			LOG NO:	IJAN 2 6 1995	U
			ACTION:		-
54 8-7 1		REPORT ON	٤.	-	
	GEOLOGICA	L MAPPING AND GEOCHEMI	AEUEMALIN	NG	
	RECEIVED	on the	Berney with the second		
	JAN 1 9 1995				
	Gold Commissioner's Office VANCOUVER, B.C.	EROS PROPERTY	7		

STEEP CREEK, BRIDGE RIVER AREA

LILLOOET MINING DIVISION, BRITISH COLUMBIA

PROPERTY:

WRITTEN FOR:

SURVEYED BY:

WRITTEN BY:

Southwest corner of the property is four kilometers northeast of Bridge River, B.C.

50° 52' North latitude 122° 45' West longitude N.T.S. 92J/15 $\leq \sqrt{}$

LRX CAPITAL CORP. Suite 1010, 1050 West Hastings Street Vancouver, B.C. V6E 2E9

WHITE WOLF EXPLORATIONS LTD. 548 Beatty Street Vancouver, B.C. V6B 2L3

LLOYD C. BREWER 548 Beatty Street Vancouver, B.C. V6B 2L3

LEONARD GAL, P. Geo. 548 Beatt Stoet LOGICAL BRANCH Vancouver B.C. V6B 213 S.F. S.S.MENT REPORT January 17, 1995

DATE:

TABLE OF CONTENTS

Page

Summaryi
Conclusionsi
Recommendations
Introduction1
Property and Ownership
Location and Access
Physiography
History of Previous Work
Regional Geology4
Property Geology
Mineralization
Geological and Geochemical Surveys
Discussion of Results
Selected Bibliography
Affidavit of Costs
Statement of Qualifications
Statement of Qualifications

FIGURES

Property Location Map - scale 1:50,000	2
Sample Location Map - scale 1:7,500Rear Poc	ket

APPENDICES

Geochemical Lab Results

SUMMARY

This report discusses a geological and geochemical exploration program carried out on the *EROS* property owned by LRX Capital Corp., of Vancouver, B.C., during the period of October 15, 1984 and October 26, 1994. The *EROS* property is located within the prolific Bralorne Gold Camp in Southwestern British Columbia.

The *EROS* property is located four kilometres from the former gold producing Bralorne and Pioneer Mines. Other smaller former gold producers are located along the northwesterly belt of metamorphosed sedimentary and volcanic rocks. These past producers include the Congress Mine, Minto Mine both of which are less than three kilometers, to the north, from the property.

CONCLUSIONS

Overall, relatively few rock and soil samples contained anomalous gold values. However, those that did for the most part, also had elevated arsenic and antimony which follows the pattern for mineralization in adjoining properties (Congress and Reliance properties). This sequence is thought to be representative of a higher level of an epithermal system than that mined at the mid to lower levels of the Bralorne Mine.

Except for the Road Zone on the *ILSA* access road the geochemical data has failed to indicated specific target area for follow-up work, the anomalous results does confirm the likelihood of epithermal mineralization. An expanded program is necessary to fully evaluate the potential of the entire claims group.

Snow hampered the detailed examination of the *ILSA* claim, however, a linear gold, arsenic and antimony geochemical anomaly and a felsic porphyry dyke are located in road cuts at the upper reaches of the access road within the claim. (It is reported that a porphyritic dyke associated with a mineralized shear, which assayed 0.5 oz/t gold, occurs within the *ILSA* claim). This area warrants detailed examination to locate and assess the above mentioned structure.

It should be noted that portions of the *EROS* property is overlain by a layer of volcanic ash of Recent age. The ash varies in depth and can be up to 1.5 metres thick. This layer of ash can interfere with the results of geochemical sampling and all future analytical results should take into account the soil development recorded by the sample collector, in order to effectively interpret the results.

RECOMMENDATIONS

The recommended PHASE I program on the *EROS* property should be commenced in late July or early August as the elevation within the southern portions of the claim block exceeds 2,000 metres a.s.l. and snow has hampered this and previously conducted exploration programs.

PHASE I

Grid emplacement	The grid will support and accurately locate geological mapping and geochemical soil sampling as well as tie in all of the old workings. Grids should be placed using air photographs, GPS and an altimeter for more exact positioning.
Geological mapping	Detailed geological mapping should be carried out in conjunction to soil sampling at the over the upper road cut zone on the <i>ILSA</i> access road.
Geochemical soil sampling	A close spaced conventional gridded soil sample program should be carried out over target areas defined during the October 1994 program, primarily over the geochemical anomaly located along the access road within the <i>ILSA</i> claim (the Road Zone). Gridded soil samples should also be collected across the projected strike of the gold, arsenic and antimony anomalies within the adjoining Reliance Property. Detailed sampler notes should be taken to properly interpret masking by volcanic ash.
Access road	The access road should be cleared of dead fall and minor slides as to provide access to the upper reaches of the <i>ILSA</i> claim. The base camp should also be established at the upper reaches of this road in order to eliminate costly and time consuming daily travel to and from Goldbridge.
PHASE II	
Trenching	"Cat Trenching" with either a D-6 caterpillar tractor or a Cat 235 Excavator should be carried out on targets as defined by Phase I surveys.
Drilling	Advanced geophysics may be considered prior to diamond drilling. For cost effectiveness "stepout" preliminary shallow drilling could be carried out using a track mounted percussion drill.

The estimated cost of the PHASE I depends primarily on the budget available. Ideally a minimum budget of \$25,000 should be allotted. This would enable a competent geologist and geological assistant to spend three to four weeks on the property and collect and analysis sufficient samples to properly assess the target areas within the *EROS* property.

.

INTRODUCTION

t

This report discusses an exploration program carried out on the *EROS* property owned by LRX Capital Corp., of Vancouver, B.C. at the request of Stephen M. Leahy, President of LRX Capital Corp. The *EROS* property is located four kilometers east of Goldbridge, within the prolific Bralorne Gold Camp, in southwestern British Columbia. The exploration program was carried out during the period of October 15 - October 26, 1994 and consisted of geological mapping, prospecting and geochemical sampling (31 rock, 27 soils and 4 pan concentrates were collected and analyzed). The surveys were carried out by Lloyd C. Brewer, project manager, Gerard Gallissant, B.Sc. and Greg Mowatt, B.Sc., all of whom are employed by employed by White Wolf Explorations Ltd.

The object of the exploration program was to locate or define controls of gold mineralization occurring within the boundaries of the *EROS* property.

PROPERTY AND OWNERSHIP

The *EROS* property, located in the Lillooet Mining Division is composed of nine reverted Crown Grants and one Mineral Claim of 18 metric claim units; for a total of 27 claim units. The claims are further described as follows:

Claim. Name	Claim Type	Number of Units	Tenure Number	Expiry Date
Golden King	Rev. Cr. Grt	1	228298	Oct. 26, 1996
Omen #5	Rev. Cr. Grt	1	228299	Oct. 26, 1996
Omen #6	Rev. Cr. Grt	1	228300	Oct. 26, 1996
Eros #1	Rev. Cr. Gr <u>t</u>	1	228301	Oct. 26, 1996
Eros #5	Rev. Cr. Grt	1	228309	Nov. 9, 1996
Eros #4	Rev. Cr. Grt	1	228311	Nov. 16, 1996
Art Fraction	Rev. Cr. Grt	l	228310	Nov. 16, 1996
Omen #4	Rev. Cr. Grt	l	228313	Nov. 16, 1997
Bluff Fraction	Rev. Cr. Grt	1	228312	Nov. 16, 1997
Ilsa	Mineral Claim	18	228377	Dec. 2, 1997

The claims are owned by LRX Capital Corp., having a place of business at suite 1010, 1050 West Hastings Street, Vancouver, B.C., V6E 2E9.

The expiry dates as listed take into account the assessment work described herein as being accepted for filing.

LOCATION AND ACCESS

The property is located 160 kilometres due north of Vancouver in southwestern British Columbia, and is centered at 50°52'N. latitude and 122°46' W. longitude on NTS Map Sheet 92 J/15.

Year round access is via Hwy. #40, an all weather road from Lillooet, summer access can be gained by either Hwy. #40 or via the Hurley river logging road originating in Pemberton. The GOLDEN KING claim straddles Hwy. #40 on the north side of Carpenter Lake. Access to the other claims via an all weather gravel road following the southern shore of Carpenter Lake approximately four kilometres from the town of Goldbridge.

There is a four-wheel drive access road which branches off of the MacDonald Lake road near the confluence of MacDonald Creek and Steep Creek within the *EROS* #4 and *EROS* #5 claims. This road provides access to the upper region of the *ILSA* and *BLUFF FRACTION* claims.

