TASEKO MINES LIMITED GEOTECHNICAL DIAMOND DRILLING ASSESSMENT REPORT

F1 to F9, Fish 1 and Fish 5 to Fish 11 MINERAL CLAIMS

FISH LAKE PROPERTY

Clinton Mining Division

British Columbia Canada

NTS 920/5E

Latitude 51°27' North Longitude 123°36' West

By L. K. Brommeland, B.Sc. R. J. Haslinger, P.Eng C. M. Rebagliati, P.Eng

January 11, 1995

	LOG		FIAN 1 6 1995
TABLE OF CONTENTS	ACT	ION:	

			_گ			and speciality		_		_		•
10	SUMMARY	FIL	ÈR	0.						Pag	e No.	L
1.0	SUMMARY		د است. د	-tocas			Lenias				. 1	
2.0	INTRODUCTION											
3.0	LOCATION AND ACCESS	•••	••	• •	•••		•		• •	••	. 4	ŀ
4.0	CLAIM DATA	•••	•••	•••	•••	•	•		• •	••	. 5	i
5.0	EXPLORATION HISTORY	•••	••	•••	•••	• •	•	•••			. 6	i
6.0	GEOTECHNICAL DRILL PROGRAM	•••	••		•••	• •	•	•••	•••	•••	. 7	,
7.0	CONCLUSIONS AND RECOMMENDATIONS .	•••		•••	•••	• •	•		•••	•••	. 9)
8.0	STATEMENT OF COSTS	•••	•••	•••			•	•••	• •	•••	10)
9.0	REFERENCES	•••		••	•••	• •	•	•••	• •	• •	11	
10.0	STATEMENT OF QUALIFICATIONS	• • •	•••		• •		•				12	•

LIST OF TABLES

1	MINERAL CLAIMS REFERENCED 5
••	

LIST OF FIGURES

	Following I	` age	
۱.	SITE LOCATION MAP	. 4	
2.	PROPERTY MAP	. 5	
3.	SITE LAYOUT SHOWING GEOTECHNICAL DRILL HOLE LOCATIONS	. 7	
4.	CLAIM MAP SHOWING GEOTECHNICAL DRILL HOLE LOCATIONS	. 7	

LIST OF APPENDICES

- I. CLAIMS HELD BY TASEKO MINES LIMITED
- II. 1994 GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS FOR PROPOSED TAILINGS STORAGE FACILITY, FISH LAKE PROJECT, BY KNIGHT PIESOLD LTD.

GEOLOGICAL BRANCH ASSESSMENT REPORT

1.0 SUMMARY

The Fish Lake Property, owned by Taseko Mines Limited, is located approximately 250 kilometres north of Vancouver, and 125 kilometres southwest of the community of Williams Lake, British Columbia, situated in the Clinton Mining Division. The 95 square kilometre property is comprised of 196 mineral and 9 placer claims.

Road access is via the Bella Coola Highway (Highway 20) from Williams Lake to the community of Hanceville, then southwest along a government maintained gravel road. The property is also accessible by fixed wing aircraft equipped with floats or skis to Fish Lake located approximately 10 kilometres north of Taseko Lake.

Exploration by numerous operators including Bethlehem, Cominco, Nittetsu, Quintana and Taseko Mines during the period 1960 - 1994 culminated in the discovery and definition of a Cu-Au prophyry deposit. The deposit has been defined by a cumulative total of 73, 644 meters in 238 holes and contains a geological resource of 976 million tonnes grading 0.23% copper and 0.48 grams gold/tonne.

A program of geotechnical-geological HQ diameter drilling totalling 425.48m in six holes was conducted to the south of the main deposit area during July and August, 1994. The holes were drilled to evaluate both the economic and mineral potential as well as the geological and hydrogeological conditions along the west and south sides of the proposed tailings impoundment area.

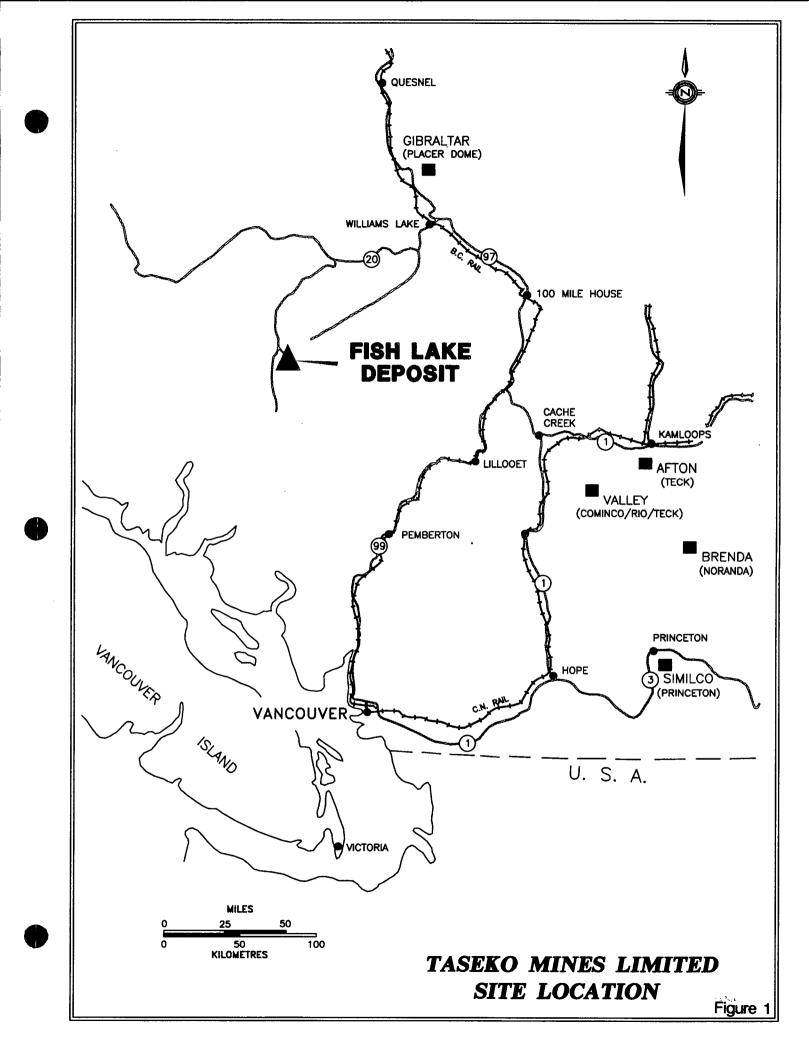
The holes intersected a bedrock sequence comprised of Miocene basalt flows and sediments as well as Upper Cretaceous Kingsvale sediments. Average bedrock permeabilities ranged from 10^{-4} to 10^{-5} cm/sec.

The proposed tailings storage facility site requires further evaluation in order to assess high permeability fracture zones and availability/continuity of low permeability glacial till materials.

2.0 INTRODUCTION

The Fish Lake copper-gold porphyry deposit lies approximately 125 km southwest of Williams Lake, BC. The Fish Lake property, covering the deposit area, incorporates a total of 196 mineral claims and 9 placer claims.

Taskeo Mines Limited conducted a 35 hole diamond drilling program on the property in 1994. This included the drilling of 29 holes in the deposit area, and 6 geotechnicalgeological holes in the area of proposed tailings embankments south of Fish Lake.

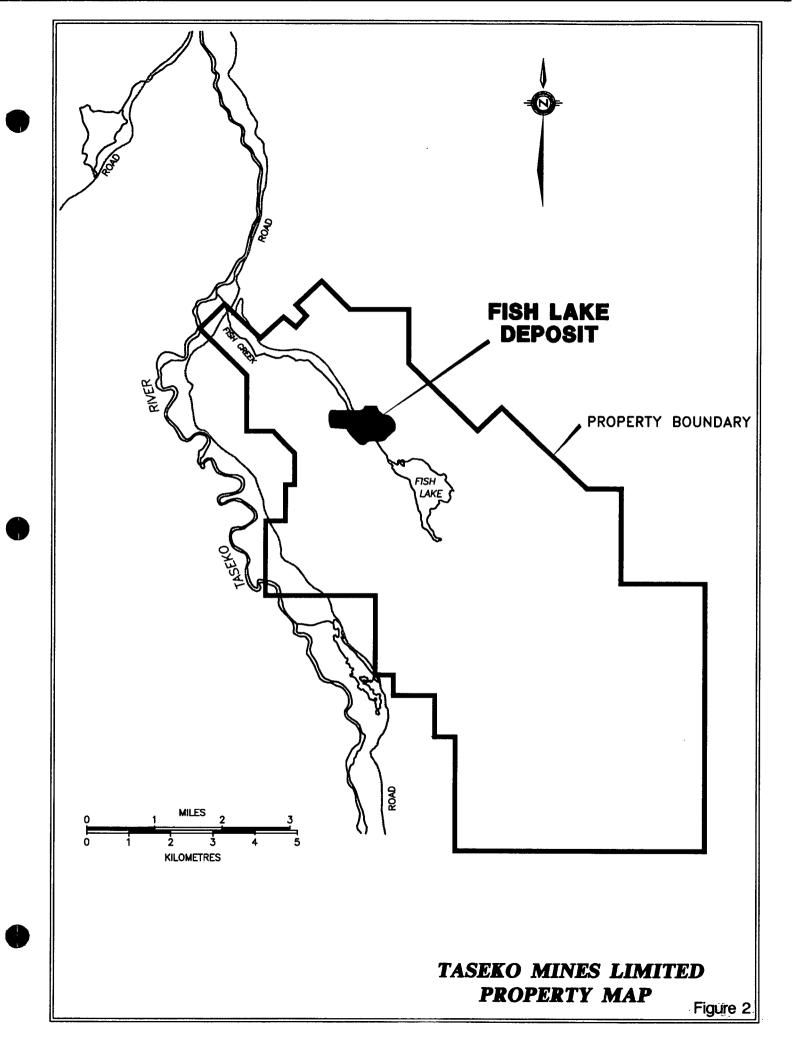

This report documents results and data collected from the 6 hole geotechnicalgeological diamond drill program performed between June 23 and September 15, 1994. This 425.48m program specifically addressed proposed tailings dam embankments for hydrogeology on the Fish 1, Fish 6 and Fish 7 mineral claims. Detailed technical information for each drill hole is contained in the appended report by Knight Piésold Ltd. (Appendix II).

3.0 LOCATION AND ACCESS

The Fish Lake gold-copper deposit is located in the Clinton Mining Division of southcentral British Columbia at Latitude 51°27' North, Longitude 123°36' West (NTS 920/5E). This site is located 250 kilometres north of Vancouver and 125 kilometres southwest of Williams Lake, British Columbia (Figure 1).

Access to the property is via the paved Bella Coola Highway (Highway 20) to Lees Corner near Hanceville about 90 kilometres west of Williams Lake. From Lees Corner the road heads southwest for about 90 kilometres along gravel logging road, and 16 kilometers south along the Fish Lake access road. The access road is maintained on a seasonal basis by Taseko Mines Limited. During the wet spring months, four-wheel drive vehicles with high ground clearance are often required. The total road distance from Williams Lake to the property is 192 kilometres.

A Turbo Beaver aircraft equipped with floats or skis can be used to access Fish Lake during summer and winter months. The Taseko Mines Limited campsite is one kilometer from the north end of Fish Lake on Fish Creek.


4.0 CLAIM DATA

The Fish Lake property, which is 95 square kilometres in size, is situated in the Clinton Mining Division on N.T.S. map sheet 920/5E (Figure 2). The property, owned by Taseko Mines Ltd., consists of 196 mineral claims totalling 548 units.

A list of claims data pertinent to this report appears below, with expiry dates subject to acceptance of assessment work and credits supported by this report. A complete list of claims is provided as Appendix I.

CLAIM NAME	TENURE NO.	UNITS	RECORD DATE	EXPIRY DATE
Fish 1	3563(1)	20	18/1/91	18/1/2000
Fish 5	314027	20	15/10/92	15/10/2000
Fish 6	314028	20	16/10/92	16/10/2000
Fish 7	314029	20	17/10/92	17/10/2000
Fish 8	314030	20	17/10/92	17/10/2000
Fish 9	314031	8	16/10/92	16/10/2000
Fish 10	314026	12	17/10/92	17/10/2000
Fish 11	314032	12	17/10/92	17/10/2000
F1	314003	1	15/10/92	15/10/2000
F2	314004	1	15/10/92	15/10/2000
F3	314005	1	16/10/92	16/10/2000
F4	314006	1	16/10/92	16/10/2000
F5	314007	1	16/10/92	16/10/2000
F6	314008	1	16/10/92	16/10/2000
F7	314009	1	16/10/92	16/10/2000
F8	314010	1	16/10/92	16/10/2000
F9	314025	1	16/10/92	16/10/2000

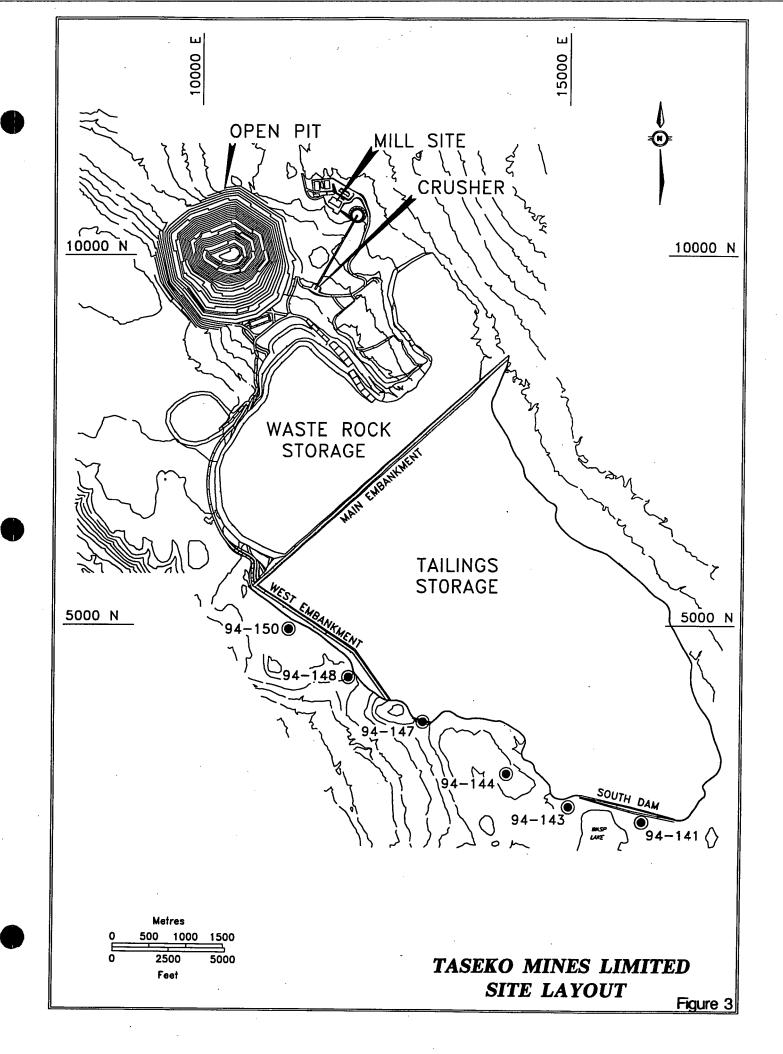
TABLE 1 - MINERAL CLAIMS REFERENCED

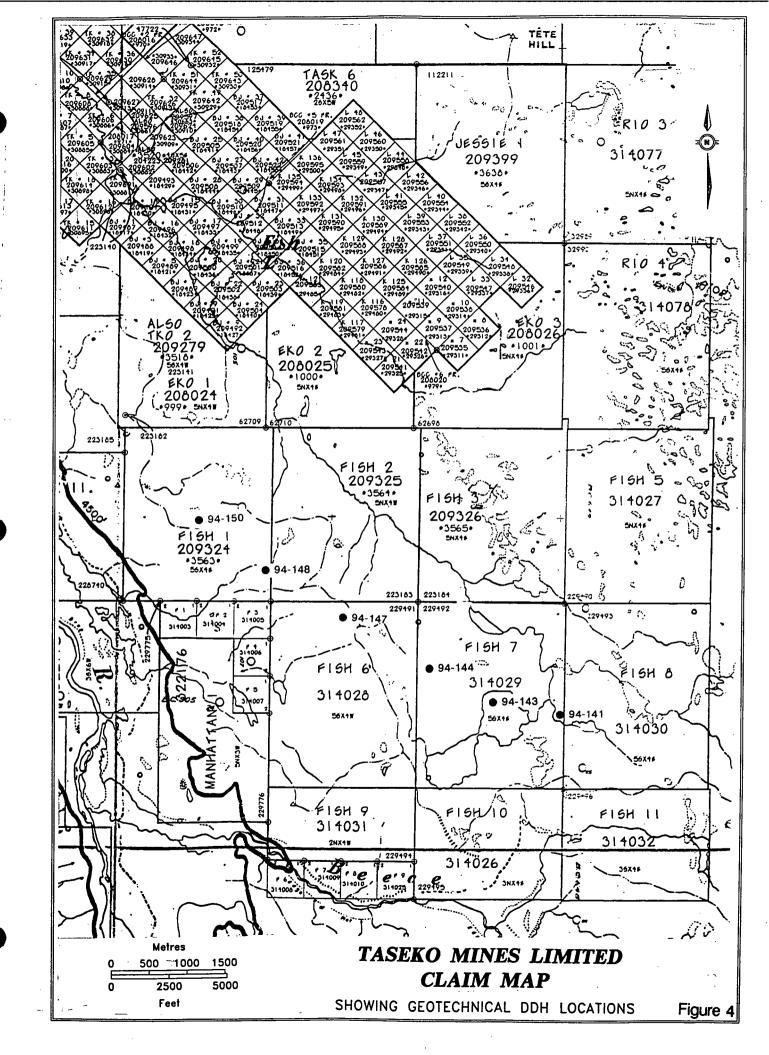
5.0 **EXPLORATION HISTORY**

In the early 1930's, prospectors E. Calep and C.M. Vick followed mineralized float and located exposures of pyrite and chalcopyrite-bearing diorite and feldspar porphyry dykes, approximately 1 kilometre east and 0.5 kilometres north of the Fish Lake deposit proper. In 1960, the porphyry copper potential of the area was recognized by Phelps Dodge Corporation. Early drilling results were not sufficiently encouraging and Phelps Dodge allowed the claims to lapse. In 1969, Taseko Mines Limited acquired the ground, drilled approximately 2,200 metres in 18 holes and discovered better grade mineralization. The property was then optioned to Nittetsu Mining Company Ltd. (1970) and later to Quintana Minerals Corporation, which in 1973 and in 1974 drilled approximately 6,000 metres in 23 core holes in order to test and delineate the areas of better-grade mineralization. Further work by Bethlehem Copper (1979-1981) and more recently by Cominco Ltd. (1982-1989) expanded the known deposit size. In 1990, the drill indicated resource was estimated at 203 million tonnes grading 0.24% copper and 0.48 grams gold/tonne.

During 1991 and 1992, Taseko Mines Limited, diamond drilled a total of 67,783 m in 122 holes and increased the drill indicated resource to 976 million tonnes grading 0.23% copper and .48 grams gold/tonne (1075 million tons at 0.23% copper and 0.013 oz/ton gold).

6.0 GEOTECHNICAL DRILL PROGRAM


A program of diamond drilling, comprising a total of 425.48m in 6 HQ diameter holes, was completed on the Fish 1, Fish 6 and Fish 7 mineral claims during the period June 23 to September 19, 1994. The drilling was conducted with a Val d'Or 2000 hydraulic fly-rig. A detailed report providing drill logs, plans and cross sections is presented as Appendix II to this report.


The six holes were drilled as part of an investigation of bedrock and overburden foundation conditions in the West Embankment, West Saddle Dam and South Dam areas of the proposed Tailings Storage Facility.

This site is currently considered to be the optimum site available for storage of tailings from a proposed open pit mine at Fish Lake. The holes were drilled to obtain geological, permeability, seepage, construction material and stability information in the embankment areas and to provide groundwater quality monitoring wells.

The six holes were each collared in glacial till. This till layer, comprised of brown sandy clay with gravel and cobbles, was generally thin but became thicker in topographically low areas and the area near Wasp Lake.

Underlying the glacial Miocene basalt flows and sediments were present in all holes except 94 - 141 and 94 - 143, both of which lacked Miocene sediments. Holes 94 -

144 and 94 - 150 passed through the Miocene basalts and sediments and were terminated in Cretaceous Sedimentary rocks.

Miocene basalt flows comprised dark green/grey or maroon to dark brown/grey rock with alternating vesicular, vuggy and fine grained massive zones. Red-grey and brown discolourations were noted. Miocene sediments comprised siltstone, sandstone, claystone, conglomerate and some gravel lenses. Cretaceous sediments were comprised of argillite, argillaceous siltstone and pebble conglomerate.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The six hole geotechnical drilling program provided additional information on the geology and hydrogeology of proposed tailings dam embankments along the west and south sides of the proposed tailings impoundment area. This information was used to evaluate the performance of proposed seepage control measures and to predict seepage losses to groundwater as well as to confirm the stability of the proposed West Embankment.

If this site remains in favour as a tailings storage area, additional assessment of higher permeability fracture zones and alluvial materials may be necessary.

Identification of high permeability areas and evaluation of continuity and thickness of surficial, low permeability glacial till materials could be accomplished by employing one or more of the following methods:

- 1. Surface mapping to establish basalt and till distribution.
- 2. Test pitting to determine areas of deeper overburden.
- Appropriate geophysical testing to evaluate continuity and thickness of glacial till.
- 4. Drilling to evaluate fracture zones and provide additional permeability information.

Fish Lake Geotechnical Drill Progra (July 26 - August 15, 1994)	am	
Diamond Drilling (Quest Canada Drilling (1991) Inc.) Drill Mob-Demob Direct Drilling Costs	\$ 6,000.00 48,154.70	\$ 54,1 54.70
Engineering (Knight Piésold Ltd) On Site Engineering/Testwork: 200 hrs @ \$65/hr	\$13,000.00	\$ 13,000.00
Helicopter (Canadian Helicopters) Mob-Demob: 1.4 hrs @ \$850/hr Drill Moves: 16.4 hrs @ \$850/hr Support 26.2 hrs @ \$850/hr	\$ 1,190.00 13,940.00 22,270.00	\$ 37,400.00
Camp Costs Room/Board: 126 man days @ \$50/day	\$ 6,300.00	<u>\$ 6,300.00</u>

TOTAL COSTS \$110,854.70

NOTE:

(i) No administrative or supervisory costs have been included, in or out of the field.

- (ii) Off site engineering costs and computer time have not been included.
- (iii) Reclamation costs, telecommunications/courier costs, and truck/equipment rentals have not been included.

STATEMENT OF COSTS

STATEMENT OF COSTS

8.0

9.0 REFERENCES

CAIRA, N.M., FINDLAY, A., DELONG, R.C., AND REBAGLIATI, C.M., 1995 Fish Lake Porphyry Copper-Gold Deposit, Central British Columbia. As yet unpublished CIM paper.

CAIRA, N.M. and PIROSH, D., 1992. Diamond Drilling Assessment Report on the Fish Lake Property

DELONG, R.C., HASLINGER, R.J., AND REBAGLIATI, C.M., 1995 1994 Exploration-Delineation, Geotechnical and Environmental Drilling Program on the Fish Lake Porphyry Gold Copper Deposit. Private report for Taseko Mines Limited.

SIVERTZ, W.G., 1993

Geotechnical Diamond Drilling Assessment Report EKO 1, Fish 1 to Fish 11, and F1 to F9 Mineral Claims. Fish Lake Property.

STATEMENT OF QUALIFICATIONS

I, Lena Kathryn Brommeland, of 301-335 East 14th Avenue, Vancouver, BC, do hereby certify that:

- 1. I am a graduate of the University of British Columbia (1989) and hold a B.Sc degree in Geology.
- 2. I have practised my profession continuously since graduation.
- **3.** I am an employee of Taseko Mines Limited.
- 4. I hold no interest, direct or indirect, in the property securities of Taseko Mines Limited.
- 5. The foregoing report is based on:
 - a) A study of all available company and government reports.
 - b) My personal knowledge of the area.

Lena K. Brommeland.

Lena K. Brommeland, B.Sc.

Dated at Vancouver, British Columbia, this 6th day of January, 1995.

STATEMENT OF QUALIFICATIONS

I, Richard Josef Haslinger, of 821 West 19th Avenue, Vancouver, B.C., hereby certify that:

- 1. I am a Consulting Geological Engineer with offices at 821 West 19th Avenue, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia (B.A. Sc., Geological Engineering, 1986.)
- 3. I have practised my profession continuously since graduation, excluding the period January, 1989 to June, 1990.
- 4. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. The foregoing report is based on:
 - a) A study of all available company and government reports.
 - b) My personal knowledge of the area resulting from my supervision of exploration on the property from June to October, 1994.

RJ Hoollyr

R.J. Haslinger, P.Eng.

Dated at Vancouver, British Columbia, this 6th day of January, 1995.

STATEMENT OF QUALIFICATIONS

I, Clarence Mark Regabliati, of the City of Vancouver, Province of British Columbia, DO HEREBY CERTIFY THAT:

- I am a Consulting Geological Engineer with a business office at Suite 1020, 800 West Pender Street, Vancouver, B.C.
- 2. I am a graduate of the Provincial Institute of Mining, Haileybury, Ontario (Mining Technology, 1966).
- 3. I am a graduate of the Michigan Technological University, Houghton, Michigan, U.S.A. (B.Sc., Geological Engineering, 1969).
- 4. I am a registered member, in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. I have practised my profession continuously since graduation.
- 6. I directed the 1994 exploration program on the subject property.

C.M. Rebad

Dated at Vancouver, British Columbia, this 6th day of January, 1995.

APPENDIX I

CLAIMS HELD BY TASEKO MINES LIMITED

Claim	Record	Tenure	Units	Record	Expiry
Name	Number	Number		Date	Date
3CC-1(Fr)	969	208015	1	06-Feb-81	06-Feb-2000
BCC-2(Fr)	970	208016	1	06-Feb-81	06-Feb-200
3CC-3(Fr)	971	208017	1	06-Feb-81	06-Feb-200
3CC-4(Fr)	972	208018	1	06-Feb-81	06-Feb-200
3CC-5(Fr)	973	208019	1	06-Feb-81	06-Feb-200
3CC-6(Fr)	979	208020	1	25-Feb-81	25-Feb-200
3J-1	18417	209487	1	25-Jun-69	25-Jun-200
3J-3	18419	209488	1	25-Jun-69	25-Jun-200
3J-5	18421	209489	1	25-Jun-69	25-Jun-200
3J-7	18423	209490	1	25-Jun-69	25-Jun-200
3J-9	18426	209491	1	25-Jun-69	25-Jun-200
3J-11	18427	209492	1	25-Jun-69	25-Jun-200
3J-13	18429	209493	1	25-Jun-69	25-Jun-200
3J-14	18430	209494	1	25-Jun-69	25-Jun-200
3J-15	18431	209495	1	25-Jun-69	25-Jun-200
3J-16	18432	209496	1	25-Jun-69	25-Jun-200
3J-17	18433	209497	1	25-Jun-69	25-Jun-200
3J-18	18434	209498	1	25-Jun-69	25-Jun-200
3J-19	18435	209499	1	25-Jun-69	25-Jun-200
3J-20	18436	209500	1	25-Jun-69	25-Jun-200
3J-21	18437	209501	1	25-Jun-69	25-Jun-200
3J-22	18438	209502	1	25-Jun-69	25-Jun-200
3J-23	18439	209503	1	25-Jun-69	25-Jun-200
3J-24	18440	209504	1	25-Jun-69	25-Jun-200
3J-25	18441	209505	1	25-Jun-69	25-Jun-200
3J-26	18442	209506	1	25-Jun-69	25-Jun-200
3J-27	18443	209507	1	25-Jun-69	25-Jun-200
3J-28	18444	209508	1	25-Jun-69	25-Jun-200
3J-29	18445	209509	1	25-Jun-69	25-Jun-200
3J-30	18446	209510	1	25-Jun-69	25-Jun-200
3J-31	18447	209511	1	25-Jun-69	25-Jun-200
3J-32	18448	209512	1	25-Jun-69	25-Jun-200
3J-33	18449	209513	1	25-Jun-69	25-Jun-200
3J-34	18450	209514	1	25-Jun-69	25-Jun-200
3J-35	18451	209515	1	25-Jun-69	25-Jun-200
3J-36	18452	209516	1	25-Jun-69	25-Jun-200
3J-37	18453	209517	1	25-Jun-69	25-Jun-200
BJ-38	18454	209518	1	25-Jun-69	25-Jun-200
3J-39	18455	209519	1	25-Jun-69	25-Jun-200
3J-40	18456	209520	1	25-Jun-69	25-Jun-200
BJ-41	18457	209521	1	25-Jun-69	25-Jun-200

Claim	Record	Tenure	Units	Record	Expiry
Name	Number	Number		Date	Date
3J-42	18458	209522	1	25-Jun-69	25-Jun-2000
5J-42 EKO 1	999	209522	20		
EKO 1 EKO 2				02-Apr-81	02-Apr-2000
	1000	208025	20	02-Apr-81	02-Apr-2000
EKO 3	1001	208026	20	02-Apr-81	02-Apr-2000
-1		314003	1	15-Oct-92	15-Oct-97
-2		314004	1	15-Oct-92	15-Oct-97
-3		314005	1	15-Oct-92	15-Oct-97
-4		314006	1	16-Oct-92	16-Oct-97
-5		314007	1	16-Oct-92	16-Oct-97
-6		314008	1	16-Oct-92	16-Oct-97
7		314009	1	16-Oct-92	16-Oct-97
8		314010	1	16-Oct-92	16-Oct-97
9		314025	1	16-Oct-92	16-Oct-97
L1	401	207940	16	11-Sep-79	11-Sep-200
^r L4	404	207941	16	11-Sep-79	11-Sep-200
ish 1*	3563	209324	20	18-Jan-91	18-Jan-2000
ish 2*	3564	209325	20	19-Jan-91	19-Jan-2000
ish 3*	3565	209326	20	19-Jan-91	19-Jan-2000
fish 4*	3566	209327	20	18-Jan-91	18-Jan-2000
Fish 5		314027	20	15-Oct-92	15-Oct-97
Fish 6		314028	20	16-Oct-92	16-Oct-97
ish 7		314029	20	17-Oct-92	17-Oct-97
Fish 8		314030	20	17-Oct-92	17-Oct-97
ish 9		314031	8	16-Oct-92	16-Oct-97
ish 10		314026	12	17-Oct-92	17-Oct-96
ish 11		314032	12	17-Oct-92	17-Oct-96
(-53	29417	209563	1	17-Aug-72	17-Aug-200
K-54	29418	209564	1	17-Aug-72	17-Aug-200
(-55	29419	209565	1	17-Aug-72	17-Aug-200
K-56	29420	209566	1	17-Aug-72	17-Aug-200
K-57	29421	209567	1	17-Aug-72	17-Aug-200
K-58	29422	209568	1	17-Aug-72	17-Aug-200
(-59	29423		1	17-Aug-72	17-Aug-200
(-61	29425		1	17-Aug-72	17-Aug-200
(-63	29427		1	17-Aug-72	17-Aug-200
<-66	29430		1	17-Aug-72	17-Aug-200
<-68	29432		1	17-Aug-72	17-Aug-200
<-70	29434		1	17-Aug-72	17-Aug-200
<-72	29436		1	17-Aug-72	17-Aug-200
<-74	29438		1	17-Aug-72	17-Aug-2000
K-76	29440		1	17-Aug-72	17-Aug-200

Claim	Record	Tenure	Units	Record	Expiry
Name	Number	Number		Date	Date
-116	29480	209578	1	17-Aug-72	17-Aug-2000
-117	29481	209579	1	17-Aug-72	17-Aug-200
-118	29482	209580	1	17-Aug-72	17-Aug-200
-119	29483	209581	1	17-Aug-72	17-Aug-200
-120	29484	209582	1	17-Aug-72	17-Aug-200
-121	29485	209583	1	17-Aug-72	17-Aug-200
-125	29489	209584	1	17-Aug-72	17-Aug-200
-126	29490	209585	1	17-Aug-72	17-Aug-200
-127	29491	209586	1	17-Aug-72	17-Aug-200
-128	29492	209587	1	17-Aug-72	17-Aug-200
-129	29493	209588	1	17-Aug-72	17-Aug-200
-130	29494	209589	1	17-Aug-72	17-Aug-200
-131	29495	209590	1	17-Aug-72	17-Aug-200
-132	29496	209591	1	17-Aug-72	17-Aug-200
-133	29497	209592	1	17-Aug-72	17-Aug-200
-134	29498	209593	1	17-Aug-72	17-Aug-200
-135	29499	209594	1	17-Aug-72	17-Aug-200
-136	29500	209595	1	17-Aug-72	17-Aug-200
-7	29311	209535	1	17-Aug-72	17-Aug-200
-8	29312	209536	1	17-Aug-72	17-Aug-200
-9	29313	209537	1	17-Aug-72	17-Aug-200
-10	29314	209538	1	17-Aug-72	17-Aug-200
-11	29315	209539	1	17-Aug-72	17-Aug-200
-12	29316	209540	1	17-Aug-72	17-Aug-200
-21	29325	209541	1	17-Aug-72	17-Aug-200
-22	29326	209538	1	17-Aug-72	17-Aug-200
-23	29327	209543	1	17-Aug-72	17-Aug-200
-24	29328	209544	1	17-Aug-72	17-Aug-200
-31	29335	209545	1	17-Aug-72	17-Aug-200
-32	29336	209546	1	17-Aug-72	17-Aug-200
-33	29337	209547	1	17-Aug-72	17-Aug-200
-34	29338	209548	1	17-Aug-72	17-Aug-200
-35	29339	209549	1	17-Aug-72	17-Aug-200
-36	29340	209550	1	17-Aug-72	17-Aug-200
-37	29341	209551	1	17-Aug-72	17-Aug-200
-38	29342	209552	1	17-Aug-72	17-Aug-200
-39	29343	209553	1	17-Aug-72	17-Aug-200
-39 -40	29344	209554	1	17-Aug-72	17-Aug-200
-41	29345	209555	1	17-Aug-72	17-Aug-200
-42	29346	209556	1	17-Aug-72	17-Aug-200
-42 -43	29340	200000	1	17-Aug-72	17-Aug-200

Clinton Mining Divis	Record	Tenure	Units	Record	Expiry
Name	Number	Number		Date	Date
44	29348	209558	1	17-Aug-72	17-Aug-2000
45	29349	209559	1	17-Aug-72	17-Aug-2000
46	29350	209560	1	17-Aug-72	17-Aug-2000
47	29351	209561	1	17-Aug-72	17-Aug-2000
-48	29352	209562	1	17-Aug-72	17-Aug-2000
EL-57	30661	209596	1	25-Apr-73	25-Apr-2000
EL-59	30663	209597	1	25-Apr-73	25-Apr-2000
EL-75	30679	209598	1	26-Apr-73	26-Apr-2000
EL-76	30680	209599	1	26-Apr-73	26-Apr-2000
EL-77	30681	209600	1	26-Apr-73	26-Apr-2000
	30881	209601	1	28-May-73	28-May-200
-K-2	30882	209602	1	28-May-73	28-May-200
	30883	209603	1	28-May-73	28-May-200
-K-4	30884	209604	1	28-May-73	28-May-200
-K-5	30885	209605	1	28-May-73	28-May-200
К-б	30886	209606	1	28-May-73	28-May-200
K-7	30887	209607	1	28-May-73	28-May-200
К-8	30888	209608	1	28-May-73	28-May-200
K-0 K-9	30889	209609	1	28-May-73	28-May-200
K-0 K-10	30890	209610	1	28-May-73	28-May-200
	30895	209611	1	28-May-73	28-May-200
	30896	209612	1	28-May-73	28-May-200
K-10 K-17	30897	209613	1	28-May-73	28-May-200
K-17 K-18	30898	209614	· 1	28-May-73	28-May-200
K-10 K-19	30899	209615	1	28-May-73	28-May-200
- 79 - K-20	30900	209015	1	28-May-73	28-May-200
K-20 K-21	30901	209010	1	28-May-73	28-May-200
K-21 K-22	30902	209617	1	28-May-73	28-May-200
	30903	209619	1	28-May-73	28-May-200
K-23					28-May-200
K-24	30904	209620	1	28-May-73	
K-25	30905	209621	1	28-May-73	28-May-200
K-26	30906	209622	1	28-May-73	28-May-200
K-29	30909	209623	1	28-May-73	28-May-200
-K-30	30910	209624	1	28-May-73	28-May-200
FK-31	30911	209625	1	28-May-73	28-May-200
FK-32	30912	209626	1	28-May-73	28-May-200
FK-33	30913	209627	1	28-May-73	28-May-200
FK-34	30914	209628	1	28-May-73	28-May-200
FK-35	30915	209629	1	28-May-73	28-May-200
FK-36	30916	209630	1	28-May-73	28-May-200
TK-37	30917	209631	1	28-May-73	28-May-200

ton Mining Divis	Record	Tenure	Units	Record	Expiry
Name	Number	Number		Date	Date
-38	30918	209632	1	28-May-73	28-May-200
-39	30919	209633	1	28-May-73	28-May-200
-40	30920	209634	1	28-May-73	28-May-200
-41	30921	209635	1	28-May-73	28-May-200
-42	30922	209636	1	28-May-73	28-May-200
-43	30923	209637	1	28-May-73	28-May-200
-44	30924	209638	1	28-May-73	28-May-200
-45	30925	209639	1	28-May-73	28-May-200
-46	30926	209640	1	28-May-73	28-May-200
-47	30927	209641	1	28-May-73	28-May-200
-49	30929	209642	1	28-May-73	28-May-200
-50	30930	209643	1	28-May-73	28-May-200
-51	30931	209644	1	28-May-73	28-May-200
-52	30932	209645	1	28-May-73	28-May-200
-53	30933	209646	1	28-May-73	28-May-200
-54	30934	209647	1	28-May-73	28-May-20
-57	30937	209648	1	28-May-73	28-May-20
-58	30938	209649	1	28-May-73	28-May-20
-61	30941	209650	1	28-May-73	28-May-20
-62	30942	209651	1	28-May-73	28-May-20
-63	30943	209652	1	28-May-73	28-May-20
-64	30944	209653	1	28-May-73	28-May-200
-65	30945	209654	1	28-May-73	28-May-200
-66	30946	209655	1	28-May-73	28-May-200
-67	30947	209656	1	28-May-73	28-May-200
-68	30948	209657	1	28-May-73	28-May-200
0 1	3517	209278	16	09-Jan-91	09-Jan-200
02	3518	209279	20	08-Jan-91	08-Jan-200
03	3519	209280	8	18-Jan-91	18-Jan-200
04	3520	209281	20	16-Jan-91	16-Jan-200
05	3521	209282	20	17-Jan-91	17-Jan-200
06	3522	209283	12	18-Jan-91	18-Jan-200

Total # Mineral Claims196Total # Units548

APPENDIX II

1994 GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS FOR PROPOSED TAILINGS STORAGE FACILITY,

FISH LAKE PROJECT

BY KNIGHT PIESOLD LTD.

