00	NO:	F1AN	0.6	1995	1
	NU.	r.iαn	20	1993	

PROSPECTING

U IJAN 2 0 1995 ACTION: JUL 2 1 1995 Amendeb

GEOLOGICAL INVESTIGATION

AND

RE **GEOCHEMICAL** CONNAISSANCE

OF

A NEW GOLD DISCOVERY

ON THE ACE CLAIMS

NEAR MOUNT BARKER

CARIBOO MINING DIVISION, PROVINCE OF BRITISH COLUMBIA

93 NTS 94 A - 14E 52 ° 47' 30"N 121° 07'W

.

H.P.SALAT, P.Eng. 5904 Dalhousie Drive N.W. Calgary, Alberta **T3A 1T1**

GEOLOGICAL BRANCH ABUSTES 189MENT REPORT

222

TABLE OF CONTENTS

Land Tenure	3
Location, Access and Physiography	5
Geology	6
1 - General mapping of the area	6
2 - Regional geology	6
3 - Property geology	7
3-1. Rock exposure	7
3-2. Rock-units and stratigraphy	7
3-3. Structures	7
3-4. Metamorphism	8
Exploration	8
1 - Previous work	8
2 - Prospecting programme	9
3 - Line-cutting and soil geochemistry	10
Mineralization	11
1 - In outcrop	11
2 - In floats	12
3 - Paragenesis and elemental association	12
4 - Comparison	13
Recommendations	13
References	
Certificate	
Statement of expenditures	
Plates	
Appendix 1 - Laboratory analytical procedures	
Appendix 2 - Assay results of samples collected during prospecting	
Appendix 3 - Results of geochemical analysis of soil samples	
Tables	
Table 1 - Claim list and tenure - ACE property	
Table 2 - Selected assay results from 1993-1994 samples	
Figure	
Figure 1 - ACE claims - Location map Figure 2 - Structural elements measured on Ace property and surrounding areas	,
Figure 3 - Synoptic map of sample site locations, grid-soil geochemistry and	in nocket
geological observations	.in pocket

2

.

- -

1. LAND TENURE.

The ACE property is made of ninety-six (96) two-post claims staked over the northern flank of Goose Range in the Cariboo Mining district. List of the claims and relevant information are presented in Table 1 and the lay-out of the claim is found in Figure 1. The claims are all located within map-sheet 93-A-14E.

CLAIM NAME	NUMBER OF UNITS	RECORD NUMBER	EXPIRY DATE *
UNLIKELY I	1	322616	October 31, 1999
UNLIKELY II	1	322617	October 31, 1999
ACE I	1	322621	November 07, 1999
ACE 2	1	322622	November 07, 1999
ACE 3	1	322623	November 07, 1999
ACE 4	1	322622	November 07, 1999
ACE 5	1	322624	November 07, 1999
ACE 6	1	322625	November 07, 1999
ACE 7]	322626	November 07, 1999
ACE 8	1	322627	November 07, 1999
ACE 9	1	322628	November 07, 1999
ACE 10	1	322629	November 07, 1999
ACE 11	l	322630	November 07, 1999
ACE 12	1	322631	November 07, 1999
ACE 13	1	322632	November 07, 1999
ACE 14	1	322633	November 07, 1999
ACE 15	1	323065	December 05, 1999
ACE 16	1	323066	December 05, 1999
ACE 17	1	323067	December 05, 1999
ACE 18	1	323068	December 05, 1999
ACE 19	1	323069	December 05, 1999
ACE 20	1	323070	December 04, 1999
ACE 21	1	323071	December 04, 1999
ACE 22	1	323072	December 04, 1999
ACE 23	1	323073	December 04, 1999
ACE 24	1	323074	December 04, 1999
ACE 25	1	323075	December 04, 1999
ACE 26	1	323076	December 04, 1999
ACE 27	1	323077	December 04, 1999
ACE 28	1	323078	December 04, 1999
ACE 29	1	323079	December 04, 1999
ACE 30	1	323080	December 04, 1999
ACE 31	1	323081	December 05, 1999
ACE 32	1	323082	December 05, 1999
ACE 33	1	323083	December 05, 1999
ACE 34	1	323084	December 05, 1999
ACE 35	1	323085	December 05, 1999

TABLE 1Claim list and tenure - ACE Property

3

......

CLAIM NAME	NUMBER OF UNITS	RECORD NUMBER	EXPIRY DATE *
ACE 36	1	323086	December 05, 1999
ACE 37	1	323087	December 05, 1999
ACE 38	1	323088	December 05, 1999
ACE 39	1	323089	December 05, 2000
ACE 40	1	323090	December 05, 1999
ACE 41	1	323091	December 05, 2000
ACE 42	1	323092	December 05, 1999
ACE 43	1	323093	December 05, 2000
ACE 44	l	323094	December 05, 1999
ACE 57	1	331316	September 18, 2000
ACE 58	1	331317	September 18, 2001
ACE 59	1	331318	September 18, 2001
ACE 60		331319	September 18, 2001
ACE 61	I	331320	September 18, 2001
ACE 62	1	331321	September 18, 2000
ACE 63	1	331322	September 18, 2000
ACE 64	1	331323	September 18, 2000
ACE 65	1	331324	September 18, 2000
ACE 70	1	331325	September 19, 2000
ACE 71	1	331326	September 19, 2000
ACE 72	1	331327	September 19, 2000
ACE 72	1	331328	September 19, 2000
ACE 74	1	331329	September 19, 2000
ACE 75		331329	September 19, 2000
ACE 76			September 19, 2000
ACE 70 ACE 77		331331 331332	September 19, 2000
ACE 78	1		September 19, 2000
	1	331333	
	1	331334	September 19, 2000
		331335	September 20, 2000
ACE 83	<u>l</u>	331336	September 20, 2000
ACE 84	1	331337	September 20, 2000
ACE 85		331338	September 20, 2000
ACE 86		331501	September 27, 2001
ACE 87	1	331502	September 27, 2000
ACE 88	1	331503	September 27, 2001
ACE 89	1	331504	September 27, 2000
ACE 90	1	331505	September 27, 2000
ACE 91	1	331506	September 27, 2000
ACE 92	1	331507	September 27, 2000
ACE 93	1	331508	September 27, 2000
ACE 94	1	331509	September 27, 2000
ACE 95	1	331510	September 28, 2000
ACE 96	1	331511	September 28, 2000
ACE 97	1	331512	September 28, 2000
ACE 98	1	331513	September 28, 2000
ACE 99	1	331514	September 28, 2000
ACE 100	1	331515	September 28, 2000
ACE 101	1	331516	September 28, 2000

. .,

-

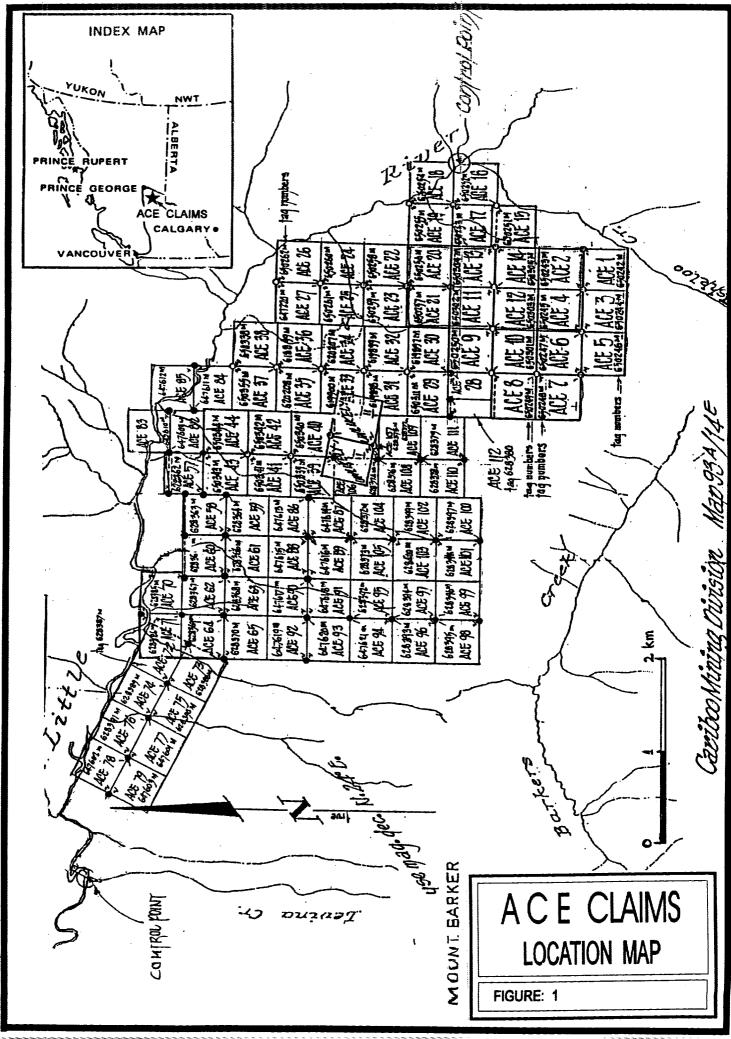
~~

.....

_

CLAIM NAME	NUMBER OF UNITS	RECORD NUMBER	EXPIRY DATE *
ACE 102	1	331517	September 28, 2000
ACE 103	1	331518	September 28, 2000
ACE 104	1	331519	September 28, 2000
ACE 105	1	331520	September 28, 2000
ACE 106	1	331521	September 29, 2000
ACE 107	1	331522	September 29, 2000
ACE 108	1	331523	September 29, 2000
ACE 109	1	331524	September 29, 2000
ACE 110	1	331525	September 29, 2000
ACE 111	1	331526	September 29, 2000
ACE 112	1	331527	September 29, 2000

* It assumes that filed amount of exploration work has been accepted by the B.C. - MEMPR.


LOCATION, ACCESS AND PHYSIOGRAPHY.

The ACE property covers the northeastern slopes of Goose Range, an arcuate topographical ridge, east of Cariboo Lake. Goose Range culminates at 2026 metres at Mount Barker and curves around Barker Creek located to the south. It is bordered to the north by Little River, a tributary of the Cariboo River and to the east by Ishkloo Creek.

The centrer of the ACE property lies approximately at 52°47'30"N and 121° 07'W; the western boundary is approximately 48 kilometers east of the town of Likely.

Access to the area is provided by an excellent gravel road connecting Likely to Barkerville via Maeford Lake. From that connecting main road (the 8400 Road), a series of old and recent logging roads branch off toward clear-cuts on the side of Goose Range and allows access to some areas of the property.

The area is part of the Quesnel Highlands, a dissected plateau lying west of the high peaks of the Cariboo Mountain. Most area is covered with dense forests consisting of basalm firs, white spruces and cedar trees. Underbrush of alders and willows is usually thick and renders human penetration somewhat arduous. Tree line lies at 1750 metres; above, heavy vaccinium bushes, stunt alpine firs and grass cover the last slopes, rims of cirques and highbenches. The climate is fairly humid and cool throughout the short summer; snow fall amounts from 750 to 1000 cm in most winters.

GEOLOGY

1.General Mapping of the Area.

The area surrounding Mount Barker has remained unmapped until recently. Lang (1940) gave a broad outline of the geology based on extrapolation of his work around Yanks Peak and Keithley Creek, north and west of the Cariboo River. Campbell (1978) published a preliminary map at the scale of 1:125,000 on which the present area was mapped as undifferentiated Suowshoe Group. More detailed maps became finally available in 1988 (Struik, 1988) and the succeeding presentation of the regional geology is based on this publication.

2.Regional Geology.

Lying on the eastern margin of the Omineca belt, one of the five major structural zones making up the Canadian Cordillera, the general area is composed of rock formations which belong to the BarkervilleTerrane. The Barkerville Terrane consists mostly of sedimentary rocks and is west of the Cariboo Terrane and in thrust-fault contact with it. The fault runs parallel to and north of the Little River. It is called the Pleasant Valley Fault.

The Barkerville Terrane is described as being dominated by "Precambrian and Paleozoic varieties of grit, quartzite and black and green pelite with lesser amounts of limestone and volcaniclastic rocks". It is constituted mainly by the newly redefined Snowshoe Group the age of which stretches from Hadrynian (Precambrian) to Upper Paleozoic. The Snowshoe Group is overlain by the very minor crinoidal Sugar limestone, important however as it provides a reliable age dating from conodonts (Lower Permian).

The Snowshoe Group comprises fourteen (14) informal subdivisions. However the entire area lying between Barkers Creek and Little River is mapped as underlain by only three units: an undifferentiated Snowshoe Group strip to the west, bounded to the east by rocks ascribed to the Harveys Ridge succession and finally extending from Mount Barker to Ishkloo Creek, by rock-units of the Downey succession.

The Downey succession is composed of micaceous quartzite, phyllite, marble, limestone, calcareous quartzite and tuff. The unit is characterized from others in the Snowshoe Group by its abundant marble and tuff. The volcanic rocks of the Downey succession are only poorly studied and consists primarily of tuff, metabasaltic volcaniclastics reported as metadiorite or amphibolite.

The depositional environment of the Downey succession is considered to have been a marine shelf periodically inundated with clastic debris. The tuffs of minor volcanic debris were shed from a distant source (Struik, p.59).

3. Property Geology.

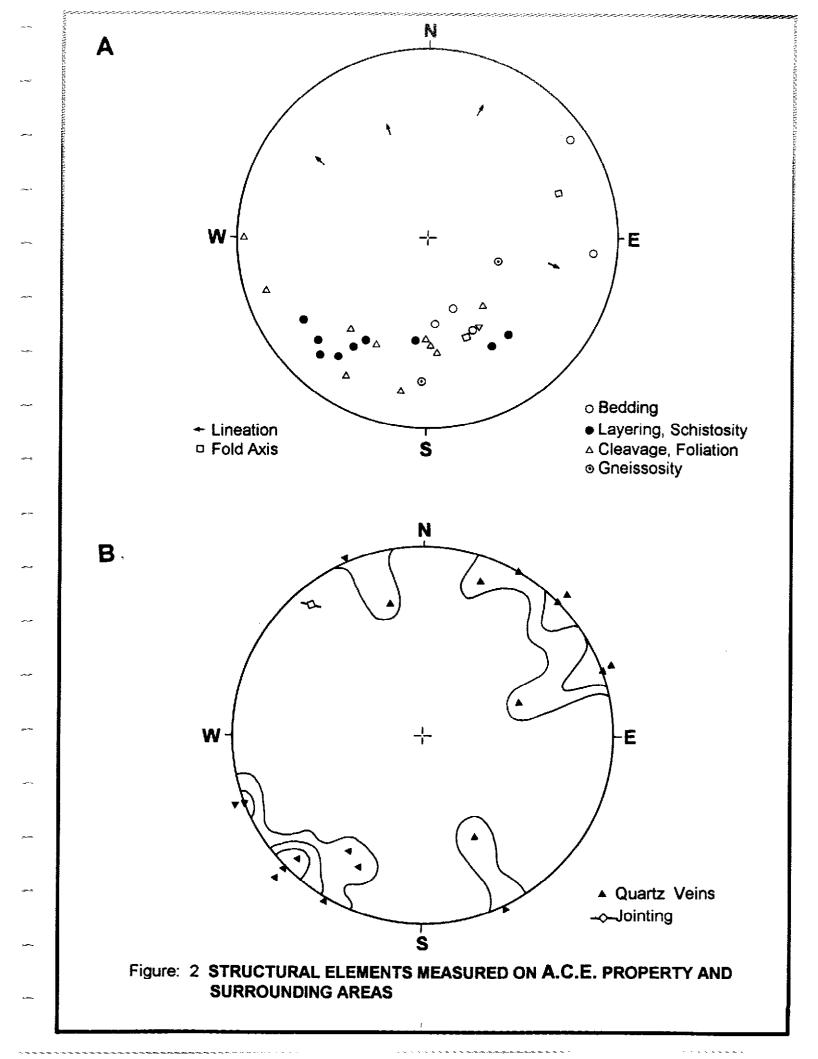
3.1-Rock exposure.

There is little rock cropping out in the property with the exception of the alpine country carved out by cirques and frost-heaved cliffs. The mountain slopes are covered by deep forest soils developed over slumped material, colluvium and fluvio-glacial deposits in lower elevation and valley bottom.

However, abrupt break-in-slop is related to small cliff or ledges which may offer rock exposure. The new roads also provide sparse but clean outcrops.

3.2- Rock-units and stratigraphy.

The most common rock-unit encountered on the ACE property is a brownish sequence of laminated quartzitic and micaceous schists, with one to two well developed crenulation. The brownish weathering is given by oxidation of small scattered pyrite. Variation occurs in amount of quartz content and pure quartzite is not uncommon; On the other hand, mostly exposed in lower slope, black phyllite, locally graphitic is well represented (Figure 3).


The mica schists and quartzite are believed to derive from sediments. A rock-face found on the top of "West cirque" displays a thick alternation of coarsed grained, microconglomeratic greywacke and micachist(see Plate III). Good graded bedding is to be found and indicates a normal succession. It is interpreted as a turbidite sequence.

A unit, estimated between 50 and 100 m thick, crops out on the rim of the main cirque and in several cliffs along the northern slope of Goose Range. It consists of green chloritic metaandesite with a wide variety of crystallinity; it varies from coarse-grained, resembling a diorite, to a foliated granular andesite and to chloritic schist, or amphibolite. Stratigraphically, this unit appears to underlie the turbiditic sequence described previously.

Volcanic and pyroclastic tuffs are commonly found interlayered with chloritic schist and sericitequartz schist and many are felspathic. Along the main 8400 road a typical ribboned feldpathquartz unit was discovered; it represents a rhyolitic flow and contains laminae of pyrite. White limestone and tan-weathering limestone outcrops in one to two metre layers; they are associated indifferently with sedimentary and volcanic units. However all the above rock-units which could have served as markers horizons, seem too thin or discountinous to give mappable units at this stage, and the present scale of mapping.

3.3 - Structures.

All rock formations in the area show at least one strong foliation or pervasive cleavage. The original bedding is rarely evident in limited outcrops and relationships between units are difficult to find.

intrafolial and rootless folding is locally present, indicative of ductile deformation and shearing. In many places, two cleavages, one strongly crenulating, can be observed; both have approximately the same strike and differ only by a small difference in dip angles.

Plotting of structural fabric measured in the field (see Figure 2), show that the fabric layering, foliation and schistosity have been refolded at a later stage into a wide anticlinorium. Its confirms the extent to the southeast of the Lightning Creek Anticlinorium postulated by Struik, (1988). The scatter of a few strong lineation recognized in outcrops, suggest also a second folding event.

3.4.- Metamorphism.

All the rock formations in the area have been metamorphosed into the greenschist facies. The pelitic units have developped into micaschist and the main mafic mineral is chlorite in volcanic rocks.

However, an increase in metamorphic grade is noticeable towards the southeast with much garnet appearing as a major component. Biotite and amphibole are also becoming prominent in the modal composition of the rock units, Ishkloo and Barkers creeks seem to coincide with the garnet isograde line. Kyanite has been found in float north of Little River, and gneissic structures are observed east of Ishkloo Creek toward Quesnel Lake.

EXPLORATION.

1. Previous work.

According to records of claim staking and assessment work, little exploration seems to have taken place south of the Cariboo River and north of Spanish Mountain, near Quesnel Lake. The Cariboo district is well known for placer and gold mining activity, and it is difficult to expain lack of work in the area.

In unrecorded time, a sporadic placer operation had taken place along Frank (Goose) Creek. Renewed activity by local operators in the 1984-1986 period, uncovered at the base of the loose sediments massive sulphide boulders containing Cu, Zn, Pb, and Ag values. Subsequent soil sampling and geophysical surveys, both ground and airborne tried, without success, to locate the source of these boulders.

To the east, and north, much exploration in the late 80's concentrated on the carbonate formations of the Cariboo Terrane. Base metal (Pb-Zn-Ag) "manto" (replacement) type of mineralization was the target; exploration mainly revolved around Maeford Lake.

2. Prospecting programme.

2. Prospecting programme.

In the fall of 1993, Mr. L. Doyle while prospecting along Road 8400 and secondary logging road, discovered discrete flakes and colors on rivulets flowing down from the north and northeast side of Goose Mount Barker Range. Immediately afterwards the ACE were staked and systematic prospecting of the slopes and lower reaches started in the late part of 1993 and again in 1994 after the area became snow free. A total of 124 days were spent by MMrs L and J. Doyle prospecting for mineralization on the ACE property til the end of the summer.

During that period of time, prospectors collected all possible indication of mineralization which included quartz floats, gossaneous rocks and stream sediments. Startling results were obtained with stream sediments returning values from 15 to 6,526 g/T of gold - (0.44 to 192 oz/t Au) indicating strong accumulation of gold particles (see Table 2, samples 1001-3, 1030-1);

confirming, if necessary, the original discovery. Many floats of quartz vein material were thereafter un-earthed on the roads ditchs and in clearings on the mountain slopes. Sulfide rich quartz floats, were subsequently discovered: most common sulfides were pyrite, pyrrhotite and arsenopyrite. Magnetite is also present and more rarely chalcopyrite, bornite, galena and sphalerite.

Three main areas of mineralized floats stand out (refer to Table 2 and Figure 3)	Three main ar	eas of mineralize	ed floats stand ou	ut (refer to Tal	ole 2 and Figure 3).
--	---------------	-------------------	--------------------	------------------	----------------------

1) - Start of F road: sample number	1047 (555 ppb Au)
, ,	1085 (505 ppb Au)
	1123 (775 ppb Au)
	1160 (22g/T Au, 8.8% As)
	1162 (1,020ppb Au)
	1163 (590 ppb Au)
	1187 (990 ppb Au)
	1188 (1,900 ppb Au)
2) - S-road at base of a large clear-cut area:	
sample number	1261 (18.8g/T Au, 0.2% Cu)
•	1259 (580 ppb Au)
	1280 (10.7%Pb, 1.42% Zn)

sample number

1290 (310 ppb Au) 1315 (330 ppb Au) 1323 (0.24% Zn) 1326 (>1% Pb, >1% Zn) 1327 (190 ppb Au) 1328 (160 ppb Au) 1329 (190 ppb Au) 1344 (0.23% Zn) 1345 (1,720ppb Au)

1346 (0.1% Cu) 1358 (23.7g/t Au) 1359 (1,130 ppb Au) 1362 (0.13% Cu)

In areas where no floats could be truned up, scattered stream sediments from small creeks or springs and some soils were sampled. Values from the "stream" and soils are generally below detection limits with the important exception of silts collected in and around culvert numbered 6 and 7, between the 4th and 5th kilometre from beginning of the F-road. (see sample 1001-1002-1003-1013-1030-1031-1055 to 1061 and 1074 to 1084, see Table 2 and figure 3). The very anomalous silts led to further systematic exploration (see chapter on geochemistry)

In spite of the low amount of outcrops, prospecting uncovered some rare outcrops of quartz sweats and quartz veins. Exposed to weathering, the quartz material became crumbly and coated with a thin brown film of rust or weathered mica. When much sulphides are present quartz veins are vugged out; sometimes cavities retain much limonite or rusty brown earthy material. Interesting enough, most samples hammered out from these outcrops are anomalous in gold, For example:

- Beginning of F-road = sample 1124, quartz sweat in phyllite (355 ppb Au)
- Slopes above End of F-road = large quartz vein system (see plate I) giving values of 360 to 410 ppb Au (sample 1150 and 1148).
- Main cirque (Figure 3) = samples 1176 and 1195 to 1197 giving values between 100 to 425 ppb Au. (Plate V).
- Along Colleen Road = quartz vein in quartzite, samples 1287 (1,520 ppb Au) and 1289 (6,050 ppb Au).(Plate IV).

The discovery of gold bearing quartz veins in good outcrops confirms the gold potential of the ACE claims; it also presumes a very local origin for sulphide rich quartz floats, overwhelmingly turning up high gold values (to loz/t of gold. Moreover, many of these floats contain sulphides bands, decimetric in thickness; such material could not have sustained glacier or fluvial transport or weathering for any distance.

3. Line-cutting and soil geochemistry.

The very favorable results obtained from prospecting led to follow-up with the establisment of base-lines and grids in order to locate in the field and with some precision, all observation and data. A 5.2 kilometre base-line was cut and blazed and 28.1 kilometres of perpendicular lines were blazed and flagged. All the line were soil-sampled at interval varying from 25 to 50 metres(Figure 3).

Soil sampling followed standard procedures. Good forest soils allowed collecting of B horizons; 50 to 1000 grams of soil material were taken and placed in brown kraft paper bags, dried and sieved at-80 mesh. In the laboratory, sub-samples are taken and analyzed by ICP method for 30 elements. For gold, the sub-samples are fire assayed with an AA finish.(see Appendix 1 for analytical procedures).

10

The southeast grid was sampled at 50 metre spacing in the area of the high valued stream sediments discovered along the end stretch of F-road. It was hoped that a local source for the gold would have an expression in the upper soil horizon of this well forested mountain slope. 423 samples were taken along 23 line kilometres, suprisingly failed to return any gold anomaly. None of the normally associated elements like Cu, As, Bi or Ba shows any noticeable variation. (see Appendix 3).

In lower areas around where many mineralized float had been found, short grids were layed out and sampled every 25 metres along a total of 6 line kilometres. 317 soil samples were collected. The results are also disappointing except for the small grid done on both side at the beginning of F-road. There, a good As anomaly is detected with rare discrete gold values reaching 190 ppb of Au.

To conclude, the lack of response from soil geochemistry creates a puzzle. While prospecting, some soil samples were collected nearby or just adjacent to mineralized floats; they usually gave a fair response. (for ex: see Table 2, sites 1214, 1259, 1315 to 1342). Soil geochemistry had been implemented on that basis, and on the fact that floats being close to surface, it would be possible to trace float dispersion trains. The present failure need to be addressed with a more detailed study of the soils, creeps, slumps or overburden deposits.

MINERALIZATION

1. In outcrop.

Quite a few quartz veins have been found in place, some in road-cuts but mostly near or on top of ridges. The most prominent one consist of a 0.5 to 2 metres wide massive quartz vein with a brownish weathered surface (see Plate I); it pinches and swells over 100 metres (site 1150 in Figure 3).

In alpine country, quartz veins appear leached out and white. Yet, when broken, rusty films remains between fragments. Although no mineralization is visible, grab samples obtained from these quartz vein returned anomalous values of gold (from 100 to 425 ppb Au, see paragraph on Prospecting).

The quartz veins are hosted in quartz rich schist, micashist and chlorite schist and are crosscutting country-rock layering. Their attitude averages N120° to N160°E (Figure 2B). Beside quartz, vein contains white mica (sericite) and rarely tournaline.

At base of the mountain slope, along road cuts, quartz sweats and quartz veins contains sulphides such as pyrite, pyrrhotite and minor chalcopyrite and arsenopyrite. The sulphides form a network of anastomosing veinlets like a web within crackled quartz matrix; graphite can be present in varying quantities; it might represent inclusions within the vein system as these type of vein seem to occur preferably within black phyllite, ribboned chert or quartzite environment. A good exemple can be found along Colleen Road (see Plate IV, site 1289 on Figure 3).

2. In floats.

Observations made on outcrops apply also to many floats found in the ACE claim area. However, in lower slopes, large quartz sulphides floats show a greater amount of sulphides, reaching 25 to 30% of the rock mass.

Moreover, some floats are even better described as a massive sulphide floats (sample 1323, 1358, 13620); mineralization consists of 10 to 25 cm layers of massive pyrrholite and pyrite, with brecciated pieces of quartz of different size or disrupted quartz-calcite slabs 5 to 10 centimetres in length.

Some of the floats reach one to two metres in diameters; many are also found with country-rocks fragments cemented around them as in a ferricrete. The size of the floats indicate the original vein must have a fair thickness. The number of floats discovered and the amount of sulphides suggest the source can not be very remote.

3. Paragenesis and elemental association.

Sulphide poor quartz vein are devoided of other mineral beside sericite and rare cubes of pyrite, most often oxidized and reached out. Interestingly enough, geochemical analysis report ubiquitous high level of Cr (between 200 and 500 ppm).

In sulphide rich quartz vein, a great variation of mineral content can be encountered. Arsenopyrite is found in quite a few localities (for ex: along the F-road) but is completely absent in others. In the other hand, Bismuth (native bismuth or bismuthinite ?) appear to be antagonistic to arsenic and is found within floats along the S-road to the west or Colleen Road. In these areas, Bismuth is associated to Pb and Zn and locally massive galena vein-material was found with minor sphalerite (see sample location 1280, 1325, 1326). From Table 2, the correlation between Bi and Pb seem very high.

Copper (Cu) is everywhere present in anomalous amount where sulphides are found. Copper is also visible as chalcopyrite or bornite in many instances. Chromium (Cr) shows up again in anomalous quantites in majority of mineralized as well as non-mineralized quartz vein.

In conclusion, it appears that Bismuth (Bi) has the closest relation to gold; there is always an anomalous Bi values associated to Au whereas Arsenic (As) is very erratic, as well as silver (Ag). Bi represents the best pathfinder to gold in the vicinity. Copper (Cu) show a widespread distribution and is a good indicator of gold mineralization.

The intriguing Chromium (Cr) values have not found yet a definite explanation. It is suspected that it could be related to unrecognized Cr-rich mica (mariposite) which along with sericite, correspond to alteration products associated to quartz veining and gold emplacement.

It is proposed for further exploration the following elemental association to gold (from strongest to weakest): Bi - Cu - Cr - As - Ag - (Pb - Zn - Ba - V -)

4. Comparison.

It seems obvious that comparison with the Wells-Barkerville area be drawn-up. Indeed, gold mineralization at Mosquito Creek-Island Mountain and Cariboo-Gold Quartz conforms very well to what has been found so far on the ACE claims.

- Quartz vein system hosted in the Downey succession.
- Ore-bearing quartz vein carrying up to 25% sulphides.
- Mineralized quartz vein at Cariboo-Gold-Quartz-Mine contains according to Skerl (1948) beside free gold, cosalite (2 PbS-Bi₂S₃) argentite (Ag₂S) and chalcopyrite (Cu Fe S₂).
- At Mosquito creek Mine, accessory minerals in quartz veins are ankerite. galena sphalerite and sericite.
- According to Alldrick (1983) chromium bearing mariposite characterizes the hangingwall alteration zones.

Therefore, there is a general agreement between the two areas as far as gold quartz vein mineralization is concerned. The only difference at this time concerns the replacement ore type which has not been found on the ACE property. However at the Cariboo-Gold-Quartz mine, it took a 84 years span to find by accident a body of replacement ore after the original discovery (Skerl, 1948)

RECOMMENDATIONS

Results of prospecting and surface investigation on the ACE property during 1994 demontrate the presence of locally derived mineralized boulders and a geological setting similar to the gold mining district of Wells-Barkerville, which has historically produced over 1.3 million ounces of gold (39,281,000 grams). It follows that further exploration is greatly required; three main tasks have to be tackled. They are:

1 - Locate the source or sources of the gold-rich, generally sulphide rich boulders found along Colleen Road and S-Road.

2 - Test gold-bearing quartz veining found in outcrop along Colleen Road and the start of F-road.

3. - Explain the lack of response in soil geochemistry from the area (last section of the F-road) where extremely high gold values (0.44 to 1920z/t of Au) were obtained in sediments collected from small creeks and seeps flowing down the side of the mountain.

The following programm of exploration work is therefore recommended.

1 - Completion of the grid - Line cutting to geophysical standards	
approximately 100 line-kilometres	\$ 30,000

 2 - Trenching in the Colleen Road - S Road area near mineralized boulders \$ 15,000

3 - Surveying	
A - Soil profiling with powered hand held auger	\$ 20,000
B - Geochemical sampling and analysis	\$ 35,000
C - Geophysical testing (Mag, IP, or CSAMT)	\$ 15,000
4 - Drilling - Short hole testing (BQ/NQ)	
A Colleen Road - Start of F road outcropping area: total of	
500 metres, all inclusive (drilling, logging, analytical)	\$ 50,000
B - Main cirque, helicopter supported -300 metres-	\$ 45,000
5 - Prospecting and geological maping (structural, surficial, etc)	\$ 25,000
6 - Mineralogical studies\$ 5,000	
7 - Contingencies\$ 20,000	
8 - Administration, reporting + supervision @ 15%	\$ 40,000
TAL OF EXPLORATION PROGRAMME	\$ 300,000

TOTAL OF EXPLORATION PROGRAMME

Report done at Calgary,

dated January 15, 1995

- -

Hughes P. Salat, PHing SALAT BRITISH

TABLE #2	
Selected assay results from 1993-1994 sampl	es.

Sample	Location	Description	Au	Ag	As	Bi	Cu	Other
Number			(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
93-11-1001	Culvert 7, F road	Stream sediment.	129,000				1	
93-11-1002	Culvert 7, F road	Stream sediment.	73, 800			1	<u> </u>	
<u>93-11-1002</u> 93-11-1003	Culvert 7, F road	Stream sediment.	41, 800				1	
93-11-1004	Culvert 7, F road	Stream sediment.		8.3	5	3	42	
93-11-1005	4.3 Km, F road.	Stream sediment.	<30	0.5		<u> </u>		
93-11-1006	4.3 Km, F road.	Stream sediment.	<30					
93-11-1007	4.3 Km, F road.	Stream sediment.	<30				<u> </u>	
93-11-1008	4.3 Km, F road.	Stream sediment.	<30					
93-11-1009	4.3 Km, F road.	Stream sediment.	<30					
93-11-1010	4.3 Km, F road.	Stream sediment.	<30				11	
93-11-1011	4.3 Km, F road.	Stream sediment.	<30				11	
93-11-1012	4.3 Km, F road.	Stream sediment.	<30				1 1	
93-11-1013	Culvert 7, F road	Original stream sediment.	22, 300			1	1	
93-11-1014	4.3 Km, F road.	Stream sediment.	<30				11	
93-11-1015	4.3 Km, F road.	Stream sediment.	<30			1		
93-11-1016	4.3 Km, F road.	Stream sediment.	<30			1		
93-11-1017	4.3 Km, F road.	Stream sediment.	<30			1		
93-12-1018	2 Km, F road.	Stream sediment.	<5	<.2	<5	<5		1
93-12-1019	Around 2Km ± 50m, F road	Stream sediment.	<5	<.2	<5	<5	T	
93-12-1020	Around 2Km ± 50m, F road	Stream sediment.	<5	<.2	<5	<5	Î	
93-12-1021	Around 2Km ± 50m, F road	Stream sediment.	<5	<.2	<5	<5		Andersteining and the state
93-12-1022	Around 2Km ± 50m, F road	Stream sediment.	<5	<.2	<5	<5	1	
93-12-1023	Around 2Km ± 50m, F road	Stream sediment.	<5	<.2	<5	<5		
93-12-1024	Around 2Km ± 50m, F road	Stream sediment.	<5	<.2	<5	<5		<u> </u>
93-12-1025	culvert 7, F road.	Stream sediment.	35	<.2	5	<5		
93-12-1026	Around 2 Km ± 50m, F road	Stream sediment.	<5	<.2	<5	<5		
93-12-1027	Around $2Km \pm 50m$, F road	Stream sediment.	<5	<.2	<5	<5		
93-12-1028	Around $2Km \pm 50m$, F road	Stream sediment.	<5	<.2	<5	<5		
93-12-1029	Around 2Km ± 50m, F road	Stream sediment.	<5	<.2	<5	<5	††	
94-01-1030	culvert 7, F road.	Original stream sediment.	15, 160					
	bottom of culvert7, F road.	Original stream sediment.	6,526,000					
94-01-1032	F road, $4.2 \text{ Km} \pm 50 \text{m}$.	Stream sediment.		<.2	<5	<5	††	
94-01-1033	F road, culvert7, F road.	Original stream		1.2	<5		11	144
94-01-1034	F road, $4.2 \text{ Km} \pm 50 \text{m}$.	Stream sediment.		<.2	<5	<5		
94-01-1035	F road, 4.2 Km \pm 50m.	Stream sediment.		<.2	<5	<5		
94-01-1036	F road, 4.2 Km \pm 50m.	Stream sediment.		.2	<5			

.

Sample	Location	Description	Аи	Ag	As	Bi	Си	Other
Number			(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
94-01-1037	F road, 4.2 Km ± 50m.	Stream sediment.		1.4	.10	<5		
94-01-1037	$F road, 4.2 \text{ Km} \pm 50 \text{m}.$	Stream sediment.		<.2	<5	<5		
94-01-1038	F road, 4.2 Km \pm 50m.	Stream sediment.		<.2	<5	<5		
94-01-1039		Stream sediment.		<.2	<5	5		240 Zn
	F road,4.2 Km ± 50m.			<.2	<5	<5		240 211
94-01-1041	F road, 4.2 Km ± 50m.	Stream sediment.		12.8	4	2		
94-01-1042	Culvert 7, F road.	Original stream sediment. (Re:1013)	20		<u> </u>	<5	~~~~~~	495 Cr
94-01-1043	Above culvert 8 on F road 200m upstream.	Quartz float	30	<.2		5		495 CI
94-01-1044	Above culvert 8 on F road 200m upstream.	Stream sediment.	<30	<.2	<5	> <5		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
94-01-1045	Above culvert 8 on F road 200m upstream.	Quartz float	<30	<.2	<5			
94-01-1046	Above culvert 8 on F road 200m upstream.	Quartz float	<30	<.2	<5	10		1000
94-04-1047	1Km on F road ditch upslope.	Quartz float	555	.4	20	30	303	492Cr
94-04-1048	Fineness of Gold from original sample.(see 1031)	Gold flakes	88.3%			<u> </u>		0.14 Pt
94-05-1055	Culvert 6, \pm 20m on F road.	Stream sediment.	10	<.2	<5	<5		and an and a second statement of the Autom statement of the
94-05-1056	Culvert 6, \pm 20m on F road.	Stream sediment.	45	<.2	<5	<5		
94-05-1057	Culvert 6, \pm 20m on F road.	Stream sediment.	5	<.2	<5	<5		
94-05-1058	Culvert 6, \pm 20m on F road.	Stream sediment.	25	<.2	<5	<5		11 Martin 11 Mart 11 Mart 11 Mart 11 Mart 12 Mar
94-05-1059	Culvert 6, \pm 20m on F road.	Stream sediment.	10	<.2	<5	<5		
94-05-1060	Culvert 6, \pm 20m on F road.	Stream sediment.	10	<.2	<5	<5		
94-05-1061	Culvert 6, \pm 20m on F road.	Stream sediment.	10	<.2	<5	<5		
94-05-1071	Above culvert 6, on F road 700m upstream.	Quartz float	5	0.8	775	<5	1534	398Cr
94-05-1072	From underground stream, 500m upstream above culvert 6,	Stream sediment.	5	1.8	1720	<5	3508	385Zn
1	on F road.							
94-05-1073	200m downstream from culvert 6 stream on F road.	Stream sediment.	10	<.2	15	10	67	320Sn
94-05-1074	500m upstream culvert 5, F road.	Stream sediment.	10	0.2	210	<5	485	485Cr
94-05-1075	200m North of 1074	Stream sediment.	10	0.4	<5	<5		
94-05-1078	30m South from culvert6 on F road, in ditch upslope.	Stream sediment.	10	<.8	<5	<5		na de la constante de la consta
94-05-1079	5m South of culvert 6, F road in ditch upslope.	Stream sediment.	45	<.2	<5	<5		
94-05-1080	Top side of culvert 6, F road.	Stream sediment.	5	<.2	<5	<5		
94-05-1081	100m upstream, culvert 6, F road.	Stream sediment.	25	<.2	<5	<5		
94-05-1082	100m downstream, culvert 7, F road.	Stream sediment.	10	<.2	<5	<5		
94-05-1083	5m downstream, culvert 6, F road.	Stream sediment.	10	<.2	<5	<5		nanana ana ang ang ang ang ang ang ang a
94-05-1084	10m downstream, culvert 7, F road.	Stream sediment.	10	<.2	<5	<5		1.1.4.4.7. III.IIIIIIIIIIIIIIIIIIIIIIIIIIII
94-05-1085	culvert 31, F road.	Quartz float	505	0.4	<5	80	508	290W
94-05-1086	Culvert 1, F road.	Stream sediment.	<5	<.2	10	10	angen ander die eine der Verschen Mit Weilichen Mit Als Mit 796 d	
94-05-1087	Culvert 2, F road.	Stream sediment.	<5	<.2	<5	20		a ann an faith Mart a Bhaile Contraction an tao an Balla Mart

and the second sec

i

Sample	Location	Description	Au	Ag	As	Bi	Си	Other
Number			(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
94-05-1088	Culvert 3, F road.	Stream sediment.	<5	<.2	<5	15		
94-05-1089	Culvert 4, F road.	Stream sediment.	<5	<.2	<5	10		L
94-05-1090	Culvert 5, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1091	Culvert 6, F road.	Stream sediment.	<5	0.2	5	10		
94-05-1092	Culvert 7, F road.	Stream sediment.	<5	<.2	<5	15		
94-05-1093	Culvert 8, F road.	Stream sediment.	<5	<.2	<5	<5		
94-05-1094	Culvert 9, F road.	Stream sediment.	<5	0.2	<5	10		
94-05-1095	Culvert 10, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1096	Culvert 11, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1097	Culvert 12, F road.	Stream sediment.	<5	<.2	<5	5		
94-05-1098	Culvert 13, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1099	Culvert 14, F road.	Stream sediment.	<5	<.2	<5	15		
94-05-1100	Culvert 15, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1101	Culvert 16, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1102	Culvert 17, F road.	Stream sediment.	<5	<.2	<5	15		
94-05-1103	Culvert 18, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1104	Culvert 19, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1105	Culvert 20, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1106	Culvert 21, F road.	Stream sediment.	<5	<.2	<5	5		
94-05-1107	Culvert 22, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1108	Culvert 23, F road.	Stream sediment.	<5	<.2	<5			
94-05-1109	Culvert 24, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1110	Culvert 25, F road.	Stream sediment.	<5	<.2	<5	<5		-
94-05-1111	Culvert 26, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1112	Culvert 27, F road.	Stream sediment.	<5	<.2	<5	5		
94-05-1113	Culvert 28, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1114	Culvert 29, F road.	Stream sediment.	<5	<.2	<5	15		
94-05-1115	Culvert 30, F road.	Stream sediment.	<5	<.2	5	10		
94-05-1116	Culvert 31, F road.	Stream sediment.	<5	<.2	<5	10		a analysis a start and a start of the start of
94-05-1117	Cuivert 32, F road.	Stream sediment.	<5	<.2	<5	5		
94-05-1118	Culvert 33, F road.	Stream sediment.	<5	<.2	<5	10		
94-05-1119	Culvert 34, F road.	Stream sediment.	<5	<.2	60	10		
94-05-1120	Culvert 35, F road.	Stream sediment.	<5	<.2	35	<5		
94-05-1121	Culvert 36, F road.	Stream sediment.	<5	<.2	10	10		
94-05-1122	Culvert 37, F road.	Stream sediment.	<5	<.2	<5	10		

4

1

ł

Sample	Location	Description	Аи	Ag	As	Bi	Си	Other
Number			(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
94-05-1123	Culvert 32, F road.	Quartz float.	775	0.4	105	15		374Cr
94-05-1124	Culvert 32, F road.	Bedrock.	355	0.4	40	10		
94-07-1136	Culvert 7, F road.	Quartz float with sulphides.	41	0.3	<4	8	640	
94-07-1137	Culvert 31, F road.	Quartz float with sulphides.	14	0.6	6	14	501	
94-07-1138	Culvert 6, F road.	Schist float with stringers of sulphides.	<1	0.3	7	<4	56	864Ba
94-07-1139	Culvert 6, F road.	Schist float.	4	<.3	<4	<4		452Ba
94-07-1140	Culvert 6, F road.	Quartz float with pyrite.	18	0.5	<4	<4	1,217	123Co
94-07-1141	3.8 Km, F road.	Schist and quartz float.	4	0.3	<4	<4	65	722Ba
94-07-1146	100m downstream, culvert 7, F road.	Stream. sediment.	<1	<.1	5	<2		
94-07-1147	Just 50m above ACE-7 F.P.	Ouartz float.	30	<.2	<5	<5		265Cr
94-07-1148	50m above ACE-7 F.P.	Quartz stringer	410	<.2	<5	<5		7000-00-00-00-00-00-00-00-00-00-00-00-00
94-07-1149	50m above ACE-7 F.P.	Quartz float.	30	<.2	5	<5		299Cr
94-07-1150	25m above ACE-7 F.P.	Quartz vein	360	<.2	<5	<5		
94-07-1151	Culvert 6, F road.	Quartz float.	60	<.2	5	5	619	
94-07-1152	Between culvert 6 & 7, ±100m, F road.	Quartz float.	40	<.2	25	10	143	
94-07-1153	Between culvert 6 & 7, ±100m, F road.	Quartz float.	120	<.2	25	55	488	
94-07-1154	Between culvert 6 & 7, ±100m, F road.	Quartz float.	30	<.2	15	15		
94-07-1155	Between culvert 6 & 7, ±100m, F road.	Quartz float.	<30	<.2	15	<5		
94-07-1156	850m, upslope from 1.8 Km, F road.	Quartz float.	40	<.2	5	<5		
94-07-1157	1 Km upslope from F road.	Quartz float.	120	<.2	<5	<5		247Cr
94-07-1158	150 m up from junction on Spur road.	Quartz float.	100	<.2	10	<5	265	
94-07-1159	Landing, 1.6km, F road.	Quartz float.	450	<.2	20	65	386	
94-07-1160	Culvert 33, F road.	Quartz float.	22, 030	<.2	88,000	35	176	
94-07-1161	Culvert 34, F road.	Quartz float.	310	<.2	80	25	477	
94-07-1162	1.5km on F road.	' Quartz float.	1, 020	<.2	85	15	541	
94-07-1163	100m North of 1162 on F road upslope ditch.	Quartz float.	590	<.2	70	15	811	
94-07-1164	5.2km, F road.	Quartz float.	220	<.2	60	<5	473	and a state of the
94-07-1165	Culvert 4, F road.	Quartz float.	370	<.2	35	<5	473	
94-08-1170	100m below rim of main cirque.	Quartz vein, sulphide mostly leached	<5	0.4	<5	<5	168	350Cr
04 00 1171		out, a big vuggy.	3.0			.,		3440
94-08-1171	75m below rim of main cirque.	Quartz vein, sulphides leached out.	30	0.2	<5 <5	<5		344Cr
94-08-1172	50m below rim of main cirque.	Quartz vein, sulphides leached out.	<5	<.2	_		-	505Cr
94-08-1173	25m below rim of main cirque.	Quartz vein, sulphides leached out.	<5	<.2	<5 <5	<5	0.1	442Cr
94-08-1174	10m below rim of main cirque.	Quartz vein, sulphides leached out.	10	0.6	<5	10	81	302Cr

	TABLE	#2 con	tinued	
Selected	assay results	from 3	1993-1994	samples.

.

Sample	Location	Description	Au	Ag	As	Bi	Си	Other
Number			(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
94-08-1175	Highest point along rim of main cirque.	Quartz vein, sulphides leached out.	<5	<.2	<5	<5		382Cr
94-08-1175	50m S.E. of 1175	Large quartz system, sulphides	140	<.2	<5	<5		380Cr
74-00-1170	50m 5.2. 01 1175	leached out, 20ft plus vein.	140	4	.,			50001
94-08-1177	East end of E. cirque at bottom of small 2 ft. vein.	Quartz vein.	<5	<.2	<5	<5		293Cr
94-08-1178	500m upslope from culvert 5, F road.	Quartz float.	<5	<.2	<5	<5		311Cr
94-08-1179	North end of vein, 25m below ACE 7 F.P.	Quartz vein.	<5	<.2	<5	<5		355Cr
94-08-1180	South end of vein, 25m below ACE 7 F.P.	Quartz vein.	5	<.2	<5	<5		266Cr
94-08-1181	5m above previous sample.	Vuggy quartz float.	<5	<.2	<5	<5		273Cr
94-08-1182	100m downslope from S.E.summit.	Quartz vein, vuggy.	<5	0.2	<5	<5		337Cr
94-08-1183	25m downslope from S.E. summit.	8" quartz vein running west.	60	<.2	<5	<5		366Cr
94-08-1184	25m downslope from S.E. summit.	Quartz outcrop, vuggy.	<5	<.2	<5	<5		257Cr
94-08-1185	On S.E. summit.	Quartz vein.	<5	<.2	<5	<5		243Cr
94-08-1186	50m west of 1185.	Large vein.	<5	<.2	<5	<5		397Cr
94-08-1187	1.6km, on F road.	Large boulder of quartz float with	990	0.8	<5	105	245	267Cr
		sulphides.	}					
94-08-1188	1.6km, on F road.	Large boulder of quartz float with	1,900	1.2	<5	300	229	323Cr
		sulphides.						
94-08-1189	Main cirque.	Quartz from large quartz system.	45	<.2	<5	35		1152Cr
94-08-1190	26km on 8400 road.	Quartz float.	<5	<.2	<5	<5	91	310Cr
94-08-1191	50m South of culvert 6, F road.	Stream, rusty ooze.	<5	<.2	20	<5		
94-08-1192	33m South of culvert 6, F road from bank side.	Stream. sediment.	<5	<.2	20	<5		
94-08-1193	Culvert 6 on F road, from bank side.	Stream, clay and gravel.	<5	<.2	20	<5		135Ba
94-08-1194	On top of main cirque.	Quartz vein.	<5	<.2	<5	<5		198Cr
94-08-1195	On top of main cirque.	Large quartz blowout, 20 ft., all	300	0.2	<5	10		271Cr
		weathered & vugged, no visible						
		sulphides.						
94-08-1196	Middle part of cirque.	Same vein as 1195.	425	<.2	<5	10		292Cr
94-08-1197	50m S.E. from main cirque.	Quartz vein	100	<.2	<5	10		301Cr
94-08-1198	On S. road, 100m from start.	Quartz float with sulphides.	320	0.4	<5	150	130	217Cr
94-08-1199	On S. road, 250m from start.	Quartz float, abondant sulphides.	>1,000	13.6	<5	1,965	551	
94-08-1208	Same as 1150.	8 ft vuggy quartz vein, no visible	<5	<.2	<5	<5		188Cr
		sulphides.				ļ		
94-08-1209	30m South of 1208.	Same vein, no visible sulphides.	<5	<.2	<5	<5		203Cr
94-08-1210	Same as 1209.	Top of quartz vein float, no visible	10	0.8	<5	<5	.827	192Cr
		sulphides.				<u> </u>		

TABLE #2 continued Selected assay results from 1993-1994 samples.

