |    |          |          | Γ          |
|                    |               |               |       | ralets x-cutting and m          |      | -  | -        |          | -        |             |   |          |      |          |    |          |         | <u>+</u> |         |          | 1        |            | 1     |          |     |    |          |          | T          |
|                    |               |               |       | pedaling plans, rare x-earnin   | 4    |    |          | <u> </u> |          |             |   |          |      | <u> </u> |    |          | 1       | +        | +       |          |          |            | 1     |          |     |    |          |          | T          |
|                    |               |               |       | vn to zer to eg (2)             |      | +  |          |          |          |             |   | -        |      |          | +  |          | 1       |          |         |          |          |            |       |          |     |    |          |          |            |
|                    |               |               |       | Story mosting as 1-2mm          |      |    |          |          |          |             |   | <u> </u> |      |          | +  |          |         |          |         |          |          |            |       |          |     |    | <u> </u> |          | $\uparrow$ |
|                    |               |               |       | rnes (2 +5 low contact          |      |    |          |          |          |             | + |          |      |          | ┼  |          | ł       |          |         |          | 1        | +          | +     |          |     | +  |          | <u> </u> | +-         |
|                    | ۱             |               | I     | Lown book @ 10                  | ł    | I  | I        | I        | 1        | I           | 1 | ł        | I    | 1        |    | l        | J       | J        |         | L        | 1        | 1          | J     |          |     | 1  | L        | <u> </u> | <u> </u>   |

j.

,

|                  |           |              |                                |          |          | A        | tera     | tion     |          |          | Mi       | nera      | liza       | tior | 1  |   | Assay  | / Dat         | a            |              |          |                 | ·     |          |          |          | Cor        | e Dat    | a            |
|------------------|-----------|--------------|--------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|------------|------|----|---|--------|---------------|--------------|--------------|----------|-----------------|-------|----------|----------|----------|------------|----------|--------------|
| Interv<br>(meter | al<br>rs) | Deat         |                                |          |          |          | LOR      |          | RB       |          | %        | 96        |            |      | ×. |   | Sample | From          | То           | Int          | Au       | Cu              | Au    | Cu       | Ag       | Mo       | RQD        | Run      | Reco<br>very |
| From             | To        | коск<br>Туре | Geologic Description           | From     | То       | SIL      | ਲ        | SE       | <u>ర</u> |          | Ру       | Cp.       | Ma         | B M  | 10 |   | 14     | ·             |              | l            | opt      | %               | check | check    | opt      | %        | 70         |          |              |
| 63.3 3           | 05.2      | ARICS        | Arkose : f.g. uniform this     |          | ļ        | vole     | -        | wk       | mod      | ų        | 3        | ╡         | <u> </u>   | _    |    |   | 5000   | 63.3          | 304.2        | 1.0          | ,000     | <u>}</u>        |       |          | .10      |          |            |          | <b>├</b> ──- |
| •                |           |              | ully soricite alted, 10% fine  | ļ        | ļ        |          |          |          |          |          |          | <u> </u>  |            |      |    |   | 076    | 04.3          | 3052         | 90           | , 04     | 1               |       | <u> </u> | ,10      |          |            |          |              |
|                  |           |              | 9/2 + carb + (Py) stockusarlin | <u>k</u> |          | <u> </u> |          |          |          | ļ        |          |           | ╞          |      |    |   |        |               |              | <b>_</b>     | ļ        |                 |       | <u> </u> |          |          |            |          |              |
|                  | <u>11</u> |              | bost in center of unit.        | ľ        |          |          | <u> </u> |          |          | <u> </u> |          | <b> </b>  | <u>  </u>  |      |    |   |        |               |              | <b> </b>     |          |                 |       |          |          |          |            | <u> </u> | ┼──┨         |
|                  |           |              | lover crutact sharp had @      | ļ        |          | <u> </u> |          |          |          |          | <u> </u> |           |            | _ _  |    |   |        | ·             |              |              | ļ        |                 |       |          |          |          |            |          |              |
|                  |           |              | lo°                            |          |          |          |          |          |          |          |          |           |            |      |    |   | 0      |               |              | l            | ļ,       |                 |       |          |          |          |            | <b></b>  |              |
| 65.Z-3           | 05.7      | ARGT.        | argillite : black to light     |          | ļ        | wk       | <b> </b> | wik      | wk       | -        | 1        |           | ļ          |      |    |   | 577    | BOS.Z         | 305.7        | 0.5          | 1006     | 2               |       | <b> </b> | 101      |          |            |          |              |
|                  |           |              | grace, : 21/ fine gtz + courb  | <u> </u> |          |          |          |          |          |          | ļ        | <u> </u>  |            | _    |    |   |        |               |              |              |          |                 |       |          |          |          |            |          |              |
|                  |           |              | vilets. most @ 70°-80°         |          |          |          | ļ        |          | L        |          | [        |           |            |      |    |   |        |               |              | <u> </u>     | <u> </u> |                 |       | <u> </u> |          |          |            |          |              |
|                  |           |              | rare gt + coult py valits.     |          |          |          |          |          |          |          | <b>_</b> | <u> </u>  | 1          |      | -  |   |        |               |              |              |          |                 |       |          |          |          |            | <b> </b> |              |
|                  |           |              | lower intert distinct @ 80°    |          | ļ        |          |          |          |          |          |          |           |            |      |    |   |        |               |              |              |          |                 |       | <u> </u> | <u> </u> |          |            |          |              |
| 305.7 3          | 3188      | ARKS/        | arkose and/or porrasively      |          | <u> </u> | rela     | <u> </u> | WK       | w        | 4        | 3        | <u> </u>  | +          |      |    |   | 070    | BOS.7         | <u>807.2</u> | 1.5          | 1028     |                 |       |          | 11       |          |            |          |              |
|                  |           | ARGT         | where alt angillite,           | <u> </u> |          |          |          | ļ        | ļ        | -        |          | <u>  </u> | <u> </u>   |      |    |   | 679    | <u>B07.2</u>  | 308.7        | 1.5          | 1,00     | 4               | +     |          | 12       | ×        |            |          |              |
|                  |           |              | scouthareal dk gray to black   | <b>_</b> |          |          |          | ļ        | ļ        |          | <b>_</b> |           |            |      |    |   | 080    | 308.7         | 3110         | 2.3          | .12      | <u>y</u>        | +     |          | 1.51     | r        | <u></u>    |          | +            |
|                  |           |              | remaants of arguillite         |          | ļ        | _        |          |          | ļ        |          | <b> </b> |           |            | _    |    | • | 091    | 311.0         | 313.         | 22           | 100      | <u>* </u>       | +     |          | .09      |          |            |          |              |
|                  |           |              | raque bedding this @           |          |          |          | <b> </b> | <u> </u> | [        |          | 1        |           | - <b> </b> |      |    |   | 030    | B13.2         | 314.         | <u>+1.5</u>  | 1005     | <b>'</b>        | 4—    |          | 1,01     |          |            |          |              |
|                  |           |              | 0-10 x-eut hy sig b (carb)     |          |          |          |          | ļ        |          |          |          | <u> </u>  |            |      |    |   | 000    | 314.7         | 316          | <u>4.1.5</u> | ,002     |                 |       |          | .06      |          |            |          |              |
| ,                |           |              | vulets most at to - Bo         |          |          |          |          |          |          |          | 1_       |           | _          |      |    |   | 029    | 316.2         | 317,         | <u>715</u>   | ,00)     | _               |       |          | 108      |          | <b> </b> - | <b> </b> |              |
|                  |           |              | and by 5 gb + carb + py unlit  |          |          |          | ļ        | ļ        |          |          | <b>_</b> |           |            |      |    |   | 081    | <u>317.7</u>  | BIBB         | 1.1_         | • 0ľ     | 4               |       |          | 1.09     |          |            | –−       |              |
|                  |           |              |                                |          |          | _        | ļ        |          |          |          | ļ        |           |            |      |    |   | 035    | <u>3188</u>   | 3DB          | 1.0          | 100      | <u>م</u>        |       |          | 1001     |          |            |          |              |
| 31BB             | 26.2      | QSP/         | gb tsert py alto sediminity    | <u> </u> |          |          |          |          |          |          |          |           | _          |      |    |   | 53     | <u>319,8</u>  | 320.8        | 1.0.         | 1018     | 8               | +     |          | 1.0b     |          | <u>├</u>   | ·        |              |
|                  |           | seó.         | to rave raque bedding,         |          |          |          |          |          |          |          |          |           |            |      |    |   | 000    | <u> 320.8</u> | 3213         | 0.5          | . 05     | \$ <del>1</del> | ·     |          | 1.10     |          |            |          |              |
|                  |           | L            | x-cut by gtz+(carb) rns        |          |          |          |          |          |          |          |          | <u> </u>  |            | _    |    |   | 001    | <u> 321,3</u> | 327.7        | 10           | , 03     | <u>y</u>        | +     |          | 112      |          |            | +        |              |
|                  |           |              | to 2cm nost@ 45-60             |          |          |          |          | ļ        |          | _        |          |           |            |      |    |   | 010    | <u> \$223</u> | \$23.8       | 1.5          | ,00      | /               | ·     |          | 101      |          |            |          |              |
|                  |           |              | and useall fine stock work     | <u> </u> |          |          |          | <u> </u> |          |          |          | ·         |            |      |    |   | 091    | <u>323.8</u>  | 3251         | 21.2         | 1,01     | 4               |       |          | 1.05     | <u> </u> |            |          | +            |
|                  |           |              | halles me by and fine          | P        |          |          |          |          |          |          | 1        |           |            |      |    |   | 04.1   | 323.0         | 7326:2       | 1.2          | 1,02     | 7_              |       |          | 1.95     | ¥        | L          | <u> </u> |              |

Hole No. \_\_\_\_ Page 12\_\_\_\_ of 2

. . . . . . . .

,

| Γ.       |                   |       |                                |      |    | Alt                      | eratio | on       |     | Mir | eral | izatio | on | Assa   | y Dat  | a     |       |          |    |              |          |       | Ca              | ore Da        | ta       |
|----------|-------------------|-------|--------------------------------|------|----|--------------------------|--------|----------|-----|-----|------|--------|----|--------|--------|-------|-------|----------|----|--------------|----------|-------|-----------------|---------------|----------|
| In<br>(m | terval<br>neters) | Rock  |                                |      | ·  |                          | LOR    | ~ 2      | 89. | %   | %    | %      | %  | Sample | from   | То    | Int   | Au       | Cu | Au           | Cu       | Ag N  | to RQD          | Run           | Rec      |
| Fror     | n To              | Туре  | Geologic Description           | From | То | 21                       | 5      | <u> </u> | 5   | Ру  | Ср   | Mag    | Mo |        |        |       |       | opt      | %  | check        | check    | opt % | 6 <sup>70</sup> | <u> </u>      | <u> </u> |
|          |                   |       | pynite valets nost e Bo        |      |    |                          |        |          |     |     |      |        |    |        |        |       |       |          |    | <sup> </sup> | ┟        |       |                 |               | +        |
|          |                   | ļ     | from 320.8-321.0' 50% white    |      | ļ  | ┨                        |        |          |     |     |      |        |    |        |        |       |       |          |    | <sup> </sup> | $\vdash$ |       |                 |               | +        |
|          |                   |       | gtz vning @ 70°                |      |    |                          |        |          |     |     |      |        |    |        |        |       |       | <u> </u> |    | <u> </u>     | ┟╍┻╋     |       |                 |               | +        |
|          |                   |       | lower contact sharp @ 80°      |      |    | $ \downarrow \downarrow$ |        |          |     |     |      |        |    |        |        |       | ļ     | ļ        |    | <sup> </sup> | ┢╼╼╋     |       |                 | $\vdash \neg$ | +        |
| 326      | 2 327.9           | DY    | Andesite dyke i 20%            |      |    |                          |        |          |     |     |      |        |    |        |        |       |       | ļ        |    |              | <b> </b> |       |                 |               | $\perp$  |
|          |                   |       | carb vnine i stoelwooth        |      |    |                          | vk v   | 2        | 0   | ₫.  |      |        |    |        |        |       |       |          |    |              |          |       |                 | ⊥             | <u> </u> |
|          | •                 |       | lover contact chilled sharp    |      |    |                          |        |          |     |     |      |        |    |        |        |       |       | L        | L  |              | └──┼     |       |                 |               |          |
|          |                   |       | @ 80°                          |      |    |                          |        |          | _   |     |      |        |    |        |        |       |       |          |    | ļ!           |          |       | _               |               | $\perp$  |
| 327      | 93292             | QSR/  | gk + servicite + privite altal |      |    | 15.                      | - 5    | ng w     | 12  | 3   |      |        |    | 583    | 27.9   | 329,2 | 1.3   | .002     |    |              | ļ!       | 09    | _               |               |          |
|          |                   | seo   | as inspire to iso              |      |    |                          |        |          |     |     |      |        |    |        |        |       |       |          |    |              |          |       |                 |               | _        |
|          |                   |       | imentar white gh vourio        |      |    |                          |        |          |     |     |      |        |    |        |        |       |       |          |    |              |          |       |                 |               |          |
|          |                   |       | " Datchy silv rave             |      |    |                          |        |          |     |     |      |        |    |        |        |       |       |          |    |              |          |       |                 |               | 1        |
|          |                   |       | remnant at black avrillite     |      |    |                          |        |          |     |     |      |        |    |        |        |       |       |          |    |              |          |       |                 |               |          |
|          |                   |       | reque bedding. bus             |      |    |                          |        |          |     |     |      |        |    |        |        |       |       |          |    |              |          |       |                 |               |          |
|          |                   |       | contact avadatinial            |      |    |                          |        |          |     |     |      |        |    |        |        |       |       |          |    |              |          |       |                 |               | 1        |
| 32       | 12 327.6          | SQT2N | tob white at inverter          |      |    | stra                     | we v   | vk ~     | x   | Z   |      |        |    | 094    | 3292   | 3278  | 0.65  | .008     |    |              | !        | 13    |                 |               |          |
|          |                   |       | on sille " servicite all'il    |      |    |                          |        |          |     |     |      |        |    |        |        |       |       |          |    |              |          |       |                 |               |          |
|          | •                 |       | sods? matches plack chlost     | e    |    |                          |        |          |     |     |      |        |    |        |        |       |       |          |    |              |          |       |                 |               |          |
|          |                   |       | i ch 2% disc Pr                |      |    |                          |        |          |     |     |      |        |    |        |        |       |       |          |    |              |          |       |                 |               |          |
|          |                   |       | lower intert avadational.      |      |    |                          |        |          |     |     |      |        |    |        |        |       |       |          |    |              |          |       |                 |               | _        |
| 2015     | 5 328.7           | SP/   | sericite + arrite altil        |      |    | WK                       | m      | ad w     | 'k  | 2   |      |        |    | Dar    | 329,8  | 331.3 | 1.45  | 100k     |    |              |          | 09    |                 |               |          |
|          |                   | £ρ    | sedinent molerably             | 1    | 1  |                          |        |          |     |     |      |        |    | 096    | \$31.3 | 332.8 | 1.5   | 1001     |    |              |          | 06    |                 |               |          |
|          | 1                 |       | altid woone badding            | 1    | 1  |                          |        |          |     |     |      |        |    | OFF    | 334.3  | 335.8 | 1.5   | .00      | Y  |              |          | . 06  |                 |               |          |
|          |                   |       | @ 20-10 2-36 line              |      |    |                          |        |          |     |     |      |        |    | 078    | 335.8  | 337.3 | \$1.5 | 4.00)    |    | •            |          | 04    |                 |               |          |
|          |                   |       | at tool valete 2 X lie         | -    |    |                          |        |          |     |     |      |        |    | 140    | 37.3   | 338,7 | 14    | 400      |    |              |          | 10.   |                 |               |          |
|          |                   |       | or white & dias an             |      | 1  |                          |        |          |     | -   |      |        |    |        |        |       |       | 1        |    |              |          |       |                 | T             | T        |

