LOG NO	DEC 0 9 1994
FILE NO:	

Diamond Drilling Report

on the

KL PROPERTY

Omineca Mining Division NTS: 093N/7W

Latitude: 55 17'N Longitude: 124 45'W

SUB-RECORDER
RECEIVED
DEC 0 6 1994
M.R.# _____\$ ____
VANCOUVER, B.C.

December 1994

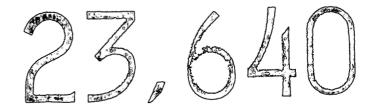
Owner: Eric Shaede

R.R #1 S19, C6 Sicamous, B.C.

VOE 2VO

Owner/Operator: Hudson Bay Exploration

& Development Co. Ltd. 405-470 Granville St.


Vancouver, B.C.

V6C 1V5

FILMED

Author: Leonard Gal P. Geo.

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

					Page
SUMMARY					. 1
INTRODUCTION .					. 2
LOCATION, ACCE	SS AND PHYSIOGRAPHY				. 2
CLAIM INFORMAT	ION			• •	. 2
WORK PERFORMED					. 5
EXPLORATION HI	STORY				. 5
REGIONAL GEOLO	GY				. 6
PROPERTY GEOLO	GY				. 6
DIAMOND DRILLI	NG				. 6
DIAMOND DRILLI	NG RESULTS			• •	. 7
CONCLUSIONS AN	D RECOMMENDATIONS				. 9
REFERENCES					. 11
LIST OF FIGURE	<u>s</u>				
FIGURE 1	LOCATION MAP				3
FIGURE 2	CLAIM MAP				4
FIGURE 3	LOCATION OF DIAMOND DRILL HOLES				8
FIGURE 4	DRILL HOLE SECTIONS	ba	ck	po	ocket
APPENDICES					
APPENDIX 1	STATEMENTS OF QUALIFICATIONS				
APPENDIX 2	STATEMENT OF EXPENDITURES				
APPENDIX 3	DRILL LOGS				
APPENDIX 4	ANALYTICAL RESULTS				

Summary

The KL Property is located 90 km NNW of Fort St. James and consists of five 4-post claims and ten 2-post claims for a total of ninety units. The KL, KL1 and KL3 claims are owned by Eric Shaede while the remaining claims are owned by Hudson Bay Exploration & Development (HBED). The claims cover a known Cu-Ag-Au shear/vein showing, known as the Klawli or Kohse Copper (MINFILE 093N 032). The property has been worked intermittently since 1984 in hopes of discovering a Cu-Au porphyry deposit.

The KL property is underlain by Upper Triassic Takla Group volcanics. Rocks outcropping along ridge tops are massive greengrey to maroon andesite porphyries with "regional" type propylitic alteration (chlorite - epidote - carbonate) and minor sulphide mineralization. At lower elevations, within a coincident geochemical / I.P. anomaly, are iron-carbonate, silicic altered intermediate volcanics. Mineralization in these rocks include 3-5% pyrite with minor chalcopyrite. A chip sample from a hand dug trench in this area returned 95 ppb Au and 532 ppm Cu over 5m.

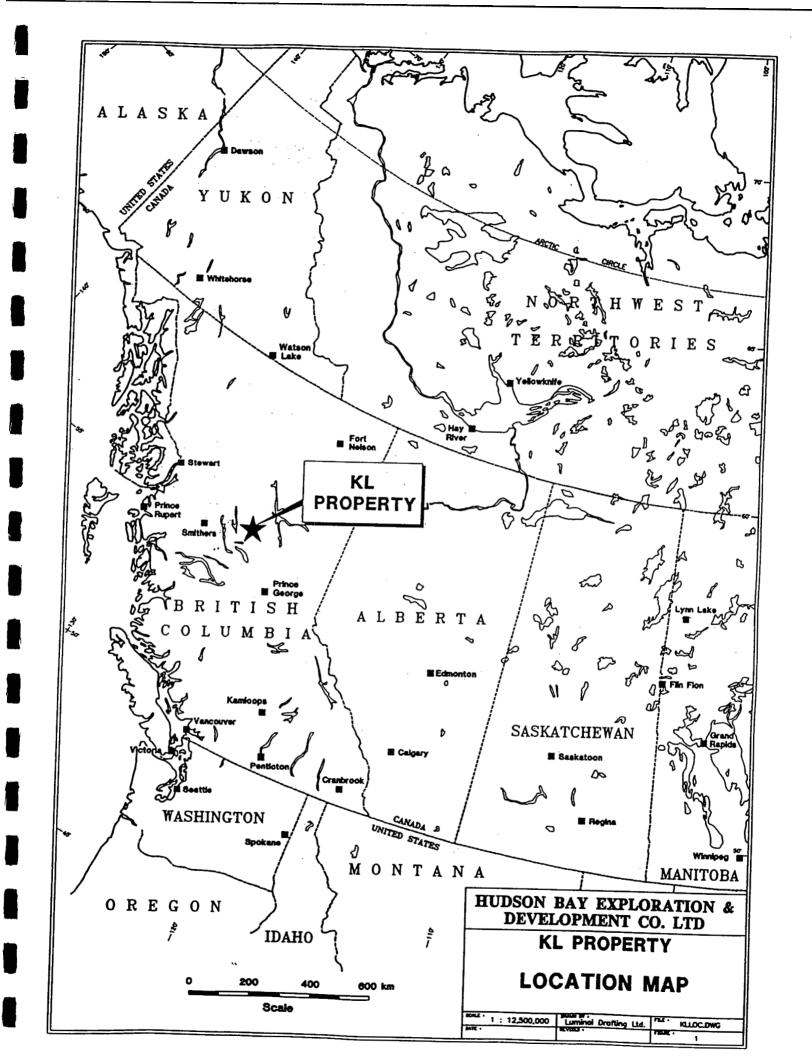
In 1994 two NQ diamond drill holes were drilled to follow up I.P. and soil geochemical surveys targets. The first hole (DDH-KL-94-01) tested for down dip extensions of mineralization at the Klawli showing, the second hole (KL-94-06) was to test an IP chargeability anomaly on the SW part of the property. Both holes interected anomalous copper values over relatively short intervals. Hole KL-94-01 also intersected anomalous gold values near the bottom of the hole.

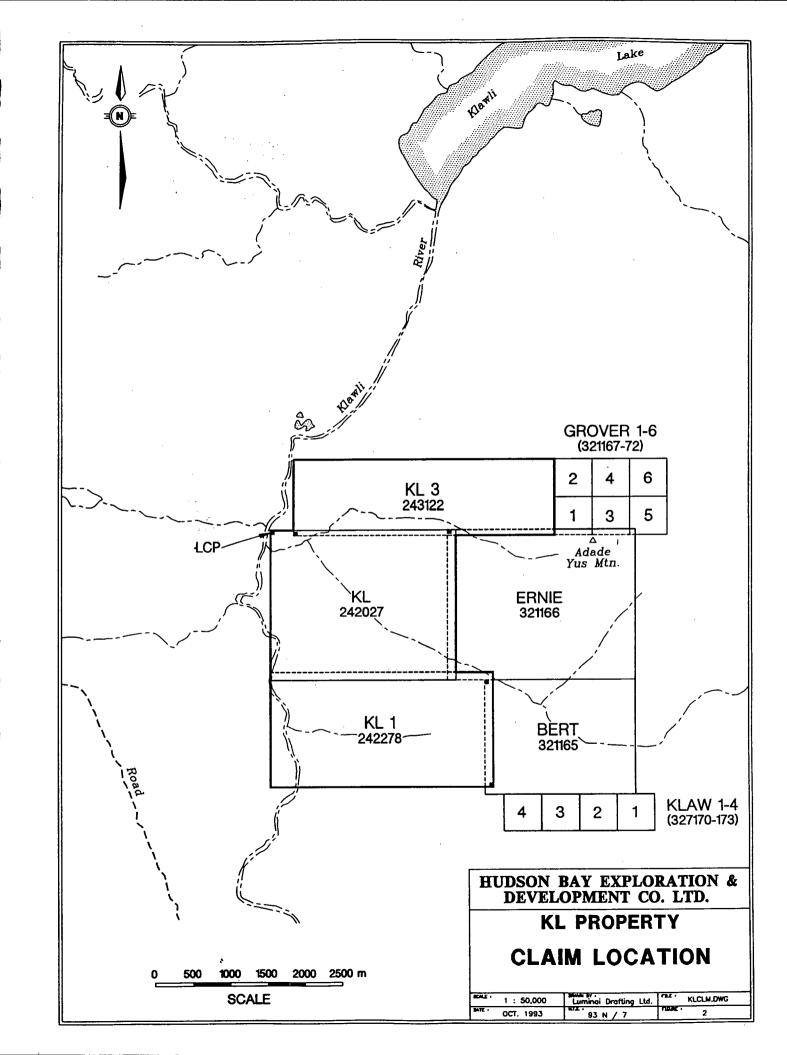
Introduction

This report is a description of work conducted for and by Hudson Bay Exploration and Development Co. Ltd. during the period September 12 to October 6, 1994. Advanced Drilling of Surrey, B.C. was contracted to drill six NQ size holes on the property. Costs associated with two of these holes (Kl-94-01 and 06) are being filed for assessment work. Hole KL-94-01 was drilled to a depth of 169.8m, while KL-94-06 was drilled to 151.5m.

Location, Access and Physiography

The KL claims are located 7 km northwest of the west end of Chuchi Lake, approximately 90 km north-northwest of Fort St. James, the nearest service centre (see Figure 1). Access to the claims is via helicopter from Fort St. James. The Tchentlo Forestry Service Road comes to within 3 km of the claim block, on the opposite (west) side of the Klawli River (see Figure 2).


The KL claim block covers three steep rocky ridges with elevations ranging from 950 to 1900 metres (3100 to 6200 feet). At lower elevations vegetation varies from intermittent marshes to stands of mature spruce, hemlock pine and fir, while higher elevations have typical alpine scrub.


Claim Information

The KL property is located in the Omineca Mining Division, covered by NTS map sheet 093N/7. The KL group is a combination of claims staked by Noranda personnel in 1990 (KL, KL1, KL3) and claims staked by Hudson Bay personnel in 1993 (Ernie, Bert, Grover 1-6). The Klaw 1-4 claims were staked in 1994. Claim information is summarized below.

CLAIM NAME	UNITS	RECORD #	GOOD TO DATE *	OWNER
KL	20	242027	May 4, 1999	E. Shaede
KL 1	18	242278	June 15, 1999	E. Shaede
KL 3	14	243122	Feb. 7, 1999	E. Shaede
Ernie	20	321166	Sept. 20, 1999	HBED
Bert	12	321165	Sept. 20, 1999	HBED
Grover 1-6	6	322167-72	Sept. 20, 1999	HBED
Klaw 1-4	4	327170-73	July 11, 1999	HBED

^{*} If assessment is accepted.

Work Performed

During the period from September 15 to October 4 1994, Advanced Drilling of Surrey B.C. completed diamond drilling on the KL property on behalf of HBED. The results of two of these holes (KL-94-01, KL-94-06) are reported here. The core was logged, appropriate sections split and sampled, and the core stored on site. The drill sites were reclaimed in accordance with government regulations.

Exploration History

The Klawli showing was originally discovered in the 1920's and optioned to Consolidated Mining and Smelting Company of Canada, who did some trenching and sank two adits. This work exposed an area with several Cu-Ag-Au enriched veins that are known as the Klawli Copper or Kohse Copper (Minfile No. 093N 032) showings. From 1944 until 1984, little or no work was done on the property.

In 1984, Hawk Mountain Resources confirmed the presence of anomalous gold values at the showing. Samples taken from old workings assayed up to 0.48 opt Au, 29.22 opt Ag and 6.7% Cu. A reconnaissance VLF-EM survey indicated an anomalous zone that roughly parallels the strike of the exposed mineralization. A geochemical survey conducted in the showing area proved inconclusive.

In 1987, Eric Shaede resampled the old workings and confirmed the presence of high grade gold at the showings.

From 1990 to 1992, Noranda Exploration optioned the property from E. Shaede. Noranda conducted a soil survey and outlined a large Cu-Au anomaly immediately east and upslope from the Klawli showing. A reconnaissance style I.P./Resistivity survey was also run over the more anomalous part of the soil anomaly. Further work included detailed mapping, prospecting and soil test pits.

In 1993, HBED optioned the property and undertook soil and rock sampling and a limited VLF-EM survey in the area of altered volcanic subcrop and the coincident copper - gold soil anomaly.

