	LOG NO:	FFR 0 3 1995	U
	ACTION		
COGFMA Resource	FILE NO:		

TECETVILL

JAN 2 4 1995

Gold Commissioner's Office VANCOUVER, B.C.

Geology and Geochemistry

LUCAS PROPERTY (Nechako Project) 1994

Omenica Mining Division British Columbia

NTS 93F/11E & W

FILMED

K. Schimann January 1995 94-CND-78-09

GEOLOGICAL BRANCH ASSESSMENT REPORT

23,745

TABLE OF CONTENTS

	<u> Pa</u>	<u>ge</u>
INTRODUCTION		1
PHYSIOGRAPHY AND ACCESS		1
REGIONAL GEOLOGY	· • • •	3
LEGAL DESCRIPTION OF THE PROPERTY		3
METHODOLOGY		3
GEOLOGY		7
GEOCHEMISTRY		7
CONCLUSIONS		7

List of Appendices

Appendix	1	Rock	Descriptions	and	Analyses
Appendix	1	LOCK	DC2C11DHQ112	anu	Allalyscs

Appendix 2 Statement of Expenditures
Appendix 3 Statement of Qualifications

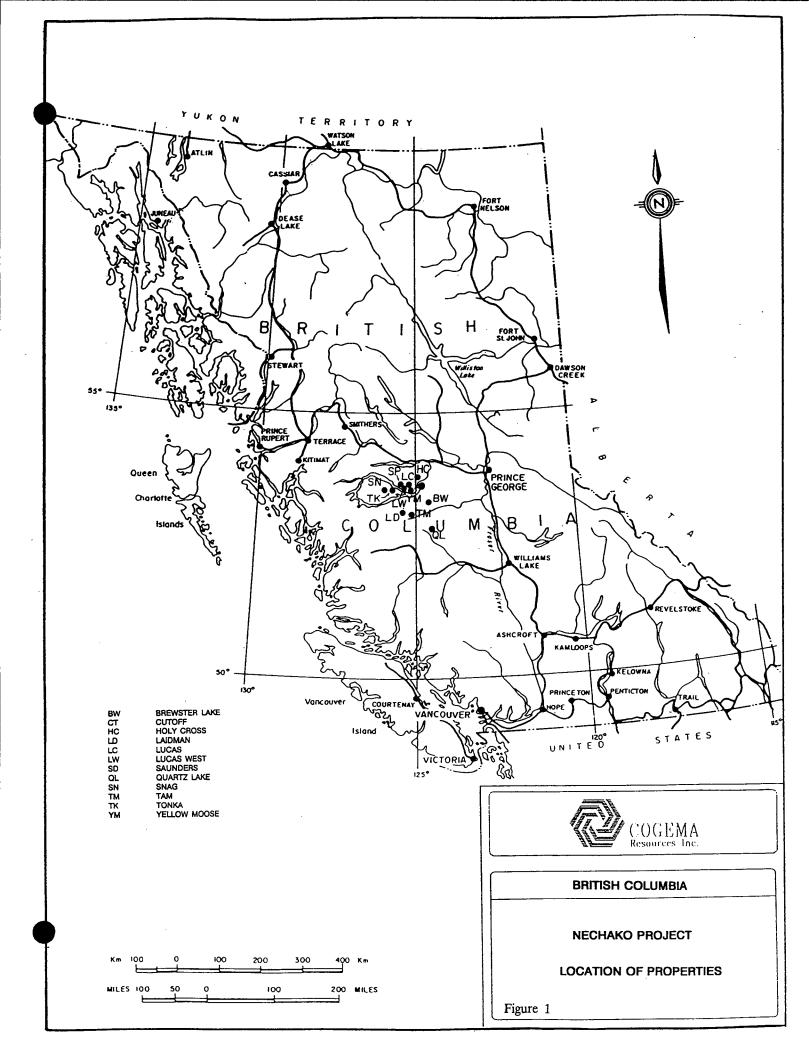
	List of Figures	
Figure 1 Figure 2	Nechako Project, Location of Properties	
	List of Tables	
Table 1: Table 2	Main Geologic Map Units of the Nechako Basin List of Claims: Lucas Property	
	List of Maps (in pocket)	
		Scale
Map 1 Map 2	Lucas Property, Geology	

INTRODUCTION

The Lucas Property was acquired by staking in late 1994, based on the release of a Geological Survey Branch regional geochemical lake sediment survey and COGEMA's evaluation of the regional geology. It is located in the Nechako Basin, in the central part of British Columbia (Fig. 1). Mineral showings and deposits with both high-grade vein and low-grade bulk tonnage potential occur in this region.

The property lies in the central part of the Stikine Terrane. The geology of this part of the Stikine Terrane contains three volcanic stratigraphic groups of latest Upper Cretaceous to Miocene age, underlain by Cretaceous and older basement rocks. Mineralization is associated with an Eocene tectonic event that involved crustal extension, felsic and basic volcanism, unroofed metamorphic complexes, large and small scale calderas and associated plutons, pull-apart sedimentary basins, and basin and range geomorphology. This Eocene tectonic-metallogenic belt extends from northwestern British Columbia and crosses all major geologic terranes of the northern Cordillera to the Columbia River basalt plateau in Washington State. The Tertiary tectonic evolution and volcanism of the Nechako Basin are similar to that of the Great Basin of Nevada and adjacent States and the potential for volcanic-hosted and hot-spring type epithermal deposits is similar.

