	LOG	NO:	PJAN	0	3	1995	U	
	ACT	10N:	, <u>, , , , , , , , , , , , , , , , , , </u>					
States and the second								
NAL STREET	FILF	NO:						

SUMMARY REPORT ON THE PHASE 1 EXPLORATION PROGRAM

ON THE

GOLDEN CROWN PROPERTY,

STEWART GOLD CAMP, SKEENA MINING DIVISION,

NORTHWESTERN BRITISH COLUMBIA

BY

GEOFINE EXPLORATION CONSULTANTS LTD.

FILMED

SKOLOGICAL BRANCH ANDESSMENT REPORT_{october}, 1994



Photo 1: Alteration Zone - Target area F

SUMMARY:

The \$61,000 Phase 1 reconnaissance exploration program was carried out on the Golden Crown property as weather conditions periodically allowed from July to September, 1994. The property comprises 276 claim units that cover 69 square km and are located in the Stewart Gold Camp, approximately 25 km northeast of Stewart, northwestern British Columbia. The helicopter supported program was funded by Canstar Ventures Corporation which held the property under option from Trev Corp (TVC:ASE) of Calgary, Alberta.

The Phase 1 program entailed the geological and geochemical evaluation of the gold and polymetallic potential of a number of are target that located prospective geological areas in environments of the favourable Unuk River Formation and that have positive attributes including strong alteration and favourable The northern claims of the Golden Crown structural settings. property cover part of the Todd Ice Field, the recession of which continues to expose favourable geology.

A total of 450 samples including 369 rock composite and chip, 2 soil, 58 stream sediment and 21 checks was collected in 10 target areas. Most of the gold values returned from the rock and talus samples are below 15 ppb and are not apparent follow-up targets. Using a threshold value of 10 ppb Au, only two of the gold values from the stream sediment samples collected on the property are considered anomalous.

In contrast to the low gold values, anomalous arsenic, lead and zinc values were returned from the rock samples from a majority of Although interesting gold values may often be the target areas. lacking from reconnaissance geochemical surveys in the Stewart sulfidized alteration zones that contain polymetallic Camp, signatures including arsenic and zinc with or without copper, lead and a number of other indicator elements sometimes halo proximal gold mineralization. Based on the experience of Geofine personnel in the Camp that includes the discovery and exploration of the Red Mountain deposit, blind gold deposits can be localized by structural elements in the vicinity of such anomalous polymetallic signatures which must be evaluated carefully in order not to overlook important auriferous targets.

Based on the often intense alteration that includes sulfidization, silicification and chloritization, some of which is very similar to that associated with the Marc Zone gold deposit at Red Mountain, along with favourable polymetallic signatures, the Golden Crown property is deemed to continue to offer an attractive exploration environment. Five of the Target Areas (C, D, F-H, I and J) have returned anomalous As, Pb and Zn results from rock samples, with values ranging up to 3125, 12000 and 20300 ppm, respectively. An \$85,000 follow-up program including an Aerodat airborne conventional electromagnetic, radiometric and gradient magnetic survey is proposed to locate EM conductors and to more precisely delineate structural fabric and geological contacts. Any buried EM conductor in the five target areas referenced above would have potential for hosting gold or polymetallic mineralization.

If the Aerodat survey is successful in locating conductors, ground follow-up geophysical and geochemical surveys would be carried out on mini-grids to locate and prioritize drill targets. It is also recommended that quantitative multi-element geochemical analyses be carried out on a number of the pulps and rejects from the 1994 rock samples in order to further delineate and prioritize the geochemical signatures indicative of proximal gold mineralization.

TABLE OF CONTENTS

TIT	LE:	PAGE:				
SUM	MARY	.ii				
TAB	LE OF CONTENTS	.iv				
1.	INTRODUCTION:	1				
2.	PROPERTY, OWNERSHIP:	1				
з.	LOCATION, ACCESS:	6				
4.	TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE AND VEGETATION	1: 6				
5.	EXPLORATION HISTORY:	.11				
6.	REGIONAL GEOLOGY:	.11				
7.	REGIONAL MINERALIZATION AND EXPLORATION ACTIVITIES:	.14				
8.	PROPERTY GEOLOGY:	.17				
9D. 9E. 9F-1 9J. 9I. 10.	1994 PHASE 1 RECONNAISSANCE PROGRAM: TARGET AREA A. TARGET AREA B. TARGET AREA B. TARGET AREA C. TARGET AREA D. TARGET AREA D. TARGET AREA E. H. TARGET AREA F-H. TARGET AREA J. TARGET AREA J. CONCLUSIONS, RECOMMENDATIONS. REFERENCES. STATEMENT OF QUALIFICATIONS.	.20 .27 .29 .35 .37 .40 .47 .49 .51 .54				
LIST OF PHOTOS						
PHO?		PAGE:				
1. 7	ALTERATION ZONE, GOLDEN CROWN PROPERTY	i				
	VIEW OF BEAR GLACIER AT STEWART HIGHWAY FROM GOLDEN CROWN PROPERTY	9				
3. 1	TODD ICE FIELD	.10				
4.	TOPOGRAPHY, GOLDEN CROWN PROPERTY	.10				
5A.	MIN EN PREPARATION FACILITY, SMITHERS, B. C	.25				

'iv

LIST OF PHOTOS (con't)

Photo:	PAG
5. TARGET AREA A	.26
6. TARGET AREA B	.28
7. TARGET AREA C	.30
8. EAST SIDE, TARGET AREA C	.31
9. CULLEN CREEK LINEAMENT	.32
10. CULLEN CREEK LINEAMENT	.32
11. WEST SIDE TARGET AREA C	.33
12. JAROSITE/ALUNITE ALTERATION	.34
13. ALTERED RHYOLITE	.34
14. ROCK ISLAND, TARGET AREA D	.36
15. TARGET AREA E	.38
16. TARGET AREA E	.39
17. TARGET AREA E	.39
18. MASSIVE PYRITE VEINS, LENSES	.41
19. STOCK WORK OF QUARTZ, OXIDIZED MATERIAL	.41
20. MASSIVE PYRITE BOULDER	.42
21. ALTERED VOLCANIC, TARGET AREA E	.42
22. ALTERATION ZONES, TARGET AREA F	.43
23. ALTERATION ZONES, TARGET AREA G	.44
24. ALTERATION ZONES, TARGET AREA H	.45
25. TARGET AREA J	.48
27. TARGET AREA I	.50

LIST OF FIGURES

FIGURE:	PAGE:						
1. STEWART GOLD CAMP	2						
2. PROPERTY LOCATION MAP	3						
3. CLAIM MAP	5						
4. RELIEF MAP	7						
5. TOPOGRAPHY MAP	8						
6. STEWART COMPLEX	.12						
7. PROPERTY GEOLOGY	.18						
8. AEROMAGNETIC DATA	.19						
LIST OF TABLES TABLE: PAGE:							
TABLE 1. PROPERTY HOLDING4							

TABLE I.	PROPERTY HOLDING
TABLE 2.	SAMPLE SUMMARY
TABLE 3.	ROCK AND TALUS SAMPLE DESCRIPTIONS AND ANALYSES22
TABLE 4.	STREAM SEDIMENT AND SOIL SAMPLE DESCRIPTIONS AND ANALYSES
TABLE 5.	EXPLORATION EXPENDITURES24
TABLE 6.	PROPOSED PHASE 2 1995 EXPLORATION PROGRAM53

LIST OF MAPS

APPENDIX 1 LOCATION:

.

1

MAP:

1.	PROPERTY GEOLOGY MAP WITH TARGET AREASIN	POCKET	A
2.	LEGEND FOR MAPSIN	POCKET	A
3B.	SAMPLE LOCATIONS, TARGET AREA AIN GEOLOGY, TARGET AREA AIN ANALYSES, TARGET AREA AIN	POCKET	Α
4B.	SAMPLE LOCATIONS, TARGET AREA BIN GEOLOGY, TARGET AREA BIN ANALYSES, TARGET AREA BIN	POCKET	В

LIST OF MAPS (con't)

APPENDIX 1 LOCATION:

5A. SAMPLE LOCATIONS, TARGET AREA CIN 5B. GEOLOGY, TARGET ARÈA CIN 5C. ANALYSES, TARGET AREA CIN	POCKET	В
6A. SAMPLE LOCATIONS, TARGET AREA DIN 6B. GEOLOGY, TARGET AREA DIN 6C. ANALYSES, TARGET AREA DIN	POCKET	В
7A. SAMPLE LOCATIONS, TARGET AREA EIN7B. GEOLOGY, TARGET AREA EIN7C. ANALYSES, TARGET AREA EIN	POCKET	С
8A. SAMPLE LOCATIONS, TARGET AREA FIN8B. GEOLOGY, TARGET AREA FIN8C. ANALYSES, TARGET AREA FIN	POCKET	С
9A. SAMPLE LOCATIONS, TARGET AREA GIN 9B. GEOLOGY, TARGET AREA GIN 9C. ANALYSES, TARGET AREA GIN	POCKET	С
10A. SAMPLE LOCATIONS, TARGET AREA HIN 10B. GEOLOGY, TARGET AREA HIN 10C. ANALYSES, TARGET AREA HIN	POCKET	D
11A. SAMPLE LOCATIONS, TARGET AREA JIN 11B. GEOLOGY, TARGET AREA JIN 11C. ANALYSES, TARGET AREA JIN	POCKET	D
12A. SAMPLE LOCATIONS, TARGET AREA IIN 12B. GEOLOGY, TARGET AREA IIN 12C. ANALYSES, TARGET AREA IIN	POCKET	D

LIST OF APPENDICES:

APPENDIX 1: LABORATORY RESULTS

MAP:

vii

SUMMARY REPORT ON THE PHASE 1 EXPLORATION PROGRAM

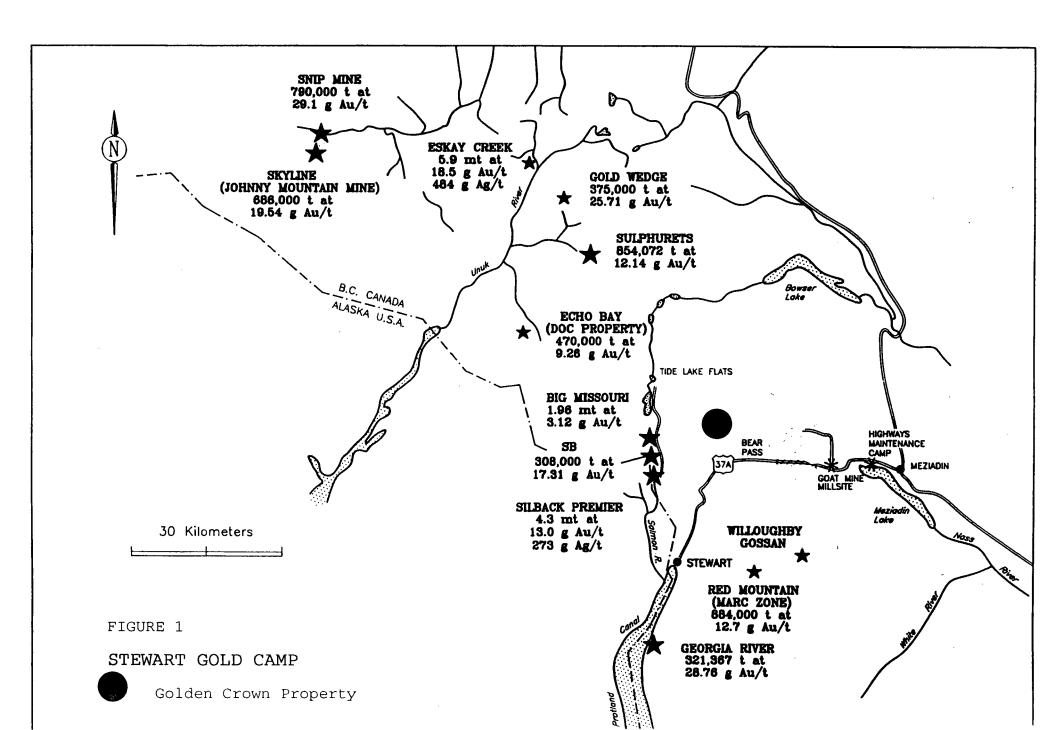
ON THE

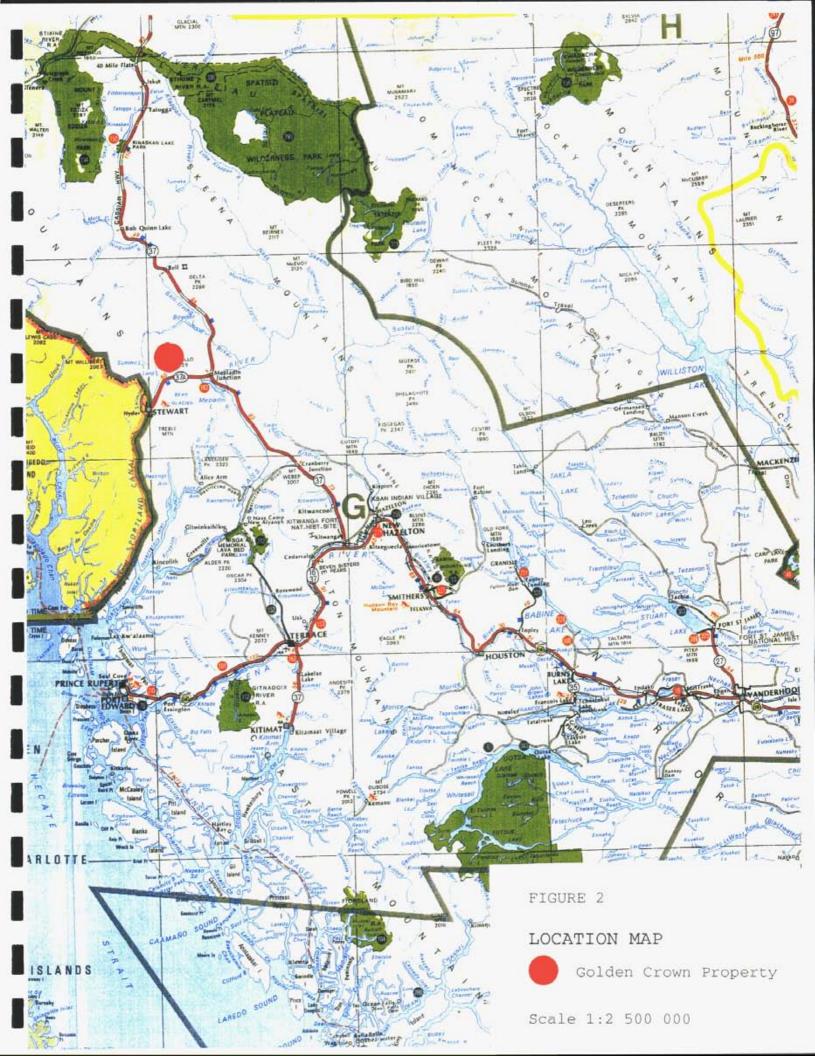
GOLDEN CROWN PROPERTY,

STEWART GOLD CAMP, SKEENA MINING DIVISION,

NORTHWESTERN BRITISH COLUMBIA

1. INTRODUCTION:


The following report reviews the results of the Phase 1 exploration program carried out on the Golden Crown property that is located in the Stewart Gold Camp of Northwestern British Columbia (Figure 1). The Golden Crown property is located in close proximity to the Stewart Highway, about 25 km northeast of Stewart, British Columbia (Figure 2).


The claims are mainly underlain by the prospective Hazelton Formation that hosts most of the significant mineralization in the Stewart Camp (Figure 1). The exploration target is gold and associated polymetallic mineralization most likely hosted by structurally controlled, sulfidized zones, and volcanogenic massive sulfides. Relevant models include the Marc Zone type mineralization (auriferous pyrite and sphalerite in structurally controlled, often brecciated zones) located on Lac Mineral's Red Mountain property; and, the Eskay Creek massive sulfide deposit.

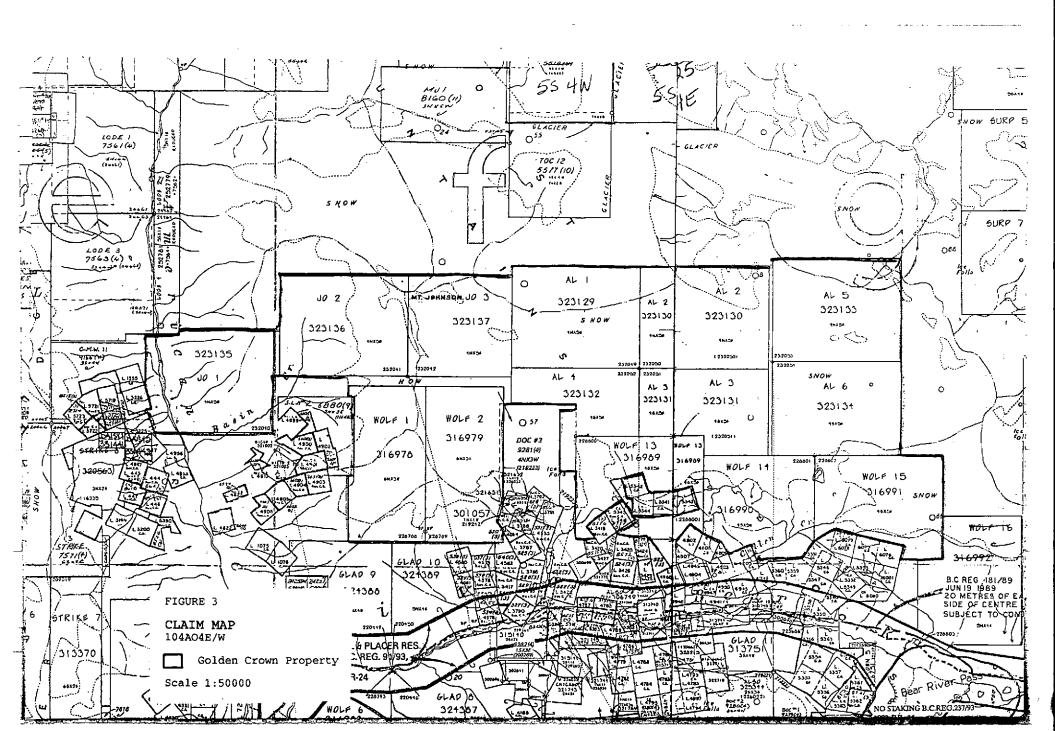
2. **PROPERTY**, **OWNERSHIP**:

The Golden Crown property consists of the AL 1-6 claims, the Jo 1-3 claims and the Wolf 1, 2, 13, 14, 15 claims (Table 1; Figure 3). The property comprises 276 claim units that cover 69 square km. The claims are located on British Columbia Mineral Titles Maps 104A04E and 104A04W.

The Wolf claims are registered in the name of Trev Corp., a Calgary based junior, which holds a 100% interest. The Jo and Al claims are registered in the name of the staker, David Kennedy, on behalf of Trev Corp to whom transfers have been provided.

October 26, 1994

TABLE 1


GOLDEN CROWN PROPERTY CLAIM LIST

SKEENA MINING DIVISION, BRITISH COLUMBIA

TOTAL

CLAIM	RECORD #	UNITS	На	STAKING DATE	PRESENT EXPIRY
GOLDEN CR	OWN PROPERTY	,			
WOLF 1	316978	18	450	MAR 31/93	MAR 31/95
WOLF 2	316979	18	450	MAR 31/93	MAR 31/95
WOLF 13	316989	20	500	MAR 31/93	MAR 31/95
WOLF 14	316990	20	500	MAR 31/93	MAR 31/95
WOLF 15	316991	20	500	MAR 31/93	MAR 31/95
JO 1	323135	20	500	DEC 19/93	DEC 19/94
JO 2	323136	20	500	DEC 19/93	DEC 19/94
JO 3	323137	20	500	DEC 19/93	DEC 19/94
AL 1	323129	20	500	DEC 17/93	DEC 17/94
AL 2	323130	20	500	DEC 17/93	DEC 17/94
AL 3	323131	20	500	DEC 17/93	DEC 17/94
AL 4	323132	20	500	DEC 17/93	DEC 17/94
AL 5	323133	20	500	DEC 17/93	DEC 17/94
AL 6	323134	20	500	DEC 18/93	DEC 18/94

276

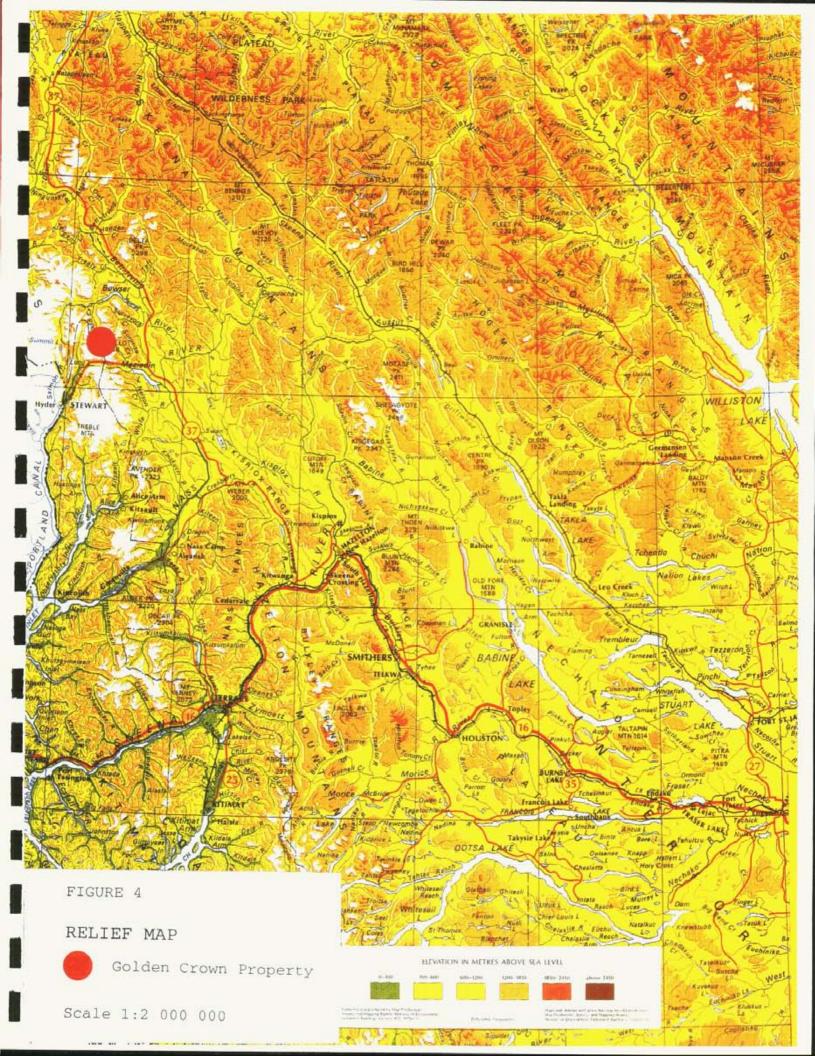
.

.

3. LOCATION AND ACCESS:

The Golden Crown property is located in the Skeena Mining Division about 25 km northeast of the town of Stewart (Figure 2). The property is located on NTS Map Sheet 104/A at latitude 56 degrees, 09 minutes north, longitude 129 degrees, 45 minutes west.

The Stewart Highway (37A) provides general access, although the central part of the land holding is located 2 to 3 km north of the Stewart Highway valley. In view of the mountainous terrain, helicopter access from the VIH base in Stewart or from the Stewart Highway is required for all areas of the property.


4. TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE & VEGETATION:

The Golden Crown property is located within the Boundary Ranges of the northern British Columbia Coastal Mountains (Figure 4). The regional topography is characterized by the Stewart Highway valley which has an elevation of about 300 m south of the Golden Crown property (Figure 4; Photo 2). In the vicinity of the Golden Crown property, the valley averages about 400 m and rises steeply to the north and south to elevations over 2000 m.

The topography on the northern part of the Golden Crown property is characterized by the Todd Ice Field (Figure 5; Photo 3). The Field has been receding, exposing previously unmapped geology along its edges and outcrops that project through it. The mountainous terrain at elevations generally over 1200 m is relatively flat and incised with young, deep valleys that are characterized by high energy run-off in the spring and deep snow in the winter.

The exploration field season generally extends from July to October. Snowfalls are heavy and can deposit several meters in a 24 hour period. Recorded mean annual snowfalls in the area range from 520 cm at Stewart (sea level) to 1,500 cm at Tide Lake Flats (915 m elevation). Summers are characterized by long hours of daylight and pleasant temperatures. The proximity to the ocean and relatively high mountains make for highly changeable weather. Stewart is located on the Portland Canal (Figure 2) and has the distinction of being Canada's most northerly, ice free seaport.

Wildlife in the area consists of mountain goats, foxes, grizzly bears, black bears, wolves, marmots, martins and ptarmigan. Vegetation in the Stewart valley ranges from coastal rain forest including mature western hemlock, sitka spruce, fir and cottonwood, with ferns, devil's club, and moss as ground cover, to swamps and bogs with abundant tag alters to subalpine spruce thickets with heather and alpine meadows. Above treeline at approximately 1,200 m where the majority of the property is located, bare rock, talus slopes and glaciers with occasional islands of alpine meadow prevail.

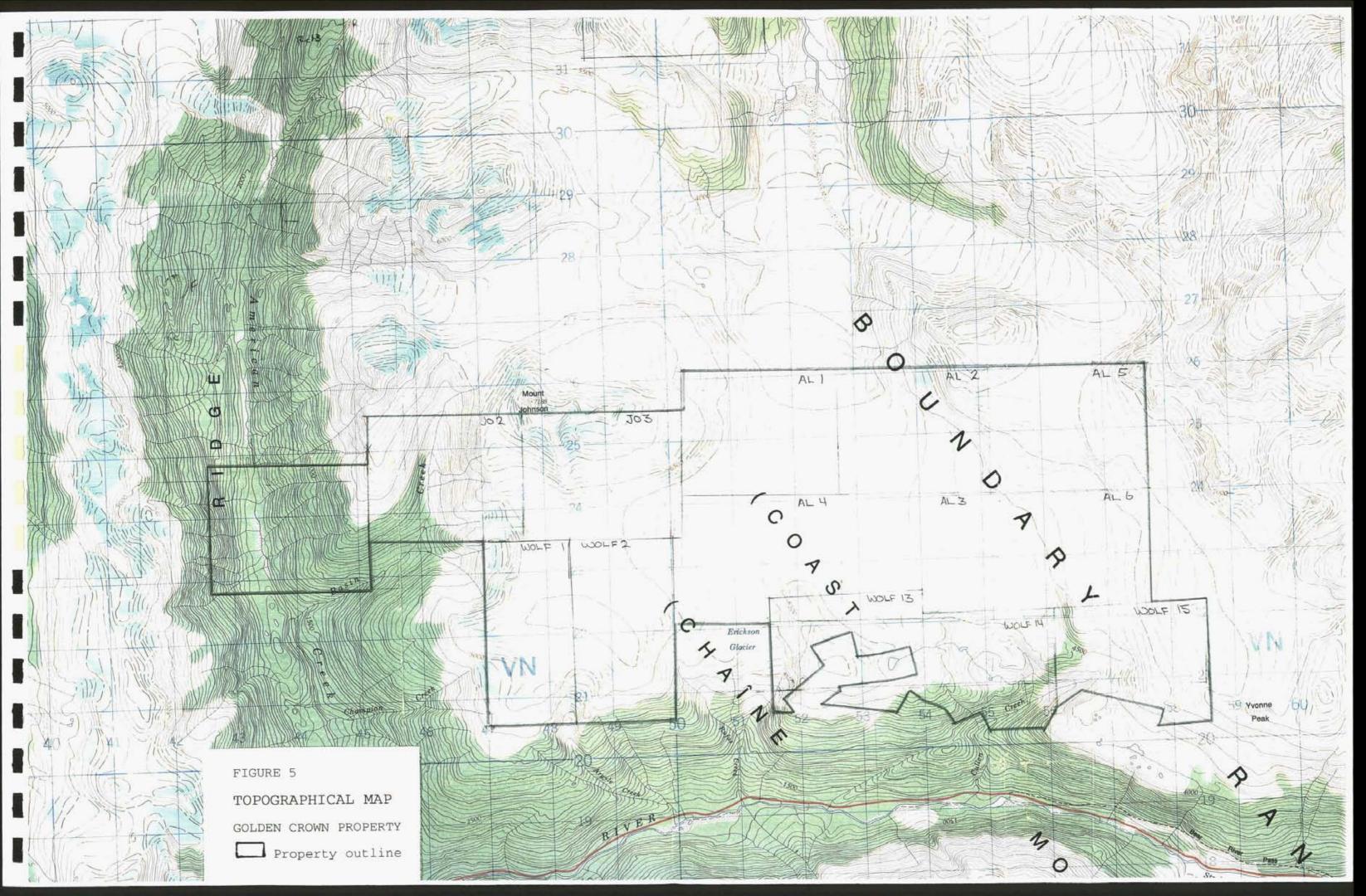


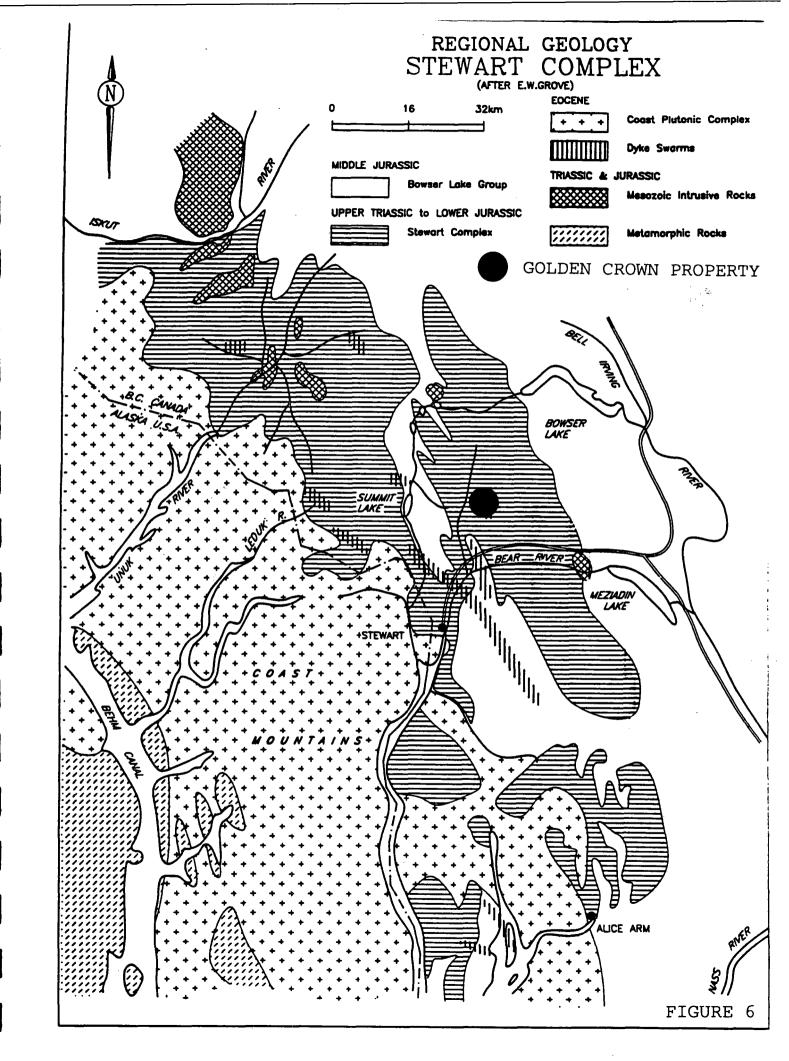
Photo 3: Todd Ice Field Looking 225 deg to Target Area E

Photo 4: Topography

5. EXPLORATION HISTORY:

The central area of the Stewart Camp was prospected mainly for copper and visible gold in quartz veins at the close of the 19th century but very little of this work was documented.

The Camp, after more recent discoveries that include Snip, Eskay Creek and Red Mountain deposits (Figure 1) continues to be regarded as elephant country in which large, low cost discoveries can be made. Much of the Camp is being closely monitored and any ground in favourable geological environments is quickly staked. The interest is apparently generated by the advances being made with the Red Mountain deposit and reports of other important targets in the Camp including those on the Willoughby Property east of Red Mountain.


Tournigan Mining Explorations Ltd. holds extensive property, mainly in the form of Crown Grants, within and in the immediate vicinity of the Golden Crown Property. Historical prospecting and trenching work on such claims as the Enterprise, Barite, Red Top and Rufus Argenta was apparently carried out on a number of quartz veins and sulfide zones.

At the turn of and well into this century in the Stewart Camp, historical exploration activities focused on polymetallic epithermal to mesothermal vein mineralization, on gossan zones containing veins and stock works and on "iron formation" often containing veins and lenses of copper mineralization. Adits were commonly driven on the veins and limited drilling was carried out. The gossan zones were of particular interest as hosts for vein mineralization and their existence was attributed to the pyrite content of Hazelton pyroclastic and volcanic rocks.

Little systematic historical evaluation of the extensive alteration on the Golden Crown property has apparently been carried out, particularly in the last 25 years. Tournigan is reported to have recently flown a Dighem helicopter borne magnetic and VLF EM survey over the area that is reported to have provided a good structural reference but was not definitive with regard to exploration targets. Based on Geofine's experience, most disseminated gold mineralization in the Stewart Camp has a structural component, and is hosted within broad zones of iron oxide/clay alteration that have a definitive geochemical signature.

6. **REGIONAL GEOLOGY:**

The Golden Crown property is situated in the centre of a broad, north-northwest trending volcanogenic-plutonic belt consisting of the Upper Triassic Stuhini Group and the Upper Triassic to Lower Middle Jurassic Hazelton Group. This belt has been termed the "Stewart Complex" (Figure 6) by Grove (1986) and forms part of the

Stikinia Terrane. The Stikinia Terrane together with the Cache Creek and Quesnel Terranes constitute the Intermontaine Superterrane which was accreted to North America in Middle Jurassic time (Monger et al, 1982). To the west, the Stewart Complex is bordered by the Coast Plutonic Complex. Sedimentary rocks of the Middle to Upper Jurassic Bowser Lake Group overlay the Stewart Complex in the east.

The Jurassic stratigraphy was established by Grove (1986, Figure 6) during regional mapping conducted from 1964 to 1968. Formational subdivisions have been made and are currently being modified and refined as regional work continues, most notably by the Geological Survey Branch of the British Columbia Ministry of Energy, Mines and Petroleum Resources (Alldrick, 1984, 1985, 1989); and, by the Geological Survey of Canada (Anderson, 1989; Anderson and sedimentological, Thorkelson, 1990). The structural, and stratigraphic framework of the area is being established with some degree of precision.

The Hazelton Group represents an evolving (alkalic/calc-alkalic) island arc complex, capped by a thick turbidite succession (Bowser Lake Group). Grove (1986) divided the Hazelton into four litho-stratigraphic units (time intervals defined by Alldrick, 1987):

- 1. The Upper Triassic to Lower Jurassic Unuk River Formation (Norian to Pliensbachian).
- 2. The Middle Jurassic Betty Creek Formation (Pliensbachian to Toarcian).
- 3. The Middle Jurassic Salmon River Formation (Toarcian to Bajocian).
- 4. The Middle to Upper Jurassic Nass Formation (Toarcian to Oxfordian Kimmeridigian).

Alldrick assigned formational status (Mt. Dilworth Formation) to a Toarcian rhyolite unit (Monitor Rhyolite) overlying the Betty Creek Formation. Rocks of the Salmon River Formation are transitional between the mostly volcanic Hazelton Group and the wholly sedimentary Bowser Lake Group and are presently regarded as the uppermost formation of the Hazelton or the basal formation of the Bowser Lake Group.

The Unuk River Formation, a thick sequence of andesitic flows and tuffs with minor interbedded sedimentary rocks, hosts a number of major gold deposits in the Stewart area (Figure 1). The unit is unconformably overlain by heterogeneous maroon to green, epiclastic volcanic conglomerates, breccias, greywackes and finer grained clastic rocks of the Betty Creek Formation. Felsic flows, tuffs and tuff breccias characterize the Mt. Dilworth Formation. This formation represents the climatic and penultimate volcanic event of the Hazelton Group volcanism and forms an important regional marker horizon. The overlying Salmon River Formation has been subdivided in the Iskut area into an Upper Lower Jurassic and a Lower Middle Jurassic member (Anderson and Thorkelson, 1990). The upper member has been further subdivided into three north trending facies belts: the eastern Troy Ridge facies (starved basin), the medial Eskay Creek facies (back-arc basin) and the western Snippaker Mountain facies (volcanic arc).

Sediments of the Bowser Lake Group rest unconformably on the Hazelton Group rocks and were originally thought to underlie most of the Stewart property. They include shales, argillites, silt and mudstones, greywackes and conglomerates. The contact between the Bowser Lake Group and Hazelton Group passes between Strohn Creek to the north and White River to the south. The contact appears to be a thrust zone with the Bowser Lake Group sediment "slices" occurring within and overlying the Hazelton Group pyroclastics to the west.

Two main intrusive episodes occurred in the Stewart area: a Lower Jurassic suite of diorite to granodiorite porphyries (Texas Creek Suite) that are comagmatic with extrusive rocks of the Hazelton Group; and, an Upper Cretaceous to Early Tertiary intrusive complex (Coast Plutonic Complex and satellite intrusions). The early Jurassic suite is characterized by the occurrence of coarse hornblende, orthoclase and plagioclase and phenocrysts and locally potassium feldspar megacrysts. The Eocene Hyder quartz-monzonite, comprising a main batholith, several smaller plugs and a widespread dyke phase, represents the Coast Plutonic Complex.

Middle Cretaceous regional metamorphism (Alldrick et al., 1987) is predominantly of the lower greenschist facies. This metamorphic event seems to be related to compression and concomitant crustal thickening at the Intermontane - Insular superterrane boundary (Rubin et al. 1990). Biotite hornfels zones are associated with a majority of the quartz monzonite and granodiorite stocks.

7. REGIONAL MINERALIZATION AND EXPLORATION ACTIVITIES:

The Stewart Complex is the setting for the Stewart (Silbak-Premier, Silver Butte, Big Missouri) Iskut (Snip, Johnny Mountain, Eskay Creek) Sulphurets, and Kitsalt (Alice Arm) gold/silver mining camps (Figure 1). Mesothermal to epithermal, depth persistent goldsilver veins form one of the most significant types of economic deposit. There appears to be a spatial as well as a temporal association of gold deposits to Lower Jurassic calc-alkaline intrusions and volcanic centres. These intrusions are often characterized by 1-2 cm sized, potassium feldspar megacrysts and correspond to the top of the Unuk River Formation. The most prominent example of this type of mineralization is the historic Silbak-Premier gold-silver mine which has produced 56,000 kg of gold and 1,281,400 kg of silver in its original lifetime from 1918 to 1976. The mine was re-opened by Westmin in 1988 with reserves quoted at 5.9 million tonnes grading 2.16 g Au/t and 80.23 g Ag/t (Randall, 1988). Geological reserves as of January 1, 1992 were reported in Westmin's 1991 Annual report as 418,200 tonnes grading 3.07 g Au/t and 41.60 g Ag/t.

The ore is hosted by Unuk River Formation andesites and comagmatic Texas Creek porphyritic dacite sills and dykes. The ore bodies comprise a series of en echelon lenses which are developed over a strike length of 180 m and through a vertical range of 600 m (Grove, 1986; McDonald, 1988). The mineralization is controlled by northwesterly and northeasterly trending structures and their intersections but also occurs locally concordant with andesitic flows and breccias.

Two main vein types occur: silica-rich, low-sulfide precious metal veins and sulfide-rich base metal veins. The precious metal veins are more prominent in the upper levels of the deposit and contain polybasite, pyrargyrite, argentiferous tetrahedrite, native silver, electrum and argentite. Combined sulfides of pyrite, sphalerite, chalcopyrite and galena are generally less than 5%. The base metal veins crosscut the precious metal veins and increase in abundance with depth. They contain 25 to 45% combined pyrite, sphalerite, chalcopyrite and galena with minor amounts of pyrrhotite, argentiferous tetrahedrite, native silver, electrum and arsenopyrite.

Quartz is the main gangue mineral, with lesser amounts of calcite, barite, and some adularia being present. The mineralization is associated with strong silicification, feldspathization, and pyritization. A temperature range of 250 to 260 degrees C has been determined for the deposition of the base and precious metals (McDonald, 1990).

Middle Eocene silver-lead-zinc veins are characterized by high silver to gold ratios and by spatial association with gold, molybdenum and/or tungsten occurrences. They are structurally controlled and lie within north, northwest, and east trending faults. This mineralization has been less significant in economic terms.

Porphyry molybdenum deposits are associated with Tertiary Alice Arm Intrusions, a belt of quartz-monzonite intrusions parallel to the eastern margin of the Coast Plutonic Complex. An example of this type of deposit is the B. C. Molybdenum Mine at Lime Creek.

Relatively recent exploration in the Stewart Camp has resulted in the discovery of a number of exiting new deposits. Cominco's Snip Mine commenced production in January of 1991 with reserves of 790,000 tonnes grading 29.1 g Au/t. Production is scheduled at 90,000 ounces per year.

Development activities continue at the Eskay Creek deposit with the access road scheduled for completion in 1994. Preliminary reserves at the Eskay Creek deposit are estimated at 5.9 million tonnes grading 18.5 g Au/t and 484.4 g Ag/t.

The Eskay Creek 21A deposit is hosted within Contact Unit carbonaceous mudstone and breccia, as well as the underlying rhyolite breccia. Two styles of mineralization are present. The first is a visually striking assemblage of disseminated to near massive stibnite and realgar within the Contact Unit. The second style occurs in the adjacent footwall rhyolite, and features a stock work style quartz-muscovite-chlorite breccia mineralized with sphalerite, tetrahedrite and pyrite. Highest gold and silver values are obtained where the Contact Unit is thickest and the immediately underlying rhyolite breccia is highly fractured and altered. Drilling has outlined a zone approximately 280 m long, up to 100 m wide and of variable thickness but averaging 10 m.

