
LOG NU:	JAN 2 6 1995	U
ACTION:		
L.		
FILE NO:		

PATHFINDER RESOURCES LTD.

1994 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE RDN 1-6 MINERAL CLAIMS

Located in the Eskay Creek Area Liard Mining Division NTS 104B/15E, 104G/2E 56° 59' North Latitude 130° 38' West Longitude

-prepared for-PATHFINDER RESOURCES LTD.

-prepared by LOGICAL BRANCH ASSESSMENT REPORT Henry J. Awmack, P.Eng.

Equity Engineering Ltd.

SUMMARY

The RDN 1-6 claims cover 67 units (approximately 1,650 hectares) of mountainous terrain in northwestern British Columbia, located approximately 120 kilometres northwest of Stewart. Current access to the property is by helicopter from the Bob Quinn airstrip, which lies 24 kilometres to the east on the Stewart-Cassiar Highway. The claims are held under option by Pathfinder Resources Ltd..

The RDN 1-4 claims were staked in 1987 to cover a prominent gossan. Noranda Exploration optioned and explored the RDN property jointly with their wholly-owned GOZ claims from 1989 through 1991. They carried out extensive geochemical and geophysical surveys over the two properties, focused on narrow gold-rich veins, and drilled three holes totalling 345 metres on the RDN 2 claim. The option was dropped in 1991. Some of the GOZ claims were allowed to lapse and were restaked as the RDN 5 and 6 claims in May 1994. Sixteen mandays of prospecting, sampling and mapping by Pathfinder Resources in September 1994 were directed at the property's potential for Eskay Creek-style mineralization.

The RDN property is largely underlain by Jurassic Hazelton Group stratigraphy similar in age, lithologies, alteration and mineralization to that which hosts the Eskay Creek gold-rich volcanogenic massive sulphide deposit 40 kilometres to the southsoutheast. Like Eskay Creek, subvolcanic felsic porphyries intrude a felsic package which is overlain by fine-grained marine clastics and andesitic flows. The felsic intrusives and extrusives are extensively altered, pyritized and geochemically anomalous in lead, zinc, arsenic and antimony.

A broad northeasterly trending anticline has been dislocated by two north-northwesterly trending faults into three fault blocks. Five stratigraphic felsic/sediment contacts (four on the RDN claims) have been mapped or inferred within the three fault blocks, lying on the northwestern and southeastern limbs of the anticline. No massive sulphide mineralization has yet been discovered, but altered felsics beneath the Marcasite Gossan felsic/sediment contact assayed up to 141 g/tonne silver. Felsic float thought to be derived from another segment of the felsic/sediment contact, four kilometres to the north, assayed 11.6 g/tonne gold with anomalous silver, lead, zinc, copper, arsenic, antimony, mercury and bismuth.

i

1994 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE RDN 1-6 MINERAL CLAIMS

TABLE OF CONTENTS

	_ <u>P</u>	age	
	SUMMARY	.i.	
1.0		.1.	
2.0	LIST OF CLAIMS	.1.	
3.0	LOCATION, ACCESS AND GEOGRAPHY	.2.	
4.0	PROPERTY MINING HISTORY		
	4.1 Previous Work	.2.	
	4.2 1994 Exploration Program	.4.	
5.0		.4.	
	5.1 Eskay Creek Deposit	.6.	
6.0	GEOLOGY AND MINERALIZATION	.8.	:
	6.1 Hazelton Group Lithologies and Stratigraphy	.8.	
	6.2 Structure	11.	
	6.3 Alteration and Mineralization .	12.	
		16.	
7.0	GEOCHEMISTRY		
	7.1 Stream Sediment Geochemistry .	18.	
	· · · · ·	18.	
8.0	-	18.	

APPENDICES

i

Į

es
S
ns
5
ts
;

LIST OF TABL	ES	Page
Table 2.0.1	Claim Data '	.1.
Table 6.1.1	Hazelton Group Stratigraphic Column	.8.
Table 6.1.2	Stratigraphic Comparison:	
	Eskay Creek and RDN	.11.
Table 6.3.1	Marcasite Gossan Mineralization	.13.
Table 6.3.2	Felsic-hosted Mineralization:	
	Gossan Creek Area	.15.
	Quartz <u>+</u> Carbonate Veins	.15.
Table 6.3.4	Diorite-hosted Mineralization	.15.

		Following
LIST OF FIG	JURES	Page
Figure 1	Location Map	.1.
Figure 2	Claim Map	.1.
Figure 3	Regional Geology	.4.
Figure 4a	Geology (1:10,000)	-Pocket-
Figure 4b	Geology (1:25,000)	.6.
Figure 5	Section A-A' and B-B'	.6.
Figure 6	Geochemistry	-Pocket-
Figure 7a	Whole Rock: K,O	.16.
Figure 7b	Whole Rock: Na ₂ O	.16.
Figure 7c	Whole Rock: SiÓ,	.16.
	E	•

1

.

.

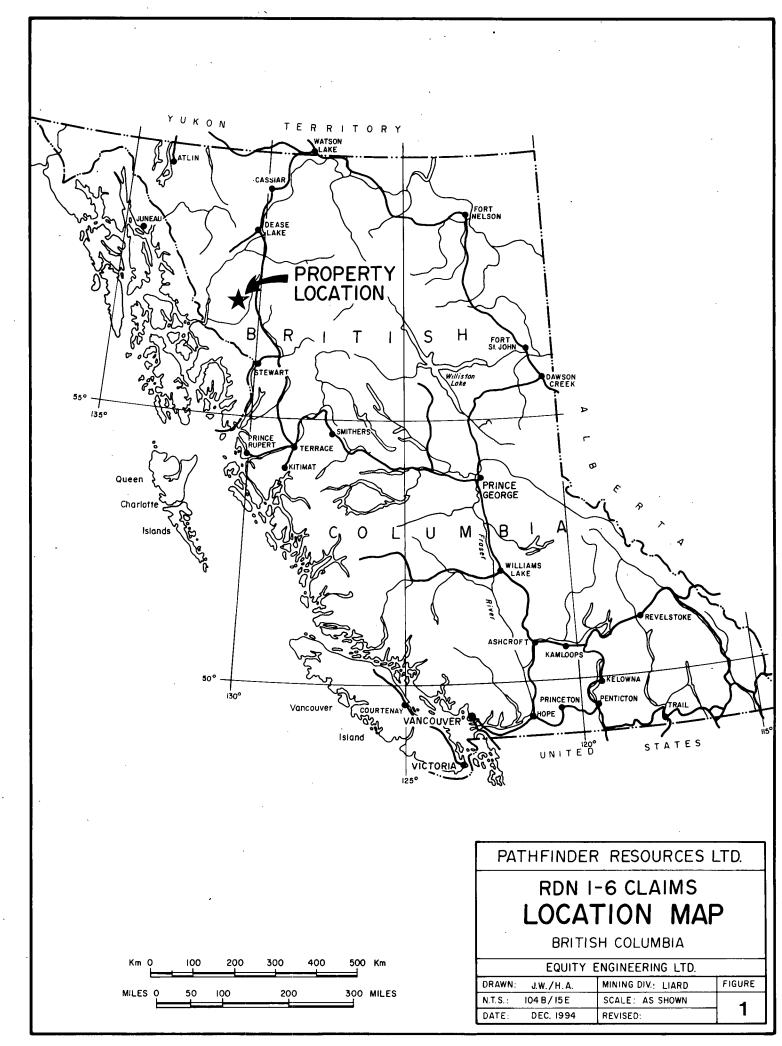
ļ

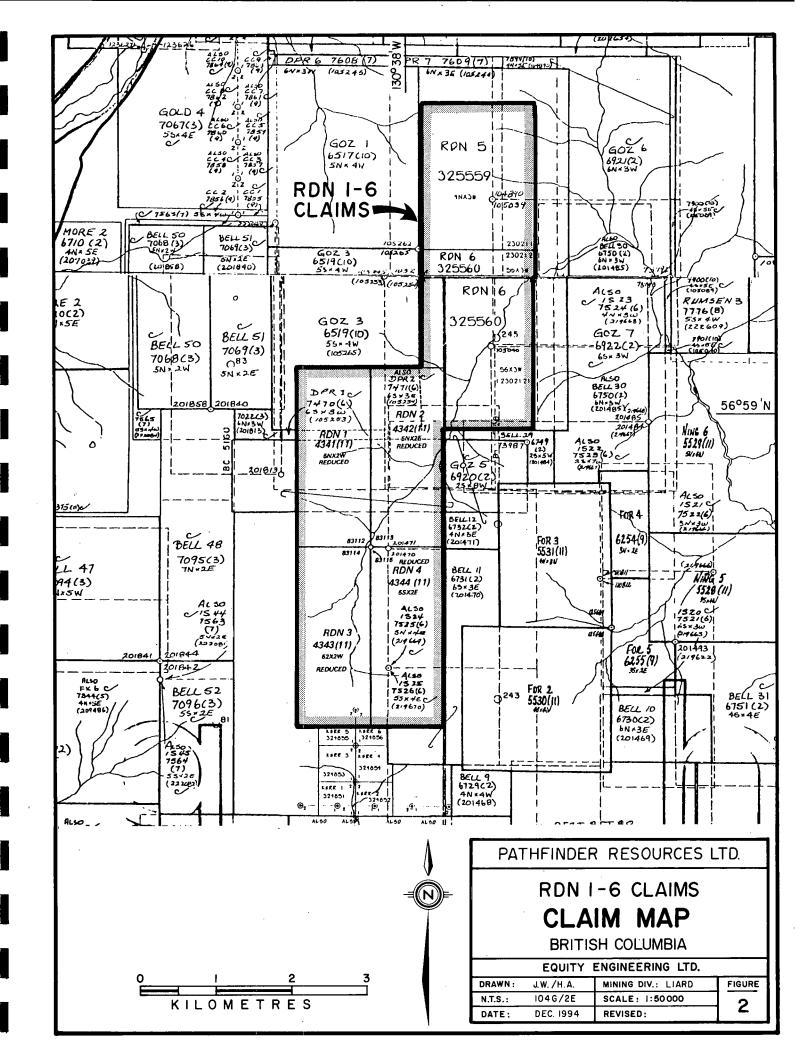
1.0 INTRODUCTION

The RDN 1-4 mineral claims were staked in October 1987 over a River-Eskay prominent gossan in the Iskut Creek area of northwestern British Columbia (Figure 1). The claims were staked and optioned to Noranda prior to the discovery of the gold-rich Eskay Creek volcanogenic massive sulphide (VMS) deposit located forty kilometres to the south-southeast. Noranda carried out exploration on the RDN claims and their wholly-owned, adjoining GOZ claims from 1989 to 1991. Although stratigraphy equivalent to that which hosts the Eskay Creek deposit underlies most of the RDN property, very little exploration had been directed at its stratabound gold potential prior to 1994.

A limited exploration program, targeted at the felsic/sediment contacts on the RDN property, was carried out by Pathfinder Resources Ltd. in September 1994, under the author's direction. Equity Engineering Ltd. has been retained to report on the results of this program.

2.0 LIST OF CLAIMS


The RDN property (Figure 2) consists of six contiguous mineral claims totalling 67 units in the Liard Mining Division of British Columbia, as summarized in Table 2.0.1. Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the RDN 1-6 claims are owned by Pathfinder Resources Ltd.. Separate documents indicate that Pathfinder has been granted an option to acquire 100% of the RDN 1-6 claims from Neil Debock, Rockie Saliken and Equity Engineering Ltd., subject to certain terms and conditions.


TABLE 2.0.1 CLAIM DATA

Claim <u>Name</u>	Tenure Number	No. of Units	Record Date	Expiry Year
RDN 1	222843	10	November 9, 1987	1997*
RDN 2	222844	10	November 9, 1987	1997*
RDN 3	222845	10	November 9, 1987	1996*
RDN 4	222846	10	November 9, 1987	1996*
RDN 5	325559	12	May 24, 1994	1997*
RDN 6	325560	<u>15</u> 67	May 24, 1994	1997*

* Subject to approval of assessment work covered by this report

The RDN 1-4 and GOZ 1-4 legal corner posts were located in the field by the author; the RDN 5-6 legal corner post was located in the field by Equity Engineering Ltd. personnel.

3.0 LOCATION, ACCESS AND GEOGRAPHY

The RDN mineral claims lie at the headwaters of a tributary of the Iskut River in the Coast Range Mountains, approximately 120 kilometres northwest of Stewart, British Columbia and 120 kilometres east of Wrangell, Alaska (Figure 1). The property lies within the Liard Mining Division, centered at 56° 59' north latitude and 130° 38' west longitude.

The best access to the property is by helicopter from Bob Quinn airstrip, 24 kilometres to the east, which lies on the Stewart-Cassiar highway. Bob Quinn airstrip is suitable for fixed-wing aircraft of any size. The Eskay Creek access road passes within fifteen kilometres to the south of the RDN property.

The RDN group covers the headwaters of "Downpour Creek", a broad northerly-trending tributary of the Iskut River. Topography is rugged, typical of mountainous and glaciated terrain, with elevations ranging from 930 metres above sea level on Downpour Creek to over 2000 metres on an unnamed peak on the RDN 4 claim. Outcrop exposure is limited to ridges, cirque faces and creeks, with valley sides covered by thin talus and poorly-developed, slumping soils which thicken downslope. Alluvium, till and outwash fill the bottom of Downpour Creek valley.

Much of the property lies above treeline, covered by open alpine vegetation. Tag alder and alpine fir are common below treeline, which averages 1400 metres in elevation. Both summer and winter temperatures are moderate although annual rainfall may exceed 200 centimetres and several metres of snow commonly fall at higher elevations. The property can be worked from the middle of May until mid-September.

4.0 PROPERTY MINING HISTORY

4.1 Previous Work

The RDN 1-4 claims were staked in November 1987 to cover a small but intense gossan on which no work had previously been reported. At the time, the Iskut River district was receiving intensive exploration for gold-bearing quartz-sulphide veins similar to those which were later developed into the Skyline and Snip mines. The following September, Neil Debock carried out three days of prospecting on the claims, taking ten silt samples and 27 rock samples. Two rock samples exceeded 50 g/tonne silver, with the best assaying 207.6 g/tonne (6.1 oz/ton) silver (DeBock, 1989).

Noranda Exploration Company staked their GOZ claims immediately north of the RDN property in October 1989 and optioned the RDN property. That year, Noranda collected two heavy mineral concentrates, 13 silt samples, 10 talus fine samples and 23 rock samples from the RDN 1-4 claims. Gold and silver values were generally low in rock and talus fine samples, but rock samples from two gossans contained anomalous arsenic and antimony, with up to 1196 ppm Sb and 831 ppm As. A heavy mineral concentrate from Downpour Creek returned 2410 ppb gold and a silt sample taken upstream from one of its tributaries contained 164 ppb gold (Savell, 1990).

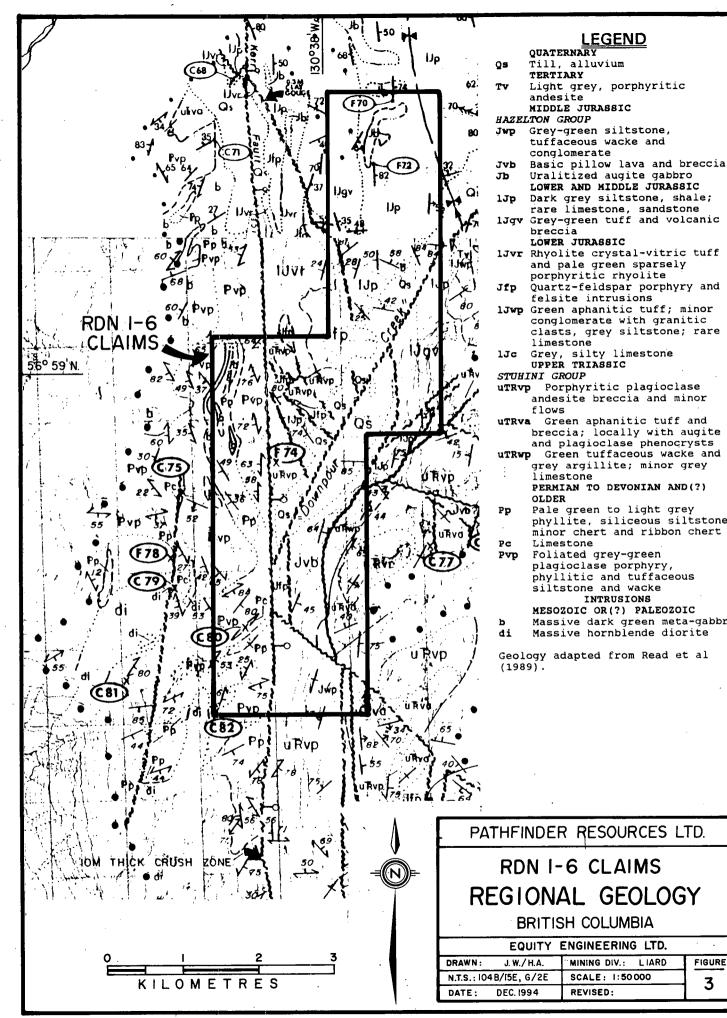
In 1990, Noranda and High Frontier Resources Ltd. carried out a joint exploration program over the RDN and GOZ claims, taking 32 heavy mineral concentrates, 91 silt samples, 1384 soil samples and 464 reconnaissance rock samples (Savell, 1990). They laid out sixty kilometres of grid over the gossanous felsic tuffs, with a baseline oriented at 010° and crosslines every 100 metres. North of line 8700N, soil samples were taken at 25 metre intervals from baselines and crosslines, with most analyzed geochemically for gold and by ICP for 30 additional elements. The samples from the eastern ends of lines 9500N-10200N were analyzed geochemically for They carried out 20 linejust copper, zinc, silver and gold. kilometres of ground magnetic and 14.9 line-kilometres of HLEM and VLF-EM surveys, detailing anomalies reported from an airborne magnetic and electromagnetic survey (Savell, 1991). Prospecting resulted in the discovery of several gold-bearing showings, mainly consisting of quartz-sulphide veins within the felsic tuffs on the GOZ claims. Fifteen holes totalling 1546 metres of BGM core were drilled on the GOZ claims. With two exceptions, all holes were drilled on the GOZ 1 and 3 claims within the felsic tuffs and their subvolcanic intrusives. Holes RG90-12 and -13, the two exceptions, were targeted at the overlying marine sediments on the present RDN 6 claim but had to be abandoned in overburden (Savell, 1990).

In 1991, Noranda and High Frontier continued exploration on the RDN and GOZ properties (Savell and Grill, 1991). A new grid was almost entirely within the felsic established, tuffs and subvolcanic porphyries, which straddled the northern boundary of Its baseline was oriented at 155°; five the RDN 2 claim. crosslines were run at 065° from it, spaced 200 metre apart. A11 lines were surveyed with HLEM and two were surveyed with induced polarization techniques. Fifteen holes, totalling 2087 metres of BGM core, were drilled on the GOZ and RDN properties. Of this, 345.3 metres were drilled in three holes from two sites on the RDN 2 claim. Two of these holes, RG91-26 and -27, were drilled within sediments but failed to reach the felsic/sediment contact. The third hole, RG91-19, was drilled entirely within altered, pyritic feldspar porphyry, with no significant assays. A fourth hole, RG91-18, was collared on the western boundary of the current RDN 6 claim and intersected 9.9 metres grading 0.43% Zn, 0.18% Cu and 0.14% Pb within the subvolcanic porphyry.

Following the 1991 program, Noranda terminated their option on the RDN claims and has not recorded further work on their GOZ claims. Their GOZ 2 and 4 claims were allowed to lapse in October 1993 and were partially re-staked as the RDN 5 and 6 claims in May 1994.

4.2 1994 Exploration Program

During September 1994, Pathfinder Resources Ltd. carried out a reconnaissance exploration program on the RDN 1-6 claims, designed to evaluate the property's potential to host Eskay Creekstyle stratabound gold-silver-lead-zinc mineralization. The program was executed using daily helicopter setouts from Vancouver Island Helicopter's Bob Quinn base, a 12 minute flight one-way from the property. A total of 67 rock samples, 6 silt samples and 3 soil samples were taken during sixteen man-days. All samples were analyzed geochemically for gold and by ICP for 32 elements, using an aqua regia digestion, at Chemex Labs in North Vancouver, British Columbia. Analytical certificates form Appendix E.


Geological mapping and prospecting were focused along six kilometres of felsic/sediment contact, in an effort to determine contact relationships and search for evidence of syngenetic rock samples, mineralization. Whole rock analysis of 24 representative of different felsic lithologies and alteration types, mainly in the vicinity of the felsic/sediment contact, was carried out using XRF techniques. Altered or mineralized float and outcrop encountered during mapping and prospecting were also sampled. Noranda's drill core, stored at their former camp at the junction of More Creek and Carcass Creek, was examined and three of the whole rock samples were collected from core. Rock samples were marked in the field by pink and blue flagging and an aluminum tag; all are described in Appendix C. Dr. John Payne of Vancouver Petrographics Ltd. studied thin sections for six specimens which represent different subvolcanic porphyry intrusives and different alterations of the felsic lapilli tuff. His report forms Appendix D.

Three soil samples were taken during the course of prospecting and mapping, wherever possible from the red-brown "B" horizon. Two were taken in the vicinity of one of Noranda's reported geochemical anomalies and a third from along the felsic/sediment contact. Six silt samples were taken from creeks previously reported as anomalous by Noranda.

5.0 REGIONAL GEOLOGY

The area around the RDN claims is underlain by mid-Paleozoic and Mesozoic island arc successions which are overlapped to the east by clastic sediments of the Bowser Basin. Regional mapping has been carried out at a scale of 1:50,000 by Logan, Koyanagi and Drobe (1990a,b) of the BCGS and by Read et al (1989) of the GSC (Figure 3).

The Paleozoic Stikine Assemblage in the vicinity of the RDN claims comprises foliated mafic to intermediate metavolcanics (Unit Pvp), fine clastic metasediments (Unit Pp) and massive Permian limestone (Unit Pc).

Pale green to light grey phyllite, siliceous siltstone, minor chert and ribbon chert Foliated grey-green

plagioclase porphyry, phyllitic and tuffaceous siltstone and wacke INTRUSIONS

MESOZOIC OR (?) PALEOZOIC Massive dark green meta-gabbro

Massive hornblende diorite

FIGURE

3

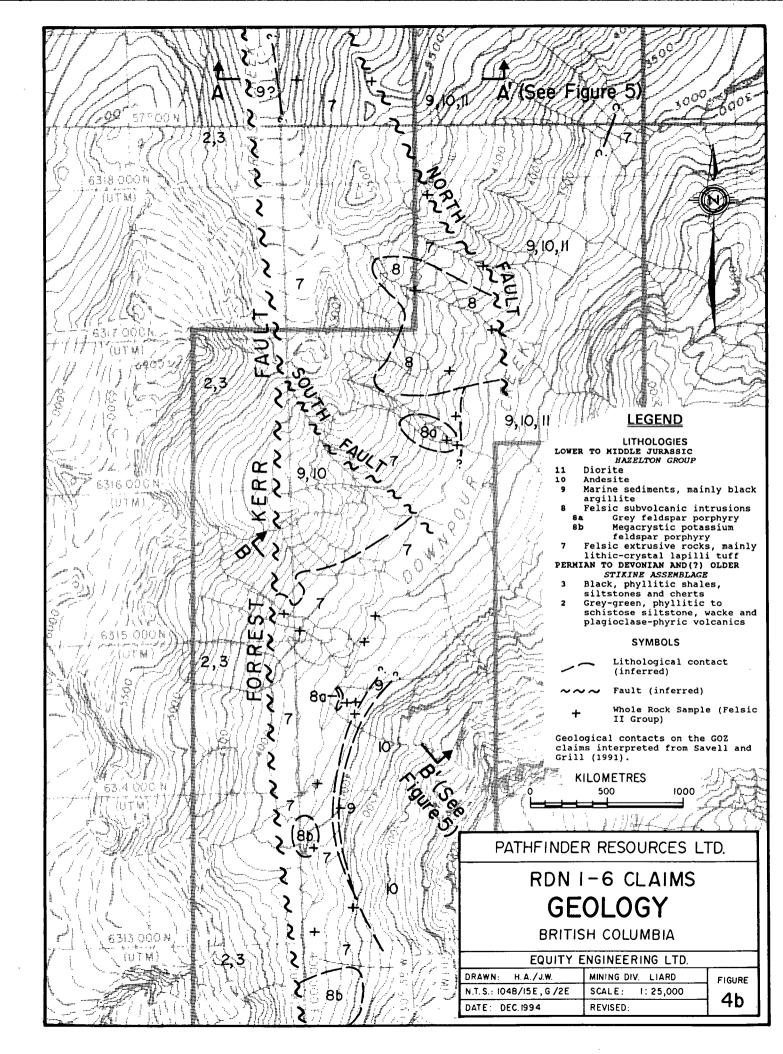
Geology adapted from Read et al

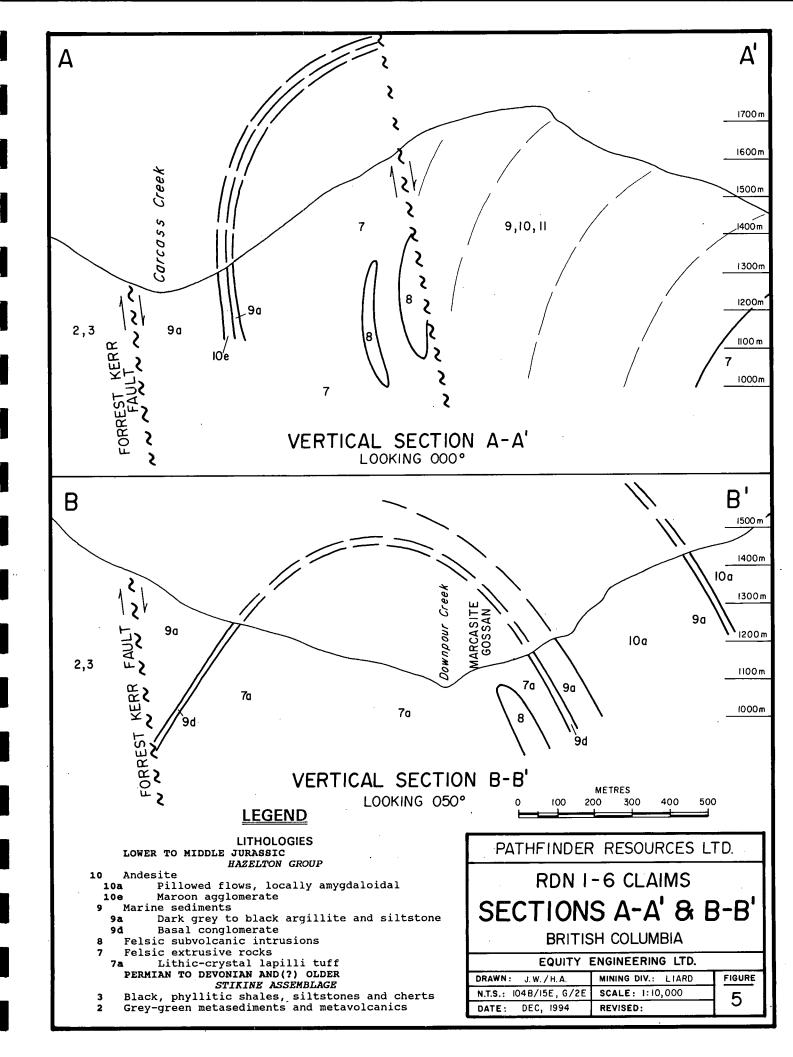
The Stikine Assemblage is unconformably overlain by island arc volcanics and sediments of the Upper Triassic Stuhini Group. At the base of the Stuhini Group is a thick package of fine-grained volcaniclastics and sediments, dominated by volcanic wackes, arenites and interbedded siltstone and argillite (Unit uTRwp). These units interfinger with overlying massive green tuff (Unit uTRva). East of Downpour Creek, a few thousand metres of green and minor maroon plagioclase-phyric breccia and flows (Unit uTRvp) interfinger with, and overlie, Unit uTRva.

The Early to Middle Jurassic Hazelton Group unconformably overlies the Stuhini Group, comprising four formations: Unuk River, Betty Creek, Mount Dilworth and Salmon River (from oldest to The Unuk River Formation is a thick sequence of youngest). Hettangian andesitic pyroclastics and flows with tuffaceous turbidite, wacke and conglomerate interbeds. The Betty Creek Formation, of Upper Pliensbachian age, consists of andesitic to dacitic tuffs and flows interbedded with volcaniclastic sediments and columnar-jointed dacites. The Mount Dilworth Formation (Unit is a thin but regionally extensive felsic unit which lJvr) disconformably overlies the Betty Creek Formation. It is overlain by the Salmon River Formation, a thick sequence of Toarcian to Bajocian siltstones, fine sandstones and pillow basalt with minor conglomeratic, tuffaceous or volcanic interbeds.

In the vicinity of the RDN property, the Salmon River Formation can be divided into three members: a lower fine clastic member (Unit 1Jp), a middle pillow basalt member (Unit Jvb) and an upper tuff/wacke member (Unit Jwp) with conglomerate interbeds. On the RDN 5 and 6 claims, Logan et al (1990a,b) mapped "at least 1000 metres of interbedded shale and siltstone [Units lJp and Jwp]...the shales are fissile; siltstones and thin sandstone beds contain abundant carbonaceous wood fragments...Fossils from interbedded limestone horizons located north of the map area indicate an Early Jurassic (late Toarcian) age". These are interbedded with pillow and flow breccia basalts (Units Jvb and lJgv) and their associated dioritic to gabbroic feeder sills and dykes (Unit Jb). Silicious siltstones, pyritic cherts, conglomerates and tuffs of Units Jw and Jwcg overlie and interfinger with the pillow basalts. Anderson and Thorkelson (1990) divided the Salmon River Formation into three facies, with both Eskay Creek and the RDN property lying within their medial Eskay Creek Facies. Middle Jurassic Bowser Lake Group sediments conformably overlie the Salmon River Formation.

Read et al (1989) mapped several small feldspar±quartz porphyry plugs and dykes (Unit Jfp) near the Forrest Kerr Fault. Souther (1972) had previously assigned these plugs a Late Cretaceous to Early Tertiary age, but Read noted cobbles of this unit in basal conglomerates of the Middle to Upper Jurassic Bowser Lake Group. He postulated that the felsic plugs and dykes were actually subvolcanic feeders to the Early to Middle Jurassic Hazelton Group felsic volcanics. Bartsch (1993a,b) showed that similar feldspar porphyry intrusives at Eskay Creek form part of a dacitic to rhyolitic flow dome complex in the Mount Dilworth Formation and at


the base of the Salmon River Formation; they would be Early Jurassic (Toarcian?) in age.


The first phase of structural deformation in the area is marked by widespread phyllite and foliated greenstone in Lower Permian and older rocks, unaccompanied by macroscopic folding (Read et al, A second, post-Jurassic, phase of folding produced trending upright folds. Bowser Lake Group rocks are 1989). northerly-trending upright folds. affected by a third phase of deformation, with folding about northwesterly trending axial planes. Fault trends are complex, with a northerly trending set and an anastomosing east-northeast The subvertical Forrest Kerr Fault, which passes through the set. RDN claims, is a major northerly-trending fault which can be traced for more than 40 kilometres. Read et al (1989) estimate a leftlateral horizontal displacement of 2.5 kilometres and a minimum vertical displacement of 2 kilometres (east-side down) for it. Britton et al (1989) suggest that to the south, the Forrest Kerr Fault steps eastward and continues south for another 20 kilometres as the Harrymel Creek Fault. This fault, which truncates Hazelton Group stratigraphy immediately west of the Eskay Creek deposit, is "a zone of recent faulting that may represent a long-lived crustal This "crustal break" may have break" (Britton et al, 1990). localized Jurassic felsic volcanic centres such as Eskay Creek and RDN.