TASEKO MINES LIMITED FISH LAKE PROJECT

1994 GEOTECHNICAL & HYDROGEOLOGICAL INVESTIGATIONS FOR PROPOSED TAILINGS STORAGE FACILITY (REF. NO. 1738/1)

JANUARY 5, 1995

Suite 1400 750 West Pender Street Vancouver, British Columbia Canada V6C 2T8 Telephone (604) 685-0543 Telefax (604) 685-0147 CIS: 72360,477

Knight Piésold Ltd.

CONSULTING ENGINEERS

Knight Piésold Ltd.

CONSULTING ENGINEERS

TASEKO MINES LIMITED FISH LAKE PROJECT

1994 GEOTECHNICAL & HYDROGEOLOGICAL INVESTIGATIONS FOR PROPOSED TAILINGS STORAGE FACILITY (REF NO. 1738/1)

"THIS REPORT HAS BEEN PREPARED EXCLUSIVELY FOR TASEKO MINES LIMITED. NO THIRD PARTY SHALL BE ENTITLED TO RELY ON ANY OF THE INFORMATION, CONCLUSIONS, OPINIONS OR ANY OTHER MATTER CONTAINED IN THIS REPORT".

Association des Ingénieurs-Conseils du Canada Knight Piésold Ltd. CONSULTING ENGINEERS

PAGE

TASEKO MINES LIMITED FISH LAKE PROJECT

1994 GEOTECHNICAL & HYDROGEOLOGICAL INVESTIGATIONS FOR PROPOSED TAILINGS STORAGE FACILITY (REF. NO. 1738/1)

TABLE OF CONTENTS

EXECUTIVE SU	IMMAR	Y	1
SECTION 1.0	INTR	ODUCTION	3
	1.1	PROJECT DESCRIPTION	3
	1.2	SCOPE OF WORK	5
SECTION 2.0	FIEL	D WORK	7
SECTION 3.0	GEO	FECHNICAL RESULTS	9
	3.1	GENERAL	9
	3.2	WEST EMBANKMENT	9
	3.3	WEST SADDLE DAM AND RIDGE	11
	3.4	SOUTH DAM	12
	3.5	SURFICIAL MAPPING AND GEOLOGICAL	12
		INTERPRETATION	
	3.6	LABORATORY TESTING	15
		3.6.1 Overburden Materials	15
		3.6.2 Point Load Testing of Bedrock	16
SECTION 4.0	HYD	ROGEOLOGICAL RESULTS	18
	4.1	GENERAL	18
	4.2	IN-SITU PERMEABILITY TESTING	18

Knight Piésold Ltd. CONSULTING ENGINEERS

		4.2.1	West Embankment	19
		4.2.2	West Saddle Dam and Ridge	20
		4.2.3	South Dam	21
SECTION 5.0	GRO	UNDWAT	ER MONITORING WELL	23
	INST	ALLATIC	DNS	
SECTION 6.0	AVA	ILABILIT	Y OF CONSTRUCTION MATERIALS	25
SECTION 7.0	SEEP	AGE ANA	ALYSIS OF THE WEST EMBANKMENT	26
	7.1	GENER	AL	26
	7.2	SEEPAG	GE ANALYSIS MODEL	27
	7.3	SUMMA	ARY OF PARAMETERS	28
	7.4	BOUND	OARY CONDITIONS AND FLUX	30
		SECTIC	INS	
	7.5	RESUL	TS	31
SECTION 8.0	STAE	BILITY AN	NALYSIS	33
	8.1	GENER	AL	33
	8.2	EMBAN	IKMENT MODEL AND MATERIAL	33
		PARAM	ETERS	
	8.3	RESULT	rs	33
SECTION 9.0	CON	CLUSION	S AND RECOMMENDATIONS	35

TABLES

Table 4.1	Summary of In-situ Permeability Testing
Table 7.1	West Embankment Seepage Analysis - Summary of Results

Knight Piésold Ltd. CONSULTING ENGINEERS

FIGURES

Figure 1.1	Project Location Map
Figure 4.1	In-situ Packer Permeability Test Schematic
Figure 7.1	Embankment Seepage Analysis - West Embankment Schematic
	Section
Figure 8.1	Embankment Stability Analysis - West Embankment Schematic
	Section

DRAWINGS

1737.100 Rev.1	Overall Site Plan
1738.010 Rev.0	Overall Site Investigation Plan
1738.020 Rev.0	Geological Sections

APPENDICES

Appendix A	Test Hole Logs
Appendix B	Exploratory Drilling - Bedrock Logs
Appendix C	Point Load Test Results
Appendix D	Results of In-Situ Permeability Testing
Appendix E	Groundwater Monitoring Well Completion Details

Knight Piésold Ltd.

TASEKO MINES LIMITED FISH LAKE PROJECT

<u>1994 GEOTECHNICAL & HYDROGEOLOGICAL INVESTIGATIONS</u> <u>FOR PROPOSED TAILINGS STORAGE FACILITY</u> <u>(REF. NO. 1738/1)</u>

EXECUTIVE SUMMARY

The 1994 geotechnical field investigation program, carried out at the proposed tailings storage facility, comprised of a drilling program to investigate the geological and hydrogeological conditions along the west and south sides of the facility. The field investigation provided a considerable amount of data as follows:

- A thin covering of glacial till overlies bedrock along the proposed embankment alignments, and the till cover becomes thicker in topographic low areas and near Wasp Lake.
- Bedrock comprising basalt flows and Miocene Sediments were encountered near surface and had permeabilities ranging from 10⁻³ to less than 10⁻⁷ cm/sec. The higher permeabilities were associated with the more fractured rock which was typically encountered near the till/bedrock contact. Average bedrock permeabilities ranged from 10⁻⁴ to 10⁻⁵ cm/sec.
- Surficial mapping identified basalt flows, Miocene Sediments and Kingsvale Sediments as were encountered in the tailings facility drillholes on the eastern slope above Big Onion Lake. These geological formations are continuous through the West Ridge which separates Big Onion Lake from the tailings storage facility.

the model as well as variable thicknesses of low permeability surficial glacial till. A seepage collection ditch and monitoring pond located down slope of the West Ridge and above Big Onion Lake are recommended to collect potential foundation seepage during operations. Water quality monitoring of collected seepage will also be required during operations and collected water may be treated and discharged or pumped back into the tailings impoundment.

- Stability analyses, performed on the proposed final West Embankment, concluded that the embankment is stable under all possible loading conditions with high Factors of Safety.
- Surficial mapping in the South Dam area revealed significant quantities of glacial till which will be suitable for borrow material during construction of the South Dam.

ociation

Canada

Knight Piésold Ltd.

CONSULTING ENGINEERS

SECTION 1.0 - INTRODUCTION

1.1 PROJECT DESCRIPTION

The Fish Lake project site is located approximately 125 kilometres southwest of Williams Lake, British Columbia as shown on Figure 1.1.

The Fish Lake project involves open pit mining of an estimated 675 million tonnes of copper and gold ore which will be processed by selective flotation at a production rate of approximately 60,000 tonnes per day to produce a copper-gold concentrate. Tailings solids produced from the process will be stored within an engineered tailings storage facility located south of the proposed open pit. This facility is designed to provide permanent storage for up to 800 million tonnes of tailings.

The tailings storage facility will initially comprise a zoned Main Embankment constructed of overburden and waste rock from development of the open pit and will be built across the Fish Lake valley. The Main Embankment will be raised in stages using centreline construction methods when additional tailings storage is required. The West Embankment and West Saddle Dam will be constructed in future years using similar construction methods and materials as the Main Embankment. These two dams will be located on the west side of the storage facility along the topographic ridge which separates the Fish Creek drainage from Big Onion Lake and the Taseko River. The South Dam will be constructed in the final years of operation to provide additional tailings storage capacity and will retain the supernatant pond while preserving Wasp Lake and the adjacent valley. This dam will be constructed as a water-retaining structure from locally borrowed materials.

Seepage flows from the tailings storage facility will be intercepted and returned into the tailings area via seepage collection and recycle ponds located downstream of the West Embankment, West Saddle Dam and South Dam. Underdrainage from the Main Embankment will be collected in the Open Pit/Waste Storage Recycle Sump and transferred to the mill for use as process water.

The overall site plan of the Fish Lake project is shown on Drawing No. 1737.100.

The pre-feasibility design of the tailings storage facility is presented in Knight Piésold Ltd. "Report on Site Geotechnical Considerations and Design of Tailings Storage Facility (Ref. No. 1737/1)", dated May, 1994.

Previous investigation work carried out by Knight Piésold Ltd. on the Fish Lake project includes the following:

- (i) Initial overview in February 1991.
- Site visit and reconnaissance followed by issuing of "Report on Preliminary (ii) Geotechnical Evaluation (Ref. No. 1731/1)", dated August, 1991.
- (iii) Preliminary hydrogeological investigations at the proposed open pit with results presented in "Report on Preliminary Hydrogeological Investigations (Ref. No. 1732/2)", dated May, 1992.
- (iv) Preliminary investigations in the proposed tailings impoundment site, summarized in "Report on Preliminary Geotechnical Investigations (Ref. No. 1733/1)", dated January, 1993.
- (v) Evaluation of rock mass characteristics and their influence on the bulk density in the Open Pit presented in "Report on Influence of Geotechnical Factors on Bulk Density (Ref. No. 1734/1)", dated March, 1993.
- (vi) Analyses of available materials for construction of the tailings facility as presented in "Report on Materials for Embankment Construction and Concrete Aggregate (Ref. No. 1737/2)", dated February, 1994.
- (vii) Design of the tailings storage facility presented in "Report on Site Geotechnical Considerations and Design of the Tailings Storage Facility (Ref. No. 1737/1)", dated May, 1994.

ineers

(viii) Investigations within the Fish Lake deposit area for rock mass characterization and hydrogeological testing, presented in "Report on Open Pit Design (Ref. No. 1736/1)", dated March, 1994 and "Report on Open Pit Hydrogeological Investigations (Ref. No. 1736/2)", dated March, 1994.

1.2 **SCOPE OF WORK**

The tailings storage facility site investigation program was carried out by Knight Piésold Ltd. and Quest Canada Inc. during July and August, 1994. The program objectives were to obtain geotechnical and hydrogeological information on the foundation conditions at the West Embankment, West Saddle Dam and South Dam sites.

The scope of work for the investigation program included the following:

- HQ-size coring of overburden and bedrock.
- Geotechnical logging of overburden and bedrock.
- In-situ wireline packer permeability testing, including rising and falling head testing, in overburden and bedrock.
- Installation of 51 mm (2 inch) diameter PVC groundwater monitoring wells in the completed drillholes.
- Development of groundwater monitoring wells for water quality sampling.
- Measurement of static groundwater levels in the completed wells.
- Surficial mapping along the West Ridge between the West Embankment alignment and Big Onion Lake.
- Evaluation of the type and availability of borrow materials for construction of the South Dam.

This report forms part of the overall 1994 Knight Piésold field program which included open pit hydrogeology and dewatering investigations, open pit oriented core drilling and plant and primary crusher site foundation investigations. The results of these programs are presented in "Report on 1994 Open Pit Investigations

naineers

Canada

Association f Consulting des Ingénieurs Conseils du Canada

CONSULTING ENGINEERS

(Ref. No. 1738/2)", dated December, 1994. Specific design issues addressed in this report include:

- seepage potential along West Embankment ridge during operation; and
- embankment stability.

SECTION 2.0 - FIELD WORK

A total of six geotechnical drill holes were drilled along the West Embankment, West Saddle Dam and South Dam alignments to investigate the foundation conditions along the western and southern limits of the proposed tailings storage facility. The holes were located by Taseko Mines Ltd. based on co-ordinates supplied by Knight Piésold Ltd. The drillhole locations are shown on Drawing 1738.010. Drilling was performed with a Val d'Or diamond drill rig, and site access was accomplished with an A-star helicopter supplied by Canadian Helicopters Ltd. Drilling commenced at the South Dam and progressively moved northwest along the West Ridge to the West Embankment.

Drillholes 94-148 and 94-150 were drilled along the downstream toe of the West Embankment. Drillhole 94-148 was located within the valley at the south end of the West Embankment and south of the watershed divide between Fish Lake and Big Onion Lake. The hole was advanced through a thick layer of glacial till overlying Miocene sediments and basalt flow lenses to a depth of 29.3 metres (96 feet) before being abandoned due to squeezing ground conditions which prevented further penetration of the drill rods. Drillhole 94-150 was located northwest of hole 94-148 at a higher elevation along the top of the ridge. This hole also encountered thin layers of glacial till, Miocene basalt and sediments and was advanced into the underlying Kingsvale Sediments. The hole was drilled to a depth of 38.4 metres (126 feet) prior to being abandoned due to fine sand caving in and binding the drill rods and core barrel in the hole.

Drillhole 94-147 was drilled in a narrow valley at the proposed West Saddle Dam site. The hole was advanced to a depth of 94.8 m (311 feet) and encountered a thin layer of glacial till overlying Miocene basalt flows and sediments.

Drillhole 94-144 was located on the ridge separating the West Saddle Dam from the South Dam site. The hole was advanced to a depth of 140.5 metres (461 feet) through a thin veneer of glacial till covering Miocene basalt flows and sediments and into the underlying Kingsvale Sediments. Geological and hydrogeological

Association des Ingénieurs-Conseils du Canada

Canada

information obtained from this hole was used to correlate the two adjacent dam site drillholes.

Drillholes 94-141 and 94-143 were located downstream of the South Dam alignment and north of Wasp Lake. These holes were drilled to investigate the hydrogeological conditions adjacent to Wasp Lake and provide foundation information for the South Dam. Holes 94-141 and 143 were advanced through a thin cover of glacial till into Miocene basalt flows to depths of 62.8 and 61.3 metres (206 and 201 feet), respectively.

In-situ permeability tests were performed in bedrock in each drillhole using packer permeability testing equipment to determine the coefficient of permeability of the foundation materials. The tests were carried out in descending stages as each hole was drilled, and each stage was defined as a test interval 10 metres (30 feet) long. The test intervals were isolated by a nitrogen inflated "through the bit" packer system and were successfully performed in holes 94-141, 143, 144, 147 and 150. Due to poorer ground conditions encountered in drillhole 94-148, the packer system could not be used and falling head tests were performed over extended test intervals.

After each drillhole was completed and all hydrogeologic testing performed, a monitoring well was installed to measure the groundwater elevation and to provide a source for groundwater sampling.

Point load tests were performed on select bedrock samples from each drillhole to determine the Uniaxial Compressive Strength (UCS) of the rock types encountered. Samples from drillhole 94-144 were not selected for testing as this drillhole was not located at a potential dam location.

The test hole and bedrock logs for each drillhole are included in Appendices A and B, respectively. Point load test results, in-situ packer permeability test results and groundwater monitoring well completion details are presented in Appendices C, D and E, respectively.

sociation

Canada

Knight Piésold

CONSULTING ENGINEERS

SECTION 3.0 - GEOTECHNICAL RESULTS

3.1 **GENERAL**

Geotechnical information was collected from the West Embankment, West Saddle Dam and South Dam sites during the field investigation program. Detailed overburden and bedrock logging was carried out at the drill rig and consisted of the following items:

- Depth and type of materials encountered.
- Core Recovery and Rock Quality Designation (RQD).
- Lithology, including rock type, foliation/bedding, hardness, structure, colour, grain size, strength and weathering.
- Rock Mass Defects, including type, shape, roughness, spacing, frequency, orientation and type of infilling materials.

The test hole logs included in Appendix A and detailed bedrock logs are included in Appendix B. Interpreted geologic sections are shown on Drawing 1738.020. The geotechnical investigation results are discussed in the sections which follow.

3.2 WEST EMBANKMENT

Drillholes 94-148 and 150 encountered glacial till of varying thickness overlying bedrock. Hole 94-148, located at the bottom of a shallow valley, encountered a thick layer of stiff, brown till and a softer grey-coloured till comprising silty clay to sandy silt and gravel with some cobbles to a depth of 9.3 metres (32 feet). A thinner veneer of coarse-grained, red/brown till was encountered in hole 94-150 to a depth of 2.7 metres (9 feet).

Below the glacial till, both drillholes encountered sequences of basalt and Miocene sediments. Hole 94-148 encountered a thin layer of siltstone overlying conglomerate and basalt. The siltstone comprised weakly indurated, brownish grey silt to fine sand, soft to very soft in places, becoming increasingly coarser and more friable with depth. The conglomerate comprised weak to strongly indurated heterolithic

ngineers anada des Ingénieursdu Canada

- 9 -

gravels and cobbles in a brown sandy clay to clayev sand matrix. Typically only loose gravel and cobbles were recovered during drilling as the drill fluids washed the fines away. The conglomerate was typically very weak and extremely fractured with low to negligible RQD. A thin layer of fine grained, dark grey basalt was encountered at depth within the conglomerate. The hole was cored to a depth of 29.3 metres (96 feet) before being abandoned due to fines washing out from the siltstone and conglomerate formations and seizing the drill rods.

Beneath the glacial till, drillhole 94-150 encountered dark grey to greenish grey coloured basalt flows which form the West Ridge. The basalt flows comprised alternating sequences of fine grained, generally massive to vesicular and vuggy rock. The massive sequences were moderately strong and more competent than the vesicular zones. The top 5.2 metres (17 feet) of the basalt, located directly below the till/bedrock contact, was highly fractured with negligible RQD and exhibited limonite stained zones throughout. Rock quality increased from fair to good with depth, with occasional fractured zones of very poor rock. Traces of dark green, weak and brittle chloritized clay or mudstone were found within some vesicles and vugs and occasionally within a matrix of vesicular basalt. This mudstone appeared waxy and may represent an ancient weathering horizon within the basalt which was heated and crystalized during emplacement of the upper basalt flow.

The green coloured Miocene conglomerate encountered in hole 94-148 was also intersected in hole 94-150 below the basalt flows to a depth of 31.6 metres (104 feet). More competent sections of conglomerate with moderate to well indurated zones of poorly sorted sands and gravels were encountered at depth. Kingsvale Sediments were encountered at 31.6 metres (104 feet) depth and comprised black argillite and Cretaceous conglomerate. These sediments were typically weak to moderately strong with good to excellent core recovery but poor ROD. The dark grey argillite was highly jointed and sheared parallel to the bedding planes. The older Cretaceous conglomerate exhibited fewer joints compared to the younger, overlying conglomerate and had moderate RQD.

naineers Čeneda

Association of Consulting des Ingénieurs-Conseils du Canada

- 10 -

7

1738/1, January 5, 1995

3.3 WEST SADDLE DAM AND RIDGE

Drillholes 94-144 and 94-147 were drilled to investigate the geotechnical characteristics of the foundation materials of the ridge and West Saddle Dam, respectively.

Glacial till, comprising brown sandy clay with some gravel and cobbles, was encountered as a thin layer (1.8 metres) on top of the ridge in drillhole 94-144 and as a thicker layer (4.9 metres) in the base of the saddle valley in drillhole 94-147. Beneath the till, sequences of Miocene basalt flows and sediments were encountered to depths of 124.0 and 94.8 metres (407 and 311 feet) in holes 94-144 and 147, respectively. Kingsvale Sediments, comprising argillite, were also encountered below the younger Miocene sediments in drillhole 94-144.

The basalt flows comprised dark green/grey coloured rock with alternating sequences of vesicular and vuggy zones and fine-grained massive zones. Basalt encountered in the upper portion of hole 94-144 ranged from poor to good quality, moderately fractured rock with moderate RQD, and increased to extremely competent, sparsely fractured rock with high RQD at depth. Basalt encountered in drillhole 94-147 was typically very competent with few fractures and high RQD throughout, and corresponded with the competent basalt zones identified in hole 94-144 at similar elevations.

Miocene sediments were encountered beneath the basalt flows in both drillholes. The sediments comprised siltstone, sandstone, claystone, conglomerate and some gravel lenses. Poor core recovery, high defect concentrations and very low RQD values were typical characteristics of these sedimentary layers. The siltstone and sandstone were friable and the fines were generally washed away during drilling. In contrast, the claystone was more competent with moderate to high core recovery and RQD and exhibited very few joints or other defects. The conglomerate comprised consolidated gravel and cobbles in a weak sandy matrix which generally washed away during drilling.

ssociation Association f Consulting des Ingénieurs ingineers Conseils f Canada du Canada

The Kingsvale Sediments comprised argillite and were encountered below the Miocene sediments at great depth in drillhole 94-144. The argillite varied from slightly to highly fractured, low to moderate RQD rock with some slickensides on joint surfaces and calcite infilling throughout.

3.4 SOUTH DAM

Drillholes 94-141 and 94-143, located on the downstream side of the proposed South Dam alignment, encountered a thin layer of glacial till overlying dark grey coloured basalt flows. The till comprised dark brown/grey, dense sandy clay with some gravel and cobbles to depths of 5.8 and 3.1 metres (19 and 10 feet), respectively. The basalt comprised alternating sequences of moderate to strongly vesicular and vuggy zones as well as more competent, fine-grained massive zones. Characteristic red-grey and brown discolourations were evident in the weathered basalt near surface and at local intervals throughout. The basalt was moderately fractured with excellent core recovery and poor to very good ROD. ROD varied depending upon the vesicular nature of the rock and the depth within the formation, and the vesicular and vuggy sections were typically very fractured with low ROD. Occasional thin seams of indurated, weak chloritized clay or mudstone were also encountered within the basalt flows, representing a possible ancient weathering horizon. Seams up to 10 cm thick were observed, and some exhibited slickensided fracture surfaces when broken. This horizon was also observed in the basalt flows encountered in the other drillholes.

Interbedded, thin layers of well indurated but friable grey-green/brown siltstone, fine sandstone and conglomerate were also encountered at depth in hole 94-141.

3.5 SURFICIAL MAPPING AND GEOLOGICAL INTERPRETATION

The foundation investigation for the West Embankment included two days of surficial geological mapping along the West Ridge which divides the proposed tailings storage facility from Big Onion Lake. The mapping results were combined with information obtained from previous work, the 1994 tailings storage facility

ciation

ssociation des Ingénieurs Conse du Canada

drilling program and airphoto interpretation to develop a geologic model of the area as discussed below and illustrated on Drawing 1738.020.

The basement rocks in the tailings storage facility area are sediments which belong to the Upper Cretaceous Kingsvale Group. The surface of these rocks forms Cretaceous paleo-topography which defines a broad basin aligned parallel to the Fish Creek valley and extends from Wasp Lake in the south to the north shore of Fish Lake. To the west, the paleo-topography rises to form a ridge beneath the existing West Ridge which divides Fish Creek and the Taseko River. To the north, just inside the boundary of the open pit, the basin ends abruptly and slopes up to surface at a steep angle of greater than 20 degrees.

A thick sequence of varved, glaciolacustrine sediments was then deposited within this basin. These sediments are 160 m (540 ft) deep near the north shore of Fish Lake, but may be much deeper to the south in the centre of the basin. Along the ridge dividing Fish Creek and the Taseko River, the glaciolacustrine deposit grades to a glaciofluvial deposit and defines the lateral extent of the glacial lake. The glaciolacustrine/glaciofluvial deposits are capped by Miocene Chilcotin Group basalt flows. In drillhole 94-147, basalt flows were also identified below the glaciolacustrine deposit which indicates the glacial sediments are conformable with the Miocene volcanic rocks. The sequence of volcanic flows is extensive, both in areal extent and in thickness. Several separate flows have been identified.

The entire area has been recently overlain by surficial glacial till and glaciofluvial deposits, with eskers in local areas.

Surficial geological mapping of the West Ridge was performed to integrate the findings from the drilling program with the surficial geology formations and confirm the geological model presented above. Glacial till deposits were encountered at the surface and comprised dense, angular gravel and cobbles in a fine grained, silty sand matrix. The till was deposited throughout the tailings storage facility area as a mantle of varying thickness (up to 20 metres) overlying bedrock. Along the east slope of Big Onion Lake, the till was also mapped from

the lakeshore up to elevation 1375 metres where bedrock outcrops were observed up to elevation 1610 metres.

Two distinct Miocene basalt flows were mapped in outcrop from elevation 1505 to 1610 metres. The lower flow, ranging from at least elevation 1505 to 1515 metres, comprised massive, weakly vesiculated, dark grey, fresh basalt with columnar joints spaced at 200 mm. The upper flow, which outcropped from 1540 to 1550 metre elevation, comprised massive, moderately well vesiculated, maroon to dark brown/grey coloured weathered basalt with columnar joints spaced at 450 mm. The contact between the flows was not seen on surface, however, based on the topography and the orientation of columnar joints, the contact is inferred to be subhorizontal.

On a bedrock knoll approximately 2.5 kilometres east of Big Onion Lake, a sequence of basalt flows overlying the basalt flows described above was encountered up to the local topographic high point of 1610 metres.

Beneath the columnar jointed basalt, additional basalt flows were encountered in outcrop. These flows were observed to overlie argillaceous siltstone (Kingsvale Sediments) between elevation 1495 and 1505 metres, although the geologic contact was concealed beneath the talus-covered slope. A 13 metre thick layer of weakly indurated Miocene conglomerate was encountered in drillhole 94-150 between these basalt and argillaceous siltstone units. Although this conglomerate layer was not seen in outcrop, well rounded gravel and cobbles were found in float on the slope below the basalt, and it is inferred that the conglomerate exists between the basalt and argillaceous siltstone outcrops on the slope but is weaker and has been eroded away.

Additional Miocene sediments were encountered near surface in drillhole 94-147 along the West Ridge and at the West Saddle Dam site. These sediments comprised similar conglomerate as encountered in hole 94-150, as well as interbedded lacustrine clay/silt/fine sand and weakly consolidated sand and gravel layers. A thin layer of Miocene basalt was encountered near the base of these sedimentary

ngineers Canada Association des Ingénieurs-Conseils du Canada

1738/1. January 5, 1995

layers, indicating the sediments are the younger Miocene sediments and not the older Cretaceous Kingsvale Sediments.

Cretaceous Kingsvale Sediments comprising argillaceous siltstone and pebble conglomerate were encountered in outcrop beneath the Miocene basalt and sediments. The fine grained, dark grey argillaceous siltstone overlies the pebble conglomerate between elevation 1470 to 1495 metres. The siltstone was well indurated and strongly jointed with weak foliation and relic bedding evident. Orientations of 295°/70° and 025°/80° (strike/dip) were measured on the foliation and bedding planes. Joints were parallel to these planes, and an average joint spacing of 10 to 15 mm resulted in a crumbly, weak, poorly exposed rock mass.

A well indurated, weakly hornfelsed and slightly deformed pebble conglomerate was encountered between elevation 1375 to 1470 metres. The conglomerate contained densely packed, well rounded pebbles in a fine siltstone matrix, and zones of elliptical pebbles were evident suggesting the rock had undergone some degree of tectonic deformation. Mapped outcrops were poorly jointed, and the rock was typically hard, massive and competent.

3.6 LABORATORY TESTING

3.6.1 Overburden Material

One representative sample of glacial till was selected for laboratory testing from drillhole 94-148 (8.5 to 8.8 metres depth). This sample was typical of the overburden materials found near surface in each of the drillholes. The results of the testwork are as follows:

- Grain size distribution:
 - 27% gravel34% sand28% silt11% clay
 - Natural moisture content = 4.5%

Association Association of Consulting des Ingénieurs Engineers Conseils of Canada du Canada - 15 -

1738/1, January 5, 1995

CONSULTING ENGINEERS

- Specific gravity = 2.75
- Void Ratio, e = 0.24
- In-situ Dry Density = 2.22 t/m^3
- Triaxial Permeability on cored sample, $k = 4 \times 10^{-7}$ cm/sec

This sample of brown, silty gravelly sand with some clay was very dense and exhibited a very low permeability. The sample is typically two to three orders of magnitude less permeable than the underlying basalt flows.

3.6.2 Point Load Testing of Bedrock

Random samples from the West Embankment, West Saddle Dam and South Dam drillholes were taken for point load testing to determine the Uniaxial Compressive Strength (UCS) of the foundation materials. In the point load test, compressive loads are applied through hardened conical points to diametrically or axially opposite sides of a core specimen until failure occurs. A good correlation exists between the Point Load Strength Index (Is), calculated as the failure load divided by the square of the core diameter, and the Uniaxial Compressive Strength (σ_c) of the material:

 $\sigma_{c} = K * Is$

where K = 22 for 45 mm (NQ3) and 25 for 63.5 mm (HQ) diameter core.

A total of 43 point load tests were performed in the field on bedrock samples taken from the upper 50 metres of each hole. The majority of samples tested were basalt (35), with samples of sandstone (1), conglomerate (6) and argillite (1) tested where possible. The results show the uniaxial compressive strength of the basalt flows ranged from very weak to very strong and depended upon the vesicular or massive nature of rock. The frequency distribution of uniaxial compressive strengths for the basalt flows is given below:

Association Association of Consulting des Ingénieurs Engineers Conseils of Canada du Canada

7

1738/1, January 5, 1995

CONSULTING ENGINEERS

UCS Designation	Drillhole No.									
	94-141	94-143	94-147	94-148	94-150					
Very Weak (1-5 MPa)	1	-	2	1	-					
Weak (5-25 MPa)	3	4	2	1	1					
Moderate (25-50 MPa)	3	3	1	-	1					
Strong (50-100 MPa)	1	1	1	-	1					
Very Strong (100-200 MPa)	3	2	3	-	-					
Total No.	11	10	9	2	3					

The sandstone sample from hole 94-141 was weak. The conglomerate samples from holes 94-148 and 150 were strong to very strong and very weak to extremely weak, respectively. The argillite sample from hole 94-150 was very weak.

The results of the point load testing are included in Appendix C.

CONSULTING ENGINEER

SECTION 4.0 - HYDROGEOLOGICAL RESULTS

4.1 GENERAL

In-situ packer testing was performed in the overburden and bedrock to determine the permeability characteristics of each material. Falling head and rising head permeability tests were carried out when packer testing could not be performed.

4.2 **IN-SITU PERMEABILITY TESTING**

In-situ permeability testing was carried out during drilling of each hole using an HQ wireline double packer system. The general procedure for each test was as follows:

- Core with HQ to depth required to define the test interval.
- Pull back the drill rods to expose the test interval.
- Insert the HQ wireline packer system down the drill rods and seat on the drill bit.
- Inflate the packers to isolate the test interval.
- Fill the test interval and drill rods with water and seal.
- Perform the permeability test by pumping water into the test interval at a designated pressure and record the volume of water that flows into the formation.

Each packer test comprised applying five pressure stages to the formation and measuring the corresponding flows into the formation at each stage. In the first half of the test, the pressure was increased through three stages, to a maximum pressure. In the second half of the test, the pressure was decreased in two stages, through the same pressures applied in the rising portion of the test.

A schematic figure showing the general arrangement of the test is shown on Figure 4.1. Included on this figure is a typical plot of the test results showing the relationship between the head applied to the formation and the measured flow for all five stages. In an idealized plot, the rising and falling limbs are linear from the

ociation

origin, and are superimposed over one and other. In vertical boreholes this test provides information on the horizontal permeability.

Packer tests were performed in 10 metre (30 foot) intervals, unless ground or drilling conditions proved unsuitable for this approach. In such instances, falling head permeability tests were utilized. For artesian conditions, rising head tests were carried out.

The test intervals and corresponding permeability results for each drillhole are shown on Drawing No. 1738.020. A summary of the results is given on Table 4.1, and details of the results, which include plots of head versus flow for each in-situ packer test interval, are included in Appendix D.

4.2.1 West Embankment

Falling head tests and in-situ packer permeability tests were performed in drillholes 94-148 and 150, respectively.

Two falling head tests were carried out in the glacial till and Miocene sediments (siltstone, conglomerate) in drillhole 94-148. Permeability results are as follows:

Rock Type	Permeability (cm/sec)	Bedrock Conditions		
Till/Siltstone	8 x 10 ⁻⁶	No core recovery		
Till/Siltstone	1 x 10 ⁻⁵	Poor recovery/RQD		

Poor core recovery and RQD was a result of the fines washing away during drilling and are not representative of the overall rock quality.

Five packer permeability tests were carried out in the Miocene basalt flows and sediments (conglomerate) and in the Kingsvale Sediments (argillite and conglomerate) in drillhole 94-150. The test results for each rock type are summarized as follows:

Canada

Association des Ingénieurs Conseils du Canada

Piésold Knight

CONSULTING ENGINEERS

Rock Type	Permeability Range (cm/sec)	Bedrock Conditions		
Basalt	1 x 10 ⁻³	Moderately broken, moderate RQD		
Miocene Sediments	2×10^{-6} to 1×10^{-5}	Low core recovery, poor RQD		
Kingsvale Sediments	2 x 10 ⁻⁵	Very broken, low to moderate		
		RQD		

A 50 percent loss of return water was observed in the basalt at 13.4 metres (44 feet) depth during drilling, and both packer tests were carried out within this zone. Although high permeabilities of 1×10^{-3} cm/sec were calculated for each test interval, these test results are indicative of the local high permeability zone and are not representative of the entire basalt rock unit.

Low RQD values for the Miocene sediments are a result of washing the fine-grained matrix during drilling and are therefore not representative of the in-situ rock quality.

4.2.2 West Saddle Dam and Ridge

Packer permeability tests were performed in the Miocene basalt and sediments (sandstone, conglomerate and lacustrine claystone) and in the Kingsvale Sediment (argillite) layers encountered in drillholes 94-144 and 147. The test results for each formation are summarized as follows:

Drillhole 94-144								
Rock Type	Permeability Range (cm/sec)	Bedrock Conditions						
Basalt	9×10^{-7} to 3×10^{-4}	Very fractured and moderate RQD						
		to few fractures and high RQD						
Miocene Sediments	8×10^{-7} to 1×10^{-6}	Poor recovery/RQD						
Kingsvale Sediments	1 x 10 ⁻⁶	Very fractured/low RQD						

Canada

7

CONSULTING ENGINEER

Drillhole 94-147									
Rock Type	Permeability Range (cm/sec)	Bedrock Conditions							
Basalt	$1 \ge 10^{-8}$ to $8 \ge 10^{-5}$	Moderate to few fractures, moderate to high RQD							
Miocene Sediments	3×10^{-4} to 2×10^{-5}	Variable core recovery and RQD							

The basalt was the most competent rock encountered in both drillholes. Higher permeabilities were typically encountered near surface and adjacent to sedimentary layer contacts, whereas lower permeabilities were predominant throughout the majority of the rock unit.

Permeability results for the Miocene sediments varied depending upon depth The more permeable sediments were and not core recovery or RQD. encountered in drillhole 94-147 between 50 and 95 metres depth, whereas the less permeable sediments were encountered in hole 94-144 at 113 to 124 The Kingsvale Sediments were as impermeable as the metres depth. overlying sediments encountered in hole 94-144.

A falling head test was performed in hole 94-144 in the completed groundwater monitoring well to determine the permeability of the siltstone/ sandstone layer at 57 metres depth. The test interval was defined by the monitoring well's filter sand zone from 48.8 to 70.3 metres depth and bounded by the upper grout plug and lower bentonite seal, respectively. A permeability of 8 x 10^{-7} cm/sec was measured from the falling head test, and this corresponded with the packer permeability test result over the same test The permeability calculation using the Hvorslev method is interval. included in Appendix D.

4.2.3 South Dam

noistion

Artesian conditions were encountered at the South Dam site in drillhole 94-141 at depth below 7.9 metres (26 feet). One packer test was carried out between 7.9 and 17.1 metres (26 to 56 feet) and rising head tests were then

Association des Ingénieurs du Canada

CONSULTING ENGINEERS

performed through the remainder of the hole. The permeability test results are summarized as follows:

Material Type	Permeability	Artesian	Bedrock Conditions		
	Range	Flow Rate			
	(cm/s)	(<i>l</i> /min)			
Upper Basalt	3×10^{-5}	0.25	Very fractured, low RQD		
Miocene Sediments	2 x 10 ⁻⁴	2.0	Poor core recovery		
Lower Basalt	2×10^{-5} to 1×10^{-4}	0.2 to 1.1	Moderately fractured,		
			moderate to high RQD		

Prior to each permeability test, the artesian flow rate was measured out the top of the casing as specified in the above table. An artesian pressure head of 3.6 to 7.0 metres (5 to 10 psi) was also measured with the packer system in the first test interval.

Artesian conditions were not encountered in drillhole 94-143. A total of six in-situ packer permeability tests were carried out within the basalt, and the test results are summarized as follows:

Rock Type	Permeability Range	Bedrock Conditions		
	(cm/sec)			
Upper Basalt	1 x 10 ⁻⁴	Very fractured, low RQD		
Lower Basalt	2×10^{-6} to 1×10^{-5}	Moderately fractured, moderate to		
		high RQD		

The upper 25 metres of the hole was found to be more permeable than the lower portion of the hole, and this corresponded with the more fractured and weathered rock encountered near the surface. Moderate to high RQD corresponded with lower permeability results in the remainder of the drillhole below 25 metres depth.

anada

SECTION 5.0 - GROUNDWATER MONITORING WELL INSTALLATIONS

Groundwater monitoring wells were installed in each geotechnical drillhole at the West Embankment, West Saddle Dam, West Ridge and South Dam sites for the ongoing baseline groundwater quality sampling program.