Two epithermal precious metals deposits are currently being mined within this Eocene metallogenic province: the Cannon mine (Wenatchee District), and the Golden Promise in the Republic District. Three have recently been mined out the Equity Silver Mine, the Blackdome, and the Kettle deposits. High sulphide replacement deposits of the Republic graben, although not strictly epithermal, are part of the same metallogenic event.


PHYSIOGRAPHY AND ACCESS

The Nechako Basin is part of the Interior Plateau of the Canadian Cordillera, comprising the Nechako Plateau north of the Blackwater River, and the Fraser Plateau south of it.

The North of the Basin, where the Lucas property is located, is a plateau with a fairly constant overall elevation, but quite dissected at the local scale in a distinctive basin and range (horst and graben) topography producing more abundant outcrop than in the other two areas. Elevations vary from 1,417 m at the top of Deerhorn Hill to 715 m on François Lake.

Access is good, using a network of forestry roads starting from Highway 16; from one of these an old 4-WD trail reaches the southwest corner of Lucas Lake. There are no major environmental concerns.

On the Lucas property, outcrop conditions are quite good, compared to other parts of the region, and fairly evenly distributed due to the locally hilly topography.

REGIONAL GEOLOGY

The Tertiary geologic elements of the Nechako Basin are part of a regional extensional system that extends from the Republic area of northern Washington State, northwesterly for some 1000 kilometres into the Babine district of north central British Columbia. This belt trends northwest with the approximate dimensions of 1000 X 200 kilometres. It crosses major terrane boundaries and underlies the Quesnel, Kootenay and Omineca Terranes in the south and the Stikine Terrane in the north, crossing the oceanic Cache Creek Group. It overlaps the southern margin of the Bowser Basin where it continues northward as a thin strip along the eastern margin of the Coast Range.

Stratigraphic and intrusive rocks in the Stikine Terrane range in age from Palaeozoic to Pleistocene. With respect to the Eocene mineral setting, the geologic elements of the Stikine Terrane may be divided into three separate packages: basement rocks, latest Upper Cretaceous-Eocene rocks associated with mineralization, and cover rocks (Table 1).

LEGAL DESCRIPTION OF THE PROPERTY

The Lucas property consists of 20 2-post claims with a total of 20 units. They are owned 100% by COGEMA Resources Inc. The claims are listed in table 1 and shown on figure 2.

METHODOLOGY

The Lucas property was accessed from a camp located in the southwest corner of Lucas Lake. Systematic geological mapping and prospecting for alteration and mineralization in outcrop and float covered the whole property. Outcrops are shown on Map 1 and rock and silt samples collected on Map 2. No indication was found of previous mineral exploration activities.

Analyses of all rock and silt samples were done by Acme Analytical Laboratories Ltd. The analytical procedures were as follows:

Au:

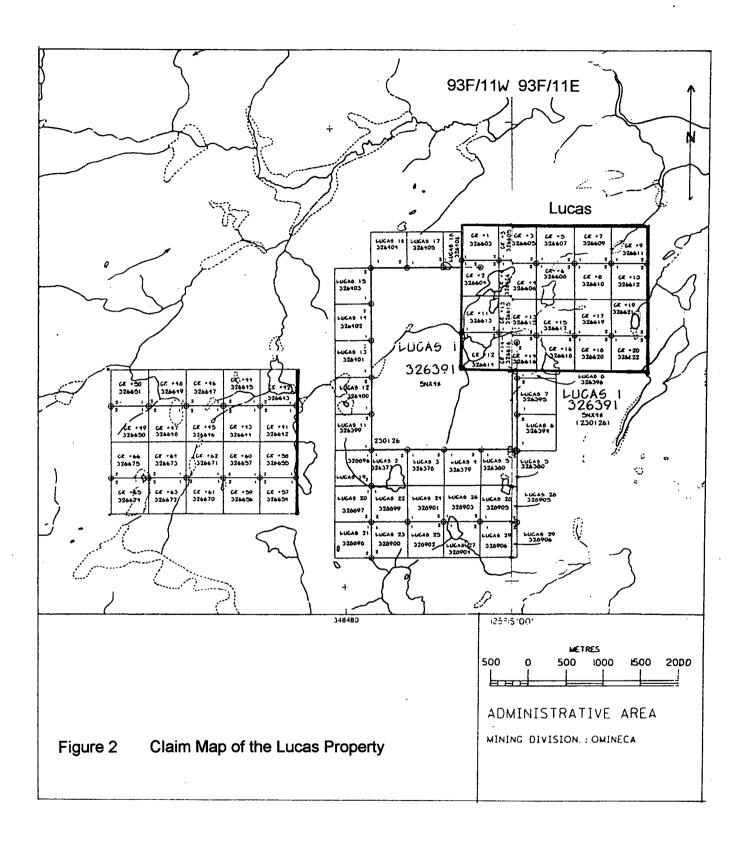
Aqua regia digestion, MIBK extraction, atomic absorption; 50 g for

till;

30 Elements:

Aqua regia digestion, ICP on 0.5 g for till and rock

Hg:


Flameless atomic absorption

Aqua regia digestion results in partial analysis for the following elements: Ca, Mg, Fe, Mn, Cr, Ba, Sr, U, Th, La, Ti, B, Al, Na, K.

