LGG NO: ACTION:	DEC 0 9 1994 U	
. Cu	· · · · · · · · · · · · · · · · · · ·	;
FILE NO:		

RECEIVED
DEC 08 1994
Gold Commissioner's Office VANCOUVER, B.C.

ASSESSMENT REPORT ON

GEOLOGICAL MAPPING AND GEOCHEMICAL SOIL SAMPLING

GRAY ROCK PROPERTY BRIDGE RIVER AREA, LILLOOET MINING DIVISION

LATITUDE 50 48'N LONGITUDE 122 42'W

N.T.S. 92-J-15E

FOR LEVON RESOURCES LTD. 455 GRANVILLE ST. VANCOUVER, B.C. V6C 1T1

BY J. MILLER-TAIT, P.Geo. C.CHURCH,P.Geo.

NOVEMBER 10, 1994

GEOLOGICAL BRANCH ASSESSMENT REPORT

61 J

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

THE GRAY ROCK PROPERTY IS LOCATED APPROXIMATELY 11 KM SOUTHEAST OF GOLD BRIDGE NEAR THE HEADWATERS OF TRUAX CREEK ON THE SOUTH SIDE OF MOUNT TRUAX. THE PROPERTY ENCOMPASES 13 CLAIMS TOTALLING 28 UNITS WITHIN THE BRIDGE RIVER AREA OF THE LILLOOET MINING DIVISION. THE CLAIMS ARE OWNED 100% BY LEVON RESOURCES.

i

THE SOUTH END OF THE PROPERTY HAS BEEN EXPLORED EXTENSIVELY BY UNDERGROUND WORKINGS AND BOTH SURFACE AND UNDERGROUND DRILLING SINCE 1950. FOR MORE DETAIL ON THIS WORK THE READER IS REFERED TO THE REFERENCES INCLUDED WITH THIS REPORT.

THE GEOCHEMICAL SURVEY IN THE CURRENT PROGRAM MET WITH LIMITED SUCCESS. ON THE TRUAX CLAIM DISCOVERED SEVERAL PARRALLEL TRENDING GEOCHEMICAL SOIL ANOMALIES, OPEN TO THE WEST, WERE DISCOVERED 250M NORTHWEST OF KNOWN SHOWINGS AND ARE RELATED TO MINERALIZED VEINS IN OUTCROP NEARBY. HOWEVER THE SURVEY WAS UNABLE TO TRACE THE MAIN SHOWING TO THE NORTHEAST WHERE IT CROSSES INTO DEFORMED SEDIMENTS OF THE BRIDGE RIVER GROUP. ACCUMULATIONS OF BOULDER TALUS SLIDES AND THICK OVERBURDEN MAY BE BLOCKING THE GEOCHEMICAL SOURCE.

GIVEN THE SUCCESS OF GEOCHEMICAL SURVEYS IN THE BRIDGE RIVER AREA AT LOCATING COVERED MINERALIZED STRUCTURES AN EXPANDED SURVEY ON THE TRUAX GOLD CLAIM IS RECOMMENDED. THIS WOULD REQUIRE EXTENDING THE BASELINE 800M TO THE EAST AND SAMPLING NORTH-SOUTH GRID LINES, AT 25M INTERVALS, SPACED 100M APART. THE GRID SHOULD THEN BE GEOLOGICALLY MAPPED AND PROSPECTED AS WELL. A PROGRAM OF EXPLORATORY TRENCHING AND DIAMOND DRILLING WOULD THEN FOLLW BASED ON RESULTS OF THE GEOCHEMICAL SURVEY. THE MAIN SHOWINGS ON TRUAX GOLD ARE LESS THAN 400M FROM THE FORESTRY ROAD FOLLOWING TRUAX CREEK AND A SHORT ACCESS ROAD WOULD BE SIMPLE TO CONSTRUCT.

TABLE OF CONTENTS

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	PAGE NO.
	•
INTRODUCTION	1
LOCATION, ACCESS, AND TOPOGRARHY	2
ACCOMMODATION AND LABOUR	2
CLAIMS DESCRIPTION	3
MINING HISTORY	4
PROPERTY GEOLOGY	7
REGIONAL GEOLOGY	8
GEOCHEMISTRY	10
STATEMENT OF COSTS	11
REFERENCES	12
QUALIFICATIONS	13

LIST OF FIGURES

FIGURE 1: LOCATION MAP	FOLLOWS PAGE 2
FIGURE 2: CLAIMS MAP	FOLLOWS PAGE 3
FIGURE 3: REGIONAL GEOLOGY	FOLLOWS PAGE 9
FIGURE 4: GRID LOCATION	FOLLOWS PAGE 10
FIGURE 5: PROPERTY GEOLOGY	IN POCKET
FIGURE 6a: GEOCHEMISTRY Au-As	IN POCKET
FIGURE 6b: GEOCHEMISTRY Ag-Sb	IN POCKET
FIGURE 6c: GEOCHEMISTRY Cu, Pb, Zn	IN POCKET

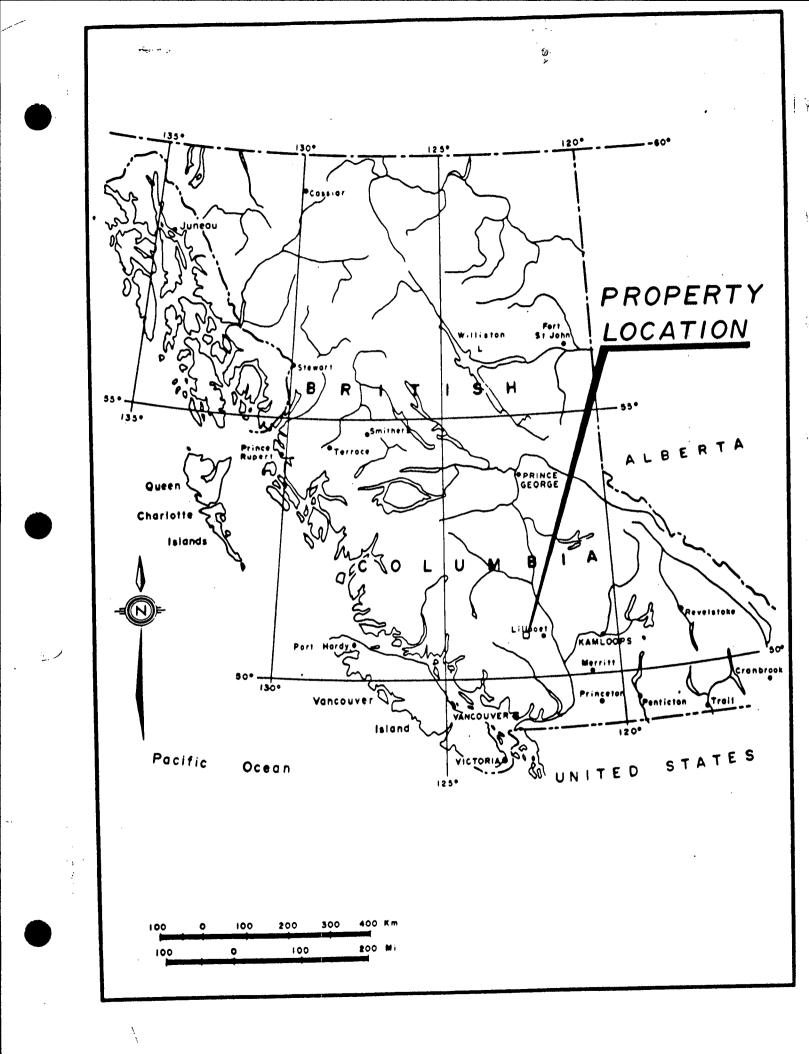
INTRODUCTION

THE GRAY ROCK PROPERTY IS LOCATED APPROXIMATELY 11 KM SOUTHEAST OF GOLD BRIDGE NEAR THE HEADWATERS OF TRUAX CREEK ON THE SOUTH SIDE OF MOUNT TRUAX. THE PROPERTY ENCOMPASES 13 CLAIMS TOTALLING 28 UNITS WITHIN THE BRIDGE RIVER AREA OF THE LILLOOET MINING DIVISION. THE CLAIMS ARE OWNED 100% BY LEVON RESOURCES.

THIS REPORT DOCUMENTS ASSESSMENT WORK CONDUCTED ON THE PROPERTY IN EARLY OCTOBER. A PROGRAM OF GEOLOGICAL MAPPING AND GEOCHEMICAL SOIL SAMPLING WAS COMPLETED ON A GRID CONSTRUCTED ON THE TRUAX GOLD CLAIM. SEVERAL GEOCHEMICAL ANOMALIES COINCIDE WITH KWOWN SHOWINGS AND MINERALIZED OUTCROPS IN THIS AREA.

LOCATION, ACCESS, AND TOPOGRAPHY

THE GRAY ROCK GROUP OF CLAIMS ARE SITUATED ON THE SE SIDE OF MOUNT TRUAX AND COVER THE HEADWATERS OF TRUAX CREEK. THEY ARE ABOUT 11 KMS SOUTHEAST OF THE VILLAGE OF GOLD BRIDGE IN THE LILLOOET MINING DIVISION (92-J-15E). ACCESS FROM GOLD BRIDGE IS EASILY GAINED USING A FOURWHEEL DRIVE VEHICLE BY DRIVING ALONG THE SOUTH SHORE OF CARPENTER LAKE ON A GOOD, MAIN HAULAGE LOGGING ROAD WHICH LEADS UP TRUAX CREEK. THE MAIN LOGGING ACTIVITY IN RECENT YEARS HAS BEEN IN THE LOWER PARTS OF THE TRUAX CREEK VALLEY, AND THUS THE UPPER 5-7 KMS OF ACCESS ROAD CONSIST ONLY OF A DIRT ROAD WHICH REQUIRES THE USE OF FOUR WHEELDRIVE.

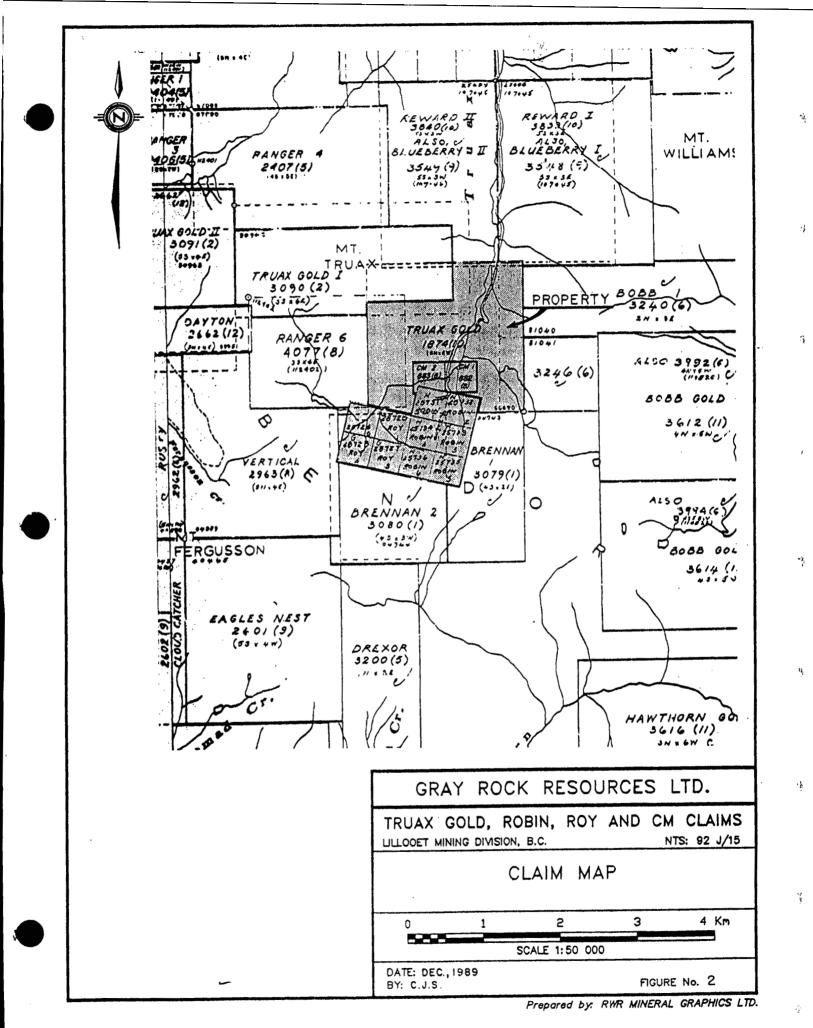

THE CLAIMS VARY IN ELEVATION FROM 1676 TO 2743 METERS ABOVE SEA LEVEL. THE LOWEST PART OF THE PROPERTY IS AT APPROXIMATELY 1676 M (5500 FT) ON THE NORTHERN BOUNDARY OF THE CLAIM GROUP ON THE TRUAX CREEK ACCESS ROAD. HIGHEST POINT OF THE CLAIM GROUP IS ON THE NORTHWESTERN SIDE AT 2743M (9000 FT.) ON THE SLOPES OF MOUNT TRUAX. SINCE THE TREE LINE IS AT APPROX 1830 m (6000 FT). MUCH OF THE PROPERTY CONSISTS OF STEEP RUGGED MOUNT SLOPES OF THE BENDOR RANGE WHICH ARE ABOVE TREE LINE. THE ONLY AREA OF TREES IS IN THE TRUAX CREEK VALLEY BELOW 1830 M (6000 FT).