In 1994, HBED completed soil sampling on the property to more fully delineate the copper gold soil anomalies. A comprehensive I.P. / resistivity survey was also performed.

Regional Geology

The KL Property lies within the Quesnel Trough (a subdivision of the Intermontane tectonic belt) represented in the area by Upper Triassic Takla Group volcanics and sedimentary rocks of island-arc affinity, and related intrusions. The claims are situated near the southern end of the Late Triassic-Early Cretaceous Hogem Batholith.

Takla Group rocks typically include argillite, augite porphyries, feldspar porphyries, and andesitic tuff, flows and breccias. The Takla rocks were also intruded by a series of Late Triassic to Late Cretaceous batholiths and stocks.

Block faulting and tilting are the dominant structural styles in and around the Quesnel Trough. The Quesnel Trough is in fault contact with older rocks to the east and west and is therefore characterized as a graben.

Economically the Intermontane tectonic belt is host to such porphyry copper deposits as Gibraltar, Mount Milligan, Kemess, Mount Polley and Lorraine.

Property Geology

Generally, outcrop in the areas of interest (i.e. lower elevations) is sparse. There is however, good exposure along the ridge tops. Lithologies include green and maroon plagioclase-hornblende (+/- augite) porphyritic andesites, grey vesicular andesites and green to buff heterolithic agglomerates. There is little mineralization, apart from pyritized clasts within the heterolithic agglomerates in the vicinitry of Adade Yus Mtn. Alteration is generally of a regional nature. Weak chloritization is ubiquitous, and carbonate, epidote and quartz are often found filling fractures.

At lower elevations, sparse outcrop and subcrop under blown down trees indicate that the area is underlain principally by plagioclase - hornblende porphyries, plagioclase porphyries and plagioclase - augite porhpyries, with lesser intermediate tuffs. The outcrops are generally limited to stream gullies toward the western side of the property.

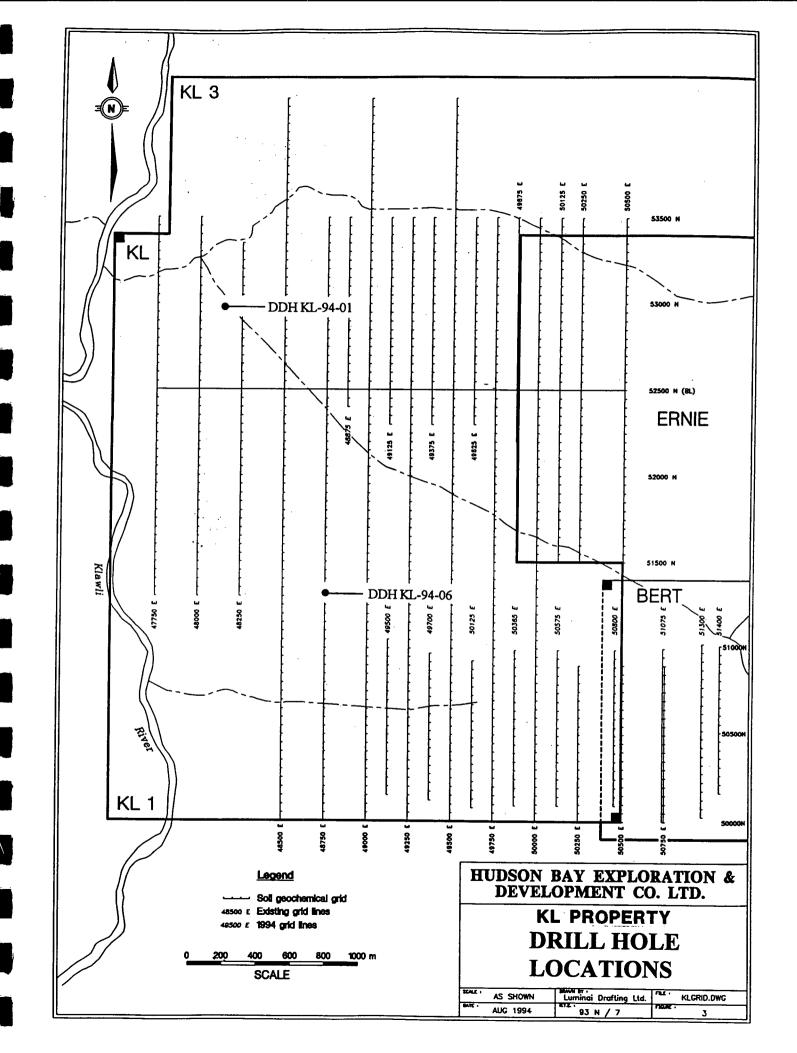
Diamond Drilling

Advanced Drilling of Surrey B.C. drilled two NQ (47.6 mm) holes, for a total depth of 1054 feet (321.3 m). The drill was a Boyles 25A, and drill moves were performed by a Bell Long Ranger owned by Pacific Western Helicopters of Ft. st. James, B.C.

Recovery in the two holes was generally better than 95 percent. Hole KL-94-01 was 557' (169.8m) and KL-94-06 was 497'

(151.5m) long. Overburden depth was 32m at KL-94-01, 5m at KL-94-06.

Core was logged in a standard manner at the drill site and split samples were taken over areas of interest in 3m intervals. The core was cross stacked with lids and covered with chicken mesh at the drill site. A skeletal core was assembled for each hole from representative samples of the lithology. Skeletal core samples are stored at the HBED warehouse in Surrey, B.C.


Drill hole coordinates (with respect to the established grid), elevations, dip and azimuth are summarized in the table below. Drill hole locations are presented in Figure 3. An acid test was taken at the bottom of each hole to test the dip and deviation from the inclination was found to be minor.

Split samples were shipped to Chemex Labs in North Vancouver B.C. for multi - element analysis by ICP. Results are presented in Appendix 4, and discussed in the following section.

DDH	Coordinates	Elevation	Dip	Azimuth	Total Depth
KL-94-01	48160E 53000N	1037m	- 50	045	169.8m
KL-94-06	48750E 51330N	1238m	- 60	180	151.5m

Drilling Results

Hole KL-94-01 was drilled to test for dip extensions of high grade copper - silver -gold mineralization found at the Klawli showing (MINFILE 93N-032). It also crossed the western tail of an IP chargeability anomaly. Overburden and glacial till occurred in the top 32m. The tills overlie volcanics of the Takla Group, including andesitic and crystal tuffs, plagioclase porphyries, massive andesite and agglomerate. A 3.5m interval of diorite occurs at 87.5m. The best assay results were 340ppm Cu from 55.8 - 58.8m, 265ppm Cu and 27ppb Au from 70.1 - 76.1m, 196ppm Cu and 150ppb Au from 87.5 - 89.5m, and 179ppm Cu and 233ppb Au from 148.0-161.5m. Although anomalous copper and gold did occur, there was no economically significant mineralization at the expected depth of the projection of the Klawli showing. Mineralization consisted mostly of pyrite disseminations and stringers, with a little chalcopyrite near the bottom of the hole. Magnetite was significant at the bottom of the hole and in the diorite body. In addition to weak propylitic alteration throughout the sequence, moderate amounts of carbonate + quartz stringers occurred in the top of the hole, along with bleaching of the agglomerate interval in the

middle section and moderate propylitic alteration in the massive andesite at the base of the hole.

Hole 94-06 was drilled to test an IP anomaly in the southwestern part of the property. Nearby outcrops of plagioclase hornblende porphyry have fairly abundant epidote and calcite fractures, with some malachite staining. Under 5m of overburden, the hole cored plagioclase +/- augite porphyry flows to the bottom of the hole (152.3 m). Locally the plagioclase was megacrystic and "crowded", and a few intervals were aphyric and massive. The upper 2.5 metres of rock were bleached and oxidized. The best assays were 390ppm Cu from 5 - 11m and 194ppm Cu from 16 - 25m, including an interval from 22 - 25 m of 259 ppm Cu and 115 ppb Au. Except for the latter interval, gold was not anomalous. Mineralization comprised pyrite dissemniations, clots and stringers with very subordinate chalcopyrite. Chlorite +/- epidote and hematite alteration occured to varying degrees throughout the hole, and calcite (and lesser quartz and chlorite) stringers were common.

Both holes were dissapointing in that chalcopyrite mineralization was minor. A down dip extension of the Klawli showing mineralization was not found in KL-94-01. However, enough disseminated and fracture filling pyrite was present to likely explain the IP conductivity anomaly.

Detailed drill logs of the holes are found in Appendix 3, and Figure 4 shows cross sections of the drill holes summarizing lithology, alteration and mineralization.

Conclusions & Recommendations

Two drill holes were drilled to test IP, geochemical and geological targets on the KL property. The first hole was drilled to test the margin of an IP anomaly and intersect possible down dip extensions of mineralization in the Klawli showing exposed on surface trenches. The second hole tested a considerable IP chargeability anomaly, as well as being adjacent to minor surface copper mineralization to the west and a geochemical anomaly to the northeast.

Both holes intersected intermediate porphyry flows and / or volcaniclastics of the Takla Group. Mainly propylitic alteration occured in varying degrees in the host rocks. No intrusive bodies (except a thin diorite dyke) were intersected. Sufficient disseminated and fracture filled pyrite was present to likely account for chargeability anomalies. Copper levels were anomalous in the middle and lower sections of KL-94-01, and throughout KL-94-06. Chalcopyrite was strongly subordinate to pyrite, however, and no ore grade interval were intersected. The lower part of KL-94-01 also yielded anomalous gold values.

Based on the results of these two holes, no further work is contemplated.

References

- Gal, L.P. and Moore, M. (1994): <u>Geochemical Report on the KL Property</u>. Unreleased B.C. Assessment Report dated September 1994.
- Garnett, J.A., (1978): <u>Geology and Mineral Occurrences of the Southern Hogem Batholith</u>, Bulletin 70, MEMPR.
- Moore, M. and Yarrow, E. (1993): <u>Geophysical and Geochemical Report</u>
 on the KL Property. B.C. Assessment Report dated November
 1993.
- Nelson, J.L. et al (1993): Geology of the Klawli Lake, Kwanika Creek and Discovery Creek map areas, Northern Quesnel Terrane, B.C., Geological Fieldwork 1992, Paper 1993-1, pp.87-107, MEMPR.
- Shaede, E.A. (1984): <u>Prospecting Report of the Gold 1-4 Claims</u>, B.C. Assessment Report No. 12908.
- Shaede, E.A. (1987): Geological and Geochemical Report of the Gold 1-4 Claims, B.C. Assessment Report No. 16865.
- Shaede, E.A. (1989): <u>Geochemical Report of the Gold Claim Group</u>, B.C. Assessment Report No. 19406.
- Stewart, F.S. (1991): <u>Geochemical Report on the KL Property, for Noranda Exploration Co. Ltd.</u>, B.C. Assessment Report No. 21279.
- Walker, T. (1992): <u>Geological</u>, <u>Geochemical</u>, <u>Geophysical Report on the KL Property</u>., B.C. Assessment Report 22,099.
- Walker, T. (1992b): <u>Geological & Geochemical Report on the KL Property</u>., Unpublished report.
- Watt, D. (1984): <u>Geophysical and Geochemical Report of the Gold Supplemental Claims</u>, B.C. Assessment Report No. 14579.

APPENDIX 1

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

- I, Leonard Gal, of Kelowna, British Columbia hereby certify that:
 - 1) I am a graduate of the University of British Columbia, with a B.Sc. in Geology (1986).
 - 2) I am a graduate of the University of Calgary, with an M.Sc. in Metamorphic Petrology (1989)
 - 3) I have practised my profession continuously since 1986.
 - 4) I am currently employed as a Geologist for Hudson Bay Exploration And Development Co. Ltd.
 - 5) The information in this report is based on published and unpublished reports on the property, and by work conducted by me for Hudson Bay Exploration.
 - 6) I have no interest in the property or any other within a 10 km radius.
 - 7) I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.

Signed this ESTA + of I

of December, 1994.

Leonard Galocien Geo.

