LOG NO:	TJAN 2 0 1995 U
ACTION:	
FILE NO:	the state of the s

ASSESSMENT REPORT

on a

SILT SAMPLING

and

SOIL SAMPLING PROGRAM

on the

ASPEN PROPERTY

ASP 1-8 MINERAL CLAIMS

SALMO AREA

NELSON MINING DIVISION, B.C.

NTS:

LATITUDE:

LONGITUDE: OWNER:

OPERATOR: AUTHORS:

DATE:

082F/03E

49° 11'08"N

117° 11'15"W W.R. Gilmour

Discovery Consultants

T.H. Carpenter, P.Geo October 20, 1994 GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

SUMMARY	Page	1
LOCATION AND ACCESS	Page	2
TOPOGRAPHY	Page	2
PROPERTY	Page	3
HISTORY	Page	4
GENERAL GEOLOGY	Page	5
WORK COMPLETED 1. SILT SAMPLING A) PROGRAM PARAMETERS B) PROGRAM RESULTS 2. SOIL SAMPLING A) PROGRAM PARAMETERS B) PROGRAM PARAMETERS B) PROGRAM RESULTS	Page Page Page Page Page	6 6 6 6
conclusions	Page	7
RECOMMENDATIONS	Page	8
REFERENCES	Page	9
STATEMENT OF COSTS	Page	10
STATEMENT OF OUNTERCATIONS	Dago	11

LIST OF ILLUSTRATIONS

FIGURE 1	-	Location Map	Follow	ing Page	2
FIGURE 2	} ·	Claim Map (1:50,000)	Follow	ing Page	2
FIGURE 3	3	Silt and Soil Sample Location with Au Values (1:5,000)	_	In Pocket	
FIGURE 4	Į.	Silt and Soil Sample Location with Zn values (1:5,000)	Map	In Pocket	

APPENDICES

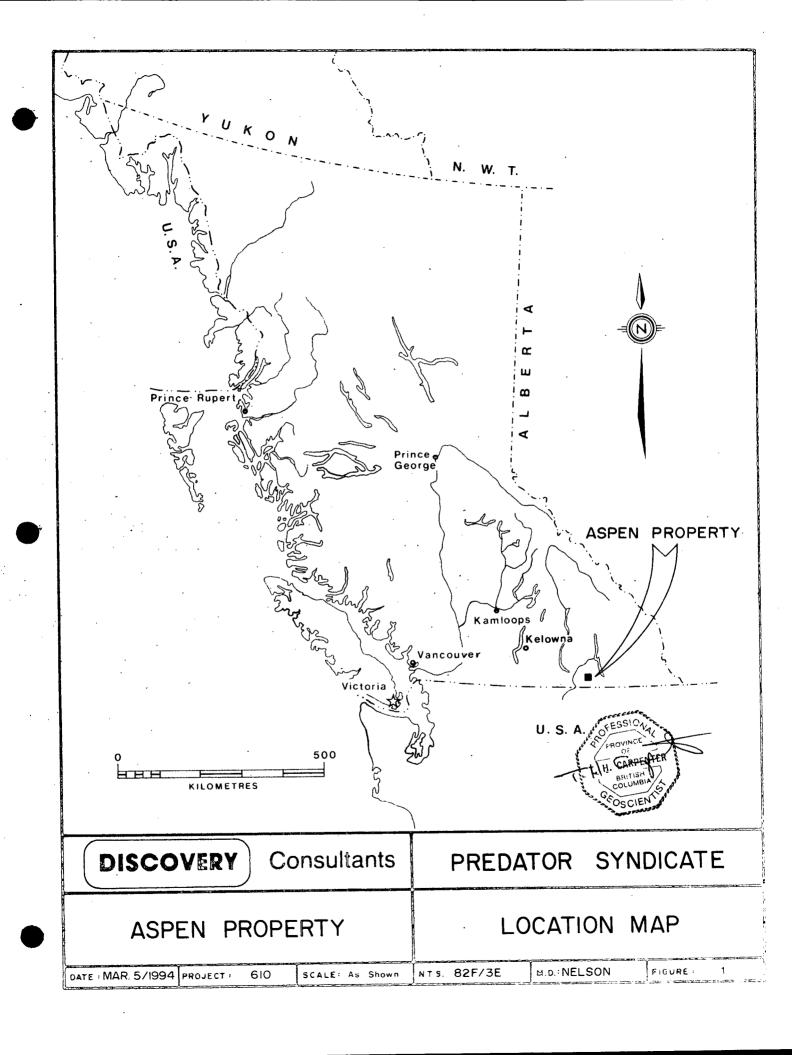
APPENDIX 1	Silt Sampling Survey Analytical Procedures and Results
APPENDIX 2	Soil Sampling Survey Analytical Procedures and Results