Each well consisted of a threaded, 3.05 metre (10 foot) long, slotted Schedule 40 PVC screen placed at the bottom of the drillhole and solid riser pipe attachments extending to the surface. A mechanical Van Ruth plug was used in holes where the screen was placed well above the bottom of the hole. Each screen was surrounded by a permeable filter sand zone which was confined by an upper and lower bentonite seal. The completion zone is defined as the length of hole between these two seals. The remainder of the hole, above the upper bentonite seal, was grouted to surface to prevent inflow of surface water. A lockable steel casing protects the top of each well at the surface. Groundwater monitoring well completion details are included in Appendix E, and the completion zone depths are summarized as follows:

Hole No.	Completion Zone Depths (from ground level)
94-141	26.6 to 33.2 metres (87 to 109 feet)
94-143	27.0 to 34.2 metres (88 to 112 feet)
94-144	48.8 to 70.3 metres (160 to 231 feet)
94-147	47.7 to 58.2 metres (156 to 191 feet)
94-148	1.0 to 26.4 metres (3 to 87 feet)
94-150	17.1 to 31.3 metres (56 to 103 feet)

Each well was installed while the drill rig remained over the hole. In general, the drill rods were pulled out of the hole prior to the installation of the PVC pipes, except in cases when the hole was likely to collapse. In these cases, the lower

Canada

bentonite seal, filter sand and PVC pipes were placed through the drill bit before the rods were withdrawn.

Difficulties were encountered during installation of some of the monitoring wells. The upper bentonite seal could not be installed above the filter sand zone in hole 94-144 due to the hole becoming partially blocked with sloughing material when the drill rods were withdrawn. A layer of finer-grained sand was placed on top of the filter sand zone prior to grouting the hole to ensure the filter zone would not be contaminated by the upper grout seal.

In drillhole 94-148, overburden immediately collapsed around the monitoring well pipe after the drill rods were withdrawn. The remaining voids around the well were filled with filter sand and an upper bentonite seal was installed near surface. A thin grout cap was placed above the bentonite.

Developing the groundwater monitoring wells and measuring the static water levels will be performed by Taseko Mines Limited at a future date.

ineers

CONSULTING ENGINEERS

SECTION 6.0 - AVAILABILITY OF CONSTRUCTION MATERIALS

Overburden materials obtained from pre-production and on-going development of the open pit will be used as construction materials for the Main Embankment, West Embankment and West Saddle Dam. These materials were investigated and tested during the 1993 open pit investigation program, and the results and construction material requirements are presented in the Knight Piésold Ltd. "Report on Materials for Embankment Construction and Concrete Aggregate (Ref. No. 1737/2)", dated February 10, 1994.

During the 1994 tailings storage facility investigation program, the availability of construction materials for the South Dam was investigated. Initial observations in the South Dam area of moderate to dense tree cover on gentle, rolling topography and frequent swampy areas around Wasp Lake indicated the presence of low permeability surficial materials. Results from the drilling program and site reconnaissance of the area close to the South Dam show the surficial geology of the area is characterized by a dense layer of glacial till overlying basalt flows. Drillholes 94-141 and 94-143, located at the South Dam site, encountered dense, dark brown sandy silty clay till with gravel and cobbles as well as grey, clayey gravel and cobble till to depths of 5.8 and 3.1 metres (19 and 10 feet), respectively.

The glacial till is pervasive throughout the area and, based upon initial calculations, is available in quantities required for construction of the South Dam. Borrow areas located within the limits of the tailings storage facility will be preferentially selected over other areas in order to reduce surface disturbance around Wasp Lake and in the adjacent valley.

ssociation Consulting

naineers

CONSULTING ENGINEERS

SECTION 7.0 - SEEPAGE ANALYSIS

7.1 **GENERAL**

Seepage through the West Ridge is an important hydrogeological factor in the design of the tailings storage facility. The seepage flow rate and direction of seepage migration from the tailings facility into Big Onion Lake and the adjacent Taseko River Valley are of significant importance to the project.

During the initial years of operation of the tailings storage facility, natural hydraulic confinement due to existing groundwater levels along the topographic ridge of the Fish Creek Valley will restrict tailings solution from seeping through the West Ridge. The Fish Creek Valley is continually being recharged by groundwater which originates from higher elevations and flows down gradient to the bottom of the valley. Water levels measured in existing groundwater monitoring wells along the West Ridge and at the Main Embankment confirm the water table typically follows topography. Initially, the hydrostatic head of the tailings solution will not be great enough to overcome the influence of the regional groundwater recharging effects, and all seepage flow will therefore occur at the base of the valley through the foundation of the Main Embankment. A small amount of seepage is anticipated beneath the Main Embankment as a thick layer of low permeability glacial till The abundance of lakes and ponds confirms the low blankets the valley. permeability properties of the till. Any seepage that permeates through the till layer and into the underlying Miocene basalt flows and sediments will be transported down gradient and will be intercepted by the Open Pit groundwater depressurization wells. These wells will pump the seepage into the Open Pit/Waste Storage Recycle Sump where the water will be transferred to the mill for use in the milling process.

Construction of the West Embankment along the West Ridge will commence in Year 2. By the beginning of Year 4, the tailings solution will encroach upon the lowest point in the West Ridge and begin to overcome the natural hydraulic confinement and cause seepage to occur. Initially, seepage flows will be minimal as a thick layer of low permeability till blankets the bottom of the saddle. In addition, the length of the West Embankment and the corresponding lateral extent of the

Association des Ingénieurs of Consulting Conseils du Canada

Čanada

- 26 -

7

1738/1, January 5, 1995

seepage path are very narrow at this time. By Year 10, seepage is expected to increase through the foundation of the West Embankment as tailings will cover the majority of the 2400 metre long portion of the West Ridge.

Foundation seepage in later years will be controlled by the horizontally deposited Miocene basalt flows and sedimentary layers that extend through the West Ridge and outcrop above Big Onion Lake. A thin blanket of glacial till covers these formations and acts as a barrier against seepage flow. The till deposit is typically thin, and airphoto analyses have revealed the till to be potentially discontinuous on steep slopes and in local areas along the West Ridge. The basalt and sedimentary layers are typically more permeable than the glacial till, and seepage is expected to be transmitted horizontally through these rock formations. Although basalt flows encountered throughout most of the tailings facility were relatively impermeable, localized fractured zones with high permeabilities were found in the West Ridge which may significantly contribute to seepage flow. The majority of flow is expected to be transmitted through conglomerate and sandstone formations.

Detailed information from the geotechnical investigations has been used to construct a groundwater seepage model of the tailings facility to estimate seepage flow through the West Embankment and foundation. Details of the analysis method, assumptions and results are discussed in the following text.

7.2 SEEPAGE ANALYSIS MODEL

A seepage model was performed using the finite element computer program SEEP/W. Two different foundation conditions were considered:

- CASE I) Thin till cover overlying a thick layer of basalt.
- CASE II) Thick till cover overlying Miocene Sediments.

Four models for Case I and two models for Case II were examined. Figure 7.1 and Table 7.1 summarize the material parameters and results for each model. These results were then applied proportionately to the localized geological conditions along

the length of the embankment to determine the total amount of seepage exiting the facility.

Several different foundation conditions were included to represent the complex geology of the West Ridge. The modelled geological conditions are summarized as follows:

- Thin glacial till and low permeability basalt on the south end of the ridge.
- Thick glacial till and low permeability sediments in the base of the saddle.
- No glacial till and low permeability basalt and sediments in local areas (approximately 10%) along the north end of the ridge.
- Thin glacial till and low permeability basalt and sediments along the north end of the ridge.
- Thin glacial till, high permeability basalt and low permeability sediments along the north end of the ridge.

These analyses were extrapolated over the length of the West Ridge in order to calculate the total seepage flow through the West Embankment foundation.

The seepage model includes the zoned embankment and adjacent tailings, as shown on Figure 7.1. A tailings beach of about 60 m width has been included adjacent to the embankment. The longitudinal drain along the upstream toe and the seepage collection ditch at the downstream toe were also incorporated into the model.

The seepage analysis was carried out based on the following assumptions:

- Steady-state flow conditions.
- Homogeneous, isotropic flow conditions.

7.3 <u>SUMMARY OF PARAMETERS</u>

Saturated and unsaturated hydraulic conductivities were determined for each material in the embankment and foundation zones. Typically, a saturated material has a hydraulic conductivity several orders of magnitude greater than a similar

Knight Piésold Ltd

unsaturated material. In assigning hydraulic conductivity values for the seepage analysis, it was assumed that partially saturated clays and fines will have a hydraulic conductivity that is two orders of magnitude lower and partially saturated sands and gravels will be three orders of magnitude lower than similar saturated materials. Hydraulic conductivities of materials that were a combination of all soil types were adjusted accordingly. Conductivity values referenced in this section pertain to saturated flow conditions.

Hydraulic conductivity values for the tailings mass, embankment and foundation were determined as follows:

- The tailings mass was sub-divided into three zones of equal thickness and decreasing hydraulic conductivity to more accurately model the consolidated, less permeable tailings with depth. In one analysis, the entire tailings mass was assigned a uniform permeability of 3×10^{-5} cm/s to model the tailings during the early years of operation when very little consolidation has occurred.
- Hydraulic conductivity values for the various zones of the embankment were estimated based upon typical values for similar construction materials.
- Hydraulic conductivities for the Miocene Sediments and basalt flows in the embankment foundation were obtained from the in-situ packer permeability test results in drillholes 94-148 and 94-150. The hydraulic conductivity of glacial till was determined from laboratory permeability testing.

In Case I, a highly permeable layer of basalt was assumed to exist near surface and underlie the entire embankment section. In Case II, the embankment was founded on several layers of less permeable Miocene Sediments and a basalt seam. Figure 7.1 illustrates the differences in the foundation profiles of these two cases and presents a summary of all material parameters used for the analysis.

sociation

7.4 BOUNDARY CONDITIONS AND FLUX SECTIONS

Boundary conditions were imposed on the modelled sections to more accurately represent hydrogeologic conditions in the field. These conditions are summarized as follows:

- A no-flow boundary condition was assigned to the nodes along the left side of the model.
- A total head boundary was imposed at the tailings surface to model a supernatant pond.
- The upstream embankment toe drain was modelled by applying a no-head condition at that location.
- The seepage recovery wells, located downstream of the embankment, were modelled by assigning head values to a vertical line of nodes. The tip of the well was assumed to be at the base of the basalt layer and the water level in the well was set at the top of this layer.
- A hydrostatic pore pressure profile with the water table 5 metres below the ground surface was assigned to the right boundary of the model.

Flux sections were included in the model to estimate seepage flow across the various geological units, as well as the engineered components. Four locations, in particular, were examined closely:

- Seepage inflow to the upstream toe drain was computed.
- Seepage flow into the embankment drainage system downstream of the core zone was computed from the difference of flow rates across two flux sections. One section was made just upstream of the toe and the other was made just downstream of the toe. The difference represents the amount of seepage collected.

anada

- A flux section around the seepage recovery wells was used to estimate the amount of possible seepage recovery from pumping the underlying basalt and/or Miocene Sediment layers.
- The amount of seepage flow which bypasses the seepage collection systems was determined further downstream of the recovery wells.

7.5 <u>RESULTS</u>

Seepage predominantly occurred through the highly permeable basalt layer in the foundation. Minor unsaturated flow occurred through the highly permeable waste rock zone of the embankment and exited on the downstream face. A summary of results from the seepage analyses is presented in Table 7.1.

Two cases were analyzed with low and high basalt permeabilities to determine the range of foundation seepage rates. Each case assumed a filled tailings facility with a maximum hydrostatic head. For the low permeability case, the basalt was assigned a permeability of 10^{-5} cm/sec, and a total solution flow rate of 13.3 ℓ/s (211 USgpm) was calculated from the tailings mass. Approximately 2/3 of the flow was collected in the upstream toe and embankment foundation drains, while the remainder of the solution flowed through the foundation. For the high permeability case, the basalt was assigned a permeability of 10^{-3} cm/sec, and a much larger total flow rate of 31.6 ℓ/s (500 USgpm) was calculated. In this case, less than ten percent of the flow was collected in the embankment drains, and the remainder was transferred into the foundation as seepage.

In the low permeability case, the solution flow contribution made by each of the four components is as follows:

- The upstream toe drain collected 49% (6.5 l/sec or 103 USgpm).
- The embankment foundation drainage system collected 17% (2.3 l/sec or 36 USgpm).

CONSULTING ENGINEERS

- The recovery wells collected 12% (1.6 ℓ /sec or 25 USgpm).
- Seepage loss through the foundation was 22% (2.9 ℓ /sec or 46 USgpm).

In the high permeability case, the solution flow contributions are as follows:

- The upstream toe drain collected 5% (1.6 ℓ /sec or 25 USgpm).
- The embankment foundation drainage system collected 2% (0.5 ℓ /sec or 8 USgpm).
- The recovery wells collected 45% (14.3 ℓ /sec or 227 USgpm).
- Seepage loss through the foundation was 48% (15.2 ℓ /sec or 241 USgpm).

Considering the results of these two cases, it is evident that the permeability of the basalt flows has a significant effect on the projected seepage flow rate through the foundation. Seepage from the tailings facility will begin in Year 4 and will increase to a maximum rate between 4.5 and 29.5 ℓ /sec (71 and 468 USgpm) when the tailings surface reaches its maximum elevation of 1565 metres. Of the two cases, the low permeability case likely underestimates seepage losses as it assumes there are no fractured, more permeable zones within the basalt. Alternatively, the high permeability case likely overestimates seepage losses as it assumes the basalt flows over the entire northern portion of the West Ridge are as fractured and permeable as the localized zone encountered in drillhole 94-150.

aineers

1738/1, January 5, 1995

CONSULTING ENGINEERS

SECTION 8.0 - STABILITY ANALYSIS

8.1 <u>GENERAL</u>

Embankment stability analyses were performed through a section of the West Embankment to determine the Factors of Safety under static loading conditions. Both upstream and downstream failures were analyzed using the computer program SLOPE/W. A post-liquefaction case was also analyzed by assuming that the liquefied tailings mass provided no shear resistance to failure.

8.2 EMBANKMENT MODEL AND MATERIAL PARAMETERS

The embankment cross-section was taken through the valley of the West Embankment and was superimposed onto the geology profile as described in drillhole log 94-148. This section represented the most critical scenario along the length of the embankment alignment for two reasons:

- 1) the section was taken through the deepest part of the valley which corresponds with the largest embankment section and highest pressure heads; and
- 2) the geology at this section includes the thickest layer of glacial till which is the weakest unit in the geology profile.

Strength parameters used for all foundation and embankment construction materials were estimated from values typically representative of such materials. A summary of the material parameters is shown on Figure 8.1.

8.3 <u>RESULTS</u>

The stability of the Main Embankment is not a concern due to the massive buttressing effect of the adjacent waste dump. The South Embankment stability is also assured by the much lower embankment height and downstream construction

Association g des Ingénieurs-Conseils du Canada

CONSULTING ENGINEERS

method. However, additional analyses will be required during detailed design to confirm the stability of the South Dam.

The results of the downstream stability analysis for the West Embankment yielded a Factor of Safety of 2.0 for a circular slip failure surface that would result in a loss of freeboard and, consequently, a loss of tailings. A similar result was found for the post-liquefaction case where the tailings mass was assumed to have no strength. The embankment section does not rely on the tailings strength for stability, hence there was no reduction in the Factor of Safety for the liquefied tailings scenario. A typical failure surface is shown on a schematic section in Figure 8.1.

An analysis of failure on the upstream face of the West Embankment yielded Factors of Safety of greater than 2.0.

The stability analyses indicate that the competent foundation conditions and zoned rockfill embankment will provide secure confinement of tailings materials with adequate factors of safety against failure for all probable loading conditions.

ngineers Čanada

CONSULTING ENGINEERS

SECTION 9.0 - CONCLUSIONS AND RECOMMENDATIONS

The 1994 site investigation program has provided additional detailed information on the geology and hydrogeology along the West Ridge and at the proposed South Dam location. This information has been integrated into a finite element seepage model which has been used to evaluate the performance of proposed seepage control measures and to predict potential seepage losses to groundwater. Additional stability analyses have also been conducted to confirm the stability of the proposed West Embankment.

The seepage analyses indicate that seepage losses to groundwater along the West Ridge will initially be negligible and will gradually increase to between about 71 and 468 USgpm during the later stages of the project. The upstream embankment toe drain is effective in intercepting tailings seepage and in reducing hydraulic gradients and corresponding flow rates through foundation materials. The embankment foundation drains allow for collection of relatively minor seepage through the embankment core zone. The recovery well system may prove to be relatively inefficient unless individual wells are located in higher permeability fracture zones or alluvial materials. The complex geology of the ridge will make it difficult to locate recovery wells in optimum locations.

It is recommended that additional seepage collection provisions be instituted in about Year 4 of operations when seepage losses through the West Ridge are projected to start. In the first 3 years of operation, the natural hydraulic confinement in the ridge will preclude seepage losses through the West Ridge. The seepage collection provisions should entail a seepage collection ditch and monitoring pond at the base of the ridge, located immediately above Big Onion Lake. Collected seepage would be monitored and either discharged if of suitable quality, treated and discharged, or pumped back to the tailings facility. The approximate location of the contingency collection and monitoring system is shown on Drawing 1737.100. The seepage collection system should be included in any water balance studies conducted during future design stages.

Association des Ingénieurs Conseils du Canada

Canada

- 35 -

1738/1. January 5, 1995

CONSULTING ENGINEERS

Also, the nature and extent of naturally dense, low permeability glacial till within the impoundment and particularly along the West Ridge should be evaluated during detailed design. Any areas where the glacial till is absent and fractured or high permeability bedrock is exposed should be delineated and capped with compacted low permeability glacial till materials to minimize seepage losses from the impoundment during on-going operation of the facility. It is recommended that surface mapping, test pitting and appropriate geophysical testing be conducted to evaluate the continuity and thickness of the surficial, low permeability glacial till materials along the West Ridge.

Canada

1

. . .

Knight Piésold Ltd. CONSULTING ENGINEERS

TABLE 4.1

TASEKO MINES LIMITED FISH LAKE PROJECT TAILINGS STORAGE FACILITY

SUMMARY OF IN-SITU PERMEABILITY TESTING

HOLE No.	TEST No.	ím	TE eter	ST IN	1	AL (fee		AVERAGE PERMEABILITY, k (cm/sec)	ROCK MASS	DESCRIPTION
		(III	EICI			(100	'	((()))		
94-141		7.9	to	17.1	26.0	to	56.0	2E-05	Basalt	Alternating Low to high RQI
	2	17.8	to	26.2	58.5	to	86.0	3E-05	Basalt	Low to moderate RQD
	3	27.0	to	35.4	88.5	to	116.0	2E-04	Basalt and Sediments	High RQD in Basalt
	4	36.1	to	44.5	118.5	to	146.0	7E-05	Basalt	Moderate to high RQD
	5.	45.3	to	53.6	148.5	to	176.0	2E-05	Basalt	Low to high RQD
F	6	54.4	to	62.8	178.5	to	206.0	1E-04	Basalt	Moderate to high RQD
94-143	1	5.6	to	14.0	18.5	to	46.0	1E-04	Basalt	Very poor to fair RQD
	2	14.8	to	23.2	48.5	to	76.0	1E-04	Basalt	Poor to good RQD
-	3	23.9	to	32.3	78.5	to	106.0	7E-06	Basalt	Fair to good RQD
	4	33.1	to	41.5	108.5	to	136.0	2E-06	Basalt	Fair to good RQD
	5	42.2	to	50.6	138.5	to	166.0	1E-05	Basalt	Poor to good RQD
	6	51.4	to	61.3	168.5	to	201.0	6E-06	Basalt	Fair to good RQD
94-144	1	20.9	to	29.3	68.5	to	96.0	3E-04	Basalt	Poor to fair RQD
	2	30.0	to	38.4	98.5	to	126.0	2E-04	Basalt	Poor to good RQD
	3	39.2	to	47.5	128.5	to	156.0	3E-05	Basalt	Fair to excellent RQD
	4	48.3	to	56.7	158.5	to	186.0	9E-07	Basalt	Excellent RQD
	5	48.8	to	70.3	160.0	to	231.0	8E-07	Basalt, Siltstone, Conglomerat	t Zero recovery in Silt/Sandsto
	6	66.6	to	75.0	218.5	to	246.0	5E-07	Basalt	Excellent RQD
	7	75.7	to	84.1	248.5	to	276.0	9E-06	Basalt	Poor to excellent RQD
	8	84.9	to	93.3	278.5	to	306.0	8E-07	Basalt	Good to excellent RQD
1	9	94.0	to	102.4	308.5	to	336.0	2E-06	Basalt	Poor to good RQD
	10	103.2	to	111.6	338.5	to	366.0	2E-06	Basalt	Poor to good RQD
	11	112.3	to	125.3	368.5	to	411.0	1E-06	Basalt, Siltstone, Conglomerat	t Very Poor RQD
	12	126.0	to	132.9	413.5	to	436.0	1E-06	Argillite (Kingsvale Sediments	s) Very poor to fair RQD
94-147	1	8.7		17.1	28.5	to	56.0	6E-05	Basalt	Fair to good RQD
	2	15.7	to	23.2	51.5	to	76.0	<1E-07	Basalt	Good RQD,
	3	24.8	to	32.3	81.5	to	106.0	<1E-07	Basalt	Excellent RQD,
	4	33.1	to	41.5	108.5	to	136.0	<1E-07	Basalt	Good RQD,
	5	42.2	to	50.6	138.5	to	166.0	2E-04	Basalt and Silt/Sandstone	Moderate to high RQD in Ba Moderate recovery in Sedime
	6	49.1	to	58 2	161 0	to	191.0	4E-04	Siltstone and Gravel	interest in souther
	7	60.5					226.0	4E-05	Glaciolacustrine Silt/Claystone	
	8	66.6		78.0				5E-05	Glaciolacustrine Sediments, Sa	
	9	84.9					311.0	2E-05	Basalt and Conglomerate	Poor to good RQD
94-148	1	2.4	to	14.0	8.0	to	46.0	6E-05	Glacial Till, Siltstone and Con	glomerate
	2	3.0		23.2			76.0	1E-05	Glacial Till, Siltstone and Con	
94-150	1	5.6	to	14.0	18.5	to	46.0	1E-03	Basalt	Very poor to poor RQD
	2	11.7	to	20.1			66.0	1E-03	Basalt and Conglomerate	Very poor to fair RQD
	3	17.8	to	26.2	58.5	to	86.0	1E-05	Conglomerate	Very poor RQD
	4	17.8	to	32.3		to	106.0	2E-06	Conglomerate	Very poor RQD
	5	33.1		38.4	108.5	to	126.0	2E-05	Argillite and Conglomerate (Kingsvale Sediments)	Poor RQD
	A	sociation		Asso	iation				(izingsvaie settimetits)	
Non5	7.5 78	ALLES FYPA	CK	SUMM	WK4	<u>, </u>				03-Jan-95 04:13 P

TABLE 7.1

TASEKO MINES LIMITED FISH LAKE PROJECT TAILINGS STORAGE FACILITY

WEST EMBANKMENT SEEPAGE ANALYSIS - SUMMARY OF RESULTS

	SEEPAGE RATES (I/sec per metre of cross-section)									
FLOW MEASUREMENT		CAS	CASE II							
LOCATION	Model 1	Model 2	Model 3	Model 4	Model 1	Model 2				
Upstream Toe Drain	4E-05	6E-05	6E-06	2E-06	2E-05	2E-05				
Embankment Drain	2E-05	1E-05	1E-06	0	8E-06	9E-06				
Recovery Wells	1E-05	1E-05	2E-05	1E-04	1E-05	1E-05				
Seepage Loss	2E-05	2E-05	1E-04	1E-04	1E-05	1E-05				
Totals	9E-05	1E-04	1E-04	_3E-04	5E-05	5E-05				

J:VOB\DATA\1738\TSF\WESTSEEP.WK4

Knight Piésold Ltd.

CONSULTING ENGINEERS

04:10 PM

03-Jan-95

MODEL DESCRIPTIONS

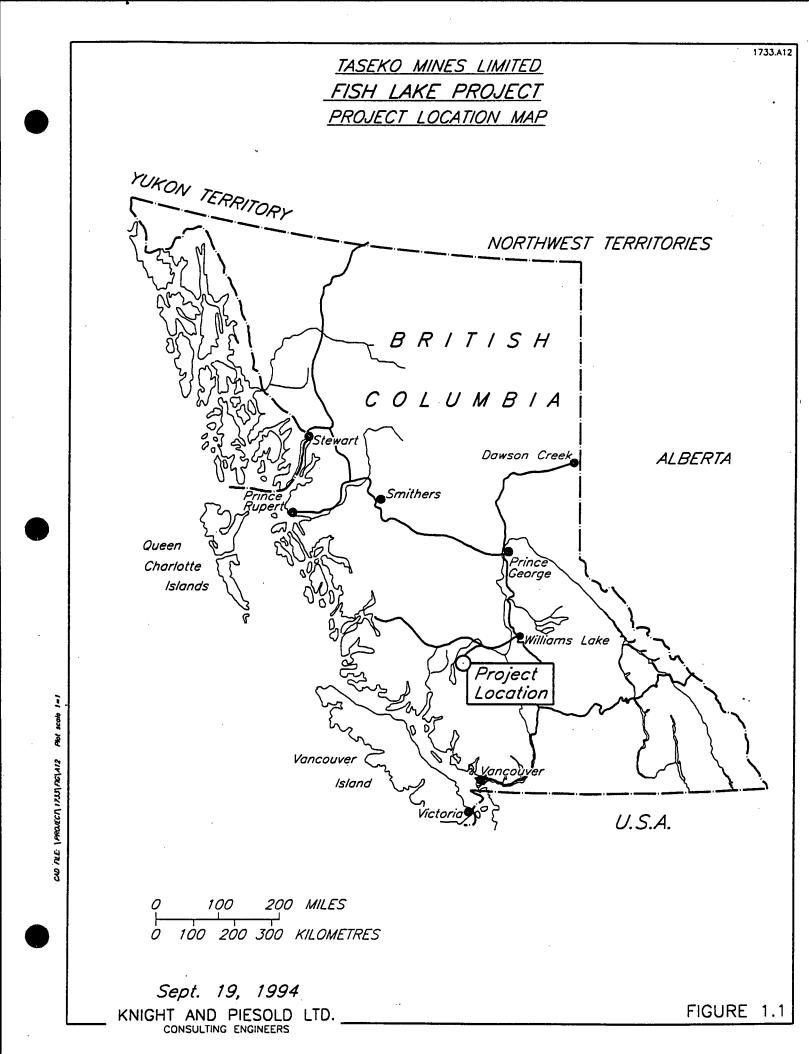
CASE I - Foundation based on geological profile described by drill hole 94-150.

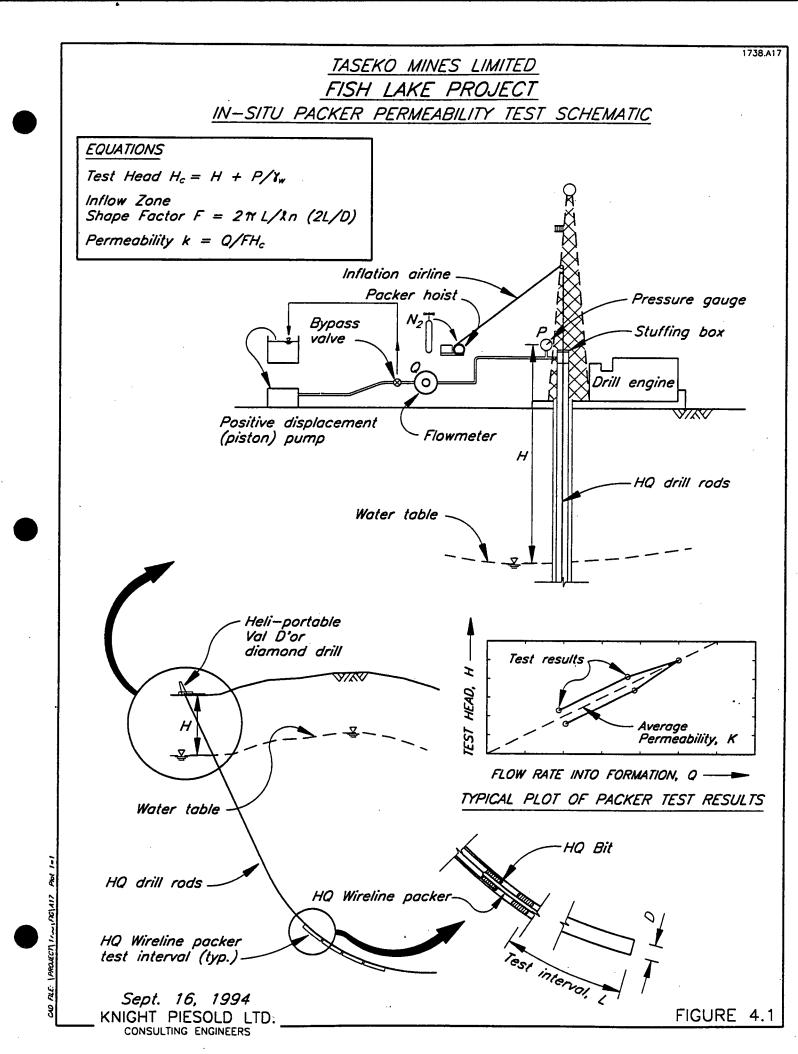
Model 1. Thin till cover exists over basalt.

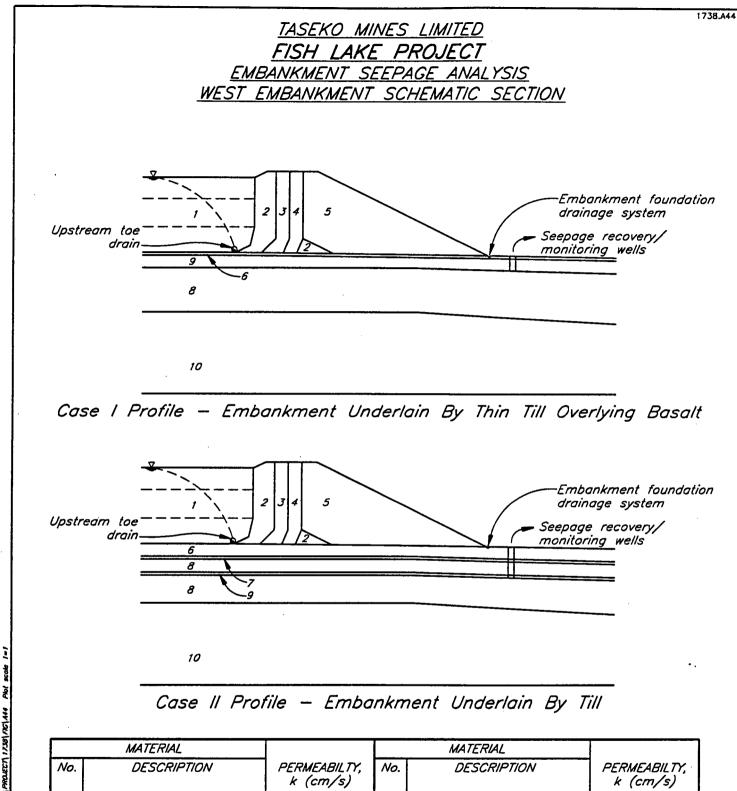
Model 2. No till cover exists over basalt.

Model 3. Permeability of basalt is increased to 1E-04 cm/s.

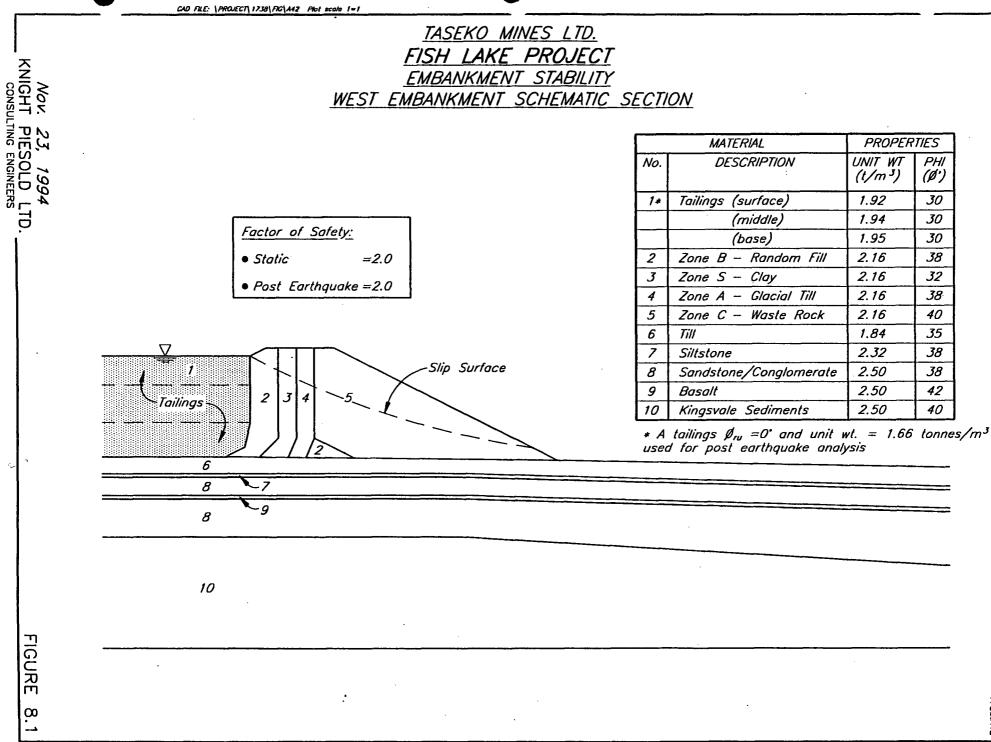
Model 4. Permeability of basalt is increased to 1E-03 cm/s.


CASE II - Foundation based on geological profile described by drill hole 94-148.


Model 1. No modifications.

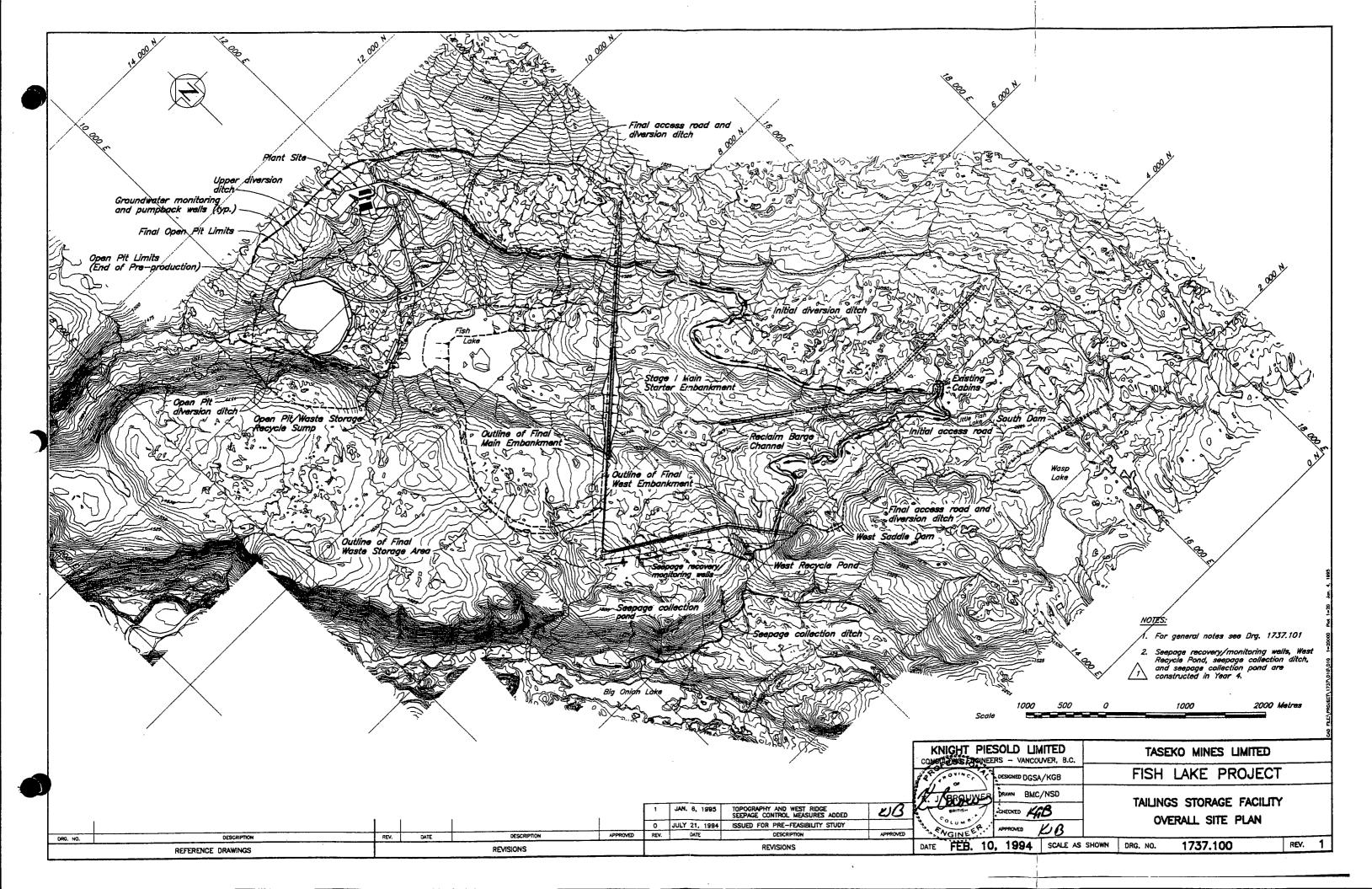

Model 2. Entire tailings mass permeability assigned a value of 3E-03 cm/s.