Sample	Location	Description	Au	Ag	As	Bi	Cu	Other
Number			(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
94-08-1211	On first landing, S.road.	Large sheared, mineralized quartz boulder.	5	1.6	<5	<5	577	323Zn
94-08-1212	3.3 km on Joe road.	Quartz float, vuggy.	25	0.2	<5	<5	173	185Cr
94-08-1213	End of Joe road.	Quartz float, vugged out.	<5	<.2	<5	<5		202Cr
94-08-1214	10m below E.cirque.	Soil.	270	0.2	10	25		228Cr
94-08-1215	10m North of 1214.	Soil.	<5	0.4	<5	5		
94-08-1216	Along ridge of E. cirque.	Composite of quartz float.	60	0.4	50	5		291Cr
94-08-1217	Betwen 1214 & 1215.	Vugged out quartz vein.	<5	0.4	<5	<5		315Cr
94-08-1218	On first switchback on Spur road.	Limestone bedrock.	<5	<.2	<5	<5	262	
94-08-1228	North end of vein, same as 1150.	Soil below quartz vein.	<5	2.8	.30	<5		298Cr
94-08-1229	From above soil sample, 1228.	Quartz vein.	80	0.2	<5	5		214Cr
94-08-1230	30m further South.	Quartz vein.	80	0.4	<5	5		230Cr
94-08-1231	Same spot as 1147.	Quartz float.	<5	0.2	<5	5		269Cr
94-08-1232	rock face, 250m S.W. of ACE 7 F.P.	Outcrop.	<5	<.2	<5	<5		317Cr
94-08-1233	In talus below 1232.	Vuggy quartz float.	<5	<.2	<5	<5	184	51701
94-08-1234	S.W. 50m below from 1232.	Vuggy quartz boulders.	<5	0.4	<5	<5		268Cr
94-08-1235	3.8km on F road.	Composite of large quartz float.	<5	0.2	<5	<5		282Cr
94-08-1236	4km on F road.	Quartzite.	<5	0.4	<5	5		372Cr
94-08-1237	4km on F road.	Vuggy quartz float.	60	<.2	<5	<5	259	319V
					-	_		170Ba
94-08-1238	3.8km on F road.	Vuggy quartz float.	35	<.2	<5	10		233V
								215Ba
94-08-1239	3.8km on F road.	Quartz float, no visible sulphides.	<5	<.2	<5	<5		324Cr
94-08-1240	Culvert 10, on F road.	Quartz float.	<5	0.5	<5	<5		139Cr
94-08-1241	Culvert 10, on F road.	Soil sample.	<5	0.2	<5	5		150Cr
94-08-1242	Culvert 18, on F road.	Soil sample.	<5	<.2	<5	5		157Cr
94-08-1243	Culvert 22, on F road.	Soil sample.	<5	<.2	<5	<5		140Ba
94-08-1244	Culvert 25, on F road.	Soil sample.	<5	<.2	<5	5		207Cr
94-08-1245	Culvert 34, on F road.	Soil sample.	<5	0.6	85	<5	106	201Cr
94-08-1246	S. road, 10m past first landing.	Quartz float loaded with sulphides.	<5	1.0	<5	<5	223	179Zn
94-08-1247	10m past 1246 on S. road.	Quartz float, lots of rust and pyrite.	<5	0.4	45	<5	301	359Zn
						-		329V
94-08-1248	0.8km Joe road.	Vugged quartz float.	250	0.6	<5	<5	189	319Cr
94-08-1249	1.2km Joe road.	Vugged quartz float.	250	<.2	<5	<5	110	301Cr
94-08-1250	3.6km Joe road.	Vugged quartz float.	<5	<.2	<5	<5		284Cr

}

ļ

Sample	Location	Description	Au	Ag	As	Bi	Си	Other
Number			(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
94-08-1251	20m down from1250.	Quartz float.	<5	0.8	<5	<5	483	316Cr
94-09-1252	400m above end of Joe road.	Quartz vein, large rock face.	10	<.2	25	<5		273Cr
94-09-1253	400m above end of Joe road, 30m W	Quartz vein.	5	<.2	<5	<5		183Cr
94-09-1254	25km sign, 8400 road.	Quartz float.	<5	<.2	<5	<5		211Cr
94-09-1255	24.5km, 8400 road.	Quartz float.	<5	3.6	<5	160	252	322Zn
								250Pb
94-09-1256	8400 road, 25.5km culvert.	stream sediment.	<5	<.2	<5	<5		
94-09-1257	25.2km, 8400 road.	Quartz float.	<5	1.2	<5	<5	624	105V
					Januar an an ann an an daoine àr ann an daoine àr			183Vo
94-09-1258	25.3km, 8400road.	Quartz float.	10	0.6	<5	15	144	184Cr
94-09-1259	200m S of first landing on S. road.	Soil by vugged out quartz.	580	<.2	<5	155	128	
94-09-1260	200m S of first landing on S. road.	Large vugged boulder of quartz.	180	<.2	<5	70		219Cr
94-09-1261	same as 1199.	Quartz float.	18,880	10.0	<5	2,025	201	1,252Pb
						<u> </u>		257Cr
94-09-1262	0.5km on S. road.	Rock float.	<5	0.2	5	<5		
94-09-1263	0.8km on S. road.	Quartz float.	1,510	0.2	<5	200	291	235Cr
94-09-1264	First landing on S. road.	Large quartz float.	105	<.2	<5	20		292Cr
94-09-1265	50m North of 1199.	Large skarn.	<5	<.2	<5	20		
94-09-1266	200m down swamp road.	Quartz float.	155	0.2	<5	<5	300	285Cr
94-09-1274	Downslope of first landing on S. road.	Large quartz vein float.	5	0.8	85	<5	128	
94-09-1275	Downslope of first landing on S. road.	Quartz float with 40-50% pyrite.	10	2.0	<5	<5	288	378Zn
94-09-1276	5m above 1199.	Soil.	5	<.2	10	5		
94-09-1277	In bottom swamp by S. road, clearing close to 8400 road.	Large quartz float.	5	<.2	25	<5	-	
94-09-1280	20m S of 1265.	Quartz float.	10	20.0	5	<5		10.7%Pb1
04.00.1004								.42%Zn
94-09-1284	8400 road, 25.5km.	Quartz float.	5	6.6	<5	345	357	530Pb
94-09-1285	27km on 8400 road.	Quartz float.	5	0.8	<5	20	391	269Cr
94-09-1286	Closest to switchback, Colleen road.	Quartz vein.	5	0.4	<5	<5	148	183Cr
94-09-1287	Second vein closest to switchback, Colleen road.	Quartz vein/quartzite.	1,520	1.2	<5	1,645	374	255Cr
04 00 1000								812Pb
94-09-1288	First vein, Colleen road.	Quartz vein.	55	1.4	<5 <5	20	325	258Cr
94-09-1289	Second vein on Colleen road.	Broken quartz vein.	6,050	2.0		180	189	241Cr
94-09-1290	first corner on Colleen road.	Quartz float.	310	0.8	<5	<5	394	291Cr
94-09-1300	Top ridge of main cirque.	Vugged out quartz vein.	5	<.2	<5	<5		
94-09-1301	Bridge ballast Colleen road.	Quartz float loaded with sulphides.	135	1.2	<5	10	280	

}

Sample	Location	Description	Au	Ag	As	Bi	Си	Other
Number			(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
94-09-1302	Same as 1301.	Quartz float with golden yellow Vencer.	5	<.2	<5	<5		186Zn
94-09-1303	Same as 1301.	Quartz float with finer grained pyrite.	5	1.0	335	5	309	
94-10-1312	Beside 27km sign on 8400 road.	Large slab 6 ft sq., possible close to bedrock.	50	<.2	<5	10		
94-10-1313	Just before 27km culvert on 8400 road.	Quartz float.	<30	1.2	<5	10		
94-10-1314	27km on 8400 road.	Quartz float.	<30	<.2	<5	10		
94-10-1315	On south side of8400 road, 26.97km, 10m south.	Soil	330	3.09	<5	40		531Mo
94-10-1316	10m south, 27 km south.	Soil.	<30	<.2	<5	10		
94-10-1317	Gravel pit, second switchback on Colleen road.	Stream sample.	<30	<.2	<5	5		
94-10-1318	Beside bridge, Colleen road.	Quartz float with sulphides.	70	0.4	<5	<5	461	
94-10-1319	Beside bridge, Colleen road.	Quartz float.	<30	<.2	<5	<5	192	
94-10-1320	Right on first switchback, Collen road.	Quartz float heavily mineralized	30	3.4	590	<5	364	
94-10-1321	Closest to switchback, Colleen road.	Vuggy quartz.	<30	1.4	<5	305	354	
94-10-1322	Second vein, Colleen road.	Vuggy quartz float with arsenopyrite.	<30	<.2	<5	<5	139	
94-10-1323	First switchback, Colleen road.	Quartz float, heavy sulphides.	<30	3.6	1,210	<5	354	
94-10-1324	First switchback, Colleen road.	Quartz float.	30	0.8	<5	<5	914	174Co
94-10-1325	First switchback, Colleen road.	Graphitic quartz flaot.	<30	2.8	<5	<5	275	2,427Zn 430Pb
94-10-1326	First switchback, Colleen road.	Lots of sulphides, quartz float.	<30	22.0	<5	40	378	>1%Zn >1%Pb
94-10-1327	Firtst two vein, Colleenn road.	Quartz vein.	190	0.6	115	125	383	227Cr 236Pb 139Zn
94-10-1328	26.7km culvert on 8400 road.	Quartz float.	160	0.6	<5	<5	413	192Cr 128Pb
94-10-1329	First switchback, Colleen road.	Ouartz float.	190	0.8	250	<5	301	arrag nga par garapan na marika dikerakarikan menakik cekenar
94-10-1330	Switchback 27km road.	Quartz float, vuggy.	<30	0.6	<5	<5	261	189Cr
94-10-1331	Switchback 27km road.	Quartz float, sulphides	<30	0.8	65	15	197	367Zn 172Pb
94-10-1332	Switchback 27km road.	Quartz float.	<30	<.2	<5	<5	444	
94-10-1333	Closest to switchback, Colleen road.	Argillite.	30			1		
94-10-1334	Closest to switchback, Colleen road.	Quartzite.	<30			1		
94-10-1335	Colleen road switchback area.	Soil.	10	0.6	<5	10		144Zn

TABLE #2 continued	
Selected assay results from 1993-1994 sa	mples.

							1	
Sample	Location	Description	Au	Ag	As	Bi	Cu	Other
Number	1	- <u></u>	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
94-10-1336	Colleen road switchback area.	Soil	<5	<.2	<5	10	r	
94-10-1337	Colleen road switchback area.	Soil.	10	0,4	<5	<5		
94-10-1338	Colleen road switchback area.	Soil	10	0.4	<5	10		
94-10-1339	Colleen road switchback area.	Soil.	5	0.0	<5	10		
94-10-1340	Colleen road switchback area.	Soil.	20	0.4	<5	5		
94-10-1341	Colleen road switchback area.	Soil	10	<.2	<5	10		
94-10-1342	Colleen road switchback area.	Soil.	20	<.2	<5	10		
94-10-1344	Bridge ballast, Colleen road.	Quartz float.	10	3.2		10		3,750Pb
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5.2				2,294Zn
94-10-1345	Culvert 30, on F road.	Schist float with chalcopyrite.	1,760	1.0	35	150	153	
94-10-1346	Culvert 29, on F road.	Quartz flaot with lots of sulphides.	180	1.8	<5	<5	1,003	139Ni
94-10-1352	Culvert 9, on F road.	Quartz float.	15	0.4	30	<5		261Cr
94-10-1354	First switchback on Colleen road.	Large boulder of argillite.	20	0.4	10	<5		
94-10-1355	By second vein on Colleen road.	Quartz float.	5	0.4	35	220	519	211Cr
94-10-1356	Across road from 1355, Colleen road.	Quartz floatwith fine grained pyrite.	90	3.2	30	20	208	
94-10-1357	Right on switchback, Colleen road.	Quartz float loaded with sulphides.	350	2.6	1,260	15	288	992Pb
								583Zn
94-10-1358	First landing on Collen road.	Greenish striated quartz float.	23,710	4.4	60	510	428	
94-10-1359	First landing on Collen road.	Stratified and megacrystic quartz	1,130	0.6	30	25	312	192Cr
		float.						215V
94-10-1360	27km on 8400 road.	Quartz float.	145	1.2	20	10		198Pb
94-10-1361	First culvert on Colleen road.	Quartz float.	205	1.0	<5	35	197	253Cr
94-10-1362	First landing, Colleen road.	Quartz float loaded with sulphides.	75	3.2	<5	<5	1281	
94-10-1363	50m North of 1199.	Quartz float with garnets.				1		

REFERENCES

- Alldrick, D.J. 1983 The Mosquito Creek Mine, Cariboo Gold Belt (93H/4); <u>in</u> Geological Fieldwork 1982, B.C. Ministry of energy, Mines and Petroleum Resources, Paper 1983-1, pp98-112.
- Andrew,A., Godwin,C.I., and Sinclair, A.J. 1983 -Age and Genesis of Cariboo Gold Mineralization determined by Isotope Methods (93H);<u>in</u> Geological Fieldwork 1982, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1983 - 1, pp 304-313.
- Benedict, P.C. 1945 Structure at Island Mountain Mine, Wells, British Columbia; C.I.M. Trans. vol 48, pp 755-770.

Campbell, R.B. - 1978 - Quesnel Lake, British Columbia; GSC Open File 574

- Hanson, G. 1935 Barkerville Gold Belt, Cariboo District, British Columbia; GSC Memoir 181, 42 p.
- Holland, S.S. 1954 Geology of the Yanks Peak Roundtop Mountain Area, Cariboo District, British Columbia; B.C. Deprtment of Mines and Petroleum Resources Bull. 34, 102p.
- Johnston, W.A. and Uglow, W.L 1926 Placer and Vein Gold Deposits of Barkerville. Cariboo district, British Columbia; GSC Memoir 149, 246p.
- Lang, A.H. 1940a Little River map area, Cariboo District, B.C.; GSC Map 561A.
- Lang, A.H. 1940b Keithley Creek map area, Cariboo District, B.C.; GSC Map 562 A.
- Lang, A.H. 1940c Cariboo Mountain map area, Cariboo District, B.C.; GSC Map 563A.
- Skerl, A.C. 1948 Geology of the Cariboo Gold Quartz Mine, Wells, British Columbia; Econ. Geol. vol 43, pp 571-597.
- Struik, L.C.- 1988 Structural geology of the Cariboo Gold Mining District, East-Central British Columbia; GSC Memoir 421, 100 p.
- Sutherland Brown, A. 1957 Geology of the Antler Creek area, Cariboo District, British Columbia, B.C. Department of Mines and Petroleum Resources, Bull. 38, 105p.
- Sutherland Brown, A. 1963 Geology of the Cariboo River Area, British Columbia; B.C. Department of Mines and Petroleum Resources Bull. 47, 60 p.

#### CERTIFICATE

I, HUGHES SALAT, of the City of Calgary, certify that:

1) My present address is 5904 Dalhousie Drive NW Calgary, Alberta T3A 1T1 and my occupation is that of a consulting geologist.

2) I am a holder of the French Baccalauréat in Mathematics, Physics, Latin and Greek.

3) After three years of general sciences and successfully being admitted to the Ecole Nationale Supérieure de Géologie Appliquée de Nancy, I graduated from that school with a degree in Geological Engineering and with the diploma of Licence-es-Sciences from the Faculty of Earth Sciences, University of Nancy (France). I have also obtained an M.sc. equivalence and completed all credit and research requirements for a degree of Ph.D at the University of Southern California in Los Angeles (unwritten thesis due to military recall).

4) I have been practicing continuously my profession of geologist since 1968 in Canada and Europe in mineral exploration, first with Aquitaine Company of Canada then with SNEAP (Elf-Aquitaine).

Concomitantly, from 1983 to 1987, I have also worked for the latter, as petroleum geologist on international projects dealing with Central Africa, Indonesia and South America.

Since 1988, I operate as an independent consultant in mineral exploration from the abovementioned address.

5) I am a fellow member of the Society of Economic Geology, of the Geological Association of Canada, of the Canadian Institute of Mining and metallurgy, of the Association of Professional Engineers, Geologists

and geophysicists of the Province of Alberta and the Association of Professional Engineers and Geologists of the province of British Columbia.

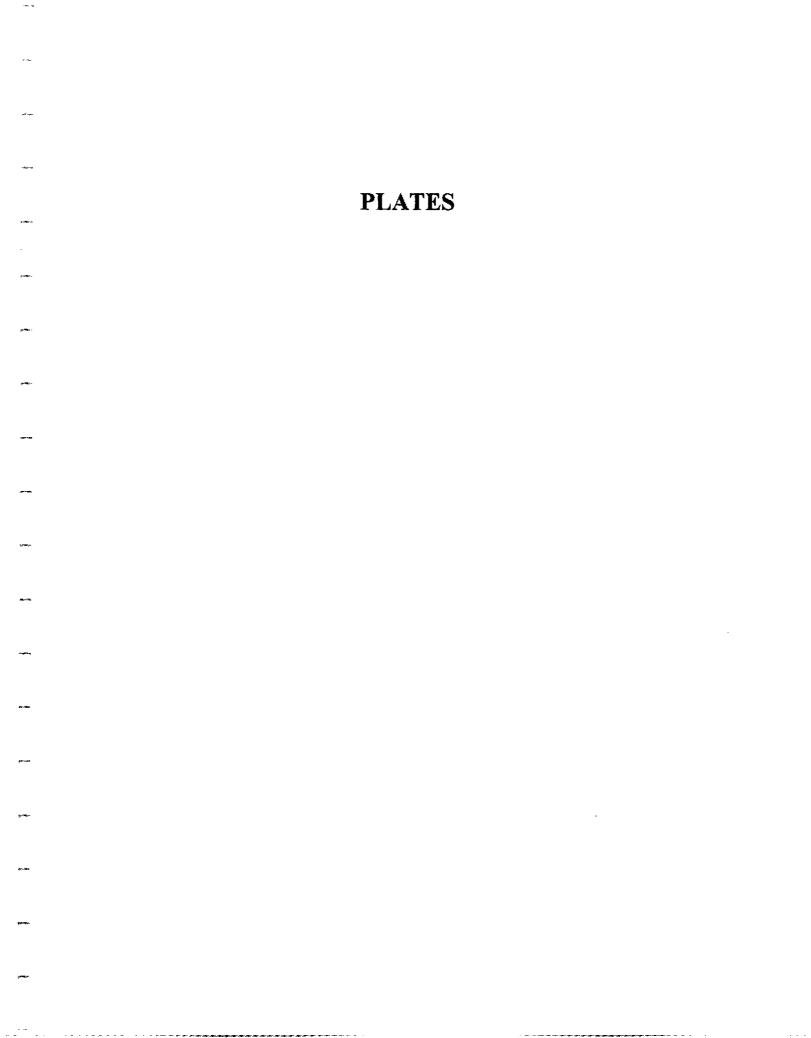
6)All phases of exploration work described in this report have been under my supervision and also this report is based in part on my personal involvement and knowledge in the area and compilation of any available data.

This day January 15, 1995

Hughes P. SALAT Consulting Geologist.

### STATEMENT OF EXPENDITURES

From Accounts payable for the period from April 01, 1994 till October 31, 1994.


# - PROSPECTING

-----

79 days @ \$ 250/day - L.Doyle of Kelowna, B.C.	\$ 19,750.00
45 days @ \$ 150/day - J.Doyle of Kelowna, B.C.	\$ 6,750.00
124 days Room and Board @ \$ 50 per man-day	\$ 6,200.00
80 days Truck rental = gas @ \$ 20. per diem	\$ 1,600.00
- GEOLOGICAL MAPPING AND SUPERVISION	
(JORANEX RESOURCES INC. of Calgary, Alberta).	
Invoices included field time, travel, food and lodging	\$ 7,660.00
- GRID-LINE CUTTING	
(AMEX EXPLORATION SERVICES LTD of Kamloops, B.C.)	
33.3 line kilometre and soil sampling on S.E. grid	\$ 11,955.00
- CHEMICAL & GEOCHEMICAL ANALYSIS	
(ECHO-TECH of Kamloops, B.C.)	
1209 samples of rock, sediments, and soils	\$ 15,700.00
TOTAL	\$ 69,615.00

. . . . . . . . . . . . .

• • • • • • • • • • •



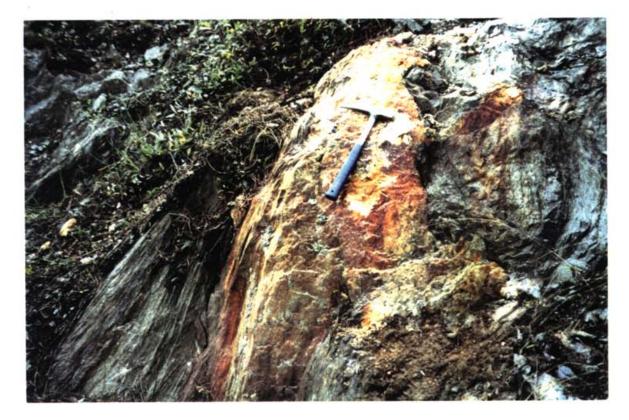



Plate I - Site 1150 - 0.5 to 1 metre thick brownish quartz vein found in outcrop within quartzite and micaschist (306 to 410 ppb Au).



Plate II- South Eat Summit Large outcrop of white quartz vein (0.5x5m); similar outcrops scattered over 25 metres.



Plate III - Western cirque - regular turbiditic sequence with good graded bedding, top right up.

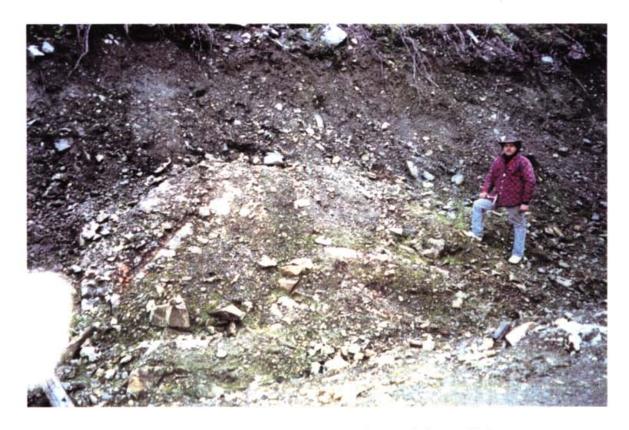
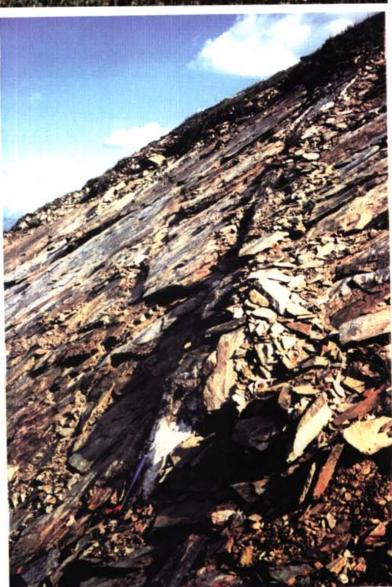




Plate IV Site 1287/89 on Colleen Road - several white to brown, decimetre thick quartz veins within quartzite. Gold values range from 1.5 to 6 g/T of Au.



Plate V - Main cirque - metre size crumbly quartz veins carrying 100 to 425 ppb Au

Plate VI - - Below Main Cirque: 1.5x15 metre quartz vein bearing N120°E cutting into centimetre thick sequence of micaschiste and quartzite (Site 1174).



# **APPENDIX 1**

# LABORATORY ANALYTICAL PROCEDURES

a na na na na na na magnagha bar bar bar bar na na na n

. . . . . . . .

•



#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

### Analytical Procedure Assessment Report

# GEOCHEMICAL GOLD ANALYSIS

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram subsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a prenumbered bag.

The sample is weighed to 10 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.



#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. *2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

#### Analytical Procedure Assessment Report

#### MULTI ELEMENT ICP ANALYSIS

Samples are catalogued and dried. Soil samples are screened to obtain a -80 mesh sample. Rock samples are 2 stage crushed to minus 10 mesh and pulverized on a ring mill pulverizer to minus 140 mesh, rolled and homogenized.

A 0.5 gram sample is digested with aqua regia which contain beryllium which acts as an internal standard. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.



#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

## Analytical Procedure Assessment Report

### BASE METAL ASSAYS (Ag, Cu, Pb, Zn)

Samples are catalogued and dried. Rock samples are 2 stage crushed followed by pulverizing a 250 gram subsample. The subsample is rolled and homogenized and bagged in a prenumbered bag.

A suitable sample weight is digested with aqua regia. The sample is allowed to cool, bulked up to a suitable volume and analyzed by an atomic absorption instrument; to .01 ppm detection limit.

Appropriate certified reference materials accompany the samples through the process providing accurate quality control.

Result data is entered along with standards and repeat values and are faxed and/or mailed to the client.

# **APPENDIX 2**

# ASSAY RESULTS OF SAMPLES COLLECTED

# **DURING PROSPECTING**

• • • • • • • • • •

-----

P031/031 NO. 811 ORBADA MINES PEACHLAND S.C. 39 I.C 11/05/93 **PROCESS TECHNOLOGY** brenda 2281 HUNTER ROAD, KELOWNA, B.C., CANADA VIX 7C5 TELEPHONE: (604) 881-5501 FAX: (604) 861-5210 FAX LEAD SHEET Date: No1 5/93 To: LOHIS DOYLE (868-2435) From: Glen Craig- Manager Analytical Services. Phone:(604) 763-3220 Fax(604) 861-0324 No of sheets including lead sheet: / Message: An RESALTS: BELON CHLUGHT: 129 9m/MT 93-11-1001 - FIRST SAMPLE 60 11 73.8 + 41,8 gm/MT 13-11-1002 SECOND SAMPLE 412 K CN LOACH TET : 0.01 ga/ar BOGL SAME 1.2 KM FROM FIRST SAMPLE C.1. 9m/mr : <1 9-105 Zonlat Ag 413 WILL FAY REMAINING REMAINS AT ふちっ TO ONY. noranda group

44			M		R	- TI					CHEM	Nus IICA Min	\L Z		783			'IF1	A 1 CAT .OR	E		<u></u>	IB (	)?	25:		P	<b></b>		53 <b>A</b>	<b>5</b>
SAMPLE#	No ppir	Cu ppn	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Mn ppm	Fe X			Au ppn					Bi ppm	V ppm	Ca X	P X	La ppm		Hg X	Ba ppm	Ti X	B ppm	Al X	Na X	K X	W ppm	
8 93-11-1004	2	42	11	114	8.3	32	16	508	3.59	5	<5	28	5	21	.4	<2	3	36	.33 .	.030	16	29 1	.02	66	. 12	<2	1.79	.05	.34	1	and a second

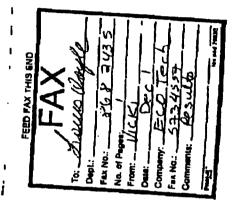
ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

- SAMPLE TYPE: PULP

ø

	star Mining FILE #	93-3210	Page 2	<b>ACHE</b> AMAL VYJEAL
) R	SAMPLE#	Au** oz/t		
$\begin{array}{r} 93 - 11 - 1005 \\ 93 - 11 - 1007 \\ 93 - 11 - 1007 \\ 93 - 11 - 1008 \\ - 93 - 11 - 1009 \\ - 93 - 11 - 1010 \\ - 93 - 11 - 0112 \\ - 93 - 11 - 0112 \\ - 93 - 11 - 0113 \\ - 93 - 11 - 0115 \\ 93 - 11 - 0116 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0116 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117 \\ - 93 - 11 - 0117$	5A RE 4A 6B 6C 8	$\begin{array}{c} .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .001 \\ .097 \end{array}$	CONCENTRATE.	
<u>Sample type: SAND. Samples beqi</u>	nning 'RE' are dunli	cate samples		

ALL SAMPLES ARE STREAM SAMPLES FROM SURPOUNDING ARRA'S EXEPT 0113 ) 1


.

\$ 93-11-1018 TO 93-11-1029 ALL SAMPLES ALONG F ROAD # 1025 CULVERT#7

.

HOO-THER LABORATORINS LTD. 10041 BAST TRANS CARADA HAT. BANLOOPS, B.C. VZC 2J3 PHONE - 604-573-5700 PAX - 604-573-4557

LOUIS DOTLE NYK 53-490 591 DEREMED AVE. BRLOWNA, B.C.



12 SOIL SAMPLES RECRIVED HOVENEER 26, 1993

		CUPTE		(ppb)	26	AL(1)	29		34	31	CL(1)	0	8	ĊR	<b>CU</b>	PZ (1)	X(\$ )	LA	ж(s)	H	NO	HX(8)	#1	P	78	63	<b>5</b> 11	<b>5</b> 12 1	PI(\$)	T	T	W	T	
1		1 /0	-			1.74				<5						_																	-	
2 -	•	3A 20	14	<5		1.63		-	55				10	44	34	3.20	-18	30	.83	308	<1	<.01	27	\$78	6	20	-28		.05	<18	34	<10	7	172
3 -		3 10						-			• 37	-41	20	28	- 42	3.36	-17	10	. 80	680	<1	<.01	34	580	6	30	-128	32	. 65	<10		<10		137
						2.02		-	70		.31	<1	24	34	52	3.95	-22	10	1.01	451	<1		40	530			-20	13						
1 1		20 1	-21	<>		1.35		- 4	45	<\$	.25	<1	16	22	33	2.72	.14	10	.70	288		<.01		610								<10		104
3-		20 I (	22	<5	<.2	1.27	<5	- 4	-40	<b>&lt;5</b>	.25	<1	38	21	38	2.75	.14	10			-	<.01					<20	10	.05			<10		60
																••••				323	-4	<.01	30	630	- 4	10	<20	8	.04	<10	28	<10		121
6 -	· ;	<b>i </b> 10	23	<\$	<.2	1.00	<5	4	35	<5	.25	<1	17	17	-	2.55				-														
7-		3 10	24	<5	<.1	.97	<5		45							4.33	-11	10				<.01			4	5	<28	9	.34	<10	24	<10		61
A		54 J.C	se	35"		1.15	-	-	40			~1	14	15	25	2.12	-14	<19	. 50	472	<1	<.01	18	640	2	5	<20	11	.04	<10	26	<10	7	40
· · · · ·			26			1.01	-					<1	14	20	59	2.54	-18	<18	.64	535	<1	<.01	15	420	18	10	<29		.05	<10		<10		82
34 -		ic /	-					•	50			<1	14	17	26	2.31	.15	<10	. 50	634	<4	<.01	19	690	4		<20	11	.05			<10		-
		n 1	641	<b>&lt;</b> 5	<.2	.98	<5	- 4	45	<5	.28	<1	13	16	30	2.19	-15	<10	- 49	344		<.01			- i	•	<20	11					-	52
																					-				•	3	-24	41		<10	27	<10	7	38
- 11 -		25 10	205	<b>~5</b> "	·<:2	1.25	Q	4	. 22	· <5-	27		16	28					~~~	-		-	•											
12 ~		4 /0	29	<5	<.2	1,10	<5	4	59	<5	. 91	- 1	15					-10	+13	<b>G</b> 1					12	10	41		" <b>.77</b> "		36	40	7	50
			•					-					••	48	41	4->4	-16	10	.54	583	4	<.01	21	710	4	10	<20	10	.05	<18	38	<10	7	38
OC/Da	DA.																																	
-																			•															
TEPEL	z																																	

50 <.2 1.31 <5 4 (5 <5 .25 <1 16 21 32 2.67 .14 19 .68 283 <1 <.01 27 620 10 <29 . 85 <10 29 <18 STANDARD 1991 1.0 1.64 \$5 6 140 5 1.56 65 72 3.41 .34 <10 .87 626 <1 .01 22 580 <1 18 10 15 <20 51 .10 <19 69 <18 10 72

HOTEL < - DES THEF

3

DECEMBER :, 1993

ternal.

VALUES IN PRE CHLESS OTHERHIDS REPORTED

1

> - GRATER THEF

ECO-TECH LABORATORIES LTD.

Cef PRIER J. PERSOTTI, A.BC.T. B.C. Certified Assayer

SC13/EANISCI2



### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. *2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

JANUARY 7, 1994

CERTIFICATE OF ASSAY ETK 93-527

LOUIS DOYLE 591 BERNARD STREET KELOWNA, B.C.

SAMPLE IDENTIFICATION: 2 PULP SAMPLES received JANUARY 5, 1994

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

SC93/KMISC#2

ALONG 1= ROAD.

ECO-TECH LABORATORIES LTD. 10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

LOUIS DOYLE ETK 93-527 591 BERNARD STREET KELOWNA, B.C.

JANUARY 14, 1994

VALUES IN PPH UNLESS OTHERWISE REPORTED

11 PULP SAMPLES RECEIVED JANUARY 5, 1993

ì

2TI	DESCRIPT	ION .	NG _\ AL(N	) A:	S I	B BA	BI	CA(\$)	CD	co	CR	"CU, FE(%)	X(\$)	L	.А. HG(%)	ЮН	ю	D NA(\$)	NI	P	PB	Ъ sв	SH	SR	TI(\$)	۵	v	W	¥	TEN T
1	- 1	1032 <.	2 1.40	<5	2	65	<5	.13	<1	12	89	26 2.63	. 27	<10	.85	220	1	.01	24	330	<2	10	<20		.06	<10	28	<10		52
2	- 2 - ORI	GINAL/033 6.	2.16	<5	2	95	<5	. 37	<1	25	113	60 3.91	.44	<10	1.24	494	2	.02	39	380	12	15	<20	19	.15	<10	48	<10	10	244
4	- 4	1034 <.	2 1.54	<5	<2	so	<5	. 20	<1	16	78	28 3.25	.13	10	.86	550	<1	.01	25	400	26	5	<20	10	.03	<10	33	<10	6	78
5	- 8	1035 <	2 2.29	<5	2	115	<5	.16	<1	19	65	45 3.94	. 38	10	1.56	351	<1	.01	36	420	<2	15	<20	5	.07	<10	49	<10	6	72
6	- 11	1056 5	.88	<5	2	60	<5	1.09	<1	10	91	38 1.86	.07	20	.27	1945	4	<.01	15	490	<2	<5	20	33	.02	<10	29	<10	•	31
7	- 13	1037 5.	ĥ 1.23	10	2	45	<5	.27	<1	10	91 /	2.85	.10	<10	.70	308	2	.01	16	490	561	20	<20	7	.03	<10	34	<10	5	48
8 -	- 20	1038 <	1.60	<5	2	80	<5	. 35	<1	16	81	30 3.04	.19	<10	.80	554	1	.02	20	510	<2	10	<20	15	.05	<10	49	<10	8	49
9.	- 21	1039 <.:	2 1.41	<5	<2	60	<5	.29	<1	15	58	25 2.93	.14	<10	.78	576	<1	<.01	20	450	<2	10	<20	11	.04	<10	41	<10	6	44
10 ·	- 22	1040 <.:	1.77	<5	2	95	5	.34	<1	17	92	51 3.21	.24	<10	.83	506	1	.02	23	510	<2	30	<20	16	.06	<10	48	<10	8	240
11 -	- 23	1041 <.:	2 1.86	<5	<2	100	<5	.38	<1	20	46	42 3.41	. 22	10	.88	641	<1	<.01	25	650	<2	10	<20	19	.06	<10	51	<10	11	56

QC/DATA:																													
8 - 20	<.2	1.64	<5	<2	85	<5	. 35	<1	17	81	29 3.10	.20	<10	.82	566	1	. 02	20	510	<2	5	<20	14	.05	<10	50	<10	8	49
STANDARD 1991:	1.2	1.83	55	4	165	<5	1.74	<1	20	66	83 3.72	. 37	<10	. 99	692	<1	. 02	25	620	6	15	<20	63	. 1 2	<10	78	<10	11	71

NOTE: < - LESS THAN

> - GREATER THAN

ECO-TECH LABORATORIES

ECO-TECH LABORATORIES LED. FRAME J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

SC93/KAHISC#2

Ì.	A   AN/	IC	4	ABOF	]	RIE	, II	).	1.8	85	) H	A	NGS		VA	P	VEI	jc	•	1	1F	. La	1	<b>E</b> ()	5	253.	)	8	[6	04	3-1	
	AA									Ģ	EOC	HEN	IICA	LA	NAI	YSI	S C	ERI	'IFI	CAI	'E										A	A
										<u>A</u> ]	lst	ar	Min	ing	Ĺ	ⁱ le	: #	93-	321	.0R2											4	P
											i dina ng Panatawa		en ander <u>Andersen</u>	1697-28 1991-1992	•																Ľ	
	SAMPLE#	Mo				Ag		Co		Fe														Mg		Ti	-	AL		K	W	
		ppm	ppm	ppii	ppa	ppn	ppm	ppm	ppn		ppm	ppm	ррп	ppm	ppm	ppm	ppm	ppm	ppm	7.	7	ppm	ppm	7.	ppm	76	ppm	*	****		ppm	
											4														83							

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

- SAMPLE TYPE: PULP

94-1-1042 * ORIGINAL SAMPLE.

BOO-TECH LABORATORYES AND. 10041 X.T.C. MWY 88#22 KANLOGPS, B.C. V2C 2J3 PROME - 604-573-5708 PRI - 604-573-4557

1.69

4 <2 50 10

1

1

1 1 1

.04 C 8 289

26 3.31

LOUIS DOTLE BEX 93-50 591 BERBARD AVE. XELONEL B.C. 91X 689

1 BOIL/3 ROCK SAMPLES RECEIVED JAMUARY 21, 1994

i i

ΣŤ

29

51

10

53

ALLER ALLER ALLER CONTRACTOR

3

ATTENTION: LOUIS DOTTE

TEBROART 1, 1994

N.

VALUES IN FPR UNLESS OTHERWISE REPORTED

3

BT# DESCRIPTION 204 88461 .... ..... (1)40 œ CO CE CU FE(8) X(8) EA HG(8) HO MA(V) XI. 2 PB 58 SR YI(%) 14 1043 <.2 4 (495 . .33 -05 2 40 4 .05 <2 27 1.35 .69 10 .10 580 16 .01 15 90 <5 420 7 <.01 <18 6 B <10 <1 141 1044 4.2 41 19 3.37 1.63 4 <2 70 5 .39 <1 18 .is <10 .69 220 1 <.01 25 450 4 10 <20 18 .07 <18 53 < 0 6 10 1045 <.2 .20 <5 <2 10 <5 .04 < 4 222 5 .47 .63 <30 .10 71 14 <.03 17 100 4 ত 180 2 <.01 5 <20 <18 <1 102 1046 <.2

.95 263

18

.01

13 150

 $\boldsymbol{\alpha}$ 

5 160

11

.05 <18

23 <10

OC.	DATES	
-----	-------	--

1 -

2 -

3 -

4 -

REPELT 6. 2 - 144 <.2 1.63 38 13 3.35 .38 <18 .69 212 1 <.01 < <2 75 5 . 39 38 ~ 24 456 4 10 <20 28 .07 <10 52 52 (1) - 6

.21 <10

HOUSE <= LESS THE

SC93/EARLSC

ECO-TECH LABORATORIES LTD. FRAME J. PE25OTTI, A.Sc.T. B.C. Cartified Assayer

A ABOUR CULVERT # S ON F ROAD

1043-1046



## GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

じんひょう く すちち たこ

10041 E. Trans Canada Hwy., R.R. #2, Kamluops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-570

FEBRUARY 1, 1994

CIRTIFICATE OF ASSAY ETK 94-50

Louis Doyle 591 Bernard Street Relowna, B.C.

# SAMPLE IDENTIFICATION: 3 ROCX/1 SOIL SAMPLES received JANUARY 21, 1994

	Description		Au (os/t)	[일명] 중 박수 박은 우는 수 2일 과 문 문 문
1 -	14	.03	.001	
2 -	142	<.03	<.001	
3 -	10	<.03	<.001	
4 -	102	<.03	<.001	

ŻĊØ TECH LABORATORIES LTD.

PRANN J. PERROTTI, A.SG.T. B.C. Corrified Assayer

Fax: 868-2435 8094/Rmisc

and the second second

:

=

Ξ.

· · · · ·

FEED FAX THIS END	
FAX	
To: Louis Doyle	
Dept.:	· · · · · · · · · · · · · · · · · · ·
Fax No .: 868-2435	
No. of Pages:	
From:	
Company:	
Fax No.:	
Comments:	
Parel 11 - Sco Ins and 78025	_

KAMLOOPS, B.C. V2C 2J3 V1Y 6N9 PHONE - 604-573-5700 FAX - 604-573-4557 APRIL 14, 1994 1 ROCK SAMPLE RECEIVED APRIL 8, 1994 VALUES IN PPM UNLESS OTHERWISE REPORTED ET# DESCRIPTION AU(ppb) AG AL(%) AS B BA BI CA(%) CD CO CR CU FE(%) K(%) LA MG(%) MN MO NA(%) NI P PB SB SN SR TI(%) U V ¥ ZN 1 - 1K 555 . 4 .15 20 8 20 30 .35 <1 11 492 303 2.17 <.01 <10 .08 110 30 <.01 24 30 20 <5 520 / 6 .03 10 15 <10 2 19 QC/DATA: .... 1 20 62 85 3.99 .37 <10 .99 686 <1 .02 27 650 STANDARD 1991 1.2 1.98 55 8 185 15 1.84 16 20 <20 61 .12 <10 78 <10 12 82 NOTE: < - LESS THAN

SC93/KAMISC

1

1

1

ECO-THCH LABORATORIES LTD. FRANK J. PEZOTTI, A.SC.T. .C. gertified Agaayer

LOUIS DOYLE ETK 94-177

591 BERNARD AVE.

KELOWNA, B.C.

5 4 8 8 8

.

\$ 1K FLOAT FROAD DITCH 94-1-1047

1 1 1

ECO-TECH LABORATORIES LTD.

10041 E.T.C.HWY RR#2

}





10041 E. Trans Canada Hwy., R.R. =2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

APRIL 21, 1994

### CERTIFICATE OF ASSAY ETK 94-201

LOUIS DOYLE 591 BERNARD STREET KELOWNA, B.C. V1Y 6N9

SAMPLE IDENTIFICATION: 1 GOLD FLAKE SAMPLE received APRIL 12, 1994

		Au	Pt	Pt
ET#	Description	(୫)	(g/t)	(oz/t)
*****	************			
1 -	GOLD FLAKES	88.35	.14	.004

\$ 94-4-1048 FINENESS AJSAY SC94/Kmisc OF OFIGINAL SAMPLE,

ECO-TECH LABORATORIES LTD. FRANK J. PEZZØTTI / A.SC.T. B.Z. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 E.T.C.HWY RR#2 KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700

FAX - 604-573-4557

.

•

MAY 11, 1994

VALUES IN PPM UNLESS OTHERWISE REPORTED

LOUIS DOYLE ETK 94-234 P.O. 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

9 ROCK SAMPLES RECEIVED MAY 4, 1994

BT#	DESC	RIPTION	AU (ppb)	A	G AL	(*)	AS	B	BA	BI	CA(%)	CD	со	CR	CU	FE(*)	K(%)	LA	MG(\$)	MIN	MO	NA(%)	NI	P	PB	SB	SN	SR T	(\$)I	U	v	W	¥	ZN
			ه مد ند مد مداند ام مداند														*****	***				-					****		***				*****	
10531	- 1A	- May 2/	94 5	i <.:	22	.58	<5	6	155	5	. 35	<1	25	47	14	4.22	.95	<10	1.64	207	<1	.01	61	560	<2	15	<20	14	.14	<10	25	<10	8	123
10542	- 4-	May 2/	94 20	) <.2	2 1	.14	<5	6	70	<5	.11	<1	8	182	15	1.90	.16	30	.51	192	12	.03	19	270	<2	<5	80	10	.02	<10	11	<10	3	45
10553	- 2-	May 3/	94 10	)	2 2	.01	<5	6	80	<\$	.31	<1	20	57	38	4.40	. 22	10	. 99	528	2	.01	26	550	<2	5	<20	12	.08	<10	62	<10	9	74
10564	- 4-	May 3/	94 49	s <.2	2 1	.75	<5	6	70	<5	. 30	<1	17	107	24	3.84	.19	10	. 87	452	6	.02	26	470	<2	10	<20	9	.07	<10	39	<10	7	64
10575	- 5-	Hay 3/	94 5	s <.2	2 1	.72	<5	6	70	<5	.27	<1	17	67	26	3.70	.19	10	.85	411	3	.01	23	430	<2	5	<20	10	.07	<10	38	<10	7	64
10566	- 9-	May 3/	94 25	i <.2	2 1	.76	<5	6	75	5	. 36	<1	18	154	22	4.20	.17	<10	. 83	523	9	.03	24	410	<2	<5	<20	5	. 09	<10	51	<10	8	63
10597	- 10/	A-May 3/	94 10	) <.2	1	.41	<5	6	55	<5	.25	<1	14	74	17	3.28	.15	<10	.73	448	3	.01	24	460	<2	<5	<20	8	.06	<10	27	<10	6	62
10408	- 11-	- May 3/	94 10	) <.2	2 1.	.81	<5	8	85	<5	. 34	<1	21	125	32	3.85	.24	10	.81	494	8	.02	28	560	<2	5	<20	13	.10	<10	47	<10	10	71
<i>1061</i> g	- 12-	- May 3/	94 10	) <.2	2 1	.65	<5	6	75	<5	. 30	<1	19	66	28	3.58	. 20	10	.77	471	3	.01	26	510	<2	5	<20	11	.08	<10	40	<10	8	68

#### OC/DATA:

____

REPEAT #:

1 - 1A- May 2/94 <.2 2.42 <5 6 150 5 .35 <1 25 46 13 4.14 .88 <10 1.55 203 <1 .01 58 550 <2 10 <20 13 .14 <10 24 <10 7 124

NOTE: < = LESS THAN

SC94/KAMISC

5'AMPLE #'s 94-5-1053 TO 98-5-1064

ECO-TECH LABORATORIES LTD. De FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

### 31-May-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557 LOUIS DOYLE ETK 94-264 P.O. Box Lakeshore Post Office KELOWNA, B.C.

4 rock samples received May 26,1994

1

-

1

#### Values in ppm unless otherwise reported

		Au																													
<u>Et #.</u>	Tag #	(ppb)	Ag	AI %	As	B	Ba	BI Ca %	Cd	Co	Cr	Cu	Fe %	К %	La	Mg %	Mn	Мо	Na %	NI	Р	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
																					Contraction of the second second							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
94-5-1071	#1	5	0.8	0.23	775	16	10	<5 0.18	16	3	-398	1534	1.12	0.03	<10	0 11	72	29	< 01	12	650	0	105	400	a	<.01	<10	4	<10		104
1072 2	#2	5	1.8	2.06	1720	12	105	<5 0.73	35	23	120	3508	4.03	0.35	10	1 17	449	6	0.02	38	500	g							<10		705
1073 3	#3	10	<.2	1.80				10 0.30	<1	19	_431	67	3.90	0 19	10	0.79	879	29	0.03	30	320	Ā	<5	320	18					-	
10744	#4		02	1.91	210	14	85	<5 0.38	5	18	187	485	3.86	0.24	10	0.68	479	11	0.00	35	410	7	25		47	0.00	<10	49	~10		07
10 J.4 .					_	••			•				0.00	W		0.00	410		0.02		410	-	2.5	00	11	0.00	~10	40	~10	13	97

**

#### QC DATA:

### Repeat #:

1	#1	-	0.8 0.	.23	755	16	15	<5	0.18	19	3	392	1528	1.13	0.03	<10	0.11	77	28	<.01	12	650	<2	100	380	7	<.01	<10	4	<10	1	194
---	----	---	--------	-----	-----	----	----	----	------	----	---	-----	------	------	------	-----	------	----	----	------	----	-----	----	-----	-----	---	------	-----	---	-----	---	-----

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Ret# 94-5-1071 - 94-5-1024

6-Jun-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3 .

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

LOUIS DOYLE ETK 94-271 P.O. Box 24023 LAKSHORE POST OFFICE KELOWNA, B.C.

1 SOIL sample received May 30,1994

3

94.5=	Et #.	Tag #	Au(ppb)	Ag	AI %	As	8	Ba	BIO	Ca %	Cd	Co	Cr	Cu	Fe %	Κ%	La	Mg %	Mn	Mo	Na %	Nł	P	Pb	Sb	Sn	Sr	Π%	U	v	w	Y	Zn
1075	-1	#1	10		1.48	<5	10	50	<5	0.48	<1	12	26	29	2.35	0.19	20	0.66	244		<.01	19	470	18	<5	<20	38	0.05	<10	35	<10	16	36
-																																	
(	QC DAT	A:																															
-			•																														
	Repeat:			<2	1.51	<5	14	55	<5	0.48	<1	12	27	29	2 39	0.2	20	0.67	247	<1	<.01	20	460	18	-5	<20	36	0.05	~10	35	<10	17	97
-						-	•••		•		•							0.01				20		10	-0	-20		0.00	10	35	10	17	37
	_											•																					
1	Stander	d 1991:		1.6	1.67	65	16	170	<5	1.58	2	18	53	82	3.64	0.34	<10	0.88	632	<1	0.01	23	560	26	<5	<20	55	0.08	<10	64	<10	9	66

XLS/kmisc

.

ECO-TECHLABORATORIES LTD.