BECAUSE MUCH OF THE PROPERTY IS SITUATED ON THE NORTHERLY FACING SLOPES OF THE BENDOR RANGE AT RELATIVELY HIGH ALTITUDES. THE PROPERTY RECEIVES SNOW FAIRLY EARLY IN FALL AND DOES NOT LEAVE THE VALLEY UNTIL MID TO LATE MAY.

ACCOMMODATION AND LABOUR

ACCOMMODATIONS ARE READILY AVAILABLE BY USE OF TWO HOTELS IN GOLD BRIDGE OR AT TYAX LODGE. LOCAL HOUSES ARE AVAILABLE FOR RENT IN GOLD BRIDGE. THERE ARE MANY CAMPSITES LOCATED ON LAKES AND RIVERS IN THE VICINITY AS WELL.

LOCAL PERSONNEL WERE USED FOR THE WORK ON THIS PROPERTY.A LEVON RESOURCES LTD. GEOLOGIST SUPERVISED ALL WORK DONE.


CLAIMS DESCRIPTION

THE GRAYROCK GROUP CONSISTS OF 28 UNITS

WORK COVERED BY THIS REPORT IS NOT YET INCLUDED IN THE EXPIRY DATES.

PROPERTY DETAILS:

CLAIM NAME	UNITS	RECORD NO.	EXPIRY DATE
TRUAX GOLD	16	228399	1994/10/13
ROBIN NO. 2	1	229463	1994/10/13
ROBIN NO. 3	1	229464	1994/10/13
ROBIN NO. 4	1	229465	1994/10/13
ROBIN NO. 5	1	229466	1994/10/13
ROBIN NO. 6	1	229467	1994/10/13

a non a conservation of the second a constraint on a constance of the constraint of the second s

MINING HISTORY (SAMPSON, 1989)

THE INITIAL DISCOVERY OF MINERALIZATION OF THE PROPERTY WAS MADE BY ANDY GERGEHEM, WHO STAKED THE EARLIEST RECORDED CLAIMS ON THE GRAYROCK GROUND IN 1931. THE SUBSEQUENT EXPLORATION HISTORY OF THE PROPERTY IS AS FOLLOWS:

- 1936: PROPERTY WAS ACQUIRED BY GRAY ROCK SYNDICATE, HEADED BY G.R. BANCROFT AND E.M. LOVITT, WHO EXAMINED SURFACE SHOWINGS AND SAMPLED CUTS AND TRENCHES B.T. O'GRADY OF B.C. DEPARTMENT OF MINES EXAMINED THE 6 VEINS EXPOSED ON THE PROPERTY.
- 1946: REPORTED ON BY STANLEY D. TOWNSEND.
- 1948: REPORTED ON BY C. RUTHERFORD, M.C., WHO SAMPLED 1340 FEET OF SURFACE EXPOSURE ON NO. 1 VEIN. HE REPORTED FAVORABLY ON THE PROPERTY AND RECOM-MENDED DIAMOND DRILLING AND DRIVING ADITS TO INTER-SECT THE VEIN BELOW SURFACE.
- 1949: H.L. HILL, M.E., REPORTED ON PROPERTY.
- 1949: J.S. STEVENSON REPORTED ON PROGRESS AND SAMPLED SHOWINGS (B.C. DEPT OF MINES).
- 1949: TRANCONTINENTAL RESOURCES LTD. HAD GENERAL ENG. CO. RUN RECOVERY TESTS ON ORE.
- 1950: NO. 1 ADIT WAS STARTED AUGUST 1 AT 6800 FT ELEVATION AND DRIVEN 400 FEET BEFORE WORK WAS STOPPED FOR THE WINTER.
- 1951: NO. 1 ADIT WAS DRIVEN A FURTHER 12 FEET TO INTERSECT NO. 1 VEIN WHICH WAS FOLLOWED FOR 25 FT. FOUR DIAMOND DRILL HOLES WERE DRILLED FROM ADIT
- 1952: MARCH 31st BRALORNE MINES MADE AN AGREEMENT WITH GRAY ROCK TO DO FURTHER UNDERGROUND DEVELOPMENT NO. 2 ADIT AT 6500 FT. ELEVATION WAS STARTED ON JULY AND CONTINUED UNTIL DECEMBER. THE NO. 1 VEIN WAS INTER-SECTED AT 994 FT. FROM PORTAL. THE ADIT WAS CONTINUED AN ADDITIONAL 202 FT. TOTAL LENGTH OF 576 FT. OF DRIFT WAS DRIVEN ON VEIN. A TEST SHIPMENT OF 7232 TONS AND HAND COBBED ANTIMONY ORE WAS SHIPPED TO ANTWERP.
- 1953: AND ADDITIONAL 241 FEET OF DRIFT WAS DRIVEN BY BRALORNE MINES ON NO. 1 VEIN IN NO. 2 ADIT TWO RAISES, 40' AND 37' LONG WERE DRIVEN ON THE VEIN ABOVE THIS LEVEL. 959 FT OF EXPLORATORY UNDERGROUND DIAMOND DRILLING WAS DONE.

- 1954: W.R. BACON OF B.C. DEPARTMENT OF MINES EXAMINED AND MAPPED THE SURFACE AND UNDERGROUND WORKINGS. LOGGED AVAILABLE DRILL CORE AND COLLECTED 96 SAMPLES FROM NO. 2 ADIT.
- 1959: C. ITOH & CO. LTD. OFFERED A TENTATIVE AGREEMENT TO GRAY ROCK MINING LTD.
- 1959: REPORT (1960) BY CLIVE W. BALL FOR CANEX AERIAL EXPLORATION ON EXAMINATION AND SAMPLING OF THE NO. 2 ADIT IN JULY 1959.
- 1963: SUMITOMO SHOJI CANADA LTD. EXPRESSED INTEREST IN THE PROPERTY AND A REPORT WAS PREPARED FOR THEM BY H. HILL & STARCK & ASSOCIATES LTD. GIANT MASCOT MINES LTD. SUMMARIZED THE RESULTS OF WORK PERFORMED ON THE PROPERTY.
- 1964: REPORT BY E.P. SHERWIN F. KELLY TO AMALGAMATED RESOURCES LTD. SUMMARIZING RESULTS OF EXPLORATION ON THE PROPERTY 1936 TO 1964. HE ESTIMATED AN INFERRED RESERVE OF 47,000 TONS.
- 1966: REPORT BY E.P. SHEPPARD FOR LEN BELIVEAN AND C.H. CLARKE (CLAIM OWNERS). SHEPPARD CALCULATED 77,700 TONS AT 3.00% Sb, 2.10% Pb, 10 Oz/TON Ag. HE ALSO INCLUDED A COPY OF A 1952 REPORT ON FLOTATION TESTS BY THE MINERAL DRESSING AND PROCESS METALLURGY DIVISION OF THE DEPARTMENT OF MINES AND TECHNICAL SURVEY, OTTAWA WHICH SHOWED 92% RECOVERY OF ANITMONY BY FLOTATION METHODS.
- 1968: OCTOBER-DECEMBER BACON AND CROWHURST DRILLED 4 AQ HOLES TOTALLING 395 M(1295 FEET) FROM THE NUMBER TWO ADIT IN ORDER TO CHECK DOWN DIP CONTINUITY OF THE NO. 1 AND NO. 2 VEINS. WORK WAS DIRECTED BY J.J. CROWHURST, P.ENG. USING R.W.P PHENDLER, P. ENG AS ON SITE GEOLOGIST THE WORK SHOWED THAT NO. 1 VEIN IS CONTINUOUS DOWNDIP FOR AT LEAST 300M (1000 FT.) FROM SURFACE. BEST ASSAYS OBTAINED WAS 8.17 OZ/TON Ag ACROSS 0.76 M (2.5 FT) IN HOLE 68-1.
- 1976: FALCONBRIDGE NICKEL MINES LTD. CARRIED OUT VLF-EM, SOIL SAMPLING MAGNETOMETER SURVEYS AND MAPPING.
- 1983: PARTISAN RESOURCES LTD. CARRIED OUT A PROSPECTING PROGRAM.
- 1984: PROPERTY WAS OPTIONED BY LEVON REOURCES LTD. REPORT ON ECONOMIC POTENTIAL BY P.S. FREISEN.

- 1985: LEVON RESOURCES DRILLED FOUR DIAMOND DRILL HOLES (SURFACE) TO EXPLORE CONDUCTIVE ZONE LOCATED BY THE 1976 FALCONBRIDGE SURVEYS. THE CONDUCTORS ARE CAUSED BY GRAPHITE AND MINOR PYRITE IN SHEARS IN THE BRIDGE RIVER (FERGUSSON) GROUP SEDIMENTS.
- 1989: A REPORT ON THE GEOLOGY AND EXPLORATION POTENTIAL BY CHRIS J. SAMPSON. P.ENG ON DECEMBER 14.
- 1990: A SOIL GEOCHEMICAL AND MAPPING PROGRAM WAS PERFORMED FOR LEVON RESOURCES LTD BY J. MILLER-TAIT.

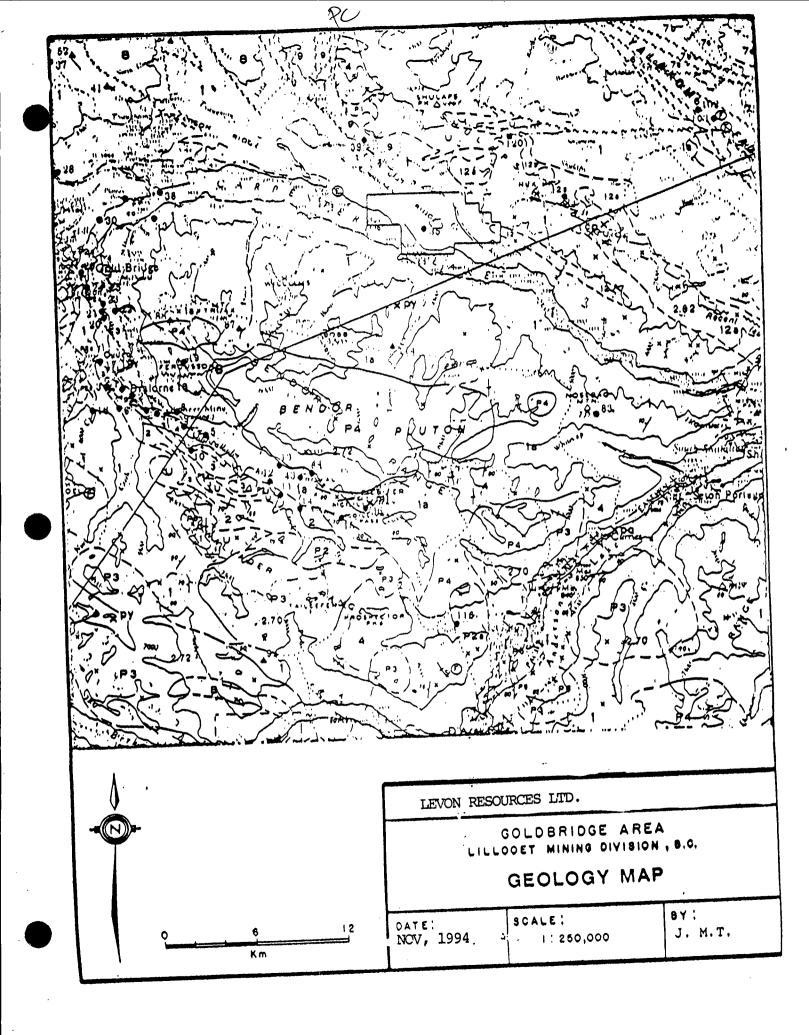
PROPERTY GEOLOGY

THE MAIN ROCK UNITS UNDERLYING THE GRAY ROCK GROUP ARE THE BENDOR GRANODIORITE AND METAMORPHOSED SEDIMENTS. THE METASEDIMENTS OCCUR AS BLOCKS SEPERATED BY THE GRANODIORITE.