Hudson Bay Exploration & Development

APPENDIX 2

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES KL PROPERTY

SEPTEMBER 12 - OCTOBER 6, 1994

Diamond Drilling 2 holes (1054 feet @ \$23.39/ft)	24651.91
Personnel Project Geologist @ \$275/day Cook @ \$200/day Pad building, core splitting, labour	1157.64 841.92 4871.34
Camp Costs Food Camp Rental Camp Supplies	1284.04 513.60 500.00
<u>Drill support</u> Helicopter	13976.15
<u>Analytical Charges</u> 51 core samples (32 element ICP)	764.91
Miscellaneous Core boxes Geological supplies Truck rental @ \$60/day Mob / demob (Vancouver - Ft. St. James)	466.98 150.00 252.22 200.00
Report Preparation 3 days @ \$250/day Drafting, Secretarial	750.00 250.00
TOTAL EXPENDITURES	\$50630.71

APPENDIX 3

DRILL LOGS

DIAMOND DRILL SUMMARY

			met	12.5	pp~	PPP		
metro	es	SUMMARY LOG			ASS	AYS		
From	То		From	То	Cu	Au		
0	32.0	overburden						
32.0	43.2	Andesite Tuff; weakly 9+3 - rarbonak a lived	<u> </u>					
		tr-10/0 pyrite: tr mal at 42m						
43.2	46.0	Feldspar Hornblende Porphyry; abundant 1-5mm hematik			<u> </u>			
		and calcik stringers.						
46.0	61.6	Plagioclase Porphyritic Flow; abundant tale, swend	55.8	58.8	340	45		
		narrow faults 1-3% pyrite throughout						
61.6	76.1	Andesite Tuff ; numerous narrow fault zones , 1-4010 p.	70.0	76.1	265	27		
	<u> </u>	miror chlorik altn. Tectoric breccia from 68.0-70.0m	<u> </u>					
76,1	87.5	Plagioclase Porphyritic Flow; silicified and talcose						
		exctions; weak chloritic alt Tr-2010 py; 1-5010 Mag	<u> </u>				I	
L	<u> </u>	from 76.1m to 81.4m in veinbly at 45° to C.A.	ļ		· .		ļ	<u> </u>
87.5	91.5		87.5	89.5	196	150		
	<u> </u>	places; 1-10mm Mag Stringers and 1-5mm by stringers						
91.5	126.3	Agglomerate: heterolithic volcaniclastic; bleached (sheared?)					!	
		abundant tale; miror graphitic shears, 1-30% pg	ļ					
		abundant tectoric brecciation from 105.8m - 111.7m	<u> </u>	<u> </u>			ļ!	
126.3	148.0	Crystal Tuff; upper contact at 100 to C.A.; feldspas	<u> </u>				ļ!	
		epidok altered; 1-10mm calcile stringers: Tr py; tr-5%	<u> </u>				ļ	<u> </u>
	ļ	Mag as fine blebs + strings					<u> </u>	
148.0	169.8	Massive Andesik; weak propolitic althation to 155m	148.0	161.5	179	233	<u> </u>	
		Numerous 10-20cm wide fault gauges from 148n-151m					ļ!	
L		at 60-70° to C.A. 1-3°10 pg; 1-2°10 mag; rare						
	<u> </u>	blebs of cp. mag/Py veins (1-8cm with) from 151m to						
		161.500						
							<u> </u>	
						1		

Project N	o. <u>KL</u>
	KL 94-01
Page\	of <u></u>
Property	_ KL
Claim	KL
	Klawli Showing Area
Date Start	shed September 16 194
Date Fini	shed Deptember 19 174

CORE SIZE				
From	To	Size		
٥	169.8m	Na		
		_		

Logged By Brian Game
Contractor Advance Drilling
Core Stored At Drill Site

Total Depth 169.8~ (557')

Core Recovery + 95 %

COLLAR SURVEY				
Northing 53000				
Easting	48160			
Elevation 1037 m				
Bearing 'O45°				
Dip - 050°				
Reference	GRID			

DOWN HOLE SURVEY				
Depth	Dip	Azimuth		
169.8m	- 450			
10,10	<u> </u>			
		ļ		
	<u></u>	<u> </u>		

HU A	DSON BAY	EXPLORA MENT Co.	NTION Ltd.
------	----------	---------------------	----------------------

Project No.	_K		·
Hole No	KL	94-01	•
Page 2	of	7	

INTE	RVAL	DESCRIPTION		Al	LTE	RA	TIC	N	Ï	rac Int.	-		M	INB!	RA)	LIZ	TIC	N		ASSAYS					
Prom	To			٠.	В		C	D	, [П	П		CP	BNF	ΥM	eg	T	!	Sample	From	To	Cu	Au		
0	32.0	Casing]	1	П	[]	П	11		-			1	1	1	 			1				
		bod sack at 32.6 m	Н	H				\prod	П	П	П	Τ				\top	1	_							
		Drill to 38.7m and then ream casing to	1		1 1		П	\prod		\prod	П				1	Ť	1	!		,	İ	 			
		38.70.				T		П	П		П	-			1	1	1								\vdash
				П		1	П		T	П	11				1	\top	\top				 -	- -			<u> </u>
32.0	43.2	Andesite Tuff	1			T			11	П	П				Ť	Ť	\Box	 			İ	Ì	i 		}
		- weakly quarty - carbonate altered intermediate	li			Ī	П		11						1	1	1	-		!	 	 -			1
		volcanic tuff.		T				П		H	Ħ	+			1	1	+	-			 	!			+-
		- core very weathered and exidized to 41.8m;	Ī		11	T					11	-		1	1	Ť	Ť		929051	35.7	38.3	82	10		1
		~ 60% recovery			- 1	Ī				П	Π	-			1	1	T		929052						\vdash
		- recovery 2 10% from 32m to 35,7m				İ	П		H	П	П				1	1	1		929053						<u> </u>
		- some vague chloritic patches								TT	П				-	İ	T				1	1			<u>† </u>
		- tr-1°10 disseminated fine grained py	Ţ					\prod	\prod	\prod	П				1		Ī	!			1	-			1
		- From 41.8m to 43.2m; a few 1-15mm				i					П						1				1				$\overline{\mathbf{I}}$
		angular bragments of tale and some 1-3mm			11	Ĺ	! !								T					!	!				T
		talc veinlets	į							\prod					Ţ	-	Ī								<u> </u>
		- trace malachite on fractised surfaces at				į		П		H		-			1	1	1				 	1			\vdash
		42 m ·						П		П	П				1	T	T				İ	İ	 	<u></u>	
			i												-	1	1	 			 				1
43.2	46.0	Feldspar - Hornblende Porphyr,				-		П	H	11					1		†					1			! -
		- gradational contacts	1			T		П		П	П				1	T	1				<u> </u>	İ			†
		- abundant 1-5mm hematite and calcite				1	П	П							T	1	1	1			1	1			
		stringers									П			1	1			 			1	 		[\vdash
						Ţ				П	П	-		1	Ť	İ	Ť	İ	 		1	<u> </u>			†
46.0	61.6	Plagioclase Porphyritic Andesite Flow												1	-	1	1	 		 		 			1
		- bull to pale green porphyritic flow	П	П		1					11			T	+	1	T		929054	52.8	55.8	120	45	<u> </u>	1
		- wariably silverfied				-				П	Ħ	İ		1	İ	Ť	İ	<u>; </u>	1			1	1		
		- minor tale on fractured surfaces to 52.4m	Π	\Box		1	\prod				11			-	+	+	1	-			 	†		 	
		- trace pyrite to 52.8m	İ											1	<u> </u>	+	+	 	<u> </u>		 	 		,	
		17	H	††	11	T	11	11	Ħ	ΤŤ	11	\dagger	H	- †	Ť	+	Ť	i			†	 	† †		1

	HUDSON BAY EXPLORATION & DEVELOPMENT Co. Ltd.
--	---

Project No.			
Hole No	K۲	94-01	
Page 3		7	

INTE	RVAL	DESCRIPTION		AĽ	TER	ΑT	ION		Frac	2.		MI	NER	ALI	ZAT	ION	ASSAYS			***********		
From	To		A	· !	В	C	į.	D	i. i	- []	į	CP E	NİPY	'Mag		Ţ	Sample	From	To	Cu	A,	
		- From 52.8 to 60.2m; abundant talk as									Ţ				1						1.5	
		veinlets and vague fragments.									T								 			
		Some narrow sections weakly to moderately				-					-		-		Ţ	İ	929055	55.8	58.8	340	15	
		brecciated. A few weakly chloritized patches.									-1		1		1	1	929056	58.8	60.2	14	45	
		Some narrow (< 10cm) gauged fault zones.					İ			-11	į				-		929057					
		1-3 % pyrike throughout, predominantly as												7		1						Ť
		fire grained nests' and disseminations.			<u>i</u> i							1							!			
		Some narrow sections with 1-10 mm veinlets											-						i .			
		of pyrite. Some erratic patches of hematite.										/		 - -						-		
		A coupl of rare block of con								!!	Ï	1	!		Ī	!		i !				
		- From 57.4m to 58.8m; abundant tale;								11			i									
		core very soft and gouged: probable				_				1								1				
		fault.																!	!			
													i					i				
61.6	76.1	Andesite Tuff		Ш																		
	<u> </u>	- bull to pale green														!	929058	61.6	64.6	4	45	
	 	- abundant tale veinlets and fractures.								11	i		<u>i</u>	<u>i i</u>			929059					
		- core very soft and fractured				Ш												 	!			
		Numerous narrow (& 10cm) gouged, foult							- 1		1							! !	l İ	!		
		30005									Ţ									-		
		- Some vaguely beldspor phyric fragments or										П							<u> </u>	<u> </u>		
		clasts. Some intrusive (monganite) fragments.								11	Ī		-			-		!				
		- original textures all but obliterated.									T								<u> </u>			
		- minor chloritic patches and stringers.						-			T					1		!		<u> </u>		
		- 1 - 4% pyrite as disseminations and fine									1		-					ĺ		!		
		Stringers.									1				1				 			
		- From 68.0m to 70.0m! tectonic breccia													İ	-	929060	68.0	70.0	146	45	
		very chaotic section with abundant light						1			1				1	-			! !		1	
		green to buff talcose fragments and light						-			-		-	+ †		1		_				
		7											T	11	Ť	Ť			i -	<u> </u>	 	

	HUDSON BAY EXPLORATION & DEVELOPMENT Co. Ltd.
--	---

Project No		
,	KL 94-01	
Page 4	of 7	

INTE	RVAL	DESCRIPTION		A	LTI	ER.	\TI	ON		Frac Int	C.	_	M	NB	RA:	LIZ	AT	ON			ASSAY	rs			
Prom	To		1	٩٠	8	. [С		5	Ţ	T	П	СР	BN F	ΥN	lag	Ţ	Ţ	Sample	From	To	Cu	Au		
		gray siliceous bragments. Some silicified/	-				П							Ī		1	T	1				-			-
		chloritized stringers. Abundant tale stringers,						\prod						1	V	1	T	1	929061	70.0	73.0	256	40	_	
		3-7% disseminated and fracture-filled fire							Ш						T	1		-	929062		T				
	L	grained pyrix.													1	1	İ	1							
							П	П						1	1	1	1	1			 	!			
76.1	87.5	Plagioclase Porphyritic Andesite Flow				П		П							T	T	T	1	-		<u> </u>			j	
		- green and maroon in colour					П	П	П		Ī			1	Ī	Ī	Ţ	1	929063	76.1	77.1	65	55	_	
		- alternating weakly silicified and talcose									Ī			1	Ī		1		929064						
		sections.						\prod			-				T	T	Ţ	Ì	929065						
·		- a few narrow, erratic quartz and calcite								1 1					Ī	1	1	Ţ	929066		1		-		j
	<u> </u>	Stringers.									İ				T	T	1	-							
		- some chloritic patches; some chloritized				Ш					1											1			
		stringer						\prod													!	!			
		- Tr-2010 pyrite as disseminations	1				<u> </u>		Ц	<u>i i</u>	İ	i i		į	j		i				1	i			
		- From 76.1m to 81.4m; 2-5% pyrite as			Ш	Ш	11	П	Ц		i					/].				
		disseminations and 1-5mm veinlets: 1-5-16			<u></u>								Ľ	1	✓		1]	!	!			
		magnetite as 1-3mm wide veinlets intimakli	L							ji	j				j	i				i		i			
		associated with park stringers at 450 to C.A.	L			Ш	11																		
			Ĺ														I	Ī		!		1			
87.5	91.5	Diorite / Gabbro					Ш								Ī					<u> </u>		<u> </u>			
		- dark green, medium grained intrusive													Ţ		1		929067	87.5	89.5	196	150		
		- a bew narrow, erratic quarty and calcite	i				<u> </u>	!!			<u> </u>				-		-	I	929068						
		stringers	L	ij						ij					T	-	1								
		- some weakly epidotized stringers; a few												П	Ţ		1	\top			1	!		1	
		weakly epidotized felsic fagments.						11		11	-				_!	1	1	Ī		!	!	!			
		- some 1-10mm wide manetik stringers and							H	\prod					Ţ,	<u> </u>	1	1		1				\neg	•
		1-5mm pyrik 'patches' intimately associated with				П								-	V	-	Ţ	T		!	1			寸	
		more siliceous areas.	<u>. i</u>		<u> </u>	11	<u> i i</u>	<u> 1 1</u>	11	11	į			1	İ	İ	İ	!		!	!	1		\neg	1.44
																	1	-		<u> </u>				寸	. 11
			Ī			IT	\prod	Π	11	11		IT		1	-		Ţ	Ţ						一;	12