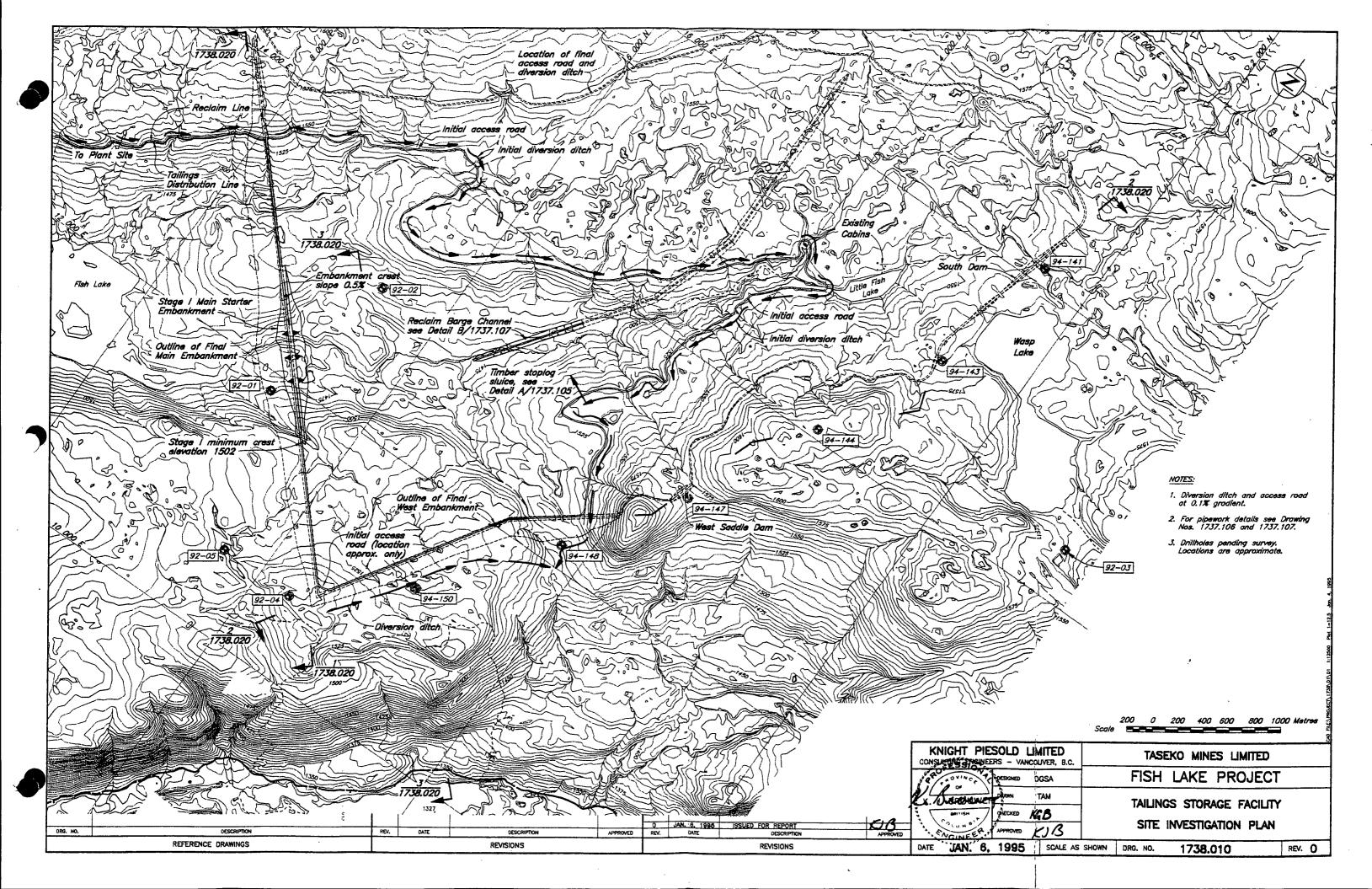
,

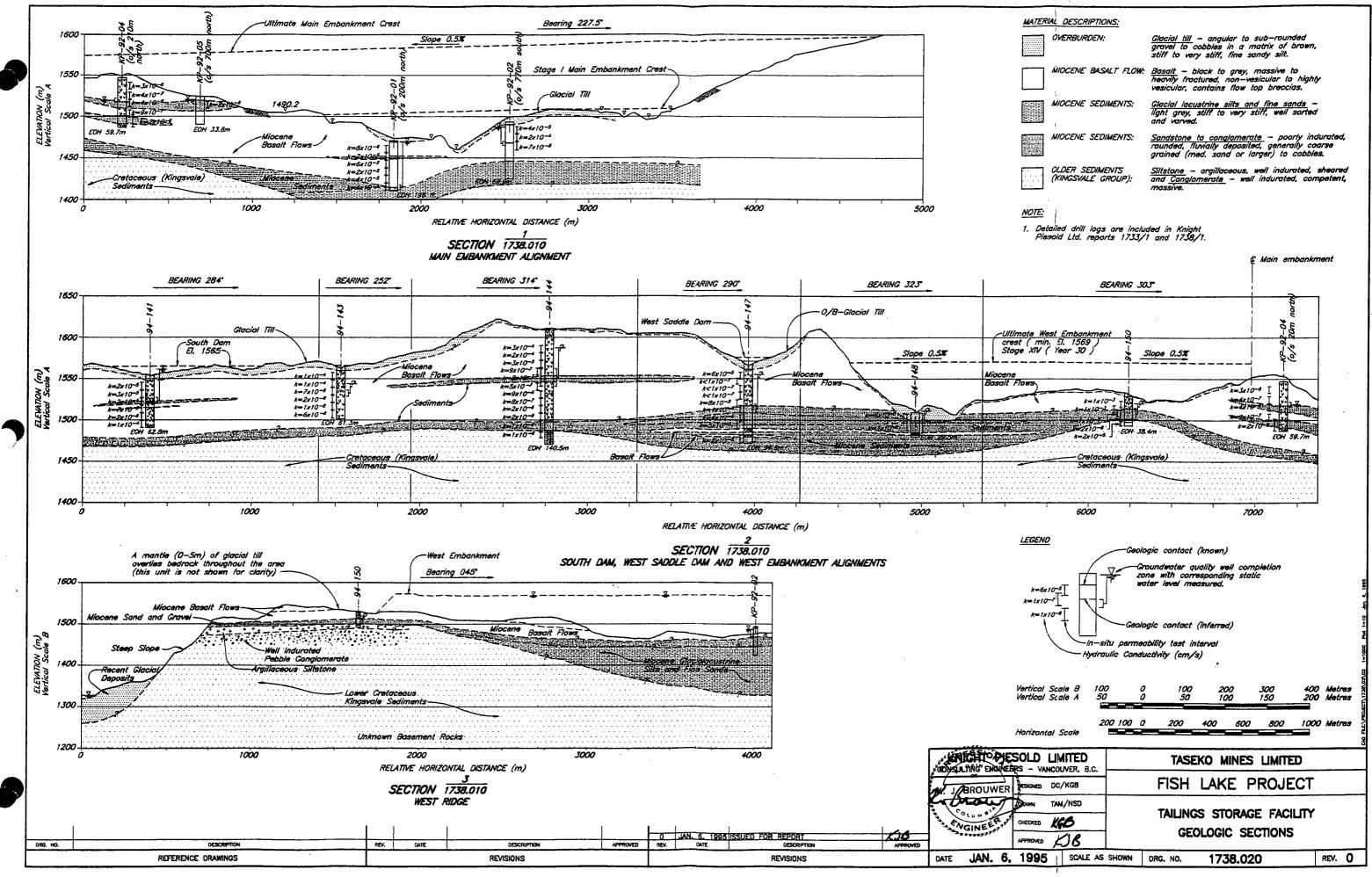


	MATERIAL		MATERIAL		
No.	DESCRIPTION	PERMEABILTY, k (cm/s)	No.	DESCRIPTION	PERMEABILTY, k (cm/s)
1#	Tailings (surface)	5 X 10 -5	5	Zone C – Waste Rock	1 X 10 -1
	(middle)	1 X 10 -5	6	Till	4.25 X 10 ⁻⁶
	(base)	5 X 10 -6	7	Siltstone	1.70 X 10 ⁻⁵
2	Zone B - Random Fill	1 X 10 -4	8	Sandstone/Conglomerate	1.35 X 10 ⁻⁵
3	Zone S - Clay	1 X 10 -7	9	Basalt	2.40 X 10-5
4	Zone A – Glacial Till	1 X 10 -6	10	Kingsvale Sediments	8 X 10 -6

* A 'k' value of 3 X 10⁻⁵ cm/s was used for the entire tailings mass to model initial years of unconsolidated tailings.


Jan. 6, 1995 KNIGHT PIESOLD LTD. CONSULTING ENGINEERS





· · · · ·

. .

<u>Knight Piésold Ltd.</u> CONSULTING ENGINEERS

L

APPENDIX A

TEST HOLE LOGS

Association of Consulting Engineers of Canada

Association des Ingénieurs-Conseils du Canada

	KNIGHT PIES						DF	RILL	HOL	E LO	DG		DRILL HOLE 94-141	
	PROJECT Fish							<u> </u>	1738				SHEET 1 of	
	DATE DRILLED July			4		FLEVA		10 00000	2x. 1.5	52 m		ENGIH .	62.79 m	—
	LOGGED BY	GSA	LOCA	TION	N	24	00	E	16	120	_ ANGLE	FROM H	DRIZ90*	, ,
	NOTES Water loss, type and size of hole, drilling method, groundwater level, etc.		25) 50 % RECOVERY	25 50 % RQD 75 (0 RQD		Cm/s		ELEVATION (m)	GRAPHIC L			AND CL MATERIA	ASSIFICATION	
Piot 1=0.25	etc. Heli-portable Val D'or diamond drill. Set HW casing to 2.4 m. Core HO from 2.4 m with polymer. Total casing set to 6.7 m. Core HQ with water only from 6.7 m. Drop in hydraulic feed pres- sure at 32.3–33.8 m. Hale Artesian. Packer Test at 7.9–17.1 m only. RISING HEAD TESTS 17.8–26.2 m 27.0–35.4 m 36.1–44.5 m 45.3–53.6 m 54.4–62.8 m Artesian flow ceased ofter packer inflated at 7.9 m only. Samples: 94–141/1 = Till 2.70–3.96 m 94–141/2 = 12.17–12.45 m 94–141/3 = 19.66–20.00 m 94–141/5 = 28.50–28.70 m 94–141/6 = 38.80–39.00 m 94–141/7 = 48.80–49.00 m 94–141/8 = 51.00–51.20 m 94–141/9 = 59.52–59.74 m	0			2.3 × 10-4	$\frac{29 \times 10^{-5}}{10^{-5}} + \frac{2.4 \times 10^{-5}}{10^{-5}} + \frac{0}{10^{-5}}$			01+1+01+1 01+1+01+1 01+1+01+1	BASALT: Dark brown gravel, den BASALT: Dark grey, strongly ver reddish bro ing to ver 15.2–15.7 (50 mm) d SILTSTONE-1 Interbedded indurated bu WACKESTONE occasional d BASALT:	Sandy silly c se - med. de fine grained la sicular and vu etent and stri- icles. Green m, 20.8 m (2 nd at 23.5 al TINE SANDSTOM sediments, gra- t friable intern /COMCLOMERA. abble,	ayers of alla ggy sections ong general ond 2011 chlontized/c 200-300 mn ad 23.6 m.	- greyish brown wel	tians pred itain- s at
VB Scale 1:250 F		40				7.0 x 10 ⁻⁵		 1510	• • • • • • • • • • • • • • • • • • •	Seam at 38 but friable, BASALT:	trace gravel. Dark green wa	ddish-greyis	h brown, well indura	led
CU FILE PROVECT 173		45				2.4 × 10 ⁻⁵		 	• • • • • • • • • • • • • • • • • • •					

	KNIGHT PIES								•	DRILL HOLE	No
	CONSULTING EN			D	RILLH	IOL	ELC)G		94-141 SHEET 2 of	
1	PROJECT Fish	Lake	<u> </u>	PROJECT	No	1738		TOTAL L	ENGTH	62.79 m	<u> </u>
	DATE DRILLED July	<u>26–28/94</u>	!	ELEVATION	<u>approx</u>	<u>r. 155</u>	52 m	AZIMUTH		-	
	LOGGED BY	GSA LOCA	TION	N <u>2400</u>	Ε	161	120	ANGLE	FROM HO	DRIZ. <u>-90</u> *	
	NOTES Water loss, type and size of hole, drilling method, groundwater level, etc.	DEPTH (m)	(%) (%)	PERMEABILIT cm/s	6 ELEVATION (m)	GRAPHIC LOG	DES	CRIPTION OF	AND CL MATERIA	ASSIFICATION	****
1112 19 Scale 1:250 Piol 1-0.25							BASALT: As above. 1 56.2-56.7 A	Dark græen w	, <u></u> ,,	udstone seam	
CU FILEY PROVECT 12											

	KNIGHT PIES			•		DF	RILL	HOL	E LOG	DRILL HOLE No. 94-143
	PROJECT Fish			I				1779	,	SHEET 1 of 2
Ď				4		ECT I	No	1730		01.20 m
		GSA			N 26	50		15	02 /// AZIMUTH	
			·····		N				ANGLE FROM F	HORIZ. <u>-90</u>
	NOTES Water loss, type and size of hole, drilling method, groundwater level, etc.	DEPTH (m)	25 3 RECOVERY	25 50 % RQD 75 (C	PERMEAE cm/1 10 ⁻³ 10 ⁻⁴		0, ELEVATION (GRAPHIC LOG	DESCRIPTION AND C OF MATER	
	Heli-portable Val D'ar diamond drill. Set HW casing to 3.0 m. Core with HQ from 3.0-4.9 m with palymer.	- - - 5 -					 1560 	0°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	BASALT: Alternating layers of weakly to mod	d. and highly vesicular and
	Core HQ with water only from 4.9 m. Return water changed from grey – dark brown at 15.5– 17.1 m, no brown material recovered, possible wash out of lines.	- - - 10 -			+-01 x		- 1555 	° ° °	grey, fine grained, mod. strong – zones. Occasional discoloration fro	strong. Some fractured om dark grey – reddish n waxy clay/mudstone to
	Loss of drill feed pressure at 23.2 m.	-			1.2			V		
	Core tube stuck in rods 58.2- 59.7 m, rods pulled to recover core, some loss.	15						· · · · · · · · · · · · · · · · · · ·		
Ď.	Samples of glocial till for index testing not taken as no fines recovered from drilling.	-			10-1		- 1545	••v v v ••v		
	Rock generally same as 94–141, no rock samples laken.	- - 20 - -			1.1 × 1.1		 1540	* * * * * * * * * * * * * * * * * *		
		25 -			-	10-6	- - - - 1535	• • • • • • • • • • • • • • • • • • •	BASALT: Black-red highly weathered flow top trace clay/mudstone to vesicles.	o at 22.4–23.2 m with
						7.1 ×	_ _ _ 1530	V • V • V • V • • V • V • V • V	BASALT: As above, mod.—strongly vesicular 2 green—dark green waxy cloy/mudsto	ne at 23.2-23.6 m.
Plot 1=0.25						x 10-e	 1525	• V • V • V • V • V • V	36.9–38.9 m, 50.6–50.8 m with we randomly between 26.2 m and 36.1 45.3 m and 56.3–56.7 m. Waxy clay/mudstone through matrix 30–80 mm wide and hairline veins, competent and less weathered with	m from 30–100 mm, and in seams Massive zones more
A10 Scale 1:250 P		40				2.3	- - - - 1520	v • V • • V • V • V • V • V • V • V • V • V • V		
CU PLEY PROFECT 12		45			9.9 × 10 ⁻⁶			· · · · · · · · · · · · · · · · · · ·		

	KNIGHT PIES			•			DR		HOL	.E I	_OG		9	- HOLE No. 4-143
	PROJECT Fish		<u> </u>				••••••		1770	·				T 2 of 2
				4		PROJE	ECT N	lo	1/38	62	TOTAL	LENGTH	61	.26 m
-	DATE DRILLED <u>July</u> LOGGED BY <u>D</u>	<u>G</u> SA	100			ELEVA	TION	<u>appro</u>	15	02 M	AZIMUT	ГН		
			_ 100/		IN		<u> </u>	Ł		030	ANGLE	FROM H	IORIZ	<u>-90°</u>
	NOTES Water loss, type and size of hole, drilling method, groundwater level, etc.	DEPTH (m)	(%) (%)	KQD		cm/s		G _i ELEVATION (m)	GRAPHIC LOG		DESCRIPTION	N AND CI F MATERI	LASSIFIC AL	ATION
CU PLEI PROJECT 12 A11 Scale 1:250 Plat 1-0.25	etc. Heli-partable Val D'ar diamond drill.								v ° ° °	As abov		2	γ	

KNIGHT PIES		DRILLHOLE LOG	DRILL HOLE No. 94-144 SHEET 1 of 3
DATE DRILLED Augu	st 2-6/94	PROJECT No. <u>1738</u> TOTAL LENGTH ELEVATION <u>approx. 1610 m</u> AZIMUTH N <u>3100</u> E <u>14050</u> ANGLE FROM	<u>140.51 m</u>
NOTES Water loss, type and size of hole, drilling method, groundwater level, etc.	DEPTH (m) 25 (m) 25 (m) 75 (m) 75 (m) 75 (m) 75 (m) 76 (m)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Heli-portable Val D'or diamond drill. Set HW casing to 1.8 m with polymer. Core HO casing to 1.8 m with water only. 100% lass of return water at 12.5 m onwards. Lass of drill head pressure at 17.7-18.9 m and 77.1 m. Falling Head Test carried out in completed monitoring well between completion zones at 48.8-70.1 m.	5	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	dark greenish grey weakly sular and vuggy with some e zones. Fine grained, s of mod. – highly dark green waxy clay/ ly through matrix. e on joints and in matrix, mudstane seams to

	KNIGHT PIESO				DR	LLF	HOL	E LOG	DRILL HOLE No. 94-144 SHEET 2 of 3
	PROJECT Fish	Lake	· · · · · ·	_ PROJ	ECT No		1738	TOTAL LENGTH	
• .								<u>10 m</u> AZIMUTH	
	LOGGED BY	SSA LOCA	TION N	31	00	ΞΞΞΕ.	140	050 ANGLE FROM H	ORIZ <i>90*</i>
	NOTES Water loss, type and size of hole, drilling method, groundwater level, etc.	DEPTH (m) 25 ວິນີ RECOVERY 75	۲ ۲ ۲ ۲ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳	2ERMEAE cm/s	BILITY s · 5 10 ⁻⁶ 10	ELEVATION (m)	GRAPHIC LOC	DESCRIPTION AND CL OF MATERIA <i>approx. 1610 m</i> BASALT: As above.	ASSIFICATION AL
CU FIE: PROSECT IZE IS Scole 1:250 Pol 1-0.25	Polymer used at 84.1 m to stabilize hole after packer test. Core HQ with water only from 87.1 m. Drill rads pulled to recover care tube from 91.7 m. Polymer used of 125.3 m after Packer Test. Core HQ with water only from 128.0 m. Hole flushed for 10–15 min. before each Packer Test.	- - 55 - - - -		10 10	$\frac{2.7 \times 10^{-7}}{10^{-7}}$	- 1555 - 1555 - 1555 - 1550 - 1545 -		CONCLOMERATE: SULTSTONE - SANDSTONE: Greenish brown - brownish red silt- gravel, well indurated but friable. 2 62.8 m, SAND/SILT most likely wash CONCLOMERATE: Round - subround fine, coarse grav matrix washed away by drilling. BASALT: Alternating layers of dark grey - da - weakly and mod highly vesicul Fine grained, mod. strong - strong dark green. Waxy clay/mudstone th seams 30-80 mm wide and hairline more competent and less weathered sections.	- fine sand, trace fero recovery 58.2- hed away. rel, cobbles, loose, sandy nrk greenish grey massive for and vuggy as above. inundated in zones by trough matrix and in veins. Massive zones

KNIGHT PIES		DRILLHOLE LOG	DRILL HOLE No. 94-144 SHEET 3 of 3
DATE DRILLED Augu	ist 2-6/94	PROJECT No. <u>1738</u> TOTAL L ELEVATION <u>approx. 1610 m</u> AZIMUTH N <u>3100</u> E <u>14050</u> ANGLE I	ENGTH <u>140.51 m</u>
NOTES Water loss, type and size of hole, drilling method, groundwater level, etc.	DEPTH (m) DEPTH (m) 35 36 % RECOVERY 35 36 % RQD		AND CLASSIFICATION MATERIAL
Heli-portable Val D'or diamond drill.	$ \begin{array}{c} 100 \\ - \\ - \\ 105 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	sh grey, weakly – mod. indurated sand, poorly graded, some sandy erally little or no fines recovered, some green chloritic clay/mud- laminated – bedded, occasional inteni, fractured with some more zones, weak – mod. strong. – slickensides.

	KNIGHT PIES	<u>ם וכ</u>								DRILL HOLE No.
	CONSULTING EN					L		HUL	E LOG	94-147 SHEET 1 of 2
	PROJECT Fish	Lak	e		P	ROJECT	「 No	1738	TOTÂL LENGTH	94.79 m
	DATE DRILLED Augus	t 8-	-10/9	14	E	LEVATIO	N <u>appr</u>	ox. 15	68 mAZIMUTH	
	LOGGED BY	<u>GSA</u>	_ LOC	ATION	N	3650	E	13	050 ANGLE FROM HO	RIZ. <u>-90</u> *
	NOTES		ERY		PERM	MEABILI	TY Ê	8		
	Water loss, type and size of hole,	(E	RECOVERY	Q	c			 	DESCRIPTION AND C	
	drilling method, groundwater level,	DEPTH	(%)					GRAPHIC	OF MATER	
	etc.	a o	25	2 2 2	0 ⁻³ 10 ⁻⁴ 1	0 ⁻⁵ 10 ⁻⁶	یکے س ^و 10 [°] س			
	Heli-portable Val D'or diamond drill.	-						1.10 vo 1.10 vo 1.10 vo	OVERBURDEN: Brown sandy clay, some gravel, tro green clay and basalt clasts at low	nce cobbles, dense with wer contact, GLACIAL TILL.
	Set with casing to 6.4 m. Core HQ from 2.7–7.9 m with	-					-156			
	polymer. Core HQ with water only from	5 -		24			I F	V • V V	BASALT:	
	7.9 m.	-							Alternating layers of dark grey, we strongly and vuggy vesicular, fine g	akly vesicular to mod. and grained with massive
	Grey sand washed out of overburden in top 6.4 m and accumulated around casing on surface.	-					-156		vesicular inundated with green - d clay/mudstone through matrix, well	ark green, weak waxy indurated, and in seams
	PACKER TESTS	10			۳. ۱					
	8.7—17.1 m 66.6—78.0 m	-			x 10		-	V V		
	78.8—87.2 m 84.9—94.8 m	-			6.3					
	FALLING HEAD TESTS 15.7–23.2 m	15 -				-	┢╞			
	24.8–32.3 m 33.1–41.5 m 42.2–50.6 m	-			μ.	10-2	- 1550	V • V •		
	49.1–58.2 m 60.5–68.9 m	-				<i>x 11</i>				
		20 -				1.1				
		-					1545	v v v v		
		25 -								
		4J _						v ^v ^v		
		-					2-1540			•.
		- 30 -						v v v _v v		
		-					-	v ^v _v v		
							-1535	v v v v		
_		- 35					F	v°v°		
1-0.25		-				x 10	E	0 0 0 0 V 0 0		
20		-				4.5	-1530	v		
Scale 1:250		40 -					F	v		
S.							F	• • • • - • • • • • • • • • • • • • • •		
					<u>ه</u>		- 1525			
CUD FILE ARAVECT 1736		45 -	III)		-01		-	v - • v - • -• v - v		
PROA			<u>IIIX</u>	团	x 0		F	v • _ v -: v -: v -: v -:		
22 22					T		- 1520	• ^v [°] v v • v • v	SILTSTONE-FINE SANDSTONE: Well indurated but friable, greenish	brown. Bedding approx.
٦L		50		1				1++++	90° to core axis. Drill breaks along	planes.

PROJECT Fish Lake PROJECT No. 1738 TOTAL LENGTH 94.79 m DATE DRILLED August 8-10/94 ELEVATION 9000x.1568 m AZIMUTH - LOCGED BY DOSA LOCATION N 3650 E 13050 ARGLE FROM HORIZ. -90' NOTES Moter Loss, type and size of hole. Grundwater level, etc. E 000000000000000000000000000000000000		KNIGHT PIESO CONSULTING EN			DRILLHOLE LOG								
DATE DRILLED <u>August 8-10/94</u> LOGGED BY <u>DCS4</u> LOCATION N <u>J650</u> E <u>J3050</u> ANGLE FROM HORIZ. <u>-90</u> NOTES Weter loss, type and size of hole, G G G G G G G G G G G G G G G G G G G		PROJECT Fish	Lake	. <u></u>	PROJECT	No	1738	TOTAL LENGTH					
NOTES PERMEABILITY © O and sizes / hole, drilling method, groundwater level, drilling meth													
groundwater level, etc. Explore 382.00 (0 ⁺ 10 ⁺		LOGGED BY	CSA LOCA	TION	N <u>3650</u>	Ε	<u> </u>	050 ANGLE FROM HO	DRIZ. <u>-90*</u>				
Mei-partede Wr D'ar 50 50 Image: state of the		NOTES Water loss, type and size of hole, drilling method, groundwater level, etc.		/m/\	cm/s	VATION							
	FLE: PROJECT 173 21 Scale 1:250 Plat	Heli-portable Val D'or			$\frac{x \ 10^{-5}}{x} + \frac{10^{-5}}{x^{-5}} + \frac{10^{-5}}{x^{-5}} + \frac{10^{-4}}{x^{-5}} + 10^{-4$	<u>o' 10° U</u> - 1515 - 1515 - 1510 - 1510 - 1510 - 1510 - 1510 - 1500 - 1500 - 1495 - 1495 - 1495 - 1485 - 1485 - 1485 - 1485 - 1485 - 1485 - 1485 - 1475 - 1475	How or	As above. GRAVE1: Loose coarse and fine gravel, som sondstone clasts, generally heteroli GLACNOLACLISTRIME SILISTONE - CL Soft, well indurated, varved, light g to dark grey - greenish grey - g Drill induced breaks only. Bedding core axis. Becoming denser and SAND/SANDSTONE: Greenish brown fine sand - weak poor recovery. CONCLOMERATE: Loose heterolithic fine and coarse fines recovered, trace silly sand - BASALT: Dark grey, med. grained, massive strong interbedded with loose grave waxy cloy/mudstone. CONCLOMERATE: Dork greenish grey, poorly sorted, rounded, subrounded and subanguk in weak dark green cloy/mudstone bedded with massive BASALT flows. ate mad. strong - strong.	thic. AYSTONE: Iray-beige silly CLAYSTONE reenish brown CLAYSTONE planes approx. 90° to more clayey with depth. sandstone, mod. indurated, gravel, trace cobbles, no sandy clay. - v. weak vesicular, mod. el and occosional green weakly - well indurated, tr clasts, heterolithic set and sandstone inter-				

	KNIGHT PIES	•	DRILLHOLE LOG						DRILL HOLE No. 94-148			
	PROJECT Fis	h Lo	ike	/94	Pf	ROJEC		o	1738		TOTAL_LENGTH	SHEET 1 of 1 29.26 m
-	LOGGED BY	GSA		ATION	N	<u>4200</u>	2	E	<u>12</u>	2 m 2150	AZIMUTH	
	NOTES Water loss, type and size of hole, drilling method, groundwater level, etc.	DEPTH (m)	25 🛞 RECOVERY	25) 50 % RQD 75 (PERM c1	m/s		ELEVATION (m)	GRAPHIC LOG	DE	SCRIPTION AND OF MATE	
	Heli-portable Val D'or diamond drill. Set with HW casing to 3.0 m with polymer. Care HQ from 0.6 m with polymer. Care HQ with water only from 12.5 m. FALLING HEAD TESTS 2.4-14.0 m 3.0-23.2 m Hale flushed for 10-15 min. before each Falling Head Test. Care HQ with polymer from 16.2-29.3 m. Silt - fine sand washed up casing to surface from zone 9.4-12.5 m continuously. Hale making high volume of sand, squeezing and very tight on rads. Hale last at 29.3 m due to sand sticking to rads. Samples: 94-148/1 = 4.8-5.5 m 94-148/3 = 8.5-8.8 m 94-148/4 = 9.8-10.5 m 94-148/5 = 10.5-10.9 m						8.1 × 10 ⁻⁶	- 1500 - 1495 - 1495 - 1490 - 1485 - 1485 - 1480 - 1480 	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array}\\ \end{array} \\ \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	Brown sill) - subroun interbedde, cabbles, p silly sand hard, com, breaks pei - brownish geownish geownish geownish geownish brownish brownish conclomer Round - s olithic, wet - brownish indurated J basalt frag - highly * Generally c fine sands 24.4 m. - BASALT: Dark gray, strong, con vein 40-70 CONCLOMER Mackly - *	 clay, trace sand, grading, still – v. still a dwith soft silly clay, artially intact at 2.4–2 – sandy silt with grappetent and well induration for the sandy silt with grappetent and well indurations more friable. No core axis. Trey silt – fine sand, fine grapheter sandy silts intact at 2.4–2 for the sandy silts interval of sandy silts interval for the sandy silts interval of sandy clay – sands and sandy clay – sands and corasionite amprised of loose grafter interval of loose grafter matrix between fine grained, weakly we glomerate zone 30 min at 25,3 m. fine grained, areenish 	gravel and cobbles, heter- with brown - greyish brown clayey sand matrix. Well Some weathered vesicular basalt boulder present, mod. stained towards base. vels and cobbles with loss of 14.0-16.2 m and 18.0- 14.0-16.2 m and 18.0-
CHO FUEL PROVECT IN 1440 Scale 1:250 Phot 1=0.25		30 - - - - - - - - - - - - - - - - - -								gravel and and cobbles	cobbles, broken zones	with some loose gravel nonite staining, basalt clasts

KNIGHT PIESO CONSULTING EN		DRI	LLHOL	E LOG	DRILL HOLE No. 94-150 SHEET 1 of 1
PROJECT Fis.	h Lake	PROJECT No	. 1738	TOTAL LENGTH	38.4 m
				25 m AZIMUTH	
LOGGED BY				250 ANGLE FROM H	
NOTES	ΓRΥ	PERMEABILITY	Ê g	DESCRIPTION AND CI OF MATERI OVERBURDEN: Gravel and cobbles set in a reddisi	· · · · · · · · · · · · · · · · · · ·
	D COVE		C L C	DESCRIPTION AND CI	LASSIFICATION
drilling method, groundwater level,	DEPTH DEPTH (%) (%) RE(%) RQ(cm/s	APHI	OF MATERI	AL
etc.	2 2 2 2 2 D	10 ⁻² 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 10			
Heli-portabl a Val D'or diamond drill.	0		0_0.	brownish arey sandy clay, trace sill	h brown stiff sand clay to , stiff − v. stiff, com-
Set HW casing to 3.7 m with polymer.			- <u>- 0</u> °.+	petent, GLACIAL TILL. BASALT:	
Core HQ from 1.8 m with polymer.	5 -			Dark grey - greenish grey, fine gr	ained weakly – strongly ssive and competent,
Core HQ with water only from 9.4 m.			° o v o	fractured below. Contact with till it ed with some greenish black mudst	s mod highly weather-
Hole flushed for 10 min. prior to first Packer Test.		- <u>r</u> -01		rod, strang, Fractured zones in 2 fractured below. Contact with till it ed with some greenish black mudsi Some soft lurquoise green infill to 4.9 m. Trace dark green clay/mut occasionlly in matrix.	dstone on fractures and
50% loss of return water at 13.4 m.	10-	×			
Packer set at 17.8 m for test nos. 3 and 4.			V.V. V.V.		
Hole squeezing at 18.3– 26.2 m.					
Samples:	15-	0	- 1510 - 0_0 0 V 0		
94-150/1 = 29.3-29.5 m 94-150/2 = 33.1-33.2 m		× 11			
94-150/3 = 34.0-34.2 m		Ĩ	- 0.0.0	CONGLOMERATE:	
Rods removed overnight to change worn out bil. After		5-01	-1505 0 0 0 0 0 0	Subangular, rounded – subrounded clasts heavily limonite stained gener with a greenish sandy matrix, most conglomerate occasionally present ii	with loose and houses
re-installed the core tube got stuck in the core barrel by green sand at approx.		x 0 10-6		conglamerate accasionally present if ed sections, which is more compete poorly sorted. Very little recovery of	nt. Motrix generally
30 m. No green sand recovered or		1.0 1 x 5		· · · · ·	
flushed to surface during drilling. Sand more than likely washed out of loose gravel	25-		- 0.00		
and conglomerate zones, bridging hale.			- ····		
Hole lost at 38.4 m com- pletely sanded in from 29.2-	30 -		0.0		
38.4 m.					
			- 133	ARCILLITE: Dark grey – black, mudstone – Arg sheared parallel to bedding. Beddin	
	35 -	10-2		axis. Kingsvale Sediments. CONGLOMERATE: Poorty sorted, round to well-rounde	d heterolithic clasts,
		×	- 0.0.0	green – greenish grey, black argillit grey in a greenish grey med. graine crumbly and sheared with calcite ve	ic and dank – light Id sandy matrix, locally
				thin strings. Kingsvale Sediments.	
	40			E.O.H. 38.4 m (126 ft)	
			-		
t			_		
	45		-1480		
			-		
			-		
L	50		1475		

Knight Piésold Ltd. CONSULTING ENGINEERS

•

APPENDIX B

EXPLORATORY DRILLING BEDROCK LOGS

Association des Ingénieurs-Conseils du Canada

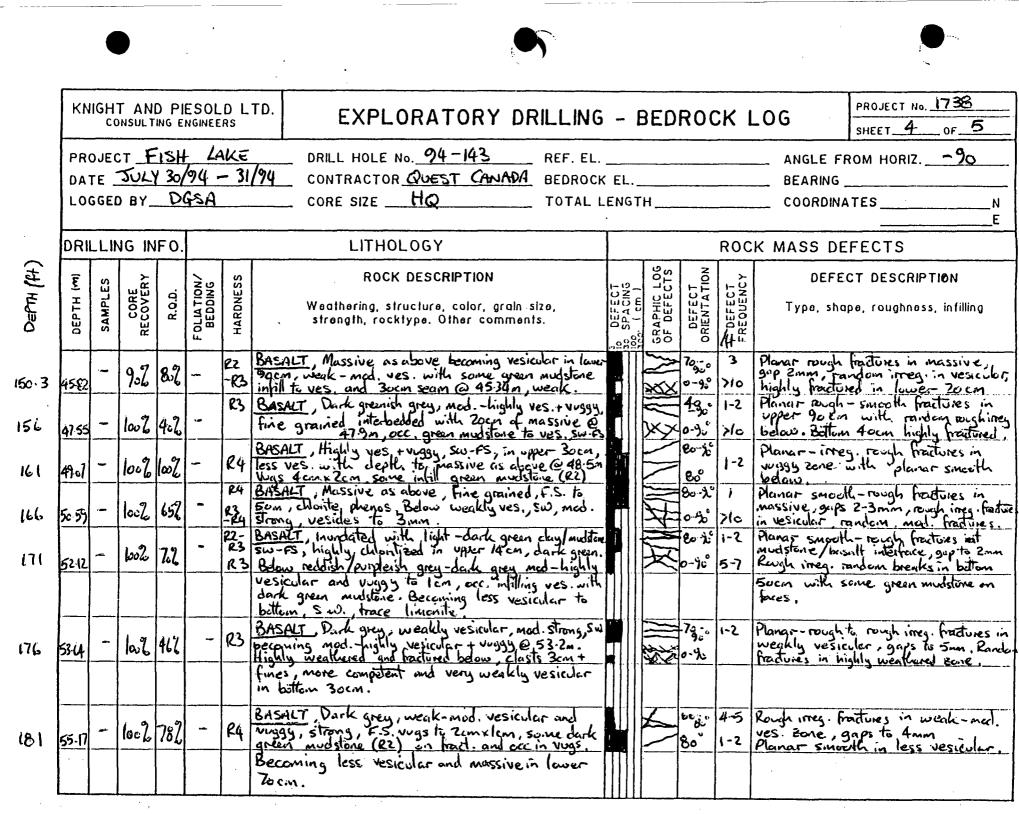
)										
	KN		T AN				TD. EXPLORATORY DRILLING		BED	ROC	CK I	_0G	PROJECT NO1738
:	DA	ΤΕ _	ст <u>F</u> - 51 - 5	JLY	27	/94		EL.				BEARING	
	DRI		NG IN	F0.			LITHOLOGY				ROC	K MASS DE	FECTS
Dept+ (#)	DEPTH (M	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	SPACING	GRAPHIC LOG	DEFECT ORIENTATION	FREQUENCY	DEFE(Type, sha	CT DESCRIPTION po, roughnoss, infilling
13	3.%		Appres. 5cZ	-	-	-	GLACIAL TILL, dark brown, sandy silty chywith some couples and coarse gravel, dense-med. dense 2.49-3.76 m		-	-	~	~	
K	4-88	-	Approx 10072	•	-	-	GLACIAL TILL; dark brown-grey, silty sand with some ccarse gravel, trace collates and clay,		~	-	-	-	
19	5-78	-	App. + 752		9°	-	GLACIALTILL, greenish brown mudstone set in searchy materix, dense, SW, trace gravel, colles			-	-	Drill induced	
2(;	742	-	22	9:[23 -R4	BASALT Dorrk grey-brown, fine grained, mod. vesicular and Wiggy interbeckded with lighter grey less vesicular section, FS-SW, medstrong, some calcite			60 . - 90	2- 3	induced break joints	5-11 otherwise drill s with some irreg rough
R 9-5	<u>ه. (</u>	-	7672	247	-	R3	BASALT, As Above, modstrongly vesicular, factured zones, weaker than above, FS-Sw, some calcite						cints and drill breaks, me infill at joint 75m.
36	10.57	-	100%	45%	-	R3 R4	BASALT As Above to low then very few vesicles/ massive, dark grey, FS-SW, mad. strong-strong, vesicles swall with same chlorite stanning.			70- 76- 76- je	>10 2-3	Irrey. rough j mudistane, lem	oints with sillistone/ thick on joints at 9.75m
4)	12-49		1007	lw[ŧ	0.	BASALT, Dark grey, fine - v. fine grained massive, Fresh, strong, some chlinte phenocrysts			€0° -90	2-3	rough ineg., drill breaks	oints with numerous
46	<i>i</i> य-व्य	-	100%	34%	. 1	R3 R4	BASALT, As Above to 12-8m, then modstrongly ves. and vuggy, fractured, fine grained dark grey with some chloristic staining to vesicles.		\mathbb{N}	60 -80°	10	Rough ineg., Seam, ineg.	€ 13.15m, 7cm wide
48.7	14-85	-	100%	89Z			BASALT, Dark grey, fine grained, massive, weakly vesicylar, F-FS, mod. strong, some chlorite infilled vesicles.		<i>{}}</i>	90	2-3	Rough imeg face.	joints with chlorite on
61.0	(8·57)	-	100Z	207	*		BASALT, As Above, mad strong vesicular, FS-SW, discoloured reddish brown over locm @ 15.1m Biltsteine/mudstone, green in Scm Zones and vesicles.			70° 30-90 50-56°	10	Randem rough joints alse r enjoint @ 18.	ineg fractures, hairline ander, siltstone/mulstre In (possible drill breaks).

