SUB-RECORDER RECEIVED	NTS 92J/7E Lat 50° 17.5'N Long 122° 36.5W
M.R. #	LOG NO: FJAN O 5 1995 U ACTION:

GEOLOGICAL, GEOCHEMICAL REPORT ON THE: LAKE ADIT CLAIM GROUP LILLOOET MINING DIVISION, BRITISH COLUMBIA

For Guardian Resource Corporation

by

Andris Kikauka, P.Geo

July 1994

FILMED

JEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

1.0	Intro	duction	1
2.0	Loca	tion, Access and Physiography	1
3.0	Prop	erty Status	4
4.0	Area	History	5
5.0	Previ	ious Work	9
6.0	Gene	eral Geology	15
7.0	1994	Field Program	17
	7.1	Methods and Procedures	17
	7.2	Property Geology and Mineralization	18
	7.3	Diamond Drilling	20
	7.4	Soil Geochemistry	22
8.0	Conc	clusion	23
9.0	Reco	ommendations	23
10.0	Prop	osed Budget	23
	Refe	rences	
	Certi	ificate	

LIST OF FIGURES & MAPS

Page No.

Figure 1:	Claim Location Map	2
Figure 2:	Mineral Showings in the Pemberton Belt	3
Figure 3:	Geology Map of Pemberton Belt	7
Figure 4:	The Lake Adit Showing	
Figure 5:	Showing No. 2	
Figure 6:	Showing No. 3	
Figure 7:	Showing No. 4	
Figure 8:	Showing No. 5	
Elemen O.	Showing No. 6	

Figure 9:Showing No. 6Figure 10:Showing No. 7

List of Appendices

Appendix A:Analytical ReportsAppendix B:Diamond Drill Records

,

1.0 INTRODUCTION

This report was prepared for Guardian Resources Corp. to describe and evaluate diamond drilling, geological mapping, and soil sampling programs that have been carried out on the LA 1-20 claims in the Lillooet Mining Division.

Field work was carried out during May and June, 1994 by A. Kikauka (geologist), G. Cassidy (geotechnician), and Core Ent. Ltd. (diamond drill contractor). The field work was undertaken for the purpose of core drilling several high order geophysical targets outlined from IP, EM, and magnetometer surveys performed in Jan., 1994. Geological mapping and soil sampling was carried out in order to assess additional targets within the claim group.

2.0 LOCATION, ACCESS, PHYSIOGRAPHY

The LA 1-20 claims are situated in the Lillooet Mining Division, approximately 14 kilometers east of Pemberton, B.C. (Figures 1 and 2).

The claims are located on NTS map sheet 92 J/7 E at latitude 50 17' N, and longitude 122 37' W.

Road access is via Interfor's new logging road that begins at the Pemberton airport and follows the west shore of Lillooet Lake. There is a locked gate at the north end of the claims.

The property is on moderate to steep mountainous terrain rising form about 200 to 1,350 meters in elevation. Vegetation consists of mature Douglas Fir, hemlock, spruce, alder, and birch forest. A climate of warm, dry summers and cool, wet winters allows for a year round work period.

3.0 PROPERTY STATUS

The property consists of 20 claims (Figure 2) in the Lillooet Mining Division. The claims are 100% owned by Guardian Resource Corp.

Details of the claim titles are as follows:

CLAIM NAME	RECORD #	UNITS	<u>RECORD DATE</u>	EXPIRY DATE
LA 1	315502	1	Feb. 2, 93	Feb. 2, 98
LA 2	315503	1	Feb. 2, 93	Feb. 2, 98
LA 3	315504	1	Feb. 2, 93	Feb. 2, 98
LA 4	315505	1	Feb. 2, 93	Feb. 2, 98
LA 5	315506	1	Feb. 2, 93	Feb. 2, 98
LA 6	315507	1	Feb. 2, 93	Feb. 2, 98
LA 7	315508	1	Feb. 2, 93	Feb. 2, 98
LA 8	315509	1	Feb. 2, 93	Feb. 2, 98
LA 9	315510	1	Feb. 2, 93	Feb. 2, 98
LA 10	315511	1	Feb. 2, 93	Feb. 2, 98
LA 11	315512	1	Feb. 2, 93	Feb. 2, 98
LA 12	315513	1	Feb. 2, 93	Feb. 2, 98
LA 13	315514	1	Feb. 2, 93	Feb. 2, 98
LA 14	315515	1	Feb. 2, 93	Feb. 2, 98
LA 15	315516	1	Feb. 2, 93	Feb. 2, 98
LA 16	315517	1	Feb. 2, 93	Feb. 2, 98
LA 17	315518	1	Feb. 2, 93	Feb. 2, 98
LA 18	315519	1	Feb. 2, 93	Feb. 2, 98
LA 19	324054	20	Mar.13, 94	Mar.13, 97
LA 20	324055	20	Mar.13, 94	Mar.13, 97

The total area covered by the claims is 1,450 hectares (3,480 acres).

4.0 AREA HISTORY

Mineral exploration in the area has focused on base and precious metal occurrences in sedimentary and volcanic roof pendants that are surrounded by rocks of the Coast plutonic complex. Near Pemberton, this includes several showings in the Tenquille Lake, Owl Creek, and Lillooet Lake area (Figure 3).

A brief summary of notable mineral occurrences near Pemberton is summarized as follows (Riddell, 1990):

1) RAILROAD PROPERTY

A large rusty zone extends over most of the southwest flank of Grouty Peak, near the Hurley Pass road. The property is underlain by massive andesite flows and tuffs with abundant coeval quartz feldspar porphyry dikes and rhyolite flows. Mutual crosscutting relationships between quartz feldspar porphyry, and dacite-andesite feldspar porphyry dikes are abundant, as are breccias with mixed felsic and intermediate volcanic clasts. The rocks on the property are intensely to moderately silicified, and disseminated pyrite is ubiquitous. Quartz-sericite schists are common, most shear foliations strike north-northwest and dip gently to very steeply to the northeast.

2) MOUNT BARBOUR

The showing, located southeast of Tenquille Lake, consists of a pod of massive, banded pyrrhotite within a conspicuous north west trending rusty scar that cuts through the ridges east and west of a snowfield. The host rocks are well-bedded felsic tuffs with cherty tops. The stratigraphy dips moderately to the north east, and the associated rocks are wellbedded lithic tuffs and feldspar-rich wackes with pyritic quartz-sericite schists. Just south of the showing, a deep maroon and green basalt breccia outcrops on the peak of Mount Barbour.

3) AVALANCHE PROPERTY

The property covers a wide, rusty alteration zone east of Tenquille Mountain. Bedrock is deformed by a complex set of anastomosing north-northwest striking shears associated with a fault that passes through Grizzly Pass. The shear zone is bounded to the southwest by competent, unsheared massive basalt-andesite, and to the north by overlapping Tertiary basalt breccias. Rocks within the shear zone are banded parallel to the strike of the fault, and individual bands can be traced along strike for hundreds of meters. The sequence includes rhyolite flows, lithic and lapilli tuffs, rusty quartz-muscovite schists, bluish-green

chloritic tuffs and aplite with rhondonite specks. Large quartz grains or quartz grain clusters are present in all outcrops. Dark green chloritic flows with blue quartz eyes outcrop along the north east edge of the shear zone. A thick ferrocrete deposit about 150 meters wide has formed around a rusty seep that is fed by a creek that drains the saddle at the top of the pass. In 1991 Teck Explorations Ltd. carried out a work program that included diamond drilling.

4) CERULEAN LAKE

A pod of massive pyrrhotite about 3 meters thick and 30 meters long lies along the contact zone between massive andesite flows and Late Cretaceous Spetch Creek pluton, on the creek that flows into the south west end of Cerulean Lake (near Tenquille Lake). It is surrounded by a large rust zone on the west bank of the creek. Mineralized boulders have conspicuous black and iridescent manganese coatings.

5) TEXAS SHOWING

The Texas showing on the Birkenhead Lake road is an iron-copper-gold skarn within quartz-bearing calcareous andesitic lapilli tuff. Banded and disseminated pyrite, chalcopyrite, and magnetite are associated with garnet-diopside clac-silicate rocks. Skarn mineralization may have formed by a reaction between the limy tuffs and quartz feldspar porphyry dikes exposed at the south end of the property.

6) RAMPART MOUNTAIN

A large, intensely rusty zone is associated with a contact between deep maroon and green basalt breccias unconformably overlying mixed tuffs and sediments on Rampart Mountain (Lillooet Lake). Quartz-bearing breccias and felsic porphyries within the maroon and green basalts are strongly pyritized. The rocks all show strong to intense north-northwest shear foliation. Pyritic quartz-sericite schists are abundant.

7) MARGERY

A sequence of limestone and andesite tuffs are intruded by porphyry dikes in the vicinity of the showings, and by a the Coast Range plutonic complex farther up the mountain slope. Pods and lenses of massive magnetic-pyrite with lesser sphalerite, aresenopyrite, and chalcopyrite occur in a gangue of garnet, epidote, diopside, calcite, and quartz.

8) DOCTORS POINT

Gold-silver-arsenic mineralization at Doctors Point, Harrison Lake, is hosted in long, narrow, gently dipping (10-35 degree) vuggy quartz-sulphide veins that show an overall spatial association to a diorite pluton margin. Pyrite and arsenopyrite are the commonest sulphides, with lesser chalcopyrite, galena, and molybdenite. Twelve 0.1-3.0 meter wide veins have a strike length up to 200 meters.

9) FIRE LAKE (MONEY SPINNER, BARKOOLA, KING 1, RICHFIELD)

Copper-gold bearing mineralization is reported in quartz veins that cut Upper Jurassic to Lower Cretaceous Fire Lake sedimentary and volcanic rocks.

10) RN GOLD DEPOSITS

The RN deposit, located 4 kilometers northeast of Harrison Hot Springs, is underlain by metamorphosed clastic sediments that have been intruded by several small Tertiary plutons ranging from gabbro to quartz diorite in composition. Gold is hosted in quartz veins and stringers that are developed within the diorite-quartz diorite bodies; the veins rapidly die out in the metamorphic rocks. Veins up to 0.3 meters width contain masses and disseminations of pyrrhotite and pyrite, rare chalcopyrite and molybdenite, and traces of scheelite, bismuth telluride, and native gold are present. An 1,100 tonne bulk sample taken in 1983 average 45 g/t Au (1.314 oz/t Au). Drill hole 84-29 intersected 40.0 meters (131.2 ft.) of 4.6 g/t Au (0.134 oz/t Au).

5.0 PREVIOUS WORK

Previous exploration an the LA claim group is summarized in chronological order;

1915

Discovery of sulphide showings near Boulder (Ure) Creek on Lillooet Lake.

1915 to 1923

A 230 foot (70 m.) adit and drift is driven on the Lake adit showings. A 20 foot (6m.) adit is driven on the North Eagle Prospect (located 175 m. north-northwest of the Lake Adit). Open cuts expose numerous sulphide showings in the vicinity of the adits.

1942

Geological mapping of a zone of mineralization 3.5 miles or more long and up to 600 feet in width in the area of the Lake Adit and Boulder Creek (Cairnes, 1924). Samples from the Boulder Creek area gave the following assays:

SAMPLE #	WIDTH (FT.)	%COPPER	OZ/T SILVER	OZ/T GOLD
1	15	1.5	0.68	trace
2	20	0.45	0.22	trace
3	20	0.10	0.52	trace
4	30	0.30	0.54	0.070

These samples were taken from surface exposures in creeks. Cairnes suggested that higher values may be obtained below the zone of oxidation. Mineralization is associated with rhodonite (manganese silicate), which is known to occur with hydrothermal and/or metasomatic ores.

1929

Three diamond drill holes were collared beneath the Lake Adit by Howe Sound Company. Records of results are not available.

1950's

A short diamond drill hole was drilled just above the adit. The only record of this work are the remains of three core boxes that were found in the adit.

1969

An extensive exploration program was carried out by Cerro Mining Company of Canada Ltd. The program consisted of:

- 1) Geological mapping in the line grid area of Ax-Zip mineral claim group, including the Lake Adit, North Eagle, and Boulder Creek prospects.
- 2) Detailed geological mapping in the vicinity of the Lake Adit.
- 3) Ground magnetic and electromagnetic surveys @ 25 foot intervals along northeast trending lines 200 feet apart. A detailed magnetic survey was concentrated on the North Eagle showings @ 10 foot intervals on lines 50 feet apart.
- 4) A one by four kilometer area covering the showings were soil samples along grid lines. A total of 697 samples were analyzed for copper and zinc.

CLAIM GEOLOGY

Geological mapping outlined a sequence of volcanic rocks of Triassic age that included andesitic flows, tuffs, breccias, and tuffaceous sediments. A hard, fine-grained, almost black, fragmental rock commonly mineralized with disseminated grains of pyrite and abundant epidote may be of tuffaceous origin and its hardness may be the result of induration of silica. This silicified tuff (?) is found near the North Eagle and Lake Adit prospects. Narrow lenses of marble of skarn (epidote-garnet-lime silicate minerals) occur in this volcanic sequence. This sequence is cut by fine grained, vertically oriented diorite dikes. North of the adits a 700 foot wide (215 m.) zone of felsic dikes. Contacts of this unit display shear related deformation and trend northwesterly. Lamprophyre dikes cut sulphide mineralization in the Lake Adit, but erode easily and are not found in outcrop on surface.

The volcanics and sediments near the adits strike @ 335 degrees and dip 30-50 degrees southwest. The intrusion of the dikes and subsequent faulting in different directions, especially along a northwest trend with considerable vertical displacement, has caused discontinuity of any specific horizon.

The Lake Adit mineralization consists of magnetite, pyrite, chalcopyrite, and sphalerite as bands and massive lenses localized along a limestone-andesite contact which has been structurally complicated by faulting and some folding.

At the North Eagle prospect, a band of massive mineralization, approximately 15 feet thick, appears to dip 30 degrees west. This zone represents an almost complete replacement by hematite-magnetite-pyrite. A few traces of chalcopyrite occur in the volcanic hanging wall.

GEOPHYSICAL SURVEYS

Several small magnetic highs and magnetic dipoles in the area of the adits are attributed to an increase in the magnetic content of bedrock or concentrations of magnetite. Steep terrain and/or overburden makes pinpointing large concentrations of magnetite impossible as a small concentration exposed on surface will give a higher magnetic response than will a somewhat larger concentration at a depth of some 25 feet, particularly when the magnetite is irregular.

A Crone shootback EM survey gave some anomalous readings in the vicinity of the Lake Adit.

GEOCHEMICAL SURVEYS

Zinc geochemistry gave background values of 100-1,000 ppm and 5% of the total samples gave values in excess of 3,600 ppm. Four areas several hundred meters across, located 0-1.7 km. north of the Lake Adit and 1-1.0 km. southeast of the Lake Adit, are well defined, strong anomalous zinc zones.

Copper geochemistry background values of 20-180 ppm are highlighted by anomalous values in excess of 280 ppm. Three areas several hundred meters across roughly coincide with the well defined zinc anomalies (Kierans, 1969).

1981

Geological mapping and VLF-EM geophysics were performed on a 1.0×1.5 kilometer area centered at the Lake Adit. Mineral showings near the adits are at or in proximity to the marble/skarn horizon within the andesite sequence. Volcanic host rocks are highly bleached, argillized, silicified, and hemato-limonitized. Massive magnetite, pyrite, chalcopyrite with lesser zinc, lead, silver, and gold as well as sphalerite and pyrite enriched skarn mineralization was identified in showings near the adits.

40 channel samples across widths of 0.5-2.4 meters gave the following range of assays:

0.21-2.87%
0.01-10.10%
0.01-0.22%
trace-0.07 oz/
trace-0.09 oz/

The VLF-EM survey revealed new conductors which are equivalent to or larger than the previous showings. A 1.0 kilometer long north-northwest trending conductor axis coincides with the baseline of the grid and the adit showings. In the southwestern part of the grid, not covered by earlier soil sampling, a significant new open-ended conductor was discovered (Kim, 1981).

1987

Geochemistry, VLF-EM and magnetometer geophysics, and diamond drilling were performed by Green Lake Resources Ltd. 30 element ICP and Au geochemistry was performed on 94 rock samples and 506 soil samples. Grid lines were run perpendicular to the shore of the Lillooet Lake and gave the following results:

STATISTICAL SUMMARY OF 506 SOIL SAMPLES

ELEMENT	MEAN VALUE	MAXIMUM VALUE
Zn	630 ppm	10,289 ppm (1.03%)
Cu	76 ppm	2,482 ppm (0.25%)
Ag	0.7 ppm	3.6 ppm
Au	6 ppb	160 ppb

STATISTICAL SUMMARY OF 94 ROCK SAMPLES

ELEMENT	MEAN VALUE	MAXIMUM VALUE
Zn	371 ppm	17,517 ppm (1.75%)
Cu	56 ppm	762 ppm (0.08%)
Ag	1 ppm	9.7 ppm
Au	8 ppb	213 ppb
As	9 ppm	117 ppm

The magnetometer survey identified short strike length highs north of the Lake Adit, and large broad magnetic anomalies to the south. A strong oblong magnetic anomaly southeast of the Lake Adit may reflect a buried intrusive. This high is separated from another strong anomaly to the east by a pronounced magnetic low. This low may reflect a low magnetic susceptibility lithologic unit such as sediments or an alteration zone.

North of the Lake Adit several weak VLF-EM crossovers appear to be broken by a number of faults. Weak VLF-EM conductors are associated with magnetic highs suggesting semi-massive sulphide mineralization is present. A strong VLF-EM conductor is coincident with the west flank of the strong oblong magnetic anomaly located 1.3 kilometers southeast of the Lake Adit. This conductor is either a sulphide zone at the interface of possibly a volcanic tuff/flow horizon or a sulphide/graphite rich argillaceous sediment. The shape of the VLF-EM response suggests a conductor which extends to depth.

A diamond drill hole located near the strong VLF-EM response was collared in shear controlled Cu-An-Au-Ag mineralization that persisted to a depth of 28 feet. From 28' to 161', heavily pyritized alternation bands 10 to 20 feet thick, of rhyolite and andesite were cored. Nearby, an outcrop of coarse fragmental rhyolite cemented by sulphides suggests the close proximity of this area to a volcanic vent.

In view of these recent discoveries, there is potential for volcanogenic style mineralization, shear hosted mineralization, and skarn type mineralization (Day, 1987).

1990

B.C. Geological Survey mapped the new road cut along Lillooet Lake near the adit showings noting intensely silicified and bleached andesite and andesite breccia with abundant massive and disseminated pyrite. This zone was interpreted as a continuation of an east-side-up thrust fault that lies along strike to the south, on the western shore at the bend in Lillooet Lake. This structure continues across the lake farther to the south and may be related to the Grizzly Pass Shear zone near Tenquille Lake (Riddell, 1990).