•

de

20 Hole No.

.. ....

| • |  |  |
|---|--|--|
|   |  |  |

| <b></b>       |             |              |                                  |          |          | A        | tera     | tion     |              |   | Mir      | neral    | izat     | ion      |          | Assa   | y Dat        | a     |            |          |    |          |       |          |    | Cor      | e Dat    | <u>a</u> |
|---------------|-------------|--------------|----------------------------------|----------|----------|----------|----------|----------|--------------|---|----------|----------|----------|----------|----------|--------|--------------|-------|------------|----------|----|----------|-------|----------|----|----------|----------|----------|
| Inter<br>(met | val<br>ers) |              |                                  |          |          |          | Ŋ        |          | RB           |   | %        | %        | %        | %        |          | Sample | From         | То    | Int        | Au       | Cu | Au       | Cu    | Ag       | Mo | RQD<br>% | Run      | Recovery |
| From          | То          | Коск<br>Туре | Geologic Description             | From     | To       | 8        | 8        | SE SE    | <del>ک</del> |   | Ру       | Ср       | Mag      | Mo       | <u> </u> | 150    |              |       |            | opt      | 70 | CHECK    | CHECK | 2F       |    |          |          | <b> </b> |
| 887           | 34DD        | QSP/         | 9 tz + sex + py alta sodiment    |          |          | no       |          | stra     | 21           | 4 | 10       |          |          | <b>_</b> |          | 100    | 338.7        | 340.0 | 13         | 1002     |    |          |       | · 30     |    |          |          | ÷        |
|               |             | SED.         | with sild sorting, bodding       |          |          | <u> </u> |          |          |              |   |          |          | <u> </u> |          |          |        |              |       |            |          |    |          |       |          |    |          |          |          |
|               |             |              | well presserved @ 60°-90°        |          | <b> </b> | <b> </b> | <u> </u> |          |              |   |          | -        | <u> </u> |          |          |        |              |       |            |          |    |          |       |          |    |          |          | -        |
|               | . ¥         |              | disrupted sild bands,            |          |          | _        |          |          |              |   |          |          |          |          |          |        |              |       |            |          |    |          |       |          |    |          |          |          |
|               | <br>        |              | V. strong savicite alta          |          |          | <u> </u> | <u> </u> |          |              |   |          | <u> </u> | <u> </u> |          |          |        |              |       |            |          |    | <u> </u> |       |          |    |          |          | -        |
|               |             |              | barrols, fine bands 11 to        |          | ļ        |          | <u> </u> | ļ        |              |   |          |          |          |          |          |        |              |       |            |          |    |          |       |          |    |          |          |          |
|               |             |              | bodding is v fine grained        |          | ļ        |          | <u> </u> | ļ        |              |   |          |          |          |          |          |        |              |       |            |          |    |          |       |          | _  |          |          |          |
|               |             |              | diss. py low contact             |          |          | <u> </u> |          |          |              |   | <b> </b> |          | <u> </u> |          |          |        |              |       |            |          |    |          |       |          |    |          |          | +        |
|               |             |              | sharp, tight, healed shear       |          |          |          |          |          |              |   |          | —        |          | –        |          |        |              |       |            |          |    |          |       |          |    |          |          | +        |
|               |             |              | @ 40°.                           |          |          |          | <u> </u> | <u> </u> | ┣            | + | <u> </u> | <u> </u> |          | <u> </u> |          | 101    | <u> </u>     |       |            |          | -  |          |       | 20       |    |          |          | +        |
| 340.0         | 344.7       | ARGT         | 50% black argillite interralated |          |          | Mad      | ·        | mod      | we           | - | +        |          |          |          |          | 101    | <u>\$400</u> | 341.3 | 1.1        | 1001     |    | +        |       | 20       |    |          |          | +        |
|               |             | RSP.         | with sor +py 198 alta            |          | ļ        |          | <b> </b> | _        |              |   |          |          | + -      |          |          | 102    | 541.5        | 2400  | <u>\.\</u> | 1,001    |    |          |       | 1.21     |    |          |          | $\vdash$ |
|               |             |              | bands; 10/ gtz + carb            |          | .        |          | ļ'       |          | Ļ            |   |          |          |          |          |          | 101    | 343.0        | 599   | 1.7        | 1010     |    |          |       | <u>,</u> |    |          | <u> </u> | +        |
|               |             |              | stock userk + frankure           | ļ        |          | -        |          |          | ļ            |   |          |          |          |          |          | _      |              |       |            |          |    |          |       | <u> </u> |    |          |          | ·        |
|               |             |              | filling patchy mossive           |          |          | -        |          |          |              |   |          |          |          |          |          |        |              |       |            |          |    |          |       |          |    |          |          | +        |
|               |             |              | v. f. of pyr.te and diss         | ļ        |          | <u> </u> |          |          |              |   |          |          |          |          |          |        |              |       |            |          |    |          | +     |          |    |          |          | +        |
|               |             |              | py bitalling 7% lower            |          | <u> </u> | -        |          | _        |              |   |          |          |          |          |          |        |              |       |            |          | +  |          |       |          |    |          |          | +        |
|               | Ì           |              | contact sharp @ 80°              | <b> </b> |          |          |          |          | ļ            | - |          |          | 1        |          |          |        |              |       |            | +        |    |          | +     |          |    |          |          | +        |
| ZME           | : 346.4     | DY           | Andesite deplace tan             | ļ        | _        |          |          |          |              | _ |          |          |          | _        |          |        |              |       |            |          |    |          |       |          |    |          | +        | +        |
|               |             |              | 5% gt + caarb und,               |          |          | _        |          | wk       | 1~           | K | 14       |          |          | _        |          |        |              |       |            |          |    |          | +     |          |    |          | +        | +        |
|               |             |              | 9 to rearb filled anygolula?     |          |          |          |          |          |              |   |          |          |          |          |          |        |              |       |            |          |    | +        |       |          |    |          | +        |          |
|               |             |              | in cove area, lower              |          |          |          |          |          |              |   |          |          |          |          |          |        |              |       |            |          |    |          |       |          |    |          |          | +        |
|               |             |              | contact sharp @ 50               | <u> </u> |          |          |          |          |              |   |          |          |          |          |          |        |              | +     | +          |          |    |          |       |          |    |          | +        |          |
|               |             |              | -                                | ļ        |          |          |          |          | ₋            |   |          |          |          |          |          |        |              | -     |            |          |    |          |       |          |    |          | +        | -+       |
|               |             |              |                                  |          |          |          |          |          |              |   |          |          |          |          |          |        |              |       |            |          |    |          |       |          | +  |          | +        |          |
|               |             |              |                                  |          |          |          |          |          |              |   |          |          |          |          |          |        |              |       |            | <u> </u> |    |          |       | <u> </u> |    | L        | 1        |          |

1

. . . . . . . . .

Hole No. 599-949 Page 14 of 22

. .... . . .

| [           |                 |          |                            |          |          |       | ltera | ition    | 1           |       | M        | iner | ali | zati | on |          | Assa     | y Da         | ata         |      |       |                  |              |                 |              |               |          | Cor      | e Dat | а         |
|-------------|-----------------|----------|----------------------------|----------|----------|-------|-------|----------|-------------|-------|----------|------|-----|------|----|----------|----------|--------------|-------------|------|-------|------------------|--------------|-----------------|--------------|---------------|----------|----------|-------|-----------|
| Inte<br>(me | erval<br>eters) |          |                            |          |          |       | ×     |          |             |       |          |      |     |      |    |          |          |              | Τ           |      |       | Τ                |              |                 |              |               |          |          |       |           |
| Erom        | Ta              | Rock     | Ceologic Description       |          | То       | 1     | HIC   | L H      |             | AKD   | %<br>D   | %    | 6   | %    | %  |          | Sample   | Fror         | n To        | int  | Au    | Cı<br>%          | ı A<br>6 dri | ⊪u C<br>veck∣ch | u A<br>eck c | Ag A<br>opt S | 100<br>% | RQD<br>% | Run   | very<br>% |
| 12414       | 3/31            | ADGT/    | Scologic Description       | From     | 10       |       | ┝╴    | 1.<br>1. |             |       | 15       |      |     | Viag | MO |          | 38       | 241.4        | 1 200       | 12.0 | .03   | 5                |              | +               |              | 14            |          |          |       | 1         |
| 210         | 105.6           | LOV-     | dask: and are: 11:40       |          |          | +     |       |          |             |       |          |      | ╈   |      |    |          |          |              |             |      |       | +                | -            |                 |              | <u> </u>      |          |          |       | -         |
|             |                 | TILLS.   | and gray argining          |          | <i>·</i> |       |       |          |             | -     | 1-       |      | +   |      |    |          | 105      | 25           | 025         | 02.0 | 3.05  | 2                |              |                 |              | 14            | -        |          |       | 1         |
|             |                 |          | With intreastation gring   |          | +        | ┢     |       | $\vdash$ | -           |       | +-       |      | +   |      |    |          |          | <u></u>      | 100         | 12.  | - 100 | +                |              |                 | -            | -             |          |          |       |           |
|             |                 |          | arkoee well measure        |          |          |       |       |          |             | - + … | +        |      | +   | -    |    |          | inb      | RAIN         | 20          |      | 100   | 1                |              |                 | 1,           | 10            | 1        |          | 1     |           |
|             |                 |          | with plame smoothers,      |          |          | ┢     | -     |          |             |       | +        |      | +   |      |    |          | 10-      | 001.0        |             | 1.0  |       | +                | +            |                 |              |               |          |          |       | +         |
|             | ·               |          | when section of servicite  |          |          | -     | ·     | -        |             |       |          |      | -   |      |    |          |          | +            | +           |      |       |                  | +            |                 |              | +             |          |          |       |           |
|             |                 |          | atta i quitty factedur     |          |          |       |       | -        | -           |       |          |      | +   |      |    |          |          | +            |             |      |       | +                |              |                 |              | -+-           |          |          |       | -         |
| -           |                 |          | S-10/ py VILLES BONT       |          | +        |       |       |          |             |       |          |      |     | -+   |    |          |          | +            | +           |      |       |                  | +            |                 | +            | -+-           | -+       |          |       | +         |
|             |                 |          | along bodding planon,      | ·        |          |       |       |          |             |       |          |      | -+  |      |    |          | <b> </b> | ·            |             |      |       |                  | +-           |                 | +            | -+-           | -+       |          |       | +         |
|             |                 |          | bedaed @ 10-20, 3/ocarb    |          |          |       |       | -        |             |       |          |      | +   |      |    |          |          |              |             |      |       | +-               |              |                 |              | +             |          |          | <br>I |           |
|             |                 | <b> </b> | (gtz) vning the most @ 60, |          |          |       |       | -        |             |       |          | _    | -+  |      |    |          |          |              |             |      |       | +                |              |                 | +            | -+-           | +        |          |       |           |
|             |                 |          | buer contact gradational.  | <u> </u> |          | -     |       |          | -           |       | +-       | -    | _   |      |    |          | 1        | +            | +           |      |       | <del>,  </del> - |              |                 | +            |               | -+       |          |       | -         |
| 363!        | 3669            | ARGT,    | argillite is gritty        |          |          | hork. | ÷     | moo      | <u>i</u> .w | K.    | S        | ·    |     |      |    | <u> </u> | 101      | <u> 5631</u> | <u>-365</u> | 11.5 | 6,0   | <u>A  </u>       |              | +               | <u></u>      | 08            |          |          |       |           |
|             |                 | SP.      | sections as above,         |          | <u></u>  |       | ļ     |          |             |       |          |      | _   |      |    |          | 100      | <u>367</u>   | 1366        | 11.0 | 4.0   | <u>» </u>        |              |                 |              | 6/            |          |          |       | +         |
|             |                 |          | 50% bleasted by cericite   | <b></b>  | ļ        |       |       | ļ        |             |       | <u> </u> | _    |     |      |    |          | 10)      | <u>866</u>   | <u>866</u>  | 10.9 | 1.00  | 1                |              |                 | <u> </u>     | 09            |          |          |       |           |
|             |                 | ļ        | altin and vn to 5 cm       |          |          |       | ļ     | <b>_</b> |             |       | ,        |      |     |      |    |          |          |              |             |      |       |                  | _            |                 |              | $\rightarrow$ |          |          |       |           |
|             |                 |          | al cq pyrite tak at        |          | <u> </u> | _     |       |          |             |       |          |      |     |      |    |          | <u> </u> |              |             |      |       | _                |              |                 |              |               |          |          |       |           |
|             | ·]              |          | 95° fotaling 5%            |          |          |       |       |          |             |       |          |      |     |      |    |          |          |              |             |      |       |                  |              |                 |              |               |          |          |       | ļ         |
|             |                 |          | @ 364.4 ticht service      |          |          |       |       |          |             |       |          |      |     |      |    |          |          |              |             |      |       |                  |              |                 |              |               |          |          |       |           |
|             |                 |          | shear @ 30°.               |          |          |       |       | <u> </u> |             |       |          | _    |     |      |    |          | <u> </u> | _            |             |      |       |                  |              |                 | $\perp$      |               |          |          | ļ     |           |
| -           |                 |          | lower contact gradational  |          |          |       |       |          |             |       |          |      |     |      |    |          |          |              |             |      |       | ~                |              | ^%              |              |               |          |          | ļ     |           |
| B64         | \$ 374.1        | ARET     | black are illite cradine   |          |          | w     | 4     | ma       | arne        | 2     | 2        | 2    |     |      |    |          |          |              |             |      |       |                  |              |                 |              |               |          |          | ļ     | L         |
|             | 1.              | SP.      | to service alta            |          |          |       |       |          |             |       |          |      |     |      |    |          |          |              |             |      |       |                  |              |                 |              |               |          |          |       |           |
|             |                 |          | Cadiment, vaque            |          |          |       |       |          |             |       |          |      |     |      |    |          |          |              |             |      |       |                  |              |                 |              |               |          |          |       |           |
|             |                 |          | bedderin @ 10°.            |          |          |       |       |          |             |       |          |      | ŀ   |      |    |          |          |              |             |      |       |                  |              |                 |              |               |          |          |       |           |
|             |                 |          | 51 corb(at) unlets         | <u> </u> |          | 1     |       |          |             |       |          |      |     |      |    |          | 1        |              |             |      |       |                  |              |                 |              |               |          |          |       |           |

•

Hole No. 594 Page 15\_\_\_\_ of \_

....