THERE ARE A SERIES OF SIX KNOWN VEINS ON THE PROPERTY ROUGHLY STRIKING 070 AND DIPPING 50-60 DEGREES TO THE SOUTH. THE VEIN SYSTEMS CROSS-CUT ALL OTHER ROCK UNITS. THIS REPORT WILL NOT GO INTO ANY DETAIL ABOUT THESE VEINS AS THEY ARE DOCUMENTED IN EARLIER REPORTS.

THERE WERE A SERIES OF VEINS EXAMINED ON THE WEST SLOPE ABOVE TRUAX CREEK AT TIMBERLINE (ELEV. 6310 FT.) NEAR THE NORTHERN BOUNDARY OF THE TRUAX GOLD CLAIM. ONE SUCH VEIN HAVING A MAXIMUM EXPOSED STRIKE LENGTH OF 75 METERS CONSISTS OF A QUARTZ VEIN WITH APPROXIMATELY 30% ARSENOPYRITE AND PYRITE AND VARIES FROM 30 TO 100 CENTIMETERS IN WIDTH. THIS VEIN AND 2 OTHER VEINS 50 METERS TO THE NORTH STRIKE 035 AND DIP 40 DEGREES TO THE WEST. THERE IS A CAVED ADIT AND TEST PITS LOCATED ON THE VEINS. GRAB SAMPLES OF THE VEIN WHICH IS EXPOSED FOR 75 METERS CARRIED 1.2 oz/t AND 0.74 oz/t GOLD. IN THE SAME AREA LOCATED 75 METERS TO THE NORTH-EAST THERE ARE SEVERAL PITS WHERE LARGE (1 METER) BLOCKS OF MASSIVE COARSE GRAINED STIBNITE CAN BE FOUND. THE QUARTZ VEINS ARE HOSTED BY THE GRANDIORITE AND THE STIBNITE VEIN IS HOSTED BY THE METASEDIMENTS.

REGIONAL GEOLOGY


THE GRAY ROCK PROPERTY IS SITUATED IN THE FORMER GOLD PRODUCING BRIDGE RIVER DISTRICT. THE TWO PRINICIPAL PRODUCING MINES, THE PIONEER AND BRALORNE, TOGETHER PRODUCED OVER 4 MILLION OZ OF GOLD. THE BRIDGE RIVER MINING DISTRICT IS SITUATED ON THE NORTHEASTERN MARGIN OF THE COAST CRYSTALLINE BELT OF ROCKS. THE OUTER LIMIT OF THE CRYSTALLINE BELT IS MARKED BY A SERIES OF GRANODIORITE TO QUARTZ DIORITE PLUTONS, KNOWN AS THE BENDOR INTRUSIONS, WHICH FORM THE CORE OF THE BENDOR RANGE.

THE MOST ABUNDANT STRATIFIED ROCKS IN THE BRIDGE RIVER DISTRICT ARE PART OF WHAT WAS CALLED THE BRIDGE RIVER GROUP BY RODDICK AND HUTCHINSON(1973), BUT WAS SUBSEQUENTLY CALLED FERGUSSON GROUP BY CHURCH (1987). THEY ARE EXPOSED IN THE CORE OF A BROAD ANTIFORM, WHICH PLUNGES TO THE NORTH-WEST ALONG AN AXIS THAT PASSES THROUGH SHALATH AND TYAUGHTON LAKES AND CONTAINS THE MAIN VALLEYS OF THE BRIDGE RIVER AND SETON LAKES. THE BRIDGE RIVER GROUP IS BELIEVED TO BE OF MIDDLE TRIASSIC AGE AND IS OVERLAIN BY EQUALLY DEFORMED AND APPARENTLY COMFORMABLE CLASTIC AND VOLCANIC ROCKS OF THE UPPER TRIASSIC CADWALLADER GROUP. RODDICK AND HUTCHINSON DIVIDED THIS GROUP INTO A BASAL, MAINLY SEDIMENTARY FORMATION (NOEL), A MIDDLE VOLCANIC SEQUENCE (PIONEER) AND AN UPPER UNIT (HURLEY) THAT CLOSELY RESEMBLES THE BASAL UNIT. THE AGE OF THE SEDIMENTS EXPOSED ON THE GRAYROCK PROPERTY IS NOT PRESENTLY KNOWN, IT IS NOT CERTAIN AS TO WHICH ONE OF MIDDLE OR UPPER TRIASSIC UNITS THE SEDIMENTS BELONG.

THE BRIDGE RIVER AND CADWALLADER GROUPS HAVE BEEN CUT BY INTRUSIONS OF VARIOUS AGES, THE EARLIEST OF WHICH ARE THE BRALORNE INTRUSIVES WHICH ARE CONSIDERED COEVAL WITH PIONEER GREENSTONE, I.E. OF UPPER TRIASSIC AGE. THESE FORM SOME OF THE PRINICIPAL HOST ROCKS FOR THE GOLD ORE BODIES OF THE PIONEER AND BRALORNE MINES AND ARE WELL EXPOSED IN THE CADWALLADER CREEK AND HURLEY RIVER VALLEYS.

THE SEVERAL GRANODIORITE PLUTONS WHICH UNDERLIE THE BENDOR RANGE WERE NAMED THE BENDOR INTRUSIVES BY CAIRNES(1937). THE LARGEST OF THEM, THE BENDOR PLUTON, CONSISTS PRINCIPALLY OF CLEAN, HOMOGENEOUS, MEDIUM TO COARSE-GRAINED LIGHT COLORED BIOTITE HORNEBLENDE GRANODIORITE. QUARTZ DIORITE AND DIORITE ARE MINOR COMPONENTS OF THE PLUTONS. FOLIATION IS RARELY SEEN. CAIRNES (1937). OBSERVED THAT:

"THE BENDOR INSTUSIVES ARE MASSIVE ROCKS FORMING BOLD OUTCROPS, WHICH ARE TRAVERSED BY WIDELY SPACED JOINTS, DIPPING IN PARTS AT LOW ANGLES AND IN PART NEARLY VERTICALLY. THE LOW ANGLE JOINTS ARE PARTICULARLY NOTICABLE AND FROM A DISTANCE LEND A COARSELY STRATIFIED APPEARANCE TO THE ROCKS. CONTACTS WITH ADJOINING FORMATIONS DIP STEEPLY OUTWARDS FROM THE BATHOLITHIC MASSES. THE PRINCIPAL CONTACTS WITHIN THE AREA HAVE A GENERAL NORTH-WESTERLY STRIKE, AND ALONG THESE CONTACT THE OLDER FORMATIONS HAVE APPROXIMATELY THE SAME STRIKE AND FOR THE MOST PART DIP AWAY FROM THE INSTRUSIVE MASSES. THE AGE OF THE BENDOR INTUSIONS IS NOT KNOWN, BUT THEY ARE ASSUMED, FROM GENERAL FIELD RELATIONSHIPS TO BE OF LATE CRETACEOUS TO EARLY TERTIARY AGE.

LEGEND FROM MAP 13-1973

MESOZOIC

 \overline{Q}

いっかいけいいけれ

41111

17

ななの

19

1:

1

, .

....

.,

= _	SIG AND CRETACEOUS
VIV	PER JURASSIC AND LOWER CRETACEOUS RELAY MOUNTAIN GROUP
6	Arguille; greyweake and people dooylowersie
JURASS	ec Ver Jurassic
5	Argillite and chais; minor sandstone, limestone and proviv conglomerate
TRIASS	IC PER TRIASSIC
\bigtriangledown	Utrabesis rocks
	NURLEY FORMATION: This-bedded limy argilite, payilite, limestoce, tuil, conglomerate, agglomerate, and esite, and minor chert
3	PIONEER FORMATION: Greensloos derived from Locesilic Cows Lod pyrociselic rocks; Ja. Lodesile breccis. Till Lod Nows, greensloos; mbor royolilis breas is Lod Cows, siste, srpilile, limestoos Lod cooglowerste
2	NOEL FORMATION: Tala-bedded argillile; cheri, conclomerate and greenetone
MIT	OLE TRIASSIC AND (7) OLDER
	BRIDDE RIVER GROUP (FERGUSSON GROUP) Chert, arguilte, phylite and greenstone; othor timestone. schiet;
	te, metamorphosed rock of map-with it mataly biotice scalet
	METAMORPRIC AND PLUTONIC ROCKS (Moody of unknown 140)
8	Metasedimentary rocks, mainly micscoous quartitis, biotis-borobiends schist, and misor schists bearing garves, staurofile and possibly stillmants
	Granitold meise, migmetitic compiexes, minor emphibolite and biotice cobiet
P6	Granite
PS	quarts montonile
P4	Grandiorian to, marolillo granodiorite and sychodiorite
P7	Querts diorite
PZ	Diorite: Za, Braloroe birueloos: Augite diorite, saboro, misor sous Synamic and quarts diorite
PI	Gaboro

Vitrabasic rocks; serpestias, peridorite, dualte

U

Hoyal (Au) Stunie (V (Au) Stors V' Univer (Au) Gruli (Au) Gruis (Au) Manuros (Au) Galdernis (Au) Galdernis (Au) Garis Mitty and Jowess (Au) Jorrs Mitty and Jowess (Au) Aristas (Au) Galder Gate (Au) Celes Gale (Au) Hayimeru (Au) Pilot (Au) D 6 f (Au) Chaprus (Au) Wayske (Au) Wayske (Au) Wayske (Au) Wayske (Au) Wayske (Au) Wayske (Au) Waite and bell (Au) Polane (Bu, Au) Epolase (Au) Schmail (Au) . 4 ٠, Summest share Empire share Wide West Wile West slibsife (30) Primrose (Au) beas Lopi, Currose (Au) Lucos (Cu, Fri Chure 5 (W, Cu) Chare 5 (W, Cu) N. TEALE, MAL PUB IQUE AND AGE FOR Apes (Fv) Cooper Queen (OW & CR. A Stor) (Ch. MP) Acure IVVI Acure (U) Luces arise, Noesy Peul (Hy) Out Cr. 5 Zone (Cu, Me) Out Cr. C Zone (Cu, Me) Cause (Cu, Fe, Zo) Lane (Cu, Fe, Zo) Souther (Vi, Zo, Ad, Fe) Moltat (Eve) (Cu, Ad, Zo) Coover Mountale (Fe, Cu, Zo, 115) Secure (Cu, Fe) Molisi I (24) (Qu, Ad, 20) Gooder Mousiasa (Fe, Qu, 20, 116) Samers (Qu, Fe) Wooser (Pe, 20, Qu) Biver Beil (Pe, Ad, Au, Qu, 20) Biver Beil (Pe, Ad, Au, Qu, 20) Diverser (Qu) Proberson (Qu) Norgery (I2), Fe, Ad, Ph Pristminias (Qu) Col Mousian (Norchort) (Fe, Ad, Ad) Crow (Ad, 20, Qu, Pb, Fe) Goide Marting, Ad, Pb, Fe) Goide Marting, Ad, Pb, Fe) Goide Marting, Ad, Pb, Ed) More (Marting, Ad, Pb, Ed) Stiver Queen (Ad, Pb, 20) Stiver Queen (Ad, 20) Stiver (Ad, 2 Aufger (Group (18) Gerden Gage (18) Benden (Au, 14) Bartier Viller Manne (Au, 14) Gorden (Gordert, 18748 Group) (Au) Gorden (Gordert, 18748 Group) (Au) Contest (197, 1985) (Gu, Au, Ap Pe) CONCEPTE INUE COLORE INUE YSINAM INSPESSION

GEOCHEMISTRY

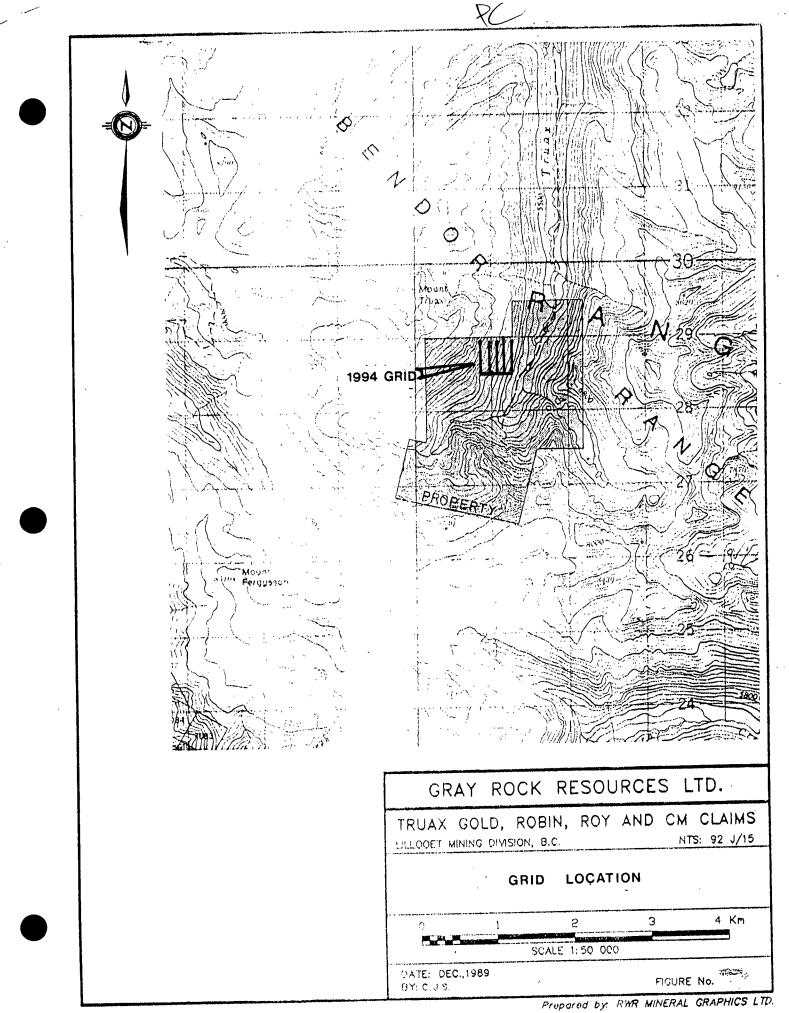
SOIL GEOCHEMISTRY

DURING THE SHORT PERIOD OF ASSESSMENT WORK A TOTAL OF 93 GEOCHEMICAL SOIL SAMPLES WERE COLLECTED ON THE TRUAX GOLD CLAIM. THEY WERE COLLECTED AT 25M INTERVALS ON LINES SPACED 100M APART AND ORIENTED NORTH-SOUTH. THE GRID COVERED AN AREA APROXIMATELY 500M X 500M. THE PURPOSE OF THE GEOCHEMICAL SURVEY WAS TO TRACE MINERALIZED VEINS ALONG STRIKE AND EXPLORE FOR PARRALLEL EAST-WEST TRENDING MINERALIZED STRUCTURES.