ECO-TECH-CABORATORIES LTI Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

94-5-1075

CO-TECH LABORATORIES LTD. 10041 E.T.C.HWY RR#2 KANLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

5

LOUIS DOYLE ETK 94-234 P.O. 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

MAY 11, 1994

1

1

94-5-1076 TO 94-5-1084

9 ROCK SAMPLES RECEIVED MAY 4, 1994

VALUES IN PPM UNLESS OTHERWISE REPORTED

ET#	1	DESC	RIP	TION		NU (P	pb)	AG	AL(%	)	AS	в	BA	BI	CA(%)	CD	со	CR	CU	FE(%)	X(%)	LA	NG(%)	MIN	но	NA(\$)	NI	P	PB	SB	รท	SR 1	II (%)	U	v	W	¥	ZN
an 10 m	n and such	AK 310 AM AN	***		A 400-200-200-2	<b>1997 - 1997 - 1997 - 1997</b> -		ala ang ang ang ang ang										-	ika atas	ه کار در ان خل		and the second second second				an an an an an an	***				alle and the annual se					a and a state of the		
1076 1	-	18	- M	ay 2	:/94		5	<.2	2.5	8	<5	6	155	5	.35	<1	25	47	14	4.22	.95	<10	1.64	207	<1	.01	61	560	<2	15	<20	14	.14	<10	25	<10	8	123
1-772	-	4-	H	ay 2	/94		20	<.2	1.1	4	<5	6	70	<5	.11	<1	8	182	15	1.90	.16	30	.51	192	12	.03	19	270	<2	<5	80	10	.02	<10	11	<10	3	45
10783	-	2-	M	ay 3	1/94		10	<.2	2.0	1	<5	6	80	<5	.31	<1	20	57	38	4.40	.22	10	.99	528	2	.01	26	550	<2	5	<20	12	.08	<10	62	<10	9	74
1029 4	-	4-	M	ay 3	/94		45	<.2	1.7	5	<5	6	70	<5	. 30	<1	17	107	24	3.84	. 19	10	.87	452	6	.02	26	470	<2	10	<20	9	.07	<10	39	<10	7	64
10005	-	5-	M	ау Э	/94		5	<.2	1.7	2	<5	6	70	<5	. 27	<1	17	67	26	3.70	. 19	10	.85	411	3	.01	23	430	<2	5	<20	10	.07	<10	38	<10	7	64
15816	-	9	м	av 3	/94		25	۲.2	1.70	6	<5	6	75	5	. 36	<1	18	154	22	4.20	.17	<10	. 83	523	q	.03	24	410	-2	~5	<20		.09	<10	<b>E</b> 1	~10		63
27				-											. 25																							
1.538	-	11	- м	ay 3	/94										.34																							71
108.19	-	12	- H	ay 3	/94		10	<.2	1.6	5	<5	6	75	<5	.30	<1	19	66	28	3.58	.20	10	.77	471	3	.01	26	510	<2	5	<20	11	.08	<10	40	<10	8	68

### QC/DATA:

-----

REPEAT #:

1 - 1A- May 2/94 <.2 2.42 <5 6 150 5 .35 <1 25 46 13 4.14 .88 <10 1.55 203 <1 .01 58 550 <2 10 <20 13 .14 <10 24 <10 7 124

NOTE: < - LESS THAN

٠

minu ECO-TECH LABORATORIES LTD.

PEFRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

SC94/KAMISC

.

June 24, 1994

)

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

### Values in ppm unless otherwise reported

3.6 Cd Co Cr Cu Fe% K% Mo Na % Ni P Pb Sb Sn Sr Ti % U V W ¥ Zn La Ma % No Tao # Au(ppb) AI % 8 Ba BI Ca % Aa Âs 12 81 246 508 10.2 <.01 <10 <.01 124 12 <.01 40 <10 6 25 20 <1 <.01 <10 <1 290 0.4 0.06 \$ 10 35 80 0.68 3 C-31-4 605 0.75 <10 1.93 168 6 0.02 25 490 20 35 40 <1 0.11 <10 33 90 8 99 15 13 154 18 5.31 94-6-501 5 <.2 3.10 <5 8 65 0.14 1 8.7 1.97 <10 2.55 334 4 0.02 18 810 24 55 <20 <1 0.26 <10 175 90 15 97 22 84 213 94-6-502 5 < 2 4.22 <5 8 425 20 0.2 3 3 4 <10 <10 35 35 168 195 3.39 0.92 <10 0.95 139 9 0.24 34 2220 24 100 95 0.12 39 9 <5 2.26 94-6-503 5 0.2 4.24 <5 8 110 <1 22 \$ 23 116 51 6.04 0.15 10 1.83 613 4 0.01 64 260 <20 10 0.02 <10 <10 5 10 <1 26 113 94-6-504 0.8 2.76 <5 6 60 0.11 5 5 8 0.03 166 430 26 -6 <20 13 0.02 20 31 <10 <1 101 62 174 213 10.2 0.11 <10 1.56 729 94-6-505 5 1.0 2.31 <5 10 60 5 0.16 <1 6 11 <.01 153 2 S 140 5 < 01 10 <1 <10 <1 13 226 3.9 <.01 <10 0.04 56 <10 94-6-506 5 0.6 0.13 <5 8 20 4 0.01 <1 43 201 7 32 0.92 <10 0.04 57 15 <.01 18 10 2 -240 4 <.01 10 <1 <10 <1 9 94-6-507 <5 10 \$ <.01 <1 6 227 0.02 5 0.8 0.14 6 8 29 - 140 5 140 8 0.07 <10 28 <10 51 10 0.21 <1 12 188 26 3.11 0.25 <10 0.92 417 9 0.02 14 10 94-6-508 5 0.4 1.43 <5 8 45 8 <1 17 237 26 4.17 0.24 10 0.98 455 13 0.03 27 520 18 10 180 12 0.08 <10 54 <10 9 185 80 10 0.3 10 94-6-509 5 0.4 2.03 <5 8 QC DATA: Repeat: 2 10 140 <1 <.01 <10 <1 10 <1 13 <1 43 202 227 3.88 <.01 <10 0.02 44 12 <.01 157 <10 7 94-6-506 0.4 0.13 <5 8 15 <5 0.01 <5 <20 56 0.11 <10 76 <10 11 71 63 81 3.8 0.37 <10 0.89 646 <5 1.83 2 18 <1 0.02 26 660 26 10 150 Standard 1991 1.4 1.75 65 æ

XLS/kmisc

94-5-1085

* REMAINING LOCATION NOTES LOST LOCATION NOT CERTALN BUT PROBABLE "F" POAD FLOAT, Page 1 LOUIS DOYLE ETK 94-340 P.O. Box 24023 LAKSHORE POST OFFICE KELOWNA, B.C.

10 ROCK samples received June 20,1994

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assaver

1

¥

27-Jun-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

14-5-1086 - 1086 to 94 5 1/22 SEDIMENT SAMPLES FROM <u>Et#. Tag# Au(ppb) Ag Al % As B Ba BI Cat CAL UPATS on F" Rohd</u>

.

Eti	l. Tag #	Au(ppb)	Ag	AI %	As	B	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К %	La	Mg %	Mn	Mo	Na %	NI	Р	РЬ	Sb	Sn	5.	T! %	U	v	841		-
0 <b>26</b> 1	C-1	<5	<.2	1.87	10	8	145	10	0.88	<1	20	24	41		0.15	30		1565												W	Y	Zn
1087 2	C-2	<5	<.2	2.23	<5	8	155			<1	25	36	55			30		674	1		28	660	36	5	<20	25	0.05	<10	42	<10	13	75
1081 3	C-3	<5	<.2		<5	8	125	15		<1	21	21	38	4.77		30			3		38	850	38	15	<20	14	0.10	<10	48	<10	16	87
1889 4	C-4	<5	<.2		<5	8	100		0.46	<1	18	19	34	2.99				534	2		22	540	24	<5	<20	13	0.08	<10	48	<10	11	52
	C-5	<5	<.2		<5	8	90		0.51	<1	17	20	46		0.17	20	0.67	794	<1		21	400	26	5	<20	18	0.06	<10	41	<10	10	51
1000 5		-				•			0.51	~1		20	40	2.70	U.27	20	0.77	310	<1	<.01	23	670	28	<5	<20	14	0.08	<10	38	<10	11	52
1091 6	C-6	<5	02	1.81	5	8	115	10	0.36	<1	10	23																				
1092 7	C-7	ঁ	<.2		<5	8	65	15	0.55		18 17	23			0.17		0.62	537	<1	<.01	30	550	34	<5	<20	16	0.05	<10	40	<10	16	53
1093 8	C-7A	Š	<.2		<5	6	60			4		16	22	2.57		20	0.45	981	<1	<.01	17	570	18	<5	<20	16	0.04	<10	30	<10	7	45
	C-8	š	0.2		<5					<1	14	17	34	2.24		10		354	<1		22	520	20	5	<20	7	0.05	<10	25	<10	7	38
1094 9	C-8A	<5	<.2		<5	8	70		0.70	<1	13	21	26	2.75		20	0.40	1005	1	<.01	19	450	26	<5	<20	23	0.04	<10	48	<10	8	89
1095 10	C-0A	~>	s.2	1.91	<0	8	90	10	0.22	<1	25	22	80	4.01	0.19	30	0.71	684	1	<.01	47	620	30	<5	<20	8	0.06	<10	31	<10	12	55
	~ ~	Æ		4		-																									. –	
109611	C-9	<5	<.2		<5	8	75		0.16	<1	16	23	40		0.17	20	0.71	328	<1	<.01	28	590	30	<5	<20	8	0.05	<10	30	<10	9	55
19712	C-10	<5	<.2	1.18	<5	8	70		0.36	<1	14	17	19		0.11	10	0.57	1677	<1	<.01	16	460	20	5	<20	11	0.05	<10	39	<10	6	45
109813	C-11	<5	<.2	1.14	<5	8	55		0.42	<1	12	15	23	2.31	0.09	10	0.55	434	<1	<.01	14	430	20	5	<20	13	0.04	<10	37	<10	8	43
10 98 13 10 9914 140 15	C-12	<5	<.2	1.23	<5	10	65	15	0.38	<1	17	16	30	2.53	0.12	10	0.58	389	<1	<.01	19	400	22	<5	<20	14	0.05	<10	38	<10	7	44
160 15	C-13	<5	<.2	1.53	<5	8	135	10	1.13	<1	16	19	35	2.68	0.12	20	0.55	1454	<1	<.01	20	560	26	<5	<20	37	0.04	<10	39	<10	10	59
¥.																			-					•	-20	0.	0.04	-10	55	-10	10	39
//0/16	C-14	<5	<.2	2.06	<5	10	130	10	0.50	<1	18	24	41	3.41	0.19	30	0.77	366	2	<.01	24	550	38	<5	<20	19	0.05	<10	<b>E4</b>		40	~~
10217	C-15	<5	<.2	1.95	<5	8	105	15	0.35	<1	20	25	52	3.44		30	0.76	542	<1	<.01	28	560	34	10	<20	13	0.06		51	<10	10	58
u <b>e\$</b> 18	C-16	<5	<.2	1.39	<5	8	75	10	0.53	<1	14	17	36	2.62		20	0.59	491	<1	<.01	18	480	24	<5	<20	21		<10	46	<10	13	59
1049	C-17	<5	<.2	1.38	<5	8	70	10	0.66	<1	13	18	31	2.46	0.12	20	0.54	430	<1	<.01	16	450		-5			0.04	<10	40	<10	7	48
10520	C-18	<5	<.2	1.24	<5	10	70		0.34	<1	15	16	37	2.75	0.14	20	0.58	609	<1	<.01	18	440	24	5 5	<20	18	0.04	<10	39	<10	8	43
										•				<b>A</b> ./U	0.14	20	0.50	009	~1	5.01	18	440	24	5	<20	12	0.05	<10	41	<10	8	42
10621	C-19	<5	<.2	0.87	<5	8	35	5	0.60	<1	9	13	17	1.76	0.08	<10	0.41	407						-								
10722	C-20	<5	<.2	1.59	<5	8	95		0.55	<1	16	22	41	3.05	0.08			407	<1	<.01	10	350	14	5	<20		0.03	<10	29	<10	5	33
N0623	C-21	<5		1.40	<5	Ā	75		0.38	<1	14	19	31			20	0.77	511	<1	<.01	24	630	28	15	<20		0.05	<10	40	<10	9	56
10124	C-22	<	<.2	1.35	<5	Ř	80		0.67	<1		27		2.67	0.18	20	0.63	507	<1	<.01	19	610	22	<5	<20		0.05	<10	38	<10	9	49
11025	C-23	<5	<.2		<5		75		0.56		15		41	3.27	0.14	20	0.60	415	<1	<.01	23	550	24	<5	<20	20	0.04	<10	62	<10	10	50
10020	0-20		►.∡	1.38	~5	0	75	< <b>5</b>	0.50	<1	15	18	38	2.79	0.16	20	0.63	738	<1	<.01	19	460	24	<5	<20	17	0.05	<10	48	<10	9	51
<b>IN 26</b>	C-24	<5	- 2	1 64	~E		~	40	• ••																							
111 23			<.2		<5 -5	8	90	10		<1	17	22	44	3.13	0.20	20	0.74	434	<1	<.01	24	560	30	<5	<20	14	0.06	<10	44	<10	10	51
	C-25	<5 - f		1.18	<5	8	85		0.44	<1	14	18	30	2.66	0.11	20	0.50	690	1	<.01	18	470	22	<5	<20			<10	45	<10	10	45
<b>U13</b> 28	C-26	4	<.2	1.52	<5	8	90	10	0.28	<1	15	22	38	2.97	0.17	20	0.69	319	<1	<.01	21	610	30		<20			<10	42	<10	9	68
1																								-				-			•	

a second of a second second

LOUIS DOYLE ETK 94-339 P.O. Box 24023 LAKSHORE POST OFFICE KELOWNA, B.C.

...

38 SEDIMENT sampled received June 20,1994

A APPENDENT APPENDENT

Louis	Doyle ETH	( 94-339																											Eco-Te	ch Labo	ratories	i L.td.
Et #.	Tag #	Au(ppb)	Ag	AI %	As	В	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	K %	La	Mg %	Mก	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	<u> </u>	v	w	Y	Zn
1/14 29	C-27	<5	<.2	1.38	<5	8	80	15	0.59	<1	14	19	38	2.77	0.16	20	0.60	676	<1	<.01	19	610	24	<5	<20	20	0.05	<10	51	<10	13	50
1/15 30	C-28	<5	<.2	1.43	5	8	70	10	0.38	<1	19	19	47	3.07	0.15	20	0.64	507	<1	<.01	28	610	32	<5	<20	16	0.05	<10	39	<10	12	52
<b>#/6</b> 31	C-29	<5	<.2	1.54	<5	8	95	10	0.94	<1	18	20	53	3.23	0.17	20	0.68	814	<1	<.01	28	560	36	<5	<20	32	0.04	<10	41	<10	10	67
///7 32	C-30	<5	<.2	1.19	<5	8	60	5	0.67	<1	13	17	32	2.42	0.11	10	0.54	421	<1	<.01	18	490	22	5	<20	19	0.04	<10	37	<10	7	41
11/8 33	C-32	<5	<.2	1.28	<5	8	60	10	0.43	<1	14	17	35	2.70	0.14	20	0.66	387	<1	<.01	19	480	22	<5	<20	17	0.05	<10	40	<10	8	43
1/1934	C-33	<5	<.2	1.52	60	8	75	10	0.46	2	17	22	40	3.13	0.12	20	0.69	377	<1	<.01	28	550	36	<5	<20	16	0.04	<10	34	<10	9	66
112035	C-34	<5	<.2	1.18	35	6	55	<5	0.41	1	16	19	36	2.65	0.07	20	0.54	537	<1	<.01	28	540	30	<5	<20	18	0.03	<10	23	<10	8	52
1/2/36	C-35	<5	<.2	1.78	10	8	65	10	0.26	<1	16	24	35	3.22	0.13	20	0.70	384	<1	<.01	29	560	36	5	<20	10	0.04	<10	32	<10	7	60
11 <b>22</b> 37	94-6-500 CS	<del>ح</del>	<.2	1.87	<5	8	120	10	0.41	<1	21	20	57	4.31	0.25	30	0.75	588	<1	<.01	25	640	46	5	<20	16	0.07	<10	72	<10	16	85
QC D	ATA:	•																														
Repe	at: C-1	-	< 2	1.91	<5	8	155	15	0.86	<1	20	23	41	3.54	0.16	30	0.63	1629	<1	<.01	28	630	30	<5	<20	30	0.05	<10	42	<10	14	π
'	0-1	-	<b>~.</b> Z	1.91	~0	Ŷ	135	15	0.00	~ .	20	25		5.54	0.10		0.00	1025			20	~~~		~	-20	~	0.00	-10	42	-10		.,

**...** 

ų,

XLS/kmisc

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc. T. B.C. Certified Assayer

.•

12-Jul-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

94-5-1123 TO 94-5-1134

Values in ppm unless otherwise reported

5t#.	Tag #	Au (ppb)	Aa	AI %	As	Ba	Bi Ci	a %	Cd	Co	Cr	Cu	Fe %	К%	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1(23 1	2701	775	0.4	0.04	105	<5	15 C	).07	<1	3	374	7	0.66	<.01	<10	0.04	58	24	<.01	17	20	10	<5	<20	3	<.01	<10	11	<10	<1	4
4242	2702	355	0.4	0.62	40	10			<1	33	96	42	6.06	<.01	<10	0.18	536	7	0.06	55	670	78	<5	<20	10	0.01	20	13	<10	<1	31
1253	2601	105	<.2	1.88	<5	50	15 1	.65	<1	44	137	213	4.53	0.08	<10	1.14	1062	10	0.04	11	2840	<2	<5	<20	28	0.06	<10	101	20	3	58
11264	2802	20	<.2	2.00	<5	<5	53	3.07	<1	31	71	729	4.14	<.01	<10	1.25	645	6	0.05	9	1730	<2	<5	<20	54	0.07	<10	170	10	3	49
4275	2803	10	<.2	3.59	<5	290	10 3	3.31	<1	46	84	156	6.42	1.49	<10	2.61	523	6	0.04	13	1770	<2	<5	<20	98	0.18	10	244	20	<1	88
¥ 28 6	2804	5	<.2	0.26	<5	20	5 1	1.48	<1	8	371	17	1.70	<.01	<10	0.15	58	323	0.02	35	6430	24	<5	<20	83	<.01	<10	50	<10	26	16
1297	2805	10	<.2	10.40	<5	<5	15 0	0.01	<1	84	13	261	> 15	<.01	<10	7.90	512	4	0.08	48	260	2	<5	<20	<1	0.02	50	489	<del>5</del> 0	<1	463
1 30 8	2806	5	<.2	1.43	<5	25	<5 (	0.54	<1	38	348	273	4.78	<.01	<10	1.75	498	7	0.04 %	* 108	990	<2	<5	<20	18	0.11	<10	141	10	<1	40
1131 9	2807	10	<.2	1.65	<5	45	<5 £	5.32	<1	20	84	109	3.66	<.01	<10	1.06	441	7	0.02	7	1930	<2	<5	<20	172	0.04	<10	100	<10	3	71
\$32.10	2808	15	0.4	0.80	<5	15	10 <	<.01	<1	25	74	62	5.95	<.01	<10	1.01	1280	6	0.03	10	380	22	<5	<20	2159	<.01	<10	7	<10	1	62
133 11	2809	35	1.4	5.16	<\$	15	<5 0	0.39	<1	55	29	3249	9.41	<.01	<10	3.83	1590	5	0.03	23	1940	~2	<5	<20	24	<.01	20	159	30	<1	306
<b>434</b> 12	28510	25	0.2	0.15	<5	15	5 (	0.23	<1	47	256	194	3.02	<.01	<10	0.38	59	20	0.02	104	200	10	<5	<20	20	<.01	<10	11	<10	<1	12
QC DA																											·				
1	- 2701	•	<.2	0.04	105	<5	10 0	0.07	<1	3	357	7	0.66	<.01	<10	0.03	60	24	<.01	16	20	10	<5	<20	3	<.01	<10	11	<10	<1	2

a state a state state

ECD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

.•

Page 1

.

.

LOUIS DOYLE ETK 94-394 P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

12 rock samples received June 30.1

ĵ.

	_ a YE AN	AT Y	TIC	Ţ	.AB	יאסר	ŢOR	Irc	LII	2	<b>۱</b> ا	32.0	<b>Ţ</b> .	R.	מקיייי	35 -	· <b>~</b> ]•	V.* *	1	UVE~	<b>~</b> }C	•	••• ( )	. îr	1		E(f	Se	i3- ⁻	°,- _∖E	- s	<b></b> } 25.575	604		- 3	17
													gec	CH	emi	Cal	A	NAL	·¥8	<b>18</b> C	'ERI	<b>'IF</b>	ICZ	ATE											A	A
												<u>Lo</u>	<u>uis</u>	<u>D</u>	<u>oyl</u>	e.	Fi.	le,	#	94-2	183		Pa	age	1										T	T
	SAMPLE#	No	Cu		Zn	Ag	Ni	Co	Mn		As	บ	Au	Th	Sr	Cd	SÞ	Bi	۷	Ca	P	La	Cr	Mg		ti A	N		¥	Zr	Sn	Y	NÞ	Be		Au**
		ppm	ppm	ppm	ppm	ppm	ppn	ppm	ppm	*	bbw	ppm	ppm	ppn	ppm	ppm	ppm	ppm	ppm	*	*	ppm	ppm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ppm	*		<b>X</b> X	ppm	ppm	ppm	ppm	ppm	opm 1	ppm	ppb
ł	5 02-1	<2	195	15	162	.3	40	31	307	9.40	<4	<10	<4	<2	12	<.4	<4	7	180	.16	.002	<2		3.13					4	<2	<2	<2	5	<1	6	3
	56 C-7	<2	640		21	.3	114	51	236	5.12		<10	<4	3	58	<.4	<4	8	12		.006	7	12	.12					5	3	<2	3	4	<1	4	$(\mathbf{i})$
4	\$70-31	2	501	27	15	.6	75	62		15.61		<10	<4	<2	2	<.4	<4	14	<2		.002	<2	5	.02					3	<2	<2	<2	<2	9	<1	14
ı.	58 010	<2	66	- ·	118	.5	60 22	19 8	362 400	5.70 2.97		<10 <10	<4 <6	13	92 93	<.4	<4 <4		76 32		.026	19 27	96 43		864 .			7 4.48	4	12		4	9	2	18	<1
忄	57 01-4-7-94	<2	46	20	46	<.>	22	0	400	2.9/	<4	<10	<4	0	22	<.4	<4	<4	22	.20	.016	21	43	.70	452.	18 5.2	J.4	4 1.51	6	y	<2	12	8	2	8	4
ŀ	4002-4-7	3	1217	13	15	.5	120	123	97	8.05	<4	<10	<4	<2	5	<.4	4	<4	4	.09	.024	2	7	.03	13<.	01 .1	0. 9	6.02	<2	<2	<2	<2	<2	<1	<1	18
1	RE 02-4-7	2	1242	11	15	.6	120	124	90	8.13	<4	<10	<4	<2	5	<.4	<4	<4	4	.10	.024	<2	6	.03	13<.	01 .2	0. (	6 .02	<2	<2	<2	<2	<2	<1	<1	13
	¢( 03-4-7-94	<2	65	26	103	.3	44	15	513	5.14		• •	<4	15	82	<.4	<4	<4	50		.022		69	1.58		11 8.6			<2	12	<2	8	6	2	14	4
	<i>4</i> 203-13-7	<2	870	23	103	.6	10	26	897	6.56			<4	6	698	<.4	<4	<4	187			19	6	1.49					<2	9	<2	16	9	1	24	6
4	1304-13-7	2	565	8	<2	.7	486	643	19	37.54	11	<10	<4	<2	<2	<.4	<4	<4	<2	.03	:.002	<2	3	.04	4<.	01 .0	4 <.0	1 <.01	<2	<2	<2	<2	<2	10	<1	9
l			_	_		_	_	_						_					_			_							-	_						-
1	+405-13-7	<2	5	7	6	.5	2	2	209	.84	<4	<10	<4	<2	2051	<.4	<4	<4		34.27		~2	4	.41					2	3	<2	5	<2	<1	1	2
4	かつ6-13-7	12	51	28		<.3	31	13	444	4.19		•		18 38	152	<.4 14 /	<4 12	<4 12	54	.48 1.13	.040	47 39			689. 880.			5 3.21	<2	8	<2	18	12	2	13	<1
ļ	STANDARD	18	50	38	122	0.1	70	28	1089	4.10	32	<10		20	241	16.4			106	1.13	. 109	78		1.10	000.	29 6.6	0 1.2	8 1.85	18	61	16	10	8	1	15	510

Standard is STANDARD CT/AU-R.

ICP - .250 GRAM SAMPLE IS DIGESTED WITH 10ML HCL04-HN03-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS LEACH IS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, ZR & MN AND MASSIVE SULFIDE SAMPLES. AS, CR, SB, AU SUBJECT TO LOSS BY VOLATILIZATION DURING HCL04 FUMING.

- SAMPLE TYPE: P1 ROCK P2 SEDIMENT AU** BY FIRE ASSAY & ANALYSIS BY ICP/GRAPHITE FURNACE. Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: JUL 20 1994 DATE REPORT MAILED: July 26/94

74-7-1135 TO 94-7-1146

EIC! 1.000 GS IRE PI (60 3-3 F1 ... 04) 171 ABOI RIE d'D. 85: HA VAI VER AN GEOCHEMICAL ANALYSIS CERTIFICATE Louis Doyle File # 94-2183 Page 2 . Cd Sb C٢ Ba Ti W Au** U Th Sr Bi Ca P La Mg 8 AL Na ĸ SAMPLE# Ni Co Mn Fe As Au V Mo Cu Pb Zn Ag % ppm * * X ppm ppm ppm ppm ppm ppm ppm ppm ppm X ppm X ppm % ppm X ppm ppb mag ppm ppm ppm ppm. ppm ppm DDM 1/46 03-14-7 3 11 <.2 <2 <2 34 .33 .055 16 18 .56 42.06 <2 1.05 .01 .15 <1 <1 22 52 <.1 21 10 586 2.50 5 <5 <2 1 6 ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%. AG > 30 PPH & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 SEDIMENT AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE. DATE REPORT MAILED: July 26 94 SIGNED BY ..... D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: JUL 20 1994

94-7-1146

6-Aug-94

\$ 94-7-1147 10 94-7-166

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557 LOUIS DOYLE ETK 94-517 P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

20 rock samples received August 2,1994

...

i i

.

ĩ

Values in ppm unless otherwise reported

Et #.	Tag #		Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	8n	Sr	Π%	U	v	w	Y	Zn
1	01- 30-7	147	<.2	0.10	<5	15	<5	0.07	<1	3	265	5	0.76	<10	0.03	150	13	<.01	5	80	10	<5	<20	3	<.01	<10	14	<10	<1	2
2	02- 30-7 (	146	<.2	0.37	<5	10	<5	0.05	2	2	129	7	0.56	<10	0.12	61	6	<.01	10	140	16	<5	<20	4	0.01	<10	4	<10	<1	6
3	03- 30-7	149	<.2	0.95	5	35	<5	0.03	<1	7	299	15	2.35	<10	0.49	247	14	<.01	9	200	10	<5	<20	3	0.01	<10	6	<10	<1	27
4	04- 30-7	1150	<.2	0.56	<5	15	<5	0.65	<1	10	147	39	1.51	<10	0.37	285	7	<.01	4	490	12	<5	<20	14	0.02	<10	22	<10	<1	13
5	01- 31-7	•	<.2	0.02	5	<5	5	0.02	<1	140	125	619	12.20	<10	<.01	46	4	<.01	60	100	16	<5	<20	1	<.01	<10	<1	<10	<1	16
6	02- 31-7	152	<.2	1.99	25	20	10	2.07	<1	31	81	143	5.40	<10	1.16	743	3	<.01	10	770	4	<5	<20	48	0.01	<10	93	<10	<1	53
7	03- 31-7	1153	<.2	0.10	25	5	55	0.04	2	95	113	488	> 15	<10	0.04	150	- 4	<.01	133	160	62	<5	<20	2	<.01	<10	<1	<10	<1	22
8	04- 31-7	154	<.2	0.02	15	<5	15	0.04	<1	48	183	64	7.71	<10	0.02	111	8	<.01	33	80	24	<5	<20	2	<.01	<10	<1	<10	<1	-
9	05- 31-7	1.55	<.2	2.54	15	15	<5	1.80	1	22	192	83	5.02	<10		1588	3	0.02	43	210	2	<5	<20	56	0.02	<10	25	<10	<	73
10	06-31-7			0.50		10	<5		<1	4	183		1.36			248	8	<.01	7	250	ıõ	<5	<20	2	0.01	<10	6	<10	<1	13
		<i>I</i> / -															•		•		••	•		•	0.01	-10		-10	-1	13
11	07- 31-7	157	<.2	0.45	<5	25	<5	0.19	<1	5	247	14	1.54	<10	0.21	451	11	<.01	8	480	12	<5	<20	4	0.02	<10	7	<10	<1	•
12	08-31-7	1152	<.2	0.76	10	15	<5	0.30	<1	18	145	265	2.50		0.48	212	7	<.01	Ā	260	8	<5	<20	9	0.01	<10	50	<10	<1	17
13	09-31-7	1159	<.2	0.02	20	<5	65	0.21	1	56	145		10.70			239	6	<.01	17	100	24	<5	<20	3	<.01	<10	<1	<10	<1	13
14	10- 31-7	1160	0.4	0.20	>10000	20	35		<1	15	87	176				43	4	<.01	7	170	58	<5	<20	8	<.01	<10	<1	<10	<1	11
15	11- 31-7	161		0.02		<5	25		1	25	53	477	7.25		<.01	83	1	<.01	5	80	28	<5	<20	1	< 01	<10	<1	<10	<1	
																			-	•••		~	-20	ſ		-10	~1	-10	~1	e
16	12-31-7	1162	<.2	0.05	85	Æ	15	0.03	2	50	152	541	9.40	<10	0.02	109	7	<.01	13	90	26	<5	<20	2	<.01	<10	<1	<10	<1	12
17	13- 31-7	1163	<.2	0.02		<5	15	0.02	2	88	141		12.70			41	11		129	110	22	<5	<20	2	< 01	<10	<1	<10	<1	
18	01- 1-8	1104		2.57	60	190	<5		<1	42	146	473			1.49	379	2		77	150	10	<5	<20	28	0.08	<10	85	<10		17
19	02- 1-8	1165		3.52		50	<5	0.79	1	38	<1	1511	7.29		1.87	660	<1	0.01	10	730	<2	<5	<20		0.01	<10	148		<1	78
20	03- 1-8	1166		0.72	15	25	<5	0.02	<1	7	180	15	1.59	<10	0.49	106	10		10	70	6	<5	<20	4				<10	<1	89
	• •	1144			10		-0		- •	•	, 50	.5		-10	0.40	100	10	UI	iu	10	0	-0	~20	1	0.04	<10	14	<10	<1	20





10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

## **CERTIFICATE OF ASSAY ETK 94-517**

9-Aug-94

LOUIS DOYLE P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

94-7-1147-1166

20 rock samples received August 2,1994

ET #.	Description	Au (g/t)	Au (oz/t)	As %
1	01-30-7 11+7-	0.03	0.001	
2	02-30-7 1148+	0.41	0.012	
3	03-30-7 1149-	0.03	0.001	
4	04-30-7 1/5\$ -	0.36	0.010	
5	01-31-7 1151-	0.06	0.002	
- 6	02-31-7 1152-	0.04	0.001	
- 7	03-31-7 1153	. 0.12	0.003	
8	04-31-7 154 -	0.03	0.001	
9	05- 31-7 4 <del>5</del> -	<.03	<.001	
10	06-31-7 <i>1156</i> -	0.04	0.001	
11	07-31-7 157 -	0.12	0.003	
12	08-31-7 1158-	0.10	0.003	
13	09-31-71159-	0.45	0.013	
14	10- 31-7 160 -	22.03	0.642	8.80
15	11- 31-7 1161-	0.31	0.009	
16	12- 31-7 162	1.02	0.030	
17	13-31-7 163-	0.59	0.017	
18	01-1-8 164	0.22	0.006	
19	02- 1-8 165	0.37	0.011	
20	03-1-8/166	<.03	<.001	

ECO-TECH LABORATORIES TD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/KMISC#3

### 6-Sep-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

1

Values in ppm unless otherwise reported

LOUIS DOYLE ETK 94-625 P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

21 rock samples received August 23,1994

٠,

Et #	. Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca 🖌	Cď	Co	Cr	cu	Fe %	1.5	Mar 9/					_										
1170 1	01 -18-94-8	<5	0.4	0.13	<5	15	<5		<1	9	-350	168	-		Mg %	Mn	Mo	-		P	Pb	Sb	Sn	Sr	_TI %	U	V	w	Y	Zn
1171 2	02 -18-94-8	30	0.2		<5	10	<5	0.10	<1	2	344			<10		579	17		9	80	4	<5	<20	61	<.01	<10	13	<10	<1	14
11723	03 -18-94-8	<5	<.2		<5	<5	<5	0.02	<1		505	18		<10		129	26	< 01	7	50	8	<5	<20	2	<.01	<10	9	<10	<1	11
11734	04 -18-94-8	<5	<.2	0.04	<5	<5	<5	<.01	<1		442		0.67	<10		72	26	< 01	9	<10	<2	<5	<20	<1	<.01	<10	9	<10	<1	9
11745	05 -18-94-8	10	0.6	0.10	<5	10	10	0.10	<1	17		9	0.65	<10	0.03	81	33	<.01	9	<10	<2	<5	<20	<1	<.01	<10	7	<10	<1	12
						10	10	0.10	~1	17	302	81	1.72	<10	0.03	346	15	<.01	16	100	26	<5	<20	3	<.01	<10	5	<10	<1	31
11756	06 -18-94-8	<5	<.2	0.03	<5	5	<5	0.02	<1	6	200																-			31
11767	07 -18-94-8	140	<.2	0.01	<5	<5	<5	<.01	<1	6	382	46	2.04	<10		382	28	<.01	17	60	4	<5	<20	1	<.01	<10	5	<10	<1	11
11778	08 -18-94-8	<5	<.2	<.01	<5	<5	<5	0.03	•	1	380		0.81	<10	<.01	49	19	<.01	6	20	2	<5	<20	<1	<.01	<10	5	<10	<1	3
(1769	01 -17-94-8	<5	<.2	0.05	<5	<5			<1	<1	293	3	0.31	<10	<.01	50	23	<.01**	4	<10	<2	<5	<20	<1	<.01	<10	3	<10	<1	3
117410	02 -17-94-8	<5	<.2	0.02	<5	<5	<5	<.01	<1	1	311	4	0.54	<10	0.03	40	15	<.01	6	10	<2	<5	<20	2	<.01	<10	5	<10	<1	-
7		~		0.02	~5	<b>N</b> 0	<5	<.01	<1	2	335	16	0.60	<10	<.01	83	25	<.01	5	20	<2	<5	<20	<1	<.01	<10	7	<10	<1	2 3
118011	03 -17-94-8	5	<.2	0.38	<5	<5	-5	- 04				_										-			1.01	10	'	-10	~1	3
112112	04 -17-94-8	<5	<.2	0.55	<5	<5	<5	<.01	<1	4	266	59	1.78	<10	0.37	148	12	< 01	6	60	2	<5	<20	2	<.01	<10	25	<10	<1	47
118213	05 -17-94-8	<5	0.2	0.04		5	<5	0.07	<1		273	51	1.85	<10	0.55	210	19	<.01	8	50	<2	<5	<20	1	<.01	<10	39		-	17
45514	06 -17-94-8	60		0.02	<5	5	<5	<.01	<1	7	337	23	1.02	<10	0.02	213	17	<.01	9	60	14	<5	<20	<1	<.01	<10	33	<10	<1	23
118415	07 -17-94-8	<5	<.2		<5	<5	<5	< 01	<1	3	366	16	1.07	<10	<.01	49	27	<.01	7	40	<2	<5	<20	-	<.01			<10	<1	5
110-4-0	07-17-34-0	<b>~</b> 5	<.2	0.33	<5	10	<5	0.03	<1	7	257	39	1.80	<10	0.24	143	12	<.01	8	180	4	<5	<20	2	<.01	<10	11	<10	<1	3
/1 <b>85</b> 16	08 -17-94-8	<5	- 2				_												•		-	-5	~20	~	<.01	<10	29	<10	<1	17
11 617	09 -17-94-8	<5	<.2	0.23	<5	20	<5	0.05	<1	5	243	23	0.70	<10	0.06	76	19	0.01	16	140	4	<5	<20	10	< 04	-10	~		_	_
1000118	04 -20-94-8	-	<.2	0.01	<5	<5	<5	0.02	<1	1	397	6	0.59	<10	<.01	119	20	<.01	8	<10	<2	<5	<20		<.01	<10	5	<10	3	7
115718	04 -20-94-0	990	0.8	0.03	<5	<5	105	0.47	<1	36	267	245	8.48	<10	0.02	466	17	<.01	15	70	8	~5 <5		<1	<.01	<10	6	<10	<1	3
/18:19	05 -20-94-8		1.2	<.01	<5	<5	300	0.08	<1	73	323	229	> 15	<10	0.02	88	11	<.01	23	120	16		<20	11	<.01	<10	3	<10	<1	13
119720	07 -18-A	45	<.2	0.03	<5	<5	35	0.02	<1	8	1152	42	3.88	<10	<.01	197	83	<.01	21	20	10	<5	<20	3	<.01	<10	2	<10	<1	21
119021	26K 8400		_																21	20	4	<5	<20	1	<.01	<10	22	<10	<1	14
11-10-21	201 0400	<5	<.2	<.01	<5	10	<5	0.03	<1	4	310	91	3.00	<10	<.01	163	14	<.01	44	20		~E	-00	•			_			
	10.										ĸ						••			20	-	<5	<20	2	<.01	<10	3	<10	<1	30
	LTC:	o PPB																												

94-8-1170 TO 94-8-1190 HIGH CR

### LOUIS DOYLE ETK 94-625

.

QC DATA							•	•	5. 1/		Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	w	Y	Zn
Et #. Tag #	Ag Al %	As	Ba	BI Ca %	Cd	Co	Cr	Cu	Fe %		mg /															
Repeat: 1 01 -18-94-3	0.4 0.13	<5	20	<5 3.84	<1	10	362	174	2.30	<10	0.06	561	19	<.01	10	90	4	<5	<20	67	< 01	<10	15	<10	<1	15
Standard 1991	1.2 1.48	65	165	<5 1.94	1	19	72	73	3.79	<10	0.90	710	<1	<.01	20	670	16	<5	<20	66	0.09	<10	110	<10	<1	74
															F	hahk J	CH LA Pezzo ertified A	tti, A.S	S TORIES c.T.	LTD.						

₽1

, 1

XLS/Doyle

df/652

r

6-Sep-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

1

### Values in ppm unless otherwise reported

LOUIS DOYLE ETK 626 P.O. BOX 24023 LAKESHORE POSTOFFICE KELOWNA, B.C.

1

÷.

;

5

.

3 SOIL samples received August 23,1994

--- ---

.

...

.. ...

• •

4	Au(ppb)		A1 B/	A.c.	Ba	Bi Ca %	Cd	Co	Cr	Cu	Fe %	La Mo	%	Mn	Mo Na	1 %	NI	P	Pb	Sb	Sn	Sr	<u></u>	<u> </u>	<u></u>	<u></u>	<u>Y</u>	<u></u>
Et #.         Tag #           1/1/1         01-20-94-8           1/192         2         02-20-94-8           1/193         3         03-20-94-8	<5	<.2	2.15	20	120	<pre>&lt;5 0.43 &lt;5 0.39 &lt;5 0.41</pre>	<1	23	32	62	3.87	<10 0	04	328	<1 0	1.02	33	710	16	<5	<20	16	0.10	<10	73	<10	4	67

QC DATA Repeat #:													004	¥ -1 0.02	24	770	10	<5	<20	17	0.10	<10	73	<10	5	70
1	01-20-94-8	<.2 2.25	15	125	<5 0.43	<1	23	35	64	4.12	<10	0 0.90	361	<1 0.02	24	710	10	~5	-20	••	0.10	- 10			-	

Standard 1991

75 22 <5 <20 65 0.12 <10 87 <10 <1 81 3.94 <10 0.95 685 18 690 <1 <.01 <1 18 72 65 155 <5 1.89 1.2 2.03

:

ECO-TECH LABORATORIES LTD.

ECO-TECH LABORATORIES D Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Kmisc#5 df/601b

94-8-1191 TO 94-8-1193 SADIMENTS SOLAS

### 22-Sep-94

.

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

.94-8-1194 TO 14-5-1213

Values in ppm unless otherwise reported

							$\sim$				~	~											$\sim$	_						-
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BÎ	Ca %	Cd	Co	(Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	<u> </u>	Pb	Sb	Sn	Sr	<u>Ti %</u>	U	<u></u>	<u></u>	Y	Zn
	01- 24-94-8	<5	<.2	0.10	<5	10	<5/	0.02	<1	4	198	38	0.66	<10	0.05	99	12	<.01	10	20	4	<5	120	2	< 01	<10	2	<10	<1	18
	02- 24-94-8 ✓	300	0.2	0.10	<5	10	10	< 01	<1	2	271	33	1.16	<10	0.03	58	19	< 01	6	40	4	<5	140	<1	< 01	<10	2	<10	<1	9
	05- 24-94-8 🗸	425	<.2	0.02	<5	<5	10	<.01	<1	1	292	17	0.55	<10	<.01	50	17	< 01	6	20	4	<5	180	<1	<.01	<10	1	<10	<1	10
	07- 24-94-8	100	< 2	0.08	<5	10	10	<.01	<1	2	301	14	0.86	<10	0.04	100	21	< 01	6	20	<2	<5	160*	1	<.01	10	5	<10	<1	11
	01- 26-94-8	320	0.4	0.40	<5	30	150	0.06	<1	25	217	130	4.70	<10	0.17	436	12	0.02	27	90	70	<5	60	3	<.01	<10	8	<10	<1	25
11 16 5	01- 20-54-0	520	<b>v</b> . <del>4</del>	0.40	.0	•••																								
At Wage	02-26-94-8 🗸	>1000	13.6	0.02	<5	40	1965	0.04	4	84	130	551	> 15	<10	<.01	117	6	< 01	27	<10	1202	<5	<20	1	<.01	20	2	<10	<1	14
	03- 26-94-8	355	0.4	0.11	<5	30	35	0.34	<1	28	150	161	6.49	<10	0.02	354	14	<.01	17	130	44	<5	<20	12	<.01	40	5	<10	9	24
	04-26-94-8	10	0.2	0.43	<5	35	<5	0.10	<1	22	269	167	4.73	<10	0.18	101	56	0.02	17	350	28	<5	80 🖉	9	0.03	<10	19	<10	2	214
	08-26-94-8	255	<.2	0.07	<5	10	20	0.02	<1	24	203	97	2.93	<10	<.01	32	13	<.01	37	30	8	<5	80	<1	<.01	<10	1	<10	<1	10
		255	0.4	0.06	<5	25	<5	0.02	<1	9	479	1074	1.57	<10	<.01	48	34	<.01	12	120	6	<5	260	<1	<.01	<10	3	<10	<1	24
10 ژ 20	09-26-94-8	200	0.4	0.00	-0	20		0.02	-	-																				
20144	10- 26-94-8	5	<.2	1.13	<5	115	5	0.06	<1	11	169	32	2.61	<10	0.61	179	5	0.02	20	180	8	<5	40	4	0.11	<10	20	<10	7	43
	11- 26-94-8	<5	<.2	1.41	10	130	<5	0.80	<1	17	79	98	4.50	<10	0.64	253	2	0.07	16	800	10	10	<20	9	0.07	<10	76	<10	8	49
		<5	<.2	1.14	<5	130	<5	0.08	<1	12	232	45	2.65	<10	0.60	157	8	0.06	21	<10	10	<5	100	9	D.11	<10	24	<10	7	57
	14-26-94-8	<5	<.2		~5 <5	20	<5	0.03	<1	3	183	9	0.85	<10	0.12	47	11	0.01	4	70	4	<5	100	3	<.01	<10	4	<10	2	13
	18-26-94-8	<5	<.2	0.21	<5	15	<5	0.05	<1	4	188	24	0.84	<10	0.11	100	10	<.01	4	160	2	<5	100	2	0.02	<10	12	<10	<1	9
120015	02- 27-94-8	-5	<b>~.</b> 4	0.21	-0	15		0.00		•																				
1204716	04- 27-94-8	<5	<.2	0.26	<5	<5	<5	0.01	<1	4	203	36	1.30	<10	0.19	136	12	<.01	3	50	4	<5	100	<1	<.01	<10	9	<10	<1	12
	06- 27-94-8	10	0.8		<5	10	<5	0.49	<1	11	192	827	3.40	<10	0.20	358	10	<.01	14	100	4	<5	60	8	< 01	<10	12	<10	<1	21
		10	1.6		<5	45	<5	1.11	5	15	118	577	> 15	<10	0.29	1671	10	0.02	153	650	56	<5	<20	52	0.01	30	34	<10	<1	323
		5			<5	35	<5	0.31	<1	11	185	173	3.88	<10	0.19	722	10	0.01	14	240	10	<5	40	8	<.01	10	11	<10	1	28
12,219		25	0.2		<5	20	<5	0.55	<1	12	202	80	2.35	<10	0.33	556	11	<.01	5	180	6	<5	80	18	0.02	<10	51	<10	1	21
121320	19- 28-94-8	<5	<.2	0.00	<0	20	×3	0.00	-1	12	202	00	2.00		2.00															

LOUIS DOYLE ETK 94-662 P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

### 20 rock samples received August 30,1994

LOUIS DOYLE ETK 94-662	•													Eco-Tech	.aboraton	es Ltd.			
Et #. Tag #	Ag Al %	<u>As Ba</u>	BiCa%	Cd (	o Cr	Cu fe %	La Mg %	Mn	Mo Na %	Ni	P Pb	Sb	Sn	Sr Ti	<u>/ U</u>	<u>v</u>	w	Y	Zn
Repeat: 1 01- 24-94-8	<.2 0.10	<5 5	5 <5 0.02	<1	4 201	40 0.68	<10 0.05	105	12 <.01	10 2		<5	120	<1 <.(	1 <10	2		<1	19
Standard 1991	1.2 1.85	70 165	5 5 1.76	2	20 62	80 4.12	<10 0.97	677	<1 0.02	25 64	D 18	10	<20	62 0.1	2 <10	81	<10	11	74
XLS/Doyle											F	hank J.		BORATOR	ES LTD.				