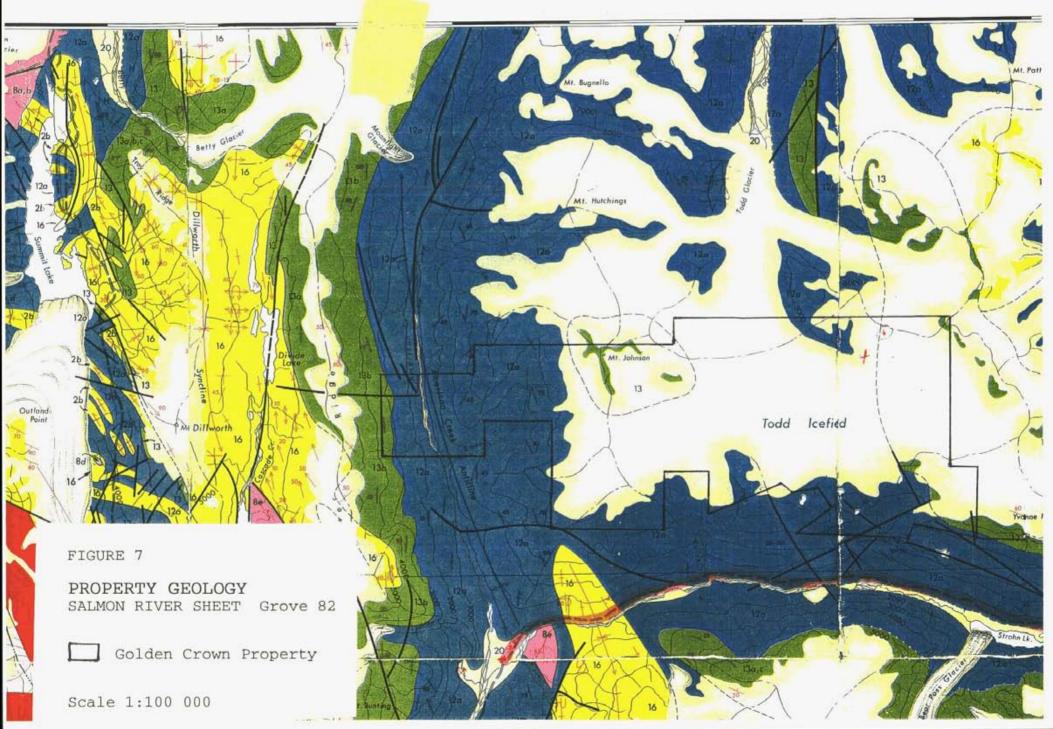
The Eskay Creek 21B deposit is approximately 900 m long, from 60 to 200 m wide and locally in excess of 40 m thick. Contact Unit mineralization comprises a continuous stratiform sheet of banded high grade gold and silver bearing base metal sulfide layers, from 2 to 12 m thick. Mineralization appears to be bedding parallel. include sphalerite, Sulfide minerals present tetrahedrite, boulangerite, bornite plus minor galena and pyrite. Gold and silver are associated with electrum, which occurs as abundant grains associated with sphalerite. Peripheral and footwall to the banded sulfide mineralization are areas of microfracture, veinlet hosted, disseminated tetrahedrite, pyrite and minor boulangerite mineralization.

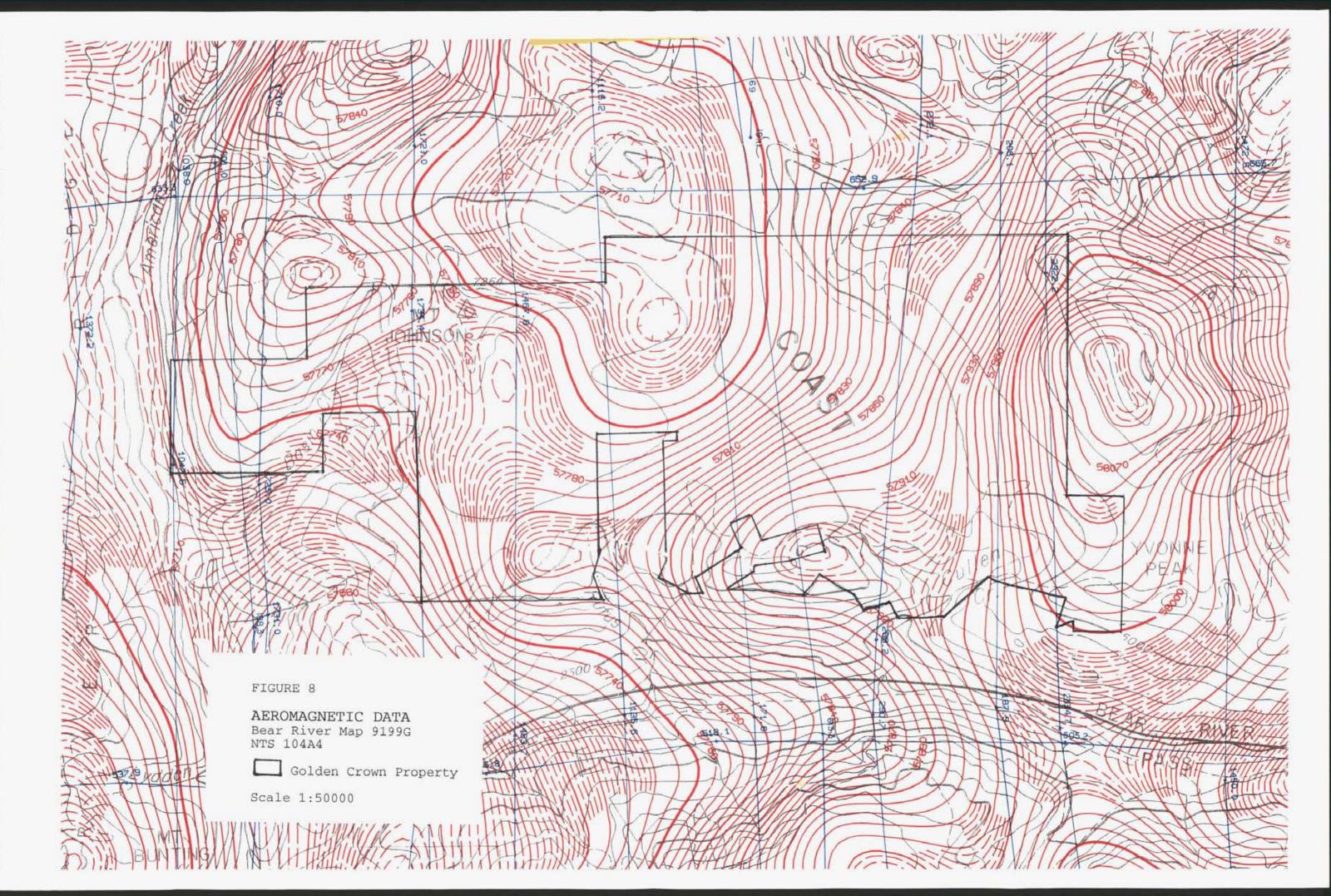
Exploration, including surface diamond drilling with six rigs and underground development and diamond drilling, continued this year at Lac Minerals' Red Mountain project. Reserves reported prior to the acquisition of Lac by American Barrick totalled 2 million ounces of gold at a grade of about 12.50 g Au/t.

At Red Mountain the Marc Zone and its northerly extension, the AV Zone, occur as sulfide lenses or cylinders associated with a structural junction and the brecciated contact of the Goldslide Intrusion. The mineralization consists of densely disseminated to massive pyrite and/or pyrite stringers and veinlets and variable amounts of arsenopyrite, tetrahedrite and various tellurides. Several phases of mineralization and deformation are indicated by the presence of different generations of pyrite and breccia fragments consisting of pyrite. High grade gold values are usually associated with the semi-massive, coarse-grained pyrite aggregates, but also with stockwork pyrite stringers and veinlets. Gold occurs as native gold, electrum and as tellurides.

8. **PROPERTY GEOLOGY:**

The Golden Crown property is, according to Groves' 1982 mapping (Figure 7), mostly underlain by Unuk River Formation rocks belonging to the Hazelton Group of Lower Jurrasic Age. The eastern portions of the property are mapped as underlain by slightly younger Lower to Middle Jurrasic Age Betty Creek formation lithographies according to Grove.


The Unuk River Formation is a stratified volcanic-sedimentary sequence consisting of thick bedded epiclasitc volcanic rocks and lithic tuffs, with closely associated pillow lavas, carbonate lenses and thin bedded siltstones. The colour of the rocks grades from bright brick red to apple green and includes greys, mottled purples and maroons. Thin, massive volcanic flows are found as part of the sequence, but are generally limited in extent. Most of the sedimentary rocks are composed of angular clasts which are fairly fresh and exhibit poor sorting. The Formation is moderately folded and extensively faulted.


Betty Creek Formation lithologies are comprised mainly of beds of red and green epiclastic volcanic sandstone and conglomerate. Most of the rock clasts in these sediments are andesitic volcanics that are similar in colour and composition to the underlying Unuk River volcanic epiclastic rocks. The fragments in the poorly sorted conglomerates and sandstones are angular and vary considerably in size. The larger clasts are up to 10 cm but average 1 to 2 cm. The sandstone layers are poorly sorted suggesting rapid deposition. The volcanic sandstones consist largely of rock fragments and from 10 to 40 percent plagioclase clasts. Alteration of the fragments is variable but they are weakly chloritized and sericitized.

Mapping by Grieg, Daubeny, Bull and Anderson (Map 1) released as GSC open file 2931 in September of 1994 shows the claims as mostly underlain by lower Jurassic (Jv) undivided, mainly pyroclastic fragmental volcanic rocks. A wedge of basaltic rock is mapped in the eastern portion of the property. The unit Jb is described as dark green pyroxene-phyric basaltic volcanic and volcaniclastic rocks; includes pyroxene and plagioclase-phyric lapilli tuffbreccia, fine to coarse lapilli and ash tuff. Map unit Jmp is located west of Erickson Glacier and is described as maroon pyroclastic rocks and flows; including mafic to intermediate, massive, matrix supported, crystal lithic lapilli tuff-breccia, coarse lapilli tuff and 10-15 m thick beds of ash and fine lapilli tuff that commonly contain patchy carbonate cement.

As indicated on Figure 8, the regional aeromagnetics suggest the possibility of intrusive bodies in the areas of the head waters of Rufus and Cullen Creeks. Structurally, the axis of the American Creek Anticline trends north-northwest along American Creek, along the west margin of the property. The main structural trends are to

the northwest with favourable structural junctions at the intersections of northeastern trending faults, particularly in the area of the upper reaches of Cullen Creek.

9. PHASE 1 FIELD PROGRAM:

The Phase 1, \$61,000 reconnaissance program was carried out from July to September, 1994 as weather conditions allowed. Geological mapping and geochemical sampling comprising rock chip and float, talus and stream sediment samples were used to evaluate large areas of prospective iron oxide and clay alteration hosted by the favourable Hazelton Formation volcanic rocks in relatively close proximity to the Stewart Highway (Map 1, Photo 2). In view of the lack of topographic control in some areas because of the recession of the Todd Ice Field, airphotos were taken from a helicopter for structural fabric studies and for precise target identification and location.

A total of 450 samples including 369 rocks, 2 soils, 58 streams and 21 checks were collected in ten target areas (Map 1; Table 2). The rock and talus samples along with analytical results are described in Table 3; similar information for the stream sediment and soil samples is shown in Table 4. The laboratory sheets are attached in Appendix 1 and exploration expenditures are summarized in Table 5.

The samples were shipped to the Min En preparation facility in Smithers, B. C. (Photo 5A) and the pulps were sent to Min En's main laboratory in North Vancouver for analysis. The rock samples were analyzed by quantitative methods for Au, As, Cu, Pb and Zn, with multi-element ICP analyses being carried out on stream sediment and soil samples.

The results of the exploration program are described by the various target areas in which work was carried out:

A. TARGET AREA A: Wolf 2 Claim; Near the Head Waters of Rufus Creek, Near the Todd Ice Field West of Erickson Glacier (Tables 2-4; Maps 1, 2, 3A-C; Photo 5):

The area adjacent to the Ice Field west of Erickson Glacier (Maps 1, 2, 3B) is underlain by volcanic tuffs and agglomerates that tend to be feldspar porphyric with feldspar phenocrysts ranging up to 4 mm. Fine to medium grained varieties predominate. Bedding strikes generally northeast-southwest with 30 to 45 degree northwesterly dips. Weathered surface colours are typically Indian red (where hematite stained) to grey-green to purple and yellow where alunite/jarosite is abundant. Shear directions tend to run 330 to 350 degrees with steep easterly dips. Fresh surfaces are typically grey to dark green but occasionally are buff brown.

TABLE 2

GOLDEN CROWN PROPERTY - ASSAY VALUE SUMMARY

		Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
rock check values						
	count	15	15	15	15	15
	sum	28	188	144	553	1346
	average	1.8667 4	12.533 23	9.6 26	36.867 202	89.733 502
	max min	1	23 6	20	8	14
	st dev	1.0242	5.4267	-	64.04	160.96
stream check values						
Stream check values	count	6	6	6	6	6
	sum	10	14	88	368	992
	average	1.6667	2.3333	14.667	61.333	165.33
	max	3	9	18	74	200
	min st dev	1 0 7454	1 2.9814	6 3 9861	11 22.559	17 66.455
	SLUEV	0.7454	2.3014	3.3001	22.555	00.455
· · ·						
Area A values rock	count	31	31	31	31	31
IUCK	sum	63	216	814	606	1816
	average	2.0323	6.9677	26.258	19.548	58.581
	max	7	59	110	33	133
	min	1 2702	1	2	5	5
	st dev	1.3792	10.291	23.530	5.4939	33.851
Area B values	aquat	31	31	21	21	21
rock	count sum	59	203	31 484	31 633	31 1284
	average	1.9032	6.5484	15.613	20.419	41.419
	max	15	13	38	36	187
	min	1	3	4	2	7
	st dev	2.5318	2.2553	6.0518	7.0928	33.938
Area C values						
rock	count	109	109	109	109	109
	sum average	448 4.1101	26263 240.94	3926	32914 301.96	45489 417.33
	max	51	3125	1340	10900	20300
	min	1	2	1	13	2
	st dev	6.9709	442.12	128.05	1109	2028.5
soil	count	2	2	2	2	2
	sum	2	344	69	278	231
	average	1	172	34.5	139	115.5
	max	1	343	36	211	141
	min et dev	1 0	1	33	67 72	90 25 5
	st dev	. 0	171	1.5	72	25.5

NAME		Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
stream	count sum average max min st dev	17 30 1.7647 3 1 0.8065	17 17 1 1 1 0	17 441 25.941 45 12 10.887	248 42	17 4587 269.82 481 127 115.98
TOTAL	count sum average max min st dev	128 480 3.75 51 1 6.4976	3125 1	128 4436 34.656 1340 1 118.28	10900 13	20300 2
Area D values rock	count	55	55	55	55	55
	sum average max min st dev	1132 20.582 778 1	9286 168.84 1300 9	3643 66.236 579 9 87.692	10111 183.84 3930 11	762 5
Area E values						
rock	count sum average max min st dev	39 116 2.9744 12 1 2.6841	2025 2	39 1178 30.205 179 5 33.436	4420 8	385 14
stream	count sum average max min st dev	8 14 1.75 3 1 0.8292	8 8 1 1 1 0	8 181 22.625 34 17 5.8723	8 548 68.5 124 42 23.431	8 1046 130.75 162 93 21.335
TOTAL	count sum average max min st dev	47 130 2.766 12 1 2.5114	47 13179 280.4 2025 1 560.57	179 5	47 9177 195.26 4420 8 650.3	47 3778 80.383 385 14 82.439
Area F-H values rock	count sum average max min st dev	63 158 2.5079 10 1 1.9013	2300 0	63 1262 20.032 99 3 17.118	1020 23	63 8646 1 37.24 1510 14 211.19

NAME		Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
stream	count sum average max min st dev	13 99 7.6154 60 1 15.315	13 13 1 1 1 0	13 318 24.462 29 21 2.5605	13 837 64.385 108 44 17.561	13 2202 169.38 225 108 33.754
TOTAL	count sum average max min st dev	76 257 3.3816 60 1 6.8421	76 13575 178.62 2300 0 359.06	76 1580 20.789 99 3 15.71	76 8334 109.66 1020 23 142.83	76 10848 142.74 1510 14 193.17
Area I values rock	count sum average max min st dev	24 86 3.5833 25 1 5.2354	24 1475 61.458 725 6 146.84	24 1898 79.083 400 6 105.51	24 15680 653.33 12000 23 2383.3	24 5498 229.08 1395 38 269.76
stream	count sum average max min st dev	4 16 4 6 3 1.2247	4 1 1 1 0	4 102 25.5 33 20 4.8218	4 230 57.5 75 50 10.308	4 571 142.75 169 121 17.555
TOTAL	count sum average max min st dev	28 102 3.6429 25 1 4.8713	28 1479 52.821 725 1 137.59	28 2000 71.429 400 6 99.48	28 15910 568.21 12000 23 2216.3	28 6069 216.75 1395 38 251.66
Area J values rock	count sum average max min st dev	6 1	1275 11	17 259 15.235 37 2 9.4839	317 28	413 8

NAME		Au-Fire	As	Cu	Pb	Zn
		ppb	ppm	ppm	ppm	ppm
stream	count	6	6	6	6	6
	sum	16	6	142	403	842
	average	2.6667	1	23.667	67.167	140.33
	max	5	1	29	110	167
	min	1	1	19	46	116
	st dev	1.3744	0	3.9016	21.216	19.276
TOTAL	count	23	23	23	23	23
	sum	62	3293	401	2876	2702
	average	2.6957	143.17	17.435	125.04	117.48
	max	6	1275	37	317	413
	min	1	1	2	28	8
	st dev	1.5161	280.66	9.1738	104.03	105.94
Road stream values	count	10	10	10	10	10
	sum	115	10	643	881	2387
	average	11.5	1	64.3	88.1	238.7
	max	25	1	150	199	354
	min	2	1	26	31	96
	st dev	6.7417	0	33.024	54.533	100.49
Property totals	count	429	429	429	429	429
	sum	2400	67865	15360	83786	85657
	average	5.5944	158.19	35.804	195.31	199.67
	max	778	3125	1340	12000	20300
	min	1	0	1	2	2
	st dev	37.895	361.49	79.661	860.11	1039.3

.

TABLE 3: GOLDEN CROWN PROPERTY - ROCK SAMPLE DESCRIPTIONS, ANALYTICAL RESULTS

SAMPLE TYPE NO.	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70001 rock	с	EL 5340	rhyolite	fr: med-gry-brn, wh: brn-yell, aphan, crypto cryst, massive; 60% silica, 30% feld, 5% chl, 5% py, al-jar stain, str sil'd, wk chl	1	23	1	29	11
70002 rock	С	3m N of 0001	rhyolite	fr: med-buff gry, wh: rsty-orng-brn, aphan, crypto cryst, massive; 50% silica, 40% feld, 3% epi, 3% py, 4% chl, str sil'd, mod chl'd	1	21	4	22	2
70003 rock	С		dacite porphy	fr: med-dk gry, wh: orng-brn, feld phenos in aphan matrix, massive; 50% silica, 40% feld, 2% py, 4% epi, 2% chl, mod sil'd, wk chl'd	1	33	7	30	30
70004 rock	С		rhyolite	fr: It grn gry, wh: rsty-orng-brn, aphan, crypto cryst, massive; 75% silica, 20% feld, 5% py, al-jar stain	1	44	6	38	34
70005 rock	С		rhyolite	fr: blu-gry, wh: rsty-orng-brn, aphan, crypto cryst, massive; 70% silica, 25% feld, 3% chl, 2% py, str sil'd	1	29	3	30	6
70006 float	С		alt'd dacite	fr: It grn-gry, wh: yell-brn, aphan, crypto cryst, massive; 60% silica, 30% feld, 10% py, wk sil'd, py'd	5	41	44	35	48
70007 rock	С		dacite	fr: med gry, wh: rsty-brn, aphan, crypto cryst, massive with fracts; 60% silica, 25% feld, 7% chl, 8% py	10	30	27	47	38
70008 float	С	EL 5280	alt'd andesite	fr: blu-gry, wh: rsty-brn-orng, f, equi gran, sugary; 50% silica, 35% feld, 7% chl, 3% py, wk sild & py'd	3	108	5	45	28
70009 rock	С	EL 5220	andesite	fr: grn-gry, wh; rsty-brn-purple, f, equi gran, sugary; 60% silica, 30% feld, 5% chl, 5% py, mod sil'd & chl'd	8	125	48	113	310
70010 rock	С		intrusive hbłd porphy	fr: med gry, wh: rsty-wht, med grain, massive, porphy; 50% silica, 45% feld, 5% hbld	1	6	16	48	105
70011 rock	C		ash fall tuff	fr: dk grn-gry, wh: rsty-orng-brn, 1 cm frags silica in f ash tuff, wkly layered 354/80W; 50% feld, 40% silica, 7% chl, 3% py, mod sil'd & chl'd	3	5	6	30	80

SAMPLE TYPE NO.	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	РЬ ppm	Zn ppm
70012 rock	с		ash fall tuff	fr: grn-gry, wh: rsty-orng-brn, f, equi gran, wkly layered 354/80W; 50% silica, 45% feld, 3% chl, 2% py	2	15	4	27	95
70013 float	С		rhyolite	fr: med grn-gry, wh: rsty-brn-orng, aphan, crypto cryst, massive; 65% silica, 30% feld, 5% py, tr mal, str sil'd, wk py'd, al-jar	7	475	45	236	211
70014 float	С		dacite	fr: med grn-gry, wh: rsty-orng-brn, aphan, crypto cryst, massive; 70% silica, 25% feld, 3% chl, 2% py	6	35	29	78	81
70015 float	С		dacite	fr: med grn-gry, wh: rsty-orng-brn, f, equi gran, sugary, massive; 50% silica, 40% feld, 5% chl, 5% py, al-jar	9	48	25	107	117
70016 float	с		rhyolite	fr: med gry, wh: rsty-brn-purply, aphan, crypto cryst, massive; 60% silica, 20% feld, 15% py, 5% chl, str sil'd, mod chl'd	18	150	61	200	698
70017 rock	с		dacite breccia	fr: It grn-gry, wh: rsty-brn, frags of dacite in chl matrix, qtz veins; 55% silica, 30% feld, 10% chl, 3% py, 2% sph	1	31	16	55	143
70018 rock	С		GD intrusive	fr: It grn-gry, wh: wht-buff, f, equi gran, massive; 50% silica, 45% feld, 3% chl 2% py	1	16	6	32	42
70019 float	С		rhyolitə	fr: grn-gry, wh: rsty-brn, aphan, crypto cryst, massive; 60% silica, 20% feld, 10% chi, 10% py, str sil'd & chi'd	1	8	81	28	68
70020 float	С		rhyolite	fr: grn-gry, wh: brn-purple, aphan, crypto cryst, massive; 70% silica, 20% feld, 3% chl, 3% epi, 4% py, str sil'd, wk chl'd & py'd	1	71	17	37	30
70021 rock	С		rhyolite	fr: grn-gry, wh: orng-brn, aphan, crypto cryst, massive; 80% silica, 15% feld, 3% chl, 2% py	1	275	20	115	40
70022 float	С		dacite	fr: grn-gry-buff, wh: orng-brn-purple, v f, sugarly, massive; 50% silica, 40% feld, 3-4% chl, 3-4% py, 1% Mn, mod sil'd, wk chl'd	30	600	114	2930	1865
70023 rock	С		hbld porphy intrusive	fr: grn-gry, wh: grn-gry, f, equi gran, sugary, hbld frags to 2mm, porphy; 40% silica, 40% feld, 15% hbld, 3% chl, 2% py	1	11	7	69	67
70024 rock	С		andesite	fr: dk grn, wh: rsty-brn, f, equi gran; 50% feld, 40% silica, 5% chl, 4% carb, 1% py, wk sil'd & chl'd	1	9	15	55	179

ande state state

SAMPLE NO.	TYPE	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70025	rock	С		andesite	fr: dk grn, wh: rsty-brn, f, equi gran, massive; 60% feld, 30% silica, 7% chl, 3% py, wk sil'd & chl'd	1	3	22	41	96
70026	rock	С		andesite	fr: grn-gry, wh: brn-blk, Mn stain, f, equi grain, massive; 50% feld, 40% silica, 5% chl, 4% py, 3% carb, wk sil'd & chl'd	1	2	6	38	138
70027	rock	С		ash fall tuff	fr: dk gry, wh: rsty brn-orng, f with feld phenos to 5 mm, massive; 40% silica, 40% feld, 15% chl, 3% carb, 2% py, wk sil'd & chl'd	1	34	5	44	12
70028	rock	С		alt'd dacite	fr: dk gry, wh: yell-buff, f, equi gran; 50% silica, 35% feld, 10% chl, 5% py, wk sil'd, mod chl'd	1	37	4	37	17
70029	talus fines	С		silt-grav	orng-brn, f-pebs	1	325	10	87	45
70030	rock	С		alt'd andesite	fr: dk grn, wh: yell-orng-brn, f-med gran, massive; 45% silica, 40% feld, 10% chl, 5% py, str chl'd, mod sil'd	2	46	8	33	9
70031	talus fines	С		silt-grav	orng-brn, f-pebs, hem	1	700	12	13	75
70032	rock	с		feld porphy	fr: dk grn, wh: dk brn-purple, feld phenos to 3 mm in f matrix, massive, porphy; 45% silica, 45% feld, 10% chl, tr py, al-jar stain	1	70	7	40	11
70033	rock	С		feld porphy	fr: dk grn, wh: dk brn-purple, feld phenos to 3 mm in f matrix, massive, porphy; 45% silica, 45% feld, 8% chl, 2% py, al-jar stain	1	36	5	24	19
70034	rock	С		feld porphy	fr: dk grn, wh: dk brn-purple, feld phenos to 3 mm in f matrix, massive, porphy; 45% silica, 45% feld, 5% chl, 5% py, al-jar stain	1	34	4	24	15
70035	rock	С		feld porphy	fr: dk grn, wh: dk brn-purple, feld phenos to 3 mm in f matrix, massive, porphy; 45% silica, 45% feld, 8% chl, 2% py, al-jar stain	1	35	6	30	11
70036	rock	С		feld porphy	fr: dk gry, wh: rsty-brn-orng, f, porphy; 50% silica, 40% feld to 5 mm, 5% py, 5% chl	2	86	9	77	37
70037	rock	с		feld porphy	fr: dk gry, wh: rsty-brn-orng, f, porphy;	1	108	9	13	14

SAMPLE NO.	TYPE	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
					50% silice, 40% feld to 5 mm, 3% pγ, 7% chl					
70039	l float	С	EL 4280	dacite	fr: It gry, wh: yel-orng-brn, f, equi gran, py coatings in fracts; 60% silica, 35% feld, 5% py; py in fracts & diss, minor chl, lim	4 1	1 95	24 29	152 112	299 136
70040) rock	с		tuff aglom	fr: grn-gry, wh: rusty, frags to 5mm, f matrix, aglom; 50% silica, 45% feld, 2-3% py, 2% chl; sil'd, chl'd, minor lim	1	17	19	66	38
70041	float	с	EL 4220	rhyolite	fr: lt gry, dk grn chł, wh: orngy-brn, aphan, massive; 70% silica, 20% chl, 10% PY	1	225	15	45	104
70042	2 rock	С	EL 4240	dacite	fr: It gm-gry, wh: yel-gm-orng, f, equi gran, frac 310/vert, minor frac 265/vert; 60% silica, 30% feld, 10% py, minor chl	3	3125	86	593	600
70043	l rock	с	EL 4180	dacite	fr: it gry-grn, wh: orngy-brn, f, equi gran, massive; 60% silice, 30% feld, 10% py; str sil'd, py'd	4	525	46	224	158
70044	ł rock	С	EL 4260	dacite	fr: It blu-gry, wh: orngy-brn, f-med, equi gran, massive; 50% silica, 30% feld, 10% carb, 5% chl, 5% py, sil'd, carb'd, chl'd, lim	28	400	81	341	870
70045	i float	с	EL 4340	dacite	fr: med-gry, wh: grn-brn, f, equi gran, massive, 50% silica, 30% feld, 10% epi, 10% py, sil'd, epi'd	3	1200	11	84	38
70046) float	C		andesite	fr: dk-grn, wh: grn, aphan, massive; 50% qtz carb vein, 40% silica, 20% carb, 20% feld, 10% py, 10% chl; sil'd, carb'd chl'd	17	300	40	109	171
70047	rock	с	EL 4240	ash tuff	fr: red-brn, wh: rust-orng, f-med, minor porphy, massive; 55% feld, 40% silica, 5% chl, sil'd, chl'd, tr py, tr sphal	4	91	19	25	420
70048	l rock	с	El 4180	dacite	fr: lt gry, wh: brn-rusty, f, equi gran, massive with qtz carb veins at 340/85E, well fract; 60% silica, 30% feld, 5% py, 5% chl; sil'd, chl'd	7	88	19	310	103
70049) rock	с	EL 4160	andesite	fr: It gry, wh: orngy-brn, f, equi gran, massive with qtz carb veins 340/80E, 50% feld, 40% silica, 10% QV,	7	17	80	23	200

والمتركب والمتركب والمترك والترك والمترك والتركي

SAMPLE TYPE NO.	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70050 rock	с	EL 4180	dacite	fr: it gry, wh: it brn, f, equi gran, massive heavily fract 300/85E; 60% silica, 30% feld, 5% py, 5% chl, sil'd, chl'd	4	30	8	37	83
70052 rock	С		rhyolite	fr: It blu-gry, wh: red-brn, crypto crystal, massive; 90% silica, 5% feld, 5% py, sil'd	2	86	21	75	124
70055 float	С		dacite	fr: It blu-gry, wh: rød-brn, f, equi gran, massive; 60% silica, 35% feld, 5% py; al-jar stain, sil'd	2	625	13	260	128
70057 float	С		andesite	fr: lt gry-grn, wh: grn-orng-brn, f; equi gran, veins of qtz & sulfs; 50% feld, 20% silica, 10% chl, 15% epi, 5% py, minor sil'd, minor carb'd, py'd, py on fract & diss	5	43	85	459	6500
7005 8 rock	С	EL 4020	dacite	fr: It blu-gry, wh: grn-yell to orngy-brn, f, equi gran, minor qtz vein; 60% silica, 30% feld, 10% py; sil'd, py'd, al-jar stain	12	250	67	425	105
70059 rock	С		vein in dacite	fr: drk grn-gry, wh: purply-gry, f-co; 240/vert; 60% qtz, 30% carb, 5% py, 2% gal, tr chalcopyrite, vein 30 cm wide	2	350	77	10900	20300
70064 float	С	EL 4000	dacite	fr: pink-gry, wh: rsty-brn, f, equi gran, massive; 60% silica, 35% feld, 5% py, al-jar stain, sil'd	4	73	17	432	270
70065 float	С		dacite	fr: lt grn-gry, wh: yell-red-brn, f, equi gran, massive; 60% silica, 30% feld, 7% chl, 3% py, sil'd, chl'd	13	41	9	88	86
70066 float	С		decite	fr: It med gry, wh: dk brn-orng, f, equi gran; 60% silica, 30% feld, 5% carb, 5% py, sil'd, carb'd	2	850	11	80	339
70067 float	С	EL 3960	rhyolite-dacite	fr: It blu-gry, wh: rsty-brn, f, equi gran, slight sugary, massive, minor concoidal fracts; 70% silica, 20% feld, 5% chl, 5% py, sil'd	2	49	11	140	36
70068 float	С		andesite	fr: med-dk grn-gry, wh: purply-metalic, med grain, porphy; 50% silica, 30% feld, 10% mafic (hbld & chl), 10% py, sil'd, chl'd, minor epi	3	2275	12	94	268
70069 float	С	EL 3960	dacite	fr: med-gry, wh: purply-brn, f, equi gren massive, qtz carb veining; 52% silica, 30% feld, 7% chl, 10% py	2	1950	41	180	13

SAMPLE TYPE NO.	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70070 float	С		dacita	fr: beige-gry, wh: rsty-brn with yel-grn stain, f, equi gran, sugary, massive; 60% silica, 30% feld, 7% py, 3% chl, sil'd, al-jar stain,	4	200	14	129	15
70071 rock	С	EL 3940	dacite	fr: blu-gry, wh: rsty-yell-brn, f, sugary, massive; 50% silica, 40% feld, 5% chl, 5% py, sil'd, lim, chl'd	14	225	29	325	326
70074 rock	С		dacite	fr: pink-gry, wh: purple-orng-brn, v f, equi gran, massive; 60% silica, 25% feld, 10% py, 5% chl, sil'd, chl'd	51	700	1340	3300	1870
70075 float	С		ash tuff	fr: med grn-gry, wh: yell-brn-rst, f, equi gran, massive; 50% silica, 40% feld, 5% chl, 3% py, 2% epi, al-jar stain	3	46	18	30	33
70076 float	С		dacite	fr: blu-gry-grn, wh: orng-brn pple, f, equi gran, sugary, massive; 60% silica, 30% feld, 5% carb, 5% py, sil'd carb'd	1	60	15	45	97
70077 float	С		dacite	fr: grn-gry, wh: It yell-brn, f, equi gran, massive, slight fract; 50% silica, 40% feld, 5% chl, 5% epi, al-jar stain, tr py, sil'd	1	66	7	20	48
70078 float	С		dacite	fr: med blu-gry, wh: rsty-brn, f, equi gran, massive; 50% silica, 40% feld, 5% py, 3% epi, 2% chl, sil'd chl'd	3	300	38	55	407
70079 rock			check		2	9	8	11	25
70080 rock	D	EL 5900	rhyolite	fr: gry-grn, wh: brn-rsty-orng, aphan, crypto cryst, massive; 70% silica, 25% feld, 3% ch!, 2% py, al-jar stain, sil'd, chl'd	3	24	73	50	39
70081 rock	D		rhyolitə	fr: grn-gry, wh: brn-orng, aphan, crypto cryst, massive; 70% silica, 25% feld, 3% py, 2% chl, sil'd, minor chl'd, al-jar stain,	1	26	36	54	34
70082 rock	D		rhyolite	fr: med blu-gry, wh: rsty-purple with yell, aphan, crypto cryst, concoidal fract; 70% silica, 25% feld, 3% py, 2% chl, al-jar stain, sil'd, minor chl'd	5	21	89	224	82
70083 rock	D		rhyolite	fr: med-blu-gry, wh: rsty-bnrn to grn-yell, aphan, crypto cryst; 70% silica, 20% feld, 5% epi, 3% py, 2% chl, sil'd, chl'd, al-jar stain	3	15	300	113	99

a substant and a state and a substant and a substan

SAMPLE TYPE NO.	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70084 rock	D	EL 5860	rhyolite	fr: It blu-gry, wh: rsty-orng-brn, aphan, crypto cryst, massive; 70% silica, 20% feld, 5% chl, 5% py, sil'd, chl'd	5	36	54	73	13
70085 rock	D	EI 5840	rhyolite	fr: It gry, wh: It orng-brn, aphan, crypto cryst; 70% silica, 25% feld, 3% chl, 2% py, al-jar stain, fract 315/85E	5	34	17	53	5
70086 rock	D	EL 5800	rhyolite	fr: It gry, wh: It orng-brn, aphan, crypto cryst; 70% silica, 25% feld, 3% chl, 2% py, al-jar stain	1	13	36	27	138
70087 rock	D	EL 5800	rhyolite	fr: It gry, wh: It orng-brn, <i>a</i> phan, crypto cryst; 60% silica, 35% feld, 3% chl, 2% py, al-jar stain	5	9	87	51	55
70088 rock	D		rhyolite	fr: blu-gry, wh: yell-brn, aphan, crypto cryst, massive; 65% silica, 30% feld, 2% py, 3% chl, sil'd, chl'd	3	25	28	113	181
70089 rock	D	EL 5740	rhyolite	fr: blu-gry, wh: yell-brn, aphan, crypto cryst, massive; 60% silica, 25% feld, 10% py, 3% chl, 2% carb, sil'd, chl'd	73	475	579	809	762
70090 rock	D		py qtz vein	fr: metalic-bronze, wh: rsty-orng-brn, f, equi gran, vein 15 cm wide, 55/vertical; 65% py, 30% qtz, 5% chl	778	74	135	3930	470
70091 float	D	EL 5680	dacite	fr: blu-gry, wh: purply-brn with yell-grn stain, f, equi gran, massive; 50% silica, 55% py, 40% feld, 2-3% tourm, 1-2% epi, al-jar stain	15	375	111	98	42
70092 rock	D		rhyolite	fr: It grn-gry, wh: rusty-brn-orng, aphan, crypto cryst, massive with minor qtz vein,; 60% silica, 35% feld, 3% py, 2% chl, sil'd, chl'd	5	350	35	385	379
70093 float	D	EL 5680	py qtz vein	fr: grn-gry, wh: dk brn-purple, med grain, py cryst's to 1 mm, qtz & carb to 3 mm; 70% py, 30% qtz	16	1300	205	135	92
70094 rock	D	EL 5760	andesite	fr: It grn-blu-gry, wh: grn-gry, f, equi gran, massive; 30% silica, 45% feld, 20% hbld, 5% carb, tr py	1	27	11	25	384
70095 rock	D		qtz vein	fr: It beige-gry, wh: purple-brn, f, equi gran, sugary; 70% qtz, 20% carb, 5% py, 5% chl	28	22	102	68	396
70096 rock	D	EL 5740	rhyolite	fr: med blu-gry, wh: orng-rsty, aphan,	11	40	39	476	54

SAMPLE TYPE NO.	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	РЪ ppm	Zn ppm
				crypto cryst, massive; 80% silica, 15% feld, 3% epi, 2% py, al-jar stain					
70097 rock	с	EL 4950	rhyolite	fr: It blu-gry, wh: grn rsty-brn, v f, equi gran, massive; 70% silica, 25% feld, 5% py, al-jar stain	2	25	8	27	4
70098 rock	С	EL 5000	rhyolite	fr: med blu-gry, wh: grn to orng-rsty, aphan, massive, fract outcrop 315/vert; 70% silica, 25% feld, 5% py, al-jar stain, sil'd	3	300	9	46	10
70099 rock	С	EL 5000	tectonic breccia	fr: dk gry, wh: beige-brn-orng, f, tectonic breccia; 50% py, 50% rhyolite frags, al-jar stain, sil'd	5	625	14	71	83
70100 rock			check		3	14	9	9	17
70101 float	В		rhyolite	fr: It gry, wh: orngy-brn rsty, aphan, crypto cryst, veining & layering in rock with py ass'd; 80% silica, 10% chl, 10% co py	2	6	17	16	102
70102 float	В	EL 4680	alt'd dacite	fr: med gry yell-grn, wh: rsty orng-brn, f, equi gran; 60% silica, 25% feld, 10% epi, 7% chl, 7% ser, 4% f diss py	1	7	18	6	60
70103 float	В	EL 4680	rhyolite	fr: med gry, wh: red-rsty brn, aphan, crypto cryst; 80% silica, 10% ser, 5% chl, 5% v f diss py, str sil'd	2	10	24	21	43
70104 comp 1 m	osite B	EL 4680	rhyolit e	fr: It gry wh: pply-brn yell, al-jar, aphan, crypto cryst, fracts 155/85E 145/l60E; 70% silica, 10% feld, 5% ser, 5% chl, 5% epi, 5% f diss py, str sil'd	1	8	18	17	22
70151 rock	С		rhyolite	fr: buff-gry, wh: orngy-yell-brn, aphan, crypto cryst, fracts 310/80N; 70% silica, 20% feld, 10% py, al-jar stain	2	93	13	77	18
70152 rock	с	EL 4980	sulf matrix breccia	fr: gry-blu, wh: wht to buff-brn; 50% frags to 3 mm (aphan, crypto cryst), 50% py matrix, fracts 310/vert, frags: 40% silica, 10% feld, 50% py, al-jar stain	1	350	25	106	102
70153 rock	С		rhyolite	fr: med blu-gry, wh: grn to orngy-brn, aphan, crypto cryst, massive; 60% silica, 20% feld, 20% py, al-jar stain, sil'd	1	300	25	1080	865
70154 float	С		rhyolite	fr: med blu-gry, wh: orngy-brn, aphan, crypto cryst, massive; intensly fract no pattern; 50% silica, 20% feld, 30% py, al-jar stain, float close to source	1	425	14	108	832

SAMPLE TYPE NO.	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70155 rock	С	EL 5000	rhyolitə	fr: med blu-gry, wh: orngy-brn, aphan, crypto cryst, massive; intensly fract major: 325/80N, minor: 010/vertical; 50% silica, 30% feld, 20% py, al-jar stain	1	350	6	65	13
70156 float	С	EL 5020	py'd rhyolite	fr: dk gry, wh: wht-chalky, f, equi gran, massive, 60% py, 20% silica, 20% feld, py'd	1	525	11	220	63
70157 float	С	EL 5060	rhyolite	fr: med-dk gry, wh: rsty brn-grn, aphan, crypto cryst, massive; 60% silica, 30% feld, 10% py, sil'd, py'd, al-jar & Mn stain	2	118	19	55	68
70158 float	С	EL 5080	pyrite vein	fr: bronze-metalic, wh: dk purple-rsty, f, equi gran, massive; 80% py, 16% silica, 3-4% feld	3	300	72	435	1030
70160 rock	С	EL 5080	rhyolite	fr: med gry, wh: orngy-brn yell, f, crypto cryst, massive; 60% silica, 35% feld, 15% py, sil'd, py'd, al-jar stain	1	300	59	239	354
70161 float	С		rhyolite breccia	fr: med gry, wh: gry-grn, aphan, crypto cryst, massive; 80% silica, 35% feld, 15% py, sil'd, py'd	1	200	8	88	23
70166 rock	С		rhyolite breccia	fr: blu-gry, wh: rsty brn-orng, grn, aphan, crypto cryst, breccia; 40% silica, 40% py, 20% feld	1	1100	12	118	35
70167 rock	С		rhyolite	fr: lt gry-blu, wh: purple-brn yell-orng, aphan, crypto cryst, massive, fract 300/75N; 68% silica, 25% feld, 5% chl, 2% py, sil'd	2	57	13	430	76
70168 rock	С	EL 4400	py'd rhyolite breccia	fr: dk gry, wh: dk brn-orngy, matrix: aphan, crypto cryst rhyolite, py frags; 50% silica, 40% py, 5% chl, 5% feld, well sil'd, py'd, fracts 245/80S, al-jar stain	1	66	15	714	56
70170 rock	С		sil'd dacite	fr: med blu-gry, wh: dk red-brn, f, equi gran, sugary, massive, fracts: major 310/vert, minor 335/vert; 60% silica, 35% feld, 4% chl, 1% py, well sil'd	2	15	6	32	40
70171 rock	С	EL 4380	andesite	fr: It blu-gry, wh: rsty yell-purple, f, sugary, fracts 190/78E; 50% silica, 35% feld, 10% mafic (hbld?), 5% py, wk sil'd, py'd	2	48	19	28	84
70172 rock	С	EL 4400	sil'd dacite	fr: dk gry, wh: orng-brn-purple, f, equi gran, massive; 50% silica, 35% feld, 10%	1	225	19	283	143