Tab	le 1: Main Geologic Map Units of	the	Nechako Basin
	Stratified Rocks		Intrusive and Metamorphic Rocks
11.	Anahim Volcanics (Pliocene-Pleistocene)		
10.	Chilcotin Volcanics (Miocene		
9.	Endako Group (Eocene-Oligocene)		
8.	Ootsa Lake Group (Eocene and Palaeocene)	G.	Eocene (stocks, plugs, dykes, rhyolite, felsite, porphyry, diorite, gabbro)
7.	Kasalka-Kingsvale Groups (Upper Cretaceous)	F.	Upper Cretaceous-Palaeocene (Quanchus Intrusions: stocks and batholiths, diorite to quartz monzonite)
6.	Skeena-Jackass Mountain Groups (Lower Cretaceous)	E.	Mid-Cretaceous (mainly tonalite to quartz monzonite of Coast Range complex)
5.	Gambier Group (Upper Jurassic-Lower Cretaceous)	D.	Jurassic-Cretaceous (François Lake Batholith; quartz diorite to granite, includes quartz-feldspar porphyry)
4.	Relay Mountain-Bowser Groups (Upper Jurassic-Lower Cretaceous)		porp
3.	Hazelton Group (Lower and Middle Jurassic)	C.	Middle Jurassic (locally foliated granodiorite and quartz monzonite)
2.	Stuhini Group (Upper Triassic)		
1.	Cache Creek Group (Upper Palaeozoic)	В.	Permian (mainly granodiorite in lower Chilcotin River)
		A.	Metamorphic Rocks (gneiss, schist, metavolcanics, cataclasites)

Table 2 List of Claims: Lucas Property

NAME	RECORD	UNITS	STA	KED	GOOD	MINING	NTS
	No		DATE	YEAR	UNTIL	DIVISION	
LUCAS PR	ROPERTY	•		·		· / / / / / / / / / / / / / / / / / / /	
CR 1	326603	1	03-Jun	1994	1998	OMINECA	93F/11W
CR 2	326604	1	03-Jun	1994	1998	OMINECA	93F/11W
CR 3	326605	1	03-Jun	1994	1998	OMINECA	93F/11W+11E
CR 4	326606	1	03-Jun	1994	1998	OMINECA	93F/11W+11E
CR 5	326607	1	03-Jun	1994	1998	OMINECA	93F/11E
CR 6	326608	1	03-Jun	1994	1998	OMINECA	93F/11E
CR 7	326609	1	03-Jun	1994	1998	OMINECA	93F/11E
CR 8	326610	1	03-Jun	1994	1998	OMINECA	93F/11E
CR 9	326611	1	03-Jun	1994	1998	OMINECA	93F/11E
CR 10	326612	1	03-Jun	1994	1998	OMINECA	93F/11E
CR 11	326613	1	03-Jun	1994	1998	OMINECA	93F/11W
CR 12	326614	1	03-Jun	1994	1998	OMINECA	93F/11W
CR 13	326615	1	03-Jun	1994	1998	OMINECA	93F/11W+11E
CR 14	326616	1	03-Jun	1994	1998	OMINECA	93F/11W+11E
CR 15	326617	1	03-Jun	1994	1998	OMINECA	93F/11E
CR 16	326618	1	03-Jun	1994	1998	OMINECA	93F/11E
CR 17	326619	1	03-Jun	1994	1998	OMINECA	93F/11E
CR 18	326620	1	03-Jun	1994	1998	OMINECA	93F/11E
CR 19	326621	1	03-Jun	1994	1998	OMINECA	93F/11E
CR 20	326622	1	03-Jun	1994	1998	OMINECA	93F/11E
i	TOTAL	20					

GEOLOGY

The Lucas property is underlain mainly by Kasalka feldspar porphyry and tuffaceous andesites, with lower Endako basalt along the eastern boundary (Map 1).

The Kasalka Group forms the core of the property. The dominant lithologies are fedlspar porphyry andesitic pyroclastics, mostl coarse. Crystal/lithic ash tuffs are also present. An area of more dacitic pyroclastic rocks occurs in the west central part of the property. Lower Endako Group andesitic basalts underlie the higher ground along the eastern border of the property and are also present in the northwest corner. Very distinctive dykes of rhyolite or dacite cut the Endako Group andesitic basalt; they are several metres to, possibly in place, several tenths of metres wide; they are fine to medium grained, grey-green when fresh, white when weathered, quartz feldspar phyric, with abundant fine biotite and some magnetite, and have a "sandy" aspect. They are considered to be part of the Ootsa Lake Group and could be related to a rhyolite dome forming a large high round hill, a few kilometres east of the property. They are similar to a unit mapped as felsite in 93F/3¹.

A broad zone of propylitization, locally with silicification and pyritization occurs in the centre of the property, over a length of more than 1 km. It trends north to northeast and crosses the lake with the highest Au geochemical anomaly, which led to the staking of this property (1993 BC Geological Survey).

GEOCHEMISTRY

Analysed rock samples, of altered and more or less silicified andesite, from the main propylitized area, have only slightly anomalous Au, but are anomalous in As, Sb, and Hg. One sample of subcropping altered andesite west of the main area contains 310 ppb Au with anomalous As, Hg, Cu, and Pb. The highest Hg values are found in quartz boulders which may not always be proximal.