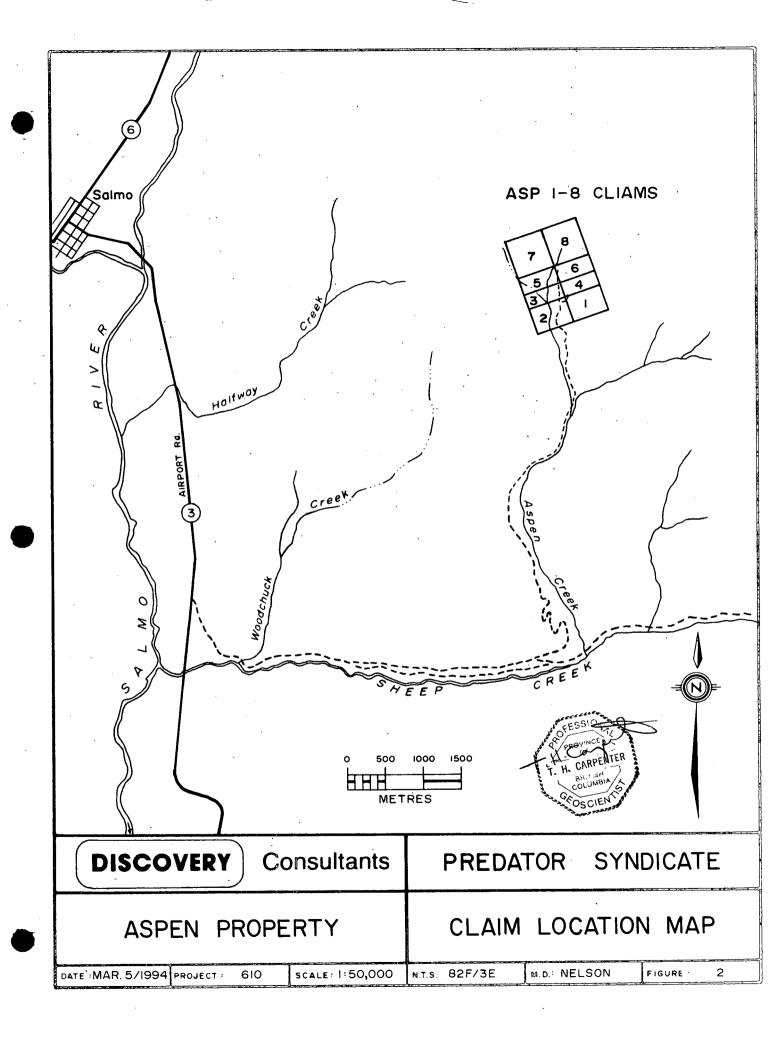
SUMMARY

The Aspen is a probable manto-type silver, gold, lead and zinc deposit hosted by limestone of the Lower Cambrian Laib Formation. The deposit is located on the east side of upper Aspen Creek, 65 kilometres east of Salmo and 40 kilometres south of Nelson in the Nelson Mining Division.

Exploration work has been carried out on the property since 1912 and has defined three distinct ore-bearing breccia horizons, which have been strongly affected by folding, faulting and by the emplacement of the Middle to Late Jurassic Nelson Intrusions.

In 1993, programs of silt and soil sampling were carried out on the property.


LOCATION AND ACCESS


The Aspen property is centred at latitude 49°11'08"N and longitude 117°11'15" W. The property is located 6.5 km east by east-southeast of Salmo and 4.8 km north of the junction of Aspen and Sheep Creeks (Figure 1).

Access to the property can be gained via a four-wheel drive road up Aspen Creek from the Sheep Creek road off Highway 3/6.

TOPOGRAPHY

The Asp claims are principally located on the east side of Aspen Creek. Elevations range from 4500 feet (1372 metres) to 5000 feet (1524 metres). Slopes are moderate.

PROPERTY

The Aspen property comprises eight two-post claims, designated Asp 1 to 8, located by Richard G. Mitchell and John G. Beggs on October 18, 1993.