5.1 Eskay Creek Deposit

The Eskay Creek deposit is a gold- and silver-rich volcanogenic massive sulphide (VMS) deposit which occurs near the base of the Salmon River Formation, approximately forty kilometres south of the RDN property. Bartsch (1993b) believes the deposit to have formed within a deep marine sub-basin during the waning stages of rhyolitic volcanism near the top of the Hazelton Group. Geological reserves are 4.3 million tonnes grading 28.8 g/tonne gold and 1027 g/tonne silver. Mineable reserves within the 21B Zone are 1.08 million tonnes grading 65.5 g/tonne gold, 2930 g/tonne silver, 5.7% zinc, 0.77% copper and 2.89% lead (Bartsch, 1993b).

At Eskay Creek, the Betty Creek Formation has been divided into two informal members (Rye et al, 1993). The lower East Ridge Member comprises andesite-derived conglomerates, tuffs, lithic wackes and debris flow breccias. The upper Eskay Creek Member intermediate epiclastic rocks with minor consists of coarse mudstone, limestone and conglomerate. The overlying Mount Dilworth Formation at Eskay Creek forms a sequence of dacitic pyroclastic flows, tuffs, vesicular dacite fragmentals and flows ("Footwall Dacite"). These are overlain by three low-Ti rhyolitic flow dome complexes emplaced within a five-kilometre long belt ("Eskay Rhyolite"). Within the flow dome complexes, pyroclastic eruptions were followed by extrusion of viscous lavas, massive or flow-banded near the core, and autobrecciated outwards. A "black matrix breccia" forms a thin (<10 metres) carapace to the flow domes at their contact with overlying siltstone and basalt. At the base of the black matrix breccia, angular rhyolite clasts form a mosaic

separated by black chert. Up-section, the matrix becomes siltier and rounded clasts with chilled margins are present. Narrow "black matrix breccia" zones locally cut flow-banded rhyolite below the black matrix carapace (Bartsch, 1993b).

Feldspar porphyry intrusives (the "Eskay Porphyry"), chemically equivalent to the Footwall Dacite (Bartsch, 1993b) and thought to be comagmatic, crosscut stratigraphy and reach their highest level directly beneath the 21A and 21B Zone deposits (Rye et al, 1993). Locally, potassium feldspar forms euhedral megacrysts up to 1.2 centimetres long. The felsic intrusives are pervasively altered to a quartz-sericite-potassium feldspar-chlorite-pyrite assemblage and form conspicuous gossanous ridges. Feeder dykes to the rhyolitic flow domes are mineralogically similar to the Eskay porphyry (Bartsch, 1993b).

Submarine massive and pillowed basalt flows ("Hanging Wall Basalt") directly overlie the rhyolitic flow domes, or are separated by <1 metre black chert or 2-10 metre thick argillite beds. Bartsch (1993b) proposes a "21 Zone Sub-basin", bounded by syndepositional faults and filled by up to 20 metres of carbonaceous shale, finely laminated siltstone, minor lithic wacke and calcareous mudstone. The 21 Zone Sub-basin lies above the 21 Zone felsic dome and hosts the 21A and 21B Zone stratiform orebodies. The Hanging Wall Basalt exceeds 150 metres in thickness, contains thin intercalated argillite beds, and is overlain by a thick sequence of thin-bedded siltstone, shale and fine sandstone.

The bulk of economic mineralization at Eskay Creek is hosted within the 21 Zone Sub-basin as stratiform, synsedimentary fragmental-hosted semi-massive ore and as clastic sediments formed from sulphide-sulphosalt detritus. Mineralogy within the 21B Zone consists of sphalerite, tetrahedrite, boulangerite and bournonite with lesser pyrite and galena; the 21A Zone consists of stibnite, realgar, arsenopyrite and cinnabar. The immediate footwall to each zone is intensely fractured, altered to a chlorite-potassic feldspar-sericite assemblage and contains both vein and disseminated mineralization. Portions of the immediate footwall are included in the ore reserves. Deeper in the system, the Footwall Dacite, the Eskay Porphyry and the Eskay Rhyolite are silicified, sericitized and pyritized and contain scattered goldsilver-lead-zinc veins and disseminations. These footwall veins, occurring within prominent gossans, were the focus of exploration from 1932 to 1988 before the discovery of stratabound VMS mineralization.

The 21A Zone is 280 metres long, up to 100 metres wide and averages about 10 metres thick. It is separated by 140 metres of weak mineralization from the 21B Zone, which is about 900 metres long, 60-200 metres wide (Britton et al, 1990) and averages 5-6 metres thick (Northern Miner, March 8/93).

6.0 GEOLOGY AND MINERALIZATION

Reconnaissance geological mapping at a scale of 1:10,000 has previously been carried out over the RDN property by Savell (1990a,b); grid-based mapping at 1:2,500 was done over portions of the RDN 1, 2, 5 and 6 claims by Savell and Grill (1991). During the 1994 program, the author mapped in the vicinity of the felsic/sediment contacts at a scale of 1:10,000. Figure 4a combines 1994 outcrop mapping with generalized geology compiled from previous work; Figure 4b is a simplified version of the same.

The RDN property is divided by the Forrest Kerr Fault, a northerly-trending, steeply-dipping normal fault of regional extent (Figure 4). The western quarter of the property is underlain by Paleozoic metamorphic rocks of the Stikine Assemblage which strike north-south and dip moderately to steeply to the west. A metavolcanic package (Unit 2) comprises foliated grey-green plagioclase porphyry and phyllitic to schistose, tuffaceous siltstone and wacke. It alternates with a metasediment package (Unit 3) of black, phyllitic shale, siltstone and chert. Both are intruded by a foliated, medium-grained, dark green to black, hornblende quartz diorite (Unit 1).

Mesozoic rocks of the Stuhini and Hazelton Groups lie east of the Forrest Kerr Fault. A fault-bounded wedge of Upper Triassic Stuhini Group has been mapped by Savell (1990b) over the eastcentral portion of the RDN 4 claim. "Undivided Stuhini Group lithologies on the property include massive green tuff, well-bedded green tuffaceous wacke, grey argillite and minor limestone". These strata were not examined by the author.

6.1 Hazelton Group Lithologies and Stratigraphy

Hazelton Group lithologies mapped in 1994 can be divided into felsic volcanics (Unit 7), felsic subvolcanic four packages: porphyries (Unit 8), marine clastic sediments (Unit 9) and intermediate volcanics (Unit 10). Petrographic descriptions are attached in Appendix D for six thin sections prepared from Unit 7 and 8 specimens. Dr. Payne labels the felsic rocks as latites and trachytes; these labels may be due to potassium feldspar alteration as well as high initial potassium feldspar content. Names for the remaining lithologies (especially "andesite" and "diorite") are field terms only, unsubstantiated by petrographic work. Table 6.1.1 is a descriptive legend for the Hazelton Group lithologies encountered on the RDN claims, from youngest to oldest.

TABLE 6.1.1

HAZELTON GROUP STRATIGRAPHIC COLUMN

- 11 Diorite: Dark green to brown, equigranular, medium-grained. Commonly carbonate-altered with local mariposite.
- 10 Andesite: Dark green to brown, generally fine-grained and massive. Weakly chlorite-, calcite- or ankerite-altered.
 - **10a** Andesitic flows, locally amygdaloidal. Pillows noted near base of section, east of Marcasite Gossan.

10b Breccia: mapped by Savell and Grill (1991); not encountered by author.

10c Feldspar crystal tuff: 40% broken feldspar crystals and rare felsic fragments in brown tuffaceous andesitic matrix.

- **10d** Andesitic dykes.
- 10e Maroon agglomerate: Subrounded, heterolithic, grey to maroon andesitic clasts in maroon tuffaceous matrix. Andesitic clasts are fine-grained massive to feldsparphyric; carbonate veining in clasts precedes deposition. Subaerial lahar? Observed only in drill hole RG91-28.
- Marine sediments
 - 9a Argillite and siltstone: Black, locally graphitic and/or pyritic, poorly-bedded argillite. Pyrite occurs in disseminations, as irregular pyrite±calcite veinlets and as rare massive pyrite clasts. Argillite is locally interbedded with lesser grey siltstone, commonly pyritic. Tends to deform easily, especially along its contact with felsic volcanics, and hence is commonly sheared.
 - **9b** Limestone: mapped by Savell and Grill (1991); not identified by author.
 - **9c** Sandstone: mapped by Savell and Grill (1991); not identified by author.
 - 9d Basal conglomerate: Subrounded 1-25 centimetre felsic clasts in black argillitic matrix; includes silica-"graphite" altered clasts (Unit 7GR). Unsorted, but long axes of clasts are aligned with bedding.
- 8 Felsic subvolcanic intrusions
 - 8a Feldspar porphyry: Grey matrix with 5-20%, 4-6mm, feldspar phenocrysts and rare quartz phenocrysts. All exposures are highly altered, predominantly by sericite, clay minerals, potassium feldspar and silica, with 5-20% pyrite. See petrographic description for samples 626860 and RG91-19 @ 93.2m.
 - 8b Megacrystic orthoclase porphyry: Dark grey to brown matrix with 5-20%, 4-6mm, plagioclase phenocrysts and sparse euhedral 10-30mm potassium feldspar phenocrysts. Variably altered. See petrographic description for sample 626885.
- 7 Felsic extrusive rocks
 - 7a Lithic-crystal lapilli tuff: Grey to brown tuffaceous matrix containing subrounded, 2-10mm, felsic lapilli and broken feldspar crystals. Proportions of lapilli and crystals variable. Silicified felsic clast noted at 231m in hole RG91-28. Fragments unsorted and randomly oriented. Variably altered, with Fe-carbonate alteration most common. See petrographic descriptions for samples 10269, 626897 and RG91-28 @ 173.6m.
 - 7b Feldspar-phyric rhyolite: mapped by Savell and Grill (1991); not identified by author.
 - 7c Felsic tuff-breccia: Randomly oriented, subangular 2-30mm felsic clasts in felsic ash matrix. Includes clasts of Unit 8a.
 - 7d Felsic conglomerate: Lenses of close-packed, rounded, felsic pebbles aligned with bedding in pebbly arkose. Occurs as interbed within felsic volcanics.

7GR "Graphite"-altered felsics: Dark grey to black from abundant irregular carbonaceous(?) fractures. Strongly silicified; locally calcareous or baritic. Original lithologies uncertain.

Felsic volcanics are well exposed along the upper part of Downpour Creek on the RDN 1-4 claims (Figures 4a, 4b and 5). They were all mapped as felsic lapilli tuff although lapilli and crystals are difficult to discern in many outcrops. A section of felsic volcanics, at least 100 metres thick, is well exposed in a stream 800 metres north of the RDN 1-4 legal corner post. At its base, the lithic-crystal tuff (Unit 7a) contains 10% 6-10mm felsic lapilli and 25% feldspar fragments. Lithic fragments become fewer and smaller up-section, to a maximum of 2mm. This unit is stratigraphically overlain by a 17 metre thick basal conglomerate (Unit 9d), whose upper portions are interbedded with the lowest black argillite (Unit 9a) beds. The presence of Unit 7GR clasts in this basal conglomerate indicates that the "graphite"silica+barite alteration occurred prior to the onset of marine sedimentation.

The only other conformable felsic/sediment contact examined on the RDN property lies 1300 metres further northeast. Felsic lapilli tuff is overlain by a few metres of black argillite, then by a 50 centimetre bed of argillite containing 10% subrounded clasts of: mudstone; very fine-grained massive pyrite; and altered felsics. Similar beds are present in drill hole RG91-26, 250 metres further north, which did not penetrate down to the felsic contact.

The distribution of the feldspar porphyries (Units 8a,b) relative to the felsic volcanics (Unit 7) shows them to be crosscutting and intrusive into the felsic pile. A fragment of Unit 8a was noted within float of the felsic tuff-breccia (Unit 7c) in Gossan Creek, indicating that the feldspar porphyries were subvolcanic feeders to the felsic extrusives. Only two outcrops of coarse felsic fragmentals (Unit 7c) were mapped, one in the creek north of Gossan Creek and one adjacent to the felsic/sediment contact south of Gossan Creek. The coarse pyroclastics and large areal extent of subvolcanic intrusions indicate that this area may have been the centre of felsic volcanism.

Salmon River Formation marine sedimentation (Unit 9) was accompanied by intercalated andesitic volcanism (Unit 10). Relative amounts of the two vary widely, with no andesite present in the 168 metre long sedimentary package in hole RG91-26. The thickest package of andesite mapped was above the Marcasite Gossan, where over 400 metres are exposed, with pillows near its base. Only 15 metres of black argillite is present within this andesite section, although a prominent gully between the top of the Marcasite Gossan felsic tuffs and the base of the andesitic cliffs could be due to erosion of recessive argillite. Argillite outcrops in this stratigraphic interval 1,300 metres to the south. Unit 11 diorite sills and dykes are present throughout the

sedimentary/andesitic package, probably representing feeders for the andesitic volcanism.

Stratigraphy on the RDN property exhibits a marked similarity to that hosting the Eskay Creek deposit, as described by Britton et al (1990), Bartsch (1992), Ettlinger (1992), Bartsch (1993a,b), Roth (1993a,b) and Rye et al (1993). Table 6.1.2 compares stratigraphy on the RDN property with that at Eskay Creek.

TABLE 6.1.2 STRATIGRAPHIC COMPARISON: ESKAY CREEK AND RDN

Eskay Creek

RDN Property

Upper Sedimentary Unit: Thick Unit 9: Thick sequence of sequence of thin-bedded, siltstone and argillite, turbiditic, siltstone, shale with minor sandstone. limestone and conglomerate and fine sandstone Hanging Wall Basalt Unit: Units 10 and 11: >400 metres >150 metres of basaltic pillow of andesitic pillows, flows, breccia with subordinate flows, crystal tuffs and breccias dykes and sills with diorite sills and dykes 21 Zone Subbasin: Unit 9: Locally pyritic and <20 metres carbonaceous graphitic argillite and shale and siltstone; hosts siltstone (intercalated with 21 Zone massive sulphide-Units 10 and 11) sulphosalt deposits Unit 9d: 0.5-17 metres of black argillite containing variably altered felsic clasts Black Matrix Breccia: Unit 7GR: Felsics cut by Discontinuous, 0-10m thick numerous "graphite"+silica black-matrix mosaic breccia, +barite fractures, locally forming black-matrix mosaic formed by network of coalescing black silica breccia fractures cutting rhyolite Eskay Rhyolite: Unit 7: Felsic lithic-crystal 150m thick rhyolitic flow lapilli tuff, with minor dome complex felsic tuff-breccia (may Footwall Dacite: >100 metres include other undifferof dacitic flows and tuffs entiated felsic rocks) Felsic Subvolcanic Intrusions Eskay Porphyry and flow dome Unit 8: Variably altered **feeder dykes:** Pervasively feldspar porphyry with local altered feldspar porphyry potassium feldspar megacrysts with rare potassium feldspar

6.2 Structure

megacrysts

The subvertical Forrest Kerr Fault trends northerly through the RDN 1 and 3 claims (Figures 4a, 4b and 5), separating Paleozoic metamorphic rocks to the west from Jurassic Hazelton Group volcanosedimentary rocks to the east. Essentially all 1994 reconnaissance mapping was carried out east of the Forrest Kerr Fault.

A major north-northwesterly trending fault (the "North Fault") inferred is on the RDN claim, 6 separating the marine sediment/andesite/diorite package to the northeast from older felsic tuffs and porphyries to the southwest. Beddings within the argillites and siltstones immediately northeast of the inferred fault strike northwest to northeast and dip moderately to steeply If this were a stratigraphic contact, then the sedimentary west. package would have to be overturned and tight local folding would be necessary to explain bedding which trends toward the contact. In fact, this sort of contorted bedding is well exposed on the RDN 1 claim. However, the fault hypothesis is simpler and appears more plausible. The surface trace of the inferred fault indicates that it dips steeply to the northeast.

A second north-northwesterly trending fault (the "South Fault") was mapped by Savell and Grill (1991) 1,500 metres to the southwest on the RDN 1 claim. This was not examined by the author, but would explain the distribution of lithologies. The northeast side of this inferred fault would be uplifted relative to the southwest; the felsics to the northeast form a horst block.

The southern part of Downpour Creek, including the Marcasite and South Gossans, form the core of a northeasterly-trending anticline (Section B-B'; Figure 5). Bedding within the overlying argillite to the northwest dips moderately westerly; strata on the cliffs east of the Marcasite Gossan dip moderately to the east or southeast. A minor fold axis, plunging 45° towards 230°, may mimic the orientation of the anticline.

On the Gossan Creek horst block between the South and North Faults, the marine sediment package lies east of the felsic volcanics near Downpour Creek, with the contact dipping steeply to the east. Presumably, this corresponds to the eastern limb of the anticline. Hole RG91-28, on the GOZ 3 claim in Carcass Creek, was collared in argillite which appears very similar to Unit 9a and passed conformably eastward into intensely altered felsic lapilli tuffs. It seems likely that this marks the western limb of the anticline (Section A-A'; Figure 5).

Bedding orientations within the downdropped fault block north of the North Fault dip moderately to steeply to the west. Presumably, this area also lies on the western limb of the anticline; the felsic/sediment contact should lie down-section to the east at depth (Section A-A'; Figure 5). Float sample 10269, with 11.6 g/tonne gold and elevated lead, zinc, copper, arsenic, mercury and antimony, was taken from a felsic boulder in Downpour Creek, in the vicinity of this proposed felsic/sediment contact.

6.3 Alteration and Mineralization

Rock samples were taken from altered and mineralized float and outcrop during the course of mapping and prospecting. They are

described in Appendix C and plotted on Figure 6.

The most prominent alteration on the RDN property is exhibited by the feldspar porphyry intrusives in the vicinity of Gossan Creek. These are pervasively sericitized, argillized, pyritized and silicified and form prominent gossans. Pervasive potassium feldspar alteration is very prominent on stained specimens, but is almost unrecognizable without staining, so its areal extent is In the Gossan Creek area, the intrusive contact is very unknown. between gossanous feldspar porphyry and the brownmarked weathering, carbonate-altered felsic lithic-crystal lapilli tuff which it intrudes. Drill hole RG91-19, drilled entirely within strongly altered feldspar porphyry with 10-20% pyrite, returned only background values for gold, silver and all base metals.

Felsic rocks are locally cut by abundant irregular, black, at least partially carbonaceous, fractures, accompanied by silica, barite, pyrite and/or calcite (Unit 7GR). Where most intensely developed, this alteration results in a rock which appears to be felsic mosaic breccia, with subrounded to angular felsic а fragments in a black matrix. Unit 7GR is erratically distributed and discontinuous, but is most common near felsic/sediment contacts, both fault and stratigraphic. Carbon analyses for 24 whole rock samples shows that the estimated percentages of "graphite" for individual samples was grossly exaggerated (Appendix C). In part, this is because of the tendency for rocks to break along the carbonaceous fractures, but there may also be other black, sooty minerals which were misidentified.

The Marcasite Gossan consists of quartz-veined, silicified, potassium feldspar-altered and carbonate-altered felsic tuffs surrounding a plug of sericite-potassium feldspar-marcasite altered feldspar porphyry. Rare veinlets of pyrobitumen were noted within silicified felsic tuffs. Sample 626859 was taken from several large, frost-heaved, boulders of vein quartz with 10% coarse pyrite (and unrecognized tetrahedrite?). It contained 134 g/tonne Ag, 2480 ppm Zn, 654 ppm Cu, 352 ppm Sb and 360 ppm As. A few hundred metres downstream from the Marcasite Gossan in Downpour Creek, sample 626894 was taken from three felsic float boulders, cut by black silica stringers to form angular mosaic breccias and mineralized with galena, tetrahedrite, sphalerite, pyrite and It assayed 141 g/tonne silver with elevated lead, chalcopyrite. copper, antimony and arsenic. Several Marcasite Gossan samples had previously reported anomalous arsenic and antimony with up to 208 ppm silver (DeBock, 1989). Significant results are summarized in Table 6.3.1.

TABLE 6.3.1 MARCASITE GOSSAN MINERALIZATION

Sample <u>Number</u>	Sample Width		Ag (ppm)		Ba (ppm)		Pb (ppm)	Sb (ppm)	Zn (ppm)
626859	Float		134g/t					352	
626894	Float	5	141g/t	: 232	1030	1690	3080	550	910

13

Equity Engineering Ltd.

TABLE 6.3.1 (continued) MARCASITE GOSSAN MINERALIZATION

Sample	Sample	Au	Ag	As	Ba	Cu	Pb	Sb	Zn
Number	Width	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
NDR-11*	Float	25	59.5	188	234	47	391	91	776
NDR-12*	Float	30	207.6	238	365	196	722	320	66
* Samp	le repor	ted by	DeBock	: (1989	€)				

Float sample 10269, taken below the lowest argillite outcrop near the legal corner post for the RDN 5 and 6 claims, is very felsic-hosted appearance similar to Marcasite Gossan in specimen and thin mineralization, both in hand section. Petrographic analysis shows it to be a porphyritic "trachyte", with 60-65% potassium feldspar in the matrix, and strong quartz-sericite alteration. It assayed 11.6 g/tonne gold, along with 42 ppm Ag, 9310 ppm Pb, 5480 ppm Zn, 1745 ppm Cu and elevated arsenic, bismuth, mercury and antimony. Although mixed with glacial float, the source of this float is uncertain; it may be relatively local or could be transported from further up Downpour Creek. The total absence of elevated gold values in any of the Marcasite Gossan samples suggests that it is not derived from the Marcasite Gossan, and similar mineralization has not been recognized elsewhere on the If the structural interpretation shown in Figure 5 property. (Section A-A') is correct, then felsic rocks would be expected downsection from the marine sediments in the vicinity of this sample location. If so, then sample 10269's high gold content will make this felsic/sediment contact extremely interesting.

Several weakly anomalous samples were taken from felsic tuffs just below their sedimentary contact with overlying argillite. Sample 626863, taken five metres from the argillite contact in the creek south of Gossan Creek, contained 1070 ppm zinc. Sample 626881 was taken from felsic volcanics at their contact with overlying andesite southeast of the South Gossan; it contained 3000 ppm zinc. The lowest outcrop on Gossan Creek is feldspar porphyry cut by abundant black, calcareous, carbonaceous fractures (Unit It lies within a few metres of the contact with argillite, 7GR). although it is not clear whether this is a fault or sedimentary contact. Sample 626875 was taken from this outcrop, returning 1280 Two samples were taken 700 metres northwest of the ppm zinc. Marcasite Gossan from strongly silicified felsic rocks about 100 metres below the overlying argillite. Samples 626897 and 626898 each contained more than 1% barium in coarse clots of barite and quartz-barite veins, along with slightly elevated arsenic (16-72 ppm) and antimony (8-34 ppm).

A few samples with galena and sphalerite were taken from moderately silica-carbonate altered felsic rocks in the Gossan Creek area. Results for these are summarized in Table 6.3.2 below, along with sample 10255, which was taken from strongly silicified, chalcopyrite-bearing feldspar porphyry float. Similar mineralization may be responsible for widespread arsenic-lead-zinc soil geochemistry over the felsic rocks in this area.

TABLE 6.3.2 FELSIC-HOSTED MINERALIZATION: GOSSAN CREEK AREA

Sample	Sample	Au	Ag	As	Ba	Cu	Pb	Sb.	Zn
Number	Width	(ppb)	<u>(ppm)</u>	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
10254	Float	<5	40.0	272	2230	85	2310	52	6610
10255	Float	<5	1.0	16	340	7200	18	12	42
10263	Float	<5	73.0	496	1240	1710	1.23%	28	1.54%
10264	Float	<5	1.0	8	5320	2	1735	<2	1585
10267	Float	195	81.0	536	800	1885	5050	30	4.67%
10268	Float	25	137g/t	400	4130	2860	234	18	1750
626892	Float	<5	1.0	8	690	18	2040	2	378
626893	Float	<5	5.0	192	1160	510	878	42	1570

Float samples were taken from several boulders of quartz+carbonate veining, generally less than 15 centimetres in With the exception of sample 10257, all of these veins width. appear to be hosted by argillite. Metal contents are quite variable between these samples; results are summarized in Table In general, however, barium and antimony values are much 6.3.3. lower in the quartz+carbonate veining than in the felsic-hosted Upsection and above the Marcasite Gossan to the mineralization. east, a 15 metre bed of black argillite lies between pillow andesites. Grab sample 626857, taken across 30 centimetres near the top of this bed, returned 544 ppm arsenic, associated with ankerite veining but without visible sulphides. None of the quartz+carbonate vein samples are considered significant, due to their likely narrow width.

TABLE 6.3.3 QUARTZ+CARBONATE VEINS

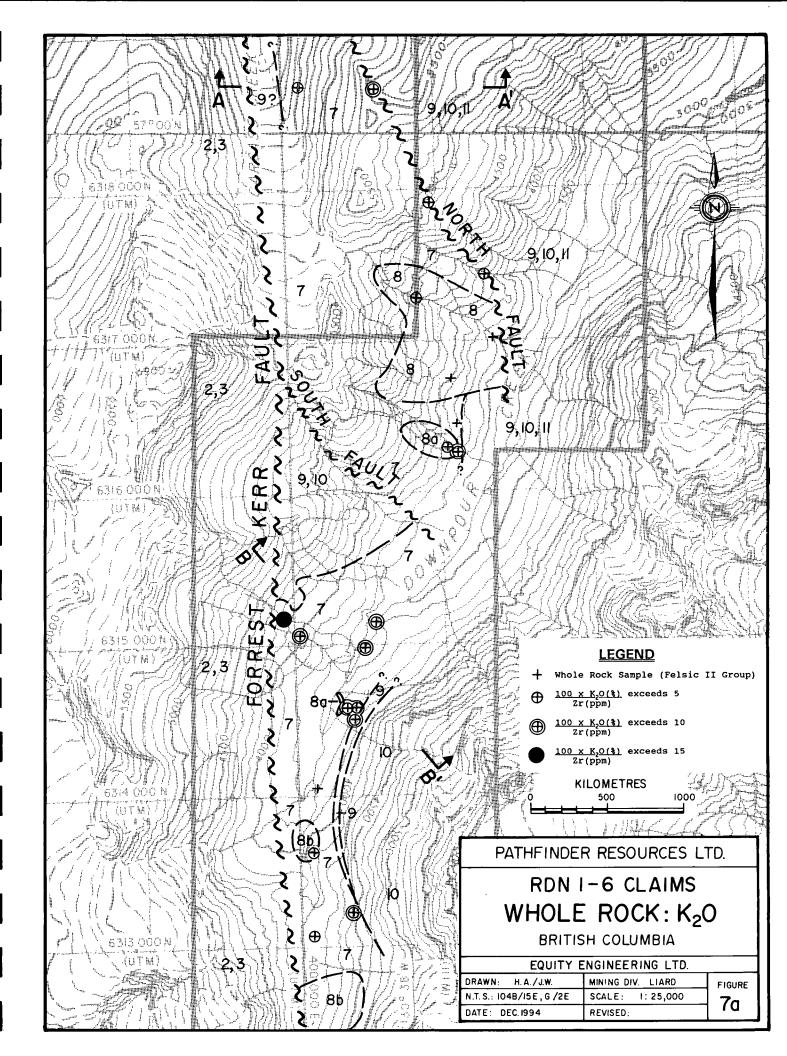
Sample	Sample	Au	Ag	As	Ba	Cu	Pb	Sb	Zn
Number	Width	(ppb)	(ppm)						
10256	Float	115	<1.0	64	80	106	114	<2	1790
10257	Float	<5	10.0	48	1090	199	2720	<2	1.83%
10258	Float	<5	1.0	8	30	155	1440	<2	1895
10271	Float	525	1.0	304	190	<1	26	56	22
626857	30cm	<5	<1.0	544	60	63	4	2	44

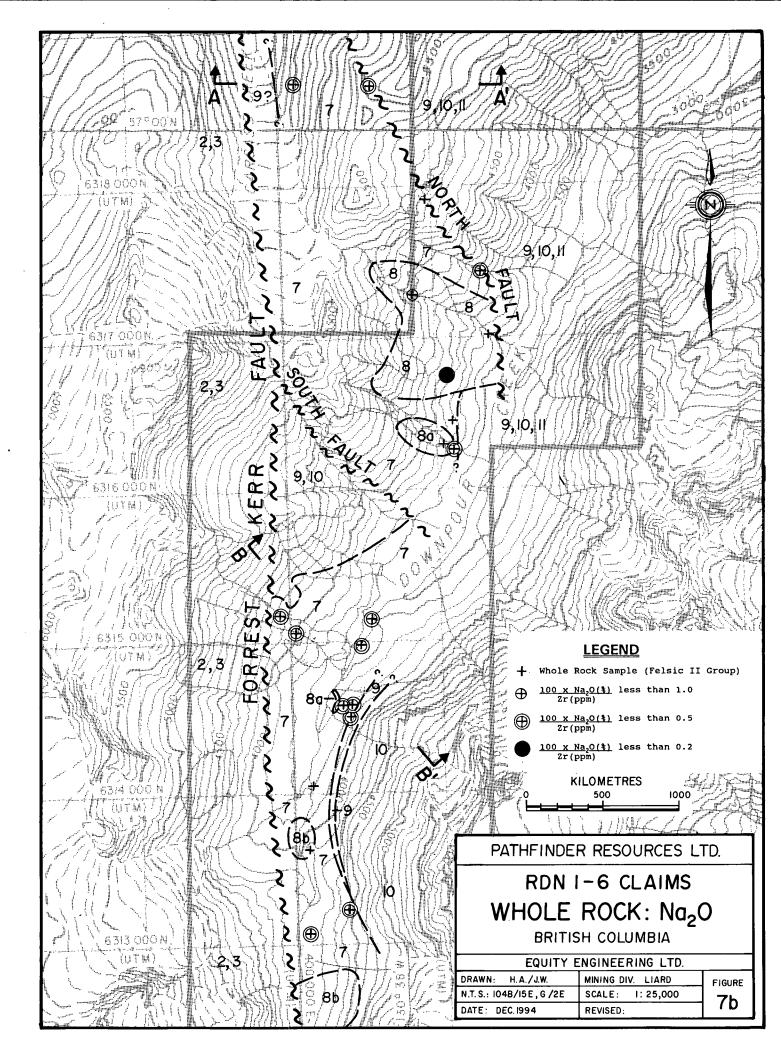
Two anomalous float samples were taken from altered diorite dykes on the RDN 5 and 6 claims. Results for these samples are summarized in Table 6.3.4 below. Their significance is not known, but it should be noted that sample 10270 was taken within 200 metres uphill from gold-bearing felsic sample 10269, described above.