ا منته ختین بای

و مقاد البلي وس

SAMPLE NO.	TYPĖ	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
					chl, 5% py, mod sil'd, chl'd					
70173	l rock	с	EL 4400	hbld porphy	fr: It gry, wh: It chalky Mn stain, med-f grain, slight porphy, fracts: 305/vert & 270/vert; 40% silica, 45% feld, 15% hbld to 3 mm frags	1	8	5	30	28
70174	l rock	с		py vein	fr: bronze-metalic, wh: orngy-rst-brn, f-med grain py, equi gran, semi-massive vein, 10-28 cm wide, 20 m exposure; 70% py, 30% dacite frags, al-jar stain, 242/vert	1	120	12	96	114
70175	i rock			check		2	9	6	11	18
70176	ð rock	С		rhyolite	fr: med gry, wh: brn-purple, aphan, crypto cryst, massive, fracts 310/vert; 70% silica, 20% feld, 5% chl, 5% py, well sil'd, finely diss py	1	50	20	241	168
70177	rock /	C	EL 4440	rhyolite	fr: dk brn-gry, wh: rsty-orng to purply-brn, aphan, crypto cryst, massive; 70% silica, 15% feld, 10% chl, 5% py, well sil'd & chl'd, mod py'd	1	67	34	188	230
70178	l rock	С		alt'd andesite	fr: dk blu-gry, wh: orng-red-brn yell & grn stain, v f, equi gran, massive, fracts 305/vert; 40% silica, 30% chl, 20% py, 10% feld, str chl'd & py'd	2	26	10	51	35
70179	soil soil	С		silt-grav	orngy-brn, f-pebs, lim	1	1	36	67	90
70181	rock	C	EL 4480	rhyolite	fr: dk gry, wh: brn-orngy-yell-grn, aphan, crypto cryst, massive; 70% silica, 20% feld, 5% cly, 5% py, al-jar stain	2	84	22	639	103
70182	2 rock	С	EL 4460	rhyolite	fr: med grn-gry, wh: orng-brn-purple, aphan, crypto cryst, massive, 70% silica, 20% feld, 8% py, 2% chl, str sil'd, mod py'd wk chl'd	1	50	20	452	24
70183	l rock	С	EL 4420	dacite	fr: med blu-gry, wh: brn-purple, f, equi gran, massive; 50% silica, 40% feld, 8% chl, 2% py, mod sil'd & chl'd	1	81	158	213	227
70184	l rock	С	EL 4420	dacite	fr: med blu-gry, wh: brn-purple-orng, f, equi gran, massive; 60% silica, 30% feld, 5% hbld, 5% py, str sil'd, wk chl'd	1	40	31	482	189
70186	5 float	С	EL 4400	dacite	fr: buff gry, wh: orngy-brn-purple, f, equi gran, massive; 50% silica, 40% py, 10% feld, str sil'd, str py'd	9	300	32	465	384
70187	float	С	EL 4400	rhyolite	fr: med blu-gry-grn, wh: brn-orng-purple-yel,	3	250	16	373	416

and white and a state white white white white white white

SAMPLE TYPE NO.	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
				aphan, crypto cryst, massive; 60% silica, 20% feld, 10% chl, 10% py, str sil'd & chl'd					
70188 rock	С	EL 4360	dacite	fr: dk grn-gry, wh: rsty-brn, purple, f, equi gran, massive, 50% silica, 35% feld, 10% chl, 5% py, str sil'd & chl'd	2	225	33	234	305
70189 float	С	EL 4250	alt'd dacite	fr: dk grn-gry, wh: orng-brn-purple, f, equi gran, massive, fract; 50% silica, 35% feld, 10% chl, 5% py, str chl'd, mod sil'd, wk py'd, øl-jar stain	2	115	20	423	100
70190 float	С	EL 4240	rhyolit e	fr: med grn-gry, wh: orngy-brn, aphan, crypto cryst, massive; 70% silica, 20% feld, 5% chl, 5% py, str sil'd, mod chl'd	1	125	12	150	140
70191 rock	С	EL 4200	hbid porphy	fr: wht-lt gry, wh: yell-brn, f, equi gran, porphy, fract 305/75S; 50% silica, 30% feld, 15% hbld, 3% chl, 2% py, hbld frags to 2 mm	1	21	6	36	38
70192 talus	С		rhyolitə	fr: It blu-gry, wh: orngy-brn, aphan, crypto cryst, massive; 70% silica, 20% feld, 5% chl, 5% py, str sil'd, mod chl'd & py'd	1	12	5	25	75
70193 rock	С		rhyolite	fr: med blu-gry, wh: yell-rsty-brn, aphan, crypto cryst, massive, fracts 315/86W minor 255/vert; 70% silica, 15% feld, 10% chl, 5% py, str sil'd, mod chl'd	7	69	15	181	68
70194 rock	С		rhyolite	fr: It blu-gry, wh: brn-orngy-rst, aphan, crypto cryst, massive, fracts 295/vert; 60% silica, 20% feld, 15% chł, 5% py, str sil'd, mod chl'd	2	150	9	107	34
70195 rock	С		chl matrix breccia	fr: med gry-grn, wh: orngy brn, breccia; 55% rhyolite frags to 3 cm, matrix (35% chl, 5% py), py on margin of rhyo frags, fracts 20/62S	4	350	7	60	26
70196 talus	С	EL 4220	rhyolite	fr: It bly-gry, wh: orngy-yell brn, aphan, crypto cryst, massive; 70% silica, 20% feld, 7% chl, 3% py, str sil'd, wk chl'd	1	81	9	39	11
70197 telus	С		rhyolite	fr: It blu-gry, wh: It brn-orngy, aphan, crypto cryst, massive; 70% silica, 20% feld, 5% chl, 5% py, al-jar stain, str sil'd, mod chl'd	27	525	56	210	26
70198 talus	С		py vein	fr: metalic-bronze, wh: metalic-bronze, med grain, equi gran, vein 2 cm wide; 90% py, 10% silica, str py'd	2	27	4	36	18

SAMPLE NO.	TYPE	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70199) talus	С		andesite aglom	fr: med grn-gry, wh: brn-rsty-orng, grn ande frags to 4cm in gry ash matrix, vague layering; 50% silica, 40% feld, 8% chl, 2% py	7	5	18	22	74
70200) rock			check		4	6	8	13	23
70201	rubble	E	1320 ft	sil'd vol Dilsworth Rhy?	fr: gry brn-gry, wh: orngy-brn, f, sugary, vuggy, well sil'd, vuggy oxid sulfs, 70% qtz, 20% feld, f pγ in blebs & diss to 2%	1	10	23	20	37
70202	l fioat	E	5m E of 70201	rhyolite or sil'd vol & qtz-carb	fr: gry-wht-pk, wh: orngy-brn-gry, f, sugary, vuggy, well sil'd, well dev qtz stwk, qtz-carb veins to 1 cm, wk carb'd, tr fuchsite; 75% qtz, 20% feld, 1% diss py, oxid mat	1	23	16	33	31
70203	3m coi	mp E		alt'd rhyolite prophy	fr: gry-wht, wh: orngy-brn, f, sugary, porphy gry qtz phenos, well lim on frect, wk dev qtz stwk, < 1% suf (py), wk mag, 70% qtz, 20% feld	1	5	8	18	70
70206	i compos 3m	site E		alt'd rhyolite	fr: grn-gry, wh: orngy brn, f, sugary, well sil'd, py as diss, veinletts, blebs to 15%, 3% chl as streaks diss coatings; 70% qtz (cherty gry), feld, 15% sulfs, 1-5% chl & oxid mat, lim on wh surfs	1	106	21	25	47
70207	rock	E		py vein	orngy-brn, f, sugary-gran vuggy, 60-70% f massive py, qtz as blebs diss (30%), 5% chl as blebs diss, 1% oxid mat	7	525	47	132	72
70208	compos 30cm	site E		alt'd rhyolite or sil'd vol	fr: gry, wh: orngy-brn, f, sugary, well sil'd; 70% gry qtz, 20% feld, grn fuchsite, 1% sulfs (py), well lim on shears, 2-3 % py as lenses & diss, 5% fuchsite as lenses & diss, Mn coatings	2	32	20	18	37
70209	compos 2m	site E		alt'd rhyolite or sil'd vol	fr: gry, wh: orngy-brn, f, sugary, well sil'd; 90% gry qtz, grn fuchsite, 1% sulfs (py), well lim on shears	1	14	12	17	45
70210) compos 4m	site E		alt'd rhyolite or sil'd vol	fr: gry, wh: orngy-brn, matrix f, well sil'd, sugary, massive, up to 5% euh py, veins of py & stwk, up to 3-4% py as blebs & diss, tr sphal, lim on surf, cherty gry qtx, blebs of chl, goeth on surf, shears 340/54E	3	15	6	16	38

SAMPLE NO,	TYPE	ARE	A LOCAT ELEV (NAME	DESCRIPTION	Au-Fire ppb	A a ppm	Cu ppm	РЬ ppm	Zn ppm
70212	compos 1m	ite	E	alt'd rhyolite or sil'd vol	fr: gry-yell-wh, wh: orngy-brn, f, sugary, well fract zone, micro stwk mod well dev, py qtz, lim, 2 cm vuggy veins of qtz, lim, tourmaline & chl, minor diss py; 90% qtz, feld, 3-5% py, oxid mat chl	2	13	9	49	94
70215	boulder		E	alt'd rhyolite or sil'd vol	orngy brn, gry wh; 80% qtz (vuggy, sugary- glassy, gry wh, with lansas of chl), 10% sulfs (up to 10% py), 10% oxid mat, chl	2	2025	179	159	25
70217	' float		E	ait'd rhyolite or sil'd vol	fr: gry wht, wh: orngy-brn-gry, f, sugary, locally vuggy, well sil'd, Mn on fr surfs, lim, hem on wh surfs, oxid qtz stwk & veins, 2-3% sulfs in blebs & veinletts with qtz, 90% qtz, feld, 4% oxid mat & sulfs	2	14	9	12	23
70218	float boulder		E	ait'd rhyolite or sil'd vol	fr: gry-wht, wh: orngy-brn, blebs & diss of aspy & py, sugary gry, py veinletts to 4%, well lim on surfs; 90% qtz, feld, 10% oxid mat & sulfs	4	29	68	24	138
70219	float ang bou		E	alt'd rhyolite or sil'd vol	fr: gry-wht, wh: orngy-brn, f, sugary, vuggy, wall sil'd; 85% qtz, fald, 10% py as diss vainlatts & lansas assoc with chl, qtz stwk	7	31	44	44	385
70220	insitu & float		E	alt'd rhyolite or sil'd vol	well fract, massive sulf veins along fracts with f py in sil'd matrix, vuggy, 80% qtz, feld, gry-wht suggary qtz, blebs & lenses of chl	8	99	26	105	26
70221	chip 2m	1	E	alt'd rhyolite or sil'd vol	fr: gry-wht, wh: yell brn-red, f, sugary, friable, locally vuggy, well sil'd, alunite on wh surfs, veins to 4 cm of py & aspy, veins & veinletts of qtz, 70% qtz, feld, 15% py & aspy, 10% oxid mat, lim, hem	3	42	109	51	26
70222	chip 1m	1	E	alt'd rhyolite or ail'd vol	as 70221	7	34	12	22	32
70223	compos 4m	ite	E	ait'd rhyolite or sil'd vol	orngy-brn-gry grn, f, sugary, very sil'd, porphy with fuchsite patches, 95% qtz, feld, to 1% sulfs, 280/vert, stwk of qtz & oxid met	2	13	5	29	46
70224	subcrop	•	E	alt'd rhyolite or sil'd vol	yell-orngy brn-gry bl, f, sugary, vuggy, well sil'd, drk gry qtz vuggy with oxid sulfs, minor feld, 1-2% diss sulfs, 3-4% py in fracts, stwk of qtz veins & py veins to 1 cm wide, 2% blebs of chl	4	15	14	28	18
70225	i rock			check		2	10	9	11	23

SAMPLE TYPE AR NO.	EA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	РЬ ppm	Zn ppm
70226 subcrop	E		alt'd rhyolite or sil'd vol	yell-orngy brn-gry bl, f, sugary, vuggy, well sil'd, drk gry qtz vuggy with oxid sulfs, minor feld, 1-2% diss sulfs, up to 10% py in fracts, stwk of qtz veins & py veins to 1 cm wide, 2% blebs of chl	3	40	24	65	31
70227 composite 3m	E		alt'd rhyolite or sil'd vol	sil'd sugary, well dev stwk of qtz, oxid mat, vary degree of shearing, str lim, minor py	2	44	8	26	34
70228 composite 3m	E		alt'd rhyolite or sil'd vol	sil'd sugary, well dev stwk of qtz, oxid mat, vary degree of shearing, str lim, not sulf'd	7	1625	23	62	21
70229 float boulder sub	E bang		alt'd rhyolite or sil'd vol	orngy brn to gry-bl -grn, f, sugary, gran, vuggy, well sil'd & epi'd, 5% epi, 5% diss py and epi, minor qtz vein, wk lim on surf	3	27	7	14	16
70230 composite boulders	E		alt'd rhyolite or sil'd vol	fr: gry-wht, wh: yell-orngy-brn, f, sugary, glassy, well sil'd, 90% gry & wht qtz, feld, 3% blebs of chl, to 8% blebs & veins to 1 cm py, well oxid boulders, lim	1	1300	18	146	153
70232 telus	Ε		alt'd rhyolite or sil'd vol	fr: grn-gry-bl-wht, wh: orngy-brn, f, gran- sugary, qtz with blebs & diss of py aspy up to 4%, well lim, str sil'd, some pieces <1% bleby py	1	80	19	81	64
70233 composite boulders	E		alt'd rhyolite or sil'd vol	fr: gry-wht, wh: orngy-yell-brn, f, sugary, vuggy, well sil'd, lim, al-jar on wh surf, 90% qtz, feld, 10% oxid mat & blegs stwk of py up to 10% in & with blebs of chl	1	58	27	55	54
70235 talus angular	E	EL 4240	alt'd rhyolite	orngy-brn, pk sil'd mat = rhyolite host (f, sugary), 10% sulfs as blebs stringers stwk & veins, 1% tourm	9	1575	88	1070	59
70236 ang boulders	E	EL 4210	alt'd rhyolite	orngy-brn, pk sil'd mat = rhyolite host (f, sugary), sulfs as blebs, stringers stwk veins, 1% tourm	12	1075	62	586	75
70237 float	F		alt'd rhyolite	fr: gry-wht, wh: orngy-brn, sil'd matrix, f, sugary, well sil'd, diss py to 6%, stwk of py & oxid mat, well dev	4	850	33	282	282
70239 composite 5m	F	EL 4240	alt'd rhyolite	fr: pk-gry, wh: orngy-brn, f, sugary matrix, well fract, filled with py, minor stwk of py & oxid mat, tr al-jar	7	118	27	206	316
70242 float	E	EL 4320	alt'd rhyolite	30% py in sil'd matrix, py f, blebs & stwk to 1 cm, matrix (qtz, f, sugary, vuggy)	1	48	31	27	41

.

SAMPLE NO.	TYPE	ARE	A	Location/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70243	float boulder		E	EL 4300	alt'd rhyolite	fr: gry wht, wh: orngy-brn, 5% chl'd matrix, 8% py'd f diss, qtz host sil'd rhyolite, al-jar on surf	1	1750	28	644	117
70244	l chip 5m	ו	E		alt'd rhyolite	as70244; 4% py fr wht, wh orngy-brn, minor sulfs	2	33	8	29	25
70245	i talus		E		alt'd rhyolite	as 70244; 4% py	4	1575	32	4420	30
70246	fioat boulder		E		massive sulf	as 70244; 65% f py ass with chl	2	66	67	71	26
70247	' rock		Ε		alt'd rhyolit s	orngy brn-gry wht, well fract, sheared in places, sugary, 2-3% py with blebs of chl	1	725	19	58	39
70248	sub cro	p	E		alt'd rhyolite	as 70249; 1-2% f diss py, fuchsite	1	11	10	10	14
70249) compos 4m	ite	E		oxid vol	fr: gry wht, wh: orngy-brn, f, sugary, minor diss sulfs v f 1-2%, 95% oxid mat	1	2	7	8	16
70250) rock				check		2	6	8	10	22
70251	chip 1m	ı	E	EL 4380	alt'd rhyolite	fr: gry wht, wh: orngy-brn yell, f, sil'd, 1-2% py, al-jar stain	1	37	11	62	23
70252	l float		E	·	alt'd vol	fr: wh-brn, wh: orng-brn-grn-gry, f matrix, co py, chl coatings with py, massive sulfs, 20% py in qtz carb vein, qtz carb stwk, brecc'd, blebs of py & euh py	3	22	22	192	381
70253	talus		E		alt'd rhyolite	fr: gry wht, wh: orngy-brn yell, f, sil'd, 1-25% py, Al-Ja stain	1	17	19	35	58
70254	l float		E		alt'd vol	grn gry-wht, 70% f grain chl, 20% qtz as lenses & diss, lg lens of wh calcite, 10% py (tarnished, assoc with chl on edge of qtz)	1	16	20	166	265
70256	compos 15m	ite	1		ait'd mv	grn gry, f-med, porphy, dk phenos in sil'd f sugary matrix, well sil'd, 80% qtz, feld, calcite phenos of hbld to chl, 1% py, minor stwk of oxid mat & veinlets, fract perp to trend at 30, fract 80, Mn on surf	1	6	14	23	341
70257	rock /		.1		alt'd vol	fr: gry-wht, wh: orngy-brn, f, sugary, matrix qtz, oxid mat, sil'd host, sulfs well lim, up to 20% py & aspy, co blebs, veins & minor veins	11	13	72	34	149

SAMPLE TYPE AR NO.	REA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70258 subcrop	I		alt'd vol	same host as 70257; qtz carb stwk & fract calcite, blebs & veinlets of py on fracts	1	8	19	114	342
70259 subcrop	I		alt'd voi	same host as 70257; alt'd pk-red, k-spar?, hem, qtz carb veins & diss py & stwk to 1cm, vuggy, well carb'd veins	5	15	51	54	340
70260 composite	t		alt'd vol	fr: gry-wht grn-gry, f, sugary, minor sulfs, well lim on surf & on well dev stwk,	1	12	7	95	144
70261 rock	I		alt'd vol	fr: grn-gry, wh: orngy-brn, f, sugary matrix, qtz stwk, veinletts; 80% matrix, 18% py f diss & bleb oxid mat, 2-3% qtz chl	1	725	15	97	472
70262 float	I		alt'd vol	wh: orngy-brn-wht, f-co, glassy vuggy- earthy, well lim, well dev qtz calcite stwk qtz, cal, oxid mat, well carb'd	1	21	289	35	279
70263 composite 3m	I		alt'd pyroclastic	fr: pk-grn-gry, wh: orngy-brn gry-blk, f, sugary, well fract, brecc'd, matrix (sil'd with 1-3% f diss py, vuggy with tourm in vugs as laths & coatings) well dev stwk of sil'd oxid mat, well sil'd, Mn coating, brecc frags to 10 cm	1	14	45	129	136
70264 composite 3m	I		alt'd vol	fr: pk-red wht-gry, wh: orngy-brn, f, sugary, vuggy qtz, blebs of sulf (py) to 10% & diss; 65% qtz, 20% hem, 15% oxid mat, py, tourm, well hem, str oxid, fracts 80 & 160, sulf'd, well sil'd	9	250	311	1500	291
70265 composite 4m X 3m	I		alt'd vol	fr: gry-pk, wh: orngy-brn yell, f, sugary, f veinlets of chl, tourm, < 1% sulfs, fracts 274 & 260, shears 220, dip N; 80% qtz, 10% k spar, 5% chl, jar, oxid mat, 2% sphal & py, Mn stain on fract surfs, well sil'd, lim, hem, jar on surfs	1	37	18	175	102
70266 composite 3m	I		alt'd vol	fr: gry-wh, wh: orngy-brn, f, sugary, py to 5% as diss & vnlets, qtz, oxid mat (lim), well fract 280, well sil'd	3	26	83	311	68
70267 float	I		alt'd mv	as 70266; less oxid sulfs, more massive, oxid & sulf mat along fract, sil'd along fract, py in mottled grn chl host	25	101	136	176	62
70269 composite 1m	I		alt'd mv	as 70267; more oxid (lim, hem, al-jar), sulfs in fract & shears to 5%, purple-pk, porph with chl phenos, oxid on fract, Mn steins on surfs, sil'd matrix, sil'd, shear 280/60N, fract 330 & 290	1	46	13	40	196

SAMPLE NO.	ТҮРЕ	ARE	A LOCATION/ ELEV (FT)	, NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70270	composi	ite	I	alt'd mv porphy	pk, f, sugary matrix, grn chl phenos, Ja-Al on fracts with porphy tex & as phenos, pk qtz, well dev qtz stwk	6	9	12	63	117
70271	composi 5m	te	I	sil'd vol	fr: wh-gry, wh: orng-yell-brn, f, sil'd matrix with chl phenos, wht-gry, sugary, brecc'd, fracts oxid	5	10	28	42	38
70272	composi 1m	ite	I	sil'd vol	sugary, vuggy with oxid sulfs, well sil'd, heavy al-jar stain, lim, bleached, v f diss py 1-2%, narrow shear 2cm wide 280/ al-jar in shear, stwk on both sides of shear	1	21	6	120	75
70273	composi 4X4m	ite	I	alt'd vol porphy	gry wht matrix, f, well lim & fract, sil'd, up to 1-2% diss py, mod porphy with chl phenos or bleached with al-jar	2	8	10	52	44
70274	talus		I	sil'd vol	fr: gry-wht, wh: orngy brn-blk, f, sil'd matrix, well fract, qtz tourm veins, vuggy, up to 3-4% py	1	28	44	68	139
70275	rock			check		1	6	7	8	25
70276	composi 1m	ite	I	sil'd vol	fr: gry-wht-yell-brn, wh: orngy brn buff wht, f, vuggy oxid sulfs 3-4%, oxid qtz veins & stwk; 80% qtz, feld, 20% oxid mat, al-jar, minor tourm, oxid sulfs	1	18	31	73	190
70278	composi 2m	ite	I	sil'd vol	fr: gry-wht, f, sugary, well fract 275, well sil'd, minor oxid sulfs some in vugs, shear 274/vert	1	21	47	96	113
70279	talus		I	sil'd vol	as 70278, well fract, vuggy talus, up to 5% blebby diss py in fract	1	15	178	83	81
	composi boulders		I .	sil'd oxid vol	pk-gry-wht, f, sil'd, well fract, up to 3% diss sulf assoc with qtz veins & lenses, 90% qtz, feld	1	18	46	217	326
70282	rock		I	sil'd oxid vol	fr: pk-gry-wht, wh: yell-brn-orng, f, vuggy, well sil'd, well oxid on surfs, up to 8% diss & blebs py, lenses & blebs chl	5	37	400	12000	1395
70283	talus		I	sil'd oxid vol	as 70282	1	16	23	83	58
70286	talus boulder		F	sil'd vol	fr: grn-gry-brn, wh: orngy-brn, f, sugary, well sil'd, py as blebs veins & diss with patches lenses of chl, 20% diss py	1	300	62	163	1510
70288	boulder		F	massive sulf	fr: gry-gold, wh: orngy-brn, f, glassy, sil'd grd mass, fi grn chl & qtz matrix, glassy, greasy, vuggy, well hem on surf,;	3	37	26	142	72

ا يزيع أثلث عن زود علم ون عن يبي الله الأل الله ال

SAMPLE NO.	TYPE	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION 70% f-co py diss/massive, in vugs, minor euh py	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70289) talus	F		brecc'd vol	yell-wht-orng-brn, bleached, brecc'd, vuggy, frags of sil'd brecc'd mat, chl interstit to brecc frags, sulfs to 20% assoc with chl, as fillings in vugs; 50% brecc frags, 30% chl, 20% py & oxid mat	4	65	9	23	14
70290) talus	F		sil'd vol porphy	fr: gry-grn, wh: orngy-brn, chl phenos in sil'd sugary qtz matrix, porphy tex, sulfs in frats, diss py in veinlets to 10%, al-jar	1	1025	48	610	202
70291	boulder	F		chi sil'd mv	fr: grn-gry, wh: gry-blk-orngy, f, granular matrix, qtz, grn chl, v vuggy with oxid (lim) sulfs, diss py to 5%, more massive py assoc with vugs, tr sphal	4	25	16	69	739
70292	2 talus	F		sil'd vol	fr: gry-wht, wh: orngy-brn-yell, f, well sil'd, matrix, qtz & chl stringers, py blebs to 4%, blebs of sphal, locally vuggy, sugary	2	43	4	29	75
70293	l talus	F		alt'd pyroclastic	orngy-brn, wk consolidated pebs & soil, v oxid, vuggy, porous, v well lim, frags to 5cm	2	112	9	39	94
70294	l talus	F		alt'd sil'd vol	orngy brn, fresh angular, well fract, v well lim & vuggy, f sil'd matrix (grn-gry), 10-12%py in vugs veins lenses, 80% qtz, feld, oxid mat	1	69	3	41	84
70295	i talus	F		sil'd vol	fr: gry, wh: yell orng-brn, f, sugary, well sil'd matrix with veinlets & blebs py to 3%, 10% py & oxid mat (lim, hem) in veins, brecc'd, fract	1	2300	31	55	46
70296	boulder	F		sil'd vol	as 70295	1	120	24	62	70
70297	' compos talus 4i			sil'd vol	fr: grn-gry wht, wh: yell-orng-red-brn, f, well sil'd, sugary, well fract, al-jar stain, sulfs with fract (py) & diss, 2-3% py, qtz, oxid mat (hem, lim), qtz vein to 1 cm, vuggy, fract 272/vert	1	33	5	34	72
70298	l chip	F		sil'd vol	as 70299, orngy-brn, to 10% py in sil'd matrix, (pk-gry, sugary), 2-3% bleby diss py, 80% qtz, fled	4	70	57	70	79
70299) talus	F		sil'd vol	fr: gry-wht, wh: irridecent-brn, f, vuggy, sugary matrix, 6-7% py as diss, minor veining, 90% qtz, feld	2	117	6	35	22

ا تحت شد بين اين وي اين الت تقار في ا

SAMPLE NO.	TYPE	AREA	4	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70300) boulders	s	F		sil'd vol	as 70299	3	42	6	81	116
70301	rock				check		1	9	8	12	26
70302	! boulder	I	F		semi-massive sulf	fr: irrid wht, wh: orngy-yell-brn, well sil'd, well lim & hem, qtz, 40% py as massive & veinlets, f-euh	2	175	23	205	22
70303	float	ł	F		semi-massive sulf	fr: gry-wht, wh: orngy-brn, well sil'd, f matrix, gran-sugary, well fract, veins of py along fracts & surf coatings, well lim on wh & fract surfs, vuggy, oxid sulfs, bleached in patches, some brecc'd frags along veins, well dev py stwk, 40% py	1	225	9	42	51
70304	compos	ite l	F			fr: wht, wh: orng-yell-red-gold, well sil'd matrix with py to 40% in blabs & veins, stringers of oxid qtz patches of bleaching,	4	250	18	37	28
70305	i talus f 5m	1	F		silt-sd-grav	brn, silt-pebs, brn silt, ang frags of oxid sil'd, sulf'd vol, 40% pebs, ang, tr al-jar, oxid mat, py	1	48	8	32	83
70306	i talus f 3m chai		F		silt-sd-grav	orngy-brn, as 70305, mor lim, 40% frags	1	125	12	42	99
70307	' talus f	I	F		sd-grav	as 70308, 30% frags	1	112	18	109	84
70308	l telus f	1	F		sd-grav	orngy-brn, f-co, 50% frage, oxid, angular, 50% sd	1	34	25	108	121
70309	talus f	I	F		sd-grav	as 70307	1	33	17	81	100
70310) talus fra	igs l	F		sil'd brecc'd vol	orngy brn-buff wht, silver-gry, f, sil'd brecc'd frags, some yell al-jar as infillings in brecc lenses & veins of massive gran euh py; 50% py, 50% brecc frags (qtz) derived from rhyolite	3	150	4	42	27
70311	boulder	I	F		alt'd rhyolite	fr: gry-silver buff wht, wh: orngy-brn, sil'd felsic matrix, bleached & well fract, veins of py to 10 cm blebs & diss,	6	650	9	46	49
70312	boulder	I	F		sil'd brecc'd vol	as 70310	10	525	11	60	74
70316	5 bouider	I	G	EL 4100	alt'd rhyolite	fr: wht-grn-gry, wh: orngy-brn, f, vuggy, vugs of oxid sulfs, euh & bløbs of py in sil'd matrix, patches of chl & f py ass, brecc'd, mod carb'd; 70% qtz, feld, 15% brecc frags, to 20% sulfs, carb, oxid mat (2-3%)	4	60	22	246	84

ا الكال الأمال المام الكلي الألب المام الكان المان المام المام

1

SAMPLE TYPE / NO.	AREA	Location/ Elev (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm	
70317 boulder	G	EL 4100	alt'd rhyolite	fr: gry-blk, wh: orng-brn-yell, f, brecc frac, 65% brec frags f sugary sil'd, 25% chl, 5% f diss py ass with chl, al-jar, lim, some qtz veinlets with al-jar,	1	400	10	44	71	
70318 boulder	G		alt'd rhyolite	as 70317	1	200	8	43	58	
70319 boulder	G		brecc'd sulf vol	yell-orng brn wht-silver, vuggy, sugary, glassy, bleached, f, sil'd mat, brecc, alt'd vol, vugs & fract with py as massive to euh, py in veinlets as diss, brecc frags of sil'd mat, to 15% py, str lim & Al-Ja,	4	250	39	126	26	
70320 boulder	G	EL 4120	alt'd rhyolite	fr: wht-gry-yell, wh: orngy brn-yell, well fract, matrix gry-wht, f, sugary, qtz, v vuggy & fract with al-jar in fract & as coatings, 3-4% f py on fract, less sil'd & py'd than 70319	6	1075	11	334	171	
70321 talus	G		alt'd rhyolite or brecc'd vol	f yell-orng-brn buff wht, wh yell-orngy-brn, brecc frags, bleached, ang, well brecc'd, set in a oxid gry cherty qtz (matrix with al-jar, lim), blebs of sulfs in qtz & as frags in breccia, veining, py'd (2-3%) brecc'd vein	8	650	24	306	220	
70322 talus	G		alt'd rhyolite or brecc'd vol	fr: gry-wht, wh: yell orng-brn, fract, gry wht sil'd rock, vuggy; 7% pervasive al-jar as coatings, fract, ang blebs of py (3-4%)	5	1425	24	120	111	
70323 float	G		alt'd rhyolite or brecc'd vol	fr: orngy-brn-yell, wh: irrid brn, f, gry qtz matrix coated with yell al-jar, Ig lenses & veinlets of f py (20%), vuggy, oxid sulfs, v well lim on surfs & fracts,	3	175	31	91	176	
70324 boulder	G	El 4120	alt'd rhyolite or brecc'd vol	fr: gry-wht, wh: orngy-brn-yell, al-jar coating on wh, vuggy on outside, fr sugary gran tax, qtz cal stringers & veinlets,	2	39	16	94	24	
70326 boulder	G		ait'd rhyolite or brecc'd vol	as 70324; less oxid, py in qtz veins, host-sil'd grn fel vol, fract filled with qtz carb py, vuggy wht-gry qtz with 3% py	3	117	37	1020	29	
70327 talus boulder	G		alt'd rhyolite or brecc'd vol	fr: gry-wht-pk, wh: orngy-brn, f, sugary, with coatings & diss of chl assoc with lenses diss py 2-3% well fract with lim, vuggy with lim, tr al-jar, mod chl'd, str lim on surfs	2	53	16	82	391	
70328 boulder	G		brecc'd vol	yell-gry wht, some orngy-brn, 50% qtz, feld, 25% brecc frags, 25% py, matrix- glassy,	2 :	> 10000	58	125	55	

ا الأثاثة الأملية الجرية المرتبة المرتبة الأثاثة الأرابية المرتبة المرتبة المرتبة

· ·

SAI NO	MPLE	TYPE	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
						błu-gry qtz, sil'd brecc frags, yell- wht qtz, frags of felsic vol, 25% py as blebs diss vug fillings, al-jar on surf & brecc frags					
	70329	boulder	G		brecc'd vol	fr: gry-wht, wh: orng-brn yell-pk, f, sugary qtz, with veins diss & vugs of py, qtz has pk tinge (k-alt?), coatings & vugs of al-jar	1	225	6	44	14
	70330	small boulder	G		brecc'd vol	fr: gry-wht, wh: orngy brn-yell, f, well fract, cut by qtz py veins, py as blebs diss, well lim, al-jar coatings, vuggy oxid py & veins of py; 80% qtz (sil'd matrix), feld, 10% py, 10% oxid, al-jar	4	125	15	48	128
	70331	rock	G	EL 4120	brecc'd vol	fr: gry, wh: orngy-brn, matrix f, sugary, well sil'd, well hem & lim on surf; 30% blebs & diss chl, 65% qtz, feld, 5% oxid mat & finely diss py, minor qtz vein, oxid in veins, Mn stain on surf	4	125	99	399	120
	70332	talus	G	near 333	brecc'd voł	fr: pk-wht, wh: red-brn, gran, sugary, brecc frags are purple vol cemented by gry wh qtz, f, vuggy, 1-2% diss py in vugs	1	13	5	23	343
	70333	talus boulder	G	EL 4140	sulf metrix breccia	fr: tan-silver gry wht, wh: orngy-brn-yell, sulf matrix, sil'd frags coated with al-jar; 60% py, f, silver-tan, 35% brecc frags, 5% oxid al-jar	2	200	34	90	43
	70334	telus	G		sd-grav	f-pebs, sil'd, some py'd, ang frags of oxid vol with al-jar, lim purple vol	1	24	31	32	372
	70335	bould e r	G	5 m N of 334	breccia vot	fr: gry-wht, wh: orngy-brn, lim, vuggy on wh, chl, gry qtz, some sil'd brecc frags, qtz carb veins, ubiq py as blebs veins & lenses to 30%, sugary	2	125	18	28	42
	70337	rock			check		1	16	9	13	21
	70343	telus	н		eitd rhyolite	fr: gry-wht, wh: orngy-brn-yell, sugary, well fract, qtz veins up to 4 cm in fract, vuggy, py diss, veins, veinlets assoc with fracts & vugs 4-5%	1	24	12	53	139
	70344	talus	н	beside 343 EL 4260	ba	orngy-brn yell, f, sil'd wh, v vuggy, al-jar in vugs, lim as coatings, well fract, 2-3% diss sulfs	2	26	7	36	23
	70345	i talus f	н	above 70344	sd-grav	brn, f-co, oxid lim, ang frags comp of lim, sil'd vol with py up to 1-2%	1	41	39	67	105

و الإنتاب البلين الجنية بيبداو بمني عش الت

ini and a sub-

. -

SAMPLE NO.	TYPE /	AREA	Location/ Elev (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	P
70346	i talus	н		brecc rhyolite	fr: gry-wht yell-orng, wh: yell-orng-brn, well bercc, vugs with oxid sulfs, some py in vugs 2-3% remaining, brecc is bleached, py in fract, well fract	4	23	8	36	
70347	' talus boulder	н		ait'd vol	grn gry-orng brn-yell, matrix, grn-gry- buff wht, f, sugary coating of al-jar, lim (well oxid), mod brecc'd, qtz as blebs diss brec frags, chl matrix with pervasive al-jar, v vuggy, to 5% diss vein py, well dev stwk of qtz & oxid mat, Mn stain; 40% oxid mat, 30% qtz, feld, 25% chl, 5% sulfs	4	124	29	299	
70348	talus boulders	Н	near 347	alt'd vol	as 70347; less al-jar, grn-gry, sugary, grn vol, well fract, py veins along fract & diss py	2	76	26	98	
70349	talus	н	5m below 353 & 352	alt'd rhyolite	fr: grn-gry-yell, wh: yell, f, sugary, grn-gry qtz, 5% diss sulfs, wht qtz veins to 0.5cm, well dev veins, vuggy to massive, with al-jar coatings, 3-4% f sulfs diss	1	23	9	55	
70350	rock			check		1	23	8	13	
7035 2	composit 1m	e H	EL 4360	alt'd rhyolite	as 70349; vuggy pervasive al-jar, bleached, oxid sulfs, sheared locally, fract-massive	1	23	5	82	
70353	rock	н		alt'd rhyolite	fr: gry-grn, wh: orngy-brn, well fract, porphy tex, blasts of chl in sil'd matrix of rhy, f, gran, 1-2% py on fract,	t	15	3	63	
70354	talus	н	EL 4400	alt'd rhyolite	orngy-brn-yell, well fract, veins diss py 3-4%, sil'd matrix, well fract, well lim	1	30	5	71	
70355	talus f	н	15m over & 5m down from 354	sd-grav	brn, f-pebs, lim; f, oxid qtz sd, tr py, 20% ang pebs derived from sil'd oxid vol, tr al-jar	1	33	10	57	
70356	talus	н	below 357 EL 4440	alt'd rhyolite	fr: pk-gry-wht, wh: orngy-brn-yell, lim, minor al-jar, f, sugary, pk-gry qtz, vuggy fract vein & diss py to 3%, more sil'd than 70357, some brecc'd mat	2	26	20	79	
70357	chip 1.5r	n H	EL 4440	alt'd rhyolite	as 70349; more fract, lim shell on more oxid competent mat	1	18	8	31	
70358	chip 1.5r	n H	cont to E of 357	alt'd rhyolite	orngy-brn, well fract, bleached, pervasive lim on fract, py as narrow veins & diss, vuggy, py 2-3%	1	19	11	37	

SAMPLE TYPE AR NO.	EA	Location/ Elev (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70360 talus	Н		alt'd rhyolite	wht, bleached, vuggy, 10% oxid sulfs, 3-4% py in veins, pervasive al-jar	1	33	9	72	22
70361 chip 1m	н	EL 4440	alt'd rhyolite	fr: gry-wht, wh: orngy-brn, f, sugary, vuggy with up to 5% py, al-jar on fracts, mod well fract; 85% wht-pk-gry qtz, feld, 5% sulfs (v f sooty py), 10% oxid met, chl	3	21	11	149	29
70353 composite	н		sil'd rhyolite	fr: gry-pk-wht, wh: orngy brn yell, vuggy, oxid sulfs, f, sugary, earthy, well fract, sulfs as diss, in vugs, well dev qtz oxid stwk, well lim, minor al-jar, to 7% py	3	73	26	172	294
703 64 roc k	J		talus		6	86	28	280	43
70365 rock	J		talus		5	54	28	225	66
70367 chip 1m	L		alt'd rhyolite or sil'd vol	fr: gry-wht, wh: orngy-brn-yell, f, porphy, blebs of chl, small phenos of chl with diss py, diss py on fract vug, sugary, glassy; 90% qtz, feld, 5% chl, 5% oxid sulfs, shear 264/80S	1	11	2	28	30
70368 composite boulders	J	EL 4460	alt'd rhyolite or sil'd vol	fr: grn-gry-pk, wh: irrid orngy-brn, f, sugary, fract; 95% qtz, feld, up to 5% py as diss & on fract	2	18	5	35	29
70373 composite rubble	IJ		alt'd rhyolite or sil'd vol	fr: gry-wht brn, wh: orngy brn-yell, matrix- f, sil'd rhy comp, well fract & filled with chl, py, qtz; 85% qtz, feld, up to 3% sulf, (py) diss blebs, 1% chl, al-jar, v str lim	3	96	8	35	31
70374 chip 1m	ſ		alt'd rhyolite or sil'd vol	fr: gry-wht-yell, wh: orngy-brn-yell, f sil'd matrix, sugary, vuggy with f py in vugs, py in fract to 20% py, vuggy oxid sulfs, sooty py	2	250	15	286	8
70375 rock			check		4	16	11	14	22
70376 composite	Ĵ		ait'd rhyolite or sil'd vol	as 70374; to 20% py, lenses of gry qtz	2	150	12	87	235
703 79 talus f	J		sd-grav	brn, f-pebs, as 70380	2	61	13	55	75
70380 telus 3m	ſ		sd-grav	oxid frags (lim, al-jar), fr rhy, some py'd, ang mat, sil'd	1	112	20	69	80
70381 telus f 5m	ſ		sd-grav	as 380; al-jar, lim, bleached zone above	1	39	11	56	70
70382 telus f	J	contig to 381	sd-grav	as 380	2	43	14	61	80

ة التحك محمد المحمد المحمد المحمد البابلة البابلة البابلة المحمد المحمد المحمد المحمد المحمد المحمد ا