PHYSIOGRAPHY

The property is situated within the Coast Mountains Physiographic Region, and lies between the elevations of 650m (2,150 feet) and 2,000m (6,600 feet). Slopes are steep in the range of 20° to 50° , with numerous bluffs. Vegetation consists of mature timber at lower elevations with little underbrush, aside from the steepness of the terrain, travel throughout the property is moderately easy. There are dense deciduous trees occurring in the creek valleys and on talus slopes. Higher elevations are more lightly vegetated, with many areas of outcrop. There is ample timber and water within the property to support all phases of exploration.

The property is snow free from June through mid October providing a five to six month exploration season.

The claims are within easy commuting distance of Goldbridge. Goldbridge offers limited facilities having a motel, restaurant, gas station and country store. Lillooet, which is one hour and a half to the east, is the nearest major center.

HISTORY OF PREVIOUS WORK

The history of the area is centered around the Bralorne and Pioneer Mines which were the largest produces of gold in the history of gold mining in the province of British Columbia. During the period of 1900-1971 production totaled 4,154,119 oz gold and 950,510 oz silver from the mining of 7,931,000 tonnes of ore. The average grade was 0.530 oz/ton recovered gold.

The first occurrence of gold in the Bridge River area was reported in 1863, when placer gold deposits were discovered in the Bridge River. In 1896, the first lode claims were located on sub-outcropping quartz fissure veins. Numerous subsequent discoveries continued until larger Canadian and American interests began to acquire control of the fragmented mining properties during the 1920's.

The following is an excerpt from Scroggins, E.A. "Assessment Report in the Eros A, B and Golden King Claims Groups", for Lode Resource Corporation (1986):

"On the south side of the river, opposite the Congress Mine, the Reliance Group of claims were worked by Reliance Gold Mines Ltd. and are described in the Annual Report of the Ministry of Mines of British Columbia for 1936. These claims were developed by several adits, the River, Turner, Fergusson and Reliance adits, and the Senator underground working. These deposits are directly opposite and on strike with the old Stibnite Group subsequently known as the Congress Mine, and the mineralization is reported as being similar. Narrow quartz veins, heavily mineralized with stibnite and gold, were exposed over

short distances in all the adits. In 1917, a shipment of hand cobbbed stibuite was made from the Fegusson adit but no other production records are available."

"In 1971, TVI Mining Ltd. completed geochemical, geophysical and geological surveys over the Omen and Nemo Crown Granted claims, part of the Reliance Group. The surveys delineated several EM conductors as well as a prominent northwest-southeast trending arsenic and antimony geochemical soil anomaly running through the western side of the property."

"In late 1981, Sawyer Consultants Inc. carried out a limited amount of geological and lithogeochemical sampling for Texacana Resources Ltd. The results of that work produced the recommendations contained in Sawyer's report 'Assessment and Recommendation for the EROS A and B Claim Groups of Tarbo Resources Ltd.', dated January 15, 1992. Sawyer subsequently updated their report on July 30, 1983 and July 30, 1985 for Lode Resource Corporation."

"In early 1985, the Reliance Group of Reverted Crown Grants was optioned to Menika Mining Ltd. who carried out a program of access road construction and geochemical soil sampling. The area of the 1971 geochemical soil anomaly was trenched by bulldozer cuts and extensively sampled, and returned average values of 0.156 oz/ton Au over 124.7 feet in the general area of the old Senator workings. A new zone, the Imperial Zone, uphill and south of the old Senator workings was opened up and returned an average assay of 0.467 oz/ton over 18.0 feet, including one 3.0 foot interval returning 2.5 oz/ton Au. Several other zones and areas of alteration exposed in the road cuts were sampled and several interesting assays have been reported, including one assay of over 2.1 oz. ton Au over 10.0 feet near Camp Creek. The work being done by Menika Mining Led, was shut down in June 1985"

Further diamond drill carried out by Menika Mining Ltd. on the Reliance property resulted in the blocking out of an estimated 250,000 tons of 0.2 oz/ton gold. Drill hole 87-2 intersected 115 feet of 0.318 oz/t Au and helped extend the mineralized zone to over 2,300 feet.

A brief program of geological mapping and sampling was conducted on the *EROS* property by Ashworth Explorations Limited during October, 1986.

An access road was constructed during the summer of 1988, this road provides access to the southern portions of the *ILSA* claim.

REGIONAL GEOLOGY

The Bridge River area lies on the western margin of the Intermontane Belt, adjacent to the Coast Plutonic Complex. This part of the Intermontane Belt is underlain by arc volcanics and back arc sediments of Permian to Triassic age (Cadwaller and Bridge River Groups). These are intruded by syn-volcanic intermediate plutons (Bralorne Intrusions). The Bridge River Group is in fault contact with Jurassic and Cretaceous basinal sediments and rift volcanics (Taylor Creek and Kingsvale Groups) and ultramafic intrusions (President Intrusions). A younger (Cretaceous to Tertiary) suite of felsic to intermediate intrusive related to the Coast Plutonic Complex also intrudes the volcano-sedimentary package. These young intrusives include the Bendor Pluton and related dyke rocks that appear to be instrumental in the placement (control) of mineralization at the Bralorne Gold camp. The youngest rocks of the region are relatively flat lying Tertiary intermediate volcanic flows, that cap the older rocks.

The geological structure of the claim area is dominated by the northwest-plunging Bridge River Anticline. The core of this anticline is made up of Bridge River Group that is faulted against the overlying Juro-Cretaceous package to the northwest. The limbs of the anticline are also faulted. Complex folding affects the Bridge River Group. Due to the differing competency between the argillites and cherts and basalts, crumpling and fracturing is common in the Bridge River Group. Small scale shears and faults are dominantly northwest trending, and are important for the localization of mineralization. Intrusive dykes also trend northwest, and their spatial relationship to shears and veins suggest that, upon intrusion, these dykes drove the circulation of mineralizing fluid that precipitated in shear veins. The Bridge River Group is also contact metamorphosed by the Bendor Pluton.

PROPERTY GEOLOGY

The property is underlain by Bridge River Group chert, argillites, and limestone's that are intruded by and interlain with contemporaneous intermediate and mafic flows. The argilillites vary between massive and thin bedded, with a north trending strike. Thin bedded cherts have a similar orientation. The limestone's occur as discontinuous pods that are spatially associated with the volcanic rocks. Volcanic rocks on the property are andesitic flows, generally massive but locally schistose in shear zones. Subaqueous extrusion is indicated by rarely preserved pillow structures. Locally the flows are amygdaloidal. Tuffaceous volcanic rocks also occur. Alteration associated with shear zones has converted these flows locally to greenstones. An east northeast trending porphyry dyke occurs on the *ILSA* claim block.

While generally having a northern strike, the rocks are locally complexly deformed. They are cut by a series of shears trending northwest and east-northeast. The northeast shears strike 55° to 80° and dip northwest 65° to 90° , while the northwest shears dip steeply to the southwest. Quartz +/- carbonate veins, silicification, carbonate and pyrite alteration may be associated with these shears.

The GOLDEN KING claim is underlain by massive chert and argillite with numerous quartz and carbonate stringers and veins. These are generally shear hosted and often rusty due to sulphide content. The EROS group of claims are underlain by deformed andesite, banded tuff and argillite with local pods of chert. Shearing, fracturing and associated silicification have locally altered the volcanics to greenstones. Ribbonned quartz veins are common. Some faulting may occur in Steep Creek, which cuts through the claims. The ILSA claim block is underlain by thick bedded locally pyritiferous argillite, chert and greywacke. Felsic porphyry dykes were also noted in road cuts at the upper reaches of the access road.

MINERALIZATION

Gold bearing quartz veins within Bralorne Camp occur within sediments as well as altered volcanics. The veins consist of quartz gangue (commonly ribbed) with pyrite, arsenopyrite, native gold, and stibnite. Silver minerals and scheelite also occur, with other showings dominated by antimony, silver or cinnabar. The *EROS* property hosts several shear zones with quartz-carbonate veins, enveloping alteration and sulphide mineralization, particularly pyrite, stibnite, chalcopyrite and sphalerite. Gold values are anomalous in some of the samples, particularly 94GK05 (1055 ppb Au). On the adjacent Reliance property, shear veins with stibnite are prominent, occurring as streaks, disseminated and narrow bands in siliceous gangue with some calcite. Fine disseminated pyrite and rare arsenopyrite occur as accessories in these veins. The silicification and carbonate alteration noted in envelopes around shear veins is similar to the Congress deposit to the north, where altered rocks are streaked and mottled with fine pyrite, arsenopyrite and sphalerite. Sphalerite and chalcopyrite were noted in quartz carbonate shears on the *GOLDEN KING* claim.