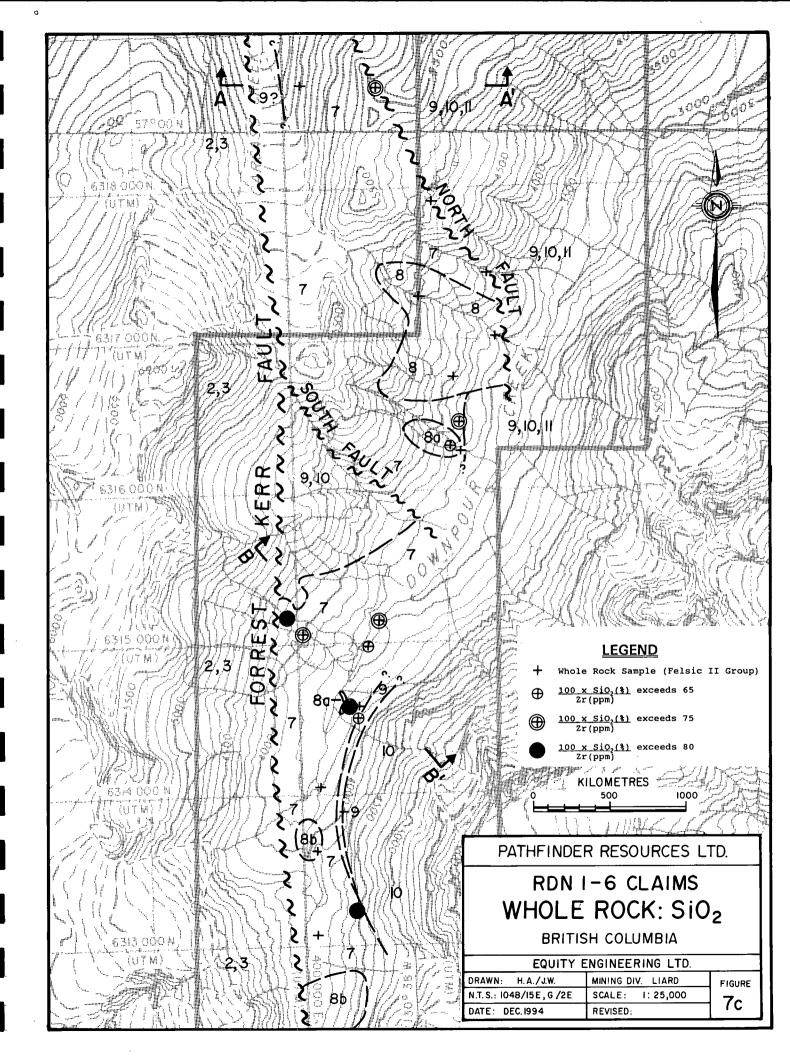
TABLE 6.3.4 DIORITE-HOSTED MINERALIZATION

-	Sample Width		Ba (ppm)		Pb (ppm)	Sb (ppm)	Zn (ppm)
10270 626873	Float Float	<1.0 1.0	>10000	63 13	186 4	18 4	130 22

Several large boulders of jasper and rhodonite were noted in glacial till north of the Marcasite Gossan. Heavily manganesestained boulders are composed of light pink to orange-pink rhodonite cut by abundant one millimetre colourless quartz stringers. Jasper boulders are also cut by numerous colourless quartz stringers and locally coated by heavy manganese stain; rhodonite may also be present in them. Given the variety of rock types in nearby boulders, the jasper and rhodonite are not likely derived locally, but probably come from further south towards the headwaters of Downpour Creek.


6.4 Whole Rock Geochemistry


Whole rock analysis was performed on 24 property-wide felsic rock samples in order to determine original rock types and patterns of major element depletion and enrichment. Twenty-one samples were taken from outcrops of felsic volcanics and subvolcanic porphyries during the course of mapping (Figure 6). Three more were taken from felsic rocks in drill holes RG91-18, -19, and -28. All were treated by XRF whole rock analysis for the major rock-forming elements, "inorganic" carbon (present as carbonates), total carbon (including graphite, pyrobitumen and organics as well as carbonates) and a suite of immobile trace elements (Appendix E).


With one exception, all analyzed samples contain between 0.24% and 0.59% TiO₂. By comparison with average chemical compositions of major rock types (eg. Best, 1982, Appendix D), these would correspond to rhyolitic or dacitic rocks. All of these rocks were described in the field as felsic lithic crystal tuffs (Unit 7a), "graphite"-altered felsic (Unit 7GR) and feldspar porphyries (Units 8a and 8b). The exception, sample 626861 (1.37% TiO₂), was taken from an outcrop of feldspar crystal tuff (Unit 10c) within the marine sedimentary package. The high titanium content indicates that this rock is more likely andesitic to basaltic in composition; it has been included with the Unit 10 andesites.

Scatter plots of potentially conserved elements $(Al_2O_3, TiO_2, Zr and Y)$ show that the felsic rocks themselves are derived from two distinct magmas (Appendix F). The Felsic I group is composed of just two feldspar porphyry samples (626865 and 626871) taken from outcrops south of Gossan Creek. All remaining felsic samples (Felsic II group), including those taken from felsic tuffs, potassium feldspar megacrystic porphyries and feldspar porphyries, are shown to be cogenetic by their constant ratios of conserved elements. Therefore, both feldspar porphyry units of the Felsic II group are subvolcanic to the felsic tuffs.

Although the felsics contain feldspar phenocrysts, these have not been removed from the melt and there has been no fractionation. This is shown by scatter plots for Al_2O_3 , which maintains a constant ratio with other conserved elements. If crystal fractionation were to occur, its ratio would decrease as feldspar, biotite and hornblende crystals were removed. Since there has been no removal of feldspar, biotite or hornblende from the melt, and there are no

other magmatic minerals containing significant amounts of Ca, Na and K, it can be assumed that any variation of these elements is due to alteration processes.

Major element percentages for samples on Figures 7a-c have been divided by their Zr concentration, on the assumption that Zr contents would have been equal for all samples prior to mass changes associated with alteration. This assumption is based on the lack of crystal fractionation shown by Al_2O_3 scatter plots. Only the 21 samples corresponding to the Felsic II group of cogenetic rocks are shown on Figures 7a-c and discussed below; comparison with the Felsic I and Andesite group rocks would be meaningless, since initial magma compositions have been shown to be different.

Analyses for K₂O are high for most samples, with six exceeding This could be due to a felsic pile which was originally rich 10%. in potassium or to extensive potassium enrichment. Although high potassium values are scattered throughout the property, the most anomalous area is the Marcasite Gossan area, where all seven samples contain at least 8.4% K₂O (Figure 7a). Petrographic analysis (Appendix D) of two specimens from this area show both late magmatic potassium feldspar deposition, as overgrowths on plagioclase phenocrysts, and potassium metasomatism, as sericite and potassium feldspar replacement of plagioclase and hornblende phenocrysts. At Eskay Creek, Bartsch (1993b, p. 93) emphasizes the importance of "K-silicate alteration" (potassium feldspar, albite and quartz) in the footwall felsic rocks and its relation to base and precious metal mineralization. He describes a "distinctive element suite (K, Th, U, Ti, P, Ba, Ce) involved in early Ksilicate alteration associated with precious and base metal mineralization: where potassium in particular is pervasively added during alteration of the 21 Zone deposits' footwall stratigraphy" (Bartsch, 1993b, p. 116). In light of the inclusion of barium in Bartsch's K-silicate element suite from Eskay Creek, two samples from the Marcasite Gossan area exceeded 10,000 ppm Ba.

 Na_2O values are less regularly distributed across the property (Figure 7b). They are also more difficult to interpret. At Eskay Creek, albite forms part of Bartsch's "K-silicate alteration", which is most closely associated with footwall mineralization, and would be accompanied by sodium enrichment. However, at many volcanogenic massive sulphide deposits, footwall alteration is characterized by sodium depletion. For instance, at the Fukazawa and Kosaka Kuroko deposits in Japan, the <0.36% Na_2O contour in footwall dacites effectively outlines the limits of volcanogenic massive sulphide mineralization (Hashiguchi et al, 1983). The Marcasite Gossan area is somewhat depleted in sodium, with all seven samples in the range of 0.22% - 0.39% Na_2O .

Silicification is most pronounced in the area around the Marcasite Gossan (Figure 7c). Sample 626897, which lies within 100 metres below the felsic/sediment contact, has the highest SiO₂/Zr ratio, along with the highest K_2O/Zr ratio and highest Ba

concentration. As noted above, all three of these elements are important in Bartsch's "K-silicate alteration" at Eskay Creek.

7.0 GEOCHEMISTRY

7.1 Stream Sediment Geochemistry

Six silt samples were taken from Gossan Creek and the creek immediately north of it on the RDN 6 claim (Figure 6). These samples contained only slightly elevated arsenic and lead levels and background values for the remaining precious metals and pathfinder elements. Noranda had previously taken a heavy mineral concentrate sample with anomalously high gold (1320 ppb) and lead (250 ppm) from Gossan Creek near its mouth, and a silt sample with 45 ppm lead from the creek to the north (Savell, 1990a, b). The discrepancies may be due to erratic metal distribution in the sediments or different sampling techniques.

7.2 Soil Geochemistry

Three soil samples were taken near the western boundary of the RDN 5 claim (Figure 6). One sample, HA94-31, was taken from black talus fines along the fault contact between black argillite and felsic tuff. It returned anomalous zinc (614 ppm) and arsenic (122 ppm), pointing to possible mineralization along this contact.

Two samples, ten metres apart, were taken in the vicinity of Noranda's soil sample 11400N 9550E, which reported 60 ppb Au. The two samples confirmed the anomalous gold content with 50 and 70 ppb. Sample 11400N 9560E also contained elevated arsenic (74 ppm) and antimony (8 ppm). No mineralization was found to explain this anomaly, which lies within the marine sediment/andesite/diorite package.

8.0 DISCUSSION

The RDN 1-6 claims lie 40 kilometres north of the Eskay Creek volcanogenic massive sulphide (VMS) deposit in gold-rich northwestern British Columbia. The majority of the RDN property is underlain by felsic volcanics, felsic subvolcanic intrusives and fine clastic sediments of the Early to Middle Jurassic Hazelton Lithologies and stratigraphy are very similar at Eskay Group. At Eskay Creek, stratiform Creek and on the RDN property. mineralization is hosted within an argillite sub-basin overlying altered felsic volcanics and overlain by pillow basalts. On the RDN property, altered felsics are overlain by a package of argillite and andesite which is locally pillowed. Fossils within argillite on the RDN 6 claim are Toarcian in age; Anderson and Thorkelson (1990) correlate this unit with that which hosts the Eskay Creek deposit.

The upper contact of the felsic volcanics at Eskay Creek is

marked by up to ten metres of "black matrix breccia", a mosaic of felsic fragments separated by a network of black silica veinlets. Unit 7GR is an alteration style within RDN felsics comprising abundant black "graphite"+silica veinlets; it locally forms a mosaic breccia similar to that described for Eskay Creek. A clast of Unit 7GR felsic was noted within the conglomerate which forms the base of the argillite package northwest of the Marcasite Gossan; this indicates that the Unit 7GR alteration formed prior to commencement of marine sedimentation. Further north on the RDN this basal conglomerate contains pebbles composed property, entirely of very fine-grained pyrite, possibly indicating syngenetic sulphide accumulation elsewhere in the basin.

At Eskay Creek, the footwall felsics can be divided into dacitic and rhyolitic units, each of which are intruded by highly altered subvolcanic feldspar porphyries of similar composition. On the RDN property, the felsic rocks have been derived from two magmas. All whole rock samples taken from extrusive felsics and the majority of those taken from the subvolcanic feldspar porphyries form one cogenetic suite; two feldspar porphyry samples represent a second cogenetic suite. At both Eskay Creek and RDN, the feldspar porphyries include phases with potassium feldspar megacrysts.

The felsic rocks at Eskay Creek are pervasively altered, with K-silicate, sericitic, silicic and propylitic alteration suites recognized by Bartsch (1993b). His "K-silicate" (potassium feldspar, albite and quartz) alteration is most closely associated with base and precious metal mineralization at Eskay Creek: pervasively; as selvages to base metal veins within the footwall felsics; and as potassium feldspar gangue within the stratiform 21A Potassium enrichment is particularly important, sulphide lens. associated with the footwall stratigraphy beneath the 21 Zone VMS deposits. Potassium feldspar alteration is pronounced in felsic rocks from the RDN property. A cluster of whole rock samples around the Marcasite Gossan exhibit pronounced potassium enrichment, with up to 13% K_2O . Magnesium chlorite alteration is intense in the immediate footwall of 21A Zone massive sulphide mineralization (Roth, 1993b); no similar alteration has yet been recognized on the RDN property.

The 1994 exploration program has clearly demonstrated that the geological setting and alteration of the RDN property are permissive for hosting an Eskay Creek-style VMS deposit. Stratigraphy on the two properties is correlative and alteration styles are similar. Intense alteration of the felsic rocks on each occurred prior to deposition of overlying marine sediments. The same suite of base and precious metals accompanies footwall alteration on each. Five segments of stratigraphic felsic/sediment contact have been identified, situated within three fault blocks on the east and west limbs of a northerly-trending anticline. (1) east of the Marcasite Gossan, poorly exposed and These are: inferred along at least 1,600 metres [east limb, southern fault block]; 2) northwest of the Marcasite Gossan, exposed for 1,100

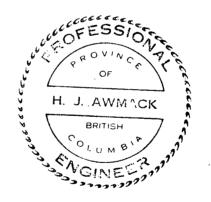
metres between the Forrest Kerr Fault and the South Fault [west limb, southern fault block]; 3) just west of Downpour Creek, inferred for at least 900 metres between the North and South Faults [east limb, central fault block]; 4) inferred from drill core on the GOZ claims, just east of Carcass Creek [west limb, central fault block]; and 5) inferred from float sample 10269 near the RDN 5 and 6 legal corner post on Downpour Creek [west limb, northern fault block]. Each of the four segments that lie on the RDN property will require further investigation and will present special problems:

East of the Marcasite Gossan: The enriched potassium, presence 1) of pyrobitumen stringers and elevated levels of silver, arsenic and antimony within felsic rocks of the Marcasite Gossan are all similar to footwall rocks beneath the Eskay Creek deposits. No gold mineralization has yet been found to explain Noranda's highest gold value (2410 ppb) in heavy sediment samples, taken 300 metres downstream from the Marcasite Gossan (Savell, 1990b). A talusfilled gully separates the uppermost felsic outcrop from the lowermost pillow basalt outcrop above the Marcasite Gossan. Approximately 1,300 metres along strike to the south, a bed of argillite lies along this contact. Because of the extensive talus, soil geochemistry would be unlikely to indicate VMS mineralization along this contact in the vicinity of the Marcasite Gossan. With the possible exception of induced polarization and magnetics, geophysical techniques were not successful at Eskay Creek. Outcrop below the pillow basalts is sparse, but further mapping, prospecting and whole rock sampling may define a drill target.

2) West of the Marcasite Gossan: The enriched potassium, silica and barium in felsic rocks beneath this contact are all favourable, but other trace elements are not anomalous. Where exposed, the basal conglomerate contains altered felsic clasts. Each of the small streams in this area exposes outcrop; further mapping and prospecting will be very useful. Much of the contact area is grass-covered with variable amounts of glacial till. Soil sampling may reveal mineralization in areas of thin till cover, although thicker till will mask soil geochemical response.

Central fault block, west of Downpour Creek: 3) The felsic/sedimentary contact is marked by a 50 centimetre basal conglomerate with a few clasts of altered felsic and of very finegrained massive pyrite. Whole rock analysis for this area shows less favourable major element patterns than for the Marcasite Gossan area. Holes RG91-26 and -27 were drilled entirely within sediment/andesite/diorite package without reaching the the felsic/sediment contact. Soil sampling for Au, Ag, Cu and Zn was carried out over the northern portion of this contact with negative results; no soil sampling has tested the southern part of this contact. Overburden is sufficiently thin that soil geochemistry would be quite effective along much of this contact.

5) Northern fault block, near Downpour Creek on the RDN 5 and 6 claims: This contact is inferred from structural interpretations


and the presence of float sample 10269, an altered felsic rock with 11.6 g/tonne gold and anomalous silver, lead, zinc, copper, arsenic, antimony, mercury and bismuth. This sample's lithological and geochemical similarities to Marcasite Gossan "footwall" mineralization are very encouraging; its high gold grade suggests that any associated VMS mineralization may also be gold-enriched. Very little exploration has been carried out in this area, but Savell (1990b) reported 530 ppb gold from a heavy sediment sample taken from a small drainage entering Downpour Creek 200 metres south of sample 10269. Geological mapping, prospecting and soil geochemistry will all likely be effective in this area, although the extent of glacial cover is not known.

The Eskay Creek deposit is a very high-grade precious metalenriched volcanogenic massive sulphide deposit containing over four mainly hosted within stratiform of qold, million ounces mineralization deposited along a felsic/sedimentary contact. The RDN property covers at least 3,600 metres strike length of stratigraphic felsic/sediment contact within identical stratigraphy Footwall kilometres to the north. alteration and forty mineralization are very similar between the two properties. Although no volcanogenic massive sulphide mineralization has yet been found on the RDN property, its similarities to Eskay Creek and the extraordinary grade of the deposit target clearly justify further exploration.

Respectfully submitted,

Henry J. Awmack, P.Eng. EQUITY ENGINEERING LTD.

Vancouver, British Columbia January, 1995

APPENDIX A

BIBLIOGRAPHY

. . .

· · · ·

BIBLIOGRAPHY

- Anderson, R.G. and Thorkelson, D.J. (1990): Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut River Map Area, Northwestern British Columbia, <u>in</u> Current Research, Part E, Geological Survey of Canada Paper 90-1F, p. 131-139.
- Awmack, H.J. and Cavey, G. (1994): Qualifying Report on the RDN 1-4 Mineral Claims; Private report for Pathfinder Resources Ltd. dated June 1994.
- Bartsch, R.D. (1992): Eskay Creek Area, Stratigraphy Update, <u>in</u> Geological Fieldwork 1991; British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1992-1, p. 517-520.
- Bartsch, R.D. (1993a): A Rhyolite Flow Dome in the Upper Hazelton Group, Eskay Creek Area, <u>in</u> Geological Fieldwork 1992; British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1993-1, p. 331-334.
- Bartsch, R.D. (1993b): Volcanic Stratigraphy and Lithochemistry of the Lower Jurassic Hazelton Group, Host to the Eskay Creek Precious and Base Metal Volcanogenic Deposit; Unpublished M.Sc. thesis at the University of British Columbia, 178 pp.
- Best, M.G. (1982): Igneous and Metamorphic Petrology; W.H. Freeman and Company, 630 pp.
- Britton, J.M., B.A. Fletcher and D.J. Alldrick (1989): Unuk Map Area (104B/7E, 8W, 9W, 10E), <u>in</u> Geological Fieldwork 1988; British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1989-1, p. 241-250.
- Britton, J.M., Blackwell, J.D. and Schroeter, T.G. (1990): #21 Zone Deposits, Eskay Creek, Northwestern British Columbia, <u>in</u> Exploration in British Columbia 1989; British Columbia Ministry of Energy, Mines and Petroleum Resources, p. 197-223.
- Edmunds, F.C., Kuran, D.L. and Rye, K.A. (1992): The Geology of the Eskay Creek Property and the #21 Zone Deposits; Abstracts of Technical Presentations; CIMM Field Conference, Kamloops, September 28-29, 1992; in Roth (1992).
- DeBock, N. (1989): Prospecting Report on the RDN 1-4 Mineral Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.
- Ettlinger, A.D. (1992): Hydrothermal Alteration and Brecciation underlying the Eskay Creek Polymetallic Massive Sulphide Deposit, <u>in</u> Geological Fieldwork 1991; British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1992-1, p. 535-541.

- Hashiguchi, H., R. Yamada and T. Inoue (1983): Practical Application of Low Na₂O Anomalies in Footwall Acid Lava for delimiting Promising Areas around the Kosaka and Fukazawa Kuroko Deposits, Akita Prefecture, Japan <u>in</u> The Kuroko and Related Volcanogenic Massive Sulphide Deposits; Economic Geology Monograph 5, pp. 387-394.
- Lewis, P.D (1992): Structural Geology of the Prout Plateau Region, Iskut River Map Area, British Columbia, <u>in</u> Geological Fieldwork 1991; British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1992-1, p. 521-527.
- Logan, J.M., Koyanagi, V.M. and Drobe, J.R. (1990a): Geology and Mineral Occurrences of the Forrest Kerr-Iskut River Area, Northwestern British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources Open File 1990-2.
- Logan, J.M., Koyanagi, V.M. and Drobe, J.R. (1990b): Geology of the Forrest Kerr Creek Area, Northwestern British Columbia, <u>in</u> Geological Fieldwork 1989; British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1990-1, p. 127-139.
- Read, P.B., R.L. Brown, J.F. Psutcka, J.M. Moore, M. Journeay, L.S. Lane and M.J. Orchard (1989): Geology of parts of Snippaker Creek (104B/10), Forrest Kerr Creek (104B/15), Bob Quinn Lake (104B/16), Iskut River (104G/1) and More Creek (104G/2); Geological Survey of Canada Open File 2094.
- Roth, T. (1993a): Surface Geology of the 21A Zone, Eskay Creek, British Columbia, <u>in</u> Geological Fieldwork 1992; British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1993-1, p. 325-330.
- Roth, T. (1993b): Geology, Alteration and Mineralization in the 21A Zone, Eskay Creek, Northwestern British Columbia; Unpublished M.Sc. thesis at the University of British Columbia, 230 pp.
- Roth, T. and Godwin, C.I. (1992): Preliminary Geology of the 21A Zone, Eskay Creek, British Columbia, <u>in</u> Geological Fieldwork 1991; British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1992-1, p. 529-533.
- Rye, K.A., Edmunds, F.C. and Kuran, D.L. (1993): Geology of the Eskay Creek 21 Zone Deposits; Abstract from 1992 Spotlight Session, Cordilleran Roundup, Vancouver, British Columbia.
- Savell, M. (1990a): Geochemical Report on the RDN 1 to 4 Mineral Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.
- Savell, M. (1990b): Geological, Geochemical, Geophysical & Diamond Drilling Report on the RDN and GOZ Mineral Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.

- Savell, M. (1991): Airborne Geophysical Report on the RDN, GOZ and DPR Mineral Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.
- Savell, M. and Grill, E. (1991): Geological, Geochemical, Geophysical and Diamond Drilling Report on the RDN, GOZ and DPR Mineral Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.
- Souther, J.G. (1972): Telegraph Creek Map Area, British Columbia; Geological Survey of Canada Paper 71-44.
- Stanley, C.R. and H.E. Madeisky (1993): Pearce Element Ratio Analysis: Applications to Lithogeochemical Exploration; Mineral Deposits Research Unit Short Course Notes SC-13, March 19, 1993, 560 pp.

APPENDIX B

J

STATEMENT OF EXPENDITURES

.

.

STATEMENT OF EXPENDITURES RDN 1-6 CLAIMS September 2-16, 1994

PROFESSIONAL FEES AND WAGES: Henry J. Awmack, P. Eng. 12.50 days @ \$400 day	\$	5,000.00		
Pat Suratt, Prospector 9.5 days @ \$275/day		2,612.50	\$	7,612.50
CHEMICAL ANALYSES:				
Silt samples	~	77 04		
6 @ \$12.84	\$	77.04		
Soil samples 3 @ \$12.84		20 50		
Rock geochemical samples		38.52		
67 @ \$16.44		1,101.48		
Assays (Au, Pb, Zn or Ag)		1,101.40		
8 @ \$7.20		57.60		
Whole rock analyses		57.00		
24 @ \$37.20		892.80	\$	2,167.40
24 6 937.20		052.00	Ŷ	2,107.40
EXPENSES:				
Camp Food	\$	241.68		
Equipment Rental (radios)	•	96.30		
Materials and Supplies		280.93		
Maps and Publications		20.76		
Printing and Reproductions		102.99		
Meals		88.03		
Accommodation		447.30		•
Truck Rental		400.00		
Automotive Fuel		214.82		
Helicopter Charters				
-		4,172.38 581.50		
Petrographic Descriptions				
Telephone Distance Charges Courier and Telefax	•	17.94	ć	6 752 72
courter and referax		88.09	\$	6,752.72
REPORT (estimated):			\$	5,000.00
MANAGEMENT FEES:				
15% on expenses and analys	es			1,338.02
SUBTOTAL:			\$	22,870.64
GST:				. •
7% on subtotal				1,600.94
			\$ ==	24,471.58 =======

.

APPENDIX C

ROCK SAMPLE DESCRIPTIONS

MINERALS AND ALTERATION TYPES

AZ	azurite	BA	barite	BI	biotite
BO	bornite	CA	calcite	CB	Fe-carbonate
CC	chalcocite	CL	chlorite	CP	chalcopyrite
CU	native copper	CV	covellite	CY	clay
EP	epidote	FM	ferromolybdite	FP	feldspar
GA	garnet	GE	goethite	GL	galena
GR	graphite	HE	earthy hematite	3	
HS	specularite	JA	jarosite	KF	K-feldspar
MC	malachite	MG	magnetite	MN	Mn-oxides
MO	molybdenite	MR	mariposite	MS	sericite
MT	marcasite	MU	muscovite	NE	neotocite
PX	pyroxene	PY	pyrite	QZ	quartz veining
SI .	silica	SP	sphalerite	TA	talc
то	tourmaline	\mathbf{TT}	tetrahedrite		

ļ

ALTERATION INTENSITIES

m	medium	S	strong	tr	trace
VS	very strong	W	weak		

QUITY ENGI	RDN 1-6 Claims		ROCK SAMPLE DESCRIPTIONS NTS : 104B/15E, 104G/2E	Date : Sep	tember 4-11, 1994	Page-1-					
ample No.	UTM :	6314 650 N	Type : Float	Alteration :	None	Au	Ag	As	Cu	Pb	Zn
		400 830 E	Strike Length Exp. : m	Metallics :	1-2%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
10251	Elevation:	4200 ft	Sample Width : 8 cm	Secondaries:	None	<5	<1.0	4.	91.	2.	132
	Orientation:	: /	True Width : m	Host :	Fine bedded argillite						
omments :	Pyrite appears t	to be on bedding	g plane.								
ample No.	UTM :	6314 630 N	Type: Float	Alteration :	sCB	Au	Ag	As	Cu	Pb	Zn
•		400 880 E	Strike Length Exp. : m	Metallics :	5%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
10252	Elevation:	4300 ft	Sample Width : m	Secondaries:	None	<5	<1.0	4.	101.	6.	64
	Orientation:	. /	True Width : m	Host :	Unknown	_					• •
omments :	Medium-coarse py	vrite cubes.									
ample No.	 UTM :	6316 380 N	Type: Float	Alteration :	sSI	Au	Ag	As	Cu	Pb	Zn
•		401 280 E	Strike Length Exp. : m	Metallics :	None	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
10253	Elevation:	3700 ft	Sample Width : m	Secondaries:	None	<5	<1.0	4.	2.	<2	6.
	Orientation:		True Width : m	Host :	Unknown felsic					-	•••
omments :	Angular float, n	no visible sulpł	ides.								
ample No.	UTM :	6316 390 N	Type: Float	Alteration :	sSI	Au	Ag	As	Cu	Pb	Zn
		400 630 E	Strike Length Exp. : m	Metallics :		(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
10254	Elevation:	4700 ft	Sample Width : m	Secondaries:	smn	<5	40.0	272.	85.	2310.	66
	Orientation:	1	True Width : m	Host :	Rhyolite?						
omments :	Fine-grained qua	<mark>ertz fragments</mark> i	in glassy quartz matrix and black pl	atey mineral. Als	so contains 52 ppm Sb.						
ample No.	UTM :	6317 030 N	Type: Float	Alteration :	sSI	Au	Ag	As	Cu	Pb	Zn
		401 380 E	Strike Length Exp. : m	Metallics :	1%CP, 5-10%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
10255	Elevation:	3600 ft	Sample Width : m	Secondaries:	None	<5	1.0	16.	7200.	18.	42
	Orientation:	1	True Width : m	Host :	Feldspar porphyry						
omments :	Many chunks of f	loat in blue-gr	rey clay bank. Slickenside surfaces	. Also contains 2	24 ppb Bi, 33 ppm Mo and	12 ppm Sb.					
ample No.	UTM :	6317 000 N	Type : Float	Alteration :	QZ	Au	Ag	As	Cu	Pb	Zn
		401 400 E	Strike Length Exp. : m	Metallics :	1-2%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
10256	Elevation:	3600 ft	Sample Width : m	Secondaries:	None	115.	<1.0	64.	106.	114.	17
	Orientation:	/	True Width : m	Host :	Carbonaceous sediment	-					-
		•	cubes in blebs. Quartz veining doe								

•

QUITY ENGI	NEERING LTD.		ROCK SAMPLE DESCRIPTIONS			Page-2-					
	RDN 1-6 Claims		NTS : 104B/15E, 104G/2E	Date : Sep	tember 4-11, 1994						
ample No.	UTM :	6317 173 N	Type: Float	Alteration :	QZ, SSI	Au	Ag	As	Cu	Pb	Zn
		401 178 E	Strike Length Exp. : m	Metallics :	0.5%GL, 2%SP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
10257	Elevation:	4050 ft	Sample Width : m	Secondaries:	mGE, NE?	<5	10.0	48.	199.	2720.	••
	Orientation	. /	True Width : m	Host :	Quartz-sulphide vein						
omments :	Quartz vein with	seams of fine-	grained sphalerite and galena and an		•	Orange plumb	ojarosi	te.			
	Also contains 1			-	-		•				
ample No.	UTM :	6317 470 N	Type : Float	Alteration :	CA	Au	Ag	As	Cu	Pb	Zn
	••••••	401 660 E	Strike Length Exp. : m	Metallics :	trCP, <1%GL, 1%PY?	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
10258	Elevation:	3400 ft	Sample Width : m	Secondaries:	wGE	<5	1.0	8.	155.	1440.	•••
	Orientation:		True Width : m	Host :	Argillite						
comments :	Calcite vein in	-			Argittite						
Sample No.	UTM :	6314 085 N	Type : Grab	Alteration :	СВ	Au	Ag	As	Cu	Pb	Zn
ampre not	U M 1	399 665 E	Strike Length Exp. : 1 m	Metallics :	1%PY	(ppb)	(ppm)	(ppm)	(ppm)		(ppm)
10259	Elevation:	4100 ft	Sample Width : m	Secondaries:	mGE	(pp5) <5	(ppin) <1.0	4.	(ppm) 8.	(ppm) <2	38.
10239		020 / 90			MGC Paleozoic sediment		\$1.0	4.	٥.	~2	20.
'ormonto i	Faulted in every	-	True Width : m	Host :	Pateozoic segiment						
Comments :	rautteu in every	anection.									
Sample No.	 UTM :	6313 745 N	Type : Float	Alteration :	CB, CL	Au	Ag	As	Cu	Pb	Zn
ampre no.	UTH .	399 425 E	Strike Length Exp. : m	Metallics :	None		(ppm)				
10260	Elevation:	4350 ft	Sample Width : m	Secondaries:	mGE	(ppb) <5	<1.0	(ppm) 4.	(ppm) 6.	(ppm) 2.	(ppm) 36.
10200	Orientation:				Sediment		\$1.0	4.	0.	٤.	50.
comments :	Quartz-carbonate	•		Host :	Seament						
Jummerits :	wuartz-carbonate	e venn nn seunne	nts.,								
Sample No.	UTM :	6313 560 N	Type : Float	Alteration :	mCA, m-sCL	Au	Ag	As	Cu	Pb	Zn
ampre no.	01M .	399 458 E	••				-				
407/4	Flourstin ne		Strike Length Exp. : m	Metallics :	<1%CP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
10261	Elevation:	4250 ft	Sample Width : m	Secondaries:	None	<5	<1.0	4.	806.	<2	60.
• • •	Orientation		True Width : m	Host :	Vein in sediment(?)						
comments :	Several pieces ·	probably naven	't come far.								
		4740 47/ M				A	A	4-	C 14		7-
Sample No.	UTM :	6318 134 N	Type : Float	Alteration :	-1904	Au	Ag	As	Cu	Pb	Zn
400/0	Flaundian	400 875 E	Strike Length Exp. : m	Metallics :	<1%PY	(ppb)	(ppm)	(ppm)	(ppm) 10	(ppm)	(ppm)
10262	Elevation:	5200 ft	Sample Width : 10 cm	Secondaries:	None	<5 	<1.0	4.	10.	14.	26.
	Orientation:	•	True Width : m	Host :	Quartz-carbonate vein	in andesiti	c lapil	in tuff		1.00	
omments :	rragments in qua	Intz-carbonate v	ein of fine-grained massive pyrite.								