1992

Rock chip and stream sediment sampling, and surveying in the area of the Lake Adit and North Eagle prospects were carried out by the author. A total of 17 rock chip samples were taken from mineralized bedrock along the new roadcut, and form the Lake Adit showings. A total of 7 silt samples were taken from small creeks along the logging road.

New showings have been exposed by the roadcut. This includes sample #213, which returned values of 9.99% Cu, 0.11% Pb, 0.51% Zn, 8.48 oz/t Ag, and 0.196 oz/t Au across a width of 10 cm. (from a 100 cm. wide zone that appear to continue up slope from the new roadcut exposure). A sample of heavily mineralized skarn from the Lake Adit assayed 9.07% Cu, 0.00% Pb, 0.32% Zn, 3.46 oz/t Ag, and 0.023 oz/t Au across 35 cm. A 1.0 meter wide zone of chalcopyrite and magnetite located 30 meters north of the Lake Adit gave values of 5.44% Cu, 0.0% Pb, 7.04% Zn, 1.21 oz/t Ag, 0.030 oz/t Au.

Field examination of geological features indicate various types of mineralization (massive, skarn, vein, shear/replacement) occur in various host rocks (andesite flows/tuffs, mafic and felsic dikes, schistose pyritic rhyolite, marble, andesite breccia, and siliceous banded pyritic tuff). Mineralization consists of pyrite, magnetite, chalcopyrite, sphalerite, galena, arsenopyrite, and rhodonite, Gangue minerals include quartz, limonite, epidote, garnet, and chlorite. Alteration near mineral zones includes phyllic (quartz-sericite-pyrite), propylitic (epidote-chlorite-pyrite-carbonate), induration (silicification), and hornfels zones near intrusive contacts.

1994

Ashworth Explorations Ltd. conducted a program of IP, HLEM, and magnetometer geophysics over the Lake Adit area as well as the Lill Showing (where Green Lake Res. performed a core drilling program in 1987-88). The IP survey identified a 450 x 100 meter area of very strong chargeability correlating with very strong resistivity. Bedrock in the roadcut within this zone was identified as rhyolite with potassic (quartz-sericite-pyrite) alteration. Magnetometer surveys identified a broad 150 x 550 meter area 1,000-2,500 gamma high located immediately southwest of the IP chargeability and resistivity high. At the contact between the mag high and IP high was a 50-100 meter wide zone of 500-1,000 gamma peaks and dips which also corresponded to the L 27+00 S intersection (LL-88-1, 6 meters 1.34% Zn, 0.28% Cu) that Green Lake Res. drilled in 1988. Based on air photo interpretation, there are northwest trending regional structures that offset very subtle northeast trending lineaments. In the case of the Lake Adit skarn, the mineral trend follows a northwest trending and site-marble contact, but the mineralization is spatially associated with a northeast trending lamprophyre dyke, suggesting the intersection of the northwest and northeast lineaments reflects structural control of mineralization. The HLEM survey identified several weak northeast trending conductors 250-500 meters north of the Lake Adit. HLEM identified a weak northeast trending conductor within the northwest portion of the broad mag high, and about 75 meters southwest of the IP chargeability/resistivity high.

6.0 GENERAL GEOLOGY

The LA claims are near the centre of the 70 kilometer long and 10-30 kilometer wide pendant consisting of volcanics, sediments, intrusive, and metamorphic rocks of the Cadwallader Group. This belt of rocks has been generally regarded as Triassic in age, however recent geochronometry by the U.B.C. Dept. of Geological Sciences has identified Early Permian ages for the Bralorne diorite and soda granite (that cut the Cadwallader Group), implying that the Cadwallader sequence may contain Permian rocks as well as Middle-Late Triassic age rocks (220-240 Ma) that are documented by fossils within the Cadwallader Group (Leitch, 1991).

The dominantly island arc sequence of Cadwallader Group rocks include; massive andesite, basaltic andesite, basalt pyroclastic breccia, lithic and lapilli tuffs, feldspar crystal tuffs, felsic tuff, andesitic autobreccia, volcaniclastic sandstone, conglomerate, siltstone, shale, white chert, limestone, and limestone breccia. This sequence is cut by Pre-Cretaceous diorite and quartz porphyry. The above sequence forms a roof pendant that is almost entirely surrounded by Cretaceous-Tertiary Coast Range plutonic rocks that include granodiorite, granite, quartz diorite, and diorite.

The Pemberton roof pendant sequence correlates with the Cadwallader type section located in Gold Bridge based on the Following similarities:

1) Both areas have a basal, massive, submarine mafic volcanic unit (the Pioneer Formation of the Cadwallader Group) which has similar major and trace elements suggesting that they may have formed within the same island arc (Schick, 1990).

- 2) Both roof pendants have a transitional unit of mixed volcanic, volcaniclastic, and sedimentary rocks that contain Late Triassic microfossils and bivalve marcrofossils, felsic tuffs, a distinctive conglomerate with limestone clasts, and limestone breccias (Woodsworth, 1977).
- 3) Both sections are topped by predominantly sedimentary rocks of the Hurley Formation.

The Pemberton section contains a much greater volume of volcaniclastic rocks and a much smaller volume of purely sedimentary rocks than the Gold Bridge section. Also, the basal volcanic unit near Gold Bridge is dominantly basaltic and amygdaloidal, and often pillowed, whereas in the basal unit of the Pemberton section, andesite is dominant over basalt by volume, it is rarely amygdaloidal, and pillowed basalt flows are absent. In the Pemberton section, isolated car-sized limestone pods are commonly found in the basal volcanic pile.

Most of the mineral occurrences within the Pemberton pendant are restricted to the lowermost, basal volcanic pile which is well exposed on the subject claims.

7.0 1994 FIELD PROGRAM

7.1 METHODS AND PROCEDURES

Based on the results of IP, HLEM, and magnetometer surveys performed by Ashworth Explorations Ltd. in January 1994, a series of drill targets were outlined. The interpreted target zones were resurveyed along existing grid lines with compass and hip chain, and a D-6 cat was contracted to clear a 200 meter long road. The road begins on Km. 14 of the Ure Creek logging road. The initial 100 meters of road building followed a pre-existing road which was constructed by loggers in the late 1950's.

Five BQ core size diamond drill holes were collared from three drill pads. Two holes were inclined northeast, one southwest, and two vertical. A total of 2,359 feet (719 meters) was cored. The drill holes were not surveyed by downhole acid etch tests.

Core was labelled and footage marked with wooden blocks. The core was logged and a total of 138 samples ranging from 2 to 18 feet width were split with a screw wheel manual core splitter. The samples (labelled 100's for DDH-1, 200's for DDH-2, etc.) were shipped to Acme Labs, Vancouver for 30 element ICP and Au analysis.

Using previous grid lines and compass and hip chain for direction and distance control, a total of 77 soil and 8 rock chip samples were taken from upper and lower Ure Creek, and the road showing areas. Soil samples from the road showing the lower Ure Creek were taken at 25 meter spacing. Soil samples from upper Ure Creek area were taken at 50 meter spacing. Soil samples were taken with a grubhoe from 25-35 cm. depth from a well developed 'B' horizon. Approximately 500 grams of soil were placed in marked kraft envelopes, dried, and shipped to Acme Labs for analysis. Rock chip samples were taken with rock hammer and chisel across widths ranging from 12 to 40 cm. Weight of the average rock sample was 1 kg.

7.2 **PROPERTY GEOLOGY & MINERALIZATION**

The following lithologies are present on the LA claim group:

Quaternary intrusive rock

4. Basalt dyke, green to orange-brown colour, sugary texture.

Cretaceous? intrusive rock

3. Diorite, light grey-charcoal colour, 3b Lamprophyre dyke 1-8 mm. biotite phenocrysts.

Triassic volcanic and sedimentary rock

- Rhyolite/Rhyodacite tuffs/flows, light grey to white colour, ubiquitous pyrite 5-20%, 5-15% sericite, 11-4 mm. blue to clear coloured quartz eyes, minor chlorite.
- 1b. Marble, skarn minerals present.
- 1. Massive andesite/dacite/basaltic andesite flows, dark green colour, ubiquitous pyrite 3-15%, 3-10% secondary epidote/chlorite, minor tuff breccia and tuffaceous sediments.

The Triassic sequence comprises 98% of the volume of bedrock underlying the LA claim group. The Triassic volcanics and sediments form an elongated NW trending roof pendant engulfed by Cretaceous Coast Range intrusives. The emplacement of the Coast Range has metamorphosed the Triassic volcanics and sediments to a Greenschist (chlorite) grade. The major fault lineaments trend NW and offset subtle NE trending lineaments, suggestion shear movements have resulted in complex vertical and/or horizontal displacement.

There are six main mineral showings on the LA claims described as follows:

- LILL (LA 8, 10 claim) NW trending, 1-25 meter wide sulphide zones, strong quartz-sericite-pyrite alteration in 50-200 m. wide rhyolite/rhyodacite, sphalerite and chalcopyrite are present as disseminations and fracture fillings. This zone is traced by IP geophysics for 500 meters along strike.
- 2) LAKE ADIT (LA 3 claim) NW trending, moderate SW dip, magnetite-pyritechalcopyrite-sphalerite occurs as bands and massive lenses localized along a marble-andesite contact and is cut by a diorite lamprophyre dyke. This zone is traced for 80 m. and has a width of 1-2 m. The deposit is estimated to contain 5000 tonnes of 2% Cu, 0.3% Zn, 0.5 oz/t Ag, 0.02 oz/t Au.

- 3) NORTH EAGLE A silicified zone within a steeply dipping WNW trending fault contains massive magnetite, minor pyrite-hematite, trace chalcopyrite-sphalerite. This zone is traced for 40m. and has a width of 2-10 m. (LA 3 claim).
- 4) SKERLS (APEX) Upper Ure Creek area of LA 20 claim. NW trending, steeply dipping massive pyrite lenses occur along a major fault linear in Schist Creek. Trace to 5% chalcopyrite/sphalerite occurs in silicified portions of the sulphide zones. Bands and specks of rhodonite (Manganese silicate) are present in the NW portion of this zone. This zone is traced for 700 meters and has a width of 2-10 m.
- 5) UNNAMED (Lower Ure Creek LA 20 claim) A prominent NW trending moderate SW dipping ledge is traced by IP geophysics for 250 m. and 5-15% pyrite with traces of chalcopyrite and sphalerite in silicified portions of this zone.
- 6) **ROAD SHOWING** (LA 2 claim) A 1 m. wide NE trending, steeply dipping shear zone contains pyrite-chlorite-quartz with trace-3% chalcopyrite and minor sphalerite-galena. This zone is traced for 150 m.

The Lill showings were the target of a core drilling program based on the following data:

- 1) Siliceous-pyritic-sericite altered rhyolite with Cu/Zn sulphide mineralization present.
- Coincident chargeability and resistivity IP geophysical anomaly (Two parallel 500 m. long zones come in contact with an 800 m. long 100 m. wide 1000-2000 gamma mag anomaly).
- 3) Coarse fragmental rhyolite cemented by sulphides suggesting close proximity to a volcanic vent and possible volcanogenic mineralization.

7.3 DIAMOND DRILLING

Each drill hole is described as follows:

LA 94-1 - L 28 + 00 S, 1 + 40 W, Dip -55°, elevation 1030 ft., azimuth 050, depth 338 ft.

The initial 16.0 ft. of core encountered a sheared rhyodacite with 8-12% pyrite and traces of sphalerite and chalcopyrite. Approximately 65% of the core is quartz-sericite-pyrite altered rhyolite/rhyodacite. Approximately 35% of the core is andesite/dacite. The following values were obtained in the rhyolite/rhyodacite:

FOOTAGE	WIDTH (FT.)	% Cu	% Zn
82.0-88.0	6.0	0.03	0.24
210.3-218.3	7.7	trace	0.36
287.2-289.2	2.0	0.03	0.41

LA 94-2 - L 28 + 00 S, 1 + 40 W, Dip -90°, elevation 1030 ft., azimuth - , depth 456 ft.

Collared on the same pad as 94-1 this hole encountered 70% rhyolite/rhyodacite with 30 % andesite/dacite. Mineralized intervals hosted by the rhyolite/rhyodacite include:

FOOTAGE	WIDTH (FT.)	% Cu	% Zn
262.0-278.0	16.0	0.03	0.22
298.0-308.0	10.0	0.04	0.11
395.5-445.0	49.5	0.02	0.42

The lower intersection includes an interval of:

419.7-424.5 4.8 0.10 1.84

LA 94-3 - L 28 + 31 S, 1 + 08 W, Dip -60°, elevation 1023 ft., azimuth 230, depth 429 ft.

55% rhyolite, 45% andesite portions of which contain 1-3% disseminated magnetite. Significant intersections are hosted by rhyolite/rhyodacite.

FOOTAGE	WIDTH (FT.)	% Cu	% Zn
176.0-192.5	16.5	trace	0.11
223.3-233.3	10.0	trace	0.22

LA 94-4 - L 28 + 31 S, 1 + 08 W, Dip -85°, elevation 1023 ft., azimuth 230, depth 519 ft.

50 % andesite/dacite, 45% rhyolite/rhyodacite, 5% basalt dyke. Significant intersections include:

FOOTAGE	WIDTH (FT.)	% Cu	% Zn	g/t Ag	g/t Au
65.0-74.5	9.5	trace	0.22	trace	trace
346.5-349.0	2.5	0.85	0.38	7.0	0.1
430.0-442.0	12.0	trace	0.12	trace	trace

LA 94-5 - L 27 + 05 S, 1 + 42 W, dip -50°, elevation 1038 ft., azimuth 050, depth 617 ft.

65% rhyolite/rhyodacite, 35% andesite/dacite. Significant intersections hosted by rhyolite include:

FOOTAGE	WIDTH (FT.)	% Cu	% Zn	
55.6-65.5	10.0	trace	0.12	
166.7-187.0	20.3	0.02	0.34	
247.0-262.5	15.5	0.02	1.33	
includes:				
258.6-262.5	3.9	0.03	4.50	
391.0-399.5	8.5	trace	0.11	
469.7-477.3	7.6	trace	0.22	
531.0-547.3	16.3	0.01	0.16	

The objective of the drilling program was to test the contact zone between the IP chargeability-resistivity high and adjacent mag anomaly. The drill holes cut siliceous-pyritic rhyolite which probably accounts for the strong IP chargeability and resistivity. Disseminated magnetite in massive andesite probably accounts for the mag anomaly. IP geophysics suggests there are two discrete A and B zones (NW trending and parallel) each having a strike of 500 m. The A zone was cut by LA 94-1 to 5 and the B zone was cut by the last 200 ft. of LA 94-5. There does not appear to be mineral or textural variations between the 2 zones, however the B zone shows a marked increase in quartz veinlets.

Based on textural evidence, two episodes of mineralization are present on the Lill prospect:

- 1) Ubiquitous diagenetic pyrite (3-20% volume)
- 2) Epigenetic pyrite ± chalcopyrite, sphalerite, occurs as bands, disseminations and fracture fillings in rhyolite/rhyodacite. This second phase of mineralization is spatially related to increased sericite-pyrite ± chlorite, calcite and/or epidote-chlorite-pyrite ± calcite, magnetite.

7.4 SOIL GEOCHEMISTRY

SKERLS - APEX (UPPER URE CREEK GRID) - Zn values > 100 ppm follow Schist Creek fault zone along a 700 m. long trend. Cu values are generally lower than the Lake Adit / Road Showing area but higher that the Lower Ure Creek grid.

ROAD SHOWING - Cu values in soil and rock samples are higher than other grid areas, Zn values compare similarly to other showings.

LOWER URE CREEK GRID - Several spot high > 200 ppm Cu and > 1000 ppm Zn occur along the soil sample L 1 + 00 W immediately below the siliceous pyritic topographic positive ledge.

8.0 CONCLUSION

Core drilling identified several heavy sulphide mineral zones hosted by a siliceous-pyritic sericite altered rhyolite/rhyodacite. The best assay value encountered was 2.5 ft. of 0.85% Cu, 0.38% Zn, 7.0 g/t Ag and 0.1 g/t Au. This mineralization occurs as epigenetic, late stage vein and/or replacement textures. 10-40 foot wide zones of 10-20% diagenetic pyrite occurs in close proximity with the vein/replacement base metal mineralization.

9.0 RECOMMENDATIONS

Ten 600 - 800 ft. (180 - 250 m.) deep diamond drill holes spaced at a 100 meter interval along a fence pattern to test the following trends:

- 1) LILL 400 meters of untested strike length. 5 drill holes and downhole EM geophysics.
- 2) SKERLS 700 meters of untested strike length. 3 drill holes and downhole EM geophysics.
- 3) **ROAD SHOWING -** 150 meters of untested strike length. 1 drill hole and downhole EM geophysics.
- 4) LOWER URE CREEK GRID 250 meters of untested strike length. 1 drill hole and downhole EM geophysics.

10.0 PROPOSED BUDGET

8,000 ft. (2440 m.) core drilling	\$ 244,000
Downhole EM survey	8,000
Access roads	12,000
Assays	10,000
Geologist	15,000
Equipment & Supplies	3,000
Communication	1,000
Room & Board	12,000
Report	2,000
Contingencies	45,000
-	\$ 352,000

<u>REFERENCES</u>

- Cairnes, C.E. (1924): Pemberton area, Lillooet District, B.C. GSC summary report 1924, Part A, p.76-99.
- Cross, P.G. (1969): Report on the Ax-Zip claims, geological reconnaissance and geochemical surveys in the line grid.
- Kierans, M.D. (1970): Mineral exploration report; geological, geophysical and geochemical surveys on the Ax-Zip group, Pemberton area, Lillooet M.D., B.C. for Cerro Mining Company of Canada Ltd.

Minister of Mines Reports, B.C. (1928 and 1932).

- Roddick, J.A. and Hutchison, W.W. (1973): Pemberton (east half) map-area British Columbia, GSC paper 73-17.
- Walcott, P.E. (1969): A report on a ground magnetic and electromagnetic survey by Eagle Geophysics Ltd., Pemberton area, B.C. for Cerro Mining Company of Canada Ltd.
- Woodcock, J.R. (1969): Geology of Eagle Prospect AX claims, Lillooet area for Cerro Mining Company of Canada Ltd.

Woodsworth, G.J. (1977):

- 1. Compilation of GSC geology map, Pemberton (92J), 1:250,000
- 2. Metal distribution patterns across the eastern flank of the Coast Plutonix Complex, south-central British Columbia, Economic Geology Vol. 72, p. 170-183.

H. Kim (1981): Assessment Report on the Lake Adit Claim.

R.A. Wells (1983): Assessment Report on the Lill Mineral Claims.

J.H. Montgomery (1985): Report on the Lill Claim Group.

Glen E. White (1987): Geophysical Report on the Lill Group of Claims.

Peter Hannigan (1988): Diamond Drilling Report, Lill I, Lill II, Lill III.

J.M. Riddell (1990): Stratigraphy of Mesozoic Rocks east of Pemberton, B.C. and the testing and the setting of Mineral Showings (92J/2,7,10).