Claim Name	Record #	Owner of Record	Anniversary Date *
Asp 1	321805	W.R. Gilmour	October 18, 1999
Asp 2	321806	W.R. Gilmour	October 18, 1999
Asp 3	321807	W.R. Gilmour	October 18, 1999
Asp 4	321808	W.R. Gilmour	October 18, 1999
Asp 5	321809	W.R. Gilmour	October 18, 1999
Asp 6	321810	W.R. Gilmour	October 18, 1999
Asp 7	321811	W.R. Gilmour	October 18, 1999
Asp 8	321812	W.R. Gilmour	October 18, 1999

The claims are owned by W.R. Gilmour in trust for the Predator Syndicate. There is a section 35 dispute involving the Aspen 1 to 4 claims which cover some of the same ground also staked as the Asp claims.

^{*} Pending acceptance of this report.

HISTORY

The Aspen deposit was first discovered by prospecting in 1896. From 1912 to 1928 considerable development work was done on the property by private interests, including trenching, drifting, cross-cutting and diamond drilling.

Between 1928 and 1937 work was continued by Salmo-Malartic Mines Ltd.

Recorded production for three years during this period totalled 28 tonnes grading 31 grams of gold, 36,359 grams of silver, 431 kilograms of lead and 365 kilograms of zinc.

Reserves published in 1937 indicated 29,030 tonnes averaging about \$9 per tonne combined silver and gold (1937 prices) and 90,720 tonnes of low-grade zinc.

In 1951 Sheep Creek Gold Mines Limited conducted 3019 feet (920 metres) of diamond drilling which outlined a considerable tonnage of marginal material.

Extotal Resources Inc. carried out a further 1545 metres of diamond drilling in 1980.

In 1984 Greenwich Resources completed a program of rock, soil and silt sampling combined with a ground electromagnetic survey.

WORK DONE

Work carried out on the property in 1993 comprised silt sampling and soil sampling. The individual surveys are discussed below.

1. Silt Sampling

a). Program Parameters

A total of 6 silt samples was collected from drainages on the Asp 5, 7 and 8 claims. Samples of stream silt were collected at 200 metre intervals, placed in kraft sample bags and sent to Bondar-Clegg and Company Ltd. in North Vancouver, B.C. At Bondar-Clegg, analyses were carried out for gold and 27 element ICP. Sample locations and gold and zinc values are shown on Figures 3 and 4. Results are contained in Appendix 1.

b). Program Results

Anomalous zinc values to 302 ppb were detected in a northeast trending drainage on the Asp 5 and 8 claims.

Anomalous gold values to 36 ppb were detected in a northwest trending drainage on the Asp 5 and 7 claims.

2. Soil Sampling

a). Program Parameters

Twenty-four soil samples were collected on the Asp 5, 7 and 8 claims. The samples were taken at 25 metre intervals along two contour lines.

The samples were collected by shovel from the "B" horizon, placed in 9 cm x 25 cm kraft sample bags and sent to Bondar Clegg and Company Ltd. in North Vancouver, B.C. At Bondar-Clegg, analyses were carried out for gold and 27 element ICP. Sample locations with gold and zinc values are shown on Figures 3 and 4. Results are contained in Appendix 2.

b). Program Results

An anomalous gold value of 968 ppb was noted in the soil sampling program. Zinc values to 631 ppm were also detected. Copper and lead values were at or near background levels.

GENERAL GEOLOGY

The Aspen occurrence has been described as a manto-type deposit hosted by limestone of the Lower Cambrian Formation (Reeves Member) correlative with the Lower Cambrian Badshot Formation. The deposits have been strongly affected by folding, faulting, and by the emplacement of the Middle to Late Jurassic Nelson Intrusions. Three distinct stratabound, dolomitic orebearing breccia horizons have been recognized.

These are:

- 1. Upper Zinc dolomitic breccia. Sphalerite, pyrite and pyrrhotite are hosted in a calcite-dolomite-olivine-serpentine-talc gangue.
- 2. Middle Silver dolomitic breccia. Pyrite, sphalerite, galena and tetrahedrite occurs in a diopside-quartz-calcite-wollastonite-serpentine-humite gangue. The unit is 1 to 8 metres thick and is traced about 1100 metres on the surface. Tetrahedrite occurs as small, irregular aggregates easily mistaken for carbonaceous material in an otherwise unmineralized, silicified dolomite. The Middle Silver Zone may locally contain up to 15% zinc, 14 grams per tonne gold and 1371 grams per tonne silver.
- 3. Lower Lead-Zinc-Silver dolomitic breccia. Sphalerite, galena and tetrahedrite occur in a calcite-dolomite-olivinewollastonite gangue. Assay values range from 2.3 to 6% zinc, 2 to 25% lead, and 291 to 2057 grams per tonne silver.