•2

df/649

9-Sec-94

1

14-8-1214 TO 94-8-1251

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B C. VZC 2J3

Phone: 604-573-5700 Fax 604-573-4557

1

1

5

LOUIS DOYLE ETK 94-674 P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

38 Rock/Mud/Soil samples received August 29,1994

;

1

÷

Values in ppm unless otherwise reported

27B											~~															_
Et#. Tag# AU Ag Al%	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	ر% Mg	Mn	Mo	Na %	Ni	P	Pb ·	Sb	Sn	Sr.	<u>TI %</u>	<u> </u>	<u> </u>	W	<u> </u>	Zn
1 pint 03-24-94-8 270 0.2 1.07	10	40	25	0.08	<1	11	228	75	4.00	<10	0 35	212	11	<.01	23	540	24	<5	<20	4	0.03	<10 <10	19 29	<10 <10	3	50 66
2 12 15 04-24-94-8 25 0.4 1.80	<5	40	5	0.06	<1	12	96	23	4.49	<10	078	252	2	<.01	25	790	18	<5	<20	2	0.02	<10	23 E	<10	<1	13
3 1716 054-24-94-8 600.4 0.18	50	10	5	0.01	<1	5	291	51	1.92	<10	0.07	115	18	<.01	15	130	4	<5	<20	3	< 01	10	2	<10	<1	10
4 /2 1706-24-94-8 2 0.4 0.07	<5	<5	<5	< 01	<1	7	315	41	1.27	<10	<.01	378	18	<.01	18	50	<2	<5	<20	<1	<.01	<10	152	<10	5	72
5 /2/808-24-94-8 < 2 2.38	<5	45	<5	6.54	<1	37	148	262	6.82	<10	1.8	1368	4	0.02	16	720	12	15	<20	180	0.04	<10	152	<10	3	12
																					- 04	20	-	<10	<1	25
6 , ≍ / <del>/</del> 05-26-94-8 0.8 0.10	<5	25	<5	0.20	<1	17	141	285	10.90	<10	<.01	87	9	<.01	27	<10	30	<5	<20	4	<.01	20	2,	<10	<1	11
7 1 106-26-94-8 0.8 0.02	<5	10	<5	0.03	<1	37	243	277	6.77	<10	<.01	58	14	<.01	76	<10	<2	<5	<20	<1	<.01	10		<10	10	29
8 /2 - 07-26-94-8 < 2 1.47	<5	75	<5	0.72	<1	17	212	81	3.63	<10	0.41	100	8	0.04	56	530	16	<5	<20	97	0.12	<10	56			82
9 /12 12 26 94 8 0.4 1.87	<5	330	5	0.89	2	52	270	46	4.89	20	1.05	1669	9	0.04	67	1350	16	10	<20	30	0.08	<10	108	<10	20 9	115
10 ,22513-26-94-8 <2 (15)	<5	890	20	5.20	<1	50	319	10	8.31	<10	(7.03)	1230	<1	<.01	196	1970	<2	25	<20	176	0.14	<10	173	<10	9	115
	-										$\sim$							_	_				-	-40		60
11 / 224/15-26-94-8 <.2 1.45	<5	140	<5	0.38	<1	16	137	32	2.67	20	0.68	312	4	0.05	43	320	20	<5	<20	21	0.12	<10	26	<10	11	58 53
12 12 2516-20-94-8 135 0.2 0.97	ব্য	55	<5	0.14	<1	8	302	23	2.76	<10	0.42	163	16	0.03	18	420	14	<5	<20	9	0.03	<10	13	<10	•	
13 22617-26-94-8 < 2 2.54	<5	160	<5	0.44	<1	21	184	31	4.69	20	1	361	1	0.02	45	510	20	<5	<20	11	0.15	<10	30	<10	16	101
14 /2 2719-26-94-8 0.2 1.06	<5	80	5	0.25	<1	11	157	12	2.50	<10	0.44	397	5	0.02	21	330	12	<5	<20		<b>1910</b> 8	<10	23	<10	8	56 96
	30	270	<5	0.19	2	135	298	258	9.31	20	0.4	10000	13	0.01	49	1020	<2	<5	<20	11	0.06	<10	94	<10	17	90
15 .2 . <b>601-27-94-8</b> 2.8 (> <u>15</u> )							•	-	-			-						-		-		40	9		- 4	
16 Liy03-27-94-8 80 0.2 0.34	<5	10	5	0.05	<1	9	214	38	1.18	<10	0.09	667	13	<.01	12	180	6	<5	<20	3	<.01	10	ส	<10 <10 ·	<1	12 10
17 /250 05-27-94-8 80 0.4 0.20	<5	<5	5	0.04	<1	5	230	33	0.95	<10	0.08	204	12	<.01	11	160	- 4	<5	<20	<1	<.01	10			. <1	
18 ازدا 07-27-94-8 0.2 1.17	<5	25	5	0.05	<1	9	269	43	2.78	<10	0.73	254	15	0.01	12	130	12	<5	<20	2	0.02	10	41	<10	4	43
19 /23208-27-94-8 < 2 0.16	<5	20	<5	<.01	<1	5	317	19	1.37	<10	0.04	81	- 24	<.01	27	50	<2	<5	<20	2	<.01	<10		<10	<1 E	10
20 /15)09-27-94-8 < 2 2.88	<5	65	<5	4.53	<1	34	108	184	6.20	<10	1.54	1247	3	0.04	18	910	18	15	<20	154	0.07	<10	142	<10	5	60
20 /2 5503-21-54-6	•																	_				~		-40	- 4	
21 25-10-27-94-8 0.4 0.22	<5	5	<5	0.83	<1	3	268	15	0.84	<10	0.13	351	21	<.01	7	70	<2	<5	<20	25	<.01	20	10	<10	<1	11
22 /2 3501-28-94-8 0.2 0.06	<5	5	<5	0.07	<1	- 4	282	38	0.99	<10	0.02	88	17	< 01	13	50	2	<5	<20	<1	<.01	10	4	<10	4	8
23 /2.3402-28-94-8 4 04 1.98	<5	45	5	0.49	<1	14	372	58	6.01	<10	1.23	417	26	0.02	22	1650	32	5	<20	17	0.01	<10	20	<10	2	87
24 / 2 5703-28-94-8 6 < 2 3.44	<5	170	<5	0.51	<1	45	73	259	9.76	<10	1.75	533	<1	0.04	9	1590	24	10	<20	9	0.16	<10	319	<10	9	135 129
25 (2 32 04-28-94-8 35 < 2 3.19	<5	215	10	2.16	<1	40	51	96	8.82	<10	1.64	1408	<1	0.02	11	1230	24	10	<20	38	0.10	<10	233	<10	5	128
20 (2700020000 00 -2 0.10	-																						-	- 4 5		
26، 28-94-8 < 2 0.14 و ( 14	<5	10	<5	0.36	<1	17	324	52	2.15	<10	0.13	225	20		41	80	ä	<5	<20	4		<10	8	<10	<1	14
27 12 40 06-28-94-8 0.6 0.19	ব্য	<5	<5	0.04	<1	1	139	9	0.57	<10	0.01	155	9	0.03	5	40	30	<5	<20	2		<10	1	<10	5	14
28 i <u>24</u> ( 07-28-94-8 0.2 2.63	<5	95	5	0 50	<1	23	150	26	4 58	<10	1.15	1282	3	0.04	40	480	28	5	<20	23	0.12	<10	53	<10	9	86
20134101-20-34-0 0.2 2.03	-0																									

}	1		3	1		1		2		3		ł		}		1	1		1		1		1		5		)		1	Ì
LOI	JIS DOY	LE ETK S	04-674																					Eco-T	ech Lab	oratorie	s Ltd.			
Et f	). Ta	ag #	A	AI %	As	84	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	<b>6</b> h	Sn							
29	12420	8-28-94-8	) <.2	1.78	<5	70	5	0.33	<1	20	157	22	4.37	<10		1449	6		27	450	and the second second	Sb		Sr_		U	<u> </u>	<u></u>	<u> </u>	Zn
30	12430	9-28-94-8	3 <.2	2 45	<5	140	<5	0.37	<1	22	72	47	4.63	10	1	652	<1		35	620	16	<5	<20		0 08	<10	50	<10	7	59
31	1410	0-28-94-8	3 <.2	2.12	<5	90	5	0 43	<1	19	207	34	4 60	<10	0.89	465	10		31	590	24	5	<20	18	0.09	<10	63	<10	10	72
32	12451	1-28-94-8	3 0.6	273	85	125	<5	0.85	1	24	201	106	5.18	20	0.88	1453	10		48	960	20	5	<20	17	0.05	<10	63	<10	8	68
		3-28-94-8		0 99	<5	50	<5	4.13	2	20	151	223	11.00	<10	1.31		5		77	1150	40	<5	<20	50	0.04	<10	55	<10	14	100
																		9.02	**	1150	34	<5	<20	291	0.06	50	108	<10	12	179
34	12.171	4-28-94-8	3 0.4	1.29	45	75	<5	2.31	З	56	150	301	> 15	<10	<.01	6468	2	<.01	163	8300	•									
35	12 - 81	5-28-94-8	3 2500.6	0.07	<5	20	<5	0.13	<1	27	319	189	5.84	<10	0.01	297	25	< 01	22		8	<5	<20	200	0.03	60	329	<10	26	359
36	12:491	6-28-94-8	3 <.2	0.67	<5	15	<5	0.15	<1	19	301	110	2.59	<10	0.36	263	18	< 01	13	220 70	<2	<5	<20	9	<.01	20	- 14	<10	<1	23
		8-28-94-6		0.80	<5	30	<5	0.06	<1	11	284	12	2.18	<10	0.35	529	22	0.03	11		6	<5	<20	4	0.01	<10	53	<10	<1	25
		0-28-94-8		0.22	<5	5	<5	0.08	<1	15	316	483	1.49	<10	0.09	278	24	0.01	19	40 70	12	<5	<20	11	<.01	<10	40	<10	<1	23
	1.																	0.01	19	70	4	<5	<20	12	<.01	10	18	<10	<1	15
QC.	DATA:																													
	beat:																													
1		3-24-94-8	B 0.2	1.03	<5	40	20	0.08	<1	10	230	80	3.85	<10	0.34	206	12	<.01	24			-								
																	12	~.01	24	500	24	<5	<20	3	0.02	<10	18	<10	3	46
Sta	ndard 1	991																												
			1.8	1 96	75	170	<5	1.87	<1	22	73	88	4.47	<10	0.95	731	<1	0.02	29	670	~~	-								
																	- •	V.U2.	23	0/0	28	5	<20	69	0.14	20	88	<10	11	83
																					1									
																					1	1-								
																					re									
																					(F)	-0-18		BORA	ORIES	LTD,				
XLS	5/Doyle																						Pezzot		<b></b>					
df/6	64																				D.	U. Cer	tified A	ssayer						

94-8-1214 TO 94-8-1251

16-Sep-94

1

ľ

3

1

X

1

A 94-9-1252 TO 94-9-1265

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

1

LOUIS DOYLE ETK 94-706 P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

1

1

14 Rock samples received September 13, 1994

1

1

2

1

Values in ppm unless otherwise reported

Et #	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	01-11-94-9	<.2	0.46	25	100	<5	2.19	<1	8	273	50	2.07	<10	0.34	615	13	<.01	13	90	80	<5	120	80	<.01	<10	21	<10	<1	32
2	125302-11-94-9	<.2	0.63	<5	30	<5	1.41	<1	8	183	57	2.68	<10	0.40	903	10	<.01	9	520	22	<5	80	45	<.01	<10	30	<10	<1	44
3	/261/03-11-94-9	<.2	0.22	<5	30	<5	1.10	<1	21	211	53	4.72	<10	0.37	1056	9	0.03	42	850	84	<5	80	66	<.01	<10	21	<10	<1	73
4	/25504-11-94-9	3.6	0.07	<5	25	160	0.11	5	51	150	252	12.50	<10	<.01	269	10`	0.01	42	210	250	<5	<20	3	<.01	20	10	<10	<1	322
5	/25605-11-94-9	<.2	1.69	<5	65	<5	0.36	<1	17	105	25	4.13	<10	0.88	614	1	0.02	29	550	26	<5	<20	22	0.05	<10	41	<10	2	59
6	/25706-11-94-9	1.2	0.60	<5	45	<5	0.53	2	183	104	624	> 15	<10	0.36	1676	4	0.01	137	660	52	<5	<20	17	0.01	30	105	<10	<1	54
7	125907-11-94-9	0.6	0.02	<5	25	15	0.03	<1	81	184	144	10.40	<10	<.01	57	8	<.01	50	<10	48	<5	20		<.01	<10		10	<1	11
8	<i>i 251</i> 08-11-94-9	<.2	0.68	<5	50	155	0.09	<1	13	156	128	12.80	<10	0.20	247		<.01	15	820	26	<5	<20	•	0.02	<10	32	<10	<1	57
9	/24009-11-94-9	<.2	0.03	<5	20	70	0.01	<1	4	219	87	5.74	<10	<.01	62	12	<.01	10	210	16	<5	100		<.01	<10	3	<10	<1	23
10	126/10-11-94-9	10.0	<.01	<5	25	2025	0.02	4	120	257	201	14.30	<10	<.01	89	18	<.01	87	<10	1252	<5	60	<1	< 01	<10	1	<10	<1	98
11	26211-11-94-9	0.2	0.09	5	15	<5	0.14	<1	3	170	25	2.50	<10	0.01	20	12	<.01	21	1010	58	<5	80	4	<.01	<10	1	<10	<1	7
12	12-11-94-9 دّ عدر	0.2	0.03	<5	20	200	0.07	<1	90	235	291	10.70	<10	<.01	91	11	<.01	28	<10	102	<5	80	<1	<.01	<10	2	10	<1	12
13	1264/01-10-94-9	<.2	<.01	<5	<5	20	<.01	<1	3	292	51	2.56	<10	<.01	46	21	<.01	9	100	10	<5	160	<1	<.01	<10	1	<10	<1	14
14	1265 02-10-94-9	<.2	3.14	<5	55	20	0.79	<1	21	97	33	11.50	<10	0.86	1640	<1	<.01	17	320	30	<5	<20	31	0.07	<10	27	<10	<1	46

1

1

2

1 3 3

QC/DA1 Repeat:	A:																												
1	01-11-94-9	<.2 0	.47	25	100	<5	2.25	<1	8	282	51	2.12	<10	0.35	628	14	<.01	15	90	82	10	120	82	<.01	<10	22	<10	<1	32
Standar	d 1991	1.2 1.	.83	75	170	5	1.84	1	21	66	84	4.37	₹10	0.98	717	<1	0.02	28	750	22	5	<20	56	0.12	<10	81	<10	6	76

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Doyle df/3091

Page 1

-



### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

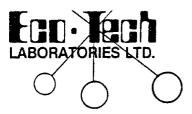
## **CERTIFICATE OF ANALYSIS ETK 94-706**

LOUIS DOYLE P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

14-Sep-94

€ Ail's 94 1252 TO 1265

14 Rock samples received September 13,1994


ET #	Description	Au (ppb)	
1	01-11-94-9 52	10	
2	02-11-94-9 53	5	
3	03-11-94-9 54	<5	
4	04-11-94-9 55	<5	
5	05-11-94-9 <i>54</i>	<5	
6	06-11-94-9 57	<5	
7	07-11-94-9 <i>58</i>	10	
8	08-11-94-9 <i>59</i>	580	
9	09-11-94-9 60	180	
10	10-11-94-9 6/	>1000	
11	11-11-94-9 6-2	<5	
12	12-11-94-9 63	>1000	
13	01-10-94-9 64	105	
14	02-10-94-9 65	<5	

~5

ECD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Doyle

LINE THE CONTRACT OF A DESCRIPTION



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

## **CERTIFICATE OF ASSAY ETK 94-706**

14-Sep-94

LOUIS DOYLE P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

14 Rock samples received September 13,1994

ET #.	Description	Au (g/t)	Au (oz/t)
10	10-11-94-9	18.88	0.551
12	12-11-94-9	1.51	0.044

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Doyle

### 30-Sep-94

1

1

٠

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Values in ppm unless otherwise reported

Phone: 604-573-5700 Fax : 604-573-4557

· ....

1

\$ 94-9-1266 TO 94-9-1291

### LOUIS DOYLE ETK 94-750 P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

J

1

26 Rock/Soil samples received September 21,1994 Sample Run Date: 29 September, 1994

1

Y

1

1

-	Et #.	Tag # Au(j		Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
-	1	03-10-94-9 ,266	155	0.2	0.06	<5	15	<5	0.03	<1	58	285	300	3.84	<10	0.02	55	19	<.01	46	<10	10	<5	<20	<1	<.01	<10	3	<10	<1	16
	2	01-14-94-9/267	5	3.8	0.15	<5	20	880	1.51	<1	14	115	117	3.38	<10	0.21	510	278	0.05	15	3770	478	<5	<20	72	<.01	<10	2	<10	17	16
	3	02-14-94-91268	5	0.6	0.09	<5	30	50	0.18	<1	8	252	28	10.40	<10	<.01	515	27	<.01	11	330	42	<5	<20	9	<.01	20	2	<10	<1	33
	4	03-14-94-9/269	5	1.8	0.08	<5	65	15	1.69	<1	38	46	444	> 15	<10	0.61	1371	<1	<.01	29	<10	10	<5	<20	43	<.01	50	2	<10	<1	17
	5	04-14-94-9/2 7°	5	1.4	0.31	<5	65	90	3.04	<1	49	50	607	> 15	<10	1.27	2232	<1	<.01	31	100	74	<5	<20	97	<.01	50	4	<10	<1	22
	6	05-14-94-9 /27/	10	0.4	0.90	<5	100	<5	2.02	2	55	102	533	> 15	<10	0.83	2489	<1	0.02	238	3980	16	<5	<20	99	0.03	60	241	<10	<1	94
	7	06-14-94-9 /1 72	5		0.03	<5	15		0.07	<1	12	162	180	4.06		0.01	118	10		22	100	4	<5	<20	5	<.01	<10	4	<10	<1	10
	é	07-14-94-9 /273	5		0.43	5	45	<5	2.33	<1	145	82	293	6.99		0.41	699	12		61	2920	7	<5	<20	114	<.01	20	19	<10	-	21
	0	08-14-94-9 /274	5		0.10	85	40	-	9.76	1	22	-133	128	5.01	<10	0.67	1734	11		53	2020	48	<5	<20	462	<.01	10	13	<10	12	42
#2	10	09-14-94-9 /275	10		1.62	-5	95	-	7.03	3	26	102	288	> 15	<10	2.36	>10000	<1		139	4460	22	<5	<20	548	0.08	140	429	<10	<1	378
# 6.	10	03-14-34-3 727 2	10	2.0	1.02	-5	35	~	7.00	5	20	102	200	- 15	-10	2.30	-1000	-1	01	100		~~	~	-20	540	0.00	140	423	10	~1	3/0
	11	01-15-94-9 /276	5	<.2	1.71	10	45	5	0.14	<1	14	121	19	3.84	<10	0.59	450	4	<.01	23	610	12	<5	<20	2	0.03	<10	31	<10	<1	67
	12	02-15-94-9 /2.77		<.2	0.05	25	20	<5	0.19	<1	6	107	13	2.26	<10	0.03	511	8	<.01	10	200	4	<5	<20	10	<.01	<10	5	<10	<1	18
	13	01-17-94-9 1278		0.2	0.28	<5	15	<5	0.05	<1	8	237	99	3.25	<10	0.16	213	14	<.01	23	140	4	<5	<20	3	<.01	10	11	<10	<1	24
	14	02-17-94-9 /279	5	<.2	1.53	<5	65	10	0.12	<1	16	132	20	4.35	<10	0.72	474	3	<.01	26	840	10	<5	<20	6	0.09	<10	38	<10	<1	71
	15	03-17-94-9 ,280		20.0	0.31	5	40	<5	0.08	17	12	177	41	1.44	<10	0.13	69	3	<.01	9	220 :	>10000	10	<20	9	0.01	<10	3	<10	<1 >	10000
				200	<u> </u>																										
	16	01-18-94-9 /27/	90	>30`	<b>0.04</b>	5	35	635	0.14	5	266	99	67	> 15	<10	<.01	376	4	<.01	48	<10	5794	<5	<20	5	<.01	40	1	<10	<1	754
	17	02-18-94-9 1282	5	5.8	0.08	<5	75	235	1.31	1	46	70	740	> 15	<10	0.43	1068	<1	<.01	36	<10	734	<5	<20	34	<.01	60	2	<10	<1	52
	18	03-18-94-9 /283	5	0.4	0.90	<5	60	5	0.18	<1	26	111	71	6.39	<10	0.97	121	<1	0.03	64	410	216	<5	<20	12	0.03	<10	122	<10	<1	123
	19	01-19-94-9 / 28+	5	6.6	0.05	<5	25	345	0.03	1	24	160	357	7.67	<10	<.01	43	10	<.01	24	<10	530	<5	<20	5	<.01	10	3	<10	<1	40
	20	02-19-94-9 1285	5	8.0	0.16	<5	40	20	0.03	<1	21	269	391	9.83	<10	0.04	140	18	<.01	49	<10	74	<5	<20	5	<.01	30	з	<10	<1	22
		a 10 a 1 a 1101	-	~ .				_ #		- 4							~~	40		40					-						
	21	3-19-94-9 1296	5		0.01	<5	10	<5	0.01	<1	16	183	148	2.54	<10		26	12		19	<10	56	<5	<20	2	<.01	10	<1	<10	<1	15
	22	4-19-94-9 /287>1			0.06	<5			0.47	<1	22	255	374	5.26		0.13	236	18		37	120	812	<5	<20	13		<10	2	<10	<1	22
	23	5-19-94-9 / 288			0.06	<5	20	20	0.01	<1	43	258	325	5.78	<10		43	12		66	<10	64	<5	<20	2		10	2	<10	<1	17
	24	01-20-94-9 /269>1			0.01	<5	15		0.01	<1	20	241	189	5.53		<.01	42	16	<.01	22	<10	14	<5	<20	<1	<.01	<10	<1	<10	<1	11
	25	02-20-94-9 / <i>2 90</i>	310	0.8	0.12	<5	45	<5	0.30	<1	21	291	394	11.40	<10	<.01	813	15	<.01	55	<10	16	<5	<20	2	<.01	30	6	<10	<1	37
	26	03-20-94-9 12 41	5	0.4	0.12	10	35	5	1.37	<1	6	429	18	2.46	<10	0.39	2588	32	<.01	15	120	12	<5	<20	74	<.01	10	3	<10	<1	24

### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

1

1

11/06

. . .

3

1

1

1

t

1

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C ZJ3 Phone (604) 573-5700 Fax (504) 573-557

3-Oct-84

## CERTIFICATE OF ASSAY ETK 94-750

LOUIS DOYLE P.O. BOX 24023 LAKESHORE POST OFFICE KELOWINA, B.C.

26 Rock/Soil earrples received September 21,1994

ETA	Tog #		Au (9/1)	Ан {02/1}	Ag (g/1)	Ag (öz/t)	Pb %	Zn %
15	03-17-94-9	1280					10.70	1.42
16	01-18-94-9	12 51			70.0	2.04		
22	4-19-94-9	1287	1.52	0.044				
24	01-20-94-9	12 80	6.06	0.177				
				•		• •		

Page 1

ή **ΒC** 

A KA

XLS/Dayle

ECO-TECH LAEDRATOR Frank J. Pazzotti, A.Sa.T. B.C.Cartified Asseyer ES LTD. .

11-Oct-94

1

1

- 0.4 0.24

- 1.0 1.75

<5 35

60 155

1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Values in ppm unless otherwise reported

Phone: 604-573-5700 Fax : 604-573-4557

4.

		FAX	حزبها ٥	Dept: 392-6954	no. of rages. From: SQA char Date: COCH-11	Company:	Comments: JUP 758	Teach the pad 78016
--	--	-----	---------	----------------	--------------------------------------------------	----------	-------------------	---------------------

1

1 1

1 1

1

1

LOUIS DOYLE ETK 94-798 P 0 BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

1

13 Rock samples received September 29,1994 Sample Run Date: 6 October, 1994

1

1

12 <10

78 <10

<1 84

6 72

2

1

1

4

P Pb Sb Sn U v w Y Zn Sr Ti% NI La Mg % Mn Mo Na % Cd Co Cr Cu Fe % BI Ca % Ba Ag Al% As Et#. Tag # Au(ppb) 104 <.01 20 12 <10 <1 <5 <20 62 59 160 40 <10 0.85 565 2 0.02 60 56 5.21 <5 1.08 26 01-25-94-9 , 292 10 30 <1 0.4 0.24 <5 <1 81 5 <20 32 <.01 20 9 <10 240 <10 1.11 6 <.01 37 56 44 4.12 426 16 90 30 <5 0.77 <1 02-25-94-9 /293 10 0.4 1.15 65 52 <1 2 350 <20 31 <.01 10 9 <10 68 <5 558 5 <.01 20 4.18 <10 0.94 03-25-94-9 12 44 30 79 40 <5 0.86 <1 11 0.8 0.98 <5 35 <10 <1 50 3 20 <5 <20 5 <.01 10 4 199 4 <.01 24 330 45 3.53 <10 0.27 58 04-25-94-9 12 96 10 <1 15 0.4 0.56 < 45 <5 0.08 53 5 <10 <1 4 <20 14 <.01 60 <10 0.28 1482 3 <.01 34 700 56 <5 62 41 > 15 50 06-25-94-9 1296 45 1.2 1.08 380 65 45 0.16 4 5 20 <10 <1 <10 з 6 <5 <20 55 <.01 11 0.03 4 1240 8 0.97 <10 0.01 118 07-25-94-9 1297 5 08-25-94-9 1298 5 50 <5 0.29 <1 3 140 <.2 0.10 <5 2 19 6 <10 <10 17 930 28 <5 <20 41 <.01 4 9 0.03 121 18 1.99 <10 0 09 244 < 80 <5 0.37 <1 10 0.2 0.17 88 <10 10 <10 <1 7 40 <5 <20 55 <.01 6 <.01 13 280 790 11 115 12 4.62 20 0.75 09-25-94-9 1299 5 30 <5 1.17 <1 0.2 1.34 <5 14 n 21 <.01 <10 <1 12 8 <5 <20 <10 <1 8 0.01 5 110. 441 101 22 1.80 <10 0.15 15 <5 1.39 <1 5 01-29-94-9 1305 5 < <.2 0.18 9 <5 <20 3 <.01 50 2 <10 <1 54 190 54 117 1 <.01 61 <10 <.01 50 10 0.10 2 49 74 280 > 15 <5 02-29-94-9 30-1 135 1.2 0.10 10 10 <10 <1 186 80 16 <5 <20 3 <.01 1 16 <10 <.01 67 13 <.01 03-29-94-9 1302 5 9 112 36 5.10 <.2 0.10 <5 <5 0.04 2 35 11 <20 5 <.01 50 <1 <10 <1 28 1 <.01 68 140 6 ⊲5 54 > 15 <10 <.01 04-29-94-8 1305 5 1.0 0.06 5 0.08 з 47 79 309 335 55 12 <20 5 <.01 10 <1 <10 <1 34 -5 25 1.65 <10 <.01 62 10 <.01 13 50 6 6 172 05-29-94-9 /3 04 5 0.2 0.03 25 <5 0.02 <1 -5 13

61 53 5.20 <10 0.86 558

64 81 4.02 <10 0.93 691

2 0.02

<1 0.01 23 660

59 150

38

18

<5 <20

5 < 20

QC DATA Repeat 01-25-94-9 1 Standard 1991

XLS/Dovie

df#796

13:33 10/11/94

B604 573 4557

\$194-9-1292 TO 94-9-1304

5 1.07

<5 1.82

25

17

<1

<1

-ECD-TECH LABORATORIES LTD. Prank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

63 <.01

52 0.09

20

10

24-Oct-94

1

÷

ECO-TECH LABORATORIES LTD: 5 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

ł



LOUIS DOYLE ETK 94-861 P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

30 Rock samples received 14 October, 1994

10/25/84

09:43

**25**604 573

4557

ECO-TECH KAM.

2002

# Values in ppm unless otherwise reported

																		Ni	Р	Pb	Sb	Sn	Sr	TI %	U.	<u>v</u>	<u></u>	<u>Y</u>	Zn
	To a di	Ag	A1 %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	LaN	_	Mn	Mo N		12	660	1064	<5	100	18	0.01	<10	5	<10	1	385
Et #.	Tag #	the second se		<5	320	20	0.21	<1	8	235	12	1.61		0.07	236		<.01	12	250	814	<5	40	6	<.01	<10	1	<10	<1	40
15.11	03-01-94-10		0.32	~5 <5	35	10	0.16	<1	5	162	21	1.72	<10	0.05	190		<.01		230 520	70	<5	<20	6	<.01	<10	8	<10	<1	67
66 2	01-02-94-10	4.8	0.13	<5	120	5	0.07	<1	14	120	17	4.70	<10	0.2	324	-	<.01	24		16	<5	40	<1	<.01	10	<1	<10	<1	8
07.3	02-02-94-10	0.2	0.69	-	10	<5	<.01	<1	1	145	5	1.45	<10	<.01	22	-	<.01	4	70	94	<5	60	Å	<.01	10	2	<10	<1	30
08 4	02-03-94-10	<.2	0.02	<5	. –	<5	0.11	<1	7	152	5	1.51	<10	0.03	640	11	<.01	9	520	34	-5		-						
09 5	03-03-94-10	<.2	0.12	5	30	<b>~</b> 0	0.11		•									_		40	~E	60	51	<.01	<10	2	<10	1	39
· · ·				-		æ	0.81	<1	3	155	7	1.10	<10	0.05	641		<.01	7	420	16	<5	60	3	<.01	10	7	<10	<1	27
310 8	04-03-94-10	<.2		<5	50	<5		<1	15	210	92	3.16	<10	0.15	896	15	<.01	19	360	6	<5		5	0.08	<10	102	<10	<1	69
31117	05-03-94-10	<.2	0.49	<5	65	<5	0.12	•	21	85	18	6.47	<10	1.09	222	<	0.02	11	600	14	5	<20	5	0.04	20	46	<10	<1	112
1312 3	01-12-94-10	<.2	1.41	<5	70	10	0.20	<1		135	40	5.25	<10	0.65	228	41	0.04	62	400	<b>v</b> 294	<5	<20	-	0.04	<10	41	<10	<1	80
13 13 3	02-12-94-10	1.2	0.57	4	25	10	0.13	<1	18	98	23	4 16	- 10	0.6	330	12	<.01	30	500	54	5	<20	6	0.05	~10			•	
13 M/ 10	03-12-94-10	<.2	1.70	<5	70	10	0.20	<1	16	90	23	4.0	•												<10	14	<10	6	90
										- 00	50	3.18	<10	0.24	202	531	0.04	35	1490	2016	<5	<20	22	<.01		28	<10	<1	46
131511	04-12-94-10	9.0	0.45	⊲5	45	40	0.44	2	13	108	15	4.15	<10	0.5	193	14	<.01	21	250	48	<5	<20	5	0.03	<10	20 37	<10	4	60
1316:12	05-12-94-10	<.2	1.29	<5	35	10	0.16	<1	10	99	• -	3.14	<10	0.54	300	4	<.01	22	500	24	5	<20	7	0.05	<10	3/	<10	<1	33
13/7:13	06-12-94-10	<.2	1.30	<5	70	5	0.17	<1	12	113	16	> 15	<10	<.01	328	5	<.01	128	<u>5</u> 20	10	<5	<20	7	<.01	40	-	<10	<1	17
13/814	08-12-94-10	0.4	0.11	-5	35	<5	0.42	1	91	115	461		<10	<.01	173	6	<.01	27	400	8	<5	<20	3	< 01	20	4	<10	-1	••
12/814	09-12-94-10	<.2		<5	20	<5	0.09	<1	18	142	192	5.73	10	01		-										-	-10	<1	45
131915	05-12-54-10												<10	0.03	228	<1	<.01	88	<10	414	<5	<20	<1	<.01	50	8	<10		31
120.000	10-12-94-10	3.4	0.25	590	50	<5	0.11	2	21	63	364	> 15		0.03	38	5	<.01	95	<10	230	<5	<20	<1	<.01	20	2	<10	<1	13
132016	11-12-94-10	1.4	0.14	<5	2	305	0.02	<1	53	147	354	7.84	<10		30	10	<.01	24	140	4	<5	<20	<1	<.01	<10	2	<10	<1	
132/17	12-12-94-10	<2		<5	25	<5	0.02	<1	21	146	139	5.38	<10	<.01	413	<1	<.01	46	60	542	<5	<20	1	<.01	30	2	<10	4	60
132218		3.6		1210	45	<5	0.13	<1	25	58	354	> 15	<10	<.01			<.01	103	40	104	<5	<20	<1	<.01	30	2	<10	<1	55
132319	13-12-94-10	0.8	0.09	<5	25	<5	0.06	1	174	129	914	11.20	<10	<.01	59	-	~.01	100	-12										-
1324,20	14-12-94-10	0.0	0.00	-										/			<.01	34	400	430	<5	<20	4	<.01	20	2	<10	<1	2427
			0.08	<5	25	<5	0.22	13	13	103	275		<10	0.01	148	4		35		>10000	<5	<20	2	<.01	30	2	20	<1	>10000
13:25,21	15-12-94-10	2.8	0.00	Ś	35	40	0.09	63	38	97	378	> 15	<10	<.01	133	<1	<.01			236	<5	<20	<1	<.01	30	2	<10	<1	139
1336 22	16-12-94-10			115	20	125		1	53	227	383	8.91	<10	<.01	568	15	<.01	66		128	<5	<20	3	<.01	20	<1	<10	<1	62
132723	01-13-94-10	0.6			10	<5		<1	38	192	413	8.26	<10	0.13	191	8	<.01	37	<10	58	<5	<20	3	<.01	50	1	<10	<1	73
1 <b>9 29</b> 24	02-13-94-10	0.6		<		<5		1	93	106	301	> 15	<10	<.01	79	1	<.01	68	230	00	~	-20	-						
1: 29,25	03-13-94-10	0.8	0.04	250	45	~0	0.12	•													<5	20	2	<.01	20	3	<10	<1	22
主教				-		-	0.03	4	35	189	261	5.28	<10	<.01	37	7	<.01	39		34	-	<20	<1		30	2	<10	<1	367
193 26	04-13-94-10	0.6		<		<5		4	37	158	197	> 15	<10	< 01	135	35	<.D1	63		172	<5	<20	1	<.01	40	2	<10	<1	36
13 31 27	05-13-94-10	0.8		65		15		2	29	58	444		<10	<.01	525	<1	<.01	46	; 30	- 4	<5	< <b>2</b> 0		01	40	-			
1332 28	06-13-94-10	<.2	0.07	<\$	40	<5	0.11	2	29																				
															Page	1											•		
1944 L 152															-														

いいう

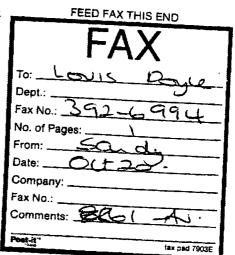
-2 i -2

## ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

ひんけっしたしけ おうりょ

# **CERTIFICATE OF ASSAY ETK 94-861**


20-Oct-94

LOUIS DOYLE P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.



30 Rock samples received 14 October, 1994

	~	Au	Au	
Et #.	Tag #	(g/t)	(oz/t)	
1	03-01-94-10 1905	<.03	<.001	
2	01-02-94-10 13000-	0.18	0.005	
3	02-02-94-10 507-	0,10	0.003	
4	02-03-94-10 308-	0.20	0.006	
5	03-03-94-10 1309-	0.23	0.007	
6	04-03-94-10 // <i>\$10</i>	0.07	0.002	
7	05-03-94-10 21511	<.03	<.001	
8	01-12-94-10 12 12 4日。	0.05	0.001	
9	02-12-94-10	<.03	<.001	
10	03-12-94-10	<.03	<.001	-
11	04-12-94-10 135 -	0.33	0.010	
12	05-12-94-10 1346	<.03	<.001	:
13	06-12-94-10 /36-2	<.03	<.001	
14	08-12-94-10 73/8 -	0.07	0.002	
15	09-12-94-10	<.03	<.001	
16	10-12-94-10 1920	0.03	0.001	
17	11-12-94-10 3195-C	<.03	<.001	
18	12-12-94-10 13,22	<.03	<.001	
19	13-12-94-10 - 13 2 3	<.03	<.001	
20	14-12-94-10 1324 -	0,03	0.001	
21	15-12-94-10 1325		<.001	
22	16-12-94-104 13 26	<.03	<.001	
23	01-13-94-10 13 27 -	0.19	0.006	
24	02-13-94-10 12-28 -	0.16	0.005	
25	03-13-94-10 1729 -	0.19	0.006	
26	04-13-94-19 30	<.03	<.001	· · ·
27	05-13-94-10 39-26-2	<.03	<.001	
28 ·	06-13-94-10 7332	<.03	<.001	
29	07-13-94-10 1335 -	0.03	0.001	
30	08-13-94-10 7/2 34	<.03	<.001	-
		•		



ECO-TECH LABORATORIES LTD.

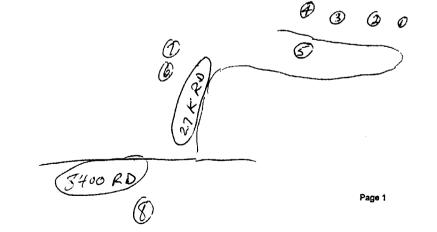
Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

31-Oct-94

.

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557


94-10-1335 TC 94-10-1342

Values in ppm unless otherwise reported

	Au																												
Et #.	Tag # (ppb)	Ag	Ai %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	РЪ	Sb	Sn	Sr	TI %	U	v	W	Y	Zn
1	SW1 1375 10	0.6	2.69	<5	85	10	0.11	<1	15	42	21	5.47	<10	0.51	335	<1	<.01	19	630	28	<5	<20	4	0.06	<10	39	<10	<1	144
2	SW2 /336 <5	<.2	2.61	<5	90	10	0.13	<1	18	43	35	5.22	<10	0.71	366	<1	<.01	35	930	40	<5	<20	2	0.06	<10	33	<10	<1	124
3	SW3 <i>1377</i> 10	0.4	1.32	<5	60	<5	0.18	<1	15	26	31	4.44	<10	0.52	287	<1	<.01	31	1180	24	<5	<20	<1	0.05	10	28	<10	<1	87
4	SW4 <i>i338</i> 15	0.6	2.25	<5	95	10	0.12	1	16	42	21	5.92	<10	0.74	188	<1	<.01	31	600	32	<5	<20	5	0.06	10	44	<10	<1	127
5	SW5 1339 5	0.4	1.72	<5	70	10	0.16	<1	15	36	26	5.26	<10	0.65	260	<1	<.01	29	1270	42	<5	<20	<1	0.07	20	41	<10	<1	115
6	SW8 1340 20	0.4	1.40	<5	50	5	0.09	<1	16	23	21	5.04	<10	0.37	259	<1	<.01	22	700	22	<5	<20	<1	0.04	<10	30	<10	<1	86
7	SW7 (34/ 10	<.2	2.14	<5	70	10	0.10	<1	20	35	28	5.28	<10	0.52	219	<1	<.01	29	1530	24	<5	<20	<1	0.07	<10	40	<10	<1	122
8	SW9 1342 20	<.2	2.12	<5	60	10	0.06	<1	11	32	12	6.99	<10	0.30	137	<1	<.01	11	300	20	<5	<20	<1	0.07	10	84	<10	<1	53
~~ ~~~										di.																			
OC DATA																													
Repeat				_			<b>.</b>														_								
1	SW1	0.4	2.62	<5	85	10	0.11	<1	15	41	17	5.43	<10	0.50	330	<1	<.01	18	630	26	<5	<20	4	0.05	<10	39	<10	<1	142
Standard 1	991	1.2	1.80	60	150	<5	1.79	<1	21	64	81	4.24	<10	0.95	685	<1	0.02	26	700	22	5	<20	59	0.12	<10	78	<10	<1	71
												-																	

 $\mathbf{y} = \mathbf{y} =$ 

XLS/Doyla df/6430



ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

LOUIS DOYLE ETK 94-880 P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

RELOWINA, B.C.

8 Soil samples received October 24, 1994

31-Oct-94

.

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

1

94-10-1343-70-94-10-1362.

## Values in ppm unless otherwise reported

		Au																												
	Tag #	(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	Ρ	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1134301-14-9		55	1.6	0.13	150	20	85	0.11	<1	49	142	439	11.80	<10	<.01	41	4	<.01	77	40	8	<5	<20	<1	<.01	30		380	<1	13
2 13-/102-14-9		10	3.2	0.20	90	40	10	0.19	19	8	186	65	2.63	<10	0.08	81	8	< 01	12	620	3750	<5	<20	<1	0.02	10	5	30	<1	2294
3 134503-14-9		>1000	1.0	0.19	35	20	150	0.07	1	41	141	153	6.58	<10	<.01	28	9	<.01	17	100	86	<5	<20	<1	<.01	20	3	<10	<1	60
4 13+604-14-9		180	1.8	0.08	<5	40	<5	0.02	1	146	83	1003	> 15	<10	<.01	22	2	<.01	139	<10	24	<5	<20	<1	<.01	50	3	<10	<1	31
5 / <i>34</i> /701-15-9	4-10	45	1.6	0.19	180	30	<5	0.29	1	61	381	221	10.20	<10	<.01	288	24	0.03	49	1090	68	<5	<20	21	<.01	30	10	<10	<1	28
6 1 <i>348</i> 02-15-9	4-10	80	4.4	0.30	20	40	245	3.98	2	55	78	537	13.10	<10	1.61	2635	3	<.01	23	340	200	<5	<20	133	< 01	50		-40		
7 /34703-15-9	4-10	65	5.0	0.08	<5	70	105	2.57	1	53	51	558	> 15	<10	1.03	2308	<1	<.01	33	<10	46	<5	<20	45	<.01	50	4	<10	<1	19
8 ,35004-15-9	4-10	25	<.2	1.78	10	50	20	0.95	<1	26	154	53	6.46	<10	1.68	573	<1	0.05	53	560	36	<5	<20	45 58	<.01	90	2	<10	<1	18
9 135701-16-9	4-10	20	0.2	1.96	130	90	10	0.19	<1	22	104	63	6.12	40	1.34	402	<1	0.01	24	760	32	<5	<20	21	0.25 0.08	<10	181	<10	<1	118
10 35202-16-9		15	0.4	0.23	30	5	<5	0.06	<1	24	261	104	2.76	<10	0.14	92	16	<.01	64	80	12	<5	<20	<1	<.01	<10 <10	32	<10	<1	77
																					12	~	~20		5.01	10	4	<10	<1	17
11 /35303-16-9	4-10	25	3.6	0.11	<5	45	<5	3.34	1	47	61	959	> 15	<10	1.42	2558	<1	<.01	30	30	26	<5	<20	35	<.01	60	3	20	<1	10
12 /35/01-18-9		20	0.4	0.62	10	50	<5	0.55	<1	23	108	137	9.32	<10	0.54	794	5	0.04	30	710	6	<5	<20	15	0.02	<10	49	20 <10	<1	16 46
13 /360 02-18-9	4-10	5	0.4	0.03	35	5	220	0.05	<1	42	211	159	4.08	<10	<.01	70	13	<.01	59	<10	80	<5	<20	<1	<.01	10	43 2	<10	<1	40
14 135603-18-9	4-10	90	3.2	0.34	30	35	20	0.04	1	66	132	208	> 15	<10	0.03	73	3	<.01	66	<10	<2	<5	<20	<1	<.01	40	5	<10	<1	22
15 135704-18-9	f-10	350	2.6	0.20	1260	55	15	0.13	6	101	82	288	> 15	<10	<.01	160	<1	<.01	51	140	992	<5	<20	<1	<.01	50	3	<10	<1	583
· .																							-20	- •	01		5	~10	-1	563
16 /35205-18-9		>1000	4.4	0.07	60	20	510	0.04	1	71	130	428	13.20	<10	<.01	74	3	<.01	50	<10	46	<5	<20	<1	<.01	20	1	<10	<1	27
17 - 18-9 - 16 - 17	1-10	>1000	0.6	0.65	30	35	25	0.92	3	29	192	312	9.48	<10	0.60	1495	12	0.02	80	740	58	<5	<20	22	0.01	40	215	<10	<1	176
18 , 36/01-21-9		145	1.2	0.84	20	35	10	0.46	1	25	134	33	5.10	<10	0.70	207	79	0.04	37	920	198	<5	<20	11	0.03	<10	77	<10	<1	92
19 136/02-21-94		205	1.0	0.07	<5	20	35	0.03	<1	48	253	197	8.12	<10	<.01	96	20	<.01	58	10	16	<5	<20	<1	<.01	20	5	<10	<1	18
20 / 36203-21-9	-10	75	3.2	0.54	<5	50	<5	2.04	2	138	72	1281	> 15	<10	0.39	1586	<1	<.01		4870	10	<5	<20	37	<.01	50	107	<10	<1	35
																						•	20	-				-10	-1	30
C21-01234		<5	0.6	2.85	<5	40	10	1.19	<1	12	172	17	8.19	<10	0.50	2405	6	<.01	15	70	12	<5	<20	31	0.06	20	20	<10	<1	22
																						-					20		- •	~*

LOUIS DOYLE ETK 94-879 P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

21 Rock samples received October 24,1994



ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

# **CERTIFICATE OF ASSAY ETK 94-879**

LOUIS DOYLE P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

31-Oct-94

21 Rock samples received October 24, 1994

_Et #.	Tag #		Au (g/t)	Au (oz/t)	
3	03-14-94-10	1345	1.76	0.051	
16	05-18-94-10	1358	23.71	0.691	
17	06-18-94-10	1359	1.13	0.033	

**ECO-TECH LABORATORIES LTD.** Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Doyle

11/0" (nr j 10 m j 173 4mm j BCO- KAN. 1 1001 1 ĩ 1 1 **Г** ï 1 1 ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING 10041 E. Trans Canada Hwy., R.R. /2, Kamloops, B.C. V2C 2J3 Phone (804) 573-5700 1 ABOR Fax (804) 573-4557 CERTIFICATE OF ANALYSIS ETK 94-879 LOUIS DOYLE P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C. took semples micehed 14 October 1984 ET R. The Dell -0 Deft. 1102 Na2O 1020 LOL 21 01234 34.01 0.05 0.01 36.60 1.67 1.40 8.34 Õ.43 0.00 0.70 -0.63 QC/DATA: 94-10-1362 Standards: MRGI 0.04 0.17 17.21 13.20 0 18 59.90 8.35 14.05 3.95 0.72 0.18 2.40 4Y2 0.09 6.17 2.46 12.07 0.53 80,78 0.51 7.72 0.21 4.29 3.55 1.64 Note: Values expressed in percent FEED FAX THIS END FA) <u>oris</u> To: ECO-TECH LABORATOR Frank J. Perzetti, A.So.T. Dept.: **B.C. Certified Asserver** Fax No.: No. of Pages: From: Sa. XLS/Doyle dl/wr3115 2 NOV Dete: Company: Fax No.: Commenter WR-879 +-21.01234 Prof fact peed 70 Page 1

ì

# **APPENDIX 3 RESULTS OF GEOCHEMICAL ANALYSIS OF SOIL SAMPLES**

-----

............

26-Oct-94

1

1.1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

.