| FWHAWK COLD MINES LTD |  |
|-----------------------|--|
|                       |  |

1% gt as inselar e Tow contact

350

ക

deto

belast

Assay Data Core Data Mineralization Alteration 44 Interval CHLOR (meters) CARB Cu Au Cu Ag Mo % check check opt % То RQD Run Sample From Int Au % Ру % % % Rock Щ. SIL % Geologic Description opt From To From To Cp Mag Mo Type conta 3669 374.1 @ 369.0: fight chlorite rich sheer as 40°. bun contact healed son since 200 wk stra wk ß 120 BAS 3790 1.5 1001 B 37413955 GSP/ Deryasive moderate 11 379 8805 1.5 0 to locally strong (2,00) Seo. 09 12 380.5 382.91.5 (00) Sovicito altin 5 105 13 382.0 383.5 1.5 scothered ms to Sch (100 ک 38353850 1.5 ,06 114 CA Pyrite + 9 to (and) ·00) N BB5.0386-5 1.5 1001 1) scattered q & (carby vnlets 116 386.53880 1.5 2,00) , 0A 117 388.03895 1.5 most @ 30° L,00) .07 this .06 lower contact marked by o. Tem ceerb filled shear @ 25° 18 389.5 39/0 1.5 C.00) 0 N9 3910 52.5 1.5 100 120 8925 394 1.5 08 6012 .08 121 8940 3955 1.5 (00,2 5 5 strq we 395.5 396,0 NNBX 80% dost supported 10 :06 122 795.5 3760 0.5 4.00 altid seal as above in grandmass of 10/ diss Py, dante green dilevite

N SULPHURETS PROPERTY

Hole No. 594-440 Page 16\_ of 22

Reco

very %

( )

| NEWHAWK GOLD MINES LTD. |  |
|-------------------------|--|
| ULPHURETS PROPERTY      |  |

 $\langle \rangle$ 

|               |               |            |                                    | [    |       | A   | terat | tion |     | Min    | eral | izati | ion | <br>Assa | y Dat       | a              |       |       |    |          |       |     |    | Cor | e Dat | a        |
|---------------|---------------|------------|------------------------------------|------|-------|-----|-------|------|-----|--------|------|-------|-----|----------|-------------|----------------|-------|-------|----|----------|-------|-----|----|-----|-------|----------|
| Inter<br>(met | val<br>ers)   | Rock       |                                    |      |       |     | ILOR  |      | R8  | %      | %    | %     | %   | Sample   | From        | То             | Int   | Au    | Cu | Au       | Cu    | Ag  | Мо | RQD | Run   | Recovery |
| From          | То            | Туре       | Geologic Description               | From | То    | SIL | Ð     | SEI  | ð   | <br>Py | Ср   | Mag   | Mo  |          |             |                | ļ     | opt   | %  | check    | check | opt | %  | %   |       | <b>*</b> |
| 3%0           | <u>398.5</u>  | SP/        | pervasively alt'd bedded sediments |      |       | wk  |       | ma   | we  | 23     |      |       |     | <br>123  | <u>8%.0</u> | <u>397.2</u>   | 1,2   | 1001  |    | ļ        |       | 108 |    |     |       | ļ        |
|               |               | seo.       | mod ser thro, bedded CO-10;        |      |       |     |       |      |     | <br>   |      |       |     | <br>nA   | 897.2       | <u>396.</u> 5  | 1/3   | 1001  |    | <u> </u> |       | .67 |    |     |       | L        |
|               |               |            | rave Imm gb + carb valets @ 20°.   |      |       |     |       |      |     | <br>   |      |       |     |          |             |                | <br>  |       |    | L        |       |     |    |     |       | <b> </b> |
|               | <u>. *' -</u> |            | sharp at 28.                       |      |       |     |       |      |     |        |      |       |     | <br>     |             |                |       |       |    | ļ        |       |     |    |     | <br>  | L        |
|               |               |            | ,                                  |      |       |     |       |      |     |        |      |       |     |          |             |                |       |       |    |          |       |     |    |     |       |          |
| 3965          | <u>398.7.</u> | VNBX       | 2 cm vn at top contact af diss     |      |       |     |       |      |     | <br>   |      |       |     | 125      | 3%2         | 39 <u>9</u> ,0 | 0.5   | 1001  |    |          |       | .08 |    |     |       |          |
|               |               |            | py (10%) is randmass of chil+qb    |      |       |     |       |      |     | <br>   |      |       |     | <br>     |             |                |       |       |    | ļ        |       |     |    |     |       | ļ        |
|               |               |            | with five sar alter frags.         |      |       |     |       |      |     | <br>   |      |       |     | <br>     |             |                |       |       |    |          |       |     |    |     |       | <u> </u> |
|               |               |            | @ 20; fue to yn is bleethad.       |      |       |     |       |      |     | <br>   |      |       |     |          |             |                |       |       |    |          |       |     |    |     |       | <b> </b> |
|               |               |            | ser. frage as above with.          |      |       |     |       |      |     | <br>   |      |       |     | <br>     |             |                |       |       |    |          |       |     |    |     |       | Ĺ        |
|               |               |            | 20% inorder in admas               |      |       |     |       |      |     |        |      |       |     |          |             |                |       |       |    |          |       |     |    |     |       | L        |
|               |               |            | lover contact tight headed         |      |       |     |       |      |     | <br>   |      |       |     | <br>     |             |                | ļ     |       |    |          |       |     |    |     |       | <b> </b> |
|               |               |            | shear @ 20°                        |      |       |     |       |      |     | <br>   |      |       |     | <br>     |             |                |       |       |    |          |       |     |    |     |       |          |
| 3987          | 417.6         | 58/        | porraginaly service alt al         |      |       | we  |       | tree | wie | 5      |      |       |     | <br>30   | 399.0       | 100.5          | 1.5   | 601 2 |    |          |       | .09 |    |     |       | Ļ        |
| _             |               | s£0        | bedded sodements with              |      |       |     |       | -    |     |        |      |       |     | 52       | A005        | 4020           | 1.5   | 4.00) |    |          |       | ,09 |    |     |       |          |
|               |               |            | vare remnant of dark               |      |       |     |       |      |     |        |      |       |     | NB.      | 462.0       | 43.5           | 1.5   | (00.2 |    |          |       | .05 |    |     |       |          |
|               |               |            | gree to black aveillite            |      |       |     |       |      |     |        |      |       |     | 29       | 403.5       | 4050           | 1.5   | 6.001 |    |          |       | 107 |    |     |       | Ĺ        |
| ,             |               |            | scattered ab + carb + by           |      |       |     |       |      |     |        |      |       |     | <br>3    | 405.0       | 406.1          | 1.5   | 2.001 |    |          |       | 107 |    |     |       |          |
|               |               |            | vasto 2 cm 10. He district         |      |       |     |       | ·    |     |        |      |       |     | <br>3.   | 106.5       | 4031           | \$1.5 | 0.00) |    |          |       | ,05 |    |     |       |          |
|               |               |            | strone sericite altit              |      |       |     |       |      |     |        |      |       |     | 32.      | 408.0       | 42),1          | 1.5   | 0.001 |    |          |       | ·OA |    |     |       |          |
|               |               |            | halones to law wide                |      |       |     |       |      |     |        |      |       |     | 37       | HOSS        | 411.0          | 1.5   | 1001  |    |          |       | .OA |    |     |       |          |
|               |               | [· · · · · | @ 30° 1°/2 - Ima aby carl          |      |       |     |       |      |     |        |      |       |     | <br>34   | 411.D       | 4125           | 1.5   | 2.00) |    |          |       | 'B  |    |     |       |          |
|               |               |            | sunlot (2 10-20: 34                |      |       | 1   |       |      |     |        |      |       |     | 35       | 4125        | A14.0          | 1.1   | 2.001 |    |          |       | 190 |    |     |       |          |
|               |               |            | diss or 21/ my is ville            |      |       |     |       |      |     |        |      |       |     | 136      | 414:0       | 415.1          | 1.1   | 6.00  |    |          |       | .04 |    |     |       |          |
|               |               |            |                                    |      |       | 1   |       |      |     |        |      |       |     | <br>22   | 4155        | 4165           | 1.0   | 4,00) |    |          |       | .07 |    |     |       |          |
|               |               | · •        |                                    |      | † — — |     |       |      | Γ.  |        |      |       |     | <br>123  | ALLS        | AUL            | 1.10  | 100.  |    |          |       | .ob |    |     |       | •        |

•

~

- .

Hole No. <u>554-449</u> Page <u>17</u> of <u>22</u>

| Au Cu Au Cu Ag M | ROD Due Rese                                                       |
|------------------|--------------------------------------------------------------------|
|                  |                                                                    |
|                  |                                                                    |
| 2 1001 105       |                                                                    |
| 40               |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
| 2,001 .05        |                                                                    |
|                  |                                                                    |
| 0.006            |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
| ····             |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  |                                                                    |
|                  | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0) |

. .

Hole No. <u>\$\$9-44</u>) Page <u>18</u> of <u>7.2</u>

6

|               |                                               |        |                                      |      |     | A        | tera             | tion     |      |           | Mi       | nera          | lizat    | tion       |         | As                                           | say        | Dat   | a     |                   |          |          |            |          |          |            | Co           | e Dat    | a            |
|---------------|-----------------------------------------------|--------|--------------------------------------|------|-----|----------|------------------|----------|------|-----------|----------|---------------|----------|------------|---------|----------------------------------------------|------------|-------|-------|-------------------|----------|----------|------------|----------|----------|------------|--------------|----------|--------------|
| Inter<br>(met | val<br>ers)                                   | Rock   |                                      |      |     |          | HLOR             | *        | ARB  |           | %        | %             | %        | %          |         | Sam                                          | ple        | From  | То    | Int               | Au       | Cu       | Au         | Cu       | Ag       | Mo<br>%    | RQD          | Run      | Reco         |
| From          | То                                            | Туре   | Geologic Description                 | From | To  | 2        |                  | <u>s</u> | 10   |           | Ργ       | Ср            | Maş      | B M        | <u></u> |                                              | -2         |       |       |                   |          | 70       |            |          | opt      | <i>/</i> ° |              |          | -            |
| 123.1         | 423.8                                         | QSP/   | weark gts stock work                 |      |     | 10       |                  | stra     | mak  | 4         | 5        | <b>†</b>      |          | _          | _       | _\60`                                        |            | 123.1 | 473.8 | ь. <del>7</del> - | 0.006    | ×        | <u> </u>   |          | .00      |            |              | <u> </u> |              |
|               |                                               | (QTSW) | imposed on weatly                    |      | · · |          | <u> </u>         |          |      | <u>  </u> | .        | <b>_</b>      | <u> </u> | <b>_</b>   |         |                                              |            |       |       |                   | ļ        | -        | ļ          | ļ        |          |            | <sup> </sup> |          |              |
|               |                                               |        | healed shoorad fabric                |      |     |          |                  |          |      |           |          | Ļ             |          | ļ          |         | _                                            |            |       |       |                   | [        |          | <u> </u>   |          |          |            |              | <u> </u> |              |
|               |                                               |        | as above 10% gtz stuk                |      |     |          |                  |          |      |           |          |               |          | _          |         |                                              |            |       |       |                   |          | ļ        |            |          |          |            |              | ļ        | ļ            |
|               |                                               |        | 5/ potely py                         |      |     |          |                  |          |      |           |          |               |          |            |         |                                              |            |       |       |                   |          |          |            |          |          |            |              | Ĺ        |              |
|               |                                               |        | lower contact broken.                |      |     |          |                  |          |      |           |          |               |          |            |         |                                              |            |       |       |                   |          |          |            |          |          |            |              |          |              |
| 123           | 124.1                                         | FLT    | Cault broken cerbonat                |      |     | whe      |                  | stra     | stra |           | 5        |               |          |            |         |                                              |            |       |       |                   |          |          |            |          |          |            |              |          |              |
|               |                                               |        | viela choor co 15°                   |      |     |          |                  |          |      | 1         |          |               |          |            |         | 1                                            | κ ₄        | 23.B  | 424.8 | 1.0               | 0.00A    | -        |            |          | .04      |            |              |          |              |
| 4241          | 426.3                                         | OSP/   | and the service it is the to have to |      |     |          |                  |          |      |           |          |               |          |            |         | 1                                            | 5 4        | 24.8  | 425.8 | 1.0               | 0.007    |          |            |          | .08      |            |              |          |              |
|               | <u>, , , , , , , , , , , , , , , , , , , </u> | SH.    | altil tight haden show               |      |     | 2        | 2                | sto      | uk   |           | 5        | 1             |          |            |         | 10                                           | 6          | X.2   | 476.2 | 0.5               | 10.007   |          |            |          | 0.10     |            |              | í        |              |
|               |                                               | 1      | il itto on i                         |      |     |          | -                | 1=       |      |           |          | 1             |          |            | -       |                                              |            |       |       |                   |          |          |            |          |          |            |              |          |              |
|               |                                               |        | through di ca o io,                  |      |     |          |                  |          | 1    | $\top$    |          |               |          |            |         |                                              |            |       |       |                   |          |          |            |          |          |            |              |          |              |
|               |                                               |        | With whipy and pating                |      |     |          |                  |          | 1-   |           | $\vdash$ |               |          |            | -       |                                              |            |       |       |                   |          | -        |            |          |          |            |              |          | $\square$    |
|               |                                               |        | store source zi when                 |      |     |          |                  |          |      |           | 1        | +             |          | +          |         |                                              |            |       |       |                   |          | +        |            |          |          |            |              |          |              |
|               |                                               |        | patries of clark green children,     |      |     |          | $\left  \right $ |          |      |           | 1        |               | +        | +          |         |                                              |            |       |       | • • • • • •       |          | +        | +          |          |          |            |              |          | †            |
|               |                                               |        | 3/ direntinoor pyt 92                |      |     |          |                  |          | +    |           |          |               | +        |            | +       | -                                            |            |       |       |                   |          | +        |            |          |          |            | l            |          | -            |
|               |                                               | +      | volete @ 90 1-21. parky              |      |     |          | -                | <u> </u> |      |           |          |               |          | +          |         |                                              |            |       |       |                   |          | +        |            |          |          |            |              |          | -            |
|               |                                               |        | din py lower contact                 |      |     |          |                  | ļ        |      |           |          |               | 51       | - <u> </u> |         |                                              |            |       |       |                   |          |          |            |          | $\vdash$ |            |              |          |              |
|               |                                               |        | tight healed shoar @ 15              |      |     | <u> </u> | <u> </u>         |          |      |           | +        | m>            | . opn    | 404        | -       | 4                                            | 2          |       |       |                   | 1-015    |          |            |          |          |            |              |          | <del> </del> |
| 1263          | 427.D                                         | RTZN   | gt + servicite + pyrite harled       |      |     | 10       | <u> </u>         | sha      | 15   | <u> </u>  | 1        | <u>~1'/</u> . | 11.      | 44         |         | <u>,                                    </u> | <u>`</u> † | 126.3 | 4270  | 0.7               | 45,86    | ¥        |            |          | 32.30    |            |              |          | ┢            |
|               |                                               | SH:    | shear with sharp bounding            |      |     | ļ        |                  |          |      |           |          |               |          |            |         |                                              |            |       |       |                   |          | ·        | - <u> </u> | <u> </u> |          |            | <sup> </sup> |          | <u> </u>     |
|               |                                               |        | andacto @ 15 25                      |      |     | ļ        | ļ                |          |      |           |          |               |          |            |         | _                                            |            |       |       |                   |          |          |            | Ļ        |          |            |              | <u> </u> | <u> </u>     |
|               |                                               |        | contered by 10 cm wide calcite       |      |     | <b> </b> |                  | ļ        |      |           |          |               |          | _          |         |                                              |            |       |       |                   | ·        |          |            |          |          |            |              |          | <u>+</u>     |
|               |                                               |        | 95-rich un @ 20°                     | ·    | ļ   |          |                  | ļ        |      |           | l        |               |          |            |         |                                              |            |       |       |                   | ļ        |          |            | ļ        |          |            |              |          |              |
|               |                                               |        | 5 3% VG, 1/Pbs 31.                   |      |     | <u> </u> |                  | L        |      | _         |          |               |          |            |         |                                              |            |       |       |                   | <u> </u> | ļ        |            |          |          |            |              | ļ        | <b> </b>     |
|               |                                               |        | amber sphalevite, 3/                 |      |     |          |                  |          |      | _         |          |               |          |            |         |                                              |            |       |       |                   | L        | <u> </u> |            | ļ        |          |            |              | ļ        | <b> </b>     |
|               |                                               |        | tetrahadvite                         |      |     |          |                  |          |      |           |          |               |          |            |         |                                              |            |       |       |                   |          |          | 1          |          |          |            |              |          | •            |