SAMPLE NO.	TYPE	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	A s ppm	Cu ppm	Pb ppm	Zn ppm
70383	talus	J	below 382	alt'd rhyolite	fr: gry-wht-pk, wh: orngy-brn, massive, f, well sil'd, rhy (90% qtz, feld), vuggy fract, 1-2% py in vugs & fracts	1	83	8	45	38
70384	l boulder angular	J	by 383	elt'd rhyolite	as 383; fract with grn chl & 3-4% py in stringers, vuggy, well oxid, diss py in vugs	3	700	4	317	30
70385	5 float boulder	J S			as 70374 & 376	5	1275	29	299	226
70386	3 rock	J		sil'd vol	fr: grn-gry, wh: orngy-brn, f, sugary, qtz, phenos of chl, oxid mat, 1-2% diss py, wk chl, wk oxid, wk sulf, 90% qtz, feld	3	150	37	315	378
70387	/ talus	J	below 386	alt'd int	as 386;	2	101	11	62	413
70388	B chip 0.5	im J			as 374	5	58	16	218	28
7040 1	rock	A	EL 5480	feld porphy tuff	fr: med yell-grn, wh: lime-grn, f, equi gran, sugary, fracts 25/70W & 140/35S; 50% feld, 40% silica, 10% epi, Mn stain, str epi'd, mod sil'd	1	3	21	25	13
70402	2 rock	A	EL 5480	ash fall tuff	fr: dk blu-gry, wh: grn-pple-gry, f-med grein, porphy, feld phenos to 3mm, jointed 130/vert & 165/80W; 60% feld, 30% silice, 5% carb, 4% chl, 1% diss py, wk sil'd	1	2	21	19	84
70403	3 rock	A	EL 5500	ash fall tuff	fr: med grn-gry, wh: yell-grn, hem stein, f, feld & hbld phenos to 3mm, minor layers; 60% feld, 25% qtz, 10% hbld, 3% hem, 2% epi, hem, wk sil'd	2	11	31	14	69
70404	ł rock	A	EI 5460	qtz carb vein	fr: buff brn, wh: buff, med grain, equi gran, vein 225/40N; 60% carb, 30% qtz, 5% chl, 3% epi, 2% py, str carb'd	3	5	27	20	8
7040	5 talus	A	EL 5420	hbid porphy	med grn-gry, wh yell-brn, f, equi gran, porphy; 60% feld, 30% silica, 5% carb, 4% hbld as 2 mm phenos, 1% py, lim	2	3	23	18	101
70400	3 rock	A	EL 5460	feld porphy ash fall tuff	fr: dk grn-purple, wh: lt grn, v f, equi gran, massive, minor feld porphy; 60% feld, 30% silica, 5% chl, 4% epi as narrow stringers, 1% diss py, al-jar stain, wk chl'd	1	8	17	17	93
7040	7 rock	A		esh feil tuff	fr: pple-brn, wh: pple-brn-yell, f, equi gran, vague layered; 60% feld, 28% silica, 5% carb, 5% ch, 2% py, al-jar stain	1	10	22	15	56

and the link will give the link that the side of a

SAMPLE NO.	TYPE	AREA	Location/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70408	talus f	A		sd-grav	red-brn, f-pebs	5	1	16	33	52
70409	rock	A	EL 5280	ash fall tuff	fr: purple-dk grn, wh: yell-grn, f, equi gran, massive, fracts 80/vert, 30/70W; 60% feld, 30% silica, 5% chl, 5% al-jar, tr py	1	6	62	19	65
70410	rock	A	EL 5260	air fall tuff	Indian red-brn, f, slight feld porphy, massive; 70% feld, 25% silica, 5% hbld, feld phenos to 3 mm, mod carb'd	1	5	8	17	54
70411	float	A	EL 5200	ash fall tuff	fr: dk gry, wh: brit yell-orngy, v f, equi gran, massive, 60% feld, 35% silica, 10% carb, 4% al-jar, 1% py, wk sil'd	2	6	96	19	60
70412	rock	A	EL 5220	ash tuff	fr: maroon-brn, wh: maroon-brn with yell-grn stain, f equi gran, sugary, It shearing 55/50N & 350/60E; 60% feld, 30% silica, 5% chl, 2% al-jar, 3% py, wk sil'd & chl'd	1	3	24	21	49
70413	float	A		ash fall tuff feld porphy	fr: maroon to grn-gry, wh: It buff-gry, v f, feld phenos to 3mm, feld porphy,; 60% feld, 20% silica, 10% carb, 10% epi, al-jar stain, str epi'd	2	2	17	18	67
70414	rock	A	EL 5320	ash tuff	fr: dk gry-buff, wh: It gry yell-grn, f, equi gran, massive; 65% feld, 30% silica, 4% al-jar, 1% py, wk sil'd, slight feld porphy	1	4	8	20	81
70415	rock	A	EL 5440	volcanic aglom layer	fr: dk gry-grn, wh: lit gry-grn, f, equi gran, volcanic strata; 70% feld, 25% silica, 3% chl, 2% diss py, wk chl'd & sil'd	2	2	33	19	133
70416	rock	A	EL 5440	ash fali tuff	fr: dk gry-grn, wh: yell-orng, v f, equi gran, 50% feld, 40% silica, 7% chl, 3% py, mod sil'd, lim	2	1	45	22	122
70417	fioat	A	EL 5400	dacite	fr: buff brn, wh: yell-rsty-brn, f-med, equi gran; 50% feld, 40% silica, 4% chl, 3% carb, 3% diss py, mod sil'd, str lim	3	5	21	14	15
70418	fioat	A	EL 5400	ash fall tuff	fr: maroon-mud brn, wh: yell-brn, v f, equi gran; 60% feld, 30% silica, 5% carb, 4% chl, 1% py, mod lim, wk sil'd & chl'd	2	4	17	15	58
70419	rock	A	EL 5320	ash fall tuff	fr: med buff-gry, wh: tan to pink, f, equi gran, massive vague layering; 60% feld, 30% silica, 8% chl, 2% diss py, wk sil'd	1	1	110	19	84
70420	rock	A	EL 5320	ash tuff	fr: dk grn-gry, wh: It blu-gry, f, equi gran, fract; 50% silica, 40% feld, 3% epi,	2	2	16	17	76

nan kana san i

ini **ni ini** i

SAMPLE NO.	TYPE	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
					3% chl, 3% carb, 1% py, al-jar stain					
70421	rock	A	EL 5280	ash fall tuff	fr: it grn-gry, wh: rsty-cream, f, equi gran, fract 295/vert; 50% silica, 40% feld, 5% py, 5% chl, str py'd, mod sil'd	2	20	22	32	58
70422	2 float	A	EL 5260	ash tuff	fr: med grn, wh: rst-brn-orngy, med grain; 50% feld, 35% qtz, 10% chl, 5% diss py, str chl'd, wk sil'd, al-jar stain	1	13	13	16	72
70423	rock	A	EL 5320	feld porphy tuff	fr: buff-gry, wh: grn-buff gry, f, silght feld porphy, slight fract 330/80E; 65% feld, 30% silica, 5% al-jar, tr py, wk sil'd	1	8	21	22	68
70424	l float	A		feld porphy	fr: rsty-yell, wh: orng-dk brn, co grain, porphy; 60% feld, 30% silica, 5% chł, 3% lim, 2% py, wk sil'd	1	7	3	14	7
70425	i rock			check		1	10	7	9	14
70426	5 fioat	A	EL 5340	feld porphy	fr: med grn, wh: orng-brn, med grain, feld porphy; 50% feld, 35% silica, 10% chl, 5% diss py, str chl'd, mod sil'd	1	59	14	29	25
70427	rock	A	EL 5320	ash tuff	fr: med grn-gry, wh: yell-rsty-brn, f, equi gran, sheared; 50% feld, 30% silica, 10% carb, 5% chl, 2% epi, 3% py, str carb'd mod sil'd & chl'd	2	5	9	23	103
70428	3 rock	A	EL 5320	qtz/epi vein	fr: wht-grn, wh: wht-grn, v co grain, qtz crystals to 2.5 cm; 80% qtz, 15% epi, 4% carb, 1% py, dir 320/22E	7	2	2	5	5
70429) float	A		rhyolite	fr: med blu-gry, wh: rsty-orngy-brn, v f, equi gran, sugary, massive; 70% silica, 25% feld, 5% f diss py, str sil'd, Mn stain	1	5	27	21	72
70430) float	A	EL 4940	rhyolite	fr: It blu-gry, wh: orng-rsty-brn, med grain, equi gran, massive; 90% silica, 5% py, 5% chl, str sil'd, mod chl'd	4	3	5	16	10
70431	l float	A	EL 4900	rhyolitø	fr: blu-gry, wh: orng-brn-rsty-purple, aphan, crypto cryst; 70% silica, 20% feld, 3% chl, 7% py, str sil'd, wk chl'd	4	4	27	20	10
70432	2 float	A	EL 4920	rhyolite	fr: It bly-gry, wh: yell-rsty-brn, aphan, crypto cryst, massive; 70% silica, 20% feld, 8% py, 2% chl, str sil'd, mod chl'd	3	6	36	27	46
70433	3 rock	D		rhyolite	fr: med blu gry, wh: bt yell-orngy-rust, v f, equi gran; 80% silica, 7% py, 5% ser,	1	32	29	185	24

n and the set and set and the set will be

1

	SAMPLE TYPE NO.	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
					5% chl, 3% epi, heavy al-jar					
	70434 rock	D	EL 6060	rhyolite	fr: med gry, wh: rsty-orngy-bt yell, aphan, crypto cryst, massive, fract 325/80E; 80% silica, 10% feld, 5-7% py, 3% chl, str sil'd, wk chl'd	1	21	61	116	70
	70435 rock	D	5m W of 70433	alt'd falsic vol	fr: med gry, wh: rsty-red-brn, minor al-jar, f, sugary, massive, fracts 310/vert, 20/vert; 75% silica, 15% feld, 7% f diss py, 3-4% chl, 2% ser, str sil'd, wk chl'd	2	13	59	27	26
	70436 rock	D	EL 6080	rhyolite	fr: med blu-gry, wh: rsty-orng-brn, al-jar stain, aphan, crypto cryst, massive; 70% silica, 15% feld, 10% py, 5% chl, str sil'd, wk chl	3	14	26	52	23
	70437 rock	D	EL 6100	rhyolite	fr: med blu-gry, wh: rsty-red-brn, wk al-jar, v f, sugary, fract 250/65S; 70% silica, 20% feld, 5% py, 3% chl, 2% epi, py conc. in fract	14	27	47	36	30
-	70438 float	D	5m SW of 70437	felsic intrusive	fr: lt gry, wh: cream-yell rsty-orng, med grain, equi gran; 60% silica, 25% feld, 10-12% py, 5% ser, 3% chl, al-jar stain, str sil'd, wk chl	2	275	33	56	185
	70439 float	D	EL 6080	rhyolite	fr: med blu-gry, wh: orng-brn-rst, al-jar, aphan, crypto cryst, fracts random & filled with py; 80% silica, 12% py, 5% chl, 3% epi, str sil'd, wk chl'd	1	200	34	41	25
	70440 float	D	EL 6020	brecc'd carb'd rhy	fr: med-blu-gry, wh: rsty-orng-brn, wk al-jar, vuggy; 80% silica, 10% carb, 7% py, 3% sphal?,	12	36	28	24	14
	70441 rock	D		rhyolitø	fr: med gry, wh: rsty orng-pple-brn, minor al-jar, aphan, crypto cryst, massive; 80% silica, 10% feld, 3% chl, 2% ser, 5% py in fract	1	14	26	19	31
	70442 rock	D	EL 6000	brecc'd sil'd rhy	fr: dk blu-gry, wh: rsty-orng pple-blk, v vuggy, aphan, crypto cryst, brecc'd, 70% silica, 20% feld, 5% py, 3% Mn, 2% chl, str sil'd, wk chl'd, tr sphal, tr gal	7	46	55	151	11
	70443 rock	D	EL 5960	rhyolite	fr: med grn-gry, wh: rsty-orngy-brn, aphan, crypto cryst, massive, fract 315/85; 70% silica, 20% feld, 5% f diss py, 5% chl,	1	28	11	18	19
	70444 float	D	EL 6080	sil'd dacit e	fr: med blu-gry, wh: yell-orng to rust-brn. minor al-jar, aphan, crypto cryst, fract filled with vuggy py; 65% silica, 25% feld, I7% py, 3% chl, str sil'd, wk chl'd	8	63	33	41	52

and and all the set and the set and the set

SAMPLE TYPE NO.	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	РЬ ppm	Zn ppm
70445 float	D		sil'd dacite	fr: dk blu-gry, wh: dk orngy-brn, minor al-jar, aphan, crypto cryst; 65% silica, 20% feld, 10% chl, 7% py, 3% epi, str sil'd, py on fract surf & adjacent to vuggy-rsty vein	5	175	69	66	114
70446 float	D	EL 6060	sil'd dacite	fr: med blu-gry, wh: pply-brn-rust, al-jar, aphan, crypto cryst, fract; 75% silica, 10% feld, 5% py, 5% chl, 5% epi, str sil'd & epi'd, wk chl'd	1	56	40	33	36
70447 float	D	EL 6060	sil'd dacite	fr: It blu-gry, wh: brn-rsty-pple, aphan, crypto cryst; 70% silica, 20% feld, 8% f diss & co cryst of py, 2% chl, mal stain,	3	74	39	31	49
70448 float	D			fr: med blu-gry, wh: rsty-brn, minor al-jar, f, sugary; 60% silica, 25% feld, 15% f-co grain diss, veinlets, blebs & patches of py, 5% epi, tr sphal	2	250	45	40	46
70449 float	D		alt'd dacite	fr: med blu-gry wh: pply-brn, minor al-jar, aphan, crypto cryst; 65% silica, 15% feld, 15% py, 5% chl, str sil'd & py'd	12	725	36	41	32
70450 float	D	EL 6020	sil'd dacite	fr: med gry, wh: yell-orng to rsty-brn, aphan, crypto cryst; 65% silica, 15% feld, 15% f-co grain, patches & f diss of py, 5% epi	1	150	37	47	64
70451 float	D	EL 6000	sil'd andesite	fr: dk gry wh: rsty-orng-brn, al-jar, f, sugary; 50% silica, 35% feld, 8% chl, 7% py in sooty chl matrix,	1	250	42	665	105
70452 float	D	EL 5960	sil'd andesite	fr: med gry wh: rsty-brn, It al-jar, f, sugary, equi gran, It fracts; 50% silica, 30% feld, 10% carb, 8% f diss py, 2% chl,	15	58	41	43	95
70453 float	D	EL 6040	alt'd andesite	fr: med blu-gry, wh: rsty-orngy-brn, It al-jar, aphan, crypto cryst, fract with py in fracts; 50% silica, 30% feld, 10% chl, 7% f-co py, 3% epi	1	175	32	28	32
70454 float	D	EL 6000	alt'd dacit e	fr: buff-gry, wh: orng-rst with copper stain, (surf feature), f, equi gran, 50% silica, 30% feld, 10% chl, 8% ser, 2% py, tr cpy	2	22	10	201	485
70455 rock			check 2		1	15	26	19	93
70456 float	D	EL 6000	alt'd dacite	fr: med blu-gry, wh: rsty-orng bt yell- grn, str al-jar, f, vuggy, equi gran, sugary, massive; 60% silica, 30% feld, 5% chl, 3% f diss py, 2% ser, mod sil'd	3	350	9	838	67
70457 float	D	EL 6000	alt'd dacite	fr: med It-gry, wh: rsty-orng-brn-pple,	2	81	36	84	36

ة جلس الملك الملك

1

SA No	AMPL E D.	ТҮРЕ	ARE/	A	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	РЬ ppm	Zn ppm
							sulf sheen with oxid Cu colors, f, equi gran, 60% silica, 30% feld, 5% chl, 3% ser, 2% py, tr epi					
	70458	float		D	EL 6000	alt'd andesite	fr: blu-gry, wh: rsty-brn-orng, lt al-jar, f, equi gran; 50% silica, 40% feld, 5% chl, 3% ser, 2% v f diss py, str sil'd	3	93	18	47	18
	70459	compo 1 m	sit o	D	EL 5980	rhyolite	fr: It blu-gry, wh: rsty brn-pple, str al-jar, aphan, crypto cryst, massive, fracts 60/80E, 315/vert; 70% silica, 15% feld, 10% py, 5% chl	6	30	35	52	180
	70460	rock		D	EL 6000	rhyolite	fr: med gry, wh: rsty-orng to pply-brn, aphan, crypto cryst, fracts 250/85E; 80% silica, 10% feld, 7% py, 3% chl, str sil'd	1	27	50	26	102
	70461	rock		D	EL 5980	rhyolite	fr: med gry wh: yell to rsty-orng-brn, aphan, crypto cryst, massive; 80% silica, 10% feld, 7% diss & veins of py, 3% chl, py f-med grein, well sil'd	1	110	48	30	49
	70462	float		D	EL 5980	sil'd dacite	fr: med blu-grn, wh: pply-brn, f, equi gran, massive; 60% silica, 25% feld, 10-15% py as co grain stringers & f diss, well sil'd	7	1275	113	55	96
	70463	float		D		alt'd dacite	fr: It blu-gry, wh: pply-brn orngy-rust, v f, equi gran, sugary; 50% silica, 20% feld, 15% py, 3% ser, 2% chl, str sil'd, py as f diss & co in fract, al-jar stain	6	425	44	61	94
	70464	float		D		sil'd dacite	fr: It grn-gry, wh: pply-brn-rust orng, f, equi gran; 60% silica, 20% feld, 15% py, 3-4% ser, 1-2% chl, str sil'd & py	4	275	56	49	138
	70465	float		D	EL 5960	alt'd dacite	fr: med gry, wh: pply brn-rsty, al-jar, f, equi gran, sugary, fract 20/80E 315/80S; 60% silica, 25% feld, 5% chl, 5% ser, 3% f diss py, 2% epi	1	28	17	11	51
	70466	rock		D		sil'd aglom	fr: med blu-gry, wh: gry-bt yell, slight rust, co, aglom breccia, frags to 5 cm, 60% frags, 40% matrix of f py & chl; 60% silica, 10% py as f grain & in breccia frags, str sil'd	5	57	35	61	113
	70467	' compo 1 m	sit e	D	EL 5960	alt'd dacite	fr: It grn-gry, wh: rsty-orng-pply-brn, f, equi gran, sugary, fracts 165/vert; 60% silica, 30% feld, 5% f diss & veinlets py, 5% chl'd hbld, str sil'd, wk chl'd	13	63	212	39	122
	70468	compo 3 m	site	D		applite dyke	fr: It gry, wh: pply-brn rsty-orng, 1-6 cm applite dyke, med grain, equi gran, 190/vert;	14	475	23	31	349

ا محدة للذي أكثر المتر اللغة فتنت البنين بينين بيني أمتك الخد بينين مين البين

1

SAMPLE TYPE AR NO.	EA	Location/ Elev (FT)	NAME		Au-Fire ppb	As ppm	Cu ppm	РЬ ppm	Zn ppm
70469 rock	D	EL 5960	alt'd dacite	50% silica, 40% feld, 7% chl, 3% py, mod sil'd fr: It gry, wh: rsty-brn, al-jar, v f, equi gran; 60% silica, 30% feld, 5% py as vein & vf diss, 5% chl mainly in vein, str sil'd, wk chl'd	6	350	28	22	187
70470 outcrop	D		rhyo dacite	fr: lt gry, wh: rsty brn-ongy, al-jar, f, equi gran, fracts; 70% silica, 10% feld, 15% co py, 5% chl, str sil'd & py'd	5	42	126	48	61
70471 rock	D	EL 6100	rhyolite	fr: dk gry, wh: grn-rsty-brn, aphan, crypto cryst, massive; 65% silica, 20% feld, 10% dk sooty chl, 3% py, 2% ser, str sil'd & chl'd	1	35	23	12	10
70472 rock	В	EL 4980	qtz vein	wht, crystaline qtz, crysts to 1 cm long; 100% silica	2	3	4	2	35
70473 rock	B		hbld intrusiv e	fr: med gry, wh: cream rsty-orng, co, equi gran, massive, lumpy knoles (glacially worked); 50% silica, 35% feld, 10% hbld, 3% chl, 2% diss py, odd local py patches	1	4	6	6	187
70474 composite 3 m	B	EL 4940	sil'd dacite	fr: It gry, wh: orng-rsty-brn, f, equi gran, massive; 60% silica, 25% feld, 5% f diss py, 5% ser, 3% ch!	1	6	18	29	41
70475 rock			check 2		1	23	10	202	502
70476 rock	B	EL 4900	decite	fr: med gry-grn, wh: rsty-orng brn, minor al-jar, f, equi gran, massive; 65% silica, 25% feld, 7% chl, 3% f diss py, str sil'd, wk chl	1	7	13	17	29
70477 composite 1 m	В	EL 4900	rhyolite	fr: It blu-gry, wh: pply brn-orng, al-jar, aphan, crypto cryst, massive, fracts 330/vert, 70% silica, 10% feld, 15% chl, 3% f diss py, 2% ser	1	6	14	20	42
70478 composite 1 m	В	EL 4860	rhyolite	fr: lt gry, wh: rsty-orng, minor al-jar, aphan, crypto cryst, massive; 70% silica, 10% feld, 10% ser, 7% f diss py, 3% chl, str sil'd, mod ser wk chl	1	7	23	21	11
70479 composite 3 m	В	EL 4860	rhyolite	fr: med blu-gry, wh: bt yell-grn-rsty orng, str al-jar, aphan, crypto cryst, shear 330/vert; 70% silica, 10% feld, 10% chl, 5% ser, 5% f diss py, str sil'd, mod ser & chl'd	1	6	11	24	8
70480 rock	B	EL 4820	rhyolite breccia	fr: med gry, wh: rsty brn-yell, aphan, crypto cryst, massive, locally brecc'd; 70% silica, 10% feld, 10% clh, 5% ser 5% v f diss py,	5	8	15	29	19

SAMPLE NO.	TYPE AR	EA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
					str sil'd , wk ser'd & chl'd					
70481	l composite 5 m	B	EL 4720	ait'd dacite	fr: dk blu-gry, wh: pple dk rsty-grn-yell orng, minor al-jar, f, equi gra, sugary, fracts 340/85E 30/80E; 60% silica, 25% feld, 5% chl, 5% ser 5% v f diss py, str sil'd, mod ser'd, chl'd	15	13	15	36	73
70482	2 composite 2 m	В	EL 4720	alt'd dacite	fr: lt gry, wh: rsty orng-brn buff, aphan, crypto cryst, massive, fracts 145/85E; 70% silica, 15% feld, 10% ser, 3% v f diss py, 2% chl, str sil'd, wk ser'd & chl'd	2	10	16	18	12
70483	8 composite 1 m	B	EL 4340	rhyolite	fr: It pink patches-gry, wh: bt yell to rsty-brn, str al-jar, aphan, crypto cryst, shear 175/vert; 80% silica, 5% ser, 5% chl, 5% feld, 5% f diss py	1	4	13	19	7
70484	l composite 8 m	В	EL 4740	alt'd dacite	fr: lt gry, wh: bt yell-rsty pple, str al-jar, f, equi gran; 70% silica, 15% feld, 8% chl, 2% ser, 5% f diss py, str sil'd, wk chl'd & ser'd	1	7	16	19	27
70485	5 float	В	EL 14740	alt'd dacite	fr: med gry-grn, wh: rsty brn-pple, Mn stain, v f, equi gran, sugary; 50% silica, 35% feld, 10% chl, 5% v f diss py, minor qtz carb veinlets	1	5	12	29	60
70486	3 composite 1 m	В	EL 4680	rhyolite	fr: med blu-gry, wh: red rsty-orng, aphan, crypto cryst, sheared across 3 m 375/60S; 80% silica, 10% ser, 5% chl, 5% f diss py, str sil'd	1	9	15	17	16
70487	/ composite 1 m	В	EL 4680	rhyolite	fr: med gry, wh: bt yell orng-rusty, aphan, crypto cryst, al-jar, massive; 75% silica, 15% feld, 5% chl, 2% ser, 3% f diss py	1	6	16	20	59
70488	8 composite 7 m	B	EL 4660	rhyolite	fr: med gry, wh: orngy-rsty brn, aphan, crypto cryst, massive; 80% silica, 10% feld, 3% ser, 3% chl, 4% f diss py, str sil'd, wk chl'd & ser'd	1	5	14	18	38
70489) composite 5 m	B	EL 4600	rhyolite	fr: med gry, wh: rsty orng & brn, minor al-jar stain, aphan, crypto cryst, massive; 60% silica, 27% feld, 5% ser, 5% chl, 3% v f diss py, str sil'd	2	11	16	19	27
70490) rock	B	EL 4600	rhyolite	fr: lt gry, wh: orngy brn-rsty, str al-jar, aphan, crypto cryst, massive; 80% silica, 10% chl, I5% feld, 5% f diss py, Mn stain	1	5	12	29	60
70491	l composite	В	EL 4600	rhyolite	fr: med gry, wh: rsty-orng to brn, minor al-	1	8	9	27	50

SAMPLE 10.	TYPE	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
	1.5 m				jar, narrow flaty lying qtz vein, aphan, crypto cryst; 70% silica, 15% chl, 5% feld, 3% f diss py, 2% ser					
70492	float	B	EL 4600	alt'd dacite	frL lt gry, wh: orng-rsty brn, minor al-jar, f, equi gran, sugary; 60% silica, 30% feld, 5% chl, 5% f diss py, str sil'd	1	4	18	17	29
70493	rock	В	EL 4580	alt'd dacite	fr: med grn-gry, wh: rsty-brn, f, equi gran, sugary, massive; 60% silica, 30% feld, 7% chl, 3% f diss py, str sil'd	2	7	20	22	30
70494	float	В		alt'd andesite	fr: med gr-gry, wh: orng rsty-brn, minor al- jar, Mn stain, v f, equi gran; 50% silica, 30% feld, 15% chl, 2% ser, 3% v f diss py, str sil'd	2	5	12	29	46
70495	float	B		alt'd andesite	fr: med grn-gry, wh: rsty brn-orng brn, v f, equi gran; 55% silica, 25% feld, 15% chl, 5% v f diss py , str sil'd & chl'd	1	4	11	25	50
70496	float	B		rhyolite	fr: It gry, wh: rsty grn-orng-brn, minor al-jar, aphan, crypto cryst; 80% silica, 15% py (co smeared patches & blebs/ f diss)	3	7	38	23	47
70497	float	В	EL 4600	rhyolite	fr: med gry, wh: rsty-brn, minor al-jar, aphan, crypto cryst; 75% silica, 10% feld, 8% ser, 7% f diss py, str sil'd, mod ser'd	1	6	24	22	27
70498	compos 1 m	site B	EL 4600	rhyolite	fr: med gry wh: rsty orng to brn, str al-jar, aphan, crypto cryst, fract 335/82E, 25/68W; 80% silica, 10% ser, 10% v f diss py, str sil'd, mod ser'd	1	4	15	20	15
70499	compos 5 m	site B	EL 4620	rhyolite	fr: lt gry, wh: rsty orng-pple-brn, al-jar, aphan, crypto cryst, fract 165/vert; 70% silica, 10% feld, 5% ser, 5% chl, 2% epi, 8% f diss py, str sil'd & ser'd & chl'd	2	5	11	16	12
70500	rock			check 2		2	16	10	198	493

TABLE 4

GOLDEN CROWN PROPERTY - STREAM AND SOIL SAMPLE DESCRIPTIONS, ANALYTICAL RESULTS

SAMPLE TYP NO.	E AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70025A stre	em		check		1	9	6	11	17
70038 stre	am C		silt	lt brn, f					
70050A stre	em		check		2	1	16	69	195
70051 stre	am C		silt-sd	gry-brn, f; silt-f	3	1	15	50	154
70053 stre	am C		silt-sd	gry-brn, f silt-f	2	1	13	51	172
70054 stre	am C		silt-sd	gry-brn, f silt-f	2	1	12	47	136
70056 stre	em C	at 70055	silt-sd	gry-brn, silt-co,	2	1	13	42	127
70060 stre	am C		silt-sd	gry-brn, silt-f	1	1	14	63	160
70061 stre	am C		silt	brn, f-silt	2	1	16	67	165
70062 stre	am C		silt-sd	gry-brn, silt-f	1	1	26	100	316
70063 stre	am C		silt	orngy-brn, silt	1	1	22	92	270
70072 stre	am C		silt-sd	med brn, silt-f	3	1	27	105	330
70073 stre	am C		silt-sd	brn, silt-f	3	1	28	126	391
70159 stre	am C		silt-sd	lt brn, silt-co	3	1	45	248	394
70162 stre	am C		silt-sd	red-brn, silt-f	2	1	24	173	247
70163 stre	am C		silt	orngy-brn, silt	1	1	42	183	481
70164 stre	am C		silt-grav	orngy-brn, silt-frags	1	1	42	216	425
70165 stre	am C	EL 4940	sd	brn, co	1	1	38	214	426
70180 stre	am C		silt-sd	med brn, silt-co	1	1	31	146	151
70185 stre	am C		silt-grav	orngy-brn, silt-pebs	1	1	33	143	242
70204 stre	am E		silt-sd	brn, silt-f; 90% silt, 10% silica sd	3	1	20	77	117

SAMPLE NO.	ТҮРЕ	AREA	Location/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
7020	5 stream	E		sd	orngy-brn, f-co, ang frags, wh grn qtz, oxid mat, minr grγ-bl metalic, 95% qtz, feld, 2-3% oxid sulfs	1	1	17	42	93
7021	1 stream	E		clay-silt	brn sd, grn wht pink qtz, f-c, oxid mat, oxid sulfs (hem, lim), non mag; 60% qtz, 20% silt, 20% oxid mat	2	1	17	51	127
70214	4 stream	E		clay-silt	brn sd, grn wht pink qtz, f-c, oxid mat, oxid sulfs (hem, lim), non mag; 60% qtz, 20% silt, 20% oxid mat	1	1	20	55	- 137
70210	6 stream	E		clay-sd	60% clay 40% sd, f-co, ang frags of qtz, oxid mat, sil'd vol	1	1	18	63	162
7023	1 stream	E		sd-grav	brn, f-c, 80% oxid mat (lim, hem) ang frags, 20% qtz (grn wht blu)	3	1	34	71	134
70234	4 stream	E		sd-grav	f-co, mod well sort, 80% ang frags of qtz (grn wht gry), feld, 20% oxid mat (lim, hem)	2	1	27	124	159
7023	8 stream	F		sd-grav	f-co, mod well sort, 80% ang frags of qtz (grn wht gry), feld, 20% oxid mat (lim, hem)	2	1	22	45	108
7024	0 stream	F		silt-sd	brn, f, 80% silt, 20% sd & silica sd with qtz, feld, oxid mat	1	1	24	53	126
7024	1 stream	E	EL 4300	silt-sd	brn, silt-f, f oxid mat, qtz, (grn-gry- yell qtz)	1	1	28	65	117
7025	5 streem	1	EL 5000	sd	brn, f-co, well sorted, qtz, grn vol, minor oxid mat	3	1	33	75	169
7026	8 stream	I		sd	brn, wh grn yell qtz, f-co, well sorted, oxid mat, blk met mineral, 1% mag	6	1	23	50	135
7027	7 pond sediment	I		clay-sd	brn, well sort; 70% clay, 30% f-sd(oxid mat, grn vol, qtz, feld)	4	1	20	50	121
7028	0 stream	I .		sd	brn, f-co, well sort, grn vol, red vol, oxid mat, various col of qtz					
70284	4 stream	I		clay-silt	brn, well sort	3	1	26	55	146
7028	5 stream	F		sd	brn, f, well sort, oxid mat, qtz, grn vol, red vol	1	1	26	65	143

ا المتحلة الأنبية المتحي ومحيد أثلاثك التلك

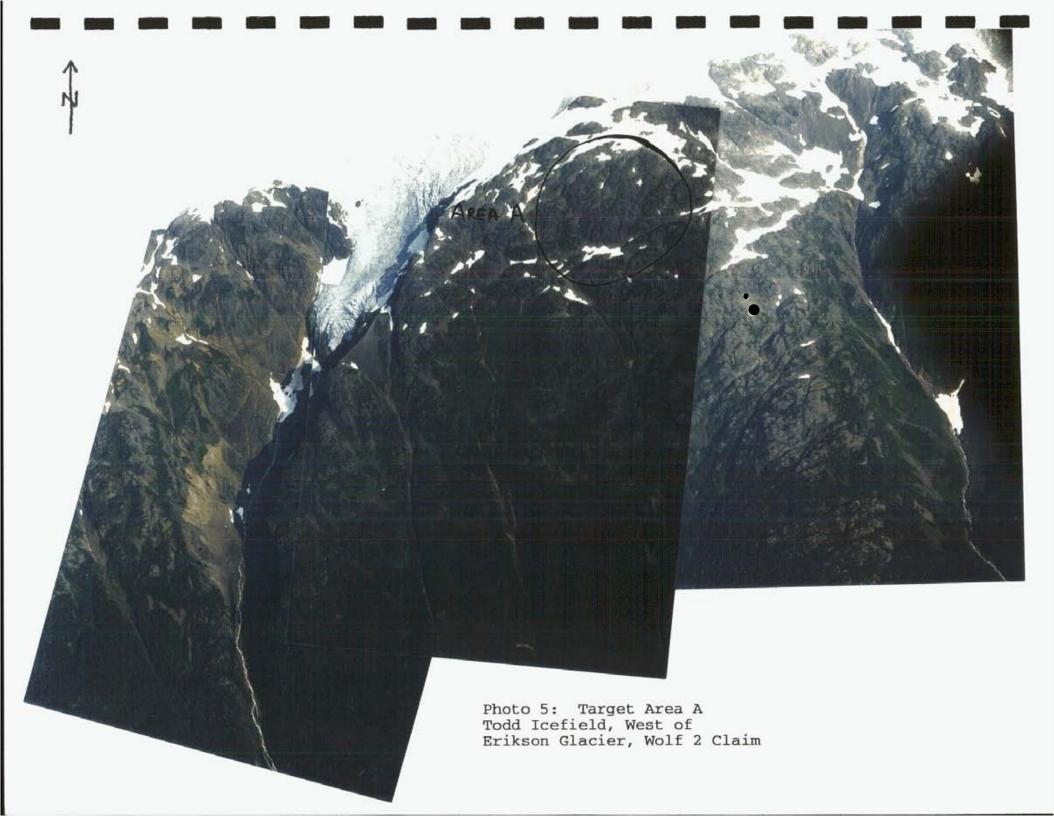
. 1

SAMPLE NO.	TYPE	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
70313	stream	F	EL 4040	H sd-grav	brn, f-co; 30% pebs (grn vol, oxid mat, rhyolite, oxid sulfs, 2-3% el-jar, sil'd frags), 70% sd (qtz, feld, oxid mat)	3	1	23	70	155
70314	stream	F		clay-silt	brn clay-silt; 90% clay, 10% silt	4	1	21	78	225
70315	stream	F	EL 4100	sd	brn, f-co, well sort; 80% qtz (grn, wht, pk), feld, gry met 3-4%, oxid mat	1	1	25	75	178
70325	stream			check		1	1	16	72	193
70336	stream			check		2	1	15	71	188
70338	stream	н	road at Bear Glacier	sd	gry-blk, f-co, well sort, ang frags of grn vol, minor oxid mat, minor qtz, < 1% mag, py & al-jar tr on frags	1	1	22	49	200
70339	streem	н	road at Bear Glacier	ciay-sd	gry-blk, clay-co, well sort, ang frags of grn vol, oxid mat, qtz (wh, pk), < 1% mag	10	1	23	46	208
70340	stream	н	75m E of 338 road at Beer Glacier	clay-sd	brn, clay-f, well sort, clay, qtz, oxid mat	60	1	25	57	214
70341	stream	н	at rd below 340 road at Bear Glacier	H sd	gry-blk, f-co, porly sort, ang frags of oxid mat, wh qtz, grn & purple vol	4	1	22	44	178
70342	stream	H	EL 4340	ad	brn, f-co, well sort, qtz, oxid met, grn vol, red vol, minor met	2	1	27	68	155
70351	stream			check		1	1	17	74	200
7035 9	stream	н			brn, f-co, oxid mat, frags of bleached, vuggy vol, tr al-jar; 40% frags, 60% f qtz sd	5	1	29 .	108	152
70362	stream	н	EL 4400	clay-sd	brn, clay-co; 50% clay, 50% frags of sil'd vol (grn, pk wh)	5	1	29	79	160
70369	stream	J		clay-sd	brn, clay-co; 50% brn clay, 50% sd (30% ang frags of grn rhy, oxid mat, wht qtz)	1	1	29	110	167
70370	stream	L	EL 4460	silt-sd	brn, silt-f, well sort,	3	1	22	64	136
70371	stream	J		silt-sd	brn, silt-f, well sort,	5	1	29	74	164

ا جاملة الملك مجمع بؤمي أكانة بالتك القراب الجرو جريج بيزي الألك فالتي القد المراب المراب المراب المراب المراب

SAMPLE NO.	TYPE	AREA	LOCATION/ ELEV (FT)	NAME	DESCRIPTION	Au-Fire ppb	As ppm	Cu ppm	РЬ ppm	Zn ppm
70372	stream	J			brn, silt-pebs, well sort, ang frags of oxid vol, wht grn qtz	1	1	21	59	137
70377	stream	J			brn, f-co, well sort, oxid mat, gry & grn vol, qtz (pk, wht), ang frags	3	1	22	50	122
70378	stream	J			orngy-brn, med, well sort, qtz, oxid met, grn & purple vol, gry met	3	1	19	46	116
70389	stream			check		3	1	18	71	199
70390	stream	ROAD		sd-grav	gry-brn, f-pebs, 3% org mat, minor lim	25	1	150	53	129
70391	stream	ROAD		sd-grav	dk gry, f-pebs, seds, andesite, minor lim	12	1	48	185	338
70392	stream	ROAD			dk-gry, f-pebs, 3% org mat, seds, andesite, wk lim	14	1	47	199	353
70393	stream	ROAD		silt	med gry-brn, silt, well sort	2	1	26	38	97
70394	stream	ROAD			med gry-brn, silt-co, 3-4% org mat, andesite pebs	5	1	28	31	96
70395	stream	ROAD			med grn-gry, f-pebs, andesite-dacite, minor seds, 5% org mat	7	1	68	70	228
70396	stream	ROAD		sd-grav	gry-brn, med-pebs, 5% org mat	13	1	66	71	242
70397	stream	ROAD		silt-grav	med gry-brn, silt, minor pebs, 7-8% org mat	15	1	63	87	344
70398	stream	ROAD		silt-grav	med brn, silt-pebs, andesite pebs	18	1	70	74	354
70399	stream	ROAD		sd-pebs	gry-brn, med sd-co pebs, ang pebs, 50% seds,, 47% dacite-andesite, 3% org mat	4	1	77	73	206




TABLE 5

SUMMARY OF EXPENDITURES - GOLDEN CROWN PROPERTY

CODE	EXPENSE		\$CDN
102 107 107 108	CONTRACTOR SAL & EXPENSES FEES/BENEFITS & EXPENSES FEES/BENEFITS & EXPENSES CONTRACTOR SAL/BENEFITS & EXPENSES	1 geologist 16 days @ 350/day 1 geologist 30 days @ 350/day 1 geologist 20 days @ 375/day 1 field assistant 18 days & 180/day	6425 10500 7500 3374
104	FIELD SUPPLIES		1006
105	COMMUNICATION/RADIO RENTAL		626
109	ACCOMODATION/FOOD	67 man days @ 23/day	1541 2350
111	MOB/DEMOB	food airfare, gas	4554
113	HELICOPTER CHARTER		7529
115	VEHICLE RENTAL/ALLOWANCE	24 days @ \$55/day	1319
116	COMPUTER RENTAL	12 days @ \$15/day	180
127	ASSAYS/ANALYSES	450 samples @ \$21/sample	9581
131	COURIER		110
135	COPYING		1382
	OFFICE/ADMINISTRATION		2899
	TOTAL		60877

Alteration is mostly propylitic with chlorite (Table 3), moderate silicification and weak to strong oxidation (hematized and limonitized). Sulfidization in the form of pyrite (typically 1-3% and generally fine grained) is weaker than in the more silicified areas to the east. Traces of chalcopyrite and sphalerite were noted.

A total of 31 rock samples was collected (Maps 2, 3A-C) with gold, arsenic, copper, lead and zinc contents ranging between 1 and 7 ppb, 1 and 59 ppm, 2 and 110 ppm, 5 and 33 ppm and 5 and 133 ppm, respectively (Map 3C). Gold, arsenic, copper, lead and zinc values average 2 ppb, 7 ppm, 26 ppm 20 ppm and 59 ppm, respectively.

The highest gold value was 7 ppb, returned from a quartz-epidote vein. The highest arsenic value was 59 ppm from a feldspar porphyry; the highest copper value was 110 ppm from an ash fall tuff; the highest lead value was 33 ppm from a talus sample; and, the highest zinc value was 133 ppm from an agglomerate. In spite of the relatively weak but favourable alteration, the analytical values are considered low and not of any follow-up interest.

B. TARGET AREA B: Wolf 13 Claim; Northern Tip of West Peninsula (Tables 2-4; Maps 1, 2, 4A-C; Photo 6):

Geological mapping and geochemical sampling at the northern tip of the west peninsula evaluated a gossanous area hosted by felsic volcanics (dacite to rhyolite). The apparent felsic volcanics may in fact be intensely silicified volcanics interbedded with pyroclastic units. For example, some bands of very coarse pyroclastic material with bombs in excess of 30 cm were noted.

Fresh surfaces are generally light grey to blue grey to green grey; weathered surfaces tend to be rusty orange brown, often with alunite/jarosite staining. Grain size is typically very fine grained to aphanitic. The rocks are intensely silicified, strongly sericitized and moderately chloritized. Sulfidization, mostly in the form of 3-7% finely disseminated pyrite is widespread. Trace amounts of chalcopyrite were noted.

A total of 31 rock samples was collected (Maps 4A-C) with gold, arsenic, copper, lead and zinc contents ranging between 1 and 15 ppb, 3 and 13 ppm, 4 and 38 ppm, 2 and 36 ppm and 7 and 187 ppm, respectively (Map 4C). Gold, arsenic, copper, lead and zinc values average 2 ppb, 7 ppm, 16 ppm 20 ppm and 41 ppm, respectively.

Using threshold values of 15 ppb Au, 20 ppm As, 60 ppm Cu, 80 ppm Pb ppm and 100 ppm Zn (threshold values researched and utilized on the basis of Geofine's discovery experience in the Stewart Camp), none of the average gold, arsenic, copper, lead and zinc values of the rock samples are anomalous. The environment is considered favourable; however, no further work is recommended.

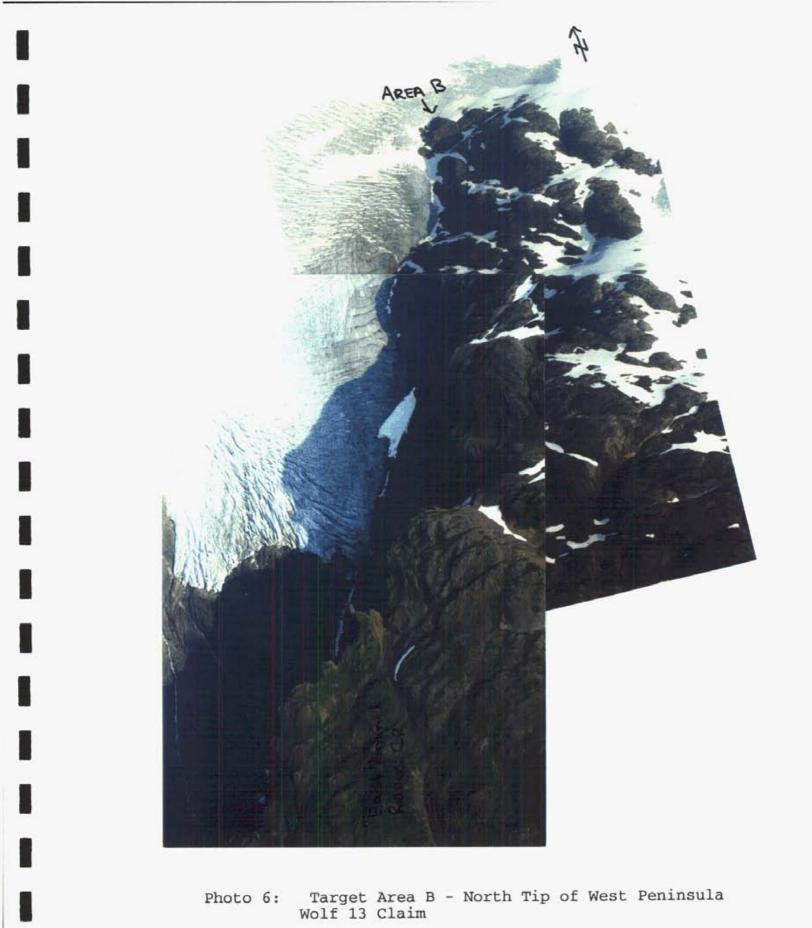


Photo 6: Target Area B - North Tip of West Peninsula Wolf 13 Claim

C. TARGET AREA C: Wolf 14, 15 Claims; Area of the Major Tributary Creeks North of the Northeast Branch of Cullen Creek (Tables 2-4; Maps 1, 2, 5A-C; Photos 7-12):

Country rocks comprise felsic volcanics of dacite to rhyolite composition, with some andesite and tuff horizons present within the volcanic sequence (Photos 7, 8; Map 5B). The strike of the volcanics/tuffs is generally 340-360 degrees with steep (70 degree to vertical) westerly dips. Shearing is relatively consistent at about 340 degrees and steeply dipping.

Fresh surfaces are generally light to medium grey with a blue or green cast. Weathered surfaces are generally orange to rusty brown or purple. The rocks are strongly altered (silicified, chloritized and sulfidized) with the pyrite content usually ranging between 5 and 10%. The well silicified rocks tend to have the highest levels of sulfide, occasionally reaching 20% pyrite. Chalcopyrite, galena and sphalerite were noted in trace amounts at several locations.

The rocks are often moderately carbonated and epidotized. Alunite/ jarosite alteration (Photo 12), one of the parameters that lead to the discovery of the Marc Zone at Red Mountain, was noted at many of the outcrops sampled in this area.

As mapped by Grove, a strong structural lineament (Photos 9, 10) trends about 250 degrees down Cullen Creek and three intersecting faults trending between 310-340 degrees (Map 5B). The Cullen Creek fault apparently offsets a 330 degree trending fault which runs through area C. Structural controls including structural junctions are important at many of the deposits in the Stewart Camp, including the Red Mountain deposit.

A total of 109 rock samples was collected (Maps 5A-C) with gold, arsenic, copper, lead and zinc contents ranging between 1 and 51 ppb, 2 and 3125 ppm, 1 and 1340 ppm, 13 and 10900 ppm and 2 and 20300 ppm, respectively (Map 5C). Gold, arsenic, copper, lead and zinc values average 4 ppb, 241 ppm, 36 ppm, 302 ppm and 417 ppm, respectively.

Using the threshold values of 15 ppb Au, 20 ppm As, 60 ppm Cu, 80 ppm Pb and 100 ppm Zn, the average arsenic, lead and zinc values of the rock samples are anomalous. Of the individual elemental analytical values for the rocks, 6% of the gold values, 86% of the arsenic values, 10% of the copper values, 49% of the lead values and 42% of the zinc values are considered anomalous. Significantly, the more interesting values cluster in the vicinity of two of the mapped and the one interpreted fault.