The best potential for economic mineralization in the Bridge River Group seems to be related to porphyritic dykes and the spatially related quartz (+ carbonate) shears. In addition to being a catalyst for the movement of mineralizing fluids through the rocks, the dykes also seem to increase the competency of the country rocks, increasing the likelihood for thorough going fractures. A dyke (or dykes) of this type occurs on the *ILSA* claim, and should be investigated further.

GEOLOGICAL AND GEOCHEMICAL SURVEYS

A total of 31 rock samples, 27 soil samples and 4 panned stream sediment concentrates were collected during the period October 16 to October 26, 1994. Samples were submitted to Bondar-Clegg Laboratories in North Vancouver B.C. and analyzed for 30 elements by neutron activation analysis (NAA) and atomic absorption (AA) analysis for gold. The sample locations are plotted on Figure 2 and the Geochemical Lab Report is presented as Appendix A.

All of the rock samples under discussion in this report are grab samples. The soil samples were collected, using a mattock and trowel, from the "B" horizon, which varied in depth from 6 cm to 70 cm in areas covered by deposits of Recent volcanic ash. The silt samples collected were concentrated by panning at a ration of three full 18" diameter pans per sample.

DISCUSSION OF RESULTS

The association of arsenic & antimony is well documented in many hydrothermal gold deposits, and it seems that arsenic is a particularly good "pathfinder" element for gold in the Bralorne camp. Models for mineralization in deposits of the area place the antimony-gold-arsenic assemblage near the top of the hydrothermal system. Cinnabar occurs at the highest levels of the system, while gold with base metals (+ tungsten - molybdenum) occurs at lower levels. At the Bralorne Mine gold was observed to increase and antimony to decrease with depth, At the Congress and Minto properties gold occurs with antimony and arsenic.

Three main areas of significant results were encountered; within the GOLDEN KING claim, the ILSA claim block reconnaissance road soil samples and on the EROS #4 claim. Samples from all three sites have anomalous values of gold, antimony and arsenic.

On the EROS #4 claim samples 94ERS03, 05 and 07 had anomalous values of gold, antimony and arsenic. Gold ranged from 48 to 320 ppb, antimony up to 64.5 ppm and arsenic up to 175ppm. Although these samples were not of ore grade, the anomalous nature of this group of elements indicates that some level of epithermal mineralization similar to that found on adjacent properties is likely to occur. Panned concentrates from Steep Creek on the EROS #4 claim also had slightly anomalous gold. Steep Creek follows a NW trend and may be exploiting shear structures that could host mineralization.

On the *ILSA* claim block, a series of soil samples were taken on an access road in the western part of the claim block. Two samples, 94ILS05 and 08 were anomalous in gold 340 ppb and 93 ppb respectively. The latter sample also has slightly elevated arsenic (36ppm). These samples are in an east-northeast trending line, and could be part of a linear soil anomaly that could be due to mineralization along a shear structure. However, there is not enough data to make any conclusive statements. On the adjacent Reliance property, considerable antimony and arsenic soil anomalies occur in north trending belts that could continue onto the *ILSA* or *EROS* claims.

On the GOLDEN KING claim, several rock samples were collected with anomalous gold, antimony and arsenic. Antimony was anomalous in three samples (94GK05, 06, 07) with a minimum of 176ppm Sb. The best sample was 94GK05 which returned 1055ppb Au, 1532 ppm As, and >2000ppm Sb. This was a grab sample of massive sulphides (stibnite + arsenopyrite) in a quartz + carbonate shear vein.

Overall, relatively few rock and soil samples contained anomalous gold values. However, those that did for the most part also had elevated arsenic and antimony, which follows the pattern for mineralization in adjoining properties (i.e. Congress property), that are thought to be representative of a higher level of an epithermal system than that mined at the mid to lower levels of the Bralorne Mine. The results of this work show that Mineralization is likely to be similar to that on adjoining properties, which follows from the similar geology and structures exposed. While the geochemical data does not clearly indicate a specific target, other than the Road Zone on the *ILSA* access road area for follow-up work, the anomalous results does confirm the likelihood of epithermal mineralization. An expanded program is necessary to fully evaluate the potential of the entire claims group.

SELECTED BIBLIOGRAPHY

Roddrick, J.S. (1973)	"Pemberton (East Half) Map-Area, British Columbia" Geological Survey of Canada Paper 73-17;
Brewer, L.C. (1988)	"Geophysical Report on Airborne Magnetic and VLF-EM Surveys over the Mellisande, Jumper and CG Claims, Bridge River - Girl Creek Area for Avino Mines Ltd. 1988;
Cairnes, C.E. (1937)	"Geology and Mineral Deposits of Bridge River Mining Camp" Geological Survey of Canada Memoir 213;
Church, B.N. et al (1988)	"Geological Reconnaissance in the Bridge River Mining Camp (92 J/15, 16, 10, 92 O/2)" British Columbia Ministry of Energy, Mines and Petroleum Resources Geological Fieldwork, Paper 1988-1;
Geological Survey of Canada (1912)	"Summary Report for the year 1912";
Levinson, A.A. {Editor} (1982)	"Precious Metals in the Northern Cordillera" Published by the Association of Exploration Geochemists;
McCann, W.S. (1922)	"Geological and Mineral Deposits of the Bridge River Map- area, British Columbia" Geological Survey of Canada, Memoir 130;
Sampson, C.J. & Miller-Tait, J (1993)	"Report on Bralorne-Pioneer Property, Bralorne British Columbia" Prospectus Version for Bralorne-Pioneer Gold Mines Ltd.;
Scroggins, E.A, (1986)	"Assessment Report on the Eros A, B and Golden King Claim Groups" Lode Resource Corp.; and
Stevenson, J.S. (1947)	"Lode Deposits Southwestern British Columbia" British Columbia Department of Mines Bulletin No. 20 Part IV

AFFIDAVIT OF COSTS

I, Lloyd C. Brewer, president of White Wolf Explorations Ltd. do hereby certify that the following is a true and accurate statement of costs incurred in a program of exploration undertake on the *EROS* property between October 15 and October 26, 1994.

WAGES:		
Lloyd C. Brewer - Project Manager		
8 days @ \$250.00/day	\$2,000.00	,
Gerard Gallissant, B.Sc.		
11 days @ \$200.00/day	\$2,200.00	
Greg Mowatt, B.Sc.		
12 days @ \$200.00/day	\$2,400.00	\$6,600.00
ROOM AND BOARD:		
31 man/days @ \$55.00/day		1,705.00
VEHICLES:	,	
1 Ton 4x4 Crew Cab		
11 days @ \$50.00/day	\$550.00	
4x4 Chevrolet Blazer		
3 days @ \$50.00/day	\$150.00	
Honda ATC c/w trailer		
10 days @ \$50.00/day	\$500.00	•
Fuels and Oil	\$325.00	
Vehicle Mileage		
915 km @ \$0.15/km	<u>\$137.25</u>	1,662.25
SURVEY SUPPLIES:	,	140.00
REPORT COMPILATION & PRESENTATION:	,	
Report Writing & Data Presentation		
3 days @ \$250.00/day	\$750.00	
Report Copying and Binding	<u>\$100.00</u>	850.00
ANALYSES:		
62 Analyses of Gold + 33 opt 1		
1 Analyses of LEEMAN 28 element partial + Gold		
31 samples of Crush/Split & Pulverize		
31 samples of Dry, Sieve - 80#		1,047.64
PROJECT MANAGEMENT:	,	
@ 10%		_1,200.48
TOTAL COST OF PROGRAM:		\$13,205.35

Dated this 17th day of January, 1995 at Vancouver, British Columbia.

STATEMENT OF QUALIFICATIONS

I, Leonard Gal, of Kelowna, British Columbia hereby certify that:

- I am a graduate of the University of British Columbia, with a B.Sc. in Geology (1986);
- I am a graduate of the University of Calgary, with a M.Sc. in Metamorphic Petrology (1989;
- I have practiced my profession continuously since 1986;
- The information in this report is based on published and unpublished reports on the property, and by work conducted by crews of White Wolf Explorations Ltd. during the period of October 15, 1994 and October 26, 1994;
- I have no interest in the property, or any other property within a 10 kilometre radius, discussed in this report or in the securities of LRX Capital Corp., nor do I expect to receive any; and
- I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.

18 of January, 1995. Signed this day Leonard Gal. CIEN

STATEMENT OF QUALIFICATIONS

I, Lloyd C. Brewer, of 548 Beatty Street, British Columbia hereby certify that:

• That I am sole owner and President of White Wolf Explorations Ltd., with offices located at 548 Beatty Street, Vancouver, in the Province of British Columbia;

I further certify:

- I have been employed full time in the mineral exploration industry since 1981, conducting exploration programs throughout Canada, the western United States and Mexico;
- The information in this report is based on published and unpublished reports on the property, and by work conducted by myself and by crews of White Wolf Explorations Ltd. working under my direct supervision, during the period of October 15, 1994 and October 26, 1994; and
- I have no interest in the property, or any other property within a 10 kilometre radius, discussed in this report or in the securities of LRX Capital Corp., nor do I expect to receive any.