HUDSON B & DEVEL	BAY EXPLORATION OPMENT Co. Ltd.
---------------------	---------------------------------

Project No		
Hole No	KL 94-01	
Page 5	of _7_	

INTE	RVAL	DESCRIPTION		ΑĽ	TER	TAS	101	N	Fre	ic.		МІ	NBR	ALI	ZAT	ION	ASSAYS						
From	То		Α	•	В	C	: [D				CP	3N P	Y Mag			Sample	From	To	Cu	Au		
91.5	126.3	Agglomerate		<u> </u>	11	IJ	П				П		-										<u> </u>
		- pale green to bulb, heterolithic fragmental								П	П		T				929069	91.5	94.5	113	45		
		- matrix andesitic to dacitic in composition;		l i		H	11		11	H	11						929070						
		some instances light green subrounded fragments														-		!					
		from 1 - 10cm are identifiable.					\prod			П	П									<u> </u>			\vdash
		- core somewhat bleached (Sheared ?)							П											<u> </u>			T
		- core very soft; abundant calcite and talc			ijŢ					\prod	\prod			!		-			!	!			
		Stringers. Abundant take on fractured surfaces.								\Box						i		i					
		- some dark grey silicibied patches.						Π															
		- trace - 19/0 pyrite as bine grained dissemination																	!	1			
		- From 96,9m to 98.3m; several 1-5cm wide			П			\prod						I			929071	96.9	98.3	27	45		
		graphitic shears (miror graphik) at 30-50° to		\Box	11		Ш										929072						
		core axis. 1-3% disseminated fine grained py.		Ш	<u> </u>	<u> </u>		П		П								!	!	!			Ī
		- From 105.8m to 111.7m; as per section from	LĽ	Ш	$\perp \! \! \! \! \! \perp$	<u> </u>				П							929073	105.8	108.8	24	45		Ī
		96.9m to 98.3m. Abundant brecciation (tetonic)			11		П	11									929074						
		- From 112m to 126.3m; only very vague fragmental			<u> </u>	<u>l i</u>		Ш					1						!	!			<u> -</u>
		texture in places; grades to pale green - grey			Ш		П	П					-					i	1				
		docitic flow in places.		Ш			П												[
						<u> </u>		\prod											!	!			
126,3	148.0	Crystal Tuffs		Ш		<u> </u>	Ш	Ш	ij									i	į				
		- dark green, andesitic matrix; some narrow		Ш	Ш	Ш		Ш	Ш	Ш	Ш						929075	130.1	133.1	6	45		
		sections grade to plagioclose porphyritic andesite.		<u> </u>	П	<u> </u>	<u> </u>	<u> </u>	11	<u> </u>	11					1			!	!		!	Ī
		- some narrow sections grade to a vaque	LL		Ш	Ц	<u> </u>	Ш	<u> </u>		П			i		i				i			
		progrentel texture.					П	11											Ĭ				
		- upper contact (sharp) at 100 to C.A.			11		11	<u> 11</u>					1	1] _		!		!		. 1	Π
		- clasts and feldspar crystals moderately				ijŢ	П	П	II	H	Π			i		Ī							
		epidate a Hered; some erratic epidote pateles		\coprod			\coprod			\coprod	\prod												
		and stringers.			ΙŢ				11	$\overline{\prod}$						T			Ī				
		- abundant 1-10mm calcite stringers at all								П	Π							:					1000
		orientations to C.A.		П	II	H	\prod	\prod	Π	П	П		-					!	1	!			

	HUDSON BAY EXPLORATION & DEVELOPMENT Co. Ltd.
--	---

Project No.		
	KL 94-01	,
Page 6	of 7	

INTE	RVAL	DESCRIPTION	ALTERATION			1	Fra	ic.		MI	NBR	ALI	ZAT	ON	ASSAYS								
From	To		Α	•	В	С	\Box	D			П	CPE	N PY	'Mag		Ţ	Sample	From	To	Cu	Au		Γ
		- abundant brange - brown hematite on			1 1											1							十
		bractured surfaces.					П				ij						929076	139.3	142.3	9	Z S		t
		- trace pyrite throughout; some narrow (630cm)				Ш							V			T							İ
		sections with tr-2010 py.	11		<u> </u>	<u> </u>		<u> </u>					1_	1	$\frac{1}{1}$								Ī
		- trace - 5% magnetite as fine blebs and					<u> </u>						İ			T	-						Ī
		fine trairline stringers. A few narrow magnetic					Ш				Ш												Γ
		veintes to 5mm wide intimately associated with				Ш																	Ī
,		calcile reining		1	Ц	LL	Ц	Ш			Ш		1	<u>i i</u>		<u> </u>							Γ
		,	- -							<u>Li</u>	<u> </u>	Li	<u> </u>										Γ
0.81	169.8	Massive Anderik					Ш				Ш	\coprod		1 1		!							Ī
		- dark green, weakly to moderately chloritized	Ш				Ц	Ш			П	Li	i	<u> </u>		i_							Ī
		andesite (weak propylitic alteration) to ~ 155m			Ц	Ц						\perp				<u> </u>							I
	Some narrow sections look vaguely district	-11			Ц	11	<u> </u>			Ш		-	1 1	_	<u> </u>							Ī	
		- From 148.0m to 151.0m; numerous 10-20cm		4	<u> </u>	Ц	11	<u>Li</u>			11	11	i	1 1	i	1_	929077	148.0	151.0	597	65		i
		wide fault goinges at 60-700 to C.A.	44		Ш		LL			Ш	ij	Li				<u>.i</u> _				_			Ī
		Abundant 1-5-mm wide tole and relait stringer	11		11	1	11	11			Ц		1		-	<u> </u>							Ī
		at various prientations 1-3% blebs of medium grained pyrik. 1-2% blebs and stringers of	ij	1	ĻĻ	ĻĻ	11	Щ		11	Ш	<u> </u>	1	1	j	<u> </u>							İ
		grained pyrik. 1-20% blebs and stringers of	-	Li.		LL	L		Ш	L	Ш		<u>i</u>	<u>i i</u>		<u> </u>							Ī
		magnetik. A couple of rare bless of cpy	11				Ш	11								1_				 			Ī
		- From 151.0m to 161.5 m; numerous 1-8 cm			Ш			<u> </u>			Ш		<u> </u>	<u>i i</u>		<u>i</u> _	929078	151.0	154.0	124	110		Ī
		wide magnetite/pyrite veins; some 1-2cm wide	-	L		LL	蒀	: <u> </u>		Ļ							929079						Γ
		magnetice only stringers; some disseminant and				H							_ _				929080						Ī
		fracture- filled figit price (1-2°10)	لل		LL	Ш	Ш	<u>LL</u>			H		_ <u>i</u>	<u> </u>			929081				T .		Ī
		Total for section ~ 5-8% magnetic		i	 -		Ш			LĹ						L							Ī
		and 2-5% py.	ij			Ш	Ш			Ш			1					<u> </u>	1				Ī
		A few callie and tale stringers; weakly to			ĻĻ		Ц						j						i L				ĺ
		moderately chloritized along Bractures								ĹĹ								 					Γ
		, , , , , , , , , , , , , , , , , , , ,	1 1										-										Ī
													i		I						Γ		ſ
						\Box	IT	11		IT	П		Ţ		Ţ	Ţ							Г

Project No			
Hole No		94-01	•
Page 7	of <u>7</u>		

INTE	RVAL	DESCRIPTION		ΑL	TE	RA'	TIO	N	I	rac Int.	•		MI								ASSAY	'S			
From	To		Α		8	i e	C	ח	, (11	11	- -	CPE	N P	Y Me	alo		Sar	nple	From	To	Cu	Au		
		- From 161.5m to 168.6m; dank green chloritized andesite			11			-						1	-	-									<u> </u>
		andlsite	H	++	+	÷	+	+	+	┼┼	╀	╫	╀	<u> </u>	+	! /	 	929	082	161.5	164.5	53	20		
		15-10/0 b g d Pxik, tr pd, tr-20/0	-	╁┼	++	╁	-	+	₩	++	┼	+	1	-\\	<u> v</u>	1	1 1					<u> </u>			<u> </u>
		Tr-10/0 b.g.d pxik, tr pd, tr-20/0 magnetik as fine disseminations and as rare	H	 	11	H	+	+		₩	╀	+	$\vdash \downarrow$		+	┼	Į į						<u> </u>		<u> </u>
		1-3mm stringers.	┞┼	ļ ļ	++	÷	4		H	₩	ij	+	-	-	∔	+	 			<u> </u>		<u> </u>			<u> </u>
		- a few erratic calcik stringers	H	+	11	4		ĻĻ	H	#	╁	- -	\vdash	4	+	 	╀			<u> </u>		<u> </u>			<u> </u>
		- From 168.6m to 169.8m; pale green green andesit. Somewhat vuggy in Places where carbonate has leached out	-	H	+++	-	+	+	H	Н	∔∔	-11	\vdash	_	1	1	1	4_	 ,.	<u> </u>	·	 			_
		andesit. Somewhat vuggy in places where	∔	H		4	1	1	Н	++	 	4	H		+	1									<u> </u>
		carbonate has leached out	Į∔.	Ц		ļ.	4		Ц	11	ļļ	į.	<u> </u>	_ <u>i</u> _	<u> </u>	<u> </u>	إلـــــــــــــــــــــــــــــــــــــ			<u> </u>		<u> </u>			L
		A few erratic 1-5mm calcite stringers and rare chloritic patches	1	 		4	1	4	Ц	11	11	4	\sqcup		<u> </u>	1				ļ					
		and rare inhoritic patches	ĻĻ		Ц									1	1	1						<u>. </u>			i
		Tr- 2010 disseminated b.g.d pyrik	L	L	11	L			Ц	11	<u> </u>	ij		يا_	<u>/</u> _	L.									
		0 3 (3	L	Ш	11						Ш				1					<u> </u>		!			
			L	11	11						i i			Ĺ	j					<u> </u>	i	1			
																						!			
				H						Π				1	1	1]			!		<u> </u>			<u> </u>
•		End of Hole 169.8m (557')			H					П	11					1						<u> </u>			
										П	П			1	1	Ī				Ì		 			
							1			Π	11				+	1				 		 -			一
			Ħ		П				Ħ	Π	11	\top	1	1	1	1	†	+		 		 			\vdash
			+		11	Ħ			H	11	Ħ	\forall	 	+	+	+	+	_ _		 		 		,	一
			+		11		1		††	++	++	\forall	†	+	+	+	+	+-		!	! !	!	! !		十
			+	††	††		+	+	++	††	11	\forall	H	+	+	+	+	_		 		├─-	├┼		╁
	L		+	††	++					 		\pm	 	╌┼	╁	╁	+			 	! !	!	 		⊬
		 	+	+	╁┼	+	+	-	+	11	+	+	 	÷	<u> </u>	÷	+-			 	<u> </u>	 	i 		⊢
	·		╁	╁	++	+	+	+	H	╁┼	╁┼	╫	┝┼	+	+	╁	-			 	ļ 	 		· · ·	\vdash
			┼	++	+	╫	+	!	+	++	┼┼	+		+	+	┿		+-		<u> </u>		-			-
			╁										┝┿	+	+	┿	-		·			 	-		<u> </u>
			+	+	1 1								\vdash	+	+-	+	₩İ			 		<u> </u>	 		<u> </u>
			╀	! 	++								\vdash	- i-	+	+	 			 	<u></u>	!	 		
L				Ц	Ш				Ц	Щ	Ц				\prod										

HUDSON BAY EXPLORATION & DEVELOPMENT Co. Ltd.		HUDSON BAY EXPLORATION & DEVELOPMENT Co. Ltd.
---	--	---

DIAMOND DRILL SUMMARY

			······		ppm	ppb	
		SUMMARY LOG	<u> </u>		ASS	AYS	
From	То		From	To	Cu	Au	
0	5.02	over burden	5	11	390	< 5	
5.02	7.62	Bleached plagnoclase - augite Flow		ludes	.		
7.62	152,3	plagiociaie (= augite) porphyry Flows	5	8	604	< 5	
	ļ	Bleached plaqueclase - augite Flow plagueclase (= augite) porphyry Flows locally megacrystic plagueclase					
			16	25	194	<5	
	ļ		10	clude			
					259	115	
			•				
						<u>.</u>	
	<u> </u>						