	NEERING LTD. RDN 1-6 Claims		ROCK SAMPLE DESCRIPTIONS NTS : 104B/15E, 104G/2E	Date : Sept	F tember 4-11, 1994	age-3-					
Sample No.	UTM :	6318 130 N	Type : Float	Alteration :	WCB, WQZ	Au	Ag	As	Cu	РЬ	Zn
		400 648 E	Strike Length Exp. : m	Metallics :	2%GL	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
10263	Elevation:	5350 ft	Sample Width : m	Secondaries:	WGE, WMC	<5	73.0	496.	1710.	1.23%	
	Orientation:	: /	True Width : m	Host :	Feldspar porphyry?						
comments :	10,825N/9525E or	n Noranda grid.	Disseminated sulphides in light gr			Bi, 86					
	ppm Mo and 28 pp		·								
ample No.	UTM :	6318 045 N	Type: Float	Alteration :	WCB, SSI	Au	Ag	As	Cu	Pb	Zn
		400 650 E	Strike Length Exp. : m	Metallics :	<1%GL	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
10264	Elevation:	5400 ft	Sample Width : m	Secondaries:	None	<56	1.0	8.	2.	1735.	158
	Orientation:	: /	True Width : m	Host :	Felsic tuff?						
comments :	10,750N/9550E.	A few specks of	galena and seams of sphalerite in	silicified cream-c	coloured rock. Also conta	ains 5320					
	ppm Ba.	·									
ample No.	UTM :	6317 245 N	Type: Float	Alteration :	mCA, wCL	Au	Ag	As	Cu	Pb	Zn
		401 490 E	Strike Length Exp. : m	Metallics :	<1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
10265	Elevation:	3800 ft	Sample Width : m	Secondaries:	WGE	<5	<1.0	16.	2.	24.	114
	Orientation:	: /	True Width : m	Host :	Sediment? - not mudstone	e - bleach	ed				
ample No.	UTM :	6317 545 N	Type: Float	Alteration :	BA, CB, WCL	Au	Ag	As	Cu	Pb	Zn
		400 820 E	Strike Length Exp. : m	Metallics :	<1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
10266	Elevation:	4650 ft	Sample Width : m	Secondaries:	mGE	<5	<1.0	4.	2.	4.	54.
	Orientation:	: /	True Width : m	Host :	Dark green feldspar por	whyry intr	usive				
omments :	Carbonate/barite	e veins plus pyr	ite - weathered. Also contains 621	O ppm Ba.							
								_	_	-	_
ample No.	UTM :	6317 605 N	Type : Float	Alteration :		Au	Ag	As	Cu	Pb	Zn
ample No.		400 400 E	Strike Length Exp. : m	Alteration : Metallics :	1%GL, 2%SP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
	Elevation:	400 400 E 4750 ft	Strike Length Exp. : m Sample Width : m	Metallics : Secondaries:	1%GL, 2%SP mAZ, mMC		-				(ppm
ample No.	Elevation: Orientation:	400 400 E 4750 ft : /	Strike Length Exp. : m Sample Width : m True Width : m	Metallics : Secondaries: Host :	1%GL, 2%SP mAZ, mMC Felsic tuff	(ppb) 195.	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
ample No. 10267	Elevation: Orientation:	400 400 E 4750 ft : /	Strike Length Exp. : m Sample Width : m	Metallics : Secondaries: Host :	1%GL, 2%SP mAZ, mMC Felsic tuff	(ppb) 195.	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
ample No. 10267 comments :	Elevation: Orientation Many pieces of m	400 400 E 4750 ft : / nore silicified	Strike Length Exp. : m Sample Width : m True Width : m andesite(?). Not very rusty. Also	Metallics : Secondaries: Host : contains 62 ppm B	1%GL, 2%SP mAZ, mMC Felsic tuff Bi, 17 ppm Hg and 30 ppm S	(ppb) 195.	(ppm) 81.0	(ppm) 536.	(ppm) 1885.	(ppm) 5050.	(ppm 4.6
ample No. 10267	Elevation: Orientation:	400 400 E 4750 ft : / more silicified 6317 605 N	Strike Length Exp. : m Sample Width : m True Width : m andesite(?). Not very rusty. Also 	Metallics : Secondaries: Host : contains 62 ppm E Alteration :	1%GL, 2%SP mAZ, mMC Felsic tuff Bi, 17 ppm Hg and 30 ppm S wSI	(ppb) 195. Sb. Au	(ppm) 81.0	(ppm) 536. As	(ppm) 1885. Cu	(ppm) 5050. Pb	(ppm 4.6 Zn
ample No. 10267 omments : ample No.	Elevation: Orientation: Many pieces of m UTM :	400 400 E 4750 ft more silicified 6317 605 N 400 400 E	Strike Length Exp. : m Sample Width : m True Width : m andesite(?). Not very rusty. Also Type : Float Strike Length Exp. : m	Metallics : Secondaries: Host : contains 62 ppm E Alteration : Metallics :	1%GL, 2%SP mAZ, mMC Felsic tuff Bi, 17 ppm Hg and 30 ppm S wSI <1%CP, trGL, 1%SP	(ppb) 195. Sb. Au (ppb)	(ppm) 81.0 Ag (ppm)	(ppm) 536. As (ppm)	(ppm) 1885. Cu (ppm)	(ppm) 5050. Pb (ppm)	(ppm 4.6 Zn (ppm
ample No. 10267 omments :	Elevation: Orientation: Many pieces of m UTM : Elevation:	400 400 E 4750 ft more silicified 6317 605 N 400 400 E 4750 ft	Strike Length Exp. : m Sample Width : m True Width : m andesite(?). Not very rusty. Also Type : Float Strike Length Exp. : m Sample Width : m	Metallics : Secondaries: Host : contains 62 ppm B Alteration : Metallics : Secondaries:	1%GL, 2%SP mAZ, mMC Felsic tuff Bi, 17 ppm Hg and 30 ppm S wSI <1%CP, trGL, 1%SP mAZ	(ppb) 195. Sb. Au	(ppm) 81.0 Ag (ppm)	(ppm) 536. As	(ppm) 1885. Cu	(ppm) 5050. Pb (ppm)	(ppm 4.6 Zn (ppm
ample No. 10267 comments : ample No. 10268	Elevation: Orientation: Many pieces of m UTM : Elevation: Orientation:	400 400 E 4750 ft more silicified 6317 605 N 400 400 E 4750 ft : /	Strike Length Exp. : m Sample Width : m True Width : m andesite(?). Not very rusty. Also Type : Float Strike Length Exp. : m	Metallics : Secondaries: Host : contains 62 ppm B Alteration : Metallics : Secondaries: Host :	1%GL, 2%SP mAZ, mMC Felsic tuff Bi, 17 ppm Hg and 30 ppm S wSI <1%CP, trGL, 1%SP mAZ Felsic tuff	(ppb) 195. Sb. Au (ppb)	(ppm) 81.0 Ag (ppm)	(ppm) 536. As (ppm)	(ppm) 1885. Cu (ppm)	(ppm) 5050. Pb (ppm)	(ppm 4.6 Zn

	NEERING LTD. RDN 1-6 Claims		ROCK SAMPLE DESCRIPTIONS NTS : 104B/15E, 104G/2E	Date : Sept	ember 4-11, 1994	age-4-					
Sample No.	UTM :	6318 295 N	Type : Float	Alteration :	WCA, WCB, sKF, sSI	Au	Ag	As	Cu	Pb	Zn
•		402 343 E	Strike Length Exp. : m	Metallics :	1%GL, <1%SP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
10269	Elevation:	3050 ft	Sample Width : m	Secondaries:	SGE, WMC		t 42.0	440.	1745.	9310.	5480.
	Orientation:	1	True Width : m	Host :	Felsic volcanic	_					
omments :	Medium grey, mot	tled, suggesting	silicification of granular rock.	SP and GL in clus	sters and seams. Clots co	oarse CA,					
			pojarosite on internal fractures;				136 ppr	sb.			
ample No.	UTM :	6318 496 N	Type : Float	Alteration :	m-sCB, 5%MR, mMS	Au	Ag	As	Cu	Pb	Zn
		402 160 E	Strike Length Exp. : m	Metallics :	None	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
10270	Elevation:	3350 ft	Sample Width : m	Secondaries:	None	260.	<1.0	1800.	•••	186.	130.
	Orientation:	/	True Width : m	Host :	Diorite			••			
comments :		, of Au association	with mariposite. Also contains								
				-, FF	FF						
ample No.	UTM :	6318 860 N	Type : Float	Alteration :	QZ, sSI	Au	Ag	As	Cu	РЬ	Zn
•		401 680 E	Strike Length Exp. : m	Metallics :	5-10%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
10271	Elevation:	4850 ft	Sample Width: 20 cm	Secondaries:	None	525.	1.0	304.	<1	26.	22.
	Orientation:	/	True Width : m	Host :	Quartz-pyrite vein	-					
comments :	Much of pyrite is	s weathered out.	•		• •	contains					
	56 ppm Sb.			- ,	_						
ample No.	ÚTM :	6314 600 N	Type: Grab	Alteration :	WCB, SSI	Au	Ag	As	Cu	Рb	Zn
·		400 380 E	Strike Length Exp. : 20 m	Metallics :	trPY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
626855	Elevation:	1172 m	Sample Width: 10 m	Secondaries:	WMN	<5	1.0	8.	14.	26.	62.
	Orientation:	1	True Width : 10 m	Host :	Felsic lapilli tuff?						
omments :	Marcasite Gossan	. Grey to black	(from very-fine grained chlorite	? pyrobitumen?) sil	iceous rock. Not rusty.	1-3mm					
	FP phenos(?) lar	gely altered to i	ron carbonate. Also contains 14	ppm Sb. Whole roo	k sample.						
ample No.	UTM :	6314 250 N	Type : Grab	Alteration :	WCA, WCB, WCL, WSI, trGR	Au	Ag	As	Cu	Pb	Zn
		400 920 E	Strike Length Exp. : 30 m	Metallics :	trCP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
626856	Elevation:	1503 m	Sample Width : 5 m	Secondaries:	trGE	<5	<1.0	4.	25.	10.	74.
	Orientation:	1	True Width : 5 m	Host :	Breccia						
omments :	2-10mm subrounde	d heterolithic cl	asts (framework-supported) in gr	een chloritic matri	x. Majority of clasts an	e white,					
	siliceous fine-g	rained felsic (ra	arely FP-phyric). Lesser black m	udstone fragments.	Looks like sediment breco	ia, but u	nsorted	, ungra	ded.		
ample No.	UTM :	6314 290 N	Type : Grab	Alteration :	10%CB, sGR	Au	Ag	As	Cu	Pb	Zn
·		400 760 E	Strike Length Exp. : 2 m	Metallics :	None	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
626857	Elevation:	1428 m	Sample Width : 30 cm	Secondaries:	WMC	<5	<1.0	544.	63.	4.	44.
		180 / 40 E		Host :	Graphitic mudstone	. •					
Comments :	-		ed graphitic mudstone with varial	ble CB stringers ar	d veinlets. Orientation	of beddin	9				
			•								

-

	NEERING LTD.		ROCK SAMPLE DESCRIPTIONS			Page-5-					
roperty :	RDN 1-6 Claims		NTS : 104B/15E, 104G/2E	Date : Sep	tember 4-11, 1994						
Sample No.	UTM :	6314 530 N	Type : Grab	Alteration :	wCB, mSi	Au	Ag	As	Cu	Pb	Zn
		400 380 E	Strike Length Exp. : 5 m	Metallics :	None	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
626858	Elevation:	1195 m	Sample Width : 3 m	Secondaries:	None	<5	3.0	32.	11.	108.	394.
	Orientation:	•	True Width : 3 m	Host :	Felsic volcanic (?)						
omments :	Whole rock sampl	e 82m S of 62685	5, near SE edge of felsic exposure	. Dark grey from	very fine-grained graphi	te? Pyroł	oitumen?	2			
		assive. Weather	s white. Also contains 12 ppm Sb.								
ample No.	UTM :	6314 010 N	Type: Float	Alteration :	10%GR?, 80%QZ	Au	Ag	As	Cu	Pb	Zn
•		400 350 E	Strike Length Exp. : m	Metallics :	10%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
626859	Elevation:	1172 m	Sample Width : 1.2 m	Secondaries:	SGE, SHE	<5		't 360.	654.	338.	2480
	Orientation:	1	True Width : m	Host :	Quartz vein						
omments :	Marcasite Gossan	. Several large l	poulders, near source. Brecciated	white quartz with		<pre>?) filling</pre>	1				
		,	gments. Coarse pyrite. Also conta	-	•						
		471/ EOO N				•	• -	•	•	-	-
ample No.	UTM :	6314 590 N	Type: Grab	Alteration :	WMS, mSI	Au	Ag	As	Cu	Pb	Zn
626860	Floution	400 340 E 1155 m	Strike Length Exp. : 50 m	Metallics :	10%MT	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
020000	Elevation:		Sample Width : 10 m	Secondaries:	mGE, sJA	<5	1.0	96.	16.	16.	40.
		035 / 75 SE	True Width : 10 m	Host :		1					
omments :			osts still visible. Marcasite (MT so contains 32 ppm Sb.) disseminated and	a in 1-4cm veintets. Who	le rock					
••••••											
ample No.	UTM :	6316 440 N	Type: Grab	Alteration :		Au	Ag	As	Cu	РЬ	Zn
	_	401 310 E	Strike Length Exp. : 10 m	Metallics :	1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
626861	Elevation:	1068 m	Sample Width : 2 m	Secondaries:	None	<5	<1.0	8.	50.	6.	88.
	-	125 / 70 SW	True Width : 2 m	Host :							
omments :			dspar crystals, very rare quartz co			-					
		ded, crystals rai	ndomly oriented. Crystals wMS, loo	cally WSI. Matri)	(WMS, MCL (Dlack). Whol	e rock san	ple.				
ample No.	UTM :	6316 260 N	Type : Grad	Alteration :	mCB, 2%QZ, sGR	Au	Ag	As	Cu	Pb	Zn
		401 130 E	Strike Length Exp. : 5 m	Metallics :	1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
626862	Elevation:	1102 ກ	Sample Width : 50 cm	Secondaries:	None	<5	<1.0	4.	56.	6.	82.
	Foliation :	180 / 70 E	True Width : 50 cm	Host :	Black mudstone						
omments :	Black mudstone w	ith 10% subrounde	ed fragments (3-15mm) of: 1) mudsto	one; 2) vfg. massi	ve PY; 3) sSI, wCB fg. F	P-phyric					
••	felsic. Mudstone	foliated around	fragments, QZ-CB stringers and ve	inlets along folia	tions & in tension gashe	s. Also c	ontains	392 pp	m Ni.		
ample No.	UTM :	6316 260 N	Type : Grab	Alteration :	mMS, wSI	Au	Ag	As	Cu	РЬ	Zn
		401 110 E	Strike Length Exp. : 15 m	Metallics :	ZXPY	(ppb)					
626863	Elevation:	1110 m	Sample Width : 7 m	Secondaries:	WGE, WMN	<5	(ppm) 2.0	(ppm) 4.	(ppm) 27.	(ppm) 48.	(ppm) 1070
	Orientation:	/	True Width : 7 m	Host :	Felsic lapilli tuff	~			L/.	-0.	1010
omments :		•	led fragments in variably sericitiz		•	disseminat	ed				
			dstone. Whole rock sample.					•			

inter aller and and aller aller

,

-

Property :	NEERING LTD. RDN 1-6 Claims		ROCK SAMPLE DESCRIPTIONS NTS : 104B/15E, 104G/2E	Date : Sept	tember 4-11, 1994	Page-6-					
Semple Ne	IITM .	6316 300 N	Type : Grab	Alteration :	WCY, SMS, WSI	Au	Ag	As	Cu	Pb	Zn
Sample No.	UTM :	401 040 E	Type : Grab Strike Length Exp. : 20 m	Metallics :	5%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
626864	Elevation:	1130 m	Sample Width : 7 m	Secondaries:	None	<5	<1.0	4.	22.	6.	84
020004	Orientation:		True Width : 7 m	Host :	Feldspar porphyry int						
comments :		•	ve 626863 in creek. Light grey set				led.				
			fine-grained disseminated pyrite c				-				
ample No.	UTM :	6316 620 N	Type : Grab	Alteration :	sSI, wTA(?)	Au	Ag	As	Cu	Pb	Zn
		400 700 E	Strike Length Exp. : 100 m	Metallics :	1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
626865	Elevation:	1369 m	Sample Width : 10 m	Secondaries:	sGE, mJA	<5	<1.0	8.	<1	14.	2.
	Orientation:	: /	True Width : 10 m	Host :	Coarse feldspar porph	iyry (?)					
comments :	Medium grey, int	ensely silicifi	ed. Only ghosts or mottling left (of FP phenos. Inte	ense gossan, but little	e pyrite.					
			locally in 1-5cm seams. Whole roci								
Sample No.	UTM :	6316 970 N	Type: Float	Alteration :	wCY, 25%GR?	Au	Ag	As	Cu	Pb	Zn
-		401 480 E	Strike Length Exp. : m	Metallics :	sPY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
626866	Elevation:	1039 m	Sample Width : 15 cm	Secondaries:	wGE, sJA	<5	<1.0	4.	19.	36.	24
	Orientation:	: /	True Width : m	Host :	Felsic breccia						
Comments :			e (<1mm FP phenos?) criss-crossed -pyrite matrix. Jarosite on intern								
Sample No.	UTM :	6316 980 N	Type : Float	Alteration :	vsSI, 15%GR?	Au	Ag	As	Cu	Pb	Zn
		401 440 E	Strike Length Exp. : m	Metallics :	10%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
626867	Elevation:	1034 m	Sample Width : 30 cm	Secondaries:	None	<5	<1.0	4.	7.	14.	<2
	Orientation:	•	True Width : m	Host :	Rhyolite						
'emmonte e	Two boulders in	Gossan Creek.	Silicified light grey rhyolite, cu	t by imnumerable ha	airline black pyrite-si	ilica fractu	res.				
onnerius :	Cofe white cost	ing on irregula	r late fractures. Also contains 3	1 ppm Mo.							
.onnertts :	Sort white coat										Zn
		6317 030 N	Type : Grab	Alteration :	sSI, 10%GR?	Au	Ag	As	Cu	Pb	
			Type : Grab Strike Length Exp. : 5 m	Alteration : Metallics :	sSI, 10%GR? 10%PY	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	(pp
		6317 030 N	••				-				
Sample No.	UTM :	6317 030 N 401 360 E 1097 m	Strike Length Exp. : 5 m	Metallics :	10%PY WGE	(ppb) <5	(ppm)	(ppm)	(ppm)	(ppm)	
Sample No. 626868	UTM : Elevation: Orientation:	6317 030 N 401 360 E 1097 m : /	Strike Length Exp. : 5 m Sample Width : 3 m True Width : 3 m	Metallics : Secondaries: Host :	10%PY wGE Coarse FP porphyry in	(ppb) <5 htrusive	(ppm)	(ppm)	(ppm)	(ppm)	
Sample No. 626868	UTM : Elevation: Orientation: Dark grey, mottl	6317 030 N 401 360 E 1097 m : / Led from ghosts	Strike Length Exp. : 5 m Sample Width : 3 m	Metallics : Secondaries: Host : rable black hairlin	10%PY WGE Coarse FP porphyry ir ne fracture fillings.	(ppb) <5 htrusive 3m away is	(ppm) <1.0	(ppm) 4.	(ppm) 27.	(ppm)	
	UTM : Elevation: Orientation: Dark grey, mottl	6317 030 N 401 360 E 1097 m : / Led from ghosts	Strike Length Exp. : 5 m Sample Width : 3 m True Width : 3 m of 6mm FP phenos. Pyrite in innume	Metallics : Secondaries: Host : rable black hairlin	10%PY WGE Coarse FP porphyry ir ne fracture fillings.	(ppb) <5 htrusive 3m away is	(ppm) <1.0	(ppm) 4.	(ppm) 27.	(ppm)	62
Sample No. 626868 Comments :	UTM : Elevation: Orientation: Dark grey, mottl outcrop of same	6317 030 N 401 360 E 1097 m : / led from ghosts FP porphyry wit	Strike Length Exp. : 5 m Sample Width : 3 m True Width : 3 m of 6mm FP phenos. Pyrite in innume h 15% fine-grained disseminated py	Metallics : Secondaries: Host : rable black hairlin rite, no graphite.	10%PY wGE Coarse FP porphyry in ne fracture fillings. Lowest outcrop on Goss	(ppb) <5 htrusive 3m away is san Creek. Wh	(ppm) <1.0 nole roc Ag	(ppm) 4. k sampl	(ppm) 27. le.	(ppm) 16.	(ppr 62 Zn (ppr
ample No. 626868 Comments :	UTM : Elevation: Orientation: Dark grey, mottl outcrop of same	6317 030 N 401 360 E 1097 m : / Led from ghosts FP porphyry wit 6316 970 N	Strike Length Exp. : 5 m Sample Width : 3 m True Width : 3 m of 6mm FP phenos. Pyrite in innume h 15% fine-grained disseminated py Type : Float	Metallics : Secondaries: Host : rable black hairlin rite, no graphite. Alteration :	10%PY wGE Coarse FP porphyry in ne fracture fillings. Lowest outcrop on Goss sCY	(ppb) <5 Antrusive 3m away is san Creek. Wh Au	(ppm) <1.0 nole roc Ag	(ppm) 4. k sampl As	(ppm) 27. le. Cu	(ppm) 16. Pb	62 Zn (pp
Sample No. 626868 Comments : Sample No.	UTM : Elevation: Orientation: Dark grey, mottl outcrop of same UTM :	6317 030 N 401 360 E 1097 m : / Led from ghosts FP porphyry wit 6316 970 N 401 460 E 1130 m	Strike Length Exp. : 5 m Sample Width : 3 m True Width : 3 m of 6mm FP phenos. Pyrite in innume h 15% fine-grained disseminated py Type : Float Strike Length Exp. : m	Metallics : Secondaries: Host : rable black hairlin rite, no graphite. Alteration : Metallics :	10%PY wGE Coarse FP porphyry in ne fracture fillings. Lowest outcrop on Goss sCY 10%PY	(ppb) <5 3m away is san Creek. Wh Au (ppb) <5	(ppm) <1.0 nole roc Ag (ppm) <1.0	(ppm) 4. k sampl As (ppm) 4.	(ppm) 27. Le. Cu (ppm)	(ppm) 16. Pb (ppm)	62 Zn
Sample No. 626868 Comments : Sample No. 626869	UTM : Elevation: Orientation: Dark grey, mottl outcrop of same UTM : Elevation: Orientation:	6317 030 N 401 360 E 1097 m : / Led from ghosts FP porphyry wit 6316 970 N 401 460 E 1130 m : /	Strike Length Exp. : 5 m Sample Width : 3 m True Width : 3 m of 6mm FP phenos. Pyrite in innume h 15% fine-grained disseminated py Type : Float Strike Length Exp. : m Sample Width : 15 cm	Metallics : Secondaries: Host : rable black hairlin rite, no graphite. Alteration : Metallics : Secondaries: Host :	10%PY wGE Coarse FP porphyry in ne fracture fillings. Lowest outcrop on Goss sCY 10%PY mGE Coarse rhyolite fragm	(ppb) <5 Atrusive 3m away is san Creek. Wh Au (ppb) <5 mental (pyrod	(ppm) <1.0 nole roc Ag (ppm) <1.0	(ppm) 4. k sampl As (ppm) 4.	(ppm) 27. Le. Cu (ppm)	(ppm) 16. Pb (ppm)	62 Zn (pp

	NEERING LTD.		ROCK SAMPLE DESCRIPTIONS		Р	age-7-					
roperty :	RDN 1-6 Claims		NTS : 104B/15E, 104G/2E	Date : Sep	tember 4-11, 1994	•					
ample No.	UTM :	6316 460 N	Type : Grab	Alteration :	trCL, wCY, mSI	Au	Ag	As	Cu	Pb	Zn
•		401 110 E	Strike Length Exp. : 5 m	Metallics :	None	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
626870	Elevation:	1165 m	Sample Width : 5 m	Secondaries:	wGE, mMN	<5	<1.0	8.	14.	16.	80
	Orientation	: /	True Width : 5 m	Host :	Felsic (?) lapilli tuff						
omments :	Medium grey. S	ubrounded rhyoli	tic fragments, generally 1-4mm but	rarely up to 2cm,	in dark grey siliceous ma	atrix.					
	Abundant MN on										
ample No.	UTM :	6316 980 N	Type : Grab	Alteration :	sCY, mKF?, mSI	Au	Ag	As	Cu	Pb	Zn
•		401 180 E	Strike Length Exp. : 1.0 m	Metallics :	5%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
626871	Elevation:	1180 m	Sample Width : 1.5 m	Secondaries:	WGE	<5	<1.0	4.	1.	12.	2.
	Orientation	: /	True Width : 1.5 m	Host :	Coarse FP porphyry intru	sive					
omments :		•	ion of matrix?) with argillized 8m				pes).				
			sCY/sMS altered, pyritic, slightl								
ample No.	UTM :	6317 445 N	Type : Float	Altoration .	sCB, 5%MR, trGR?	Au	Ag	As	Cu	Pb	Zn
mpre no.	UIM :	401 625 E	Type : Float Strike Length Exp. : m	Metallics :	trPY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
626872	Elevation:	401 025 E 1055 m	Sample Width : 80 cm	Secondaries:	SGE	<5	<1.0	16.	38.	2.	38
020012	Orientation		True Width : m	Host :		~	1.0	10.	50.	٤.	90
omments :			pervasive Fe-CB alteration of mot ut. Trace graphite(?) on fracture	•	•	:. 2% saln	wn-pink	:			
ample No.	UTM :	6317 435 N	Type: Float	Alteration .		Au	Ag	As	Cu	Pb	Zn
		0011 400 N	Type: Float	Alteration :	wSI, 2%GR?	Au	a	10			
		401 527 E	Strike Length Exp. : m	Metallics :	trAS, 1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	
626873			••		-		-	•	(ppm) 13.	(ppm) 4.	(pp
-		401 527 E 1090 m	Strike Length Exp. : m	Metallics :	tras, 1%PY	(ppb)	(ppm)	(ppm)		••	(pp
626873	Elevation: Orientation	401 527 E 1090 m : /	Strike Length Exp. : m Sample Width : 35 cm	Metallics : Secondaries: Host :	trAS, 1%PY mGE Diorite?	(ppb) <5	(ppm) 1.0	(ppm)		••	(pp
626873	Elevation: Orientation 35x50x80cm bould	401 527 E 1090 m : / der. Light blue	Strike Length Exp. : m Sample Width : 35 cm True Width : m	Metallics : Secondaries: Host : X(?). Platy graph	trAS, 1%PY mGE Diorite? ite(?) on fractures. 1% f	(ppb) <5	(ppm) 1.0	(ppm)		••	(pp
626873 mments :	Elevation: Orientation 35x50x80cm bould pyrite dissemina	401 527 E 1090 m : / der. Light blue ated and on hair	Strike Length Exp. : m Sample Width : 35 cm True Width : m -grey with 5% dark green remnant P line fractures. Rare bright silve	Metallics : Secondaries: Host : X(?). Platy graph ry metallic needle:	trAS, 1%PY mGE Diorite? ite(?) on fractures. 1% f s <1mm long: AS?	(ppb) <5	(ppm) 1.0	(ppm)		••	(pp 22
626873	Elevation: Orientation 35x50x80cm bould	401 527 E 1090 m : / der. Light blue ated and on hair 6317 430 N	Strike Length Exp. : m Sample Width : 35 cm True Width : m -grey with 5% dark green remnant P line fractures. Rare bright silve Type : Float	Metallics : Secondaries: Host : X(?). Platy graph ry metallic needle: Alteration :	trAS, 1%PY mGE Diorite? ite(?) on fractures. 1% f s <1mm long: AS? sMS, 5%GR?	(ppb) <5 ine-grair Au	(ppm) 1.0 ned	(ppm) 504. As	13. Cu	4. Pb	(pp 22 Zn
626873 comments : ample No.	Elevation: Orientation 35x50x80cm bould pyrite dissemin UTM :	401 527 E 1090 m : / der. Light blue ated and on hair	Strike Length Exp. : m Sample Width : 35 cm True Width : m -grey with 5% dark green remnant P line fractures. Rare bright silve	Metallics : Secondaries: Host : X(?). Platy graph ry metallic needle:	trAS, 1%PY mGE Diorite? ite(?) on fractures. 1% f s <1mm long: AS?	(ppb) <5	(ppm) 1.0	(ppm) 504.	13.	4.	(pp 22 Zn (pp
626873	Elevation: Orientation 35x50x80cm bould pyrite dissemin UTM : Elevation:	401 527 E 1090 m : / der. Light blue ated and on hair 6317 430 N 401 370 E 1172 m	Strike Length Exp. : m Sample Width : 35 cm True Width : m -grey with 5% dark green remnant P line fractures. Rare bright silve Type : Float Strike Length Exp. : m	Metallics : Secondaries: Host : X(?). Platy graph ry metallic needle: Alteration : Metallics : Secondaries:	trAS, 1%PY mGE Diorite? ite(?) on fractures. 1% f s <1mm long: AS? SMS, 5%GR? 1%PY vsJA	(ppb) <5 fine-grain Au (ppb)	(ppm) 1.0 ned Ag (ppm)	(ppm) 504. As (ppm)	13. Cu (ppm)	4. Pb (ppm)	(pp 22 Zn (pp
626873 omments : ample No. 626874	Elevation: Orientation 35x50x80cm bould pyrite dissemin UTM : Elevation: Orientation	401 527 E 1090 m : / der. Light blue ated and on hair 6317 430 N 401 370 E 1172 m : /	Strike Length Exp. : m Sample Width : 35 cm True Width : m -grey with 5% dark green remnant P line fractures. Rare bright silve Type : Float Strike Length Exp. : m Sample Width : 15 cm True Width : m	Metallics : Secondaries: Host : X(?). Platy graph ry metallic needles Alteration : Metallics : Secondaries: Host :	trAS, 1%PY mGE Diorite? ite(?) on fractures. 1% f s <1mm long: AS? SMS, 5%GR? 1%PY vsJA Rhyolite (?)	(ppb) <5 ine-grain Au (ppb) 25.	(ppm) 1.0 ned Ag (ppm)	(ppm) 504. As (ppm)	13. Cu (ppm)	4. Pb (ppm)	(pp 22 Zn (pp
626873 omments : ample No. 626874	Elevation: Orientation 35x50x80cm bould pyrite dissemin UTM : Elevation: Orientation 15cm rounded bou	401 527 E 1090 m : / der. Light blue ated and on hair 6317 430 N 401 370 E 1172 m : / ulder below fels	Strike Length Exp. : m Sample Width : 35 cm True Width : m -grey with 5% dark green remnant P line fractures. Rare bright silve Type : Float Strike Length Exp. : m Sample Width : 15 cm	Metallics : Secondaries: Host : X(?). Platy graph ry metallic needles Alteration : Metallics : Secondaries: Host :	trAS, 1%PY mGE Diorite? ite(?) on fractures. 1% f s <1mm long: AS? SMS, 5%GR? 1%PY vsJA Rhyolite (?)	(ppb) <5 ine-grain Au (ppb) 25.	(ppm) 1.0 ned Ag (ppm)	(ppm) 504. As (ppm)	13. Cu (ppm)	4. Pb (ppm)	(pp 22 Zr (pp
626873 comments : ample No. 626874 comments :	Elevation: Orientation 35x50x80cm bould pyrite dissemin UTM : Elevation: Orientation 15cm rounded bou graphite(?) str	401 527 E 1090 m : / der. Light blue ated and on hair 6317 430 N 401 370 E 1172 m : / ulder below fels ingers. Thick ja	Strike Length Exp. : m Sample Width : 35 cm True Width : m -grey with 5% dark green remnant P line fractures. Rare bright silve Type : Float Strike Length Exp. : m Sample Width : 15 cm True Width : m ic/sediment contact. Pale green, i arosite on internal fractures.	Metallics : Secondaries: Host : X(?). Platy graph ry metallic needle: Alteration : Metallics : Secondaries: Host : ntensely sericitize	trAS, 1%PY mGE Diorite? ite(?) on fractures. 1% f s <1mm long: AS? SMS, 5%GR? 1%PY vsJA Rhyolite (?) ed massive rock, cut by ha	(ppb) <5 fine-grain Au (ppb) 25. hirline	(ppm) 1.0 eed Ag (ppm) 3.0	(ppm) 504. As (ppm) 72.	13. Cu (ppm) 85.	4. Pb (ppm) 94.	(pp 22 Zn (pp 19
626873 comments : ample No. 626874 comments :	Elevation: Orientation 35x50x80cm bould pyrite dissemin UTM : Elevation: Orientation 15cm rounded bou	401 527 E 1090 m - / der. Light blue ated and on hair 6317 430 N 401 370 E 1172 m - / ulder below fels ingers. Thick ja 6317 445 N	Strike Length Exp. : m Sample Width : 35 cm True Width : m -grey with 5% dark green remnant P line fractures. Rare bright silve Type : Float Strike Length Exp. : m Sample Width : 15 cm True Width : m ic/sediment contact. Pale green, i arosite on internal fractures. 	Metallics : Secondaries: Host : X(?). Platy graph ry metallic needles Alteration : Metallics : Secondaries: Host : ntensely sericitize Alteration :	trAS, 1%PY mGE Diorite? ite(?) on fractures. 1% f s <1mm long: AS? SMS, 5%GR? 1%PY vsJA Rhyolite (?) ed massive rock, cut by ha sCA, wMS, wSI, 15%GR?	(ppb) <5 fine-grain Au (ppb) 25. hirline Au	(ppm) 1.0 Aed Ag (ppm) 3.0	(ppm) 504. As (ppm) 72.	13. Cu (ppm) 85. Cu	4. Рb (ppm) 94. Рb	(pp 22 Zn 19 Zn
626873 comments : ample No. 626874 comments : ample No.	Elevation: Orientation 35x50x80cm bould pyrite dissemina UTM : Elevation: Orientation 15cm rounded bou graphite(?) str	401 527 E 1090 m - / der. Light blue ated and on hair 6317 430 N 401 370 E 1172 m - / ulder below fels ingers. Thick ja 6317 445 N 401 315 E	Strike Length Exp. : m Sample Width : 35 cm True Width : m -grey with 5% dark green remnant P line fractures. Rare bright silve Type : Float Strike Length Exp. : m Sample Width : 15 cm True Width : m ic/sediment contact. Pale green, i arosite on internal fractures. 	Metallics : Secondaries: Host : X(?). Platy graph ry metallic needles Alteration : Metallics : Secondaries: Host : ntensely sericitize Alteration : Metallics :	trAS, 1%PY mGE Diorite? ite(?) on fractures. 1% f s <1mm long: AS? SMS, 5%GR? 1%PY vsJA Rhyolite (?) ed massive rock, cut by ha SCA, wMS, wSI, 15%GR? None	(ppb) <5 fine-grain Au (ppb) 25. hirline	(ppm) 1.0 Ag (ppm) 3.0 Ag (ppm)	(ppm) 504. As (ppm) 72.	13. Cu (ppm) 85. Cu (ppm)	4. Pb (ppm) 94.	(pp 22 Zn (pp 19 Zn (pp
626873 omments : ample No. 626874 omments :	Elevation: Orientation 35x50x80cm bould pyrite dissemina UTM : Elevation: Orientation 15cm rounded bou graphite(?) str UTM : Elevation:	401 527 E 1090 m - / der. Light blue ated and on hair 6317 430 N 401 370 E 1172 m - / ulder below fels ingers. Thick ja 6317 445 N 401 315 E 1202 m	Strike Length Exp. : m Sample Width : 35 cm True Width : m -grey with 5% dark green remnant P line fractures. Rare bright silve Type : Float Strike Length Exp. : m Sample Width : 15 cm True Width : m ic/sediment contact. Pale green, i arosite on internal fractures. Type : Grab Strike Length Exp. : 1 m Sample Width : 1 m	Metallics : Secondaries: Host : X(?). Platy graph ry metallic needles Alteration : Metallics : Secondaries: Host : ntensely sericitize Alteration : Metallics : Secondaries:	trAS, 1%PY mGE Diorite? ite(?) on fractures. 1% f s <1mm long: AS? SMS, 5%GR? 1%PY vsJA Rhyolite (?) ed massive rock, cut by ha SCA, wMS, wSI, 15%GR? None None	(ppb) <5 ine-grain Au (ppb) 25. nirline Au (ppb)	(ppm) 1.0 Aed Ag (ppm) 3.0	(ppm) 504. As (ppm) 72. As (ppm)	13. Cu (ppm) 85. Cu	4. (ppm) 94. Pb (ppm)	(pp 22 Zn (pp 19 Zn (pp
626873 comments : ample No. 626874 comments : ample No. 626875	Elevation: Orientation 35x50x80cm bould pyrite dissemina UTM : Elevation: Orientation 15cm rounded bou graphite(?) str UTM : Elevation: Orientation	401 527 E 1090 m / der. Light blue ated and on hair 6317 430 N 401 370 E 1172 m / ulder below fels ingers. Thick ja 6317 445 N 401 315 E 1202 m / lite (?) brecciat	Strike Length Exp. : m Sample Width : 35 cm True Width : m -grey with 5% dark green remnant P line fractures. Rare bright silve Type : Float Strike Length Exp. : m Sample Width : 15 cm True Width : m ic/sediment contact. Pale green, i arosite on internal fractures. 	Metallics : Secondaries: Host : X(?). Platy graph ry metallic needles Alteration : Metallics : Secondaries: Host : ntensely sericitize Alteration : Metallics : Secondaries: Host :	trAS, 1%PY mGE Diorite? ite(?) on fractures. 1% f s <1mm long: AS? SMS, 5%GR? 1%PY vsJA Rhyolite (?) ed massive rock, cut by ha sCA, wMS, wSI, 15%GR? None None Rhyolite(?)	(ppb) <5 ine-grain Au (ppb) 25. hirline Au (ppb) <5	(ppm) 1.0 Ag (ppm) 3.0 Ag (ppm) 2.0	(ppm) 504. As (ppm) 72. As (ppm)	13. Cu (ppm) 85. Cu (ppm)	4. (ppm) 94. Pb (ppm)	(pp 22 Zn (pp 19 Zn (pp
626873 omments : ample No. 626874 omments : ample No. 626875	Elevation: Orientation 35x50x80cm bould pyrite dissemina UTM : Elevation: Orientation 15cm rounded bou graphite(?) str UTM : Elevation: Orientation Light grey rhyol	401 527 E 1090 m / der. Light blue ated and on hair 6317 430 N 401 370 E 1172 m / ulder below fels ingers. Thick ja 6317 445 N 401 315 E 1202 m / lite (?) brecciat	Strike Length Exp. : m Sample Width : 35 cm True Width : m -grey with 5% dark green remnant P line fractures. Rare bright silve Type : Float Strike Length Exp. : m Sample Width : 15 cm True Width : m ic/sediment contact. Pale green, i arosite on internal fractures. Type : Grab Strike Length Exp. : 1 m Sample Width : 1 m	Metallics : Secondaries: Host : X(?). Platy graph ry metallic needles Alteration : Metallics : Secondaries: Host : ntensely sericitize Alteration : Metallics : Secondaries: Host :	trAS, 1%PY mGE Diorite? ite(?) on fractures. 1% f s <1mm long: AS? SMS, 5%GR? 1%PY vsJA Rhyolite (?) ed massive rock, cut by ha sCA, wMS, wSI, 15%GR? None None Rhyolite(?)	(ppb) <5 ine-grain Au (ppb) 25. hirline Au (ppb) <5	(ppm) 1.0 Ag (ppm) 3.0 Ag (ppm) 2.0	(ppm) 504. As (ppm) 72. As (ppm)	13. Cu (ppm) 85. Cu (ppm)	4. (ppm) 94. Pb (ppm)	Zn (ppr 22. Zn (ppr 190 Zn (ppr 128