Signed this day <u>iff</u> of January, 1995.

Lloyd C. Brewer

APPENDIX 1

Bondar Clegg - Geochemical Lab Report

,

Bondar Clegg Inchcape Testing Services

11

steel 20 - 4127 en t The Chylin Area (19

Geochemical Lab Report

		· ·		据41.74-97 L							
REPORT: \	/94-01258.0 (COMPLE	ETE)	·		REFERE	ENCE :					,
·····	•••••••••••••••••••••••••••••••••••••••		*								
CLIENT: W	HITE WOLF EXPLORATI	ion to t			SUBMIT	TTED BY: UN	KNOWN	l			
PROJECT:	LRX-EROS-94			and approximation of the second se					DATE P	RINTED: 5-DEC-94	
i		······································					• • • • • • • • • • • • • • • • • • • •			•••••••••••••••••••••••••••••••••••••••	
					SAMPLE TYPES	NUMBER	SIZ	E FRACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
EL	EMENT	ANALYSES DETECTION	EXTRACTION	METHOD							
				de la companya de la	S SOIL	27	1	-80	31	CRUSH/SPLIT <2 KG	31
1 Au	Gold	62 5 PF	»В		T STREAM SED, SILT	4	2	- 150	21	PULVERIZATION	اد ۲۱
2 Ir	Iridium	40 100 Pt	л Ч		R RULK	31				DRI, STEVE -00	51
5 Ag	Silver	62 200 pt	¶¶ M								
5 Mo	Z I DC Mol viodopum	62 200 PF	DM		NOTES: s indicates S	See Obs Rem	arks				
6 Ni	Nickel	62 20 PF	PM .	NEUTRON ACTIVATION							
7 Co	Cobalt	62 10 PF	· Μ	NEUTRON ACTIVATION	REMARKS: SAMPLE R2 9	94GK 05 HAS	ELEV	ATED DETECTION L	IMIT		
8 Cd	Cadmium	.62 10 PF	M	NEUTRON ACTIVATION	FOR MOST OF	ELEMENTS,	e.g.,				
9 As	Arsenic	61 1 PF	PM	NEUTRON ACTIVATION	IR < 3900 PF	РВ;					
10 Sb	Antimony	62 0.2 PF	ት ት		AS < 14100 F	2PM;					
11 Fe	Iron	62 U.5 PL	il Ma		SN < 32000 p	opn;					
12' Se	Selenium	02 10 PF	111	NEUTRON ACTIVATION	7R < 23000 F	PPM .					
13 Te	Tellurium	62 20 PF	м	NEUTRON ACTIVATION							
14 Ba	Barium	62 100 PF	M	NEUTRON ACTIVATION							
15 Cr	Chromium	62 50 PF	Ж. 👌	NEUTRON ACTIVATION	REPORT COPIES TO: 548	B BEATTY ST	•		INVOICE	TO: 548 BEATTY ST.	
16 Sn	Tin	61 200 PF	<u>₩</u>	NEUTRON ACTIVATION							
17 W	Tungsten	62 2 PF	MA 2 いたうき	NEUTRON ACTIVATION							
18 Cs	Cesium	62 <u>1</u> PF	2M	NEUTRON ACTIVATION							
19 La	Lanthanum	62 5 PF	M	NEUTRON ACTIVATION							
20 Ce	Cerium	62 10 PF	M	NEUTRON ACTIVATION							
21 Sm	Samarium	62 0.2 PF	PM	NEUTRON ACTIVATION							
22 Eu	Europium	62 2 PF	PM	NEUTRON ACTIVATION							
23 Tb	Terbium	62 1 PF	M								
24 Yb	Ytterbium	62 5 PF	11	NEUTRUN AUTIVATION							
25 Lu	Lutetium	62 0.5 PF	M	NEUTRON ACTIVATION							
26 Sc	Scandium	62 0.5 PF	M	NEUTRON ACTIVATION							
27 Hf	Hafnium	62 2 PF	M A A A A A A A A A A A A A A A A A A A	NEUTRON ACTIVATION							
28 Ta	Tantalum	62 1 PF	M	NEUTRON ACTIVATION							
29 Th	Thorium	62 0.5 PF	M	NEUTRON ACTIVATION							
30 U	Uranium	62 0.5 PF	M.	NEUTRON ACTIVATION							
31 Na	Socium	61 0.05 PC	:T	NEUTRON ACTIVATION							
32 Br	Bromine	62 1 PF	РМ.	NEUTRON ACTIVATION							
33 Rb	Rubidium	62 10 PF	M	NEUTRON ACTIVATION							
34 Zr	Zirconium	61 500 PF	M.	NEUTRON ACTIVATION							
		. ·									
			di sa								
			.,1	station and the state							
		. <u></u> þ	•	······································		·,					
	2		<u>k</u>	HELENDER AND CONTRACT OF A	V						