	KL	
Project No	· ·	
Hole No	KL-94-06	
Page		
Property	. k_	
	KLI	
	L48750E	
Date Started		
Logged By	LEDNARD GAL	
Contractor	LOVANCED DRILLI	NG
Core Stored A	At DRILL SITE	

	CORE	SIZE	
From	To	Size	
0	151.5	NG	

Total Depth 151.5 m (497)

Core Recovery >97.5%

C	OLLAR SURVEY
Northing	51 330 N
Easting	48750 E
Elevation	1230 -
Bearing	/80°
Dip	-60
Reference	GRÍD

I	DOWN HO	OLE SURVE	3 Y
Depth	Dip	Azimuth	
Depth 152.3	-60		
		I	
'	L		

	HUDSON BAY & DEVELOPI	EXPLORATION MENT Co. Ltd.
--	--------------------------	------------------------------

Project No	KL	
Hole No.	KL 94 -06	
Page 1	of 7	

INTE	RVAL	DESCRIPTION		AL'	TER	ra7	CIO	N	Fr	ac.		N	MIN	BRA	LIZ	ATI	ИО			ASSAT	rs			
From	To											c	PBN	PY	Mag	T	Ţ	Sample	From	To	Cu	Au		
0	5.02	casing			11	П	11						1			I	1							
					П	П	П	Π	11	Ti	11		1			1					-			
5.02	7.62	Bleached light punkish plagioclase porphyry					T						T			T		012010	5	8	175	< 5		
	Γ	(± augite) flow.		II	11	11	11		11				1		1	1	1				1			
		- plag laths to 5mm in matrix of leached and			\prod	П	T	П	\Box	T		T	1		1	7	1				-			
		bleached pyrihi rock (5% pyrite)			\prod		H						T	X	T	T	T				Ì			
		- Pyrite as equant 2mm blebs (replacement of			11	11							T		1	T					1			
		pugite) and larger patches.			П		\Box	П	11			T					Т							<u> </u>
		- a few rusty pyritic fractures 1-2mm thick								П						T	1			<u> </u>	Ì			
		- several carbonate fractures, straight to slightly		\prod	!!	1 !			11							1	1		1		1			1
		discontinuous														Ī				<u> </u>	1			
								1 1			į													
7.62	9.14	Fresh plagioclase megacryst porphyry flow						ij										012011	8		604	<5		I
		- abundant plagioclase phenocrysts 15% 5mm		11	Ш		Ш										İ				i			
		and greater	Ш		11		-									Ì								
		- medium green colour, weak epidote	Li		<u>i i</u>	11		ii								-								
		alteration of plaguoidase and chloritic alteration	LL	Ш	L	ij		L				<u> </u>	j			Ĺ	i		i				,	
		in matic minerals, a little disseminated			11		L	1 1																
		pyrite <1%, some in fractures as well.	Li	Ш	<u> </u>	Li										-	1		1		1			-
		- carbonate Gractures mostly 40° to C.A. lesser	L					Ш																
		pyrite and pyrite - carbonate fractures at	L	Ш	11	L				للا														
		higher angle to C.A. Slightly bleached	L		<u> </u>	H		j								_							·	
		envelopes about the latter	Li	<u> </u>		i	i i						İ			_ [Ι.
9.14	15.3			-	11							I	1				1							
		Plagiodase porphyry flow.	Li					j					I	-		!				!	!			<u>. </u>
		- weakly chloritized, pyrite occurs in									I						i		i					i
		blebs and masses, lesser fractives.	I		11						IT	П	1			-	T			1.				Г
		- carbonate fractives at various orientations			11								1			1	1			1				
			\coprod		\prod									1		1	1							
	1		T		11						IT	П	7		1	Ţ	T		Ţ	1	1			_

	HUDSON BAY EXPLORATION & DEVELOPMENT Co. Ltd.
--	---

Project No	KL
Hole No	A
Page Z	of 7

INTE	RVAL	DESCRIPTION		ALT	ER	AT	101	1	Fr	RC.		M	IIN	BRA	LIZ	TA	ON			ASSAY	S			
From	To		Α		В	С						CF	BN	PY	Mag		I	Sample	From	To	Cu	A4		
5,3	1915	plagioclase megacryst porphyry flow			···	_		<u> </u>				Γ	1_		- 1		I	012012	16	19	125	<5		I
		- At top of interval a 90cm bleached zone.													į	į								
		more or less symmetric about a 4cm					Ш		Ш															Ι
		carbonate vein . mati minerals (augite)												X						-				Ī
		within pinkish grey bleached zone are hematical								П		\mathbf{I}	Ï											Ī
		with slight epidote alteration of plag phenologits.		1								\perp												Ι
		- From 17m to bottom of interval pyrite										\perp				1								Ī
		increases again 2-3%?					<u> </u>		11						i	-								Ì
		V		Ш				Ц	Ш	Ш														i
9.5	22.5	medium green plagiociais porphiry flow		Li			! !	<u> </u>	11	11	4	L.	1		\dashv	_	-	012013	19	22	199	< 5		1
		medium green plagioclase porphyry flow - straight curbonate fractices appear to post-	ĻĻ			Ц	11	Ц	11	11	11	┸	\perp			_					<u> </u>			1
		date pyrite blebs and replacements.								ij			ᆜ_	لـــــــــــــــــــــــــــــــــــــ		_	┷		<u></u>		<u> </u>			ļ
		- At bottom of section get hematitic after-	11			1	1	11	Ц	4		1	1			_		<u> </u>	<u> </u>					4
		a hon of maticis.	نبا		ĻĻ	ĻĻ	11	ij	11	11			\perp	1	1	-	+	<u> </u>	<u> </u>	<u> </u>	<u> </u>			4
		- some carbonate fractures slightly vuggy	Ш									Ц-	ــــ	<u> </u>	1	_	<u> </u>			<u> </u>	<u> </u>		<u> </u>	j
			111					÷÷	-	_		Ш	4	↓_		_	4	<u> </u>	ļ	<u> </u>	<u> </u>	!	<u> </u>	۲
12.5	23.2	bleached and altered zone with considerable	<u>Li i</u>		<u> </u>							L	4	1		4	4	012014	22	25	159	1115	_	4
		epulate hemafile fractures and carbonate			┿	_						Ш		<u> </u>	<u> </u>	i_	<u> </u>		<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	اِ
		fractives with trace chalcopyrite.	111		11	11	⇊	11	4	1		1	ᆜ_	ــــــــــــــــــــــــــــــــــــــ		_	4		ļ. 	↓	 	 	<u> </u>	_
			Ш	14	ļļ.	Ļļ	11	11		+	1	1	1	1		1	+	<u> </u>	 	<u> </u>	 	↓	<u> </u>	4
23.2	26 .4	similar green plagioclase (+ augite)	Цij	L	_		ij		_	_		Ц.	<u> </u>	<u> </u>	Ļ		_ <u>i</u> _	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	اِـ
		porphyry flow	11	11		11	┵	11	4	-	1	1	_	<u> </u>		4	4	<u> </u>	<u> </u>	<u> </u>	↓	<u> </u>	_	4
_			Цij	11	ļļ.	↓i	1	ij	-	1	!!	Ц		1	1 1	1	1	ļ		<u> </u>	 	↓	١	4
26.4	26.65	bleached and altered zone (epidote-hematite)	Ш	LL	Ш	Ц	ļ.	Ш	L		<u> </u>	Ш	<u>i</u>	<u>i</u> _	<u>i i</u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>		1
		about a 3mm carbonate veint		11	11	11	1	11	Ш			Ц	┵	1	\sqcup						 		_	4
			Ш		Ш	ļi		Ш		1	Ц		1	1			_		<u> </u>	<u> </u>	<u> </u>		<u> - </u>	1
6.65	29.5	plagioclase - augite porphury Flow									Ļį.	Ц							<u> </u>	<u> </u> -	<u> </u>	<u> </u>		1
		- several carbonate veins 1-2 cm wide at	1		11	11		11		Ц.	<u> </u>	Ц	_		╽		1		-		<u> </u>		<u></u>	1
		60° to the coreani.	4	11	Ц	Ļ	4	ٺٺ	-	1	11	\sqcup	1	↓_			_		<u> </u>	<u> </u>	1	1		1
		- some hematite alteration (replacement of	Ш		Ш	Ш	<u>. </u>			LĹ	L		_[_	Ĺ			_i_		<u> </u>	<u>i</u>		<u> </u>	<u> </u>	Ţ

	HUDSON BAY EXPLORATION & DEVELOPMENT Co. Ltd.
--	---

Project No		KL	
Hole No.	KL	94-06	
Page 3	of 7		

INTE	RVAL	DESCRIPTION		AL.	TEF	RA7	OI7	N	F	rac.		T	MIN	IBR	ALI	ZAT	NOI		•	ASSAY	'S			
From	To			T	В	T	0	D	Ť	1		Π,	PB					Sample	From		Cu	Bul	- 1	
26.65	29.5	-hematite, epidote and carbonate as this fractive			Ī			Ť	+		+	Ħ	1	1	74108		+	Dampie	гин	10	Cu	7,5		
		Glinas as well.				Ħ	1	Ħ				††	\top	+-			- -	 						
		- at base of interval a zocm clayey goinge				††	††	+			+	$\dagger \dagger$	+	╁	\Box		+	012015	29	32	110.	1		_
		zone with pyrite-carbonate Fractures	1		11	H	++	1	+		+	H	+	+-	1-1	-+	+-	0(20/)		02	1.	17		
					Ħ	1	†	+	+		+	Ħ	+	╁		-	+			<u> </u>	 	 		
29.5	44.0	pragioclase - augite porphyry flow.	+	\vdash	 	††	+	+	+		+	††	+	┿			十	012016	22	2-	22/		- 	
		- several irregular clots (replacement?) of			11	11	† †	11	+		+	#	+	+-	-	-	+	0.20,0	, 2	25	126	1		
		epidate curbonate - pyrite (+ hematike und			Ħ	Ħ		Ħ	+			††	+	+		 		0/2017	30	20.	170	25		
		chlorite).	1	ÌÌ		Ħ	† †					$\dagger \dagger$	+	+			-	CIZOIT		30	11+6	`	 ¦	_
		- a: few pyrite in fractures and replacement ch						+	+-			††	+	1	1-1		+	· ·	· ·		<u> </u>	 		_
		augite 3% pyrite in total.		П	П	П						\Box	1	TX		\Box	1							
		- at 32.2m a 3cm camponate vein with			H							Ħ		T			<u> </u>					 		_
		epidore hematite envelope, a little wall			11							Ħ	1	1			+	·			-			_
		rock breccia within the vein 20 cm envelope			Π		-		1			Ħ	\top	1	1		1			 	 	 		_
	<u> </u>	in footwall			H	П					П						1	 		!	i			
		- at 33 m see an incresse in augite still										\prod					1		<u> </u>	 	-	 		_
		subordinate to plaguiclase.			П		7					1	10	1			1			 	 	 		_
		- at 37.5 see some pyrite rime un chloritized			\prod				П					1			1			!	<u> </u>			_
		makis, very rare trace chalcopyrik noted			П							П		-	1		$\neg \vdash$!	 			_
••		- at 43.3 2 thin chloritic sheari.										\prod								 				Γ
<u> </u>											П	П	T	1			1		İ		İ			Γ
44.0	47.0	plagioclase - augite porphyry flow		Π	П			-	П				1	-	1	 	1	1	 	 	-		· }	<u> </u>
		- both pyrite fractures and disseminations			П	П		-				Π					_			<u> </u>	 	1		_
		decrease «1%			11					П	Ħ	Ħ	1	7			+			 	 	 		÷
				1	П	\Box					1	$\dagger \dagger$	1	+	1		十			 	 			_
47.0	56.0	plagioclare - augite porphyry flow			II	H				\prod		#	1	1	1		+	012019	48	51	275	<5		<u></u>
		- pyrite increases again at 4915 mg			П							П		\top		1	Ť	 	<u> </u>	!	 		寸	
		- purite increases again at 49.5 m 9]						Ħ	+	\top	Y		1			 	 		_	_
		Gractures and clots with chlorite selvedges	\coprod		\prod							П	1	T		\Box	1						_	
		and epidote nich envelopes-	1	1]	Π			11			IT	\prod		1		ΓÌ	+			i	<u> </u>		-	_