الثلاث عيدر عدت ويود كالأث كالبلا بي

ت قل

shaped lenses Sample No. UTM : 626877 Elevation: Jointing Comments : Dark grey-gree heterolithic - Sample No. UTM : 626878 Elevation: Orientatio Comments : Light grey ang 4 float boulde Sample No. UTM : 626879 Elevation: Orientatio Comments : Siliceous, but eyes. Medium Sample No. UTM : 626880 Elevation: Jointing Comments : Reddish to gre	: 000 / 50 W ed, poorly sorted of pebble conglor 6317 520 N 401 160 E 1300 m : 095 / 60 N n. 20% 1-3mm subs different shades 6317 670 N 401 265 E 1298 m n: /	Type : Grab Strike Length Exp. : 9 m Sample Width : 60 cm True Width : 60 cm d arkose. Felsic pebbles aligned w merate (clast-supported, mMS, wCL, Type : Grab Strike Length Exp. : 3 m Sample Width : 2 m True Width : 2 m True Width : 2 m True Width : 2 m True Width : 2 m Sample Length Exp. : 3 m Sample Width : 70 cm True Width : m	1%PY). Alteration : Metallics : Secondaries: Host : broken FP crystals	mMS 5%PY wGE Felsic lithic cryst	ed) teardrop Au (ppb) <5 tal tuff	Ag (ppm) 1.0 Ag (ppm) 1.0	As (ppm) 4. As (ppm) 64.	Cu (ppm) 87. Cu (ppm) 77.	Pb (ppm) 258. Pb (ppm) 46.	Zr (Pf 54 Zr (Pf 25
626876 Elevation: Bedding comments : Brown, laminat shaped lenses ample No. UTM : 626877 Elevation: Jointing comments : Dark grey-gree heterolithic - ample No. UTM : 626878 Elevation: Orientatio comments : Light grey ang 4 float boulde comments : Light grey ang 4 float boulde comments : Siliceous, but eyes. Medium comments : Siliceous, but eyes. Medium comments : Reddish to gre rhyolitic frag	401 208 E 1263 m : 000 / 50 W ed, poorly sorted of pebble conglor 6317 520 N 401 160 E 1300 m : 095 / 60 N n. 20% 1-3mm subs different shades 6317 670 N 401 265 E 1298 m n: /	Strike Length Exp. : 9 m Sample Width : 60 cm True Width : 60 cm d arkose. Felsic pebbles aligned w merate (clast-supported, mMS, wCL, Type : Grab Strike Length Exp. : 3 m Sample Width : 2 m True Width : 2 m True Width : 2 m True Width : 2 m Type i Elsic lapilli and 15% 1mm s of buff, white, etc. Rare 1mm qu Type : Float Strike Length Exp. : m Sample Width : 70 cm	Metallics : Secondaries: Host : With lamina. Conto 1%PY). Alteration : Metallics : Secondaries: Host : broken FP crystals Wartz eyes. Alteration : Metallics : Secondaries:	None sGE Laminated pebbly an orted around (unsample mMS 5%PY wGE Felsic lithic cryst in pyritic matrix. mSI, sGR(?) 5%PY	(ppb) <5 rkose ed) teardrop Au (ppb) <5 tal tuff Lapilli are Au	(ppm) 1.0 Ag (ppm) 1.0	(ppm) 4. As (ppm)	(ppm) 87. Cu (ppm)	(ppm) 258. Pb (ppm)	(Pf 54 Zr (Pf
Bedding Comments : Brown, laminat shaped lenses Sample No. UTM : 626877 Elevation: Jointing Comments : Dark grey-gree heterolithic - Gample No. UTM : 626878 Elevation: Orientatio Comments : Light grey ang 4 float boulde Sample No. UTM : 626879 Elevation: Orientatio Comments : Siliceous, but eyes. Medium Sample No. UTM : 626880 Elevation: Jointing Comments : Reddish to gre rhyolitic frag	1263 m : 000 / 50 W ed, poorly sorted of pebble conglor 6317 520 N 401 160 E 1300 m : 095 / 60 N n. 20% 1-3mm subs different shades 6317 670 N 401 265 E 1298 m n: /	Sample Width : 60 cm True Width : 60 cm d arkose. Felsic pebbles aligned w merate (clast-supported, mMS, wCL, Type : Grab Strike Length Exp. : 3 m Sample Width : 2 m True Width : 2 m rounded felsic lapilli and 15% 1mm s of buff, white, etc. Rare 1mm qu Type : Float Strike Length Exp. : m Sample Width : 70 cm	Secondaries: Host : With lamina. Conto 1%PY). Alteration : Metallics : Secondaries: Host : broken FP crystals Wartz eyes. Alteration : Metallics : Secondaries:	SGE Laminated pebbly an orted around (unsample mMS 5%PY wGE Felsic lithic cryst in pyritic matrix. mSI, SGR(?) 5%PY	<5 rkose ed) teardrop Au (ppb) <5 tal tuff Lapilli are Au	1.0 Ag (ppm) 1.0	4. As (ppm)	87. Cu (ppm)	258. Pb (ppm)	54 Zr (pr
Bedding omments : Brown, laminat shaped lenses ample No. UTM : 626877 Elevation: Jointing omments : Dark grey-gree heterolithic - ample No. UTM : 626878 Elevation: Orientatio omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	: 000 / 50 W ed, poorly sorted of pebble conglor 6317 520 N 401 160 E 1300 m : 095 / 60 N n. 20% 1-3mm subs different shades 6317 670 N 401 265 E 1298 m n: /	True Width : 60 cm d arkose. Felsic pebbles aligned w merate (clast-supported, mMS, wCL, Type : Grab Strike Length Exp. : 3 m Sample Width : 2 m True Width : 2 m rounded felsic lapilli and 15% 1mm s of buff, white, etc. Rare 1mm qu Type : Float Strike Length Exp. : m Sample Width : 70 cm	Host : with lamina. Conto 1%PY). Alteration : Metallics : Secondaries: Host : broken FP crystals wartz eyes. Alteration : Metallics : Secondaries:	Laminated pebbly an orted around (unsample mMS 5%PY wGE Felsic lithic cryst in pyritic matrix. mSI, sGR(?) 5%PY	rkose ed) teardrop Au (ppb) <5 tal tuff Lapilli are Au	Ag (ppm) 1.0	As (ppm)	Cu (ppm)	Pb (ppm)	Zr (pr
omments : Brown, laminat shaped lenses ample No. UTM : 626877 Elevation: Jointing omments : Dark grey-gree heterolithic - ample No. UTM : 626878 Elevation: Orientatio omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	ed, poorly sorted of pebble conglor 6317 520 N 401 160 E 1300 m : 095 / 60 N n. 20% 1-3mm subs different shades 6317 670 N 401 265 E 1298 m n: /	d arkose. Felsic pebbles aligned w merate (clast-supported, mMS, wCL, Type : Grab Strike Length Exp. : 3 m Sample Width : 2 m True Width : 2 m rounded felsic lapilli and 15% 1mm s of buff, white, etc. Rare 1mm qu Type : Float Strike Length Exp. : m Sample Width : 70 cm	Alteration : Alteration : Metallics : Secondaries: Host : broken FP crystals Martz eyes. Alteration : Metallics : Secondaries:	mMS 5%PY wGE Felsic lithic cryst in pyritic matrix. mSI, sGR(?) 5%PY	ed) teardrop Au (ppb) <5 tal tuff Lapilli are Au	(ppm) 1.0	(ppm)	(ppm)	(ppm)	(p
shaped lenses ample No. UTM : 626877 Elevation: Jointing omments : Dark grey-gree heterolithic - ample No. UTM : 626878 Elevation: Orientatio omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	of pebble conglor 6317 520 N 401 160 E 1300 m : 095 / 60 N n. 20% 1-3mm subr different shades 6317 670 N 401 265 E 1298 m n: /	Type : Grab Strike Length Exp. : 3 m Sample Width : 2 m True Width : 2 m True Width : 2 m Tounded felsic Lapilli and 15% 1mm s of buff, white, etc. Rare 1mm qu Type : Float Strike Length Exp. : m Sample Width : 70 cm	1%PY). Alteration : Metallics : Secondaries: Host : broken FP crystals wartz eyes. Alteration : Metallics : Secondaries:	mMS 5%PY wGE Felsic lithic cryst in pyritic matrix. mSI, sGR(?) 5%PY	Au (ppb) <5 tal tuff Lapilli are Au	(ppm) 1.0	(ppm)	(ppm)	(ppm)	(p
ample No. UTM : 626877 Elevation: Jointing omments : Dark grey-gree heterolithic - ample No. UTM : 626878 Elevation: Orientatio omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	6317 520 N 401 160 E 1300 m : 095 / 60 N n. 20% 1-3mm subr different shades 6317 670 N 401 265 E 1298 m n: /	Type : Grab Strike Length Exp. : 3 m Sample Width : 2 m True Width : 2 m rounded felsic lapilli and 15% 1mm s of buff, white, etc. Rare 1mm qu Type : Float Strike Length Exp. : m Sample Width : 70 cm	Alteration : Metallics : Secondaries: Host : broken FP crystals Wartz eyes. Alteration : Metallics : Secondaries:	5%PY wGE Felsic lithic cryst in pyritic matrix. mSI, sGR(?) 5%PY	(ppb) <5 tal tuff Lapilli are Au	(ppm) 1.0	(ppm)	(ppm)	(ppm)	(p
626877 Elevation: Jointing moments : Dark grey-gree heterolithic - mople No. UTM : 626878 Elevation: Orientatio moments : Light grey ang 4 float boulde mople No. UTM : 626879 Elevation: Orientatio moments : Siliceous, but eyes. Medium mople No. UTM : 626880 Elevation: Jointing moments : Reddish to gre rhyolitic frag	401 160 E 1300 m : 095 / 60 N n. 20% 1-3mm subs different shades 6317 670 N 401 265 E 1298 m n: /	Strike Length Exp. : 3 m Sample Width : 2 m True Width : 2 m rounded felsic lapilli and 15% 1mm s of buff, white, etc. Rare 1mm qu Type : Float Strike Length Exp. : m Sample Width : 70 cm	Metallics : Secondaries: Host : broken FP crystals wartz eyes. Alteration : Metallics : Secondaries:	5%PY wGE Felsic lithic cryst in pyritic matrix. mSI, sGR(?) 5%PY	(ppb) <5 tal tuff Lapilli are Au	(ppm) 1.0	(ppm)	(ppm)	(ppm)	(p
Jointing omments : Dark grey-gree heterolithic - ample No. UTM : 626878 Elevation: Orientatio omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	1300 m : 095 / 60 N n. 20% 1-3mm subs different shades 6317 670 N 401 265 E 1298 m n: /	Sample Width : 2 m True Width : 2 m rounded felsic lapilli and 15% 1mm s of buff, white, etc. Rare 1mm qu Type : Float Strike Length Exp. : m Sample Width : 70 cm	Secondaries: Host : broken FP crystals wartz eyes. Alteration : Metallics : Secondaries:	wGE Felsic lithic cryst in pyritic matrix. mSI, sGR(?) 5%PY	<5 tal tuff Lapilli are Au	1.0	••		••	
Jointing omments : Dark grey-gree heterolithic - ample No. UTM : 626878 Elevation: Orientatio omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	: 095 / 60 N n. 20% 1-3mm subm different shades 6317 670 N 401 265 E 1298 m n: /	True Width : 2 m rounded felsic lapilli and 15% 1mm s of buff, white, etc. Rare 1mm qu Type : Float Strike Length Exp. : m Sample Width : 70 cm	Host : broken FP crystals wartz eyes. Alteration : Metallics : Secondaries:	Felsic lithic cryst in pyritic matrix. mSI, sGR(?) 5%PY	tal tuff Lapilli are Au		64.	77.	46.	2
omments : Dark grey-gree heterolithic - ample No. UTM : 626878 Elevation: Orientatio omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	n. 20% 1-3mm subr different shades 6317 670 N 401 265 E 1298 m n: /	rounded felsic lapilli and 15% 1mm s of buff, white, etc. Rare 1mm qu Type : Float Strike Length Exp. : m Sample Width : 70 cm	broken FP crystals wartz eyes. Alteration : Metallics : Secondaries:	mSI, sGR(?) 5%PY	Lapilli are Au	Ag				
heterolithic - ample No. UTM : 626878 Elevation: Orientatio omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	different shades 6317 670 N 401 265 E 1298 m n: /	s of buff, white, etc. Rare 1mm qu Type : Float Strike Length Exp. : m Sample Width : 70 cm	Alteration : Metallics : Secondaries:	mSI, sGR(?) 5%PY	Au	Ag				
ample No. UTM : 626878 Elevation: Orientatio omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	6317 670 N 401 265 E 1298 m n: /	Type: Float Strike Length Exp.: m Sample Width: 70 cm	Alteration : Metallics : Secondaries:	5%PY		Ag				
626878 Elevation: Orientatio omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	401 265 E 1298 m n: /	Strike Length Exp. : m Sample Width : 70 cm	Metallics : Secondaries:	5%PY		Ag				
626878 Elevation: Orientatio omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	401 265 E 1298 m n: /	Strike Length Exp. : m Sample Width : 70 cm	Metallics : Secondaries:	5%PY		~ 9	As	Cu	РЬ	Z
Orientatio omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	1298 m n: /	Sample Width : 70 cm	Secondaries:		(pps)	(ppm)	(ppm)	(ppm)	(ppm)	(p
Orientatio omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	n: /	•			<5	<1.0	4.	22.	<2	1
omments : Light grey ang 4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	•	IFUE WIGTN : M				\$1.0	4.	££.	~2	
4 float boulde ample No. UTM : 626879 Elevation: Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	ular altered (ss.	ADVDVA / DOwn Kalais alasta in		Rhyolite mudstone k						
626879 Elevation: Orientatio Comments : Siliceous, but eyes. Medium Cample No. UTM : 626880 Elevation: Jointing Comments : Reddish to gre rhyolitic frag		120cm. Fragments randomly oriented			. Taken from					
626879 Elevation: Orientatio comments : Siliceous, but eyes. Medium cample No. UTM : 626880 Elevation: Jointing comments : Reddish to gre rhyolitic frag	6317 930 N	Time . Oneb			A		4.0	C 11	Dh	Z
Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag		Type: Grab	Alteration :	WCL, SSI	Au	Ag	As	Cu	Pb	
Orientatio omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	400 940 E	Strike Length Exp. : 5 m	Metallics :	None	(ppb) <5	(ppm) <1.0	(ppm)	(ppm) 27	(ppm) (2	(p
omments : Siliceous, but eyes. Medium ample No. UTM : 626880 Elevation: Jointing comments : Reddish to gre rhyolitic frag		Sample Width : 5 m	Secondaries:	None Folgia Linhia anual		<1.0	8.	27.	42.	2
eyes. Medium ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	•	True Width : 5 m	Host :	Felsic lithic cryst						
ample No. UTM : 626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag					5% 2-4mm quart	Z				
626880 Elevation: Jointing omments : Reddish to gre rhyolitic frag	grey, weathers w	nite. Within 100m above contact.	Whole rock sample.							
Jointing comments : Reddish to gre rhyolitic frag	6313 078 N	Type : Grab	Alteration :	sCB, trCL	Au	Ag	As	Cu	Pb	z
Jointing comments : Reddish to gre rhyolitic frag	400 085 E	Strike Length Exp. : 15 m	Metallics :	None	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(p
omments : Reddish to gre rhyolitic frag	1275 m	Sample Width : 8 m	Secondaries:	WGE	<5	<1.0	4.	9.	<2	9
omments : Reddish to gre rhyolitic frag	: 175 / 75 E	True Width : 8 m	Host :	Felsic lapilli tufi	f				_	
rhyolitic frag	•	natite in matrix (subaerial?). Rec		-		ic				
		n. Unoriented, unsorted. Whole ro		pare 3						
ample No. UTM :			er sampre.							
	6313 180 N	Type : Grab	Alteration :	sCB, sSI	Au	Ag	As	Cu	Рb	z
	400 375 E	Strike Length Exp. : 10 m	Metallics :	None	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(p
626881 Elevation:		Sample Width: 6 m	Secondaries:	WGE	<5	18.0	16.	162.	3000.	
		True Width : 6 m		Felsic lapilli tuff	f(?)				1	
		lithology unclear. Silicification		•						
1350) with and	1390 m :020 /75 W		· · · · · · · · · · · · · · · · · · ·							

	INEERING LTD.		ROCK SAMPLE DESCRIPTIONS			Page-9-					
Property :	RDN 1-6 Claims		NTS : 104B/15E, 104G/2E	Date : Sept	tember 4-11, 1994						
Sample No.	UTM :	6313 220 N	Type : Grab	Alteration :	1%CB, wMS, sGR	Au	Ag	As	Cu	Pb	Zn
		400 355 E	Strike Length Exp. : 3 m	Metallics :	5%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
626882	Elevation:	1367 m	Sample Width : 60 cm	Secondaries:	None	<5	1.0	8.	51.	14.	598
	Bedding :	: 155 / 80 NE	True Width : 60 cm	Host :	Black graphitic mudsto	ne					
Comments :	Along contact be	etween felsics and	d hanging wall andesite. Strongly	foliated mudstone	e with fine-grained 5-10	mm pyrite					
	seams and pyriti	ic (20% PY) seric	itic 5cm siltstone lenses. Surrou	nded by talus.							
ample No.	UTM :	6313 240 N	Type : Grab	Alteration :	sSI	Au	Ag	As	Cų	Pb	Zn
•		400 345 E	Strike Length Exp. : 20 m	Metallics :	trMT, 5%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
626883	Elevation:	1367 m	Sample Width : 12 m	Secondaries:	sgE, mJA	<5	1.0	4.	38.	78.	98.
	Orientation:	: /	True Width : 12 m	Host :	Felsic lapilli tuff						
Comments :	25m north of 620	5882. Light grey.	intensely silicified rhyolite wit	•	•	ined disser	inated				
			fine-grained massive pyrite. Note					Ba.			
		• • • • • • • • • • • • • • • • • • • •									
Sample No.	UTM :	6313 334 N	Type: Select	Alteration :	None	Au	Ag	As	Cu	Pb	Zn
		400 345 E	Strike Length Exp. : 5 m	Metallics :	5%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
626884	Elevation:	1340 m	Sample Width : 15 m	Secondaries:	sGE	<5	<1.0	24.	55.	20.	154
	Bedding :	:018 / 74 E	True Width : m	Host :	Pyritic siltstone inte	rbeds in b	ack muc	lstone			
Comments :	-	-	ds (9 sampled in 15m of mudstone).		•						
			disappears under snow and talus.								
Sample No.	UTM :	6313 655 N	Type : Grab	Alteration :	sCB, wMS	Au	Ag	As	Cu	Pb	Zn
	•••••••	400 090 E	Strike Length Exp. : 20 m	Metallics :	5%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
626885	Elevation:	1281 m	Sample Width : 8 m	Secondaries:	mge	<5	<1.0	4.	9.	16.	72.
		: 060 / 65 NW	True Width : 8 m	Host :	Coarse feldspar-orthod	-					
Comments :			mm orthoclase phenos + 20% 5mm sub		•				.,		
	Whole rock same			fical at pragrootabl	it i preneo in trancare are	, indici 17.1					
	UTM :	6314 075 N	Type: Grab	Alteration :	WCB, sSI	Au	Ag	As	Cu	Pb	Zn
Sample No.		400 122 E	Strike Length Exp. : 20 m	Metallics :	None	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
Sample No.		400 IZZ E						8.	3.	4.	70.
	Elevation:		Sample Width : 6 m		WGE	<5	<1.0				
Sample No. 626886		1185 m	Sample Width : 6 m True Width : 6 m	Secondaries:	WGE Felsic crystal lithic	-	<1.0				
626886	Orientation:	1185 m : /	True Width : 6 m	Secondaries: Host :	Felsic crystal lithic	tuff	<1.0				
626886	Orientation: Brown. 20% 1-2m	1185 m : / mm broken FP cryst	True Width : 6 m tals + rare 2-3mm lapilli in silic	Secondaries: Host :	Felsic crystal lithic	tuff	<1.0				
626886	Orientation: Brown. 20% 1-2m	1185 m : /	True Width : 6 m tals + rare 2-3mm lapilli in silic	Secondaries: Host :	Felsic crystal lithic	tuff	<1.0				
626886 Comments :	Orientation: Brown. 20% 1-2m Marcasite and Sc	1185 m : / mm broken FP cryst	True Width : 6 m tals + rare 2-3mm lapilli in silic	Secondaries: Host :	Felsic crystal lithic	tuff	<1.0	As	Cu	РЬ	Zn
626886 Comments :	Orientation: Brown. 20% 1-2m Marcasite and Sc	1185 m : / mm broken FP cryst outh Gossan. Whol	True Width : 6 m tals + rare 2-3mm lapilli in silic le rock sample.	Secondaries: Host : eous red-brown (su	Felsic crystal lithic "baerial?) matrix. Midw	tuff ay between		_	Cu (ppm)	Pb (ppm)	Zn (ppi
626886 Comments :	Orientation: Brown. 20% 1-2m Marcasite and Sc	1185 m : / mm broken FP cryst outh Gossan. Who 6316 750 N	True Width : 6 m tals + rare 2-3mm lapilli in silic le rock sample. Type : Core	Secondaries: Host : eous red-brown (su Alteration :	Felsic crystal lithic "baerial?) matrix. Midw w-sCY, mMS	tuff May between Au	Ag	As			
Comments : Sample No.	Orientation: Brown. 20% 1-2m Marcasite and Sc UTM :	1185 m : / mm broken FP cryst outh Gossan. Who 6316 750 N 401 070 E	True Width : 6 m tals + rare 2-3mm lapilli in silic le rock sample. Type : Core Strike Length Exp. : m	Secondaries: Host : eous red-brown (su Alteration : Metallics :	Felsic crystal lithic "baerial?) matrix. Midw w-sCY, mMS 15%PY	tuff way between Au (ppb) <5	Ag (ppm)	As (ppm)	(ppm)	(ppm)	(ppn
626886 Comments : Sample No.	Orientation: Brown. 20% 1-2m Marcasite and Sc UTM : Elevation: Orientation:	1185 m : / mm broken FP cryst outh Gossan. Who 6316 750 N 401 070 E : /	True Width : 6 m tals + rare 2-3mm lapilli in silic le rock sample. Type : Core Strike Length Exp. : m Sample Width : 35.6 m	Secondaries: Host : eous red-brown (su Alteration : Metallics : Secondaries: Host :	Felsic crystal lithic "baerial?) matrix. Midw w-sCY, mMS 15%PY None Coarse FP porphyry int	tuff ay between Au (ppb) <5 rusive	Ag (ppm) <1.0	As (ppm)	(ppm)	(ppm)	(ppn

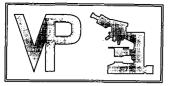
د بالله عليك تبديل الله علية علية تبدين تبدين علي خليل خليل خليل علي علي علي علي ال