THE METHOD FOR COLLECTING THE B HORIZON SOILS INVOLVES USING A LONG HANDLED SHOVEL TO DIG BENEATH THE HUMUS AND VOLCANIC ASH LAYER TO OBTAIN THE SAMPLE. WELL DEVELOPED B HORIZON SOILS ARE USUALLY ENCOUNTERED AT A DEPTH OF 20 TO 50 CM ON THIS PROPERTY. THE SAMPLES, WEIGHING BETWEEN 300 AND 500 GRAMS, ARE THEN PLACED IN KRAFT SAMPLE BAGS AND SHIPPED TO ECO-TECH LABORATORIES, KAMLOOPS, B.C. FOR ANALYSIS.

SEVERAL Au-As ANOMALIES WERE DETECTED AS FOLLOWS (FIGURE 4A):

LOCATION	MAX Au (ppb)	MAX As (ppm)
L2+00E, 1+00N TO L3+00E, 1+50N	530	>10,000
L1+00E, 1+25N TO L3+00E, 2+00N	170	5340
L1+00E, 2+00N TO L2+00E, 3+75N	250	1975
L2+00E, 1+75N	225	1990


THE MAJOR ANOMALIES ALL TREND NORTHEASTERLY ROUGHLY PARRALLEL TO THE VEINS THAT OUTCROP ON THE PROPERTY. Ag AND Sb ANOMALIES CORRELATE WELL WITH Au-As ANOMALIES BUT OTHER ELEMENTS SHOW LITTLE IF ANY CORRELATION. THE SPOT ANOMALY AT L4+00E, 0+25N IS LOCATED IN AN EXTENSIVE BOULDER TALUS FAN AND DOES NOT LIKELY REFLECT ANY BEDROCK ANOMALY.

ROCK GEOCHEMISTRY

A TOTAL OF 7 ROCK SAMPLES WERE COLLECTED FROM SURFACE OUTCROPS IN THE GRID AREA. THE MOST SIGNIFICANT ASSAYS ARE SUMMARIZED BELOW :

SAMPLE	DESCRIPTION	Au	OTHER
GROO1	GRAB, QTZ VEIN 10CM	0.552 oz/t	9.51% As
GROO4	GRAB, QTZ VEIN 5CM	0.242 oz/t	8.99% As
GROO5	GRAB, FROM ADIT DUMP	400 ppb	17.86% Sb
94GPR05	GRAB, FROM ADIT DUMP	0.742 oz/t	0.922 oz/tAg, 14.43%As
GR006	GRAB, FROM OLD TRENCH	525 ppb	5.44% Sb

SAMPLES GROO1 AND GROO4 ARE QUARTZ VEIN SAMPLES OF NOMINAL WIDTH CARRYING MINOR STIBNITE AND HOSTED WITHIN QUARTZ DIORITE. THE VEIN CAN BE TRACED 30M ON SURFACE BETWEEN THE TWO SAMPLE LOCATIONS AND IS ORIENTATED AT 060/45W. THE 3 OTHER SAMPLES WERE GRAB SAMPLES COLLECTED FROM WORKINGS NEAR THE SEDIMENT - INTRUSIVE CONTACT IN WHICH THE QUARTZ VEINS ARE REPORTED TO BE UP TO 1M WIDE.

STATEMENT OF COSTS

DESCRIPTION	COST
SAMPLE ANALYSIS (93 SOIL, 7 ROCK)	\$1,150
LABOUR & GEOLOGICAL SUPERVISION 6 MAN DAYS @ \$200/DAY	1,200
MEALS AND ACCOMODATION	350
TRANSPORTATION COSTS	350
REPORT PREPARATION AND DRAFTING	450
OFFICE OVERHEAD 10%	350

TOTAL

\$3,850

REFERENCES

- 1937: CAIRNES, C.E., GEOLOGY AND MINERAL DEPOSITS OF THE BRIDGE RIVER MINING CAMP, B.C. G.S.C., MEMOIR 213, MAP 431A, 140PP
- 1984: A REPORT ON THE ECONOMICAL POTENTIAL OF THE GRAY ROCK MINES PROPERTY, GOLD BRIDGE, B.C. P.S. FRIESEN, P.ENG. NOV, 1984
- 1985: ASSESSMENT WORK REPORT ON THE DIAMOND DRILLING PROGRAM CARRIED OUT ON THE GRAYROCK MINING PROPERTY, P.S. FRIESEN, P. ENG. OCTOBER, 1985
- 1989: REPORT ON GEOLOGY AND EXPLORATION POTENTIAL, GRAY ROCK PROPERTY, CHRIS. J. SAMPSON, DEC, 1989
- 1990: ASSESSMENT REPORT ON A SOIL GEOCHEMICAL AND MAPPING PROGRAM, J. MILLER-TAIT, OCT, 1990

QUALIFICATIONS

I, J. MILLER-TAIT OF 828 WHITCHURCH ST., N. VANCOUVER, B.C., V7L 2A4, DO HEREBY CERTIFY THAT:

I AM A GRADUATE OF THE UNIVERSITY OF BRITISH COLUMBIA WITH A BACHELOR OF SCIENCE DEGREE IN GEOLOGY (1986).

I AM A REGISTERED MEMBER IN GOOD STANDING OF THE ASSOCIATION OF PROFESSIONAL ENGINEERS AND GEOSCIENTISTS OF BRITISH COLUMBIA.

I HAVE BEEN PRACTICING MY PROFESSION AS A GEOLOGIST SINCE 1986.

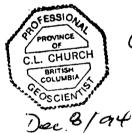
THIS REPORT IS BASED ON PERSONAL VISITS TO THE PROPERTY AND AN EVALUATION OF THE RELEVENT INFORMATION.

THIS REPORT MAY BE UTILIZIED BY LEVON RESOURCES LTD. FOR WHATEVER PURPOSES DEEMED NECESSARY.

A. MILLER-TAIT, P.GEO ONIVA INTERNATIONAL SERVICES CORP. VANCOUVER, B.C. NOVEMBER 11, 1994

QUALIFICATIONS

I, CALVIN L. CHURCH OF 1733 NAPIER ST., VANCOUVER, B.C., V5L2N1, DO HEREBY CERTIFY THAT;


I AM A GRADUATE OF THE UNIVERSITY OF BRITISH COLUMBIA, BSc GEOLOGY, AND HAVE WORKED IN THE MINERAL INDUSTRY SINCE 1986.

I AM A REGISTERED MEMBER IN GOOD STANDING OF THE ASSOCIATION OF PROFESSIONAL ENGINEERS AND GEOSCIENTISTS OF BRITISH COLUMBIA.

THIS REPORT IS BASED ON PERSONAL VISITS TO THE PROPERTY AND EVALUATION OF ALL RELEVANT INFORMATION MADE AVAILABLE TO ME BY LEVON RESOURCES LTD.

I HAVE NOT RECEIVED ANY INTEREST, DIRECT OR INDIRECT, IN THE PROPERTIES OF LEVON RESOURCES LTD. NOR DO I EXPECT TO RECEIVE ANY SUCH INTEREST.

I CONSENT TO THE USE OF THIS REPORT BY LEVON RESOURCES LTD. FOR WHATEVER PURPOSE DEEMED NECESSARY.

CALVIN CHURCH, P.Geo.

APPENDIX A

ty T

ې د مغو

1.2

200

1

See.

1 24

10.1

200

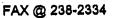
ł

100

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

3-Nov-94

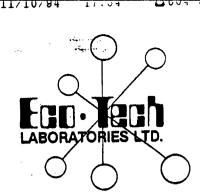
10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557


CERTIFICATE OF ASSAY ETK 94-889

General Delivery GOLD BRIDGE, B.C. V0K 1P0

ATTENTION: C. Church

2 Rock samples received 25 October, 1994 Samples Submitted By: C.L.C. Client Project Number: B.R.X.


		Au	Au	Ag	Ag	As	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	%	
1	94 GPR 01	2.10	0.061	Ŵ	•	0.93	BK's
2	94 GPR 05	25.43	0.742	31,6	0.922	14.43	- C

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Levon_

FEED FAX THIS END
FAX
To: C. Church
Dept.: _Less
Fax No.:
No. of Pages:
From:
Date: Nov 6
Company:
Fax No.: Comments:
Post-It" fax prd 7903E
Post-it fax pod 7903E

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10-Nov-94

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK 94-917

LEVON RESOURCES General Delivery GOLD BRIDGE, B.C. V0K 1P0

ATTENTION: C. Church

1 Rock sample received November 1, 1994 Samples Submitted By: C.L.C. Client Project Number: B.R.X.

		Sb
ET #.	Tag #	%
4	CROOR	5 44

FAX @ 238-2334

LTD. ECO-TECH BORATORIES Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/Levon

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

Oct-94

10041 E. Trans Canada Hwy., R.R. *2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK 94-835

LEVON RESOURCES General Delivery GOLD BRIDGE, B.C. V0K 1P0

ATTENTION: J. MILLER-TAIT

5 ROCK samples received October 11, 1994

				•		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
			Au	Au	As	Sb
	ET #.	Tag #	(g/t)	(oz/t)	%	%
	1	GR001	18.94	0.552	9.51	
	. 4	GR004	8.3	0.242	8.99	
:.	5	GR005		• •		17.86

FAX @ 238-2334

••	FEED FAX THIS END
XLS/Levc	
	To: Jim
:	Dept.: Lewon
	Fax No.:
	No. of Pages:
	From:
	Date:Ct 224
	Company:
· · · · ·	Fax No.:
.	Comments: 855-
1	Post-11 'ax pag 7903E

ECO-TECH LABORATORIES LTD

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

, age 1

19-0ct-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Ę.

Values in ppm unless otherwise reported

FEED FAX THIS END FAX Dept:: Dept:: Fax No: Fax No: Fax No: Company: Fax No: Fax No: Company: C

LEVON RESOURCES ETK 94-839 General Delivery GOLD BRIDGE, B.C. VOK 1P0 10/20/84

15:02

2804 573 4557

ECO-TECH KAM.