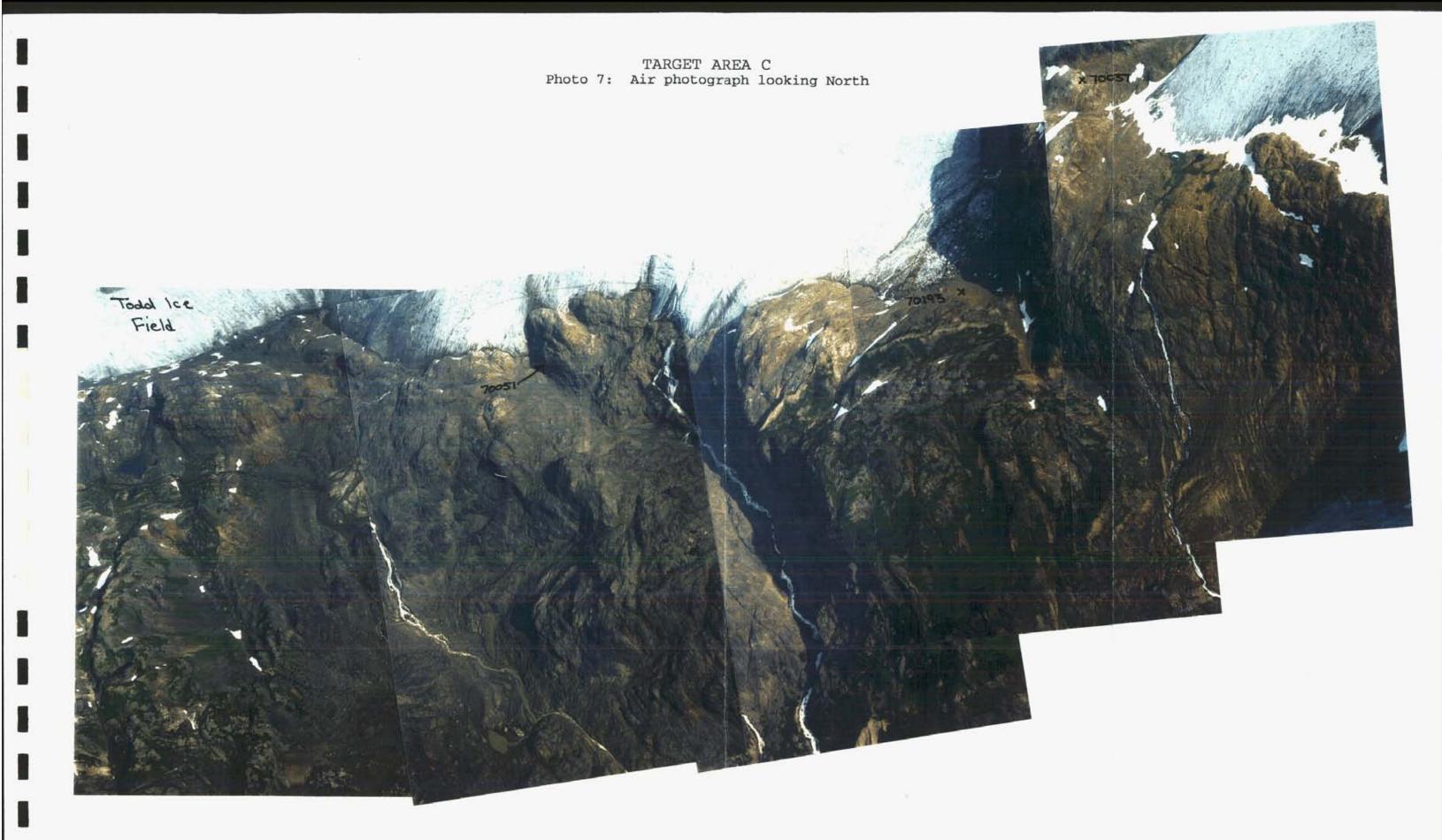


Photo 9: Looking SE along Cullen Creek lineament

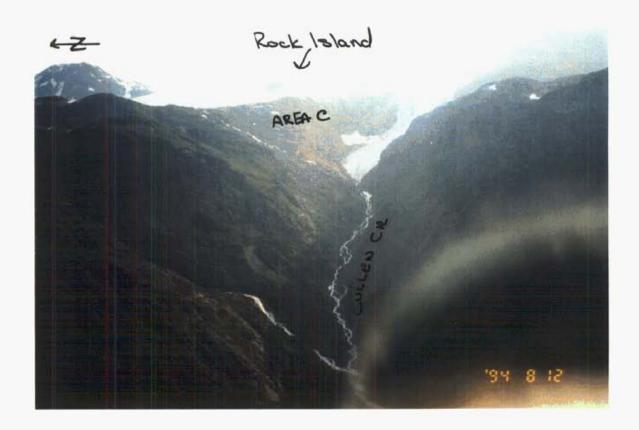



Photo 10: Looking NE up Cullen Creek to Rock Island

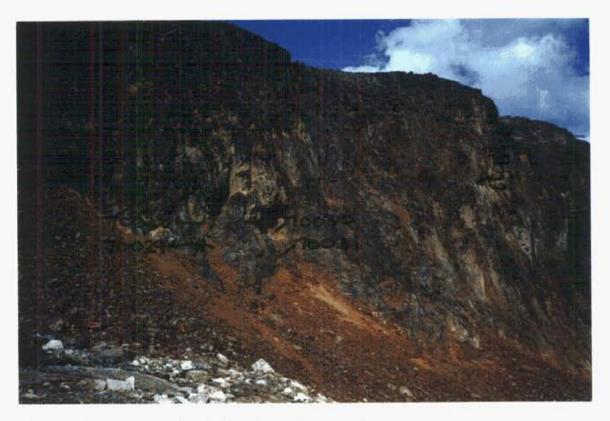
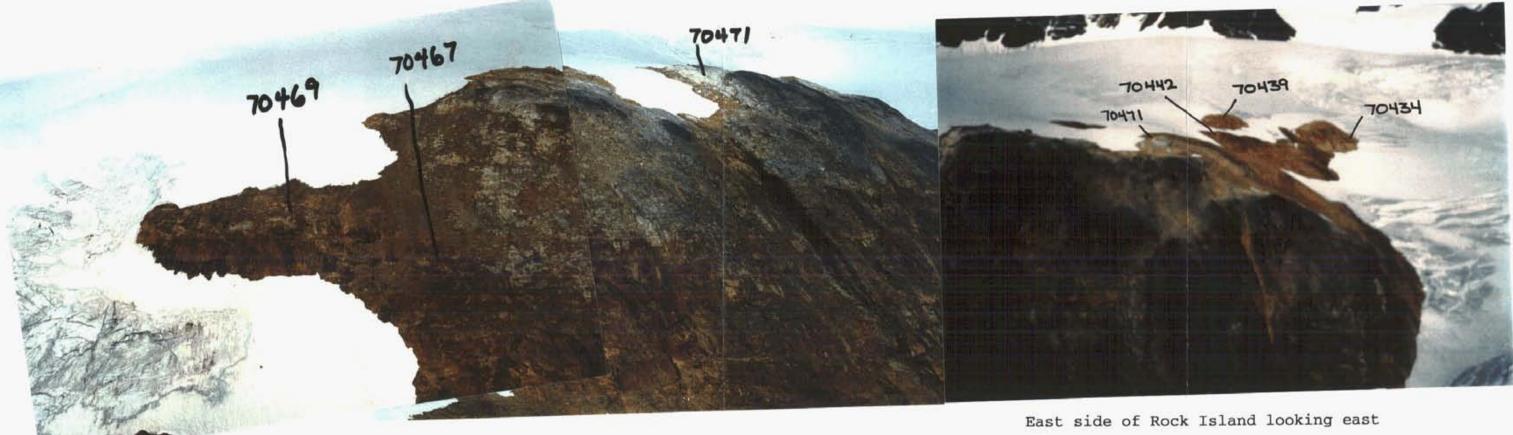


Photo 12: Jarosite/alunite alteration Sample no.'s 70028-31

Photo 13: Looking SE to Sample 70160

A total of 17 stream sediment samples was collected (Maps 5A, C) with gold, arsenic, copper, lead and zinc contents ranging between 1 and 3 ppb, 1 and 1 ppm, 12 and 45 ppm, 42 and 248 ppm and 127 and 481 ppm, respectively (Map 5C). Gold, arsenic, copper, lead and zinc values average 2 ppb, 1 ppm, 26 ppm, 122 ppm and 269 ppm, respectively.

Using threshold values of 10 ppb Au, 20 ppm As, 50 ppm Cu, 70 ppm Pb and 100 ppm Zn (threshold values researched and utilized on the basis of Geofine's discovery experience in the Stewart Camp), the average lead and zinc values of the stream samples are anomalous. Of the individual elemental analytical values for the stream sediment samples, none of the gold values, none of the arsenic values, none of the copper values, 65% of the lead values and 100% of the zinc values are considered anomalous.


Two soil samples were collected (Maps 5A, C) with gold, arsenic, copper, lead and zinc contents ranging between 1 and 1 ppb, 1 and 343 ppm, 33 and 36 ppm, 67 and 211 ppm and 90 and 141 ppm, respectively (Map 5C). The arsenic, lead and zinc values for one of the samples (70179, Map 5C) are considered highly anomalous.

From analytical results referenced above it is apparent that except for relatively low anomalous gold values (ranging between 17 and 51 ppb) in six rock samples, little anomalous gold exists in target area C. However it is also apparent that there is an anomalous arsenic-lead-zinc signature in many of the rocks and an anomalous lead-zinc signature in most of the stream sediment samples.

Based on Geofine's discovery experience in the Stewart Camp such polymetallic signatures (along with some anomalous silver, barium, cadmium and antimony values indicated by the ICP data for the stream sediment samples) can be important indications of proximal gold/copper or gold/polymetallic mineralization. Careful prospecting along apparent structural controls and/or the follow-up of airborne EM/magnetic surveys has led to important discoveries in the vicinity of such signatures. As outlined in the Conclusions and Recommendations below, follow-up of the anomalous samples (Photo 13) is recommended.

D. TARGET AREA D: Al 5 Claim; Area of Rock Island in Todd Ice Field (Tables 2-4; Maps 1, 2, 6A-C; Airphoto 4; Photo 14):

The outcrops at the Rock Island are extremely silicious and mainly rhyolite or dacite in composition (Photo 14). The area forms a topographic high in the extensive (5 km wide) Todd Ice Field (Map 1). The ice has not eroded Rock Island because of the intense silicification. The outcrop is spectacular for its iron oxide and clay alteration that is characterized by its bright rusty orange colour with abundant alunite/jarosite staining. The rocks are well TARGET AREA D Photo 14: Rock Island

West side of Rock Island looking northeast

Looking northwest

pyritized and are often cut by east-northeast trending faults. Fresh surfaces are generally light to medium grey while weathered surfaces are orange to rusty brown with white-yellow alunite/ jarosite staining.

A total of 55 rock samples was collected during two phases of sampling (Maps 6A-C) with gold, arsenic, copper, lead and zinc contents ranging between 1 and 778 ppb, 9 and 1300 ppm, 9 and 579 ppm, 11 and 3930 ppm and 5 and 762 ppm, respectively (Map 6C). Gold, arsenic, copper, lead and zinc values average 20 ppb, 169 ppm, 66 ppm, 184 ppm and 118 ppm, respectively.

Using the threshold values of 15 ppb Au, 20 ppm As, 60 ppm Cu, 80 ppm Pb and 100 ppm Zn, the average gold, arsenic, copper, lead and zinc values of the rock samples are anomalous.

Of the original 17 rock samples collected on the western part of the target, 29% of the gold values, 83% of the arsenic values, 53% of the copper values, 53% of the lead values and 41% of the zinc values are considered anomalous. However, additional sampling (39 rock samples) at Rock Island vertically above the initial samples and further to the east (Figures 6A-C) failed to return results of the same significance: although 90% of the additional arsenic values are considered anomalous, only 3 percent of the gold values, 13% of the copper values, 18% of the lead values and 28% of the zinc values are considered anomalous.

Rock Island is deemed to still offer a small follow-up target in the immediate vicinity of the original samples. Detailed chip sampling and more quantitative multi-element analyses are required to determine the priority of the favourable alteration Any EM anomalies located by an airborne EM survey should be considered as drill targets.

E. TARGET AREA E: Wolf 14 Claim; Area at Edge of Todd Ice Field Immediately West of Target Area C (Tables 2-4; Maps 1, 2, Figures 7A-C; Photos 15-21):

Target Area E is located on the edge of the Todd Ice Field (Photos 15, 16, 17) and has relatively recently been exposed by the recession of the ice. Altered (silicified, sulfidized) mafic to intermediate volcanics, or possibly sulfidized rhyolites, are the principal rock type.

The rocks are fine grained and mainly composed of silica, sulfides and oxidized material. Gossan zones characterized by limonite staining and in some places, jarosite/alunite, are well developed

Photo 16: Looking West to Edge of Todd Ice Field

in many areas (Photo 17). The rocks are generally well fractured and silica and sulfide flooding has resulted in a number of zones of quartz-oxide stock workings. Massive pyrite veins and stock workings up to 20 cm in width are fairly common (Photos 18, 19). Angular to rounded massive pyrite boulders (Photo 20), are fairly ubiquitous, particularly in the southeast corner of the area where in-situ sources (Photo 21) are located on the east-west ridge south of the stream draining the area.

A total of 39 rock samples was collected (Tables 2-4; Maps 7A-C) with gold, arsenic, copper, lead and zinc contents ranging between 1 and 12 ppb, 2 and 2025 ppm, 5 and 179 ppm, 8 and 4420 ppm and 14 and 385 ppm, respectively (Map 7C). Gold, arsenic, copper, lead and zinc values average 3 ppb, 338 ppm, 30 ppm, 221 ppm and 70 ppm, respectively.

Using the threshold values of 15 ppb Au, 20 ppm As, 60 ppm Cu, 80 ppm Pb and 100 ppm Zn, the average arsenic and lead values of the rock samples are highly anomalous. Of the individual elemental analytical values for the rocks, none of the gold values, 69% of the arsenic values, 15% of the copper values, 28% of the lead values and 15% of the zinc values are considered anomalous.

The area shows a paucity of gold values, and the majority of anomalous arsenic and lead values are derived from well pyritized float boulders and talus samples. A number of these samples have apparent in-situ samples on the ridge that forms the south edge of the target area. Any EM anomalies located by the proposed helicopter airborne geophysical survey referenced in the Conclusions and Recommendations of this report would constitute important follow-up targets.

F-H. TARGET AREA F-H: Wolf 14 Claim; Areas South of Target Area E; West of West Creek and North and South of Pond Creek;, West of Target Area C (Tables 2-4; Maps 1, 2, Figures 8A-C, 9A-C, 10A-C respectively; Photos 15, 22-24):

Target Area F-H comprises individual Target Areas F, G and H which have been combined for discussion purposes since they are contiguous and cover the same geological environment. The target area is drained to the east by Pond Creek and to the south by West Creek. Elevations range between 1200 and 1400 m above sea level, and the topography which is located above the treeline is characterized by bare rock, talus and islands of alpine meadow.

The most apparently prospective and some of the widest alteration zones (Photos 15, 22-24) discovered on the Golden Crown property to date are located in Target Area F-H and they include areas of intensely sheared, pyritized, silicified and chloritized rocks

Photo 20: Massive sulfide float boulder - Sample 70230

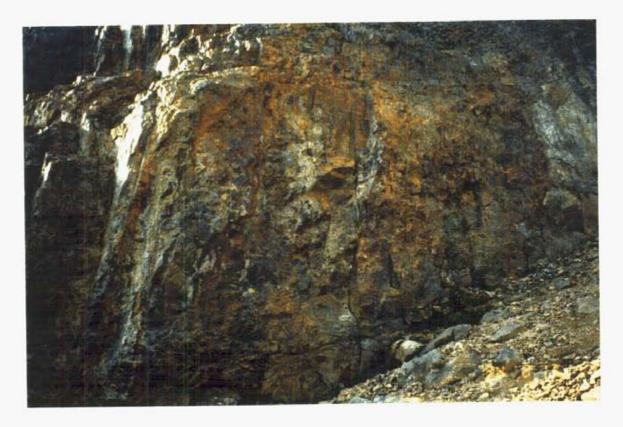


Photo 21: Samples 70235 & 70236

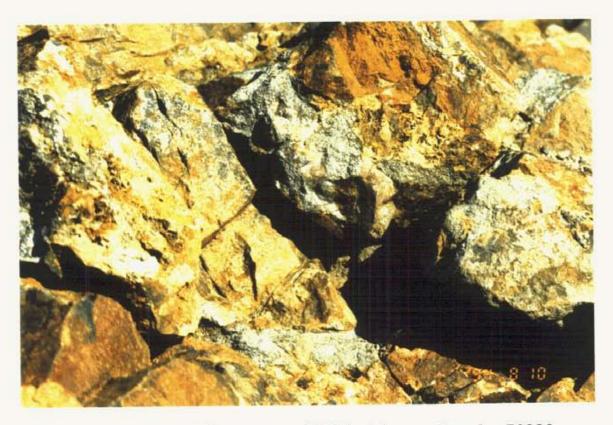
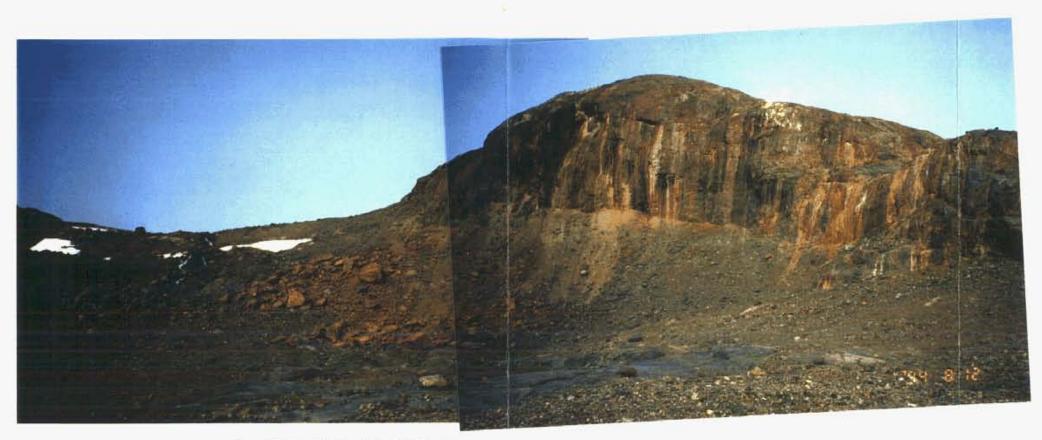



Photo 18: Area of intense sulfidization - Sample 70220. Veins and lenses of massive pyrite in silicified volcanics

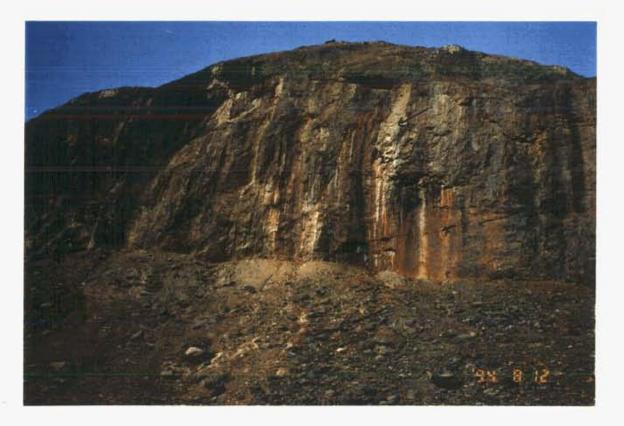
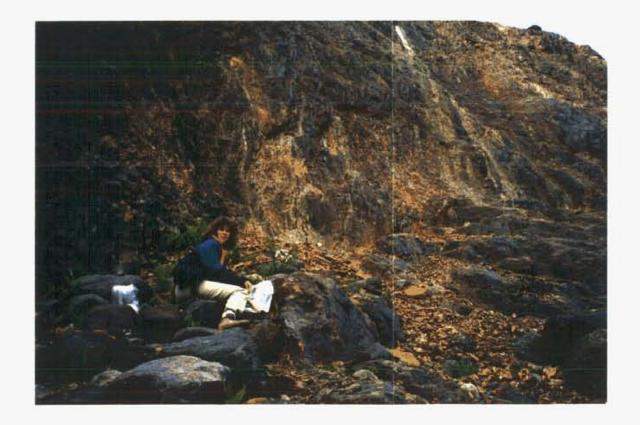
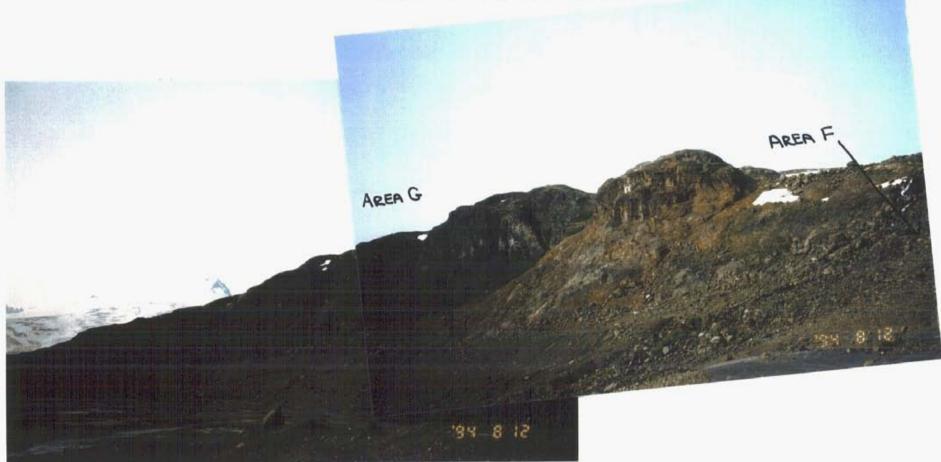


Photo 19: Stockworking of quartz & oxidized material in silicified volcanic


TARGET AREA F Photo 22: Altered (sulfidized, silicified, chloritized) sheared volcanics


Looking West to Area F



TARGET AREA G Photo 23: Looking Southwest

Weakly to moderately altered volcanics Target Area G Altered (sulfidized, silicified) volcanics Target Area F TARGET AREA H Photo 24

Looking South at jarosite/alunite staining

Looking 320 deg at Samples 70357 & 70358

most often characterized by iron oxide and jarosite/alunite colour anomalies. The altered rocks are hosted by a variety of intermediate to felsic volcanic and pyroclastic rocks that are cut by structures having a variety of orientations including east-west, north-northwest and east-northeast (Photo 15). The rocks are often brecciated and intensely altered so that original textures and mineralogy have been destroyed. The alteration zones are well fractured and structurally controlled lenses of semi-massive pyrite up to several meters in width occur in several locations. Massive to semi-massive float boulders are rather ubiquitous. Prospective mineralization including chlorite-quartz-coarse pyrite breccia similar to that at the Marc Zone at Red Mountain is found in at least two of the alteration zones.

A total of 63 rock samples was collected (Tables 2-4; Maps 8A-C, 9A-C, 10A-C) with gold, arsenic, copper, lead and zinc contents ranging between 1 and 10 ppb, 1 and 2300 ppm, 3 and 99 ppm, 23 and 1020 ppm and 14 and 1510 ppm, respectively (Maps 8C, 9C, 10C). Gold, arsenic, copper, lead and zinc values average 3 ppb, 215 ppm, 20 ppm, 119 ppm and 137 ppm, respectively.

Using the threshold values of 15 ppb Au, 20 ppm As, 60 ppm Cu, 80 ppm Pb and 100 ppm Zn, the average arsenic, lead and zinc values of the rock samples are anomalous. Of the individual elemental analytical values for the rocks, none of the gold values, 94% of the arsenic values, 1% of the copper values, 43% of the lead values and 41% of the zinc values are considered anomalous.

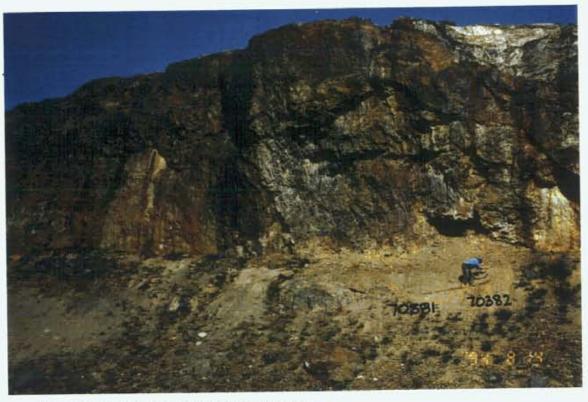
The area again shows a paucity of gold values, and the majority of anomalous arsenic and lead values are derived from well pyritized float boulders and talus samples. Most of these samples have apparent in-situ sources on the ridge west of West Creek.

A total of 13 stream sediment samples was collected with gold, arsenic, copper, lead and zinc contents ranging between 1 and 60 ppb, 1 and 1 ppm, 21 and 29 ppm, 44 and 108 ppm and 108 and 225 ppm, respectively (Map 8C, 9C, 10C). Gold, arsenic, copper, lead and zinc values average 7 ppb, 1 ppm, 25 ppm, 64 ppm and 169 ppm, respectively.

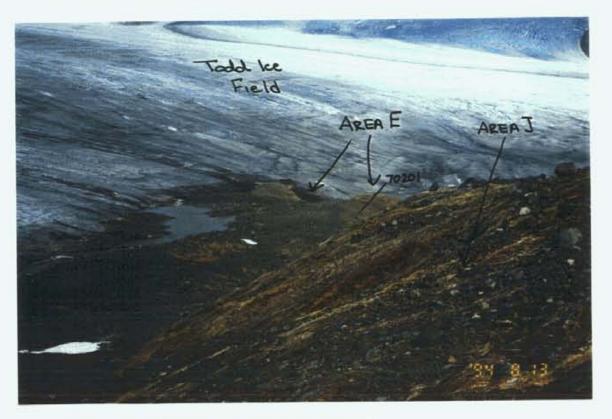
Using the threshold values of 10 ppb Au, 20 ppm As, 50 ppm Cu, 70 ppm Pb and 100 ppm Zn, the average lead and zinc values of the stream samples are anomalous. Of the individual elemental analytical values for the stream sediment samples, 15% of the gold values, none of the arsenic values, none of the copper values, 39% of the lead values and 100% of the zinc values are considered anomalous.

Based on the prospective alteration including massive to disseminated pyrite mineralization along with anomalous arsenic, lead and zinc values in the rock samples, an airborne survey is recommended to further evaluate Target Area F-H. J. TARGET AREA J: Wolf 14 Claim; Immediately West of Target Area F; North of Pond Creek (Tables 2-4; Maps 1, 2;, Figures 12A-C; Photos 15, 25):

Target area J is located immediately west of Target Area F and is bordered to the north by the Todd Ice Field and to the south by Pond Creek (Photo 15). The main topographical feature is a flat topped, steep sided, fault bounded hill that trends east-west and is the western continuation of Target Area F.

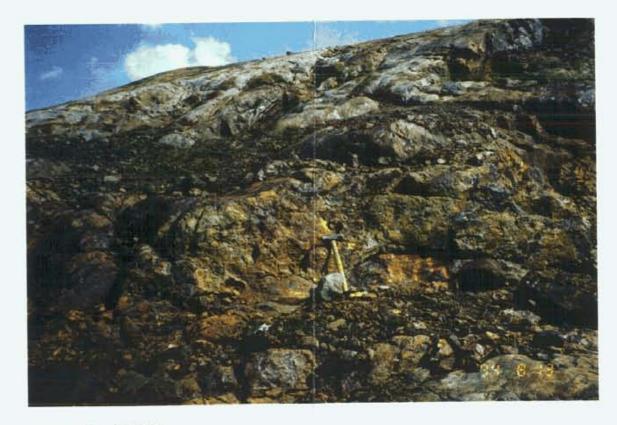

The prospective alteration zones (Photo 22) continue to the west into Target Area J where they are exposed (Photo 25) along a prominent north-northwest trending fault (Photo 15). Pond Creek to the south and West Creek to the east are thought to be structurally controlled.

The geology comprises silicified and pyritized mafic to felsic volcanic rocks and fine to coarse pyroclastic horizons. The altered rocks are often bleached white and in the areas of the steeper cliffs, limonitized gossan zones are developed and often show jarosite/alunite staining. Small lenses and veins of pyrite are common, particularly associated with the most intensely silicified and fractured rocks. Chlorite and sericite schist are developed in some of larger alteration zones that can attain widths of over 30 m. A semi-massive pyrite-quartz vein is developed along the north end of the north-northwest trending fault referenced above.


A total of 17 rock and talus samples was collected (Tables 2-4; Maps 12A-C) with gold, arsenic, copper, lead and zinc contents ranging between 1 and 6 ppb, 11 and 1275 ppm, 2 and 37 ppm, 28 and 317 ppm and 8 and 413 ppm, respectively (Map 12C). Gold, arsenic, copper, lead and zinc values average 3 ppb, 194 ppm, 15 ppm, 146 ppm and 109 ppm, respectively.

Using the threshold values of 15 ppb Au, 20 ppm As, 60 ppm Cu, 80 ppm Pb and 100 ppm Zn, the target area has a similar response as Area F-H, with the average arsenic, lead and zinc values of the rock samples being anomalous. Of the individual elemental analytical values for the rocks, none of the gold values, 88% of the arsenic values, none of the copper values, 53% of the lead values and 24% of the zinc values are considered anomalous.

A total of 6 stream sediment samples was collected with gold, arsenic, copper, lead and zinc contents ranging between 1 and 5 ppb, 1 and 1 ppm, 19 and 29 ppm, 46 and 110 and 116 and 167 ppm, respectively (Map 12C). Gold, arsenic, copper, lead and zinc values average 3 ppb, 1 ppm, 24 ppm, 67 ppm and 140 ppm, respectively.


Talus channel sampling below jarosite/alunite alteration

Looking 60 degrees to Target Area E from 70376. Jarosite/alunite alteration

Quartz sulfide vein in rhyolite

Sample 70374

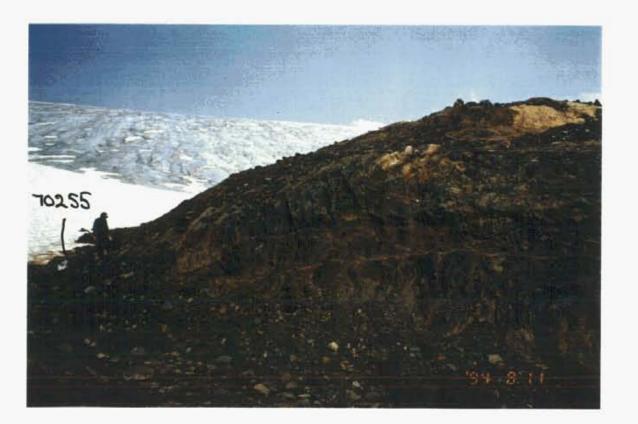
Using the threshold values of 10 ppb Au, 20 ppm As, 50 ppm Cu, 70 Pb ppm and 100 ppm zinc, only the average zinc values of the stream samples are anomalous. Of the individual elemental analytical values for the stream sediment samples, none of the gold values, none of the arsenic values, none of the copper values, 33% of the lead values and 100% of the zinc values are considered anomalous.

Target Area J is also recommended for an airborne EM survey to look for blind gold deposits within the pyritic halo of the alterations zones.

I. TARGET AREA I: Wolf 13 Claim, Northeast Area of Claim at Edge of Todd Ice Field (Tables 2-4; Maps 1, 2; Figures 11A-C; Photos 15, 26):

Target Area I is located on the south edge of the Todd Ice Field, approximately 700 m to the west of Target Area J (Photo 26). The target area is characterized by extensive gossan zones of limonitized material hosted by intensely silicified and weakly to strongly pyritized mafic to intermediate volcanics and a variety of pyroclastic rocks. The altered rocks are often well fractured and show varying degrees of brecciation. A well developed stock working of quartz and oxidized material is often associated with the more intense alteration (Photo 26).

A total of 24 rock and talus samples was collected (Tables 2-4; Maps 11A-C) with gold, arsenic, copper, lead and zinc contents ranging between 1 and 25 ppb, 6 and 725 ppm, 6 and 400 ppm, 23 and 12000 ppm and 38 and 1395 ppm, respectively (Map 11C). Gold, arsenic, copper, lead and zinc values average 4 ppb, 62 ppm, 79 ppm, 653 ppm and 229 ppm, respectively.


Using the threshold values of 15 ppb Au, 20 ppm As, 60 ppm Cu, 80 ppm Pb and 100 ppm Zn, the average arsenic, copper, lead and zinc values of the rock samples are anomalous. Of the individual elemental analytical values for the rocks, 4% of the gold values, 46% of the arsenic values, 29% of the copper values, 58% of the lead values and 74% of the zinc values are considered anomalous.

A total of 3 stream sediment samples and one pond sample were collected with gold, arsenic, copper, lead and zinc contents ranging between 3 and 6 ppb, 1 and 1 ppm, 20 and 33 ppm, 50 and 75 ppm and 121 and 169 ppm, respectively (Map 12C). Gold, arsenic, copper, lead and zinc values average 4 ppb, 1 ppm, 26 ppm, 58 ppm and 143 ppm, respectively.

Using the threshold values of 10 ppb Au, 20 ppm As, 50 ppm Cu, 70 ppm Pb and 100 ppm Zn, only the average zinc values of the stream samples are anomalous. Of the individual elemental analytical values for the stream sediment samples, 25% of the lead values and

TARGET AREA I Photo 26

100% of the zinc values are considered anomalous.

Target Area I, like most of the other areas, failed to return any significant gold values. However, the anomalous copper, lead and zinc polymetallic signature in many of the rocks samples is similar to signatures found in the vicinity of important gold mineralization elsewhere in the Camp. Follow-up work via an airborne geophysical survey is recommended.

10. CONCLUSIONS, RECOMMENDATIONS:

The Phase 1 reconnaissance program evaluated the most apparently prospective alteration zones on the Golden Crown property. The targets include some of the most favourable alteration that Geofine has sampled in the Stewart Camp, including extensive gossan zones characterized by iron oxide and clay colour anomalies associated with intensely sulfidized and silicified rocks of the prospective Unuk River Formation.

A total of 450 samples including 369 rocks, 2 soils, 58 stream sediments were collected in the 10 Target Areas. The analytical results indicate there is a paucity of gold in the surface environment: only 13 anomalous gold values were returned from the rock samples that range between 15 and 73 ppb. One additional value of 778 ppb was returned from a narrow quartz-pyrite vein. The greatest concentrations of anomalous gold values in the rock samples are located in Target Areas C and D (each area contains 43% of the anomalous gold values). The values are generally low and expanded sampling in the Target Area D failed to return significant gold values.

Perhaps the best commentary on the lack of gold is the stream sediment results: only two (4%) of the 58 samples returned anomalous gold values. This low percentage contrasts with values obtained from sediments taken from streams at the Stewart Highway i.e., after draining the Golden Property but also having passed through ground south of the property. Of 10 samples taken, 60% are anomalous ranging between 12 and 25 ppb.

Based on the gold results it would be easy to negate the auriferous potential of the property. However, given the often complex morphology of gold deposits in the Stewart Camp i.e., plunging lensoidal oreshoots, and their geochemical signatures i.e., often surrounded by pyritic haloes that lack gold but are enriched in arsenic, zinc, cadmium, lead, silver, etc., with or without copper, there is some evidence that a blind gold deposit or deposits could exist within the alteration zones on the property.

For example, the average arsenic, lead and zinc contents for rock samples in Target Areas C, E, F-H, and J are considered anomalous. Moreover, the average arsenic, copper, lead and zinc contents for

Target Areas D and I are all considered anomalous. These values when coupled with anomalous zinc and other indicator elements in the stream sediments from these areas, along with the prospective geology and alteration are suggestive of environments in the Stewart Camp proximal to significant gold mineralization.

In order to fully evaluate this potential, it is recommended that an Aerodat helicopter borne geophysical survey (conventional EM, radiometrics and gradiometer survey be flown over the property to ascertain the presence of conductors and to more fully outline the structural fabric and geological contacts. Any conductors delineated by the survey should be located on the ground, and depending on their parameters, could constitute priority drill targets.

It is further recommended that additional quantitative multielement analyses be carried out on a number of the rock samples from each target area of interest to ascertain the full element extent of the anomalous signatures and to determine their relevance relative to those in other areas proximal to gold mineralization.

Additional field work could be carried out to follow-up the anomalous polymetallic values obtained from rocks in a number of areas. However, it is recommended that this work should be supplementary to positive airborne survey results.

It is estimated that the proposed airborne survey flown at a 200 m line spacing would cost, subject to contractors' bids, about \$150/km or \$20,000. Assuming the survey is successful, a ground follow-up geophysical and geological program carried out mini-grids totalling about 10 km is estimated to cost about \$65,000, for a grand total of approximately \$85,000 (Table 6).

TABLE 6

PROPOSED PHASE 2, 1995 EXPLORATION BUDGET:

GOLDEN CROWN PROPERTY

COST Ph 2

ITEM

_		
_		
i)	Assessment work, aeromagnetic research	
	Project permitting	500
	Geochemical signature analyses	
iv)	Property compensation, access: est.	
	Structural fabric studies, airphotos, maps	
vi)	Field equipment, supplies	3500
vii)	Mob-demob, vehicle	4500
viii)	Helicopter support	10000
ix)	Analyses, assays 200 @ \$25	5000
x)	Linecutting 10 km @ \$500/km	5000
xi)	Geophysical surveys: airborne survey	20000*
	10 km of mag @ \$400/km	4000*
	10 km Max Min \$500/km	5000*
	Land surveys	
	Food, sustenance, accommodation	4000
	Communications - in field	500
	Drafting, reporting, assess. rpts, fees	3000
	Staking Costs	
	Legal fees, insurance	
•	Licences	
xix)	Salaries: local labour, 2 geologists,	
\	\$800/day @ 15 days;	12000
xx)	Stripping, trenching hours at \$80/hr	
xxi)		
	Diamond drilling	0000
xxiii)	<i>y</i> -	8000
	TOTAL	\$84000

* geophysical surveys are subject to contractor bids

11. REFERENCES:

ALLDRICK, D. J. (1984): Geologic Setting of the Precious Metal Deposits in the Stewart Area; in: Geological Fieldwork 1983, BCMEMPR, Paper 1984-1, p. 149-164

ALLDRICK, D. J. (1985): Stratigraphy and Petrology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1984, BCMEMPR, Paper 1985-1, p. 316-341

ALLDRICK, D.J. (1989): Geology and Mineral Deposits of the Salmon River Valley - Stewart Area, 1:50,000. BCMEMPR Open File Map 1987-22.

ALLDRICK, D.J. (1989): Volcanic Centres in the Stewart Complex (103P and 104A,B); in: Geological Fieldwork 1988, BCMEMPR, Paper 1989-1 p. 223-240.

ALLDRICK, D. J., BROWN, D. A., HARAKAL, J. E., MORTENSEN, J. K. and ARMSTRONG, R. L. (1987): Geochronology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1986, BCMEMPR, Paper 1987-1, p. 81-92.

ANDERSON, R. G. (1989): A Stratigraphic, Plutonic, and Structural Framework of the Iskut River Map Area, Northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 89-1E, p. 145-154.

ANDERSON, R. G. and THORKELSON, D. J. (1990): Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut Map Area, northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 90-1E, p. 131-139.

BLACKWELL, J. (1990): Geology of the Eskay Creek #21 Deposits; in: The Gangue, MDD-GAC, No 31, April, 1990.

DANIELSON, VIVIAN (1993): Busy Summer For Stewart Area; Northern Miner August 16, 1993, p. 1

Greig, C. J. (1991): Stratigraphic and structural relations along the west-central margin of the Bowser Basin, Oweegee and Kinskush areas, northwestern British Columbia: in Current Research, Part A, Geological Survey of Canada, Paper 91-1A, p. 197-205.

GREIG, C. J., EVENCHICK, C. A., Mustard, P. S., Porter, J. S. (1992): Regional Jurassic and Cretaceous facies assemblages, and structural geology in Bowser Lake map area (104A), B.C.: Open File 2582, EMR Canada.

GREIG, C. J., Anderson, R. G., Daubeny, P. H., and Bull, K. F. (1994): Geology of the Cambria Ice Field: Geological Survey of Canada, Open File 2931.

GROVE, E. W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; BCMEMPR, Bulletin 63.

MCDONALD, D. (1989): Metallic Minerals in the Silbak Premier Silver Gold Deposits, Stewart; in: Geological Fieldwork 1987, BCMEMPR, Paper 1988-1, p. 349-352.

RAINSFORD, D. R. B. (1990): Report on A Combined Helicopter Borne Magnetic Electromagnetic and VLF Survey, Stewart Area; BCMEMPR Assessment Report # 20,200.

RANDALL, A. W. (1988): Geological Setting and Mineralization of the Silbak Premier and Big Missouri Deposits; in Field Guide Book, Major Gold-Silver Deposits of the northern Canadian Cordillera, Society of Economic Geologists, p. 85-99.

RUBIN, C. M., SALEEBY, J. B., COWAN, D. S., BRANDON, M. T., and MCGRODER, M. F., (1990): Regionally Extensive Mid-Cretaceous Westvergent Thrust Systems in the Northwestern Cordillera: Implications for Continent-Margin Tectonism. Geology, v.18, p. 276-280.

TENAJON RESOURCES CORP. (1992): Report to Shareholders; in: Annual Report 1992 p. 1.

VOGT, ANDREAS H., BRAY, ADRIAN D., and BULL, KATE, (1992): Geologic Setting and Mineralization of the Lac Minerals Red Mountain Deposit, handout at 1992 Cordilleran Roundup "Spotlight Session".

WESTMIN RESOURCES LIMITED (1992): Premier Gold Project: in: Annual Report 1991; p.9.14.

STATEMENT OF QUALIFICATIONS:

I, David E. Molloy, of the Town of Unionville, of the Regional Municipality of York, Ontario, hereby certify that:

- i. I am President of Geofine Exploration Consultants Ltd. and Geofine (Jamaica) Limited with business addresses at 49 Normandale Road, Unionville, Ontario, L3R 4J8 and 30 Knutsford Blvd, 7th Floor, Kingston, Jamaica, respectively;
- ii. I am a graduate of McMaster University, in the City of Hamilton, Ontario, with a B.A. in Philosophy (1968); I am a graduate of the University of Waterloo, in the City of Waterloo, Ontario, with a B.Sc. in Earth Science (1972);
- iii. I have practised my profession in mineral exploration continuously for the past 23 years, including 4 years as a consultant; 10 years with St. Joe Canada Inc./Bond Gold Canada Inc./LAC Minerals Ltd. as Regional Geologist, Exploration Manager, Vice President and as Senior Vice President, Canadian Exploration; and, 8 years with Beth-Canada Mining Company as a Regional Geologist;
- iv. I am a Fellow of The Geological Association of Canada;
- v. I am a Member of the Canadian Institute of Mining and Metallurgy; of the Prospectors and Developers' Association; and of the Association of Exploration Geochemists.
- vi. I have supervised the field work and the preparation of this report entitled "Summary Report on the Phase 1 Exploration Program on the Golden Crown Property, Stewart Gold Camp, Skeena Mining Division, Northwestern British Columbia".
- vii. The recommendations herein are solely the responsibility of Geofine Exploration Consultants Ltd.

David E. Molloy, B.A., B.Sc., F.G.A.C. President

Dated at Unionville, Ontario, this 31th day of October, 1994.

56

12.

APPENDIX 1

.

Attn:

• ENVIRONMENTS LABORATORIES (DWSION OF ASSAVERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Geochemical Analysis Certificate

David Molloy

Company: GEOFINE EXPLORATION CONSULTANTS Project: 6200

Date: SEP-08-94 copy 1. Geofine Exploration, Unionville, ON

VANCOUVER OFFICE:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004

SMITHERS LAB .:

FAX (604) 847-3005

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-30-94 by D. Kennedy.