	INEERING LTD.		ROCK SAMPLE DESCRIPTIONS	• · •		age-10-					
roperty :	RDN 1-6 Claims		NTS : 104B/15E, 104G/2E	Date : Sep	tember 4-11, 1994						
ample No.	UTM :	6318 684 N	Type : Core	Alteration :	sMS, mSI, mTA?	Au	Ag	As	Cu	Pb	Zn
		400 100 E	Strike Length Exp. : m	Metallics :	None	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
626888	Elevation:		Sample Width : 29.2 m	Secondaries:	None	<5	<1.0	16.	13.	230.	95
	Orientation	: /	True Width : m	Host :	Felsic lapilli tuff						
omments :	Whole rock samp	le taken from RG9	1-28 (204.0-233.2). Apple green (colour from serici	te +/- apple green waxy mi	neral (ta	lc?).				
	Heterolithic s	ubrounded felsic	fragments to 2cm (including some provide the source of the	previously silicif	ied). Take chip from ever	y 51 run.					
mple No.	UTM :	6317 300 N	Type : Core	Alteration :	trCA mMS	Au	Ag	As	Cu	РЬ	Zı
	••••••	400 860 E	Strike Length Exp. : m		trCP, trGL, 7%PY, trSP						
626889	Elevation:	400 000 L	Sample Width : 9.9 m	Secondaries:	None	(ppb) 15.	(ppm) 1.0	(ppm) 8.	(ppm) 41.	(ppm) 582.	(p) 1
02000/	Orientation	: /	True Width : m	Host :			1.0	0.	41.	502.	
mments :		•	103.4-113.2m). Medium-grained SP,		Coarse FP porphyry intru						
		aken from each 1.		, GL, CP +/- CA IN	tenses and stringers, 2-1	umm wide.					
mple No.	UTM :	6318 676 N	Type : Grab	Alteration :	wMS, trBA	Au	Ag	As	Cu	Pb	Z
		400 600 E	Strike Length Exp. : 30 m	Metallics :	None	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(p
626890	Elevation:	1679 m	Sample Width : 5 m	Secondaries:	WGE, WMN	<5	2.0	16.	27.	10.	8
	Orientation	. /	True Width : 5 m	Kost :	Felsic lapilli tuff						
omments :	Medium grey. To	extures not obvio	us. Rare BA stringers. Within 20	Om of apparent con	•	soil/talu	IS				
		tone flakes). Wh		••	•						
ample No.	UTM :	6318 460 N		Altonotion .		.	•		•	DL.	-
mpre no.		400 880 E	Type: Grab	Alteration :	•	Au	Ag	As	Cu	Pb	Z
424901	Flowation		Strike Length Exp. : 30 m	Metallics :	trHS, 2%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(p)
626891	Elevation:	1678 m	Sample Width : 1.5 m	Secondaries:	WGE	290.	<1.0	48.	66.	214.	4
		170 /	True Width : 1.5 m		Andesite dyke (?)						
annents :			ears volcanic, locally fragmental.			-					
	Fe-CB. Dissemir	hated PY and smal	l patches HS. 3m downslope from N	Noranda soll sample	= 11300N/9700E (410ppb Au)	•					
mple No.	UTM :	6316 920 N	Type: Float	Alteration :	mCB, wMS, wSI	Au	Ag	As	Cu	Pb	z
		400 677 E	Strike Length Exp. : m	Metallics :	trGL	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(p
626892	Elevation:	1420 m	Sample Width : 30 cm	Secondaries:	WGE	<5	1.0	8.	18.	2040.	-
	Orientation:	1	True Width : m	Host :	Felsic lapilli tuff						
mments :	Dark brown. GL	in 0.5mm CB stri	ngers and in disseminations. Take	en at Noranda soil	•	b Au in					
	talus fines).				, , , , , , , , , , , , , , , , , , , ,						
	· · · · · · · · · · · · · · · · · · ·					· · _	_	_	_		_
mple No.	UTM :	6316 893 N 400 765 E	Type : Float	Alteration :	WCB, WMS, WSI	Au	Ag	As	Cu	Pb	Z
43/907			Strike Length Exp. : m	Metallics :	trSP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(p
626893	Elevation:	1387 m	Sample Width : 50 cm	Secondaries:	WAZ, WGE, WMC, WNE	<5	5.0	192.	510.	878.	15
	Orientation:	/	True Width : m	Host :	Felsic lapilli tuff						
-		A	s. MC/AZ on internal fractures.		oulder. Also contains 42						

ن جمان جمل جنب الجن الله الله الله البي الله ال

TT Sample No. 626895 Comments : Li	T, SP, CP in fg UTM : Elevation: Orientation: ight grey pervas	separate cluster 6315 156 N 400 540 E 1097 m / sively silicified	Type : Float Strike Length Exp. : m Sample Width : 40 cm True Width : m True Width : m Tavel bar. Light grey felsic (loca s on fractures. MC on internal fr Type : Grab Strike Length Exp. : 5 m Sample Width : 5 m True Width : 5 m I felsic, locally cut by black hai so contains 12 ppm Sb.	Metallics : Secondaries: Host : Ily black from abd actures. Fg PY in Alteration : Metallics : Secondaries: Host :	-		es.	As (ppm) t 232. ppm Sb. As (ppm) 8.	Cu (ppm) 1690. Cu (ppm) 44.	Pb (ppm)	Zn (ppm 910 Zn (ppm
Comments : 3 TT Sample No. 626895 Comments : Li	Orientation: angular, friab T, SP, CP in fg UTM : Elevation: Orientation: ight grey pervas oparent. Whole	1097 m / le boulders in gr separate cluster 6315 156 N 400 540 E 1097 m / sively silicified	Sample Width : 40 cm True Width : m ravel bar. Light grey felsic (loca s on fractures. MC on internal fr Type : Grab Strike Length Exp. : 5 m Sample Width : 5 m True Width : 5 m	Secondaries: Host : lly black from abd actures. Fg PY in Alteration : Metallics : Secondaries: Host :	SGE, wMC, wMN Felsic volcanic dt graphite(?) on hairline f seams in one boulder. Also SSI, 2%GR? None None	5. fracture contair Au (ppb)	141g/ es. as 550 p Ag (ppm)	ypm Sb. As (ppm)	1690. Cu (ppm)	3080. Pb (ppm)	910 Zn
Comments : 3 TT Gample No. 626895 Comments : Li	Orientation: angular, friab T, SP, CP in fg UTM : Elevation: Orientation: ight grey pervas oparent. Whole	/ le boulders in gr separate cluster 6315 156 N 400 540 E 1097 m / sively silicified	True Width : m ravel bar. Light grey felsic (loca rs on fractures. MC on internal fr Type : Grab Strike Length Exp. : 5 m Sample Width : 5 m True Width : 5 m I felsic, locally cut by black hai	Host : lly black from abo actures. Fg PY in Alteration : Metallics : Secondaries: Host :	Felsic volcanic dt graphite(?) on hairline f seams in one boulder. Also sSI, 2%GR? None None	fracture contair Au (ppb)	es. ns 550 p Ag (ppm)	pm Sb. As (ppm)	Cu (ppm)	Pb (ppm)	Zn
TT Gample No. 626895 Comments : Li	angular, friab T, SP, CP in fg UTM : Elevation: Orientation: ight grey pervas oparent. Whole	le boulders in gr separate cluster 6315 156 N 400 540 E 1097 m / sively silicified	ravel bar. Light grey felsic (loca rs on fractures. MC on internal fr Type : Grab Strike Length Exp. : 5 m Sample Width : 5 m True Width : 5 m I felsic, locally cut by black hai	lly black from abo actures. Fg PY in Alteration : Metallics : Secondaries: Host :	dt graphite(?) on hairline f seams in one boulder. Also sSI, 2%GR? None None	contair Au (ppb)	ns 550 p Ag (ppm)	As (ppm)	(ppm)	(ppm)	
TT ample No. 626895 comments : Li	T, SP, CP in fg UTM : Elevation: Orientation: ight grey pervas oparent. Whole	separate cluster 6315 156 N 400 540 E 1097 m / sively silicified	s on fractures. MC on internal fr Type : Grab Strike Length Exp. : 5 m Sample Width : 5 m True Width : 5 m I felsic, locally cut by black hai	actures. Fg PY in Alteration : Metallics : Secondaries: Host :	seams in one boulder. Also sSI, 2%GR? None None	contair Au (ppb)	ns 550 p Ag (ppm)	As (ppm)	(ppm)	(ppm)	
ample No. 626895 Comments : Li	UTM : Elevation: Orientation: ight grey pervas oparent. Whole	6315 156 N 400 540 E 1097 m / sively silicified	Type : Grab Strike Length Exp. : 5 m Sample Width : 5 m True Width : 5 m I felsic, locally cut by black hai	Alteration : Metallics : Secondaries: Host :	sSI, 2%GR? None None	Au (ppb)	Ag (ppm)	As (ppm)	(ppm)	(ppm)	
626895 comments : Li	Elevation: Orientation: ight grey pervas oparent. Whole	400 540 E 1097 m / sively silicified	Strike Length Exp. : 5 m Sample Width : 5 m True Width : 5 m felsic, locally cut by black hai	Metallics : Secondaries: Host :	None	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	
omments : Li	Orientation: ight grey pervas oparent. Whole	1097 m / sively silicified	Sample Width : 5 m True Width : 5 m I felsic, locally cut by black hai	Secondaries: Host :	None	••	••	••	•••		(ppr
omments : Li	Orientation: ight grey pervas oparent. Whole	/ sively silicified	True Width : 5 m I felsic, locally cut by black hai	Host :		<5	2.0	8.	44	70/	
	ight grey pervas oparent. Whole	sively silicified	felsic, locally cut by black hai		Felsic lapilli tuff					384.	96.
	oparent. Whole			rline fractures.							
ар		rock sample. Al	so contains 12 ppm Sb.		Ghosts of 0.5cm lapilli loc	cally					
	UTM :										
ample No.		6315 448 N	Type : Grab	Alteration :	WCY, SGR	Au	Ag	As	Cu	РЬ	Zn
		400 127 E	Strike Length Exp. : 15 m	Metallics :	5%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppn
626896	Elevation:	1273 m	Sample Width : 6.0 m	Secondaries:	SGE, WJA	<5	<1.0	40.	51.	72.	646
	Bedding :	073 / 68 NW	True Width : 5.0 m	Host :	Rhyolite pebble conglomera	ate					
			Sample taken from base, which is a parallel to mudstone bedding ab				itic. 2	2 ppm S	ь.		
ample No.	UTM :	6315 190 N	Type : Grab	Alteration :	sSI, wGR?, 1%BA	Au	Ag	As	Cu	Pb	Zn
		399 930 E	Strike Length Exp. : 2 m	Metallics :	2%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppn
626897	Elevation:	1260 m	Sample Width : 2 m	Secondaries:	mGE, wJA	<5	5.0	72.	35.	94.	168
	Orientation:	/	True Width : 2 m	Host :	Felsic (lapilli tuff?)						
			se barite. 2% fine-grained disse Whole rock sample. Also contains			ips.					
90 			whole fock sample. Also contains	тогоо ррш ва ано	24 ppn 30.						
ample No.	UTM :	6315 162 N	Type: Float	Alteration :	sSI, sGR?	Au	Ag	As	Cu	Pb	Zn
	· .	400 005 E	Strike Length Exp. : m	Metallics :	None	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ррп
626898	Elevation:	1235 m	Sample Width : 40 cm	Secondaries:	SGE	<5	<1.0	16.	8.	6.	26.
	Orientation:	1	True Width : m	Host :	Felsic (lapilli tuff?)						
comments : Cr	ream-coloured pe	ervasively silici	fied felsic. Cut by innumerable	graphite(?)-silica	a fractures, giving rock app	pearance	•				
of	f fragmental in	graphite-silica	matrix. Also contains >10,000 pp	m Ba.							
ample No.	UTM :	6314 983 N	Type : Grab	Alteration :	wMS, 5%GR?	Au	Ag	As	Cu	Pb	Zn
•		400 459 E	Strike Length Exp. : 1 m	Metallics :	5%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
626899		1142 m	Sample Width : 4 m	Secondaries:	WGE	<5	2.0	72.	30.	44.	190
	Orientation:		True Width : 4 m		Felsic (lapilli tuff?)	-				- ·	
omments : Li		-	ft) cut by hairline graphite(?) f			sample.					
	Also contains 20		, cat ay nationic graphice(ry t	, autorior i yrite		d a e e e					

-


EQUITY ENGINE Property : RC	EERING LTD. DN 1-6 Claims		ROCK SAMPLE DESCRIPTIONS NTS : 104B/15E, 104G/2E	Date : September 4-11, 1994	Page-12-				
Sample No.	UTM :	6315 074 N 400 042 E	Type: Grab Strike Length Exp.:1 m	Alteration : sSI Metallics : 5%PY	Au Ag (ppb) (ppn	As 1) (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
626900	Elevation: Orientation:	1220 m	Sample Width : 2 m True Width : 2 m	Secondaries: wGE Host : Felsic lapilli tuff		0 4.	29.	6.	58.
Comments : L	ight grey to da	ark grey (from up	to 10% pyrite). Whole rock sample						

.

APPENDIX D

PETROGRAPHIC DESCRIPTIONS

Prepared by Dr. John Payne of Vancouver Petrographics Ltd.

Vancouver Petrographics Ltd.

8080 GLOVER RÓAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

Report # 940584 for:

Henry Awmack, Equity Engineering Ltd., 207 - 675 West Hastings Street, VANCOUVER, B.C., V6B 1N2

November, 1994

Project: PTH94-01 (RDN)

Samples: RG-91-28 173.6 m, RG-91-19 93.2 m, 626860, 626885, 626897

Summary:

The samples are latite to trachyte tuffs and flows. Many contain K-feldspar phenocrysts as well as ones of plagioclase, hornblende, biotite, and apatite. Some plagioclase phenocrysts have magmatic overgrowths of K-feldspar. Moderate variation in the nature of phenocrysts and textures of groundmass suggest that the rocks represent a few different units, some of which may be from the same or similar magma.

The similarities in phenocrysts and groundmass in Samples 626860 and 626897 suggest a close genetic relationship. Sample RG-91-28 173.6 m may be of similar origin, but lacks hornblende phenocrysts and K-feldspar rims on plagioclase phenocrysts.

Sample 626885 contains much more abundant plagioclase phenocrysts than K-feldspar (only as scattered megacrysts), and has a distinctly different groundmass texture that Samples 626860 and 626897. This suggests that it is from a different magma. The high phenocryst content suggests that it is a final crystallization product of a magma.

Sample RG-91-19 93.2 m is too strongly altered to determine if it is of similar origin to the other samples or not.

Sample RG-91-19 93.2 m is an altered latite/dacite tuff containing phenocrysts(?) of plagioclase (replaced by kaolinite) in a groundmass dominated by extremely fine grained quartz with moderately abundant disseminated pyrite and minor patches of sericite. Some patches of slightly coarser grained quartz were formed by replacement or recrystallization.

The rock contains replacement patches and seams of kaolinite with a preferred orientation which defines a moderate foliation to the rock. Minor minerals in these lenses are epidote and sericite/illite. Pyrite is moderately abundant in some lenses.

Sample RG-91-28 173.6 m is a porphyritic trachyte crystal-(lithic) tuff containing phenocrysts of K-feldspar, plagioclase, and minor quartz, apatite, and biotite, and a few fragments of latite in a groundmass dominated by K-feldspar, sericite, and ankerite. The irregular shapes of many phenocrysts, the presence of exotic lithic fragments, and the cryptocrystalline nature of much of the groundmass indicate that the rock is of tuffaceous origin. Quartz forms minor replacement patches. Pyrite forms a few replacement patches. Wispy seams and veinlets are of sericite and of calcite. A vein is of quartz-calcite.

Sample 626860 is a porphyritic trachyte containing phenocrysts of K-feldspar and minor ones of plagioclase, hornblende(?), and biotite in a groundmass containing prismatic plagioclase grains and cryptocrystalline K-feldspar. A few phenocrysts are of plagioclase surrounded by rims of K-feldspar. Plagioclase is altered completely to sericite (and K-feldspar). Disseminated opaque (pyrite and carbonaceous opaque/Mn-oxide) is abundant. A few replacement patches are of quartzpyrite. Numerous, mainly subparallel veins and veinlets are of quartz.

Sample 626885 is a porphyritic latite containing phenocrysts of plagioclase, hornblende and biotite and scattered megacrysts of K-feldspar in a groundmass of cryptocrystalline to extremely fine grained plagioclase, K-feldspar, and sericite. Abundant replacement patches are of ankerite. A discontinuous vein up to 1.5 mm wide is of calcite bordered by patches and lenses of ankerite-sericite. Smaller veinlets have narrow cores of calcite and broad outer zones of ankerite.

Sample 626897 is a porphyritic trachyte containing phenocrysts of plagioclase, hornblende, K-feldspar, and biotite in a groundmass containing lathy plagioclase and cryptocrystalline K-feldspar. Many plagioclase phenocrysts are rimmed by K-feldspar; plagioclase is replaced moderately to strongly by sericite. Hornblende is replaced by quartz, in part chalcedonic, and biotite is replaced by muscovite. Veinlets, veins and replacement patches are dominated by quartz. Some replacement patches contain pyrite. Some veins and veinlets contain cores of barite. A few late replacement patches and braided veinlets are of limonite/hematite.

- Jun & Payne

/John G. Payne, PhD., Tel: (604)-986-2928 Fax: (604)-983-3318

Sample RG-91-19 93.2 m Altered Latite/Dacite Tuff: Quartz-Pyrite Alteration; Secondary Kaolinite Lenses, Veinlets

Phenocrysts(?) of plagioclase (replaced by kaolinite) are set in a groundmass dominated by extremely fine grained quartz with moderately abundant disseminated pyrite and minor patches of sericite. Some patches of slightly coarser grained quartz were formed by replacement or recrystallization.

The rock contains replacement patches and seams of kaolinite with a preferred orientation which defines a moderate foliation to the rock. Minor minerals in these lenses are epidote and sericite/illite. Pyrite is moderately abundant in some lenses.

phenocrysts(?)	
plagioclase	3-4
hornblende	0.3
biotite(?)	0.3
groundmass	
quartz	
extremely fine	50-55%
very fine	10-12
pyrite	5-7
sericite	1
Ti-oxide	0.3
replacement patcl	hes, veinlets
kaolinite	20-25
pyrite	1-2
epidote	minor
sericite/illite	trace

Angular patches averaging 0.1-0.2 mm in size and locally up to 1 mm across of kaolinite enclosed in groundmass quartz probably represent original plagioclase phenocrysts. In these, kaolinite grains show no preferred orientation.

A few patches up to 0.6 mm long may be secondary after subhedral to euhedral mafic phenocrysts. They commonly are outlined by a zone rich in cryptocrystalline Ti-oxide. Many contain moderately abundant Ti-oxide and pyrite in their cores, which were replaced to quartz and/or kaolinite.

Several patches averaging 0.3-0.5 mm across contains abundant Ti-oxide grains in hexagonal crystallographic directions, probably of original biotite(?) grains. Most of these have an opaque-rich rim.

The groundmass is dominated by unoriented quartz grains averaging 0.005-0.1 mm in grains size. These contain moderately abundant dusty opaque grains which in thin section give the patches a light brown color. Irregular, coarser grained patches averaging 0.2-0.7 mm in size are of quartz grains averaging 0.02-0.03 mm in size which are free of dusty inclusions. These patches may have formed by recrystallization or replacement of finer grained quartz. A few irregular patches are of interlocking quartz grains averaging 0.07-0.1 mm in size.

(continued)

Sample RG-91-19 93.2 m (page 2)

Pyrite forms disseminated grains averaging 0.01-0.05 mm in size, and is concentrated in patches and lenses averaging 0.3-0.8 mm in size of similar to moderately coarser grains.

Sericite is concentrated in patches averaging 0.2-0.5 mm in size of extremely fine grains, commonly in parallel orientation, and a few lenses up to 1 mm long.

Ti-oxide forms patches up to 0.7 mm in size of cryptocrystalline aggregates.

Irregular lenses and seams up to several mm long and 2.5 mm wide are of extremely fine grained kaolinite with locally abundant pyrite and minor epidote. Kaolinite flakes commonly are oriented parallel to the length of the lenses and have a broadly curved structure within lenses. Some lenses contain moderately abundant trains of pyrite grains as in the host rock. A few coarser grained patches in cores of lenses contain minor disseminated flakes of sericite/illite. Epidote forms anhedral grains averaging 0.02-0.05 mm in size.

Porphyritic Trachyte Crystal-(Lithic) Tuff; Sericite-Ankerite Alteration; Seams and Veinlets of Sericite and Calcite; Vein of Quartz-Calcite

Phenocrysts of K-feldspar, plagioclase, and minor quartz, apatite, and biotite, and a few fragments of latite are set in a groundmass dominated by K-feldspar, sericite, and ankerite. The irregular shapes of many phenocrysts, the presence of exotic lithic fragments, and the cryptocrystalline nature of much of the groundmass suggest that the rock is of tuffaceous origin. Quartz forms minor replacement patches. Pyrite forms a few replacement patches. Wispy seams and veinlets are of sericite and of calcite. A vein is of quartz-calcite.

phenocrysts	
K-feldspar	8-10%
plagioclase	7-8
quartz	0.3
biotite	0.2
apatite	0.1
groundmass	
K-feldspar	30-35
sericite	25-30
ankerite	10-12
pyrite	2-3
quartz	2-3
leucoxene	0.3
seams, veinlets	
sericite	3-4
calcite	2-3
quartz-calcite	0.5

K-feldspar forms subhedral phenocrysts and angular fragments of phenocrysts averaging 0.5-1 mm in size and locally up to 1.5 mm across. Alteration is slight to patches of calcite and to dusty hematite inclusions.

Plagioclase forms subhedral phenocrysts averaging 0.3-0.7 mm in size and a few up to 1 mm across. Alteration is moderate to strong to sericite with locally moderately abundant patches of ankerite. Some sericite patches also may be secondary after plagioclase phenocrysts.

Quartz forms anhedral phenocrysts averaging 0.3-0.5 mm in size.

Apatite forms a euhedral prismatic phenocryst 1 mm long and a few equant to prismatic ones from 0.15-0.25 mm in size. The large grain is fractured strongly and replaced along a few fractures by sericite.

Biotite forms a few subhedral phenocrysts averaging 0.2-0.3 mm in size. Alteration is complete to pseudomorphic muscovite.

(continued)

Sample RG-91-28 173.6 m (page 2)

In the groundmass, K-feldspar forms cryptocrystalline grains. Its presence and high abundance relative to plagioclase are indicated by the bright yellow color of the stained offcut block.

Sericite forms dense patches of extremely fine grains. In places it is difficult to determine if some of these represent altered groundmass or completely replaced plagioclase phenocrysts. These patches grade texturally into sericite seams.

Ankerite forms clusters of subhedral to euhedral, rhombic grains averaging 0.03-0.07 mm in size. Its abundance varies moderately.

Pyrite is concentrated in a few proximal patches up to 3 mm in size. Textures suggest the patches are of extremely fine grained aggregates.

Leucoxene is concentrated in a few patches averaging 0.3-0.4 mm in size, probably after sphene; in these patches it is intergrown with extremely fine grained sericite. One patch 1.7 mm in size contains moderately abundant leucoxene intergrown with sericite; however, the patch does not appear to pseudomorph an original sphene or other Ti-bearing phase.

Quartz forms irregular replacement patches up to 1 mm in size of very fine grains intergrown partly with sericite and ankerite.

Two fragments, one elongate and 1.1 mm long and the other equant and 1.7 mm across are of extremely fine grained feldspar.

One fragment 2 mm across contains abundant lathy plagioclase grains from 0.07-0.1 mm in size with a few phenocrysts of apatite up to 0.15 mm in size in an extremely fine grained groundmass dominated by feldspars. Feldspars are altered moderately to sericite.

One vein 0.4 mm wide is of very fine grained quartz and calcite. Some quartz grains are subhedral prismatic grains against anhedral calcite. A few veinlets up to 0.15 mm wide are of very fine grained calcite; some of these are prominent where they cut K-feldspar phenocrysts.

Sample 626860 Porphyritic Trachyte; Sericite-Quartz-K-feldspar Alteration; Quartz Veinlets

Phenocrysts of K-feldspar and minor ones of plagioclase, hornblende(?), and biotite are set in a groundmass containing prismatic plagioclase grains and cryptocrystalline K-feldspar. A few phenocrysts are of plagioclase surrounded by rims of K-feldspar. Plagioclase is altered completely to sericite (and K-feldspar). Disseminated opaque (pyrite and carbonaceous opaque/Mn-oxide) is abundant. A few replacement patches are of quartz-pyrite. Numerous, mainly subparallel veins and veinlets are of quartz.

phenocrysts			
K-feldspar	8-10%	veins, veinlets	
plagioclase	2-3	quartz-(sericite)	5-7%
hornblende	1-2		
biotite	1-2		
apatite	minor		
groundmass			
plagioclase	20-25		
K-feldspar	40-45		
opaque (pyrite/oxide	e) 3-4		
opaque (carbonaceou	us/Mn-oxide) 3-4		
sericite	0.3		
zircon	trace		
replacement patches	5		
quartz-pyrite	2-3		

K-feldspar forms subhedral to euhedral phenocrysts averaging 0.5-1 mm in size and a few up to 1.7 m long. Many have simple Carlsbad twins. Some contain moderately abundant dusty brown inclusions. Some are altered slightly to moderately to sericite. A few are replaced slightly to moderately by chalcedonic quartz, in part with a radiating texture.

Plagioclase forms subhedral phenocrysts averaging 0.3-0.5 mm in size. Most are altered moderately to strongly to sericite, and some may have been replaced strongly by K-feldspar and sericite. One euhedral plagioclase phenocryst is 1.7 mm long was replaced strongly by K-feldspar with moderately abundant patches of sericite (mainly towards the border) and minor quartz and dendritic opaque (mainly in the core). A few euhedral phenocrysts have a broad core altered completely to sericite and a overgrowth rim averaging 0.1 mm wide of K-feldspar.

Hornblende(?) forms subhedral, prismatic phenocrysts averaging 0.5-0.8 mm long. Alteration is complete to very fine grained quartz, some of which has an extremely fine radiating texture typical of chalcedony, and elongate grains up to 0.15 mm long of K-feldspar.

Biotite forms a few phenocrysts from 0.3-0.8 mm in size. Alteration is complete to pseudomorphic muscovite and abundant opaque along original biotite cleavage planes. A few phenocrysts are replaced almost entirely by opaque.

Apatite forms a few subhedral phenocrysts averaging 0.15-0.2 mm in size. They contain dusty brown or grey inclusions oriented parallel to the c-axis.

(continued)

In the groundmass, plagioclase forms prismatic grains averaging 0.04-0.07 mm long and a few up to 0.1 mm long; these are concentrated moderately in certain parts of the section. Interstitial to these is cryptocrystalline to extremely fine grained K-feldspar.

Sericite forms irregular patches and seams up to 0.5 mm in size of extremely fine grains.

Opaque forms disseminated grains in two size ranges, the first averaging 0.01-0.02 mm in size and the second from 0.05-0.07 mm in size. The coarser ones probably are of pyrite, the finer ones are of uncertain composition. One elongate patch 1.7 mm long is dominated by very fine grained opaque intergrown with minor silicates.

Opaque (carbonaceous opaque or Mn-oxide) forms moderately abundant dendritic to irregular patches of cryptocrystalline grains interstitial to feldspars in the groundmass.

Zircon forms an anhedral prismatic grain 0.2 mm long.

Irregular replacement patches up to 2 mm in size are of extremely fine to very fine grained quartz and opaque.

Veins and veinlets from 0.05-0.5 mm wide are of extremely fine to very fine grained quartz. Some larger veins contain a few subhedral to euhedral grains in their cores. One veinlet 0.05 mm wide contains a patch 0.8 mm long of very fine grained sericite flakes.

Porphyritic Latite; Ankerite-Sericite Alteration; Calcite-Ankerite-(Sericite) Veins

Phenocrysts of plagioclase, hornblende and biotite and scattered megacrysts of K-feldspar are set in a groundmass of cryptocrystalline to extremely fine grained plagioclase, K-feldspar, and sericite. Abundant replacement patches are of ankerite. A discontinuous vein up to 1.5 mm wide is of calcite bordered by patches and lenses of ankerite-sericite. Smaller veinlets have narrow cores of calcite and broad outer zones of ankerite.

phenocrysts		
plagioclase	30-35%	
hornblende	4-5	
K-feldspar	2-3	(megacryst in hand sample)
biotite	2-3	
quartz	0.2	
apatite	0.2	
groundmass		
feldspars	35-40	
ankerite	8-10	
sericite	3-4	
opaque	0.3	
apatite	0.1	
veins, veinlets		
calcite	5-7	
ankerite	2-3	
sericite	0.3	

Plagioclase forms euhedral to subhedral phenocrysts averaging 0.3-1 mm in size and a few up to 2 mm long. It is concentrated in a few clusters up to 2.5 mm in size, in part with hornblende phenocrysts. One cluster 2.5 mm across is of subhedral to euhedral plagioclase grains averaging 0.5-0.8 mm in size, with interstitial patches of finer grained plagioclase and moderately abundant apatite grains averaging 0.05-0.1 mm in size. Alteration of plagioclase is slight to moderate to patches of cryptocrystalline sericite and very fine grained ankerite.

Hornblende forms prismatic phenocrysts averaging 0.5-1 mm in size and a few up to 2.5 mm long. Alteration is complete to a variety of assemblages. Some grains are replaced completely by calcite and/or ankerite. Many of those replaced by calcite have an irregular rim of ankerite. Others are replaced by aggregates of extremely fine grained sericite and minor quartz with scattered patches of ankerite; many of these have a thin rim of opaque.

A megacryst 8 mm long in the hand sample is of K-feldspar.

Biotite forms subhedral phenocrysts averaging 0.2-0.3 mm in size and a few up to 0.5 mm long. Alteration is to extremely fine grained aggregates of sericite/muscovite oriented parallel to original biotite to flakes.

Quartz forms a few anhedral phenocrysts averaging 0.3-0.5 mm in size.

Apatite forms euhedral prismatic grains averaging 0.1-0.2 mm in size, and a few subhedral grains up to 0.3 mm long.

(continued)

(page 2)

The groundmass is cryptocrystalline to locally extremely fine grained feldspars (probably about equal amounts of K-feldspar and plagioclase. Sericite forms disseminated cryptocrystalline grains. Ankerite forms ragged replacement patches up to 0.7 mm in size of very fine to fine grains. Opaque forms disseminated patches averaging 0.05-0.07 mm in size. Apatite forms moderately abundant prismatic grains averaging 0.03-0.05 mm long. Zircon forms a subhedral prismatic grain 0.1 mm long.

A discontinuous vein up to 1.5 mm wide is dominated by fine to medium grained calcite. It is bordered by a thin, discontinuous rim containing abundant very fine grained ankerite and extremely fine grained, disseminated opaque. A lens up to 0.7 mm wide along one side of the vein is of extremely fine grained ankerite (stained light orange by limonite) and less abundant sericite. Smaller veinlets subparallel to the main vein have broad outer zones of ankerite and narrow cores of calcite.

A late veinlet 0.02 mm wide is of calcite.

Porphyritic Trachyte; Replacement Patches of Quartz-(Pyrite); Veins and Veinlets of Quartz and Quartz-Barite; Late Patches and Veinlets of Limonite/Hematite

Phenocrysts of plagioclase, K-feldspar, hornblende, and biotite are set in a groundmass containing lathy plagioclase and cryptocrystalline K-feldspar. Many plagioclase phenocrysts are rimmed by K-feldspar; plagioclase is replaced moderately to strongly by sericite. Hornblende is replaced by quartz, in part chalcedonic, and biotite is replaced by muscovite. Veinlets, veins and replacement patches are dominated by quartz. Some replacement patches contain pyrite. Some veins and veinlets contain cores of barite. A few late replacement patches and braided veinlets are of limonite/hematite.

phenocrysts	
plagioclase	5-7%
K-feldspar	4- 5
hornblende	2-3
biotite	1
groundmass	
plagioclase	20-25
K-feldspar	50-55
opaque	0.3
replacement patche	s
quartz	5-7
pyrite	0.3
veins, veinlets	
quartz	3-4
barite	0.3
late replacement, v	einlets
limonite/hematite	1-2

Plagioclase forms subhedral to euhedral phenocrysts averaging 0.5-0.8 mm in size and a few up to 1.7 mm in length. Many grains have moderately to well developed rims of K-feldspar. Alteration is moderate to strong to extremely fine grained sericite.