The zones have a general north-northwest trend and dips about 40 to 50 degrees northeast.

CONCLUSIONS

Significant gold and zinc values were detected on the Asp claims in silt and soil samples. Gold and zinc values were found in silt samples in separate drainages at the headwaters of Aspen Creek.

The anomalous gold values in silts are contained in the northwest trending fork, which drains the area of a metamorphosed limestone/granite contact.

The northeast trending drainage, which is anomalous in zinc, drains metamorphosed limestones, phyllites and argillites of the Emerald member of the Laib Formation and limestones and dolomites of the Reeves Member of the Laib Formation.

Anomalous zinc values in soils also appear to be largely confined to the drainage area of the northeast trending drainage while the most anomalous gold value in soil is contained within the northwest drainage area.

RECOMMENDATIONS

Further exploration to trace the source of anomalous gold and zinc values in silt and soil samples on the Asp claims is recommended.

This work should comprise further soil sampling and a detailed mapping & prospecting program

Respectively submitted,

T.H. Carpenter, P.Geo.

Vernon, B.C. October 20, 1994

REFERENCES

British Columbia Ministry of Energy, Mines and Petroleum Resources (MEMPR) Annual Report.

```
1896
      pg.
          73
1912
      pg. 155
1913
      pg. 131
1914
      pg. 329
1915
      pg. 162
1917
      pg. 170, 195
      pg. 173, 198
1918
     pg. 133
1920
1926
     pg. 278
1927
      pg. 308
     pg. 348
1928
     pg. 232
1933
1934
     pg. E22
1935
      pg. A31, G50
1936
      pg. E42
1937
     pg. E53
```

BCMEMPR Geology, Exploration and Mining in B.C.

1980 pg. 55 1984 pg. 36

Fyles, J.T. and Hewlett, C.G. - Stratigraphy and structure of the Salmo Lead-Zinc Area. British Columbia Department of Mines, Bulletin No. 41, 1959

Geological Survey of Canada, Memoir 172, pg. 65

Geological Survey of Canada, Memoir 308, pg. 134

STATEMENT OF COSTS

1.	Professional Services K.L. Daughtry Supervision, data compilation 1 day @ \$350/day \$350.00 T.H. Carpenter Data compilation and report writing 2.5 days @ \$380/day 950.00	\$ 1300.00
2.	Field Personnel Rick Mitchell (Oct 18-20) Silt & soil sampling 2.5 days @ \$235.57/day John Beggs (Oct 18-20) Silt & soil sampling	1015 00
	2 days @ \$213.50 <u>427.00</u>	1015.92
3.	Transportation (4x4 vehicle) (Oct 18-20)	438.50
4.	Lodging & Meals	100.65
5.	Geochemical Analysis Soil samples - Au + 27 element ICP 24 @ \$13.70 328.80 Silt samples - Au + 27 element ICP 6 @ \$13.70 82.20	411.00
6.	Drafting	400.00
		•
7.	Data compilation, secretarial	300.00
8.	Field Supplies	75.00
9.	Printing, data processing, telephone, shipping	150.00
		\$ 4191.07
10.	G.S.T.	293.37
	sub-total	\$ 4484.44
11.	PAC Withdrawal	1115.56
		A
	Total	<u>\$ 5600.00</u>

STATEMENT OF QUALIFICATIONS

I, THOMAS H. CARPENTER of 3902 14th Street, Vernon, B.C., V1T 3V2, DO HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration associated with Discovery Consultants, Vernon, B.C.
- 2. I have been practising my profession for 23 years.
- 3. I am a graduate of the Memorial University of Newfoundland with a Bachelor of Science degree in geology.
- 4. I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. This report is based upon knowledge of the Aspen property gained from supervision.
- 6. I hold no interest either directly or indirectly in the Aspen property.

T.H. Carpenter, P.Geo.