001/004

ATTENTION: J. MILLER-TAIT

95 Soil samples received 11 October, 1994 Sample Run Date: 19 October, 1994 Samples Submittad By: C. Church

												_																		
}		Au																												_
Et #.	Tag #	ррь	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	a	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Ρ	РЬ	SÞ	Sn	\$r	<u>Ti %</u>	<u> </u>	<u>v</u>	W	<u>Y</u>	Zn
1	L1+00E: 0+00 N		<.2	3.60	1055	210	\$	0.34	2	40	160	222	6.00	<10	1.44	650	<1	0.02	166	1260	56	5	<20	33	0.27	<10	143	<10	4	128
2	L1+00E: 0+25 N		<.2	2.16	365	180	5	0.29	<1	27	118	99	4.36	<10	1.12	371	4	0.03	89	1150	34	10	<20	33	0.29	<10	118	20	<1	70
3	L1+00E: 0+50 N		<.2	2.60	855	280	-	0.58	2	45	150	286	4.75	<10	1.45	640	<1	0.04	230	1930	36	5	<20	45	0.24	<10	132	20	2	78
4 -	L1+00E: 0+75 N		<2	3.03	3420	420	ৰ	0.27	5	69	99	236	8,11	<10	1.28	2334	<1	0.02	155	1720	44	10	<20	28	0.23	<10	145	<10	2	131
5	L1+00E: 1+00 N		<.2	1.72	395	110	5	0.12	<1	21	48	56	3.07	<10	0.55	468	<1	0.02	48	390	30	<	<20	17	0.17	<10	74	10	<1	54
-																														
6	L1+00E: 2+00 N		<2	3,74	1975	285	5	0.53	3	42	184	115	5.51	<10	1.83	568	<1	0.02	117	780	52	15	<20	105	0.21	<10	120	20	4	69
7	L1+00E: 3+00 N		<2	3,39	805	290	15	0.24	<1	42	132	90	5.22	<10	1.43	298	<1	0.02	113	810	48	10	<20	61	0.29	<10	117	20	ব	58
8	L1+00E: 4+00 N		<.2	1,76	240	155	10	0.27	<1	18	66	- 35	3.29	<10	0.63	280	<1	0.02	48	520	32	\$	<20	37	0.17	<10	77	20	<1	55
9	L1+00E: 5+00 N		<.2	2.86	375	380	10	0.82	<1	46	201	158	6,14	<10	2.32	467	<1	0.03	151	1540	36	15	<20	72	0.39	<10	166	20	<1	76
10	L1+00E: 1+25 N		<.2	2,96	1560	315	ব্য	0.14	2	24	77	138	7,27	<10	1.10	372	<1	0.02	74	1200	42	<5	<20	35	0.23	<10	133	20	4	83
11	L1+00E: 2+25 N		<2	3.43	830	390	20	0.57	2	41	151	66	4.66	<10	1.57	413	<1	0.03	102	1300	48	15	<20	449	0.28	<10	120	10	~	59
12	L1+00E: 3+25 N		<.2	3.09	625	200	20	0.16	<1	32	161	67	5,18	<10		264	<1	0.02	119	670	46	10	<20	43	0.26	<10	114	10	<1	68
13	L1+00E: 4+25 N		<.2	1.49	145	100	15	0.17	4	14	48	21	2.87	<10		193	<1	0.02	33	730	28	<5	<20	25	0.16	<10	70	<10	<1	40
14	L1+00E: 1+50 N		<.2	2.69	525	265	15		<1	16	49	52	5,14	<10		375	<1	0.03	17	590	38	15	<20	15	0.28	<10	187	20	<1	92
15	L1+00E: 2+50 N		<.2	2.92	1955	280	15	0.26	3	38	130	75	5.43	<10	1.26	825	<1	0.02	98	910	42	10	<20	54	0.26	<10	116	30	4	68
																			_					_						To
16	L1+00E: 3+50 N		<.2		435	185		0.25	ব	25	107	52		<10		289	<1	0.02	78	670	40	5	<20	39	0.24	<10	111	20	<1	73
17	L1+00E: 4+50 N		<.2		140	100		0.14	<1	15	67	24		<18		156	<1		40	1180	34	5	<20	19	0.21	<10	79	20	<1	47
18	L1+00E: 1+75 N		<.2	3.17	1305	265	<5		2	31	109	146		<10		567	<1	0.02	92	720	56	10	<20	27	0.23	<10	127	20	<1	112
19	L1+00E: 2+75 N		<.2		450	190		0.29	<1	26	115	51		<10		306	<1		82	996	36	10	<20	- 53	0.29	<10	95	10	4	63
20	L1+00E 3+75 N		<.2	1.80	240	17D	15	0.34	<1	50	79	38	3.69	<10	0.71	301	<1	0.02	56	450	32	10	<20	47	0,21	<10	90	20	ব	54
			-																										- 4	00
21	L1+00E: 4+75 N		<2	-	215	175	15		<1	27	120	61		<10		276	<1		74		48	5	<20	31	0.31	<10	122	10	<1	86 67
22	L2+00E: 0+00 N		<.2	2.76	365	180	<5		<1	39	152	246		<10		330	<1		172		38	15	<20	39	0.30	<10	147	10	4	67
23	L2+00E: 0+25 N		<.2	2.08	545	225	<		1	40	136	158		<10		599	<1		141	2080	28	15	<20	53		<10	131	<10	2	67 50
24	L2+00E: 0+50 N		<.2		435	220	-	0,73	<1	38	130	191	4.25	<10		340	<1		152	1950	32	15	<20	47	0.28	<10	137	20	<1	59 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25	L2+00E: 0+75 N		<.2	2.19	455	200	5	0.35	<1	34	114	115	4,28	<10	1.19	634	<1	0.03	- 91	860	32	10	<20	35	0.25	<10	125	10	<1	69

Page 1

		AU [*]				-				_	-	-		-						~	-		~	_						_
Et #.	Tag #	ppb	Ag	AI %	As	Ba		Ca %	<u>Cd</u>		<u></u>		Fe %		Mg %	Mis		Na %	Ni	<u> </u>	Pb	<u>Sb</u>	<u></u>	1	Ti %	<u> </u>	<u>v</u>	<u></u>	Y	Zn
26	L2+00E: 1+00 N		<.2	2.75	1815	305	5	0.16	3	35	94	108	5.99	<10	1.05	740	<1	0.02	106	860	40	10	<20	24	0.21	<10	121	20	<1	82
27	L2+00E: 2+00 N		<.2	3.03	1405	345	5	0.67	2	38	168	106	5.16	<10	1.77	464	<1	0.03	131	1240	40	30	<20	101	0.26	<10	121	<10	<1	61
28	L2+00E 3+00 N		<.2	2.20	1060	260	5	0,11	2	26	72	98	5.38	<10	0.75	603	4	0.01	55	870	34	10	<20	23	0.17	<10	102	<10	<1	68
29	L2+00E: 4+00 N		<.2	4 46	1380	420	15	0.26	3	75	243	152	7.94	<10		267	<1	0.02	202	1180	56	10	<20		0.32	<10	166	20	<1	122
30	L2+00E: 2+25 N		<.2	3.11	2460	275	5	0.26	4	42	146	144	5.97	<10	1.55	618	4	0.02	123	820	44	10	<20	45	0_26	<10	129	<10	<1	106
31	L2+00E 3+25 N		<.2	2.55	1555	265	ব	0.12	3	24	92	123	6.89	<10		401	<1	0.02		1100	40	20	<20	35	0.19	<10	114	<10	<1	93
32	L2+00E: 4+25 N		<.2	5.18	1715	390	10	0.36	2	66	270	125	7.51	<10	2.89	327	<1	0.03	223	1430	64	15	<20	51	0.41	<10	177	<10	<1	125
33	L2+00E: 1+50 N		<.2	3.29	670	265	10	0.30	<1	35	142	99	5.38	<10	1.41	394	<1	0.02	100	1170	50	10	<20	33	0.32	<10	139	<10	<1	107
34	L2+00E: 2+50 N		<.2	2.49	805	235	10	0.24	2	34	103	83	4.68	<10	1.00	457	ব	0.02	91	780	36	15	<20	43	0.20	<10	104	20	<1	69
35	L2+00E: 3+50 N		<.2	3.47	975	370	15	0.18	2	31	145	88	7.15	<10	1.36	376	<1	0.02	80	830	50	10	<20	40	0.24	<10	157	20	<1	117
36	L2+00E: 4+50 N		<.2	3,15	605	250	15	0.30	1	34	162	- 77	4.63		1.44	372	<1	0.02		1180	46	15	<20	41	0.29	<10	115	10	<1	71
37	L2+00E: 1+75 N		<.2	2.87	770	315	15	0.47	2	37	156	78	4.59	<10	1.46	533	4	0.03	90	1270	40	15	<20	132	0.28	<10	128	<10	<1	66
38	L2+00E: 2+75 N		<.2	2.39	630	255	10	0.26	2	32	100	72	4.62	<10	0.96	772	4	0.02	80	670	36	10	<20	48	0.22	<10	98	<10	<1	81
39	L2+00E: 3+75 N		<.2	2.28	1685	250	5	0.22	3	26	84	103	5.38	<10	0.76	314	4	0.01	73	920	38	15	<20	34	0.16	<10	93	<10	<1	81
40	L2+00E: 4+75 N		<.2	4.74	1990	540	5	0.44	3	63	396	176	7.30	<10	2.98	567	ব	0.03	331	1220	60	20	<20	85	0.35	<10	159	<10	<1	157
41	L3+00E; 0+00 N		<2	1.82	565	220	<5	0.84	<1	34	118	141	4.17	<10	1.42	435	4	0.04	101	1850	26	15	<20	- 55	0.25	<10	130	<10	1	61
42	L3+00E: 0+25 N		<.2	1.75	245	180	10	0.52	<1	27	91	80	3.29	<10	0.95	439	4	0.03	104	1220	26	10	<20	42	0.22	<10	97	20	<1	60
43	13+00E: 0+50 N		<2	1.12	175	85	<5	0.15	<1	13	39	- 31	2.42	<10	0.35	136	4	0.02	24	730	22	\$	<20	17	0.16	<10	66	20	<1	37
44	13+00E: 0+75 N		<.2	2.51	420	145	15	0.25	4	25	152	72	5.83	<10	1.25	201	<1	0.03	80	950	38	10	<28	27	0.32	<10	184	10	-1	57
45	L3+00E: 2+00 N		<.2	3.67	5340	320	ৰ	0.17	10	37	134	224	8.02	<10	1.56	424	4	0.02	115	1040	56	35	<28	- 42	0.19	<10	124	20	4	121
46	L3+00E: 3+00 N		<.2	2.85	800	260	15	0.09	1	18	100	50	5.86	-	0.83	280	<1	0.01	54	890	52	5	<20	23	0.22	<10	131	30	<1	102
47	L3+00E. 4+00 N		<2	1.88	305	105	10	0.09	<1	15	99	28	3.81	<10	0.70	145	4	0.02	42	790	34	\$	<20	20	0.20	<10	96	20	<1	48
48	L3+00E: 1+25 N		<.2	2.17	350	170	<	0.26	4	27	104	72	3,92	<10	1.00	518	ব	0.02	77	670	36	10	<20	29	0.26	<10	110	20	<1	72
49	L3+00E: 2+25 N		<.2	3.73	1095	255	15	0.23	2	39	149	69	5,66	<10	1.27	239	4	0.02	124	620	52	10	<20	39	0.29	<10	130	10	<1	127
50	L3+00E: 3+25 N		<2	3.70	1105	250	10	0.22	2	39	147	68	5.62	<10	1.26	230	<1	0.02	123	620	54	5	<20	41	0.29	<10	128	<10	<1	126
51	L3+00E: 4+25 N		<2	2.97	645	235	10	0.23	2	26	129	67	5.05	<10	1.02	275	4	0.02	94	890	44	15	<20	37	0.22	<10	113	<10	4	95
52	L3+00E: 1+50 N		3.2	3.12	>10000	500	4	0.87	82	94	76	408	> 15	<10	1.40	10000	57	<.01	524	1380	28	355	<20	67	0.06	130	216	20	53	154
53	L3+00E: 2+50 N		<.2	4.04	2390	315	<	0.23	3	37	131	- 99	7.26	<10	1.10	531	4	0.01	104	1640	56	30	<20	48	0.26	<10	136	10	4	183
54	L3+00E: 3+50 N		<.2	2.06	420	110	15	0.15	ব	16	103	- 32	3.25	40	0.71	198	4	0.02	- 58	1450	36	10	. <20	19	0.15	<10	84	20	-1	56
55	13+00E: 4+50 N		<2	3.65	490	595	5	0.29	4	35	177	128	5,68	<10	1.64	459	4	0.02	139	570	58	20	<20	68	0.20	<10	119	<10	<1	104
56	L3+00E: 1+75 N		<2	2.95	1070	345	10	0.39	2	40	142	81	5.23	<10	1.46	627	4	0.02	112	1080	42	15	<20	80	0.25	<10	116	20	<1	66
57	L3+00E: 2+75 N		<2	1.29	140	80	10	0.11	<1	10	27	- 14	2.30	<10	0.29	209	4	0.02	17	380	- 24	<	<20	17	0.12	<10	53	20	4	43
58	L3+00E: 3+75 N		<2	3.23	410	220	<	0.19	4	33	162	- 96	4.89	<10	1.24	276	ব	0.02	145	1200	48	5	<20	29	0.23	<10	111	20	4	99
59	14+005-0+00 N		<2	6.73	500	290	- 20	0.47	1	59	557	135	8.43	_<10	4.81	711	4	0.01	362	290	76	20	<20	68	0.42	<10	143	<10	ব	241
60	L4 0+25 N		<2	3.80	1785	375	5	0.38	3	53	286	144	5.93	Φp	2.25	552	4	0.03	290	950	54	15	<20	50	0.27	<10	116	<10		94
																												- (
	-													rage 2	2													•		

LEVON RESOURCES ETK 94-839

Au*

ECO-TECH LABORATORIES LTD.