Geochemical Lab Report

REPORT: VS	94-01258.0 (COMPLETE)												**. *	er er	** 		1× 	4		·.			ا ، ا	DATE PRI PROJECT:	NTED	: 5- -EROS	DEC-9 5-94	4	PAGE	1A
SAMPLE	ELEMENT	Au Ir	Ag	Zn	Mo	Ni	Co	Cd	As	Sb	Fe	Se	Te	Ba	Cr	Sn	W	Cs	La	Ce	Sm	Eu	ть	ΥЬ	Lu	Sc	Hf	Ta	Th	U	Na	Br
NUMBER	UNITS	PPB PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	РСТ	PPM
94ERS 00		<5 <100	َ <5	<200	4	110	21	<10	21	3.2	3.5	<10	<20	870	290	<200	3	2	22	52	4.0	<2		<5	<0.5	13.0	4	2	4.1	1.8	1.40	1
94ERS 01		10 <100	ं <5	<200	3	220	23	<10	29	4.0	4.1	<10	<20	880	360	<200	-3	3	25	50	4.4	<2	° <1	<5	<0.5	15.0	4	2	4.3	1.8	1.40	2
94ERS 02		19 <100	<5	<200	4	220	26	<10	39	5.2	4.8	<10	<20	1000	420	<200	2	3	28	54	5.2	<2	<1	<5	<0.5	20.0	4	2	4.7	2.0	1.40	2
94ERS 03		48 <100	<5	<200	5	220	22	<10	ä 31	3.2	3.8	<10	<20	99 0	330	<200	2	3	24	52	4.6	<2	<1	<5	<0.5	16.0	3	2	4.4	1.6	1.30	2
94ERS 04		6 <100	<5	260	7	420	36	<10	45	6.0	5.8	<10	<20	1800	590	<200	. 2	6	35	58	7.0	<2	1	<5	<0.5	24.0	4	2	6.8	2.6	1.20	4
94ERS 05		320 <100	<5	<200	2	220	23	<10	ू 175	64.5	5.0	<10	<20	830	380	<200	5	4	23	33	5.2	<2	<1	<5	<0.5	20.0	3	1	4.6	1.8	1.20	8
94ERS 06		25 <100	<5	<200	4	140	20	<10	38	8.1	4.0	<10	<20	790	300	<200	<2	3	23	40	4.4	<2	<1	<5	<0.5	17.0	3	1	3.8	1.5	1.40	1
94ERS 07		190 <100	<5	<200	5	160	22	<10	88	31.2	3.9	<10	<20	850	290	<200	3	3	22	46	4.7	<2	<1	<5	<0.5	16.0	3	2	4.2	1.6	1.10	- 4
94ERS 08		31 <100	<5	<200	3	190	22	<10	44	7.1	4.3	<10	<20	920	330	<200	5	3	23	41	4.6	<2	<1	<5	<0.5	16.0	3	2	4.4	1.6	1.20	2
94ERS 09		10 <100	<5	<200	<2	180	24	<10	39	5.0	4.3	<10	<20	780	330	<200	3	3	23	33	4.3	~2	<1	<5	<0.5	18.0	3	2	3.9	1.5	1.50	1
94ERS 10		18 <100	<5	<200	3	140	24	<10	40	5.3	4.8	<10	<20	800	330	<200	2	3	22	37	4.5	<2	<1	<5	<0.5	20.0	4	2	3.8	1.4	1.60	2
94ERS 11		21 <100	<5	240	<2	200	27	<10	49	6.0	5.7	<10	<20	720	390	<200	3	4	22	35	5.3	<2	` <1	<5	<0.5	23.0	3	1	3.3	1.5	1.40	2
94ERS 12		20 <100	<5	<200	4	200	22	<10	39	5.3	4.2	<10	<20	920	380	<200	3	2	24	46	4.7	<2	<1	<5	<0.5	17.0	3	2	4.7	1.6	1.30	2
941LS 01		25 <100	<5	<200	2	180	33	<10	44	5.4	6:7	<10	<20	690	490	<200	2	5	20	42	4.6	<2	<1	<5	<0.5	28.0	3		3.0	1.1	1.30	2
941LS 02		20 <100	<5	270	<2	150	40	<10	31	5.8	7.9	<10	<20	490	490	<200	<2	7	19	32	4.4	2	<1	<5	<0.5	35.0	6	2	2.8	1.0 '	1.60	2
941LS 03		11 <100	<5	230	<2	140	39	<10	38	11.0	7.9	<10	<20	390	400	<200	<2	4	19	26	4.9	<2	1	<5	<0.5	33.0	5	1	2.3	0.9	1.80	2
941LS 04		26 <100	7	270	<2	140	46	<10	31	13.0	10.0	<10	<20	460	520	<200	6	10	21	29	5.7	~2	1	5	0.5	43.0	5	2	2.6	0.9	1.60	2
941LS 05		340 <100	<5	<200	<2	120	36	<10	13	1.8	6.1	<10	<20	450	280	<200	<2	8	13	29	2.9	<2	<1	<5	<0.5	25.0	4	1	2.5	0.7 '	1.60	<1
941LS 06		20 <100	<5	220	<2	140	37	<10	39	7.1	7.9	<10	<20	510	310	<200	<2	6	20	32	5.6	3	<1	<5	<0.5	32.0	5		2.0	1.0 '	1.30	2
941LS 07		<5 <100	<5	200	<2	130	37	<10	37	5.5	6.4	<10	<20	690	320	<200	<2	7	18	32	3.5	<2	<1	<5	<0.5	21.0	4	1	3.0	1.2 1	1.80	2
941LS 08		93 <100	<5	450	<2	67	28	<10	36	8.0	6.4	<10	<20	900	180	<200	<2	9	21	57	5.2	<2	1	<5	<0.5	22.0	4	1	4.9	1.6 1	1.60	2
941LS 09		19 <100	<5	210	<2	110	25	<10	41	7.2	6.9	<10	<20	580	270	<200	<2	4	22	31	5.8	<2	1	<5	<0.5	27.0	4	<u> </u>	3.0	0.8 1	I.70 🖗	2
941LS 10		6 <100	<5	310	<2	120	38	<10	37	4.5	7.1	<10	<20	630	290	<200	<2	7	18	- 34	3.7	<2	<1	ব	<0.5	25.0	4	<1	3.1	1.3 1	1.50	3
941LS 11		8 <100	<5	<200	3	140	35	<10	27	4.7	8.8	<10	<20	570	320	<200	<2	6	25	55	4.4	2	<1	<5	<0.5	28.0	5	2	3.0	1.2 1	.80	2
94ILS 12		19 <100	<5	<200	<2	170	31	<10	62	10.0	7.2	<10	<20	570	460	<200	~2	5	19	39	3.8	~2	<1	<5	<0.5	27.0	6	1	2.6	1.0 1	.70	3
941LS 13		16 <100	<5	220	<2	150	32	<10	74	10.0	7.1	<10	<20	580	350	<200	<2:	5	18	41	3.9	۰ź	<1	<5	<0.5 [°]	28.0	4	1	3.0	1.1 1	. 9 0	2
941LSA 01		7 <100	<5	<200	2	84	40	<10	22	2.4	8.0	<10	<20	350	190	<200	<2	11	34	56	5.4	~2	1	<5	0.5	31.0	3	1	4.1	1.4 1	. 10 🖇	4
94EROS 2		<5 <100	<5	<200	<2	180	40	<10	16	2.1	8.5	<10	<20	410	1900	<200	8	<1	13	19	3.7	<2	<1	<5	<0.5	40.0	9	<1	2.0	0.9 1	.40	2
94EROS 3		100 <100	<5	<200	3	330	36	<10	97	11.0	6.0	<10	<20	1300	840	<200	3	4	21	38	4.6	<2	<1	<5	<0.5	22.0	3	2	4.5	1.8 1	.ôò 🖗	3
94EROS 5		89 <100	<5	<200	<2	210	37	<10	33	4.0	7.1	<10	<20	680	1600	<200	4	2	15	23	3.9	<2	<1	ح	<0.5	32.0	5	<1	2.6	1.1 1	.40	2

enders de la constant de la constant

Geochemical Lab Report

REPORT: V9	4-01258.0 (COMPLETE)	DATE PRINTED: 5-DEC-94 PROJECT: LRX-EROS-94	PAGE 1B
SAMPLE	ELEMENT	Rb Zr			
NOIDER	0.1110				
94ERS 00		47 <500			
94ERS 01		55 <500			
94ERS U2		62 <500			
94ERS 03		40 <500 97 <500			
		44 500			
94ER5 05		64 000 67 <500			
94ERS 07		48 <500			
94ERS 08		56 <500			
94ERS 09		54 <500			
0/222 40					
94ERS 10		59 <500			
94ERS 11	• ;	57 500 44 4500	And a star free start		
94ILS 01	· •	47 <500	n an		
941LS 02		70 <500			
941LS 03		29 <500			
941LS 04		80 <500			
941LS 05		56 <500			
941LS 06		52 <500			
941LS U/		00 < 300			
80 21130		64 <500			
941LS 09		45 <500			
941LS 10		57 <500			
94ILS 11		42 <500			
941LS 12		45 560			
0/110 17		E2 2500			
941LS 15		52 SOU			
94FROS 2		27 <500			
94EROS 3		58 <500			
94EROS 5	•	24 <500			