Vernon, B.C. October 20, 1994

APPENDIX 1

Date of Report: 93.11.15

Project 610

Aspen

Silt Sampling Results 1993

Reference: BC v9301113.0

Sample ID	Au ppb	Ag ppm	Cu ppm	Pb ppa	Zn ppm	Cd ppm	Mo ppm	As ppm	Sb ppm	Bi ppm	Ni ppm	Co ppm	Cr ppm	Fe %	Mn ppm
ASPSS-01	36	⟨0.2	13	30	81	<1.0	₹1	9	6	₹5	17	5	41	2.11	895
ASPSS-02	₹5	0.3	21	24	302	3.6	2	9	6	₹5	34	7	28	1.86	507
ASPSS-03	7	0.3	26	17	284	3.0	2	14	⟨5	₹5	37	7	32	1.84	479
ASPSS-04	28	<0.2	10	28	84	<1.0	<1	6	₹5	₹5	16	6	37	2.43	886
ASPSS-05	₹5	<0.2	11	27	99	(1.0	2	13	⟨5	⟨5	9	7	24	2.97	1003
ASPSS-06	₹5	<0.2	18	17	257	3.0	2	17	₹5	₹5	27	6	. 21	1.97	5 85

Duplicate:

ASPSS-03

6

Project 610

Silt Sampling Results (part 2)

=======================================	=======	======	======	======	======	======	======	=====	======	======		======	:=====
Sample ID	Ba	V	Sr	γ	La	Te	Sn	W	Al	Ħg	Ca	Na	K
	pp⊞	p p≘	рр₽	ppa	ррш	₽₽#	ppa	ppm	% 	٦ 	% 	X 	"
ASPSS-01	744	36	121	12	39	⟨10	⟨20	⟨20	1.42	0.32	1.29	0.02	0.08
ASPSS-02	178	45	33	23	45	₹10	⟨20	₹20	1.65	0.48	1.00	0.02	0.08
ASPSS-03	199	47	34	24	48	<10	₹20	⟨20	1.76	0.46	0.98	0.02	0.08
ASPSS-04	780	40	106	10	36	₹10	⟨20	⟨20	1.49	0.37	1.14	0.02	0.09
ASPSS-05	802	47	90	9	41	<10	₹20	₹20	1.45	0.52	0.96	0.02	0.12
ASPSS-06	158	50	30	21	45	₹10	⟨20	⟨20	1.58	0.42	0.73	0.01	0.08