	ĸN		T AN				TD. EXPLORATORY DRILLIN	G -	BED	ROC	CK I	_OG	PROJECT No. 1738
	DA	ΤΕ_	ст _ Г Д вү	ELY	1 27	194		CK EL	•			BEARING	TROM HORIZN
	DRI		NG IN	F0.			LITHOLOGY				ROC	K MASS DE	FECTS
し 言やエキ (エ).	DEPTH (m)	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT .	GRAPHIC LOG	DEFECT ORIENTATION	FREQUENCY		CT DESCRIPTION pe, roughness, infilling
I	18-57	<u></u>	ortine	ed			15.215.7m, mod. strong, less vesicular in low sucm, more competent. Fradured 15-17-5m						·····
م	2.11		100%	00%			BASALT, dark grey, fine grained massive, fresh, strong-V. strong, no vesides, some chlorite phenocry			60 - 80°	1	Kough irreg. breaks.	joints, possible drill
Ĩ	21-6	-	1007	217		R3	BASALT, dark grey-reddish brown, madstrongly ve and vuggy, fine grained, sw. Green Sittsture/mude seam 20-30cm wide @ 20.83 m	S. me	MX	30 %	5- 10	Random inter come axis. U clay lower	fractures at all angles i esides infilled with red Zecar, drall breaks
6	23-16		100%	58Z		R3	BASALT As Above, Greenish Sittsteine/muditure seam Scm whe @ 22.26m.		Ar L	5c -9°	5- 10	As Above w	ith red day infilled g 70% of length.
6	26-21	-	100%	142	-	23	BAEALT, As above but dark grey and fractured Siltstine/mudstone segn, green, laminated@23.45.23 Less vesicular botwein 24-1m and 24.31m.	58.,	X	50 - 9,0°	5- 10	As Above -	. Its some green sillstone/ vesicles, some red clay
i	27.74	-	too to	1.0%	-	R3 -R4	BASALT, As Abuve but fine grained, @ 26-8-27.4 dark grey massive, F-FS.		H.		10 1-2 10	Random drill	breaks in vesicular good recovery in massiv
د ا	27-26	-	100%	847	-	R3 -R4	Brishlt, As Above (23-16-26-21m), less vesicular, 27-74-28 m, mod. strongly ves & vussy to Zom bel fractioned in lower 1.2m	<u>ଜୁ</u> ଆ	1	90°		Frequent rav	dom drill breaks partic. ettion peop. to core axis
ι	3a-76	-	100%	887	-	R3 -R4	BASALT, As Above (21-6-23:16 m), dark gruy			າບິ	2-3	Rough imeg.	drill breaks.
6	32.3		47%	30%	90°		SEDIMENTS, Siltstone/silt, greyish green-greyish brown, Fine sand with silt v. still but breaks ensily. Siltstone-fine sandatale.			9°	2-3	Smooth irreg. bedding plane	drill breaks along s.
1	3383	-	777	-	90°	-	As Above interbedded with dark brown, dense -v. dense wackestone/conglanerate with trace day, son coarse grovel, occ. cubble. Basalt interface at 33 5 m.	, 	-	-	-	As Above in irreg contact a	sillitare with rough t interface.

:

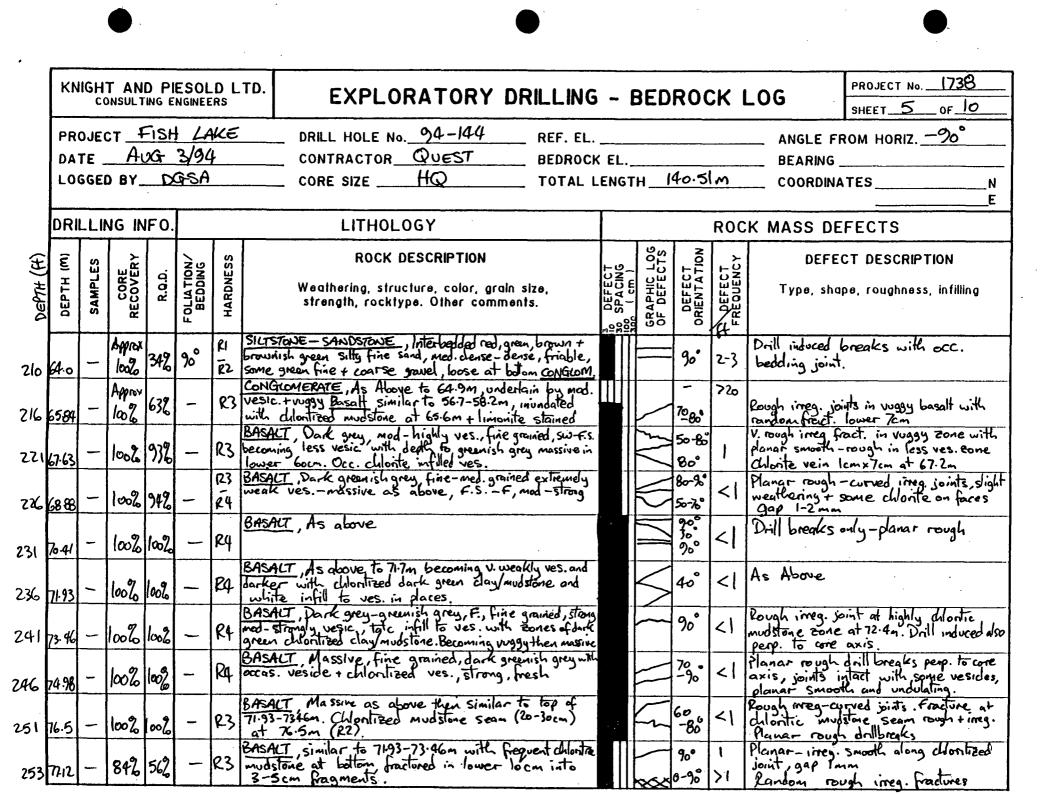
						•						
	KN		T AN				TD. EXPLORATORY DRILLING		BED	ROC	к	LOG PROJECT No. 1738
	DAT	ΤΕ _) вү_ ВҮ	JLY.	27/	94	DRILL HOLE NO. 94-141 REF. EL. CONTRACTOR QUEST CANADA BEDROCK CORE SIZE HQ TOTAL L	EL.				
	DRI		IG IN	F0.			LITHOLOGY				ROC	K MASS DEFECTS
DEPra (H).	DEPTH (M)	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT	SCAPHIC LOG	DEFECT ORIENTATION	FREQUENCY	DEFECT DESCRIPTION Type, shape, roughness, infilling
16	પ્રક્રૠ	\$	1002	Approx 1070	-	-24	Basalt, fine grained, mod-strongly vesicular, dark grey, mod. strong-strong, vugs to 2cm, some chlorite staining		Ħ	30 -90°	1	Random drill induced (?) fractures in modstrongly ves. and vussy baselt
126	38-4	-	60%	34Z		23 -R4	BIYSALT, Dark grey, fine grained, extremely weakly vesicular - mod. vesicular, fresh - FS, extremely weakly in upper 1-7m, small vesicles at 35.71-35-96m, bicken/ fractured in lower 1.2m, mod - strongly vesicular 37-		T.	10 -90°	3 10	Rough inez fractures in upper 1.7m, randou fractures below
							38-4m. serve chlorite and calite staining in vesicles in lower 1-2n					
12]	390	1	100%	632	າວັ	R3	SEDIMENTS, Sillstore/v.fine sandstone, reddish- greyish brown, frace coarse growel, dense-v.dense, med. strong, well induisted but frable	;	Ŧ	9c" -3c"	2	Rough - smooth drill breaks along bedding planes (?) occ. oblig.e fracture
131	39-72	-	locz	Agint 222		R3 -R4	BASALT ÁS Above (33-83-35-36m).		#	0- 90'	>lo	As Above (33 83 - 35 . 36m)
136	41-45		ku Z		-	23 -124	BASALT As Above (33.83-35-36m) with occ visite up to 2cm with less vesicular sections.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	90°	3-4	Rough ing breaks random in opper do cm, 90° breaks in remainder (poss. drill breaks)
141	41.78	1	100%	1002	~	R4	BASALT, Durk grey, fine grained, massive, occ. ves., slight chlaite phenocrysts, strong, fresh, more compte			90°		Very few fractures but several drill induced.
146	44.5	+	60cZ	977		R4	<u>BASALT</u> , As Above.		7	30° -80°	2-3	Rough irreg joint with others drill induced.
isi	46·02	-	しった	9:7	-	R4	BASALT, As Above		1/3	50 -70°	2.3	As Above
156	47-55	-	100%	822		R4	BASALT, As Above with chlorite stained jouris and some infilling to vesicles. 2cm@ 46-40m		5	<u>o</u> - 50°	1-2	Undulating vertical rough joint some chlorite on face, others drill induced.

	KN		ANI				TD. EXPLORATORY DRILLING	-	BED	ROC	K I	_OG	PROJECT No. 1738 SHEET 4 OF 4	
	DAT	ΓΕ _	т <u>Е</u> Го вү_	ilY	28/9	<u>}4</u>	DRILL HOLE NO. 94-141 REF. EL. CONTRACTOR QUEST BEDROCK CORE SIZE HQ TOTAL L	EL.				BEARING	ROM HORIZ. <u>-90°</u> .TES	 _N _E
. [DRIL		IG IN	F0.			LITHOLOGY				ROC	K MASS DE	FECTS	
	DEPTH (M)	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT	SRAPHIC LOG	DEFECT ORIENTATION	FREQUENCY	DEFE Type, sha	CT DESCRIPTION pe, roughness, infilling	
1 4	9-2		100%	122	-	L	BASHLT, As Above, bark grey, five grained massive strong, fresh, competent	24.5		4°°	<	Drill breaks o vein 0-5 cm	nly, 1 chlorite infiller wide (= 47.9 m.	
. 6	<u></u>	•	100%	3.2		R4 <u>R3</u>	BASALT, As Above to 49.5 m, they modstrongly ves. Diecciated, some chlorite infilled vesides.		×	°-90°) >lo	Numerous in strongly vesice infiled with st	ndown fraitiures in mod da- sectron. Vein at 3 off taley substance	-ر دی: س
5	52-12	-	looZ	152		R3 124	BHSALT , Darh grey, mod strongy vesicular, fresh, some chloritized vesicles, mod. strong, fractived. Lower 27 cm pcc. ves. computent, strong, fresh, dark grey BASALT, As Above (47.55-49-07.n), occ. chloritizal			70°	2	Zone. Rough	ineg icints in less u	.ciale 125 .
5	5-17	•	100%	867.	-	<u>kq</u>	vesicie. Weakly vesicular feeder dyke at side of cove & 54-9.n		¥	-40°	1-2	staining.	rough meg side je with some chlorite	
> <u>5</u>	<u>%:7</u>	-	loch	532		R4 -R3	BASALT. As Above (50.6-52.12) with occ. veside infilled with soft substance (tale?), greenish white, bree. zone of mod-strongly resigning based with some dark green forminated muchture from 56-2-56.7m. wary caymoustone	\square		50 -9°	710	Prill breaks breaks in br	in upper la with ra ecclated zene.	de.
5	82	·	1002	482	-	R3 -R4	BASALT, Dark grey, fine grained, weak-mod ves. with some chlorite in vesides and phenocrysts brecc.				710 1-2	fractures, put	ne with rough integ	ess Fiten
5	<u>74</u>	-	100%	1002	-	R4	BHSALT, As Above (47.55-49.07)		}	60"	1	Emm wide d mudistone sea	ork green siltstone/ m/veins at 59.4 and 9	
6	2-79	-	boz	1007	-	R4	BASALT, AS Above to 62.06 then mod strong vesicular and vuggy to 15mm.		\geq	60 -9,0°	Z	Drill breaks vuggy zon	e, particularly in e, rough imeg.	•


			-				· · · ·					
	KN		T AN				TD. EXPLORATORY DRILLING	5 -	BED	ROC	K I	LOG PROJECT NO. 173B
	DA	ΤΕ _) вү_ 51 Бү	JLY	29/9	4	CONTRACTOR QUEST CANADA BEDROC	K EL	•			ANGLE FROM HORIZ90° BEARING
	DRI		NG IN	IFO.			LITHOLOGY	T			ROC	CK MASS DEFECTS
DEPTH(FY)	DEPTH (m)	SAMPLES	CORE RECOVERY	R.O.D.	F OL LA TION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT	GRAPHIC LOG	DEFECT ORIENTATION	FREQUENCY	Type, shape, roughness, infilling
10	305	-	22	-	-	· • • • • • • • • • • • • • • • • • • •	GLACIAL TILL, Cored colles and growels with. trace of grey day, no fines recovered.		-	-	-	
K.	481	-	1002	849Z		· ·	BASALT, Dark grey, fine grained, massive, sw, ac. chlorite phenocrysts and vesides		~	80. -95	<1	Rough imeg fractures approx perpito cure axis.
21	64	1	87%	(8]	-	R3 -R4	BASALT, Dark grey, fine grained, mal-strongly uss and viggy to 1cm siv-FS, some addite infilled uss., weaker dark from 1 zone at 6:4 m.		HII	10 -90°	2-3 1	As Home, single near vertical row ineg. Facture near top.
26	742		100%	652		0.2	BASALT, As Above to 7:4m the massive, similar to 3.05-4.87m but freatured, sw. mad-strong			90° 30 70°	>10	Rough irreg. drillbreaks above with random irreg, rough fratures with some linesite staning
51	945		100%	102	-	-24	BASALT, As Above (3.05-4.87) but Fractured with slight grainish staining on faces and trace calcul		MX	40 -95°	>10	
6	10-77		792	302	. _	23 - <i>R</i> 4	BASALT, Dark grey, fine grained, massive, S.W., strong, to 10-2n with possible mathcit of brown clay @ 9.9, Below 18-2n fractured med - strongly vesicular		20	80 0	1-3 210	Rough ineg. fractures with some prower clay at 9.9.11 and trace limonite. Random rough ineg. fractures.
41	12-5	-	*5%	0Z		R3	BASALT. Durk grey. fine grained, S.W. mod-highly vesicular and vuggy to 3-6cm, mod-strong, some brown struining and crystallisation on vesicles.		F	o વૃેc°	5-10	
6	i4.cl	ŗ	100%	212	~	R3	BASALT incossive as above (3-05-4.87) to 13.cm, sup-FS. with neck-highly vesicular und fractured below, ves. 0-5-2cm and limonite stained, as above		H H	45	1 >10	Rough ineg. joints with slight limenit staining in massive with random roug irreg. tractures belows, also limite
۱	15.94	•	100 Z	31%	-	l.,	BASALT, As Above but nove competent with less vesicles, Sw., green mudstere infilling ves. in places, yes. to 3cm. ~ 1cm.		2	30- 90°	5-6	Randon rough irreg. fractures, highly practured,
6	17-2	-	ๆงใ	127	-	23 -R4	BASALT, As Above, warkly ves. and vuggy, sw. and strong Tess vesicilar and competent, massive in laws o bin Loss of fine particles at 16.3m with vein (born)		71	40 -90°	2-3	Randon rough imeg. Fractures in ves. Zone with planar rough in massive

	KN		F ANI				TD. EXPLORATORY DRILLING		BED	ROC	K I	_0G	PROJECT No. 1738
	DAT	τε _	т_ ғ Т.) вү	LY_	29/90	4, 51	DRILL HOLE NO. 94-143 REF. EL. 24730/94 CONTRACTOR QUEST CANADA BEDROCK CORE SIZE HQ TOTAL L	EL.			<u></u>	BEARING	
	DRI		IG IN	F0.			LITHOLOGY				ROC	K MASS DE	FECTS
Depth (H)	DEPTH (m)	SAMPLES	CORE RECOVERY	R.Q.D.	FOLIA TION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT	SRAPHIC LOG OF DEFECTS	DEFECT ORIENTATION	FREQUENCY	DEFE Type, sho	CT DESCRIPTION po, roughnoss, infilling
56	17.07	<u>(</u> .	tinve				green mudstone with trace of greenish brown day @ top, fractured, otherwise no fines, possible washest of sand.						
61	19.6	-	100%	432		R4	BASALT, Dark grey, fine grained, massive with fraturel Bones, S.W., white staining on joints acc. with Imanite acc. ves. with weakly resider at 18.6 m		H	20-30	5-4		with bugh imeg in fract. n massive @ iBm
Ġl,	20.11	-	100%	7.72]	R4	BASALT, As Above, more completent, fractured in upper 30cm with less stamming towards base.		₩ M	70-70°	>10 2-3		fractures with rough toxed zone.
71	21-64	-	looZ	leito	-	24	BASALT As Above, competent, sw-FS., strong, ecc. ves. in lower focm infilled with white crystal.			800	1	dirill induced	
73-4	2.36	•	1002	322		R3	mad. grained, Earles of green mudstone throwhart		X	30-E° 0-9.'	1 >10	top of run. 36cm with v	joints in massive basalt of Fractured basalt in burer- ough meg. joints.
76 0	23/6		382	02	-		BASALT, HW, weakly reschar Easalt flay top, haitung black red with trace of light tan - dark green clay/mudstone, acc. in class.		A	م پور	210	Smooth, waxy Buselt breken	e clasis have sliknsides shiny sufaces. nto ineq. dasts
81.0	24-6)	-	100 60	32%	•	P2 -R3	BASALT, Durk grey, fine grained, and -strongly ves. and views to lear 18 us., tractured, inundated in upper 40cm with dark green mudstone also in random zeles and ves.			ຍ. - ງ0	2-5	Random rough in mudstane i Slight limon	ineg, brecks, planar rough nundeted zone. Ite. at top.
8 6-0	2621	•	100%	22	-	R3	BASALT, Grey, fine grained, weak-mad. ves, and weggy to B-Oim, mad. strong-strong, S. W., fractured		学	70	7-10	1 m ()	ineg. breaks throughout.
91.0	27.74	-	100%	85%	-	R4	BASALT, AS Above but only weakly residuar, ves. To 0.5 cm, mudstone vein 3 cm wide at 26.3 an competent.			30° 90°	1-2		- ineg. rough joints
%.c	29·X		100%	59%	-	R 3	BASALT, As Above but reddish grey with dark green mudstone veins @ 28.11, 28.46m, infilling va becoming massive in lower 30cm, sus-FS.		Ħ		3-4 1-2	Random rough Huroughout	imeg. fractules

	KN	IGH	T AN		ESOL	D L	TD. EXPLODATORY DOLLING PEDROCK LOG PROJECT No. 1738
			NSUL T				EXPLORATORY DRILLING - BEDROCK LOG
	DA	TE_	JULY	30/	94		DRILL HOLE No. 94-143 REF. ELANGLE FROM HORIZ90° CONTRACTOR CONST CANADA BEDROCK ELBEARINGBEARING CORE SIZE HQ TOTAL LENGTHCOORDINATESN
	DRI		NG IN	F0.		• • • •	LITHOLOGY ROCK MASS DEFECTS
DePrit (H)	DEPTH (m)	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
101	30.78	1	100%	872		R 3	
lob	<u>32.31</u>		100%	732	-	R 3	BASALT, Massive as above to 29.6m, below mod. highly resicular and vuggy to 1cm, fractived, red- grey in lower Boem. BASALT, Dark grey-reddish grey, modstrongly yes, to 2cm, fine grained, mud. strong, sw-FS. dark green mudstone veins & 31 and 31.5m
(1)	33-83	-	100%	40 <u>7</u> ,	•	- R3	to Sca. Durk green mudstone vein @ 32.76 m, 6cm 1 10- 7-10 Gap 5-loimm at joints wide
แษ	35·35	-	1002	65%	-	-R3	BASALT, As Above but only dark grey, nudstone to be 3 As Above vein 3 cm @ 34.1m and 6cm dia @ 34.15m. The o-90 5-7 Grap 4-5mm. at junte.
121	36 86	•	1002	692		R3	BASALT, Dark greenish grey, weakly vesicular, ves. Bor 2: 3-5 As Above. Smooth planar/slidenside. to 2-3cm, swFs., dark green mudstone seem up to the bor 2: 3-5 As Above. Smooth planar/slidenside. Time 36-2m and locn @ 36-1m (R2)
126	<u> 38·4</u>	-	10%	82	-	23 74	BASALT, As Above, mundated with dark green (2) 80- 1-2 Kough integ fractives approx perp to mudstate in ves. and vugs to 37.4m, sw-FS, less 2 vesicular and more competent below. 20 1-2 mind stone on faces. Joint app 1-2mm
[3]	<u>39-92</u>	·	100%	712	-	R3 R4	to zem, incidated with dark green mudstone to 19/1-2 Joint gap 1-5mm.
136	41.45	-	100%	¥?	-	R4	BASALT, Massive, fine grained, acc. ves. to 6 mm 10 80- 1 Rough irreg rough planar, some slightly chloritized, strong, darker greyish green in 90 1 green muditare on fractures lower 20 cm 3 mm.
141	42.97	,	100%	792	- 		BASALT, fine grained, mod highly vesicular to lom 1900 B-10 Rough irreg. fractures approx perp to con occ. green muditare infill to resides, nod. strong, 2 10- S.W. 2-3 axis (drill breaks) and parallel to core S.W.
145	441)		100%	1002	~	R3 Ēq	BASALT, med strong As Above, becoming


						r -		
	KN		T AN				EXPLORATORY DRILLING - BEDROCK LOG	PROJECT No. 1738
	DA	ΤΕ _	JUL	Y 3	01/91	4	DRILL HOLE NO. <u>94-143</u> REF. EL ANGLE FR CONTRACTOR QUEST CANADA BEDROCK EL BEARING CORE SIZE <u>HQ</u> TOTAL LENGTH COORDINA	юм Horiz. <u>-96</u>
·	DRI		NG IN	IFO.		· 	LITHOLOGY ROCK MASS DEL	FÉCTS
(+) +1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DEPTH (m)	SAMPLES	CORE	R.O.D.	FOLIATION/ BEDDING	HARDNESS		CT DESCRIPTION se, roughness, infilling
186	56.(9		100%	952	•	R4	highly ves. ves. 5-lonm. Less ves massive in lawer boom occ. dark green mudstone in vesicles.	inits in weakly ves with joints in more competent ap 1-2mm.
191 -	<u>584</u>	-	1002	897	-	R4	Ves, Drick green midstone (R2) vering @ 56.3.m (30 cm) 1-2 As Above, 1 Rep. to core axis and between 56.3-56.7 @ 20°	Planat rough in massive Zone.
196	5) 74	-	92Z	912		R4	BASALT, Massive as above (locun) becoming increasing the 490 1-2 Planar rough in vestic weak-mod. F.S., strong occ. vesides filled 90 1-2 with rough in with rough in with rough in with rough in the date green mudstere (22)	n competent section reg in weak-mod. Some z our joint surfaces
201	<u>i-X</u>		100%	72]		R4	with the greenish grey entremely wathing test in the the Kough inter.	planar in more
							E.O.H. 201 ft (61.26 m)	

	KN	IGH'	Γ ΑΝΙ	D PI	ESOL	DL		INIC					00	PROJECT No. 1738
	 		NSULT	ING E	NGINEE	RS	EXPLORATORY DRILL	ING	-	BFD		<u> </u>	_06	SHEET OF 10
			т_Е					. EL					ANGLE FF	Rom Horiz90°
							CONTRACTOR QUEST BED	ROCK	EL	1.4		<u> </u>	BEARING _	
		JUEI) BI.		Durs	<u></u>	CORE SIZE HQ TOT	TAL LE	NGT	Ή <u>Ι</u>	0.5	<u>1 m</u>	COORDINA	TESN E
	DRI		IG IN	F0.			LITHOLOGY				· · ·	ROC	K MASS DE	FECTS
Ð	ŵ	S	RY		żυ	SS	ROCK DESCRIPTION		_ 12	LOG CTS	DEFECT ORIENTATION		DEFE	CT DESCRIPTION
DEPTH (H)	ОЕРТН (m)	SAMPLES	CORE RECOVERY	2.0.D.	A TIO	ARDNE	Weathering, structure, color, grain size,			HIC	FECT JTAT	LEN	Type, sha	pe, roughness, infilling
B	DEF	SAI	REC		FOLIATION/ BEDDING	HAF	strength, rocktype. Other comments.		25°	GRAPHIC OF DEFE	DE	POE C		
		·	~				GLACIAL TILL, light brown sandy clay with a coarse gravel, coboles and boulders	some				VIT.		
6	1.83	-	0%	-	-					-	-	-		
		_	1002	4.7	-	82	BASALT, dark gruy, mod. ves., fine grained, s mod. strong, becoming less vesicular to bot	N-MW		4	30	3-4	Rough ineq. jo	ints with some light brown to 2mm wide (Similar)
)1	3:35		10003	106						1			to Till above) joints with some light
16	4.87	-	100%	75 %	-	rs -r4	BASALT, As above to 3.7m, then extremely weak strong, S.w., fine grained, dark greenish grey, , competent	nore		Ŧ	30 -)0°	1-2	brown day i	joints with some light
			1 97	9/19		R3	BASALT, As above to 5.94 in then, reddish grey, strongly ves. + vuggy, fine grained, Sw-MW, occ.c	Mod -			60	1-2	Rough irreg. j	oints in readish grey zone
21	6.40	_	100%	746		I '					-70°	1-2	joints (1-2mm) and vesides
26	7.92	-	100%	692	-	K3 -R4	BASALT, As above, reddish grey to 6.8m - o less ves., fine grained, SW-MW, strong, light clay seam (RI) Zocm at 6.5m (clay/muditione	prown		A	90° 20- 60°	2-3	infill in joints	oints in reddish greyzone ht brown clay infill to and vesides with hard clay/mudstore (2-3mm), planar rough ht soft clay.
			1 00			R3	BASAKT, Dark grey-greenish grey, weak-extinueating ves. to B.3 m then mod. ves. green grey occas. red, SW-MW, strong	emely		F	70-	2 0	As Above u	with single undulating
31	9.45	_	100%	50%		-R4	grey occas. red, sw-MW, strong	sn		(F)	70- 90°	5-4	joint at 10° in <u>in increasin</u>	with single undulating in less ves, rough imagingly vesicular basalt.
36	10-97		00%	5%	1		BASALT, very weakly - mod., dark grey, vesice reddish grey at 10.5m with light brown day/ inundating matrix over 15cm, MW, strong			¥	10- 90°	2-2	Manar rough weakly ves. w	joints in more competent, ith rough ineg. in redush s (2-3mm)+ clay/mudstone
41	12.5	-	00%	206	-	K3	BASALT, very weakly ves. in top tocm, fractured the reddish grey inundated as above, mod. strong, Clay/mudstone in vesides and in matrix in place	, MW.		XXX	40 -60°	>10	Random Danar	-integ. fractures Top 40cm
	14.2		100%		-	R1 -R1	BASALT, weak ves., reddish grey nundated with light mudstone, at 12.6m, weak-mod ves. below, was 30	-brown mx/cm		1	50 -76°		Rough irreg. fra Planar - irreg	ct at mudstone/basalt control. rough joints, dau/
-76	14-00					PT	Calcite filled vogs at 13.5m, dark grey, M.W., mudston, BASALT, Dark grey, vuggy to 14.6m, 4cmx 4cm	(KI)		\square			mudsione 10	Smm on some joints. in viggy section trace
51	15.54	-	100%	48%	-	R4	BASALT, Darkgrey, vuggy to 14.6m, 4cm, 4cm calcite, fractured to 8-locm at 14.7m with trace light brown mudstone. Weakly ves. in lower	of Im.		×××	0-90		mudstone 41	monite. Fractured wide at 14.7m

							· .						•
	KN		T AN				TD. EXPLORATORY DRILLING		BED	ROC	CK	LOG	PROJECT No. 1738
	DA	TE_	ст[Асс вү_	} 7	2/94	<u>ه</u>		(EL	•			BEARING	Rom Horiz90°
	DRI		IG IN	F0.			LITHOLOGY	Γ			ROC	K MASS DE	FECTS
DEPTH (H)	DEPTH (m)	SAMPLES	CORE RECOVERY	R.Q.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT		DEFEC	FREQUENCY		CT DESCRIPTION De, roughness, infilling
56	17:07	1	100%	46%	-	R4	BASALT, Dark grey, fine grained, s.w., strong, occ. Vug to Icm at top becoming very weakly vesicular - massive below.		K	40° 2050	2-3		joints with some ing + mudstone on faces.
61	୫.୩	•••	୶ୄୖ୵	<i>U</i> 2		R1 -R4	BASALT, As above, fractured. Also some clasts to 5cm of light brown mydstone (RI), very weak in upper socm intermixed with fragmented basalt		Ř	0-90° 30-80°		faces	h - planar smooth joints own sandy day on
66	2.12	-	100%	762			BASALT, As Above (51-56ft) with fractured MW-HW ECAR at 19.1-19.4 m with 2 horiz. calcite veris to 3 mm, heavily limonite staned with fractizone + mudstone		R		710 1-2	Kough imeg. in limonite on Z ji	smooth joints in massive fractured zone, some platy pints between 19.5-20.1 m
71	2144	1	100%	536		Rq	BASALT Dark grey, file, fractured + linovite stand in top boom to 7cm clast size below weakly vesic, strong, ves. to 3mm occ. 5mm, SW-MW		××		1-2	Random Fractu Hanar smooth- limonite in ves	-rough joints, trace
76	23 <i>-</i> 16	1	100%	412			BASALT, Derk grey in top 50cm+lower 30cm, fine, modstrong S.W., weakly-v. weakly yes. interbedded with reddish grey mod. ves. f soft mudstone seams at 21.8-22.7m		A	0-90°		calcite infilled	dom fractives throughout fragments on faces, occas. vesicle and hairlivie vein
81	24-69	-	100%	642		R3 -R4	BASACT, weak-mod. ves., dark grey, fine, s.w., mod- strong, intersedded with light tan waxy mudstone, soft, broken between 23.4 and 23.55m		Ŧ		1-2	Planat rough with some mu infilling of ves	-integ in mod. vesic. Notione on faces, occos. . with mudstone + calcite.
86	26·21	-	60%	412	-	-R4	<u>BASACT</u> , weak-mod. ves. as above with occ. hairline mudstone vein (RZ)		X	90° 70-7°		Plange rough	-irreg. with reddish), very weak on faces.
91	27.74	-	00%	752		R3 -R4	BASALT, As above with highly vuggy zone of socm + dark green brown mudstone seam (RI) 25cmlong at 27.4m, some chlorite infill to ves.+ vugs	,		80 -90°	3-4	Rough ineq. in	joints in weakly vesic. vuggy zone, smooth mudstone, some limonite
%	29.%		100%	32%		R3	BASACT, Dark grey, mod-strongly vesic.+vugs, Sw. Fract greenist, brown mudstone soam 7cm wide at 29.15m with some infill to ves. with calcite. Basatt brownishgrey book		IJ	6-00	4-5	Rough irreg. jo with planar r trace mudst	pints in strongly vesic. bugh in mod. zone + one
101	30.78	-	1006	202		R3	BASALT, Dark greenish grey, massive, sw-mw, occos calate filled ves. in top 30cm. Brownish grey weak vesic. with locm mudstone vein, also on joint of 30.7m		MHM	40° 90	- r	Rough irreg. jo rough-smooth limonite on j	ints in weak vesic., planor in massive, trace oint faces.

			•										-
	KN								BED	ROO	скі	06	PROJECT No. 1738
	PRO		т_Е										SHEET 3 OF 10
	DAT	ΓΕ _	<u>Au</u>	GZ	2/99	ļ	CONTRACTOR QUEST BEDROC	K EL	·			BEARING	
1	DRI		IG IN	IFO.			LITHOLOGY	1	<u> </u>		ROC	K MASS DE	FECTS
depart (f+)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.Q.D.	FOLIA TION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	3 DEFECT 30 SPACING	GRAPHIC LOG OF DEFECTS	DEFECT ORIENTATION	FREQUENCY		CT DESCRIPTION pe, roughness, infilling
106	32:31)	100%	95%	1		BASALT, Dark greenish grey, fine, grained with occ. vesicles some infilled with solf year chlorite, greenish brown day/ mudstone vein (Icm) at 31.5n, SW, weak. vesic 31.35-31.5m	·		40 -90	1.		ints with some limonite stains ccas. in hairline fractures.
"	33 <i>6</i> 3	-	100%	74%	-		MUSIONE Vein (Icm) at SI-5n, SW, Weak. Vesic 51-35-31-5n BASALT, As Above, massive, accas. dilonte filed ves underla by greyish brown, sw, weak-mod ves. interbedded with light brown-green mudstane alsoin ves. in lower 70cm		<u>~~</u>	90° 0-%°	20	random rough (mustare interface	sive - drill induced with vactures and joints at basalf i.e. limonite in mod. ves.
116	35·LS	-	100%	472	-	R2 -R3	BASALT, Greyish brown-grey, Sw, weakly ves -vuggy (3cm at bottom socm. Upper 70 cm interbedded bosalt and mulstor soft, broken in veins and ves. all mod-highly fractured.) e 	1 AV	40 -70 90	5-7 >10	Rough random i but particularly limonite staining	rieg. fractures throughout in wayy section. Some, g in rock structure, acc. palitie
(21	36 <i>5</i> 8	-	100%	lad	-	Rf	BASALT, Dark grey Massive, fine grained, FS-F, strong frace brown sitty clay on only joint at 35.9m. Occas. soft chlorite infilled ves. to romm			80°	<1	Single rough drill induced.	imeg. joint, others
126	38 .4	1	100%	752	-	Rq	BASALT, As Above, F.S., vesicles to 5mm		I	70-9° 10° 60-9°	1-2	trace light bo	smooth joints with some g, black haentite and acc. own day/andstone
131	39.93	-	1002	886		r3 Fq	BASALT, AS Above, becoming more resicular with depth to mad. resic., res. infilled with talk and dark green chlorite day (38.75-39.78 m), waxy, empty res. in lower 15cm	ъ	Æ	10° 10-0	١	Planar pugh to occ. light bro mudstone on.	; rough integ. joints with num and cultontized day joints.
136	41.45		100%	982	-	23 -R4	SHSALT, Dark greenish grey, fine grained, weakly vesic., occ. Chlorifized day/mudstone to ves. and vein to Zcm. More vuggi in lower 60cm, F.S., mod-strong, competent		X	80 -}0°		Rough imeg. join	ts approx. perp to core rk. green vein 10-20° to
41	12.98	-	100%	52%	1	R4	<u>BASALT</u> , Dark greenish grey-grey, occ. ves. at top becoming massive, strong, fine grained, FS-SW, fractured along joints in lower Jocm		K	0-2° 70°	41 2-3	Fract. along joints occ. undulation mudstore infi	s planar rough-smooth, y, dark brown hard 1 to 3mm.
46	44.5		100%	762	-	R4	BASALT, Massive as above, occ. ves. to 2mm from 43.8-44.2m, extremely weakly vesicular.			lo°	<۱	Planar-rough j mudstone on su	ioint, dark brown hard inface, gap 1-2mm
51			100%	100%		R3. -R4	BASACT, Weak-mod. ves., dork green ish grey, FS-F, puritivitil around ves. + occas. chloritic mudstone (R2) in ves		~	80°-90°	<1	Rough ineg. fra axis, others a with mudston	dure opprox perp to core Ill drill induced some e area.