		son ochca	da ap	ar e T	C 'es	le tin	g g	S e	rv	ice	Ŝ																La Re	ab epc	ort	icai
REPORT: V94	-01258.0 (COMPLETE)	•••	• • • •				· · ·				é, i	-											DATE PR	RINTED	: 5-	DEC-9	}4 ₽/	AGE 2A
					 v		••••••						······	·····				······			·····		······			•				
SAMPLE	ELEMENT	Au	Ag	ı 🛛 Zn	Мо	Ni	Ço	Çq	As	Sb	Fe	e Se	Te	Ba	Cr	Sn	W	Cs	La	Ce	Sm	Eu 1	b Yt	b. Lu	ı Sc	Hf	Та	Th	U I	Na 🔛 Bi
NUMBER	UNITS	PPB PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM 1	PPM P	PM	PPM	PPM	PPM PF	M PPM		I PPM	PPM	PPM	PPM	PPM PC	JT PP
946K 01		21 <100	 	<200	3	180	34	<10	114	17.0	6.8	s <10	<20	1200	480	<200	. <2	6	23	35	5.2	<2 <	्र 1 े≪5	<0.5	25.0	4		5.2	2.1 1.;	20
94ER4 01		<5 <100	- 	<200	° ~2	<20	18	<10	2	0.4	6.8	3 <10	<20	960	<50	<200	່ <2	3	77	150 1	5.0	4	2 <5	<0.5	11.0	11	8	7.6	1.7 2.7	70 <
94ER4 02		<5 <100	ଁ <5	<200	15	110	<10	<10	3	3.5	1.9	> <10	<20	270	290	<200	<2	<1	<5 🎖	<10	0.6	<2 <	1 ্ব	 ⊲0.5	3.8	<2	<1	0.6	1.0 0.(07 <
94ER4 03		5 <100	<5	<200	<2	160	34	<10	5	0.5	6.6	<10	<20	680	120	<200	<2	4	15 🖉	26	4.9	<2 <	1 <	<0.5	22.0	4	.	1.Ò	0.6 2.(00 <1
94ER4 04		5 <100	ব	<200	18	<20	<10	<10	् <1	0.4	0.5	<10	<20	1000	310	<200	°. <2 ∶	<1	<5 🏾	<10	1.0	<2 <	1 <5	<0.5	1.7	<2	<1	0.6	0.8 <.(J5 <1
			e S		ž.										:	ter t								2						
94ER4 05		<5 <100	<5	<200	<2	26	18	<10	. 2	0.3	6.3	<10	<20	200	<50	<200	<2 .	4	14 <i>ु</i>	20	2.3	<2 <	1 <5	<0.5	8.5	<2	<1	<0.5	<0.5 0.0)8 <1
94ER4 06		<5 <100	<5	<200	· 3	310	32	<10	3	1.7	5.0	<10	<20	530	560	<200	<2	3	28 🤅	44	4.3	<2 <	1 <5	<0.5	16.0	3.	3	4.1	0.9 1.1	10 <1
94ER5 0		<5 <100	7	260	<2	96	24	<10	11	5.2	>10.0	<10	<20	1300	<50	<200	<2	2	48 💮	63 1	1.0	3	2 10	្តំ 1.5	34.0	8	3	3.9	0.9 3.4	•0 <1
94GK 01		<5 <100	ँ <5	<200	- 6	330	17	<10	ູ 13	6.8	4.1	<10	<20	280	470	<200	2	5	8 🔮	11	2.2	্থ্য ২	1 ୍ ଏ	ू <0.5	11.0	2	1	3.5	1.0 0.0)7 1
94GK 02		7 <100	<5	<200	2	46	- 38	<10	22	5.6	6.9	<10	<20	710	240	<200	3	2	6	<10	3.8	<2 <	1 <5	0.5	36.0	: 3 (<1	<0.5	<0.5 2.8	JO <1
															470		_													
94GK 03		6 <100	<5 -	<200	6	45	12	<10	4	1.2	3.2	<10	<20	480	150	<200	2	्र	10	-24	3.9	्रू	1 <>	0.5	16.0	4	<1	1.8	1.3 4.1	0 <1
94GK 04		<5 <100	<>	<200	11	00	20	<10	ू ८ ०	0.2 	. J.]	<10	<20	<7000	20U	<200	<2 <500	- L - TL -	0 47 - 21	13 700 -	2.2 E 1	<2 <	() () () () () () () () () () () () () (<0.5	/.8	<2 -170	<1 -77 -	4.4	1.8 0.5	·1 <1
94GK U5		<1400	<10U	<200	Q50	<1200	< 140 210	<1/00	ິ 5 ວ⊑	176 0	50. I Z 0	10</td <td><4300 ~20</td> <td>200</td> <td>-50 -50</td> <td>~200</td> <td>15</td> <td><00 <</td> <td>0 51</td> <td>200 ×</td> <td>5.1 : 2 / `</td> <td><110 <1</td> <td>0 5/09</td> <td><28.0</td> <td><11.U</td> <td>< UCI ></td> <td><u>د</u>ے د</td> <td>02.U</td> <td><74.U</td> <td><327U</td>	<4300 ~20	200	-50 -50	~200	15	<00 <	0 51	200 ×	5.1 : 2 / `	<110 <1	0 5/09	<28.0	<11.U	< UCI >	<u>د</u> ے د	02.U	<74.U	<327U
946K 00		<10 < 100	5 	~200	- ~C 17	100	.25	277	2) 73	170.0	5 1	210	~20	<100	440	~740	ر ۸	ે	0 % 17 ~	~10	2.4 7 1	<u></u>	। 1 ा 1	~0.5	13.0	~~ :	-1 -1	<0.5		9 <10 2
94GK U/		>10 >100	. .	~~~~~~	1. Start 1.	. [6		ॅॅ	5.1			-0.J		~ E (~1.4		<u>د کر ا</u>
94.CK 08		<5 <100	<5	<200	14	73	14	<10	े २ २	37.9	3.5	<10	<20	160	270	<200	3	3	15	14	2.9	<2 <	1 5	<0.5	8.3	~?	<1	4.1	1.2 0.3	11 ⁽²⁾
94GK 09		7 <100	<5	<200	10	45	15	<10	8	7.1	2.2	<10	<20	170	280	<200	<2	500 ≪1.0	8	17	1.7	< <u>-</u> <	1 <5	<0.5	3.9	$\overline{2}$	<1	2.2	1.4 0.0	15
94GK 10		9 <100	<5	<200	7	<20	25	<10	11	14.0	5.8	<10	<20	470	170	<200	40	5	23 ්	53 1	1.0	2	3 12	1.2	23.0	9	1	3.5	3.1 1.3	<i>.</i> 0 1
94GK ADIT O	1	7 <100	<5	<200	23	42	<10	<10	3	7.4	3.6	<10	<20	460	120	<200	<2	<1 ·	11 🔅	21	4.1	<2	1 <5	<0.5	16.0	4	<1	2.4	1.4 4.8	.0 <1
94GK ADIT 0	2A	<5 <100	<5	<200	^L 9	<20	<10	<10	- 6	4.9	1.8	<10	<20	150	290	<200	<2	4	7	15	1.6	<2 <	1 <5	<0.5	3.7	<2	<1	2.0	<0.5 0.0	6 <1
					2 2				ŝ.											e ser gan Parata	:	상가 이 이 사망		s S						
94GK ADIT 0	2B	<5 <100	<5	<200	25	28	11.	<10	17	21.0	2.3	<10	<20	230	420	<200	° <2 }	3	9	19	1.9	<2 <	१ <ऽ	<0.5	4.1	<2 ²	<1	2.2	<0.5 <.0	5 2
94IL 01		<5 <100	<5	<200	<2	47	21	<10	1	2.8	4.2	<10	<20	130	190	<200	<2	5 '	14	26	3.4	<2 <	1 <5	<0.5	18.0	<2	<1	1.1	<0.5 1.3	0 <1
94IL 02		<5 <100	<5	<200	<2	68	23	<10	3	6.2	5.7	<10	<20	110	120	<200	<2	2 '	16	30 4	4.7	<2	<u>ح</u> ا ا	<0.5	25.0	3	1	1.7	<0.5 3.10	0 <1
94IL 03		<5 <100	<5	250	<2	82	46	<10	2	2.2	7.2	<10	<20	170	510	<200	<2	2 1	17 🐊	32 5	5.2	<2 [']	। <ऽ	0.5	40.0	4	2	2.0	<0.5 1.60	D <1
941SLA 100		12 <100	<5	<200	21	31	13	<10	20	9.3	1.1	<10	<20	700	410	<200	<2	<1 1	15 🦷	11 3	3.3	<2 <	। <5	<0.5	3.7	~2 ୍	<1	1.8	2.9 0.05	5 <1
		_ 339																								N. S				
941SLA 101		<5 <100	<5	<200	12	25	<10	<10	3	2.4	1.9	<10	<20		590	<200	<2	् ट ं इ.ट्र	8	19 2	2.5	<2 <	5	<0.5	6.3	<2 <	<1	2.2	<0.5 0.08	3 <1
941SLA 103		<5 <100	<	<200	<2	160	48	<10	Z	0.9	7.5	<10	<20	540	400	<200	<2	<u> </u>	ຮ	14 3	5.9 <u>:</u>	्रू ४	। <5 _	<0.5	33.0		<1 <	<0.5	<0.5 1.00) < 1
M 1		11 <100	্ <	<200	4	<20	20	<10	6	0.0	2.8	<10	<20	1200	150	<200	~~	<u>_</u>]	الا (۲ م	24 : 12 :). / }	< <u> </u>	ုိ္င္နဲ	<0.5	10.0	2		2.5	1.2 2.90	ן> ראיין אין
OMEN1 01	-	<> <100	্ ব্য	<200	े २	<20	<10	<10	4	2.0	5.4	< 1U 200	<20	>100	170	~200	~		" •	10 4	+.) 1 7	<u></u>	ုိ္နို	<u.5< td=""><td>2.3 2 /</td><td>~ ~ ~</td><td>510</td><td>U.8 0 F</td><td>0.9 0.0/</td><td>, SI</td></u.5<>	2.3 2 /	~ ~ ~	510	U.8 0 F	0.9 0.0/	, SI
OMEN4 01		<> <100	\$	<200	8	<20	<10	<10	<1.	0.8	2.6	< 10 	<20		. 200	< <u>2</u> 00	~2	<u> </u>	¥ [].	SIU.	1.7	~ <u>~</u> ~~		<0.5	C.4	< <u> -</u>	<11 <		su.5 0.0/	