· ·

LEVON RESOURCES ETK 94-839

ECO-TECH LABORATORIES LTD.

10-20-24

10.00

100.

n (h ,

É

•

30

		Aur																												
Et#.	Tag #	ppb	Ag	AI %	As	Ba	Bi	Ça %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	<u>P</u>	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	W	Y	Zn
61	L4+00E: 0+50 N		<.2	3.25	1110	195	ব	0.39	2	39	165	144	5.04	<10	1.48	446	<1	0.03	129	1450	48	10	<20		0.31	<10	138	<10	<1	87
62	L4+00E: 0+75 N		<.2	3.13	745	160	20	0.17	1	25	138	73	5.25	<10	1.08	213	<1	0.02	81	640	48	10	<20	22	0.29	<10	139	20	<1	65
63	L4+00E: 1+00 N		<.2	2 51	1060	285	15	0.41	2	34	120	78	4.78	<10	1.23	575	<1	0.03	93	1180	34	15	<20	61	0.23	<10	111	20	<1	66
64	L4+00E: 3+00 N		<.2	2.45	205	225	5	0.22	<1	27	191	47	3.99	<10	1.31	270	<1	0.02	160	840	38	10	<20	- 30	0.20	<10	103	20	<1	78
65	L4+00E. 4+00 N		<.2	4.95	150	750	5	0.62	<1	64	661	109	5.20	<10	3.89	267	<1	0.05	496	580	60	15	<20	62	0.29	<10	140	<10	<1	101
66	14+00E: 5+00 N		<.2	4.76	210	570	5	0.47	1	77	341	184	7.67	<10	2.60	649	<1	0.04	396	1230	60	15	<20	62	0.30	<10	166	<10	<1	148
67	L4+00E: 1+25 N		<.2	3.30	2005	310	ব	0.09	4	32	124	175	7,10	<10	1.30	480	<1	0.01	114	710	50	30	<20	20	0.13	<10	126	<10	<1	181
68	L4+00E 2+25 N		<.2	4.06	340	280	20	0.23	<1	33	372	66	6.03	<10	2.57	181	<1	0.03	138	1800	58	15	<20	34	0.34	<10	158	<10	<1	121
69	L4+00E: 3+25 N		<.2	5.89	405	550	15	0.59	<1	84	948	160	7.10	<10	4.73	458	<1	0.08	663	1270	70	15	<20	48	0.38	<10	196	<10	<1	166
70	L4+00E 4+25 N		<.2	4.05	230	640	15	0.42	<1	55	351	140	6.37	<10	247	503	<1	0.03	294	1240	54	10	<20	65	0.30	<10	141	<10	<1	142
71	L4+00E 1+50 N		<.2	3.47	1800	240	<	0.11	4	28	141	163	6,66	<10	1.40	416	<1	0.01	98	840	74	20	<20	15	0.17	<10	125	<10	<1	174
72	L4+00E 2+50 N		<.2	3.06	330	385	10	0.36	<1	28	224	61	5.05	<10	2.00	307	<1	0 03	139	1240	44	15	<20	35	0.24	<10	133	10	<1	114
73	L4+00E: 3+50 N		<.2	4.93	95	805	20	0.37	<1	56	537	93	7.05	<10	4.00	337	<1	0.04	316	970	60	20	<20	27	0.37	<10	181	20	<1	134
74	14+00E. 4+50 N		<.2	4.37	260	550	10	0.32	<1	49	446	146	6,45	<10	2.80	287	<1	0.03	323	780	54	10	<20	80	0.28	<10	142	<10	<1	100
75	L4+00E 1+75 N		<.2	3.00	1050	280	10	0.25	2	32	168	86	5,30	<10	1.39	327	<1	0.02	124	530	42	15	<20	45	0.18	<10	111	<10	<1	111
76	L4+00E: 2+75 N		<.2	1,48	170	150	10	0.31	<1	13	75	20	2.73	<10	0,58	189	<1	0.02	47	2860	26	10	<20	24	0.12	<10	68	<10	<1	47
77	L4+00E: 4+75 N		<.2	5.63	470	665	ব	0.47	<1	104	533	252	7.88	<10	4.03	487	<1	0.04	872	1100	72	20	<20	77	0.37	<10	163	<10	<1	143
78	L5+00E: 0+75 N		<2	2.58	1085	185	10	0,16	2	23	139	111	5.46	<10	0.99	215	<1	0.02	89	1780	42	<5	<20	25	0.29	<10	141	20	<1	49
79	L5+00E: 2+00 N		<2	3.16	375	375	10	0.53	1	39	317	- 55	4.48	<10	2.24	458	<1	0.03	224	1110	52	15	<20	60	0.24	<10	109	<10	<1	90
80	L5+00E: 3+00 N		<2	4.81	280	610	15	0.39	4	59	602	91	6.25	<10	3.62	306	<1	0.05	385	1030	60	25	<20	47	0.28	<10	153	20	<1	117
81	L5+00E. 4+00 N		<.2	1.76	90	170	10	0.17	<1	18	100	23	2,90	<10	0.65	224	<1	0.02	63	1150	30	4	<20	20	0.14	<10	72	<10	<1	47
82	L5+00E: 1+25 N		<.2	2.26	1180	365	ব	0.59	2	22	136	94	4.51	<10	1.08	358	<1	0.02	80	1020	34	20	<20	70	0.19	<10	105	<10	<1	81
83	L5+00E 2+25 N		<.2	3.91	395	440	15	0.56	<1	47	379	74	5.61	<10	2.61	395	<1	0.03	259	1120	50	15	<20	52	0.29	<10	142	<10	<1	141
84	L5+00E: 3+25 N		<.2	3.86	235	390	20	0.30	1	45	400	70	5.45	<10	2.58	373	<1	0.04	341	660	52	10	<20	34	0.25	<10	129	<10	<1	124
85	L5+00E: 4+25 N		<.2	3.01	405	405	15	0.39	1	39	244	75	4.55	<10	1.97	365	4	0.03	185	770	44	15	<20	85	0.31	<10	114	<10	<1	80
۰.																														
86	1+50 N		<.2	2.82	910	305	10	0.40	2	37	138	- 77	4.73	<10	1.41	533	<	0.02	103	960	38	25	<20	77	0.24	<10	107	<10	<1	80
.87	L5+00E: 2+50 N		<.2	3.69	205	430	25	0.57	4	42	456	- 56	4.98	<10	2.71	310	<1	0.06	286	790	52	20	<20	43	0.28	<10	129	10	<1	109
88	L5+00E: 3+50 N		<.2	3.28	185	520	15	0.47	<1	28	344	- 55	4.88	<10	244	289	4	0.04	183	1050	46	20	<20	45	0.24	<10	125	<10	<1	9 9
89	15+00E: 4+50 N		<2	3.37	575	585	10	0.57	1	48	302	91	5.06	<10	2.51	536	4	0.03	270	970	44	20	<20	117	0.30	<10	122	<10	<1	91
90	L5+00E: 1+75 N		<2	2.53	305	285	10	0.26	1	29	165	- 52	4.35	<10	1.01	284	4	0.02	118	650	40	5	<20	- 40	0.19	<10	94	<10	<1	101
91	L5+00E: 2+75 N		<2	4.09	195	360	10	0.31	4	54	484	- 94	5.39	<10	270	659	<1	0.03	381	960	54	20	<20	29	0.23	<10	129	<10	<1	144
92	l5+00E: 3+75 N		<2	2.37	80	355	10	0.49	<1	26	216	38	4.06	<10	1.64	274	4	0.04	107	1380	34	10	<20	38	0.22	<10	100	<10	<1	80
93	L5+00E: 4+75 N		<2	1.86	125	200	10	0.26	<1	20	130	28	2.93	<10	0.95	221	4	0.02	100	840	32	5	<20	- 30	0.17	<10	69	10	ব	57
94	TRX 4940		<2	4.02	45	145	25	0.85	<1	47	156	39	7.45	<10	1.57	750	4	0.01	148	1970	50	15	<20	17	0.41	<10	172	20	4	204
95	TRX 4941		<.2	3.64	45	140	25	0.89	<1	49	166	48	7.69	<10	1.64	905	<1	0.01	151	890	46	10	<20	20	0.45	<10	181	<10	6	146
														_																_
														Page 3																

تتعيف

Phone: 604-573-5700

Fax : 604-573-4557

ECO-TECH LABORATORIES LTD. 3 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Values in ppm unless otherwise reported

LEVON RESOURCES ETK 94-835 General Delivery GOLD BRIDGE, B.C. VOK 1PD

ATTENTION: J. MILLER-TAIT

5 Rock samples received 11 October, 1994 Sample Run Date: 18 October, 1994 Samples Submitted By: C. Church

		Au																		_		.	_	_						-
Et#.	Tag #	(ppb)	Ag	AI %	As	Ba	Bi	Ca 🖌	Cd	Co	Cr	Cu	Fe %	La	Mg %_	Mn	Mo	Na %	Ni	<u> </u>	Pb	Sb	Sn	<u>Sr</u>	<u>Ti %</u>	<u> </u>	<u>v</u>	<u></u>	<u> </u>	<u>2n</u>
1	GR001	>1000	16	0.44	>10000	60	95	0.11	<1	41	485	236	14.70	<10	0.21	171	37	0.01	32	20	2	35	160	4	0.01	<10	20	<10	<1	23
	GR007				3535		15	0.18	<1	11	192	51	4.88	<10	1.01	386	4	0.03	19	480	8	5	40	5	0.17	<10	72	<10	ব	60
2	0.1004	10		0.00	1395	130	- 10	1.00			215	96	5.43	~10						840	18	5	đ۵	120	0 14	<10	176	<10	<1	124
3	GR003	15	<.2	3.30	1395	90	<0	1.90	~ ,	25	215	00	J.40	-10	1,10			0.11			~			45	0.00	~10	47	-10		14
4	GR004	>1000	0.2	0.40	>10000	55	135	0.08	<1	87	144																	<10		
5	GR005	400	5.4	0.13	3280	5	<5	0.10	<1	4	185	69	1.45	<10	0.02	30	<1	<.01	8	<10	81	0000	100	2	<.01	<10	4	<10	<1	139

بمغيب

.

فلتتكن أ

أنغب

QC DATA:

Standard 1991

1.2 1.93 75 170 <5 2.00 <1 25 70 82 4.10 <10 0.94 720 <1 0.02 25 730 26 15 <20 66 0.14 <10 88 <10 4 81

XLS/Levon Resources df#3122

۰.

ECO-TECH DEBORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ماليون .

.. 4...

NAS

7 N N 7 N N 1

		Novemt	oer 8, 1994																													
I	ECO-TECH LAB 10041 East Tran KAMLOOPS, B.0 V2C 2J3	s Canada																				G	E VON F eneral D OLD BR OK 1P0	elivery		ETK 94	-917					
	Phone: 604-573-	5700																				A	TTENTK)N: C. (CHUR	CH						
	Fax : 604-573-																						Rock sa				mber 1,	1994				
	Values in ppm u	nless ot	herwise rep	orted																			amples \$ Sient Proj									
	Et #.	Tag #	Au(ppb)		AI %	As	Ba		Ca %	Cd	Co	<u>C</u> r		Fe %		Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	ប	<u>v</u>	w	Y	Zn	
	1	GR006	525	3.2	0.10	3195	5	<5	0.05	18	2	128	46	1.32	<10	0.01	16	5	<.01	8	<10	54 >	10000	60	ব	<.01	<10	3	<10	<1	253	
	QC DATA:																															
5			•																													
1	Repeat: 1	GR006		3.0	0.09	3435	10	ব	0.04	19	2	129	47	1.33	<10	<.01	14	6	<.01	9	<10	64 >	10000	60	1	<.01	<10	2	<10	<1	257	
	Standard 1991:			1.2	1.87	80	175	5	1.86	2	22	69	85	4.10	<10	0.96	707	ব	0.02	24	760	30	5	<20	61	0.13	<10	83	<10	5	78	
																															くび	
*																																

· .

.....

S

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

---...

- ----

÷

. .

ECO-TECH KAM.