Sample Number	Au-Fire PPB	As PPM	Cu PPM	Pb PPM	Zn PPM	
70101	2	6	17	16	102	
70102	- 1	7	18	6	60	
70103	2	10	24	21	43	
70104	1	8	18	17	22	
70433	1	32	29	185	24	
70434	1	21	61	116	70	
70435	2	13	59	27	26	
70436	2 3	14	26	52	23	
70437	14	27	47	36	30	
70438	2	275	33	56	185	
70439	1	200	34	41	25	
70440	12	36	28	24	14	
70441	1	14	26	19	31	
70442	7	46	55	151	11	
70443	1	28	11	18	19	
70444	8	63	33	41	52	
70445	5	175	69	66	114	
70446	1	56	40	33	36	,
70447	3	74	39	31	49	
70448	3 2	250	45	40	46	
70449	12	725	36	41	32	
70450	1	150	37	47	64	
70451	1	250	42	665	105	
70452	15	58	41	43	95	

Certified by

MIN-EN L'ABORATORIES

4S-0239-RG1

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAVERS • ANALYSTS • GEOCHEMISTS

Geochemical Analysis Certificate

GEOFINE EXPLORATION CONSULTANTS Company:

Project: 6200 Attn:

Date: SEP-08-94

David Molloy

Copy 1. Geofine Exploration, Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-30-94 by D. Kennedy.

Sample Number	Au-Fire PPB	As PPM	Cu PPM	Pb PFM	ZN PPM	
70453	1	175	32	28	32	
70454	2	22	10	201	485	
70455	1	15	26	19	93	
70456	3	350	9	838	67	
70457	2	81	36	84	36	
70458	3	93	18	47	18	
70459	6	30	35	52	180	
70460	1	27	50	26	102	
70461	1	110	48	30	49	
70462	7	1275	113	55	96	
70463	6	425	44	61	94	
70464	4	275	56	49	138	
70465	1	28	17	11	51	
70466	5	57	35	61	113	
70467	13	63	212	39	122	
70468	14	475	23	31	349	
70469	6	350	28	22	187	
70470	5	42	126	48	61	
70471	1	35	23	12	10	
70472	2	3	4	2	35	
70473	1	4	6	6	187	
70474	1	6	18	29	41	
70475	1	23	10	202	502	
70476	1	7	13	17	29	

Certified by

MIN-EN LABORATORIES

4S-0239-RG2

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Geochemical Analysis Certificate

GEOFINE EXPLORATION CONSULTANTS Company:

Project: Attn:

6200 **David Molloy**

Date: SEP-08-94 copy 1. Geofine Exploration, Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-30-94 by D. Kennedy.

Sample Number	Au-Fire PPB	·As PPM	Cu PPM	Pb PPM	Zn PPM	
70477	1	6	14	20	42	
70478	1	7	23	21	11	
70479	1	6	11	24	8	
70480	5	8	15	29	19	
70481	15	13	15	36	73	
70482	2	10	16	18	12	
70483	1	4	13	19	7	
70484	1	7	16	19	27	
70485	1	5	12	29	60	
70486	1	9	15	17	16	
70487	1	6	16	20	59	
70488	1	5	14	18	38	
70489	2	11	16	30	71	
70490	1	12	23	28	38	
70491	1	8	9	27	50	
70492	1	4	18	17	29	
70493	2	7	20	22	30	
70494	2	5	12	29	46	
70495	1	4	11	25	50	
70496	3	7	38	23	47	
70497	1	6	24	22	27	
70498	1	4	15	20	15	
70499	2	5	11	16	12	
70500	2 2	16	10	198	493	

Certified by

MIN-EN LABORATORIES

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

4S-0239-RG3

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

GEOFINE EXPLORATION

Date: AUG-23-94

4S-0204-RG1

copy 1. Geofine Expl., Unionville, ON

Project: 6200 Attn: David Molloy

Company:

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-11-94 by J.Calder.

Sample Number	Au-Fire PPB	As PPM	Cu PPM	Pb P P M	Zn PPM	
70201	1	10	23	20	37	
70202	1	23	16	33	31	
70203	1	5	8	18	70	
70206	1	106	21	25	47	
70207	7	525	47	132	72	
70208	2	32	20	18	37	
702 09	1	14	12	17	45	
70210	3	15	6	16	38	
70212	2	13	9	49	94	
70213	1	9	20	26	100	
70215	2	2025	179	159	25	
70217	2	14	9	12	23	
70218	4	29	68	24	138	
70219	. 7	31	44	44	385	
70220	8	99	26	105	26	
70221	3	42	109	51	26	
70222	7	34	12	22	32	
70223	2	13	5	29	46	
70224	4	15	14	28	18	
70225	2	10	9	11	23	
70226	3	49	24	65	31	
7 0227	2 7	44	8	26	34	
70228	7	1625	23	62	21	
70229	3	27	7	14	16	

The Certified by

MIN-EN LABORATORIES

LABORATORIES (DWISION OF ASSAYERS CORP.) SEECIAL ISTS INLMINERAL ENVIRONI

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

4S-0204-RG2

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

ENVIRONMENTS

MINERAL

Company:GEOFINE EXPLORATIONProject:6200Attn:David Molloy

Date: AUG-23-94 copy 1. Geofine Expl., Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-11-94 by J.Calder.

Sample Number	Au-Fire PPB	As PPM	Cu PFM	Pb PFM	Zn PPM	
70230	1	1300	18	146	153	
70232	1	80	19	81	64	
70233	1	58	27	55	54	
70235	9	1575	88	1070	59	
70236	12	1075	62	586	75	
70237	4	850	33	282	282	
70239	7	118	27	206	316	
70242	1	48	31	27	4 1	
70243	1	1750	28	644	117	
70244	2	33	8	29	25	
70245	4	1575	32	4420	30	
70 246	2	66	67	71	26	
70247	1	725	19	58	39	
702 48	1	11	10	10	14	
70249	1	2	7	8	16	
70250	2	6	8	10	22	
70251	1	37	11	62	23	
70252	3	22	22	192	381	
70253	1	17	19	35	58	
70254	1	16	20	166	265	
70256	1	6	14	23	341	
70257	11	13	72	34	149	
70258	1	8	19	114	342	
70259	5	15	51	54	340	

ħ_ Certified by

MIN-EN LABORATORIES

MINERAL ENVIRONMENTS LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

4S-0204-RG3

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

GEOFINE EXPLORATION Company: Project: 6200 Attn: David Molloy

Date: AUG-23-94 copy 1. Geofine Expl., Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-11-94 by J.Calder.

Sample	Au-Fire	As	Cu	Pb	Zn	
Number	PPB	PPM	PPM	PPM	PPM	•
70260	1	12	7	95	144	
70261	1	725	15	97	472	
70262	1	21	289	35	279	
70263	1	14	45	129	136	
70264	9	250	311	1500	291	
70265	1	37	18	175	102	
70266	3	26	83	311	68	
7 0267	25	101	136	176	62	
7 0269	1	46	13	40	196	
70270	6	9	12	63	117	
70271	5	10	28	42	38	
7 0272	· 1	21	6	120	75	
70273	2	8	10	52	44	
70274	1	28	44	68	139	
70275	1	6	7	8	25	
70276	1	18	31	73	190	
70278	1	21	47	96	113	
7 0279	1	15	178	83	81	
70281	1	18	46	217	326	
70282	5	37	400	12000	1395	
70283	1	16	23	83	58	
70286	1	300	62	163	1510	
70287	7	42	6	27	16	
70288	3	37	26	142	72	

the Certified by

MIN-EN LABORATORIES

Attn:

ENVIRONMENTS LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

Company: GEOFINE EXPLORATION Project: 6200

David Molloy

Date: AUG-23-94 copy 1. Geofine Expl., Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-11-94 by J.Calder.

Sample Number	Au-Fire PPB	As PPM	Cu PPM	Pb P PM	Zn PPM	
70289	4	65	9	23	14	
70290	1	1025	48	610	202	
70291	4	25	16	69	739	
7 0292	2	43	4	29	75	
70293	2	112	9	39	94	
70294	1	69	3	41		
7 0295	1	2300	31	55	46	
70 296	1	120	24	62	70	
7 0297	1	33	5	34	72	
7 0298	4	70	57	70	79	
70299	2	117	6	35	22	
70 300	3	42	6	81	116	
70301	1	9	8	12	26	
70302	2	175	23	205	22	
70303	1	225	9	42	51	
70304	4	250	18	37	28	
70 305	1	48	8	32	83	
703 06	1	125	12	42	99	
70 307	1	112	18	109	84	
70 308	1	34	25	108	121	
70309	1	33	17	81	100	
70310	3	150	4	42	27	
70311	6	650	9	46	49	
70312	10	525	11	60	74	

Certified by

MIN-EN LABORATORIES

4S-0204-RG4

LABORATORIES (DIVISION OF ASSAYERS CORP.) SPECIAL ISTS IN MINERAL ENVIRON

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

4S-0204-RG5

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

ENVIRONMENTS

Company:GEOFINE EXPLORATIONProject:6200Attn:David Molloy

Date: AUG-23-94 copy 1. Geofine Expl., Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-11-94 by J.Calder.

Sample	Au-Fire	As	Cu	Pb	Zn	
Number	PPB	PFM	PPM	PPM	PPM	
70316	4	60	22	246	84	
70317	1	400	10	44	71	
70318	1	200	8	43	58	
70319	4	250	39	126	26	
70 320	6	1075	11	334	171	
70321	8	650	24	306	220	
70322	5	1425	24	120	111	
70323	3	175	31	91	176	
70324	2	39	16	94	24	
70326	3	117	37	1020	29	
70327	2	53	16	82	391	
70328	2	>10000	58	125	55	
7 0329	1	225	6	44	14	
703 30	4	125	15	48	128	
70331	4	125	99	399	120	
70332	1	13	5	23	343	
70333	2	200	34	90	43	
70334	1	24	31	32	372	
70335	2	125	18	28	42	
70337	1	16	9	13	21	
70343	1	24	12	53	139	
70344	2	26	7	36	23	
7 0345	1	41	39	67	105	
7 0346	4	23	8	36	31	

Certified by

the

LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

ENVIRONMENTS

GEOFINE EXPLORATION Company: Project: 6200 Attn: David Molloy

Date: AUG-23-94 Copy 1. Geofine Expl., Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-11-94 by J.Calder.

Sample Number	Au-Fire PPB	As PPM	Cu PPM	Pb PPM	Zn PPM	
70347	4	124	29	299	103	
70348	2	76	26	98	134	
70349	1	23	9	55	14	
70350	1	23	8	13	22	
70352	1	23	5	82	20	
70353	1	15	3	63	172	
70354	1	30	5	71	83	
70355	1	33	10	57	103	
70356	2	26	20	79	168	
70357	1	18	8	31	126	
70358	1	19	11	37	71	
70360	1 .	33	9	72	22	
70361	3	21	11	149	29	
703 63	3	73	26	172	294	
70367	1	11	2	28	30	
70368	2	18	5	35	29	
70373	3	96	8	35	31	
70374	2	250	15	286	8	
70375	4	16	11	14	22	
70376	2	150	12	87	235	
70379	2	61	13	55	75	
70380	1	112	20	69	80	
70381	1	39	11	56	70	
70382	2	43	14	61	80	

tu Certified by

MINERAL ENVIRONMENTS ABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-962 1

4S-0204-RG7

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

Date: AUG-23-94

Company: **GEOFINE EXPLORATION** Project: 6200 Attn: **David Molloy**

Copy 1. Geofine Expl., Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-11-94 by J.Calder.

Samp 1 e	Au-Fire	As	Cu	Pb	Zn	
Number	PPB	PPM	PPM	PPM	PPM	
70383	1	83	8	45	38	
70384	3	700	4	317	30	
70385	5	1275	29	299	226	
70386	3	150	37	315	378	
703 87	2	101	11	62	413	
70388	5	58	16	218	28	
70001	1	23	1	29	11	
70002	1	21	4	22	2	
70003	1	33	7	30	30	
70004	1	44	6	38	34	
70005	1	29	3	30	6	
70006	5	41	44	35	48	
7 0007	10	30	27	47	38	
70008	3	1 08	5	45	28	
70009	8	125	48	113	310	
70010	1	6	16	48	105	
70011	3	5	6	30	80	
70012	2	15	4	27	95	
70013	7	475	45	236	211	
70014	6	35	29	78	81	
70015	9	48	25	107	117	
70016	18	150	61	200	698	
7 0017	1	31	16	55	143	
70018	1	16	6	32	42	

Certified by

ENVIRONMENTS LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

4S-0204-RG8

Company:GEOFINE EXPLORATIONProject:6200Attn:David Molloy

Date: AUG-23-94 copy 1. Geofine Expl., Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-11-94 by J.Calder.

Sample Number	Au-Fire PPB	As PPM	Cu PPM	Pb P PM	Zn PPM	
70019	1	8	81	28	68	
70020	1	71	17	37	30	
70021	-	275	20	115	40	
70022	30	600	114	2930	1865	
70023	1	11	7	69	67	
70024	1	9	15	55	179	
70025	1	3 2	22	41	96	
70026	1		6	38	138	
70027	1	34	5	44	12	
70028	1	37	4	37	17	
70029	1	325	10	87	45	
7 0025A	1	9	6	11	17	
70030	2	46	8	33	9	
70031	1	700	12	13	75	
70032	1	70	7	40	11	
70033	1	36	5	24	19	
70034	1	34	4	24	15	
70035	1	35	6	30	11	
70036	2	86	9	77	37	
70037	1	108	9	13	14	
70039	1	95	29	112	136	
70040	1	17	19	66	38	
70041	1	225	15	45	104	
70042	3	3125	86	593	600	

Certified by

ENVIRONMENTS LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE: VANCOUVER OFFICE. 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

4S-0204-RG9

GEOFINE EXPLORATION Company: Project: 6200 **David Molloy** Attn:

Date: AUG-23-94 Copy 1. Geofine Expl., Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-11-94 by J.Calder.

Sample Number	Au-Fire PPB	As P PM	Cu PPM	Pb PPM	ZN PPM	
70043		525	46	224	158	
70044	28	400	18	341	870	
70045	3	1200	11	84	38	
70046	17	300	40	109	171	
70047	4	91	19	25	420	
70048	7	88	19	310	103	
7 0049	7	17	80	23	200	
70 050	4	30	8	37	83	
70052	2	86	21	75	124	
70055	2	625	13	260	128	
70057	5	43	85	459	6500	
70058	12	250	67	425	105	
70059	2	350	77	10900	20300	
70064	4	73	17	432	270	
70065	13	41	9	88	86	
70066	2	850	11	80	339	
70 067		49	11	140	36	
70 068	2 3 2	2275	12	94	268	
70 069	2	1950	41	180	13	
7 0070	4	200	14	129	15	
70071	14	225	29	325	326	
70074	51	700	1340	3300	1870	
70075	3	46	18	30	33	
70076	1	60	15	45	97	

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9821

4S-0204-RG10

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

MINERAL • EN VIRONMENTS

(DIVISION OF ASSAYERS CORP.)

ABORATORIES

Company:GEOFINE EXPLORATIONProject:6200Attn:David Molloy

Date: AUG-23-94 copy 1. Geofine Expl., Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-11-94 by J.Calder.

Sample	Au-Fire	As	Cu	Pb	Zn	
Number	PPB	PPM	PFM	PPM	PPM	
70077	1	66	7	20	48	
70078	3	300	38	55	407	
70079	2	9	8	11	25	
70080	3	24	73	50	39	
70081	1	26	36	54	34	
70082	5	21	89	224	82	
70083	3	15	300	113	99	
70084	5	36	54	73	13	
70085	5	34	17	53	5	
70 086	1	13	36	27	138	
70087	5	9	87	51	55	**************
70088	3	25	28	113	181	
7 0089	73	475	579	809	762	
70 090	778	74	135	3930	470	
70 091	15	375	111	98	42	
70092	5	350	35	385	379	*************
7 0093	16	1300	205	135	92	
7 0094	1	27	11	25	384	
7 0095	28	22	102	68	396	
70 096	11	40	39	476	54	
70097	2	25	8	27	4	
70 098	3	300	9	46	10	
7 0099	53	625	14	71	83 17	
701 00	3	14	9	9	17	

Certified by

HI_

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

4S-0204-RG11

SMITHERS LAB .: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

(DIVISION OF ASSAYERS CORP.)

ENVIRONMENTS LABORATORIES

GEOFINE EXPLORATION Company: 6200 Project: **David Molloy** Attn:

Date: AUG-23-94 Copy 1. Geofine Expl., Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-11-94 by J.Calder.

Sample Number	Au-Fire PPB	As PPM	Cu PPM	Pb PPM	Zn PPM	
70151	2	93	13	77	18	
70152	1	350	25	106	102	
70153	1	300	25	1080	865	
701 54	1	425	14	108	832	
70155	1	350	6	65	13	
70156	1	525	11	220	63	
701 57	2	118	19	55	68	
701 58	3	300	72	435	1030	
70160	1	300	59	239	354	
70161	1	200	8	88	23	
70166	1	1100	12	118	35	
70167	2	57	13	430	76	
70168	1	66	15	714	56	
701 70	2	15	6	32	40	
70171	2	48	19	28	84	
70172	1	225	19	283	143	
701 73	1	8	5	30	28	
70174	1	120	12	96	114	
70175	2	9	6	11	18	
701 76	1	50	20	241	168	
70177	1	67	34	188	230	
70178	2	26	10	51	35	
701 81	2	84	22	639	103	
70182	1	50	20	452	24	

Certified by

ENVIRONMENTS LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

4S-0204-RG12

Company:	GEOFINE EXPLORATION
Project:	6200
Attn:	David Molloy

Date: AUG-23-94 Copy 1. Geofine Expl., Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-11-94 by J.Calder.

Sample Number	Au-Fire PPB	As PPM	Cu PPM	Pb PPM	Zn PPM	
70183		81	158	213	227	
70184	1	40	31	482	189	
70186	9	300	31	462	384	
70187	3	250	16	373	416	
70188	2	225	33	234	305	
70189	2	115	20	423	100	
701 90	1	125	12	150	140	
70191	1	21	6	36	38	
70192	1	12	5	25	75	
70193	7	69	15	181	68	
70194	2	150	9	107	34	
70195	4	350	7	60	26	
701 96	1	8 1	9	39	11	
701 97	· 27	525	56	210	26	
70198	2	27	4	36	18	
70199	7	5	18	22	74	
70200	4	6	8	13	23	
70401	1	6 3 2	21	25	13	
70402	1	2	21	19	84	
70403	2	11	31	14	69	
70404	3	5	27	20	8	
70405	2	3	23	18	101	
7 0406	1	8	17	17	93	
7 0407	1	10	22	15	56	

Certified by

ENVIRONMENTS LABORATORIES (DVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

Company:GEOFINE EXPLORATIONProject:6200Attn:David Molloy

Date: AUG-23-94 copy 1. Geofine Expl., Unionville, ON

We hereby certify the following Geochemical Analysis of 24 rock samples submitted AUG-11-94 by J.Calder.

Sample	Au-Fire	As	Cu	Pb	Zn	
Number	PPB	PPM	PPM	PPM	PPM	
70409	1	6	62	19	65	
70410	1	5	8	17	54	
70411	2	6	96	19	60	
70412	1	3	24	21	49	
70413	2	2	17	18	67	
70414	1	4	8	20	81	
70415	2	2	33	19	133	
70416	2	1	45	22	122	
7 0417	3	5	21	14	15	
70418	2	4	17	15	58	
70419	1	1	110	19	84	
70 420	2	2	16	17	76	
70421	2	20	22	32	58	
70422	1	13	13	1 6	72	
70423	1	8	21	22	68	
70424	1	7	3	14	7	
70425	1	10	7	9	14	
70426	1	59	14	29	25	
70427	2	5 2	9	23	103	
70428	7	2	2	5	5	
70429	1	5	27	21	72	
70430	4	3	5	16	10	
70431	4	4	27	20	10	
70432	3	6	36	27	46	

ĦL Certified by

MIN-EN LABORATORIES

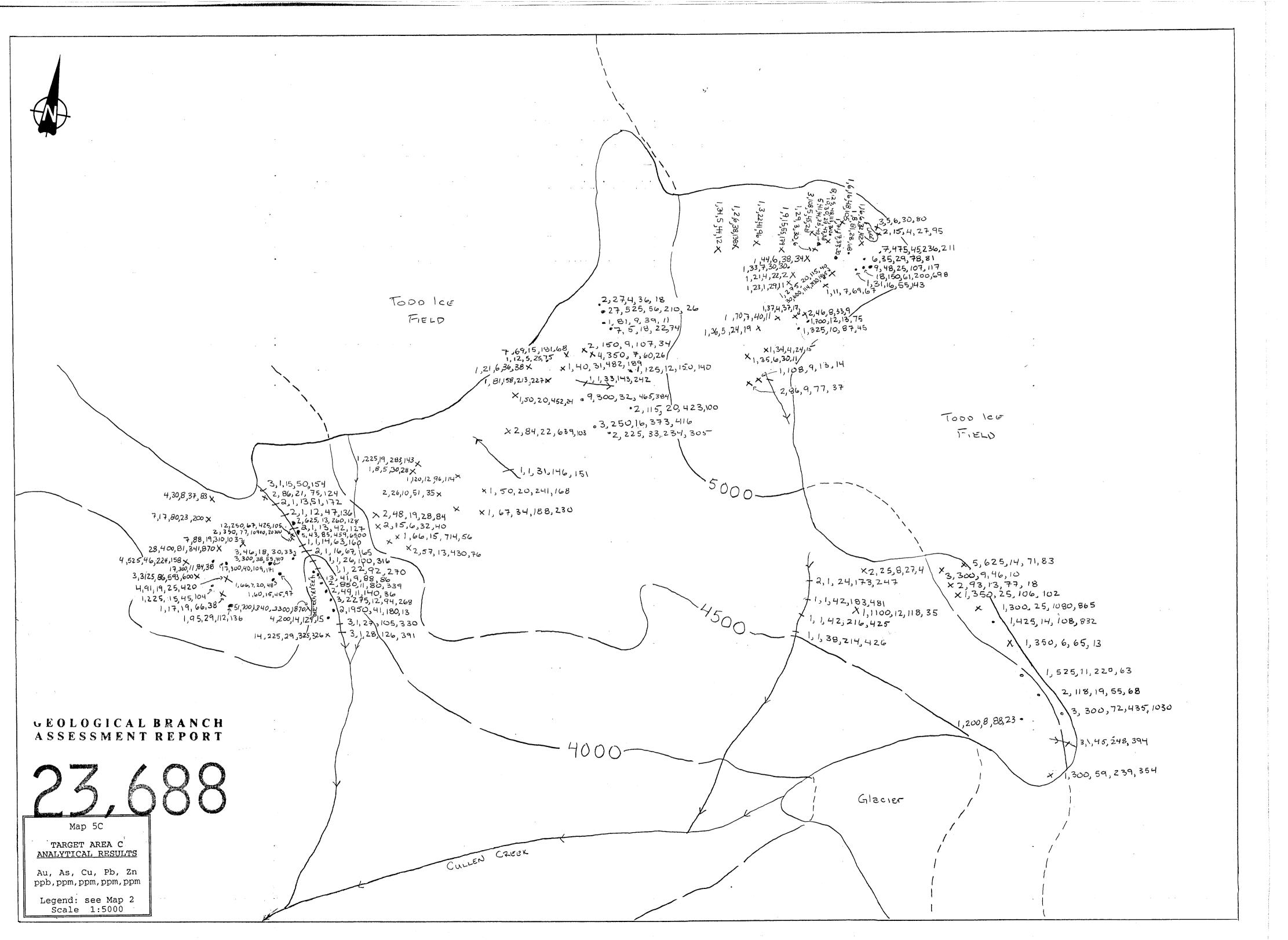
· · · · · ·

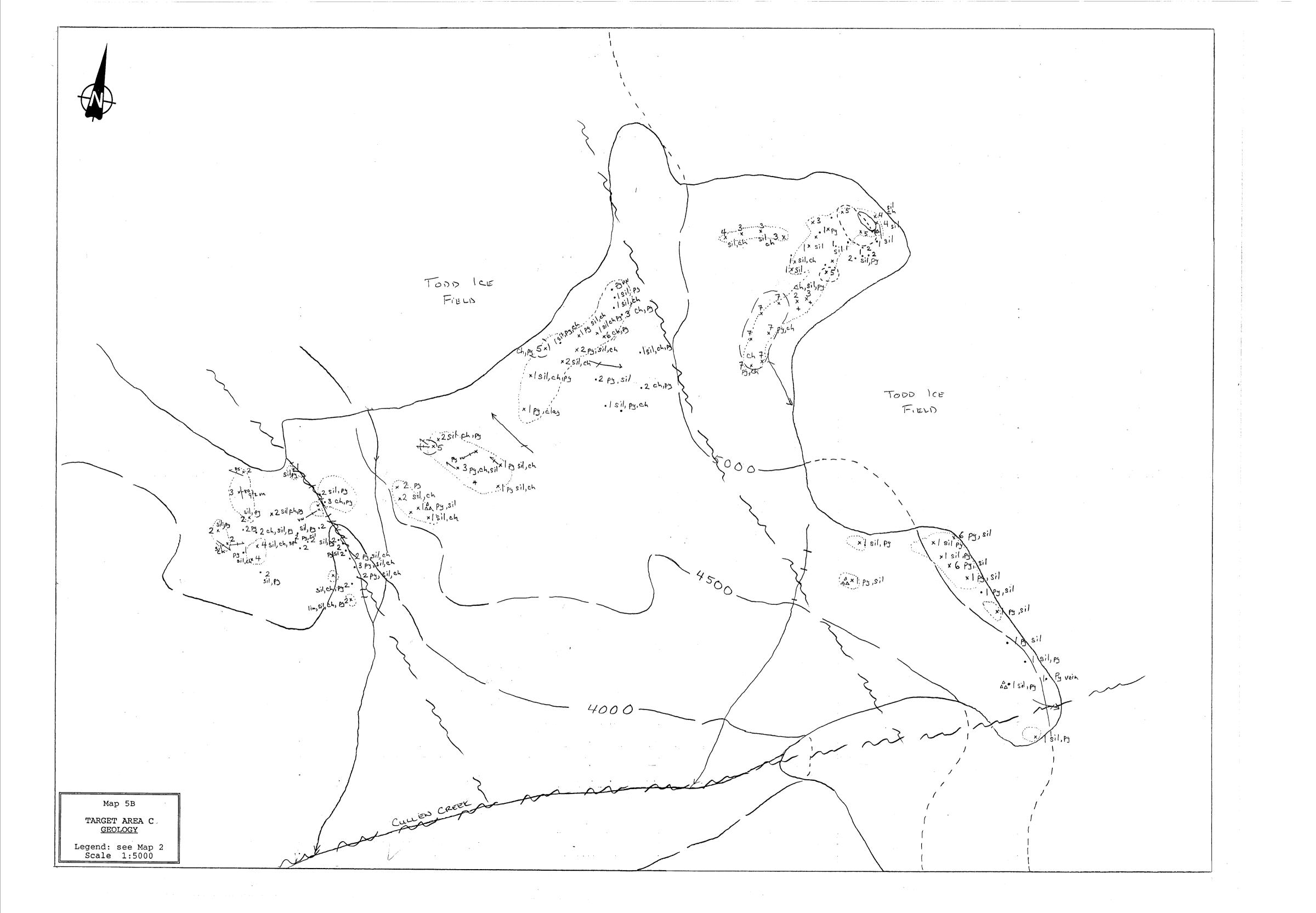
COMP: GEOFINE EXPLORATION

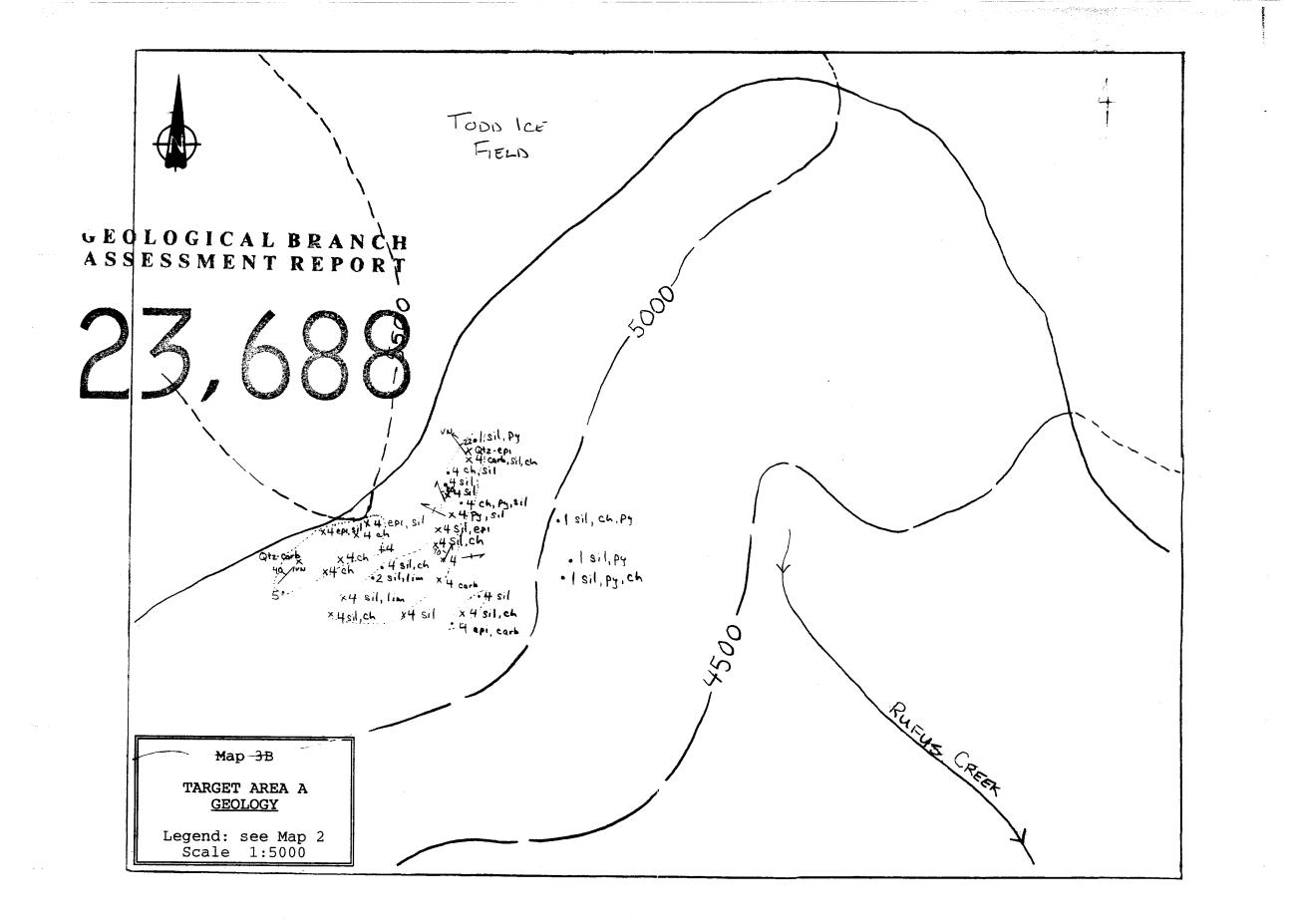
PROJ: 6200

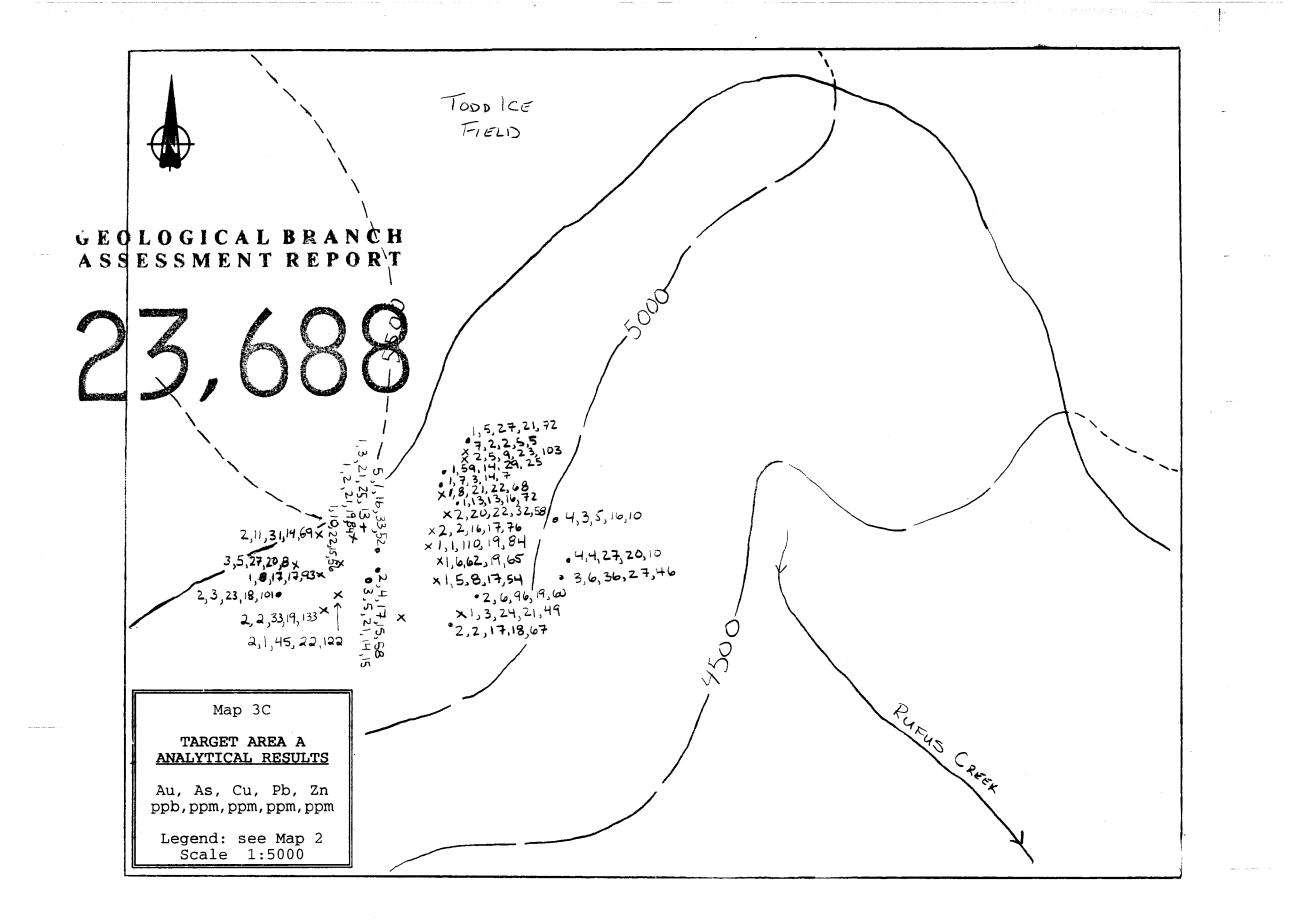
3

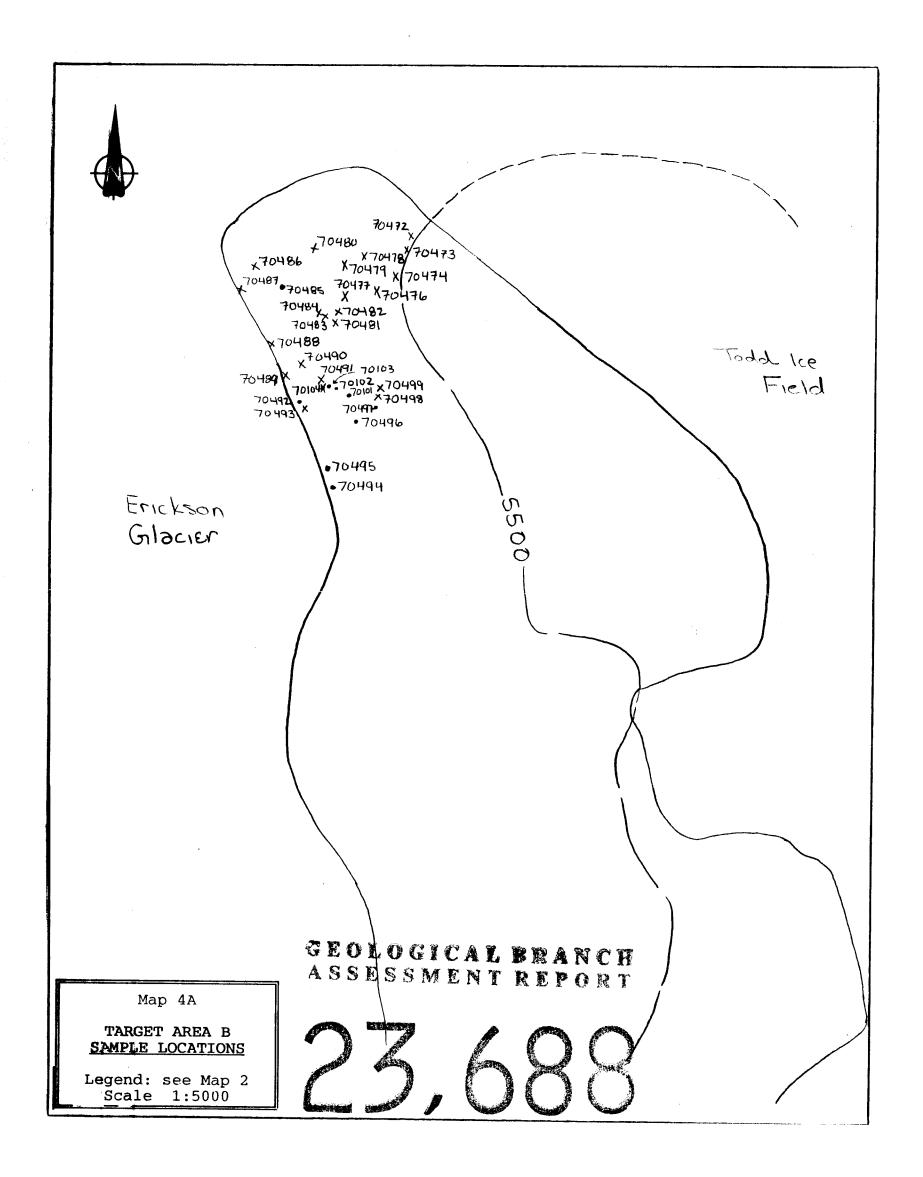
ATTN: David Molloy

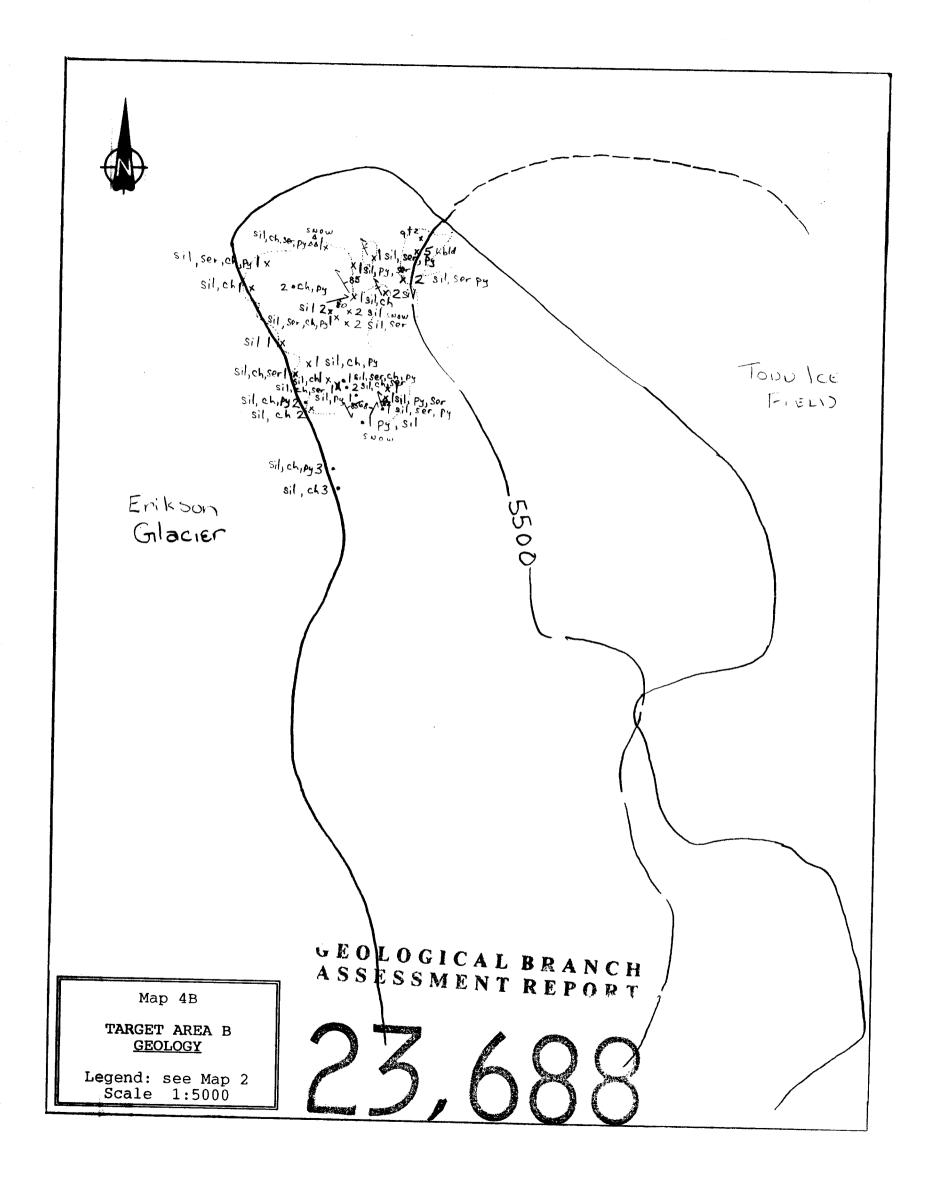

MIN-EN LABS --- ICP REPORT

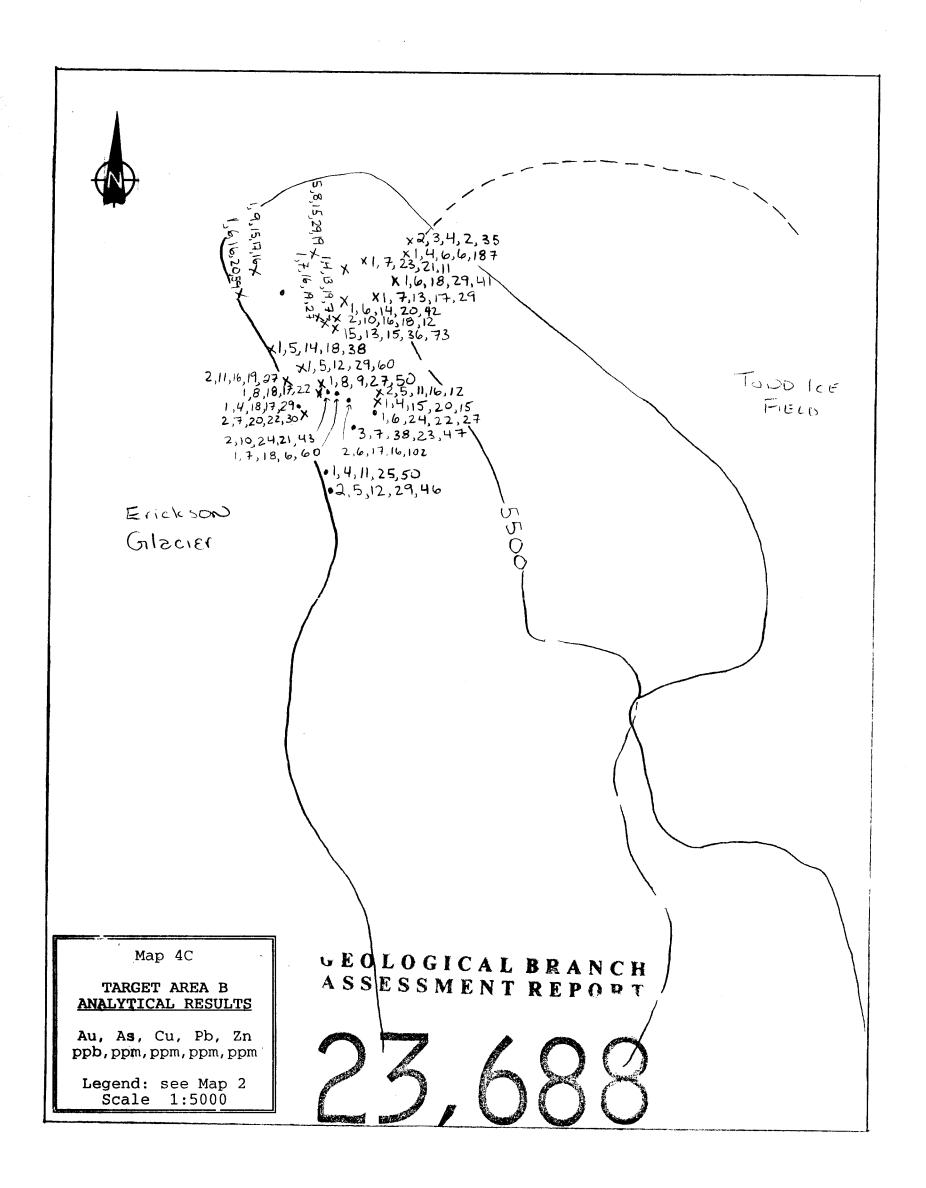

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 TEL:(604)980-5814 FAX:(604)980-9621 FILE NO: 45-0204-5J1+2+3