Two samples of stream sediment were taken; they are both anomalous in Au, As, and Hg.

CONCLUSIONS

The 1994 exploration work on the Lucas property discovered alteration and minerralization which can be related to the lake sediment anomalies that led to the staking of the claims. Further work is required to define the extent and potential of the mineralization found in place and the source of the mineralized boulkders in the till.

¹ L.Diakow et al. 1994, GSB OF 1994-2

Appendix 1 Rock Descriptions and Analyses

Area	Number	Туре	Name	Description	Sampler
LC	LC-001	flt	cgl	15/2; rusty fine diss py in dk gry matrix of cgl (100 m W of F.P. CR9/10	RB
LC	5000	flt	rhy	15cm/3; silicif rhy + dk grey qz	KS
LC	5001	ос	andes	green propyl Fp P andesite diss py	KS
LC	5002	flt	qz	15/1; local fit of white bull qz, some black weather. carb.	KS
LC	5003	ОС	qz	white bull qz, some black weather. carb., in propyl andesite	KS
LC	5004		qz	qz sweats in propyl andesite; epidote.	KS
LC	5005		qz	pachty qz vein, fine specularitein +/- propyl andesite; jasperoidal vein nearby.	KS
LC	5006	flt	qz	10/1; chalced. qz py casts, looks local	KS
LC	5007	ОС	qz-carb	10 cm chalced qz-ankerite vein in band of orange weathering basalt	KS
LC	5008	ОС		P.?us recent tuffa in seepage, spring	KS
LC	5009	flt	rhy	8/1-2; very fine grained aph rhy? some sericite on fract, fine qz veinlets	KS
LC	5010	ос		fract. propyl andesite, some Cc gashes, dark chlorite, hematite no py	KS
LC	5011	ос	andes	zone with py along NS fractures in propyl andesite	KS
LC	5109	flt	Silic.	Silica bldrs, 1.5m wide (several small) - may be in place - major digging!!	JB
LC	5110	flt	Fp P	Float '3' fine dissem sulphides in siliceous F-spar P.	JB
LC	5111	flt	Sil	Brittle silica, dark colored float. 10m from 5110R.	JB
LC	5112	flt	Sil	Rusty to blk silicified '3' bldr, 12m wide, sulfur smelling.	JB
LC	5113	flt	Fp P	Oxidized bands feld-P same location above, 5m wide.	JB
LC	5114	ос	Fp P	Oxidized altered feldspar P.?	JB
LC	5115	flt	Qtz	Wavy band qtz in basalt o/c area, but sample is fit chalcedony.	JB
LC	5116	flt	qz	1.5 m/R4; dark silica bldr, clean crystalline qz stringers no vis. sulph.	JB
LC	5117	flt		in same ck, felsic silicified '1', minor py 12cm fine grained.	JB
LC	5118	flt		8cm '4' float, altered silicified feldspar P no sulphide. Same ck.	JB
LC	5119			Up to 15% dissem py, very siliceous '4' monzonite.	JB
LC	5120			In canyon, at 5108S site, 0.5m band altered Feldspar P argillized, very minor py <1% 2m S-side of ck, can be followed for 6-	JB
				8m, goes on bank.	
LC	5121	ОС		Approx 125m N150 from 5120R, found 2cm wide in altered Feldspar P approx strike N15E, dipping 80W.	JB
LC	5122			Altered Feldspar P.?along strike from 5121 (50m), minor py.	JB
LC	5209			Arg. alt. qtz feldspar P.? with qtz veinlet (1-3mm) stockwork, occasional dissem py.	RB
LC	5210			Arg. alt. qtz feldspar P.? with qtz veinlet (1-3mm) stockwork, occasional dissem py.	RB
LC	5211			Float? about 150 m north of 5209R. Large bldr? qtz veining, more py but same as 5209R.	RB
LC	5212			Float? about 150 m north of 5209/10R. Large bldr? qtz veining, more py but same as 5209R.	RB
LC	5213			Same loc as 5209/10R; more qtz veining, more py.	RB
LC	5214			25 cm; Possible subcrop, prop. alt. crowded felspar, P.?hyry with quartz veining, occasional rusty.	RB
LC	5215			Qtz/jasper with occasional dissem. py in qtz.	RB
LC	5216			Prop. alt. crowded feldspar, P.?with qtz veining, dissem py. Loc 30m NW of 5209R.	RB
LC	5217			15 cm; Totally silicic, felds. P trace py.	RB
LC	5218			15 cm; Prop./arg., alt. felds. P.?, qtz veining, rusty orange weath, if o/c, it is very narrow seam (20-50cm).	RB
LC	5219			10 cm; In small lake which drains into disc. lake from SW, qtz with yellow/orange weathering.	RB
LC	5221			30 cm; Qtz with dissem py.	RB