	HUDSON BAY EXPLORATION & DEVELOPMENT Co. Ltd.
--	---

Project No	KL	
Hole No.		94-06
Page 4.	of 7	

INTE	RVAL	DESCRIPTION		AĽ	TEI	RA?	CIO	N	F	rac.		1	MIN	BR.	ALIZ	TAS	ION			ASSAY	S			
From	To		A	7	В		c Ţ	D					PBN	IPY	Mad	T		Sample	From	To	Cu	Au		T
47.0	56,0	- carbonate fractures (some associated with			Π								1	-	1	1	1	-				-114		十
		Chlorini shears) decrease toward base of			IT		T									7	1							T
		Interval			11		11	11	1				1	Ť		寸	\top					- 		十
				11	11		11	† †	11				+	1	П	十	+							十
6.0	59.0	mafic flow andesite			Ħ				+;	+		\sqcap	_			7	\top							t
		- heterogeneous; areas with crowded phenocrysts,		П	11	H							T	T	П	Ť	T							Ť
		other uniformity fine grained.		П									1		П	1	_							十
		- several large purite clock with altered			П			П				П		×	П	7	\neg						-	t
		envelopes up to 8cm across.		П	11	TÌ			П	Т		П	7	\top	П	T	1							Ť
												IT	T				1							t
9.0	61.2	plagiockie - augite flow												1										T
		- smaller equant crustals, some alteration (chlorite									·													Ť
		epotore-hematic)			\prod							\prod		-		-								T
	<u> </u>	- harrling combonate fractures in various orientations	L	<u>i i</u>	Ш		ij									ij	i							T
		- rare pyrite - carbonate fractures with bleached		Ш		1							-											Τ
		and epidotized envelopes			11	Ш]				\prod												Ţ
		•	L	<u> </u>	Ш	L																		T
61.2	64.0	plagioclase megacryst purphyry flow	1	Ц								\prod	1					012019	62	65	80	<5		T
		- plagnoclase phenocrysts 4-10 mm long	Ш	11	Ш	Li		İ											}					Ī
		- purite (1.5-2%) as replacements of matic	Li.	li	<u> </u>						<u> </u>				×									T
	<u> </u>	minerals and in fractures. Speck of chalco-	L	Ц	11					Ш	Ш													T
		purity noted.		Ш	11	1		1			!!	Ш	-	1			-				-			·T
		- Near bottom of interval , pyrite increases (3%)		Li		i			Ì														Ī.	T
		in a finer granted (non - purphyritic) interval	!			Ш																		T
														I			-							Τ
64.0	67.5	plaquoclase augite flow			П							\prod									i .			Γ
		- 10cm chloritic clay gouge at top of interval			П			11				\prod									-			T
		- several carbonate fractures to 25mm, little										ĹΤ		!					!		1			Ī
		pyrite									<u> </u>										1			Γ
		- at base of interval 2 more clay gauge		11		11		1			1	П	Ţ	1		-	\top				1			Г

	HUDSON BAY EXPLORATION & DEVELOPMENT Co. Ltd.
--	---

Project No.	KL		,
Hole No.	kc	94-06	
Page 5	of $\frac{7}{7}$		

INTE	RVAL	DESCRIPTION		AL	TEI	RA?	rio	N	F	rac. Int.		T	MIN	BR.	ALI2	TA	ION			ASSAY	'S			
From	To		A	7	8		c !	D	T				PBN	I PY	Mad	1	Ţ	Sample	From	To	Cn	Δ.	<u> </u>	
64.0	67:5	zones, at 55° to C.A. with some parallel			Π	Ħ	\top						1	T		十	十	7				1	 	
		carbunate fractives.			Ħ	Π	11	Ħ					丁	1		\top	†	 				<u> </u>	 	
				Ť	11	Π	11			Ħ		;	Ť	Ť	1	十	+				·		 -	├─
67.5	75.0	plagiociais megacryit porphyry flow			\Box			+-				1	h	1		+	+	012020	69.5	12.5	213	35	 	_
		- several thin chlorite - carbonate fractures				П				П				T				1					<u> </u>	<u> </u>
		parallel to core ans.		П	Π			!!					T			1								
		- ruck is lent a maroon hue Chematific				П				11		Π				1	7					 		
		a (teration?)			П									1		1	_							<u> </u>
		- epidote a Heration increases, in Fractures											Ī	T	T	T					İ		-	\vdash
		up to several con wide (700 to (.A.), and			H								Ī	1		-	1						 	1
		as replacement of plaguodase. Epidote Gractures										\prod		Ī							-			I
		cut by later carbonate fractures.	H.						\coprod	П														
	<u> </u>	- trace chalcopyrite in this quark bracture								П														
		within epidote -altered patch. Most sulphides	LĹ	Ц	Ш		ij		Ш			Ш		1	<u>i i</u>					i				
		occur in these epidote aftered patches.	Ш	L	11	ij	1			\prod	Ш	Ц	١.											
		Controlling structures are not apparent.			11	1				Ш		Ш					1		1					
		- at 73.4 a chlorine gouge zone with bots	LĹ	<u> </u>	Ш	<u> </u>			Ц	<u> </u>	<u> </u>		į							i				Π
	L	of carbonate tractives, lift a pyrite.	<u>LL</u>	Ш	11			-	Ш	\prod	Ш													
			Ш	Ц	<u> </u>				Ш										1					
7510	80,0	plagisclase megaciust porphyry flow	LL	Ц	Ш	Ш			Ц	<u> </u>	<u> </u>		tri	įχ		i_								
		- cut by many fractures and several thin	LL							İ		Ц	1											
		clayey zones, many hairline carbonate	Ш		11	Li		i			Ш	Ш							!		[!		
	ļ	fractures majority are parallel to core ans	L	<u> </u>	Ш				Ш	<u>] </u>	<u> </u>	Ш	_ <u>i</u>	į		i	_				i	[[.	
	L	- A little pyrite in carbonate - epidote veinlels		Ш	11				Ш				.]											
		with trace chalcupyrite.	Li	11	11			1]	!		<u> </u>		Π.
			Ш					1		<u> </u>		\coprod		1									[·	
80.0	92.8	dark green plagoclase purphyry How							П	\prod		\coprod					T				ĺ			
		- few large plaquiclave crustals, increase in	\coprod										T	1		1	1	1			1	1		1
		- few large plaguiclase crystals, increase in Chloritic alteration of groundingss.	П		_													1						$\overline{}$
		I- several hairline to 8mm thick combinate betilets	1	H	11	Ţ		1			IT	П	1	T		1	<u> </u>	T	Ţ	Ţ	!			

	HUDSON BAY EXPLORATION & DEVELOPMENT Co. Ltd.
--	---

Project No		KL	
Hole No		KL	94-06
Page 6	of	7	

INTE	RVAL	DESCRIPTION	-	ALI	rer	LAT	TOI	N	Fr	ac.		M	NBF	LAL	IZA:	пои	T		ASSAY	'S	*******	
From	То		Α	1	8		,	D	TT	H	Π	СР	BNP	Y Ma	d		Sample	From	To	Cu	Au	
82,8	106,5	crowded plagoidare porphyry.						П		H				Ī		_						
		- 30% large 10mm plagicilise phenocyity, few								1 1	11			1						<u> </u>		
		matic phena crysts.												T		Ì	012021	87	90	134	<5	
		- at 85 m a 4cm carbonate vein with brewiate						П			\prod			1						1		_
		margins (wall rock clask)								П												
		- hematite - chlorite alteration (replacement of								Ţ	\prod			T			012022	19	102	116	<5	
		magis?), cut by this carbonate fractures.															012023	102				_
		- Sulphides rare, trace chalcopyrite in					ij															
		4mm carbonate Gracture with envelope of	11																			
		epidate alteration.	<u> </u>		<u>i i</u>	П	11	11									· ·		!	!		
		- at 90.4 m a 5cm breccia zone at 40°			Ш	Ц	<u> </u>	П			ii											
		to C.A., dark green chloribi fragments in													 							İ
		appdate - carbonate matrix, very little pyrite.	ij		i i i i	l i	; ;			1									 	1		
<u> </u>		- at 92.5 m a 4cm chlorite gouge zone with		į			ij							Ī				i		-		
		trace of chalcopyrite in carbonale Gractive.																				
		- o carbonate - epidole fractures are cut by	<u> </u>			li		<u> </u>												!		
		later carbonate fractures. Also note some												T				<u> </u>				
		of the former have this hematitic envelopes,	•		1 1			1 1						T					!			
		although purite is rare. These fractures increwe				<u>; i</u>					П	Γ			1			1		1		
· .		from 93.5 m down hole.] ;													
		- by 99.5 m pyrite increass (with trace chalcopyrite)				Ш	Ш	11	11		Ш	ir		_ x						T		
		as blebs and within carbonate lensuidal fractures.		1		1						T		-					1			-
		Pyrite to 4%, then decreases again to ~1%		-							П	T								 	\Box	
		by 102 m.			П					Π	Π			T			012024	107	110	69	45	
						H					11	Τ		1			102025		120		• • •	
106.5	132.0	plagioclase porphyry How			П	H		H	11	11	11	1		1			102026			_	<5"	
l		- pyrite increases to 5% in replacements.			11		11	11	Ti		11			X	İ		102027	· · · · · · · · · · · · · · · · · · ·	141			1
		agglomerations and blebs little carbongle						++	11		11	\top		1	†		102028				<5	
		and traces chalcopyrite to 115m.				П	T	Ţİ	11	\Box	#	1		\top			1 2020	1		1		
		- carbonate fractive's present but not abundant.						11	TÍ		11	1		Ť	\Box			<u>i</u>		i –	† †	
		- 1 they was a second of the															 -				<u>i</u>	

	HUDSON BAY EXPLORATION & DEVELOPMENT Co. Ltd.
--	---

Project No.	KL	
Hole No.	KL 94-06	
Page 7.	of 7	

INTE	RVAL	DESCRIPTION		ALI	ER	ΑT	101	1	Fr	ac.		N	INI	RA	LIZ	ATIC	ИС			ASSAY	S			
From	То		Α		В	С	T	D	I		\prod	CI	BN	PYN	leg	T	Π	Sample	From	То	Cu	-	1.	
1320	136.0	andesitiv flow									H	Τ		Ī		1				 			!	1
<u>.</u>		- small (<2mm) plagoclase and lesser														T		, -			 		 	\vdash
		matic (augite) crystals in green-grey matrix			_	_															<u> </u>			\vdash
		- pyrile is very rare <1% carbonate fractives									$oxed{\mathbb{I}}$				Ī						1			
		Cairly common, little other alteration							Π							1			<u> </u>				 	T
<u></u>		- small (<2mm) plagicials and kster matic (augite) crystals in green-grey matrix - pyrite is very vare <1% carbonate fractives fairly common, little other alterntion - 2-3 <10cm wide gouge zones occur.		لــــــــــــــــــــــــــــــــــــــ					Ш			Ι				\top							!	T
	<u> </u>				İ	<u> </u>						Τ		- !	I						1		 	†
136.0	152.3	plagioclase porphyry flow										T			1	1					1		!	1
		- larger plague leve phenocrysis 4mm+									П	Ι		X		T				<u> </u>	İ	<u> </u>		T
		- In 138 m purite occurences increase again										Ι									1		 	\top
		- by 138 m pyrite occurences increase again (2-4%) in fractives and accommated clots						П	П	Ц											1			T
		- epidole - hematik fractures, and epidole +				Ц	Ц	Ц	Ш	Ш														T
		- epidote - hematike fractures, and epidote + quarte veining observed at 144m a 20cm chloritic gauge zone., also some thinner (2cm) chlorite - hematike			1			<u> </u>	Ш	Ш	11											!		T
		- at 144m a 20cm chloritic garge zone.	لللا	1		1		Ц	Ц	Ш		\perp								i				
		also some thinner (2cm) chlorite - hematike					Ш		Ш	Ц	<u> </u>	\perp	<u> </u>											Τ
		fracture -gouge zones.	Ш		1			Ш	Ц	Ш	Ш	L					!			1	-	!		Ī
			للا					Ц	<u> </u>		<u> </u>	丄	<u> </u>	<u> </u>	<u>i</u>	İ	i		i		i	İ		Π
		EOH.					Ш		Ш															T
				-							Ш									1	1	!		T
							Ц	Ш		П									i					1
						Ш		<u> </u>	Ш	Ш]		T
							Ш	<u> </u>	Ш	Ш	Ш		1		_1						!			Ī
				İ	Ш				ÌÌ								İ							\prod
	_				Ш		Ш			Ш							Π				1			
	•				j				\coprod	Ш		\prod			Ī				!		!			
				1				\prod	<u> 1 T</u>							ì	1		1	i	1.			
					Ш			Ш	П	\coprod		I	I						!	1.	!		;	
								\prod	Ш			Τ	I		I	T			-					100
				Ī				П	П			Ι				1			1				1 :	
					H	II	П	Π	ΙŢ	T	П	Т			7	\neg		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	ř ·	1			

APPENDIX 4

ANALYTICAL RESULTS

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

405 - 470 GRANVILLE ST. VANCOUVER, BC V6C 1V5

Project : KL Comments: ATTN: BRIAN GAME CC: ED YARROW

To: HUDSON BAY EXPLORATION & DEVELOPMENT CO. LTD.