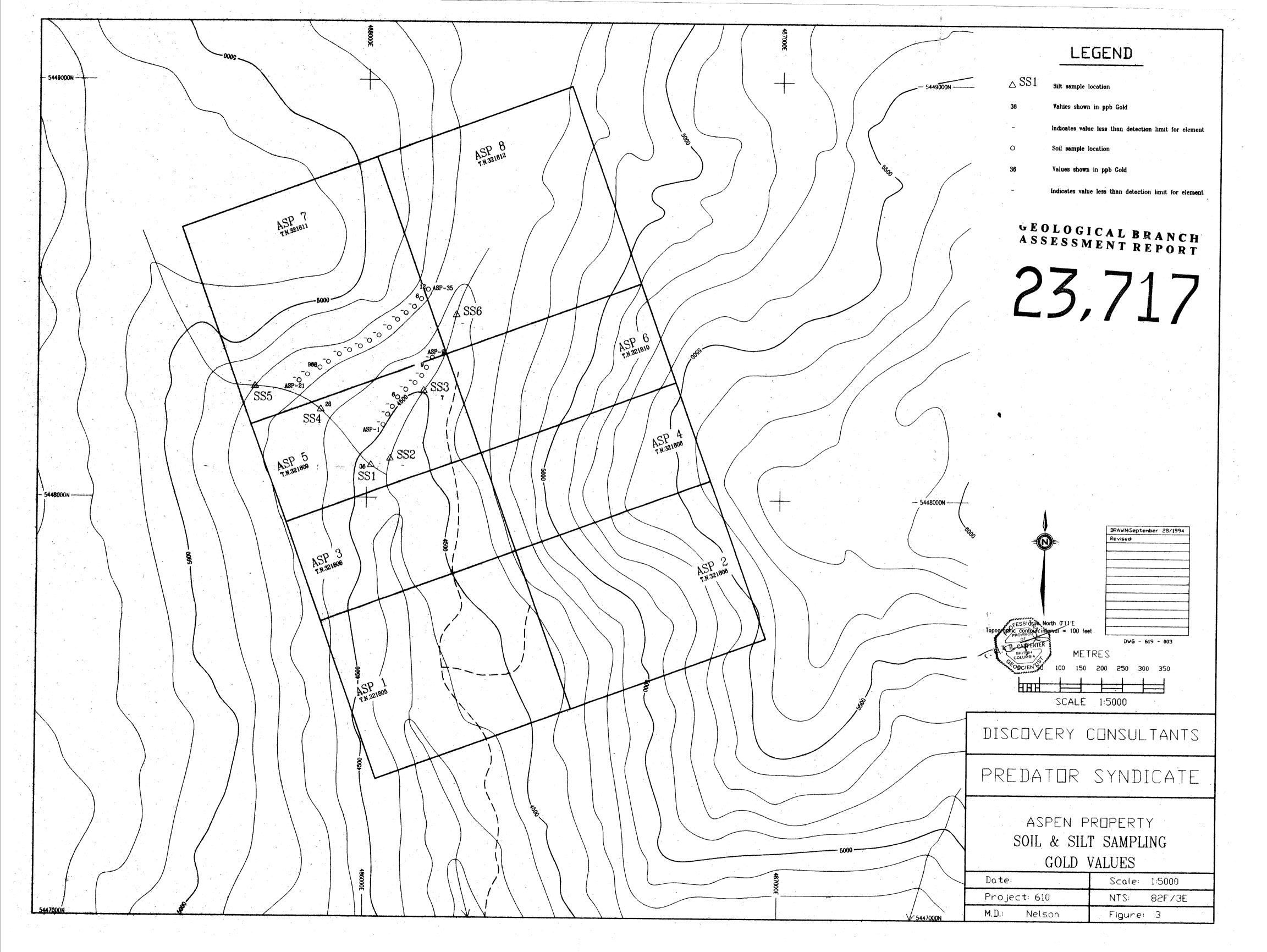
APPENDIX 2

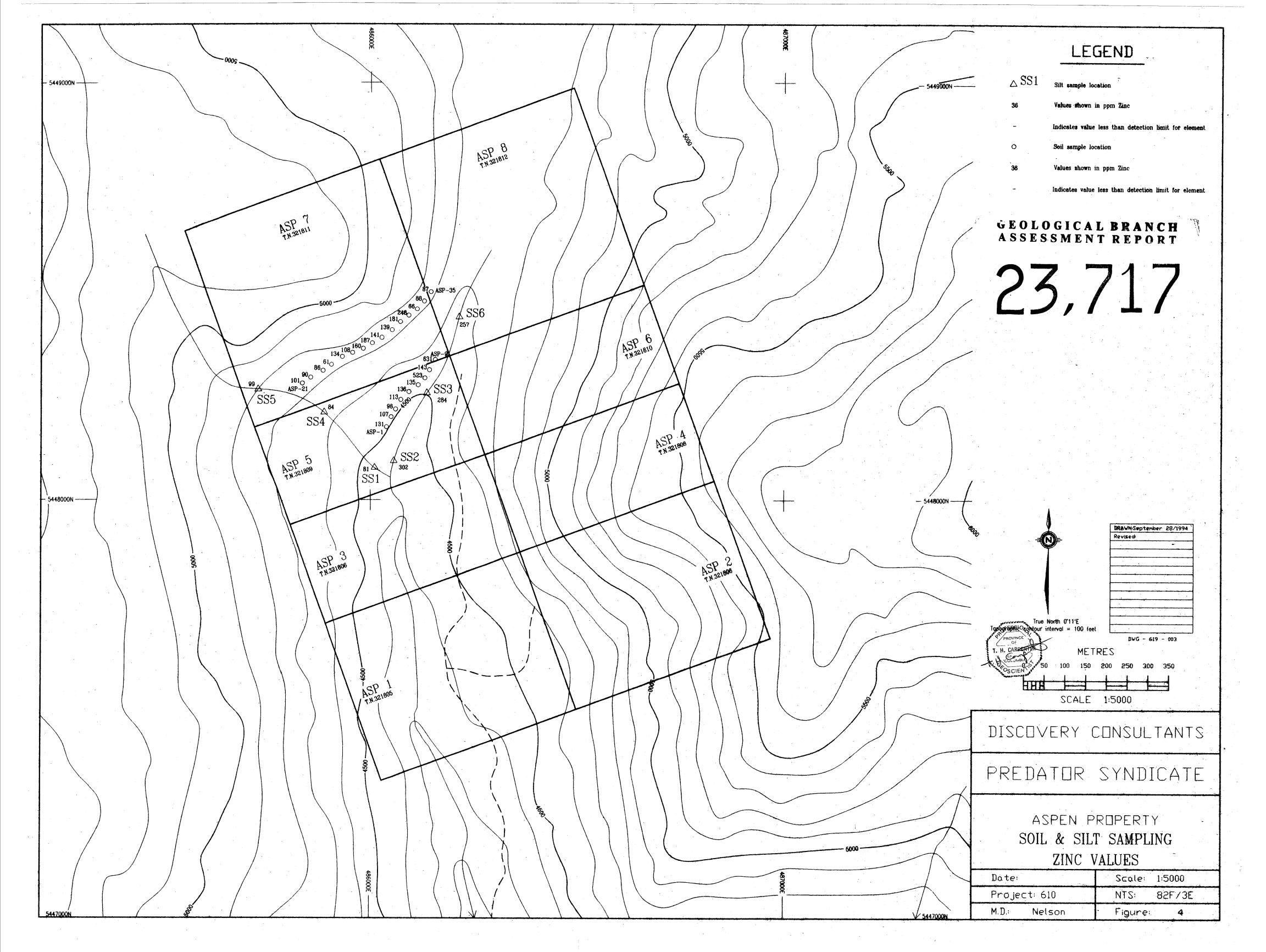
Date of Report: 93.11.17

Project 610

Aspen

Soil Sampling Results 1993


Reference: BC v93-01113.0


Sample ID Au		Ag	Cu	Pb	Zn	Cd	Mo	As	Sb	Bi	Ni .	. Co	Cr	Fe	Mn
***	ppb	ppa	bb a	pp#	pp#	ppm	ppm	 ppm	ppm	bbw	ppm	ppm ppm	ppm	"	ppa
ASP-01	⟨5	⟨0.2	19	19	131	(1.0	1	24	(5	5	29	11	30	3.54	523
ASP-02	₹5	<0.2	15	31	107	<1.0	<1	24	₹5	6	25	9	24	2.60	551
ASP-03	<5	(0.2	22	16	98	<1.0	<1	15	₹5	5	41	11	26	2.99	604
ASP-04	6	<0.2	19	16	113	<1.0	1	12	₹5	6	40	12	42	3.31	636
ASP-05	⟨5	(0.2	24	22	136	<1.0	<1	17	₹5	6	34	14	29	3.00	297
ASP-06	<5	<0.2	24	21	135	<1.0	<1	15	⟨5	5	62	19	- 84	3.94	1194
ASP-07	<5	(0.2	50	16	523	<1.0	2	5	₹5	5	127	29	58	4.14	1125
ASP-08	. 9	<0.2	26	20	143	<1.0	. 1	17	₹5	6	. 60	22	54	3.51	1541
ASP-09	⟨5	0.9	46	20	631	1.2	5	- 23	₹5	5	127	22	- 58	3.60	1204
ASP-21	⟨5	(0.2	. 8	13	101	<1.0	<1	₹5	8	⟨5	12	7	15	2.29	626