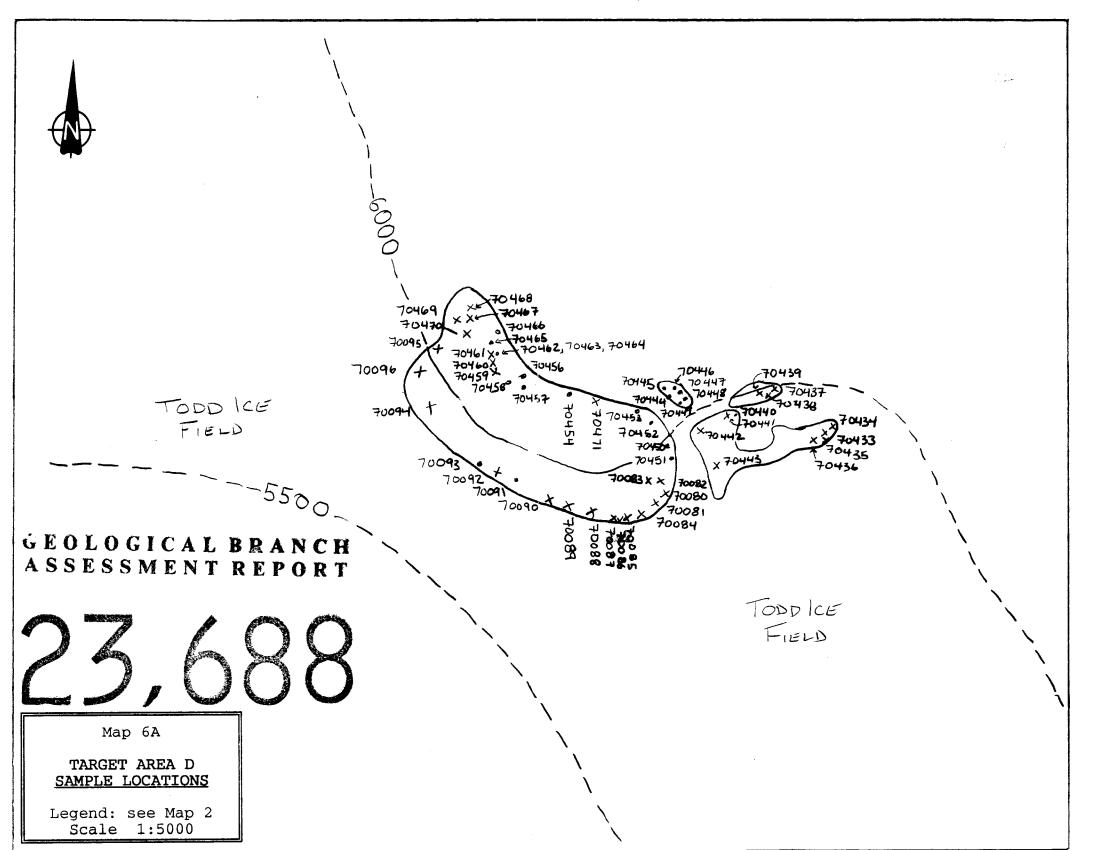

DATE: 94/08/23

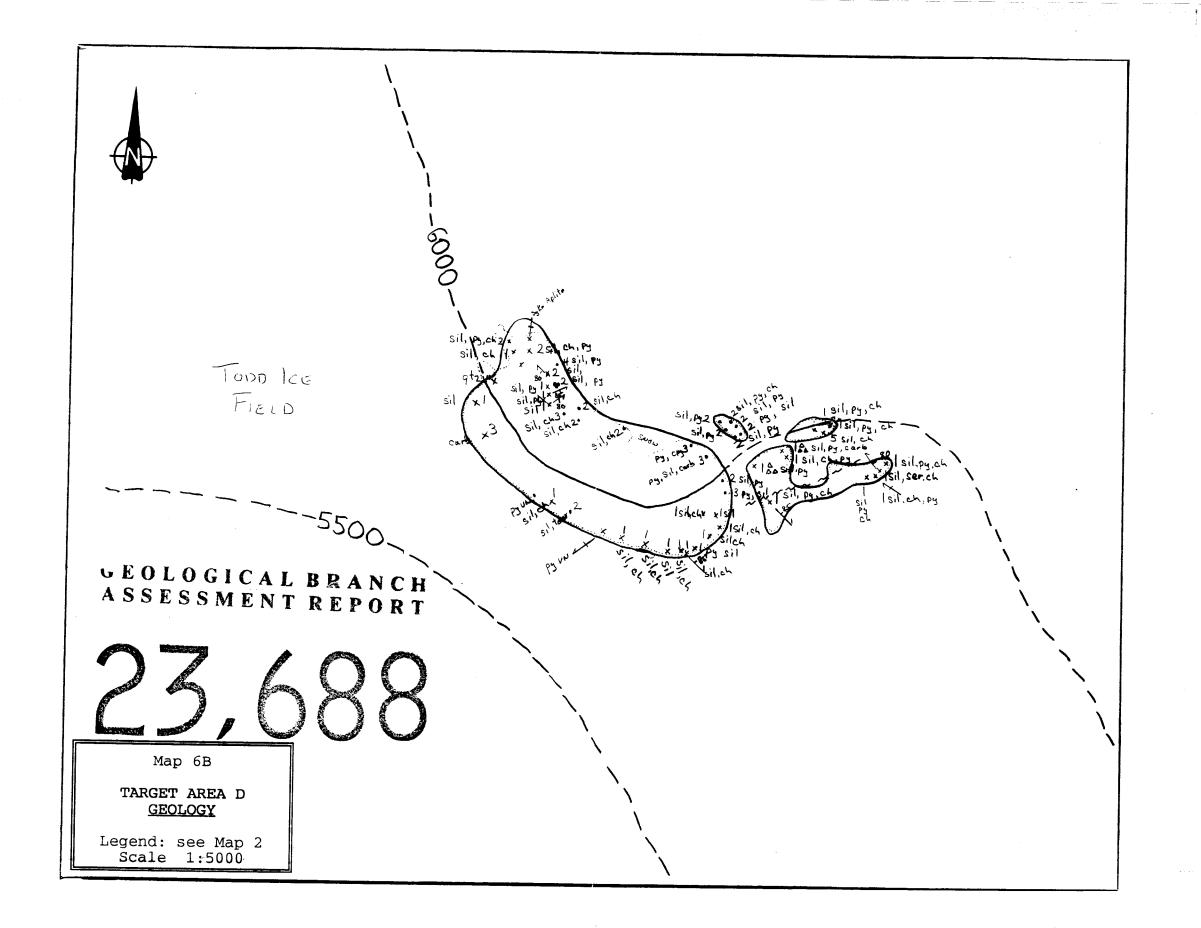

* stream * (ACT:F31)

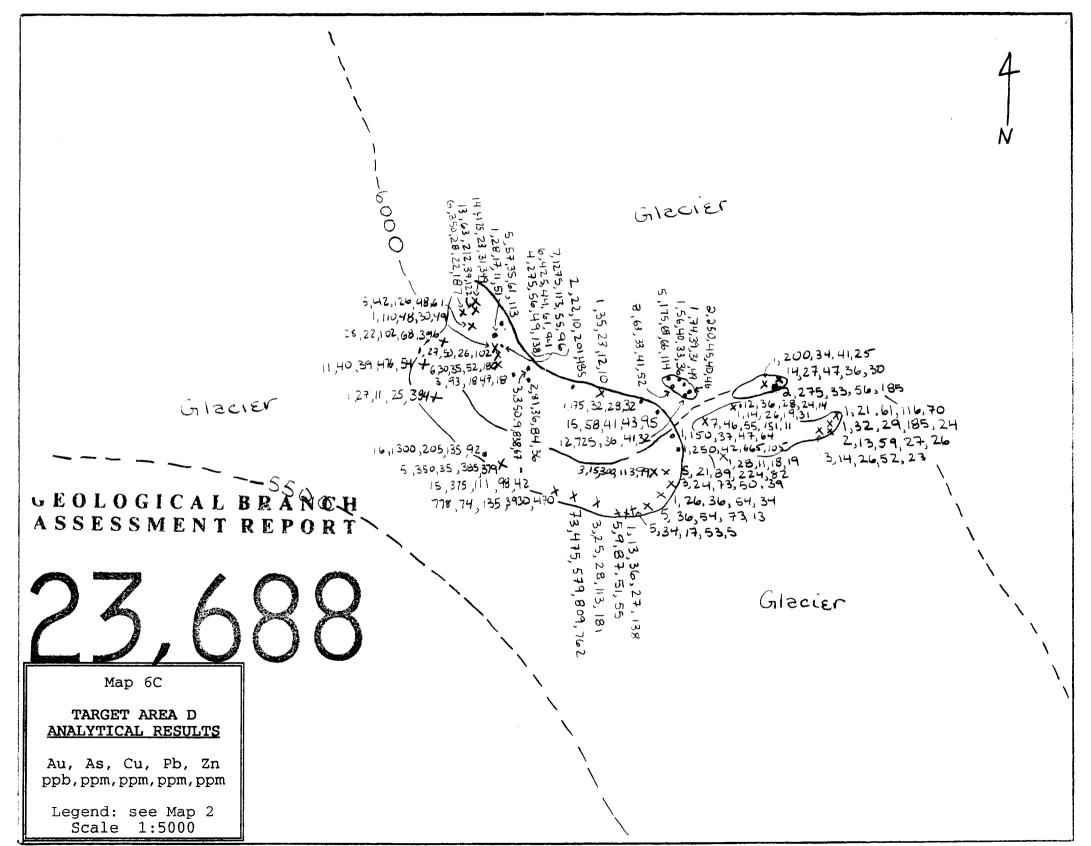

Image: Print Print <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th>3014</th><th></th><th></th><th>1)200-</th><th>9021</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>stre</th><th>am *</th><th>(A)</th><th>CT:F31</th></t<>										_				3014			1)200-	9021												stre	am *	(A)	CT:F31
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			AL %		-				CA %				FE %	K %							•					TI %						R Au	-Fire PPB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70205 70214 70216	.6	.66 .77 .69	1 1 1 1	1 1 1 1	365 525 361	1.3 1.4 1.0	7 8 7	.37	.1	8 6	17 20 18	4.38 4.66 3.27	. 19	7 7 5	.53 .47 .32	475 861 1208	1 1 2 2	.01 .01 .01 .01	20 19 20 16	1770 1470 1580 1340	77 42 55 63	8 9 11 11	79 64 74 65	2345	.07 .08 .09 .07	85.3 85.4 93.0 50.1	117 93 137 162	1 1 1 1	1 1 2 1	3 3 4 2	7 7 8 5 2	3 1 1 3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	70238 70240 70241	.4	.67 .69 .83	1 1 1 1	1 1 1 1	516 283 215	1.1 1.2 1.4	8 7 8	.31 .31 .33	.1 .1 .1	8 8 11	22 24 28	5.04 4.52 5.15	.31 .21 .21	5 5 8	.36 .34 .53	604 736 745	1 1 2	.01 .01 .01	22 19 24	1370 1590 1460	45 53 65	8 11 10	65 60 64	2 4 3	.09 .08 .10	108.2 86.3 113.5	108 126 117	1 1 1 1	222	5 1 3 4	2 9 8 9 3	2 2 1 1 3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	70277 70284 70285	.1 .1 .9	.86 .91 .81	1 1 1 1	1	604 1423 266	1.2 1.3 1.4	8 8 8	.40 .34 .32	.1	8 10 11	20 26 26 17	3.93 4.36 5.02	.22 .26 .24 .24	11 11 7	.68 .60 .43	1164 1044 838	233	.01 .01 .01	24 25 23	1570 1430 1380	50 55 65	11 12 12	71 92 63	4 3 4 3	.10 .08 .08 .08	120.9 74.4 91.6 101.3	135 121 146 143	1 1 1 1	1 2 2	4 1 4 3	3 9 9 9	6 4 3 1 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70314 70315 70325	.1 .1 .3	.66 1.07 .62	1 1 1 1	1 1 1 1	351 631 305	1.0 1.4 .8	7 9 5	.33 .31 .43	.1	6 10 5	25 16	3.17 5.94 2.95	.20 .28 .20	5 12 4	.30 .60 .29	1916 1566 1324	323	.01 .01 .01	22 30 17	1340 1340 1130	78 75 72	12 13 11	69 78 63	524	.06 .10 .05	39.8 134.4 33.0	225 178 193	1 1 1 1	ī	2 5 1 2	9 5 1 5 4	3 4 1 1 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70339 70340 70341		.85 .87 .84	1 1 1 1	1 1 1 1	377 427 583	1.4 1.2	9 9 9	.61 .66 .74	.1 .1 .1	10 9 9	23 25 22	5.81 3.80 5.10	.13 .19 .16 .29	10 9 10	.95 .82 .88	1753 1963 1465	3 4 3	.01 .01 .01	29 25 27	1190 1320 1250	46 57 44	10 11 9	109 107 124	443	.07 .08 .09	147.1 80.0 111.8	208 214 178	1 1 1 1 1	2 1 1	4 1	6 2 4	1 10 60 4 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70359 70362 70369	.1	1.78 2.09 1.30	1 1 1 1	1 1 1 1	162 511 361	1.1 2.1 1.8	-	.08 .17 .28 .33	.1 .1 .1	4 8 12	29	4.09 4.80 5.00	.23 .37	12 18 15	.28 .48 .50	290 2394 1664	774	.01 .03 .01	19 30 26	1710 1680 1570	108 79 110	23 27 18	57 79 76	1 3 1	.05 .11 .08	75.3 78.4 101.1	152 160 167	1 2 1 1	2	4 5 4		1 5 5 1 3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70372 70377 70378		.93 .88 .83	1 1 1 1	1 1 1 1	424 364 499	1.3 1.7 1.3	7 9	.31 .29 .28	.1 .1 .1	9 11 8	21 22 19	4.99 8.45 4.40	.27 .24 .23 .21	14 15 15	.55 .56 .56	1134 907 985	1 1 2	.01 .01 .01	26 33 22	1460 1300 1230	59 50 46	10 9 10	73 74 66	3 2 3	.10 .15 .08	107.6 214.8 93.8	137 122 116	1 1 1 1	2 3	4 6 2 3	8 9 6 8 4	5 1 3 3 3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70050A 70051 70053		.64	1 1 1 1	1 1 1 1 1 1	306 157 152	1.0 .9 .8	54344	.40 .37	.4 .7	5 4	16 15 13	2.95 2.86 2.78	. 15	9	.29 .23 .23	1349 937 954	222	.01 .01 .01	17 14 15	1130 850 860	69 50 51	10 10 10	63 56 55	5 5 6	.05 .04 .04	33.1 33.2 33.1	195 154 172	1 1 1 1 1	1 1 1 1	212	3 3 4 4 3	4 2 3 2 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70060 70061 70062	.5 1.2 1.1	.58 .55 .68	1 1 1 1	1 1 1 1	162 199 406	.9 .7 1.2	- Ž	.28 .30 .45	.1 .5 1.7	556	14 16 26	2.97 2.86 3.42	.17	8 10	.24 .22 .29	940 852 1303	2 2 3	.01 .01 .01	15 14 20	860 840 1100	63 67 100	10 10 14	54 57 87	556	.05 .04 .04	35.7 31.7 31.7	160 165 316	1 1 1 1 1	1 1 1 1	1 1 2 2	3 4 5 4	2 1 2 1 1
70165 2.3 .87 1 1 202 1.8 4 .17 .1 8 38 4.25 .31 8 .18 1267 3 .01 21 1430 214 15 69 9 .03 33.5 426 1 2 2 70180 1.6 .75 1 1 125 1.0 3 .17 .1 5 31 2.79 .21 8 .22 349 3 .01 14 1080 146 12 52 10 .04 31.9 151 1	70073 70159 70162	1.4 6.2 2.6	.71 .62 .42	1 1 1 1		396 283 202	1.4 1.2 .7	34323	.50 .28 .11	2.0 5.0 .1	6	28 45 24	3.82 3.25 3.04	.20 .26 .12	10	.31 .13 .11	1340 1150 389	332	.01 .01 .01	23 16 14	1180 1270 960	126 248 173	14 20 13	93 68 42	5 12 9	.04 .01 .01	34.2 50.5 22.9	391 394 247	1 1 1 1		2 2 1	45523	3 3 3 2 1
70179 SOLL .7 .44 1 1 190 .9 1 .09 .1 4 36 4.61 .15 3 .11 292 1 .01 17 1050 67 6 31 57 .03 26.1 90 1 3 1	70165 70180 70185	2.3	.87 .75 .88	1 1 1 343	1 1 1 1	202 125 198	1.8 1.0 1.2	3 4 3 4 1	.17 .17 .18	.1 .1 .3	85	38 31 33	4.25 2.79 3.20	.31 .21	8 8 9	.18 .22 .23	1267 349 1360	3333	.01 .01 .01	21 14 20	1430 1080 1060	214 146 143	15 12 12	69 52 57	9 10 7	.03 .04 .03	33.5 31.9 36.3	426 151 242	1 1 1 1	2 1 2	2	3 3 4 5 1	1 1 1 1
70408 SOIL .1 1.53 1 14 346 1.8 6 .46 .1 7 16 4.26 .59 11 .68 810 3 .01 22 1550 33 14 92 2 .08 74.4 52 1 1 4				1	1 14			1 6			47			.15 .59								67 33	6	31 92	57 2	.03 .08	26.1 74.4	90 52	1	3 1	1 4	1 9	1 5