		ţ											
	KN								BED	ROO	CK I	LOG	PROJECT No. 1738
	DA.	ΤΕ _	ст <u>ғ</u> <u>Ас</u> р вү_	<u>फ्र</u> २	3/90	4	DRILL HOLE NO. <u>94-144</u> REF. EL. CONTRACTOR QUEST BEDROCK CORE SIZE <u>HQ</u> TOTAL LE	EL.	_			BEARING	SHEET_4OF_10 ROM HORIZ90° TESN
	DRI		NG IN	IFO.			LITHOLOGY				ROC	K MASS DE	FECTS
Дертн (ft)	DEPTH (M)	SAMPLES	CORE CORE RECOVERY	R.O.D.	FOLLATION/	HARDNESS		IO DEFECT		DEFECT ORIENTATION	FREQUENCY		CT DESCRIPTION pe, roughness, infilling
156	1755	-	1002	1002	1	144	BASALT, weakly ves massive, dark greenish grey, occ. chloritized modistone infill, F.S F, mod. strong-strong			90"	<i>4</i>		ced breaks, planar rough.
161	<u>49.9</u>	-	100%	932	-	R3	<u>BASALT</u> , Massive, as above			80° 70°	<	two joints at	reaks-planar smooth-rough 38.9m planar rough with one on joints, gap 5-10mm
166	506	-	100%	100%	-	R3	BASALT, as above		\leq	30° -40°	1-2	chlorite, also d axis. Natural j	-rough joints with trace hill induced perp. to core oint gap 3-4 mm
171	52·12	1	100%	ko2	-		BASALT, weak-mod. ves., dark greenish grey, some chloritized mudstone infill to ves. + thro matrix. Matrix inundated in lower- 20 cm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	45° 90°	1	Planar rough j sections, imp in chloritized	oints in less inundated g. stepped fracture at 52m mudstane(drill inducest)
176	<u>53</u> .7	-	100%	100%		R3	BASALT, As above becoming less vesicular in lower 50 cm			70°	<1	Drill breaks, p to planar smo Gap 2-3mm	lanar rough in mod. ves. oth-rough in massive, to some mudstone on face
181	55.17	-	lool	60%		_	BASALT, Massive, F-FS, becoming yes. in lower zoom with talc and chloritized mudistone infil		Å	ۍ ه–		Drill breaks, p	lanar - irreg rough. Joints er 30cm, planar smooth.
186	56.7		100%	632	-		BASALT As above top 30cm, then IIcm mudstone seam - weak-mod. ves. limonite stained, brownish grey, sw- mw, grey below, vugs to 2cm in lower 30cm		Ŧ	90° 10°	1-2	lo, limonite	Fract. in vesic. sections axis. Planar rough at. stained irreg rough contact.
191	58.21	-	732	33%	-		BASALT, AS above to 57.35m, SILTSTONE-SANDSTONE greenish brown-brownish red sitty sand, trace gravel, dense well industrated, breaks easily, fine		#	103° 20	1-2	As Above in B sediments, possi to core axis	asalt, Rough ineg fract. in ble drill induced at 10-30
196	59.74	-	02		-	-	<u>sAND/silt</u> , Zero recovery, most likely sequence washed away.		-	-	-		
Zelo	62·78	-	02	-		-	SAND/SILT, AS Above		-	-			

	KN		T AN				EXPLORATORY DRILLING - BEDROCK		PROJECT No. 1738
									SHEETOFO
					$\frac{H}{2}$		DRILL HOLE No. <u>94-144</u> REF. EL		
			<u> </u>				CONTRACTOR QUEST BEDROCK EL		
	LO	GGEC) BY_		GSA	-	CORE SIZE HQ TOTAL LENGTH	COORDINA	TESN
	DRI	LLIN	IG IN	FO.	·			CK MASS DE	FECTS
оертн ((4)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.O.D.	FOLIA TION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFEC	CT DESCRIPTION De, roughness, infilling
256	78·3	1	87%	767	-	IK3	Fatoritized mudstone (RI-R2) at top, scapy, clusts 1-5cm	Kancom Class	s anar-rough-smooth with mudsome visable.
261	79.55	-	862	222	-	R3	ASALT, limenitic, HW top Scm undertain by fract. loose 0-90 750 normanise, muddone as above to 78.48m. Weak-mad. 0.90 750 2510. below, mod strong SW+further soary mudstone.	 Random irreg. f Rough irreg jo 	rect to clasts 1mn-Scm int, scapy mubstone
266	8157	-	100%	652	-	R3 - P4	HSALT Similar to 11.95-75.46 m, S.W. me vesic. filled with chloritized day/mudstone 20 [1-2 with dark green vein at Boill m	L brown infill Dr rough wint at	ling rough joint with hard ill breaks go, planar dark green seam.
271	82.6		100%	lago	-	K3 -R4	ark green chloritized mudstone veins at 8153m 80 1-2 hcm) and 81-73m (3-5cm) also in zones	2 interface. Dill of dark green	joints at mudstone/basalt, breaks, show high content mudstone throughout.
276	84.12	-	100%	lado	-	R3 . -R4	HSACT, As Above becoming fine-med.grained seenish grey massive in lower 30cm, mod Strong, SW-FS	Kough ineg. joi rough ineg coe smooth intact	int in vesic. zone, one n fract + one planar joint in massive
27B	84.R	-	100%	70%	-	RI- RZ	ASALT, As Above, F-FS., fractured und mundated 40° 1 n lower 20 cm with chloritized mudstone. (RI-R2), S.W., Similar to 71.93-73.46m	Rough imeg fra clay, zone u below	ct at top of chloritized with random fractures
83	£.£	-	100%	100%		R3 ⁻	ASACT, As Above, inundated with dark green Nontic mudstone in upper form also mudstone 80 1 eams 6-7cm at 85.5m and 4-5cm at 85.6m (R2	Drill breaks axis. Basatt/n 90, rough	approx. perp to core mudstone contact also irreq.
28 6	87.17	-	100%	loge	-	R3 -R4	ASALT, As Above, dark greenish grey, fine grained ad vesic., FS-F, strong, opc. tale, filled ves. + Agirline vein of chloritic mudsione	Planat Smoot	h joint at 86.9m with mudstone. Hairline) smooth vires.
291	7-88	_	100%	100%		R3 -R4	ASALT, As Above, weak-mod. vesic 40 0 90 1	Planar rogh	joints in weak yesic smooth where chloritized present.
296	30·U		100%	902			ASALT, AS Above, interbedded with turgouise een-dark green mudstone/scopstone (R2) and within atrix (10-30 cm) at 88.9 m, (9 cm) 89.7 m (4 cm) 90 n + -90° 1-2	Drill induced to 2 interface. Sme	preaks at basalt/mudstone with imeg. fact. and basalt, request mudstone.

		-											•
	ĸN		ANI				TD. EXPLORATORY DRILLING	3 -	BED	ROC	CK I	_OG	PROJECT No. 1738
	DA1	ΤΕ _		NG	- 4/9	94	E DRILL HOLE No. 94-144 REF. EL CONTRACTOR QUEST BEDROC CORE SIZE HQ TOTAL	K EL	•			BEARING	SHEETOFOF ROM HORIZ90° TESN
	DRI	LLIN	IG IN	F0.			LITHOLOGY	Т			ROC	K MASS DE	FECTS
DEPTH (H)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT	APH 2 APH	DEFECT ORIENTATION	FREQUENCY		CT DESCRIPTION pe, roughness, infilling
301	91.74	-	100%	74%	_	R2 R3	BASALT, As Above becoming vuggy towards bottom, vug to icm, mod. vesic., frequent chloritized mustane thru matrix with 6-Bin vern at 20.5m, broken, baself, F	s.	\$/{	88-0		ineq. joints, in	ves in mudstone vein, wigh ves. + vuggy section with mudstone on surface
306	<u>93.27</u>	1	levi	866	-	RZ Ŕ3	BASALT As above but weakly vesic. towards bottom. Chloritized mudstone veins from hairline to Icm throughout.		F	30- 50°	1-2	Joints along : green, mudst smooth areas	seams and veins of dark one planar rough but s & mudstone
313	95.4	-	100%	902			BASALT, As above, less mudstone veins, becoming vuggy at bottom infilled with quartz.		IF	10 -50	1-2	Joints rough	ineg. with veins also.
316	<u>%</u> .32	-	1002	A1000 202	•	R2 -R3	BASALT, As Above, fractured along cone axis, mudston on face + hairline veins, some quartz, tale infile vesicles + vugs	e S	}	0- 10°			oreaks along verns and nudstone (weak).
ડય	97.84	-	602	532	-	R3	BASALT, As Above, F.SS.w., fractured, fine-mel grained, dark greenish grey.		X	30 -90			us intact hairline joints, mooth Imm fractures.
;26	<u>99.36</u>		100%	782	1	RZ	BASALT, Dark grey, fine grained, extremely weakly ves -massive, occ. cylonte/talc. infilled, yes., F.S., mod. strong, more competent, v. little mudstone in matrix		X	30° 30- 50	2-3	Chlorite/falc in gap others p chlorite stam	illed joint, rough irreg, lmm lanar rough-smooth, ng on face (R2)
331	l∞•88	-	1002	55%	_	Ŕ5	BASALT, As above, no vesicles, chlontized, Fres	h	X	60°		Soft chlorite/ta	c 5-6mm on joints planar + irreg. smooth with ing
336	162.41	-	∞%	872	-	-R2	BASALT, As above		K	60-70° 30-60°	2-3		
341	13.94	-	100%	662	-	-R5	BASALT, As above			20-30°	1-2	As Above	, undulating.
346	105-46	-	100%	loo?		R4 -R5	BASALT, As above			60 40°	1-2	As Above	-

														•
	KN		ANI				TD. EXPLORATORY DRILLING	; –	B	EDF	207	K I	_OG	PROJECT No. 1738 SHEET 8 OF 10
	DA	τε _	ст <u></u> А ВҮ_	UG	5/9	4		< El	L				BEARING	ROM HORIZ. <u>-90°</u> TESN
	DRI		IG IN	F0.			LITHOLOGY	Τ				ROC	K MASS DE	FECTS
⊳ €Ртн (н)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT	30 SFACING 100 (cm)	GRAPHIC LOG OF DEFECTS	DEFECT ORIENTATION	FREQUENCY	Type, sha	CT DESCRIPTION pe, roughness, infilling
35	106.98	1	100%	802	-	55	BASALT, AS Above			X	30 -50°	1-2	As above, so joints with 106.7m, s	me chlorite staining on chlorite infilled vugat soft infill.
356	108.51	•	100%	84%	-	1	BASALT, As Above			Y	4°° 20°	1-2	As Above	
:61	110.0	-	100%	72%	-	rz R3	BASALT , As Above becoming mod vesice vuggy below with Jork green chloritized mudstone zone 109-109.2m + talc infilled ves. Less vesicular in lower zocm (R3)			\leq	70- 90°	2-3	Rough and irreg. with irreg. sma (RZ) at 90 T.C.A.	fractures in vesic zone roth drill breaks at mudstone Rough irreg. contact.
:66	NI-56	1	100%	45%	-		BASALT, Dark greenish grey fine-med. grained, mod. vesic fract. + mudstone zones within matrix, s.w., some talc., closed week joints in upper focm, mudstone (R2)				20-70°	7-10 5-10	Curved and w top becoming r Joints show g	dulating smooth joints at ough - v. rough irreg. below igns of mudstance present.
371	113-09	-	100%	808	-	R3	<u>BASALT</u> , As above but less fractured and vesicular towards base, more competent.			\geq	70-90° 50°	2-3	Rough-V. rough in basalt/mudstone mudstone. Plano Vesiculor	vesic. zone + contact of Fractures generally at is smooth - rough in less basalt
576	114-6	1	88 Z	576		-	BASALT As above to 13.2m. <u>GREYWACKE SANDSTONE</u> greenish brown, S.W., weak, I monite staming to 113.9m CONGROMERATE of loose subangular - well rounded		171000		30-60° cc 30°	3-4	Planar rough and sandstone joints in sand	contact between besalt at 113.3m. Planar suboth stone with limbnite.
							and subrounded poorty graded gravel, cobbles some sand set in sandy natrix, classis Imm-Jcm							
ଞ	115-82		Appex lasto	257		-	CONGLOMERATE, Loose cooles and growed with occ. boulder, sub R-Rounded, s.w., clasts 1-locm no fines necovered			-	-	-		
86	17.65	-	Approx Bob	06		-	congromerate, AS Above but fines recovered, greenish brown sand partly inducated with weak wackestone/conglomerate at 117.5m			-	-	-		ς.
,91	119.18		A ffrox 10026	8Z		-	CONGLOMERATE, As above, weakly inducated year grey subR-SubA gravel+ coboles in sand matrix fractured, some mudstone, poorty sorted.			-				

	KN		T AN				TD. EXPLORATORY DRILLING	-	BED	ROC	CK I	_0G	PROJECT No. 1738 SHEET 9 OF 10
	DA.	TE _	A	UG	- 5/	94	DRILL HOLE No. 94-144 REF. EL. CONTRACTOR QUEST BEDROCK CORE SIZE HQ TOTAL L	EL.	· <u></u>		.	BEARING	ROM HORIZ. <u>-90°</u> TESN E
	DRI		IG IN	IFO.			LITHOLOGY				ROC	K MASS DE	FECTS
DEPTH (H)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.Q.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT	GRAPHIC LOG	DEFECT ORIENTATION	FREQUENCY		CT DESCRIPTION pe, roughness, infilling
3%	1207		Approx loo %	0%	-	-	CONGLOMERATE, As above, slightly more cobbles		-	-	-		· ·
1 01	22.72		Approx 100%			-	CONGLOMERATE, As above with red and grey boulders		-	-	-		
66	12375	1	Aprox 728	0%		-	CONGLOMERATE, As Above but excluding boulders.		-	-	-		
11	125.77		Аррюх 1002	1		R2 -R3	CONGLOMERATE, As Above to 124m. <u>ARGILLITE</u> Dark greenish grey-black, very fine grained, SW-MW, weak-mad.strong, laminated, calcite, mad. fractured		11	10-2°	>10	All joints plana sate like appe on joints, c	r smooth-slick., shiny carance, white dusty substance alcite
45	126-49	-	100%	5 %	0	122 TR3	ARGILITE, As above, highly fractised into angular fragments 3mm to 3cm in upper 60cm becoming more competent below, SW.			60-90 60	>50 5-10	- smooth, slig white hairling	es at top. Planar rough ht slick joints, numerous e calote veins at joints
4 20	128-2		1002	632	lo	102	ARGILITE, As above, more competent, high calcite content in frequent veins from hairline to Ichwide. Highly fractured in lower socn, S.W.			50°	2-3 >15	Fractures in up smooth-slick some slicks	er goom are planar along calcite veins and below. Weak along veins
155	1290	-	60%	02	12°	rz -r3	<u>ARCHLUTE</u> , As above, highly fractured, s.w.		X	0-90	>20	Random Fractic planar to in	eg. smooth/slicks below. calcite veins
131	131.37	1	100%	o	0- 10	rz -R3			X	0 90		Random fracti -iney. rough Weak alon	uith, some slicks. g calcite veins.
Zo	32.81	-	100%	26 Z	ອຶ	-R3				0000		As Above	
141	134.02		1008	3 4 %	2.	R2 -R3	ARGHLITE, As above but darker with slight reduction in calcite conterl		H	_0_0	4-5 7-8	As Above	- •

							•							
	KN						TD. EXPLORATORY DRILLING	, -	E	BED	ROC	CK	LOG	PROJECT No. 1738 SHEET 10 OF 10
	DA'	TE _	ст <u>f</u> <u>A</u> () ву_	JG-	6/9	4	DRILL HOLE No. <u>94–144</u> REF. EL. CONTRACTOR QUEST BEDROCI CORE SIZE <u>HQ</u> TOTAL I	< El	L				BEARING	NOM HORIZ. <u>-90°</u>
	DRI		IG IN	FO.			LITHOLOGY	Τ			·	ROC	K MASS DE	FECTS
0ертн (#)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.O.D.	ц а		ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.		200 (CM)	GRAPHIC LOG OF DEFECTS	DEFECT ORIENTATION	FREQUENCY	Type, shap	CT DESCRIPTION 08, roughness, infilling
50.50	137.31	-	100%	67%	15- 20°	R3 R3	ARGILLITE, As above but more competent with a reduction in calcite veins, dark grey/black to 136.24 contact, becoming light grey, fine, weak-mod. Strong.		\prod		20-50° 6070°	1-2 3-4	Joints in Carky slick with call planar rough	er material planarsmooth- cite on faces, frequent in lighter zone
156	38.99		100%		12- 25°	RZ -R3	ARGILLITE, Dark grey/black as above with high calcite content but more competent, calcite veins 1-3cm wide			X	50-60 10-60	5- 10	Planar, smooth rough, irreg. st calcite, on	-slick. joints with some nowing party slicks. faces.
1 61	40 ^{.51}	-	100%	ol	12- 25°	R2 -R3	ARGILITE, As Above			X			As Above	J
<i>2</i>	,						End of Hole 140.51 m (461 ft)						· · · · · · · · · · · · · · · · · · ·	
													··· · · · · · · · · · · · · · · · · ·	
												 ·		

							•							
	KN						EXPLORATORY DRILLIN	G -	E	BED	ROC	CK I	_06	PROJECT No. 1738
	DA	ΤΕ _	ст Ач Э вү_	<u>)</u> দি	8/9	94	DRILL HOLE No. 94-147 REF. EL CONTRACTOR QUEST BEDRO CORE SIZE HQ TOTAL	CK EI	L				BEARING	Rom Horiz
	DRI		NG IN	IF O.			LITHOLOGY					ROC	K MASS DE	FECTS
Dam (H)	DEPTH (m)	SAMPLES	CORE RECOVERY	R.Q.D.	FOLIATION/ BEDDING	1	Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT	30 SPACING 100 (cm) 300 (cm)	GRAPHIC LOG OF DEFECTS	DEFECT ORIENTATION	DEFECT FREQUENCY		CT DESCRIPTION pe, roughness, infilling
n	3.75		23%	07.	-	-	GLACIAL TILL, Loose growel, fine+ coarse, sul angular and subrounded plasts with occ. cubble, brown simdy clay, cubbles in lawer zoom	»-			1	-		
(6	4.88		ÍcoZ.	397		-	GLACIAL TILL, brown sendy chy, some ang. sub-ang. growel, trace could dense, with durk brown baselt fragments with chy infill mulstere low:	- +5					Matrix Su	ported
21	64	1	Ioul	07.		R3	massive, mat. strong, sw-mw with grey-greenis			\sum	2: -16		high iney. fi infill, gap 3.	s.nn
ZÚ	<u>192</u>	•	847	34?	·	R3 53 -54	BASALT Fine-mell grained, dark grey, V, werk ves, mod. strong, Sw-Mw, interberber with 15cm zone of greyn still day, trace sind at 75m.	۲ •		\sim	60-20		to iney. Scille b	n top 24cm, planer tech asult contact reigh-planer newschy wfill to junite
31) 45	·-	ko Z	(4%		R3	infilled ves, Sw, some callite in reck, not interkil				7050	3-4	Planar rough Lay infill to gap 1-3.mm	fractures with some hown hactures unit on faces,
36	10.97		ko%	8%		R3	BASALT, As Above, dark grey, competent massing withite phonos, SW-FS.	ie,		Ł	60 ki	1-2	Plang- rough slight limpigit	joints 1-2mm grip with 2. Orc, heir rline vein of
41	12:5	-	100%	982		R3	BASALT, As Above but fine grained, F.S., jointed			$\boldsymbol{\lambda}$	40° 50-, 70	3.4	As Above wit	h ccc. planar sincoth ting (Imm a-less)
46	4 02	·	100%	962		R3	BASALT, AS Howe, F.S SW			$X \mid$	55	4-5	Planar rough-s joints, exc. has vein (20°), linn a	Hooth, trace chlorite on Hime yeins. Obligue Just sup in tight joints.
	15-54		100%	80%		R3	BASALT, AS Above			≤ 1	001	4-	As Above, Co lower section	alcite veins te laman occas, tight joints dam
56	17.57		10cZ	70%		R3	BASALT, As Above			A	20-	2-3	Planar singott some intact, i infill gap 1-2,	n joints, occ. planar raigh with chlorite/calcite

							•					
	KN		F ANI				EXPLORATORY DRILLING	-	BED	ROC	CK I	LOG PROJECT No. 1738
	DA	re _	т_ <u>ғ</u> Ач вү_	UG-	8/90	ίŧ	DRILL HOLE NO. <u>94–147</u> REF. EL. CONTRACTOR <u>QUEST</u> BEDROCH CORE SIZE <u>HQ</u> TOTAL I	CEL.				ANGLE FROM HORIZ90° BEARING COORDINATESN
	DRI	LIN	IG IN	F0.			LITHOLOGY				ROC	K MASS DEFECTS
Depril (H)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.Q.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT	GRAPHIC LOG	DEFECT ORIENTATION	FREQUENCY	DEFECT DESCRIPTION Type, shape, roughness, infilling
61	18·59	1	100%	74%		R3	BASALT, As Above, ccc. soft infilled vesicles, white, some grean talc.		K	234.	<i>z</i> -3	Planar singoth and undulating smooth -rough joints, some intact, less jointed than above, gap 1-2mm.
66	20.11	1	100%	48%	•	R3	BASACT, As Above		A	50° 0-40° 52 60	3-5	
7(21.64		100 K	732	!	R3	BASALT, As Above		AT A	30° 22° 90°	i-2	Planar smooth-rough with tale on joints and trace chlorite, grp 1-2nm
7L	23-16		loolo	liol	-	• •	BASALT, As Above, fine grained, dark grey, F.S. mod-strong-strong, F.S., massive, more competent		X	10-75° 90	41	Planar rough junts 2-3nn wide infilled with greenish white suffiction.
81	24.69		100%	88Z	!	-124	BASALT, As Abeve, Sub-FS.			°15° 80°	<	Planar smorth langitudinal joint ham wide infilled with white hard infill crystalline, planar smooth at bettern.
86	zi 2 1		100%	102	-		BASALT, As Above, F.SFresh		\geq	70 -72	0	Drill housed breaks any approx. peop to come axis + one lit 70°
91	27:74	-	1007	00%	i		BASACT, AS Alasve			70° -9°	0	Drill induced breaks only Planat smooth-rough
96	29 J.		(00Z			КY	BASALT, As Above			.90°	ο	As Above
icl	30-78		100%	loc7	-	124	BASALT AS Above			80° -40	0	As Above
106	32-31		1002	60%	-	R4	BASALT, As Abure			.70° -9°	0-1	Single planar-sincoth joint, all others drill induced.

							•						•
	ĸN		T AN				TD. EXPLORATORY DRILLING	. -	BED	ROO	ск і	LOĜ	PROJECT No. 1738 SHEET 3 OF 7
	DAT	ΓΕ _	т <u>f</u> <u>Aug</u>) вү_	-8	4 9	/94	CONTRACTOR QUEST BEDROCI	KEL.	<u>.</u>			BEARING	SHEET 3_OF /
	DRI	_L.IN	IG IN	F0.			LITHOLOGY				ROC	K MASS DE	FECTS
0epm (ft)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT So SPACING	GRAPHIC LOG	DEFECT ORIENTATION	FREQUENCY		CT DESCRIPTION pe, roughness, infilling
LÜ -	53 B3	1	100%	loc%	•		BASALT, As Above, infilled vug 3mmx 6cm cit 33. Everitz, occ. Imm vesicles in lower Boom.			goʻ	- ن ا	Dill induced sinocth appro	breaks, planar rought on peop to are axis.
ու	35 X	-	loo K	lo k	•	124 -R3	BASALT, AS Above to 35.1, becoming mod-strongly Ves 4 Vuggi, ugs to low 1-5cm, mundated with green chloritized clay/muchtone in lower 15cm			?⊂" :×~?!		in vesicular	
iZ(¥: 1£	-	lav Z	922		R3	BASALT, Dark grey, Med strenging, Ves. + Virging Sivi, Fine, Mcd. Streng, Zones of Jark green chloritize chymudstone thru, natrix and boom zones tep + bottom		<u>}</u>	80 70"	1-2	Rough integ f interfaces, dri sections, muds	roctures at mudstene/basaft I breaks in less mundated tone slick - imeg fract.
126	¥2.4	-	862	782		R2 -R3	4-9cm at 37M also invitating matrix in lower Such , mudstone (R2)		NY	4090		Keigh ineg-din	smooth-slick fract. at a interface lop + bitten I breaks and in vesicular
1.31	39.53		100%	¥2	+	R3	BASACT, As above, invalided with green writing they multitude this matrix in upper Tocan reducing to zero.		$\langle \rangle$	ີ ອີ	1-2	basalt, rough	-sucoth fract in northfall ineg contact. Doll brecks
136	41.45		100%	100%		R3	BASALT Dark grey, fine grained weakly us intop Im becoming less massive, Sw. some quarte infill to ves. and occ. waxy mudstone, seam at 40.8.4 (1-3.m)		N	7c−j¢ 50-0	١	Dirill breaks a planar-ineg hudstore/basal	rily in werk ves with in oth in massive (241/10) t contact rough imeg
14(2.38		100%	972		l3	BASACT; Dark grey, time, As Above		X	`70° 20°		Manar rough	n jouits, Imm, some haufine vein of green
'46 <u>(</u>	14-5		1002	90%		R3	BASALT. As Above becoming more vesicular in Tower, locin and invidated with dark green chloritized chy/waxy mudstone.		À	10° 40°	2-3	Planat Dugl hairline joints Zopen somts in	, to image rough intact , mudstone infilled to Imm, nm, rough imaginum dated
151	16 r		1002	80%		R3	BASALT, Dark givy, mod vest fine, Sw. invitated with mudstene top Social Below occ. vein to low with hairline veins alorgicinits. Occ. mulstere below 45m		Z	80-1 45° 10	2-3	Rough imeg so	inacth mudstate fract in inar rough less inaulated 2-3m 451-454 cm
156	17.55		౹ఄఄఀఄౢఀ	56%	-	RZ	BASALT, As Above, Sw-MW, brownish green mudstane infilling viggs (1-3cm), weakly ves. in lower to cm.			40-55 0-X°	3-4	koigh iiteg., d daviar smooth Randein jeints	ight limainte-med. fract - rough in werk ves. intact + broken 46.1-47.1.

														•
	ĸN		T ANI				TD. EXPLORATORY DRILLIN	IG	_ (RFD	ROC	:К I	06	PROJECT No. 1738
	DAT	DJEC		FIS	sH 4 9/9	4 4	DRILL HOLE No. <u>94–147</u> REF. E CONTRACTOR_QUEST BEDRO	L	εL.,				ANGLE F	
	DRI		IG IN	F0.			LITHOLOGY			<u>-</u>		ROC	K MASS DE	E EFECTS
(H) €€₽74(H)	DEPTH (M	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATION/ BEDDING				So SPACING	GRAPHIC LOG OF DEFECTS	DEFECT	FREQUENCY	DEFE Type, sho	CT DESCRIPTION upe, roughness, infilling
1ċ1	49.c7	-	1006	24%		R3	BASALT, Dark grey, fine MW-SW, fractured, we vesticular, weithered coloite on joints, trace	úK		X	90 10-25	2-3	weathered c	ich, limcivite stained, alcite 0-10" with planar
(L.	ño (u	1	597	ひて	 90°	R3 R2	BASALT As above to 49 4m - greyte brown med to strongly ves to 49 6m. Below greenish brown SILT/SANDSTONE, dense, friche, not folly recovered we	$\frac{1}{2}$		Ľ	0-26 72-55 96	r	As there "	Basalt. Dill breaks perp. to cone anis ling.
171	52.12	1	Approx 50%	+	-	-	CARAVEL, loose conse + fine, some couldes, ter sandstare classs, all classs round - subrouve, trai coarse sand, no fines recovered.	دو دو		-	-	-		
177	ናንንን	1	Approx 72%	i	·	-	sandstone dasts.			-	-	_		
181	55.17		Арта 652	į	-	-	<u>GRAVEL</u> , As above			-	-	-		
186	56 (5)	i .	Appax	ļ	-	-	GRAVEL, As above			-		-		
91	57 <u>8-22</u>		Approx 832	42	86°	22	1.			N	400	2	Dirill induce along beddin chlique fra	I breaks cally in clayetime my No mitural defects ture for
96	<u>574</u>		822	8 <i>1</i> Z	90°	R2	GLACIOLACUSTRINE SILTSTONE-CLAYSTONE, AS above, varued silty claystone, soft clay in bottom 4-5cm	n		-	-	-	Dirill induce	ed breaks only along les, planar slicks
'o\	61.2.	1	1002	ivol	9°	RZ	As Above, more clayey, very fixe, weak						As Above	
206	i <i>2-1</i> 9		100%	looZ	z°	RZ	As Above, becoming denser with depth			-	-	-	As Above	

													·	
	KN		ANI					3 -	· E	BED	ROC	κ ι	_OG	PROJECT No. 1738 SHEET_5OF_7
	DAT	ΓE _		Ð	9/9	q		K E	L				BEARING	rom horiz. <u>-95°</u>
	DRI	LIN	IG IN	F0.			LITHOLOGY	Τ				ROC	K MASS DE	FECTS
DEPTH (H)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	B DEFECT	30 SPACING	GRAPHIC LOG	DEFECT ORIENTATION	DEFECT FREQUENCY		CT DESCRIPTION pe, roughness, infilling
211	64.31	1	1002	60Z	84°	122	As Abeve			ļ		l	As Aben	e
216	<u>(158</u> 4	i	1002	lar	90°	RZ	As Abeve				-		As Abov	و
221	<u>.7.X</u>		60T	60%	90°	RZ	As Abeie	_			-		As Abo	ve
276	<u>68</u>		58Z	582	80°	RZ	As Above						As Abo	ve
236	71.93	-	02		-	-	SEDIMENTS , Zero recovery, most likely sand as below wash away from sequence	2		-	-	-	No Re	Lovery
241	<u> 73.4</u>	-	302	ΰZ			SANDSTONE, trace greenish brown fine scind weak sandstone to 72.7m. Mod. inducated but weak, large gravel with some sing CONGROMERATE	_ []]		·	~		Cit 90° to co beilding but	bientkis in Sandstone re cixis, possible not euclent.
248	Í		Дргсл 422		-	-	CONGROMERATE, losse gravel, coarse+fine, tra cobble, subround-rownl, heterolithic. No fines recovered.			-		-		
.53	17-11	-	Appr× 1006	3.E	-	R3	CONGLOMERATE losse gravel as above, have greans sind to sindy clay, to 76 6m Below <u>BASALT</u> , darkgie fine Massive mod strong, S.W. occ. ves. Zum-1 cm	5 []] K		=	90°	1-2	Flanar rough c	nil breaks in baselt.
256	1 8ન્ટ		667			R3 R2	BASALT, Stick grey, med. grained, massive - y. was ves., S.w., much strong + dark green warry mudstone in lower loca, weak. Trace CONSTUMERATE 77.6-71.91			<u>>_</u>	τως 90	1-2	Manar reigh a zo limonite : irreg sincole	Irill breaks at top with tament joint. Planar - Contact (90)
251½	16.5	·	Apprex 100%	0Z		-	CONGLOMERATE, Locce gravel to 78 1m underlain builder-bailder size. <u>Basalt</u> to 78.5m			-	-	_		

	KN		ANI				TD. EXPLORATORY DRILLING - BEDROCK LOG
	DAT	L 31	т_f 4uG- вү_	9	& IC	s/94	
	DRI	LIN	IG IN	F0.			LITHOLOGY ROCK MASS DEFECTS
0 <i>e0</i> r#(ít;)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.O.D.	FOL	HARDNESS	
-261	19. 5 5	j	April 100%	617		R3	ves, su, massive with green write indicative -40 rough integ fracture in random zone
U	थ क	ĺ	88Z	55 <u>%</u>		23 RZ	BASALT. As Above in top 30cm. <u>Constructionerate</u> , 1 Hanar reigh drill breaks in massive r zoom fract, core, round baselt clasts + irreg clasts to, 1 Hanar rough drill breaks in massive r 25 mm with dark green chloritized day; green sund 1 4070° 1-2 rough mudstone Ansalt antact
272	82.9		100%	212			Below BASALT, dark grey-greenish giey, week ves-massive with 20-300m of green clay/metstore week. Consider MERATE Interbedded zones of massive, week ves, highly fract. + heterdithic bose growel + cobples reactived zones two, dasts set in mulsione, Massive strong 1 200 200 200 200 greenish grey.
	8412		1002		i	- R4	Constromethine, As above, highly fractived + weathered, broken dark green mudstone. Massive // Ho green mudstone on face. All stained
281	<u> 856</u> 5	-	100%	54%		- R3	CONGLOMERATE, As Above to 84.7m with some grean the Reverse of the As Above, and joint 1-2nm, Drill breaks, this in massive zone. Mudstone/basilt citat above set in measure zone. Mudstone/basilt citat
							grey massive <u>BASALT</u> , fine - med. grained, S.W. , noch.
تور.	8747	-	100%	lost		-R4	CONGLOMERATE 65-9-66.5M, BASALT, massive 17 30.6° Rayhines fract. at centret of course-clast as above interbulled with greenish grey sandy. CONGLOMERATE with grevel + coldes well inducated 500 30° Sincoln, mudstale planat suboth-slick. CONGLOMERATE dock greenish area well inducated 400 45 above with curved planat
291	<u>88-7</u>		100%				CONSTRUMERATE dark greenish grey well industed. R, S. b.Z., angular- heterolithic gravel + colles in multiantion 20- Multix, porty seried, R3, passilt, jointed in lower 2cm 20- CONSTRUMERATE, As above, weakly inducated that.
.96	9022		Approx 100Ze	2076		K3	Clasts heterelithic, trace green saind and mudstone 1/20 1/20 1/20 throughout.

-

		SULTI				TD. EXPLORATORY DRILLING	, –	BED	ROC	K I	_0G	PROJECT No. 1738 SHEET 7 OF 7
DA1	Γ Ε _	_A.	JG-	10/9	if	DRILL HOLE NO. <u>94-147</u> REF. EL. CONTRACTOR QUEST BEDROCH CORE SIZE HQ TOTAL I	KEL.				BEARING	
DRIL	LIN	IG IN	F0.			LITHOLOGY				ROC	K MASS DEF	ECTS
DEPTH (M)	SAMPLES	$-\frac{4\pi}{10\pi}02\frac{1}{10\pi}$			HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT	GRAPHIC LOG	DEFECT ORIENTATION	DEFECT FREQUENCY		T DESCRIPTION e, roughness, infilling
31-74	1	Approx last	0%	ļ		CONCREMERATE As Above		Ê	0-X°	>20	As Above	
37		A		•	-	CONGROMERATE As Above			0%	720	As Abave	
4-79	İ	Appex 100%		•	-	<u>CONGROMERATE</u> As Above, some mod. ves. basalt, weathered		X	0-9.5	720	As Above	
						End of lide at 94.79 m (311 ft)						
												·
							┃ ┃ ┃ ┃ ┃					

:) :.			•							
	ĸn		F ANE				TD. EXPLORATORY DRILLING	j -	- [BED	Rọ	CK I	_OG PROJECT No. 1738
	DAT	Έ_	т _ Е Ац вү_)G.	<u>p/</u>	94	$E \text{drill hole } \text{No.} \underline{94-148} \text{ref. el.} \\ \text{contractor} \underline{QUEST} \text{bedroch} \\ \text{core size} \underline{HQ} \text{total i}$	くΕ	L.				ANGLE FROM HORIZ% ° BEARING COORDINATESN E
	DRI	LIN	IG IN	F0.			LITHOLOGY	Τ				ROC	K MASS DEFECTS
DEPTH (Ft)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	30 DEFECT	Se SPACING	GRAPHIC LOG OF DEFECTS	DEFECT ORIENTATION	DEFECT FREQUENCY	DEFECT DESCRIPTION Type, shape, roughness, infilling
3-7	1.14		٥Z	-	~	1	<u>OVERBURDEN</u> No Core Recovered						
8	2.44	~	Аррга 10076		-	. 1	OVERBURDEN, Brown silty clay, trace sand, and, grouped and codules, subangular - subrounded			-	-	-	
12	3-66	-	Aparx. 472	-	-	~	OVERBURDEN, GLACIAL TILL, As Above with soft sitty clay, trace sand matrix, partially intact.			-	-	-	
15-5	A-72	~	Аргох. 752	-	-	-	<u>GACIAL TILL</u> , As Above, more competent, stiff-v.stiff, well indurated			-	~	~	Drill induced breaks in stiff-v.still till, approx. perp to core gris, otherwise.
21	640	-	100%	-	-		GLACIAL TILL, As Above, competent, stiff-v stiff, well indurated			-	-	-	Drill induced breaks approx. perpito core axis, otherwise intact.
26	7.92	-	1w2		-	-	GLACIAL TILL Brown Clayey sand, trace silt, and gravel and coboles, subangular-subrounded v. stiff-bard, competent, well indurated.			-	-	-	Dill induced breaks approx perp. to core axis, otherwise intact.
31	9-45	-	1002	-	~	-	GLACIAL TILL, AS Above becoming more sandy in matrix with depth.			-	-	-	Drill induced breaks approx perp. to core axis otherwise intact.
36	10.97	· 	100%	~	-	-	<u>GLACIAL TILL</u> , Brown silty sand-sandy silt, trace low with some gravel and cubbles, to 9.8m. Below <u>SILTSTONE</u> , Brownish arey silt-fine sandmeddense			-		-	Dill induced breaks as above in Glacial Till.
41	12.5	-	100%		-	-	SILTSTONE, Brown silty sand-sandy silt trace down with some gravel and cutbles to 9.8m. Below SILTSTONE, Brownish grey silt-fine sand, meddense SILTSTONE, Brownish grey silt-fine sand, soft- v. soft becoming conser to sandy siltstone, weilly industred from 12-12.5m. No bedding evident			1		-	Drill induced breaks approx. perp. to come axis
46	14-52	-	Appn.x. 132	ୄୄ	-	-	CONGLOMERATE, Brown silts, sandy clay, trace growd and cobbles, weakly inducated with Tittle reavery	411		-	-	-	
			Apprex.	ୄଧ	-		Conduction in Brown silly sandy clay trace group	411					