,

;

Hole No. 599-44 Page 19 of 22

Hole No. <u>594-449</u> Page <u>20</u> of <u>22</u>

| 1  |               | ;             |       | · · · · · · · · · · · · · · · · · · · | T          |          | A        | tera     | tion |          |            | Mir      | nera     | lizat    | ion | )        | Assa   | y Dat        | a     |           |        |            |          |          |          |            | Co       | re Data    | a        |
|----|---------------|---------------|-------|---------------------------------------|------------|----------|----------|----------|------|----------|------------|----------|----------|----------|-----|----------|--------|--------------|-------|-----------|--------|------------|----------|----------|----------|------------|----------|------------|----------|
|    | (mel          | rval<br>.ers) | Rock  |                                       |            | ·        |          | HLOR     |      | ARB      |            | %        | %        | %        | 9   | 6 F ()   | Sample | From         | То    | Int       | Au     | Cu         | Au       | Cu       | Ag       | Mo<br>%    | RQD      | Run        | Reci     |
|    | From          | То            | Туре  | Geologic Description                  | From       | To       | IS I     | <u> </u> | 35   | 0        |            | Ру       | Ср       | Mag      | M   | o :      |        |              |       |           |        | <b>├</b> ^ |          |          | 44       | <u>  ~</u> | <u> </u> | ┼───┤      | <b>–</b> |
| ł  | 17 <u>4</u> 0 | 431.9         | SP/   | servicite pyrite alto boddod          |            | <u> </u> | 5        | 3        | sha  | 15       |            | 12       | <u> </u> | <u> </u> | _   |          | Kora   | 4220         | 4280  | 1.0       | 0.083  |            |          | <u> </u> | 107      |            | ╞───     | +          |          |
|    |               |               | SEO.  | sodiment x-cut by                     |            |          |          | ļ        |      | <b> </b> |            |          | <u> </u> |          | -   | <u> </u> | 149    | <u>428c</u>  | 429,0 | 1.0       | 1001   | _          | <u> </u> |          | .09      | '          |          | <b> </b>   |          |
|    |               |               |       | 10/ gts + carbt py + chl. vnlets      |            |          | ļ        |          |      |          |            |          |          |          |     |          | 1.20   | 1290         | 4300  | 1.0       | 2,001  | <u> </u>   | _        | <b>_</b> | 110      | <u> </u>   |          | <b> </b>   |          |
| 5  |               |               |       | and vave in to 2 cm at                |            |          |          |          |      |          |            |          |          |          | ļ   |          | 121    | 1300         | 431.0 | 1.0       | 100)   | Ļ          | <u> </u> | <b>_</b> | .00      |            | <b> </b> | <b> </b>   | <b> </b> |
| 1  |               |               |       | 80° beard vistary whism               |            |          |          |          |      |          |            |          |          |          |     |          | 152    | 130          | 1319  | 09        | . 00)  |            |          |          | 121      |            | L        |            | $\vdash$ |
|    |               |               |       | south to the southland                |            |          |          |          |      | ļ        |            |          |          |          |     |          |        |              |       | ,         |        |            |          |          |          |            |          |            | ĺ        |
|    |               |               |       | Price childrente victo sulate         |            |          |          |          |      |          |            |          |          |          |     |          |        |              |       |           |        |            |          |          |          |            |          |            |          |
|    |               |               |       | - In and bestation @ As and           |            |          |          |          |      |          |            |          |          |          |     |          |        |              |       |           |        |            |          |          |          |            |          |            |          |
|    |               |               |       | the contract of the stand             |            |          |          |          |      |          |            |          |          |          |     |          |        |              |       |           |        |            |          |          |          |            |          |            |          |
|    | 1210          | 4472          | 50/   | 10 60 tour guard and                  | -          |          | 1        | 1        | L. 1 |          |            | 2        |          |          | 1   |          | 153    | 4319         | 677.3 | 1.4       | <,00)  |            |          |          | .05      |            |          |            |          |
|    | 10            |               | 50.   | service pype alta parton              |            | +        |          | +-       | 100. | VVF.     |            | 1        | +        |          | +   |          | Kair   | 1000         | 434.8 | 15        | (2,0)  |            | +        |          | 1.04     | H          |          |            |          |
|    |               |               |       | calments as perere with               | -          |          |          |          | +    | +        |            | $\vdash$ |          | +        | +   |          | 155    | 1272         | 4313  | 15        | 6.00)  |            | +        |          | 57       | 1          |          |            |          |
|    |               |               |       | scattered get carb + pytchi           |            |          |          |          |      |          |            |          |          |          | +   |          | 154    | 121 2        | 1.000 | 1.1       |        | <u> </u>   | +        |          | 104      | <u></u>    | <u> </u> | ++         | $\vdash$ |
|    |               | <b> </b>      |       | vylets, scattered 9 Btcarb            | -          |          |          |          |      |          | +          |          |          |          | +   |          | 100    | 136.3        | 1210  | 1.        | 100    |            | +        |          | 1        | }          | <u> </u> | ++         | ┢        |
|    |               |               |       | x cutting valets, 1/. x cutting       |            |          |          | <u> </u> |      |          |            |          |          |          | + . |          | 107    | 134.8        | 451.5 | (.)       | 1.001  |            |          | ·        | 101      |            |          | +          | +        |
| ·, |               |               |       | my vulits, lower contact              |            |          |          | ļ        |      |          |            |          |          |          | -   |          | I SD.  | 439.3        | A40.3 | 1.5       | 1002   | 1          |          |          | 1.0/     |            |          | ┢───┦      | -        |
| Ĵ. |               |               | 1     | Gradational.                          |            |          | ļ        |          | ļ    |          |            | ļ        |          |          |     |          | 121    | <b>₩0.</b> B | 4423  | 1.5       | 12,00) | 4          |          | +        | 1,06     | 4          |          | <u> </u> ] |          |
|    |               |               |       | 0                                     |            |          | <u> </u> | ļ        | ļ    | <u> </u> | _          | <u> </u> | ļ        |          |     |          |        |              |       |           |        | <b></b>    | <u> </u> | <u> </u> | <b>_</b> | <u> </u>   | ┣───     | - <u> </u> | ⊢        |
|    | 403           | 4413          | SP/   | service printe alt'a fool.            |            |          | WŁ       | w.k      | mod  | mod      | <b>k</b> . | 2        |          |          |     |          | 100    | 442.3        | 433   | 1.0       | +00)   |            |          |          | . 06     | <u> </u>   | <b></b>  | ļ!         | <u> </u> |
|    |               |               | Casu  | to 5% arading to 10%                  |            |          |          |          |      |          |            |          |          |          |     |          | 19,    | 413.3        | 443   | 110       | 1003   | ļ          |          |          | 107      |            | <u>k</u> | ļ!         | <u> </u> |
|    |               |               |       | carbnate flab) stockwork              |            |          |          |          |      |          |            |          |          |          |     |          |        |              |       |           |        |            |          |          |          |            |          | l          |          |
|    |               |               | 1     | lower intert sharp shoer              |            |          |          |          |      |          |            |          |          |          |     |          |        |              |       |           |        |            |          |          |          |            |          | <u></u>    |          |
|    |               |               |       | a zo                                  | 1          | -        |          |          |      |          |            |          |          |          |     |          |        |              |       |           |        |            |          |          |          |            |          |            |          |
|    | 4443          | 447.2         | 2 38/ | Edite ite autor alto                  | - <b>-</b> | _        | -        |          | 1    |          |            |          | ľ        |          |     |          | 162    | 444.3        | 468   | 15        | 1001   |            | T        |          | .07      |            |          |            |          |
|    |               |               | SED.  | Sal said and site                     | -          |          | 1        |          |      |          |            | 1        |          | -        |     |          | 163    | AAA          | 412   | 1.5       | TIORS  |            | 1        |          | -11      |            |          |            |          |
|    |               | +             | +     | and what's to 2mm. rave               |            |          | 1        | 1        | 1    |          |            | 1        |          |          | +   |          | †      | 1.1.2        | 1     | <u></u> - | 1      | <b>†</b>   |          |          |          | 1          |          |            |          |
|    |               | +             |       | chitcarb hairline haster              |            |          |          |          | +    | ·        | -+         | 1        | 1        |          | +   |          |        |              | 1     |           | 1      | 1          |          |          | 1        | 1          |          | 1          | -        |
|    |               | ł             | 1     |                                       | 1          | 1        | 1        | 1        | 1    | 1        | 1          | 1.       | 1        | 1        | 1   |          | 1      | 11           | 1     |           | 1      |            | 1        | 1        | J        | <u> </u>   | 1        | لمصصله     |          |

,

| NEWHAWK GOLD MINES  | LTD. |
|---------------------|------|
| SULPHURETS PROPERTY |      |

| Г                |                   | T        |       |                                      |          |          | A         | tera     | tion     |          |            | Тм  | linera | aliz | atio | on |   | Assa     | y Dai    | a        |          |                                                   |          |          |             |           |         | Cor      | e Data   | a         |
|------------------|-------------------|----------|-------|--------------------------------------|----------|----------|-----------|----------|----------|----------|------------|-----|--------|------|------|----|---|----------|----------|----------|----------|---------------------------------------------------|----------|----------|-------------|-----------|---------|----------|----------|-----------|
|                  | Interva<br>(meter | al       |       |                                      |          |          |           | ¥        |          |          |            | Τ   |        | Τ    |      |    |   |          |          |          |          |                                                   |          |          |             |           |         |          |          | Rem       |
|                  | (ineter           | 5/       | Rock  |                                      |          | 1-       | 1_        | HLO      | l e      | a de     | AKD        | %   | 6 %    |      | %    | %  |   | Sample   | From     | То       | Int      | Au<br>opt                                         | Cu<br>%  | Aucheck  | Cu<br>check | Ag<br>opt | Мо<br>% | RQD<br>% | Run      | very<br>* |
| H                | rom               |          | Туре  |                                      | From     | To       | <u> </u>  |          | mode     | +        |            | 12  |        |      | /lag | Mo |   | 1 NA     | 467.0    | 4465     | 1.7      | .010                                              | 1        |          |             | .27       |         |          |          |           |
| ŕ                | <u>17.31</u> 4    | 50.9     | HELT/ | mixed with section of                |          | ł        | <u>mk</u> |          | strg.    | Inde     | <u> </u>   | 12  |        | +    | -    |    |   | 5        | 1111.3   | -017     | 12       | 1010                                              | <u> </u> | -        |             | 24        |         |          | ي ا      | ÷.        |
| -                |                   |          |       | servicite alter sodiments as         |          |          |           | -        |          | ł        |            | +   |        | +    |      |    |   | Nhb      | 4407     | 4500     | 10       | 1010                                              | <u> </u> |          |             | 30        |         |          |          |           |
| +                |                   |          |       | above that could be large            |          |          |           |          |          |          |            |     |        | +    | -+   |    |   |          | 1,0,1    | נייכח    | 1, 2     | 100-                                              |          |          |             |           |         |          |          | <u> </u>  |
| $\left  \right $ | ¦ '               | <u> </u> |       | blocks, intervals of                 |          |          |           |          |          | -        |            |     |        | +-   |      |    |   |          |          |          |          |                                                   | 1        | <u> </u> |             |           |         |          |          | •         |
|                  |                   |          |       | good better little (apilli           |          |          |           |          |          |          |            |     |        | +    |      |    |   |          |          |          | <u> </u> | <del> .                                    </del> | ┼        | -        |             |           |         |          |          |           |
|                  |                   |          |       | luft, rave layse frees of            |          |          |           |          |          | <u> </u> |            |     |        | +    |      |    |   |          |          |          |          |                                                   |          | ├        |             |           |         |          |          | -         |
|                  |                   |          |       | soricite alto fspar porphying,       |          | ļ        | _         |          |          |          | _          |     | +      |      |      |    |   |          |          |          |          |                                                   |          |          |             |           |         |          | 14       |           |
|                  |                   |          |       | all dissipland by scattered          |          | <b> </b> |           |          |          |          |            |     |        | _    |      |    |   |          | <u> </u> |          |          |                                                   |          |          |             |           |         |          |          | $\vdash$  |
|                  |                   |          |       | tight shears at go?                  |          |          | ļ         | <u> </u> | _        | ļ        |            | _ _ |        |      | -+   |    |   |          | <u> </u> |          |          | <b> </b>                                          |          |          |             |           |         |          |          | <u> </u>  |
|                  |                   |          |       | work to moderate servicite           | <u>(</u> | ļ        |           |          | 1        |          | _ <b>_</b> |     |        |      | _    |    |   | <u> </u> |          |          |          | <b> </b>                                          |          |          |             |           |         |          |          |           |
|                  |                   |          |       | + dis pyrite altid this              |          |          | ļ         |          |          | <b>_</b> |            |     |        | _    |      |    |   | ļ        | ļ        |          |          |                                                   |          |          |             |           |         |          |          |           |
|                  |                   |          |       | lover contact sharp \$ 40°           |          | ļ        | <b>_</b>  |          | <u> </u> |          |            |     |        |      |      |    |   | <u> </u> |          |          |          |                                                   |          |          |             |           |         |          | ├        |           |
| ł                | 50.9              | SIL      | SP/   | perrasive sericite printe,           |          |          |           | ·        |          | 1        |            | _   |        |      |      |    |   | <u> </u> |          | <u> </u> | ļ        |                                                   |          | -        | ļ           |           |         |          |          |           |
|                  |                   |          | රූන.  | probable bedded solo                 |          |          |           | 1        |          | ļ        |            |     |        | _    |      |    |   |          | ļ        |          |          |                                                   |          |          |             |           |         | >        | <u> </u> |           |
|                  |                   |          |       | probable large plocks                |          |          |           |          |          |          |            |     |        |      |      |    |   | WX       | 450      | 4516     | 60       | 103                                               |          |          |             | ,15       |         |          | ļ        |           |
| Ī                |                   |          |       | low contact shows tight shear        |          |          |           |          |          |          |            |     |        |      |      |    |   |          |          | 1        |          |                                                   |          |          | <b>_</b>    |           | ļ       |          | <u> </u> |           |
| F                |                   |          |       | @ 40°                                |          |          |           |          |          |          |            |     |        |      |      |    |   |          | •        |          | <u> </u> |                                                   |          |          | -           |           | <b></b> |          | ļ        |           |
| t                | ci 4              | E07      | HE77/ | with the de distance of he prolitiki |          | 1        |           |          |          |          |            |     |        |      |      |    | l | 18       | 154.1    | 453.     | 1.5      | 1.004                                             |          |          |             | .27       | Ì       |          |          | <u> </u>  |
| F                | ріь               | UD.T     | SP.   | Justi posea nor being and            |          |          | -         |          |          |          | _          |     |        |      |      |    |   | 189      | 453.1    | ASAL     | 1.5      | 1004                                              | t        |          |             | 21,       | L       |          | ļ        |           |
| h                |                   |          |       | popular in source alt                |          |          |           |          |          | 1        |            |     |        |      |      |    |   | 2        | 454.0    | A56.     | 1.5      | 1.02                                              |          |          |             | . 29      |         |          |          |           |
| ŀ                |                   |          |       | perturber of below all               |          |          | 1         | -        | 1        |          |            |     |        |      |      |    |   | (*)      | £56.1    | 4571     | 1.5      | 100E                                              |          |          |             | ,27       | 7       |          |          |           |
| ł                |                   |          |       | seaments as aque, an                 |          |          | -         |          |          |          |            | -1- |        |      |      |    |   | X        | 157.6    | 158.     | H 1. )   | 103                                               | >        |          |             | 15        |         |          |          |           |
|                  |                   | <u> </u> |       | trait la la laga & AO                | †        |          | 1         | -        | 1        |          |            | - - |        |      |      |    |   | -        | 1        |          |          |                                                   |          |          |             |           |         |          |          |           |
| ╞                |                   |          |       | light beeven since to                | <u>†</u> | +        |           |          | +        |          |            | - - |        |      |      |    |   | 1        | 1        | 1        |          | 1                                                 |          |          |             |           |         |          |          |           |
| -                |                   |          |       | lacer contern stort                  | 1        | -        | -         |          | +        |          |            |     |        | -    |      |    |   | 1        | -        |          |          | 1                                                 | -        |          |             |           |         |          |          |           |
|                  |                   |          |       | arams, daste hand at                 | +        |          | -         | -        | -        |          |            |     |        |      |      |    |   | 1        |          |          | 1        | -                                                 |          | -        |             |           |         |          |          |           |