Andris Kikauka (1992): Unpublished Report on the L.A.1 - L.A. 18 claims.

ITEMIZED COST STATEMENT for

Guardian Resource Corp., LA 1-20 claims, Lillooet Mining Division, Fieldwork carried out May 16- June 17, 1994

FIELD CREW;

Andris Kikauka (geologist)	\$ 5,400.00
Gerry Cassidy (geotechnician)	1,400.00

FIELD COSTS:

Core drilling (719 meters, BQ size)	
performed by Core Ent., Clinton, B.C.	35,385.00
D-6 cat and operator, B. McCuthchen	700.00
Assays, Acme Anal., 146 rock	2,336.00
77 soil	1,078.00

TOTAL = \$ 46,299.00

CERTIFICATE OF QUALIFICATIONS

- I, ANDRIS KIKAUKA, do hereby declare:
- 1. I am a fellow in good standing with the Geological Association of Canada.
- 2. I am a professional geologist and a member of the Association of the Professional Engineers and Geoscientists of B.C.
- 3. I have actively pursued my career as a geologist for the past twenty years.
- 4. The information, opinions, and recommendations in this report are based on fieldwork carried out by myself, and on published and unpublished literature. I was present on the subject property between May to July 1994.
- 5. I have no interest, direct or indirect, in the subject claim or the securities of Guardian Resources Corporation.
- 6. I consent to the use of this report in a Prospectus of Statement of Material Facts for the purpose of private or public financing.

Lecular Dee. 16,94

Andris Kikauka, P. Geo

GUARDIAN RESOURCE CORP. LA 1-20 CLAIMS LILLOOET M.D., NTS 92 J/7 E UPPER URE CREEK GRID MAN STEEPLY DIPPING PYRITIC SHEAR + CHALCOPYRITE, SPHALERITE SOIL SAMPLE PPM Cu Zn Ag PPB Au FIG. 5 A. A. KIKAU BRITISH

13

GUARDIAN RESOURCE CORP.

LA 1-20 CLAIMS

LILLOOET M.D., NTS 92 J/7 E

ROAD SHOWING GRID AREA

F1G. 6

STEEPLY DIPPING PYRITIC SHEAR * CHALCOPYRITE , SPHALERITE - SOIL SAMPLE

PPM Cu Zn Ag PPB Au

H	PPM Cu	РЪ	Zn	Ag	PPB Au	
<i>1</i> .	7,236	2,268	1,307	49.7	61	<u> </u>
1.	4,326	30	1,750	4.2	8	
r	14,417	27	684	22.0	110	

LAMPROPHYRE DYKE

MARBLE SKARN 5000 TONNES UF 2% Cu, 0.3% Zn, 0.5 oz/t Ag, 0.02 oz/t Au 5000 TONNES OF

ACME ANALYTICAL LAB	ORATORIES LTD.	852 E. HASTIN	GS ST. VANCOUVER B.C.	V6A 1R6 PHONE (604) 253-3158	FAX(604)253-1716
	<u>dian Resources</u> 830	GEOCHEMI Corp. PROJEC 0 - 355 Burrard St.,	CAL ANALYSIS CERTIF T LAKE ADIT, PEMBER Vancouver BC V6C 208 Submitted	FICATE <u>RTON</u> File # 94-1895 Page d by: Andris Kikauka	<u>1</u> AA
SAMPLE#	Mo Cu Pb Zn Ag I ppm ppm ppm ppm ppm p	Ni Co Mn Fe As ppm ppm ppm % ppm	U Au Th Sr Cd Sb Bi N ppm ppm ppm ppm ppm ppm ppm ppm	V Ca P La Cr Mg Ba Ti B Al Na m % % ppm ppm % ppm % ppm % %	K WAU* % ppm ppb
DDH LA 94-1 101 DDH LA 94-1 102 DDH LA 94-1 103 DDH LA 94-1 104 DDH LA 94-1 105	3 295 17 2442 .5 3 109 12 438 .6 3 24 9 431 <.1 2 12 18 147 <.1 1 21 36 313 <.1	8 322 3.62 5 9 18 151 5.38 10 4 675 3.89 9 13 48 773 5.93 13 13 36 1141 6.93 6	<5	4 .24 .056 3 4 .30 27 .02 2 .70 .02 1 .30 .055 <2	.32 22 27 .24 3 26 .56 4 8 .36 <1 7 1.12 2 10
RE DDH LA 94-1 105 DDH LA 94-1 106 DDH LA 94-1 107 DDH LA 94-1 108 DDH LA 94-1 109	1 18 33 300 <.1 1 16 9 45 .5 1 10 4 51 <.1 2 13 8 222 .1 1 9 15 125 <.1	12 34 1086 6.62 4 11 15 543 6.79 26 5 15 461 4.05 3 8 13 930 4.32 13 6 14 1071 3.68 2	<5	7 .36 .073 <2	1.08 1 11 .22 1 26 .44 <1 3 .56 1 5 .77 <1 6
DDH LA 94-1 110 DDH LA 94-1 111 DDH LA 94-1 112 DDH LA 94-1 113 DDH LA 94-1 114	4 91 39 3563 .4 2 69 10 401 .2 1 9 3 19 <.1 2 4 8 98 .1 1 4 2 9 <.1	10 15 1024 5.50 3 8 14 208 4.03 5 4 82 4.42 3 3 4 23 2.96 3 4 6 32 2.69 4	<5	1 .24 .030 <2	-82 28 33 -15 2 8 -15 1 3 -14 1 6 -13 <1 2
DDH LA 94-1 115 DDH LA 94-1 116 DDH LA 94-1 117 DDH LA 94-1 118 DDH LA 94-1 119	2 4 10 27 <.1 3 6 5 30 <.1 4 6 5 110 <.1 4 259 6 4128 .3 2 4 4 72 <.1	3 46 2.61 2 4 5 128 3.16 2 4 4 75 2.42 4 5 5 161 3.04 7 4 3 185 2.92 <2	<5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.15 <1 2 .13 1 2 .13 <1 2 .16 18 5 .16 <1 3
DDH LA 94-1 120 DDH LA 94-1 121 DDH LA 94-1 122 STANDARD C/AU-R	1 5 5 28 <.1 2 9 6 45 <.1 2 1 6 26 .1 19 58 38 128 6.8	4 11 243 5.07 <2 5 4 249 3.72 2 4 3 186 3.38 3 71 30 1040 3.96 41	<pre><5 <2 <2 3 <.2 6 <2 7 <5 <2 <2 3 <.2 6 <2 7 <5 <2 <2 3 <.2 5 <2 7 <5 <2 <2 2 <.2 6 <2 7 <5 <2 <2 2 <.2 6 <2 7 24 8 36 47 16.7 13 19 6 </pre>	2 .12 .030 <2	.19 1 1 .28 2 <1 .24 <1 1 .15 10 460

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 TO P7 CORE P8 ROCK P9 TO P11 SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples.

DATE RECEIVED:

JUN 30 1994 DATE REPORT MAILED: July 1/94 SIGNED BY......D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

																																	 _
SAMPLE#	Mo	Ci n ppr	u P m pp	yu Ay	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B	Al %	Na %	K %	₩ ppm j	Au* ppb	
DDH LA 94-2 201 DDH LA 94-2 202 DDH LA 94-2 203 DDH LA 94-2 203 DDH LA 94-2 204 DDH LA 94-2 205			6 2 0 6 3	3 6 2 3 6	50 42 41 54 58	.3 .4 .4 .2 .3	6 6 7 8	14 7 7 7 8	255 374 347 363 536	3.84 3.96 5.05 4.12 3.84	4 4 4 6 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	5 26 27 12 3	.3 .2 .3 .2 <.2	8 6 6 4	<2 <2 <2 <2 <2 <2 <2 <2 <2	29 42 39 51 41	.36 .75 .83 .48 .29	.068 .063 .059 .060 .054	2 <2 <2 2 2	8 8 7 10 5	.59 .46 .57 1.10 1.76	17 6 4 12 42	.11 .12 .11 .08 .15	3 3 3 3 2	.65 .79 .89 1.18 1.80	.07 .06 .06 .05 .02	. 13 .03 .03 .12 .91	2 3 2 1 1	2 3 1 2 1	
DDH LA 94-2 206 DDH LA 94-2 207 DDH LA 94-2 208 DDH LA 94-2 209 RE DDH LA 94-2 209	4		3 6 7 9 9	5 6 3 7 5	224 228 47 44 46	.2 .2 .1 .1 .3	6 3 5 6 6	12 8 8 8 8	76 252 339 256 263	7.47 4.31 3.31 4.65 4.79	19 5 7 10	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	~? ~? ~? ??	2 3 4 2 2	1.6 1.4 .3 .2	4 6 5 5	< < < < < < < < < < < < < < < < < < < <	6 5 17 10 10	.23 .21 .20 .20 .20	.056 .052 .035 .040 .041	2 2 3 3 3	4 3 3 4 4	.09 .34 .69 .54 .56	28 24 19 20 21	.03 .05 .08 .05 .05	<2 2 2 3 3	.41 .65 .96 .76 .78	.02 .03 .03 .02 .02	.23 .29 .43 .25 .26	<1 <1 2 1	2 1 2 1 1	
DOH LA 94-2 210 DDH LA 94-2 211 DDH LA 94-2 212 DDH LA 94-2 213 DDH LA 94-2 214		1 2 4 2 1 2 2 5 9	7 7 3 2 2 4 1	6 7 8 3 1 3	74 422 221 363 826	.3 .3 .8 .4	13 5 5 4 6	6 19 17 13 17	428 337 452 510 1058	8.11 3.83 5.50 5.53 5.29	5 9 8 8 11	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 2 <2 <2 <2 <2	2 8 3 7 27	.3 1.6 .9 5.7 3.2	5 6 7 4	<2 <2 <2 <2 <2 <2 <2	22 22 18 17 78	.31 .49 .28 .34 .68	.071 .077 .064 .032 .045	3 10 4 2 <2	6 4 4 7 10	1.01 .66 .79 .49 1.45	21 25 28 25 31	.08 .05 .06 .05 .15	2 3 5 3 2	1.05 1.03 .94 .82 1.97	.02 .02 .03 .05 .07	.27 .25 .38 .22 .31	<1 <1 <1 <1	2 3 1 2 4	
DDH LA 94-2 215 DDH LA 94-2 216 DDH LA 94-2 217 DDH LA 94-2 218 DDH LA 94-2 219		2 6 2 3 2 1 2 12	5 8 1 1 3 0 7	9 1 12 6 6 1	045 330 770 104 035	.2 .4 .3 .3 .1	4 4 3 3 3	7 2 5 5 6	457 134 223 49 40	3.90 3.44 3.78 4.57 3.48	8 4 3 5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	3 2 10 3 7	4.0 1.3 3.0 .6 3.6	6 8 7 6 5	<2 <2 <2 <2 <2 <2 <2 <2	15 2 8 <2 <2	.15 .14 .27 .11 .11	.029 .029 .033 .026 .030	2 5 4 6 3	10 5 5 4 4	.48 .10 .10 .01 .01	28 28 28 20< 19<	.03 .01 .02 .01	3 2 3 3 3	.79 .43 .49 .31 .30	.02 .02 .03 .03 .02	.22 .22 .20 .17 .17	<1 <1 <1 <1	4 11 1 2	
DDH LA 94-2 220 DDH LA 94-2 221 DDH LA 94-2 222 DDH LA 94-2 223 DDH LA 94-2 223 DDH LA 94-2 224		2 51	0 1 7 6 1 7	11 4 3 2 5 1 4	211 51 17 136 39	.4 <.1 <.1 .4 <.1	7 2 2 2 5	9 6 1 6 5	156 133 68 76 158	4.85 2.17 3.61 3.87 4.19	19 5 2 4 5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	3 6 2 3 3	14.6 .2 .3 3.8 .3	7 6 4 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	7 2 <2 <2 <2 <2	.13 .13 .09 .10 .12	.034 .028 .027 .025 .033	2 3 2 <2 <2	8 4 3 4 5	.11 .10 .04 .05 .13	24 21 19 21 21	.01 .01 .01 .01 .02	2 2 3 3 3	.44 .46 .37 .36 .40	.02 .03 .02 .02 .04	.23 .23 .23 .20 .21	<1 <1 1 <1 2	4 1 1 2 7	
DDH LA 94-2 225 DDH LA 94-2 226 DDH LA 94-2 227 DDH LA 94-2 228 DDH LA 94-2 229		5 3 5 3 5 1 5 1	8 6 9 2 1	3 2 5 4 4	66 43 290 94 50	.2 .1 .2 .1 <.1	5 4 6 3 3	2 <1 5 2 1	284 454 542 518 530	3.87 3.57 4.10 3.17 4.43	4 <2 5 5 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 10 25 5 6	.2 .2 1.3 .3 .2	6 6 5 4	<2 <2 <2 <2 <2 <2 <2 <2	<2 2 46 <2 <2	.11 .18 .58 .27 .20	.026 .022 .033 .026 .025	2 2 3 2	6 5 6 5 5	.22 .27 .60 .27 .26	20 22 48 17 17	.03 .09 .11 .05 .08	<2 2 2 2 2 3 2 2	.44 .55 1.36 .57 .57	.04 .06 .15 .03 .05	.25 .31 .51 .23 .31	<1 2 1 <1 1	4 2 3 2	
DDH LA 94-2 230 DDH LA 94-2 231 DDH LA 94-2 232 DDH LA 94-2 233 DDH LA 94-2 233 DDH LA 94-2 234		5 1 2 1 5 1 2 4 5 10	2 1 < 5 0 5	4 2 4 5 4 5 5	405 122 564 273 114	<.1 <.1 .2 .1 .1	3 3 3 3 3 3	<1 <1 9 <1 1	391 587 290 558 372	4.34 4.54 4.01 3.83 3.99	4 3 11 9 8	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 7 6 4 2	1.4 _4 1.9 _8 17.7	3 2 5 3 6	~~ ~~ ~~ ~~ ~~ ~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.11 .13 .11 .13 .09	.022 .024 .022 .025 .023	<2 2 2 2 2 2 2 2	4 5 5 4 9	.19 .26 .15 .25 .18	21 24 23 26 33	.07 .09 .04 .09 .05	2 3 2 3 2	.48 .66 .46 .64 .54	.05 .05 .04 .06 .02	.32 .45 .27 .41 .34	<1 <1 <1 <1	4 3 2 3 4	
STANDARD C/AU-R	19	> 5	8 3	58	128	6.6	72	29	1044	3.96	42	17	6	36	49	17.0	14	18	62	.51	.090	40	54	.91	186	.08	32	1.88	.06	.15	10	490	

																											-					
SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %p	As xpm (U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm p	Cr xpm	Mg %p	Ba pm	Ti %	B ppm	Al %	Na %	к %	W ppm	Au* ppb	
DDH LA 94-2 235 RE DDH LA 94-2 235 DDH LA 94-2 236 DDH LA 94-2 237 DDH LA 94-2 238	5 5 1 1 4	72 70 13 104 1027	7 7 3 4 6	2577 2692 760 2881 18426	.2 .3 .1 .3 1.5	1 2 2 <1 2	4 4 1 4	164 5. 170 6. 362 5. 414 4. 445 5.	96 15 05 42 21	36 39 11 8 6		<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	1 1 1 2 2	9.0 9.3 2.7 9.7 69.2	3 3 5 3 5	<2 2 2 2 2 2 2 2 2 2 2	<2 <2 <2 <2 <2 <2 <2 <3	.10 .11 .09 .10 .15	.022 .022 .025 .026 .048	2 2 2 2 2 2 2 2	4 - 4 - 4 - 11 -	08 08 29 32 26	24 24 27 32 33	.02 .02 .05 .06	2 <2 2 2 2 2 2	.30 .30 .54 .56 .54	.01 .01 .03 .03 .02	.21 .21 .37 .38 .32	<1 <1 <1 <1 <1	8 6 2 5 13	ï
DDH LA 94-2 239 DDH LA 94-2 240 DDH LA 94-2 241 DDH LA 94-2 242 STANDARD C/AU-R	1 1 9 3 18	253 65 54 60 57	2 2 3 3 38	3815 2386 2098 2691 126	.4 .2 .1 .1 6.5	3 <1 2 4 71	1 12 2 28	427 4. 456 4. 774 5. 735 5. 1032 3.	16 41 41 30 76	5 8 18 15 39	<5 <5 <5 <5 19	<2 <2 <2 <2 <2 <2 <6	<2 <2 <2 <2 <2 36	2 2 4 2 47	12.8 8.1 7.2 9.4 17.5	5 3 4 4 15	<2 <2 <2 2 18	<2 <2 6 12 61	.10 .11 .28 .15 .50	.027 .027 .054 .028 .089	2 2 3 39	6 . 4 . 4 . 7 . 56 .	29 27 50 57 90 1	37 37 36 43 79	.07 .07 .11 .08 .08	2 3 2 3 33	.62 .59 .90 1.08 1.88	.03 .04 .03 .02 .05	.43 .40 .42 .46 .14	<1 <1 <1 <1 11	5 3 6 3 470	

 the second s																			· · · · · · · · · · · · · · · · · · ·					_	-							
 SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к %	W ppm	Au*	·
DDH LA 94-3 301	1	15	8	154	.3	5	10	1268	5.54	12	<5	<2	<2	20	<.2	4	<2	39	.80	.054	<2	7	1.10	19	. 13	2	1.46	.04	. 14	2	7	
DDH LA 94-3 302	2	13	10	133	.3	4	6	859	4.83	10	<5	<2	<2	29	.2	3	<2	18	- 82	.057	<2	5	.60	20	.11	2	1.12	.04	. 15	1	4	
DDH LA 94-3 303	2	4	5	157	.2	10	12	1470	5.22	7	<5	<2	<2	43	<.2	<2	2	88	1.08	074	<2	10	1.77	26	.15	2	2.37	.12	.24	1	4	
DDH 14 94-3 304	2	12	7	207	.5	6	17	616	6 00	ò	<5	2	<2	7	< 2	3	~2	46	.43	071	<2	5	.57	25	12	<2	.94	.07	.56	<1	3	
RE DDH LA 94-3 304	1	11	6	203	.5	7	17	614	6.87	9	<5	<2	<2	7	<.2	4	<2	45	.43	.070	<2	6	.56	24	.12	<2	.93	.06	.55	1	3	
DDH LA 94-3 305	2	10	10	145	.2	3	22	218	4.17	18	<5	<2	<2	3	<.2	4	2	4	.28	.068	2	3	. 15	31	.04	3	.41	.03	.22	<1	4	
DDH LA 94-3 306	1	51	24	1033	.3	7	10	802	4.61	5	<5	<2	<2	6	3.2	5	<2	29	. 19	.023	<2	17	.90	29	.07	2	.97	.03	.44	<1	3	
DDH LA 94-3 307	1	15	11	1362	.3	4	14	569	4.98	7	<5	<2	<2	16	4.7	3	2	48	.42	.032	<2	11	1.13	39	.09	2	1.33	.10	.28	<1	7	
DDH LA 94-3 308	1	39	7	234	.3	4	21	212	4.42	9	<5	<2	<2	5	.6	4	<2	21	.22	.031	4	3	.34	18	.02	3.	.59	.02	.15	<1	5	
DDH LA 94-3 309	1	27	15	53	.2	3	12	48	3.86	5	<5	<2	<2	2	<.2	6	<2	<2	.12	.024	4	3	.02	15<	.01	2	.29	.02	.18	1	3	
DDH LA 94-3 310	1	64	11	2232	.4	2	10	138	4.89	9	<5	<2	<2	9	6.8	- 4	2	15	.25	.033	- 3	4	. 16	24	.01	2	.61	.03	.21	<1	3	
DDH LA 94-3 311	1	15	7	803	.3	1	8	39 -	4.65	7	<5	<2	<2	2	2.5	4	2	<2	.11	.029	2	3	.01	21<	.01	2	.31	.02	. 19	<1	3	
DDH LA 94-3 312	2	38	18	121	.3	3	12	103	4.53	5	<5	<2	<2	2	.3	6	<2	3	.11	.028	3	5	.12	23	.01	3	.40	.03	.22	2	5	
DDH LA 94-3 313	1	6	5	31	.2	1	1	31	4.15	2	5	<2	<2	1	<.2	5	<2	<2	.09	.027	5	2	.02	14<	.01	3	.28	.01	.19	1	2	
DDH LA 94-3 314	1	5	<2	18	.1	1	1	44	3.06	2	<5	<2	<2	2	<.2	5	<2	<2	.08	.026	5	2	.05	19<	.01	2	.40	.01	.25	2	2	
DDH LA 94-3 315	1	97	11	625	.4	2	6	390	3.98	6	<5	<2	<2	19	2.5	5	2	39	.46	.027	2	4	.35	45	. 05	- 4	.73	.06	. 18	1	7	
STANDARD C/AU-R	19	57	37	126	6.9	70	28	1023	3.96	40	16	6	36	47	16.9	15	19	61	.50	.089	40	56	. 89	179	.08	33	1.88	.05	. 14	11	480	

 SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca %	P Y	La	Cr	Mg %	Ba	Ti	B	Al %	Na %	K ¥	W	Au*	
 	ppii	- pp	PP.		ppii			- ppm		Phun I		ppii	<u> </u>	Phan -	- 100	PPii	Ppii	ppn	~		ppiù			ppin		<u> </u>	~	~~~~~		ppii	<u> </u>	
DDH LA 94-4 401	2	24	20	532	.6	6	27	826	8.69	26	5	<2	<2	10	1.6	<2	<2	71	.42	.049	<2	71	.35	35	.11	<2	1.49	.08	.47	<1	14	
DDH LA 94-4 402	2	20	, °	2193	.,	10	41	052	0.04	20	< <u>></u>	~2	~~	20	1.0	- 4 E	~2	10	.42	.057	~~~	14 1	. 29	40	.13	2	1.07	.04	. 14	5	10	
DDH LA 94-4 403	1	17	4	90	• 4	5	6	709	4.40	10	<7	~2	~2	20	•••	2	~2	19	.07	.000	2	01	.74	10	. 12	4	1.07	.04	.05	2	2	
DDH LA 94-4 404	4	770	47	215	• 4	2	2	710	4.31	10	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	20	•	- 4 - C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27	.07	.000	~~~	2 1	.01	10	10	2	1 07	.05	.05	4	2	
UUN LA 94-4 405	1	230	17	212	•1	0	24	710	4.30	0	<2	<2	<2	03	•1	2	~2	00	1.2/	.055	×2	21	.50	7	. 17	2	1.75	.04	.05		24	
DDH LA 94-4 406	3	38	23	334	.3	7	11	955	4.66	14	<5	<2	<2	7	1.2	5	3	49	.24	.028	2	21 1	.20	41	.09	4	1.24	.05	.35	1	6	
DDH LA 94-4 407	1	31	59	883	4	7	12	1241	6.76	27	<5	<2	<2	5	2.9	2	<2	69	. 19	.030	2	20 1	.57	26	.08	<2	1.49	.04	.31	<1	6	
DDH LA 94-4 408	1	74	33	874	.4	9	14	1291	6.10	11	<5	<2	<2	8	2.7	<2	<2	118	.30	.036	<2	34 2	.04	60	.13	<2	2.19	.07	.93	<1	8	
RE DDH LA 94-4 408	1	73	29	872	.4	10	14	1285	6.03	13	<5	<2	<2	8	2.5	<2	<2	117	.30	.035	<2	35 2	.02	62	.13	<2	2.18	.07	.94	<1	10	
DDH LA 94-4 409	3	17	18	816	.3	6	8	263	5.85	8	<5	<2	<2	7	3.2	- 3	<2	29	.33	.043	5	7	.49	24	.04	<2	.72	.03	.29	<1	2	
												_		_		_						_				_				_	_	
DDH LA 94-4 410	1	11	4	640	.1	1	10	67	4.71	6	<5	<2	<2	3	3.0	5	<2	2	.28	.029	7	2	.08	31<	:.01	2	.37	.02	.20	<1	3	
DDH LA 94-4 411	8	17	5	1860	.3	2	5	50	5.45	8	<5	<2	<2	2	9.1	5	<2	<2	.16	.032	5	4	.07	27<	.01	2	.30	.02	.16	<1	6	
DDH LA 94-4 412	4	23	2	29	.3	5	8	88	4.22	9	<5	<2	2	21	<.2	5	<2	7	-47	.023	3	9	.18	25	.01	2	.86	.08	.13	- 3	5	
DDH LA 94-4 413	1	38	3	125	.3	5	9	162	3.53	6	<5	<2	<2	26	.7	- 4	<2	18	.60	.030	- 3	12	.49	18	.02	<2	1.20	.09	.11	1	3	
DDH LA 94-4 414	5	132	6	974	.3	3	5	132	4.78	5	<5	<2	<2	4	3.6	4	2	<2	.52	.022	3	4	.07	26<	:.01	2	.33	.02	.17	<1	4	
DDH 1 A 94-4 415	1	243	16	331	-5	3	6	447	3.63	5	<5	<2	<2	4	13	6	~2	7	43	.027	<2	4	. 38	26	.05	3	.73	.05	. 18	1	12	
DDH 1A 94-4 416	3	45	3	1317	5	<1	ž	556	5 53	14	~5	~	~	7	4 7	ž	2	2	15	027	2	7	-20	26	.08	2	70	.03	.41	<1	2	
DDH LA 94-4 417	1	40	ž	1041	3	4	2	380	3 80	16	<5	~2	~2	ž	3 6	ž	<2	5	10	027	3	ĩ	37	26	.06	2	.64	.03	.31	<1	3	
DDH 1A 94-4 418	l o	8501	3	3840	7.0	Ž	8	151	7.77	18	<5	<2	~	ž	15 2	Š	~	~2	10	.032	~	7	08	24	.01	<2	36	.02	.21	<1	94	
DDH 1 A 94-4 419	1	43	2	87	τ	1	ž	285	3 57	7	<5	<2	~	16	2.2	Ĺ	2	2	37	022	~2	2	26	26	04	3	.67	05	.21	1	8	
	·		-	0.		•	-	205		•			-		••	-		-				-				-			••••	•	-	
DDH LA 94-4 420	8	145	10	1262	.5	3	8	100	3.21	16	5	<2	2	5	4.6	5	<2	4	.20	.024	3	5	.09	22	.01	2	.35	.02	.16	<1	8	
DDH LA 94-4 421	2	41	2	129	.3	8	5	635	6.29	4	<5	<2	<2	36	.3	<2	<2	96	.88	.053	2	15 1	.49	72	.15	<2	2.54	. 13	.81	1	5	
DDH LA 94-4 422	3	24	4	483	.2	3	4	629	5.98	5	<5	<2	<2	7	1.8	3	<2	84	.29	.061	3	4 1	. 19	63	.15	<2	1.38	.06	.57	<1	4	
STANDARD C/AU-R	18	57	38	126	6.9	71	28	1032	3.96	39	19	6	36	47	17.5	15	18	61	.50	.089	39	56	.90	179	.08	33	1.88	.05	. 14	11	500	

SAMPLE#	Mo Cu Pb ppm ppm ppm	Zn Ag Ni Co ppm ppm ppm ppm	Min Fe As U Au ppm % ppm ppm ppm	u Th Sr Cd Sb Bi V mippmippmippmippmippmi	Ca P La Cr Mg Ba Ti % % ppm ppm % ppm % r	BALNAKWAU* opm % % % ppm ppb
DDH LA 94-5 501 DDH LA 94-5 502 DDH LA 94-5 503 DDH LA 94-5 503 DDH LA 94-5 504 DDH LA 94-5 505	2 81 7 2 14 10 3 17 4 2 24 41 3 69 36	1215 .2 6 11 121 .3 5 4 30 .2 1 10 305 .2 8 32 20 .3 16 210	636 7.14 10 <5	2 <2	.30 .075 <2 7 1.10 44 .13 .21 .064 2 5 .47 37 .05 .17 .026 3 3 .51 21 .04 .24 .056 <2 3 .36 25 .07 .15 .036 <2 3 .10 15 .03	<pre><2 1.49 .04 .61 <1 6 2 .67 .04 .41 <1 6 3 .64 .05 .16 2 1 <2 .61 .03 .24 <1 4 <2 .32 .03 .15 <1 16</pre>
DDH LA 94-5 506 DDH LA 94-5 507 DDH LA 94-5 508 DDH LA 94-5 509 DDH LA 94-5 510	2 6 9 5 48 14 5 276 34 1 13 6 1 12 14	16 .2 <1	138 4.44 14 <5 <2 381 6.03 31 <5 <2 258 5.66 17 <5 <2 168 3.66 10 <5 <2 87 4.48 14 <5 <2	2 2 2 <.2	.14.02431.1629.02.24.046<2	2 .40 .03 .17 <1
DDH LA 94-5 511 DDH LA 94-5 512 DDH LA 94-5 513 DDH LA 94-5 514 DDH LA 94-5 515	6 13 66 28 15 7 2 6 4 2 11 4 1 113 10	125 .3 1 71 201 .2 <1	30 7.42 17 <5	2 <2	.10.030<2	<pre><2 .37 .02 .20 <1 2 <2 .28 .02 .17 <1 3 3 .34 .02 .20 <1 2 5 .43 .02 .22 1 2 <2 2.71 .14 .67 <1 7</pre>
DDH LA 94-5 516 DDH LA 94-5 517 DDH LA 94-5 518 DDH LA 94-5 519 DDH LA 94-5 520	4 349 7 2 24 8 1 8 4 2 80 6 3 318 6	45037 .4 2 8 207 .3 6 6 151 .1 <1	171 9.85 19 <5 <2 225 5.48 8 <5 <2 74 4.46 6 <5 <2 217 5.24 11 <5 <2 258 5.56 12 <5 <2	2 <2	.46 .025 3 18 .08 17 .03 .64 .023 <2	<pre><2 .62 .06 .13 <1 19 <2 1.41 .14 .30 <1 2 3 .31 .03 .15 <1 1 2 .88 .07 .27 <1 3 2 1.16 .10 .26 <1 8</pre>
DDH LA 94-5 521 RE DDH LA 94-5 521 DDH LA 94-5 522 DDH LA 94-5 523 DDH LA 94-5 524	16 21 9 15 20 7 17 131 9 3 13 8 2 17 10	407 .4 <1	126 3.85 15 <5 < 122 3.68 13 <5 < 145 4.29 11 <5 < 370 4.54 17 <5 < 578 4.24 11 <5 <	2 <2	.11 .024 2 2 .11 26 .01 .11 .023 <2	3 .48 .03 .27 <1 11 3 .47 .03 .26 <1 9 4 .51 .02 .19 <1 4 4 .81 .05 .46 <1 2 2 1.14 .08 .46 <1 2
DDH LA 94-5 525 DDH LA 94-5 526 DDH LA 94-5 527 DDH LA 94-5 528 DDH LA 94-5 529	3 23 5 3 55 5 <1 18 6 5 36 10 8 20 5	482 .2 1 4 1087 .3 1 1 65 .1 <1	470 3.72 11 <5 < 537 5.06 25 <5 < 238 6.17 57 <5 < 309 6.75 47 <5 < 322 4.73 10 <5 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.33.032<2	<pre><2 .87 .08 .40 <1 3 <2 .64 .05 .46 <1 5 3 .60 .05 .37 1 3 <2 .84 .05 .35 <1 4 2 1.00 .08 .33 <1 5</pre>
DDH LA 94-5 530 DDH LA 94-5 531 DDH LA 94-5 532 DDH LA 94-5 533 DDH LA 94-5 533	2 25 7 2 9 4 1 15 6 3 113 <2 4 38 <2	88 .2 2 8 33 .1 2 11 48 .1 3 11 1610 .2 <1	375 5.84 17 <5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.50.065<2	<pre><2 1.33 .09 .66 1 3 <2 .54 .03 .32 <1 4 <2 2.65 .23 .85 2 3 <2 .65 .05 .48 <1 5 <2 .63 .04 .37 1 4</pre>
STANDARD C/Au-R	18 57 38	126 6.9 69 28	1032 3.96 42 18	6 36 48 17.0 14 18 61	.51 .089 40 56 .90 182 .08	33 1.88 .05 .14 11 500

SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As. U Au Th Sr Cd Sb Bi. V Ca. P La Cr Mg Ba Ti. B Al. Na. K. W Au* ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	<u>,</u>
DDH LA 94-5 535 DDH LA 94-5 536 DDH LA 94-5 537 RE DDH LA 94-5 537	12 45 3 39 .2 3 4 225 8.31 15 <5 <2 <2 5 <.2 3 3 4 .31 .057 <2 3 .27 32 .04 <2 .62 .05 .34 2 8 2 200 3 57 .3 1 2 380 3.91 4 <5 <2 <2 5 <2 2 .16 .028 2 2.36 32 .09 4 .66 .06 .52 1 12 3 39 9 76 .3 3 7 299 3.99 6 <5 <2 <2 19 .23 .025 2 .37 25 .07 3 .78 .07 .42 <1 6 3 39 8 72 .3 2 6 301 3.92 5 <5 <2 8 .2 5 <2 18 .22 .024 2 3 .36 24 .07	

ACHE MALLYTICAL		<u> </u>	Gua	ardi	ian	Res	our	ces	5 CO1	cp.	PRO	DJEC	T I	LAKI	E AI	DIT,	, P]	EMBI	ERTO	ON	FII	æ i	# 9·	4-18	95		Pa	ige	8	ACM	A A E AMALYTICAL	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	2n ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi	V	Ca %	P %	La	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	Al %	Na %	K %	W ppm	Au* ppb	
											<u> </u>		···	<u> </u>															·	<u> </u>	<u> </u>	
P-1	5	27	7	119	.5	12	45	1007	11.43	42	<5	<2	<2	58	<.2	<2	4	139	1.25	.057	<2	11	1.76	23	.15	<2 3	3.29	.22	.82	2	84	
P-2	5	59	63	664	2.5	7	54	3367	20.16	100	<5	<2	<2	13	.9	<2	7	62	.22	.019	<2	7	1.64	7	.11	<2 2	2.41	.01	.04	<1	38	
P-3	7	422	8	142	2.5	11	30	3147	6.13	13	<5	<2	<2	25	<.2	2	<2	84	.48	.042	<2	8	1.85	6	.12	2 3	2.31	.01	.04	<1	29	
P-4	24	7236	2268	1307	49.7	9	104	574	14.91	50	<5	<2	<2	2	5.6	7	60	22	.12	.042	<2	7	.37	16	.05	<2	.99	.01	.21	<1	61	
P-5	4	4362	30	1750	4.2	7	45	1342	13.74	20	<5	<2	<2	11	6.8	2	6	62	.41	.067	2	7	.75	37	.06	<2 3	2.67	.06	.27	<1	8	
P-6	4	14417	27	684	22.0	8	94	1584	21.36	63	<5	<2	<2	9	3.0	<2	10	36	.25	.036	<2	9	1.41	10	.06	<2	2.19	.01	.05	<1	110	
RE P-6	4	14424	29	695	21.8	8	93	1596	21.40	64	<5	<2	<2	ģ	2.8	2	11	37	.26	.036	<2	ģ	1.45		.07	<2	2.21	.01	.05	<1	120	
P-7	4	669	15	1306	1.2	10	4	747	27.33	38	<5	<2	<2	ż	2.9	4	<2	21	.35	.055	3	10	.34	6	.04	<2	.28	.01	.18	<1	70	
P-8	4	66	9	15	.4	1	12	42	11.61	42	<5	<2	2	2	<.2	3	2	4	.08	.010	<2	2	.02	9	.06	<2	.25	.02	.16	2	18	