Area	Number	Туре	Name	Description	Sampler
LC	5222	SC	Fp P	Prop. alt. felds P.?or tuff. Trace py (Carb- tuffa). Sample same loc 5228.	RB
LC	5223			Qtz veins (stkwork) cutting prop alt felds P.?(or tuff), occasional dissem py. Its about 40m N of 5209/10R.	RB
LC	5224	oc	Qz swk	Qtz stkwork with py in prop alt fels P.? Loc about 20m W of 5223R.	RB
LC	5225	oc		Qtz veining/ silicification of tuff andesite, with py. Loc 50m SW of 5209R.	RB
LC	5226	ОС	andes	Qtz veining/ silicification of tuff andesite, with py. Loc 50m SW of 5209R.	RB
LC	5227	ОС		Prop alt tuff andesite?, with occasional qtz veining and dissem py.	RB
LC	5228	sc	Fp P	Prop. alt. felds P.?or tuff. Trace py (Carb- tuffa). Sample same loc 5222.	RB
LC	5229	flt	Tf	15 cm; Qtz veining in prop alt tuff?	RB
LC	5230	flt	Qtz bx	13 cm; 5m E of 5229, qtz/qtz bx.	RB
LC	5231	flt	Síl.	25 cm; Very siliceous fragmental rock.	RB
ဌ	5232	sc	Fp P	20 square meters SC, prop alt felds P qtz stringers.	RB