	KN		T AN				TD. EXPLORATORY DRILLIN	G –	E	BED	ROC	кі	LOG PROJECT No. 1738
	DAT	ΓΕ _	ст _ F А∪) вү	<u>G</u> .	12/9	4	$\frac{1}{2} \text{Drill Hole No. } 94 - 148 \text{ref. ei}$ $\frac{1}{2} \text{contractor } \overline{\text{QUEST}} \text{bedrow}$ $\frac{1}{2} \text{core size } HQ \text{total}$	K EL					ANGLE FROM HORIZ
	DRI		IG IN	F0.			LITHOLOGY					ROC	K MASS DEFECTS
	DEPTH (m)	SAMPLES	CORE RECOVERY	R.Q.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	30 SPACING	300 (cm)	GRAPHIC LOG OF DEFECTS	DEFECT ORIENTATION	DEFECT FREQUENCY	DEFECT DESCRIPTION Type, shape, roughness, infilling
	494	1	Аргеж. 872	5à%	· 	-	<u>CONGLOMERATE</u> , Loose grey gravel and cobbles recevered trace brown, sundy clay with fines washed out, clasts heterolithic pone massive basalt boulder Social be <u>CONGLOMERATE</u> , Loose round - Subrown heterolithic	d,		288 289	90,0		Random Clasts Irreg. smooth contact at boulder.
•	હાર	-	Approx 622	0%	!	-	grey growel and couldes as above with trace. brown sinch clay - no fines trace waxy daylands	Sie					loose, conglomerate
ſ	7.07	-	Арргож 10026			K3	CONGLOMERATE Dark grey fine grained MW, fractured weak-massive basalt cobbles with heterolithic gravely cobbles in a brown change south matrix, inducated	nd			0-్)ం	~	loose, conglomerate Rondon fractures with exc. planar rough fractured celle, trace sand on face.
1	798	-	App 2016. 100%	U.]	-	R3	Constanted but fractured set in a hard sandy brown inducated but fractured set in a hard sandy brown	-		XX	45.0		Random irreg. fractures, heavily weather and stained, broken some planger row contact between cubbles and matrix
	8.9		Approx lauZo	0%	-	-	CONGROMERATE Dark brownish green clayey sand the silt, heteroliffic round-subround loose - med. dens growel and cotales.	æ		-	-	-	loose conglomerate.
R	0.12	-	Appax 100%	02	-	-	<u>CONGLOMERATE</u> , As Above.			~	-		loose conglomerate.
2	14	-	Арргеж. 100%	02	-	-	CONGLOMERATE, Greyish brown sindy day math with lopse rounded - subrounded gravel and cobe and weathered ves. basalt layers to locm. loss of fine	x es s		-	-	-	loose condomente.
	316	-	Apprex. 1002	7%	-	-	Conditionmerinities, As above with increase in number could be towards base, loss of fines.	er		-	~	-1	loose conglomerate
2	4-38		Аррих 100%	212		-	CONGROMERATE , Greenish brown, clayey sind, ba gravel and cobbles, occ. Mussive basalt boulder, M -HW dark stained in places cobbles/boulders fractured, loss	92 W ,		-	-	-	loose aunglomerate
2	5.9		100%	747		R3	BASALT, Dark givey, fine grained, weakly-V. weakly vesic occ. yes. infilled with talc. SW-Mw. Green waxy clay mudstone vein 40-70mm at 25-3n Conglomerate zone at 2				70°	2-3	Joint at 24 Bin with 3cm of well inducated green sand and gravel brown day infill Rough ineg contact with mudstone at 253

	KN		T AN	D PI	ESOL	D L	TD. EXPLORATORY DRILLING - BEDROCK LOG	PROJECT No. 1738					
	1						E DRILL HOLE No. 94-148 REF. ELANGLE F CONTRACTOR QUEST BEDROCK ELBEARING CORE SIZEHQ TOTAL LENGTHGFF	ROM HORIZ - 90°					
•	DRI	ĻLIN	IG IN	IFO.			LITHOLOGY ROCK MASS DE	ROCK MASS DEFECTS					
DePth (H)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATICN/ BEDDING	L		CT DESCRIPTION ape, roughness, infilling					
90-5	27.58	-	1:02	8%		R3	BASALT, Dark grey, massive, fine grained, MW to 26.7m 24000 1-2 Planar rough CONGROMERATE, below contact Aborty-well scrited, well	- sincoth joints in massive ned-high lincate staining oncerte are rough ineg. trix, gap 2-3.mm.					
							helerolihic gray gravel, some ves erisait and loose gravel []]]						
9j	23-24:	1	100%	Z12		R3	Conglomerate Broken and weathered, weakly inducated sand, growel and coubles, dark brown stained in upper 40cm. Broken and fractured below with loose rowsted -subrowned - subangular heterolithic grey growel and cubbles with trace of greenish brown waxy mudsone. Intact conglomerate between 28 and 28-3m, poorty	rough tractures in weakly is with rough ineg through					
							-subrainded-subangular heterolithic grey gravel and cables with trace of greenish brown waxy mudsione, Intact conglomerate between 28 and 28-3.11, poorty	Proviner, Onit Dielics					
							sorted with sandy limoniste stamed matrix, well inducated						
					•		End of Itale 96ft (29-26m)						
	·												

	KN		T AN				TD. EXPLORATORY DRILLING		BED	RO	CK	LOG	PROJECT No1736
	DAT	ΓΕ _	Aυ	<u>G</u>	13/94	1	DRILL HOLE NO. <u>94-150</u> REF. EL. CONTRACTOR QUEST BEDROCK CORE SIZE <u>HQ</u> TOTAL L	EI.				REARING	rom horiz90°
	DRI		IG IN	FO.			LITHOLOGY				ROC	CK MASS DE	FECTS
DEPTH (H)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	DEFECT	GRAPHIC LOG	DEFECT ORIENTATION	FREQUENCY	DEFE Type, sha	CT DESCRIPTION pe, roughness, infilling
6	1.83	1	02	1	Ļ		OVERBURDEN No Core Recovered						
9	2.74		Аррил 100%	· ·		-	OVERBORDEN, Loose gravel and cobbles in upper 2000 undertain by 45 cm of raddish brown soundly chy and gravel, still, focily graded <u>GLACIAL TILL</u> becoming brownish grey belas in 30000 zone, grey singly						
i6	4 E E		Approx 100%	02		R2 -R3	brownish grey belas in 30cm zone, grey surdy clay trace silt with some sand and gravel, still-v still in this zone, party graded, competent belaw. BASALT, Dark give, fine grained, MW-HW, fractivelt weithered into grey zond at top, some heavily controlschon with some greenish Hack mudstate joundated and weathered zones. Mostly massive with greenish grey vesicular zness HW + backen with Imanite standed green wary and store in matrix. Set torgouse green will to car uses 335-488m		×	-90°	>20	Rainclan rough 2min ecc 4mm Mulsere Hu zone betwarn jointed	inec, joints, mostly intact 1- wide infilled with area is V. frad. Neur houz withat massive bassilt and green are
21 6	<u></u> \$4		Адрал Гасій	0%		R3	BOALL, King grey the grained massive with acc. vesicle, Sw, junited + fract. less junited than above, and strong some green multicle of tractions less finit in your Ris.		A A	-96 -96	>10	Rantan planar fradu.es, sligh	times rough joints and there n stanning a joints
26	792		lare	0%	-	R3	BASALT, As above to 6.8M becoming reddish grey-Jack grey weak-mid. ves S.W. frie plained trace dark green multicle. Fractured below 6.8M			0-40 90 0-90	5-C 7-9 ∑ÍO	Kough planaith core citis, possi Ben appiex, move	he chill breaks ?? spacing fractured in lawar from.
31 2	145	-	100%	oł		R3	strong, mod strongly vescular, trace lark given mulstore			90° 0-4;	8-10	As Above	
6 1	ر ^ي ع		02	5%		R3	BASALT, Dark greenish grey, fine grained, Swi, massive, amptent, mod strong, car vig with some chlorite infill + slight vesides to Imm at 965 and low.			70-25		Olaram manie	the same chlorite and rives
F1 1	25		100%		•	R3 -R4	BASACT, Dark greenish grey, fine grained, mossive, Shi competent, made strong, jointed. Slight green phenes in matrix		X	42-0	2-3	planar rough is	oints with some chlatte slight dark groundlack g. joint in lower Sam, 2mill

l

							· ·						
	KN		T ANI				TD. EXPLORATORY DRILLING		B	EDF	200	κι	LOG PROJECT No. 1738 SHEET 2 OF 3
	DA.	TE _	ст <u></u> Алс р ву_	Î (3/94			EL	•				BEARING
•.	DRI		NG IN	F0.			LITHOLOGY					ROC	K MASS DEFECTS
DEPTH (H)	DEPTH (M)	SAMPLES	CORE RECOVERY	R.O.D.	FOLIATION/ BEDDING	HARDNESS	ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	30 DEFECT	Е 	GRAPHIC LOG OF DEFECTS	DEFECT	FREQUENCY	DEFECT DESCRIPTION Type, shape, roughness, infilling
46	1402	1	707	4 <i>1</i> l		R3	BASALT, As above to 13.3. with some ves + wys infilled with soff talc, ugs to hum, becoming weak- med. ves. babic			Ŧ	0-1° 20-3°	2-3	Planar reigh-smooth contin. of long. icnit on 100 intact, 1-2nm gep infilled with chloritic mydstore. Reigh planar, reigh
51	(5:59		100%	.7%	· _	R3	BASALT, Dark grey-greenish grey, fine-mail. grained, s.w. med. uss. + vuggy, highly front, vugs to lown some infilled with green warry investore		V 3111	夏	y-96	7-10	Rough inter fractures in mid. ves, quicht perp to cite civis + privallel, zones of high fract, some midsone ci joints + haitine venis
Ŕ	1727	•	100%	737		R3 R4	BASALT As Above to 15-BM becoming less redicularte massive, five grained, sw, competent, darkgrey acc. ves. to 3mm in massive. Such grean mudslave in ves that				200	1-2	Raigh ineg fract in med ves. Planar rough joint 25 stained green at 165m. Cac handline joint in med ves
53.76	18:22		w	78%		R4 -R3	BASALT, As Above, mussive with Vigs Galalom part. infilled with tak. Becoming mod. W.S. + fract. at 179.m and reddish grey, ideathered			2000	<u>89</u> ' 	1 5-7	Planar, rough joint in massive 1-2mggap drill induced bracks perp to are existing ineg. froduces in mid. ves. + Mudstereon joint
66	26-1	•=	Apprix 50%		-	-	CONGLOMERATE, Inducated green sunt+gravel, acc build weak, weathered to 61ft undertain by Tause grey graved trace course sund, I moute, subA-subR, no fires iecourd						
71	21-64		Appex 72E			-	CONGROMERATE, Loose growel, coarse sind coc chille + ves. basilf clast to 21 m underlain by weak-mid grean scind+growel, HW. Timovine stained, frect, sand matrix						No trace of fines in return writer or recovered.
76	ЗK	• ===	170	06	•		Congrammerate Loose gravel, trace coulde, ang. to sub A, Round-sub R, heavily limenite strained, no fines recovered.						Random rough irreg thru matrix
31	<u>74 69</u>	-	· · · · · ·			R3	CONGLOMERATE As above to 23.7m then werk-mid. inturated heterolithic scipil and growel, trace cables, H.W. + limonite staned broken sind matrix.						As Above
Ľ	ૠેચ		Арраж 1967 <u>г</u>	0%		R3	CONGROMERATE, weak-mod inducated red-brown sand + grower, pourly suited, trace cubbes, H.W.r limenite stained; broken, sub A-sub R + loosegrowed						As Above
91	27.74	-	Approx 532	0%	_		CasGLOMERATE As Above but weakly inducated with higher quantity of fine gravel, more stained + fract. with some loose gravel.						As there

							•						
	KN		T AN				TD. EXPLORATORY DRILLING	•••	BED	ROC	кі	LOG	PROJECT No. 1738
	DA.	ΓΕ _	Au	<u>G-10</u>	7/94		DRILL HOLE No. <u>94–150</u> REF. EL. CONTRACTOR QUEST BEDROCK CORE SIZE HQ TOTAL LE	EL.	• <u></u>			BEARING	
	DRI		IG IN	F0.			LITHOLOGY				ROC	K MASS DE	FECTS
DEPTH (H)	1 -	SAMPLES	CORE RECOVERY	R.Q.D.	FOLIATION/ BEDDING		ROCK DESCRIPTION Weathering, structure, color, grain size, strength, rocktype. Other comments.	SO DEFECT	SCAPHIC LOG	DEFECT ORIENTATION	FREQUENCY		CT DESCRIPTION pe, roughness, infilling
96	<u>29 7(</u>	1	Аура 1082	52	;;	R3	CONGREMERTE, As Above with loose pourly sorted gravel and stained deeper-orange red. Intact mid, ind, sind + gravel, mid. strong at 20-4-28.8.1, heavily stained					Random Frac	tures rough ineg thro wate
10	3c-78	•	100%	412	1	R3	Sind + gravel, mod. strong at 20-4-28. But, heavily stained CongromeRate, well indurated sands and gravels, durk reddish brown + grey, poorly sorted, heavily stained, some intact sections remainder baken and less comptent					Random rough	1 iney fract. they outra
03.8	31-64		1002	02		-	CONSTOMERATE, As Above but highly fractural.					As Above	
1do	32-3	· 	1002	5 <u>%</u>			ARGHLUTE Dark grey, waxy invistance, Sw fract zone 18cm at 31-7m, weak-mad. strong.		<i>\\</i> \${	0-95 50-96	B 0	Rough ineg. Co Ronalog ineg. 1 Limonite stan	itact, weathered green brown fact at sin 7. zone + uny. Dill bre. ks (slick:) below.
n	<u>33 8</u> ;		89Ž	34%	/°°	R2 -R3	ARGILLITE, Dark gray-black, S.W., highly fract top 50cm. some areas crumbly. Zone of light sides mindle 30cm. weak-med. strong. Batting 10° with shearing parallel			0-3.0 70°, 10-30	>20 5-10	Randon fract, re junits, talc infi junits, through	itict, weathered green brown rant at \$1-7.11 Zene + ung. Dill bre.ks(slick:) below. ish irreg with scare vertical led in aper 50 cm. Hairline with a low wele plane.
116	5 3		100%	4 <i>1</i> 2		R2 -R3	ARGILUTE, As Above to 34 0 M. Below Contranter poorly sorted, no ded - well row ded green in y.ey-green black argillitic and dark light greyclass to 4cm			シンズ。 シンジ ローン	3-4 715	Curved cuitact induced biegiks with random	at 34-27m below drill s, apprex perp to areans fractures in larer form
							of fine grained scindstone at 37-34-27m. Locally crumbly and sheared.						· ·
121	3 <u>6</u> 88	-	100%	43%		RZ	CONGROMERATE, As Above Trace sontstone, med, grained and calcite veins to 15.mm and trace quaite in thin strings		171	70	5-7	Dill breaks in cours to and faces and	vi rough integ, perptoure 70° - Sone fract ut clast quartz veins
126	<u>38.4</u>	-	728	30%	•••	22	CONGLOMERATE, Light grey as above with less calcite veins in lower your becoming more competent with depth.		Ħ	80 4° 80 4°	4-5	Drill bleaks, axis becquin	rough ineg perp to cove 1 notion 1 tough ineg-plane menous calcite veins to zum.
							End of Hole 38-4m (126 feet)						

Knight Piésold Ltd. CONSULTING ENGINEERS

APPENDIX C

POINT LOAD TEST RESULTS

Association Asso of Consulting des Engineers Cons of Canada du C

Association des Ingénieurs-Conseils du Canada

Knight Piésold Ltd.

CONSULTING ENGINEERS

POINT LOAD TEST CALCULATION SHEET DRILLHOLE 94-141

	Core Type Core Diarr		HQ 63.5		Piston Area, A: 5 sq. in. Core Diameter Correction, K= 25						
No.	Sample Depth (ft) (m)		Gauge Reading, G	Applied Load, P=G*A	Point Load Strength Index, IS=P/D2	Uniaxial Compressive Strength oC=K*IS	Strength Designation	Rock Type			
	(ft)	(m)	(kPa)	(kN)	(MPa)	(MPa)					
1	33.5	10.2	2,250	7.3	1.8		Moderate	Basalt			
2	44.6	10.2	2,250	0.8	0.2		Very Weak	Basalt			
3	44.6	13.0	1,000	3.2	0.2		Weak	Basalt Basalt			
5	43.9	14.0	1,500	4.8	1.2		Moderate	Basalt			
5	63.0	14.8	2,750	8.9	2.2		Strong	Basalt			
6	81.7	24.9	650	2.1	2.2		Weak	Basalt			
7	100.7	<u>24.9</u> 30.7	2,050	<u> </u>	1.6		Moderate	Basalt			
8	100.7	33.3	300	1.0	0.2		Weak	Sandstone			
- 0	140.7	42.9	8,750	28.2	7.0		Very Strong	Basalt			
10	140.7	44.1	6,800	28.2	5.4		Very Strong	Basalt			
11	153.9	44.1	7,550	21.5	6.0		Very Strong	Basalt			
12	155.5	50.1	850	2.7	0.0		Weak	Basalt			
	10 1.1										
			Ē								
						· · · · · · · · · · · · · · · · · · ·					
						· · · · · · · · · · · · · · · · · · ·					
								•.			
						· <u></u> ·····					
-											
	•					· · · · · · · · · · · · · · · · · · ·					
								······································			
						<u></u>					
						· · · · · · · · · · · · · · · · · · ·					
						<u> </u>					

14-Nov-94

<i>I</i>	CONSULTI	<u>Piésold</u> ng engine		POINT LOAD TEST CALCULATION SHEET DRILLHOLE 94-143							
	Core Type Core Diam		HQ 63.5			Piston Area, A: Core Diameter Co		sq. in. 25			
No.	San Dej (ft)		Gauge Reading, G (kPa)	Applied Load, P=G*A (kN)	Point Load Strength Index, IS=P/D2 (MPa)	Uniaxial Compressive Strength oC=K*IS (MPa)	Strength Designation	Rock Type			
1 . 2 	13.6 23.6 29.9	4.2 7.2 9.1	1,375 800 5,800	<u>4.4</u> 2.6 18.7	1.1 0.6 4.6	<u> </u>	Moderate Weak Very Strong	Basalt Basalt Basalt			
4 5 6 7	52.2 70.8 81.9 118.3	15.9 21.6 25.0 36.1	1,500 1,250 7,000 1,450	4.8 4.0 22.6 4.7	1.2 1.0 5.6 1.2	25 140	Moderate Weak Very Strong Moderate	Basalt Basalt Basalt Basalt			
8 9 10	144.7 157.9 170.7	44.1 48.1 52.0	800 650 3,700	2.6 2.1 11.9	0.6 0.5 3.0	13	Weak Weak Strong	Basalt Basalt Basalt			

	-	<u>Piésold</u> ng engine	·	POINT LOAD TEST CALCULATION SHEET DRILLHOLE 94-147							
•	Core Type Core Dian		HQ 63.5			Piston Area, A: Core Diameter Co		sq. in. 25			
No.	San Dej		Gauge Reading, G	Applied Load, P=G*A	Point Load Strength Index, Is=P/D2	Uniaxial Compressive Strength oC=K*IS	Strength Designation	Rock Type			
	(ft)	(m)	(kPa)	(kN)	(MPa)	(MPa)					
1	32.7	10.0	875	2.8	0.7	17	Weak	Basalt			
· 2	45.9	10.0	873	2.8	0.7		Weak	Basalt			
· <u>2</u> 3	<u>43.9</u> 66.4	20.3	3,875	12.5	3.1		Strong	Basalt			
3	70.5	20.5	8,500	27.4	6.8		Very Strong	Basalt			
5	85.8	21.5	7,300	23.5	5.8		Very Strong	Basalt			
6	105.1	32.0	5,625	18.1	4.5		Very Strong	Basalt			
7	126.1	38.5	0	0.0	0.0		Extremely Weak	Basalt			
8	146.7	44.7	0	0.0	0.0		Extremely Weak	Basalt			
9	151.1	46.1	1,550	5.0	1.2		Moderate	Basalt			
					· · · · · · · · · · · · · · · · · · ·						

J:JOB\DATA\1738\TSF\PTLOAD\PT94_147.WK3

14-Nov-94

05:18 PM

	neter, D: nple pth (m) 14.6 23.0 25.1				Piston Area, A: Core Diameter Co Uniaxial Compressive Strength dC=K*IS (MPa)	Strength Designation	sq. in. 25 Rock Type
(ft) (ft) 1 47.9 2 75.5 3 82.4	pth (m) 14.6 23.0 25.1	Reading, G (kPa) 3,800 8,050 250	Load, P=G*A (kN) 12.3 26.0	Strength Index, IS=P/D2 (MPa) 3.0	Compressive Strength oC=K*IS (MPa)	Designation	
2 75.5 3 82.4	23.0 25.1	8,050 250	26.0		76	<u>a:</u>	
					<u>161</u> 5	Strong Very Strong Very Weak Weak	Conglomerate Conglomerate Basalt Basalt

.

J:\JOB\DATA\1738\TSF\PTLOAD\PT94_148.WK3

,

¢

14-Nov-94

05:19 PM

	_	<u>Piésold</u> ng engine		POINT LOAD TEST CALCULATION SHEET DRILLHOLE 94-150								
	Core Type Core Diam		HQ 63.5			Piston Area, A: Core Diameter Co		5 sq. in. 25				
No.	San De (ft)		Gauge Reading, G (kPa)	Applied Load, P=G*A (kN)	Point Load Strength Index, IS=P/D2 (MPa)	Uniaxial Compressive Strength oC=K*IS (MPa)	Strength Designation	Rock Type				
1	32.6	9.9	2,450	7.9	2.0		Moderate	Basalt				
2	43.8 51.3	<u>13.4</u> 15.7	<u>4,750</u> 500	<u> </u>	3.8		Strong Weak	Basalt Basalt				
4	80.4	24.5	100	0.3	0.4		Very Weak	Conglomerat				
5	96.8	29.5	650	2.1	0.1		Weak	Conglomerat				
6	111.9	34.1	0	0.0	0.0		Extremely Weak	Argillite				
7	115.8	35.3	0	0.0	0.0		Extremely Weak	Conglomerat				
8	124.0	37.8	0	0.0	0.0	0	Extremely Weak	Conglomerat				
							14-Nov-94	05:19				

.

14-Nov-94

05:19 PM

Knight Piésold Ltd. CONSULTING ENGINEERS

APPENDIX D

RESULTS OF IN-SITU PERMEABILITY TESTING

7

Association of Consulting Engineers of Canada

Association des Ingénieurs-Conseils du Canada

TASEKO MINES LIMITED FISH LAKE PROJECT

<u>PACKER TEST PERMEABILITY CALCULATIONS</u> <u>DRILLHOLE 94 - 141</u>

Drillhole Diameter =	IQ =	3.782 inches
Height of Pressure Gauge Above G		2.0 ft
Depth to Water Table Below Pressu	re Gauge =	2.5 ft
Depth to Bedrock =	-	19 ft
Drillhole Angle (from Vertical) =		0 degrees
Tests Performed by:		DGSA
Test Date :		July 27, 1994

TEST No.	INTER (f	14123384	ME	OW TER tres) final	TIME (min)	RATE		2344,679,667,609,671	15.9 3068966 6390 -	aan da dh'i tilabidah	k AVERAGE PERMEABILITY (cm/sec)	COMMENTS	PACKER TEST RESULTS (Flow vs. Head)
1	26.0 26.0 26.0 26.0	56.0 56.0 56.0 56.0	14.75 18.11 24.20 32.82	17.26 22.84 31.73 33.67	5 5 5 5	0.502 0.946 1.506 0.170	225 225 225 225 225	4.0 8.0 12.0 10.0	0.5 0.9 1.5 0.2	11.2 20.1 28.7 25.4	k = 2.4E-05	Basalt alternating low to high RQD	

J:\JOB\DATA\1738\94_141.WK3

10:01 AM 23-Sep-94

<u>Knight Piésold Ltd.</u> CONSULTING ENGINEERS Project: FISH LAKE PROJECT Project No.: _1738 Calculations for: Water Testing Hole 90-101 Date: JULY 28/90 Calculations by: DGEA Sheet _____ of Checked by: Date: Test 1 From 26.0 - 56.0 ft. Packer Test. Result | k = 1.7xto=5 cm/sec. Test2 Rising Head Test. From 56.0 - 86.0 ft. K= +2-9x/0-5cm/sec(artesian). (1) Aug. flow 1.4m above G.L. = 19cm x 47.53cm² = 3.996 cm³/sec. by constant head $k = \frac{Q}{FH_{c}} = \frac{-3.996}{452.3 \times 750} = -1.52 \times 10^{-5} \text{cm/sec}.$ Shatic head above at rest water table = 2.5m (8ft) Fairly slow rate of rise Dem in 226 sec. Test 3 Rising Head Test from 86.0-116.0 ft. K=+2.28×10-4 cm/sec (orteron) Aug. flow 1.34 m above G.L. = 11cm x 47-53 cm² = 30-75 cm²/sec Test 4 Rising Head Test from 16.0m-146.0ft. K= +7.0×10-2 cm/sec(arterion) Aug. flow 1-62 m above G.L. = 9-39 cm 3/sec. Test 5 Rising tead Test from 146:0 - 176. oft. K= +2.4 × 10-5 cm/sec (artesion) Aug-flow 1-52m above G.L = 3-63 cm3/sec. Test 6 Rising Head Test from 176.0-206.0 ft K=+1-28×10-4 cm/sec (arterian) Aug-flow 1-44 m above G.L. = 19.01 cm3/sec.

TASEKO MINES LIMITED FISH LAKE PROJECT PACKER TEST PERMEABILITY CALCULATIONS DRILLHOLE 94 - 143

				Depth to V Depth to I	Pressure Water Ta Bedrock	Gauge Al	HQ = bove Ground Pressure Gau al) =	= 1ge =	3.782 2.0 3.0 10	ft ft	Tested by : De Test Date :	GSA July 30, 1994 July 31, 1994 23-Sep-94 JAJOB/DATA/1738/94 1	43.WK3
TEST	INTER	VAL	FLOW	METER		FLOW	PACKER	GAUGE	HEAD	TEST	AVERAGE		PACKER TEST
No.	(f	i)	(li	tres)	TIME	RATE	PRESS.	PRESS.	CORR.	1.12 4.25 6.25 1	PERMEABILITY	COMMENTS	RESULTS
	from	to	initial	final	(min)	(l/min)	(psi)	(psi)	(ft)	(ft)	(cm/sec)		(Flow vs. Head)
1	18.5	46.0	230.94	251.39	5	4.091	225	5.0	4.0	10.5			
	18.5	46.0	255.94	279.12	5	4.637	225	8.0	4.5	16.9		Basalt	
	18.5	46.0	313.22	336.86	5	4.728	225	10.0	4.6	21.5	k = 1.2E - 04	very poor to fair	
	18.5	46.0	340.95	357.32	5	3.273	225	8.0	3.2	18.3		RQD	
2	18.5 48.5	46.U 76.0	378.23 410.05	385.50 449.14	5	<u>1.455</u> 7.819	225 245	<u>5.0</u> 10.0	<u>1.4</u> 7.6	<u>13.1</u> 18.5			
2	48.5	76.0 76.0		497.79	5	8.183	245	10.0	7.0 8.0	36.6		Basalt	
	48.5	76.0	503.70	560.52	5	11.365	245	25.0	11.1	49.6		poor to good	
	48.5	76.0		601.44	5	7.274	245	18.0	7.1	37.5	x- 1.1L 04	RQD	
	48.5	76.0	604.16	627.80	5	4.728	245	10.0	4.6	21.5			
3		106.0		645.99	5	1.091	275	20.0	1.1	48.1			
		106.0		653.94	5	1.227	275	30.0	1.2	71.1		Basalt	$ \overline{f} $
		106.0		664.40	5	1.591	275	40.0	1.6	93.8	k = 7.1E - 06	fair to good	
			664.63	667.81 670.76	5	0.636	275 275	30.0	0.6	71.7		RQĎ	
4			668.26 672.13	672.81	6	<u>0.500</u> 0.114	300	<u>20.0</u> 20.0	0.5	<u>48.7</u> 49.1			
			673.26	675.08	5	0.364	300	35.0	0.1	83.5		Basalt	
		136.0		678.04	5	0.504	300	50.0	0.4	118.0		fair to good	
			677.81	679.63	5	0.364	300	35.0	0.4	83.5		RQD	
									0.0				
5		166.0		694.40	5	1.818	350	30.0	1.8	70.5			
		166.0	695.99	708.72	5	2.546	350	50.0	2.5	116.0		Basalt	
		166.0		726.68	5	3.000	350	70.0	2.9	161.7	k = 9.9E - 06	poor to good	
		166.0	727.59 737.36	736.91 742.36	5 5	1.864 1.000	350 350	50.0 30.0	1.8	116.7 71.3		RQĎ	
6		201.0		752.82	5	1.000	375	30.0	<u> </u>	71.3			
	168.5			764.41	5	2.091	375	50.0 60.0	1.3 2.0	139.5		Basalt	
		201.0	766.00	775.55	5	1.909	375	80.0	1.9	185.9		fair to good	
	168.5	201.0	776.46	782.37	5	1.182	375	60.0	1.2	140.4		RQD	
	168.5	201.0	782.59	785.55	5	0.591	375	30.0	0:6	71.7			

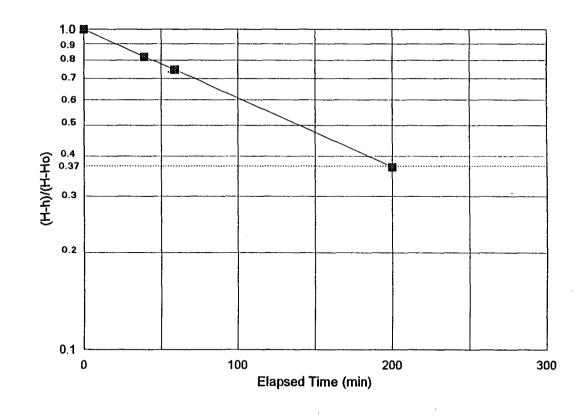
<u>TASEKO MINES LIMITED</u> <u>FISH LAKE PROJECT</u> <u>PACKER TEST PERMEABILITY CALCULATIONS</u> <u>DRILLHOLE 94 - 144</u>

]	Height Depth Depth Drillho	ble Diamete of Pressur to Water 7 to Bedrock ble Angle (1	re Gauge . Fable Beld k =	ow Pressi	round = ire Gauge	HQ =	3.782 3.0 54.0 6 0	ft ft			DGSA ts 1-3 ts 4 & 5 t 6	Aug. 2, 1994 Aug. 3, 1994 Aug. 4, 1994
TEST	INTER		nancos interación	(ETED		FLOW	PACKER	GAUGE	HEAD	TEST	AVERAGE		23-Sep-94 PACKER TEST
No.	INTER (fi	<i></i>	litre	gi gan ti a a anti i j	TIME	RATE	PRESS.	PRESS.	CORR.	HEAD	PERMEABILITY	COMMENTS	RESULTS
110.	from	to	initial	م) final	(min)	(l/min)	(psi)	(psi)	(ft)	(ft)	(cm/sec)	COMMERCIALD	(Flow vs. Head)
			mitial	111101	()	(////////	(1/01)	(Pai)	<u></u>	<u> </u>	(CIII/SCC)		(Plow vs. ficau)
1	68.5	96.0	1704.75	1832.04	5	25.458	275	10.0	26.8	50.3			[]
	68.5	96.0	1852.50	2002.97	5	30.095	275	20.0	36.2	64.0		Basalt	
	68.5	96.0	2027.29	2196.63	5	33.868	275	30.0	43.9	79.4	k = 2.5E - 04	Poor to Fair	
	68.5	96.0	2227.99	2380.29	- 5	30.458	275	20.0	37.0	63.2		RQD	
	68.5	96.0	2394.38	2526.21	5	26.367	275	10.0	28.7	48.4			
2		126.0	2579.40	2599.86	5	4.091	300	20.0	4.0	96.2		D = = 14	
		126.0 126.0	2698.96 2924.67	2871.25 3109.01	5	34.459 36.868	300 300	40.0 50.0	45.1 54.0	101.3 115.5	k = 1.9E - 04	Basalt Poor to Good	
		126.0		3316.76	5	34.459	.300 300	40.0	45.1	101.3		RQD	
1		126.0	3347.22	3492.69	5	29.094	300	20.0	34.2	66.0		NQD	
3	128.5	156.0	3538.83	3554.74	5	3.182	315	20.0	3.1	97.1			
	128.5			3589.75	5	6.092	315	40.0	6.0	140.4		Basalt	
	128.5			3661.35	5	12.683	315	60.0	12.4	180.2	k = 3.4E - 05	Fair to Excellent	
	128.5	156.0	3674.99	3730.90		11.183	315	40.0	10.9	135.4		RQD	
	128.5			3768.18	5	5.955	315	20.0	5.8	94.4			
4	158.5			3774.09	5	0.273	350	30.0	0.3	123.0			
	158.5			3776.36	5	0.364	350	60.0	0.4	192.2		Basalt	
	158.5			3778.41	5	0.318	350	80.0	0.3	238.4		Excellent	
1	158.5			3780.00	5	0.273	350	60.0	0.3	192.3		RQD	
	158.5			3781.36 3783.18	5	0.227	<u>350</u> 400	<u> </u>	0.2	<u>123.1</u> 146.2			
5	218.5 218.5			3783.18	5	0.182	400 400	40.0	0.2	146.2 238.5		Basalt	
	218.5			3786.25	5	0.227	400	80.0 110.0	0.2	238.3 307.8		Excellent	
	218.5			3780.23	10	0.227	400	80.0	0.2	238.6		RQD	
	218.5			3788.86	10	0.095	400	40.0	0.1	146.3		INQU	
6	248.5			3809.32	5	2.455	425	40.0	2.4	144.0			
	248.5			3834.10	5	3.728	425	80.0	3.6	235.1		Basalt	
	248.5	276.0	3850.01	3879.78	5	5.955	425	120.0	5.8	325.3		Poor to Excellent	
	248.5			3897.06	5	3.364	425	80.0	3.3	235.5		RQD	
l	248.5	276.0	3897.06	3900.01	5	0.591	425	40.0	0.6	145.8			

<u>TASEKO MINES LIMITED</u> <u>FISH LAKE PROJECT</u> <u>PACKER TEST PERMEABILITY CALCULATIONS</u> <u>DRILLHOLE 94 – 144</u>

Drillhole Diameter = Height of Pressure Gauge Above Ground = Depth to Water Table Below Pressure Gauge Depth to Bedrock = Drillhole Angle (from Vertical) =			HQ =	3.0 54.0 6	ft			DGSA tts 7 & 8 tts 9,10 & 11	Aug. 4, 1994 Aug. 5, 1994 23-Sep-94				
TEST	INTERV	(A) (A)	A CONSIGNOR	IETER		FLOW	PACKER	GAUGE	HEAD	TEST	AVERAGE		PACKER TEST
No.	(ft)	्र	(litre	网络帕拉斯 复名法国际	TIME	RATE	PRESS.	PRESS.	CORR.	HEAD	PERMEABILITY	COMMENTS	RESULTS
		to	initial	final	(min)	(1/min)	(psi)	(psi)	(ft)	(ft)	(cm/sec)		(Flow vs. Head)
7	278.5 30	06.0	3910.13	3911.72	10	0.159	460	50.0	0.2	169.3			
	278.5 30		3912.06	3913.88	5	0.364	460	100.0	0.4	284.6		Basalt	
	278.5 30		3914.56	3923.20	5	1.727	460	140.0	1.7	375.6	k = 7.7E - 07	Good to Excellent	1
	278.5 30		3923.65	3928.20 3930.13	10 10	0.455 0.159	460 460	100.0 80.0	0.4	284.5		RQD	
8	278.5 30		<u>3928.54</u> 3930.59	<u> </u>	5	0.139	400	50.0	0.2	<u>238.6</u> 168.9			
0	308.5 33			3940.47	5	1.137	485	100.0	1.1	283.8		Basalt	
	308.5 33		3942.29	3957.07	5	2.955	485	150.0	2.9	397.5	k = 1.8E - 06	Poor to Good	
	308.5 33		3957.97	3963.43	5	1.091	485	100.0	1.1	283.9		RQD	1
	308.5 33		3963.66	3965.36	5	0.341	485	50.0	0.3	169.1			/
9	338.5 36		4220.28	4222.55	5	0.455	515	50.0	0.4	169.0			
	338.5 36		4223.46	4228.92	5	1.091	515	100.0	1.1	283.9		Basalt	
	338.5 36		4231.64	4246.65	5	3.000	515	150.0	2.9	397.5	k = 1.7E - 06	Poor to Good	
	338.5 36		4248.24	4253.24 4256.65	5	1.000	515 515	100.0 60.0	1.0	284.0 192.1		RQD	
10	338.5 36 368.5 41	00.0 11.0	4254.37 4257.78	4250.05	5	0.455	515	50.0	0.4	192.1			
10	368.5 41			4265.51	5	0.818	510	100.0	0.3	284.1		Basalt,Sandstone	1 denne
	368.5 41			4277.33	5	1.727	510	120.0	1.7	329.4	k = 1.2E - 06	Conglomerate	
	368.5 41		4278.70	4283.13	5	0.886	510	100.0	0.9	284.1		Very Poor RQD	
	368.5 41	11.0		4286.65	5	0.591	510	50.0	0.6	168.9			
11	413.5 43		4287.79	4289.61	5	0.364	530	40.0	0.4	146.0			
	413.5 43			4291.99	· 5	0.386	530	70.0	0.4	215.3		Argillite	
	413.5 43			4294.49	5	0.455	530 520	100.0	0.4	284.5	k = 1.0E - 06	Very Poor to Fair	1 81
	413.5 43		4294.61	4296.20	5	0.318 0.295	530 530	70.0 40.0	0.3	215.4 146.1		RQD	
	413.5 43	50.0	4296.31	4297.79	2	0.293	550	40.0	0.3	140.1			

TASEKO MINES LIMITED FISH LAKE PROJECT TAILINGS STORAGE FACILITY


FALLING HEAD PERMEABILITY TEST USING HVORSLEV METHOD DBILLHOLE 94-144

			Input Parameters		
Hole Diameter, D =	3.782 inches,	9.61 cm	Static Water Level, from ground, H =	93.7 ft,	28.56 m
Piezometer Diameter, d =	2.0 inches,	5.08 cm	Piezometer Stick-up =	0.3 ft,	0.10 m
Top of Test Interval =	160.0 ft,	48.8 m	Water Level at Start of Test, Ho =	66.6 ft,	20.30 m
Bottom of Test Interval =	231.0 ft,	70.4 m			
Length of Test Interval, L =	71.0 ft	<u>21.6 m</u>	Test Performed By:	DGSA	

	TEST DA	TA
Elapsed	Water	
Time	Depth, h	(H-h)/(H-Ho)
(min)	(metres)	
0	20.3	1.00
39	21.80	0.82
59	22.41	0.75
200	25.57	0.37

Notes: Falling Head Test carried out in monitoring well completion zone.