AA
ACHE MALTTICAL

																													~	AL AREALY	-iicat
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba	Ti	B	AL.	Na	ĸ	· ₩	Au*
	ppm	ppm	ppm	ppm	bbu	ppm	ppm	ppm	74	ppm	ppm	bbu	ppm	bbu	ppm	ppm	ppm	ppm	~ ~	7	ppm	ppm	76	ppm	7.	ppm	76	~	76	ppm	ppb
											_																				
L5+00N 4+00W	13	942	108	867	6.3	- 4	8	970	11.46	28	<5	<2	<2	12	2.4	- 3	12	74	-98	.109	2	10	.45	54	. 15	21.	53	.01	.05	1	44
L5+00N 3+75W	7	581	93	1496	1.7	11	10	844	10.93	20	<5	<2	<2	12	2.0	<2	<2	147	.60	.057	2	15	1.17	50	.21	<2 2.	71	.01	.06	2	11
L5+00N 3+50W	11	419	40	631	1.6	9	5	1002	11.10	24	<5	<2	<2	21	1.3	<2	<2	125	.48	.168	3	14	.90	93	.21	32.	52	.02	.19	<1	10
L5+00N 3+25W	7	248	35	494	1.0	9	8	709	13.09	34	<5	<2	<2	54	2.2	2	<2	122	.23	.380	4	32	-83	163	. 14	32.	18	.04	.44	<1	8
L5+00N 3+00W	4	196	11	481	.8	3	2	508	6.99	14	<5	<2	<2	13	.9	5	<2	67	. 18	.066	3	11	.69	99	.17	52.	21	.02	.17	<1	4
L5+00N 2+75W	5	229	27	747	.7	6	7	903	7,60	13	<5	<2	<2	15	1.2	6	<2	67	.29	.057	4	10	.63	87	.16	62.	29	.02	.13	<1	8
L5+00N 2+50W	13	312	151	344	1.4	2	3	642	9.51	23	<5	$\overline{2}$	<2	18	.2	5	6	113	.20	.095	2	7	.89	149	.17	3 2.	22	.03	.27	<1	9
15+00N 2+25W	6	163	18	701	.8	5	15	725	7.63	14	<5	~	- 2	12	1.0	ž	2	110	. 19	.084	3	10	.46	56	16	5 2.	24	.02	.05	<1	3
15+001 2+004	14	730	40	310	23	8		663	14 43	20	<5	2	<2	10	< 2		- 7	132	. 15	110	ō	34	1 02	120	17	3 2	35	02	12	<1	18
14+50N 2+00V	0	256	20	355	1 3	š	ŭ	551	0 87	18	-5	-2	<2	15	< 2	2	2	104	16	082	2	21	83	184	17	22	16	02	20	<1	10
E4:30N 2:00W	,	230	20	222		-	-		7.01	10	.,	~				-		104		.002			.05	104	• • •					~ 1	-
14+504 1+754	6	462	11	602	12	5	16	753	5 60	17	<5	-2	~?	18	8	5	<2	76	.25	128	٦	0	41	58	12	43	RO	02	07	<1	6
1 4+50N 1+50U	7	182	01	211	1 7	5	3	685	8 85	22	-5	~2	-2	22		ž	-2	00	30	122	2	ó	80	16/	21	4 1	87 87	03	20	- 1	20
1/+501 1+251		150	27	155	4 7			50/	4 20	1/		~2	~2	20		7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	77	- 26	055	2	44	-07	77	-21	4 1	34	.05	19	-1	17
L4+J0N 1+2JW	7	1.50	21		4.5	-1	- 4	7/5	11 77	14		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20		-2	5	70	.20	074	~2		1 07	77	15		20	- 02	1 /2	-1	2
17.501 4.000	2	1770	7/1	/10	.0		~ ~	343	11.11	~~~	5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22		-2	47	114	. 17	.0/0	~2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.07	52	. 15	5 2 1.	27 71	- 11	1.42		120
L3+50W O+UUN	47	1738	341	410	42.8	4	2	409	20.19		<2	<2	2	0	<.2	<2	15	110	.07	.001	<2	10	.10	01	.08	> 2.	6 S	.01	.20	<1	120
				707		,	•		40 54						~	-			~ 7	0.4F		• •	-		~~			~			
RE L3+50W 6+00N	46	1693	351	397	46.1	4	2	470	19.54	/6	<>	<2	<2	6	.5	<2	10	114	.07	.065	<2	16	./5	61	.08	5 2.	58	.01	.18	<1	140
L3+50W 5+75N	61	919	160	51	11.6	<1	<1	231	25.57	60	<5	<2	<2	8	.3	<2	4	86	.05	.063	<2	4	.50	88	.08	8.	78	.03	.35	<1	83
L3+50W 5+50N	9	172	19	152	.9	6	2	647	6.64	17	<5	<2	<2	13	<.2	2	<2	Z22	.25	.051	<2	32	1.86	62	.21	33.	02	.02	. 14	<1	16
L3+50W 5+25N	6	262	20	421	1.2	6	24	1465	8.17	19	<5	<2	<2	45	.6	3	<2	91	.34	.221	3	11	.51	60	.08	42.	49	.01	.07	<1	4
STANDARD C/AU-S	18	57	37	127	6.9	69	29	1043	3.96	41	17	6	36	49	16.7	15	19	60	.50	.089	39	53	.90	177	.08	34 1.	88	.05	.14	12	48

SAMPLE#	Mo Cu Pb Zn Ag Ni ppm ppm ppm ppm ppm ppm p	co Min Fe A om ppm % pp	As U Au Th Sr ppm ppm ppm ppm ppm	Cd Sb Bi V ppm ppm ppm ppm	/Ca PLaCr MgBaTi n % %ppmppm: %ppm %p	BALNA KWAU* pm % % % ppm ppb
L1+00W 42+00S L1+00W 42+25S L1+00W 42+50S L1+00W 42+75S L1+00W 43+00S	2 52 7 166 .3 9 1 97 6 237 .4 6 1 75 10 531 .7 9 10 117 8 285 .5 7 8 67 14 219 .5 6	9 1067 3.06 1 7 584 5.17 1 22 2731 9.16 2 14 747 14.91 2 14 789 17.30 1	14 <5	.7 5 <2	3 .85 .036 5 14 .56 .89 .13 3 .47 .090 3 10 .63 157 .13 3 .62 .444 5 11 .74 329 .10 0 .64 .094 <2	4 1.63 .03 .09 3 3 4 1.69 .05 .44 1 8 4 2.09 .02 .18 1 8 2 3.94 .02 .43 2 5 2 3.86 .04 .50 <1 15
L1+00W 43+25S L1+00W 43+50S L1+00W 43+75S L1+00W 44+00S L1+00W 44+25S	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 364 13.79 3 8 1033 11.47 2 14 980 6.68 19 1714 3.86 26 1521 4.00	35 <5	3 .5 <2	.16 .074 <2	<pre><2 1.52 .60 1.19 1 5 <2 3.91 .02 .12 1 4 4 2.93 .02 .13 1 2 4 1.60 .02 .06 2 1 4 2.76 .03 .12 1 1</pre>
L1+00W 44+50S L1+00W 44+75S L1+00W 45+00S L1+00W 45+25S L1+00W 45+50S	2 44 12 244 .3 7 1 52 6 243 .3 9 1 37 8 400 .1 8 1 41 7 358 .2 6 1 39 7 323 .3 6	12 478 3.72 14 682 3.41 13 518 2.94 13 670 2.97 11 861 2.98	3 <5	.4 4 <2	.38 .058 3 9 .59 80 .17 .42 .029 2 11 .89 89 .17 .39 .049 2 8 .54 107 .16 .38 .048 2 8 .56 87 .15 .37 .045 3 8 .57 69 .15	3 2.58 .02 .04 1 1 3 2.06 .02 .06 1 5 3 2.00 .02 .07 <1
L1+00W 45+75S L1+00W 46+00S L0+50W 42+00S L0+50W 42+25S L0+50W 42+50S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 632 3.24 13 602 3.62 15 1273 4.39 14 751 3.86 127 1921 8.45	5 <5	5 .6 3 2 66 7 .7 4 2 67 5 .8 5 <2 80 5 1.0 5 2 89 5 1.4 <2 <2 192	5 .51 .011 2 10 .72 51 .18 7 .47 .036 2 9 .74 50 .14 0 .70 .019 4 14 .89 84 .17 0 .74 .042 6 17 .77 84 .16 2 .47 .243 3 19 2.23 346 .15	3 1.79 .02 .06 <1
L0+50W 42+75S RE L0+50W 42+75S L0+50W 43+00S L0+50W 43+25S L0+50W 43+50S	5 301 12 546 .5 7 5 288 13 551 .6 7 1 126 9 701 .3 9 1 121 14 539 .4 15 <1	45 4831 8.27 46 4843 8.40 54 4325 4.92 47 2923 7.75 50 11328 4.61	16 <5	2 4.1 <2 2 93 0 4.0 <2 <2 94 0 4.0 2 3 66 1 2.1 <2 <2 97 1 2.4 3 <2 68	5 .86 .259 3 6 1.09 337 .09 4 .88 .262 3 6 1.12 327 .09 5 .87 .244 4 10 .84 394 .11 7 .40 .203 3 10 .95 269 .14 3 .54 .207 4 10 .80 668 .08	3 2.41 .03 .26 <1
L0+50W 43+75S L0+50W 44+00S L0+50W 44+25S L0+50W 44+50S L0+50W 44+75S	2 56 10 202 .5 13 2 113 12 154 .5 6 1 60 9 159 .3 4 1 132 9 490 .2 12 1 88 8 291 .1 4	18 1233 6.04 15 772 3.90 9 709 4.14 29 1949 3.93 12 1582 3.80	4 5 <2 <2 11 11 <5 <2 <2 27 9 <5 <2 <2 28 7 <5 <2 <2 55 5 <5 <2 <2 33	I <.2	0 .16 .037 2 18 2.09 54 .13 1 .43 .210 4 9 .55 88 .15 1 .41 .346 4 8 .68 171 .18 3 .71 .109 2 12 1.12 241 .15 0 .43 .064 2 3 .98 171 .23	3 2.88 .01 .04 1 <1
L0+50W 45+00S L0+50W 45+25S L0+50W 45+50S L0+50W 45+75S L0+50W 46+00S	1 31 18 304 .4 5 1 35 12 841 .2 6 1 32 14 529 .2 6 <1	8 971 2.98 18 2025 3.79 18 1417 3.80 15 1986 3.68 48 1811 5.15	7 6 <2 2 40 6 <5 <2 <2 25 6 <5 <2 <2 28 8 <5 <2 <2 39 8 <5 <2 <2 50	.5 7 <2	0 .27 .043 3 5 .40 177 .14 3 .31 .190 3 9 .57 227 .16 3 .37 .205 3 11 .51 123 .13 2 .51 .182 3 10 .67 162 .13 0 .93 .053 2 19 1.48 157 .16	3 1.49 .02 .07 1 1 4 1.84 .02 .05 <1
STANDARD C/AU-S	19 57 36 136 6.6 72	29 1054 3.96 4	42 19 6 35 51	16.8 14 22 60	0.51.091 42 55 .91 190 .08	34 1.88 .06 .15 12 48

																																	HE ANALTTICAL
SAMPLE#	M IPP	to cm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	8 ppm	Al %	Na %	K X	W ppm	Au* ppb	
L15+00W 45+00S L15+00W 45+50S L15+00W 46+00S L15+00W 46+50S L15+00W 47+00S		3 3 1 3 3	57 49 131 209 103	27 24 29 55 18	1042 1062 859 664 301	.5 .2 .2 .5 .2	24 11 13 14 11	76 51 21 27 26	2697 2502 1558 1014 4729	7.43 13.02 5.40 8.11 7.69	46 61 13 11 21	\$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 2 <2 <2 <2 <2 <2	53 41 31 31 29	2.6 2.9 1.2 .8 .7	<2 <2 3 4 4	4 2 2 3 2 ~2	76 65 89 84 78	.56 .37 .50 .28 .34	.355 .401 .040 .084 .218	6 4 2 6 4	15 13 13 15 12	.93 .64 1.32 .79 .69	156 158 75 91 108	.13 .11 .20 .23 .16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.32 2.12 3.05 3.09 2.48	.01 .01 .01 .01 .01	.10 .09 .09 .06 .09	<1 <1 <1 1 <1	8 2 1 7 7	
L15+00W 47+50S L15+00W 48+00S L15+00W 48+50S L15+00W 49+00S L15+00W 49+50S	1	3 1 2 4	132 79 174 176 163	58 12 11 22 17	401 441 478 1609 407	.4 .2 .1 .4 .4	14 18 26 24 64	25 19 42 33 21	3241 836 1801 2750 798	6.84 5.00 6.26 5.56 9.58	25 8 10 6 17	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 6	39 22 18 28 104	.9 .5 .9 2.5 .7	2 2 3 2 2 3 2 2 2	2 2 2 2 2 2 4	67 87 90 103 120	.58 .36 .36 .62 .36	.297 .043 .108 .090 .257	6 3 4 28	12 16 20 19 52	.82 1.07 1.39 1.76 1.67	98 64 91 155 194	.16 .21 .15 .18 .45	<2 2 3 19	2.84 3.15 3.48 4.06 4.23	.01 .02 .01 .01 .03	.11 .08 .08 .12 .41	<1 <1 1 <1	7 1 2 <1 12	
L15+00W 50+00S RE L15+00W 50+ L55+00S 15+50W L55+00S 15+00W L55+00S 14+50W	00s 4	7 8 16 1 7 2	150 152 1503 352 58	17 19 16 8 9	404 406 1751 1000 447	.9 .9 1.9 .5 .3	15 15 23 4 11	38 39 37 2 11	1724 1759 4420 2907 651	12.83 12.90 11.46 20.12 4.23	22 24 47 45 7	<5 <5 <5 9 <5	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 23 24 10 23	.2 .3 7.8 .5 .4	<2 2 4 2 3	10 8 3 <2	70 70 59 41 72	.14 .14 .94 2.25 .38	.271 .276 .134 .232 .061	6 6 2 2 3	15 15 17 19 14	.48 .47 .40 .73 .93	276 290 90 23 55	.14 .14 .16 .18 .15	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2.12 2.13 1.02 1.27 2.54	.01 .01 .01 .01 .01	.11 .11 .04 .28 .05	<1 <1 <1 <1 <1	10 12 23 110 5	
L55+00S 14+00W L55+00S 13+50W L55+00S 13+00W L55+00S 12+50W L55+00S 12+00W		4 2 7 8 6	85 103 327 170 126	13 11 9 9 17	1559 433 232 176 493	.2 .5 .4 .3 .3	9 11 11 4 12	13 14 29 16 17	784 1062 1691 611 1151	4.78 4.13 13.63 12.40 6.90	12 6 31 47 12	<5 <5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	29 35 25 11 31	1.8 .9 <.2 1.6 1.2	3 3 <2 6 4	2 2 4 3 3	81 62 83 13 63	.61 .61 .22 .19 .48	.024 .043 .226 .038 .049	2 7 5 7 5	15 12 14 3 14	.87 .87 1.23 .41 .97	37 71 103 31 121	.16 .14 .13 .08 .15	3 2 2 2 2 2 2	2.56 2.49 2.71 .71- 2.90	.01 .02 .01 .01 .02	.05 .05 .12 .05 .09	<1 <1 <1 <1	1 2 18 12 3	
L55+00S 11+50W L55+00S 11+00W L55+00S 9+50W L55+00S 9+00W L55+00S 8+50W		6 9 9 2 6	139 518 289 69 17	11 5 6 7 9	142 247 197 64 59	.2 .1 .4 .5 .4	8 20 6 2 3	10 42 24 <1 3	706 1990 874 397 226	17.11 7.24 9.45 9.25 6.96	26 57 24 21 29	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 <2 <2 2 2 2	17 47 25 17 12	<.2 1.0 .2 <.2 <.2	<2 2 3 2 5	6 ~2 2 2 5	78 66 51 61 39	.16 .96 .31 .17 .11	.379 .040 .100 .091 .053	8 2 3 2 2	16 9 4 7 5	.78 1.31 1.22 1.04 .34	94 77 42 73 83	.18 .16 .25 .38 .20	<2 <2 <2 <2 <2 <2 <2 <2	2.68 1.95 2.56 2.53 1.03	.01 .01 .01 .01 .02	.14 .11 .07 .31 .08	<1 <1 1 1 <1	6 7 21 18 24	
STANDARD C/AU-	S 1	18	58	38	126	6.9	69	28	1037	3.96	40	18	6	37	48	17.4	16	20	61	.50	.089	41	56	.90	182	.08	33	1.88	.06	. 14	12	48	

	Diam	ond	Drill	Reco	ord		Hole No. LA	94 - 1	Ba	Cor	re s	ize				Pg	i cf 5	>
Colla	r co-o	rd. 1	+005 +40 W	Dip	-55		Logged by A	.Kikauka	Compa	any nam	e 🧲	uardi	an R	esource	es	Project	: Lake /	Adit
Eleva	tion	1030	<i>∓</i> +.	Azimuth	050		Date logged	May 25, 94	Drill	contr	actor	Core	. Ent		Date	commenc	ed May 1	19.
									Final	. depth	3	38 F	† .		Date	finishe	d May 2	 \$
		•																
FROM	то	RECOVY			a	DESC	RIPTION			SA	MPLE	·				ASSAYS		
				<u> </u>	()				FROM	то	אדסוש	No.	ppm Cu	Zn	Ag	ppb Air		
0.0	44:0	0%	Cas	ing	(на)							<u> </u>						-+
0.0	82.0	30%	Casi	ing	(NQ)	Mixe	d diorit	e, andesite,										\square
			ande	site	porchy	iry b	oulders	to 25 cm.			}							
82.0	99.0	78%	Rhya	adacit	e she	eared	well de	fined fabric										
				+ 1	ctcoto	i al	1 - 7	i da falsic			:	 						+
			<u>elona</u>	Jalea	, snerc	<u>hea</u>	1 1 mm.	Wide reisic	$\overline{)}$		 			+				-
			and	K-SF	par ric	h clas	STS (Pink	L-while colour)									-+
			at	40 - 5	o to	Core	axis.	10% sericite,			i 							\rightarrow
			870	disse	minate	d an.	1 fractu	re filling pyrit	2				L					
			57.	gtz.	, moder	-ate to	o strong	potassic										
			alter	ratio	n. tra	ice to	0.32 C	halcopyrite and	1									
			<u> </u>	10,0:+0	+	M	alul dau			1								+
			<u></u>	ierite	<u>, 11 a</u>		DIYBAENI	im on shears a	5									-+
			coal	ings.									+		+			+
			12.72	PY-					82.0	88.0	6.0	101	295	2442	0.5	27		\downarrow
			87.	PY-					880	97.0	9.0	102	104	438	0.6	26		
			8%	· / Py·,	3 % at:	Zas	0-2-1-5	nm wide	97.0	103.0	6.0	103	24	431	0.1	8		
······································				It: ()	0.151	m) @ 3	35-70°+0	COTO AXIS	_				1	1	1			+

Diamond Drill Record	Hole No. LA 94-1	BQ core size	pg-2 of 5
Collar co-ord. 1 ± 40 W Dip -55	Logged by A. Kikauka	Company name Guardian Resour	ces Project
Elevation 1030 ft. Azimuth 050	Date logged May 25	Drill contractor Core Ent.	Date commenced M_{Ay} 19 94
		Final depth 338 Ft.	Date finished May 24, 94
	-		

ERON	TO	BECOVY	DESCRIPTION		SA	MPLE					ASSAYS	 	
FNUM	10	120011		FROM	то	WIDTH	No.	ppm Cu	ZA	Ag	obb Au	 	ļ
99.0	157.0	90%	Andesite, dark green colour, moderate to	·				· ·			· /	 	ļ
			strong propyllitic alteration 5-15% epidote	 									
			3-5% chlorite, 2-10% disseminated pyrite,	[3						 	
			1% Fracture Filling pyrite, 1% quartz as 0.2-										
,			1.5 mm wide veinlets at 20-70° to core axis			:							
			Fine grain andesite at 152-0-157.0 with 15%								Ĺ	 	• .
			chlorite			}			<u> </u>		 	 	
			Silicified and Fractured interval, 12% dissem-	103.0	107-5	4.5	104_	12	147	0.1	7	 	
			inated and breccia infilling textured pyrite	·····							<u> </u>	 	
			Same as above	107.5	112.0	4.5	105	21	313	0.1	10		
			25% epidote 5% chlorite, 10% pyrite trace	148.0	151.0	3.0	106	16	45	0.5	26		
			chalcopyrite, strong propylitic alteration										
157.0	163.0	75%	Rhydacite weak-moderate potassic	157.0	163.0	6.0	107	10	5/	0.1	3		
			alteration 10% purite 8% sericite 5% quar	2									
	1		Pour recovery blocky ground										
	1						· .						