Page Number : 1-A Total Pages : 1 Certificate Date: 05-OCT-94 Invoice No. : 19427496

P.O. Number : Account : T

									CE	RTIFIC	CATE	OF A	NAL	YSIS	<i></i>	19427	496		
PREP	Au ppb FA+AA	Ag mqq	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Cô ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K.	La ppm	Mg %	Mn ppm
205 274 205 274 205 274	< 5 < 5 < 5		0.64 0.77 0.95 0.53 0.67	2 2 < 2 < 2 2	370 430 450 20 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.84 1.70 2.51 1.74 2.55	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 7 4 12 7	37 38 30 32 39	83) 25 } 84 } 30 340 }	1.60 1.60 1.77 3.35 1.93	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.28 0.31 0.41 0.30 0.32	< 10 < 10 < 10 < 10 < 10	0.33 0.45 0.41 0.50 0.45	340 365 450 345 320
205 274 205 274 205 274	< 5 < 5 25	< 0.2 < 0.2 < 0.2	0.53 0.68 0.59 0.69 0.64	< 2 < 2 < 2 < 2 < 2	160 110 230 80 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 2	2.71 2.50 2.94 2.72 2.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 4 6 11	39 51 38 48 48	4 2 4 7 146	1.43 1.73 1.82 2.39 2.35	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.20 0.18 0.25 0.41 0.34	< 10 < 10 < 10 < 10 < 10	0.95 0.72 0.88 0.86 0.52	300 230 370 445 335
205 274 205 274 205 274	15 55 25	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.87 0.64 0.82 0.88 0.93	4 < 2 6 2 < 2	40 30 30 350 450	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.08 1.78 1.14 2.01 1.71	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 18 17 5	38 28 37 24 30	256 273 65 56 17	2.33 2.17 3.31 2.78 2.38	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.50 0.40 0.42 0.41 0.51	< 10 < 10 < 10 < 10 < 10	0.32 0.33 0.23 0.40 0.42	240 290 235 315 285
205 274 205 274 205 274	150 15 < 5	< 0.2	0.94 4.52 3.78 0.92 0.64	< 2 < 2 6 < 2 6	340 570 500 380 340	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 < 2 < 2 < 2 < 2	1.75 2.92 3.18 2.46 3.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 18 20 9	20 105 82 26 33	50 196 94 113 185	2.72 8.68 6.16 2.02 2.21	< 10 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.44 1.38 0.98 0.43 0.34	< 10 < 10 < 10 < 10 < 10	0.59 4.15 3.65 0.81 1.19	440 1295 950 380 565
205 274 205 274 205 274	45 20	< 0.2 < 0.2 0.6 0.2 < 0.2	0.81 0.50 0.59 0.53 1.87	< 2 4 4 < 2 < 2	130 410 60 210 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	2.23 1.96 2.41 2.59 4.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 7 8 6 6	34 23 42 56 57	27. 24 24 20 6	2.03 1.33 2.27 1.60 4.09	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.38 0.27 0.29 0.25 0.11	< 10 < 10 < 10 < 10 < 10	0.58 0.61 0.50 0.75 1.73	410 410 300 435 615
205 274 205 274 205 274	65 110 250	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.75 2.71 2.22 1.93 1.66	< 2 < 2 6 12 < 2	90 360 150 190 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	3.82 4.78 2.23 3.10 3.44	< 0.5 0.5 < 0.5 < 0.5 0.5	9 8 12 6 8	48 33 16 16 22	124	7.15	< 10 < 10 10 10	< 1 < 1 < 1 < 1	0.30 1.16 0.91 0.96 0.69	< 10 < 10 < 10 < 10 < 10	1.90 1.91 1.27 1.22 1.18	615 820 660 695 865
		0.2 < 0.2	1.09	< 2 < 2	20 500	< 0.5 < 0.5	< 2 < 2	2.91 3.42	< 0.5 0.5	12 7	33 13	35 53	8.43	< 10 < 10	< 1 < 1	0.59 1.26	< 10 < 10	0.89	755 850
	205 274 205 275 275 275 275 275 275 275 275 275 275	CODE FA+AA 205 274 10 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274 < 5 205 274	CODE FA+AA ppm 205 274	CODE FA+AA ppm % 205 274	CODE FA+AA ppm % ppm 205 274	CODE FA+AA ppm % ppm ppm 205 274	CODE FA+AA ppm % ppm ppm ppm ppm 205 274	CODE FA+AA ppm % ppm ppm ppm ppm ppm ppm 205 274	CODE FA+AA ppm % ppm ppm ppm ppm ppm ppm % 205 274	PREP CODE FA+AA ppm % ppm ppm ppm ppm ppm % ppm ppm ppm	PREP CODE	PREP CODE	PREP CODE PA+AA ppm % ppm ppm ppm ppm ppm ppm ppm ppm p	PREP CODE PA+AA ppm	CODE PA-AA ppm % ppm ppm ppm ppm ppm ppm ppm ppm p	PREP CODE Au ppb Ag A1 As Ba Be Bi Ca Cd Co Cr Cu Fe Ga Hg	PREP Au ppb Ag Al As Ba Be Bi Ca Cd Co Cr Cu Pe Ga Eg K PA-AA ppm A ppm ppm ppm ppm ppm ppm ppm ppm	REEP Au ppb Ag	PREP Au ppb Ag Al As Ba Ba Ba Bi Ca Cd Co Cr Cu Fe Ga Hg K La Mg 205 274 10 < 0.2 0.64 2 370 < 0.5 < 2 1.84 < 0.5 6 37 83 1.60 < 10 < 1 0.31 < 10 0.42 205 274 < 5 < 0.2 0.64 2 370 < 0.5 < 2 1.70 < 0.5 7 38 25 1.60 < 10 < 1 0.31 < 10 0.45 205 274 < 5 < 0.2 0.65 2 2 20 < 0.5 < 2 1.71 < 0.5 5 7 38 25 1.60 < 10 < 1 0.31 < 10 0.45 205 274 < 5 < 0.2 0.65 3 < 2 1.00 < 0.5 < 2 1.71 < 0.5 5 7 38 25 1.60 < 10 < 1 0.31 < 10 0.45 205 274 < 5 < 0.2 0.65 3 < 2 1.00 < 0.5 < 2 1.71 < 0.5 5 7 38 25 1.60 < 10 < 1 0.31 < 10 0.45 205 274 < 5 < 0.2 0.65 3 < 2 1.00 < 0.5 < 2 1.71 < 0.5 5 7 38 25 1.60 < 10 < 1 0.31 < 10 0.45 205 274 < 5 < 0.2 0.65 3 < 2 1.00 < 0.5 < 2 1.71 < 0.5 5 7 38 25 1.60 < 10 < 1 0.31 < 10 0.45 205 274 < 5 < 0.2 0.68 < 2 110 < 0.5 < 2 2.55 < 0.5 7 39 340 1.93 < 10 < 1 0.31 < 10 0.45 205 274 < 5 < 0.2 0.68 < 2 110 < 0.5 < 2 2.55 < 0.5 5 7 39 4 1.43 < 10 < 1 0.10 < 1 0.32 < 10 0.45 205 274 < 5 < 0.2 0.68 < 2 110 < 0.5 < 2 2.71 < 0.5 5 5 51 2 1.73 < 10 < 1 0.10 < 1 0.10 < 10 0.72 205 274 < 5 < 0.2 0.69 < 2 80 < 0.5 < 2 2.74 < 0.5 6 4 8 8 4 1.43 < 10 < 1 0.10 < 1 0.10 < 10 0.72 205 274 < 5 < 0.2 0.69 < 2 80 < 0.5 < 2 2.74 < 0.5 6 4 8 7 2.39 < 10 < 1 0.10 < 1 0.05 205 274 < 5 < 0.2 0.69 < 2 80 < 0.5 < 2 2.74 < 0.5 6 4 8 7 2.39 < 10 < 1 0.41 < 10 0.85 205 274 < 5 < 0.2 0.68 < 2 40 < 0.5 < 2 2.74 < 0.5 5 5 12 2.30 < 0.5 10 < 1 0.41 < 10 0.85 205 274 < 5 < 0.2 0.68 < 2 40 < 0.5 < 2 2.74 < 0.5 6 4 8 7 2.39 < 10 < 1 0.41 < 10 0.40 < 0.85 205 274

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: HUDSON BAY EXPLORATION & DEVELOPMENT CO. LTD.

405 - 470 GRANVILLE ST. VANCOUVER, BC V6C 1V5

Page Number: 1-B Total Pages: 1 Certificate Date: 05-OCT-94 Invoice No.: 19427496 P.O. Number : Account

Project : KL Comments: ATTN: BRIAN GAME CC: ED YARROW

										ERTIF	ICATE	OF A	NAL	/SIS	A9427496
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	ppm	Pb ppm	Sb ppm	Sc ppm	Sr T	l T1	U mqq	ppm V	ppm W	Zn ppm	
929051 929052 929053 929054 929055	205 274 205 274 205 274 205 274 205 274	< 1 1 < 1 2 8	0.07 0.07 0.04 0.04 0.02	1 1 1 1 2	780 810 790 750 790	2 2 4 2 2	4 4 4 4	1 1 1 1	46 < 0.0 38 < 0.0 102 < 0.0 50 < 0.0 91 < 0.0	l < 10 l < 10 l < 10	< 10 < 10 < 10 < 10 < 10	15 14 10 9 7	< 10 < 10 < 10 < 10 < 10	16 20 16 16 12	
929056 929057 929058 929059 929060	205 274 205 274 205 274 205 274 205 274	1 12 < 1 < 1 1	0.05 0.07 0.04 0.04 0.02	3 6 4 6 < 1	800 840 800 850 750	2 < 2 2 2 2	2 4 < 2 2 2	3 5 2 3 1	82 < 0.0 96 0.0 87 < 0.0 85 < 0.0 111 < 0.0	2 < 10 1 < 10 1 < 10	< 10 < 10 < 10 < 10 < 10	16 36 17 16 8	< 10 < 10 < 10 < 10 < 10	14 12 18 20 16	
929061 929062 929063 929064 929065	205 274 205 274 205 274 205 274 205 274	< 1 < 1 < 1 < 1 < 1	0.03 0.02 0.01 0.04 0.06	1 1 1 1 < 1	840 850 790 790 780	4 8 4 2 4	4 6 4 4 2	1 < 1 < 1 1	58 < 0.0 68 < 0.0 42 < 0.0 83 0.0 74 0.0	t < 10 t < 10 t < 10	< 10 < 10 < 10 < 10 < 10	9 6 12 22 32	< 10 < 10 < 10 < 10 < 10	18 12 16 18	
929066 929067 929068 929069 929070	205 274 205 274 205 274 205 274 205 274	< 1 < 1 < 1 4 9	0.06 0.01 0.01 0.04 0.05	1 24 26 2 4	830 820 800 780 880	2 6 6 2 2	4 8 6 2 6	1 20 18 3 7	58 0.0 322 0.1 1040 0.1 96 < 0.0 101 < 0.0	< 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	30 207 176 25 29	< 10 < 10 < 10 < 10 < 10	30 90 56 16 28	
929071 929072 929073 929074 929075	205 274 205 274 205 274 205 274 205 274	1 < 1 < 1 < 1 < 1	0.02 0.04 0.02 0.02 0.05	3 < 1 3 4 8	790 800 720 540 1740	8 < 2 2 4 < 2	4 2 4 2 8	1 1 1 1 8	97 < 0.0 69 < 0.0 91 < 0.0 119 < 0.0 209 0.1	<pre>1 < 10 1 < 10 1 < 10</pre>	< 10 < 10 < 10 < 10 < 10	9 7 7 7 96	< 10 < 10 < 10 < 10 < 10	22 22 14 20 32	
929076 929077 929078 929079 929080	205 274 205 274 205 274 205 274 205 274	1	0.06 0.02 < 0.01 0.01 < 0.01	9 5 2 3 3	1750 1720 1930 1910 1600	2 4 < 2 6 6	6 8 8 8	11 10 4 4	162 0.1 150 0.0 62 0.0 80 0.0 83 0.0	<pre> < 10 < 10 < 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10	123 114 77 76 60	< 10 < 10 < 10 < 10 < 10	34 48 50 54 50	
929081 929082	205 274 205 274	< 1 < 1	< 0.01 0.01	2 1	1620 1980	6	12	3 4	56 0.0 121 0.0		< 10 < 10	. 52 68	< 10 < 10	42 58	
·															

CERTIFICATION:__

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

DDH KL 94-06.