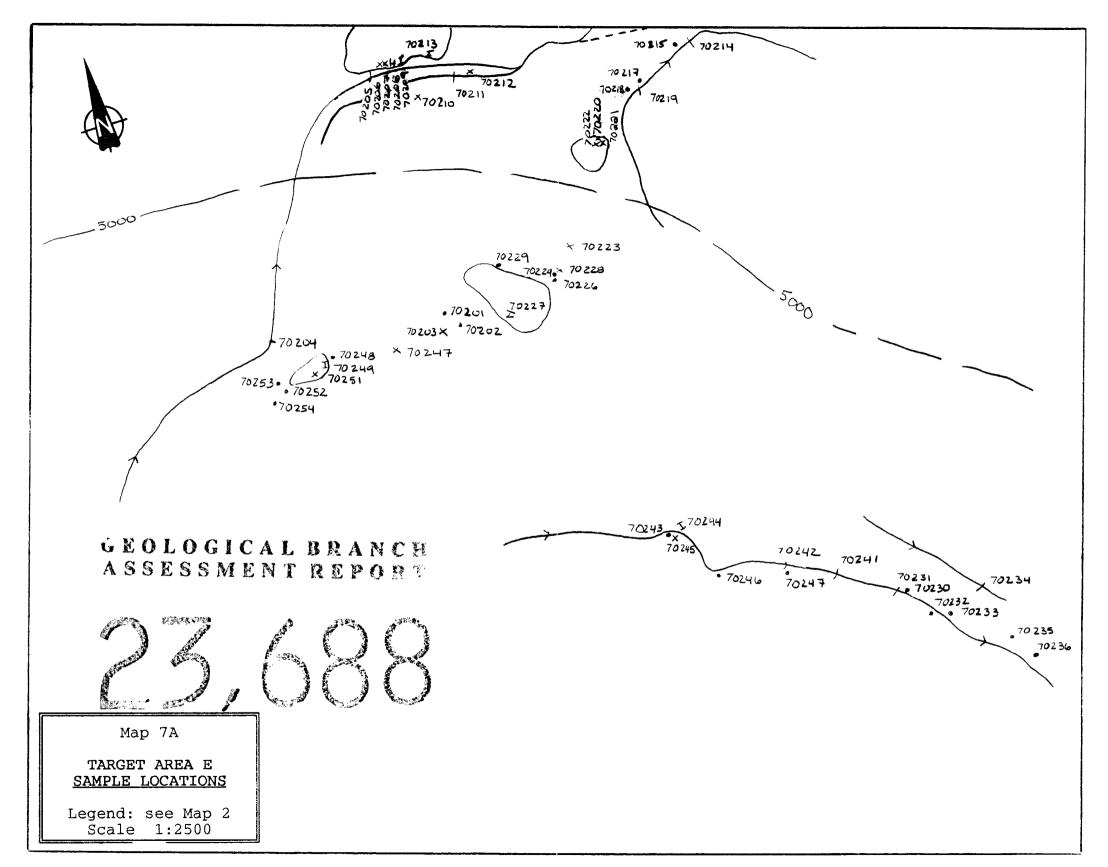


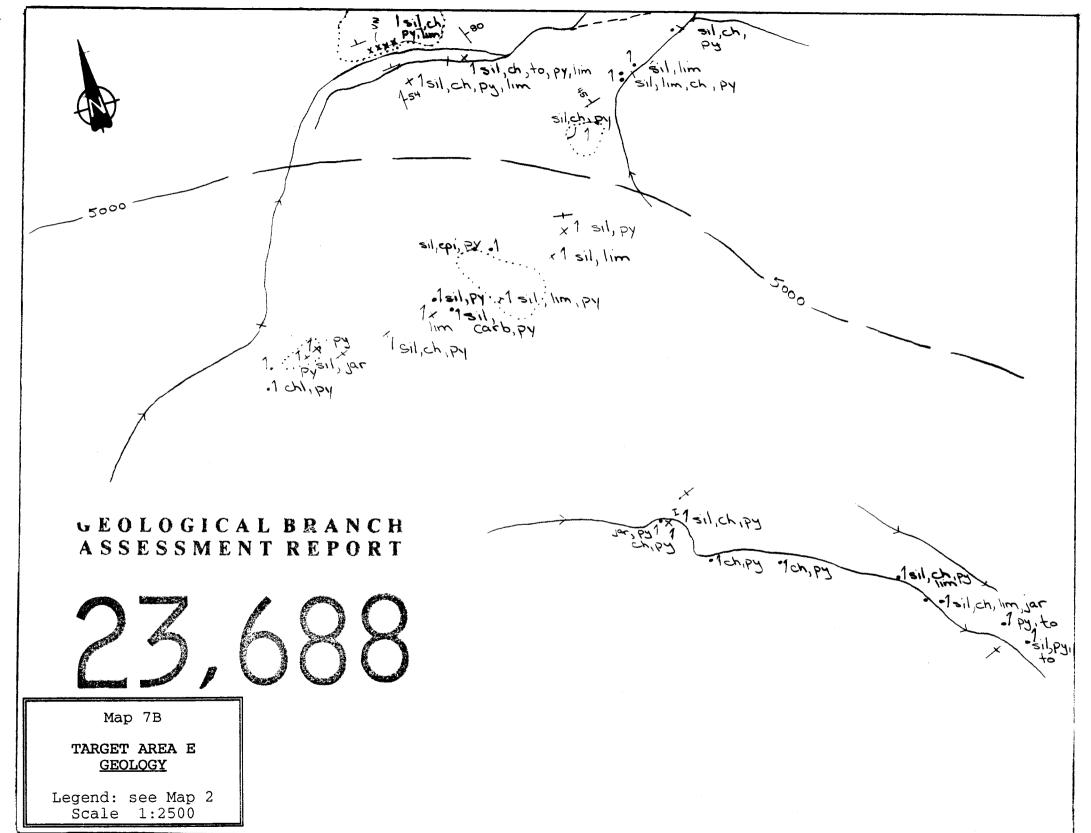


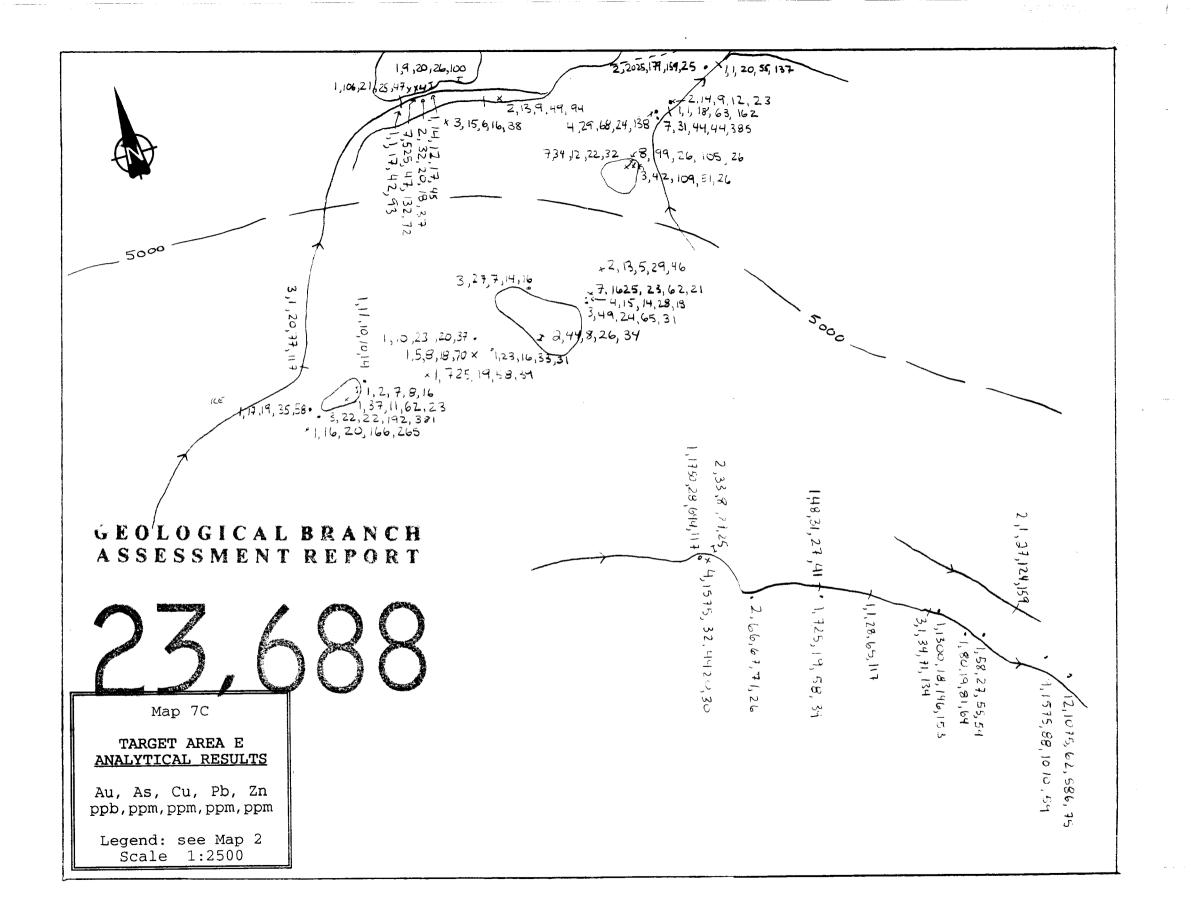


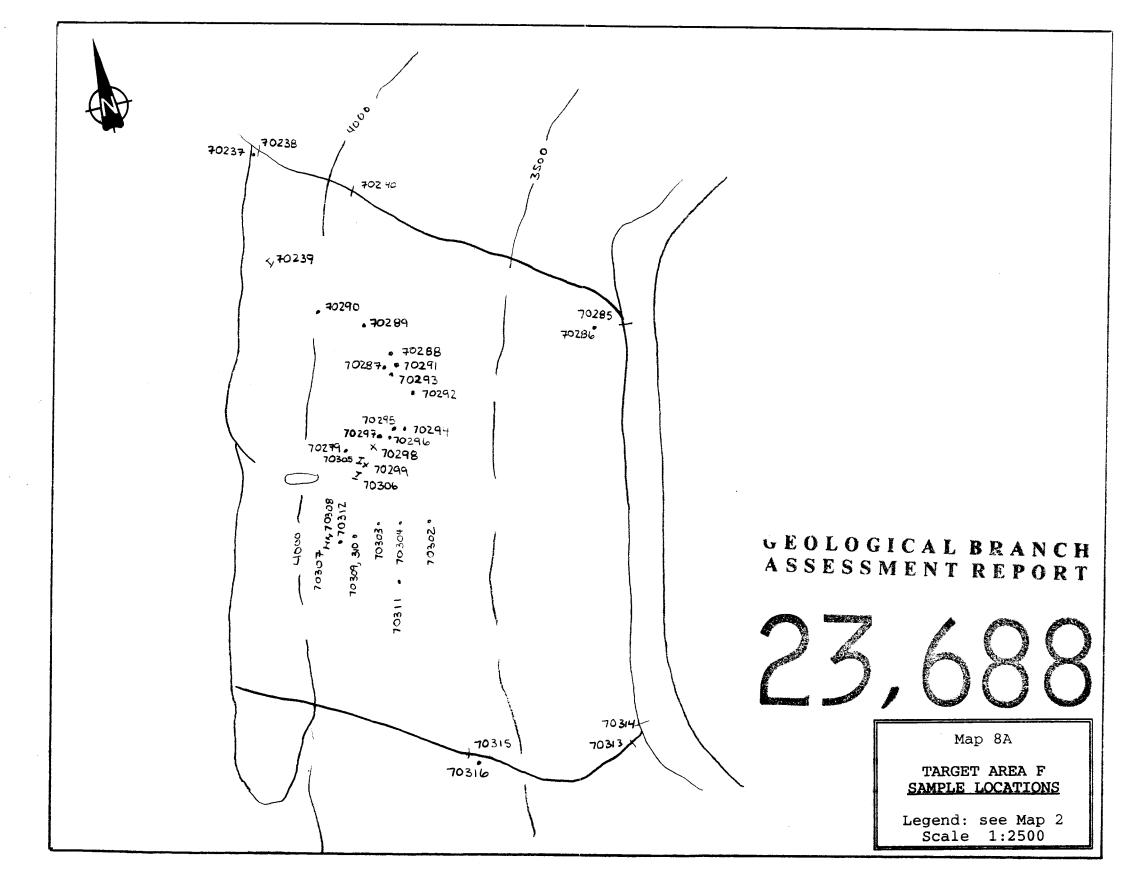

tion contro

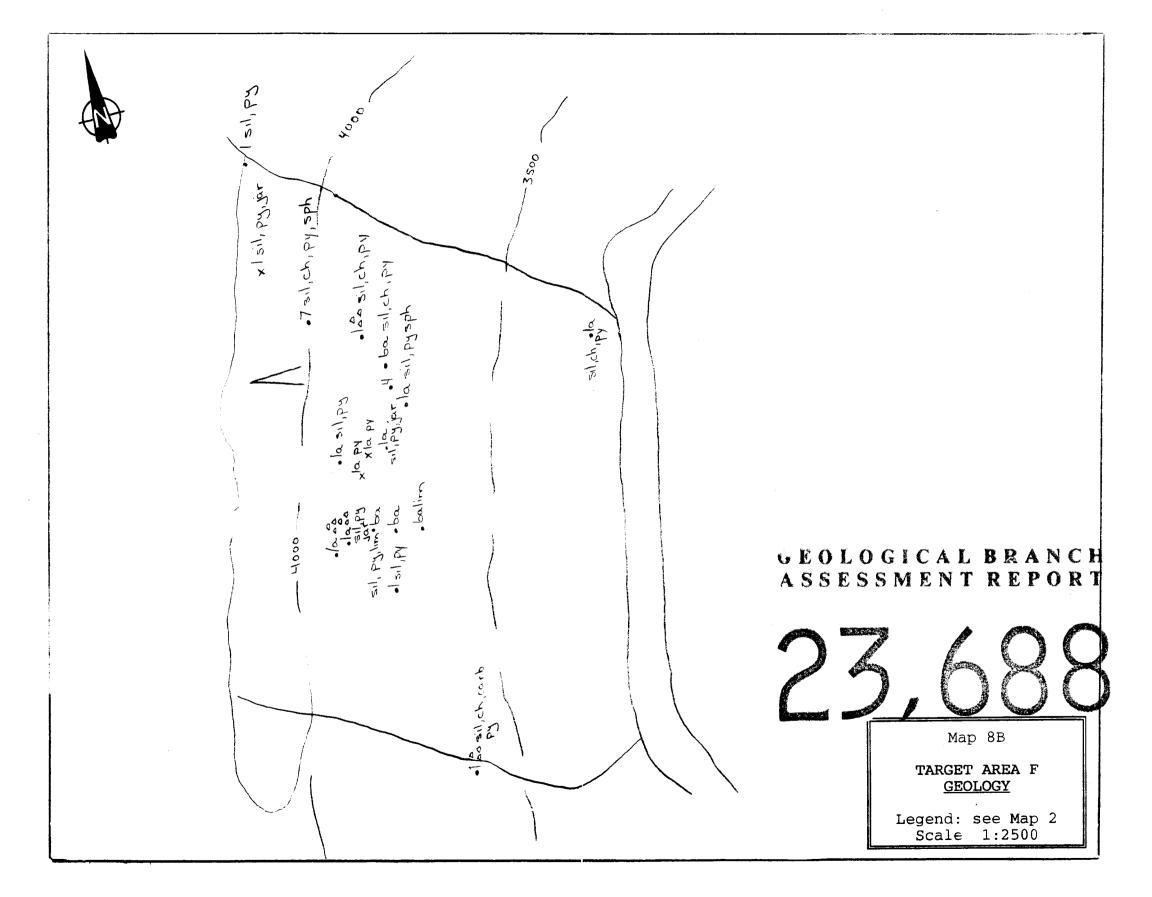




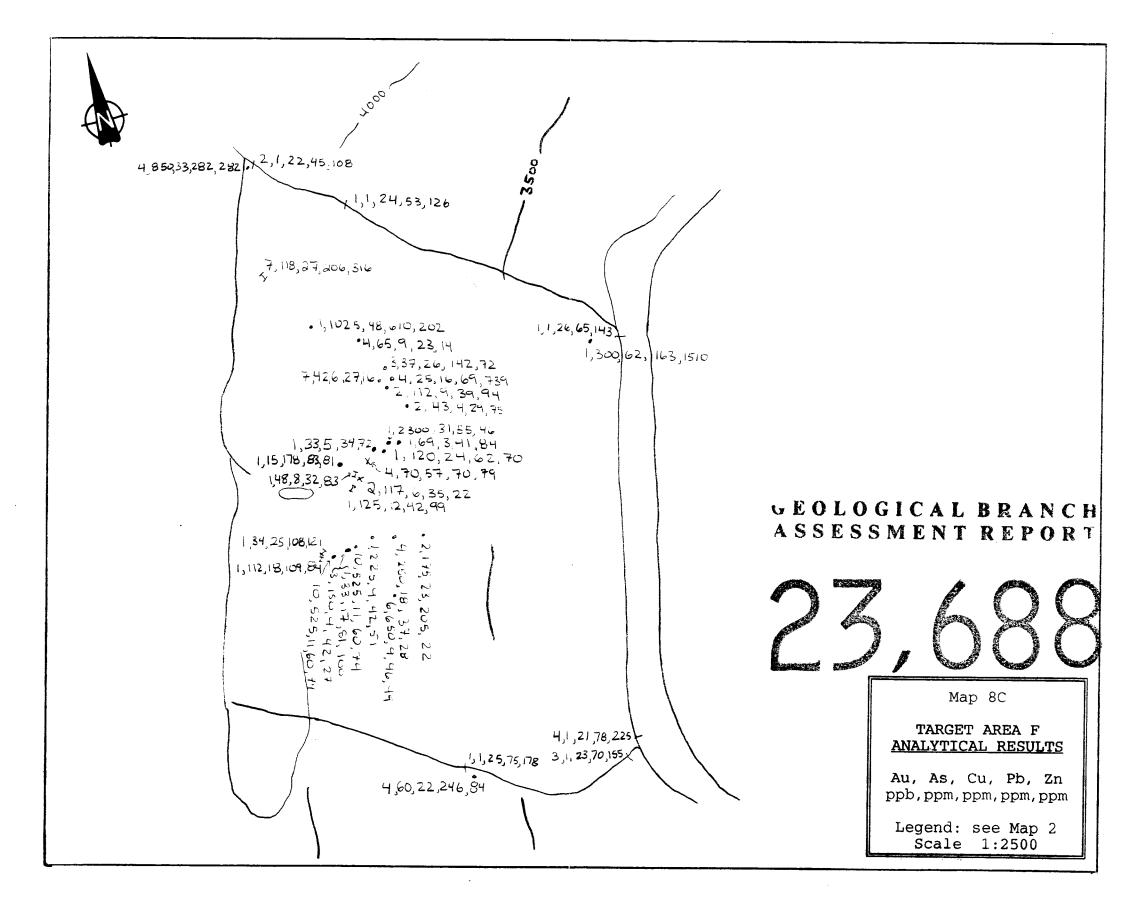

- 1.5 - 7 (2025) (20

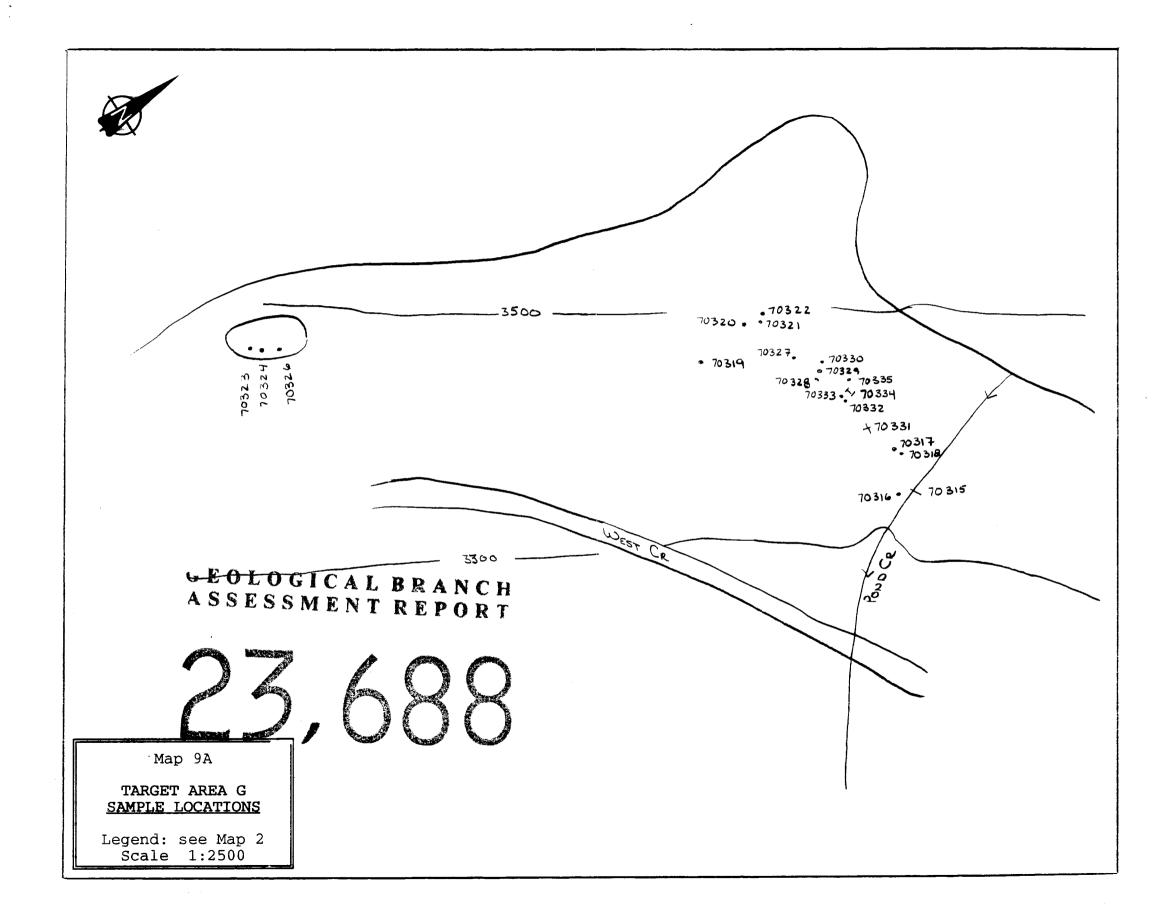


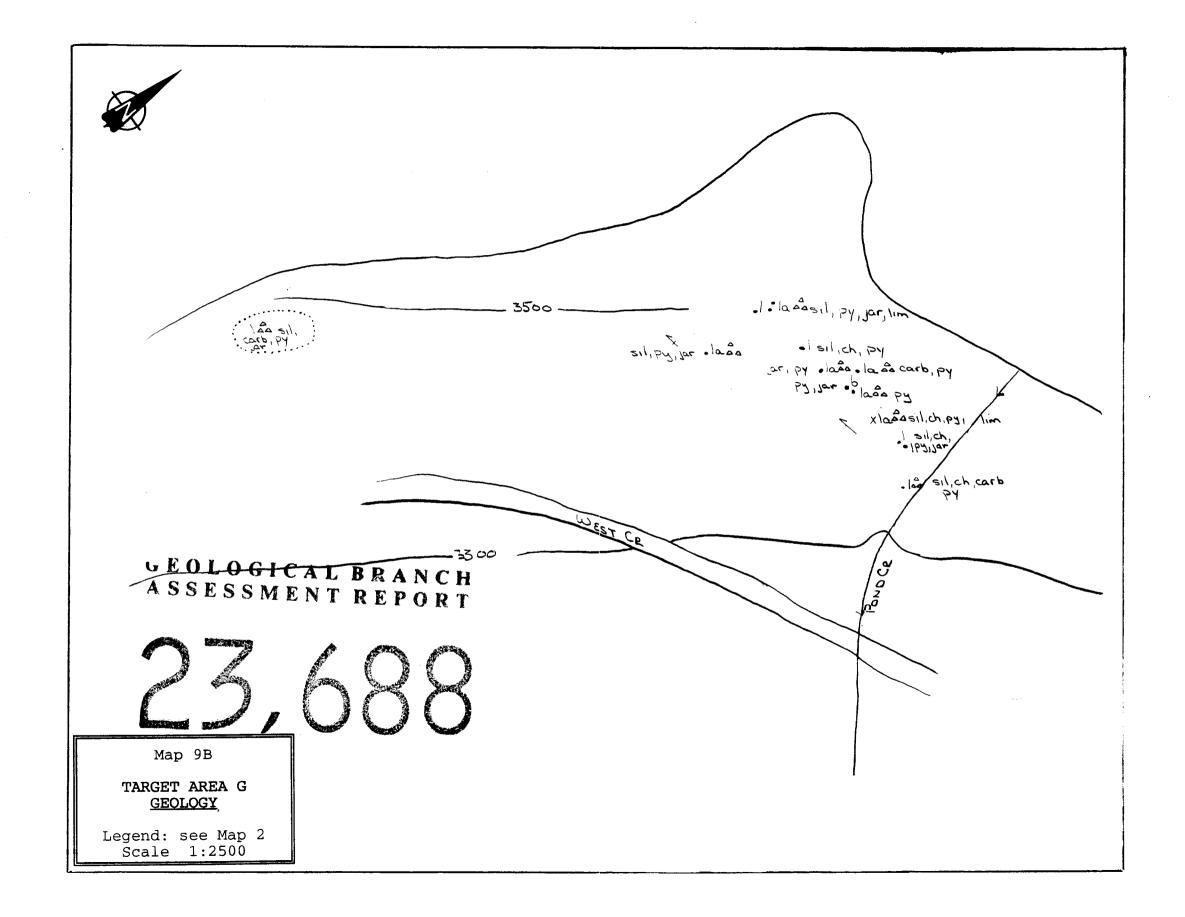


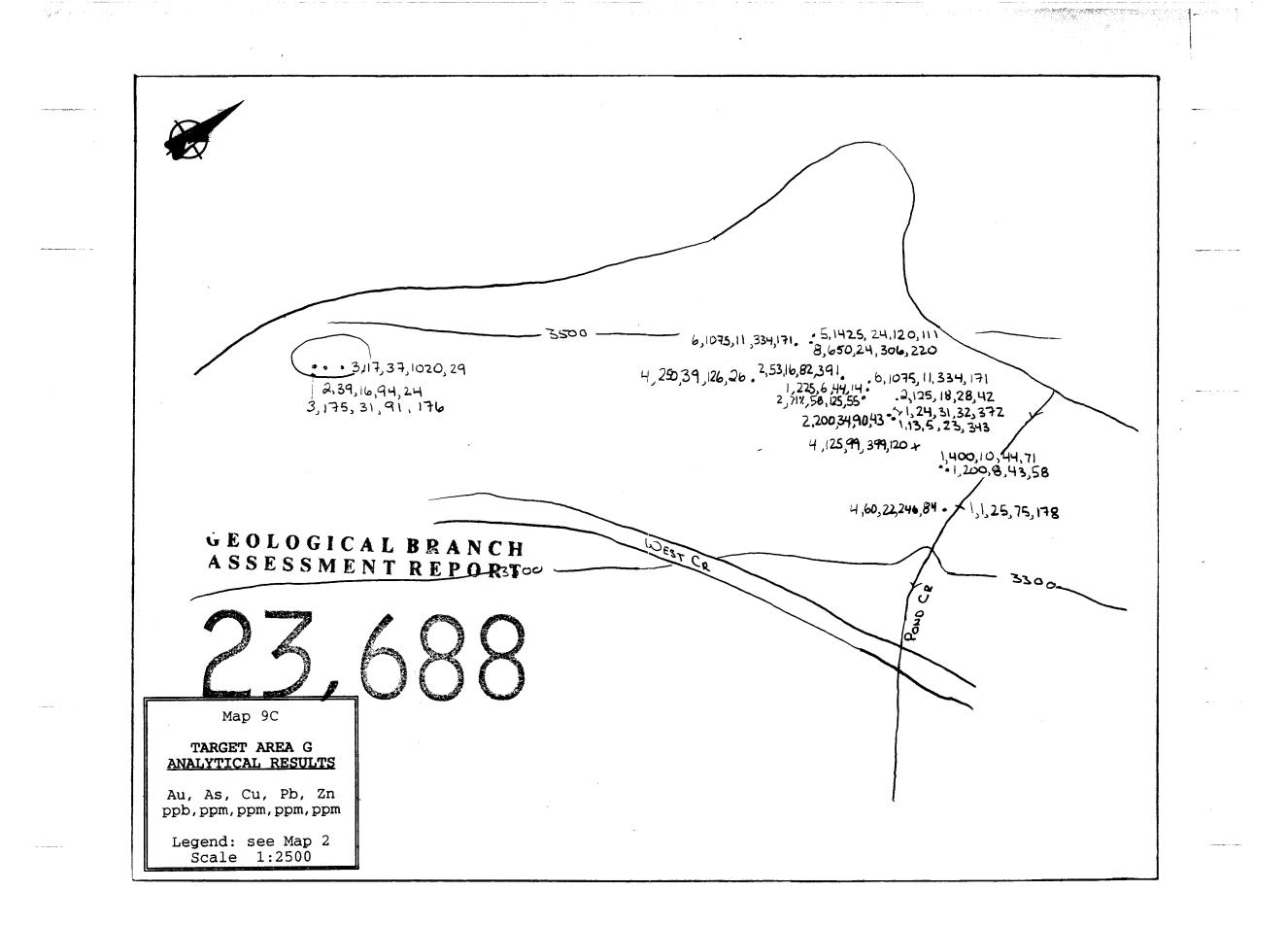


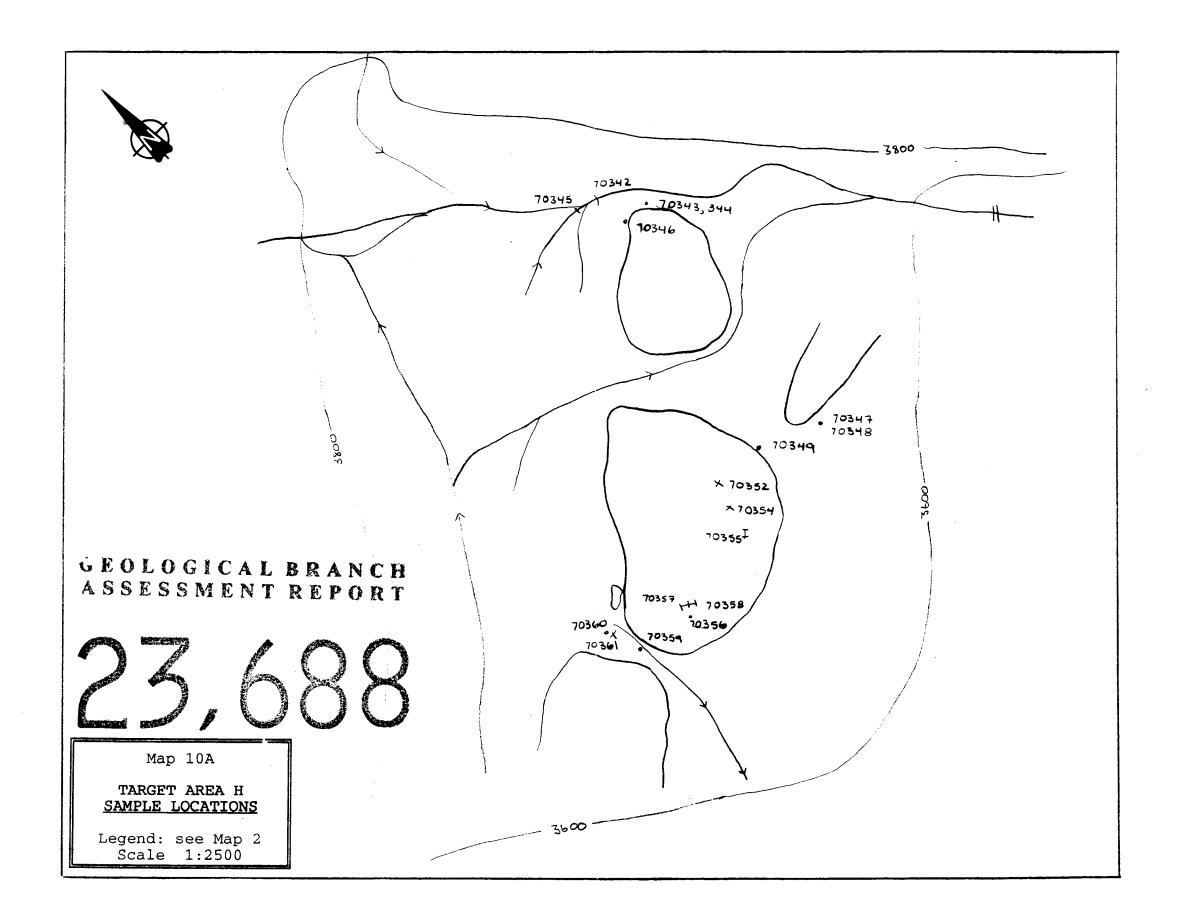
. . .

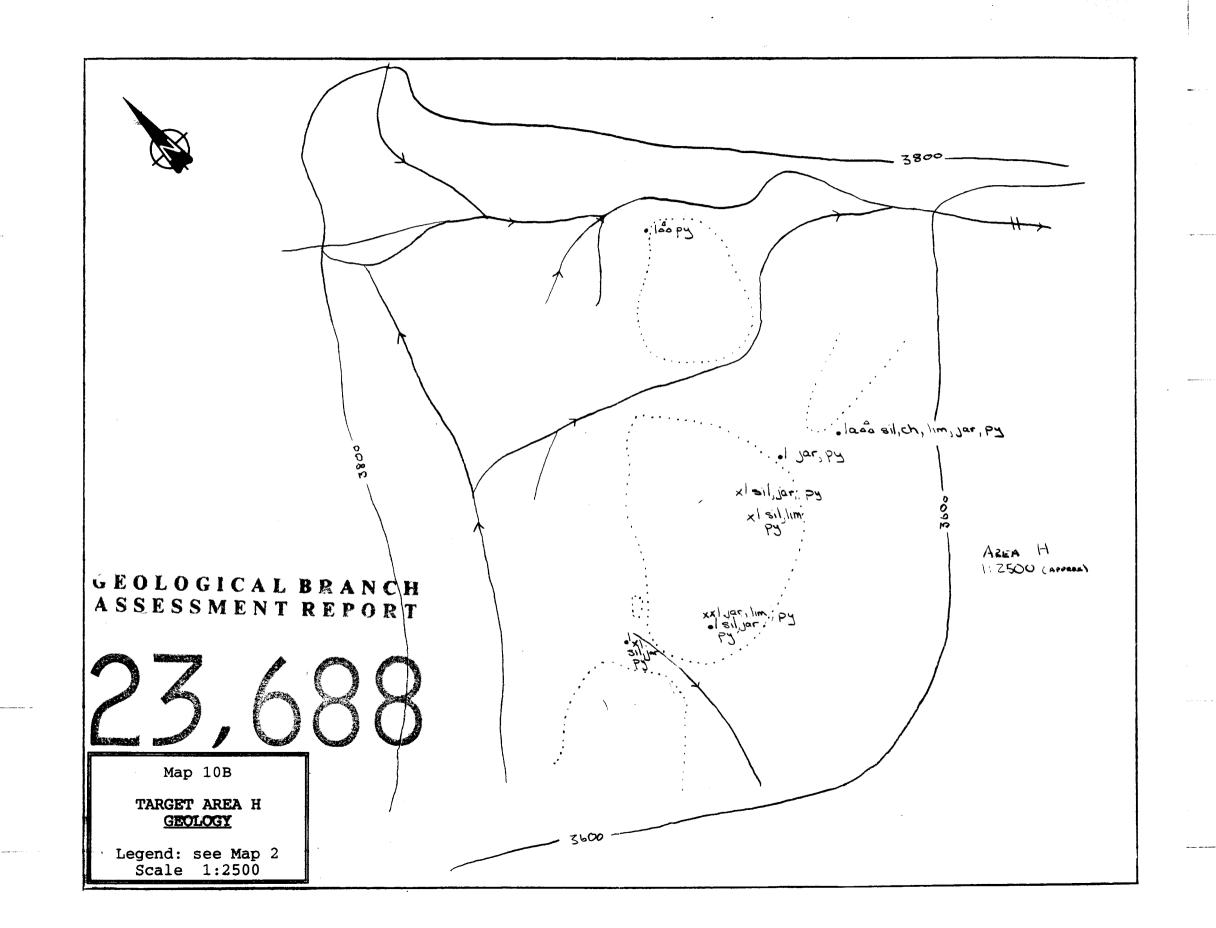


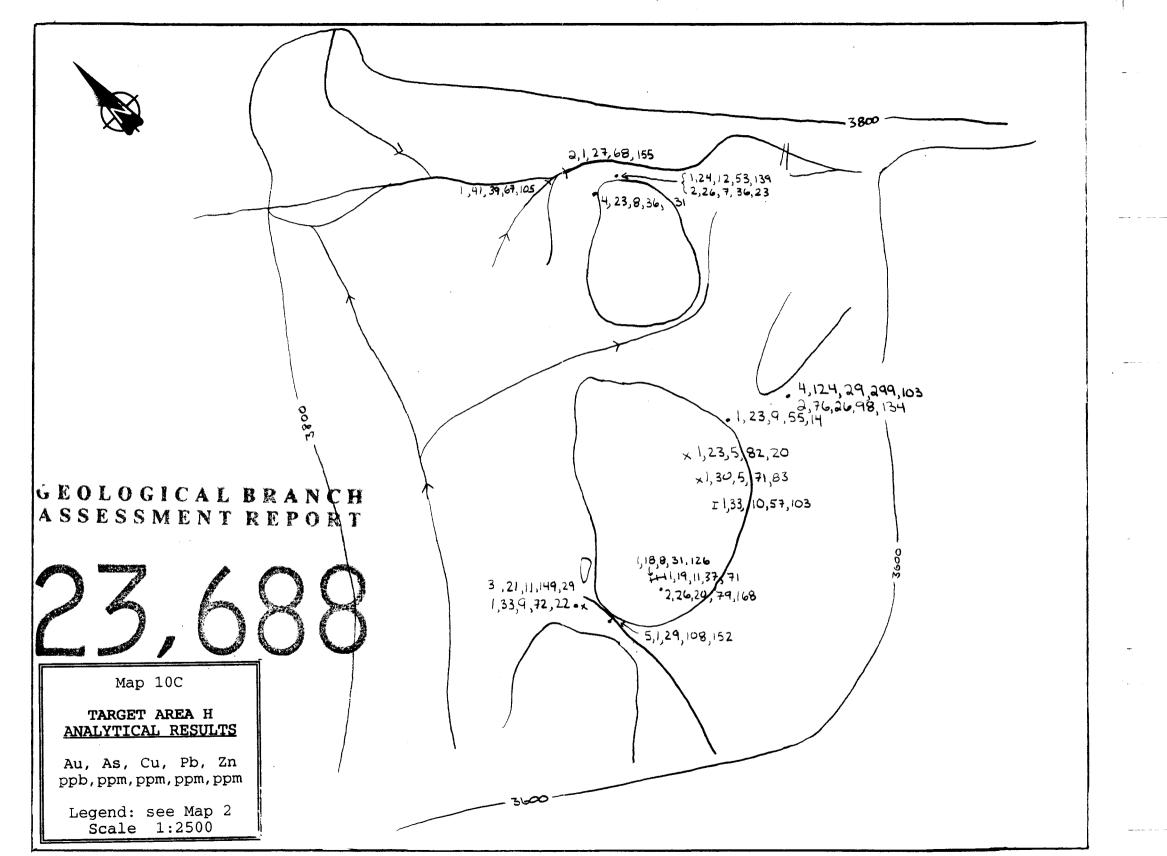


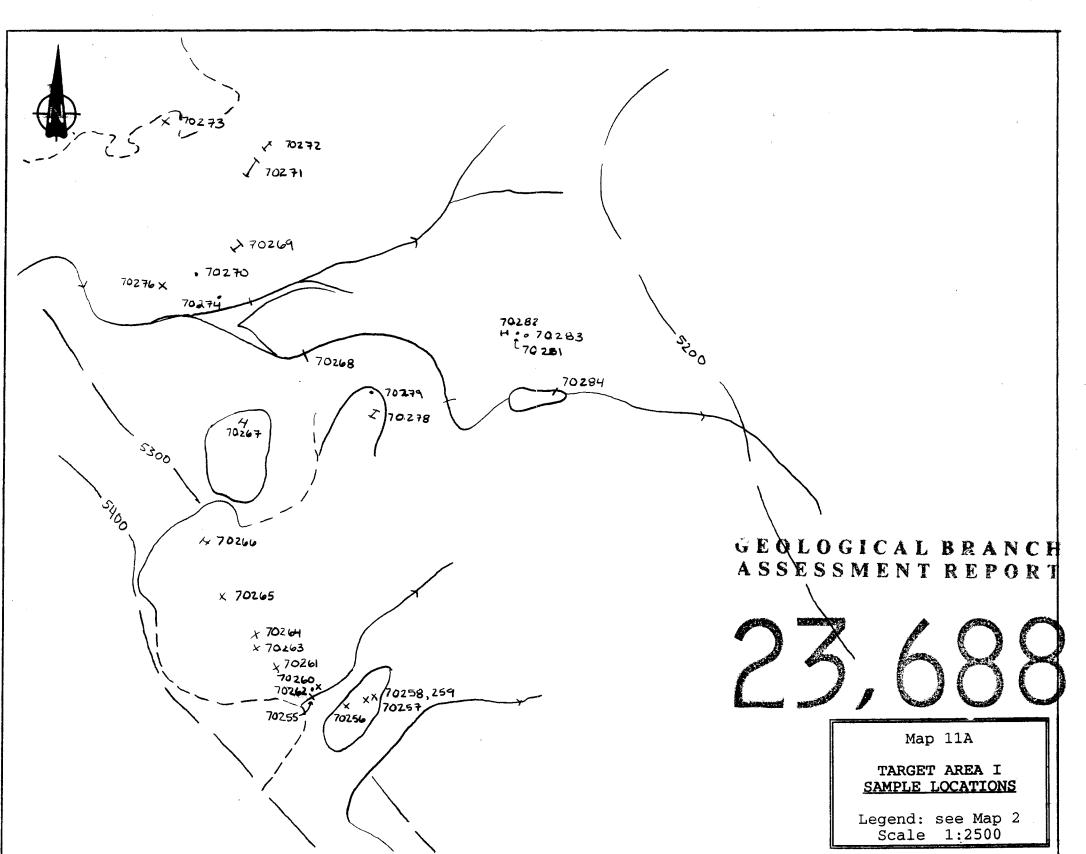


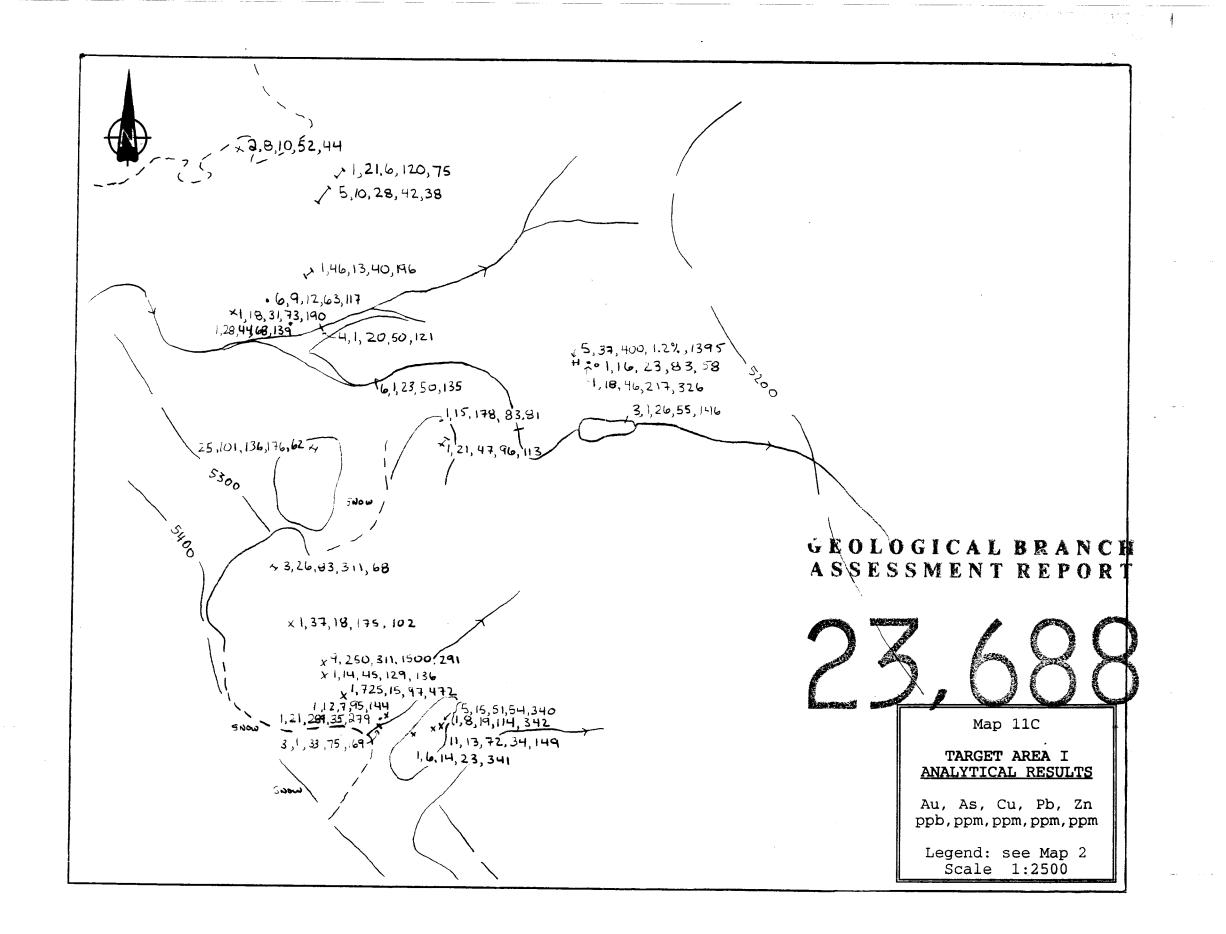


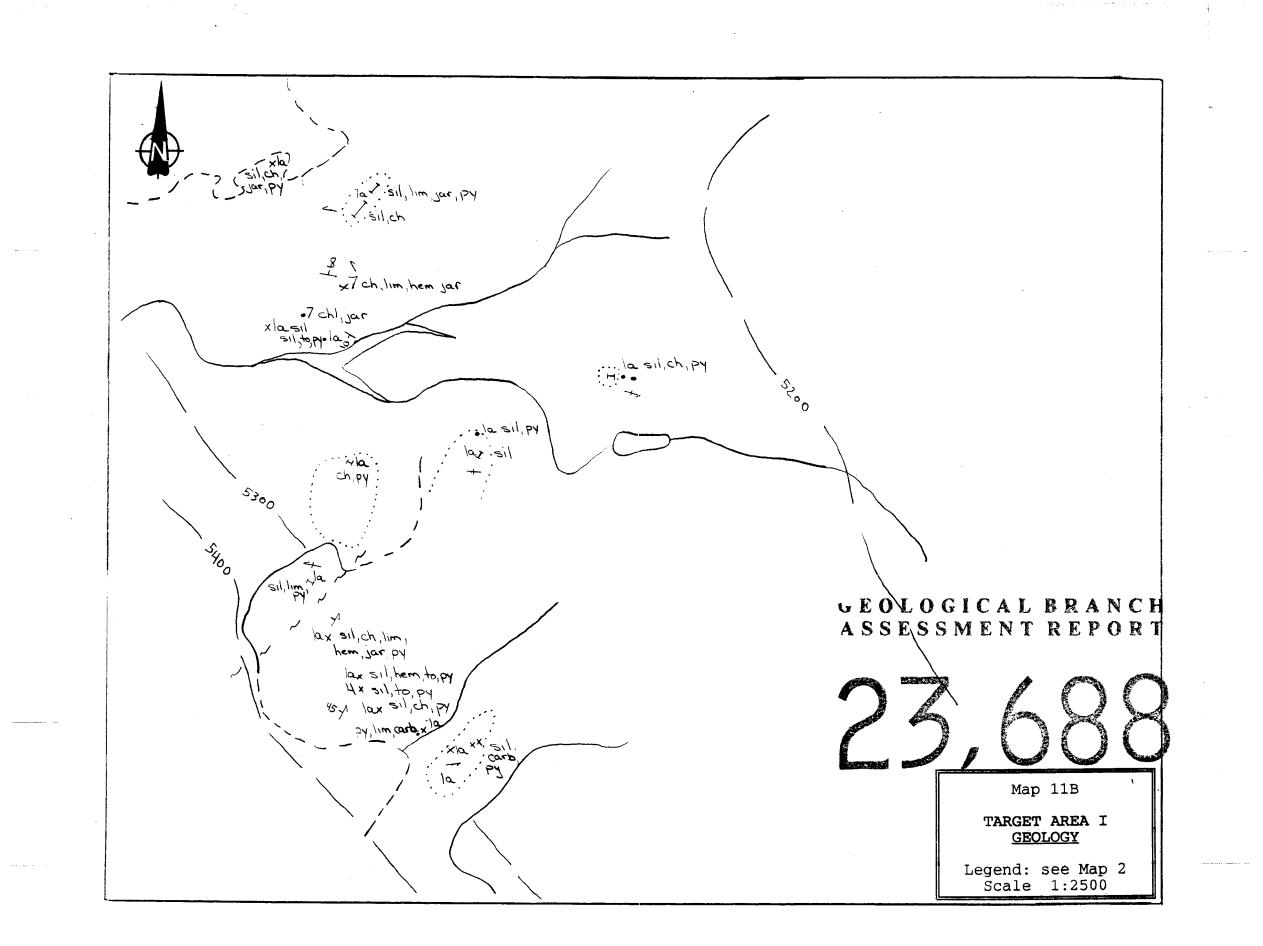

.

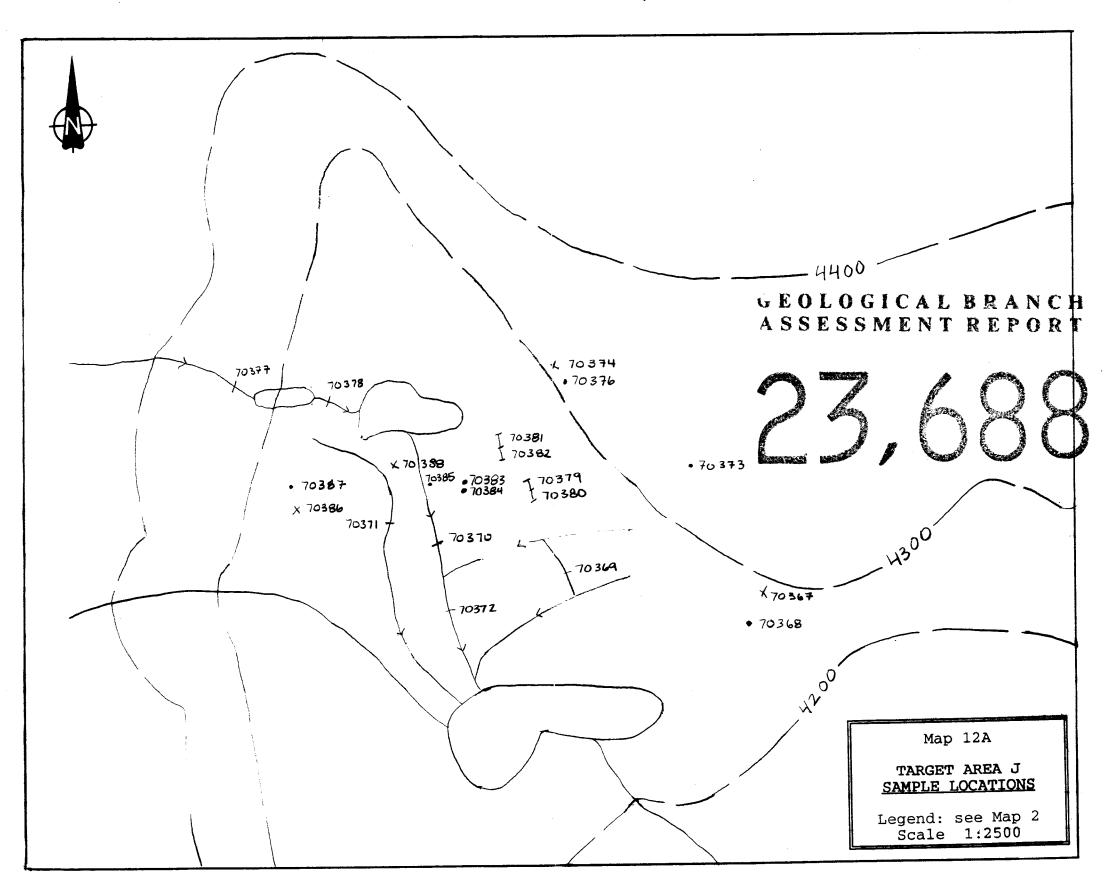




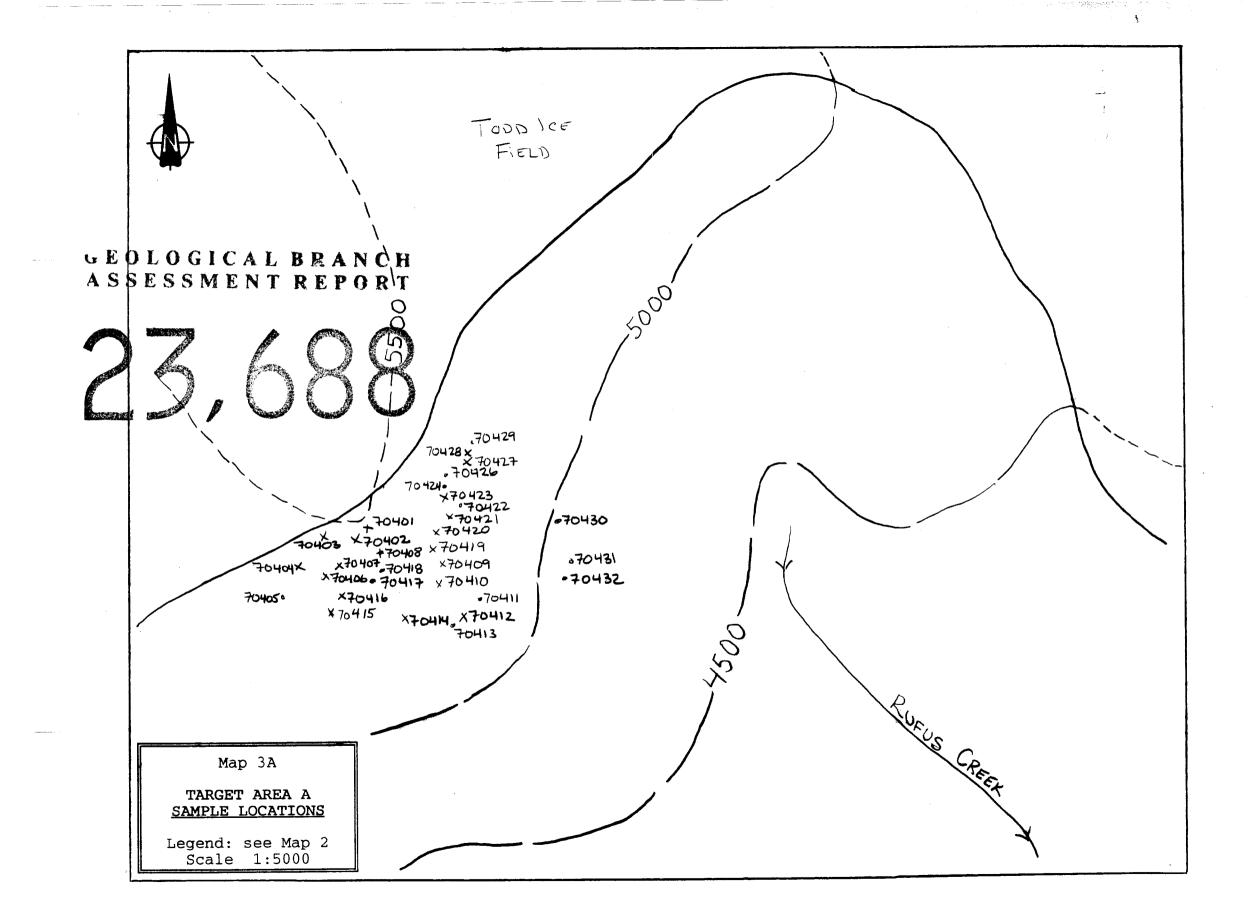


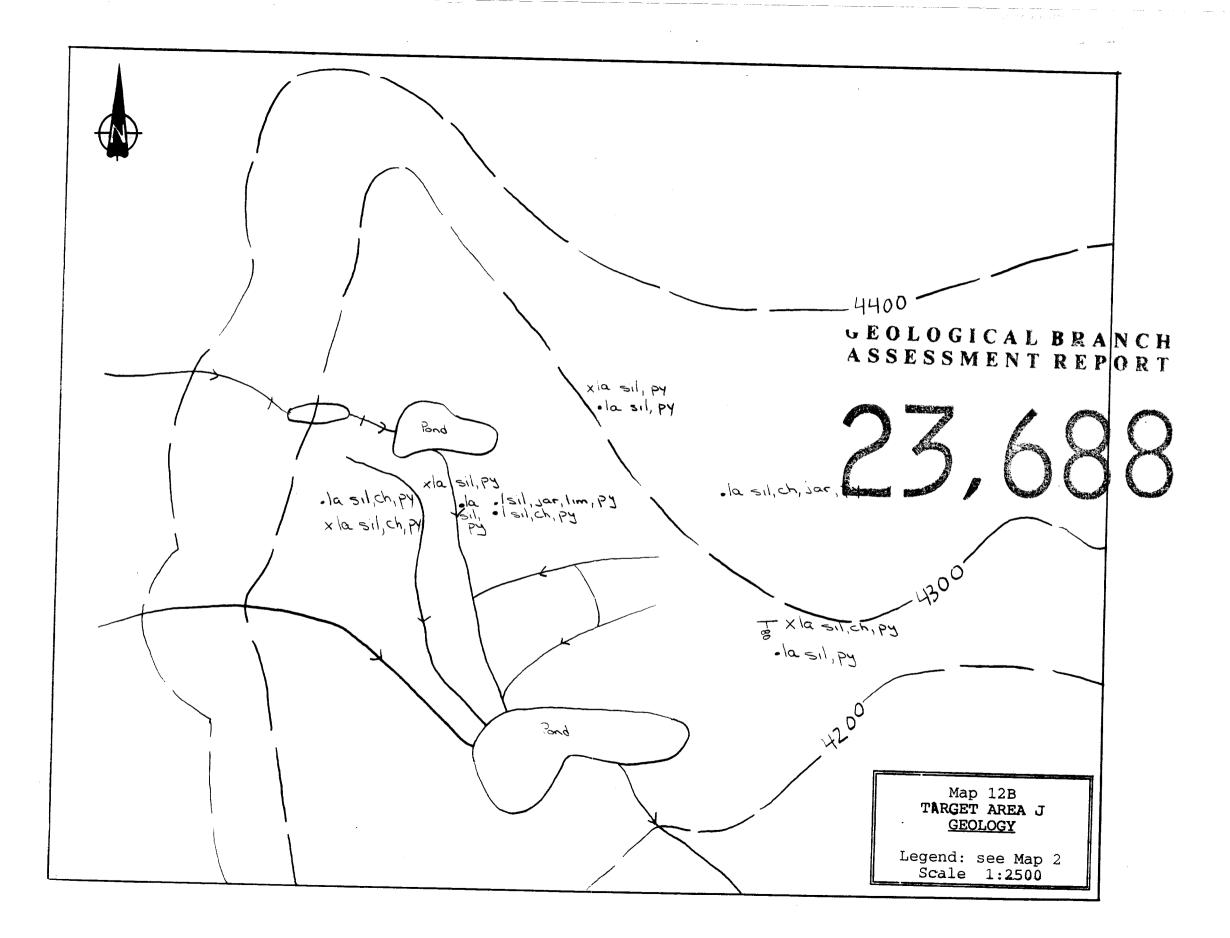


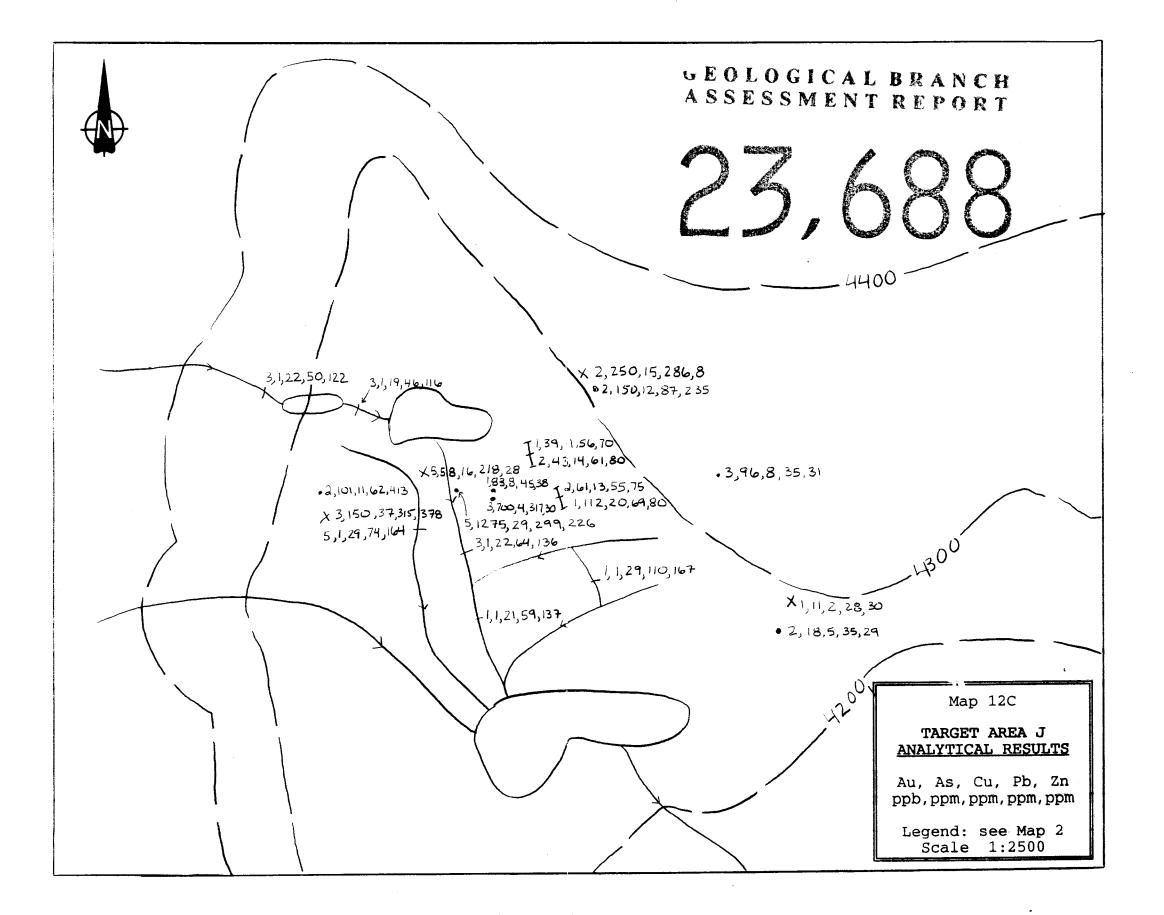


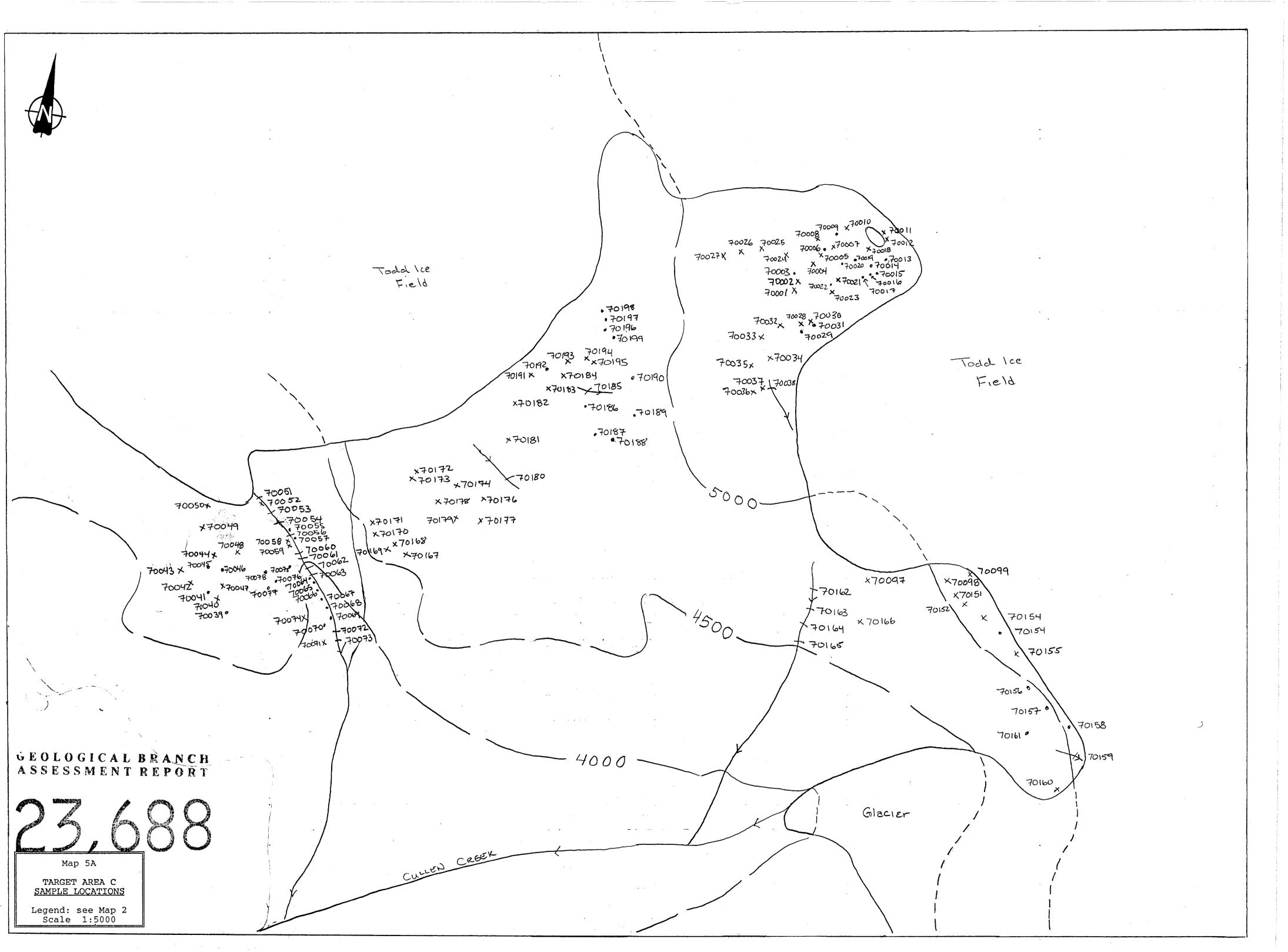


· fri









1.1

•