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

Geochemical Lab

Bondar Clegg Inchcape Testing Services Geochemical Lab Report

REPORT: V94	-01258.0 (COMPLE	TE)							•						D. P	ATE PRINTI ROJECT: LI	ED: 5-DEG RX-EROS-94	C-94 4	PAGE	2B
				•			-			 	• •			 	 	 					
SAMPLE	ELEMENT	Rb	Zr	•		•		. ;:	-				· .								
NUMBER	UNITS	PPM P	PM			÷	1		л Х		•	`									
0/.cr 01		69 <5	00				••	•		·• ·											
		73 11	inn																		
0/EP/ 07		<10 <5								•											
0/ED/ 02		40 <5	00			÷.	1.	•	:			.* .									
0/ED/ 0/		<10 <5	00				:	;				-									
74684 04		``` Õ				:			,												
0/50/ 05		17 25	inn								·	÷									
0/ED/ 0/		24 5	:00					•													
94ER4 00		48 <5	00					× .													
94EKJ 0 94ck 01		16 <5	00							•	,										
940K 01		24 <5	00		-																
	•						·														
946K 03		35 <5	00					5. g	·			۰.									
94GK 04		22 <5	00					,		· .											•
94GK 05		<750		. · · ·	3	e i d															
94GK 06		<10 <5	00	. *																	
94GK 07		<20 <5	00	11	ŝ																
					. :		77		- 4												
94GK 08		31 <5	00							•											
94GK 09		11 <5	00																		
94GK 10		50 <5	00																		
94GK ADIT O	1	24 <5	00						,	•											
94GK ADIT 02	2A	22 <5	00				•														
94GK ADIT 02	28	30 <5	00																		
941L 01		23 <5	00																		
94IL 02		31 <5	00	,			·				;										
941L 03		33 <5	00							·											
941SLA 100		14 <5	00				,														
						-				• •		•.	· · ·								
94ISLA 101		20 <5	00																		
94ISLA 103		14 <5	00																		
M 1		58 <5	00						1.1												
OMEN1 01		<10 <5	500			· · [•] .•															
OMEN4 01		<10 <5	600																		

indapility, a classifier of the state of the state

Geochemical Lab Report

DATE PRINTED: 5-DEC-94

REPORT: V9	4-0125 8. 0 (COMP	LETE)																	P	ROJECT	LRX-ERO	s-94		PAGE	3A
SAMPLE NUMBER	ELEMENT UNITS	Au PPB	I r PPB	Ag PPM	Zn PPM	Mo PPM	Ni PPM	Co PPM	Cd PPM P	As Si PM PPi	5 1 P	Fe Se PCT PPM	Te Ba PPM PPM	Cr Sn PPM PPM	W PPM	CS La PPM PPM	Ce I PPM	Sm PPM	EU Tb PPM PPM	Yb PPM	Lu PPM	Sc PPM	Hf Ta PPM PPM	Th PPM	U PPM	Na PCT	Вг РРМ
omen4 02 LRX 585		<5 <5	<100 <100	<5 <5	<200 <200	12 <2	61 77	<10 33	<10 <10	3 2. 10 2.5	72 56	2.4 <10 5.4 <10	<20 320 <20 300	350 <200 78 <200	<2 <2	2 <5 2 <5	<10 <10	1.8 1.3	<2 <1 <2 <1	<5 <5	<0.5 <0.5	9.2 8.3	<2 <1 <2 <1	0.7 <0.5	<0.5 <0.5	0.60 0.24	<1 <1
																		•									
																										:	
																		:									
· ·				•				5 x 5																			
	:	:																								•	
	:							jen s																			
								:							1 1 4							997 4997 29 49					
								:																			
								:																		and the second second	
				- - - - - -				•																		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
								: : :			1 2 2															Ŷ	

	Bonda	ar Clegg e Testing Services	Geochemical Lab Report
REPORT: V94-1	01258.0 (COMPLETE)		DATE PRINTED: 5-DEC-94 PROJECT: LRX-EROS-94 PAGE 3B
SAMPLE NUMBER OMEN4 02 LRX 585	ELEMENT Rb Zr UNITS PPM PPM 21 <500 <10 <500		

	Bonda	r Clegg	1444日 - 2010年1月1日 日本1月1日 1944年(1946年)
₹	Inchcape	Testing Ser	vices

.

Geochemical Lab Report

REPORT: V94-0)1258.0 (COMPL	ETE)					?	·····	·····	• •			•												D P	ATE PR ROJECT	INTED: 5 : LRX-ERC	-DEC-4 95-94	74	PAGE	: 4A
	ELEMENT	Au	I r PPR	Ag PPM	Zn	Mo PPM	N i PPM	Со	Cd PPM	AS	Sb PPM	Fe	e Se	Te PPN	e Ba 1 PPM	Cr PPM	Sn I PPM	W	Cs PPM F	La	Ce PPM	Sm PPM	Eu PPM F	Tb PPM I	Yb PPM	Lu PPM	Sc PPM	Hf Ta PPM PPM	Th PPM	U PPM	Na PCT	B
	01110																							یر ان	eren eren eren eren eren eren eren eren						ii G	
1990 AU STD-2	2	230	<100	<5	<200	17	71	23	<10	7	0.6	3.7	7 <10	<20) <100	100	<200	9	<1	7	18	2.2	<2	<1	<5	<0.5	18.0	<2 <1	0.9	<0.5	2.10	<1
Number of Ana	alyses	1	1	1	1	1	1	1	ા	່ 1	1		Ì	1	l 1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	
Mean Value		230	50	3	100	17	71	23	5	7	0.6	3.7	7 - 5	10) 50	100	100	9	0.5	7	18	2.2	1 ().5 💡	3	0.3	18.0	1 0.5	0.9	0.3	2.10	0.5
Standard Devi	ation	-		-		-		-		-						-		-		-		-	-	- 2		-			-		-	
Accepted Valu	æ	260	•	-		-		-		- -				•	•	-		-		- 0		-				-		-	-		4: _	
BCC GEOCHEM S	STD 4	8	<100	<5	290	2	49	<10	<10	29	0.5	2.6	5 <10	<20	410	170	<200	<2	2	12	23	3.3	<2	<1	<5	<0.5	12.0	3 <1	3.2	1.0	1.90	্ৰা
Number of Ana	alyses	1	ା	1	1	1	1	1	1	្រ 1	1	1	िंी	(1	। <u>े</u> ंग्रे	1	1	1	1	1	1	1	<u></u> 1	1	1	1	* * 1)	1.1.	1	1	× 1	
Mean Value		8	50	3	290	2	49	5	5	29	0.5	2.6	5 5	10) 410	170	100	1	2	12	23	3.3	: 10	0.5	3	0.3	12.0	3 0.5	3.2	1.0	1.90	0.5
Standard Devi	ation	•.		-		-		•		-				с. 8	- 107 89. St 12894	-	 	-	- - -		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		-		9 4 . 1. 20.	-				- 1997 - 1997 - 1997	· ·	1049
Accepted Valu	Je	9	-	-	250	4	41	11		8 28 2	0.5	2.6	5	-	• 390	160	- ا بر ز	-		11 :	21	3.3	i, e Sinte	- 1	(3) ()	0.5	11.0	3	3.0	1.2	1.60	
BCC GEOCHEM S	STD 3	490	<100	6	580	696	600	⁻ 49	<10	315	67.3	5.3	3 <10	<20	720	720	<200	4	3	14	<10	2.4	<2	<1	<5	<0.5	12.0	<2 <1	7.6	2.5	0.81	19
Number of Ana	alyses	1	্ 1	1	1	1	1	1	1	1	୍ତ୍ର 1	1	1			1	1	1	: <mark>1</mark> -	1	ः, 1 ः ः	1	1	1] ※같	1	1	1 1	1	1	1	
Mean Value		490	50	6	580	696	600	49	5	315	67.3	5.3	\$ ~~5 ****	្រុំា() 720	÷ 720	100	4	5	14 :	ିତ୍ର	2.4	1 0	<u>، ۱.5</u>	्रुः	0.3	12.0	1 0.5	7.6	2.5	0.81	19
Standard Devi	ation	-		-				•		이				-		- -		-		•		-		-		-		- 5	-		· -	
Accepted Valu	je Pri stan	564		5	580	760	, 660	,61 10		310	, 69. 0	5.4			560	650		6	4	14 E	19	2.2	L			-	12.0	- U.O	7.0	2.5	0.83	14
												91. 3 -								-)				· • .						nin. Mili		
·										e e gi) (:	2 2 2						s.			4 ¹ .				가는 가는 아름다는					
						:				е 8 л.				8.		2								č.								
						- 1- 		544 544		C. E = ates	с) e 19		8 8 9 1 1		s 9 - 1 - 1							lin et so Mar de			-						
								7					-		- 2000	5								20 20		1000					; ; ;	
				,						ė. 19																					· ·	
													1.000	· ·	• 200	2 - 			dalar Ala	, i				11 20		4						
			1	•		-				p t.									1.2	Ŵ	동문				e la	-		48. 1913:				
										ž,				•		•	an saint Sainte			ja ja												
										:: }		(11); ;;										:			QÊ.	4				set.		
										2 : :										ŝ			1925 A.C. 2011 - A.C.			3						
						•		si.					-	•										j.								
									N			8		¢ \$ •						88 2				i-		20 5 5						
																							S.		·	3						
								i interne					: 393			:							1. A.	:::						. A is		
· •										8 X •••			t					2		¥. Na é		ź	ensin Mala	÷.								
			38933						200-Q-	ć ,				ан. Т					1								1 40240					

Bondar Clegg Inchcape Testing Services	Geochemical Lab Report
REPORT: V94-01258.0 (COMPLETE)	DATE PRINTED: 5-DEC-94 PROJECT: LRX-EROS-94 PAGE 4B
STANDARD ELEMENT Rb Zr NAME UNITS PPM PPM	
1990 AU STD-2<10<500Number of Analyses11Mean Value5250Standard Deviation-Accepted Value-	
BCC GEOCHEM STD 441Number of Analyses1Mean Value41250Standard Deviation-Accepted Value35	
BCC GEOCHEM STD 3 48 <500	

ĩ

ı.