ASP-22	₹5	<0.2	12	15	90	<1.0	<1	5	₹5	5	17	10	23	2.79	1015
ASP-23	968	0.2	37	20	86	<1.0	<1	21	9	6	33	12	26	3.16	989
ASP-24	₹5	<0.2	14	12	61	<1.0	<1	13	₹5	<5	16	9	16	2.49	548
ASP-25	⟨5	(0.2	12	18	134	<1.0	<1	7	<5	5	14	10	18	2.73	899
ASP-26	₹5	<0.2	19	19	108	<1.0	₹1	5	₹5	6	20	10	24	2.82	647
ASP-27	₹5	<0.2	14	13	160	<1.0	<1	9	₹5	₹5	22	11	21	2.79	342
ASP-28	₹5	<0.2	17	18	187	<1.0	1	25	₹5	7	28	11	25	2.89	402
ASP-29	₹5	<0.2	10	15	141	<1.0	<1	6	₹5	5	19	10	21	2.70	437
ASP-30	₹5	<0.2	17	24	139	<1.0	1	10	6	8	31	12	29	2.71	1115
ASP-31	₹5	(0.2	14	35	181	<1.0	<1	11	₹5	6	25	9	23	2.61	549
ASP-32	⟨5	<0.2	22	32	248	<1.0	(1	17	₹5	5	53	14	40	2.87	578
ASP-33	₹5	(0.2	19	16	66	<1.0	1	14	₹5	₹5	18	8	18	2.43	382
ASP-34	6	<0.2	13	12	88	<1.0	<1	₹5	₹5	₹5	22	8	21	2.43	798
ASP-35	12	<0.2	15	15	87	<1.0	i	10	₹5	₹5	18	8	21	2.85	457
			•		•										
Duplicate:															
ASP-04		⟨0.2	22	18	125	<1.0	2	12	⟨5	5	43	12	46	3.59	700
ASP-32		<0.2	25	36	280	<1.0	<1	18	8	7	60	15	46	3.29	640