Hole No. <u>594</u> -449 Page \_\_\_\_\_ of \_\_\_\_\_

÷

Hole No. 594-441 Page 22 of 22

Core Data Assay Data Mineralization Alteration Interval SIL (meters) CuAuCuAgMo%checkcheckopt% Reco very % CARB RQD Run % Sample From To Int % % % Py Cp Mag Au % Rock SER opt Geologic Description From To Mo From To Туре 5 sty nod 45874589 FLT gauge @ 30° lover contact broken 5012 458. ) 460.6 1.7- 1003 66 7. .05 45894623 SP. blocked creany wk stag green XXX 460.6462.3 1.7. 003 . 04 throughout d. 0 0 60 badly රෙී + carb patches. 1623 EDH. .

# **APPENDIX II**

.

1

# ASSAY DATA

.

1-Sep-94

| ET #. | Tag # | Au<br>(g/t) | Au<br>(oz/t) | Ag∕<br>(g/t) | Ag<br>(oz/t) |
|-------|-------|-------------|--------------|--------------|--------------|
|       |       |             |              |              |              |

. .

|    | 44      | 127275 | 0.84 | 0.024 | 9.1   | 0.27 |
|----|---------|--------|------|-------|-------|------|
| 45 | 127276  |        | 1.03 | 0.030 | 5.8   | 0.17 |
| 46 | 127277  |        | 0.50 | 0.015 | 3.2   | 0.09 |
| 47 | 127278  |        | 0.41 | 0.012 | 11.0  | 0.32 |
| 48 | 127279  |        | 0.23 | 0.007 | 8.0   | 0.23 |
| 49 | 127280  |        | 0.30 | 0.009 | 9.3   | 0.27 |
| 50 | 127281  |        | 0.20 | 0.006 | 5.4   | 0.16 |
| 51 | 127282  |        | 0.21 | 0.006 | 11.1  | 0.32 |
| 52 | 127283  |        | 0.75 | 0.022 | 8.1   | 0.24 |
| 53 | 127284  |        | 0.42 | 0.012 | 4.8   | 0.14 |
| 54 | 127285  |        | 0.54 | 0.016 | 8.5   | 0.25 |
| 55 | 127286  |        | 1.14 | 0.033 | 5.5   | 0.16 |
| 56 | 127287  |        | 0.31 | 0.009 | 7.5   | 0.22 |
| 57 | 127288  |        | 0.44 | 0.013 | 4.6   | 0.13 |
| 58 | 127289  |        | 0.34 | 0.010 | 3.0   | 0.09 |
| 59 | .127290 |        | 1.01 | 0.029 | 3.7   | 0.11 |
| 60 | 127291  |        | 0.71 | 0.021 | . 2.7 | 0.08 |
| 61 | 127292  |        | 0.67 | 0.020 | 2.6   | 0.08 |
| 62 | 127293  |        | 2.03 | 0.059 | 2.4   | 0.07 |
| 63 | 127294  |        | 0.58 | 0.017 | 2.5   | 0.07 |
| 64 | 127295  |        | 0.35 | 0.010 | 3.9   | 0.11 |
| 65 | 127296  |        | 0.71 | 0.021 | 5.3   | 0.16 |
| 66 | 127297  |        | 0.40 | 0.012 | 4.0   | 0.12 |
| 67 | 127298  |        | 0.11 | 0.003 | 4.1   | 0.12 |
| 68 | 127299  |        | 0.06 | 0.002 | 4.6   | 0.13 |

Frank J. Pezzotti, A.Sc.T.B.C.Certfied Assayer

Page 2

1-Sep-94

|   |       |        | Au    | Au     | Ag    | Ag           |  |
|---|-------|--------|-------|--------|-------|--------------|--|
|   | ET #. | Tag #  | (g/t) | (oz/t) | (g/t) | (oz/t)       |  |
| • | 69    | 127300 | 0.05  | 0.001  | 4.5   | 0.13         |  |
|   | 70    | 150001 | 0.07  | 0.002  | 4.5   | 0.13         |  |
|   | 71    | 150002 | 0.11  | 0.003  | 3.6   | 0.11         |  |
|   | 72    | 150003 | 0.22  | 0.006  | 5.4   | 0.16         |  |
|   | 73    | 150004 | <.03  | <.001  | 3.5   | 0.10         |  |
|   | 74    | 150005 | 0.08  | 0.002  | 4.9   | 0.14         |  |
|   | 75    | 150006 | <.03  | <.001  | 3.1   | 0.09         |  |
|   | 76    | 150007 | 0.09  | 0.003  | 3.0   | 0.09         |  |
|   | 77    | 150008 | 0.10  | 0.003  | 3.6   | 0.11         |  |
|   | 78    | 150009 | 0.03  | 0.001  | 3.1   | 0.09         |  |
|   | 79    | 150010 | 0.20  | 0.006  | 3.6   | 0.11         |  |
|   | 80    | 150011 | 0.67  | 0.020  | 1.8   | 0.05         |  |
|   | 81    | 150012 | 0.06  | 0.002  | 3.5   | <b>0</b> .10 |  |
|   | 82    | 150013 | 0.07  | 0.002  | 4.5   | 0.13         |  |
|   | 83    | 150014 | 0.06  | 0.002  | 2.4   | 0.07         |  |
|   | 84    | 150015 | 0.14  | 0.004  | 4.3   | 0.13         |  |
|   | 85    | 150016 | 0.31  | 0.009  | 3.6   | 0.11         |  |
|   | 86    | 150017 | 0.33  | 0.010  | 7.8   | 0.23         |  |
|   | 87    | 150018 | 0.10  | 0.003  | 4.7   | 0.14         |  |
|   | 88    | 150019 | 0.04  | 0.001  | 3.3   | 0.10         |  |
|   | 89    | 150020 | 0.24  | 0.007  | 3.5   | 0.10         |  |
|   | 90    | 150021 | 0.10  | 0.003  | 2.0   | 0.06         |  |
|   | 91    | 150022 | 0.61  | 0.018  | 8.6   | 0.25         |  |
|   | 92    | 150023 | 0.13  | 0.004  | 6.9   | 0.20         |  |
|   | 93    | 150024 | 0.57  | 0.017  | 7.2   | 0.21         |  |
|   | 94    | 150025 | 0.39  | 0.011  | 7.0   | 0.20         |  |
|   | 95    | 150026 | 0.28  | 0.008  | 6.2   | 0.18         |  |
|   | 96    | 150027 | 0.26  | 0.008  | 6.6   | 0.19         |  |
|   | 97    | 150028 | 0.31  | 0.009  | 5.6   | 0.16         |  |
|   | 98    | 150029 | 0.68  | 0.020  | 4.5   | 0.13         |  |
|   | 99    | 150030 | 0.72  | 0.021  | 3.8   | 0.11         |  |
|   | 100   | 150031 | 1.14  | 0.033  | 6.3   | 0.18         |  |
|   | 101   | 150032 | 0.76  | 0.022  | 5.0   | 0.15         |  |
|   | 102   | 150033 | 0.81  | 0.024  | 4.4   | 0.13         |  |
|   | 103   | 150034 | 1.97  | 0.057  | 3.7   | 0.11         |  |
|   | 104   | 150035 | 6.38  | 0.186  | 8.2   | 0.24         |  |
|   | 105   | 150036 | 14.61 | 0.426  | 37.9  | 1.11         |  |
|   | 106   | 150037 | 8.25  | 0.241  | 12.3  | 0.36         |  |

. Y<sup>2</sup> -

Frank J. Pezzetti, A.Sc.T.B.C.Certfied Assayer

Page 3

#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING



10041 E. Trans Canada Hwy., R.R. #2. Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

# **CERTIFICATE OF ASSAY ETS3057**

NEWHAWK GOLD MINES 625 HOWE ST- SUITE 860 VANCOUVER, B.C. V6C-2T6

Attention: Fred Hewitt/M.McPherson

138 rock samples received August 16, 1994Sample run date:August 23, 1994Samples Submitted By:J.Watkins/B.McDonoughClient Project Number:SulphuretsShipment Number:28

| ET # | Tag #  | Au<br>(g/t) | Au<br>(oz/t) | Ag<br>(g/t)       | Ag<br>(oz/t) |
|------|--------|-------------|--------------|-------------------|--------------|
| r    |        |             |              | -                 | ;            |
|      |        |             |              | : <b>f</b>        |              |
|      |        |             |              | `* <sub>*</sub> • |              |
|      |        |             |              |                   |              |
|      |        |             |              |                   |              |
|      |        |             |              |                   |              |
| 11   | 150038 | 4.62        | 0.135        | 14.3              | 0.42         |
| 12   | 150039 | 1.13        | 0.033        | 5.6               | 0.16         |
| 13   | 150040 | 1.15        | 0.034        | 3.5               | 0.10         |
| 14   | 150041 | 0.19        | 0.006        | 3.6               | 0.11         |
| 15   | 150042 | 0.60        | 0.017        | 3.5               | 0.10         |
| 16   | 150043 | 0.22        | 0.006        | 4.7               | 0.14         |
| 17   | 150044 | 0.09        | 0.003        | 2.1               | 0.06         |
| 18   | 150045 | 0.61        | 0.018        | 4.2               | 0.12         |
| 19   | 150046 | 0.38        | 0.011        | 3.0               | 0.09         |
| 20   | 150047 | 0.21        | 0.006        | 3.7               | 0.11         |
| 21   | 150048 | 0.62        | 0.018        | 4.1               | 0.12         |
| 22   | 150049 | 15.76       | 0.460        | 18.6              | 0.54         |
|      | ~      | - Elu       | A            |                   |              |

Frank J.Pezzotti, A.Sc.T. B.C.Certified Assayer

.

. .

|       |        | Au    | Au     | Ag    | Ag     |
|-------|--------|-------|--------|-------|--------|
| ET #. | Tag #  | (g/t) | (oz/t) | (g/t) | (oz/t) |
| 23    | 150050 | 1.49  | 0.043  | 5.6   | 0.16   |
| 24    | 150051 | 0.38  | 0.011  | 6.7   | 0.20   |
| 25    | 150052 | 3.53  | 0.103  | 490.0 | 14.29  |
| 26    | 150053 | 2.61  | 0.076  | 8.3   | 0.24   |
| 27    | 150054 | 0.95  | 0.028  | 5.4   | 0.16   |
| 28    | 150056 | 0.62  | 0.018  | 2.7   | 0.08   |
| 29    | 150057 | 0.37  | 0.011  | 3.2   | 0.09   |
| 30    | 150058 | 0.60  | 0.017  | 5.1   | 0.15   |
| 31    | 150059 | 0.34  | 0.010  | 5.6   | 0.16   |
| 32    | 150060 | 1.79  | 0.052  | 6.4   | 0.19   |
| 33    | 150061 | 1.27  | 0.037  | 5.1   | 0.15   |
| 34    | 150062 | 0.93  | 0.027  | 7.3   | 0.21   |
| 35    | 150063 | 0.65  | 0.019  | 5.9   | 0.17   |
| 36    | 150064 | 4.27  | 0.125  | 7.4   | 0.22   |
| 37    | 150065 | 1.01  | 0.029  | 6.2   | 0.18   |
| 38    | 150066 | 0.66  | 0.019  | 4.3   | 0.13   |
| 39    | 150067 | 0.44  | 0.013  | 5.5   | 0.16   |
| 40    | 150068 | 0.32  | 0.009  | 20.6  | 0.60   |
| 41    | 150069 | 0.91  | 0.027  | 10.2  | 0.30   |
| 42    | 150070 | 0.84  | 0.024  | 5.7   | 0.17   |
| 43    | 150071 | 0.18  | 0.005  | 2.1   | 0.06   |
| 44    | 150072 | 2.06  | 0.060  | 10.2  | 0.30   |
| 45    | 150073 | 0.53  | 0.015  | 12.7  | 0.37   |
| 46    | 150074 | 0.11  | 0.003  | 5.9   | · 0.17 |
| 47    | 150075 | 0.19  | 0.006  | 3.4   | 0.10   |
| 48    | 150076 | 0.78  | 0.023  | 3.3   | 0.10   |
| 49    | 150077 | 0.22  | 0.006  | 2.4   | 0.07   |
| 50    | 150078 | 0.96  | 0.028  | 3.6   | 0.11   |
| 51    | 150079 | 0.08  | 0.002  | 1.8   | 0.05   |
| 52    | 150080 | 4.23  | 0.123  | 17.3  | 0.51   |
| 53    | 150081 | 0.13  | 0.004  | 3.2   | 0.09   |
| 54    | 150082 | 0.11  | 0.003  | 2.5   | 0.07   |
| 55    | 150083 | 0.07  | 0.002  | 2.1   | 0.06   |
| 56    | 150084 | 0.05  | 0.001  | 2.7   | 0.08   |
| 57    | 150085 | 0.60  | 0.017  | 2.9   | 0.09   |
| 58    | 150086 | 0.32  | 0.009  | 3.1   | 0.09   |
| 59    | 150087 | 0.62  | 0.018  | 2.0   | 0.06   |
| 60    | 150088 | 1.86  | 0.054  | 3.3   | 0.10   |
| 61    | 150089 | 1.13  | 0.033  | 5.2   | 0.15   |
| 62    | 150090 | 0.23  | 0.007  | 2.4   | 0.07   |
| 63    | 150091 | 0.35  | 0.010  | 1.0   | 0.03   |
| 64    | 150092 | 0.84  | 0.024  | 8.1   | 0.24   |
| 65    | 150093 | 0.07  | 0.002  | 2.9   | 0.09   |
|       |        | -7    | M      |       |        |

.