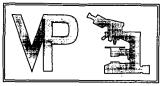
K-feldspar forms subhedral to euhedral phenocrysts averaging 0.5-0.8 mm in size and a few up to 1 mm long. Carlsbad twinning is common.

Hornblende forms subhedral to euhedral prismatic phenocrysts averaging 0.5-1 mm long and a few up to 1.7 mm long. Alteration is complete to interlocking, extremely fine grains of quartz, in part with moderately abundant euhedral pyrite grains averaging 0.02-0.05 mm in size.

Biotite forms euhedral phenocrysts averaging 0.1-0.4 mm in size and a few up to 0.8 mm across. Alteration is complete to pseudomorphic muscovite with disseminated brains of Ti-oxide.

Apatite forms a few euhedral prismatic phenocrysts up to 0.3 mm long. It contains abundant dusty brown inclusions.

(continued)


(page 2)

In the groundmass, plagioclase forms lathy grains averaging 0.05-0.1 mm in length. These are set in a cryptocrystalline groundmass dominated by K-feldspar with much less plagioclase. Opaque forms disseminated grains averaging 0.01-0.02 mm in size and a few from 0.1-0.3 mm across.

Irregular interstitial and replacement patches up to 1.5 mm in size are of extremely fine to very fine grained quartz. Pyrite forms disseminated patches up to 0.5 mm in size, commonly associated with quartz. These are probably of similar origin to the veins and veinlets.

A few veins and veinlets averaging 0.1-0.2 mm in width are of extremely fine to very fine grained quartz. A few veins up to 0.5 mm in width also contain barite, which is concentrated in the cores of veins and veinlets as grains up to 1 mm in size.

A zone up to 1 mm wide along the edge of the sample contains braided veinlets up to 0.1 mm wide of limonite/hematite. A few late replacement patches are of very fine to extremely fine patches of orange-red limonite/hematite. One lensy zone up to 0.7 mm in size is a slightly brecciated zone with a matrix of limonite/hematite.

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

Report # 940584 for:

Henry Awmack, Equity Engineering Ltd., 207 - 675 West Hastings Street, VANCOUVER, B.C., V6B 1N2

November, 1994

Project: PTH 94-01 (RDN)

Sample: 10269

Summary:

Sample 10269 is a porphyritic trachyte containing phenocrysts of K-feldspar and much less abundant ones of plagioclase, biotite and apatite in an extremely fine grained groundmass dominated by K-feldspar. Plagioclase phenocrysts are replaced completely by sericite, and Kfeldspar phenocrysts are replaced slightly to moderately by patches of sericite. The rock was brecciated strongly and fragments healed by quartz, sericite and sulfides (now replaced mainly by hematite/limonite and carbonate). A related fracture-filling veinlet is of quartz and hematite.

The sample is lithologically moderately similar to Sample RG-91-28 173.6 m from the previous study (VP 940585).

HEP BATION IS IT MICE OF TOUS AND TO THE REAL PROPERTY IS

The brecciated texture of the rock, quartz-sulfide(original) matrix, and the geochemical analysis suggest that the origin of the sulfides was as an epithermal hydrothermal system. The rock was fractured moderately to strongly and hydrothermal solutions were introduced along fractures. Later weathering has replaced original Fe-sulfides by hematite and limonite, and has replaced galena and smithsonite by cerrusite and smithsonite, respectively.

John G. Varpe

John G. Payne, PhD., Tel: (604)-986-2928 Fax: (604)-983-3318

Sample 10269 Brecciated Porphyritic Trachyte; Quartz-Hematite/Limonite-Sericite Matrix and Veinlets

Phenocrysts of K-feldspar and much less abundant ones of plagioclase, biotite and apatite are set in an extremely fine grained groundmass dominated by K-feldspar. Plagioclase phenocrysts are replaced completely by sericite, and K-feldspar phenocrysts are replaced slightly to moderately by patches of sericite. The rock was brecciated strongly and fragments healed by quartz, sericite and sulfides (now replaced mainly by hematite/limonite and carbonate). A related fracture-filling veinlet is of quartz and hematite.

phenocrysts

K-feldspar	4- 5%
plagioclase	1-2
biotite	1
apatite	0.2
groundmass	
K-feldspar	60-65
quartz	2-3
Ti-oxide	0.1
breccia matrix,	veinlets, seams
quartz	10-12
sericite	8-10
hematite	3-4
limonite	3-4
carbonate	0.7
pyrite	trace
tetrahedrite(?)	trace
()	trace

Plagioclase forms subhedral to euhedral phenocrysts averaging 0.2-0.3 mm in size and a few up to 0.5 mm across. Alteration is complete to extremely fine grained sericite.

K-feldspar forms subhedral to euhedral phenocrysts averaging 0.3-0.7 mm in size, and a few up to 1 mm long. Alteration is slight to moderate to patches of sericite.

Biotite forms euhedral phenocrysts averaging 0.15-0.3 mm in size. Alteration is complete to pseudomorphic muscovite and minor to moderately abundant patches of Ti-oxide.

Apatite forms subhedral to euhedral prismatic phenocrysts averaging 0.1-0.2 mm long.

The groundmass is dominated by feathery, interlocking grains of K-feldspar averaging 0.005-0.01 mm in size. It generally is colorless, but in a few patches up to 1.5 mm in size has a light to medium brown color. Quartz forms irregular, interstitial patches averaging 0.05-0.1 mm in size. Apatite forms euhedral, slender, prismatic grains averaging 0.03 mm long.

Ti-oxide forms disseminated grains averaging 0.02-0.05 mm in size, mainly associated with patches of limonite/hematite.

The rock was crackled moderately to strongly. Fragments are healed by interstitial patches of quartz-hematite-limonite and seams and patches of extremely fine grained sericite and veinlets of hematite.

Sulfides are mainly replaced by secondary minerals, the most abundant of which are hematite and limonite. Some patches of limonite are pseudomorphs after subhedral to euhedral ankerite or siderite. Disseminated patches of equant grains up to 0.15 mm in size are of high-relief carbonate, probably cerussite and/or smithsonite after original galena and sphalerite.

Hematite forms ragged patches averaging 0.05-0.1 mm in size and a few up to 0.6 mm long. It is opaque with low reflectivity. Associated with it are patches of similar size of orange-brown limonite.

One patch 0.5 mm in size consists of very fine grained pyrite altered moderately to hematite. An adjacent grain of tetrahedrite (?) 0.05 mm contains a core of galena 0.02 mm in size.

One veinlet up to 0.7 mm wide is partly bordered by euhedrally terminated quartz grains averaging 0.1-0.2 mm in size, with a core of orange-brown limonite.

APPENDIX E

ANALYTICAL CERTIFICATES

Chemex Labs Ltd. Analytical Chemists* Geochemists* Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number :1-A Total Pages :1 Certificate Date: 29-SEP-94 Invoice No. : 19426517 P.O. Number : PTH94-01 Account :EIA

Project : RDN: Comments: ATTN: HENRY AWMACK

	_										CE	RTIFI	CATE	OF A	NAL	YSIS	/	\9426	517		
SAMPLE	PREI		Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
PS-51 PS-52 PS-53 PS-54 PS-55	201 2 201 2 201 2 201 2 201 2 201 2	202 202 202	< 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	0.82 0.35 1.02 0.59 1.45	22 26 28 12 26	300 270 370	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 < 2 < 2	0.15 0.06 0.15 0.29 0.64	< 0.5 < 0.5 < 0.5 < 0.5 0.5 1.0	3 3 4 9 16	1 1 < 1 15	15 18 16 28 45	2.36 2.65 3.07 3.28 4.03	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.14 0.10 0.22 0.23 0.29	10 < 10 10 10 10	0.41 0.08 0.40 0.11 0.56	520 320 565 1460 1210
PS-56 11400N 9550E 11400N 9560E 94HA-31	201 2 201 2 201 2 201 2 201 2	202 202	< 5 70 50 < 5	< 0.2 < 0.2 0.2 0.6	1.99 1.63 1.09 0.78	24 40 74 122	390 400	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.51 0.10 0.10 0.17	0.5 < 0.5 < 0.5 8.0	21 10 8 16	19 13 4 4	66 35 31 52	5.38 4.17 3.47 5.35	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.20 0.20 0.21 0.19	10 10 20 < 10	0.70 0.19 0.08 0.04	1235 765 750 1720
i																					
																	• •			<u> </u>	

CERTIFICATION: HartBuchler

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number :1-B Total Pages :1 Certificate Date: 29-SEP-94 Invoice No. :19426517 P.O. Number :PTH94-01 Account :EIA

Project : RDN Comments: ATTN: HENRY AWMACK

										CE	RTIFI	CATE	OF A	NALY	SIS	A9426517
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W mqq	Zn ppm	
PS-51 PS-52 PS-53 PS-54 PS-55	201 202 201 202 201 202 201 202 201 202 201 202	2 < 2 < 1	<pre>< 0.01 < 0.01 0.01 0.01 < 0.01 < 0.01 <</pre>	1 1 1 26	1120 340 1160 1100 1080	20 20 28 26 30	< 2 4 < 2 < 2 < 2 < 2	2 1 2 3 6	123 < (26 < (113 < (59 < (45 < (0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	20 14 25 15 41	< 10 < 10 < 10 < 10 < 10 < 10	56 60 50 98 210	
PS-56 11400N 9550E 11400N 9560E 94HA-31	201 202 201 202 201 202 201 202 201 202	4 <	0.01 : 0.01 : 0.01 : 0.01 : 0.01	25 16 10 70	1140 1080 890 1040	26 22 30 18	6 2 8 4	7 2 2 12	41 < (11 < (9 < (38 < (0.01 0.01	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	48 37 11 32	< 10 < 10 < 10 10	168 118 100 614	
															·	
													Ċ	ERTIFIC	ATION:_	Sant Brichler

ŧ

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Page Number :1-A Total Pages :2 Certificate Date: 10-OCT-94 Invoice No. :19426518 P.O. Number :PTH94-01 Account :EIA

Project : RDN Comments: ATTN: HENRY AWMACK

											CERTIFICATE OF ANALYSIS A9426518															
SAMPLE	PR CO		Au ppb FA+AA	Au FA g/t	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %					
10251		226	< 5		< 1.0	3.00	4	70	< 0.5	< 2	3.65	1.0	23	47	91	5.37	< 10	< 1	0.09	20	2.22					
10252		226	< 5		< 1.0	2.46	4	170	< 0.5	2	9.21	0.5	30	18	101	5.83	< 10	1	0.13 0.05	20 < 10	2.31 0.02					
10253 10254		226 226	< 5		< 1.0 40.0	0.14 0.20	272	150 2230	< 0.5 < 0.5	< 2	0.08	< 0.5 12.0	< 1 14	69 57	· 2 85	0.22 1.58	< 10 < 10	2	0.05	< 10	0.02					
10255		226			1.0	0.06	16	340	< 0.5	24	0.06	0.5	13	95	7200	2.98	< 10	2	0.01	< 10	0.01					
10256		226			< 1.0	0.96	64	80	< 0.5	6	3.53	8.5	10	22	106	3.53	< 10	< 1	0.20	20	0.79					
10257		226	• •		10.0	0.11	48	1090	< 0.5	8		>100.0	6	88 2	199 155	0.97 7.06	< 10	15 < 1	0.06	10 < 10	0.27 0.19					
10258 10259		226 226			1.0 < 1.0	0.30 0.13	8 ∡	30 40	< 0.5 < 0.5	< 2	>15.00 7.83	7.0 < 0.5	43 6	66	122	3.91	< 10 < 10	< 1	0.06	20	3.12					
10260		226			< 1.0	0.45	4	190	< 0.5	2	0.36	< 0.5	4	51	6	1.65	< 10	< 1	0.34	20	0.07					
10261		226			< 1.0	2.26	4	2030	< 0.5	< 2	8.33	< 0.5	23	17	806	3.93	< 10	2	0.08	20	2.10					
10262		226	< 5		< 1.0	0.27	4	1080	< 0.5	2	4.55	< 0.5	2	84 25	10 1710	0.78 3.05	< 10 < 10	< 1 < 1	0.16 0.48	20 20	0.05 0.43					
10263 10264		226 226			73.0 1.0	0.61 0.37	496 8	1240 5320	< 0.5 < 0.5	14	1.24	>100.0	16 7	31	1/10	2.31	< 10	< 1	0.33	20	0.04					
10265		226			< 1.0	2.72	16	200	< 0.5	< 2	5.13	1.5	25	131	2	4.75	< 10	< 1	0.16	30	3.04					
10266		226			< 1.0	2.48	4	6210	< 0.5	6	1.31	< 0.5	16	10	2	3.12	< 10	< 1	0.21	30	1.69					
10267		226	195		81.0	0.42	536	800	< 0.5	62		>100.0	17	100	1885	6.09	< 10	17 < 1	0.21 0.09	10 < 10	0.56 0.30					
10268		226 226			144.0 42.0	0.19 0.62	400 440	4130 1420	< 0.5 < 0.5	18 44	0.11 0.33	10.5 34.5	12 11	88 58	2860 1745	4.45 4.01	< 10 < 10	< 1	0.09	< 10 10	0.30					
10269 10270		226			< 1.0	0.59		>10000	< 0.5	< 2	13.25	2.0	22	59	63	5.46	< 10	< 1	0.28	10	3.86					
10271		226	525		1.0	0.27	304	190	< 0.5	2	0.07	0.5	2	155	< 1	1.01	< 10	< 1	0.15	20	0.02					
626855		226	< 5		1.0	0.33	8	120	< 0.5	8	0.62	< 0.5	8	44	14	4.46	< 10	< 1 < 1	0.28	20 20	0.28					
626856 626857		226 226	< 5		< 1.0 < 1.0	1.89 1.35	4 544	110 60	< 0.5 < 0.5	4 < 2	1.37	< 0.5 < 0.5	13 40	51 581	25 63	3.81 5.08	< 10 < 10	< 1	0.03	20 20	5.51					
626858		226			3.0	0.47	32	190	< 0.5	8	0.31	< 0.5	8	63	11	2.60	< 10	< 1	0.32	10	0.10					
626859	205				141.0	0.33	360	820	< 0.5	12	0.98	4.5	11	200	654	3.88	< 10	3	0.18	10	0.21					
626860		226	< 5		1.0	0.39	96	160 80	< 0.5	8	0.17 5.48	< 0.5 0.5	6	76 83	16 50	10.25	< 10 < 10	< 1 < 1	0.24	10 20	0.03					
626861 626862	205	226 226	< 5		< 1.0 < 1.0	3.19 1.48	8	570	< 0.5 < 0.5	< 2 < 2	7.19	< 0.5	40 45	549	56	5.43	< 10	< 1	0.14	20	6.02					
626863	205		· •		2.0	0.36	4	920	< 0.5	8	4.66	0.5	11	30	27	5.90	< 10	< 1	0.25	30	1.37					
626864		226			< 1.0	0.51	4	100	< 0.5	6	3.70	< 0.5	15	25	22	4.08	< 10	< 1	0.30	30	0.50					
626865	205				< 1.0	0.49	8	530	< 0.5	2	0.02	< 0.5	1	45 37	< 1	0.59	< 10	< 1 1	0.06	< 10 10	0.01 0.16					
626866 626867	205	226 226	< 5		< 1.0 < 1.0	0.99 0.17	4	1190 690	< 0.5 < 0.5	8 12	0.11 0.01	< 0.5 < 0.5	8	37 111	19 7	3.64 1.37	< 10 < 10	< 1	0.46	< 10	0.01					
626868	205				< 1.0	2.04	4	60	< 0.5	6	0.97	< 0.5	16	33	27	4.57	< 10	< 1	0.50	30	1.40					
626869	205	226	< 5		< 1.0	1.85	4	210	< 0.5	10	0.06	0.5	13	20	120	4.54	< 10	1	0.44	20	0.47					
626870	205	226	< 5		< 1.0	0.58	8	570	< 0.5	10	0.12	0.5	3	61	14	1.80	< 10	1	0.37	20	0.05					
626871	205	226	••		< 1.0	0.43 1.16	4 16	310 470	< 0.5 < 0.5	12 < 2	0.01 8.63	< 0.5 < 0.5	4 23	82 46	1 38	1.16 4.59	< 10 < 10	1 < 1	0.19 0.42	< 10 20	0.01 2.39					
626872 626873	205 205	226 226			< 1.0 1.0	0.44	504	100	< 0.5	2	3.63	0.5	10	40	13	2.79	< 10	1	0.29	30	0.94					
																			•	· · · · · · · · · · · · · · · · · · ·						

CERTIFICATION: Hart Buchler

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

EQUITY ENGINEERING LTD. To:

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number :1-B Total Pages :2 Certificate Date: 10-OCT-94 Invoice No. :19426518 P.O. Number :PTH94-01 Account :EIA

Project : RDN Comments: ATTN: HENRY AWMACK

A9426518 **CERTIFICATE OF ANALYSIS**

SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
.0251	205 226	990 1360	< 1 < 1	0.20	39 14	1370 530	2	< 2	17 18	80 170 <	0.40	< 10 < 10	< 10 < 10	218 135	< 10 10	132 64	
.0253	205 226	30		< 0.01	< 1	60	< 2	< 2	< 1		0.01	< 10	< 10.	1	< 10	6	
.0254	205 226	1550		< 0.01	2	290	2310 18	52 12	2		0.01 0.01	< 10 < 10	< 10 < 10	22 < 1	< 10 < 10	6610 42	
.0255	205 226	50	55	< 0.01	2	70	18	14	< 1	38 <	0.01	< 10	< 10	< 1	< 10	**	
0256	205 226	725		< 0.01	1	280	114	< 2	2		0.01	< 10	< 10	6	< 10	1790	
0257	205 226	930		< 0.01	< 1	160	2720 1440	< 2 < 2	1 2	57 < 548 <	0.01	< 10 < 10	< 10 < 10	8 2	< 10 : 10	>10000 1895	
0258 0259	205 226	3880 725	< 1	< 0.01 0.01	7 8	100 840	< 2	< 2	4	201 <		10	< 10	10	< 10	38	
0260	205 226	655	.< 1	0.02	ž	320	2	< 2	4		0.01	< 10	< 10	2	< 10	36	
0261	205 226	995	< 1	0.05	15	760	< 2	< 2	14	215 <	0.01	< 10	< 10	130	< 10	60	
0262	205 226	430	< 1	0.01	< 1	120	14	< 2	1	314 <		< 10	< 10	1	< 10	26	
0263	205 226	3340		< 0.01	1		>10000	28	7		0.01	< 10	< 10	39		>10000	
0264	205 226	2670		< 0.01	< 1	970	1735	< 2	2		0.01	10	< 10	15	< 10	1585	
0265	205 226	1370	< 1	0.03	72	700	24	4	18	124 <	0.01	< 10	< 10	132	< 10	114	
0266	205 226	635	< 1	0.03	< 1	1680	4	< 2	4	664 <		< 10	< 10	54	< 10	54	
0267	205 226	6580	< 1	0.01	< 1	180	5050	30	5		0.01	< 10	< 10	54		>10000	
0268	205 226	5180		< 0.01	2	80 880	234 9310	18 36	4		0.01 0.01	< 10 < 10	< 10 < 10	55 30	10 < 10	1750 5480	
0269 0270	205 226	6080 1735	10 < 1	0.01 0.02	43	150	186	18	12	1065 <		< 10	< 10	25	< 10	130	
.0271	205 226	40	< 1	0.02	2	110	26	56	< 1	7 <	0.01	< 10	< 10	6	< 10	22	· · · · · · · · · · · · · · · · ·
26855	205 226	4190	< 1	0.01	3	1330	26	14	7		0.01	< 10	< 10	56	< 10	62	
26856	205 226	830	< 1	0.09	8	920	10	2	4		0.01	< 10	< 10	77	< 10	74	
26857	205 226	1005	< 1	0.02	433	1130	4	2	17	194 <		< 10	< 10	125	< 10	44 394	
26858	205 226	3010	1	0.01	12	850	108	12	6	31 <	0.01	< 10	< 10	46	< 10	394	
26859	205 226	735	8	0.01	7	450	338	352	3	73 <		< 10	< 10	134	10	2480	
26860	205 226	115	8	0.01	5 32	460 790	16 6	32 2	3 21	28 < 76	0.01	< 10 < 10	< 10 < 10	12 216	10 10	40 88	
26861 26862	205 226	1110 1185	< 1 < 1	0.08 0.03	3∡ 392	1000	6	4	20	382 <		< 10	< 10	129	10	82	
26863	205 226	9650	< 1	0.01	4	630	48	2	4	117 <		< 10	< 10	15	10	1070	
26864	205 226	1205	< 1	0.03	3	1170	6	2	4	85 <	0.01	< 10	< 10	16	< 10	84	
26865	205 226	15		< 0.01	3	40	14	< 2	< 1		0.01	30	< 10	3	< 10	2	
26866	205 226	95	< 1	0.07	2	950	36	< 2	4		0.01	10	< 10	37	< 10	24	
26867	205 226	10		< 0.01	3	20	14	< 2 < 2	< 1 5		0.01 0.01	< 10 < 10	< 10 < 10	2 85	< 10 < 10	< 2 62	
26868	205 226	900	1	0.07	<u> </u>	1440	16	< 4		<u> </u>	0.01	< 10	× 10		< 10	¢∡	
26869	205 226	75	4	0.01	4	580	38	< 2	8		0.01	< 10	< 10	27	< 10	216 80	
26870	205 226	845 15	2	0.03 < 0.01	2	420 40	16 12	< 2 < 2	2 < 1		0.01 0.01	10 20	< 10 < 10	10 7	< 10 < 10	2	
26871 26872	205 226	945	< 1	0.01	81	600	2	2	17	331 <		< 10	< 10	37	10	38	
26873	205 226	1025	< 1	0.03	6	610	4	4	5	235 <		< 10	< 10	12	< 10	22	
		0															•
		L.,														11	utBichler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number :2-A Total Pages :2 Certificate Date: 10-OCT-94 Invoice No. : I9426518 P.O. Number : PTH94-01 Account : EIA

Project : RDN Comments: ATTN: HENRY AWMACK

	-	_	-							CE	RTIFI	CATE	OF A	NAL	YSIS		\9426	518		
SAMPLE	PREP CODE	Au ppb FA+AA	Au FA g/t	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
626874 626875 626876 626877 626877 626878	205 226 205 226 205 226 205 226 205 226 205 226	5 < 5 5 < 5 5 < 5		3.0 2.0 1.0 1.0 < 1.0	1.25 0.69 1.04 0.82 3.11	72 8 4 64 4	90 630 390 700 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 < 2 8 6 4	0.11 8.49 0.30 0.69 4.21	1.0 2.0 4.5 1.0 < 0.5	7 9 10 12 20	6 10 19 14 28	85 66 87 77 22	2.54 4.05 3.32 3.38 6.37	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.71 0.37 0.57 0.48 0.22	20 30 20 20 30	0.10 2.37 0.12 0.41 1.32
626879 626880 626881 626882 626883	205 226 205 226 205 226 205 226 205 226 205 226	5 < 5 5 < 5 5 < 5		< 1.0 < 1.0 18.0 1.0 1.0	0.44 0.60 0.32 1.41 0.58	8 4 16 8 4	950 550 1920 310 2150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 8 6 8	0.68 4.46 1.31 3.41 0.32	3.0 < 0.5 12.5 5.5 0.5	8 12 8 11 3	29 8 92 11 44	27 9 162 51 38	2.64 3.30 1.44 3.75 1.31	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.31 0.45 0.23 0.64 0.43	30 40 10 20 20	0.30 0.78 0.18 0.30 0.04
626884 626885 626886 626887 626888	205 226 205 226 205 226 205 226 205 226 205 226	5 < 5 5 < 5 5 < 5		< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	2.44 0.79 0.68 0.83 0.49	24 4 8 4 16	410 130 150 690 1720	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 8 26 6	0.66 3.12 2.04 0.03 0.73	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 11.5	16 7 10 27 3	4 19 18 24 21	55 9 3 87 13	4.44 3.24 3.91 4.81 1.15	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	1.01 0.46 0.31 0.14 0.43	20 30 30 < 10 20	0.33 0.53 1.07 0.01 0.25
626889 626890 626891 626892 626893	205 226 205 226 205 226 205 226 205 226 205 226	5 < 5 290 5 < 5		1.0 2.0 < 1.0 1.0 5.0	0.85 0.57 1.43 0.81 0.78	8 16 48 8 192	640 780 180 690 1160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 6 8 6 < 2	3.44 0.47 3.16 1.19 7.06	7.5 < 0.5 0.5 5.5 34.0	11 7 21 5 13	7 28 43 26 18	41 27 66 18 510	4.10 2.88 5.09 1.31 4.07	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.37 0.36 0.22 0.54 0.48	30 10 30 20 20	0.37 0.14 1.42 0.20 2.62
626894 626895 626896 626897 626898	205 226 205 226 205 226 205 226 205 226 205 226	5 < 5 < 5 < 5		148.0 2.0 < 1.0 5.0 < 1.0	0.13 0.30 0.81 0.51 0.27	232 8 40 72 16	1030 170 840 2530 >10000	0.5 0.5 1.5 0.5 0.5	< 2 < 2 < 2 < 2 2 2	3.95 2.44 1.59 0.47 0.13	6.5 < 0.5 0.5 < 0.5 < 0.5	4 8 14 13 6	81 51 21 53 56	1690 44 51 35 8	2.62 2.63 4.15 2.21 1.00	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.08 0.29 0.48 0.36 0.26	20 20 20 10 < 10	0.66 0.27 0.47 0.11 < 0.01
626899 626900	205 226 205 226			2.0 < 1.0	0.81 0.35	72 4	700 210	0.5	< 2 < 2	1.48	< 0.5 < 0.5	8 9	39 57	30 29	4.25 3.13	< 10 < 10	< 1 < 1	0.51	10 20	0.46
														ERTIFIC		194	int	اکمند	fle	<u> </u>

١

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

EQUITY ENGINEERING LTD. To:

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number :2-B Total Pages :2 :2 Certificate Date: 10-OCT-94 Invoice No. : 19426518 P.O. Number : PTH94-01 :EIA Account

Project : RDN Comments: ATTN: HENRY AWMACK

										CE	RTIFI	CATE	OF A	NAL	SIS	4	\9426518	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm		·
526874 526875 526876 526877 526878	205 226 205 226 205 226 205 226 205 226 205 226	175 6180 3210 1340 1005	2 1 2 1 < 1	0.01 0.01 0.02 0.02 0.04	2 2 2 1 6	1050 790 940 1020 1090	94 186 258 46 < 2	2 6 < 2 < 2 < 2 < 2	3 7 3 4 17	182 < 22 < 61 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	18 23 19 20 133	< 10 < 10 < 10 < 10 < 10 < 10 10	196 1280 546 256 118		
26879 26880 26881 26882 26883	205 226 205 226 205 226 205 226 205 226 205 226	2170 2740 2300 580 115	39	0.01 0.01 < 0.01 0.02 < 0.01	< 1 1 3 57 < 1	890 1300 740 1020 1200	42 < 2 3000 14 78	4 < 2 74 < 2 2	4 9 2 9 4	114 70 < 193 <	0.01 0.02 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	18 102 85 73 44	< 10 < 10 < 10 < 10 < 10 < 10	270 92 444 598 98		
26884 26885 26886 26887 26888	205 226 205 226 205 226 205 226 205 226 205 226	135 855 1300 20 1155	17 1 < 1 1 1	0.02 0.03 0.07 0.01 0.03	12 2 < 1 3 1	1450 1070 1170 40 240	20 16 4 14 230	< 2 4 < 2 < 2 < 2	9 5 6 1 1	116 < 122 40 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	32 21 51 14 4	< 10 < 10 < 10 < 10 < 10 < 10	154 72 70 2 954		
26889 26890 26891 26892 26893	205 226 205 226 205 226 205 226 205 226 205 226	1165 2420 915 2240 5630	< 1	0.12 < 0.01 0.05 < 0.01 0.01	2 < 1 12 1 2	1260 700 950 290 730	582 10 214 2040 878	< 2 < 2 < 2 2 42	3 3 15 2 4	27 < 110 < 38 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	12 21 144 10 55	< 10 < 10 < 10 < 10 < 10 < 10	1580 858 452 378 1570		
526894 526895 526896 526897 526898	205 226 205 226 205 226 205 226 205 226 205 226	3660 3560 565 450 205	< 1 < 25 1 <	< 0.01 < 0.01 0.01 < 0.01 < 0.01	1 4 8 3 3	80 1030 1710 720 730	3080 384 72 94 6	550 12 22 34 8	2 11 9 8 3	192 <		10 20 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	138 24 32 23 11	< 10 < 10 < 10 < 10 < 10 < 10	910 96 646 168 26		
26899 26900	205 226 205 226	1960 2580		< 0.01 < 0.01	2 4	860 930	44 6	26 10	67		0.01	< 10 < 10	< 10 < 10	40 31	< 10 < 10	190 58		
														• •	ATION:	4	ut Bic	les

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

A9426518

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9426518

Comments: ATTN: HENRY AWMACK

67 1 67	Au ppb: Fuse 10 g sample			
1	Ha PPD: I abo It 3 Dampio	FA-AAS	5	10000
	Au g/t : $1/2$ assay ton grav.	FA-GRAVIMETRIC	0.1	500.0
	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
67	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
67	As ppm: 32 element, soil & rock	ICP-AES	2	10000
67	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
67	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
67	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
67	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
67	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
67	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
67	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
67	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
67	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
67	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
67	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
67	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
67				10000
				15.00
			-	10000
				10000
				5.00
				10000
				10000
				10000 10000
				10000
				10000
				5.00
				10000
				10000
				10000
			-	10000
				10000
	67 67 67 67 67 67 67 67 67 67	 67 Be ppm: 32 element, soil & rock 67 Bi ppm: 32 element, soil & rock 67 Ca %: 32 element, soil & rock 67 Cd ppm: 32 element, soil & rock 67 Cd ppm: 32 element, soil & rock 67 Cr ppm: 32 element, soil & rock 67 Cr ppm: 32 element, soil & rock 67 Cr ppm: 32 element, soil & rock 67 Cu ppm: 32 element, soil & rock 67 Ga ppm: 32 element, soil & rock 67 Ga ppm: 32 element, soil & rock 67 Fe %: 32 element, soil & rock 67 Hg ppm: 32 element, soil & rock 67 K %: 32 element, soil & rock 67 K %: 32 element, soil & rock 67 Mg %: 32 element, soil & rock 67 Mn ppm: 32 element, soil & rock 67 Mo ppm: 32 element, soil & rock 67 Na %: 32 element, soil & rock 67 Ni ppm: 32 element, soil & rock 67 P ppm: 32 element, soil & rock 67 F ppm: 32 element, soil & rock 67 T ppm: 32 element, soil & rock 67 Ti ppm: 32 element, soil & rock 67 W ppm: 32 element, soil & rock 67 W ppm: 32 element, soil & rock 	67Be ppm: 32 element, soil & rockICP-AES67Bi ppm: 32 element, soil & rockICP-AES67Ca %: 32 element, soil & rockICP-AES67Ca (ppm: 32 element, soil & rockICP-AES67Co ppm: 32 element, soil & rockICP-AES67Co ppm: 32 element, soil & rockICP-AES67Cr ppm: 32 element, soil & rockICP-AES67Cr ppm: 32 element, soil & rockICP-AES67Cu ppm: 32 element, soil & rockICP-AES67Ga ppm: 32 element, soil & rockICP-AES67Fe %: 32 element, soil & rockICP-AES67Hg ppm: 32 element, soil & rockICP-AES67K %: 32 element, soil & rockICP-AES67Ka ppm: 32 element, soil & rockICP-AES67Ma ppm: 32 element, soil & rockICP-AES67Mo ppm: 32 element, soil & rockICP-AES67Na %: 32 element, soil & rockICP-AES67Na ppm: 32 element, soil & rockICP-AES67P ppm: 32 element, soil & rockICP-AES67P ppm: 32 element, soil & rockICP-AES67P ppm: 32 element, soil & rockICP-AES67Sc ppm: 32 element, soil & rockICP-AES67Sc ppm: 32 element, soil & rockICP-AES67Sc ppm: 32 element, soil & rockICP-AES67Sr ppm: 32 element, soil & rockICP-AES67Ti ppm: 32 element, soil & rockICP-AES67Ti ppm: 32 element, soil & rockICP-AES </td <td>67Be ppm: 32 element, soil & rockICP-AES0.567Bi ppm: 32 element, soil & rockICP-AES267Ca %: 32 element, soil & rockICP-AES0.0167Cd ppm: 32 element, soil & rockICP-AES0.567Co ppm: 32 element, soil & rockICP-AES167Cr ppm: 32 element, soil & rockICP-AES167Cr ppm: 32 element, soil & rockICP-AES167Cu ppm: 32 element, soil & rockICP-AES167Fe %: 32 element, soil & rockICP-AES1067fg ppm: 32 element, soil & rockICP-AES1067Hg ppm: 32 element, soil & rockICP-AES1067K %: 32 element, soil & rockICP-AES0.0167K %: 32 element, soil & rockICP-AES1067Ma ppm: 32 element, soil & rockICP-AES1067Mn ppm: 32 element, soil & rockICP-AES167Na %: 32 element, soil & rockICP-AES167Na %: 32 element, soil & rockICP-AES167Na %: 32 element, soil & rockICP-AES167P ppm: 32 element, soil & rockICP-AES167F ppm: 32 element, soil & rockICP-AES167F ppm: 32 element, soil & rockICP-AES167F ppm: 32 element, soil & rockICP-AES167Sr ppm: 32 element, soil & rockICP-AES167Sr ppm: 32 element, soil & rockICP-AE</td>	67Be ppm: 32 element, soil & rockICP-AES0.567Bi ppm: 32 element, soil & rockICP-AES267Ca %: 32 element, soil & rockICP-AES0.0167Cd ppm: 32 element, soil & rockICP-AES0.567Co ppm: 32 element, soil & rockICP-AES167Cr ppm: 32 element, soil & rockICP-AES167Cr ppm: 32 element, soil & rockICP-AES167Cu ppm: 32 element, soil & rockICP-AES167Fe %: 32 element, soil & rockICP-AES1067fg ppm: 32 element, soil & rockICP-AES1067Hg ppm: 32 element, soil & rockICP-AES1067K %: 32 element, soil & rockICP-AES0.0167K %: 32 element, soil & rockICP-AES1067Ma ppm: 32 element, soil & rockICP-AES1067Mn ppm: 32 element, soil & rockICP-AES167Na %: 32 element, soil & rockICP-AES167Na %: 32 element, soil & rockICP-AES167Na %: 32 element, soil & rockICP-AES167P ppm: 32 element, soil & rockICP-AES167F ppm: 32 element, soil & rockICP-AES167F ppm: 32 element, soil & rockICP-AES167F ppm: 32 element, soil & rockICP-AES167Sr ppm: 32 element, soil & rockICP-AES167Sr ppm: 32 element, soil & rockICP-AE

(EIA) - EQUITY ENGINEERING LTD.