1

1

1

j

Phone: 604-573-5700 Fax : 604-573-4557 LOUIS DOYLE ETK 94-841 P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

1 1

423 SOIL samples received October 11,1994 Sample Run Date: October 24/25, 1994

٠

i i

## Values in ppm unless otherwise reported

<u>Et #.</u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	РЬ	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	L-38+00S: 7+00E	<5	<.2	1.03	<5	60	5	0.05	<1	7	18	14	3.43	<10	0.26	121	<1	<.01	10	330	18	\$	<20	3	0.03	<10	36	<10	<1	46
2	L-38+00S: 6+50E	<5	<.2	2.09	<5	60	15	0.03	<1	15	37	28	7.97	<10	0.61	241	<1	<.01	25	790	24	<5	<20	2	0.08	10	64	<10	<1	69
3	L-38+00S: 6+00E	<5	<.2	1.42	<5	50	10	0.03	<1	15	26	19	5.35	<10	0.41	242	<1	<.01	22	1150	16	<5	<20	<1	0.05	<10	47	<10	<1	80
4	L-38+00S: 5+50E	<5	<.2	2.17	<5	65	5	0.10	<1	15	28	34	4.40	<10	0.66	206	<1	<.01	29	450	18	5	<20	3	0.05	<10	39	<10	2	76
5	L-38+00S: 5+00E	<5	<.2	1.47	<5	65	10	0.17	<1	14	28	23	3.64	<10	0.65	177	<1	<.01	26	200	18	10	<20	9	0.09	<10	59	<10	ī	80
6	L-38+00S: 4+50E	<5	<.2	1.29	<5	40	<5	0.04	<1	9	19	16	2.61	<10	0.57	151	<1	<.01	16	180	10	<5	<20	<1	0.05	<10	32	<10	<1	55
7	L-38+00S: 4+00E	<5	<.2	1.61	<5	60	5	0.10	<1	14	28	21	3.63	<10	0.82	198	<1	<.01	26	170	12	<5	<20	4	0.08	10	50	<10	<1	70
8	L-38+00S: 3+50E	<5	<.2	2.39	<5	80	10	0.06	<1	14	32	28	5.67	<10	0.71	286	<1	<.01	24	530	18	<5	<20	4	0.09	<10	62	<10	<1	89
9	L-38+00S: 3+00E	<5	<.2	1.73	<5	50	5	0.04	<1	12	25	23	3.79	<10	0.64	201	<1	<.01	22	300	14	10	<20	2	0.07	<10	40	<10	<1	66
10	L-38+00S: 2+50E	<5	<.2	2.44	<5	65	5	0.12	<1	14	33	31	4.55	<10	0.71	210	<1	<.01	28	770	18	5	<20	3	0.06	<10	37	<10	1	75
11	L-38+00S: 2+00E	<5	<.2	1.90	<5	65	10	0.10	<1	15	33	23	5.73	<10	0.69	242	<1	<.01	22	660	16	<5	<20	4	0.08	<10	56	<10	<1	70
12	L-38+00S: 1+50E	<5	<.2	1.29	<5	55	5	0.08	<1	12	22	16	3.09	<10	0.53	255	<1	<.01	17	350	14	<5	<20	4	0.07	<10	41	<10	<1	61
13	L-38+00S: 1+00E	<5	<.2	1.34	<5	50	10	0.04	<1	11	25	11	3.10	<10	0.64	237	<1	<.01	16	230	10	5	<20	<1	0.07	<10	40	<10	<1	56
14	L-38+00S: 0+50E	<5	<.2	2.06	<5	70	<5	0.14	<1	13	32	27	5.48	<10	0.69	175	<1	<.01	24	810	16	5	<20	3	0.07	<10	46	<10	<1	62
15	L-38+00S: B\L 0+00	<5	<.2	1.98	<5	70	<5	0.08	<1	15	27	35	4.08	10	0.73	251	<1	<.01	26	570	18	<5	<20	3	0.07	<10	45	<10	5	61
16	L-38+00S: 0+50W	<5	<.2	2.28	<5	85	5	0.09	<1	17	31	30	4.81	<10	0.69	372	<1	<.01	28	860	20	ব	<20	3	0.07	<10	44	<10	<1	89
17	L-38+00S: 1+00W	<5	<.2	2.60	<5	95	<5	0.11	<1	16	36	24	5.34	<10	0.77	462	<1	<.01	28	990	16	<5	<20	3	0.06	<10	43	<10	<1	106
18	L-38+00S: 1+50W	<5	<.2	2.18	<5	65	5	0.11	<1	12	29	14	4.68	<10	0.64	183	<1	< 01	22	600	16	5	<20	5	0.05	<10	42	<10	<1	73
19	L-38+00S: 2+00W	<5	<.2	2.23	<5	70	5	0.10	<1	13	33	21	4.08	<10	0.84	194	<1	<.01	23	490	12	5	<20	4	0.06	<10	42	<10	<1	63
20	L-38+00S: 2+50W	<5	<.2	2.55	<5	75	5	0.10	<1	14	34	19	5.46	<10	0.68	222	<1	<.01	21	560	18	5	<20	4	0.08	<10	57	<10	<1	70
21	L-38+00S: 3+00W	<5	<.2	3.00	<5	70	5	0.05	<1	12	35	15	5.74	<10	0.56	160	<1	<.01	19	490	20	<5	<20	3	0.06	<10	62	<10	<1	73
22	L-38+00S: 4+00W	<5	<.2	2.53	<5	75	10	0.07	<1	18	32	46	7.43	<10	0.81	338	<1	<.01	26	1120	14	<5	<20	3	0.07	<10	79	<10	<1	67
23	L-38+00S: 5+00W	<5	<.2	2.41	<5	140	<5	0.13	<1	20	44	41	6.75	<10	0.84	386	<1	<.01	30	910	20	<5	<20	7	0.10	<10	84	<10	<1	91
24	L-38+00S: 5+50W A	<5	<.2	1.75	<5	55	<5	0.74	<1	14	26	39	4.63	10	0.47	180	<1	<.01	21	450	16	<5	<20	21	0.06	<10	74	<10	4	54
25	L-38+005: 5+50W R	<5	0.2	2.46	<5	120	<5	0.80	<1	28	41	73	5.68	<10	0.80	501	<1	<.01	39	520	20	5	<20	26	0.07	<10	88	<10	4	102
26	L-38+00S: 6+00W	<5	<.2	3.37	<5	195	20	0.55	<1	33	11	109	7.72	<10	1.58	435	<1	<.01	16	960	18	5	<20	18	0.27	10	183	<10	<1	88
27	L-38+00S: 6+50W	<5	<.2	2.34	<5	65	10	0.05	<1	13	34	19	6.34	<10	0.71	245	<1	<.01	23	790	18	10	<20	2	0.04	<10	69	<10	<1	79
28	L-38+00S: 7+00W	<5	<.2	2.79	<5	80	10	0.12	<1	16	37	22	5.95	<10	0.81	272	<1	<.01	25	1030	18	5	<20	6	0.08	<10	67	<10	<1	82
													_																	

LOUIS	) DOYLE ETK 94-841	1	3		}	1	3		\$		)	÷ ·	3	,	3		į	,	1		} Eco-Te	ch Labo	) ratorie	is Ltd.	1		•	;	
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI Ca %	Cď	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	Р	Pb	Sþ	Sn	Sr	Π%	U	v	w	Y	Zn
29	L-38+00S: 7+50W	<5	<.2	2.39	<5	75	10 0.06	<1	13	31	16	4.84	<10	0.60	270	<1	<.01	19	590	18	<5	<20	3	0.06	<10	59	<10	<1	72
30	L-38+00S: 8+00W	<5	<.2	2.51	<5	75	10 0.09	<1	15	35	19	6.18	<10	0.69	354	<1	<.01	22	700	18	5	<20	5	0.07	<10	63	<10	<1	69
31	L-38+00S: 8+50W	<5	<.2	2.56	<5	80	10 0.06	<1	15	31	22	5.29	<10	0.68	318	<1	<.01	24	610	18	5	<20	3	0.06	10	57	<10	<1	79
32	L-38+00S: 9+00W	<5	0.6	2.65	<5	80	5 0.06	<1	15	30	28	5.00	<10	0.69	442	<1	<.01	20	650	20	<5	<20	4	0.06	<10	67	<10	<1	75
33	L-38+005: 9+50W	<5	0.2	2.10	<5	75	10 0.11	<1	13	25	24	5.67	<10	0.64	265	<1	<.01	16	490	18	<5	<20	5	0.06	<10	86	<10	<1	54
34	L-38+00S: 10+50W	<5	0.4	2.78	<5	90	10 0.10	<1	17	35	36	6.51	<10	0.96	335	<1	<.01	26	630	16	<5	<20	5	0.08	<10	78	<10	<1	81
35	L-38+00S: 11+00W	<5	<.2	2.25	<5	60	<5 0.08	<1	13	27	26	6.16	<10	0.63	232	<1	<.01	17	500	18	<5	<20	6	0.05	<10	85	<10	<1	52
36	L-38+00S: 11+50W	<5	<.2	2.08	<5	50	10 0.03	<1	11	32	14	5.83	<10	0.50	186	<1	<.01	17	420	20	<5	<20	3	0.07	<10	86	<10	<1	44
37	L-38+00S: 12+00W	<5	<.2	2.92	<5	70	5 0.05	<1	16	34	33	6.07	<10	0.80	397	<1	<.01	23	740	20	<5	<20	4	0.06	<10	76	<10	<1	59
38	L-38+00S: 12+50W	<5	<.2	2.77	<5	70	10 0.10	<1	17	37	34	7.09	<10	0.85	354	<1	<.01	25	1150	22	5	<20	4	0.07	<10	72	<10	<1	72
39	L-38+005: 13+00W	<5	<.2	2.43	<5	65	15 0.06	<1	15	34	27	8.30	<10	0.51	379	<1	<.01	16	1210	18	<5	<20	4	0.09	10	89	<10	<1	53
40	L-38+00S: 13+50W	<5	0.2	2.43	<5	75	<5 0.06	<1	16	26	38	4.26	<10	0.56	232	<1	<.01	22	580	20	<5	<20	7	0.05	<10	56	<10	2	65
41	L-38+00S: 14+50W	<5	<.2	2.35	<5	55	5 0.04	<1	13	29	25	6.93	<10	0.53	280	<1	<.01	15	900	18	<5	<20	4	0.07	<10	95	<10	<1	55
42	L-38+00S: 15+00W	<5	<.2	2.09	<5	50	10 0.03	<1	14	27	29	6.80	<10	0.48	198	<1	<.01	19	730	18	<5	<20	2	0.08	10	74	<10	<1	53
43	L-38+00S: 15+50W	<5	<.2	3.40	<5	55	<5 0.02	<1	10	36	23	5.37	<10	0.39	249	<1	<.01	16	570	26	<5	<20	3	0.05	<10	43	<10	<1	51
44	L-38+00S: 16+00W	<5	<.2	2.25	<5	65	5 0.06	<1	18	30	43	4.65	<10	0.93	326	<1	<.01	32	460	18	10	<20	3	0.06	<10	50	<10	<1	67
45	L-38+50S: B/L 0+00	<5	<.2	1.89	<5	65	5 0.10	<1	15	29	27	4.94	<10	0.69	334	<1	< 01	25	910	14	5	<20	3	0.06	<10	45	<10	<1	60
46	L-39+00S: 6+00W	<5	<.2	1.35	<5	55	10 0.03	<1	11	26	18	6.71	<10	0.36	919	<1	<.01	16	1340	16	<5	<20	1	0.06	10	67	<10	<1	62
47	L-39+00S: 5+50W	<5	<.2	2.55	<5	70	10 0.05	<1	14	37	30	6.95	<10	0.68	165	<1	<.01	26	780	20	5	<20	3	0.06	<10	44	<10	<1	85
48	L-39+00S: 5+00W	<5	<.2	2.52	<5	70	10 0.06	<1	16	32	24	5.06	<10	0.64	185	<1	<.01	29	530	18	<5	<20	3	0.07	<10	43	<10	<1	82
49	L-39+00S: 4+50W	<5	1.2	2.44	10	45	<5 0.08	<1	5	20	73	1.40	30	0.24	86	<1	<.01	16	2100	30	<5	<20	4	0.01	<10	16	<10	7	34
50	L-39+00S: 4+00W	<5	<2		<5	60	<5 0.17	<1	24	29	62	3.96	10	0.83	315	<1	<.01	46	680	16	5	<20	<1	0.06	<10	32	<10	4	74
51	L-39+00S: 3+50E	<5	<.2		<5	60	<5 0.11	<1	17	23	37	4.02	<10	0.47	438	<1	<.01	26	960	16	<5	<20	4	0.05	<10	37	<10	<1	62
52	L-39+00S: 3+00E	<5	<.2		<5	50	10 0.07	<1	17	29	22	5.33	<10	0.61	230	<1	<.01	23	470	16	<5	<20	2	0.08	<10	51	<10	<1	94
53	L-39+00S: 2+50E	<5	<.2		<5	65	5 0.10	<1	14	24	22	5.33	<10	0.50	299	<1	<.01		1070	16	<5	<20	5	0.10	<10	66	<10	<1	71
		-		. –				·								-					_		-					•	
54	L-39+00S: 2+00E	<5	<.2		<5	75	10 0.23	<1	13	25	17	5.48	<10	0.49	229	<1	<.01		1300	12	<5	<20	6	0.08	10	61	<10	<1	67
55 56	L-39+00S: 1+50E	<5	<.2		<5 <5	60 60	<5 0.16	<1	11	21	26	3.37	<10	0.47	208	<1	<.01	21	520	14	<5	<20	5	0.04	<10	34	<10	1	59
	L-39+00S: 1+00E	<5	<.2			60 75	<5 0.12	<1	13	27	24	3.99	<10	0.58	226	<1	<.01	26 26	700	16	<5	<20	8	0.06	<10	34	<10	<1	70
57	L-39+00S: 0+50E	<5	<.2		<5	75	5 0.18 5 0.15	<1	14	29	23	3.70	<10	0.72	453	<1	<.01	25	330	16	10	<20	7	0.06	<10	45	<10	1	67
58	L-39+005: B/L 0+00	<5	<.2	1.92	<5	65	5 0.15	<1	17	27	42	4.25	<10	0.74	235	<1	<.01	35	550	16	10	<20	4	0.06	<10	38	<10	2	68
59	L-39+00S: 0+50W	<5	<.2		<5	65	<5 0.09	<1	14	29	30	4.03	<10	0.84	226	<1	<.01	27	350	14	<5	<20	2		<10	40	<10	2	62
60	L-39+00S: 1+00W	<5	<.2		<5	85	10 0.07	<1	13	28	21	4.92	<10	0.56	346	<1	<.01	20	620	16	<5	<20	6	0.07	<10	52	<10	<1	66
61	L-39+00S: 1+50W	<5	<.2		<5	75	5 0.12	<1	16	31	19	5.13	<10	0.75	284	<1	<.01	24	430	16	5	<20	6	0.07	<10	43	<10	<1	74
62	L-39+00S: 2+00W	<5	<.2		<5	80	10 0.07	<1	15	36	15	4.95	<10	0.59	296	<1	<.01	21	890	22	<5	<20	4	0.07	10	49	<10	<1	108
63	L-39+00S: 2+50W	<5	<.2	2.07	<5	85	<5 0.06	<1	14	25	15	4.78	<10	0.44	358	<1	<.01	15	500	16	5	<20	4	0.05	<10	49	<10	<1	52
64	L-39+00S: 4+00W	<5	<.2	1.22	<5	50	<5 0.49	<1	13	19	12	2.91	<10	0.50	300	<1	<.01	14	310	12	<5	<20	17	0.05	<10	61	<10	<1	45
65	L-39+00S: 4+50W	<5	<.2	1.40	<5	50	<5 0.31	<1	16	22	24	3.47	<10	0.65	240	<1	<.01	21	410	10	5	<20	8	0.06	10	53	<10	2	50
6 <b>6</b>	L-39+00S: 5+00W	<5	<.2	2.64	<5	115	<5 0.57	<1	24	41	56	4.60	20	0.89	681	<1	<.01	37	920	20	<5	<20	19	0.07	<10	82	<10	12	91

1

3	1	1	1	}	1	1	1	1	;	1	1	1	1	1	;	;	į
LOUIS DOYLE	ETK 94-841												COD-100	n Laboratories	Ltd.		

4

.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI C	a %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	8n	Sr	TI %	U	v	w	Y	Zn
67	L-39+00S: 5+50W	<5	<.2	1.73	<5	80	5 (	).72	<1	18	34	42	3.85	<10	0.73	384	<1	<.01	25	740	12	5	<20	19	0.07	20	77	<10	7	64
68	L-39+00S: 6+00W	<5	0.4	1.76	<5	100	<5 (	0.87	<1	20	32	80	4.03	30	0.58	1216	<1	<.01	29	790	18	<5	<20	25	0.05	10	64	<10	14	79
69	L-39+005: 6+50W	<5	<.2	2.21	<5	85	5 (	).19	<1	19	33	33	4.64	<10	0.98	298	<1	<.01	35	470	18	10	<20	6	0.06	<10	43	<10	2	77
70	L-39+00S: 7+00W	<5	<.2	1.74	<5	65	5 (	0.07	<1	12	25	16	4.12	<10	0.58	286	<1	<.01	17	1090	16	<5	<20	6	0.05	<10	41	<10	<1	65
71	L-39+00S: 7+50W	<5	<.2	2.66	<5	75	5 (	0.18	<1	20	30	49	4.64	<10	0.94	295	<1	<.01	35	910	20	<5	<20	6	0.06	<10	49	<10	1	80
72	L-39+005: 8+00W	<5	<.2	2.26	<5	65	10 (	0.06	<1	13	32	19	5.46	<10	0.63	227	<1	<.01	20	580	18	<5	<20	3	0.06	<10	62	<10	<1	67
73	L-39+00S: 8+50W	<5	<.2	2.87	<5	95	10 (	0.08	<1	17	37	22	5.42	<10	0.77	233	<1	<.01	27	710	20	5	<20	3	0.07	<10	60	<10	<1	90
74	L-39+005: 9+00W	<5	<.2	1.85	<5	60	<5 (	0.08	<1	12	24	14	4.71	<10	0.51	306	<1	<.01	16	680	14	5	<20	- 4	0.06	<10	55	<10	<1	57
75	L-39+00S: 9+50W	<5	<.2	1.77	<5	55	5 (	0.05	<1	10	22	17	4.24	<10	0.50	221	<1	<.01	14	410	14	<5	<20	3	0.05	<10	58	<10	<1	49
76	L39+00S: 10+00W	<5	0.4	1.72	<5	60	10 (	0.07	<1	17	19	22	6.77	<10	0.55	854	<1	<.01	9	860	18	10	<20	5	0.10	10	138	<10	<1	51
77	L39+00S: 10+50W	<5	<.2	3.36	<5	95	10 (	0.09	<1	27	22	68	8.34	<10	1.46	662	<1	<.01	11	340	20	<5	<20	9	0.18	20	237	<10	<1	71
78	L39+00S: 11+50W	<5	0.4	2.00	<5	65	10 (	0.08	<1	12	28	25	6.91	<10	0.44	421	<1	<.01	14	1220	22	<5	<20	11	0.08	10	107	<10	<1	57
79	L39+00S: 12+00W	<5	<.2	2.68	<5	100	5 (	D. 16	<1	21	38	42	5.05	<10	0.84	948	<1	<.01	30	610	22	<5	<20	22	0.06	<10	74	<10	2	63
80	L39+00S: 12+50W	<5	<.2	2.12	<5	70	<5 (	0.43	<1	21	36	46	4.27	20	0.99	982	<1	<.01	34	640	16	<5	<20	39	0.06	<10	55	<10	10	58
81	L39+00S: 13+00W	<5	<.2	2.48	<5	65	10 (	0.09	<1	14	29	31	5.06	<10	0.80	273	<1	<.01	21	480	16	<5	<20	10	0.05	<10	57	<10	<1	58
82	L39+005: 13+50W	<5	<.2	1.72	<5	60	5 (	0.05	<1	9	24	20	4.94	<10	0.42	164	<1	<.01	13	1070	20	<5	<20	9	0.06	10	84	<10	<1	60
83	L39+00S: 14+00W A	<5	<.2		<5	60	10 (	0.05	<1	11	30	25	5.90	<10	0.57	234	<1	<.01	16	800	18	<5	<20	9	0.06	10	80	<10	<1	52
84	L39+00S: 14+00W B	<5	<.2	2.52	<5	70	10 (	0.05	<1	19	18	35	6.15	<10	0.96	503	<1	<.01	8	260	16	<5	<20	9	0.12	<10	154	<10	<1	57
85	L39+00S: 14+50W	<5	<.2		<5	50	15 (	0.04	<1	9	24	19	6.64	<10	0.41	192	<1	<.01	11	610	18	<5	<20	9	0.06	20	98	<10	<1	38
86	L39+00S: 15+00W	<5	<.2	2.23	<5	60	10 (	0.06	<1	13	30	25	6.09	<10	0.71	237	<1	<.01	20	660	16	<5	<20	8	0.06	<10	60	<10	<1	52
87	L39+00S: 15+50W	<5	<.2	2.35	<5	65	10 (	0.05	<1	14	31	27	6.33	<10	0.75	257	<1	<.01	21	650	16	<5	<20	9	0.07	10	63	<10	<1	56
88	L39+00S: 16+00W	<5	<.2	3.56	<5	70	5 (	0.05	<1	14	39	37	4.91	<10	0.83	279	<1	<.01	25	530	22	<5	<20	7	0.05	10	48	<10	<1	63
89	L40+00S: 6+00E	<	<.2		<5	75	10 (	0.03	<1	18	31	50	8.08	<10	0.97	317	<1	<.01	14	870	18	<5	<20	8	0.09	20	186	<10	<1	50
90	L40+00S: 5+50E	<5	0.2	1.95	<5	85	10 (	0.09	<1	15	30	28	6.27	<10	0.41	309	<1	<.01	21	620	22	<5	<20	14	0.07	10	56	<10	<1	64
91	L40+00S: 4+50E	<5	<.2		<5	95	15 (	0.05	<1	15	35	28	7.96	<10	0.52	181	<1	<.01	23	750	20	<5	<20	7	0.09	20	62	<10	<1	75
92	L40+00S: 4+00E	<5	0.6	2.40	<5	105	<5 (	<b>J.48</b>	<1	20	35	93	4.46	100	0.58	737	<1	<.01	60	1740	20	<5	<20	30	0.03	<10	53	<10	79	68
93	L40+00S: 3+50E	<5	<.2	1.69	<5	80	10 (	0.14	<1	14	26	31	4.70	<10	0.46	218	<1	<.01	18	330	18	<5	<20	13	0.10	10	74	<10	1	45
94	140+00S: 3+00E	<5	<.2	1.90	<5	85	<5 (	0.20	<1	18	29	56	3.66	10	0.85	314	<1	<.01	38	640	16	5	<20	10	0.07	<10	37	<10	4	59
95	L40+00S: 2+50E	<5	<.2	2.12	<5	80	<5 (	0.26	<1	15	29	47	4.80	10	0.62	184	<1	<.01	33	630	20	<5	<20	15	0.07	<10	53	<10	3	56
96	L40+00S: 2+00E	<5	<.2	1.51	<5	75	10 (	0.20	<1	13	25	19	2.94	<10	0.64	231	<1	<.01	22	280	14	5	<20	14	0.07	<10	42	<10	2	65
97	L40+00S: 1+50E	<5	0.2	1.74	<5	80	10 (	0.17	<1	14	28	37	4.21	10	0.58	265	<1	<.01	27	330	18	<5	<20	12	0.07	<10	43	<10	6	56
98	L40+00S: 1+00E	<5	< 2	1.63	<5	65	<5 (	0.14	<1	13	25	25	3.62	<10	0.66	275	<1	<.01	24	460	16	<5	<20	9	0.06	<10	37	<10	<1	55
99	L40+00S: 0+50E	<5		1.08	<5	50	5 (	0.05	<1	7	16	10	3.07	<10	0.24	124	<1	<.01	9	420	12	<5	<20	7	0.05	<10	44	<10	<1	32
100	L40+00S; BVL 0+00	<5	<.2		<5	65	10 (	0.22	<1	15	20	23	4.35	<10	0.43	285	<1	<.01	16	670	16	<5	<20	15	0.09	<10	71	<10	<1	47
101	L40+00S: 0+50W	<5	<.2		<5	60		80.0	<1	12	27	17	3.81	<10	0.58	192	<1	<.01	19	520	16	<5	<20	7	0.07	<10	40	<10	<1	57
102	L40+005: 1+00W	<5	<.2	2.50	<5	90	10	0.09	<1	14	35	22	5.90	<10	0.70	241	<1	<.01	21	870	16	<5	<20	8	0.07	<10	57	<10	<1	78
103	L40+00S: 1+50W	<5	<.2		<5	90		0.12	<1	13	30	22	3.90	<10	0.77	221	<1	<.01	23	400	14	5	<20	10	0.07	<10	39	<10	<1	61
104	L40+00S: 2+00W	<5	<2		<5	90		0.13	<1	13	32	25	4.67	<10	0.76	175	<1	<.01	23	540	16	<5	<20	10	0.07	<10	50	<10	<1	68
10-1	2,0,000. 2,007F	~	6	a													•					2							-	

Eco-Tech Laboratories Ltd.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	<u>Bi Ca</u>	% Cd	Co	Cr	Cu	Fe %	<b>م</b> ا	Mg %	Mn	Мо	Na %	NI	P	РЬ	Ŝb	Sn	Sr	TI %	U	v	w	Y	Zn
105	L40+005: 2+50W	<5	<.2	2.68	<5	90	10 0.0	X9 <1	14	38	24	5.43	<10	0.75	189	<1	< 01	26	920	18	<5	<20	10	0.07	<10	46	<10	<1	70
106	L40+00S: 3+00W	<5	<.2	2.62	<5	105	10 0.0	)7 <1	13	35	26	5.77	<10	0.59	195	<1	<.01	20	400	18	<5	<20	10	0.09	10	63	<10	<1	59
107	L40+00S: 4+50W	<5	<.2	2.57	<5	115	5 0.3	23 <1	23	35	43	4.62	20	0.77	614	<1	<.01	34	510	18	<5	<20	15	0.09	<10	64	<10	14	72
108	L40+00S: 5+00W	<5	<.2	2.08	<5	90	<5 0.1	4 <1	14	30	44	5.17	10	0.62	316	<1	<.01	22	770	16	<5	<20	12	0.08	<10	65	<10	2	56
109	L40+00S: 5+50W	<5	<.2	2.32	<5	90	5 0.1		15	32		5.44	10	0.62	324	<1	<.01	23	390	20	<5	<20	12	0.08	<10	77	<10	3	55
						•••	• •.		.0	~	~	0.44	10	0.02	924			20	330	20	-0	~20	12	0.00	-10		10	э	50
110	L40+00S: 6+00W	<5	<.2	2.47	<5	105	10 0.1	4 <1	17	37	75	5.86	<10	0.81	323	<1	<.01	31	770	22	<5	<20	12	0.08	10	85	<10	<1	66
111	L40+00S: 6+50W	<5	<.2	2.02	<5	90	5 0.	3 <1	15	33	36	5.92	<10	0.70	327	<1	<.01	25	610	18	<5	<20	10	0.08	10	64	<10	<1	64
112	L40+00S: 7+00W	<5	<.2	2.83	<5	120	10 0.1		20	35	56	5.79	<10	1.02	328	<1		36	490	20	<5	<20	11	0.08	<10	61	<10	•	97
113	L40+00S: 7+50W	<5	<.2	2.04	<5	80	5 0.0		11	26	24	4.23	<10	0.64	213	<1		18	450	14	<5	<20	9	0.05	10	52		<1	
114	L40+00S; 8+00W	<5	< 2	2.43	<5	70	10 0.0		15	35	27	6.13	<10	0.75	242	<1		23	430 640	16	~5 <5	<20	9	0.05			<10	<1	53
114		~		<b>2</b> 1 <b>0</b>			10 0.0		10	55	21	0.13	~10	0.75	292	- 1	2.01	23	040	10	- 5	<b>~</b> 20	3	0.00	<10	58	<10	<1	61
115	L40+00S: 8+50W	<5	0.6	2.68	<5	80	10 0.0	1> 8	13	29	38	5.44	<10	0.58	214	<1	<.01	16	520	20	<5	<20	9	0.07	<10	83	<10	<1	54
116	L40+00S: 9+00W	<5	<2	2.59	<5	110	5 0.		21	18	103	6.80	<10	0.82	479	<1			1530	14	<5	<20	10	0.16	20	134	<10	4	54 62
117	L40+00S: 9+50W	<5	<.2	1.87	<5	60	10 0.0		11	24	23	5.36	<10	0.51	240	•	<.01	17	700	16	<5	<20	7	0.05	<10	70			
118	L40+00S: 10+00W	<5	<.2	1.34	<5	50	5 0.0	-	9	15		3.52	<10	0.39	197	<1	<.01	10	240	18	<5	<20	7	0.05			<10	<1	47
119	L40+00S: 10+50W	<5	<2	2.88	<5	100	10 0.1		19	36		6.70	<10	1.05	281	<1		31	400	20	<5	<20 <20			<10	105	<10	<1	38
110				2.00	-0	100	10 0.	• •I	15		43	0.70	-10	1.05	201	-1	<b>~.01</b>	31	400	20	<b>N</b> 0	×20	12	0.09	10	74	<10	<1	68
120	L40+005: 11+00W	<5	<.2	2.46	<5	70	10 0.0	8 <1	14	34	27	6.13	<10	0.67	256	<1	<.01	20	430	20	<5	<20	9	0.10	<10	77	<10	<1	
121	L40+00S: 11+50W	<5	<.2	3.19	<5	95	10 0.0		18	35		5.82	<10	0.84	321	<1		21	420	20	<5	<20	10	0.10	<10	84	<10	<1	54 64
122	L40+005: 12+00W	<5	<.2	1.82	<5	60	10 0.0		9	20		5.18	<10	0.30	216	-	<.01	9	440	20	<5	<20	9	0.09	<10	104	. –		
123	L40+00S: 12+50W	<5	<.2	2.60	<5	80	10 0.0		14	33	31	6.60	<10	0.70	251	<1		19	920	20	<5	<20	10	0.09			<10	<1	37
124	L40+00S; 13+00W	<5	<.2	2.67	<5	65	10 0.0		13	30		5.30	<10	0.62	232	<1		20	380	20	<5		7		10	83	<10	<1	63
127	E451000. 1510000	-0	~.4	2.01	~0		10 0.1	N ~1	13	30	32	5.30	-10	0.02	232	~1	<b>N.01</b>	20	300	20	<0	<20	'	0.06	<10	63	<10	<1	54
125	L40+00S: 13+50W	<5	0.6	2.63	<5	60	10 0.0	15 <1	13	30	37	6.34	<10	0.68	240	د1	<.01	19	570	20	<5	<20	8	0.06	<10	76	<10	<1	50
126	L40+00S: 14+00W	<5	<.2	4.76	<5	235	<5 0.1		30	10		8.54	<10	1.16	907	<1			1060	20	<5	<20	13	0.13	<10	292	<10	1	
127	L40+00S: 14+50W	<5	<.2	2.49	<5	75	10 0.0		12	31		6.64	<10	0.68	199		<.01	18	600	16	<5	<20	11	0.06	10	292 74	<10	•	74
128	L40+00S: 15+00W	<5	< 2	3.29	<5	75	15 0.0		17	45		7.94	<10	0.88	288	<1	<.01	28	580	20	<5	<20	9	0.09		87		<1	48
129	L40+00S: 15+50W	<5	<.2	2.82	<5	70	10 0.0		13	37		6.63	<10	0.61	197	<1	<.01	18	420	20	<5	<20 <20	11	0.09	<10 <10	78	<10	<1	63
120		-0	<u>r</u>	2.02	-5		10 0.1	1	15	3/	31	0.03	~10	0.01	197	-1	<b>N.UT</b>	10	420	22	<b>~</b> 5	<20	11	0.08	<10	/8	<10	<1	52
130	L40+00S: 16+00W	<5	<.2	1.69	<5	50	10 0.0	13 <1	11	24	28	5.57	<10	0.51	305	<1	<.01	16	470	16	<5	<20	7	0.07	10	78	<10	<1	40
131	L40+50S: B\L 0+00	<5	<.2	2.38	<5	65	5 0.0		14	31		4.33	<10	0.74	226	<1	< 01	24	510	16	<5	<20	6	0.08	20	43	<10	1	64
132	L41+00S: 6+00E	<5	<.2	1.73	<5	70	5 0.1		14	32	34	4.89	<10	0.77	363	<1	<.01	34	780	24	<5	<20	9	0.06	<10	35	<10	4	68
133	L41+00S: 5+50E	<5	<.2	2.05	<5	95	10 0.1	-	17	36		7.02	<10	0.52	289	<1	<.01	24	790	22	~5 <5	<20	9	0.07	10	48			
134	L41+00S: 4+00E	<5	< 2	2.17	<5	70	5 0.0		15	33		3.76	20	0.32	203	<1	<.01	28	330	18	<5	<20				43	<10	<1	102
104	241-000. 4-002	-0	<b>Z</b>	<b>4</b>	-0	,0	0.0	5 -1	15	33	35	3.70	20	0.11	214	~1	vi	20	330	10	< <b>5</b>	< <u>2</u> 0	8	0.07	<10	43	<10	5	66
135	L41+00S: 3+50E	<5	<.2	1.27	<5	65	<5 0.0	i6 <1	8	15	10	3.04	<10	0.22	153	<1	<.01	9	220	12	<5	<20	9	0.04	<10	51	<10	<1	20
136	L41+00S: 3+00E	<5	<.2	1.28	<5	60	5 0.1		12	19		2.86	<10	0.53	262	4	<.01	21	250	12	-5	<20	10	0.04	<10	43	<10	2	39
137	L41+00S: 2+00E	<5	<.2	0.65	<5	50	<5 0.2		4	10		1.22	<10	0.16	84	<1	<.01	8	190	14	<5	<20	15	0.04		30		_	41
138	L41+00S: 1+50E	<5	< 2	1.43	<5	70	<5 0.1		20	21		3.23	90		1217	<1	<.01	21	330						<10		<10	3	20
139	L41+00S: 1+00E	<5	<.2	1.86	<5	70	<5 0.1		19	25										18	<5	<20	15	0.06	<10	43	<10	48	38
120	LAITWO. ITWE	~5	~.2	1.00	~3	10	~0.1	5 1	19	23	37	3.71	<10	0.58	327	<1	<.01	33	490	20	<5	<20	9	0.06	<10	30	<10	3	54
140	L41+00S: 0+50E	<5	<.2	1.55	<5	75	10 0.0	5 <1	15	25	18	5.54	<10	0.37	697	<1	<.01	15	860	16	<5	<20	7	0.09	<10	65	<10	<1	50
141	L41+00S: B\L 0+00	<5	< 2	2.25	<5	70	5 0.0		14	30		4.53	<10	0.64	251	<1	<.01	21	530	16	<5	<20	8	0.09	<10	38	<10	<1	50 77
142	L41+50S: B\L 0+00	<5	<.2	2.11	<5	75	<5 0.2		17	29		3.83	20	0.75	202	<1	<.01	30	400	20	<5								
143	L42+00S: B\L 0+00	<5	<2	1.56	<5	70	5 0.3		12	25		3.34	10	0.75	202	<1		20	400 320		<5 5	<20	13	0.07	<10	43	<10	5	81
140		-0	<b>~.</b> 4	1.00	~ ~ ~	10	5 0.3	· - 1	12	20	41	5.34	10	0.03	241	~1	<.01	20	320	14	5	<20	17	0.06	<10	40	<10	4	51

Eco-Tech Laboratories Ltd.

1

;

1

;

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	p	РЬ	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
144	L42+00S: 0+50E	<5	<.2	2.02	<5	165	15 0.27	<1	17	26	20	6.75	<10	0.52	270	<1	<.01	17	330	22	<5	<20	19	0.13	10	83	<10	<1	89
145	L42+00S: 1+00E	<5	<.2	1.42	<5	75	5 0.37	<1	19	27	32	3.49	40	0.58	306	<1	<.01	30	200	16	5	<20	21	0.08	<10	40	<10	27	60
146	L42+00S: 1+50E	<5	<.2	1.92	<5	80	10 0.27	<1	17	27	41	5.01	10	0.67	217	<1	<.01	32	230	16	<5	<20	14	0.07	<10	45	<10	11	55
147	L42+00S: 3+00E	<5	0.8	1.89	5	85	<5 0.76	<1	14	18	82	2.00	120	0.04	601	<1	<.01	19	1100	16	<5	<20	36	<.01	<10	16	<10	53	22
148	L42+00S: 3+50E	<5	<.2	1.32	<5	90	<5 0.26	<1	9	22	20	1.66	40	0.43	159	<1	<.01	22	370	14	<5	<20	17	0.03	<10	18	<10	13	37
																					-								
149	L42+00S: 4+00E	<5	1.6	2.30	<5	120	<5 0.60	<1	87	28	75	2.48	150	0.25	5823	<1	<.01	102	870	18	<5	<20	37	0.03	<10	19	<10	65	39
150	L42+00S: 4+50E	<5	<.2	1.80	<5	85	<5 0.22	<1	18	35	35	3.91	20	0.71	428	<1	<.01	38	340	16	<5	<20	18	0.08	<10	44	<10	8	62
151	L42+00S: 5+00E	<5	1.4	1.64	<5	230	<5 0.87	<1	21	33	76	3.00	80	0.42	5294	<1	<.01	109	1200	18	<5	<20	53	0.03	20	26	<10	36	91
152	L42+00S: 5+50E	<5	<.2	1.63	<5	75	5 0.28	<1	21	27	35	3.65	30	0.58	751	<1	<.01	28	910	24	<5	<20	19	0.04	<10	34	<10	8	62
153	L42+00S: 6+00E	<5	<.2	1.19	<5	60	5 0.24	<1	12	24	25	3.86	10	0.41	186	<1	<.01	24	370	14	<5	<20	16	0.08	<10	45	<10	6	59
																		-			-						-10	Ū	
154	L43+00S: 0+50E	<5	<.2	1.07	<5	65	<5 0.53	<1	10	17	31	3.72	10	0.24	90	<1	<.01	18	190	14	<5	<20	20	0.07	<10	57	<10	6	36
155	L43+00S: 1+00E	<5	<.2	1.90	<5	80	5 0.17	<1	22	29	26	4.47	<10	0.61	440	<1	<.01	22	290	18	<5	<20	13	0.07	<10	51	<10	3	58
156	L43+00S: 1+50E	<5	0.6	2.36	<5	90	<5 0.66	<1	25	26	46	3.27	40	0.38	1345	<1	<.01	31	1220	20	<5	<20	35	0.03	<10	40	<10	28	57
157	L43+00S: 2+00E	<5	<.2	2.11	<5	90	10 0.09	<1	15	34	22	6.07	<10	0.62	177	<1	<.01	23	370	16	<5	<20	8	0.09	10	46	<10	<1	76
158	L43+00S: 2+50E	<5	<.2	1.38	<5	75	15 0.10	<1	11	23	25	5.90	<10	0.44	115	<1	<.01	18	180	14	<5	<20	11	0.09	10	63	<10	<1	53
																					-		••					••	~
159	L43+00S: 3+00E	<5	1.0	0.90	<5	180	<5 1.74	<1	7	16	40	1.44	50	0.11	3828	<1	<.01	26	1510	8	<5	<20	77	0.02	30	16	<10	34	62
160	L43+00S: 3+50E	<5	<.2	1.84	<5	90	10 0.12	<1	11	26	22	5.59	<10	0.33	185	<1	<.01	16	380	16	<5	<20	12	0.07	20	74	<10	<1	54
161	L43+00S: 4+00E	<5	<.2	1.71	<5	65	<5 0.10	<1	14	25	32	3.40	<10	0.61	225	<1	<.01	28	410	14	5	<20	8	0.06	<10	34	<10	3	61
162	143+00S: 4+50E	<5	0.6	1.63	<5	160	<5 0.70	<1	17	28	60	3.21	50	0.44	2957	<1	<.01	41	870	14	<5	<20	41	0.04	10	36	<10	25	70
163	L43+00S: 5+00E	<5	<.2	1.65	<5	95	<5 0.35	<1	20	27	47	3.87	30	0.55	1139	<1	<.01	35	640	16	<5	<20	23	0.04	<10	36	<10	18	80
																					-						-10		
164	L43+00S: 5+50E	<5	<.2	0.30	<5	55	<5 0.10	<1	5	8	8	1.00	<10	0.10	113	<1	<.01	6	110	6	<5	<20	11	0.04	10	33	<10	<1	26
165	L43+00S: 6+00E	<5	0.6	2.05	<5	70	5 0.22	<1	21	30	47	5.02	50	0.38	301	<1	<.01	43	430	22	<5	<20	15	0.06	<10	42	<10	27	53
166	L42+50S: B\L 0+00	<5	<.2	1.48	<5	60	10 0.22	<1	13	24	28	3.46	30	0.40	177	<1	<.01	19	350	16	<5	<20	15	0.05	<10	54	<10	16	40
167	L43+50S: B\L 0+00	<5	<.2	2.13	<5	110	5 0.30	<1	23	28	46	3.90	10	0.82	411	<1	<.01	31	410	16	<5	<20	13	0.10	<10	77	<10	6	63
168	L44+00S: B\L 0+00	<5	<.2	2.19	<5	110	5 0.33	<1	21	33	61	5.23	10	0.60	500	<1	<.01	34	300	18	<5	<20	22	0.08	10	67	<10	, e	55
																						-						-	
169	L44+00S: 0+50E	<5	<.2	1.76	. <5	85	5 0.57	<1	18	30	38	3.69	20	0.74	347	<1	<.01	33	570	14	5	<20	23	0.06	<10	47	<10	7	60
170	L44+00S: 1+00E	<5	<.2	1.52	<5	50	<5 0.19	<1	14	23	34	3.33	<10	0.52	123	<1	<.01	30	130	16	<5	<20	12	0.07	<10	44	<10	<1	52
171	L44+00S: 1+50E	<5	<.2	1.94	<5	120	10 0.63	<1	26	9	37	4.13	<10	0.92	447	<1	<.01	9	770	14	5	<20	20	0.16	10	124	<10	2	62
172	L44+00S: 2+00E	<5	1.2	2.33	<5	335	10 0.85	<1	43	34	44	6.82	40	0.70	6756	<1	<.01	60	1470	14	<5	<20	39	0.07	40	71	<10	21	108
173	L44+00S: 2+50E	<5	0.8	1.79	10	145	<5 1.08	1	4	19	94	1.10	130	0.11	2273	<1	<.01	28	1940	14	<5	<20	46	0.01	<10	16	<10	48	51
174	L44+00S: 3+00E	<5	<.2	1.44	<5	70	10 0.33	<1	13	24	18	3.41	<10	0.63	188	<1	<.01	21	210	14	<5	<20	16	0.07	10	49	<10	1	64
175	L44+00S: 3+50E	<5	3.0	2.01	<5	420	<5 0.98	1	33	38	40	4.50	40	0.50	10000	2	<.01	75	1240	14	<5	<20	49	0.06	100	51	<10	30	101
176	L44+00S: 4+00E	<5	<.2	1.03	<5	60	10 0.08	<1	8	17	12	3.70	<10	0.20	173	<1	<.01	9	310	14	<5	<20	9	0.07	10	55	<10	<1	46
177	L44+00S: 4+50E	<5	0.2	0.74	<5	70	<5 0.21	<1	11	13	11	2.07	<10	0.20	413	<1	<.01	10	230	10	<5	<20	15	0.03	<10	23	<10	3	27
178	L44+00S: 5+00E	<5	0.4	2.05	<5	75	<5 0.18	<1	45	32	45	3.80	40	0.43	1267	<1	<.01	32	400	26	<5	<20	17	0.07	<10	46	<10	22	49
																									-				
179	L44+00S: 5+50E	<5	<.2	1.15	<5	85	<5 0.09	<1	14	22	13	2.27	<10	0.44	454	<1	<.01	14	170	18	<5	<20	11	0.08	10	41	<10	1	55
180	L44+00S: 6+00E	<5	<.2	1.02	<5	100	5 0.22	<1	9	19	17	3.00	<10	0.25	220	<1	<.01	12	270	14	<5	<20	18	0.07	<10	51	<10	2	39
181	L44+00S: 2+50W	<5	<.2	1.65	<5	65	5 0.20	<1	18	25	36	3.50	10	0.53	448	<1	<.01	25	420	16	<5	<20	13	0.05	<10	39	<10	6	58
182	L44+50S: B\L 0+00	<5	<.2	1.22	<5	75	<5 0.14	<1	16	21	18	2.30	<10	0.52	679	<1	<.01	16	270	12	5	<20	10	0.06	10	36	<10	2	49
																												-	

Page 5

.

Eco-Tech Laboratories Ltd.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bì (	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	РЬ	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
183	L45+00S: 6+00E	<5	<.2	2.40	<5	90	<5	0.29	<1	27	36	41	4.15	20	0.59	306	<1	<.01	38	580	24	<5	<20	19	0.08	<10	51	<10	17	47
184	L45+00S: 5+50E	<5	<.2	2.81	<5	100	5	0.18	<1	21	40	42	4.34	<10	0.83	206	<1	<.01	41	470	22	5	<20	16	0.08	<10	42	<10	2	86
185	L45+00S: 5+00E	<5	<.2	1.86	<5	75	15	0.11	<1	17	35	29	6.67	<10	0.48	131	<1	<.01	23	240	18	<5	<20	10	0.12	20	59	<10	<1	48
186	L45+00S: 4+50E	<5	<.2	2.11	<5	85	10	0.18	<1	21	33	44	5.39	<10	0.52	404	<1	<.01	34	650	26	<5	<20	10	0.07	<10	34	<10	<1	69
187	L45+00S: 4+00E	<5	0.4	1.91	<5	70	<5	0.44	<1	30	33	46	4.29	30	0.47	1084	<1	<.01	26	1310	20	<5	<20	24	0.02	<10	40	<10	11	61
188	L45+00S: 3+50E	<5	<.2	1.20	<5	55	<5	0.13	<1	10	24	10	<b>.</b>	-10	0.00	200	<1	~ 01	-		•	-		~					_	
189	L45+00S: 3+00E	<5	<.2	0.68	<5	55	-	0.09	<1	5	24 13	18	2.32	<10	0.60	266	-	<.01	21	250	8	5	<20	9	0.05	<10	26	<10	2	53
190	L45+00S: 2+50E	<5	0.4	1.18	<5	135	-	0.28	<1	51	18	14	1.14	10 40	0.21	104	<1	<.01	9	180	12	<5	<20	9	0.03	<10	14	<10	3	29
191	L45+00S: 2+00E	<5	<.2	1.28	<5	60	-	0.06	<1		21	34	1.54		0.25	1967	<1 <1	<.01	21	590	16	<5	<20	24	0.03	<10	17	<10	11	56
192	L45+00S: 1+50E	<5	<.2	0.93	<5	55		0.08	<1	12	13	14 7	2.56	<10	0.52	202 77	-	<.01	17	220	14	<5	<20	8	0.06	<10	29	<10	<1	52
172	L43-000. 1-00L	~	<b>~.2</b>	0.95	- 5	55	-5	0.04	~1	0	13	'	1.58	<10	0.29	11	<1	<.01	9	190	16	<5	<20	8	0.05	<10	26	<10	<1	34
193	L45+00S: 1+00E	<5	<.2	1.33	<5	60		0.04	<1	7	19	15	2.39	<10	0.34	103	<1	<.01	11	200	20	<5	<20	9	0.04	<10	30	<10	<1	40
194	L45+00S: 0+50E	<5	<.2	1.48	<5	55		0.03	<1	4	13	11	2.56	<10	0.20	46	<1	<.01	6	220	18	<5	<20	8	0.04	<10	56	<10	<1	30
195	L45+00S: B\L 0+00	<5	<.2	2.32	<5	95		0.11	<1	18	36	32	6.03	<10	0.65	294	<1	<.01	26	300	20	<5	<20	11	0.10	<10	63	<10	<1	76
196	L45+00S: 0+50W	<5	<.2	1.69	<5	80		0.08	<1	10	24	23	6.17	<10	0.31	76	<1	<.01	13	180	18	<5	<20	9	0.09	10	105	<10	<1	41
197	L45+00S: 2+50W	<5	<.2	1.69	<5	95	5	0.57	<1	16	27	51	4.85	10	0.54	251	<1	<.01	28	400	16	<5	<20	33	0.06	<10	54	<10	8	59
198	L45+00S: 3+00W	<5	<.2	1.66	<5	105	<5	0.46	<1	16	25	62	3.47	20	0.59	419	<1	<.01	30	630	14	<5	<20	22	0.04	<10	43	<10	15	65
199	L45+00S: 3+50W	<5	<.2	1.83	<5	105	<5	0.57	<1	18	28	89	4.00	60	0.55	486	<1	<.01	35	630	18	<5	<20	30	0.05	<10	47	<10	29	67
200	L45+00S: 4+00W	<5	<.2	1.91	<5	125	5	0.24	<1	17	27	43	4.26	20	0.56	255	<1	<.01	26	370	16	<5	<20	20	0.06	<10	46	<10	7	63
201	L45+50S: B\L 0+00	<5	<.2	1.75	<5	75	5	0.07	<1	11	22	20	4.16	<10	0.36	91	<1	<.01	17	240	16	<5	<20	9	0.08	<10	49	<10	<1	46
202	L46+00S: 6+00E	<5	<.2	1.91	<5	115	15	0.19	<1	22	39	58	6.72	<10	0.68	277	<1	<.01	42	1410	24	<5	<20	15	0.10	10	59	<10	<1	89
203	L46+00S: 5+50E	<5	<.2	1.13	<5	85	5	0.10	<1	17	21	~	2 67		0.24	4777	- 4	- 04	47	400					0.07					
203	L46+00S: 5+00E	<5	<.2	1.13	<5	80	-	0.08	<1	12 13		20	3.57	<10	0.31	423	<1	<.01	17	420	16	<5	<20	10	0.07	10	48	<10	<1	55
205	L46+00S: 4+50E	<5	<.2	1.84	<5	85	-	0.00	<1	13	27 34	21 30	4.36	<10	0.35	249	4	<.01	19	530	24	<5	<20	9	0.08	10	63	<10	<1	74
205	146+005: 4+00E	<5	<.2	1.07	<5	80		0.35	<1	11	34 24	18	5.45 4.78	<10	0.48 0.35	124 104	<1	<.01	23	280	22	<5	<20	19	0.10	20	59	<10	2	53
207	L46+00S: 3+50E	<5	<.2	1.34	<5	55		0.33	<1	14	23	28	4.70	<10	0.55	154	<1 <1	<.01	16 22	240	14	<5	<20	21	0.12	20	71	<10	<1	58
207	2407003. 3700E	~5	~.2	1.94	-5	55	-5	0.34	~1	14	23	28	2.04	<10	0.55	154	<b>K</b> 1	<.01	22	780	12	<5	<20	16	0.03	<10	31	<10	4	56
208	L46+00S: 3+00E	<5	<.2	1.29	<5	85	<5	0.56	<1	17	22	39	2.94	20	0.44	893	<1	<.01	20	1120	16	<5	<20	29	0.02	10	37	<10	8	51
209	L46+00S: 2+50E	<5	<.2	1.65	<5	105	<5	0.62	<1	12	28	54	2.97	20	0.59	264	<1	<.01	25	850	18	5	<20	33	0.04	<10	44	<10	9	64
210	L46+00S: 2+00E	<5	<.2	1.23	<5	100	<5	0.86	2	13	20	41	2.59	20	0.45	772	<1	<.01	23	590	12	<5	<20	42	0.04	10	35	<10	10	67
211	L46+00S: 1+50E	<5	<.2	0.98	<5	70	<5	0.28	<1	9	18	25	2.44	<10	0.44	131	<1	<.01	19	230	10	<5	<20	18	0.06	<10	27	<10	3	51
212	L46+00S: 1+00E	<5	0.4	2.21	<5	140	<5	0.89	<1	13	38	45	2.46	50	0.64	1308	<1	<.01	38	1260	18	10	<20	46	0.03	<10	26	<10	20	82
213	L46+00S: 0+50E	<5	0.2	1.06	<5	60	<5	0.98	<1	2	12	81	0.52	80	0.05	175	<1	<.01	11	1740	12	<5	<20	45	<.01	<10	8	<10	28	54
214	L46+005: 1+00W	<5	<.2	1.90	<5	65	-	0.11	<1	19	29	45	3.93	10	0.48	379	<1	<.01	23	510	18	<5	<20	9	0.05	<10	40	<10	20	59
215	L46+00S: 1+50W	<5	<.2	1.37	<5	65	-	0.12	<1	9	23	18	5.92	<10	0.26	117	<1	<.01	11	230	16	<5	<20	9	0.08	10	74	<10	<1	38
216	L46+00S: 2+00W	<5	< 2	2.27	<5	95		0.21	4	21	32	49	4.94	20	0.77	296	<1	<.01	26	490	20	<5	<20	15	0.11	<10	81	<10		70
217	L46+00S: 2+50W	<5	<.2	1.80	<5	70		0.10	<1	9	21	27	3.56	<10	0.33	98	<1	<.01	21	390	18	<5	<20	9	0.04	<10	34	<10	4 <1	36
218	L46+005: 3+00W	<5	<.2	1.04	<5	60	5	0.17	<1	9	17		2 60	~10	0.24	100	- 4	~ 01	• •	150	40	-5	~~~		0.07	40				
219	L46+00S: 3+50W	<5	<.2	1.12	<5	70	-	0.17	<1	9	21	23 28	3.50 3.95	<10 <10	0.31	120 116	4	<.01	14	150	12	<5	<20	14	0.07	10	47	<10	1	34
219	L46+00S: 4+00W	<5	<.2	2.39	<5	145		0.18	<1	33	∠1 36	28 72			0.31		<1	<.01	14	130	12	<5	<20	15	0.08	<10	52	<10	<1	33
220	L46+00S: 4+50W	<5			<5 <5	145	-	0.67	-				5.53	20	0.79	1223	<1	<.01	43	720	24	<5	<20	33	0.07	<10	71	<10	13	96
<b>44</b> 1	L407003. 473088	<0	<.2	1.98	<0	110	-0	0.53	<1	24	29	53	4.45	20	0.68	469	<1	<.01	33	440	16	<5	<20	24	0.07	<10	59	<10	12	62