Diamond Drill	Record	Hole No. 94-1	BQ Core size	pg. 3 of 5
L 28+00 S Collar co-ord. 1+40 W	Dip -55	Logged by A Kikauka	Company name Guardian Resource	es Project Lake Adit
Elevation 1030 F+	Azimuth 050	Date logged May 25, 94	Drill contractor Core Ent.	Date commenced May 19, 44
			Final depth 338 ft.	Date finished May 24, 94

EBON	το	BECOVY	DESCRIPTION		SA	MPLE					ASSAYS		
		1120011		FROM	то	WIDTH	No,	ppm Cu	Zn	Ag	ppb Au		
163.0	197.7	95%	Andesite porphyritic at contact with	· · · · ·				· · ·			''		
			rhundacite dark green 40% epidote										
			with 5% chlorite and 3% quartz at 182.0-										
			183.5 (3 cm wide quartz veinlets at 30° to								·		
,			core axis)										
197.7	3056	987.	Rhyolite, massive, 1-4 mm. blue to clear								L		 ••
			coloured quartz eyes, 8-12% disseminated										 ļ
			pyrite blebs 0-2-3.5 mm. wide 5% sericite										
			370 chlorite lens of andesite at 224.6-										
			225.5 sharp contact at 65° to core axis										
			87. pyrite 5-10% sericite, 3-8% quartz	197.7	204.0	6.3	108	13	222	0.1	5		
			same as above	209.0	210.3	6.3	109	9	125	0.1	6		 L
			ju to le	210.3	218.0	7.7	110	91	3563	0.4	33		
			to a fi	218.0	228.0	10.0	11]	69	401	0.2	8	ļ	
			" I II white anhydrite at 2340-234.3	z28.0	238.0	10.0	112	9	19	0.1	3		
			h ll it	238.0	248.0	10.0	113	4	98	0.1	6		l

Diamond Dril	I Record	Hole No. LA 94-1	Ba core size	Pg. 4 of 5
L 287005 Collar co-ord. 1740W	Dip -55	Logged by A. Ki Kauka	Company name Guardian Resou	Irces Project Lake Adit
Elevation 1030 ft.	Azimuth 050	Date logged May 25 94	Drill contractor Core Ent.	Date commenced May 19,94
			Final depth 338 ft.	Date finished May 24,94
				/

:

FROM	TO	RECOVY	DESCRIPTION		SAI	MPLE					ASSAYS		
				FROM	то	אדסוש	No.	ppm Cu	Zn	Aq	ррь Аи	 	
			8% pyrite 5-10% sericite 3-8% quartz	248.0	258.0	10.0	114	4	9	0.1	2		
			same as above	258.0	268.0	10.0	115	4	27	0.1	Z		
				268.0	278.0	10.0	116	6	110	0.i	2		
			" " " lens of andesite at 282.3-283.0 " " " Sharp contact at 65° to core axis	278.0	287.2	9.2	117	6	lio	0.1	Z		
			" " +r0.5% diss. sphalerite tr. chalcopyrite	Z87.2	289.2	2.0	118	259	9128	0.3	5		
			8% purite, 10% sericite, 10% quartz	289.2	297.0	7.8	119	4	72	0.1	3		·-
			Same as above	297.0	305.6	8.6	120	5	28	0.1	1	 	
305.6	310.6	97%	Andesite, dark green, sharp contact with rhydite	1								 	
			at 55° to core axis, 0.1-3.5 mm. wide epidote										
			veinlets 20/30 meter 3% disseminated pyrite										
	ļ		0.1-1.0 mm. blebs										
310.6	328.	75%	Rhydite, 1-4 mm. blue-clear quartz eyes									 	
			10% disseminated pyrite, broken ground									 	
			10% pyrite, 8% sericite	310.6	318.0	7.4	121	9	45	0.1	1	 	
			" " fault zone at contact	318.0	328.0	10.c	122	1	26	0.1	1	 	
			with andesite										

.____ ·

Ī	Dian	ond	Drill	Rec	ord	•	Н	ole No.	LA	94-1		BQ	cor	e si	Ze			ŕ	ig. 5	of	5	
Colla	r co-o	rd. L 2	87005 +40W	Dip	-5:	5	L	ogged b	у А.	K:Ka	ukal	Compa	ny nan	ne G	uardi		esource	es I	roject	Lak	e A	dit
Eleva	tion	10	30 Ft.	Azimut	h O	50	D	ate log	ged M	lan 29	5 94	Drill	contr	actor	Core	Ent.		Date o	ommenc	ed Ma	4 19.	94
				h <u></u>								Final	depth	<u>'</u> <u>3</u>	38 -	Ft.		Date f	inishe	d Mai	, 24.	94
												1									·	-
[SPON		BECOVY			<u></u>		DESCR						SA	MPLE					ASSAYS			
FHUM		RECOVI										FROM	то	WIDTH	No.		ļ	· · · · ·	[]	
328.0	338.0	95%	And	esite	- de	ark a	aree	<u>n 0</u>	1.1-3.	0 mm	wide											L
			and	ote	vinli	its	32.	diss	emin	ated	purite											
	<u> </u>		epice	<u> </u>		i i i i					//											
			0-1-	<u> </u>	mm.	61663	5		·				. <u>.</u>									[
	538.0	¦	EOH											1	[ļ
1																						
																						Ē
					<u> </u>	<u></u>	<u> </u>						<u> </u>					+				
	<u></u>									·									ļ			
																		ļ	ļ			
			· · ·						·													
	1			<u></u>																- -		
	+			<u> </u>														+				
		<u> </u>		<u> </u>										+				· · ·				
		ļ														<u> </u>			 		j]	
	1																					
	+	<u> </u>			<u></u>						<u></u>											
	1	1														L		1	<u> </u>	L	J	L

Diamond Drill Record	Hole No. LA 94-2	BQ core size	Pg. 1 of 7
$\begin{array}{c} -28+005\\ \text{Collar co-ord.} & 1+40 \end{array} \text{Dip} -90 \end{array}$	Logged by A. KiKauka	Company name Guardian Resource	es Project Lake Adit
Elevation 1030 Ft. Azimuth	Date logged June 5 94	Drill contractor Core Ent.	Date commenced $M_{44} 25.94$
		Final depth 456 Ft.	Date finished June 3 94

FROM	то	RECOVY	DESCRIPTION		SA	MPLE					ASSAYS	*	
<u> </u>				FROM	то	WIDTH	No.	ppm Cu	Zn	A4	loop Au		
0.0	25.0	07,	HQ Casing										
0.0	65.0	10%	NQ casing Andesite grandiorite andesite										
			porphyry boulders to 50 cm.										
65.0	95.0	95%	Andesite strong propylitic alteration 8-20%										
			epidote, 5-15% chlorite, 8-15% disseminated										
			and fracture filling pyrite, 5-82 guartz as										
			0.2-3.5 mm. deformed stretched guartz										
			blebs (swirled texture), epidote occurs										
			as 0.3-4.0 mm veinlets at 10-40° to core										
			axis and clots with coarse grain blebs of										
			pyrite to 8 mm.										
				65.0	75.0	10.0	201	6	50	0.3	2		
				75.0	85.0	10.0	202	12	42	0.4	3		
			2.0 cm. wide magnetite vein at 60° to core axis at	\$5.0	95.0	10.0	203	20	41	0.4	i		
			94.6-94-7										
											·		

•

• .

Diamond Drill Record	Hole No. LA94-2	BQ core size	p.g. 2 of 7
$\begin{array}{c c} L & 28 & \text{foc S} \\ \hline Collar & co-ord. & 1 + 40 & Dip & -90 \end{array}$	Logged by A. Kikauka	Company name Guardian Resource	es Project Lake Adit
Elevation 1030 Ft Azimuth	Date logged June 5,94	Drill contractor Core Ent.	Date commenced May 25,94
		Final depth 456 ft.	Date finished June 3,94

FROM	то	RECOVY	DESCRIPTION		SA	MPLE					ASSAYS	,		
	e			FROM	то	WIDTH	No.	ppm Cu	Zn	Ag	ppb Ay]	
95.0	169:7	70%	Rhyudacite, strong guartz-sericite-							<u> </u>				
			pyrite (potassic alteration) 5-10% quartz											
			10% sericite, 5-15% pyrite, 1-2% chlorite											
			bleached light arey-white colour, poorly	,										
			developed fabric 5-30° to core axis,											
			Fault zone 95.0-145.0 60% recovery											
			Fracture filling pyrite at 30-65° to coreaxis	95.0	105.0	10.0	204	6	54	0.2	2			
			very broken ground 40% recovery, 10% chlorite	105.0	115.0	10.0	205	3	58	0.3	1			
				115.0	125.0	10.0	206	13	224	0.2	2			
				125.0	135.0	10.0	207	6	228	0.2	İ			
			broken ground 50% recovery, chloriterich Fault	135.0	145.0	10.0	208	7	47	0.1	Z			
			at 140.0-144.0											
			tr 0.5% calcite along Fractures	145.0	(55.0	10.0	209	9	44	0,1	1			
				155.0	162.5	7.5	210	17	74	0.3	Z			
			sheared fabric at 10-30: to core axis	162.5	<i>i</i> 69.7	7.2	211	47	422	0.3	3			
													_	_
									r					

	Le No. LA 94-2		Pg. 3 c, ,
L 28+005 - 90 Logo	ged by A Kikenka	Company name Guardian Resource	es Project Lake Adit
Collar co-ord. 1+40 Dip 10 Log	te logged Jung 5 94	Drill contractor Core Ent.	Date commenced May 25,94
Elevation 1050 TT. Azimuth	to topped owne o, if	Final depth 456 ft.	Date finished June 3,94

					SAN	APLE					ASSAYS	
FROM	то	RECOVY	DESCRIPTION	FROM	TO	HTOW	No.	ppm Cu	Zn	Ag	ppbAu	
169.7	183.7	987.	Andesite, dark green, 0.1-0.5 mm. wide epidete									
			veinlets 4-6/meter trace - 0.5% calcite on									
			fractures									
183.7	207.7	90%	Rhyolite, shearing Fabric at 0-20" to core axis									
			1-2 mm. quartz eyes (blue-clear colour)			1						
			15-20% sericite, 5-10% pyrite, 1-3% quartz								i	
				183.7	194.0	10.3	212	13	221	0.3		
				194.0	204.0	10.0	213	22	1363	0.8	2	
	1			204.0	214.0	10.0	214	94	826	0.4	4	
207-	214.0	95%	Andesite (same as above)	<u> </u>		1						
214.0	234.	c 95%	Rhyolite (same as above)	 	 	 						
			trace chalcopy ite-sphalerite along pyrite rich						<u> </u>			
			Fracture filling with chlorite and epidote	214.0	224.0	10.0	215	65	1054	0.2	4	
				224.0	234.0	10-0	216	8	330	0,4		
234	c 242	0 99%	Andesite dark green, 5-10% epidote,									
	1	10.0	2, 5 9 delasta traca coloita on fractures									

Diamond Drill Record	Hole No. LA 94-2	BQ core size	Pg. 4 of 7
$\begin{array}{c c} L & 28700 \\ \hline Collar & co-ord. \\ 140 \\ \hline W \\ Dip \\ -90 \\ \end{array}$	Logged by A. Kikauka	Company name Guardian Re	sources Project Lake Adi
Elevation 1030 Ft. Azimuth	Date logged June 5,94	Drill contractor Core Ent.	Date commenced Man 25,94
		Final depth 456 Ft.	Date finished June 3, 94

5004	то	BECOVY	DESCRIPTION		SA	MPLE		ASSAYS					
		nccov.		FROM	то	WIDTH	No.	ppm Cu	Zn	Aq	pbAu		
242.0	328.0	952	Rhyolite 3-10% atz. as 1-3mm. eyes					1')			
			(round obenocrysts) clear - blue colour										
			gtz. 10 % disseminated pu tr 12 Frac-										
			ture filling pyrite, trace calcite on										
			Fractures light grey-white colour	242.0	252.0	10.0	217	31	770	0.3	1		
				252.0	262.0	10.0	218	10	104	0,3			• .
	<u> </u>		· · · · · · · · · · · · · · · · · · ·	262.0	272.0	10.0	219	127	1035	0.1	2		
			0.1-1.0 mm. wide atz. veinlets tr 0.5%	272.0	278.0	6.0	220	510	4 211	0.4	4		
 	f		chalcopyrite sphalerite along at veinlets	1				·					
	1			278.0	288.0	10-0	221	7	51	0.1			
	1			2.88.0	298.0	10.0	222	6	17	0. j	1		
			Fault zone starts at 305.8. 3 cm. wide	298.0	308.0	10.0	223	371	1136	0.4	2		
	1		sphalerite - chalcopyrite band at 60° to										
			core axis (at 301.0 ft.)										
	1		trace chalcopyrite-sphalerite associated	308.0	318.0	10.0	224	7	39	Ori	7		
	1		with Fracture filling purite										
	-4			• • • •	·				,				

Diamond Drill Record	Hole No. LA 94-2	BQ core size	P.g. 5 of 7
Collar co-ord. 1740w Dip -90	Logged by A. Kikauka	Company name Guardian Resour	ces Project Lake Adit
Elevation 1030 ft Azimuth	Date logged June 5,94	Drill contractor Core Ent.	Date commenced Man 25 94
		Final depth 456 ff.	Date finished June 3,94

1		DESCRIPTION	SAMPLE									
			FROM	то	WIDTH	No.	ppinCu	22	Aq	ppbAu		
			318.0	328,0	10.0	225	8	66	0,2	4		
79.0	90%	Rhuodacite, grey-black colour, 1-3%										
		disseminated magnetite 1-3 mm. at2.										
		eyes (clear to blue colour). 3-5% 4tz.										
		10% disseminated purite 32 epidote 32										
		chlorite, trace - 0.5% ralcite.										· · ·
		1-3 mm. ytz. epidote veinlets at 5-35° to	328.0	337.0	9.0	226	6	43	0.]	2		
		core axis (6-10/m.) trace chalcopyrite										
		in veins										
		Fault zone 337.0-339.0. bleached light grey	337.0	346.0	9.0	227	39	290	0.2	3		
		fine grain matic interval at 342.0-343.0										
		Fault zone 346.0 - 348.0 bleached light-grey	346.0	353.0	7.0	228	12	94	0.1	3		
		colour, fault zone 349.5-353.0 15% dissem.										
		inated pyrite, 209, 4tz.										
		Fault zne 80% recovery 12% pyrite 5%	353.0	361.0	8.0	229	11	50	0.i	Z		
		epidote										
	*9.0	9.0 90 %	9.0 90% Rhyodacite, grey-black colour, 1-3% disseminated magnetite, 1-3 mm. gtz. eyes (clear to blue colour), 3-5% gtz., 10% disseminated pyrite, 3% epidote, 3% chlorite, trace-0.5% calcite. 1-3 mm. gtz. epidote veinlets at 5-35° to core axis (6-10/m.) trace chalcopyrite in veins Fault zone 337.0-339.0, bleached, light grey fine grain matic interval at 342.0-343.0 Fault zone 346.0-348.0 bleached light-grey colour, fault zone 349.5-353.0 15% dissem- inated pyrite, 20% gtz. Fault zone 80% recovery, 12% pyrite, 5% epidote	9.0 90% Rhyodacite, grey-black colour, 1-3% disseminated magnetite, 1-3 mm. gtz. eyes (clear to blue colour), 3-5% gtz. 10% disseminated pyrite, 3% epidote, 3% chlorite, trace-0.5% calcite. 1-3 mm. gtz. epidote veinlets at 5-35° to 328.0 wore axis (6-10/m.) trace chalcopyrite in veins Fault zone 337.0-339.0, bleached, light grey 337.0 fine grain matic interval at 342.0-343.0 Fault zone 346.0 - 348.0 bleached light-grey 346.0 colour, fault zone 349.5 - 353.0 15% dissem- inated pyrite, 20% gtz. Fault zone 80% recovery, 12% pyrite, 5% 353.0 epidote	9.0 90% Rhyodacite, grey-black colour, 1-3% disseminated magnetite, 1-3 mm. gtz. eyes (clear to blue colour), 3-5% gtz., 10% disseminated pyrite, 3% epidote, 3% chlorite, trace-0.5% calcite. 1-3 mm. gtz. epidote veinlets at 5-35° to 328.0 337.0 core axis (6-10/m.) trace chalcopyrite in veins Fault zone 337.0-339.0, bleached, light grey 337.0 346.0 fine grain matic interval at 342.0-343.0 Fault zone 346.0-348.0 bleached light-grey 346.0 353.0 colour, fault zone 349.5-353.0 15% dissem- inated pyrite, 209. gtz. Fault zone 80% recovery, 12% pyrite, 5% 353.0 361.0 epidote	318.0 328.0 10.0 9.0 90% Rhyodacite, grey-black colour, 1-3% disseminated magnetite, 1-3 mm. gt2. eyes (clear to blue colour), 3-5% gt2. 10% disseminated pyrite, 3% epidote, 3% chlorite, trace-0.5% calcite. 1-3 mm. gt2. epidote veinlets at 5-35° to 328.0 337.0 9.0 core axis (6-10/m.) trace chalcopyrite in veins Fault zone 337.0-339.0, bleached, light grey 337.0 346.0 9.0 fine grain matic interval at 342.0-343.0 Fault zone 346.0 - 348.0 bleached light-grey 346.0 353.0 7.0 colour, fault zone 349.5 - 353.0 15% dissem- inated pyrite, 20% gtz. Fault zne 80% recovery, 12% pyrite, 5% 353.0 361.0 8.0 epidote	318.0 328.0 10.0 225 9.0 90% Rhyodacite, grey-black colour, 1-3% 1-3% 1-3% disseminated magnetite, 1-3mm.gtz. eyes (clear to blue colour), 3-5% gtz., 10% 10% disseminated pyrite, 32 epidote, 32 10% 10% chlorite, trace-0.5% calcite. 10% 328.0 337.0 10% disseminated pyrite, 32 epidote, 32 10% 10% 10% chlorite, trace-0.5% calcite. 1-3 mm. gtz.epidote veinlets at 5-35% to 328.0 337.0 9.0 226 uore axis (6-10/m.) trace chalcopyrite 10% 10% 10% 10% 10% in veins 10% 537.0 337.0 9.0 226 uore axis (6-10/m.) trace chalcopyrite 10% 10% 10% 10% in veins 10% 10% 10% 10% 10% 10% Fault zone 337.0 337.0 346.0 10% 10% 10% 10% 10% fine grain matic interval at 342.0 343.0 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10	9.0 90% Rhyodacite, grey-black colour, 1-3% 9.0 90% Rhyodacite, grey-black colour, 1-3% disseminated magnetite, 1-3 mm. gtz. eyes (clear to blue colour), 3-5% gtz., 10% disseminated pyrite, 3% epidote, 3% chlorite, trace-0.5% calcite. 1-3 mm. gtz. epidote veinlets at 5-35° to 328.0 337.0 9.0 226 6 wore axis (6-10/m.) trace chalcopyrite in veins Fault zone 337.0-339.0, bleached, light grey 337.0 9.0 22.7 9.0 10% disseminated pyrite, 349.0 1-3 mm. gtz. epidote veinlets at 5-35° to 328.0 337.0 9.0 226 6 wore axis (6-10/m.) trace chalcopyrite in veins 1 Fault zone 337.0-339.0, bleached, light grey 337.0 9.0 22.7 9.0 12 10 20.0 9.0 22.7 9.0 12.7 10 10 10 10 10 20 10 20 10 337.0 10	318.0 328.0 10.0 22.5 8 66 9.0 90% Rhyodacite, grey-black colour, 1-3% - - - - - - 66 9.0% Rhyodacite, grey-black colour, 1-3% -	318.0 328.0 10.0 22.5 8 66 0.2 9.0 90% Rhyodacite, grey-black colour, 1-3% - </td <td>38.0 328.0 10.0 22.5 8 66 0.2 4 90.8 Rhyodacite, grey-black colour, 1-3% 1<td>318.0 328.0 10.0 22.5 8 66 0.2 7 90.8 Rhyodacite, grey-black colour, 1-3% -</td></td>	38.0 328.0 10.0 22.5 8 66 0.2 4 90.8 Rhyodacite, grey-black colour, 1-3% 1 <td>318.0 328.0 10.0 22.5 8 66 0.2 7 90.8 Rhyodacite, grey-black colour, 1-3% -</td>	318.0 328.0 10.0 22.5 8 66 0.2 7 90.8 Rhyodacite, grey-black colour, 1-3% -