XLS/Levon df#886

11/10/94 09:58

Eco-TECH LABORATORIES LTD. 100/1 East Trans Canuda Highway (AulLOOPS, 8.0. V2C 2J3 LEVON RESOURCES ETX 94.89 General Defway (AULDOBRIDGE, 8.C. VXK 190 Phone: 604-573-5700 Far: :004-573-5570 - - 1 2 - 10			31-Oct-94																													
Priore: 604-573-5700 Fax : 604-573-5567 Values in ppm unless otherwise reported Au <u>Et #. Tag #. ppb Ag Al% As Ba Bi Ca% Cd Co Cr Cu Fe% La Mg% Mn Mo Na% Ni P Pb Sb Sn Sr Ti% U V W Y Zn</u> <u>Et #. Tag #. ppb Ag Al% As Ba Bi Ca% Cd Co Cr Cu Fe% La Mg% Mn Mo Na% Ni P Pb Sb Sn Sr Ti% U V W Y Zn</u> <u>Et #. Tag #. ppb Ag Al% As Ba Bi Ca% Cd Co Cr Cu Fe% La Mg% Mn Mo Na% Ni P Pb Sb Sn Sr Ti% U V W Y Zn</u> <u>1 94 GPR 01 >10000 06 0.15 >10000 40 <5 0.08 1000 58 69 3404 13.70 <10 <0.51 12 5 <01 9 <10 <2 35 <20 1118 <01 <10 10 <10 8 111 2 94 GPR 01 >1000 20 0.14 >10000 15 <5 >15 67 6 69 20 2.28 <10 0.53 1730 5 0.01 3 400 <2 30 <20 1096 <01 <10 10 <10 7 9 Standard 1991 - 12 1.77 200 160 <5 1.70 2 19 62 87 4.15 <10 0.52 668 <1 0.02 28 630 20 10 <20 59 0.12 <10 78 <10 5 76</u>	2	10041 KAML	East Trans Canada Hig DOPS, B.C.																			6	Seneral SOLD E	Deliver BRIDGE	у	S ETK S	94-889					
Par: :604-573-4557 Values in ppm unless otherwise reported 2 Rock samples Submitted 25 Octuber, 1994 Samples Submitted PSC IC.C. Cleart Project Number: B.R.X. An An Et #. Tag # ppb Ag A1% As B BIC 2% Cd Cr Cu Fe % La Mg % Min Mo Na %; P Pb Sb Sn Sr Ti% U V Class Amples Submitted By: CLC. Class Project Number: B.RX Ag A1% As Sample Submitted By: CLC. Class Project Number: B.RX 2 94 GPR 05 >10000 40 45 0.08 1000 58 69 3404 13.70 4001 3 4001 2 35 201 101 10 c10 8 11 Ag A1% As a bit of 0 Standard 1391 Sample Submitted P: CLC. Class Ag A1% As a bit of 0 5 57 6 69 20 2.28 <th></th> <th>0</th> <th>C04 673 6700</th> <th></th> <th>4</th> <th>TTEN</th> <th>FION: C</th> <th>c. Chu</th> <th>RCH</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		0	C04 673 6700																			4	TTEN	FION: C	c. Chu	RCH						
Et#. Tag# ppb Ag Al% As Ba Bi Ca% Cd Co Cr Cu Fe% La Mg% Nn Mo Na% Ni P Pb Sb Sn Sr Ti% U V W Y Zn 1 94 GPR 01 >1000 0.6 0.15 >10000 10 <5 >15 70 6 67 12 2.25 <10 0.95 1731 4 0.01 3 400 <2 35 <20 1118 <01 <10 10 <10 8 11 2 94 GPR 05 >1000 >30 0.01 >10000 40 <5 0.08 1000 58 69 3404 13.70 <10 <01 12 5 <01 9 <10 <2 100 <20 <1< <01 20 3 <10 <1 39 QC DATA: Researt 1 94 GPR 01 0.6 0.14 >10000 15 <5		Fax :	604-573-4557	vise reported	1																	5	Sample Samples	Run Da s Subm	ate:28 (itted B	October, y: C.L.C	1994	19 9 4				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																																
2 94 GPR 05 >1000 >30 0.01 >1000 40 <5		<u>Et #.</u>					_								and the second second					- · · · ·		_		14 / 17 million 14								
OC DATA: Repear: 0.6 0.14 >10000 15 <5 >15 67 6 69 20 2.28 <10 0.93 1730 5 0.01 3 400 <2 30 <20 100 <10 7 9 Standard 1991 - 1.2 1.77 200 160 <5		1									-									-												
Repear: - 0.6 0.14 >10000 15 <5 >15 67 6 69 20 2.28 <10 0.93 1730 5 0.01 3 400 <2 30 <20 100 10 <10 7 9 Standard 1991 - 1.2 1.77 200 160 <5		-		- 1000	- 30	0.01 - 100	~~~			1000			5404	13.70		-,01	12	5		3	10	~2	100	~20	~1	5.01	20	3	<10	<1	39	
4 1 94 GPR 01 - 0.6 0.14 >10000 15 <5 >15 67 6 69 20 2.28 <10 0.93 1730 5 0.01 3 400 <2 30 <20 1096 <.01 <10 10 <10 7 9 Standard 1991 - 1.2 1.77 200 160 <5 1.70 2 19 62 87 4.15 <10 0.92 668 <1 0.02 28 630 20 10 <20 59 0.12 <10 78 <10 5 76	2	QC DA	TA:																													
- 1.2 1.77 200 160 <5 1.70 2 19 62 87 4.15 <10 0.92 668 <1 0.02 28 630 20 10 <20 59 0.12 <10 78 <10 5 76	- 150	-		-	0.6	0.14 >1000	10 15	<	5 > 15	67	6	69	20	2.28	<10	0.93	1730	5	0.01	3	400	4	30	<20	1096	<.01	<10	10	<10	7	9	
	5	Standa	ard 1991	-	1.2	1.77 20	10 160	4	5 1.70	2	19	62	87	4.15	<10	0.92	668	ব	0.02	28	630	20	10	<20	59	0.12	<10	78	<10	5	76	
																														ŗ		

(2) 001

ECO-TECH KAM.

XLS/Levon Resources df#3111

11/01/94 12:12

 \checkmark

a fage of a

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

.

Et#.	Tag #	Au* ppb	Ag	AI %	As	Ba	Bi	<u>Ca %</u>	Cd	Co	<u>1</u>	<u>_Cu</u>	Fe %	La	N g %	Mn	Mo	Na %	Ni	<u>P</u>	РЬ	Sb	Sn	<u>S</u> r	<u>11%</u>	U	<u>v</u>	W	<u> </u>	Zn
QC DA	TA:																													
Repea	t																													
1	L1+00E: 0+00 N		<2	3.49	1050	210	4	0.25	2	39	155	217	5.80	<10	1.37	623	4	0.02	160	1170	50	5	<20		0.27	<10	138	<10	4	124
39	12400E: 3475 N		<.2	2.16	1585	235	ব	0.20	3	24	79	96	5.16	<10	0.72	295	4	0.01	69	890	34	15	<20	32	0.15	<10	89	<10	<1	π
77	L4+00E: 4+75 N		<2	5.27	430	625	ৎ	0.44	4	98	498	235	7.41	<10	3.79	461	<1	0.03	817	1020	66	20	<20	73	0 34	<10	154	<10	<1	134
Stand	and 1991																													
			1.0	1.99	70	175	10	2.12	<1	25	74	92	4.06	<10	0.99	730	<1	0.02	31	730	24	15	<20	64	0 12	<10	85	20	2	74
			1.4		75	180	ব	2.05	1	24	70	87	4.12	<10	0.95	765	ব	0.02	28	720	22	10	<20	62	0.12	<10	82	<10	3	77

* = Results to Follow

-* •

These are preliminary results and are subject to change

ECO-TECH LOBORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

وتكجين

XLS/Levon Resources o##3124

1

57.90°

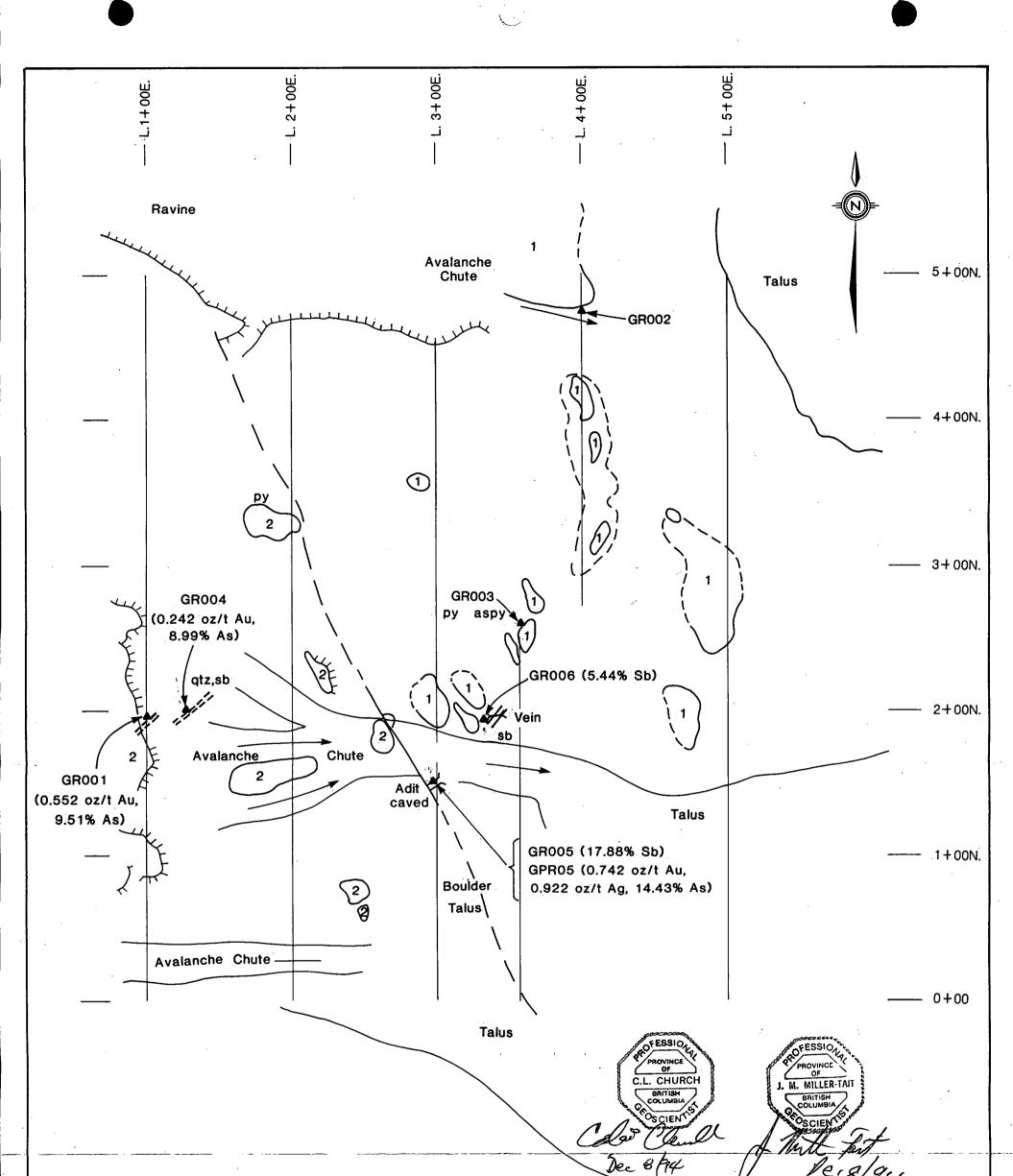
الخلجين

Page 4

A CARA

.

. and the


sasanta.

10/20/94

15:07

20804 573 4557

ECO-TECH KAM.