	_	
Rock	Sample	Analyse

Sample	Au	Ag	As	Sb	Hg	Мо	Cu	Pb	Zn	Ba	Ni	Cr	Co	Mn	Fe	٧	Sr	Mg	Ca	Ti	P	La	U	Th	Cd	Bi	В	W	Al	Na	K
	ppb	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm p	pm	%	%	%
LC-001	11	1.4	104	11	1250	10	12	60	110	72	16	16	1	58	2.22	2	16	0.01	0.03	0.01	0.006	17	5	3		2	2		0.24	0.01	0.24
5000	1	0.1	16	5		4	8	9	3	122	5	7	1	128	0.35	2	7	0.01	0.01	0.01	0.003	17	5	7	0.2	2	2		0.15	0.03	0.12
5001	3	0.1	6		105	5	25	15	82		10	14	17	784	3.94	46	52	0.91	0.49		0.116	15	5	2	0.3	2	2		1.55		0.20
5002	1	0.1	3		5	2	5	4	17	30	6	7	2	381	0.68	2		0.04	0.03		0.014	2	5	2	0.3	2	2	$\overline{}$	0.11		0.03
5003	1	0.1	2		5	2	23	6		102	8	7	6		1.97	38			0.77		0.055	6	5	2	0.2	2	2		1.01		0.07
5004	1	0.1	6		5	2	13	7	30	91	11	19		536	1.28	17			2.58		0.059	9	5	2	0.3	2	2	_	0.72	0.02	0.12
5005	2	0.1	2	2	5	1	15	10	57	17	31	24	15	1967	2.65	48		5.54	12.03	0.01	0.018	2	5	4	0.6	2	2	3	0.44	0.02	0.04
5006	1	0.1	28	14	155	6	4	6	3		9	9		64	0.37	2		0.01	0.03	-	0.002	3	5	2	0.2	2	2	-	0.02	0.01	0.01
5007	1	0.1	2	3	5	4	12	3	39	38	28	14	8	570	2.53	27		0.08	0.48	0.01	0.020	3	5	2	0.2	3	2	1	0.16		0.03
5008	1	0.1	2		5	1	6	2	6	1564	3	1	5	130	0.07	2		0.23	34.82	0.01	0.008	2	5	2	0.4	2	2	_	0.08		0.02
5009	1	0.1	2	3	5	1	3	25	26	574	3	3	2	137	0.50	2		0.05	0.48	0.01	0.009	13	5	4	0.3	2	2	1	0.31		
5010	1	0.1	3	2	5	1	12	9	75	340	8	13	11	865	2.94	64	69	0.43	2.47	0.04	0.139	13	5	2	0.3	2	2	1	0.90	0.05	0.19
5011	2	0.1	74	2	5	3	10	11	62	95	7	12	7	247	3.64	31	21	0.40	0.26	0.01	0.102	12	5	2	0.2	2	2	1	1.41	0.03	0.19
5109	1	0.1	43		140	4	3	3	4	9	6	6	1	122	0.76	2	2	0.01	0.01	0.01	0.009	48	5	4	0.2	2	2	1	0.23	0.01	0.17
5110	1	0.1	3	2	5	2	8	6	27	54	4	6	4	451	2.32	24	139	0.17	1.83	0.12	0.083	5	5	2	0.2	4	2	2	1.16	0.19	0.11
5111	1	0.1	28	38	180	17	5	3	1	13	9	10	1	61	0.41	2	2	0.01	0.04	0.01	0.014	2	5	2	0.2	2	2	2	0.01	0.01	0.01
5112	3	0.1	333	149	740	12	7	2	1	66	16	13	1	100	0.93	2		0.01	0.01	0.01	0.004	2	5	2	0.2	2	2	1	0.01	0.01	0.05
5113	1	0.1	5	2	5	1	7	8	70	117	6	11	8	625	2.55	46	23	0.26	0.33	0.01	0.089	9	5	2	0.2	2	2	1	1.47	0.10	0.42
5114	15	0.3	63	6	5	7	22	29	73	104	8	6	7	240	2.70	17	20		0.28	0.01	0.080	14	5	2	0.3	2	2	1	1.31	0.02	0.22
5115	1	0.1	3	4	5	4	10	4	20	48	19	18	4	363	0.98	12	79	0.19	2.04	0.01	0.026	5	5	2	0.2	2	2	2	0.36	0.01	0.02
5116	2	0.1	172	118	555	18	6	2	3	30	11	13	1	427	1.04	2	10		0.05	0.01	0.002	2	5	2	0.2	2	2	4	0.02		0.01
5117	1	0.1	7	4	5	2	18	3	9		6	7	1	762	1.56	9		0.21	0.13	0.01	0.016	7	5	2	0.2	2	2	1	0.41	0.06	0.03
5118	4	0.1	21	6	150	5	5	9	9	38	13	12		284	0.54	3		0.01	0.03	0.01	0.005	31	5	6	0.2	2	2	1	0.16	0.04	0.16
5119	2	0.1	54	2		1	46	9	42	27	16	12	26	1279	5.61	113	40	1.93	2.44	0.12	0.077	3	5	2	0.2	4	2	1	2.02	0.09	0.11
5120	30	0.5	33	2	5	2	23	8	4	127	5	5	6		2.91	19			0.09	0.01	0.053	6	5	2	0.2	2	2	1	1.09		0.17
5121	63	0.9	183	2		5	21	13	34	56	13	9	10	906	2.59	17	29	0.27	0.89	0.01	0.021	5	5	2	0.2	2	2	1	0.68		0.04
5122	6	0.1	5	34		2	54	71	73	63	6	5	9	345	2.84	19	9	0.51	0.20	0.01	0.055	7	5	2	0.2	3	2	1	1.42		0.16
5209	5	0.3	8	3	30	2	13	43	37	912	5	7	7	258	2.34	12	26	0.21	0.16		0.071	14	5	2	0.2	2	2	2	0.97		0.25
5210	3	0.2	9		25	1	26	29	43	1199	7	6			1.67	11	24		0.26	-	0.079	14	5	2	0.2	2	2		1.10		0.29
5211	1	0.1	10		240	8		2	1	21	10	14	1	65	0.44	2	1	0.01	0.01	0.01	0.002	2	5	2	0.2	2	2	5	0.01		0.01
5212	1	0.1	31	31	270	13	12	4	1	14	14	16		65	0.59	2	1	0.01	0.01	0.01	0.002	2	6	2	0.2	2	2	4	0.01		0.02
5213	1	0.1	3		40	2	4	11	37	193	8	7	7	1316	1.58	10	27	0.24	0.65	0.01	0.048	10	5	2	0.2	2	2	1	0.81	0.02	0.20
5214	2	0.1	2	2	205	2	18	5	52	121	10	7	7	481	2.34	16	18	0.37	0.39	0.01	0.044	10	5	2	0.2	2	2	2	1.17		0.20
5215	1	0.1	2	2	5	3	10	2	21	36	30	15	9	429	2.66	22	6	0.04	0.05	0.01	0.015	2	5	2	0.2	2	2	3	0.11	0.01	0.02
5216	39	0.5	7	2	30	2	34	36	71	239	11	11	13		3.80	26	15		0.19		0.052	14	5	2	0.2	2	2	1	1.47		0.23
5217	1	0.1	24	18	1110	4	2	2	1	5	7	9	1	59	0.34	2	1	0.01	0.01	0.01	0.002	2	5	2	0.2	2	2	2	0.05	0.01	0.02
5218	310	2.0	170	10	395	4	100	246	57	109	8	9	6	158	2.48	16	27	0.26	0.11	0.01	0.040	3	5	2	0.2	2	2	1	0.75	0.01	0.16
5219	6	0.1	24	5	620	7	4	12	25	42	10	9	1	263	0.92	2	10	0.01	0.03	0.01	0.003	17	5	5	0.2	2	2	1	0.20	0.03	0.15
5221	13	0.2	26	2	45	13	2	16	22	129	5	5	5	792	1.46	10		0.09	0.80	0.01	0.064	11	5	2	0.2	2	2	1	0.59		0.20
5222	2	0.3	18	2	135	6	2	31	152	655	676	7	137	737	2.80	14	95	0.28	0.64	0.01	0.009	69	5	10	0.9	3	2	1	1.43	0.01	0.22
5223	6	0.4	76	3	25	3	16	24	113	159	17	10	19	487	5.63	41	14	1.14	0.15	0.01	0.041	12	5	2	0.2	2	2	1	1.96		0.22
5224	29	0.6	40	2	5	1	40	9	55	72	9	11	7	304	2.54	17	11	0.35	0.24	0.01	0.069	10	5	2	0.2	2	2	2	1.22		0.22
5225	38	0.4	122	5	35	4	16	20	11	110	7	8	2	56	1.46	10	15	0.07	0.09	0.01	0.037	10	5	2	0.2	2	2	1	0.51	0.01	0.24
5226	8	0.9	26	2	10	4	12	49	7	88	5	6	1	37	0.85	5	13	0.02	0.05	0.01	0.028	5	5	2	0.2	2	2	1	0.32	0.01	0.19
5227	3	0.1	36	2	15	2	10	10	66	86	7	7	10	709	3.15	28	14	0.43	0.30	0.01	0.100	14	5	2	0.2	2	2	1	1.42	0.03	0.24
5228	8	0.4	55	2		3	7	11	51	239	7	8	9	468	2.84	25	26	0.31	0.34	0.01	0.098	14	5	2	0.2	2	2	1	1.14	0.03	0.24
5229	10	0.1	11	2		2	11	8	72	150	14	17	20	1434	3.81	54	17	1.82	0.37	0.01	0.085	12	5	2	0.2	2	2	1	2.19	0.01	0.18
5230	1	0.1	9			7	4	2		10	10	10	1	55	0.37	2	1	0.01	0.01	0.01	0.002	2	5	2	0.2	2	2	2	0.05	0.01	0.02
5231	1	0.1	20		1030	2	1	9	18	46	6	6	1	64	0.22	3	10	0.01	0.03	0.01	0.004	33	5	7	0.2	2	3	1	0.18	0.03	0.22
5232	13		81	2		7	6	12	54	98	5	5	4	132	2.92	20	13	0.27	0.21	0.01	0.092	11	5	2	0.2	2	2	1	1.12	0.02	0.25