IN DOYLE FTK 94-841 Eco-Tech Laboratories Ltd.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BIO	Ca %	Cd	Co	Cr	Cu	Fe %		Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Sn	<u>8r</u>	Ti %	. บ	<u>v</u>	<u>w</u>	Y	Zn
222	L46+00S: BVL 0+00	<5	<.2	2.04	<5	75	<5	0.07	<1	14	32	26	3.50	<10	0.58	166	<1	< 01	24	270	18	<5	<20	7	0.07	<10	42	<10	<1	62
223	L47+00S: 6+00E	<5	<.2	1.62	<5	115	10	0.17	<1	18	39	39	4.83	<10	0.48	277	<1	<.01	33	270	22	<5	<20	14	0.11	<10	59	<10	4	57
224	L47+00S: 5+50E	<5	<.2	1.46	<5	105	10	0.10	<1	20	29	23	4.63	<10	0.46	202	<1	<.01	24	290	18	<5	<20	11	0.09	10	44	<10	<1	69
225	L47+00S: 5+00E	<5	<.2	1.08	<5	70	10	0.07	<1	11	23	17	4.07	<10	0.33	142	<1	<.01	16	260	14	<5	<20	9	0.10	<10	56	<10	<1	48
226	L47+00S: 4+50E	<5	<.2	2.41	<	90		0.13	<1	18	34	25	3,78	<10	0.60	207	<1	<.01	29	640	26	5	<20	11	0.08	<10	40	<10	1	129
	247-000-4-000				-				•							-														
227	L47+00S: 4+00E	<5	<.2	1.89	<5	90	10	0.08	<1	15	35	34	5.12	<10	0.62	218	<1	<.01	29	410	20	<5	<20	9	0.07	10	50	<10	<1	73
228	L47+00S: 3+50E	<5	<.2	1.64	<5	95	10	0.22	<1	15	34	21	3,90	<10	0.78	509	<1	<.01	27	250	14	<5	<20	15	0.08	<10	44	<10	<1	83
229	L47+00S: 3+00E	<5	0.4	1.21	<5	160	<5	0.71	<1	15	20	40	2.17	60	0.28	1055	<1	<.01	25	700	14	<5	<20	42	0.03	<10	27	<10	21	71
230	L47+00S: 2+50E	<5	0.6	1.92	<5	130	-	0.50	<1	53	33	45	3.80	30	0.53	2603	<1	<.01	31	1210	20	<5	<20	29	0.03	20	48	<10	10	79
230	L47+00S: 2+00E	<5	<.2	1.38	<5	65		0.11	<1	10	23	19	2.43	<10	0.57	155	<1	<.01	21	360	14	<5	<20	10	0.05	<10	26	<10	1	53
231	L477003. 27002	-5	<b>-</b>	1.00	~	~		0.11	- •	.0		10	A., TU		0.01		•				••								•	•••
232	L47+00S: 1+50E	<5	<.2	1.02	<5	50	<5	0.09	<1	8	16	21	2.03	<10	0.34	145	<1	<.01	12	260	14	<5	<20	9	0.05	<10	33	<10	1	39
233	L47+00S: 1+00E	<5	<.2		<5	55	-	0.04	<1	10	21	13	3.45	<10	0.48	202	<1	<.01	17	410	14	<5	<20	6	0.07	<10	31	<10	<1	54
235	L47+00S: 0+50E	<5	<2		<5	100		0.07	<1	13	35	19	4.75	<10	0.60	213	<1	<.01	25	710	18	<5	<20	8	0.07	10	43	<10	<1	84
	L47+005: 0+50E	<5	<.2		<5	70		0.13	<1	10	24	23	2.92	<10	0.53	116	<1	<.01	21	690	18	5	<20		0.06	<10	38	<10	2	54
235		-			~5	120		0.07	<1	17	47	26	6.66	<10	0.74	208	<1	<.01	29	660	24	<5	<20	8	0.09	<10	55	<10	4	99
236	L47+00S: 0+50W	<5	<.2	3.26	40	120	10	0.07	51	17		20	0.00	~10	0.74	200	~1	5.01	23		24	-5	-20		0.00	-10	3	-10		33
237	147+00S: 1+00W	<5	<.2	1.67	<5	75	10	0.04	<1	11	27	19	4.80	<10	0.46	121	<1	<.01	17	350	16	<5	<20	7	0.08	<10	56	<10	<1	49
	L47+00S: 1+50W	~5 <5	<.2		<5	100		0.05	<1	14	34	32	6.62	<10	0.60	163	<1	<.01	20	420	18	<5	<20	7	0.10	10	91	<10	<1	52
238		+			<5	55		0.02	<1	9	18	28	2.97	<10	0.35	94	<1	<.01	20	150	10	<5	<20	7	0.05	10	40	<10	<1	35
239	L47+00S: 2+00W	<5	<.2		-> <5		-		-	- 3 14	33	36	7.05	<10	0.43	105	<1	<.01	24	280	20	<5	<20	11	0.10	10	69	<10	<1	51
240	L47+00S: 2+50W	<5	<.2	1.99	-	80		0.10	<1		21	- 36 25		<10	0.38	207	<1	<.01	18	220	14	<5	<20	12	0.09	20	56	<10	<1	41
241	L47+00S: 3+00W	<5	<.2	1.15	<5	85	10	0.13	<1	13	21	25	4.19	10	0.30	201	~1	5.01	10	220	14	-0	~20	12	0.05	20		-10	~1	
242	L47+00S: 3+50W	<5	- 2	1.83	4	110	<5	0.28	<1	19	27	38	3.69	10	0.66	751	<1	<.01	30	430	14	<5	<20	17	0.05	<10	46	<10	5	67
242	L47+005: 3+50VV	-	<.2		~3 <5	110		0.31	<1	20	30	38	4.34	<10	0.64	439	<1	<.01	30	430	14	5	<20	18	0.09	<10	53	<10	4	63
243		<5			<5	90	. –	0.31	<1	11	25	29	4.33	<10	0.38	135	<1	<.01	18	190	16	<5	<20	12	0.08	<10	48	<10	4	45
244	L47+00S: 4+50W	<5	<.2		-						25	25 31	3.06	<10	0.56	284	<1	<.01	21	360	12	5	<20	15	0.05	<10	42	<10	4	45
245	L47+00S: 5+00W	<5	<.2		<5	80		0.26	<1	15	23	18	3.49	<10	0.30	401	<1	<.01	16	540	14	<5	<20	7	0.06	<10	45	<10	<1	66
246	1,47+50S: B\L 0+00	<5	<.2	1.71	<5	85	5	0.05	<1	11	25	10	3,43	<10	U.44	401	~1	<b></b>	10	340		~5	~20	'	0.00	-10	~	-10	~1	
247	L48+00S: 6+00E	<5	<.2	0.52	<5	65	<5	0.07	<1	5	11	8	1.47	<10	0.12	463	<1	<.01	6	220	10	<5	<20	8	0.04	<10	35	<10	<1	25
247	L48+00S: 5+50E	<5	<.2		<5	135	-	0.42	<1	19	28	41	3.53	20	0.71	689	<1	<.01	34	660	16	<5	<20	24	0.05	<10	47	<10	11	84
248		-			<5	90		0.42	<1	14	29	38	5.02	<10	0.40	224	<1	<.01	23	280	16	<5	<20	13	0.11	20	72	<10	<1	60
249	L48+00S: 5+00E	<5	<.2		-		• -			8	16			<10	0.20	106	<1	<.01	11	170	14		<20	8	0.11	<10	76	<10	<1	39
250	L48+00S: 4+50E	<5	<.2		<5	60	10	0.04	<1	-		14	2.82			217	<1	<.01	23	360	20	<5	<20	15	0.07	10	50	<10	<1	83
251	L48+00S: 4+00E	<5	<.2	2.02	<5	105	10	0.20	<1	16	33	22	4.49	<10	0.63	217	~1	5.01	23	300	20	~3	~20	15	0.07	10	50	~10	~1	63
		_			-								4 00	-10	0.04			- 04	23	850	24	<5	<20	8	0.07	<10	52	<10	<1	109
252	L48+00S: 3+50E	<5	<.2		<5	95		0.05	<1	13	42	18	4.88		0.64	163	<1	<.01				-		-					•	
253	L48+00S: 3+00E	<5	<.2		<5	130		0.17	<1	21	32	41	4.11	20	0.79	2075	<1	<.01	34	530	18	<5	<20	13	0.05	10	53	<10	11	81
254	L48+00S: 2+50E	<5	<.2		<5	70	10	0.11	<1	13	29	27	4.28	<10	0.60	159	<1	<.01	28	310	16	<5	<20	8	0.07	<10	34	<10	2	59
255	L48+00S: 2+00E	<5	<.2	1.90	<5	105	10	0.06	<1	15	34	24	4.75	<10	0.64	185	<1	<.01	30	360	18	<5	<20	8	0.09	<10	43	<10	<1	92
256	L48+00S: 1+50E	<5	<.2	2.16	<5	115	10	0.07	<1	15	33	20	4.75	<10	0.65	182	<1	<.01	29	500	18	<5	<20	10	0.09	<10	43	<10	<1	101
																			-			-								
257	L48+00S: 1+00E	<5	<.2	2.37	4	105		0.09	<1	15	32	24		<10		179	<1	<.01	24	370	22	<5	<20	10	0.09	<10	54	<10	<1	83
258	L48+00S: 0+50E	<5	<.2	1.38	<5	65	<5	0.04	<1	6	21	12		<10		84	<1	<.01	10	330	- 14	<5	<20	6	0.02	<10	33	<10	<1	41
259	L48+00S: B\L 0+00	<5	<.2	1.56	<5	75	<5	0.09	<1	9	21	13		<10	0.43	121	<1	<.01	17	290	12	5	<20	6	0.05	<10	33	<10	1	43
260	L48+00S: 0+50W	<5	<.2	2.35	<5	95	15	0.10	<1	16	38	22	5.40	<10	0.72	266	<1	<.01	28	420	14	<5	<20	6	0.09	<10	57	<10	<1	92

ļ

.

Co-Tech Laboratories Ltd.

?

1 1

ł

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi Ca	% Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
261	L48+00S: 1+50W	<5	<.2	1.43	<5	95	5 0.	1 <1	21	25	13	2.99	<10	0.46	748	<1	<.01	23	170	10	10	<20	6	0.06	<10	46	<10	<del></del>	47
262	L48+00S: 2+50W	<5	0.4	2.22	<5	105	10 0.:	24 <1	20	33	39	4.55	20	0.72	825	<1	<.01	29	590	8	5	<20	10	0.04	<10	57	<10	5	<del>6</del> 3
263	L48+00S: 3+00W	<5	0.8	2.41	<5	140	5 0.	32 <1	17	40	67	5.74	20	0.61	4786	<1	<.01	52	780	8	5	<20	12	0.06	20	45	<10	11	57
264	L48+00S: 3+50W	<5	<.2	0.84	<5	70	10 0.3	94 <1	7	18	21	3.18	<10	0.24	281	<1	<.01	11	270	10	<5	<20	14	0.07	<10	50	<10	1	
265	L48+00S: 4+00W	<5	<.2	1.87	<5	85	5 0.	3 <1	21	27	41	3.96	20	0.66	409	<1	<.01	29	360	12	10	<20	4	0.06		50 51		7	31
		-			-							0.00	20	0.00	400	1	01	23	360	14	10	~20	4	0.08	<10	51	<10		61
266	L48+00S: 5+00W	<5	<.2	1.54	<5	80	10 0.1	5 <1	13	25	28	3.89	<10	0.67	173	<1	<.01	25	320	8	5	<20	6	0.09	<10	48	<10	2	67
267	L48+00S: 5+50W	<5	<.2	1.71	<5	110	10 0.1	2 <1	14	28	29	4.62	<10	0.72	169	<1	<.01	24	300	8	10	<20	4	0.03	<10	<b>40</b> 57	<10	<1	52 55
268	L48+00S: 6+00W	<5	<.2	2.05	<5	80	10 0.0	5 1	14	31	26	5.73	<10	0.63	171	<1	<.01	23	570	8	10	<20	2	0.10	<10	56	<10		
269	L48+00S: 6+50W	· <5	<.2	1.61	<5	110	10 0.0	5 <1	13	29	18	5.41	<10	0.53	138	<1	<.01	20	240	8	<5	<20	5	0.09	10			<1	61
270	L48+50S: B\L 0+00	<5	<.2	2.20	<5	140	10 0.1		15	36	26	5.08	<10	0.78	189	<1	<.01	32	250	10	5	<20	14	0.09			<10	<1	56
		-			-	• • •		•		~	20	0.00	-10	0.10	100		01	JZ	2.00	10	5	~20	14	0.09	<10	57	<10	<1	89
271	L49+00S: 6+00E	<5	<.2	1.83	<5	100	10 0.1	6 <1	16	34	36	5.53	<10	0.53	640	<1	<.01	29	990	18	5	<20	9	0.09	10	71	<10	<1	75
272	L49+00S: 5+50E	<5	<.2	1.24	<5	90	5 0,1	3 <1	11	25	13	3.23	<10	0.41	198	<1	<.01	15	730	18	<5	<20	ğ	0.11	<10	62	<10	1	
273	L49+00S: 5+00E	<5	<.2	0.97	<5	115	10 0.1	-	10	23	13	4.21	<10	0.26	254	<1	< 01	13	750	12	<5	<20	13	0.09	10			•	63 70
274	L49+00S: 4+50E	<5	<.2	1.41	<5	50	<5 0.3	- •	12	25	20	3.59	<10	0.49	195	<1	<.01	22	370	12	5	<20	11	0.05		68	<10	<1	70
275	L49+00S; 4+00E	<5	0.6	2.10	<5	160	<5 0.9		17	34	44	3.57	30	0.60	624	<1	<.01	33	1030	14	10	<20	52	0.04	<10	38	<10	<1	55
		-			-							0.07		0.00	044			33	1000	1.4	10	~20	52	0.04	<10	46	<10	13	106
276	L49+00S; 3+50E	<5	<.2	1.92	<5	100	10 0.3	3 <1	12	30	19	4.72	<10	0.35	160	<1	<.01	19	320	14	<5	<20	12	0.08	<10	56			~
277	L49+00S: 3+00E	<5	<.2	1.97	<5	75	10 0.0		15	29	18	4.73	<10	0.53	261	<1	<.01	25	720	10	5	<20	2	0.06	<10	- 300 - 41	<10	2	63
278	L49+00S: 2+50E	<5	<.2	2.17	<5	115	15 0.0		17	35	22	6.91	<10	0.41	199	<1	<.01	22	470	16	<5	<20	5				<10	<1	80
279	L49+00S: 2+00E	<5	0.6	1.95	<5	155	<5 0.3		24	34	25	2.93	30	0.14	3338	12	<.01	22	470 660	10	<5	<20	20	0.11	10	81	<10	<1	114
280	L49+00S: 1+50E	<5	0.2	1.50	<5	55	<5 0.4	-	35	16	22	2.51	20	0.08	905	<1		16	330		-			0.05	20	46	<10	12	74
		-0	0.2	1.00			· <b>O O</b> ,	• •	35	10	22	2.01	20	0.00	303	~1	<.01	10	330	12	<5	<20	4	0.03	<10	26	<10	6	18
281	L49+00S; 1+00E	<5	<.2	1.73	<5	80	10 0.0	8 <1	14	32	21	5.67	<10	0.47	149	<1	<.01	22	410	14	<5			0.40		~			
282	L49+00S: 0+50E	<5	<.2	1.89	<5	105	5 0.2		32	25	32	4.76	20	0.43	576	<1		33	780	•••	-	<20	4	0.13	10	62	<10	1	64
283	L49+00S; B\L 0+00	<5	<.2	1.76	<5	100	10 0.2	-	15	32	25	5.04	<10	0.55	149	<1	<.01			12	<5	<20	15	0.05	<10	60	<10	7	64
284	L49+00S: 0+50W	<5	< 2	2.38	<5	85	5 0.1		21	28	47	4.87	<10	0.55	263		<.01	25	220	12	<5	<20	13	0.11	<10	64	<10	2	64
285	L49+00S: 1+00W	<5	<.2	3.04	<5	95	10 0.0	•	17	20 38	25	4.07 5.44	<10	0.58	203 149	<1	<.01	31	230	10	10	<20	4	0.10	<10	76	<10	1	60
200		-0	7,2	3.04	~~	~	10 0.0	J -1	17	30	25	3.44	10	0.56	143	<1	<.01	34	380	12	<5	<20	5	0.07	<10	34	<10	2	80
286	L49+00S: 1+50W	<5	<.2	3.27	<5	75	10 0.0	9 <1	15	39	32	5.71	<10	0.54	146	<1	<.01	31	450	4.4	<5	~200	~	0.07					
287	L49+00S: 2+00W	<5	<.2	2.14	<5	135	15 0.1	-	42	30		10.60	10	0.42	2104	<1	<.01	23	430 510	14 6	<5	<20	2	0.07	<10	37	<10	<1	55
288	L49+00S: 2+50W	<5	<.2	2.18	<5	115	15 0.1		15	37	29	6.41	<10	0.42	181	<1		23 27		-	-	<20	7	0.07	20	77	<10	4	60
289	L49+005: 3+00W	<5	<.2	1.64	<5	80	15 0.1	- •	12	30	23	5.43	<10	0.44	193	<1	<.01		420	10	<5	<20	7	0.08	<10	50	<10	<1	81
290	L49+005: 3+50W	<5	<.2	1.63	<5	60	10 0.0		10	29	23	3.07		0.59	121		<.01	20	380	12	<5	<20	11	0.10	<10	67	<10	3	54
200		-0	<b>~.4</b>	1.03	-5		10 0.0	0 1	10	29	23	3.07	<10	0.59	121	<1	<.01	21	340	12	5	<20	4	0.06	<10	38	<10	<1	53
291	L49+005: 4+00W	<5	<.2	1.72	<5	100	10 0.1	5 <1	13	36	18	4.71	<10	0.79	124	<1	<.01	28	330	8	10	-00	7		-40	~		-	
292	L49+00S: 4+50W	<5	<.2	2.08	<5	95	5 0.2		18	29	43	4.37	20	0.68	337	<1	<.01	27	530	10	5	<20	13	0.13	<10	52	<10	3	60
293	L49+00S: 5+00W	<5	< 2	2.19	<5	105	15 0.1		18	42	28	5.46	∡0 <10	0.86							-	<20		0.06	<10	54	<10	6	64
294	L49+00S: 5+50W	<5	<.2	1.61	<5	105	5 0.2		13	23	∡o 38	5.40 3.57	20	0.65	163 241	<1	<.01	32	270	8	10	<20	7	0.12	10	67	<10	3	.77
295	L49+00S: 6+00W	~5 <5	0.2	1.99	<5	110	5 0.2		18	23 28	38 58					<1	<.01	22	250	8	5	<20	10	0.06	<10	53	<10	8	58
200		-0	U.Z	1.33	-0	110	5 0.5	<u> </u>	10	20	90	4.03	20	0.63	1321	<1	<.01	25	860	8	10	<20	19	0.04	<10	56	<10	16	58
296	L49+00S: 6+50W	<5	<.2	2.41	<5	115	10 0.2	3 <1	22	33	48	5.16	<10	0.83	317	<1	<.01	20	270	40	=		•	0.00			-10		
297	L49+00S: 7+00W	<5	<.2	1.80	<5	80	5 0.4	-	16	33 26	40 38	5.10 4.17	<10	0.63	224	<1		30	270	10	5	<20	9	0.09	<10	69 50	<10	5	77
298	L49+50S: B\L 0+00	<5	<.2	2.15	<5	80	10 0.1		14	20 37	38 30				224 136		<.01	24	250 520	54	5	<20	13	0.07	<10	59	<10	5	53
299	L50+00S: 6+00E	<5		1.60	<5	150	<5 0.6	-	24	30		5.29	<10	0.62	517	<1	<.01	26	530	18	5	<20	5	0.09	10	53	<10	<1	60
200		-5	~.4	1.00	~5	100		1	24	30	81	4.03	10	0.89	517	<1	<.01	41	960	14	10	<20	22	0.10	<10	49	<10	9	75

n<mark>a seria s</mark>eria a la seria LOUIS DOYLE ETK 94-841

Eco-Tech Laboratories Ltd.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi Ca	% Cd	Co	Cr	Cu Fe	e %	La M	Ag %	Mn	Мо	Na %	Nł	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
300	L50+00S: 5+50E	<5	<.2	1.18	<5	90	10 0.3	8 <1	9	26	18 3	3.40	<10	0.41	135	<1	<.01	16	220	14	<5	<20	22	0.10	<10	64	<10	3	57
301	L50+00S: 5+00E	<5	<.2	2.02	<5	100	<5 0.8	6 <1	23	30	57 4	.59	60	0.48	460	<1	<.01	35	580	14	<5	<20	46	0.07	<10	51	<10	35	65
302	L50+00S: 4+50E	<5	<.2	0.48	<5	85	<5 0.2	1 <1	6	11	9 1	.32	<10	0.18	435	<1	<.01	7	170	6	<5	<20	10	0.04	<10	24	<10	1	35
303	L50+00S: 4+00E	<5	<.2	1.89	<5	105	5 0.1	8 <1	17	30	38 4	.25	<10	0.50	244	<1	<.01	30	270	12	<5	<20	11	0.08	<10	51	<10	3	75
304	L50+00S: 3+50E	<5	<.2	1.44	<5	55	5 0.0	9 <1	9	25	36 3.	1.73	<10	0.37	116	<1	<.01	19	320	12	5	<20	4	0.06	<10	36	<10	<1	43
																					-							•	•=
305	L50+00S: 3+00E	<5	<.2	2.90	<5	95	10 0.0	9 <1	16	43	23 6	6.08	<10	0.73	222	<1	<.01	29	540	8	5	<20	5	0.08	<10	53	<10	<1	97
306	L50+00S: 2+50E	<5	<.2	2.23	<5	90	15 0.0	9 <1	13	38	22 4	.68	<10	0.70	213	<1	<.01	26	240	8	10	<20	4	0.07	<10	48	<10	<1	70
307	L50+00S: 2+00E	<5	<.2	3.41	<5	110	5 0.1	0 <1	24	43	38 5	5.41	<10	0.81	265	<1	<.01	40	820	8	10	<20	4	0.09	<10	61	<10	2	100
308	L50+00S: 1+50E	<5	0.4	3.83	<5	150	10 0.1	0 <1	17	55	32 6	6.43	<10	0.85	267	<1	<.01	38	760	8	10	<20	3	0.09	<10	54	<10	<1	88
309	L50+00S: 1+00E	<5	<.2	2.60	<5	90	15 0.0	5 <1	16	43	21 7.	.19	<10	0.66	258	<1	<.01	26	710	10	<5	<20	4	0.11	10	79	<10	<1	90
310	L50+00S: 0+50E	<5	<.2	2.73	<5	110	10 0.0	8 <1	17	37	21 5	5.70	<10	0.62	346	<1	<.01	28	770	8	<5	<20	5	0.07	<10	55	<10	<1	92
311	L50+00S: B\L 0+00	<5	<.2	2.90	<5	105	10 0.1	1 <1	18	43	31 5	5.75	<10	0.74	300	<1	<.01	33	1360	6	5	<20	4	0.08	<10	52	<10	<1	103
312	1.50+00S: 0+50W	<5	<.2	2.73	<5	85	10 0.0	7 <1	15	40	23 5	5.40	<10	0.56	191	<1	<.01	24	370	8	5	<20	5	0.11	<10	57	<10	<1	90
313	L50+00S: 1+00W	<5	<.2	3.19	<5	90	10 0.0	5 <1	14	48	21 6	6.13	<10	0.77	175	<1	<.01	28	350	6	<5	<20	- 4	0.09	<10	51	<10	<1	74
314	150+00S: 1+50W	<5	<.2	2.27	<5	65	10 0.1	1 <1	13	33	22 5	5.25	<10	0.44	147	<1	<.01	21	630	10	5	<20	7	0.09	<10	47	<10	<1	47
315	L50+00S: 2+50W	<5	<.2		<5	110	5 0.1		13	28		).74	<10	0.59	192	<1	<.01	24	370	8	5	<20	- 4	0.09	<10	52	<10	1	57
316	L50+00S: 3+00W	<5	<.2		<5	130	10 0.1	0 <1	18	42	31 5	5.75		0.85	240	<1	<.01	31	650	6	<5	<20	3	0.09	<10	61	<10	<1	102
317	L50+00S: 3+50W	<5	<.2		<5	115	<5 0.3		18	30	46 3	3.86	20	0.65	295	<1	<.01	32	480	10	10	<20	18	0.08	<10	57	<10	9	69
318	L50+00S: 4+00W	<5	<.2		<5	85	15 0.0		15	39	- · ·	5.81	<10	0.73	171	<1	<.01	28	380	6	<5	<20	5	0.10	<10	64	<10	<1	69
319	L50+00S: 5+00W	<5	<.2	2.04	<5	95	10 0.2	5 <1	12	31	21 4	1.15	<10	0.61	147	<1	<.01	24	170	8	5	<20	12	0.10	<10	47	<10	1	54
		_	_		_			_																					
320	L50+00S: 5+50W	<5	<.2		<5	85	10 0.1		15	34		.28		0.86	124	<1	<.01	34	380	4	10	<20	7	0.11	<10	41	<10	1	60
321	L50+00S: 6+00W	<5	<.2		<5	100	<5 0.4		17	22		1.45		0.70	534	<1	<.01	25	550	4	10	<20	16	0.07	<10	53	<10	7	52
322	L50+00S: 6+50W	<5	<.2		<5	135	<5 0.3		24	32		.40		0.79	639	<1	<.01	31	390	6	10	<20	15	0.09	<10	64	<10	5	67
323	L50+00S: 7+00W	<5	<.2		<5	130	<5 0.5		22	29		.60		0.93	385	<1	<.01	35	770	4	10	<20	21	0.10	<10	78	<10	10	74
324	L50+00S: 8+00W	<5	<.2	2.63	<5	100	10 0.0	8 1	16	40	26 6.	1.55	<10	0.77	181	<1	<.01	26	390	4	<5	<20	4	0.12	<10	64	<10	<1	72
325	L50+00S: 9+00W	<5	<.2	2.46	<5	125	<5 0.3	3 <1	22	32	54 4	.33	30	0.81	880	<1	<.01	33	580	4	10	<20	14	0.06	<10	57	<10		70
326	L50+005: 9+50E	<	<.2	2.14	<5	120	5 0.3		20	33		.18		0.82	644	4	<.01	33	480	6	10	<20	18	0.06	<10	57 57	<10	14 12	76 76
327	L50+00S: 10+00E	~ ~5	<.2	2.01	<5	105	5 0.3		16	29		.90		0.70	283	<1	<.01	27	230	6	10	<20	13	0.08	<10	57 64	<10	3	55
328	L50+00S: 10+50E		< 2	2.05	<5	100	<5 0.4		19	27		.92		0.76	446	<	<.01	30	440	6	10	<20	14	0.06	<10	58	<10	11	55 61
329	L50+00S: 11+50E	<5	<.2	2.29	<5	120	<5 0.1		21	32		.89		0.85	372	<1	<.01	36	300	4	10	<20	8	0.00	<10	71	<10	10	63
				2.20			-0 0.1	•	~.				20	0.00	0, 2					-	10	-20	U	0.07	-10		-10	10	65
330	L50+00S: 12+00E	<5	<.2	2.17	<5	120	<5 0.3	8 <1	21	29	58 4	.33	20	0.92	574	<1	<.01	34	500	4	10	<20	13	0.06	<10	60	<10	8	65
331	L50+00S: 12+50E	<5	<.2	2.44	<5	115	<5 0.1	9 <1	26	31		.45		1.01	664	<1	<.01	38	340	6	10	<20	7	0.07	<10	59	<10	5	66
332	L50+00S: 13+00E	<5	<.2		<5	115	5 0.3		17	27		.94		0.72	720	<1	<.01	29	450	6	5	<20	13	0.05	<10	57	<10	9	62
333	L50+00S: 13+50E	<5	< 2	1.85	<5	130	10 0.1		17	28		.54		0.82	365	<1	<.01	25	900	4	10	<20	7	0.08	<10	59	<10	<1	79
334	L50+00S: 14+00E	<5	<.2	2.10	<5	105	10 0.0		15	29	_	.05		0.73	275	<1	<.01	24	510	Å	10	<20	2	0.05	<10	63	<10	<1	61
											•							_ /		-			-					•	
335	L50+00S: 14+50E	<5	0.4	2.94	<5	110	5 0.1	0 <1	20	39	24 5.	i.35	<10	0.74	302	<1	<.01	26	830	6	5	<20	4	0.08	20	61	<10	<1	91
336	L50+00S: 15+00E	<5	<.2	2.70	<5	135	10 0.2	9 <1	20	26	42 5.	.89	<10	0.73	372	<1	<.01	23	1000	6	5	<20	9	0.13	<10	106	<10	1	74
337	L50+00S: 15+50E	<5	<.2	2.99	<5	100	10 0.1	2 <1	21	35	112 8.	.58	<10	0.83	257	<1	<.01	26	2250	6	<5	<20	5	0.21	10	148	<10	4	68
338	L50+00S: 16+00E	<5	<.2	2.93	<5	100	10 0.0	8 <1	18	37	37 7.	.57	<10	0.72	221	<1	<.01	24	570	6	<5	<20	4	0.15	10	101	<10	<1	68

į

.

Eco-Tech Laboratories Ltd.

1 1

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	Ρ	РЪ	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
339	L50+50S: B\L 0+00	<5	<.2	2.78	<5	90	10	0.10	<1	16	43	26	6.46	<10	0.72	206	<1	< 01	31	690	6	<5	<20	7	0.09	<10	46	<10	<1	80
340	L51+00S: 6+00E	<5	<.2	2.00	<5	110	<5	0.42	<1	24	36	60	4.29	<10	0.85	571	<1	<.01	43	850	12	10	<20	19	0.10	<10	50	<10	5	78
341	L51+00S: 5+50E	<5	<.2	2.87	<5	145	10	0.16	<1	19	45	43	5.11	10	1.04	298	<1	<.01	45	1040	10	10	<20	10	0.09	<10	53	<10	2	100
342	L51+00S: 5+00E	<5	<.2	1.33	<5	85	10	0.50	<1	14	26	22	3.72	<10	0.50	343	<1	<.01	22	310	12	5	<20	24	0.10	<10	65	<10	<1	73
343	L51+00S: 4+50E	<5	<.2	1.24	<5	85	<5	0.09	<1	12	22	15	3.69	<10	0.49	151	<1	<.01	16	380	8	10	<20	5	0.12	<10	74	<10	<1	59
344	L51+00S: 4+00E	<5	<.2	2.09	<5	125	10	0.12	<1	21	32	41	5.93	<10	0.57	356	<1	<.01	33	1470	10	<5	<20	8	0.10	<10	61	<10	<1	93
345	L51+00S: 3+50E	<5	<.2	2.18	<5	135	10	0.20	<1	19	35	49	7.48	<10	0.59	306	<1	<.01	28	2870	10	<5	<20	17	0.11	10	88	<10	<1	96
346	L51+00S: 3+00E	<5	<.2	2.60	<5	135	10	0.15	<1	19	48	26	6.68	<10	0.77	240	<1	<.01	33	790	6	<5	<20	11	0.10	10	61	<10	<1	121
347	L51+00S: 2+50E	<5	<.2	3.06	<5	165	10	0.13	<1	21	48	25	6.76	<10	0.89	254	<1	<.01	36	400	8	<5	<20	9	0.12	10	62	<10	<1	109
348	L51+00S: 2+00E	<5	<.2	3.22	<5	100	10	0.06	<1	21	41	30	6.01	<10	0.51	352	<1	<.01	30	890	10	<5	<20	4	0.09	<10	53	<10	<1	91
349	L51+00S: 1+50E	<5	<.2	0.95	<5	140	5	0.11	<1	9	18	11	2.33	<10	0.36	262	<1	<.01	14	340	8	<5	<20	7	0.08	<10	38	<10	1	47
350	L51+00S: 1+00E	<5	< 2	2.04	<5	155	10	0.19	<1	17	35	26	6.58	<10	0.68	651	<1	<.01	30	2040	8	<5	<20	9	0.10	10	56	<10	<1	107
351	L51+00S: 0+50E	<5	<.2	1.81	<5	105	5	0.17	<1	17	32	33	4.83	<10	0.62	308	<1	<.01	32	1330	10	10	<20	4	0.08	<10	41	<10	1	82
352	L51+00S: B\L 0+00	<5	<.2	1.86	<5	75	10	0.07	<1	16	31	23	4.61	<10	0.46	602	<1	<.01	20	510	8	<5	<20	3	0.09	<10	55	<10	<1	72
353	L51+00S: 0+50W	<5	<.2	3.24	<5	135	15	0.07	<1	16	55	24	8.08	<10	0.76	207	<1	<.01	29	590	8	<5	<20	6	0.11	<10	66	<10	<1	96
354	L51+00S: 1+00W	<5	<.2	2.45	<5	150		0.15	<1	18	45	31	5.52	<10	0.89	270	<1	<.01	34	930	6	<5	<20	7	0.10	<10	60	<10	<1	93
355	L51+00S: 1+50W	<5	<.2	2.10	<5	125	5	0.09	<1	15	34	19	3.98	<10	0.63	305	<1	<.01	27	870	6	5	<20	3	0.08	<10	43	<10	<1	134
356	L51+00S: 2+00W	<5	0.6	2.99	<5	205		0.12	<1	21	51	35	8.76	<10	0.71	659	<1	<.01	32	1470	8	<5	<20	11	0.15	20	95	<10	<1	97
357	L51+00S: 2+50W	<5	0.4	1.13	<5	115	<5	0.63	<1	5	16	17	2.08	20	0.20	66	<1	<.01	11	590	8	<5	<20	37	0.02	<10	27	<10	4	26
358	L51+00S: 3+50W	<5	<.2	2.62	<5	130	10	0.11	<1	17	33	52	5.53	<10	0.76	264	<1	< 01	29	240	10	<5	<20	7	0.09	<10	67	<10	<1	61
359	L51+00S: 4+00W	<5	<.2	1.64	<5	100	10	0.12	<1	14	32		5.36	<10	0.58	157	<1		24	250	8	5	<20	8	0.12	<10	56	<10	<1	58
360	L51+00S: 4+50W	<5	<.2	2.13	<5	120	10	0.34	<1	16	32		6.21	<10	0.68	181	<1	<.01	26	200	4	5	<20	12	0.11	<10	72	<10	<1	63
361	L51+00S: 5+00W	<5	<.2	1.52	<5	90	5	0.39	<1	12	26		3.30	10	0.65	247	<1		25	260	6	5	<20	17	0.08	<10	- 44	<10	4	55
362	L51+00S: 5+50W	<5	<.2	2.10	<5	105	<5	0.40	<1	21	33		4.39	10	0.76	586	<1	<.01	35	390	6	10	<20	17	0.09	<10	61	<10	6	69
363	L51+00S: 6+00W	<5	<.2	1.04	<5	110	<5	0.65	<1	8	19	63	2.23	20	0.34	147	<1	< 01	17	420	6	<5	<20	31	0.06	<10	32	<10	7	38
004	1.54.000.0.504					400															_									
364	L51+00S: 6+50W	<5	<.2	2.12	<5	190		0.36	<1	17	24		5.40	<10	0.81	139	<1		23	270	6	10	<20	18	0.16	<10	85	<10	<1	64
365 366	L51+00S: 7+00W L51+00S: 7+50W	<5	<.2	1.17	<5	85	10	0.09	<1	9	22		3.81	<10	0.42	77	<1		13	110	6	<5	<20	4	0.16	<10	80	<10	1	36
367		<5	<.2	2.26	<5	105		0.15	<1	20	28		5.27	10	0.79	340		< 01	26	330	8	<5	<20	10	0.10	<10	77	<10	5	67
368	L51+00S: 8+50W	<5	<.2	2.15	<5	135 75		0.32	<1	20	29		4.08	20	0.86	639	<1	<.01	31	510	6	10	<20	15	0.06	<10	59	<10	7	68
305	L51+00S: 9+00W	<5	<.2	1.92	<5	/5	10	0.17	<1	14	31	25	5.20	<10	0.62	200	<1	<.01	22	310	6	5	<20	9	0.11	<10	67	<10	<1	56
369	L51+00S: 9+50W	<5	<.2	2.26	<5	80	10	0.33	~1	14	20	26	6.16	<10	0.58	174	<1	< 01	- 20	200		<5	<20	42	0.00	10	~	-10	-1	50
370	L51+00S: 11+00W	~> <5	<.2	1.96	<5	115	5	0.33	<1	17	30 28		4.26	<10	0.68	472	ব	<.01 <.01	20 28	240	6	<5	<20	12 11	0.09		63	<10	<1	52
370	L51+00S: 11+50W	-	<.2	2.21	<5	145	-	0.20	<1		∡o 32		4.20	20	0.84	623			∡o 35	240 370	8	دی 5	<20 <20		0.07	<10	61	<10	4	59
372	L51+00S: 12+00W	<5 <5	<.2	2.21	<5	150	10	0.20	ণ ব	22 25			4.73 6.49	20 <10	0.85	452	<1 <1	<.01 <.01	- 35 - 41	480	8	5	<20	9	0.07	<10	65	<10	8 5	69
373	L51+00S: 12+50W	<5		2.05	<5	115		0.20		25 21	44					452					6	ວ <5		11	0.11	<10	89	<10	-	82
3/3	LUTTUUS. 12TOUNY	<0	<.2	2.19	-0	115	10	U. 14	<1	21	33	46	6.42	<10	0.78	42U	<1	<.01	31	260	D	~0	<20	8	0.09	10	82	<10	<1	59
374	L51+00S: 13+00W	<5	<.2	2.12	<5	105	<5	0.26	<1	21	31	49	4.36	<10	0.84	408	<1	<.01	32	400	6	5	<20	8	0.07	<10	64	<10	5	50
375	L51+00S: 13+50W	5 5	<.2	2.09	<5	125		0.26	<1	20	31		4.30	20	0.87	406 652	<1	<.01	32 35	400 450	6	ວ <5	<20 <20	11	0.07		61 56		с 8	59 64
375	L51+00S: 14+00W	<5	<.2	2.09	<5	65	-	0.27	<1	20 15	25		4.14	∠0 <10	0.65	414	<1	<.01	35 21	450 690	4	<5 <5	<20 <20	5		<10		<10	-	
376	L51+00S: 14+00W	<5 <5	<.2	2.08	<5	70	-	0.11	<1	15	25 25			<10	0.65	240	<1 <1		17	690 450	4	<5 5	<20 <20	5 6	0.07	<10	65 66	<10	<1 -1	60 59
311	LU17000, 14700VV	-0	<b>~.</b> Z	2.00	-0	70	10	0.07	~ 1	13	20	19	4.51	~10	0.02	240	~1	N.01	17	430	4	5	×20	0	0.06	<10	66	<10	<1	28

÷.

Eco-Tech Laboratories Ltd.

.

}

1

}

1

<u>Et #.</u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	81	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
378	L51+00S: 15+00W	<5	<.2	1.13	<5	55	10	0.06	<1	10	17	17	3.87	<10	0.35	238	<1	<.01	13	820	8	<5	<20	1	0.10	<10	67	<10	<1	38
379	L51+00S: 15+50W	<5	<.2	2.35	<5	100	10	0.13	<1	19	31	42	5.73	<10	1.01	251	<1	<.01	29	330	Ā	10	<20	7	0.10	<10	69	<10	<1	65
380	L51+00S: 16+00W	<5	<.2	2.51	<5	120	10	0.45	<1	19	32	55	4.90	30	0.76	289	<1	<.01	27	330	6	<5	<20	13	0.12	<10	82	<10	15	56
381	L51+50S: B\L 0+00	<5	<.2	1.89	<5	180	10	0.16	<1	18	37	36	5.98	<10	0.71	245	<1	<.01	34	350	10	<5	<20	11	0.11	<10	57	<10	<1	107
382	L52+00S: 6+00E	<5	<.2	1.32	<5	100		0.47	<1	23	27	69	4.13	20	0.64	735	<1	<.01	39	1130	14	10	<20	20	0.07	<10	43	<10	13	56
		-0					•	0.41	- 1	20	~.	~	4.15	20	0.04	/55	- 1	~.01	35	1130	1.4	10	~20	20	0.07	~10	40	\$10	13	30
383	L52+00S: 5+50E	<5	<.2	1.85	<5	100	10	0.12	<1	17	36	31	5.88	<10	0.60	278	<1	<.01	30	1030	10	<5	<20	5	0.10	<10	75	<10	<1	04
384	L52+00S: 5+00E	<5	<.2	2.08	<5	90	5	0.14	<1	16	36	24	5.38	<10	0.56	294	<1	<.01	25	910	10	<5	<20	9	0.08	<10	55	<10		91 67
385	L52+00S: 4+50E	<5	<.2	2.11	<5	90	10	0.22	<1	18	33	35	5.40	20	0.50	290	<1	<.01	33	490	12	<5	<20	12	0.09				<1	97
386	L52+00S: 4+00E	<5	<.2	1.85	<5	125		0.28	<	22	31	48	4.12	10	0.72	750	<1	<.01	43	490 510	8	5	<20		0.08	<10	51	<10	8	83
387	L52+00S: 3+50E	<5	<2	2.19	<5	125	5	0.21	<1	20	38	46	5.03	<10	0.72	280	<1	<.01	40	380	8	5 5		14		<10	40	<10	7	58
507		-5	~	2.13	-5	125	5	0.21	~1	20	36	40	5.03	<10	0.76	200	~1	5.01	40	380	8	5	<20	12	0.09	<10	53	<10	<1	76
388	152+00S: 3+00E	<5	<.2	2.84	<5	125	10	0.10	<1	16	44	23	6.41	<10	0.71	171	<1	<.01	28	320	6	<5		8		-10	~~			-
389	L52+00S: 2+50E	<5	< 2	2.53	<5	160	10	0.20	ব	26	42	51	5.63	<10	0.85	334	<1	<.01	51	290	10	-	<20	-	0.09	<10	58	<10	<1	76
390	L52+00S: 1+50E	<5	<2	2.17	<5	85	10	0.07	4	18	38	33	6.44	<10	0.55	168	<1		33			<5	<20	11	0.10	<10	59	<10	2	102
391	L52+005: 1+00E	<5	2.0	2.17	10	175		1.50	1	43								<.01		450	6	<5	<20	2	0.09	10	63	<10	<1	85
392	L52+005: 0+50E	<5	<.2	1.94	<5	145	<5	0.27	<1	43 18	37 37	127	3.61	310	0.32	3013	<1	0.01	89	1610	8	<5	<20	89	0.03	<10	39	<10	102	83
382	LJ2+003. 0+JUE	-5	<b>~.2</b>	1.94	<b>N</b> 0	140	-0	0.27	~1	10	37	44	4.72	20	0.76	272	<1	<.01	45	330	8	<5	<20	20	0.12	<10	53	<10	10	78
393	L52+00S: BVL 0+00	<5	<.2	2.17	<5	70	<5	0.10	<1	18	33	48	5.05	<10	0.64	179	<1	<.01	42	330				~	0.00	40	~			
394	L52+00S: 0+50W	<5	<.2	2.26	<5	120	10	0.09	ব	20	39	40	6.31	<10	0.62	191	-				- 1	<5	<20	6	0.09	10	39	<10	<1	58
395	L52+00S: 1+00W	<5	<.2	1.64	<5	75			•								<1	<.01	45	310	8	<5	<20	7	0.09	<10	60	<10	<1	62
396	L52+00S: 1+50W	-			-		-	0.14	<1	14	33	30	3.90	<10	0.68	126	<1	<.01	33	310	8	5	<20	5	0.09	<10	37	<10	<1	51
-		<5	<.2	2.23	<5	85	10	0.06	<1	15	38	21	5.95	<10	0.53	173	<1	<.01	24	430	8	<5	<20	3	0.10	10	53	<10	<1	85
397	L52+00S: 2+00W	<5	<.2	3.90	<5	155	5	0.10	<1	18	54	38	5.81	<10	0.84	211	<1	<.01	40	530	12	<5	<20	8	0.08	<10	46	<10	<1	87
398	L52+00S; 2+50W	<5	- 0	1.35	-	80	40	0.00	- 4		~~					~						_		_						
399	L52+00S: 3+00W	-	<.2		<5	80		0.09	<1	8	22	10	3.61	<10	0.38	82	<1	<.01	13	130	10	<5	<20	7	0.07	<10	43	<10	<1	42
400		<5	<.2	2.90	<5	145	10	0.23	<1	27	47	31	5.40	<10	0.84	300	<1	<.01	48	430	6	<5	<20	16	0.10	<10	57	<10	3	94
	L52+00S: 3+50W	<5	<.2		<5	160		0.25	<1	28	51	35	5.02	<10	0.87	307	<1	<.01	55	470	6	<5	<20	18	0.09	<10	58	<10	3	101
401	L52+00S: 4+00W	<5	<.2	2.85	<5	135		0.08	<1	19	46	40	5.56	<10	1.00	286	<1	<.01	40	300	10	5	<20	6	0.09	<10	53	<10	<1	87
402	L52+00S: 4+50W	<5	<.2	1.71	<5	80	5	0.11	<1	15	30	28	5.20	<10	0.61	128	<1	<.01	28	420	4	5	<20	4	0.11	<10	45	<10	<1	51
403	L52+00S; 5+00W	<5	<.2	4 22	<5	80	10	0.19		•	~		4.07			400		. 54			-	-		-						
404	L52+005: 5+50W	<5		1.32	<5				<1	8	22	18	4.07	<10	0.31	103	<1	<.01	14	140	8	<5	<20	9	0.08	<10	52	<10	<1	30
405	L52+005; 6+00W	-	<.2	3.62	-	100		0.10	<1	15	53	26	6.94	<10	0.74	153	<1	<.01	32	510	12	<5	<20	6	0.10	<10	47	<10	<1	72
		<5	<.2	2.58	<5	105	10	0.07	<1	15	41	19	6.93	<10	0.61	178	<1	<.01	24	500	12	<5	<20	4	0.13	10	80	<10	<1	93
406	L52+00S: 6+50W	<5	<.2	2.78	<5	95		0.07	<1	17	40	35	6.98	<10	0.91	151	<1	<.01	33	410	4	10	<20	5	0.16	<10	61	<10	<1	79
407	L52+00S: 7+00W	<5	<.2	2.82	<5	80	15	0.06	<1	17	35	32	5.97	<10	0.86	140	<1	<.01	31	420	- 4	10	<20	2	0.14	<10	60	<10	<1	71
400	1.50.000. 7.5011														<b>.</b>															
408	L52+00S: 7+50W	<5	<.2		<5	70		0.04	<1	10	27	15	5.44	<10	0.44	97	<1	<.01	15	300	8	<5	<20	<1	0.10	<10	81	<10	<1	51
409	L52+00S: 8+50W	<5	<.2	2.24	<5	130	-	0.49	<1	21	30	53	4.27	20	0.79	661	<1	<.01	34	610	- 4	10	<20	18	0.06	<10	61	<10	13	63
410	L52+00S: 9+00W	<5	<.2	2.33	<5	130		0.63	<1	22	25	54	4.76	20	0.84	325	<1	<.01	24	470	6	10	<20	24	0.12	<10	92	<10	9	79
411	L52+00S: 9+50W	<5	<.2	2.12	<5	110		0.24	<1	20	29	44	4.25	10	0.63	376	<1	<.01	25	410	6	5	<20	10	0.08	<10	66	<10	4	67
412	L52+00S: 10+00W	<5	<.2	1.63	<5	100	5	0.36	<1	14	24	31	3.89	<10	0.53	232	<1	<.01	22	250	6	10	<20	14	0.07	<10	55	<10	2	56
					_		_																							
413	L52+00S: 10+50W	<5	<.2	1.89	<5	115		0.48	<1	18	28	37	4.50	<10	0.66	323	<1	<.01	25	280	8	<5	<20	18	0.09	<10	68	<10	1	66
414	L52+00S: 11+00W	<5	<.2	2.00	<5	125		0.41	<1	22	30	51	4.16	10	0.80	495	<1	<.01	32	420	6	5	<20	15	0.07	<10	60	<10	7	63
415	L52+00S: 11+50W	<5	<.2	1.77	<5	90		0.32	<1	15	23	30	4.57	<10	0.66	159	<1	<.01	24	230	4	5	<20	11	0.07	<10	50	<10	2	45
416	L52+00S: 12+50W	<5	<.2	2.27	<5	130	5	0.31	<1	23	33	62	4.43	20	0.98	514	<1	<.01	34	440	4	<5	<20	11	0.08	<10	61	<10	11	65

LOUIS	DOYLE ETK 94-841		ļ		1	}		3		3		ļ				ł		aboritan		, , ,		) Eco-Te	sch Lab	) oratori	es Ltd.	1		ан. ,	ļ	ł
Et #.	Tag #	Au(ppb)	Ag	AI %	As	8a	81	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	РЬ	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
417	L52+00S: 13+00W	<5	<.2	1.93	<5	100	<5	0.30	<1	20	31	57		10		418	<1	<.01	32	320	6	5	<20	13	0.07	<10	65	<10	6	56
418	L52+00S: 13+50W	<5	<.2		<5	100	<5	0.35	<1	13	27	77	5.31	10	0.42	334	<1	<.01	27	340	10	5	<20	16	0.06	<10	72	<10	5	47
419	L52+00S: 14+00W	<5	<.2		<5	110	<5	0.43	<1	19	32	84	5.73	30	0.58	464	<1	<.01	30	380	8	<5	<20	19	0.06	<10	70	<10	15	50
420	L52+00S: 14+50W	<5	0.4	2.22	<5	180	10	0.24	<1	19	30	51	5.44	<10	0.79	418	<1	<.01	30	660	8	5	<20	15	0.06	<10	64	<10	<1	57
421	L52+00S: 15+00W	<5	<.2	1.97	<5	85	5	0.08	<1	15	25	~30	4.81	<10	0.67	216	<1	<.01	22	910	4	5	<20	3	0.06	<10	62	<10	<1	59
422	L52+00S: 15+50W	<5	<.2	2.53	<5	85	5	0.04	<1	18	33	31	4.65	<10	0.67	184	<1	<.01	39	570	4	5	<20	<1	0.05	<10	55	<10	<1	68
423	L52+00S: 16+00W	<5	<.2	2.06	<5	65	10	0.08	<1	12	24	25	6.12	<10	0.48	158	<1	<.01		1110	6	<5	<20	3	0.10	10	89	<10	<1	49
Repeat.	L-38+00S: 7+00E		<.2	1.17	<5	65	<5	0.06	<1	•		46	2.40	-40	0.00			. 64				_								
39	L-38+00S: 13+00W		<.2	2.44	~5 <5	65	10	0.06	<1	8 15	20 34	15 27	3.46 8.31	<10 <10	0.30 0.52	124 384	<1 <1	<.01 <.01	12 17	340 1190	14	<5 _	<20	<1	0.04	<10	· 40	<10	<1	45
77	L39+00S: 10+50W		<.2	3.26	<5	85	15	0.07	<1	24	19	63	8.06	0.18		608	<1	<.01	10	310	18 18	5 <5	<20 <20	5 9	0.09 0.16	10 10	90	<10	<1	54
115	L40+00S: 8+50W		0.4	2.67	<5	80	10	0.08	<1	13	29	37	5.38	<10	0.57	219	<1	<.01	16	530	20	<5	<20	10	0.18	<10	224 81	<10 <10	<1 <1	69 54
153	L42+00S: 6+00E		<.2	1.20	<5	65	10	0.23	<1	13	24	24	3.80	20	0.42	190	<1	<.01	23	380	14	<5	<20	17	0.08	<10	44	<10	6	58
191	L45+00S: 2+00E		<.2	1.27	<5	60	<5	0.05	<1	12	21	14	2.56	<10	0.52	203	<1	<.01	17	210	14	<5	<20	7	0.06	10	29	<10	<1	52
228	L47+00S: 3+50E		0.6	1.23	<5	145	<5	0.68	<1	15	20	39	2.26	60	0.29	1067	<1	<.01	26	710	10	5	<20	35	0.03	<10	28	<10	19	71
267	L48+00S: 5+50W		<.2	1.68	<5	105	10	0.11	<1	13	27	29	4.56	<10	0.70	184	<1	<.01	23	290	6	5	<20	5	0.09	10	56	<10	<1	52
305	L50+00S: 3+00E		<.2	2.88	<5	90	15	0.10	<1	16	42	23	5.96	<10	0.72	225	<1	<.01	30	530	8	<5	<20	6	0.08	<10	53	<10	<1	94
343 381	L51+00S: 4+50E L51+50S: B\L 0+00		<.2	1.28	<5 <5	85 165	<5	0.09	<1	12	22	15	3.76	<10	0.49	149	<1	<.01	17	380	8	5	<20	5	0.12	<10	76	<10	<1	59
419	L52+00S: 14+00W		<.2 <.2	1.80 2.41	<5 <5	115	10 <5	0.15	<1 <1	17 19	35 32	35 84	5.77	<10 30	0.67 0.59	236	<1	<.01	32	340	10	<5	<20	10	0.11	<10	55	<10	<1	102
410			~.£	2.71	-5		~	0.43	~1	13	34	04	5.84	30	0.59	466	<1	<.01	30	400	8	5	<20	19	0.06	<10	71	<10	14	51
Standai	rd 1991		1.0	1.68 1.74	75 65	160 155		1.89	1	20	68	85	4.08	<10	0.91	666	<1	0.01	27	680	22	5	<20	54	0.10	<10	76	<10	4	81
			1.0 1.2	1.81	60	170		1.86 1.89	<1	19	68 64	83	4.04	<10	0.89	649	<1	0.01	25	670	22	5	<20	62	0.11	<10	74	<10	5	78
			1.0	1.79	65	170		1.90	<1 <1	19 19	64 65	84 86	4.00 3.97	<10 <10	0.95 0.97	650 647	<1 <1	0.01	25	680 600	22	<5 -5	<20	64	0.10	<10	80	<10	6	72
			1.2	1.60	65	165	-	1.61	<1	18	55	87	3.74	<10	0.87	630	<1	0.01 0.01	25 25	690 610	22 20	<5 10	<20	62 55	0.12	<10	79	<10	6	73
			1.2	1.82	60	165	-	1.79	<1	20	65	87	3.89	<10	1.00	700	<1	0.01	23	690	22	<5	<20 <20	55 58	0.09 0.10	<10 <10	70 78	<10	4	71
			1.4	1.81	70	165		1.86	1	18	66	88	3.81	<10	1.00	663	<1	0.01	24	700	20	<5	<20	56 60	0.09	<10	76 76	<10 <10	6	72 74
			1.4	1.82	65	165		1.89	1	19	70	80	3.78	<10	1.00	660	<1	0.01	25	700	18	10	<20	58	0.09	<10	75	<10	5	74 69
			1.2	1.76	65	165		1.87	1	18	66	82	3.97	<10	1.00	667	<1	0.01	24	700	16	<5	<20	57	0.11	<10	$\overline{\pi}$	<10	7	70
			1.2	1.77	70	175	<5	1.89	<1	19	66	78	4.05	<10	0.95	696	<1	0.01	24	700	15	<5	<20	60	0.10	<10	79	<10	7	71
			1.4	1.81	70	160		1.90	<1	20	68	82	3.77	<10	1.00	658	<1	0.01	25	700	20	<5	<20	62	0.09	<10	78	<10	7	67
			1.4	1.82	65	170	<5	1.86	1	20	64	82	3.81	<10	1.00	671	<1	0.01	23	700	18	<5	<20	58	0.09	<10	78	<10	7	67

ECO-TECH CABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C.Certified Assayer ļ

XLS/Doyle df#864/841a/841b

. . . . . . . .