Diamond Drill Record	Hole No. LA 94-2	BQ core size	P.g. 6 of 7
Collar co-ord. 140 Dip -90	Logged by A. Kikauka	Company name Guardian R	lesources Project Lake Adit
Elevation j030 Ft. Azimuth	Date logged June 5 94	Drill contractor Core En	t. Date commenced May 25,94
		Final depth 456 ft	Date finished June 3, 94

				1	SA	MPLE			ASSAYS				
FROM	то	RECOVY		FROM	то	אדסוש	No.	ppm Cu	Zn	Ag	Au		Ţ
			15% pyrite, 15% gtz. trace sphalerite -	361.0	370.0	9.0	230	12	405	0.1	4		
			chalcopyrite dong atz. veinlets										
				370-0	374.0	9.0	231	((122	0.1	3	_	
379.0	434.1	97%	Rhyolite, light grey-white colour, 12%										ļ
			disseminated purite, 10% sericite, 10-15%			: : :							
			atz as 1-4 mm. phenocrysts (blue-										ŀ.
			clear colour atz.) tr. chalcopyrite sphalerite	2									
·				379.0	387.0	8.0	Z32	15	564	0-2	2		
	1		1-3% disseminated magnetite	387.0	395.5	8.5	233	40	273	0.1	2		
		1		395.5	401.5	6.0	234	105	5114	0.1	4		
		1	1-2 mm. Fracture filled oy. at 20° 570° to core axis	401.5	408.0	6.5	235	7Z	2577	0.2	8		
<u></u>	1	1	15-20% atz as 1-4 mm. blue-clear colour eyes tr. sp. cp.	408.0	415.0	7.0	236	13	760	0.1	2.		_
	1			415-0	414.7	4.7	237	104	2881	0.3	5		
·			20% py. 3% sp. 1% cp. band at 20° to core axis	419.7	424.5	4.8	238	1027	18426	1.5	13		
	1	1	15% at2, 1-4 mm, blue-dear colour eyes tr. SP. CP.	424.5	429.0	4.5	239	253	3815	0.4	5		
	1	1		129.0	434.1	5.1	240	65	2386	0.2	3		

Diamond Drill Record	Hole No. LA 94-2	BQ core size	pg. 7 of 7
Collar co-ord. L_{28700S} Dip -90°	Logged by A. Kikauka	Company name Gruardian Resourc	es Project Lake Adit
Elevation 1030 ft Azimuth	Date logged June 5 94	Drill contractor Core Ent.	Date commenced May 25 94
		Final depth 456 ft.	Date finished June 3,94

	TO		DESCRIPTION	SAMPLE			ASSAYS							
FHOM	10	RECOVY		FROM	то	HTOW	No.	ppin Cu	Zo	Ag	ppb Au			
434.1	456.0	807.	Andesite and bleached, light green colour,			 		(
			10% disseminated pyrite 1-3% disseminated											
			magnetite, 5-8% epidate clots to 3 cm.					ļ						
			trace calcite, sphalerite		 	1					ļ			<u> </u>
			lost water circulation in Fault zone at 440.0	434.j	445.0	10.9	241	54	2098	0.1	6			
			Fault zone continuous to end of hole.	445.0	456.0	11.0	242	57	126	0.1	3			
	456,	c	EOH	· ·	ļ									
						ļ								
									ļ					
														<u></u>
	+													

Diamond Drill	Record	Hole No. 94-3	BQ core size	Pg. 1 of 4
$\begin{array}{c} 23+31 \text{ S} \\ \text{Collar co-ord.} & 1+0.6 \text{ W} \end{array}$	Dip - 60	Logged by A. Kikauka	Company name Guardian Resou	irces Project Lake Adit
Elevation 1023 ft.	Azimuth 230	Date logged June 11 94	Drill contractor Core Ent.	Date commenced June 4, 94
(312 m.)			Final depth 429 Ft.	Date finished June 10,94
19 20				
		DESCRIPTION	SAMPLE	ASSAYS
FHOM TO RECOVE			FROM TO WIDTH NO. pom Cu	Zn Agloph Au

:

	20.0	02	HQ casing											1
0.0	20.0		ing casing											
0.0	50.0	0%	NQ Casing		ļ									
50.0	144.0	45%	Andesite, dark green, 1-8 cm. epidote dots,	 			. <u></u> .							
			25% epidate, 10-12% pyrite, trace- 1% calcite,			1								
			Bleached light green colour, weak K-feldspar	94.0	100.0	6.0	301	15	154	0.3	7			
			stockwork with 25% epidote 10% pyrite											
		70%	fault zone at 88-110											
			Bleached zone cont.	100.0	111.0	11.0	302	13	133	0.3	4	 		
			30% epidote dots to 15 cm. 12% pyrite. 3%	134.0	144.0	10.0	303	4	157	0.2	4	 		
			milky atz as elongated blebs to I cm.									 		
144.C	165.2	95%	Rhundacite, white to light arey colour.										 	. !
			poorly developed fabric at 50° to core axis	}								ļ	ļ	ļ
	1		10% sericite, 8% pyrite											
		802	Fault zone at 148.0-149.2									<u> </u>		
	1		257. purite at 146.0-148.0 1-3 cm blebs and	148.0	156.0	8.0	304	12	207	0.5	3			
	1		streaks elongated at 50° to core axis											
L	- .	4	<u> </u>						•				·	

Diamond Drill Rec	ord	Hole No. 94-3	BQ core size	pg. Z of 4
Collar co-ord. 1+0g 11 Dip	-60	Logged by A. Kikanka	Company name Guardian Resourc	es Project Lake Adit
Elevation 1023 ft Azimu	:h 230	Date logged June 11, 94	Drill contractor Core Ent.	Date commenced June 4, 94
(3i2 m.)		·	Final depth 429 ft.	Date finished June 10,94

			DESCRIPTION	SAMPLE			ASSAYS						
FROM	10	HECOVI		FROM	TO	WIDTH	No.	ppm in	Zn	Ag	ppb Au		ļ
			15% purite as 0.5-1.5 cm. blebs	156.0	165.2	9.2	305	10	145	0.2	4		
165.2	176.0	80%	Andesite dark green colour fault zone										
			broken ground, poor recovery 3-5% dissem-										
			inated pyrite, 3-82 epidote as streaks and										
			blebs to 3 cm.										
176.0	192.5	95%	Rhyodacite, minor gtz. eye rhyolite, weak										·.
			fabric developed at 30-50° to core axis, 10%			 							
			sericite, 870 purite										
		90%	fault zone broken around, 12% py. tr. cp.	176.0	184.0	8.0	306	51	1033	0.3	3		
		807	" " 10-15% pyrite 1-3mm.	184.0	192,5	8.5	307	15	1362	0,3	7		
			chlorite clots in silicified zone at 1910-1925										
192.5	204.0	987	Andesite, datk green colour, 25-35% epidote										
			1-32 calcite as Fracture Fillings										
204.0	255.	8 98%	Rhyolite minor rhyodacite, mixed light										
			grey-purple colour, 10-15% pyrite, trace cp.										
			Very weak fabric developed 40-50° to core axis										
L	- b		·····						-				

Diamond Drill	Recor	d	Hole No. 94-3	BQ core	Size	pg. 3 of 4
$\begin{bmatrix} 28+31 S \\ Collar co-ord. & 1+08 W \end{bmatrix}$	Dip	-60	Logged by A. Kikauka	Company name	Guardian Resource	es Project Lake Adit
Elevation 1023 ft	Azimuth	230	Date logged June 11, 94	Drill contract	tor (ore Ent.	Date commenced June 4, 94
(312 m.)				Final depth	429 ft.	Date finished June 10, 94

EBON	τO	BECOVY	DESCRIPTION		SA	MPLE					ASSAYS	
r noivi	10	112000		FROM	то	WIDTH	No.	opin Cin	Zn	Ag	ррь Ац	
-			light gren-ourple colour, 102004. 10% sericite	203.3	213.3	10.0	308	39	234	0.3	5	
				213.3	223.3	10.0	309	27	53	0,2	3	 ļ
		·		223.3	233.3	10.0	310	64	2232	0.4	3	
		90%	fault zone broken around	233.3	237.3	4.0	377	15	803	0,3	3	
255.8	268.2		Andesite, dark green colour, 10% epidote as			:						
			0.1-5.0 mm clots and 10-20 cm. wide bands									 · .
			at 60-70° to core axis, 2% disseminated			 						
			magnetite, 1% pyrite, 1% milky guartz as 1-3	ļ								
			mm, veinlets.			ļ						
268.2	309.0	98%	Rhyolite, light grey-white colour, 10%	268.Z	279.0	10.8	312	38	121	0.3	5	 ļ
			sericite 10% pyrite trace cp., 1-5%	279.0	289.0	10.0	313	6	31	0.2	2	
			quartz as 1-4 mm blue-clear colour eyes	289.0	299.0	10.0	314	5	18	0.1	2	
309.0	339.0	90%	Andesite dark green colour, 3% pyrite,									
			1-22 disseminated magnetite 12 calcite	 				 				
		80%	Fault zone at 319.0-329.0	ļ								 ļ
339.0	353.0	40%	Rhyolite, light grey colour, 15% pyrite.					l				

Diamond Drill Record	Hole No. 94-3	BQ core size	pg. 4 of 4
$\begin{array}{c c} z_{8+3/3} \\ \hline collar co-ord. & 1+og W & Dip & -60 \end{array}$	Logged by A. Kikauka	Company name Gruardian Resource	ces Project Lake Adit
Elevation 1023 ft Azimuth 230	Date logged June 11 94	Drill contractor Core Ent.	Date commenced June 4,94
(312 m.)	,	Final depth 429 ft.	Date finished June 10,94

•

50011		0500104	DESCRIPTION	1	SAM	MPLE					ASSAYS		
FHOM	10	RECOVT		FROM	то	WIDTH	No.	ppm Cu	. 2 _n	Ag	pob Au	 	
		40%	Fault zone poor recovery	339.0	353.0	14.0	315	97	625	0.9	7	 	
353.0	429.0	98%	Andesite, dark green colour 32 disseminated									 	
			purite 270 disseminated magnetite, 3-5%										
			epidote as 1.0-10.0 cm. bands and clots									 	
			trace - 12 calcite as fracture fillings.										
•	429.0		ЕОН									 	• -
		1											
	1												
		1											
	1												

Diamond Drill Record	Hole No. 94-4	BQ core size	pg. 1 of 5
Collar co-ord. 1+08 W Dip - 85	Logged by A. Kikauka	Company name Guardian Resour	ces Project Lake Adit
Elevation 312 m. Azimuth 230	Date logged June 22 94	Drill contractor Core Ent.	Date commenced June 11,94
	, , , , , , , , , , , , , , , , , , ,	Final depth 519 Ft.	Date finished June 20,94
		· .	

500	TO	BECOVY	DESCRIPTION		SA	MPLE					ASSAYS	
FNUM		RECOVI		FROM	то	אדםוש	No.	ppm Lu	21	Aq	pb Au	
0.0	20.0	07.	HQ casing					Ľ'			('	
0.0	52.0	87.	NQ casing (Andesite, rhyolite, diorite boulders)									
52.0	94.0	92%	Andesite, dark green colour, indurated,									
			silicified, 10-20% epidote (1-5 cm. clots), 10-15%			*						
,			purite disseminated and fracture filling to			:						
			I cm. wide 5% pink K-spar blebs to 0.5 cm									
			trace - 1% calcite on fractures trace			1						
			schalerite - chalcopyrite disseminated blebs to									
			2									
	1		652 recovery broken around	52.0	65.0	13.0	401	24	5 32	0-6	14	
-			,,	65.0	74.5	9.5	402	61	2193	0.5	16	
	-			74.5	84.0	9.5	403	Zo	90	0.Z	5	
				84.ċ	92.5	8.5	404	17	89	0.2	8	
94.	108.6	95%	Andesite dark arean 1-5 mm anhedral placio									
		1	clase phenocrusts 7% pyrite, 3% epidote									
			sharp contact at 30° to core axis broken pro	und	at c	onta	ets					

Diamond Drill Record	Hole No.	94-4	BQ core size	pg. 2 of 5
Collar co-ord, has m Dip -5	25 Logged by	A Kikauka	Company name Guardian Resou	rces Project Lake Adit
Elevation 723 ft. Azimuth 2	30 Date logged	June 22 94	Drill contractor Core Ent.	Date commenced June 11, 94
<u></u>		- Sunsi Santa and a sunsi s	Final depth 5/9 ft.	Date finished June 20 94

		<u> </u>			SAI	MPLE		ASSAYS							
FROM	то	RECOVY	DESCRIPTION	FROM	то	HTOW	No.	ppin Ciu	Zn	Ag	ррьАи		1		
108.6	119.1	97%	Andesite, bleached It. green colour, 0.5-1.5cm							~					
			milky white quartz chlorite veins at 70° to core												
			axis, sharp contact at 35° to core axis 10-15/m												
			5% disseminated pyrite,	108.6	119.j	10.5	405	238	215	0.7	24				
119.1	157.0	98%	Dacite breccia texture intervals of crackle												
			texture and quartz-sericite-pyrite attention										·.		
			12% purite 8% sericite	119.1	129.4	10.3	406	38	334	0.3	6				
				129.4	139.7	10.3	407	31	883	0.4.	6				
			20% pyrite	139.7	149.0	9.3	408	74	874	0.4	8				
157.0	186.8	98%	Andesite, light to dark green colour, sharp	149.0	157.0	8.0	409	17	816	0-3	2				
			contact at 60° to core axis, 0.5 - 1.0 cm milks								[
			white quartz-chlorite veins at 60-70° to core axis												
			2-4/m												
186.8	208.	6 99%	Rhyplite. It. arey to white colour, 12-15% py.												
			rite, 10% sericite, 5% quartz as 1-2 mm.												
			01105												

.....

Diamond Drill	Record	Hole No.	94-4	Bà core	Size	pg. 3 of 5
Collar co-ord, 1+09 kg	Dip -85	Logged by	A. Kikanka	Company name	Guardian Resource	ces Project Lake Adit
Elevation $3i2$ m	Azimuth 230	Date logged	June 22.94	Drill contrac	tor Core Ent.	Date commenced June 11,94
the second s				Final depth	519 Ft.	Date finished June 20, 94

			DESCRIPTION								ASSAYS		
FROM	10	HECOVY		FROM	то	HTOW	No.	ppm Cu	21	Ag	pph Ay	 	
	<u>6</u>		122 pyrite, trace sphalerite	186.8	193.8	7.0	410	11	640	0.1	3	 	
			152 H H	193,8	199.0	5.2	411	17	1860	0.3	6		
			107 " " "	199.0	203.8	4.8	412	23	29	0.3	5		
			820 " " "	203.8	208.6	4.8	413	38	125	0.3	3		
208.6	244.0	98%	Andesite dark areen colour, 1-3 mm. anhedra			·					-	 	
			plaindage phenocrysts, 7-10% epidote as 1-3									 	• .
			cm. Jots and 1-5 cm. bands (2-6/m.) at						ļ			 	
,			60-70° to core axis									 	
244.0	246.	98.9	Rhydlite, light to dark grey colour, 10% pyrite			ļ						 	
			10% sericite 3% quartz as 1-3 mm. eyes	1								 	
246.7	256.6	98%	Andesite, same as above.	1								 	
256.6	294.8	97%	Rhyolite. It. grey to white colour, 10% pyrite			ļ						 	
			disseminated and fracture filling, 10% series	k		 				ļ	 	 	
			6% quarts as 1-3 mm. eyes. sharp contact at	[
	1		30° and 60° to core axis, broken around with									 	
			Fult zone 90% recovery at 260.0-269.2										

Diamond Duill De			BQ CORE SIZE	04.4 F 5
Collar co-ord. 1408 W Dip	- 85	Hole No. 94-4 Logged by & Kikauka	Company name Guardian Resour	ces Project Lake Adit
Elevation 312 m Azim	uth 230	Date logged June 22,94	Drill contractor Core Ent. Final depth 519 ft.	Date commenced June 11,94 Date finished June 20,94

	70	DECONV	DESCRIPTION		SAI	MPLE					ASSAYS		
HUM	10	RECOVI		FROM	то	WIDTH	No.	ppin Cis	Zn	A4	pob Au	 	
				266.6	273.6	7.0	414	132	974	0.3	4		
				273.6	281.6	8.0	415	243	331	0.5	12		
94.8	332,0	98%	Dacite, arey colour, trace - 3% disseminated										
			magnetite 3-5% epidote, 8-12% disseminated									 	
			and Fracture filling pyrite, trace sphalerite										Ļ
			along fractures		[
			1270 purite blebs to 2 cm. trace magnetite	301.8	309:3	7.5	416	45	1317	0.2	4	 	Ļ
2.0	355.0	97%	Rhydlite, dark to light grey colour, variable									 	Ļ
			alteration gives pseudo breccia texture									 	Ļ
	 		8-1270 disseminated and fracture filling pyrite										ļ
			129. pyrite 0.1-2.0 mm quartz veins 60° to core axis	336.0	346.5	10.5	417	40	1041	0.3	3	 	ļ
			18% pyrite 2% chalcopyrite as 1-2 cm band at	346.5	349.0	2.5	418	8501	3849	7.0	94		
			35° to core axis, light grey-white bleached colour										ļ
			10% pyrite 3% epidote 5% quartz as 1-2 mm. eyes.	349.0	355.0	6.0	419	43	87	0.3	8	 	ļ
55,0	430,0	987.	Andesite, minor dacite, light to dark green									 	Ļ
			colour 1-3 mm anhedral planioclase phenocrysts										L