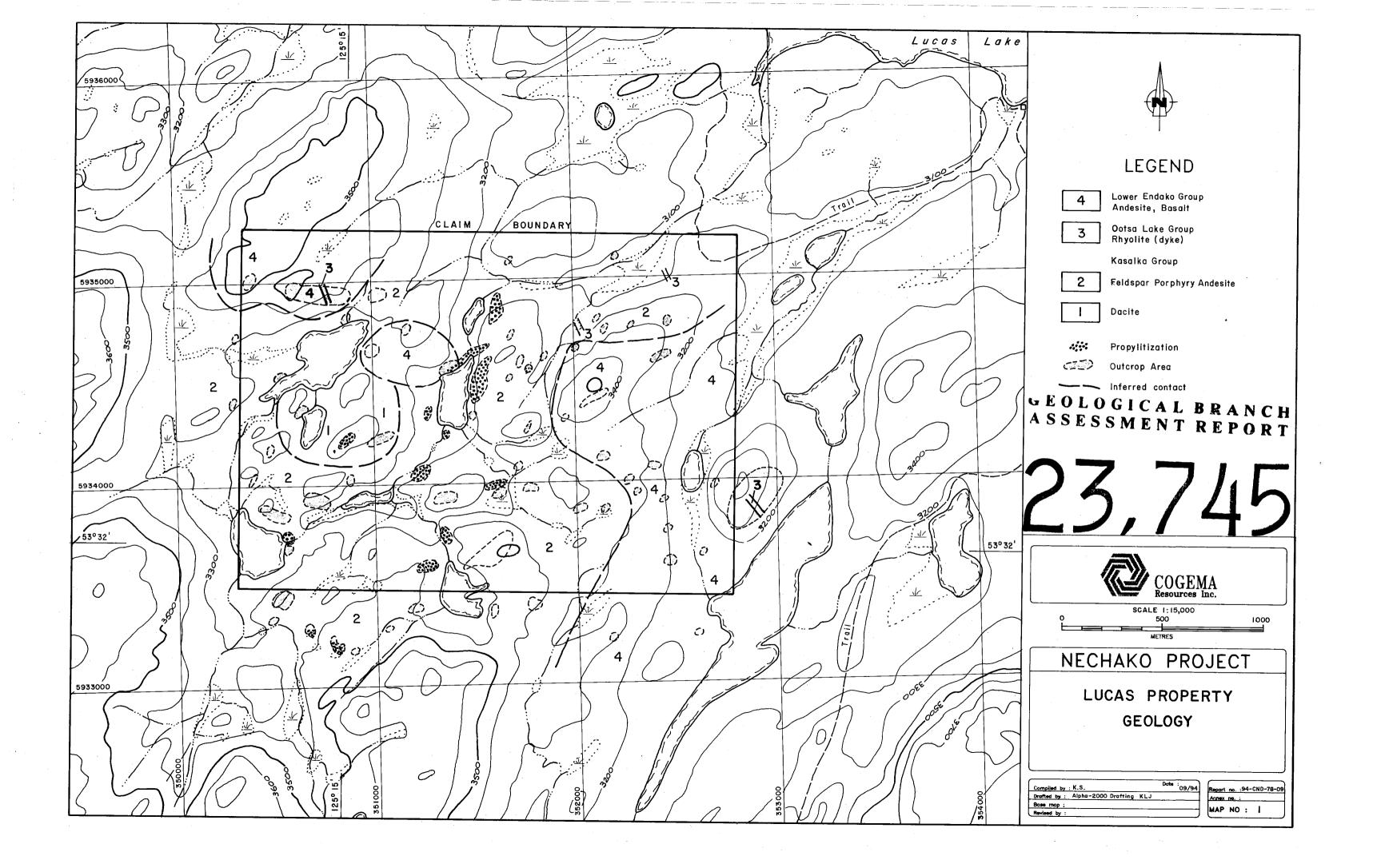
Area	Sample	Au	Ag	As	Sb	Hg	Mo	Cu	Pb	Zn	Ba	Ni	Cr	Co	Mn	Fe	V	Sr	Mg	Ca	Ti	P	La	U	Th	Cd	Bi	В	W	Al	Na	K
		ppb	ppm	ppm	ppm	ppb	ppm	%	ppm	ppm	፠	%	%	%	ppm	%	%	%														
LC	5108S	6	0.1	7	2	85	1	14	6	56	138	13	21	10	1098	2.91	41	117	0.58	0.81	0.03	0.092	17	5	2	0.2	2	2	1	1.23	0.03	0.13
LC	5220S	4	0.1	18	2	70	1	10	7	48	181	11	20	11	1520	3.88	56	93	0.73	0.65	0.06	0.092	17	5	2	0.2	2	2	2	1.24	0.05	0.13