To: HUDSON BAY EXPLORATION & DEVELOPMENT CO. LTD.

CERTIFICATE OF ANALYSIS

405 - 470 GRANVILLE ST. VANCOUVER, BC V6C 1V5

Project : KL Comments: CC: ED YARROW

Page Number : 1-A Total Pages : 1 Certificate Date: 19-OCT-94 Invoice No. : 19428606 P.O. Number :

Account :T

A0400606

		· · · · · · · · · · · · · · · · · · ·					<u> </u>		N IIII	CATE	OF A	NAL	1515	/	49428	606		
Sample	PREP CODE	Au ppb Ag ppm FA+AA Aqua R	Al %		Ba Be	Bi ppm	Ca *	Cd ppm	Со	Cr ppm	ppm Cu	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %	Mn ppm
012010 5-8 012011 8-11 012012 16-19 012013 19-22 012014 22-23	205 294 205 294 205 294 205 294 205 294	< 5 < 0.2 < 5 < 0.2 < 5 < 0.2	2.01 2.10 2.55 2.21 2.44	< 2 1 < 2 1	60 < 0.5 00 < 0.5 40 < 0.5 80 < 0.5 40 < 0.5	< 2 < 2 < 2 < 2 < 2	2.95	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 17 26 18 14	29 27 23 19 20	175 604 125 199 259	5.33 4.55 5.44 5.24 5.19	10 10 10 10	< 1 < 1 1 < 1	0.33 0.35 0.24 0.23 0.18	< 10 < 10 < 10 < 10 < 10	0.89 0.99 1.53 1.29 1.46	585 580 1000 790 770
012015 29-32 012016 32-35 012017 35-35 012018 49-51 012019 62-65	205 294 205 294 205 294 205 294 205 294	<pre></pre>	2.10 1.79 1.97	< 2 1 < 2 1 < 2 1	90 < 0.5 50 < 0.5 10 < 0.5 80 < 0.5 70 < 0.5	< 2 < 2 < 2 < 2 < 2	3.25 3.31	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 18 22 23 27	17 18 18 13 190	118 326 172 275 80	4.48 4.89 4.73 4.33 5.23	10 10 10 10 < 10	< 1 < 1 < 1 < 1	0.26 0.27 0.33 0.32 0.11	< 10 < 10 < 10 < 10 < 10	1.12 1.02 0.84 0.98 3.32	685 685 700 680 1150
012020 69.5-71.5 012021 47-46 012022 99-101 012023 101-110 012024 107-110	205 294 205 294 205 294 205 294 205 294	<pre></pre>	2.31 1.68 2.39 2.22	< 2 1 < 2 1 < 2 2 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1 < 2 1	40 < 0.5 60 < 0.5 80 < 0.5 30 < 0.5 40 < 0.5	< 2 < 2 < 2 < 2 < 2	2.66 3.35 2.97	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	22 21 19 15 22	39 21 17 14 38	213 134 116 151 69	4.69 5.57 4.48 5.70 4.76	10 10 < 10 10 < 10	< 1	0.08 0.13 0.34 0.18 0.46	< 10 < 10 < 10 < 10 < 10	1.82 1.69 0.83 1.39 1.05	880 845 790 650 690
12025 ۱۱۶۰۱۵۰ 12026 میرانی 12027 ۱۶۰۱۲۱ 12028 ۱۲۳۰۱۲۱	205 294 205 294 205 294 205 294		1.78 2.67	< 2 1 < 2 1	70 < 0.5 30 < 0.5 80 < 0.5 90 < 0.5	< 2 < 2 < 2 < 2		< 0.5 < 0.5 < 0.5 < 0.5	20 21 20 22	25 45 37 28	144 299 130 166	5.25 5.32 5.55 4.90	10 10 10 10	< 1 < 1 < 1 1	0.25 0.43 0.25 0.19	< 10 < 10 < 10 10	0.88 0.92 1.47 1.55	615 805 1045 745

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: HUDSON BAY EXPLORATION & DEVELOPMENT CO. LTD.

405 - 470 GRANVILLE ST. VANCOUVER, BC V6C 1V5

Project: KL Comments: CC: ED YARROW

Page Number : 1-B
Total Pages : 1
Certificate Date: 19-OCT-94
Invoice No. : 19428606
P.O. Number :
Account : T

····										CE	RTIF	CATE	OF A	NALY	'SIS	A9428606
SAMPLE	PREP CODE	Mo	Na %	Ni ppm	PPm P	Pb Ppm	Sb ppm	Sc PPm	Sr ppm	Ti . %	Tl ppm	ppm T	V PPm	ppm W	Zn ppm	
12010 12011 12012 12013 12014	205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 < 1 < 1	0.03 0.03 0.03 0.03 0.04	13 50 13 15	1930 1960 1800 1850 1720	8 < 2 6 2 < 2	< 2 < 2 < 2 < 2 < 2	8 7 10 9 8	103 109 149 412 744	0.07 0.11 0.04 0.03 0.03	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	65 77 95 70 92	< 10 < 10 < 10 < 10 < 10	74 64 106 82 82	
2015 12016 12017 2018 2019	205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 < 1 < 1	0.03 0.03 0.03 0.03 0.02	11 10 12 11 36	1830 1760 1860 1850 1150	< 2 < 2 4 < 2 < 2	< 2 < 2 < 2 < 2 < 2	7 7 6 6 17	682 726 326 3140 220	0.02 0.01 0.01 0.07 0.06	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	52 56 46 43 112	< 10 < 10 < 10 < 10 10	72 58 54 54 78	
2020 12021 12022 12023 12024	205 294 205 294 205 294 205 294 205 294	2 < 1 < 1 < 1	0.04 0.04 0.02 0.04 0.02	16 12 8 10 10	1750 1760 1720 1680 1700	2 2 4 2 < 2	< 2 < 2 < 2 < 2 < 2	7 8 4 7 4	417 217 119 161 149	0.14 0.13 0.02 0.04 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	108 121 45 94 46	< 10 < 10 < 10 < 10 < 10	66 60 58 64 48	
12025 12026 12027 12028	205 294 205 294 205 294 205 294	< 1 < 1 < 1 < 1	0.03 0.04 0.07 0.08	9 9 10 11	1880 1940 1790 1820	10 6 2 < 2	< 2 < 2 < 2 < 2	3 4 9 9	139 136 154 161	0.04 < 0.01 0.08 0.12	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	40 45 105 113	< 10 < 10 < 10 < 10	42 60 102 64	
						•						•				

(LINE OF SECTION 045' AZIMUTH - FACING NORTHWEST)

- 1050 m 1050 m Collar Grid point 48160 E, 53000 N Collar Elev. Approx. 1037 m KL 94-01 - 1000 m 1000 m **LEGEND** Overburden PP Plagioclase porphyry flow Hornblende porphyry flow / PA Plagioclase-augite flow 950 m 950 m Plagioclase-hornblende porphyry flow / PAP Plagioclase-augite porphyry flow Plagioclase-hornblende +/- augite porphyry flow PHAP Agg Agglomerate SAgg Sheared agglomerate ΑT Andesite tuff CT Crystal tuff Massive andesite And Diorite Di НуЬ Hybrid zone Fault Mineralization

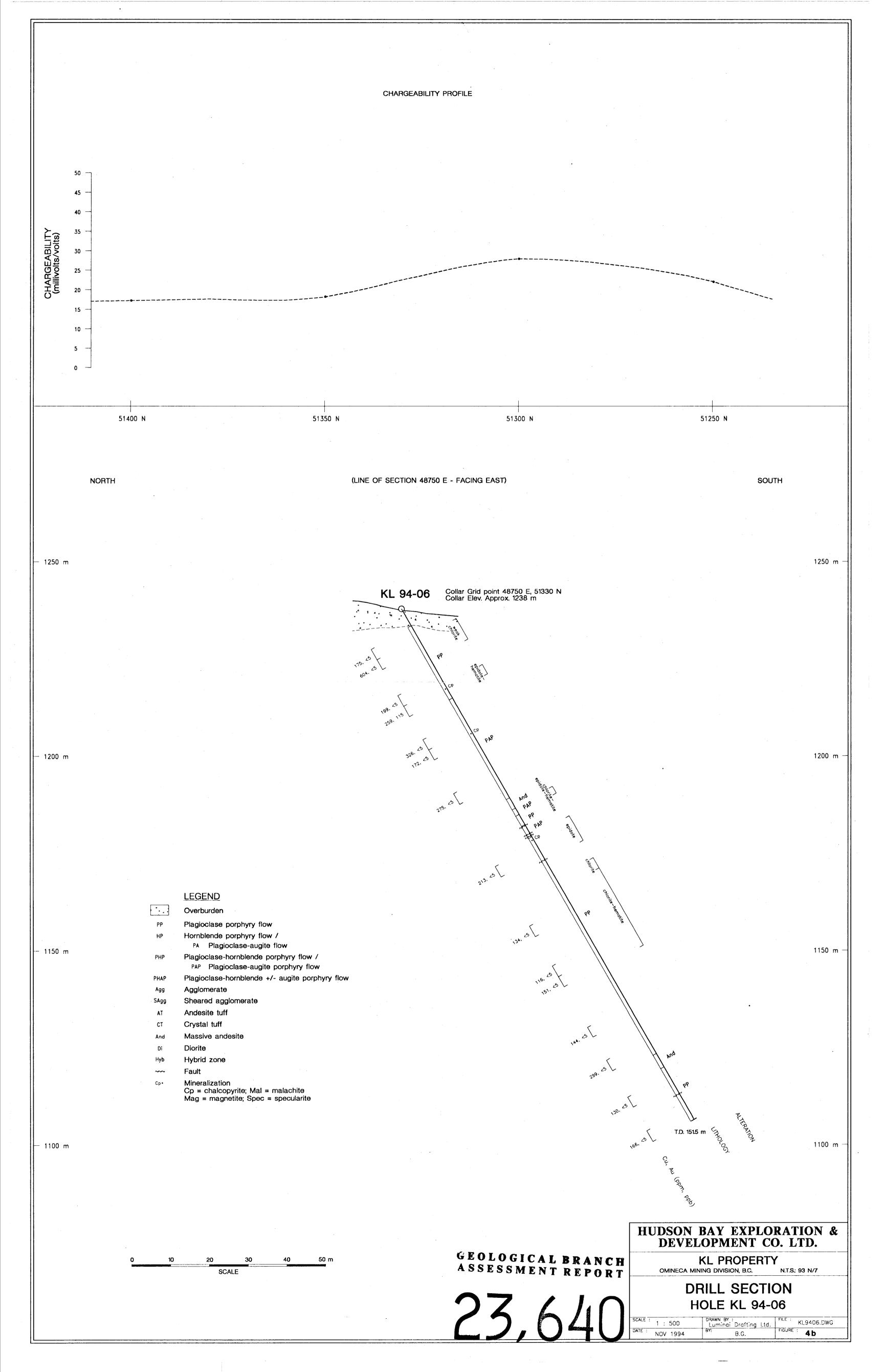
Cp = chalcopyrite; Mal = malachite

Mag = magnetite; Spec = specularite - 900 m 900 m

0 10 20 30 40 50 m

GEOLOGICAL BRANCH ASSESSMENT REPORT

23,640


HUDSON BAY EXPLORATION & DEVELOPMENT CO. LTD.

KL PROPERTY
OMINECA MINING DIVISION, B.C. N.T.S.: 9

DRILL SECTION HOLE KL 94-01

SCALE: 1:500 DRAWN BY: Lumingi Drofting Ltd. FILE: KL9401.DWG

DATE: NOV 1994 BY: B.G. FIGURE: 4a