, **)** 

Frank J.Pezzotti, A.Sc.T. B.C.Certified Assayer

1-Sep-94

|       |        | Au    | Au     | Ag    | Ag     |
|-------|--------|-------|--------|-------|--------|
| ET #. | Tag #  | (g/t) | (oz/t) | (g/t) | (oz/t) |
| 66    | 150094 | 0.28  | 0.008  | 4.3   | 0.13   |
| 67    | 150095 | 0.19  | 0.006  | 3.0   | 0.09   |
| 68    | 150096 | 0.04  | 0.001  | 2.1   | 0.06   |
| 69    | 150097 | 0.03  | 0.001  | 1.9   | 0.06   |
| 70    | 150098 | <.03  | <.001  | 1.5   | 0.04   |
| 71    | 150099 | <.03  | <.001  | 2.0   | 0.06   |
| 72    | 150100 | 0.09  | 0.003  | 12.4  | 0.36   |
| 73    | 150101 | 0.05  | 0.001  | 10.4  | 0.30   |
| 74    | 150102 | 0.31  | 0.009  | 13.1  | 0.38   |
| 75    | 150103 | 0.35  | 0.010  | 7.1   | 0.21   |
| 76    | 150104 | 1.20  | 0.035  | 4.9   | 0.14   |
| 77    | 150105 | 0.06  | 0.002  | 4.8   | 0.14   |
| 78    | 150106 | 0.03  | 0.001  | 1.9   | 0.06   |
| 79    | 150107 | <.03  | <.001  | 2.8   | 0.08   |
| 80    | 150108 | <.03  | <.001  | 2.4   | 0.07   |
| 81    | 150109 | 0.03  | 0.001  | 3.0   | 0.09   |
| 82    | 150110 | 0.03  | 0.001  | 1.1   | 0.03   |
| 83    | 150111 | <.03  | <.001  | 2.3   | 0.07   |
| 84    | 150112 | <.03  | <.001  | 3.0   | 0.09   |
| 85    | 150113 | <.03  | <.001  | 1.7   | 0.05   |
| 86    | 150114 | 0.04  | 0.001  | 2.2   | 0.06   |
| 87    | 150115 | 0.03  | 0.001  | 3.8   | 0.11   |
| 88    | 150116 | <.03  | <.001  | 1.3   | 0.04   |
| 89    | 150117 | <.03  | <.001  | 2.3   | 0.07   |
| 90    | 150118 | <.03  | <.001  | 2.2   | 0.06   |
| 91    | 150119 | 0.03  | 0.001  | 2.3   | 0.07   |
| 92    | 150120 | <.03  | <.001  | 2.7   | 0.08   |
| 93    | 150121 | <.03  | <.001  | 2.7   | 0.08   |
| 94    | 150122 | <.03  | <.001  | 2.2   | 0.06   |
| 95    | 150123 | 0.03  | 0.001  | 2.6   | 0.08   |
| 96    | 150124 | 0.04  | 0.001  | 2.3   | 0.07   |
| 97    | 150125 | 0.03  | 0.001  | 2.8   | 0.08   |
| 98    | 150126 | <.03  | <.001  | 2.9   | 0.09   |
| 99    | 150127 | <.03  | <.001  | 3.1   | 0.09   |
| 100   | 150128 | <.03  | <.001  | 1.6   | 0.05   |
| 101   | 150129 | <.03  | <.001  | 1.3   | 0.04   |
| 102   | 150130 | <.03  | <.001  | 2.4   | 0.07   |
| 103   | 150131 | 0.03  | 0.001  | 1.6   | 0.05   |
| 104   | 150132 | 0.04  | 0.001  | 1.5   | 0.04   |
| 105   | 150133 | 0.03  | 0.001  | 1.4   | 0.04   |
| 106   | 150134 | <.03  | <.001  | 1.0   | 0.03   |
| 107   | 150135 | <.03  | <.001  | 10.0  | 0.29   |
| 108   | 150136 | <.03  | <.001  | 1.3   | 0.04   |

. .

Frank J.Pezzotti, A.Sc.T. B.C.Certified Assayer

.

| 1-S | ep- | -94 |
|-----|-----|-----|
|     | YΡ  | 0.4 |

.

|       |                     | Au    | Au     | Ag    | Ag     |
|-------|---------------------|-------|--------|-------|--------|
| ET #. | Tag #               | (g/t) | (oz/t) | (g/t) | (oz/t) |
| 109   | 150137              | <.03  | <.001  | 2.4   | 0.07   |
| 110   | 150138              | 0.03  | 0.001  | 1.9   | 0.06   |
| 111   | 150139              | <.03  | <.001  | 1.8   | 0.05   |
| 112   | 150140 <sup>1</sup> | <.03  | <.001  | 1.7   | 0.05   |
| 113   | 150149              | 0.03  | 0.001  | 3.1   | 0.09   |
| 114   | 150150              | <.03  | <.001  | 3.3   | 0.10   |
| 115   | 150151              | 0.03  | 0.001  | 2.1   | 0.06   |
| 116   | 150152              | 0.03  | 0.001  | 2.3   | 0.07   |
| 117   | 150153              | <.03  | <.001  | 1.8   | 0.05   |
| 118   | 150154              | <.03  | <.001  | 1.5   | 0.04   |
| 119   | 150155              | <.03  | <.001  | 2.4   | 0.07   |
| 120   | 150156              | 0.03  | 0.001  | 1.8   | 0.05   |
| 121   | 150157              | 0.04  | 0.001  | 3.2   | 0.09   |
| 122   | 150158              | 0.06  | 0.002  | 2.3   | 0.07   |
| 123   | 150159              | <.03  | <.001  | 1.9   | 0.06   |
| 124   | 150160              | 0.04  | 0.001  | 2.0   | 0.06   |
| 125   | 150161              | 0.10  | 0.003  | 2.3   | 0.07   |
| 126   | 150162              | 0.05  | 0.001  | 2.4   | 0.07   |
| 127   | 150163              | 0.10  | 0.003  | 3.9   | 0.11   |
| 128   | 150164              | 0.33  | 0.010  | 7.4   | 0.22   |
| 129   | 150165              | 0.34  | 0.010  | 11.7  | 0.34   |
| 130   | 150166              | 0.18  | 0.005  | 10.3  | 0.30   |
| 131   | 150167              | 0.10  | 0.003  | 5.2   | 0.15   |
| 132   | 150168              | 0.13  | 0.004  | 9.3   | 0.27   |
| 133   | 150169              | 0.15  | 0.004  | 5.1   | 0.15   |
| 134   | 150170              | 0.83  | 0.024  | 10.0  | 0.29   |
| 135   | 150171              | 0.16  | 0.005  | 7.5   | 0.22   |
| 136   | 150172              | 0.09  | 0.003  | 5.1   | 0.15   |
| 137   | 150173              | 0.11  | 0.003  | 1.7   | 0.05   |
| 138   | 150174              | 0.11  | 0.003  | 1.2   | 0.04   |

, **34** 

Frank J.Pezzotti, A.Sc.T.B.C.Certified Assayer

25-Aug-94

• 4

|            |                                       |   | Metallics |        |         |        |        |        |
|------------|---------------------------------------|---|-----------|--------|---------|--------|--------|--------|
|            |                                       |   | Au        | Au     | Au      | Au     | Ag     | Ag     |
| ET #.      | Tag #                                 |   | (g/t)     | (oz/t) | (g/t)   | (oz/t) | (g/t)  | (oz/t) |
|            |                                       |   |           |        |         |        |        |        |
|            |                                       |   |           |        |         |        |        |        |
|            |                                       |   |           |        |         |        |        |        |
|            |                                       |   |           |        |         |        |        |        |
|            |                                       |   |           |        |         |        |        |        |
|            |                                       |   |           |        |         |        |        |        |
|            |                                       |   |           |        |         |        |        |        |
|            |                                       |   |           |        |         |        |        |        |
|            |                                       |   |           |        |         |        |        |        |
|            |                                       |   |           | 0.04-0 |         |        | o r    | 0.07   |
| 81         | 150142                                |   | 0.21      | 0.006  |         |        | 2.5    | 0.07   |
| 82         | 150143                                |   | 0.19      | 0.005  |         |        | 2.1    | 0.06   |
| 83         | 150144                                |   | 0.13      | 0.004  |         |        | 1.3    | 0.04   |
| 84         | 150145                                |   | 0.24      | 0.007  |         |        | 2.7    | 0.08   |
| 85         | 150146                                |   | 0.23      | 0.007  | 4670 70 | 45.005 | 3.3    | 0.10   |
| 86         | 150147                                |   |           |        | 15/2.72 | 45.805 | 1110.3 | 32.38  |
| 87         | 150148                                |   | 2.83      | 0.083  |         |        | 3.2    | 0.09   |
| QC/DATA:   |                                       | • |           |        | ••      |        |        |        |
| Resplit #: | · · · · · · · · · · · · · · · · · · · |   |           |        |         |        |        |        |
| RS/7       | 16781                                 |   | 8.68      | 0.253  |         |        |        |        |
| RS/50      | 127219                                |   | 0.11      | 0.003  |         |        | 19.6   | 0.57   |
| RS/80      | 127249                                |   | 0.17      | 0.005  |         |        | 8.2    | 0.24   |
| Depert #4  |                                       |   |           |        |         |        |        |        |
| Repeat #:  | 16775                                 |   | A 47      | 0 130  |         |        | 160.5  | 4 68   |
|            | 10775                                 |   | 4.41      | 0.130  |         |        | 100.5  | 4.00   |
| 1          | 10773                                 |   | 4.30      | 0.154  |         |        | 15.6   | 0.46   |
| 39         | 10770                                 |   |           |        |         |        | 13.0   | 0.40   |
| ()         | 16776                                 |   |           |        |         |        | 1.1    | 0.23   |
| Standard   |                                       |   |           |        |         |        |        |        |
|            | STD 1991                              |   |           |        |         |        | 1.4    | 0.04   |
|            | STD 1991                              |   |           |        |         |        | 1.2    | 0.04   |
|            | STD 1991                              |   |           |        |         |        | 1.8    | 0.05   |

y.

NOTE: Average values are reported where repeat assays are performed.

Screened "Metallic Assays" are performed on sample resplits screened to -140 mesh.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

.

1-Sep-94

| QC/DATA:   |        |             |              |             |              |  |
|------------|--------|-------------|--------------|-------------|--------------|--|
| ET #.      | Tag #  | Au<br>(g/t) | Au<br>(oz/t) | Ag<br>(g/t) | Ag<br>(oz/t) |  |
| Resplit #: |        |             |              |             |              |  |
| R/S10      | 16808  | 3.27        | 0.095        |             |              |  |
| R/S11      | 16809  | 0.08        | 0.002        |             |              |  |
| R/S12      | 16810  | 0.71        | 0.021        |             |              |  |
| R/S38      | 127269 |             |              | 710.0       | 20.71        |  |
| R/S78      | 150009 |             |              | 3.4         | 0.10         |  |
| R/S109     | 14814  |             |              | 3.0         | 0.09         |  |
| Repeat #:  |        |             |              |             |              |  |
| 77         | 150008 |             |              | 3.6         | 0.11         |  |

.

NOTE:

Average values are reported where repeat assays are performed. Screened "Metallic Assays" are performed on sample resplits screened to -140 mesh.

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

25-Aug-94

.

|       |       | •     | 3     | 0     | 11-   | 14-   | Dh    | сь.   | т     | 7          |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|
|       |       | Ag    | AS    | Cu    | нg    | 1VIO  | FU    | 30    | 14    | <b>Z</b> n |
| Et #. | Tag # | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm)      |
|       |       |       |       |       |       |       |       |       |       |            |

|    |        |      |      |    |    |    |     |    |     | <b>-</b> . |
|----|--------|------|------|----|----|----|-----|----|-----|------------|
| 44 | 127275 | 9.0  | 565  | 70 | <5 | <1 | 12  | <5 | <10 | 46         |
| 45 | 127276 | 6.0  | 540  | 59 | <5 | <1 | 12  | 5  | <10 | 65         |
| 46 | 127277 | 3.6  | 485  | 25 | <5 | <1 | 16  | <5 | <10 | 42         |
| 47 | 127278 | 11.2 | 345  | 32 | <5 | <1 | 14  | 5  | <10 | 39         |
| 48 | 127279 | 7.8  | 350  | 21 | <5 | <1 | 10  | <5 | <10 | 48         |
| 49 | 127280 | 9.8  | 420  | 20 | <5 | <1 | 16  | 5  | <10 | 84         |
| 50 | 127281 | 5.4  | 405  | 16 | <5 | <1 | 18  | 5  | <10 | 55         |
| 51 | 127282 | 15.0 | 60   | 43 | <5 | <1 | 8   | 30 | <10 | 46         |
| 52 | 127283 | 9.2  | 420  | 46 | <5 | <1 | 4   | 10 | <10 | 21         |
| 53 | 127284 | 5.4  | 535  | 21 | <5 | <1 | 10  | 10 | <10 | 25         |
| 54 | 127285 | 8.4  | 1020 | 28 | <5 | <1 | 26  | 10 | <10 | 176        |
| 55 | 127286 | 6.0  | 705  | 31 | <5 | <1 | 20  | 10 | <10 | 80         |
| 56 | 127287 | 8.0  | 530  | 29 | <5 | 1  | 12  | 15 | <10 | 26         |
| 57 | 127288 | 4.0  | 480  | 21 | <5 | <1 | 14  | 15 | <10 | 47         |
| 58 | 127289 | 2.8  | 480  | 20 | <5 | 1  | 16  | 10 | <10 | 37         |
| 59 | 127290 | 3.2  | 845  | 24 | <5 | <1 | 12  | <5 | <10 | 43         |
| 60 | 127291 | 3.2  | 880  | 17 | <5 | <1 | 8   | <5 | <10 | 40         |
| 61 | 127292 | 2.4  | 625  | 16 | <5 | <1 | 14  | <5 | <10 | 35         |
| 62 | 127293 | 2.0  | 365  | 43 | <5 | <1 | 38  | <5 | <10 | 131        |
| 63 | 127294 | 2.8  | 525  | 44 | <5 | <1 | 44  | <5 | <10 | 158        |
| 64 | 127295 | 3.8  | 495  | 27 | <5 | 1  | 20  | <5 | <10 | 29         |
| 65 | 127296 | 5.2  | 310  | 24 | <5 | 2  | 10  | <5 | <10 | 15         |
| 66 | 127297 | 4.0  | 280  | 31 | <5 | <1 | 24  | 5  | <10 | 60         |
| 67 | 127298 | 3.6  | 420  | 61 | <5 | <1 | 72  | <5 | <10 | 230        |
| 68 | 127299 | 3.6  | 350  | 53 | <5 | <1 | 114 | <5 | <10 | 361        |
| 69 | 127300 | 4.2  | 310  | 53 | <5 | <1 | 112 | <5 | <10 | 343        |
| 70 | 150001 | 4.2  | 300  | 59 | <5 | <1 | 94  | <5 | <10 | 346        |
| 71 | 150002 | 3.4  | 270  | 54 | <5 | <1 | 38  | <5 | <10 | 88         |

Page 2

.