	B In	or ch	dca	la pe		C] es	le	o o o o	s Ser	vices															D	ATE PR	INTED:	Ge La Re	b po pec-94	hen rt	nica	al 54
SAMPLE	ELEMENT	Au	Ir	Ag	Zn	Мо	Ni	Co	Са	As Sb	Fe	Se	Te	Ba	Cr	Sn	W	Cs	La	Ce	. Sm	Eu	Tb	Yb	Lu	SC	Hf	Ta	Th	U DDM	Na	Br
NUMBER 94ERS 10 Duplicate	UNITS	РРВ 18 < 19 <	PPB 100 100	РРМ <5 <5	PPM <200 <200	РРМ 3 4	РРМ 140 150	ррм 24 26	PPM <10 <10	40 5.3 38 5.0	РСТ 4.8 4.8	ерм <10 <10	РРМ <20 <20	800 760	ррм 330 360	200 <200	2 	эрм р 3 3	22 22 22	РРМ 37 46	4.5 4.2	PPM P <2 <2	<1 <1 <	7M <5 <5	<0.5 <0.5	20.0 19.0	4	2 2 2	3.8 3.3	1.4 1.3	1.60 1.50	2
94ER4 02		<5 <	100	<5	<200	15	110	<10	<10	3 3.5	1.9	<10	<20	270	290 260	<200	<2	<1 <1	<5 <5	<10	0.6	<2	<1 <1	<5 <5	<0.5	3.8	<2 <2	<1 <1	0.6	1.0 1.0	0.07	<1 <1
Duplicate													· ευ						2								- 1 - 1110 - 1111 - 1				, β, τη πηρη της μηθητηρικής τους πουρογούς 3000000 3000000 3000000 40000000000000	

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

į

		an a	· •			
			affazza a fizzer a service en el service en			Casabarriaal
		en e	in antes an ann an			Geochemical
	ndar Cle		and an anna an anna anna. Anna 1970			Lab
		.00				Report
The Inch	icape Testi	ng Service	S			
			The Carl and			
REPORT: V94-01258.1 (COMP	PLETE)	RECENTED 13		RE	FERENCE :	
CLIENT: WHITE WOLF EXPLORA	TION	#EL: (4:1)	(NRCL COLL FLATERA	SL	IBMITTED BY: UNKNOWN	
PROJECT: LRX-EROS-94	4.6 F 1 - 10 1	na mada (ara) 201 Awasa dada	TAGAL GAR PERM			DATE PRINTED: 8-DEC-94
	····		entration determination			
	NUMBER OF LOWER	EXTRACTION	METHOD	SAMPLE TYPES	NUMBER SIZE FRACTIONS	NUMBER SAMPLE PREPARATIONS NUMBER
		EX. 1		R ROCK	1 2 -150	1 SAMPLES FROM STORAGE 1
1 Au30 Gold 2 Ag Silver	1 5 PPB 1 0.2 PPM	Fire Assay of 30g HCL:HNO3 (3:1)	30g Fire Assay - AA INDUC. COUP. PLASMA			
3 Cu Copper	1 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REPORT COPIES TO:	548 BEATTY ST.	INVOICE TO: 548 BEATTY ST.
4 Pb Lead 5 Zn Zinc	1 2 PPM 1 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA			
6 Mo Molybdenum	1 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			
7 Ni Nickel	1 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			
8 Co Cobalt	1 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			
9 Col Caolmium 10 Bi Bismuth	1 5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA			
11 As Arsenic	1 5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA			
12 SD Antimony		HCLINNUS (SIT)	INDUC. COOP. PLASMA			
13 Fe Iron	1 0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			
15 Te Tellurium	1 10 PPM	الَّذِي الْمَرْدِي الْمَسْتَقَلِي (3:1) الْمَ يُعْلَمُ الْمَالِي الْمَسْتَقَلِي (3:1)	INDUC. COUP. PLASMA			
16 Ba Barium 17 Co Chromium	1 2 PPM	HCE:HNO3 (3:1)	INDUC. COUP. PLASMA			
18 V Vanadium	1 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			
10 sn Tin	1 20 PPM	HCI:HN03 (3:1)	INDUC. COLIP. PLASMA			
20 W Tungsten	1 20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			
21 La Lanthanum 22 Al Aluminum	1 1 PPM 1 0.01 PCT	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA			
23 Mg Magnesium	1 0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			
24 Ca Calcium	1 0.01 PCT	HCL:HNOS (3:1)	INDUC. COUP. PLASMA			
25 Na Sodium	1 0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			
26 K Potassium 27 Sr Strontium		HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			
28 Y Yttrium	1 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			
		REPROPERTY:				
	i •	HELEDHOB (3:1)	MOUT, COLS, PLACK			
	F .	HOLIEROJ (311)	PETER CHARLES STAT			
	j∓_]4	HELSHAD, (* s)				
		Hand Carrier (1997) Hand Carrier (1997)	ing an taon an tao			
1	P M	HOLANDS (J. D	TODUC, MERCINE 2			
		HOLE TO LOUD				
	۲۰۰۳ (۲۰۰۳) ۲۰۰۱ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ -	HILLISKOP (Stri)	Learna C.R. Although C.S. Down			
	B	ondar-Clegg & Company I	td.; 130 Pemberton Avenu	e, North Vancouver, E	.C., V7P 2R5, (604) 985-0681	

i

	Bond Inchca	lar Cl pe Test	legg ting Service	 Bassing Control (1997) Bassing Control (Geochemical Lab Report
CLIENT: REPORT:	WHITE WOLF EXPLORATION V94-01258.1 (COMPLETE)			Randon (Alexandre 1995) Analas (D. a. 1997) Analas (D. a. 1997)	PROJECT: LRX-EROS-94 DATE PRINTED: 8-DEC-94 PAGE 1
SAMPLE NUMBER	ELEMENT AU3O Ag CU UNITS PPB PPM PPM	J PO ZN MO N 1 PPM PPM PPM PP	Ni co cd bi As Sd PM PPM PPM PPM PPM	Fe Mn Te Ba Cr V Sn W La Al Mg Ca Na K Sr Y PCT PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PPM PPM	
94gk 05	1055 1.2 80) 15 10 16 <	<1 4 2.6 <5 1532 >2000	1.57 133 <10 56 231 6 <20 <20 1 0.20 0.32 0.90 <.01 0.12 36 <1	
	na Le case d'il Processione Processione				

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

1

	Sondar Clegg	Geochemical Lab Report
CLIENT: WHITE WOLF E REPORT: V94-01258.1	XPLORATION (COMPLETE)	PROJECT: LRX-EROS-94 DATE PRINTED: 8-DEC-94 PAGE 2
STANDARD ELEMENT NAME UNITS	AU30 AG CU PIS ZN MO NI COL COL BI AS SIS FE MN TE BA CR V SN W LA AL MG CA NA K SR Y PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM	
BCC GEOCHEM STD 5 Number of Analyses Mean Value	- 1.0 83 11 80 4 36 20 <1.0	,
Standard Deviation Accepted Value	0.7 90 11 80 2 40 18 0.1 1 8 1 4.74 720 0.2 200 54 133 2 1 5 3.09 1.83 1.08 0.06 0.32 39 9	
ANALYTICAL BLANK Number of Analyses	<5 <.2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <5 <5 <5 <.01 <1 <10 <2 <1 <1 <20 <20 <1 <.01 <.01 <.01 <.01 <.01 <1 <1 <1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Mean Value		
Accepted Value		

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

i

Approximate claim boundary Adit

Main Road

Road (Four-wheel drive)

Menika Mining Camp

Areas of geological observation (not rock unit boundaries)

Pan Concentrate locations Ø 94EROS-2 <5, 16, 2.1 Sample No. Au, As, Sb ppb, ppm, ppm

Rock Sample locations 941L02 <5, 3, 6,2 Sample No. Au, As, Sb ppb, ppm, ppm

 Soil Sample locations
 94ILS01 25, 44, 5.4 Sample No. Au, As, Sb ppb, ppm, ppm

200 400	
SCALE	
CAPITAL C	NPD
ROS PROPERT	Y
oet Mining Division,	B.C.
HEMICAL SI	IRVEY
OIL & STREAM S	SAMPLES
INC & ANTINON	V DEQUITO
	ONELTO
OLF EXFLORAT	
DRAWN BY :	FILE : EROSGEO.DWG
REVISED :	FIGURE : Z
<u>I</u>	
a state of the second	an a