6 1

Time T, when (H-h)/(H-Ho) =

200 min

Dormoobility Is -	76507 am/aaa
Permeability, k =	7.6E-07 cm/sec 🖿
he provide the second data and the second data	

10:31 AM

14-Nov-94

<u>TASEKO MINES LIMITED</u> <u>FISH LAKE PROJECT</u> <u>PACKER TEST PERMEABILITY CALCULATIONS</u> <u>DRILLHOLE 94 - 147</u>

Drillhole Diameter = HQ = Height of Pressure Gauge Above Ground = Depth to Water Table Below Pressure Gauge = Depth to Bedrock = Drillhole Angle (from Vertical) =
 3.782 inches
 Tests Performed by:
 DGSA

 2.0 ft
 Test Date :
 Tests 1,2 & 3
 Aug. 8, 1994

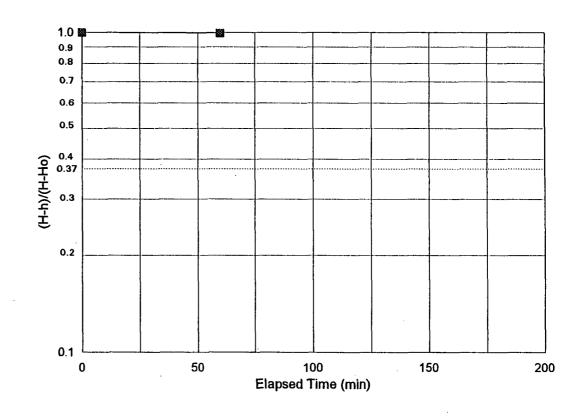
 4.0 ft
 Tests 8,9 & 10
 Aug. 10, 1994

 16 ft
 0 degrees
 0

J:\JOB\DATA\1738\94_147.WK3

TEST **INTERVAL** FLOW FLOW PACKER GAUGE HEAD TEST **AVERAGE PACKER TEST** TIME RATE (litres) PRESS. PRESS. CORR. HEAD PERMEABILITY No. (ft) **COMMENTS** RESULTS initial (l/min) from to final (min) (psi) (psi) (ft) (ft) (cm/sec) (Flow vs. Head) 56.0 4305.97 4312.11 5.0 1 28.5 5 1.227 230 1.2 14.3 4330.52 28.5 56.0 4313.47 5 3.409 230 10.0 3.3 23.8 Basalt 28.5 56.0 4332.57 4355.52 5 4.591 230 15.0 4.5 34.2 k = 6.3E - 05Fair to Good 28.5 56.0 4356.89 4367.23 5 2.068 230 10.0 2.0 25.1 RQD 28.5 56.0 4367.75 4369.62 10 230 0.2 0.186 5.0 15.4 218.5 256.0 5 8 78.91 3.360 3.3 62.11 400 30.0 70.0 5 218.5 256.0 92.81 152.27 130.9 11.891 400 60.0 11.6 Glaciolacustrine 218.5 256.0 189.22 293.04 5 20.762 400 100.0 20.3 214.6 Sediments, Sand, k = 4.8E - 055 218.5 256.0 321.04 409.35 17.662 400 60.0 17.3 125.3 Conglomerate 5 256.0 424.35 12.542 218.5 487.06 12.3 400 30.0 61.0 258.5 520.86 559.07 5 9 450 30.0 286.0 7.641 7.5 65.8 k = 6.2E - 055 258.5 286.0 672.08 903.11 46.206 450 60.0 N/A 5 258.5 286.0 954.11 1235.15 100.0 56.207 450 N/A Anomalous Result 2 5 258.5 286.0 1285.15 1380.17 47.506 450 60.0 N/A 258.5 286.0 1444.67 1553.19 21.703 450 12.0 21.2 k = 1.1E - 0310.5 10 278.5 311.0 1575.09 1591.94 5 3.370 30.0 3.3 475 70.0 278.5 311.0 1596.99 5 1625.60 5.721 475 60.0 5.6 137.0 Basalt and 5 278.5 1653.20 1686.70 475 311.0 6.701 6.6 228.4 100.0 k = 1.5E - 05Conglomerate 5 1690.80 1705.60 278.5 311.0 2.960 475 2.9 139.7 60.0 Poor to Good 5 278.5 1714.26 1723.96 311.0 1.940 475 1.9 30.0 71.4 RQD

Note : Different Flow Meter Used for Tests 8 to 10.


<u>23 - Sep -94</u>

TASEKO MINES LIMITED EISH LAKE PROJECT TAILINGS STORAGE FACILITY

FALLING HEAD PERMEABILITY TEST USING HVORSLEV METHOD DRILLHOLE 94-147

		li II	nput Parameters		
Hole Diameter, D =	3.782 inches,	9.61 cm	Static Water Level, below ground, H	2.0 ft,	0.61 m
Drill Rod Diameter, d =	3.782 inches,	9.61 cm	Drill Rod Stick-up =	0.0 ft,	0.00 m
Top of Test Interval =	51.5 ft,	15.7 m	Water Level at Start of Test, Ho =	12.8 ft,	3.90 m
Bottom of Test Interval =	76.0 ft.	23.2 m			
Length of Test Interval, L =	24.5 ft	<u>7.5 m</u>	Test Performed By:	DGSA	

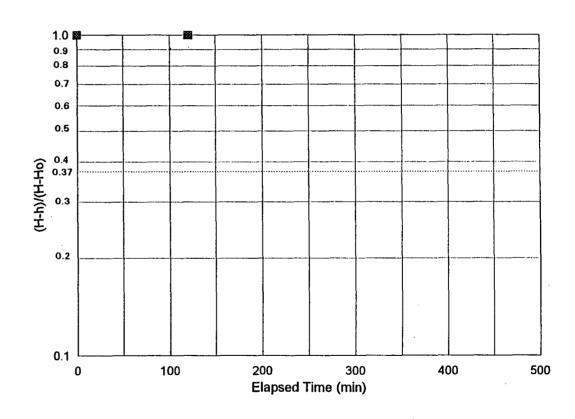
	TEST DA	TA
Elapsed	Water	
Time	Depth, h	(H-h)/(H-Ho)
(min)	(metres)	
x		
0	3.90	1.00
60	3.88	0.99

Notes:

Time T, when (H-h)/(H-Ho) = 11,000 min

Permeability, k		1.2E-07	cm/sec
li cimeaninty, K	-	1.26-07	011/360

J:\JOB\DATA\1738\TSF\PERM\HVOR147.WK4


05:02 PM 10-Nov-94

TASEKO MINES LIMITED EISH LAKE PROJECT TAILINGS STORAGE FACILITY

EALLING HEAD PERMEABILITY TEST USING HVORSLEV METHOD DRILLHOLE 94-147

			nput Parameters		
Hole Diameter, D =	3.782 inches,	9.61 cm	Static Water Level, below ground, H	2.0 ft,	0.61 m
Drill Rod Diameter, d =	3.782 inches,	9.61 cm	Drill Rod Stick-up =	0.0 ft,	0.00 m
Top of Test Interval =	81.5 ft,	24.8 m	Water Level at Start of Test, Ho =	12.8 ft,	3.90 m
Bottom of Test Interval =	106.0 ft,	32.3 m			
Length of Test Interval, L =	24.5_ft,	<u>7.5 m</u>	Test Performed By:	DGSA	

	TEST DA	TA
Elapsed	Water)))
Time	Depth, h	(H-h)/(H-Ho)
(min)	(metres)	
0	3.90	1.00
120	3.90	1.00

Notes:

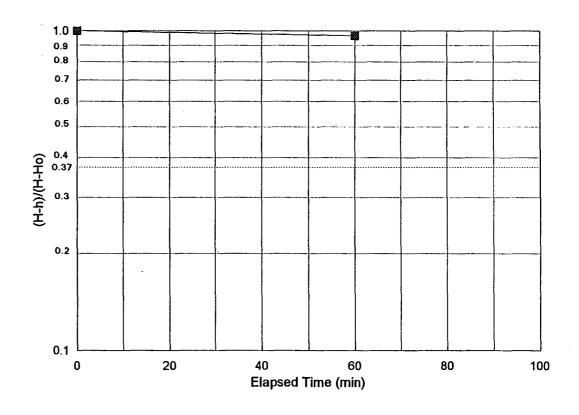
Time T, when (H-h)/(H-Ho) = 11,000 min

	Permeability,	k -	1.2E-07 cm/sec
•	. onnoubline		

J:\JOB\DATA\1738\TSF\PERM\HVOR147.WK4

05:03 PM 10-Nov-94

TASEKO MINES LIMITED EISH LAKE PROJECT TAILINGS STORAGE FACILITY


EALLING HEAD PERMEABILITY TEST USING HVORSLEV METHOD DRILLHOLE 94-147

		In	put Parameters		
Hole Diameter, D =	3.782 inches,	9.61 cm	Static Water Level, below ground, H	2.0 ft,	0.61 m
Drill Rod Diameter, d =	3.782 inches,	9.61 cm	Drill Rod Stick-up =	0.0 ft,	0.00 m
Top of Test Interval =			Water Level at Start of Test, Ho =	5.8 ft,	1.77 m
Bottom of Test Interval =	136.0 ft,	41.5 m			
Length of Test Interval. L =	<u> </u>	<u>8.4 m</u>	Test Performed By:	DGSA	

	TEST DA	ТА
Elapsed	Water	
Time	Depth, h	(H-h)/(H-Ho)
(min)	(metres)	
0	1.77	1.00
60	1.73	0.97
L	l	L

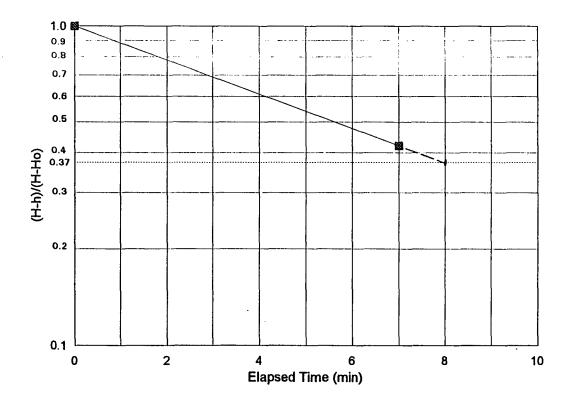
4

Notes:

Time T, when $(H-h)/(H-H_0) = 11000$ min

Per	meability,	k =	1.1E-07 cm/sec
1 61	meanity,	N	1.12-07 011/360

TASEKO MINES LIMITED FISH LAKE PROJECT TAILINGS STORAGE FACILITY


FALLING HEAD PERMEABILITY TEST USING HVORSLEV METHOD DRILLHOLE 94-147

		Ini	out Parameters		
Hole Diameter, D =	3.782 inches,	9.61 cm	Static Water Level, below ground, H	2.0 ft,	0.61 m
Drill Rod Diameter, d =	3.782 inches,		Drill Rod Stick-up =	0.0 ft,	0.00 m
Top of Test Interval =	138.5 ft,	42.2 m	Water Level at Start of Test, Ho =	5.8 ft,	1.77 m
Bottom of Test Interval =	166.0 ft,	50,6 m			
Length of Test Interval, L =	<u> </u>	<u> </u>	Test Performed By:	DGSA	

TEST DATA							
Elapsed	Water						
Time	Depth, h	(H-h)/(H-Ho)					
(min)	(metres)						
0	1.77	1.00					
7	1.10	0.42					
	Į						

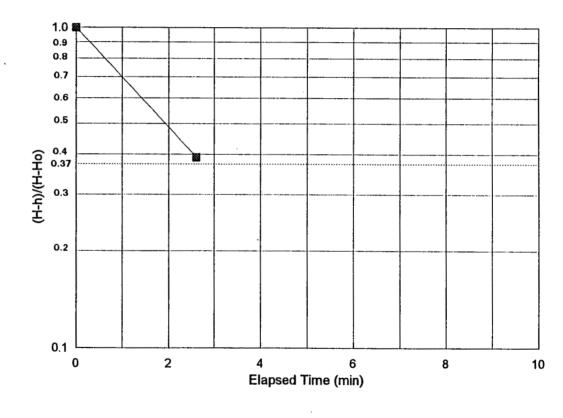
1

Notes:

Time T, when (H-h)/(H-Ho) = 8

8 min

Permeability,	k	H.	1.5E-04	cm/sec
. childability/	IN I		1.02.01	011/300


TASEKO MINES LIMITED FISH LAKE PROJECT TAILINGS STORAGE FACILITY

FALLING HEAD PERMEABILITY TEST USING HVORSLEV METHOD DRILLHOLE 94-147

		In	put Parameters		
Hole Diameter, D =	3.782 inches,	9.61 cm	Static Water Level, below ground, H	2.0 ft,	0.61 m
Drill Rod Diameter, d =	3.782 inches,	9.61 cm	Drill Rod Stick-up =	0.0 ft,	0.00 m
Top of Test Interval =			Water Level at Start of Test, Ho =	12.8 ft,	3.90 m
Bottom of Test Interval =	191.0 ft.	58.2 m			
Length of Test Interval, L =	30.0 ft.	<u>9.1 m</u>	Test Performed By:	DGSA	

TEST DA	TA
Water	
Depth, h	(H-h)/(H-Ho)
(metres)	
3.90	1.00
1.90	0.39
	Water Depth, h (metres) 3.90

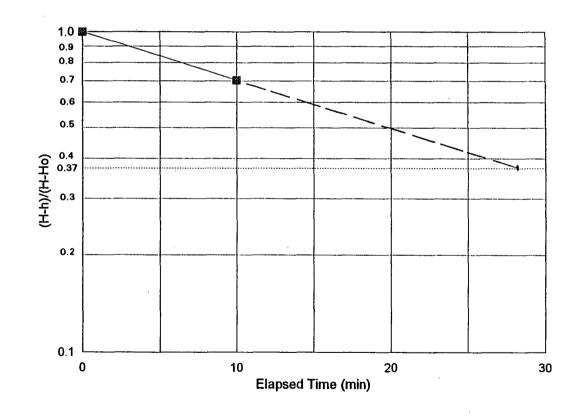
Notes:

Time T, when (H-h)/(H-Ho) = 3

3 min

Permeability, k =	= 3.7E-04	cm/sec

04:23 PM 10-Nov-94


TASEKO MINES LIMITED FISH LAKE PROJECT TAILINGS STORAGE FACILITY

FALLING HEAD PERMEABILITY TEST USING HVORSLEV METHOD DRILLHOLE 94-147

			Input Parameters		
Hole Diameter, D =	3.782 inches,	9.61 cm	Static Water Level, below ground, H	2.0 ft,	0.61 m
Drill Rod Diameter, d =	3.782 inches,	9.61 cm	Drill Rod Stick-up =	0.0 ft,	0.00 m
Top of Test Interval =	198.5 ft,	60.5 m	Water Level at Start of Test, Ho $=$	5.9 ft,	1.80 m
Bottom of Test Interval =	226.0 ft.	68.9 m			
Length of Test Interval. L =	<u> </u>	<u>8,4 m</u>	Test Performed By:	DGSA	

	TEST DA	TA
Elapsed	Water	
Time	Depth, h	(H-h)/(H-Ho)
(min)	(metres)	
0	1.80	1.00
10	1.45	0.71
L	L	L]

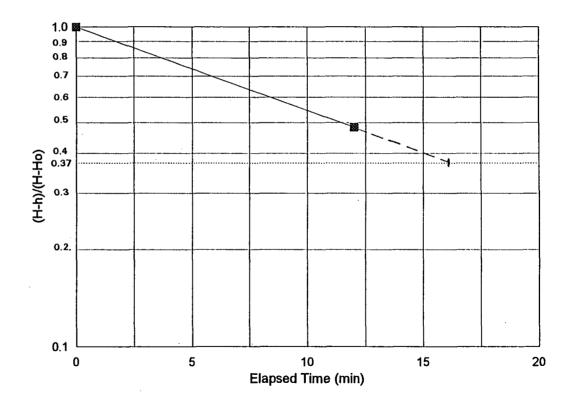
Notes:

Time T, when (H-h)/(H-Ho) = 2

28 min

Permeability, k	=	4.2E-05	cm/sec

J:\JOB\DATA\1738\TSF\PERM\HVOR147.WK4


05:05 PM

TASEKO MINES LIMITED EISH LAKE PROJECT TAILINGS STORAGE FACILITY

FALLING HEAD PERMEABILITY TEST USING HVORSLEV METHOD DRILLHOLE 94-148

			nput Parameters		
Hole Diameter, D =	3.782 inches,	9.61 cm	Static Water Level, below ground, H	16.5 ft,	5.03 m
Drill Rod Diameter, d =	3.782 inches,	9.61 cm	Drill Rod Stick-up =	0.0 ft,	0.00 m
Top of Test Interval =	8.Q ft,	2.4 m	Water Level at Start of Test, Ho =	20.5 ft,	6.25 m
Bottom of Test Interval 🚍 📃	46.0 ft,	14.0 m			
Length of Test Interval, L =	<u>38.0 ft.</u>	<u>11.6 m</u>	Test Performed By:	DGSA	

	TEST DA	TA
Elapsed	Water	
Time	Depth, h	(H-h)/(H-Ho)
(min)	(metres)	
0	6.25	1.00
12	5.62	0.48

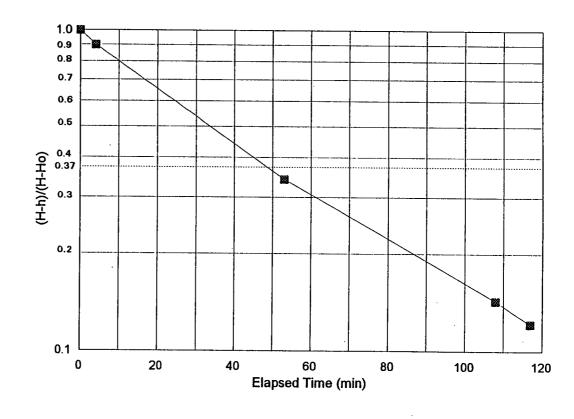
Time T, when $(H-h)/(H-H_0) =$ 16 min

Permeability, k = 5.7E-05 cm/se	С

Notes:

05:10 PM 10-Nov-84

J:\JOB\DATA\1738\TSF\PERM\HVOR148.WK4


TASEKO MINES LIMITED EISH LAKE PROJECT TAILINGS STORAGE FACILITY

FALLING HEAD PERMEABILITY TEST USING HVORSLEV METHOD DRILLHOLE 94-148

			Input Parameters		
Hole Diameter, D =	3.782 inches,	9.61 cm	Static Water Level, below ground, H	16.5 ft,	5.03 m
Drill Rod Diameter, d =	3.782 inches,	9.61 cm	Drill Rod Stick-up =	0.0 ft,	0.00 m
	10.0 ft,	3.0 m	Water Level at Start of Test, Ho =	0.0 ft,	0.00 m
Bottom of Test Interval 🚍 🔡	76.0.ft,	23,2 m			
Length of Test Interval, L =	<u> 66.0 ft. </u>	<u> 20,1 m </u>	Test Performed By:	DGSA	

	TEST DA	TA
Elapsed	Water	
Time	Depth, h	(H-h)/(H-Ho)
(min)	(metres)	
0	0.00	1.00
4	0.50	0.90
53	3.31	0.34
108	4.31	0.14
117	4,42	0.12

Notes:

Time T, when (H-h)/(H-Ho) = 5

50 min

Permeability, k =	1.2E-05 cm/sec

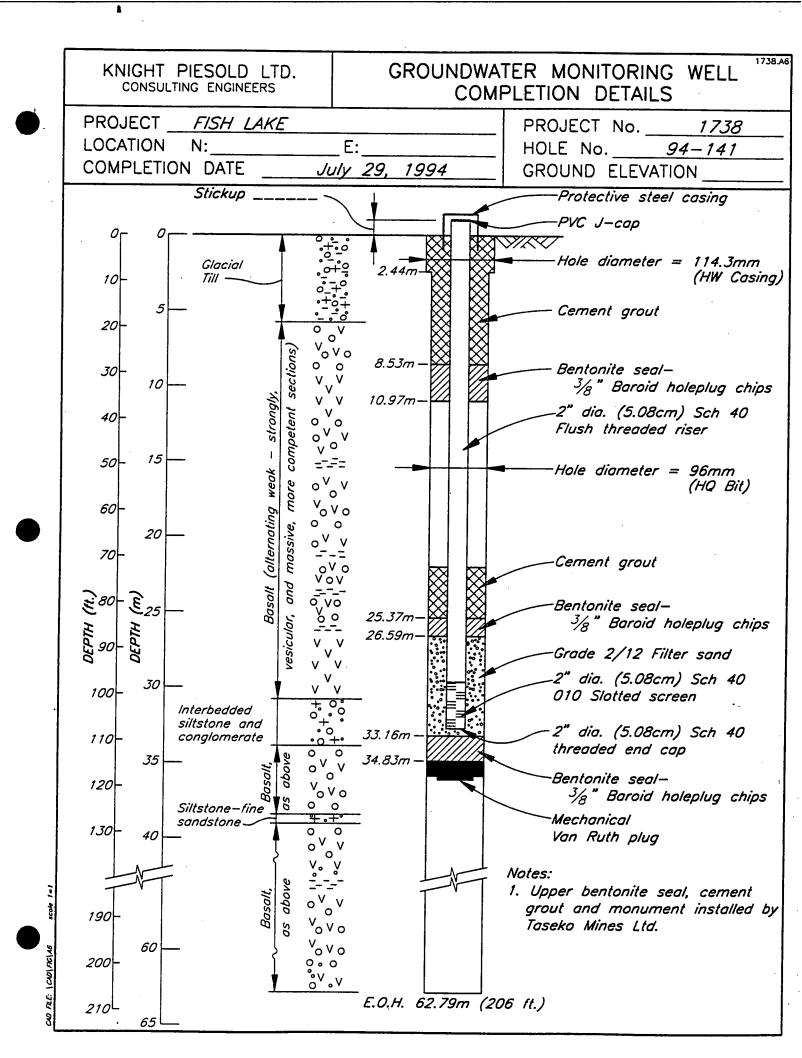
J:\JOB\DATA\1738\TSF\PERM\HVOR148.WK4

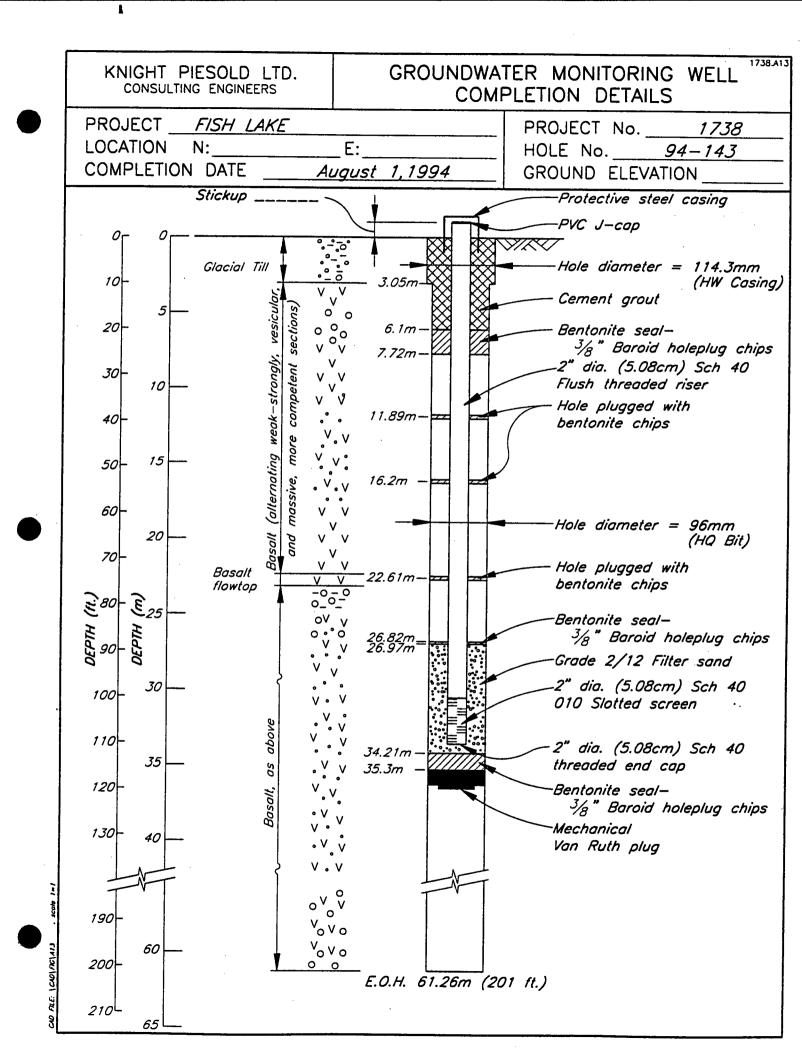
<u>TASEKO MINES LIMITED</u> <u>FISH LAKE PROJECT</u> <u>PACKER TEST PERMEABILITY CALCULATIONS</u> <u>BOREHOLE 94 - 150</u>

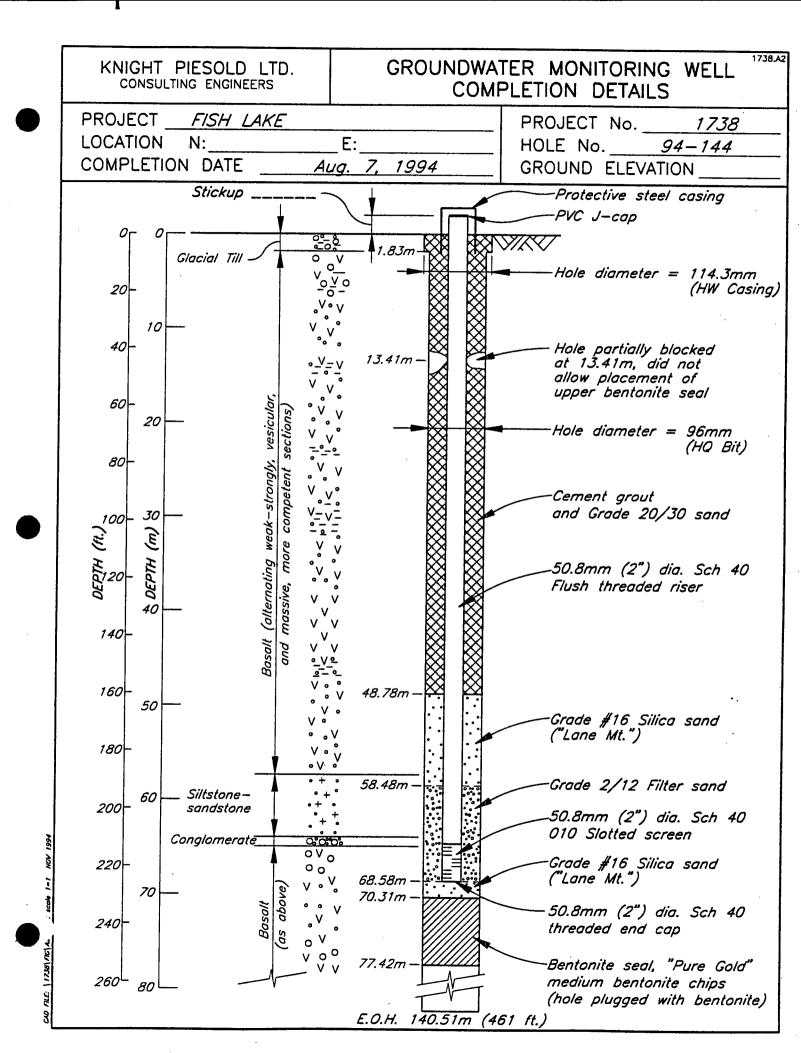
Borehole Diame	ter =	HQ =	3.78 inches
Height of Pressu	re Gauge Above Groun	nd =	2.0 ft
Depth to Water	Gauge =	5.5 ft	
Depth to Bedroc	k =	0	9 ft
Borehole Angle	(from Vertical) =		0 degrees
Tests Performed			DGSA
Test Date :	Tests 1 - 5	Aug. 14	4, 1994

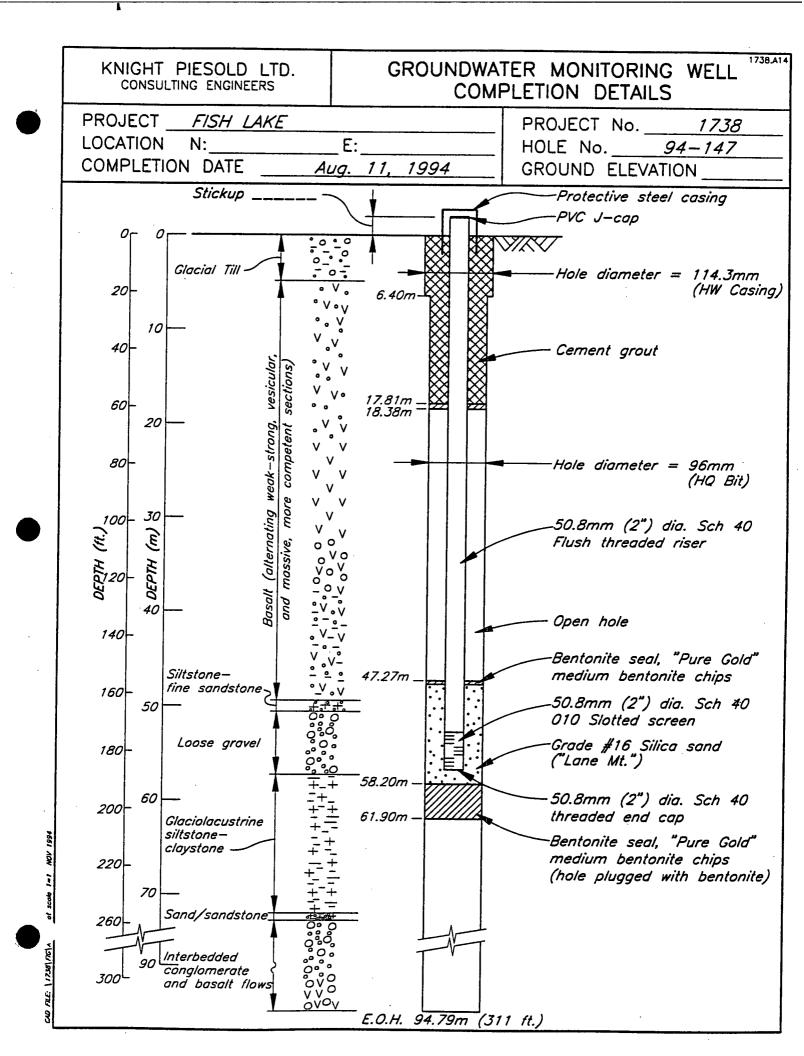
J:/JOB/	DATA	1738\94	150. W K3

J:\JOB\DA	<u>VOB\DATA\1738\94_150.WK3</u> 23 - Sep - 94												
TEST No.	INTE (ft) from	RVAL	FLOW N (litre initial	1999-1999-1999-1999-1999-1999-1999-199	TIME (min)	FLOW RATE (I/min)	PACKER PRESS. (psi)	GAUGE PRESS. (psi)	HEAD CORR. (ft)	TEST HEAD (ft)	AVERAGE PERMEABILITY (cm/sec)	COMMENTS	PACKER TEST RESULTS (Flow vs. Head)
<u>- A 19 - S</u> -													
1	18.5	46.0	1796.62	1853.67	5	11.411	215	4.0	11.2	3.6			
	18.5	46.0	1868.22	1950.53	5	16.462	215	8.0	16.1	7.9		Basalt	
	18.5	46.0	1963.69	2057.05	5	18.672	215	10.0	18.3	10.3	k = 1.1E - 03	Very Poor to Poor	
	18.5	46.0	2068.85	2138.26	5	13.882	215	8.0	13.6	10.4		RQD	
	18.5	46.0	2149.56	2201.91	5	10.471	215	4.0	10.2	4.5			
2	38.5	66.0	2261.97	2363.08	5	20.222	235	8.0	19.8	4.2			
	38.5	66.0	2385.29	2519.30	2	26.803	235	15.0	29.5	10.6		Basalt/Conglom.	
	38.5	66.0	2540.30	2697.32	2	31.404	235	20.0	38.9	12.8	k = 1.1E - 03	Very Poor to fair	
	38.5	66.0	2718.33	2839.84	5	24.303 13.202	235	15.0	24.5	15.7		RQD	
3	<u>38.5</u> 58.5	<u> 66.0</u> 86.0	2852.34 2915.95	<u>2918.35</u> 2918.40	5	0.490	235 255	<u> </u>	<u> </u>	<u>11.1</u> 28.1			
2	58.5	86.0	2913.93	2918.40	4	1.038	255	20.0	0.3 1.0	28.1 50.7		Conglomorato	
	58.5	86.0	2919.10	2929.85		1.475	255	20.0 30.0	1.0	73.3	k = 1.0E - 05	Conglomerate	
	58.5	86.0	2923.95	2929.85	4	0.900	255	20.0	0.9	50.8	K = 1.0C - 03	Very Poor RQD	
	58.5	86.0	2936.60	2938.75	5	0.900	255	20.0 10.0	0.9	28.2		RQD	
4	58.5	106.0	2939.68	2938.75	5	0.095	255	10.0	0.4	28.2			
	58.5	106.0	2940.35	2942.20	5	0.370	255	20.0	0.1	51.3		Conglomerate	
	58.5	106.0	2942.60	2946.00	5	0.680	255	30.0	0.4	74.1	k = 2.3E - 06	Very Poor	
	58.5	106.0	2946.15	2947.85	5	0.340	255	20.0	0.3	51.4	K - 2.51, 00	RQD	
	58.5	106.0	2948.05	2948.68	5	0.125	255	10.0	0.5	28.5			
5	108.5	126.0	2950.40	2956.45	5	1.210	300	20.0	1.2	50.5			
	108.5	126.0	2957.70	2965.96	5	1.650		35.0	1.6	84.7		Argillite,	
	108.5	126.0	2968.06	2978.11	5	2.010	300	50.0	2.0	119.0	k = 1.5E - 05	Conglomerate	
	108.5	126.0	2979.51	2986.86	5	1.470	300	35.0	1.4	84.9		Poor RQD	
	108.5	126.0	2987.46	2992.91	5	1.090	300	20.0	1.1	50.6	·		

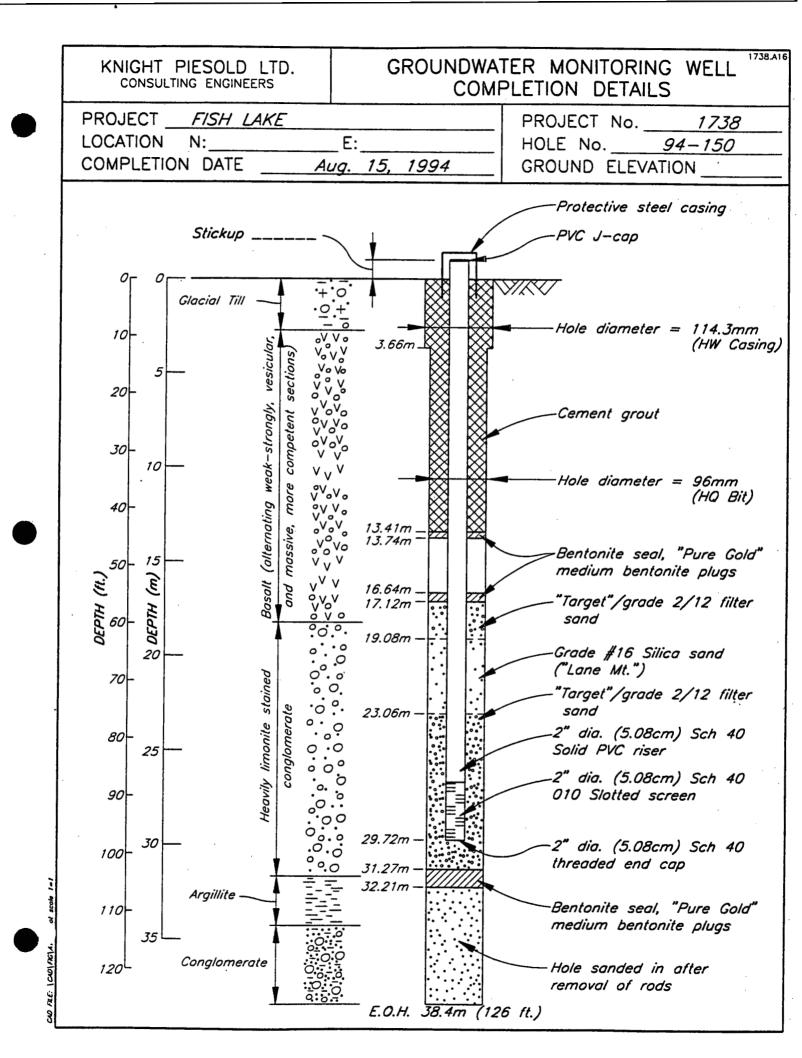

Knight Piésold Ltd. CONSULTING ENGINEERS


APPENDIX E


GROUNDWATER MONITORING WELL COMPLETION DETAILS


Association of Consulting Engineers of Canada

Association des Ingénieurs-Conseils du Canada



PROJECT	PIESOLD LTD. ING ENGINEERS <i>FISH LAKE</i> N: N DATE		TER MONITORING WELL 1738.415 PLETION DETAILS PROJECT No. <u>1738</u> HOLE No. <u>94–148</u> GROUND ELEVATION
90-	Stickup	·· · · · · · · · · · · · · · · · · · ·	Protective steel casing PVC J-cap Cement grout Bentonite seal, "Pure Gold" medium bentonite plugs Hole caved in after casing moved. Casing left in hole. Hole diameter = 114.3mm (HW Casing) Grade 20/30 Filter sand Hole caved in and blocked after removal of rods, over entire length or locally, 3 bags #16 Filter Sand and 1 bag 20/30 Filter Sand and 1 bag 20/30 Filter Sand added. Hole diameter = 96mm (H0 Bit) 2" dia. (5.08cm) Sch 40 Solid PVC riser 2" dia. (5.08cm) Sch 40 010 Slotted screen 2" dia. (5.08cm) Sch 40 threaded end cap Hole caved in after removal of rods Grade #16 Silica sand ("Lane Mt.") Bentonite seal, "Pure Gold" medium bentonite plugs

÷