### 25-Aug-94

• • • •

|       |        |       | • • • |       |       |       |       |       |       |       |
|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|       |        | Ag    | As    | Cu    | Hg    | Мо    | Pb    | Sb    | ТІ    | Zn    |
| Et #. | Tag #  | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) |
| 72    | 150003 | 4.6   | 255   | 33    | <5    | <1    | 40    | <5    | <10   | 127   |
| 73    | 150004 | 3.0   | 185   | 46    | <5    | 1     | 56    | <5    | <10   | 158   |
| 74    | 150005 | 4.4   | 275   | 32    | <5    | <1    | 60    | <5    | <10   | 152   |
| 75    | 150006 | 2.8   | 220   | 44    | <5    | <1    | 50    | <5    | <10   | 170   |
| 76    | 150007 | 2.4   | 240   | 48    | <5    | <1    | 38    | <5    | <10   | 140   |
| 77    | 150008 | 3.6   | 285   | 48    | <5    | <1    | 68    | <5    | <10   | 216   |
| 78    | 150009 | 2.8   | 265   | 45    | <5    | <1    | 58    | <5    | <10   | 156   |
| 79    | 150010 | 4.0   | 225   | 54    | <5    | <1    | 42    | 5     | <10   | 133   |
| 80    | 150011 | 2.0   | 195   | 25    | <5    | 1     | 76    | 10    | <10   | 170   |
| 81    | 150012 | 3.6   | 180   | 36    | <5    | <1    | 60    | 15    | <10   | 124   |
| 82    | 150013 | 4.0   | 485   | 42    | <5    | 1     | 62    | 5     | <10   | 80    |
| 83    | 150014 | 2.4   | 270   | 30    | <5    | <1    | 30    | <5    | <10   | 57    |
| 84    | 150015 | 4.4   | 275   | 36    | <5    | <1    | 66    | <5    | <10   | 1194  |
| 85    | 150016 | 3.4   | 120   | 47    | <5    | <1    | 50    | <5    | <10   | 112   |
| 86    | 150017 | 7.6   | 215   | 65    | <5    | <1    | 62    | <5    | <10   | 109   |
| 87    | 150018 | 5.2   | 155   | 60    | <5    | <1    | 34    | <5    | <10   | 79    |
| 88    | 150019 | 3.4   | 130   | 37    | <5    | <1    | 26    | 5     | <10   | 46    |
| 89    | 150020 | 3.6   | 160   | 36    | <5    | <1    | 38    | <5    | <10   | 74    |
| 90    | 150021 | 2.2   | 80    | 39    | <5    | <1    | 22    | <5    | <10   | 48    |
| 91    | 150022 | 9.0   | 455   | 29    | <5    | <1    | 32    | <5    | <10   | 44    |
| 92    | 150023 | 7.0   | 100   | 34    | <5    | <1    | 46    | <5    | <10   | 88    |
| 93    | 150024 | 7.2   | 235   | 24    | <5    | <1    | 36    | <5    | <10   | 58    |
| 94    | 150025 | 7.4   | 110   | 42    | <5    | <1    | 56    | <5    | <10   | 138   |
| 95    | 150026 | 6.8   | 105   | 42    | <5    | 28    | 56    | 5     | <10   | 94    |
| 96    | 150027 | 7.4   | 80    | 50    | <5    | 4     | 62    | <5    | <10   | 177   |
| 97    | 150028 | 5.4   | 95    | 43    | <5    | <1    | 58    | <5    | <10   | 161   |
| 98    | 150029 | 4.2   | 125   | 42    | <5    | 4     | 40    | <5    | <10   | 152   |
| 99    | 150030 | 3.6   | 85    | 58    |       | 18    | 34    | <5    | <10   | 135   |
| 100   | 150031 | 6.0   | 45    | 180   | <5    | 2     | 16    | <5    | <10   | 44    |
| 101   | 150032 | 4.2   | 90    | 124   | <5    | 6     | 16    | 5     | <10   | 47    |
| 102   | 150033 | 4.4   | 100   | 119   | <5    | 2     | 22    | 10    | <10   | 66    |
| 103   | 150034 | 3.2   | 115   | 46    | <5    | <1    | 20    | 10    | <10   | 35    |
| 104   | 150035 | 7.8   | 115   | 130   | <5    | 38    | 24    | <5    | <10   | 42    |
| 105   | 150036 | >30   | 95    | 110   | <5    | 15    | 26    | 25    | <10   | 57    |
| 106   | 150037 | 12.2  | 110   | 58    | <5    | 12    | 18    | <5    | <10   | 17    |

•



ASSAYING GEOCHEMISTR7 AGALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

1064) E. Trans Canada Hayi, R.R. (2. Karamori), 9.0. (201-201-201-9644) 573-5706 Fax (604) 573-4557

# **CERTIFICATE OF ANALYSIS ETS 3057**

1

NEWHAWK GOLD MINES #860-625 HOWE STREET VANCOUVER, B.C. V8Y-3A5 30-Aug-94

ATTENTION: Fred Hewett/Margaret McPherson

138 rock samples received August 16, 1994Sample run date: August 26, 1994Samples Submitted By:J.Watkins/B.McDonoughClient Project Number:SulphuretsShipment Number:28

| Et #. | Tag #  | Ag<br>(ppm) | As<br>(ppm) | Cu<br>(ppm) | Hg<br>(ppm)     | Mo<br>(ppm) | Pb<br>(ppm) | Sb<br>(ppm) | Ti<br>(ppm) | Zn<br>(ppm) |
|-------|--------|-------------|-------------|-------------|-----------------|-------------|-------------|-------------|-------------|-------------|
|       |        |             | -           |             | · · ·           |             |             |             |             |             |
|       |        |             |             |             |                 |             |             |             |             |             |
|       |        |             |             |             |                 |             |             |             |             |             |
|       |        |             |             |             | •               |             |             |             |             |             |
|       |        |             |             |             |                 |             |             |             |             |             |
|       |        |             |             |             |                 |             |             |             |             |             |
|       | •      |             |             |             |                 |             |             |             |             |             |
|       | •      |             |             |             |                 |             |             |             |             |             |
| 11    | 150038 | 13.2        | 295         | 119         | <5              | 15          | 560         | 10          | <10         | 438         |
| 12    | 150039 | 5.2         | 70          | 22          | <5              | 43          | 88          | <5          | <10         | 71          |
| 13    | 150040 | 3.6         | 60          | 12          | <5              | 13          | 40          | <5          | <10         | 35          |
| 14    | 150041 | 2.6         | 65          | 14          | <5              | 4           | 32          | <5          | <10         | 41          |
| 15    | 150042 | 3.4         | 70          | 11          | <5              | 5           | 28          | <5          | <10         | 79          |
| 16    | 150043 | 4.2         | 70          | 13          | 5               | 6           | 34          | <5          | <10         | 64          |
| 17    | 150044 | 2.8         | 55          | 8           | <5              | 5           | 14          | <5          | <10         | 26          |
| 18    | 150045 | 4.2         | 105         | 23          | <5              | 13          | 26          | <5          | <10         | 47          |
| 19    | 150046 | 2.6         | 100         | 12          | <5              | 4           | 30          | <5          | <10         | 59          |
| 20    | 150047 | 3.8         | 80          | 16          | <5              | 4           | 40          | <5          | <10         | 68          |
| 21    | 150048 | 3.8         | 200         | 22          | <5              | 46          | 40          | <5          | <10         | 85          |
| 22    | 150049 | 18.0        | 245         | 18          | <5              | 4           | 26          | <5          | <10         | 99          |
| 23    | 150050 | 5.8         | 970         | 23          | <5 <sup>.</sup> | 8           | 22          | <5          | <10         | 120         |
| 24    | 150051 | 6.4         | 255         | 16          | 5               | 5           | 44          | <5          | <10         | 102         |
| 25    | 150052 | >30         | 215         | 342         | <5              | 2           | 642         | 305         | <10         | 1607        |

. .

Eco-Tech Laboratories Ltd.

· ...

|      |        | Ag    | As    | Cu          | Hg    | Мо    | Pb    | Sb    | TI    | Zn    |
|------|--------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|
| Et # | Tag #  | (ppm) | (ppm) | (ppm)       | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) |
| 26   | 150053 | 9.4   | 595   | 43          | <5    | <1    | 24    | <5    | <10   | 58    |
| 27   | 150054 | 5.4   | 375   | 30          | <5    | 3     | 20    | <5    | <10   | 58    |
| 28   | 150056 | 3.2   | 225   | 23          | <5    | 2     | 22    | <5    | <10   | 42    |
| 29   | 150057 | 3.8   | 175   | · <u>20</u> | <5    | 8     | 20    | <5    | <10   | 35    |
| 30   | 150058 | 5.6   | 225   | 21          | <5    | 2     | 22    | <5    | <10   | 53    |
| 31   | 150059 | 5.2   | 160   | 25          | <5    | 3     | 28    | <5    | <10   | 74    |
| 32   | 150060 | 6.2   | 385   | 56          | <5    | <1    | 24    | <5    | <10   | 49    |
| 33   | 150061 | 5.2   | 370   | 58          | <5    | 1     | 26    | <5    | <10   | 76    |
| 34   | 150062 | 6.8   | 615   | 39          | <5    | <1    | 22    | <5    | <10   | 41    |
| 35   | 150063 | 5.2   | 415   | 22          | 5     | 3     | 32    | <5    | <10   | 66    |
| 36   | 150064 | 6.8   | 325   | 13          | <5    | 2     | 38    | <5    | <10   | 94    |
| 37   | 150065 | 5.4   | 520   | 16          | <5    | 2     | 32    | 5     | <10   | 80    |
| 38   | 150066 | 4.2   | 345   | 14          | <5    | 1     | 14    | <5    | <10   | 35    |
| 39   | 150067 | 5.8   | 340   | 19          | <5    | 4     | 24    | <5    | <10   | 61    |
| 40   | 150068 | 24.0  | 265   | 30          | <5    | 2     | 54    | 20    | <10   | 67    |
| 41   | 150069 | 11.6  | 1180  | 92          | <5    | 2     | 168   | 15    | <10   | 1075  |
| 42   | 150070 | 6.2   | 2370  | 66          | 10    | 2     | 158   | 10    | <10   | 395   |
| 43   | 150071 | 2.2   | 1150  | 44          | <5    | <1    | 64    | 10    | <10   | 230   |
| 44   | 150072 | 10.8  | 3785  | 129         | <5    | 13    | 108   | 20    | <10   | 252   |
| 45   | 150073 | 13.8  | 2955  | 84          | <5    | <1    | 94    | 5     | <10   | 162   |
| 46   | 150074 | 6.8   | 2495  | 93          | <5    | 1     | 74    | 10    | <10   | 502   |
| 47   | 150075 | 3.8   | 2345  | 77          | <5    | <1    | 44    | 20    | <10   | 179   |
| 48   | 150076 | 4.4   | 3110  | 73          | <5    | 2     | 22    | 20    | <10   | 59    |
| 49   | 150077 | 3.4   | 1720  | 61          | <5    | <1    | 30    | 15    | <10   | 87    |
| 50   | 150078 | 4.4   | 2145  | 86          | <5    | <1    | 20    | 20    | <10   | 59    |
| 51   | 150079 | 3.0   | 375   | 56          | <5    | <1    | · 6   | 10    | <10   | 44    |
| 52   | 150080 | 18.4  | 575   | 104         | 5     | 1     | 38    | 15    | <10   | 496   |
| 53   | 150081 | 3.2   | 790   | 86          | 10    | <1    | 30    | 15    | <10   | 165   |
| 54   | 150082 | 3.4   | 510   | 85          | <5    | <1    | 16    | 5     | <10   | 59    |
| 55   | 150083 | 2.2   | 1030  | 74          | 5     | 3     | 30    | 10    | <10   | 102   |
| 56   | 150084 | 3.0   | 405   | 92          | <5    | 1     | 22    | 10    | <10   | 121   |
| 57   | 150085 | 2.8   | 1955  | 87          | <5    | <1    | 18    | 15    | <10   | 82    |
| 58   | 150086 | 3.0   | 855   | 276         | <5    | <1    | 8     | 15    | <10   | 38    |
| 59   | 150087 | 2.6   | 150   | 38          | <5    | <1    | 36    | 10    | <10   | 59    |
| 60   | 150088 | 3.4   | 275   | 45          | <5    | 3     | 48    | 15    | <10   | 539   |
| 61   | 150089 | 5.8   | 145   | 70          | <5    | <1    | 28    | 15    | <10   | 39    |
| 62   | 150090 | 3.2   | 155   | 57          | <5    | 3     | 4     | 10    | <10   | 34    |
| 63   | 150091 | 0.8   | 75    | 24          | <5    | 1     | 8     | <5    | <10   | 21    |
| 64   | 150092 | 8.8   | 80    | 21          | <5    | 3     | 68    | <5    | <10   | 125   |
| 65   | 150093 | 3.0   | 195   | 90          | <5    | 1     | 12    | 10    | <10   | 59    |
| 66   | 150094 | 4.2   | 210   | 110         | 5     | 3     | 20    | <5    | <10   | 81    |
| 67   | 150095 | 4.0   | 175   | 80          | <5    | <1    | 22    | <5    | <10   | 57    |
| 68   | 150096 | 2.4   | 100   | 133         | <5    | 3     | 6     | <5    | <10   | 19    |
| 69   | 150097 | 2.4   | 50    | 62          | <5    | 3     | 20    | <5    | <10   | 21    |
| 70   | 150098 | 2.4   | 60    | 56          | <5    | 3     | 12    | 10    | <10   | 26    |
| 71   | 150099 | 2.0   | 100   | 55          | <5    | 4     | 6     | <5    | <10   | 16    |
| 72   | 150100 | 13.6  | 180   | 114         | <5    | 23    | 50    | <5    | <10   | 113   |
| 73   | 150101 | 10.8  | 205   | 120         | <5    | 19    | 56    | 5     | <10   | 157   |
| 74   | 150102 | 13.0  | 830   | 153         | <5    | 6     | 48    | <5    | <10   | 59    |
| 75   | 150103 | 8.0   | 480   | 126         | 5     | 3     | 24    | <5    | <10   | 36    |

.