ì

١

) 14-Nov-94 Ŋ

## ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

X

LOUIS DOYLE ETK 94-884 P.O. BOX 24023 LAKESHORE POST OFFICE KELOWNA, B.C.

317 Soil samples received October 24, 1994

1

1

## Values in ppm unless otherwise reported

Et #.	Tag i	ŧ	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	Р	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	L0+00:	2+50W	<5	0.8	1.74	5	75	<5	0.14	1	17	27	41	4.17	<10	0.54	296	<1	<.01	25	570	18	15	<20	6	0.05	<10	38	<10	3	122
2	L0+00:	3+00W	<5	0.4	3.05	<5	90	20	0.10	<1	16	39	20	6.85	<10	0.61	217	<1	<.01	22	1230	18	<5	<20	4	0.06	<10	46	<10	<1	111
3	L0+00:	3+50W	<5	0.4	1.81	<5	75	5	0.06	<1	12	27	14	5.38	<10	0.45	219	<1	<.01	14	830	12	<5	<20	3	0.05	<10	41	<10	<1	75
4	L0+00:	4+00W	<5	<.2	1.98	<5	45	5	0.11	<1	13	20	17	3.82	<10	0.50	179	<1	<.01	18	850	10	<5	<20	4	0.04	<10	49	<10	<1	49
5	L0+00:	4+50VV	10	0.6	2.38	20	85	10	0.10	<1	19	33	57	7.19	<10	0.46	502	16	<.01	28	1510	34	<5	<20	2	0.04	<10	49	<10	<1	150
6	L0+00:	5+50W	<5	0.6	1.74	<5	50	5	0.06	<1	15	28	31	6.53	<10	0.54	232	<1	<.01	23	350	14	<5	<20	<1	0.03	<10	32	<10	<1	68
7	L0+00: T/L	6+00W	<5	<.2	1.73	25	45	15	0.07	<1	14	28	24	6.46	<10	0.51	311	<1	<.01	25	570	12	<5	<20	4	0.03	<10	40	<10	<1	67
8	LO+00: T/L	6W	<5	0.2	1.55	5	45	15	0.05	<1	13	26	22	6.65	<10	0.40	231	<1	<.01	20	600	16	<5	<20	3	0.04	<10	51	<10	<1	52
9	L0+00:	6+25W	<5	0.4	2.20	10	55	10	0.07	<1	15	33	20	5.91	<10	0.68	240	<1	<.01	26	570	16	<5	<20	2	0.02	<10	32	<10	<1	83
10	LO+00:	6+50W	15	0.2	2.59	5	85	10	0.11	<1	14	33	12	5.10	<10	0.60	215	<1	<.01	25	520	16	<5	<20	4	0.02	<10	29	<10	<1	76
11	L0+00:	6+75W	<5	0.4	1.84	5	50	10	0.08	<1	14	28	22	6.56	<10	0.58	389	<1	<.01	18	760	14	<5	<20	5	0.04	<10	55	<10	<1	71
12	L0+00:	7+00W	<5	<.2	1.74	<5	50	10	0.04	<1	13	27	20	5.98	<10	0.53	254	<1	<.01	17	410	10	<5	<20	2	0.03	<10	36	<10	<1	56
13	L0+00:	7+25W	<5	0.2	1.62	10	35	5	0.12	<1	12	23	18	4.15	<10	0.63	199	<1	<.01	19	440	12	<5	<20	6	0.04	<10	34	<10	<1	49
14	LO+00:	7+50W	<5	<.2	1.76	5	70	10	0.09	<1	11	25	13	5.27	<10	0.48	278	<1	<.01	15	340	16	<5	<20	4	0.02	<10	45	<10	<1	52
15	L0+00:	7+75W	<5	<.2	1.95	5	50	15	0.21	<1	14	29	20	5.34	<10	0.80	258	<1	<.01	23	430	10	<5	<20	11	0.02	<10	38	<10	<1	55
16	L0+25N:	6+00W	<5	0.2	1.93	5	50	<5	0.08	<1	9	26	15	4.32	<10	0.47	203		<.01	16	500	18	<5	<20	4	0.01	<10	27	<10	<1	58
17	L0+25N:	6+25W	20	<.2	1.56	15	55	5	0.26	<1	16	24	22	4.48	10	0.48	450	-	<.01	24	590	18	<5	<20	11	0.03	<10	39	<10	2	60
18	L0+25N:	6+50W	<5	0.4	1.92	<5	50	10	0.04	<1	9	27	18	5.53	<10	0.48	180	<1	<.01	15	320	12	<5	<20	<1	0.01	<10	36	<10	<1	60
19	L0+25N:	6+75W	<5	0.2	2.36	<5	65	10	0.04	<1	10	31	12	5.99	<10	0.50	203	<1	<.01	16	570	12	<5	<20	3	0.01	<10	43	<10	<1	64
20	L0+25N:	7+00W	<5	<.2	1.82	<5	85	25	0.03	<1	11	29	15	6.75	<10	0.54	198	<1	<.01	16	500	14	<5	<20	4	0.02	<10	47	<10	<1	69
21	L0+25N:	7+25W	15	0.2	1.89	10	65	10	0.12	<1	18	31	22	5.13	<10	0.42	607		<.01	19	430	24	<5	<20	8	0.04	<10	66	<10	<1	67
22	L0+25N:	7+50W	<5	<.2	2.62	10	95	10	0.13	<1	16	36	31	6.44	<10	0.74	265	-	<.01	31	580	20	<5	<20	7	0.02	<10	45	<10	<1	68
23	L0+25N:	7+75W	<5	<.2	1.58	15	30	5	0.13	<1	11	19	17	4.52	<10	0.33	173	<1	<.01	13	430	14	<5	<20	10	0.02	<10	40	<10	1	38
24	L0+50N: T\L	6+00W	<5	0.4	1.94	20	70	5	0.16	<1	23	31	43	6.94	<10	0.54	489	<1	<.01	40	860	28	<5	<20	10	0.03	<10	33	<10	<1	78
25	L0+50N:	6+25W	<5	0.4	1.81	5	50	5	0.09	<1	14	24	19	5.46	<10	0.40	325	<1	< 01	19	750	14	<5	<20	3	0.02	<10	31	<10	<1	70
26	L0+50N:	6+50W	<5	0.6	2.44	10	50	10	0.06	<1	13	35	19	6.00	<10	0.58	322		<.01	19	710	14	<5	<20	4	0.02	<10	41	<10	<1	79
, 27	L0+50N:	6+75W	<5	<.2	2.09	<5	60	<5	0.13	2	16	28	21	4.66	<10	0.55	415	<1	<.01	21	720	490	<5	<20	5	0.01	<10	33	<10	<1	1018
28	L0+50N:	7+00W	<5	<.2	2.73	<5	95	10	0.06	<1	14	36	21	6.28	<10	0.70	200	<1	<.01	24	320	20	<5	<20	5	0.02	<10	30	<10	<1	89

Page 1

.

1

}

1

) ) ) ) ) ) ) ) ) ) ) ) Eco-Tech Laboratories Ltd.

ş

Š.

ŝ

1

Et #.	Tag	#	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo I	Na %	NI	Р	Pb	Sb	Sn	Sr	П%	U	v	w	Y	Zn
29	L0+50N:	7+25W	<5	0.4	2.18	5	60	10	0.08	<1	12	30	20	4.74	<10	0.72	212	<1	< 01	22	390	16	<5	<20		0.02	<10	29	<10	<u> </u>	59
30	L0+50N:	7+75W	<5	<.2	1.96	15	60	10	0.15	<1	15	29	27	6.61	<10	0.53		<1		24	320	20	<5								
31	L0+50S: TVL	6W	10	0.4		10	70	10	0.07	<1	14	40	18	6.18	<10	0.61		<1					-	<20	12		<10	50	<10		64
32	L0+75N: TL	6+00W	<5	0.4		5	65	<5	0.09	<1	18	35	36		<10	0.79				23	550	20	<5	<20	3	0.02	<10	30	<10		116
33	L0+75N:	6+25W	<5	0.4		5	40	<5	0.07					5.08					<.01	37	770	14	<5	<20	5	0.03	<10	33	<10		87
	2017014.	0.2011	-0	U.4	1.01	5	40	-0	0.07	<1	12	22	20	4.42	<10	0.44	280	<1	<.01	18	880	12	<5	<20	3	0.01	<10	30	<10	<1	56
24	10.761	C. 50141		• •	<b>-</b>																										
34	L0+75N:	6+50W	<5	0.4		10	65	10	0.05	<1	17	33	19	5.02	<10	0.69	367			25	590	12	<5	<20	<1	0.02	<10	34	<10	<1	108
35	L0+75N:	6+75W	<5	0.6		<5	50	10	0.04	<1	10	24	9	3.85	<10	0.61	218	<1	<.01	13	300	8	<5	<20	з	0.02	<10	28	<10	<1	64
36	L0+75N:	7+00W	<5	<.2	2.11	10	40	10	0.11	<1	12	27	18	4.86	<10	0.56	175	<1	<.01	22	400	14	<5	<20	7	0.02	<10	34	<10	<1	62
37	L0+75N:	7+25W	<5	<.2	1.47	10	50	10	0.23	<1	12	23	18	4.55	<10	0.42	563	<1	<.01	13	330	18	<5	<20	14	0.02	<10	46	<10		50
38	L0+75N:	7+50W	<5	<.2	2.13	15	50	10	0.07	<1	10	26	22	4.49	<10	0.53	176	<1	<.01	17	330	20	<5	<20	4	0.02	<10	38	<10		45
	10.751	7.704	-																												
39	L0+75N:	7+75W	<5		2.32	20	65	20	0.06	<1	19	28	27	10.30	<10	0.29	375	<1	<.01	14	470	26	<5	<20	5	0.08	<10	88	<10	<1	72
40	L01+00N: TV		<5	0.2	1.82	<5	45	5	0.08	<1	16	27	16	3.80	<10	0.62	351	<1	<.01	22	440	8	<5	<20	3	0.06	<10	10	41	<1	75
41	L01+00N:	6+25W	5	0.4	1.46	<5	40	<5	0.11	<1	15	24	37	5.49	<10	0.56	675	<1	<.01	26	1210	18	<5	<20	4	0.02	<10	29	<10	-	62
42	L01+00N:	6+50W	<5	0.4	1.80	<5	55	5	0.04	<1	10	26	13	5.04	<10	0.55	237	<1	<.01	15	500	10	<5	<20	3	0.01	<10	32	<10	-	59
43	L01+00N:	6+75W	<5	0.4	2.38	<5	45	<5	0.08	<1	17	30	28	5.10	<10	0.62		<1		31	570	18	<5	<20	3	0.02	<10	26	<10		75
																							-		-			20	-10	••	15
44	L01+00N:	7+25W	5	0.2	2.12	35	45	5	0.10	<1	19	27	27	5.77	<10	0.47	253	<1	<.01	25	440	28	<5	<20	4	0.04	<10	37	<10	<1	60
45	L01+00N:	7+50W	20	0.2	2.50	10	55	15	0.07	<1	18	36	30	7.37	<10	0.62	257	<1	<.01	23	380	20	<5	<20	4	0.05	<10	52	<10	•	73
46	L01+00N:	7+75W	15	<.2	2.35	<5	60	10	0.11	<1	15	29	27	6.48	<10	0.70	247			21	220	14	<5	<20	9	0.03	<10	76	<10	-	
47	L2+00N; T\L	6W	<5	0.6		15	45	10	0.09	<1	21	24	38	5.54	20	0.42			<.01	36	580	26	~s								47
48	L3+50S: T\L		<5	<.2		40	105	<5	0.84	<1	43	25	51	6.73		0.94			<.01	29	460	32		<20	4	0.03	<10	38	<10	3	71
•								-0	0.04			23	51	0.75	~10	0.34	3/3	~ 1	<b>N.UI</b>	29	400	32	<5	<20	38	0.09	<10	94	<10	7	141
49	L4+50N: T\L	6W	5	<.2	2.45	<5	115	10	0.12	<1	22	46	28	6.16	<10	0.77	378	۵	<.01	34	760	20	<5	<20		0.00	.40	-		-	
50	L4+50S: T\L		<5	0.4	2.26	35	85	<5	0.24	<1	22	34	41	5.53		0.62	715					26	-		4	0.06	<10	79	<10		180
51	L5+00N: TVL		<5	0.4	2.21	10	70	<5	0.10	<1	23	32	47							28	380	34	<5	<20	15	0.05	<10	47	<10		79
52	15+005: TVL		<5	<.2	1.85	25	70	-						4.90		0.80	379	4		43	710	20	<\$	<20	4	0.04	<10	35	<10	з	138
53	L5+50S:	3+50W	-					15	0.21	<1	20	30	28	5.22		0.69			<.01	26	360	20	<5	<20	11	0.04	<10	41	<10	<1	91
55	194903	3+5000	190	0.6	0.57	15	45	<5	4.77	<1	4	7	53	0.72	10	0.18	591	<1	0.01	16	1020	20	<5	<20	189	<.01	<10	8	<10	5	53
54	L5+50S:	3+75W	110	04	1.09	50	55	<5	3.32	<1	12	16	56	2.76	10	0.25	649	<1	<.01	20	590	20	~E		400	0.00	-10	-		-	
55	L5+50S:	4+00W	<5	0.2	2.39	85	85	5	1.06	<1	25	33	61	5.13								30	<5	<20	139	0.03	<10	25	<10		48
56	L5+50S:	4+25W	<5	<.2	2.04	75	70	5	0.48	<1	20								<.01	34	780	18	<	<20	50	0.04	<10	60	<10		78
57	L5+50S:	4+50W	20	0.4				-				35	30	5.26		0.86	437			33	360	22	<5	<20	23	0.04	<10	46	<10	4	88
	L5+50S: TVL				2.22	85	95	10	0.77	1	29	37	53	5.56		0.77		<1		45	710	28	<5	<20	36	0.04	<10	48	<10	14	80
58	Lotous: INL	6W	15	0.6	2.33	55	90	<5	1.01	1	25	33	68	4.98	20	0.66	1141	<1	<.01	37	1080	26	<\$	<20	51	0.03	<10	46	<10	18	103
59	L5+75S:	0+00	<5	0.6	1.54	5	85	<5	0.66	<1	13	32	25	3.21	<10	0.58	250	<1	~ 01	19	510		Æ							-	
60	L5+75S:	3+50W	<5	<.2	0.28	5	25	~ <5	4.46	<1	<1	2	13									14	<5	<20	34	0.03	<10	43	<10	-	70
61	L5+75S:	3+75W	<5	0.8	1.43	65	75	-			•	-		0.22		0.14			0.09	3	390	4	5	<20	187	<.01	<10	3	<10	<1	40
			-					<5	2.94	2	15	21	157	3.62					<.01	63	840	42	<5	<20	125	0.02	<10	30	<10	16	78
62	L5+75S:	4+00W	<5	<.2	2.18	75	80	<5	0.82	<1	23	30	51	4.83		0.85		<1	<.01	32	670	18	5	<20	39	0.04	<10	58	<10	8	72
63	L5+75S:	4+25W	<5	0.2	2.07	55	65	<5	0.62	<1	22	34	56	4.48	20	0.82	698	<1	<.01	37	800	38	<5	<20	30	0.03	<10	39	<10	10	89
64	L5+75S:	4+50W	<5	<.2	1.73	45	55	5	0.49	-1	10	~	43	2.07		0.75	E 44			~			-								
65	L6+00S:	0+00								<1	19	29		3.97		0.75	541		<.01	32	480	18	<5	<20	25	0.04	<10	32	<10	-	73
			<5	<.2	1.95	<5	55	10	0.37	<1	16	55	18	4.52		0.97		-	<.01	22	480	10	10	<20	16	0.06	<10	54	<10	<1	84
66	L6+005:	3+50W	<5	<.2	0.13	5	20	<5	4.06	<1	<1	2	9	0.21	<10	0.13	29	<1	<.01	3	460	<2	<5	<20	163	<.01	<10	3	<10	<1	39
67	L6+00S:	3+75W	<5	0.4	1.96	65	70	<5	0.91	<1	1 <del>9</del>	29	50	4.14	20	0.71	966	<1	<.01	30	970	20	<5	<20	42	0.03	<10	44	<10	10	78

Eco-Tech Laboratories Ltd.

Et #.	Tag	#	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	Р	РЬ	Sb	Sn	8r	TI %	U	v	w	Y	Zn
68	L6+00S:	4+00W	<5	0.2	1.55	60	55	<5	0.66	<1	17	22	38	3.55	10	0.63	719	<1	<.01	25	710	16	<5	<20	30		<10	43	<10		55
69	L6+00S:	4+25W	<5	0.4	2.01	75	70	<5	0.61	<1	21	30	57	4.39		0.74	937			32	910	18	<5	<20	26		<10	47	<10	•	
70	L6+00S:	4+50W	<5	02	2.29	85	85	<5	1.16	1	29	38	63	5.69	30		867	-		38	820	40	<5	<20	49						75
71	L6+005: TVL		<5	0.4		40	75	5	0.57	- 	27	32	50	4.99	20	0.73	989	<1		36							<10	45	<10	-	94
72	L6+25S:	3+50W	<5		2.11	55	75	<5	0.95	<1	25	36						•			670	28	<5	<20	28	0.04	<10	46	<10		126
	20.200	3.3077	-5	0.0	2.11	55	75	- 5	0.85	~1	25	30	116	4.40	20	0.79	1420	<1	<.01	49	970	26	<5	<20	48	0.05	<10	45	<10	16	85
73	L6+25S:	3+75W	<5	< 2	2.76	100	85	<5	0.26	<1	28	39	65	5.42	20	0.79	581	<1	<.01	41	380	38	<5			0.05			.40		
74	L6+25S:	4+00W	<5	0.4		90	80	5	0.75	<1	24	34	56	4.90	20	0.80	1252	-						<20	14		<10	54	<10		109
75	L6+25S:	4+25W	<5		1.95	70	70	<5	0.67	<1	21	27	45		_	0.74				34	900	18	<5	<20	38	0.04	<10	54	<10		81
76	L6+25S:	4+50W	<5	0.4		75	85	~5 <5	0.92	<1				4.38	20		899			30	630	20	<5	<20	32		<10	49	<10		68
77	L6+25S:	3+50WA	<5	0.4		90	85	<5			23	35	63	4.68	30	0.83	979	<1	<.01	38	1190	34	10	<20	41	0.03	<10	41	<10	24	92
	LU+233.	3+30WA	-5	0.4	2.39	90	60	<0	0.77	<1	26	36	63	5.17	20	0.81	1401	<1	0.01	36	770	24	<5	<20	43	0.04	<10	57	<10	10	90
78	L6+25S:	3+50WB	<5	0.4	2.22	70	85	<5	0.75	1	23	33	66	4.86	20	0.77	1292	<1	0.01	37	700	20	5	<20	41	0.04	<10	53	<10	10	04
79	L6+25S:	3+75W	<5	0.4	2.18	80	80	<5	0.85	<1	22	32		4.70	10		1272		0.01	33	840	18	<5	<20	43	0.04	<10	54		8	81
80	L6+25S:	4+00WA	<5	0.4	2.37	90	85	10	0.86	<1	25	35		5.21	10				0.01	32	920	18	<5	<20						-	79
81	L6+25S:	4+00WB	<5	< 2		70	75	5	0.84	<1	21	35	43	5.08	10	0.81	416		0.01	29	690		-		44	0.04	<10	61		8	81
82	L6+255;	4+25W	<5	0.4	2.33	90	95	<5	1.28	1	24	35	81	4.89	20	0.76	1573					18	<5	<20	44	0.05	<10	62		8	79
			-0	0.4				-0	1.20	•	24	30	01	4.03	20	0.70	15/3	<1	0.01	37	1160	18	<5	<20	60	0.03	<10	52	<10	14	99
83	L6+25S:	4+50W	<5	<.2	2.45	80	80	<5	0.89	1	23	33	61	5.05	20	0.77	602	<1	0.01	33	540	20	<5	<20	46	0.05	<10	58	<10	15	78
84	L6+25S:	5+00W	<5	0.4	2.33	80	100	<5	1.65	1	22	30	75	4.45	20	0.63	1178	<1	0.01	30	1690	20	5	<20	73	0.03	<10	46	<10	. –	104
85	L6+25S:	5+50W	<5	<.2	2.23	45	90	<5	1.04	1	24	32	67	5.01	20	0.71	632		0.01	33	910	24	5	<20	50	0.03	<10	49	<10		
86	L6+50S; T\L	6W	<5	0.2	2.35	170	105	5	0.90	1	25	32	54	5.00	10	0.85	965	<1	0.01	30	680	30	<5	<20							111
87	L6+75S:	0+25E	<5			5	35	<5	0.20	<1	17	20	26	3.02	20	0.51	219	<1	0.01	32	300	8	-		44	0.05	<10	60	<10		83
			•			•			0.20	.,		20	20	J.UZ	20	0.31	213	~1	0.01	32	500	•	<5	<20	11	0.03	<10	26	<10	10	43
88	L7+005: TVL	6W	<5	<.2	2.17	75	75	10	1.17	<1	19	29	38	6.08	<10	0.53	289	<1	0.01	24	550	38	<5	<20	54	0.03	<10	58	<10	2	70
89	L7+25S:	0+50E	<5	<.2	0.98	10	35	5	0.24	<1	13	16	13	4.02	<10	0.53		<1	0.01	16	420	6	<5	<20	6	0.03	<10	25	<10	1	
90	L7+50S:	1+00E	<5	<.2	2.43	<5	70	15	0.20	<1	23	37	38	6.79	10	0.65	377	•	0.01	32	660	22	<5	<20	8	0.08	<10	59	. –		56
91	L7+50S: TVL	6W	<5	<.2	2.08	105	75	10	0.63	<1	25	31	35	6.61	<10	0.63	612	-	0.01	23	390	24	<5		-				<10	6	73
92	L7+75S:	1+00E	<5	<.2	2.78	<5	70	15	0.26	<1	25	27	35	6.60	<10	0.77	-	<1	0.01				-	<20	35	0.06	<10	81	<10	1	60
	27 7 7 6 6.	1.000	-0	<b>-</b>	2.70			15	0.20	~1	23	21	33	0.00	~10	0.77	303	<1	0.01	23	380	16	<5	<20	8	0.07	<10	103	<10	<1	65
93	L7+75S:	1+25E	<5	<.2	1.76	5	50	5	0.26	<1	16	30	21	3.62	20	0.57	236	<1	0.01	28	490	18	<5	<20	12	0.04	<10	41	<10	7	56
94	L8+00S:	1+00E	<5	<.2	2.28	10	50	10	0.35	<1	13	24	28	5.94	<10	0.37	150	<1	0.01	16	340	14	<5	<20	13	0.05	<10	70	<10	-	47
95	L8+00S:	1+25E	<5	<.2	3.04	<5	80	15	0.07	<1	17	38	19	5.03	<10	0.70	208	<1	0.01	30	540	16	<5	<20	2	0.05	<10	40	<10	-	95
96	L8+00S: T\L	6W	<5	0.2	2.33	50	85	<5	0.68	<1	22	30	53	4.91		0.78		<1	0.01	29	780	14	<	<20	36	0.04	<10	64	<10	-	55 68
97	L8+25S:	1+00E	<5	0.2	1.91	5	60	10	0.40	<1	14	27	20	5.62	<10	0.54		<1	0.01	20	290	16	`<5	<20	16	0.05	<10	61	<10		61
												-							0.01	20	200	10	~	~20	10	0.00	10	01	10	~!	01
98	L8+25S:	1+50E	<5		3.86	<5	75	10	0.09	<1	20	48		7. <b>0</b> 6	<10	0.76	227	<1	0.01	32	600	22	<5	<20	4	0.06	<10	46	<10	<1	87
99	L8+75S:	1+00E	<5	<.2	2.07	<5	65	10	0.12	<1	16	34	28	5.41	10	0.72	229	<1	0.01	27	280	18	<5	<20	7	0.05	<10	55	<10	3	67
100	L8+755:	1+25E	<5	0.4	2.33	<5	55	5	0.22	<1	21	32	31	5.39	30	0.62	296	<1	0.01	36	480	18	<5	<20	11	0.04	<10	39	<10	-	67
101	L8+75S:	1+50E	<5	<.2	1.77	<5	55	10	0.09	<1	11	26	20	4.65	<10	0.54	172	<1	0.01	18	320	12	<5	<20	2	0.04	<10	55	<10		52
102	L8+75S:	1+75E	<5	0.6	2.24	<5	90	5	0.22	<1	20	31	30	5.21	20	0.87		<1	0.01	30	630	12	<5	<20	15	0.06	<10	75	<10	-	78
407	10,000	a. aa	_	-		_																									
103	L9+00S:	0+00	<5	<.2	3.32	<5	65	15	0.47	<1	47	11	37	6.23		1.61		<1	0.02	13	790	18	10	<20	12	0.24	<10	208	<10	<1	<del>95</del>
104	L9+00S:	0+50W	<5	<.2	2.51	10	80	10	0.74	<1	21	32	29	5.31	<10	0.80	459	<1	0.01	26	640	18	<5	<20	31	0.03	<10	67	<10	5	65
105	L9+00S:	1+00W	<5		1.75	<5	45	<5	0.20	<1	15	26	16	3.44	10	0.72	216	<1	0.01	25	260	10	<5	<20	6	0.03	<10	34	<10	1	50
106	L9+00S:	1+50W	<5	<.2	2.13	<5	80	15	0.73	<1	31	31	47	6.55	10	0.83	778	<1	0.01	27	760	10	<5	<20	27	0.05	<10	65	<10	8	62

Eco-Tech Laboratories Ltd.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi Ca 5	Cd	Co	Cr	Cu Fe %	La	Mg %	Mn N	lo Na %	Ni	р	РЪ	Sb	Sn	Sr	TI %	U	v	w	v	Zn
107	L9+00S: 2+00W	<5	<.2	2 1.28	<5	30	<5 0.1	5 <1	16	19	25 3.24	10	0.65	319	1 0.01	19	440	8	<5	<20	4		<10	42	<10		43
108	L9+00S: 2+50W	<5	<.2	2.45	<5	80	5 0.4	3 <1	21	31	38 5.04	10	0.91	308 •	1 0.01	29	. –	14	<5	<20	18		<10	66	<10	4	4J 64
109	L9+00S: 3+00W	<5	<.2	2.05	<5	80	5 0.7	3 <1	21	27	41 4.19	10			1 0.01	27		12	<5	<20	42		<10	59	<10	•	
110	L9+00S: 3+50W	<5	<.2	2.34	<5	85	5 0.4		21	31	48 4.89	10			1 0.01	27	510	12	5	<20	19		<10	67			61
111	L9+00S: 4+00W	<5			30	60	10 0.2		14	31	41 5.65	<10	0.60		1 0.01	20		16	<5	<20 <20	19		<10	67	<10 <10	3 <1	69 56
112	L9+005: 4+50W	<5	0.4	2.38	330	100	<5 0.8	, 3	22	34	66 4.77	20	0.79	1328 <	1 0.01	33	1180	14	<5	<20	52	0.03	<10	54	<10	45	-
113	L9+00S: 5+00W	<5		1.88	5	60	10 0.2	-	21	24	33 4.33	<10	0.68		1 0.01	24		14	<5	<20	14			53		•	78
114	L9+00S: 5+50W	<5		2.30	<5	90	5 0.5		27	29	40 5.39	10	0.76		1 0.01	27	500	14	<5 <5				<10		<10	3	55
115	L9+00S: T\L 6W	<5		3.67	<5	145	10 0.7		38	29	104 6.78	10	1.12		1 0.01	30				<20	46		<10	68	<10	8	69
116	L9+00S: 0+50E	<5		1.84	<5	70	<5 0.1		14	33	20 3.78	10			1 0.01	25		14 16	<5 5	<20 <20	53 9		<10 <10	151 41	<10 <10		81 76
117	L9+00S: 1+00E	<5	0.4	2.08	<5	85	10 0.1	i <1	15	34	25 6.34	<10	0.80	224 <	1 0.01	24	400	42	~E		•				-10		
118	L9+00S: 1+25E	<5			<5	80	10 0.1		14	26	17 4.65	<10	0.63		1 0.02	15		12 14	<5 <5	<20	8		<10	44	<10		72
119	L9+00S: 1+50E	<5		1.86	<5	65	5 0.1		16	24	20 3.72	10	0.62		1 0.01				-	<20	10	0.07	<10	62	<10	-	74
120	L9+00S: 1+75E	<5			<5	65	10 0.1		20	32	38 5.40	10	0.99			17 33		14	<5	<20	7		<10	51	<10	_	63
121	L9+00S: 2+00E	<5			<5	55	5 0.1		18	32	42 4.47	20	0.33		1 0.02	38		12	<5	<20	9	0.06	<10	49	<10	3	81
		-0	0.2	2.10	-0	3	5 0.10	, -,	10	JZ	42 4.41	20	0.07	201	0.01	36	720	14	<5	<20	5	0.04	<10	31	<10	6	72
122	L9+00S: 2+50E	<5	0.4	1.47	<5	60	5 0.0-	<1	10	20	16 4.76	<10	0.24	186 <	1 0.01	13	1030	14	<5	<20	5	0.02	<10	48	<10	<1	54
123	L9+00S: 3+50E	<5	0.4	2.74	<5	75	5 0.1	<1	19	36	34 5.86	<10	0.66	195 <	1 0.01	40	680	20	<5	<20	5	0.04	<10	28	<10	•	96
124	L9+00S: 4+00E	<5	<.2	2.21	<5	60	10 0.5	<1	19	28	30 4.82	<10	0.73	286 <	1 0.01	22		14	<5	<20	16		<10	62		2	53
125	L9+00S: 4+50E	<5	<.2	3.01	<5	85	10 0.1	<1	24	41	49 6.64	<10	0.67	188 <		46	680	32	<5	<20	12		<10	42	<10	3	123
126	L9+00S: 4+75E	<5	<.2	1.84	<5	55	15 0.04	<1	25	38	55 10.40	<10	0.45	296 <	1 0.01	39	1590	30	<5	<20	1		<10	57		<1	148
127	L9+00S: 5+00E	<5	<.2	2.46	<5	55	< <b>5</b> 0.1 ⁴	<1	26	31	66 6.26	10	0.55	168 <	1 <.01	58	600	22	<5	<20	5	0.04	<10	31	<10	5	400
128	L9+25S: 4+50E	<5		1.96	<5	75	15 0.05		20	33	32 6.89	<10	0.55	221 <		31	950	14	~5	<20	6	0.05	<10	41	<10	-	132
129	L9+25S: 4+75E	<5		1.78	<5	70	10 0.12	-	18	35	52 7.41	<10	0.56	271 <		35		30	<5	<20	5	0.05	<10		. –	•	127
130	L9+25S: 5+00E	<5			<5	80	10 0.10		18	37	37 5.91	<10	0.56	273 <		32	1200	28	<5	<20	4	0.04		44	<10		140
131	L9+50S: 4+75E	<5			<5	65	5 0.17		18	28	29 4.40	<10	0.59	290 <		32	580	14	<5	<20 <20	7		<10 <10	37 29	<10 <10		137 112
132	L9+50S: 5+00E	<5	0.2	1.36	<5	80	10 0.11	<1	12	23	18 3.88	<10	0.37	141 <	1 0.01	19	390	18	<5	<20	7	0.04	<10	32	<10	-1	108
133	L9+50S: 5+25E	<5	0.2	1.60	<5	100	15 0.20	<1	21	34	26 7.12	<10	0.49	331 <	1 0.01	28	880	30	<5	<20	12	0.08	<10	64	<10	•	180
134	L9+50S: T\L 6W	<5	0.2	1.89	<5	90	<5 1.39	<1	15	26	44 4.46	<10	0.54	441 <		21	610	12	<5	<20	92	0.02	<10	61	<10	•	61
135	L9+75S: 5+25E	15	<.2	1.90	30	80	15 0.22	1	21	41	45 6.12	<10	0.80	315 <		39	720	24	5	<20	9	0.09	<10	51	<10	-	167
136	L9+75S: 5+50E	<5	0.4		<5	60	10 0.45		23	33	28 6.19	<10	0.54	477 <		30	420	38	<5	<20	19	0.08	<10	50	<10	6	136
137	L9+75S: 5+75E	<5	<.2	1.05	<5	120	15 0.11	<1	10	23	16 5.38	<10	0.34	340 <	1 0.01	10	510	16	<5	<20	11	0.10	<10	77	<10	<b>c1</b>	92
138	L10+00S: 5+25E	<5	0.4	1.73	<5	80	10 0.24	<1	21	34	34 5.15	20	0.72	642 <		37	710	20	<5	<20	11	0.06	<10	38	<10	-	125
139	L10+00S: 5+50E	<5	0.4	1.58	<5	70	15 0.13	1	14	31	17 5.88	<10	0.57	204 <		21	560	18	<5	<20	7	0.07	<10	49	<10	-	
140	L10+00S: 5+75E	15	<.2		<5	100	15 0.15	•	20	34	20 6.54	<10	0.49	452 <		21	920	28	<5	<20	8	0.08	<10	49 59		•	127
141	L10+00S: T/L 6W	<5	<.2		<5	105	10 0.28	<1	30	40	63 5.50	20	0.90	771 <		38	460	16	<5	<20 <20	15	0.05	<10	59 70	<10 <10	<1 15	179 73
142	L10+25S: 5+50E	<5	0.4	1.63	<5	65	10 0.08	<1	15	33	33 6.00	<10	0.58	230 <	1 0.01	27	730	22	<5	<20	3	0.06	<10		-10	- 4	104
143	L10+25S: 5+75E	<5	0.2		<5	95	10 0.14	<1	16	39	21 6.27	<10	0.67	239 <		26	1190	20	<5	<20	8			44	<10	•	124
144	L10+50S: 5+75E	<5	<.2		<5	170	15 0.09		18	38	57 9.29	<10	0.65		9 0.01		1760	20 90	<5 <5		-	0.07	<10	49	<10	•	123
145	L10+50S: 6+00E	<5	-		<5	85	10 0.12		16	34	29 5.10	<10	0.60		1 0.01	28	1580	90 18	بې ح	<20 <20	17	0.06	<10	121	<10		162
• • •		-0	4	2.00	-0	~	10 0.12	-1	10	-	23 0.10	10	0.00	104 4	0.01	20	1200	10	\$	<20	3	0.06	<10	41	<10	<1	98

1

Eco-Tech Laboratories Ltd.

ş

1

Ì

1

<u>Et #.</u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn M	lo Na %	NI	P	РЬ	Sb	Sn	Sr	TI %	υ	v	w	Y	Zn
146	L10+50S: 6+25E	<5	<.2	1.69	<5	65	10	0.09	<1	15	35	25	5.16	<10	0.48	218 <	1 0.01	23	630	26	<5	<20	6	0.08	<10	47	<10	<1	83
147	L10+50S: TVL 6W	<5	<.2	2.23	<5	70	10	0.13	<1	14	34	39	6.67	20	0.66	221 <	1 0.01	19		14	<5	<20	7		<10	100	<10	•	45
148	L10+75S: 5+75E	<5	1.6	2.27	<5	70	10	0.09	<1	13	32	16	5.45	<10		305 <		15		22	<5	<20	5	0.06	<10	53	<10		
149	L10+75S: 6+00E	<5	<.2	2.32	<5	70	15	0.17	<1	19	17	45		<10	0.72		1 0.02	10		16	<5							•	98
150	L10+75S: 6+25E	<5		2.89	<5	90		0.14	<1	24	47	48	6.34		0.71							<20	5		<10	268	<10		78
		-0		2.00			15	0.14	~,	24	47	40	0.34	10	U.71	272 <	1 0.01	42	890	46	<5	<20	6	0.08	<10	44	<10	4	149
151	L11+00S: 5+75E	-5	- 2	1.04	Æ	95	40	0.00	- 4			•••																	
		<5		1.84	<5	85	10	0.06	<1	16	33	21			0.51	316 <		19	1120	20	<5	<20	5	0.08	<10	64	<10	<1	103
152	L11+00S: 6+00E	<5	0.4		<5	105	-		<1	17	44	28	5.56	<10	0.45	251 <		23	940	54	<5	<20	9	0.04	<10	46	<10	<1	121
153	L11+00S: 6+25E	<5		1.39	<5	110	15	0.11	<1	13	29	- 44	7.26	<10	0.37	594 <	1 0.01	19	2290	14	<5	<20	9	0.04	<10	59	<10	<1	83
154	L11+00S: TVL 5W	<5		2.69	<5	90	10	0.30	<1	20	35	45	6.06	<10	0.98	354 <	1 0.01	28	560	12	<5	<20	16	0.06	<10	77	<10	<1	61
155	L11+25S: 5+75E	<5	0.6	1.36	<5	120	15	0.10	<1	12	27	48	7.57	<10	0.29	584 <	1 0.01	17		14	<5	<20	10	0.03	<10	65	<10	-	75
																				••				0.00		~		-1	
156	L11+25S: 6+00E	<5	<.2	2.18	<5	65	5	0.11	<1	18	34	26	4.66	<10	0.63	175 <	1 0.01	31	1140	16	<5	<20		0.07	<10	38	<10		
157	L11+25S: 6+25E	<5	<.2	1.54	<5	50		0.10	<1	12	32	24		<10	0.46		1 0.01	21		28	<5	<20					. –		87
158	L11+50S: TVL 6W	<5		2.27	<5	100		0.73	<1	27	33	63	5.56	20		1319 <					-		4		<10	51	<10	•	76
159	L11+75S: 6+75E	<5	0.4		<5	65		0.10	<1	18	34	37	7.47	<10				28	830	20	<5	<20	26	0.04	<10	76	<10		57
160	L12+00S: 7+00E	<5		2.16	<5	70		0.13	<1	22	36				0.47		1 0.02	26		24	<5	<20	7	80.0	<10	57	<10		114
100	E12:000. 7:00E	~>	<b>~.</b> 2	2.10	<b>~</b> 5	70	10	0.13	~1	22	30	39	4.98	10	0.76	221 <	1 0.01	38	670	46	<5	<20	3	0.07	<10	33	<10	3	130
161	1 42+000- 70 -004/						-																						
161	L12+00S: T\L 6W	<5		2.46	<5	105		0.91	<1	24	38	48		10	0.71		1 0.01	26	840	16	<5	<20	35	0.04	<10	88	<10	13	63
162	L12+25S: 7E	<5		1.44	<5	60		0.07	<1	18	28	33	6.93	<10	0.43	336 <	1 0.01	26	1330	20	<5	<20	6	0.06	<10	47	<10	<1	93
163	L12+50S: 7+25E	<5	0.6	1.50	<5	60	5	0.16	<1	10	29	16	3.91	10	0.53	177 <	1 0.01	17	420	16	<5	<20	12	0.05	<10	34	<10	2	67
164	L12+50S: 7+50E	<5	0.2	1.89	<5	55	10	0.14	<1	23	29	32	5.05	20	0.54	238	1 0.01	38	510	22	<5	<20	7	0.04	<10	32	<10	7	120
165	L12+50S: TVL 6W	<5	<.2	2.10	<5	65	10	0.18	<1	16	31	33	4.90	20	0.58	299 <	1 0.01	21	600	14	<5	<20	11	0.03	<10	68	<10	7	50
																				14		-20	•••	0.00	-10		-10	'	50
166	L12+75S: 7+25W	<5	0.6	1.82	<5	90	<5	0.92	<1	23	30	50	4.73	50	0.56	1430 <	1 0.01	39	1110	24	<5	<20	37	0.02	-10		-40	~	~
167	L12+75S: 7+50W	<5	0.4		<5	65	-	0.74	<1	26	36	45	5.39	30		1027 <		35			-	_		0.03	<10	44	<10		96
168	L12+75S: 7+75W	<5		2.17	<5	70		0.41	<1	28	45	46	6.39						1030	18	<5	<20	25	0.04	<10	45	<10		101
169	L13+00S: 7+25E	<5		2.34	<5	120		1.31	<1	23	32			20	0.80		1 0.01	48	670	68	<5	<20	18	0.09	<10	49	<10		173
170	L13+00S: 7+50E	<5		1.34	<5	65						63	4.61	90		2091 <		50	1530	16	<5	<20	51	0.03	<10	47	<10		105
170	L134003. /430E	< <b>5</b>	<b>~.</b> Z	1.34	~5	65	5	0.30	<1	10	27	14	4.23	<10	0.51	144 <	1 0.01	18	290	18	<5	<20	17	0.06	<10	46	<10	<1	64
474	L13+00S: 7+75E										<b>.</b>																		
171		<5		0.91	<5	65		0.20	<1	11	24	13		<10	0.33	274 <		12	310	114	<5	<20	11	0.08	<10	49	<10	<1	78
172	L13+00S: 8+00E	<5		1.95	<5	60		0.24	<1	21	35	44	4.80	20	0.85	235 <	1 0.01	- 48	770	46	<5	<20	9	0.07	<10	31	<10	8	152
173	L13+00S: TVL 6W	<5	0.2	2.44	<5	95		0.17	<1	19	31	32	7.50	<10	0.84	310 <	1 0.01	24	460	12	<5	<20	12	0.08	<10	97	<10	<1	63
174	L13+25S: 7+25E	<5	<.2	1.69	<5	60	5	0.21	<1	18	29	23	4.18	10	0.67	304 <	1 0.01	35	520	14	<5	<20	9	0.05	<10	31	<10	Å	70
175	L13+25S: 7+50E	<5	<.2	1.25	<5	55	10	0.09	<1	11	24	11	3.93	<10	0.48	223 <	1 0.01	15	270	14	<5	<20	5	0.05	<10	34	<10	-	78
																				••	-		-			••			
176	L13+25S: 7+75E	<5	0.2	1.29	<5	95	10	0.12	<1	11	28	18	4.61	<10	0 49	179 <	1 0.01	18	420	32	<5	<20	8	0.06	<10	33	<10	-1	105
177	L13+25S: 8+00E	<5	0.6	1.84	<5	65	<5	0.23	<1	25	33	42	5.11		0.76	312 <		43	840	38	<5	<20	6	0.06	<10			•	
178	L13+50S: 7+25E	<5	0.2	2.14	<5	90	-	0.17	<1	19	37	40	5.92	<10	0.81		1 0.01	42	650	36 18	<5 <5					29	<10		118
179	L13+50S: 7+50E	<5	0.6	1.70	<5	75	15	0.26	<1	28	35	37	5.60								-	<20	11	0.06	<10	33	<10		93
180	L13+50S: 7+75E	-			<5									20	0.51		1 0.01	31	540	34	<5	<20	13	0.07	<10	39	<10		137
100	L137003. (770E	<5	<.2	1.00	<0	90	10	0.10	1	11	26	14	3.58	<10	<b>U.44</b>	225 <	1 0.01	15	310	44	<5	<20	7	0.08	<10	38	<10	<1	131
481	1424505 04005			4 70		**		~ ~ ~																					
181	L13+50S: 8+00E	<5		1.70	<5	50		0.19	<1	20	32		4.70		0.77	314 <		37	700	18	<5	<20	7	0.05	<10	29	<10	2	99
182	L13+50S: 8+25E A	<5	<.2	1.22	<5	45		0.17	<1	17	20	23	3.38		0.54	242 <	1 <.01	32	580	18	<5	<20	7	0.04	<10	20	<10	2	117
183	L13+50S: 8+25E B	<5	0.2	1.54	<5	55	10	0.17	<1	16	26	27	3.88	10	0.66	220 <	1 0.01	35	550	18	<5	<20	7	0.04	<10	24	<10	3	121
184	L13+50S: T\L 6W	<5	<.2	2.88	<5	95	<5	0.16	<1	23	34	66	5.49	10	1.12	405 <	1 0.01	37	400	14	5	<20	9	0.05	<10	82	<10	8	62
																								-	-			-	

\$

.

[

Eco-Tech Laboratories Ltd.