Project 610

Soil Sampling Results (part 2)

Sample ID	Ba	٧	Sr	Y	La	Te	Sn	¥	Al	Ħg	Ca	Na	K
	ppa	ppm	ppa	ppm	ppm	ppm	ρρ⊞	ppm	"	X 	% 	7.	7.
ASP-01	129	67	13	2	12	⟨10	⟨20	⟨20	2.50	0.56	0.19	0.01	0.09
ASP-02	101	41	8	3	6	<10	₹20	₹20	4.46	0.38	0.15	0.02	0.07
ASP-03	120	57	8	6	13	<10	<20	₹20	3.70	0.62	0.10	0.02	0.09
ASP-04	155	63	9	3	10	<10	₹20	⟨20	3.11	0.85	0.11	0.01	0.15
ASP-05	138	47	1:1	5	8	<10	₹20	₹20	4.66	0.48	0.31	0.02	0.12
ASP-06	145	62	7	5	15	<10	₹20	₹20	3.19	1.09	0.10	0.01	0.33
ASP-07	232	140	13	9	16	<10	₹20	⟨20	3.33	0.94	0.30	0.01	0.31
ASP-08	246	66	22	6	14	₹10	₹20	₹20	3.18	0.85	0.28	0.01	0.21
ASP-09	299	143	17	9	15	<10	⟨20	(20	2.53	0.89	0.46	0.01	0.13
ASP-21	178	44	27	3	16	₹10	<20	₹20	1.84	0.39	0.44	0.02	0.07
ASP-22	147	53	20	3	14	<10	₹20	⟨20	1.88	0.38	0.22	0.01	0.09
ASP-23	211	61	29	23	41	₹10	<20	₹20	2.80	0.55	0.44	0.02	0.13
ASP-24	240	51	30	9	27	<10	₹20	₹20	2.06	0.52	0.56	0.02	0.13
ASP-25	312	47	28	3	13	<10	⟨20	₹20	1.96	0.37	0.34	0.02	0.10
ASP-26	110	52	20	12	25	<10	₹20	₹20	2.49	0.44	0.40	0.02	0.08
ASP-27	128	48	9	2	8	₹10	⟨20	⟨20	2.70	0.44	0.19	0.02	0.07
ASP-28	147	54	12	3	9	<10	₹20	₹20	2.58	0.49	0.31	0.02	0.08
ASP-29	153	52	12	- 3	12	<10	⟨20	⟨20	1.99	0.54	0.28	0.01	0.08
ASP-30	258	49	12	4	8	<10	₹20	₹20	3.20	0.68	0.29	0.02	0.11
ASP-31	1444	52	12	6	13	<10	₹20	₹20	2.66	2.53	0.63	0.02	0.10
ASP-32	701	51	21	4	7	<10	₹20	⟨20	3.56	1.51	0.96	0.04	0.12
ASP-33	107	40	5	6	9	₹10	⟨20	₹20	3.95	0.30	0.05	0.01	0.05
ASP-34	156	45	. 7	3	6	<10	⟨20	₹20	2.69	0.30	0.12	0.01	0.08
ASP-35	136	62	10	4	15	<10	⟨20	<20	2.19	0.46	0.18	0.01	0.08
							-						
Duplicate:													
ASP-04	175	66	11	3	10	<10	⟨20	⟨20	3.47	0.90	0.12	0.02	0.10
ASP-32	841	59	26	5	9	<10	₹20	₹20	4.05	1.74	0.95	0.04	0.14