, . .

.

2

Eco-Tech Laboratories Ltd.

• 4

|       |        | Ag    | As    | Cu      | Hg    | Мо    | Pb    | Sb    | TI    | Zn    |
|-------|--------|-------|-------|---------|-------|-------|-------|-------|-------|-------|
| Et #. | Tag #  | (ppm) | (ppm) | (ppm)   | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) |
| 76    | 150104 | 5.2   | 635   | 142     | 5     | <1    | 48    | 5     | <10   | 146   |
| 77    | 150105 | 4.6   | 645   | 100     | <5    | 3     | 18    | 5     | <10   | 55    |
| 78    | 150106 | 3.6   | 730   | 141     | <5    | 6     | 22    | 10    | <10   | 74    |
| 79    | 150107 | 2.8   | 590   | ··· 110 | 5     | 8     | 22    | 5     | <10   | 74    |
| 80    | 150108 | 2.8   | 460   | 122     | <5    | 5     | 18    | 10    | <10   | 50    |
| 81    | 150109 | 3.4   | 635   | 139     | <5    | 5     | 30    | 10    | <10   | 63    |
| 82    | 150110 | 1.2   | 60    | 80      | <5    | 7     | 16    | 15    | <10   | 237   |
| 83    | 150111 | 2.4   | 50    | 96      | <5    | 3     | 30    | <5    | <10   | 198   |
| 84    | 150112 | 3.0   | 40    | 107     | 5     | 2     | 34    | <5    | <10   | 156   |
| 85    | 150113 | 1.8   | 105   | 130     | <5    | 7     | 28    | 15    | <10   | 217   |
| 86    | 150114 | 2.4   | 180   | 127     | <5    | 2     | 36    | 10    | <10   | 159   |
| 87    | 150115 | 4.0   | 175   | 103     | <5    | 1     | 62    | 10    | <10   | 216   |
| 88    | 150116 | 1.6   | 110   | 30      | <5    | 4     | 58    | 10    | <10   | 290   |
| 89    | 150117 | 2.0   | 85    | 77      | <5    | 5     | 42    | 15    | <10   | 208   |
| 90    | 150118 | 2.4   | 120   | 112     | <5    | 2     | 38    | 10    | <10   | 254   |
| 91    | 150119 | 2.2   | 90    | 127     | 5     | 3     | 46    | 10    | <10   | 257   |
| 92    | 150120 | 2.6   | 105   | 124     | <5    | 7     | 38    | 10    | <10   | 209   |
| 93    | 150121 | 2.8   | 85    | 150     | <5    | 6     | 16    | 10    | <10   | 198   |
| 94    | 150122 | 2.0   | 150   | 117     | <5    | 7     | 22    | 10    | <10   | 155   |
| 95    | 150123 | 2.4   | 60    | 146     | <5    | 20    | 34    | 15    | <10   | 263   |
| 96    | 150124 | 2.2   | 130   | 123     | <5    | 18    | 30    | <5    | <10   | 196   |
| 97    | 150125 | 3.6   | 305   | 93      | <5    | 16    | 50    | 5     | <10   | 150   |
| 98    | 150126 | 2.8   | 150   | 123     | <5    | 21    | 58    | 10    | <10   | 355   |
| 99    | 150127 | 2.6   | 85    | 154     | <5    | 33    | 60    | 10    | <10   | 301   |
| 100   | 150128 | 2.0   | 50    | 118     | <5    | 2     | 26    | 20    | <10   | 148   |
| · 101 | 150129 | 2.0   | 65    | 132     | <5    | 9     | 26    | 15    | <10   | 160   |
| 102   | 150130 | 3.0   | 85    | 171     | <5    | 8     | 16    | 15    | <10   | 107   |
| 103   | 150131 | 1.6   | 35    | 107     | 5     | 22    | 12    | <5    | <10   | 57    |
| 104   | 150132 | 1.4   | 70    | 104     | 5     | 14    | 28    | 10    | <10   | 170   |
| 105   | 150133 | 2.0   | 40    | 146     | <5    | 11    | 22    | 10    | <10   | 69    |
| 106   | 150134 | 1.4   | 35    | 82      | 5     | 7     | 12    | 5     | <10   | 34    |
| 107   | 150135 | 2.2   | 50    | 160     | <5    | 16    | 8     | 5     | <10   | 58    |
| 108   | 150136 | 1.6   | 70    | 67      | <5    | 21    | 20    | 10    | <10   | 60    |
| 109   | 150137 | 2.2   | 100   | 92      | <5    | 24    | 36    | 5     | <10   | 159   |
| 110   | 150138 | 2.4   | 135   | 147     | <5    | <1    | 32    | 10    | <10   | 129   |
| 111   | 150139 | 2.0   | 105   | 137     | 5     | 16    | 24    | 10    | <10   | 115   |
| 112   | 150140 | 1.2   | 210   | 143     | 5     | 4     | 32    | 10    | <10   | 82    |
| 113   | 150149 | 3.2   | 320   | 158     | <5    | <1    | 62    | 5     | <10   | 177   |
| 114   | 150150 | 2.8   | 320   | 139     | <5    | 1     | 28    | <5    | <10   | 148   |
| 115   | 150151 | 2.4   | 295   | 93      | <5    | 1     | 24    | <5    | <10   | 133   |
| 116   | 150152 | 2.2   | 335   | 122     | <5    | <1    | 34    | <5    | <10   | 83    |
| 117   | 150153 | 2.4   | 210   | 131     | <5    | <1    | 20    | 10    | <10   | 125   |
| 118   | 150154 | 1.8   | 85    | 104     | <5    | <1    | 26    | 5     | <10   | 109   |
| 119   | 150155 | 3.2   | 105   | 150     | <5    | <1    | 28    | 15    | <10   | 237   |
| 120   | 150156 | 2.2   | 115   | 134     | <5    | <1    | 20    | 15    | <10   | 97    |
| 121   | 150157 | 3.4   | 110   | 187     | <5    | <1    | 48    | 10    | <10   | 191   |
| 122   | 150158 | 2.2   | 175   | 122     | <5    | <1    | 20    | 15    | <10   | 112   |
| 123   | 150159 | 2.0   | 200   | 143     | 5     | <1    | 20    | 10    | <10   | 111   |
| 124   | 150160 | 1.8   | 195   | 115     | <5    | 2     | 30    | 5     | <10   | 144   |
| 125   | 150161 | 2.8   | 315   | 126     | <5    | 8     | 16    | 10    | <10   | 85    |

•

. **.** 

.

Eco-Tech Laboratories Ltd.

· 4

|           |        | Aq    | As    | Cu              | Hq      | Мо    | Pb    | Sb     | TI    | Zn    |
|-----------|--------|-------|-------|-----------------|---------|-------|-------|--------|-------|-------|
| Et #.     | Tag #  | (ppm) | (ppm) | (ppm)           | (ppm)   | (ppm) | (ppm) | (ppm)  | (ppm) | (ppm) |
| 126       | 150162 | 2.2   | 355   | 116             | <5      | 9     | 34    | 10     | <10   | 108   |
| 127       | 150163 | 4.2   | 430   | 118             | <5      | 2     | 98    | 5      | <10   | 120   |
| 128       | 150164 | 7.4   | 510   | 34              | 5       | 4     | 216   | <5     | <10   | 364   |
| 129       | 150165 | 12.2  | 340   | - 59            | <5      | 4     | 108   | <5     | <10   | 263   |
| 130       | 150166 | 11.4  | 450   | <sup>'</sup> 72 | <5      | 6     | 94    | <5     | <10   | 284   |
| 131       | 150167 | 5.6   | 440   | 103             | <5      | 5     | 28    | 5      | <10   | 76    |
| 132       | 150168 | 10.0  | 510   | 84              | <5      | 16    | 64    | <5     | <10   | 134   |
| 133       | 150169 | 5.4   | 490   | 86              | <5      | 11    | 34    | <5     | <10   | 325   |
| 134       | 150170 | 10.4  | 480   | 95              | <5      | 6     | 44    | 10     | <10   | 108   |
| 135       | 150171 | 8.8   | 445   | 123             | <5      | 9     | 28    | <5     | <10   | 153   |
| 136       | 150172 | 5.8   | 540   | 113             | <5      | 10    | 26    | <5     | <10   | 70    |
| 137       | 150173 | 2.2   | 85    | 109             | <5      | 5     | 38    | <5     | <10   | 100   |
| 138       | 150174 | 1.6   | 55    | 121             | 5       | 4     | 42    | <5     | <10   | 88    |
| QC/DAT    | A:     |       |       |                 |         |       |       |        |       |       |
| Resplit # | t;     | 1     |       |                 |         |       |       |        |       |       |
| RS/41     | 150069 | 12.0  | 1230  | 93              | <5      | 2     | 176   | 20     | <10   | 1025  |
| RS/81     | 150109 | 3.6   | 630   | 140             | <5      | 6     | 30    | 15     | <10   | 67    |
| RS/121    | 150157 | 3.4   | 120   | 175             | <5      | <1    | 52    | 10     | <10   | 190   |
| RS/137    | 150173 | 1.4   | 80    | 104             | <5      | 4     | 36    | <5     | <10   | 94    |
| Repeat #  | t:     |       |       |                 |         |       |       |        |       |       |
| 1         | 14429  | >30   | 245   | 21              | 5       | 2     | 248   | 20     | <10   | 259   |
| 39        | 150067 | 5.4   | 345   | 18              | <5      | 4     | 24    | <5     | <10   | 57    |
| 77        | 150105 | 4.4   | 635   | 102             | <5      | 2     | 20    | 10     | <10   | 56    |
| 115       | 150151 | 2.6   | 325   | 94              | <5      | 2     | 26    | <5     | <10   | 133   |
| Standar   | 4.     | 1 6   | 65    | 80              | E       | -1    | 20    | F      | ~10   | 76    |
| Januar    | 4.     | 1.0   | 70    | 85              | J<br>5  | -1    | 20    | J<br>5 | ~10   | 70    |
|           |        | 1.0   | 65    | 80<br>00        | J<br>~5 | ~1    | 20    | J<br>5 | ~10   | 71    |
|           |        | 1.0   | 70    | 80              | ~5      | ~1    | 20    | 5      | <10   | 77    |
|           |        | 1.4   | 10    |                 | -0      | - 1   | ~~    | J      | ~10   | 11    |

.

4 ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/NewhawkS

19-Aug-94

- 4

| Ft #                       | Tag #           | Ag<br>(npm) | As<br>(ppm) | Cu<br>(mag) | Hg<br>(maa) | Mo<br>(ppm) | Pb<br>(mag) | Sb<br>(ppm) | TI<br>(ppm) | Zn<br>(ppm) |  |
|----------------------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|
|                            |                 | (PPm)       |             | (PP-0)      | <u></u>     |             | <u></u>     |             | <u> </u>    |             |  |
| 04                         | 450140          | 1.4         | 205         | 169         | ~5          | ~1          | 36          | 10          | <10         | 72          |  |
| 01<br>82                   | 150142          | 1.4         | 260         | 140         | <5          | 14          | 40          | 10          | <10         | 73<br>84    |  |
| 83                         | 150145          | 1.0         | 185         | 116         | <5          | 4           | 36          | 10          | <10         | 73          |  |
| 84                         | 150145          | 2.0         | 260         | 177         | <5          | 10          | 52          | 10          | <10         | 101         |  |
| 85                         | 150146          | 2.6         | 250         | 161         | <5          | 22          | 58          | 10          | <10         | 90          |  |
| 86                         | 150147          | >30         | 370         | 407         | 10          | <1          | 658         | 20          | <10         | 1245        |  |
| 87                         | 150148          | 2.6         | 330         | 152         | <5          | 4           | 68          | 10          | <10         | 167         |  |
| <u>QC/DAT</u><br>Resplit # | <u>A:</u><br>#: |             |             |             |             |             |             |             |             |             |  |
| R/\$7                      | 16781           | >30         | 370         | 95          | <5          | 12          | 2320        | 100         | <10         | 1080        |  |
| R/S50                      | 127219          | 17.6        | 300         | 50          | <5          | 7           | 60          | 10          | <10         | 43          |  |
| R/S80                      | 127249          | 5.2         | 155         | 39          | <5          | 4           | 16          | <5          | <10         | 31          |  |
| Repeat #                   | <i>¥:</i>       |             |             |             | _           |             |             |             |             |             |  |
| 1                          | 16775           | >30         | 290         | 27          | <5          | 10          | 1638        | 90          | <10         | 750         |  |
| 39                         | 12/208          | 14.8        | 185         | 88          | <5          | 3           | 150         | 10          | <10         | 251         |  |
| 11                         | 127246          | 6.4         | 125         | 47          | <5          | 6           | 28          | 5           | <10         | 89          |  |
| Standard: 1991             |                 |             |             |             |             |             |             |             |             |             |  |
|                            |                 | 1.0         | 65          | 88          | <5          | <1          | 24          | 5           | <10         | 76          |  |
|                            |                 | 1.2         | 65          | 86          | <5          | <1          | 22          | <5          | <10         | 81          |  |
|                            |                 | 1.0         | 70          | 80          | <5          | <           | 22          | 5           | <10         | 85          |  |

<u>ус</u>.

. .

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/NewhawkS df#3044

25-Aug-94

|           |           | Ag    | As    | Cu    | Hg            | Мо       | Pb    | Sb    | TI    | Zn    |
|-----------|-----------|-------|-------|-------|---------------|----------|-------|-------|-------|-------|
| Et #.     | Tag #     | (ppm) | (ppm) | (ppm) | (ppm)         | (ppm) // | (ppm) | (ppm) | (ppm) | (ppm) |
| QC/DAT    | <u>A:</u> |       |       |       |               |          |       |       |       |       |
| Resplit # | ŧ:        |       |       |       |               |          |       |       |       |       |
| R/S38     | 127269    | >30   | 310   | 554   | <5            | 9        | 1148  | 235   | <10   | 1705  |
| R/S78     | 150009    | 2.8   | 275   | 45    | <5            | <1       | 58    | <5    | <10   | 168   |
| R/S109    | 14814     | 3.2   | 260   | 12    | <5            | <1       | 32    | <5    | <10   | 51    |
| Repeat #  | f:        |       |       |       |               |          |       |       |       |       |
| 1         | 16799     | 4.6   | 120   | 8     | <5            | 7        | 116   | 10    | <10   | 14    |
| 39        | 127270    | 8.0   | 55    | 129   | <b>&lt;</b> 5 | <1       | 28    | 5     | <10   | 95    |
| 77        | 150008    | 3.8   | 270   | 44    | <5            | <1       | 70    | <5    | <10   | 224   |
|           |           |       |       |       |               |          |       |       |       |       |
| Standard  | d: 1991   |       |       |       |               |          |       |       |       |       |
|           |           | 1.2   | 75    | 85    | <5            | <1       | 20    | 5     | <10   | 76    |
|           |           | 1.4   | 80    | 82    | <5            | <1       | 20    | 5     | <10   | 79    |
|           |           | 1.2   | 80    | 80    | <5            | <1       | 22    | 5     | <10   | 76    |
|           |           |       |       |       |               |          |       |       |       |       |

N.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc. T. B.C. Certified Assayer

XLS/NewhawkS df#3054