CERTIFICATE

Project: RDN P.O. # : PTH94-01

Samples submitted to our lab in Vancouver, BC. This report was printed on 10-0CT-94.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
205 226 233	67 67 67	Geochem ring to approx 150 mesh 0-5 lb crush and split Assay AQ ICP digestion charge
* NOTE	1:	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9426519

Comments: ATTN: HENRY AWMACK

A9426519 **ANALYTICAL PROCEDURES** CHEMEX NUMBER UPPER DETECTION SAMPLES DESCRIPTION METHOD LIMIT CODE LIMIT A1203 %: XRF 902 0.01 100.00 24 XRF 906 24 CaO %: XRF 100.00 XRF 0.01 2590 24 Cr203 %: XRF XRF 0.01 100.00 903 24 Fe203 %: XRF XRF 0.01 100.00 908 24 K20 %: XRF 0.01 XRF 100.00 905 24 MgO %: XRF XRF 0.01 100.00 1989 24 MnO %: XRF 0.01 100.00 XRF 907 24 Na20 %: XRF 0.01 100.00 XRF 909 24 P205 %: XRF XRF 0.01 100.00 901 24 SiO2 %: XRF XRF 0.01 100.00 904 24 TiO2 %: XRF XRF 0.01 100.00 910 24 LOI %: XRF XRF 0.01 100.00 2540 24 Total % CALCULATION 0.01 105.00 2891 24 Ba ppm: XRF XRF 2 10000 2067 24 Rb ppm: XRF XRF 2 10000 2898 24 XRF 10000 Sr ppm: XRF 2 2973 24 Nb ppm: XRF XRF 10000 2 2978 24 10000 Zr ppm: XRF XRF 3 10000 2974 24 Y ppm: XRF XRF 2 1381 24 LECO-GASOMETRIC 100.0 C %: Inorganic 0.01

(EIA) - EQUITY ENGINEERING LTD.

CERTIFICATE

Project: RDN P.O. # : PTH94-01

Samples submitted to our lab in Vancouver, BC. This report was printed on 23-0CT-94.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
299	24	Pulp; prepped on other workorder
		· ·

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Page Number :1-A Total Pages :1 Certificate Date:23-OCT-94 Invoice No. :19426519 P.O. Number :PTH94-01 Account :EIA

Project : RDN Comments: ATTN: HENRY AWMACK

CERTIFICATION

						CERTIFIC	ATE OF A	NALYSIS	A94	126519	
SAMPLE	PREP CODE	A12O3 % XRF	CaO % XRF	Cr2O3 % XRF	Fe2O3 % XRF	K2O % XRF	MgO % XRF	MnO % XRF	Na20 % XRF	P205 % XRF	SiO2 % XRF
626855 626858 626860 626861 626863	299 299 299 299 299 299	13.99 13.29 10.47 14.50 11.26	0.85 0.37 0.21 7.74 6.73	0.01 0.01 0.01 0.01 < 0.01	5.88 3.31 12.90 9.43 8.26	13.05 11.83 9.20 0.36 8.52	0.55 0.23 0.17 3.92 2.33	0.57 0.38 < 0.01 0.13 1.37	0.31 0.22 0.25 5.59 0.38	0.27 0.18 0.10 0.18 0.13	59.69 66.80 56.71 47.37 49.84
626864 626865 626868 626870 626871	299 299 299 299 299 299	15.26 13.22 16.43 11.70 11.43	5.36 0.05 2.10 0.17 0.03	< 0.01 0.01 < 0.01 < 0.01 < 0.01	5.77 0.80 6.19 2.70 1.57	4.38 0.19 2.11 4.08 2.16	1.44 0.09 2.67 0.38 0.14	0.16 < 0.01 0.11 0.10 < 0.01	2.82 0.07 4.64 2.74 0.11	0.26 0.22 0.32 0.10 0.20	54.20 78.81 59.06 73.90 79.08
626875 626879 626880 626883 626883	299 299 299 299 299 299	11.90 15.30 14.78 13.81 14.85	11.99 0.93 6.15 0.42 4.32	< 0.01 < 0.01 < 0.01 0.01 0.01	5.82 3.61 5.38 1.93 4.52	5.62 9.31 11.37 10.22 5.55	4.12 0.73 1.65 0.31 1.13	0.90 0.28 0.39 0.01 0.11	0.29 2.09 0.36 0.28 2.97	0.18 0.19 0.28 0.25 0.24	43.32 62.63 50.61 67.27 57.29
626886 626887 626888 626889 626899	299 299 299 299 299 299	16.06 16.05 14.47 15.81 13.16	2.97 0.11 0.98 4.61 0.65	0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	5.39 6.22 2.01 5.74 3.96	2.85 1.31 7.70 4.77 10.46	1.84 0.17 0.76 1.33 0.40	0.16 < 0.01 0.14 0.15 0.32	6.90 0.16 0.31 0.72 0.26	0.26 0.29 0.07 0.27 0.15	55.91 64.92 68.10 55.84 66.36
626895 626897 626899 626990	299 299 299 299	11.90 11.31 13.10 11.75	3.41 0.67 2.02 1.70	< 0.01 0.01 0.01 0.01	3.68 3.10 5.91 4.32	9.80 8.41 9.69 10.02	0.57 0.40 0.99 0.26	0.49 0.06 0.26 0.34	0.39 0.27 0.25 0.28	0.23 0.17 0.20 0.21	63.98 70.06 59.73 66.73
- 											
											2

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Page Number :1-B Total Pages :1 Certificate Date: 23-OCT-94 Invoice No. : I9426519 P.O. Number : PTH94-01 Account :EIA

Project : RDN Comments: ATTN: HENRY AWMACK

						CERTIFIC	ATE OF A	NALYSIS	A94	126519	
SAMPLE	PRE		LOI % XRF	TOTAL %	Ba ppm	Rb ppm	Sr ppm	Nb ppm	Zr ppm	d d d d d d d d d d d d d d d d d d d	C % inorg
626855	299 -	- 0.44	3.89	99.50	1810	289	120	7	92	21	0.85
626858	299 -		1.88	98.90	2290	275	123	9	91	18	0.10
626860	299 -		7.79	98.17	2940	220	60	3	64	8	0.05
626861 626863	299 -		8.11 10.77	98.71 99.85	329 1680	14 177	297 176	5	125 77	34	1.45 2.90
020803	233 -	0.20	10.77	33.83	1090	1//	1/0	3	,,,		2.90
626864	299 -		9.59	99.75	615	138	289	9	82	17	1.35
626865	299 -		5.58	99.63	573	5	2150	10	164	3	< 0.05
626868	299 -		6.18	100.29	335	68	511	8	98	17	0.15
626870	299 -		2.13	98.24	994	124	99	8	93	9	< 0.05
626871	299	0.52	3.94	99.19	389	45	1720	8	131	3	< 0.05
626875	299 -	0.37	16.38	100.89	999	156	228	6	89	14	4.10
626879	299	- 0.36	3.28	98.71	1730	260	131	7	102	12	0.25
626880	299		8.12	99.61	1410	346	588	8	118	18	1.70
626883	299		2.64	97.64	4940	248	148	5	80	18	0.05
626885	299	0.42	7.28	98.69	1410	136	372	8	109	20	1.25
626886	299	0.48	6.16	98.99	1110	74	579	7	137	27	1.45
626887	299	0.51	10.25	99.99	1010	23	1750	8	126	28	< 0.05
626888	299		3.48	98.25	1730	214	151	9	108	15	0.35
626889	299 -		8.46	98.16	1160	124	329	8	92	16	0.85
626890	299 -	0.29	2.61	98.62	2150	257	123	8	87	19	0.10
626895 626897	299 299		4.78	99.63 97.93	1640 10200	236 230	149 370	56	80 54	12 12	1.15 0.15
626899	299		5.93	98.48	1370	226	126	7	89	13	1.15
626900	299		3.17	99.18	1230	231	119	7	86	16	0.40
· · · · ·											

r

CERTIFICATION

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9429760

Comments: ATTN: HENRY AWMACK

С	ERTIF	ICATE A94	29760			ANALYTICAL	PROCEDURES		
(EIA) - E(Project: P.O. # :	QUITY EN RDN PTH94-	GINEERING LTD.		CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
Samples	submitt	ed to our lab in Vancouve printed on 31-OCT-94.	er, BC.	367	24	C %: Leco induction furnace	LECO-IR DETECTOR	0.01	100.0
	SAM	PLE PREPARATION							
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTIO	N						
244	24	Pulp; prev. prepared at	Chemex						
	<u></u>								

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : RDN Comments: ATTN: HENRY AWMACK

Page Number :1 Total Pages :1 Certificate Date: 31-OCT-94 Invoice No. : I9429760 P.O. Number : PTH94-01 Account :EIA

				CERTIFICAT	E OF AN	ALYSIS	A 94	29760	
SAMPLE	PREP CODE	C %							
626855 626858 626860 626861 626863	244 244 244 244 244	0.99 0.28 0.26 1.71 3.33							
626864 626865 626868 626870 626871	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.38 0.09 0.24 0.16 0.05							
626875 626879 626880 626883 626885	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.83 0.70 1.82 0.33 1.47							
626886 626887 626888 626889 626889 626890	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.61 0.05 0.55 0.81 0.28							
626895 626897 626899 626990	244 244 244 244	1.52 0.23 1.75 0.58							
									_
· · ·			 	· · · · · · · · · · · · · · · · · · ·	CER	TIFICATION:_	<u> </u>	Said G	ing

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

÷

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9428862

Comments: ATTN: HENRY AWMACK

С	ERTIF	ICATE A9428862			ANALYTICAL P	ROCEDURES		
EIA)- E0 Project: P.O. #:	QUITY EN RDN PTH94-	GINEERING LTD.	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	Upper Limit
Samples	submitt	ed to our lab in Vancouver, BC. printed on 21-OCT-94.	383 312 316	3 1 3	Ag oz/T Pb %: Reverse Aqua-Regia digest Zn %: Reverse Aqua-Regia digest	FA-GRAVIMETRIC AAS AAS	0.1 0.01 0.01	20.0 100.0 100.0
	SAM	PLE PREPARATION						
CHEMEX	NUMBER SAMPLES	DESCRIPTION						
244	6	Pulp; prev. prepared at Chemex						
	<u> </u>	,,						

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : RDN Comments: ATTN: HENRY AWMACK Page Number :1 Total Pages :1 Certificate Date:21-OCT-94 Invoice No. :19428862 P.O. Number :PTH94-01 Account :EIA

CERTIFICATE OF ANALYSIS A9428862

					CER	FANAL 1315	A9420002	
SAMPLE	PREP CODE	Ag FA 1 oz/T	Pb %	Zn %				
10257 10263 10267 10268 626859	244 244 244 244 244	 4.0 3.9	1.23 	1.83 1.54 4.67 				
626894	244	4.1						
								<u> </u>
•	· .					CERTIFICATION:_	_/CUAK	hi

APPENDIX F

ł

1

R

R

1

ł

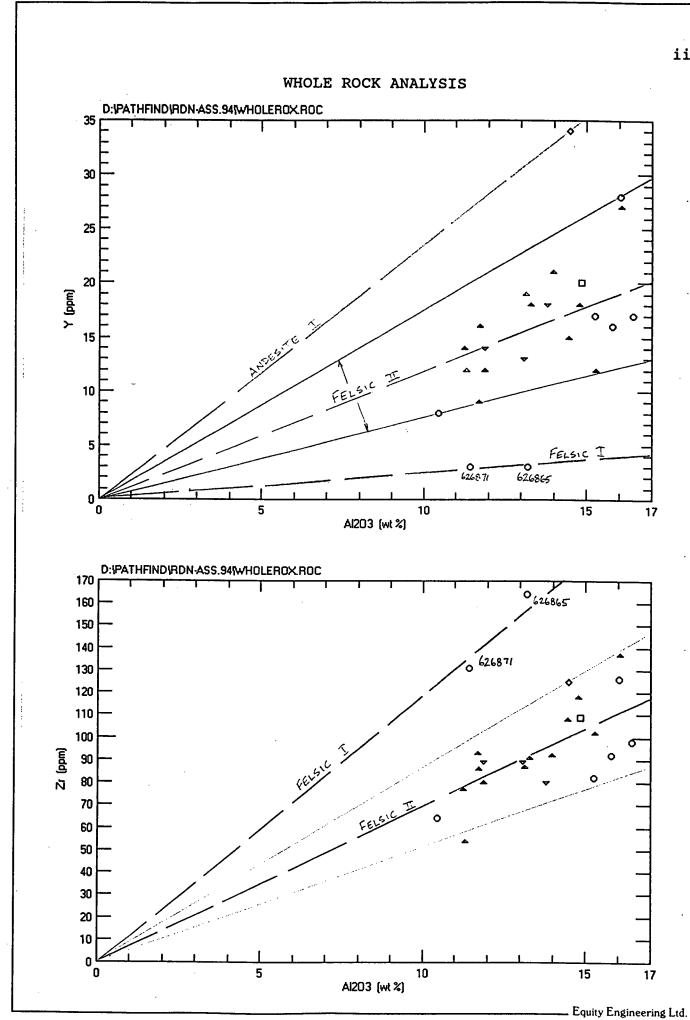
A

WHOLE ROCK ANALYSIS PLOTS

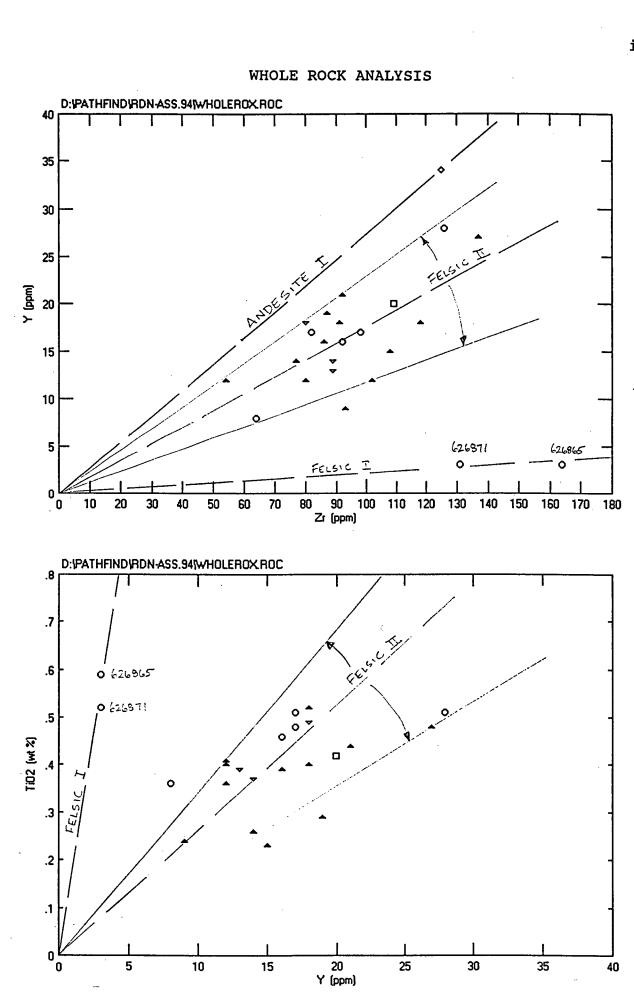
LEGEND

0	Feldspar porphyry (Unit 8a)
	Potassium feldspar megacryst porphyry (Unit 8b)
4	Felsic lithic-crystal lapilli tuff (Unit 7a)
7	"Graphite"-altered felsic (Unit 7GR)
\$	Andesitic crystal tuff (Unit 10c)

WHOLE ROCK ANALYSIS (Stanley and Madeisky, 1993)

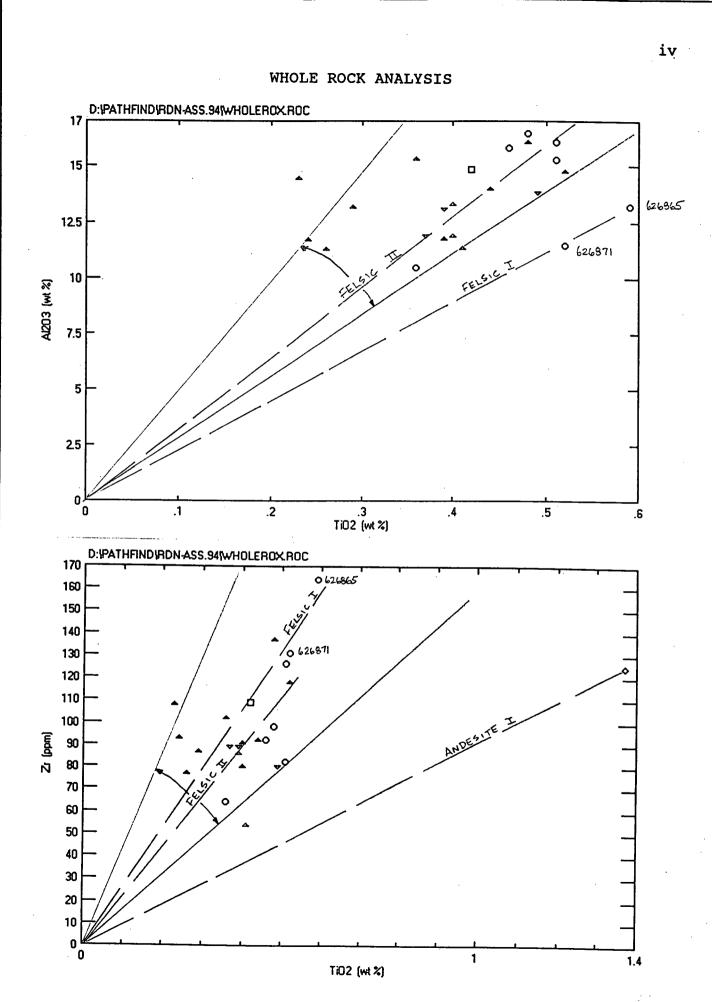

Conserved elements are those which remain unaffected by fractionation (incompatible) and alteration (immobile). Zr, Y, Nb, Ti, Th and P are commonly incompatible; Zr, Ti, Al, Nb, Y, Th and Hf are commonly immobile. For cogenetic rocks, a pair of conserved elements will have a constant ratio and their sample points will lie on a straight line through the origin on an X-Y scatter plot. Rocks which are not derived from the same initial magma will have different ratios of conserved elements; their samples lie on different lines on a scatter plot.

Scatter plots of potentially conserved elements on the RDN property show (Figures A1-6):


- a) the andesitic crystal tuff (sample 626861) has much higher TiO₂ and Y than all other rock types and lies on separate lines from the felsic rocks on several diagrams. As suggested by field evidence, it is not comagmatic with the felsic rocks.
- b) the felsic rocks can be split into two groups with different Y:Zr, TiO₂:Y, Zr:Al₂O₃, Y:Al₂O₃ and Al₂O₃:TiO₂ ratios. These two groups must be derived from different original magma compositions. The Felsic I group contains only two samples (626865 and 626871), both of which were taken from feldspar porphyry outcrops south of Gossan Creek.
- c) all remaining felsic samples form the Felsic II group, demonstrating that the felsic tuffs are comagmatic with the potassium feldspar megacrystic porphyry and some of the feldspar porphyries.
- d) the following elements appear to be conserved: Zr, Y, TiO₂ and Al₂O₃. Of these, Zr shows the least scatter from a line on the X-Y scatter plots and is most apt for normalizing.

Given petrographic descriptions, the most important phases which could be involved in crystal fractionation of the felsics would be potassium feldspar, plagioclase and quartz. However, Al_2O_3 is conserved (is not affected by crystal fractionation). This implies that feldspar crystals are not being removed from the melt, and variations in Ca, Na and K within the two felsic groups must be due to alteration rather than fractionation (cf Stanley and Madeisky, 1993, p. 167). It is therefore appropriate to plot Ca, Na and K values directly, rather than plotting residual values (derived from the difference between measured values and the fractionation line). Values on Figures 7a-c are normalized against Zr, to cancel out any mass transfer effects during alteration.

i



ii

iiï

Equity Engineering Ltd. -

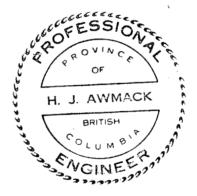
Equity Engineering Ltd.

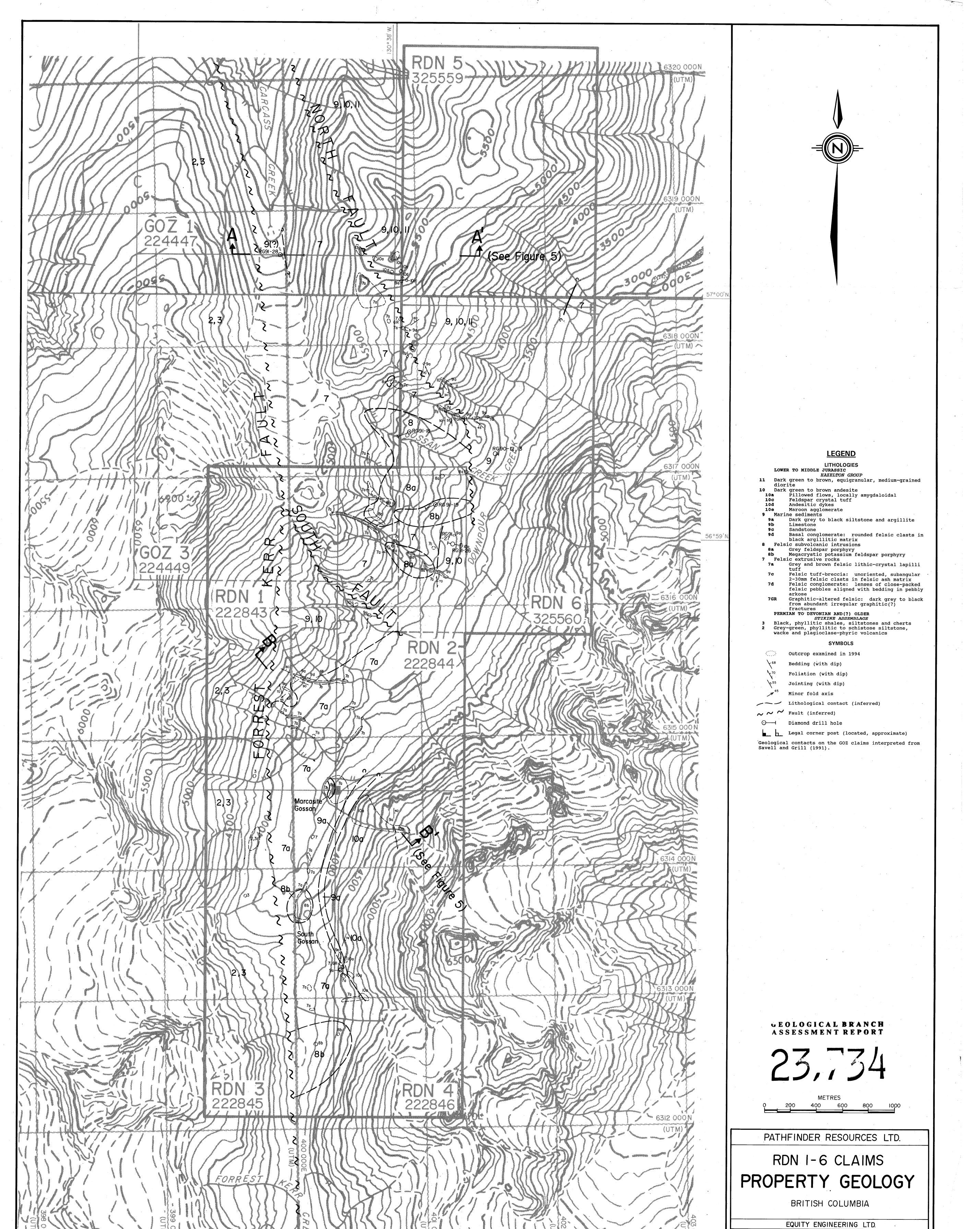
APPENDIX G

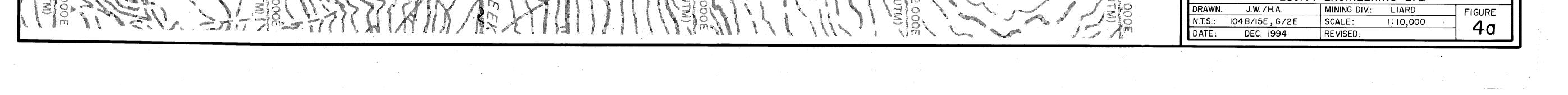
ļ

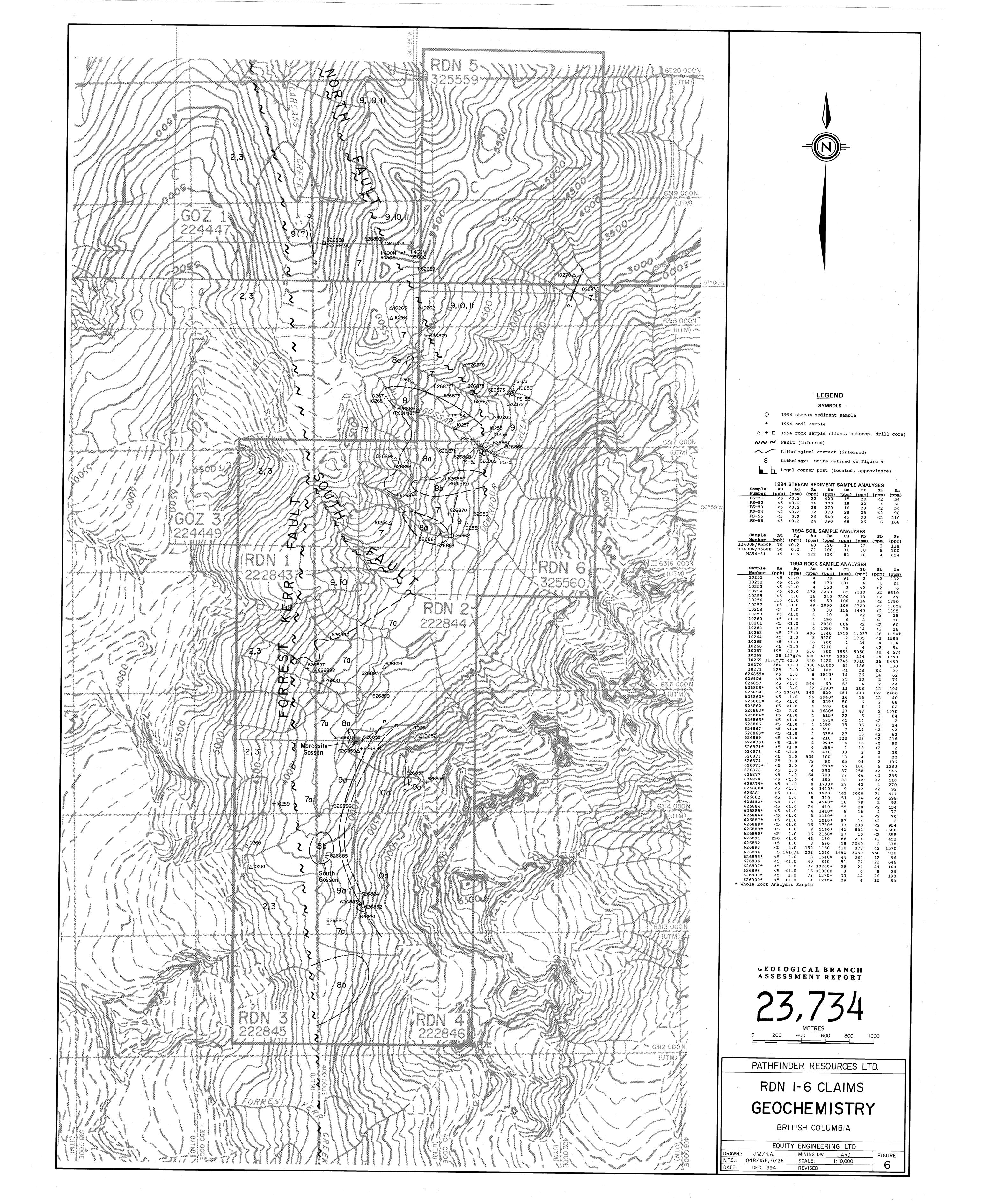
ENGINEER'S CERTIFICATE

ENGINEER'S CERTIFICATE


I, HENRY J. AWMACK, of 12-1348 Nelson Street, Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:


- 1. THAT I am a Consulting Geological Engineer with offices at Suite 207, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with an honours degree in Geological Engineering.
- 3. THAT I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.


4. THAT this report is based on fieldwork carried out by me or under my direction during September 1994, and on publicly-available reports. I have examined the property in the field.


U. DATED at Vancouver, British Columbia, this 16 day of 1994. 1995

Awmack, P.Enq. Henry J.