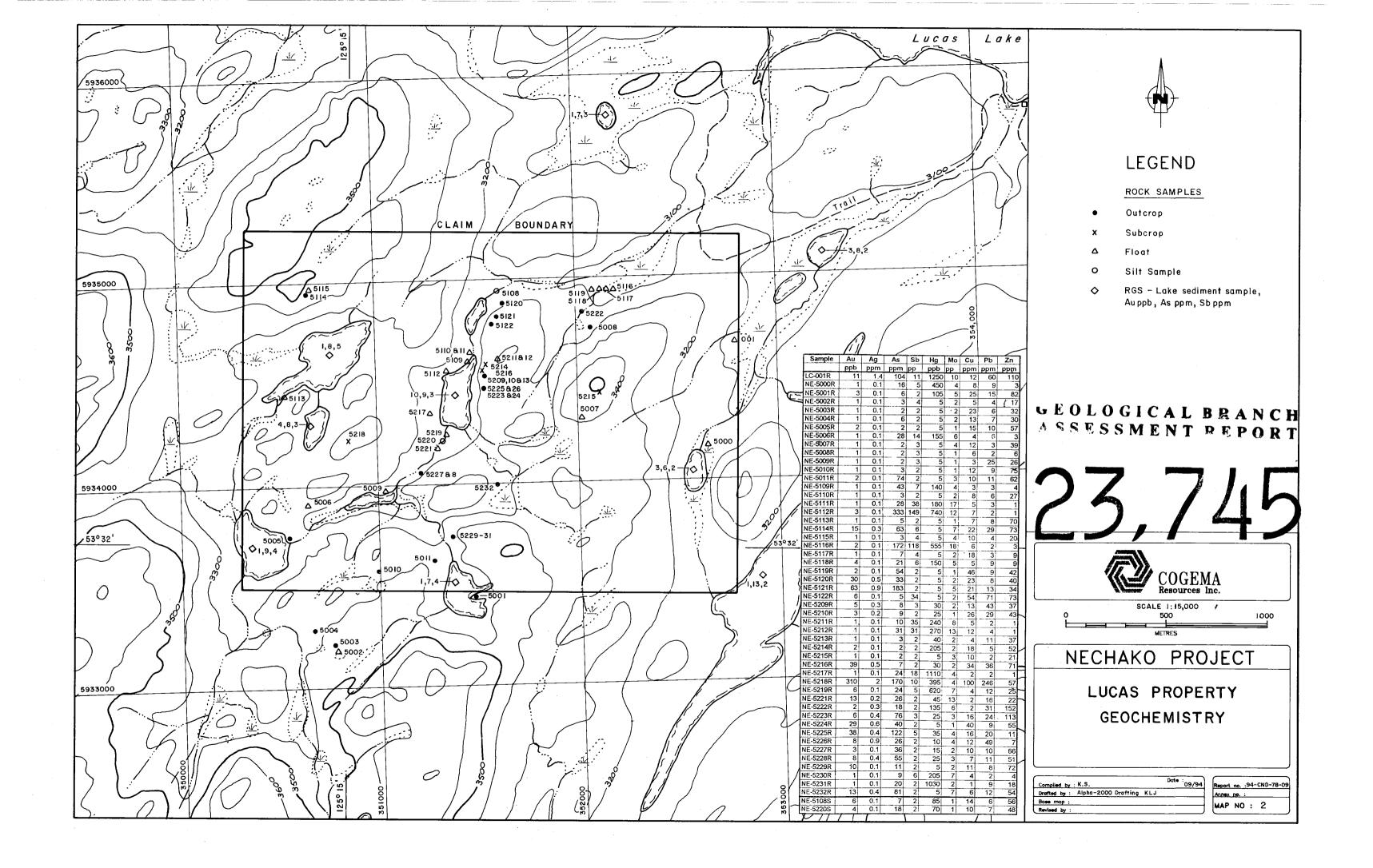
Appendix 2 Statement of Expenditures

STATEMENT OF EXPENDITURES LUCAS PROPERTY

Geology and Geochemistry,

July to December 1994


Personnel	K. Schimann R. Bilquist, J. Bou	5 days @ \$	6438	\$	2 190
	and L. Allen	8 days @ \$	5201	\$	1 608
Field Costs		13 days @ 5	\$131	\$	1 703
	camp, truck and A and misc. supplies)				
Rock analyses	3	50 samples	@ \$15	\$ \$	750 30
Silt analyses		2 samples	@ \$15	\$	30
Data processi	ng and report prep	aration		\$	502
		Total		\$	6 783


Appendix 3 Statement of Qualifications

STATEMENT OF QUALIFICATIONS

- I, Karl Schimann, residing at 5442 Columbia Street, Vancouver, B.C., hereby states that:
 - 1. I am the author of the report Geology and Geochemistry, Lucas Property (Nechako Project), 1994, Omineca Mining Division.
 - 2. I have worked on the property from July to December 1994 for COGEMA Resources Inc. and supervised the work described in this report.
 - 3. I graduated from the Université de Montréal with a B.Sc. in Geology in 1968.
 - 4. I graduated from the University of Alberta with a Ph.D. in Geology in 1978.
 - 5. I am a Fellow of the Geological Association of Canada.
 - 6. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia

R. K. SCHIMANN
BRITISH
COLUMBIA
COLUMBIA
District Geologist