GEOLOGY

Metasediments

1

2 Granodiorite

// Vein

Cliffs

-----, --- Geologic contact, inferred

LEGEND

Sb Stibnite Aspy Arsenopyrite py pyrite

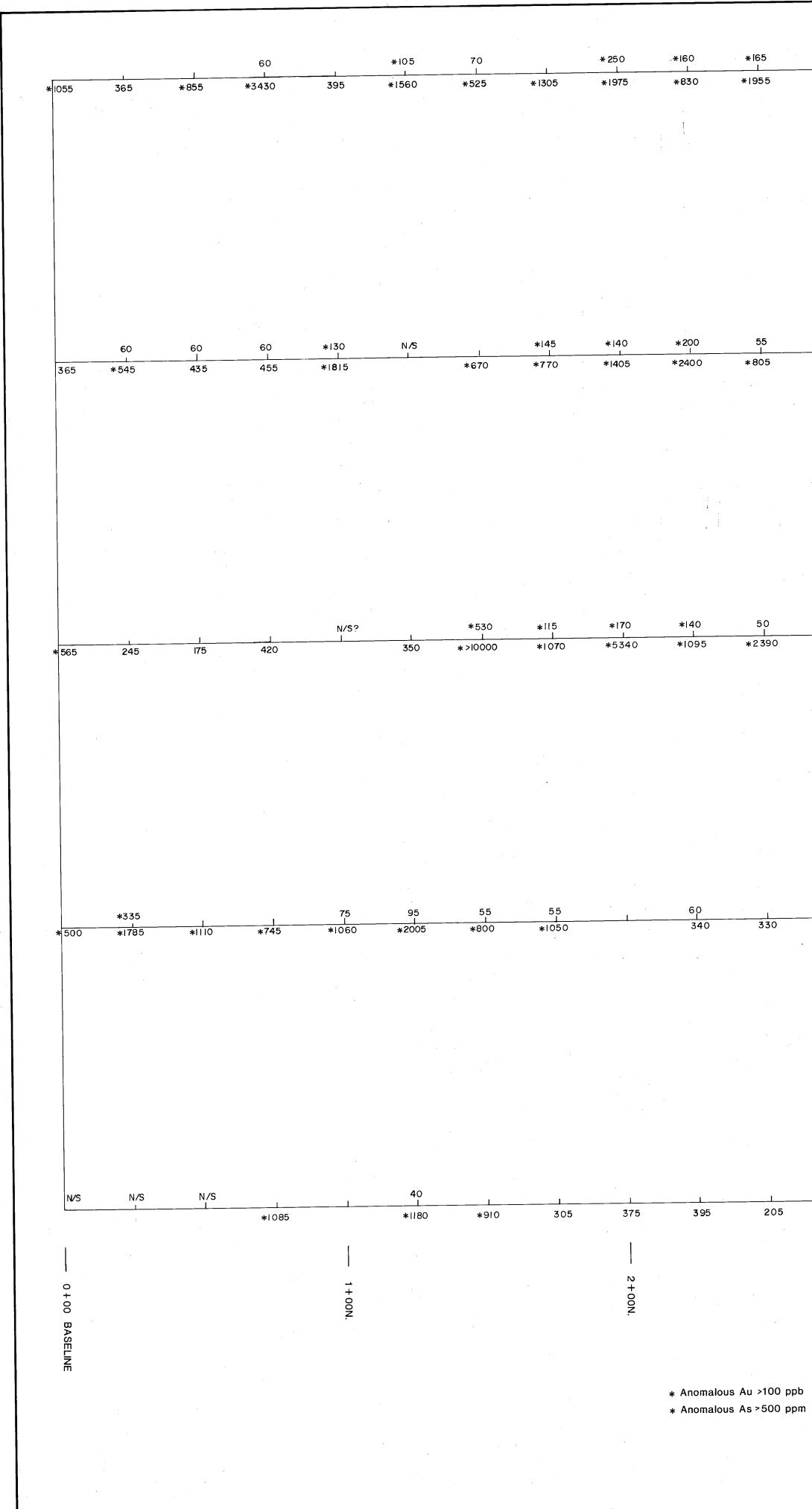
METRES 0 50 100 LEVON RESOURCES LTD. GRAY ROCK PROPERTY LILLOOET MINING DIVISION, B. C. GEOLOGY SAMPLE LOCATIONS

SCALE: 1:2500	DRAWN BY:	FIG. NO.:
DATE: Nov., 1994	NTS.: 92J/15	5

	11117	LITHOLOGY CONTRACTOR
PERIOD		
ipper Tertiary	Plateau basalt	basalt, rhyolit e flows, breccias
	***************************************	unconformable contact
lower Tertiary	Rexmount porphyry	rhyolite, dacit e, andesite tuffs breccias, flows, plugs
		unconformable contact
ipper Tratageous	Porphyry dixes	quartz, feldsp ar, hornblende porphyry dikes
	an a	intrusive contact
	Coast Range intrusions	quartz diorite, diorite , granodiorite
		intrusive contact
	Kingsvale group	arkose, greywacke, shale, conglomerate
		unconformable contact
lower Cretaceous	Taylor Creex group	conglomerate,'shale, tuff, breccia
		unconformable contact
lower Jurassic	Unnamed sediments	argillite, shale, sandstone, limestone, conglomerate
		unconformable contact
upper Triassic	Bralorne intrusions	augite diorite, soda granite, albitite dikes
		intrusive contact
	President intrusions	serpentinite, peridotite, pyroxenite, dunite, gabbro
		fault_contact
	Cadwallader Hurley formation	group limy argillite, phyllite, limestone, tuff, conglomerate, greenstone, chert
	Pioneer formation	greenstone, basalt, andesite, flows, tuffs
	Noel formation	argillite, chert, conglomerate, greenstone
		conformable contact7
middle Triassic	Bridge River group	chert, argillite, phyllite, limestone, greenstone, metamorphic equivalents

Table 2: Formation names, ages and lithologies.

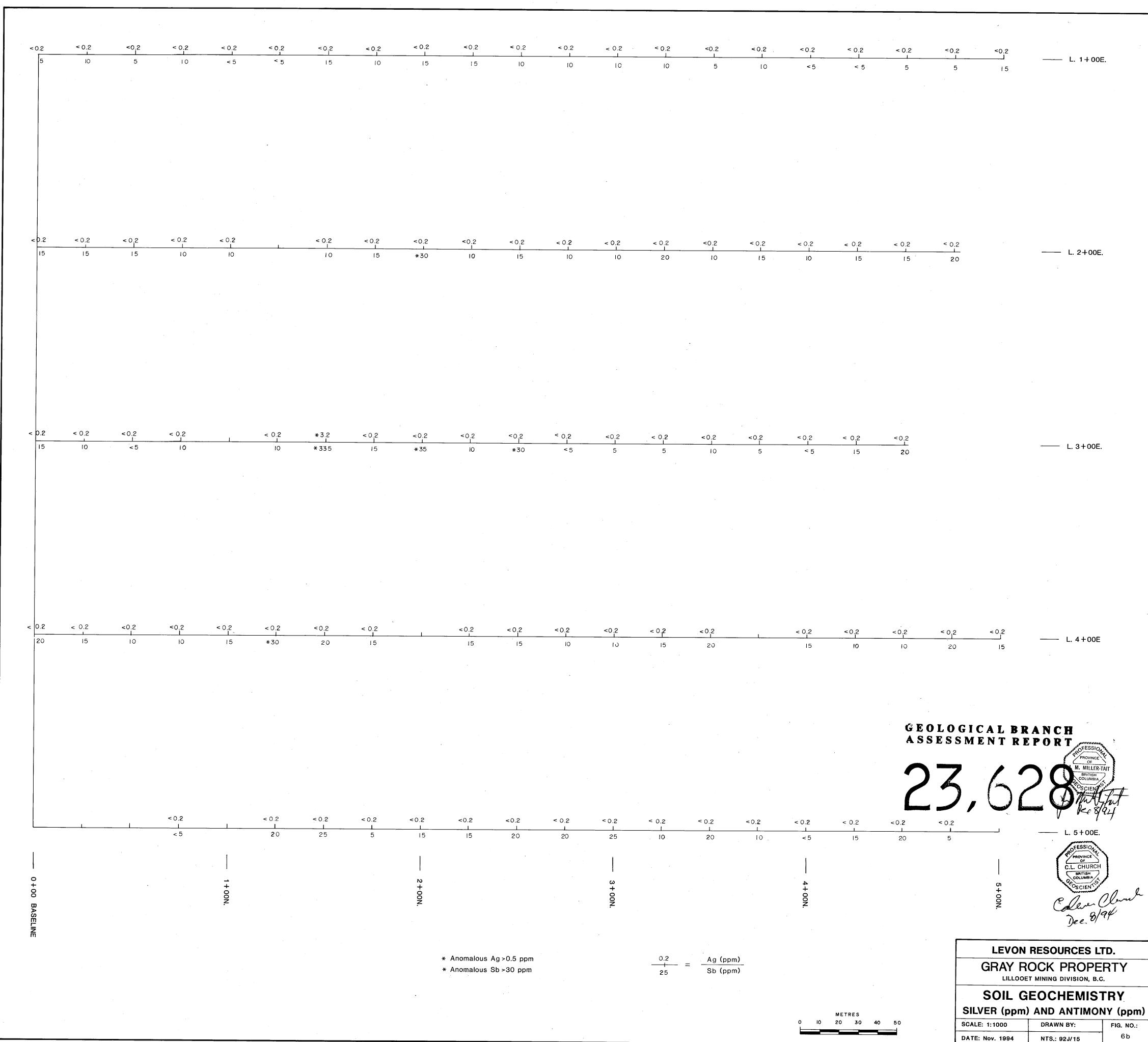
•

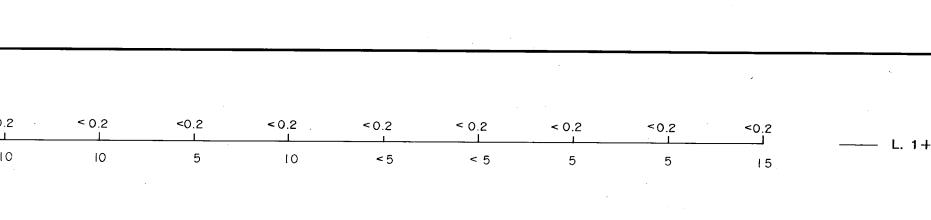

× Ø,

i.

¥.,

5.5.52


. 0


.

	•				N						
						<u></u>		<u> </u>		······	
· ·											
*100	50			I.	,					L. 1+00E.	
450	*805	625	436	240	280	145	140	215	375		
,											
					·						
								•			
80	· · · · · · · · · · · · · · · · · · ·	75	* 975	* 55 * 685	70 + *1380	70 * 7 5	*105 *605	*225 		—— L. 2+00E.	
*630	*1060	*1555	*910	*1005	x1000			· ·			
• •											
	40				35	1	*110			—— L. 3+00E.	
140	*800	*1105	420	410	305	*645	490			L, STUUE.	
								•			
		· · · · ·									
		405	<u>)</u> 95	1	I I50	230	260	470	210	L. 4+00E	
170	205	405									
				•				11 S			
				1			6 -1			OFESSIO	NAL
• · · ·			· ·				A	SSESS	MENT I	BRANCH REPORT	
)フ		n n	afair
							<pre></pre>	~ つ	- 0	C C Ve	c.8/14
	2			·	· .	50	75	1	N/S	L. 5 + 00E.	
195	280	235	I 	80	90	405	*575	125		L. STOLE.	
	1		. *		ł		•		、	R PROVINCE C.L. CHURCH	
					4				 თ	COLUMBIA A	
	3 + 00				4+001				+ 00N.	D C - D C	Ø
	OON.				OON.				Ę.	Coler Clem Dec. 8/9K	
								F	· · · · · · · · · · · · · · · · · · ·		
				•						ON RESOURCES LTD.	
n		<u>75</u> 575	= Au (ppb As (ppr							ROCK PROPER	Y
		•					•			GEOCHEMISTR	Y
						METRES				opb) AND ARSENIC (
					0 10	METRES 20 30	40 50	-	SCALE: 1:1000	DRAWN BY: F	ig. no.: 6a
									DATE: Nov. 199	4 NTS.: 92J/15	J.

-

			•									
51 36,63	90 48,58	67 46, 68	52 40,73	38 32, 54	35 32, 55	21 28,40	24 34,47	6 ₁ 48, 86	15 8 36,76	L. 1+00E.		
		•							¢			
								• •				
72	98	123	88	103	152	125	77	176		· · · · · · · · · · · · · · · · · · ·		
36,81	34,88	40, 93	50, 11 7	38,81	152 1 56, 12 2	125 1 64,125	46,71	176 60,157		L. 2+00E.		
									· .			
14	50 I	68 I	32	98	28	67	128			L. 3+00E.		
24,43	52,102	54,126	36,56	48,99	34, 48	44,95	58, 104			L. 0 1 00L.		
			•									
20	47 	160 70,166	93 60, 134	I	109 1 60,101	140	146 54, 100	252 72,143	184 60, 1 48	L. 4+00E		
							GE	DLOGI	CALB	RANCH		
								SESSM	ENTR	EPORT		
							2	5	6	28 PROVINCE PROVINCE J. M. MILLER-TAIT BRITISH COLUMBIA		
94.	91	70	55	38	23	75	91	28		- Cint The		
54, 144	60, II7	52,124	46,99	34,80	30,47	44,80	44, 91	32,57	J	L. 54 OOE. Dee- 8944		
										C.L. CHURCH		
	3 + 00N.				4 + 00N.				5 + 00N.	Celvi Chund Dec. 8/94		
								— —		Dec . 8/94		
<u>91</u> = Cu (ppm) 60, 117 = Pb (ppm), Zn (ppm)										LEVON RESOURCES LTD. GRAY ROCK PROPERTY		
		60, 117	ןק) מא	אווז, ∠n (ppm)					SOIL (DET MINING DIVISION, B.C.		
					0 10	METRES 20 30 40	50		LE: 1:1000	ppm), LEAD (ppm) AND ZINC (ppm) DRAWN BY: FIG. NO.:		
								·	E: Nov. 1994	NTS.: 92J/15 6c		