Et #.	Tag	#	Au(ppb)	Ag	AI %	As	Ba	Bi -	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	р	Pb	Sb	Sn	Sr	Π%	U	v	w	Y	Zn
185	L13+75S:	7+25E	<5	0.4	1.63	<5	70	5	0.24	<1	19	28	32	3.85	30	0.66	369	<1	0.01	31	510	12	<5	<20	13	0.04	<10	35	<10	- <u></u> 7	85
186	L13+75S:	7+50E	<5	0.2	1.43	<5	55	5	0.19	<1	19	27	24	4.29	20	0.56	320	-	0.01	29	420	28	~ <5	<20	9	0.06	<10	35		•	
187	L13+75S:	7+75E	<5	0.6		<5	50	10	0.25	<1	17	29	30	4.61	30	0.64		-	0.01					-	-				<10	4	122
188	L13+75S:	8+00E	<5	0.4		<5	295	10	0.24	1	23	28	28		<10	0.69		-		34	580	46	<5	<20	11	0.05	<10	34	<10		134
189	L13+75S:	8+25E	<5			~> <5			-	•				6.21					0.01	36	990	16	<5	<20	17	0.02	<10	22	<10		204
109	L13+755.	0+232	<2	<.2	1.44	9	110	10	0.30	1	20	32	46	5.56	80	0.47	561	<1	0.01	33	680	34	<	<20	15	0.06	<10	41	<10	31	131
190	L13+75S:	8+50E	<5	02	1.84	<5	65	10	0.34	<1	16	37	31	5.01	30	0.91	258	<1	0.01	35	590	~									
191	L14+00S:	0+00	<5			<5	75	<5	0.29	<1	17	28	37	3.61	20	0.79		-				20	<5	<20	15	0.07	<10	41	<10	-	103
192	L14+00S:	0+50W	<5	< 2		85	90	10										-	0.01	32	500	<2	10	<20	13	0.05	<10	39	<10		59
193	L14+00S:	1+00W	<5			دی ح			0.26	<1	19	32	45	4.83	30	0.83		•	0.01	42	570	6	10	<20	12	0.06	<10	45	<10	11	74
			_	0.4			85	10	0.37	<1	15	28	36	4.21	20	0.74			0.01	31	520	<2	10	<20	18	0.04	<10	45	<10	7	76
194	L14+00S:	1+50W	<5	<.2	1.67	<5	105	10	0.13	<1	13	24	16	4.45	10	0.64	272	<1	0.01	20	370	2	10	<20	7	0.06	<10	51	<10	<1	68
195	L14+00S:	2+00W	<5	<.2	1.68	15	65	<5	0.25	<1	15	26	24	3.83	20	0.81	387	<1	0.01	28	450	8	15	<20	9	0.00		~ ~			
196	L14+00S:	2+50W	<5	<.2		<5	90		0.12	<1	13	23	15	4.90	<10	0.56			0.01	19	450 280	10	10	-	-	0.03	<10	34	<10	-	96
197	L14+00S:	3+00W	<5	<.2		<5	85		0.73	<1	21	27	45	4.67	30	0.72							-	<20	8	0.07	<10	58	<10	•	72
198	L14+00S:	3+25W	<5	<2		<5	100		0.46	<1						_			0.01	33	770	8	10	<20	28	0.04	<10	58	<10		79
199	L14+00S:	3+50W	<5	<.2		~> <5	90	-			27	28	67	5.10	30	0.84			0.01	48	470	14	10	<20	19	0.07	<10	61	<10		85
199	L14+003.	3+3044	<b>~</b> 0	<b>~.</b> Z	2.19	<b>N</b> 0	90	<5	0.42	<1	25	32	48	4.88	20	0.91	1026	<1	0.01	42	470	6	5	<20	17	0.05	<10	48	<10	10	91
200	L14+00S:	3+75W	<5	<.2	2.37	5	100	5	0.49	<1	27	29	50	5.16	20	1.00	680	<1	0.01	42	680	2	15	<20	20	0.07	<10	69	<10	7	70
201	L14+00S:	4+00W A	<5	< 2	2.51	<5	115		0.76	<1	26	31	75	5.51	20		1117		0.01	38	890	6	5	<20	33	0.07	<10	70		-	76
202	L14+00S:	4+00W B	<5		2.37	<5	155		0.67	1	27	31	68	5.39	20	0.90			0.01	43	870	8	-						<10		84
203	L14+00S:	4+50W	<5	<.2		<5	110		0.82	<1	25	31	47	5.82	10	0.76						-	20	<20	28	0.05	<10	68	<10		90
204	L14+00S:	5+00W	<5	0.2		<5	100		1.19										0.01	34	520	4	10	<20	38	0.05	<10	68	<10	9	83
204	L141000.	3.0011	-5	U.2	6.44	-5	100	-5	1.13	<1	24	28	100	4.95	30	0.71	1072	<1	0.01	35	1140	8	10	<20	43	0.04	10	65	<10	24	88
205	L14+00S:	5+50W	<5	<.2	2.66	<5	105	<5	0.40	<1	24	31	63	5.17	30	0.74	816	<1	0.01	30	720	4	10	<20	18	0.04	<10	68	<10	18	88
206	L14+00S: T\L	- 6W	<5	<.2	2.01	<5	70	10	0.07	<1	13	24	27	4.54	<10	0.66			0.01	18	210	2	10	<20	4	0.04	<10	64	<10		50
207	L14+00S:	1+00E	<5	<.2	2.02	<5	90		0.67	<1	16	29	44	3.59	20	0.72			0.01	30	750	4	10	<20	27	0.05					
208	L14+00S:	1+50E	<5	<.2		<5	110	-	0.13	<1	20	18	28	6.86	<10	0.69			0.01	15	440	6		<20	8		<10	52	<10		76
209	L14+00S:	2+00E	<5	< 2		<5	85		0.29	<1	21	32	44	5.46	20	0.73		•	0.01	-		-	10		-	0.15	<10	153	<10		84
200		2.002	-0	<b>£</b>	££.1			5	0.23	-1	21	32	-	5.40	20	0.75	450	51	0.01	30	520	12	5	<20	15	0.07	<10	70	<10	8	94
210	L14+00S:	2+50E	<5	<.2	1.80	<5	70	5	0.36	<1	19	26	42	4.46	20	0.75	443	<1	0.01	30	470	2	10	<20	15	0.03	<10	47	<10	6	74
211	L14+00S:	3+00E	<5	<.2	2.48	<5	120	<5	0.69	<1	35	26	81	5.73	30	1.01	811	<1	0.02	40	510	2	15	<20	27	0.12	<10	86	<10	-	103
212	L14+00S:	3+50E	<5	<.2	2.26	<5	110	10	0.92	<1	19	31	44	5.93	30	0.70	469	<1	0.01	32	700	6	10	<20	41	0.05	<10	74	<10		76
213	L14+00S:	4+00E	<5	<.2	1.94	<5	115	<5	0.19	<1	18	27	28	4.72		0.71			0.01	27	260	~2	10	<20	10	0.05	<10	54	<10		75
214	L14+00S:	4+50E	10	<.2		<5	90		0.11	<1	13	32	21	5.82	<10	0.66			0.01	25	420	4	10	<20	5		<10				
						-		•					•••	0.02		0.00		-,	0.01	فنبة	720	-	10	-20	3	0.05	-10	37	<10	< I	74
215	L14+00S:	5+00E	10	<.2	1.62	<5	55	10	0.16	<1	13	28	26	4.96	<10	0.68	197	<1	0.01	28	300	6	15	<20	10	0.04	<10	33	<10	<1	82
216	L14+00S:	5+50E	10	<.2	1.77	<\$	80	<5	0.11	<1	11	34	25	5.44	<10	0.70	172	13	0.01	21	330	4	5	<20	9	0.05	<10	42	<10		86
217	L14+00S:	6+00E	15	0.4	1.65	<5	75	<5	0.14	<1	16	26	33	4.24	20	0.64			0.01	32	520	8	10	<20	6	0.04	<10	37	<10	4	105
218	L14+00S;	6+50E	10	0.6	1.64	<5	95	<5	0.42	1	26	29	36	4.31	40	0.65	860		0.01	37	810	6	10	<20	26	0.03	<10	38	<10	40	107
219	L14+00S:	7+00E	25	<.2	1.42	<5	60	-	0.24	<1	10	23	24	3.73		0.61	175		0.01	25	290	4	10	<20	15	0.03	<10	30	<10	10	72
																						•				2.01	- 10	0.	-10		/ <del>-</del>
220	L14+00S:	7+25E	10	<.2	1.42	<5	55	5	0.20	<1	13	26	25	4.05	20	0.66	250	<1	0.01	29	290	6	10	<20	10	0.06	<10	37	<10	6	72
221	L14+00S:	8+00E	<5	0.4	1.63	<5	65	10	0.24	<1	13	30	21	4.62	10	0.69	201	<1	0.01	28	410	12	15	<20	11	0.05	<10	30	<10	1	113
222	L14+00S:	8+25E	<5	0.4	1.35	<5	115	5	0.24	1	14	26	23	4.77	10	0.53	170		0.01	26	530	16	10	<20	16	0.04	<10	27	<10	-	159
223	L14+00S:	8+50E	<5	<.2	0.80	<5	65		0.14	<1	10	16	19	2.70		0.29		-	0.01	17	330	16	5	<20	7	0.04	<10	33		-	74
			-			-		-											4.41			10	5	-20	'	0.04	10	33	-10	4	74

1

Ĩ

. 1

Eco-Tech Laboratories Ltd.

}

X

1

Į

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn M	o Na 1	4 NI	Р	Pb	8b	Sn	Sr	TI %	U	v	w	Y	Zn
224	L14+25S: 3+00W	<5	<.2	1.91	<5	70	10	0.47	<1	22	26	36	4.64	20	0.61	543 <	1 0.0	1 29	390	24	10	<20	18	0.05	<10	55	<10	9	73
225	L14+25S: 3+25W	10	<.2	2.17	<5	90	<5	0.90	<1	24	27	44	4.79	20	0.69	722 <	1 0.0	1 32	780	8	5	<20	33	0.04	<10	58	<10	-	72
226	L14+25S: 3+50W	10	<.2	1.97	<5	80	<5	0.32	<1	22	28	34	4.53	20	0.93		1 0.0		390	6	20	<20	12	0.05	<10	46	<10		71
227	L14+25S: 3+75W	<5	<.2	2.52	<5	115	10	0.63	<1	28	33	74	5.40	30	0.99		1 0.0		780	6									
		-			~> <5	90	<5													-	10	<20	26	0.06	<10	61	<10		90
228	L14+25S: 4+00W	<5	<.2	2.49	<0	90	-0	0.49	<1	23	31	47	5.33	10	0.98	384 <	<1 0.0	1 40	290	<2	15	<20	20	0.05	<10	61	<10	6	71
		_	_		_									_															
229	L14+50S: 3+00W	<5	<.2		<5	95	10	0.15	<1	12	22	15	4.87	<10		181 <				8	10	<20	9	0.07	<10	70	<10	<1	63
230	L14+50S: 3+25W	<5	<.2	2.34	<5	80	10	0.42	<1	22	28	37	4.92	20	0.82	394 <	:1 0.0	1 36	320	8	10	<20	21	0.04	<10	48	<10	5	66
231	L14+50S: 3+50W	<5	<.2	2.47	10	105	<5	0.95	<1	29	32	54	5.14	30	0.88	1252 <	(1 0.0	1 40	1030	10	15	<20	38	0.05	<10	60	<10	21	102
232	L14+50S: 3+75W	<5	<.2	2.02	<5	75	<5	0.30	<1	22	31	33	4.51	10	0.97	493 <	1 0.0	1 38	240	4	20	<20	10	0.05	<10	44	<10	4	72
233	L14+50S: 4+00W	<5	0.4	2.92	<5	125	<5	1.31	<1	27	36	208	5,78	30	0.91	1784 <	1 0.0			2	15	<20	51	0.05	20	79	<10	•	90
		_			-		-		-				••					• ••		-		-00		0.00	20			•	
234	L14+50S: T\L 6W	<5	<.2	2.08	<5	85	10	0.31	<1	17	25	40	4.62	10	0.75	360 <	1 0.0	1 25	320	<2	15	<20	14	0.05	<10	73	<10		60
235	L14+75S: 3+00W	<5	< 2		<5	90	5	0.14	<1	12	18	15	4.09	<10	0.46	411 <			200	~2	5	<20		0.07	<10	82	<10		
236	L14+75S: 3+25W	<	<.2		<5	80	15	0.11	<1	15	32	22		<10	0.74	239 <				-	-		-						46
		-							-				6.68						220	4	10	<20	7	0.06	<10	61	<10		74
237	L14+75S: 3+50W	<5	<.2		<5	80	5	0.81	<1	14	28	46	5.47	20	0.60		1 0.0		570	4	10	<20	31	0.05	<10	70	<10	_	62
238	L14+75S: 4+00W	<5	<.2	2.88	<5	130	<5	0.83	<1	27	36	125	5.87	20	1.06	1522 <	1 0.0	1 48	1150	4	10	<20	34	0.05	10	73	<10	19	95
		_			_																								
239	L15+00S: 3+00W	<5	<.2		<5	125	10	0.60	<1	22	26	39	4.38	20	0.63	718 <	1 0.0		460	2	10	<20	25	0.05	<10	61	<10	6	85
240	L15+00S: 3+50W	<5	0.2	2.39	<5	110	<5	0.92	<1	22	28	59	4.68	30	0.87	951 <	:1 0.0	1 35	1200	6	20	<20	31	0.05	<10	69	<10	21	93
241	L15+00S: 3+75W	<5	<.2	1.30	<5	60	5	0.12	<1	12	17	16	3.64	<10	0.47	316 <	:1 0.0	1 14	290	2	5	<20	8	0.06	<10	49	<10	<1	48
242	L15+00S: TVL 6W	<5	<.2	2.60	<5	85	5	0.16	<1	22	31	50	5.71	10	1.03	379 <	1 0.0	1 37	380	<2	15	<20	10	0.05	<10	73	<10	5	77
243	L15+50S: T/L 6W	<5	<.2	2.70	<5	120	<5	1.04	<1	26	33	87	5.18	30	1.06	1394 <	1 0.0	t 41	930	<2	15	<20	41	0.06	<10	92	<10	-	87
		-							·											-				4.44		~		2.0	97
244	L16+00S: T\L 6W	<5	<.2	2.45	<5	110	5	0.91	<1	26	35	77	4.94	20	0.87	1650 <	1 0.0	1 34	700	~2	10	<20	39	0.06	10	75	<10	10	79
245	L16+50S; T/L 6W	<5	<.2	2.63	<5	110	10	0.66	<1	25	32	56	4.99	20	0.97		1 0.0		470	<2	15	<20	31	0.06	<10	69		8	71
246	L17+00S: TIL 6W	<5			<5	110	5	0.42	<1	22	30	49	4.45	10	1.11		1 0.0											-	
_		-																	280	<2	15	<20	19	0.08	<10	64	<10		117
247	L17+50S: TL 6W	<5	<.2	2.81	<5	85	10	0.22	<1	19	31	41	6.25	20	1.02	327 <			530	<2	20	<20	12	0.05	<10	77	<10		67
248	L18+00S: TVL 6W	<5	0.4	2.90	<5	160	10	0.80	<1	22	42	88	5.23	140	0.77	1149 <	1 0.0	52	860	4	15	<20	36	0.04	<10	62	<10 1	09	82
<b>.</b>		-			_		_																						
249	L18+50S: T\L 6W	<5	0.4	3.06	<5	125	<5	0.45	<1	27	36	91	5.50	130	1.00	919 <			780	<2	15	<20	25	0.07	<10	87	<10	50	77
250	L19+00S: T\L 6W	<5	<.2	2.49	<5	145	5	0.59	<1	23	15	92	5.37	20	0.87	693 <	1 0.0	2 17	540	<2	15	<20	23	0.12	<10	123	<10	11	61
251	L19+50S: TVL 6W	<5	<.2	2.53	<5	110	5	0.64	<1	21	35	49	5.55	10	1.03	499 <	1 0.0	1 36	420	~2	15	<20	26	0.07	<10	81	<10	8	82
252	L20+00S: T\L 6W	<5	0.4	2.22	<5	115	5	0.17	<1	17	29	43	5.29	10	0.83	449 <	1 0.0	31	1150	<2	5	<20	13	0.05	<10	70	<10	<1	69
253	L20+50S: TVL. 6W	<5	<.2	2.47	<5	105	5	0.28	<1	22	30	61	4.87	20	1.11	670 <	1 0.0	37	620	<2	15	<20	13	0.05	<10	68	<10	8	75
254	L21+00S: TNL 6W	<5	<.2	2.33	<5	110	<5	0.47	<1	23	28	66	4.62	20	0.98	603 <	1 0.0	I 33	580	<2	20	<20	20	0.06	<10	72	<10	12	68
255	L21+50S: T\L 6W	<5	<.2	2.46	<5	105	<5	0.42	<1	21	31	63	5.05	20	0.92	465 <			490	2	15	<20	17	0.08	<10	76	<10		66
256	L22+00S: T/L 6W	<5	<.2	1.84	<5	95	5	0.70	<1	17	23	30	4.74	<10	0.62	335 <			560	4	10	<20	27	0.04	<10	78	<10	2	56
257	L22+50S: TIL 6W	<5	<.2	2.31	<5	30 90	<5	0.40	<1	19	29	34	3.84	10	1.01					-					. –			2	
-		-			-		-		•										540	<2	15	<20	16	0.05	<10	55	<10	4	71
258	L23+00S: T\L 6W	<5	<.2	2.54	<5	110	10	0.37	<1	21	33	36	4.51	10	0.96	384 <	1 0.0	i 31	300	<2	10	<20	16	0.07	<10	75	<10	5	68
		-			-		-													_									
259	L23+50S: T\L 6W	<5			<5	105	5	0.97	<1	19	34	40	4.37	20	0.72	519 <			800	2	10	<20	31	0.04	10	72	<10		63
260	L24+00S: T\L 6W	<5	<.2	2.57	<5	110	10	0.20	<1	23	32	54	4.69	20	1.02	446 <	1 0.0		510	<2	25	<20	8	0.07	<10	66	<10	8	64
261	L25+005: TVL 6W	<5	<.2	2.23	<5	90	15	0.40	<1	16	30	29	6.15	<10	0.67	233 <	1 0.0	25	460	4	15	<20	16	0.06	10	92	<10	2	57
262	L26+00S: T\L 6W	<5	<.2	2.22	<5	85	5	0.41	<1	21	29	47	4.38	30	0.66	695 <	1 0.0	28	580	2	20	<20	18	0.05	<10	67	<10	14	49

1

1

1

Eco-Tech Laboratories Ltd.

ł

Ŋ

1

1

1

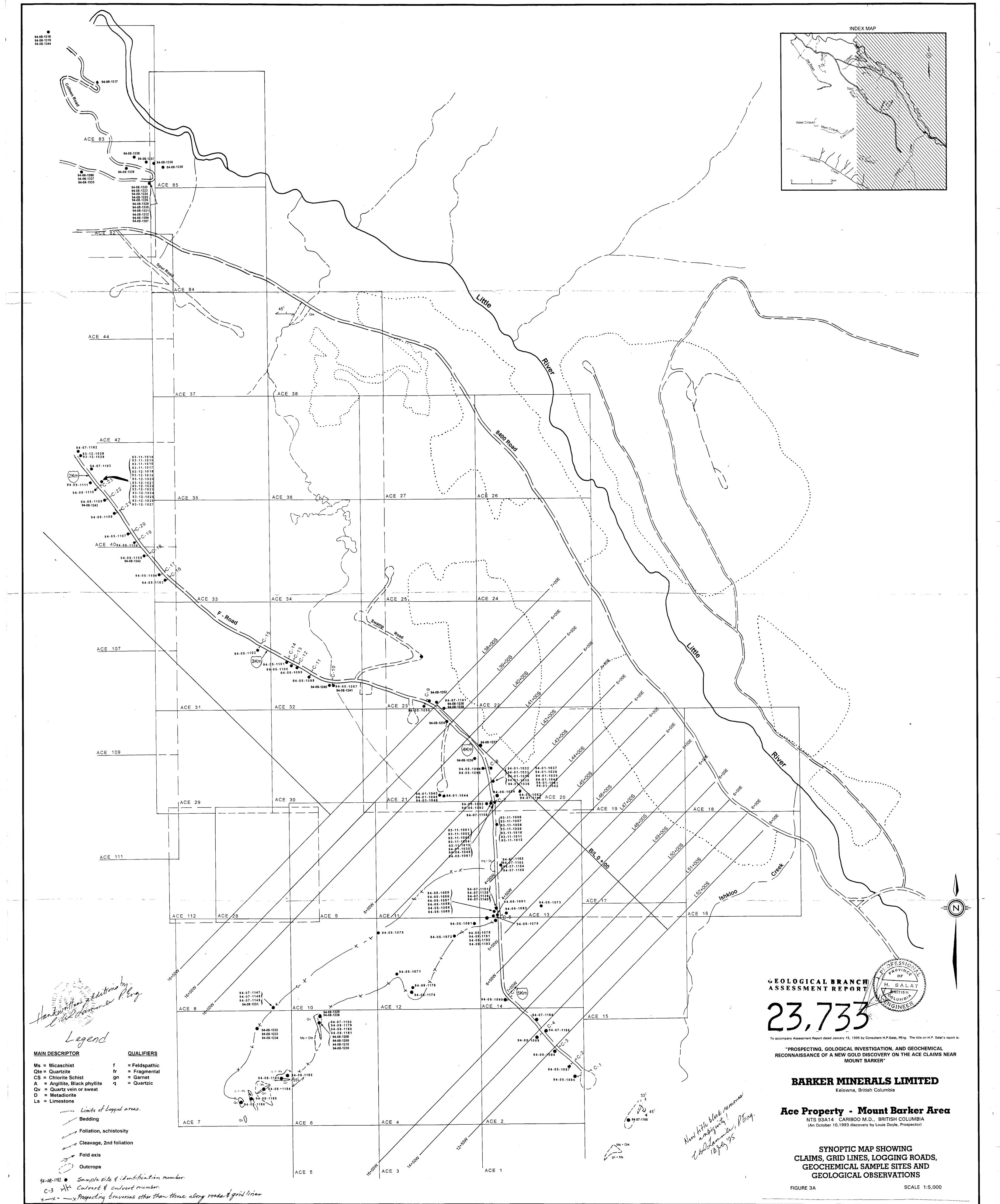
Ì

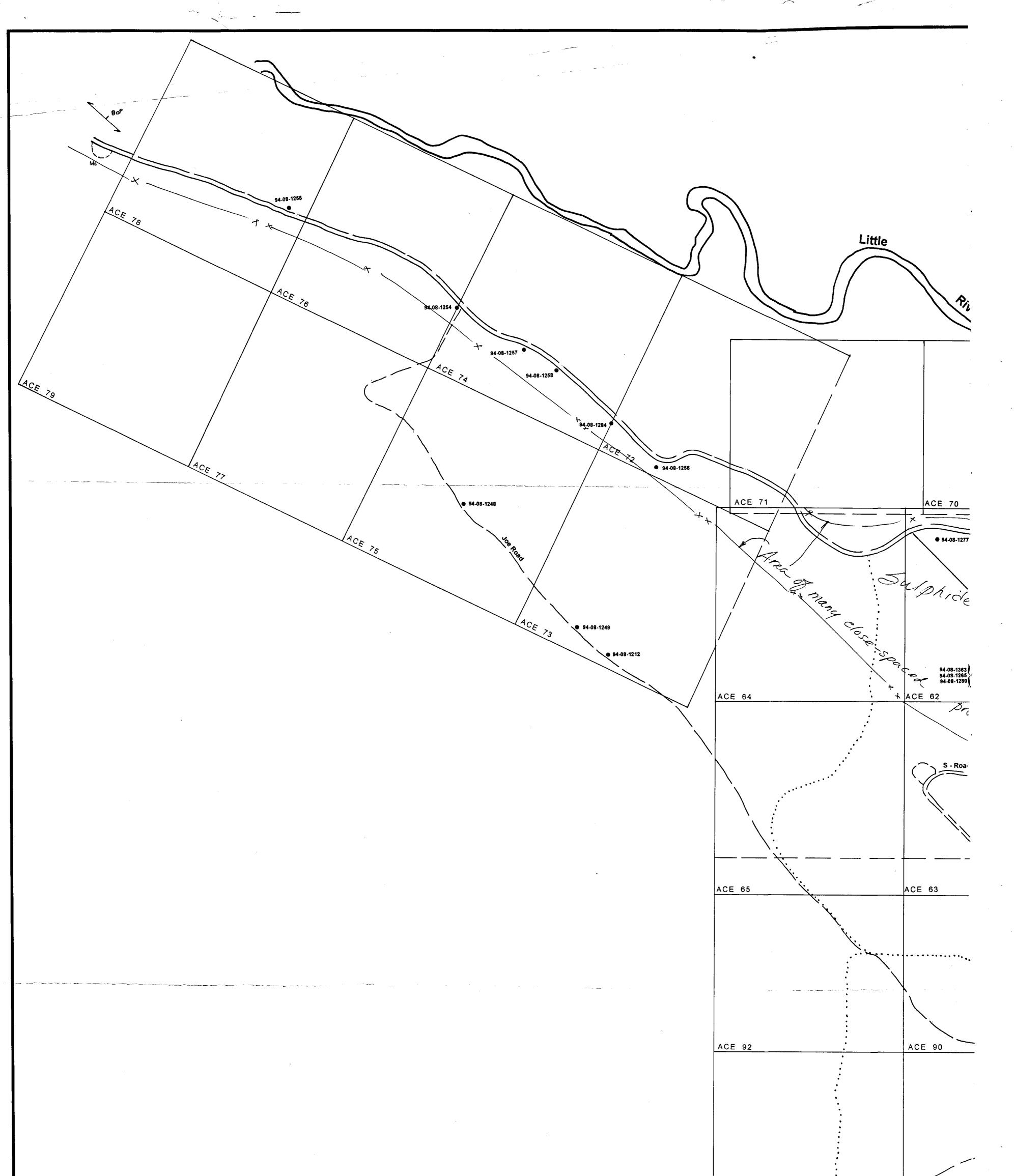
1

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	8b	Sn	Sr	TI %	U	v	w	Y	Zn
263	L26+50S: T\L 6W	<5	<.2	2.32	<5	140	5	0.52	<1	21	29	59	4.34	30	0.93	769	<1	0.02	34	710	<2	15	<20	21	0.06	<10	64	<10	17	69
264	L27+00S: T\L 6W	<5	<.2	2.31	<5	100	10	0.73	<1	19	27	45	5.21	20	0.72	561	<1	0.01	23	630	<2	10	<20	29	0.07	<10	80	<10	7	67
265	L27+50S: T\L 6W	<5	0.4	1.67	<5	50	<5	0.21	<1	11	21	33	4.28	10	0.57	263	<1	0.01	18	380	$\overline{\mathbf{q}}$	10	<20	13	0.03	<10	56	<10	2	47
266	L28+005: T\L 6W	<5	<.2	1.87	<5	90	<5	0.29	<1	15	25	39	3.97	20	0.77	379	<1	0.01	25	660	~2	5	<20	12		<10	58	<10	3	60
267	L28+50S: TVL 6W	<5	<.2		<5	115	5	0.20	<1	19	34	47	5.50	10			<1	0.01	38	480	<2	15	<20	10	0.03	<10	76	<10	2	75
				2.00			•	0.20					5.50		0.01		- 1	0.01		400	~2	15	~20	10	0.07	~10	70	10	~	75
268	L29+00S: T\L 6W	<5	< 2	1.95	<5	90	5	0.48	<1	16	26	40	4.29	20	0.76	440	<1	0.01	24	690	<2	10	<20	18	0.05	<10	62	<10		59
269	L29+50S: T\L 6W	<5		1.87	<5	160	<5	0.96	<1	16	24	42	3.85	20	0.77		<1	0.01	25	550	4	10	<20	34	0.05	<10	60	<10	•	
270	L30+00S: T\L 6W	<5		2.51	<5	130	<5	0.46	<1	23	29	66	4.49	30	0.82		<1	0.01	34	540	2	20	<20	18	0.05	<10	67	<10	-	62
271	L30+50S: T\L 6W	<5	<.2		<5	120	5	0.58	<1	21	23	55	4.26	20	0.92		<1	0.02	24	790	~2	لم 15	<20							63
272	L31+00S: T\L 6W	<5	<.2		<5	125	<š	0.72	<1	19	28	59	4.30	30	0.52		<1				-			24	0.08	<10	- 74	<10		71
212	L311003. TAL 044	-5	~.6	4.20	~5	120	-0	0.72	~1	19	20	29	4.30	30	0.79	037	~1	0.01	30	520	2	10	<20	30	0.05	<10	65	<10	12	65
273	L31+50S: T\L 6W	<5	< 2	1.41	<5	70	10	0.22	<1	11	21	23	3.52	10	0.53	248	<1	0.01	17	310	4	10	<20	12	0.06	<10	67	<10	3	47
274	L32+00S: T\L 6W	<5		1.83	<5	125	10	0.23	<1	15	27	33	4,99	<10			<1	0.01	21	390	2	10	<20	14	0.06	<10	68	<10	-	71
275	L32+50S: TL 6W	<5		2.11	<5	75	5	0.71	<1	16	33	36	4.16	10	0.77		<1	0.01	23	750	$\overline{\mathbf{Q}}$	15	<20	28	0.05	<10	67	<10		53
276	133+00S: T/L 6W	<5		2.20	<5	80	5	0.31	<1	21	27	46	4.39	20	0.82		<1	0.01	29	470	2	10	<20	13	0.03	<10	66		6	61
277	L33+50S: T\L 6W	<5	<.2		<5	95	5	0.31	<1	14	28	42	4.63	10	0.72		<1	0.01	25	410	<2	10	<20	17	0.06		67		2	60
		~		2.10		00	Ŭ	0.01	••	.4	20		4.00		0.72	240	-,	0.01	20	-10	~2	10	~20	17	0.00	<10	0/	<10	4	00
278	L34+00S; T\L 6W	40	<.2	2.12	<5	105	<5	1.08	<1	20	30	48	3.94	20	0.89	755	<1	0.01	30	710	<2	15	<20	38	0.06	<10	59	<10	A	75
279	L35+00S: TIL 6W	<5	<.2		<5	130	<5	0.32	<1	19	30	53	5.27	10			<1	0.01	26	470	2	<5	<20	19	0.07	<10	76	<10	-	69
280	L35+50S: T\L 6W	<5	< 2		<5	100	5	0.32	<1	19	29	31	4.36	10	0.89		<1	0.01	27	400	2	10	<20	15		<10	66	<10		71
281	L36+00S: TIL 6W	<5	0.6		<5	85	5	0.23	<1	16	31	47	5.37	40	0.72		<1	0.01	28	550	2	15	<20	16						
282	L36+50S: TIL 6W	<5	<.2		<5	105	-	0.18	<1	14	28	34	5.22		0.71		<1	0.01	23	430	4				0.04	<10	73	<10		64
202		-5	7.2	2.11	-0	100	10	0.10	~1		20	- 34	J. <b>ZZ</b>	10	0.71	230	~1	0.01	23	430	4	15	<20	12	0.06	<10	72	<10	<b>&lt;</b> 1	57
283	L37+00S; T\L 6W	<5	0.4	1.88	<5	95	<5	1.00	<1	19	28	49	4.17	20	0.57	860	<1	0.01	25	810	4	10	<20	30	0.04	10	75	<10	6	82
284	L37+50S: TIL 6W	30	<.2		<5	85	5	0.43	<1	24	42	49	5.24	20	1.09		•	0.01	36	440	8	15	<20	15	0.04	<10	81		-	83 89
285	L38+00S: TIL 6W	<5	<.2		<5	95	-	1.06	4	18	54	69	5.79	30	0.69		<1	0.01	30	850	6	5	<20	34	0.07	40		<10		
286	L1+50N: TVL 6W	<5	<.2		<5	65	-	0.11	<1	18	25	29	5.64	<10	0.56	337	•	<.01	30	520	8	10	<20	34 5			109	<10		87
287	L42+00S: 0+50W	<5	<.2		<5	65	-	0.51	<1	11	27	14	4.68	10	0.51		<1	0.01	17	500	4	<5	<20	17	0.03 0.06	<10	33 62	<10		76
201		-0	7.4	1.00		~		0.31	-1	••	21		4.00	10	0.31	243	~1	0.01		500	•	-0	×20	17	U.UO	<10	04	<10	1	60
288	L42+00S: 1+00W	<5	<.2	2.19	<5	80	10	0.33	<1	20	30	35	4.52	20	0.87	308	<1	0.01	35	640	2	20	<20	9	0.06	<10	43	<10	5	68
289	L42+00S: 1+50W	<5	<.2		<5	125		0.10	<1	22	31	36	5.51	<10	0.69		<1	0.01	27	700	4	10	<20	7	0.08	<10	51	<10	-	70
290	L42+00S: 2+00W	<5	<.2		<5	130	10	0.24	<1	19	33	28	4.73	<10	0.80			0.01	30	610	<2	10	<20	11	0.11	<10	54	•	3	94
291	L42+00S: 2+50W	<5	<.2		<5	105		0.78	1	26	30	18	6.84	<10	0.55		<1	0.01	19	390	~2	10	<20	26	0.07	10	98	<10	1	82
292	L42+00S: 3+00W	<5	<.2		<5	145		0.37	i	26	38	52	5.84	10	0.73	484	1	0.01	34	490	4	20	<20	19	0.07	<10	78	<10	3	76
		-0						0.07	•	20			0.04		0.70		•	0.01		400	-	20	-20	19	0.07	-10	10	-10	3	70
293	L42+00S: 3+50W	<5	0.6	2.55	<5	175	<5	0.35	1	29	35	53	4.90	30	0.65	2106	<1	0.02	37	550	8	<5	<20	23	0.11	<10	69	<10	9	76
294	L42+00S: 4+00W	<5	<.2	1.96	<5	85	5	0.19	<1	13	26	24	3.49	10	0.68		<1	0.01	25	460	<2	15	<20	8	0.07	<10	41	<10	-	57
295	L42+00S: 4+50W	<5	<2		<5	85	-	0.15	<1	12	30	18	4.74	<10	0.68	178		0.01	20	440	~2	15	<20	7	0.05	<10	43	<10	-	58
296	L42+00S: 5+00W	<5	<.2		<5	185		0.33	<1	25	44	94	5.80	40	1.07		<1	0.02	60	510	<2	20	<20	20	0.08	<10	71	<10	-	104
297	L42+00S: 5+50W	<5	<.2		<5	145	-	0.63	<1	20	34	53	4.65	40	0.94	474		0.02	37	690	<2	15	<20	27	0.05	<10	63		12	84
		~				• •=						~	T. 00		w.w-1			J.VL		~~~	~6	10	-20	<b>~</b> 1	0.07	-10		-10		
298	L42+00S: 6+50W	<5	<.2	4.35	<5	290	<5	0.65	<1	46	61	210	7.65	80	1.20	1435	<1	0.02	95	660	6	10	<20	36	0.10	<10	95	<10	36	151
299	L42+00S: 7+00W	<5	<.2	1.80	<5	85	10	0.14	<1	13	28	19	4.20	<10	0.62	287	-	0.01		1060	<2	10	<20	9	0.07	<10	58		1	64
300	L42+00S: 7+50W	<5	<.2		<5	85		0.12	<1	16	31	26	6.19	<10	0.80		<1	0.01	24	970	~2	5	<20	9	0.06	<10	66	<10	•	89
301	L42+00S: 8+00W	<5	<.2		<5	110		0.15	<1	20	38	57	5.04	20	0.96	433		0.01	49	580	<2	20	<20	8	0.05	<10	52	<10	-	79
		-0		86- T 12			•			~~	~		0.04	20	0.00		-1	9.91			~4	20	-60		0.00	-10	JE	-10	4	19

Eco-Tech Laboratories Ltd.

LOUIS	DOYL	E	ETK	94-884	
LUUIJ	0010	-	EIR		


Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	W	Y	Zn
302	L43+00S: 0+50W	<5	<.2	1.87	<5	80	5	0.16	<1	15	28	19	4.25	10	0.63	246	<1	0.01	22	360	4	10	<20	8	0.07	<10	53	<10	4	61
303	L43+00S: 1+00W	<5	<.2	2.06	<5	85	15	0.67	<1	14	30	25	5.78	10	0.49	223	<1	0.01	21	300	4	5	<20	23	0.08	<10	80	<10	4	53
304	L43+00S: 1+50W	<5	<.2	3.02	<5	95	<5	0.24	<1	17	34	45	5.59	20	0.62	202	<1	0.01	35	420	<2	<5	<20	17	0.08	<10	50	<10	9	81
305	L43+00S: 2+00W	<5	<.2	2.25	<5	85	<5	0.19	<1	27	32	47	5.00	20	0.83	323	<1	0.01	44	370	4	10	<20	7	80.0	<10	45	<10	10	64
306	L43+00S: 2+50W	<5	<.2	1.24	<5	90	5	0.06	<1	11	21	24	3.87	<10	0.41	139	<1	0.01	18	170	2	<5	<20	5	0.10	<10	51	<10	2	46
307	L43+00S: 3+00W	<5	<.2	2.18	<5	115	10	0.34	<1	26	32	39	5.27	20	0.77	730	<1	0.01	30	760	4	15	<20	16	0.08	<10	67	<10	8	86
308	L43+00S: 3+50W	<5	<.2	1.52	<5	70	<5	0.24	<1	11	22	22	4.01	10	0.58	137	<1	0.01	19	250	4	15	<20	14	0.07	<10	54	<10	4	51
309	L43+00S: 4+00W	<5	<.2	1.92	<5	105	10	0.25	<1	18	26	28	4.09	30	0.64	873	<1	0.01	22	530	<2	10	<20	13	0.05	<10	59	<10	11	74
310	L43+00S: 4+50W	<5	<.2	1.64	<5	80	5	0.28	<1	15	26	23	3.40	20	0.78	270	<1	0.01	24	220	<2	5	<20	12	0.06	<10	40	<10	7	65
311	L43+00S: 5+00W	<5	<.2	2.73	<5	180	<5	0.26	<1	57	39	73	5.82	20	1.02	1369	<1	0.02	63	590	4	10	<20	13	0.09	<10	67	<10	5	122
312	L43+00S: 5+50W	<5	<.2	1.95	<5	95	5	0.27	<1	16	28	47	3.84	20	0.73	424	<1	0.01	29	600	4	15	<20	14	0.05	<10	51	<10	11	68
313	L43+00S: 6+00W	<5	0.4	2.64	<5	145	<5	0.46	<1	24	39	98	5.23	40	0.87	910	<1	0.01	43	820	4	10	<20	25	0.06	<10	75	<10	18	94
314	L43+00S: 6+50W	<5	<.2	2.64	<5	175	<5	0.80	<1	24	34	105	4.47	80	0.79	428	<1	0.02	52	900	8	10	<20	43	0.07	<10	67	<10		97
315	L43+00S: 7+00W	<5	<.2	1.64	<5	80	5	0.19	<1	14	25	15	3.75	<10	0.68	457	<1	0.01	19	1040	<2	15	<20	10	0.05	<10	53	<10	<1	72
316	L43+00S. 7+50W	<5	<.2	2.19	<5	80	<5	0.21	<1	18	26	28	3.97	10	0.80	370	<1	0.02	27	930	<2	15	<20	8	0.05	<10	49	<10	3	73
317	L43+00S: 8+00W	<5	0.4	2.01	<5	175	<5	0.53	<1	30	28	68	4.35	40	0.73	3388	<1	0.02	39	600	6	15	<20	24	0.07	<10	59	<10	11	79


Page 9

.

Ì	· 5	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		Y		Ś			` <b>1</b>	1	1	.)				ş		3	3		1		)		}		}	
LOUIS	OYLE ETK 94-	884																		Eco-Te	ich Lab	oratorie	s Ltd.						
Et#.	Tag i	£	Au(ppb)	Ag	AI %	As	Ba	BI Ca	<u>6 Cd</u>	Co	Cr	Cu F	• %	La	Mg %	Mn I	Mo Na 9	6 Ni	P	Pb	8b	Sn	Sr	Ti %	U	<u>v</u>	w	Y	Zn
QC DAT	A	-																											
Repeat:																													
1	L0+00:	2+50W	<5	0.4	1.73	-5	75	5 0.1		17	26		4.13	<10	0.52		<1 <.0		590	16	<5	<20	5	0.05	<10	36	<10	3	100
39	L0+75N:	7+75W	-	<.2	2.26	20	65	15 0.0	71	19	27	27 10	0.10	<10	0.29	379	<1 <.0	1 14	460	24	<5	<20	3	0.07	<10	86	<10	<1	71
59	L5+75S:	0+00	<5	-	-	-	-	-		-	-	•	•	-	•	-	-		-	•	-	•	-	•	-	-	-	-	•
77	L6+25S:	3+50WA	•	0.2	2.39	80	85	5 0.7	6 <1	26	36	62 5	5.19	20	0.82	1364	<1 0.0	1 35	780	24	<5	<20	43	0.04	<10	57	<10	10	90
97	L8+25S:	1+00E	<5	-	-	-	-	-		-	-	-	-	-	-	•	-		-	-	•	-	•	-	-	-	-	-	-
115	L9+005: TVL	6W	-	<.2	3.65	<5	145	5 0.7	5 <1	38	29	98 6	6.78	10	1.09	912	<1 0.0	1 30	470	16	<5	<20	53	0.14	<10	148	<10	13	82
135	L9+75S:	5+25E	<5	•	•	-	-	-		-	-	-	-	-	-	-	-		•	-	-	-	•	-	•	•	-	-	•
153	L11+00S:	6+25E	-	0.4	1.43	<5	115	15 0.1	1 <1	13	30	- 44 - 7	7.35	<10	0.38	607	1 0.0	1 19	2300	16	<5	<20	9	0.04	<10	59	<10	<1	86
191	L14+00S:	0+00	<5	<.2	1.67	<5	75	<5 0.2	8 <1	16	28	37 3	3.49	20	0.78	454	<1 0.0		470	2	15	<20	13	0.05	<10	38	<10	9	58
229	L14+50S:	3+00W	<5	<.2	1.60	<5	90	10 0.1	4 <1	12	21	15 4	4.77	<10	0.52	177	<1 0.0	1 16	140	8	5	<20	9	0.07	<10	69	<10	<1	61
267	L28+50S:TL	6W	<5	<.2	2.72	<5	115	10 0.2	0 <1	19	33	46 5	5.45	10	0.95	302	<1 0.0	1 37	490	2	15	<20	10	0.07	<10	- 74	<10	2	76
305	L43+00S:	2+00W	-	<.2	2.23	<5	85	<5 0.1	9 <1	27	32	47 5	5.01	20	0.82	334	<1 0.0	1 43	370	6	10	<20	7	0.07	<10	45	<10	10	65
Standai	a 1991:		145	1.2	1.84	70	155	<5 1.7	5 1	20	63	87 4	4.22	<10	0.94	678	<1 0.0			18	15	<20	58	0.12	<10	81	<10	3	81
			155	1.4	1.85	65	160	<5 1.7	71	21	64	84 4	4.29	<10	0.94	686	<1 0.0	226	690	16	15	<20	59	0.12	<10	81	<10	4	72
			150	1.2	1.85	65	160	10 1.7	7 1	21	66	85 4	4.23	<10	0.95	692	<1 0.0	t 26	720	18	10	<20	60	0.13	<10	81	<10	5	73
			140	1.2	1.88	65	160	<5 1.8	0 1	21	66	87 4	4.30	<10	0.97	695	<1 0.0	1 27	700	18	10	<20	60	0.13	<10	82	<10	5	75
			135	1.4	1.87	65	160	5 1.8	2 <1	21	66	85 4	4.28	<10	0.96	687	<1 0.0	1 26	74G	22	15	<20	60	0.13	<10	82	<10	5	74
			140	1.2		65	170	<5 1.7	3 <1	20	64	84 4	4.09	<10	0.97	674	<1 0.0	3 27	680	16	5	<20	63	0.12	<10	82	<10	6	79
			135	1.4		65	175	5 1.7	5 1	20	63	86 4	4.09	<10	0.97	677	<1 0.0	3 28	700	18	5	<20	63	0.12	<10	82	<10	6	79
			•	1.2	1.88	65	170	5 1.7	6 2	20	64	84 4	4.13	<10	0.99	679	<1 0.0	3 28	650	14	10	<20	65	0.12	<10	84	<10	6	80
			-	1.2		75	165	5 1.8	4 1	19	63	86 4	4.00	<10	0.96	660	<1 0.0	3 27	650	14	5	<20	61	0.12	<10	81	<10	6	81

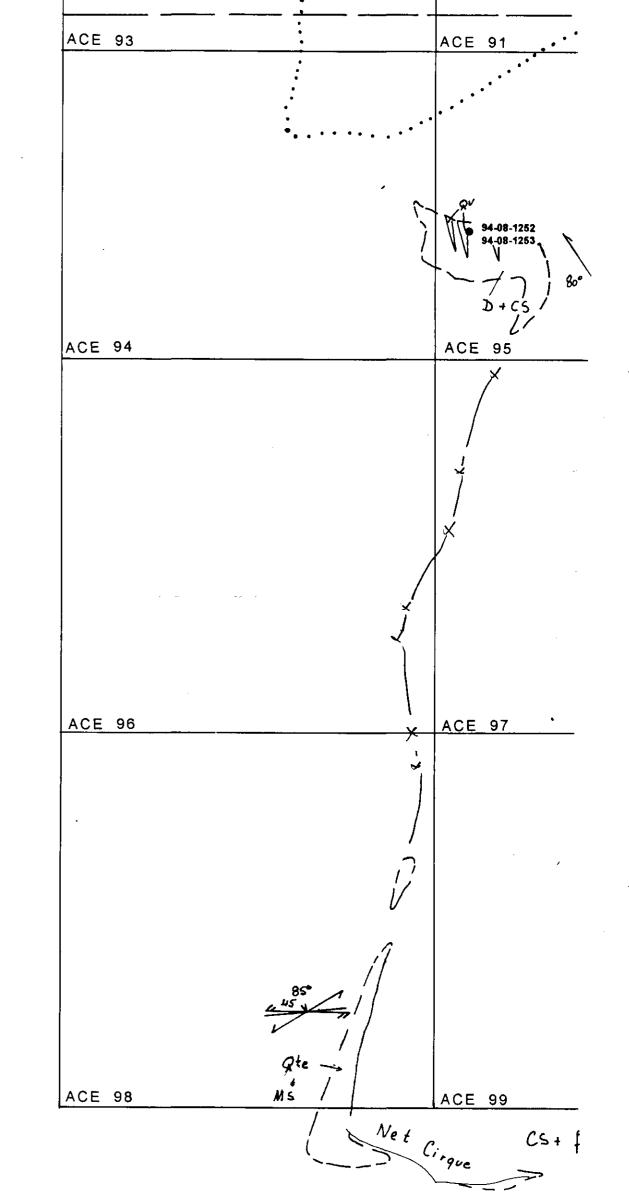
XLS/Doyle df/884a/884b ECO-TECH LABORATORIES LTD. Flank J. Pezzotti, A.Sc. T. B.C. Certified Assayer 1





.

1

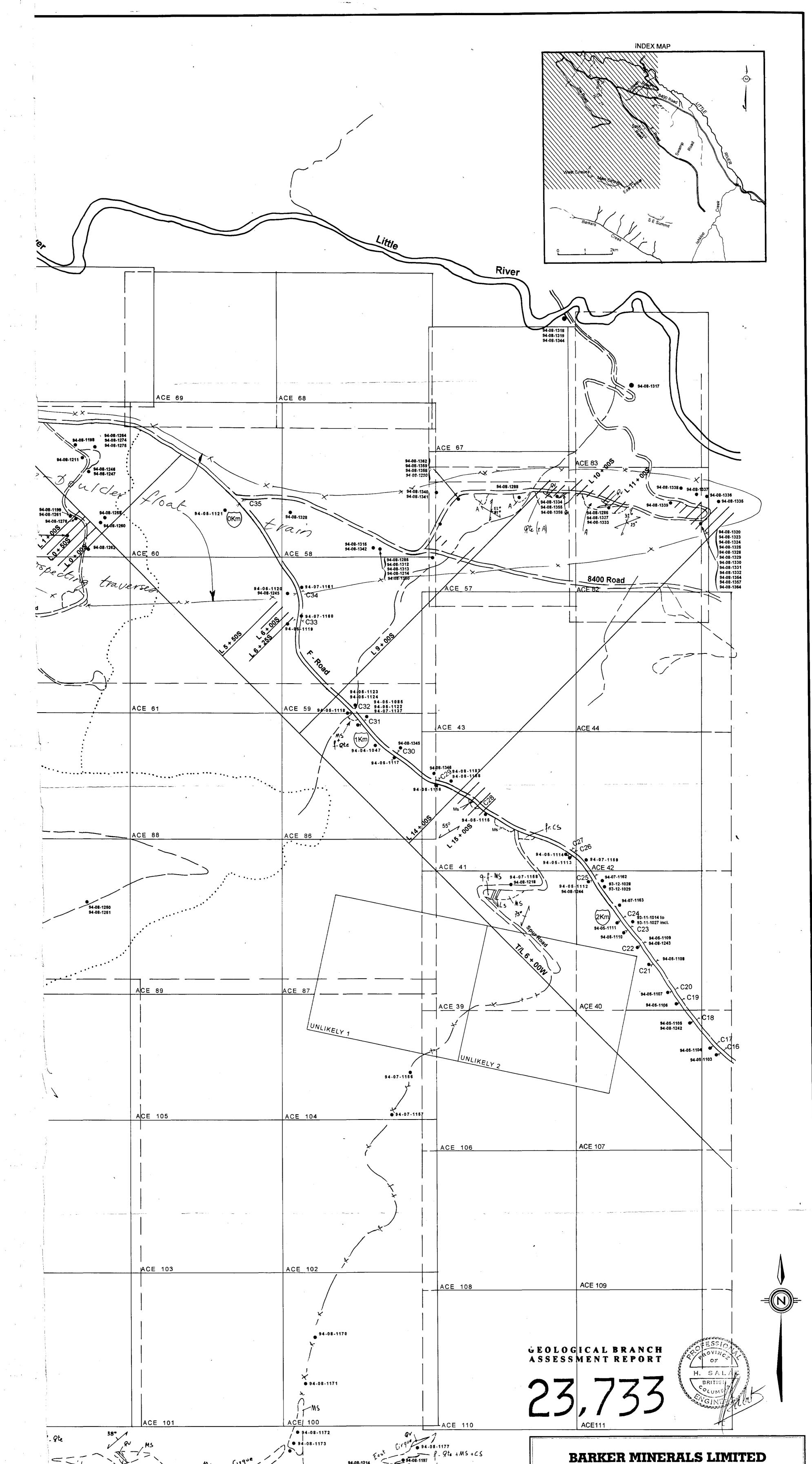

j j

, i

أسر

Ţ

94-08-1213




Legend MAIN DESCRIPTOR QUALIFIERS Ms = Micaschist = Feldspathic f Qte = Quartzite = Fragmental fr CS = Chlorite Schist gn = Garnet A = Argillite, Black phyllite = Quartzic q Qv = Quartz vein or sweat

D = Metadiorite Ls = Limestone

..... Limits of Logged Areas

Hand ut and the song. **Bedding** Foliation, schistosity Cleavage, 2nd foliation Fold axis Outcrops 94-08-1182 · Sample Site & Identification number c-3 AF Culvert & Culvert number X-X-Prospecting traverses other than those along roads and grid lines



94-08-1214 94-08-1215 • 94-08-1175 ٠ Qv 94.08- 🗲 94-08-1300 94-08-94-08-1189 94-08-1194 94-08-1196 94-08-1196 94-08-1217 2 Qte + MS  $\subset$ MS + Qte 7 Rte + MS , fille -1450 08-1216 To accompany Assessment Report dated January 15, 1995 by Consultant H.P.Salat, PEng. The title on H.P. Salat's report is: "PROSPECTING, GOLOGICAL INVESTIGATION, AND GEOCHEMICAL RECONNAISSANCE OF A NEW GOLD DISCOVERY ON THE ACE CLAIMS NEAR MOUNT BARKER"

Kelowna, British Columbia

# Ace Property - Mount Barker Area

NTS 93A14 CARIBOO M.D., BRITISH COLUMBIA (An October 10,1993 discovery by Louis Doyle, Prospector)

SYNOPTIC MAP SHOWING CLAIMS, GRID LINES, LOGGING ROADS, GEOCHEMICAL SAMPLE SITES AND GEOLOGICAL OBSERVATIONS

FIGURE 3B

SCALE 1:5,000