Diamo	nd Drill	Reco	rd	Hole No.	94-4	Ba core s	12e	pg. 5	5 of 5
Collar co-ord.	28+31 S 1 to8 W	Dip	-85	Logged by	A. Kikanka	Company name	Guardian Reso	ources Projec	st Lake Adit
Elevation	1023 ft. 312 m	Azimuth	230	Date logge	ed June 22.94	Drill contract	or Core Ent.	Date commen	aced June 11, 94
					,,,,,,	Final depth	519 ft.	Date finish	ned June 20, 94
					•	1			

FROM	то	RECOVY	DESCRIPTION		SAI	MPLE					ASSAYS		
				FROM	то	HTOIW	No.	ppm (4	Zn	Ag	ррбАц	 	
429.0	430.0	80%	fault zone at contact with rhyolite	· ·				· /			-	 	·
430.0	442.0	977,	Rhyolite light arey to white colour, 10% pyrite									 	
			10% sericite, 4% quartz as 1-2 mm. eyes										
			clear to blue colour eyes.	430.0	442D	j2.0	420	145	1262	0.5	8		<u></u>
442.0	470.0	99%	Basalt dyke sugary texture volcanic sandstone.										
			alternating green to orange-brown colour for									 	• •
			water return to drill collar), sharp 60° to									 	
			core axis contacts with rhyolite.									 	<u> </u>
\$70.0	473.0	973	Rhyolite, 10% pyrite, 20% quartz, 10% serici	te								 	
	<u> </u>		1-3 mm. clear-blue colour	 									
473.0	519.0	95%	Andesite, with 1-10 mm. matic clots, pseudo										
			porphyritic texture, 1-5% disseminated									 	
			magnetite, 3-10% chlorite, 8% disseminated									 	
			and fracture filling f. grain & c. grain pyrite									 	
		802	fault zone, broken ground	482.3	495.9	13.6	421	41	129	0.3	5		
		802	ic 4 (c 4	495.9	506.8	10.9	422	24	483	0.2	4		
	519	.0	EOH					·	- ,				

Colla	Diam	bond	Drill Record	Hole No. 94-5 Logged by A. Kikauka	BQ a	ny nan	siz	R. ruard	ian Re	source	P es I	g. l. Project	of Lal	7 (e A	di t
Eleva	tion	1038	m, Azimuth 050	Date logged	Drill	contr	actor	Cora	z Ent		Date o	ommenc	ed Ju	ne 21	194
				V	Final	depth	ı 	617	Ft.		Date f	inishe	.d		
					<u></u>	SA	MPLE		1			ASSAYS			
FROM	то	RECOVY	DE	SCRIPTION	FROM	то	HTOIW	No.	ppm Cu	2	Ag	ppb Au			
0.0	22.0	0%	HQ casing		!				<u> </u>			''			
0.0	50.0	2%	NQ casing andes:	te s'rhyolite boulders											
50.0	55.6	90%	Andesite, dark gre	en, coarse tuffaceous	·										
			texture lapilli si	ze clasts (rounded,											
			elongated at 50° to	coreaxis light gree	,										
			colour dasts) 5%	pyrite											• -
55.6	75.5	95%	Rhyolite, light grey	colour, 15% disseminate	d										

and fracture filling pyrite, 370 chalco- pyrite at 62.7-63.0 associated with 55.665.6 10.0 501 81 1215 0.2 6 coarse grain pyrite. 65.6 75.5 9.9 502 14 121 0.3 6 75.5 97.0 97% Andesite, dark green 1to4 mm. anhedral plagio clase phenocrysts at 75.5-81.5', 8% epidote, 3% pyrite. 97.0 115.0 58% Rhyodacite, light grey colour, broken 97.0 115.0 18.0 503 17 30 0.2 1			<u></u>	÷					1 Jb Myplile, linki aren colour. 15 10 alss-minapea	1,0113,7	27.0
pyrite at 62.7-63.0 associated with 55.665.6 10.0 501 81 1215 0.2 6 coarse grain pyrite. 65.675.59.9 502 14 121 0.3 6 75.597.0972 Andesite, dark green 1404 mm. anhedral plagio clase phenocrysts at 75.5'-81.5', 97.0972 8% epidote, 3% pyrite. 97.0115.018.0503 17 30 0.21 97.0115.0582 Rhyodacite, light grey colour, broken 9									and fracture filling purite 370 chalco-		
coarse grain pyrite. 65.6 75.5 9.9 502 14 121 0.3 6 75.5 97.0 97% Andesite, dark green 1to 4 mm. anhedral 97.0 97% Andesite, dark green 1to 4 mm. anhedral plagio clase phenocrysts at 75.5'-81.5', 97.0 97% Andesite, dark green 1to 4 mm. anhedral 97.0 97% Andesite, dark green 1to 4 mm. anhedral 97.0 115.0 18.0 503 17 30 0.2 1 97.0 115.0 58% Rhyodacite, light grey colour, broken 97.0 115.0 18.0 503 17 30 0.2 1	6	6	0.2	1215	81	501	10.0	65.6	purite at 62.7-63.0 associated with		
75.5 97.0 97% Andesite, dark green Ito4 mm. anhedral plagio clase phenocrysts at 75.5'-81.5', 8% epidote, 3% pyrite 97.0 115.0 58% Rhyodacite, light gren colour, broken 97.0 115.0 18.0 503 17 30 0.2 1	6	6	0.3	121	14	502	9.9	75.5	course arcin purite		
Plagio clase phenocrysts at 75.5'-81.5', 8% epidote, 3% pyrite 97.0 115.0 58% Rhyodacite, light grey colour, broken 97.0 115.0 18.0 503 17 30 0.2 1									0 97% Andesite, dark green Ito4 mm. anhedral	5.5 97.0	75.5
97.0 115.0 583 Rhyodacite, light grey colour, broken 97.0 115.0 18.0 503 17 30 0.2 1									placio clase phenocrysts at 75.5'-81.5'		
97.0 115.0 583 Rhyodacite, light grey colour, broken 97.0 115.0 18.0 503 17 30 0.2 1									8% epidote, 3% ourite		
	1	1	0.2	30	17	503	j g .0	115.0	0583 Rhyadacite light aren colour, broken	7.0 115.0	97.0
Around TAWTZONE & Spurite 16 Sericite									around fault zone, 8% purite 12% sericite		
5% chlorite									5% chlorite		

D				<u> </u>	л u	•••	Hole No	. 94-5							r-			
Collar	r co-o	27. ord.	to55 142W	Dip	- {	50	Logged	by A. Kikauka	Comp	any nam	e (<i>ruard</i>	ian Re	source	s P	roject	Lake	/
Eleva	tion	1038	<i>ft</i>	Azimuth	0	50	Date lo	gged	Dril	l contr	actor	Core	Ent.		Date c	ommence	d Jun	<u>ر او</u>
									Fina	1 depth		617	Ft		Date f	inished		
								r										
							ESCRIPTION			SA	MPLE					ASSAYS		
FHOM	10	RECOVI							FROM	то	HTOW	No.	opn (u	Zn	Ag	ррь Ац		
		1 1	12.20	purite	2.				135.	2 142.0	6.8	504	24	305	0.2	4		
			65 9		to	12 ch	alconum	te	142-	143.6	1-6	505	69	ZO	0.3	16		
			17 9	<u>pyri</u>	$\frac{1}{1}$		- copyri		143.	6 i51.5	7.9	506	6	16	0.2	3		
1527	111.7	050	<u>1670</u>	- Pyri acito	1	1		29 and to			1							
135.7	166.1	756	<u>Mnote</u>	<u>: Sije,</u>	dar	K gre	en colour	, <u>27. epicor</u>	·		:							
			Taul	<u>+ z</u> ;	me	at le	5.8-160	2.								+		
166.7	251.6	98%	Rhy	olite_	mi	nor rh	yodaci	R. light gree	¢		<u> </u>		<u> </u>					
			colou	r 10	20 6	yrite	1270 5	ericite 8%	quartz									
			a 1-	7 10000		/ sm	assive a	meetent roca										
	1		- f	14 .	7.000	80%	(0,); /0,		166.	7 177.0	10.3	507	48	2049	0.5	4		
		· · · ·	16	411 4	some	, 00,0	/ 200 / 2/	7	172.0	187.0	10.0	508	276	4683	0.3	4		
			<u> </u>			16.7	100		197	1970	10.0	509	13	639	0.1	2		
	+		Brok	<u>en gr</u>	CUNA	14 5.() - 198.0	·	1977	2071	10.0	510	12	235	0.3	z		
					· /	(12.0			2.7	217	10.0	511	13	125	- 0.2	2		
	<u> </u>	+	Massi	ve pij	rite	(>30%	1 at 210	.0-210.4			10.0	50		20		2		
			Mass	ive py	rite	(>302)) at 217	10-218-2, brok	en 217.	0 227.	0 10.0	312	13	201	0.2	3		
			ard	und	222	.0 - 2.2	2.7.0 85	To recovery										
	1	1							000	1222	in a	512	6	16	0.1	15		

٠

Diamond Drill Record	Hole No. 94-5	BQ core size	pg. 3 of 7
27+055 ollar co-ord. 1+42 W Dip -50	Logged by A. K. Kauka	Company name Reso	urces Project Lake Adit
evation 1038ft Azimuth 050	Date logged	Drill contractor Core Ent	Date commenced Tune 219
		Final depth $617 ft$.	Date finished

	TO	RECOVY	DESCRIPTION		SA	MPLE					ASSAYS	
 	+			FROM	то	HTOW	No.	ppm Cu	Zn	Ag	ppb Au	
L				237.0	247.0	10.0	514	11	90	0.2	2	
251.6	258.6	95%	Andesite, dark green colour, 32 epidote,									
			37. pyrite	247.0	258.6	11.6	515	113	2694	0.5	7	
258.	262.5	75%	Rhyolite, light gren to white colour, fault zone	258,6	262.5	3.9	516	349	45,037	0.4	19	
			15% purite disseminated and fracture			-						
			Filling massive pyrite band 262.2-262.5									
			4% sphalerite tr chalcopyrite band of									
			heavy sulphides at 259.0'-259.6'.									
				1					1			 _
262.5	265.0	957	Andesite dark areen colour. 1-4 mm	262.5	Z73.	R 10,7	517	24	2.07	0.3	2	
262.5	265.0	95.7	Andesite, dark green colour. 1-4 mm plagioclase openperysts, shace contacts	262.5	273.	2 16,7	517	24	2.07	0.3	2	
262.5	265.0	952	Andesite, dark green colour. 1-4 mm plagioclase phenocrysts, sharp contacts at 35° to core axis	262.5	273.	2 16,7	517	24	2.07	0.3	2	
262.5	374.0	952 982	Andesite, dark green colour. 1-4 mm plagioclase phenocrysts, sharp contacts at 35° to core axis Rhvolite, light area to white colour	262.5	273.	2 16,7		24	2.07	0.3	2	
262.5	374.0	952 982	Andesite, dark green colour. 1-4 mm plagioclase phenocrysts, sharp contacts at 35° to core axis Rhyolite, light grey to white colour 10% pyrite, fault 200 at 282-285' 30%	262.5	283.2	15.0	517	8	2.07	0.3 0.j	2	
262.5	374.0	952 982	Andesite, dark green colour. 1-4 mm plagioclase phenocrysts, sharp contacts at 35° to core axis Rhyolite, light grey to white colour 10% pyrite, fault 200e at 282-285' 30% recovery	262.5	283.2	15.0	517	8	2-07	0.3 0.j	2	
265,0	374.0	952	Andesite, dark green colour. 1-4 mm plagioclase phenocrysts, sharp contacts at 35° to core axis Rhyolite, light grey to white colour 10% pyrite, fault 200e at 282-285' 30% recovery 10% purite, 5% epidote andesite interval	262.5 273.2 288.2	283.2	2 <i>16.7</i> 15.0 11.1	517 518 519	8	2.07 151 801	0.3 0.j	2	

Diamond Drill Record

BQ Core Size

pg. 4 of 7

Diamond Drill Record	Hole No. 94-5	BQ Love SILE	
27to55 Din -50	Logged by A. Kikauka	Company name Guardian Resource	es Project Lake Adit
Flowation 1038 ft. Azimuth 050	Date logged	Drill contractor Core Ent.	Date commenced June 21,94
Elevation 314 m.	1	Final depth 617 ft.	Date finished

					SA	MPLE				/	ASSAYS	
FROM	TO	RECOVY	DESCRIPTION	FROM	то	WIDTH	No.	ppm Cu	Zn	Aa	pph Au	
	€		Interval desite at 300.9-303.3' with 42	299.3	312.0	12.7	520	318	619	0.5	8	
			disseminated magnetite, sharp contact									
			at 80° to core axis, 12 % pyrite trace	· · · ·								
		,	sphalerite		ļ							
			102 purite, 15% gtz. 122 sericite	312.0	324.0	12.0	521	21	407	0.4	1)	
			8% purite 10% atz. 10% sericite	324.0	337.6	13.0	522	20	410	0.3	9	 ·.
			andesite (porphyritic texture) at 330.0-332.0									
 	<u> </u>	+	10% disseminated and fracture filling pyrite	337.0	349.5	12.5	523	13	34/	0.3	4	
		1	course again at 2- ene to 10 mm rimmed									
			b. fine arain purite. Purite veins									
·		-	Del-1.5 cm. wide at 70-80° to coreaxis.						<u> </u>			
	1		Andesite interval at 348.6-350.5, 82					ļ				
	1		epidote	349.5	362.0	12.5	524	17	817	0.2	2	
			Andesite interval at 360.2-362.0	362.0	374.0	12.0	525	23	482	0.2	3	
374.	382	5 952	Rhydacite dark to light grey, 72		ļ							
			purite 32 sericite massive							<u> </u>		
L	<u> </u>											
Diamond Drill Record	Hole No. 94-5	BQ core size	Pg. 5 of 7									
--	------------------------	------------------------------	---------------------------									
$\begin{array}{c} 27 + 05 \\ \text{Collar co-ord} \\ 1 + 42 \\ \text{W} \\ \text{Dip} \\ -50 \\ \end{array}$	Logged by A. Kikauka	Company name Guardian Resour	rces Project Lake Adit									
$\frac{1039}{1039} + \frac{1039}{1039} + \frac{1039}{1039} + \frac{1039}{100} + \frac{1039}{100} + \frac{1000}{100} + \frac$	Date logged June 30 94	Drill contractor Cove Ent.	Date commenced June 21,94									
		Final depth 617 ft.	Date finished June 28,94									

	TO	DECONV	DESCRIPTION		SA					·····	ASSAYS	
FHOM	10	RECOVI		FROM	то	HTOW	No.	ppm Cu	Zn	Ag	ppb Au	
382,5	432.3	98%	Andesite, dark green to dark grey, bleached									
			light area at 391.0-399.5 and 411.3-415.0,									
			magnetite 1-3% disseminated at 426.0-432.3									
			Pyrite bands to 5 cm. width at 70° to core axis,	391.0	399,5	8.5	5z6	55	1087	0.3	5	
			Vugan cavities, trace - 1% calcite along Fractures									
132	463.0	98%	Rhydacite dark grey 5% pyrite 0.1-1.0 cm									 •.
			purite veins at 50° to core axis			ļ						
			8% pyrite 7% sericite	449.7	463.0	13,3	527	18	65	0.j	3	
463.0	469:	98.2	Andesite dark green colour, 10% epidote,									
		-	3% pyrite									
469.;	477.	\$ 982	Rhyodacite and rhyolite with 1-3 mm. gtz.	469.7	477.3	7.6	528	36	2205	0.3	4	
			eyes, 8% pyrite 1-2 cm. pyrite veins at 40°					<u> </u>				
			to core axis, 82 sericite									
477.	3 485,5	982	Andesite dark green, 2% epidote, 2% pyrite					ļ			<u> </u>	
485.9	5 547.	3 95%	Rhyolite and rhyodacite, light grey colour,					<u> </u>				
			102 qurite 122 sericite 5% gtz 13mmey	es					<u></u>			

Diamond Drill Record

BQ core size

Pg. 6 of 7

•__

Diamond Drill Record	Hole No. 94-5	\`	<u>ل</u>
$\frac{27705 \text{ S}}{100000000000000000000000000000000000$	Logged by A Kikauka	Company name (Tuardian Resour	rces Project Lake Adit
$\frac{1038 \text{ ft}}{1038 \text{ ft}}$	Date logged Tune 30 94	Drill contractor Core Ent.	Date commenced June 21.94
Elevation SIT m	1 0 are 50, 11	Final depth 617 Ff.	Date finished June 28,94

			DESCRIPTION		SAI	MPLE				/	ASSAYS		
FROM	то	HECOVY		FROM	TO	WIDTH	No.	ppm Cu	Zn	Ag	pob Au		
			102 parite 10% sericite 3% epidote	485.5	496.6	11.1	529	20	269	0.(5		
			" " andesite interval	496.6	507.1	10.5	536	Z5	83	0.2	3	·	
			et 501-502 and 503.3-503.6 at 50° to core axis										
			202 purite et 515-516 102 purite 102 sericite	507.1	519.7	12.6	531	9	33	0.1	4		
			10 2 queita 102 secicita	519.7	531.0	11.3	532	15	48	0-1	3		
		859	122 quite 122 sericite broken around fault	531.0	547.3	16.3	533	113	1610	0.2	5		
		00 10	20 solute										
5177		Gan	A lot la la 22 queite 12 coleite			1							
577.5	5 64.8	78%	Andesite, dark green, 210 pyrile, in calcule,					·					
5/49	617.0	972	Rhulitz and Rhundarite light aren colour										
561.0		110	1-10 mm quartz veins at 60° to core axis										 <u></u>
			10-20/m. and esite intervals at 614.5-615.3									· .	
			with sharp contacts at 60° to core axis										
			8% quite 5% sericite	580.6	591.3	10.7	534	38	44	0.1	4		
			15% ourite 10% sericite	591.3	597.0	5.7	535	45	39	0.Z	8		
		+								<u> </u>			

Diamond Drill Record	Hole No. 94-5		Pg. 7 of 7
Collar co-ord. $1+42 \text{ w}$ Dip -50°	Logged by A. Kikauka	Company name Guardian Resourc	es Project Lake Adit
Elevation 314 m. Azimuth 050	Date logged June 30 94	Drill contractor Core Ent.	Date commenced June 2/ 94
		Final depth 617 ft.	Date finished June 28 94

[CDOLL			DESCRIPTION		SAI	MPLE		ASSAYS							
FHOM	10	RECOVI		FROM	то	WIDTH	No.	ppm Cu	21	Ag	ppb Au				
	C-		870 pyrite, 5% quartz veins at 60° to core	597.0	607.0	10.0	536	200	57	0.3	12				
			axis												
			10% pyrite, 3% quartz veins at 70° to core	607.0	617.0	10.0	537	39	76	0.3	6				
			axis			5									
	617.0)	EOH												
														• .	
					ļ										
		1													
	1														
	<u>†</u>			en unitaria e u											
	1														
	+													-	