	LOG NO: FEB 0 3 1995 U
	ACTION:
.*	
an a	FILE NO:
tid ofwerdationers Gold NACO OFFER	

COGEMA Resources Inc..

Drilling, Trenching,

Geological and Geochemical Surveys

YELLOW MOOSE PROPERTY (Nechako Project) 1994

Omenica Mining Division British Columbia

NTS 93F/6E & 11E

FILMED

GEOLOGICAL BRANCH ASSESSMENT REPORT

25. K. Schimann January 1995

94-CND-78-15

TABLE OF CONTENTS

Page

INTRODUCTION	1
PHYSIOGRAPHY AND ACCESS	1
REGIONAL GEOLOGY	3
LEGAL DESCRIPTION AND HISTORY OF THE PROPERTY	3
METHODOLOGY	3
MAPPING/PROSPECTING	7
TRENCHING	8
DRILLING	9
CONCLUSIONS 1	.4

List of Appendices

Appendix 1
Summary Logs, Drill Logs, and Core Sample Lists
Appendix 2
Core Sample Analyses
Appendix 3
Trench Sample Analyses
Appendix 4
Prospecting Sample Description and Analyses
Appendix 5
Statement of Expenditures
Appendix 6
Statement of Qualifications

List of Figures

			Pag	<u>e</u>
Figure	1	Nechako Basin, Location of Properties		2
Figure	2	Claim Map of the Yellow Moose Property		6
Figure	3	Yellow Moose Property Geophysical Drill Targets	• •	11

List of Tables

		<u>Page</u>
Table 1:	Main Geologic Map Units of the Nechako Basin	4
Table 2	List of Claims: Yellow Moose Property	5
Table 3	Yellow Moose Property Drilling	13

List of Maps

(in pocket)

Scale

,

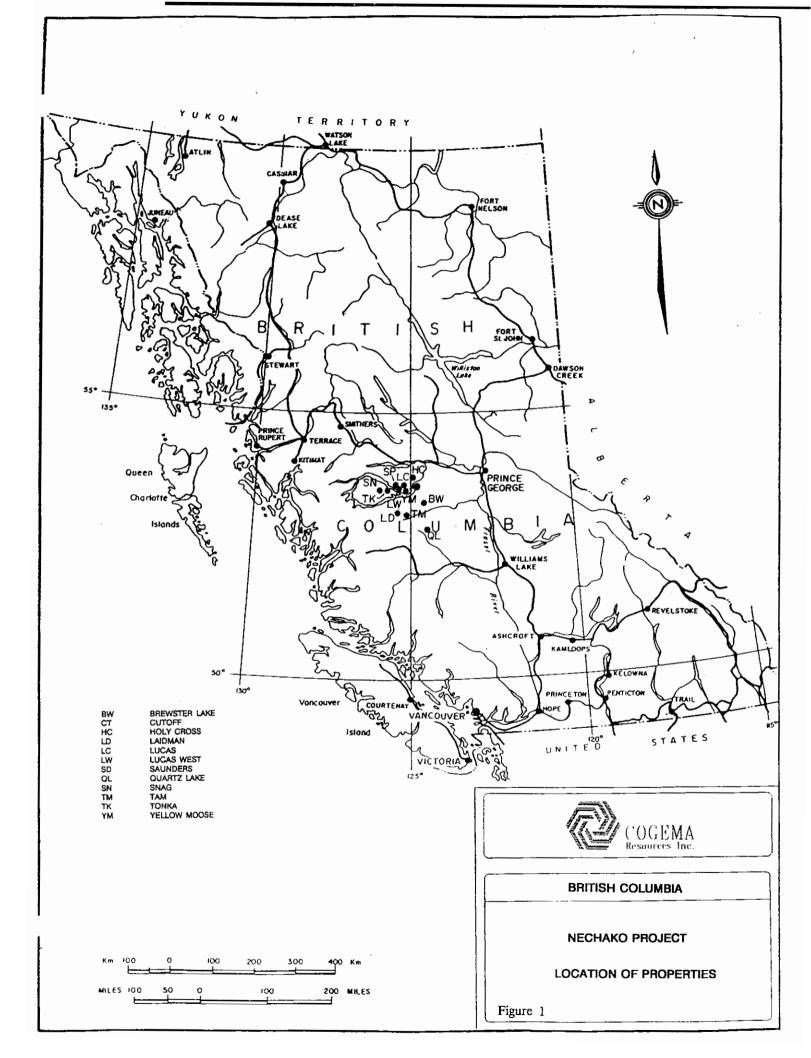
Map	1	Yellow Moose Property, Rock Geochemistry	1:20 000
Map	2	Gus Showing, Trench and Drill Hole Location	1:1 000
Map		IPA Showing, Trench and Drill Hole Location	1:500
Map	4	Gus Showing Drill Section: YM9401, 9402, 9403	1:500
Map		IPA Showing Drill Section: YM9404, 9405	

INTRODUCTION

The Yellow Moose Property was acquired by staking in late 1992 and 2 claims were added in 1994. It is located in the Nechako Basin, in the south-central part of British Columbia (Fig. 1). Mineral showings and deposits with both high-grade vein and low-grade bulk tonnage potential occur in this region.

The property lies in the central part of the Stikine Terrane. The geology of this part of the Stikine Terrane contains three volcanic stratigraphic groups of latest Upper Cretaceous to Miocene age, underlain by Cretaceous and older basement rocks. Mineralization is associated with an Eocene tectonic event that involved crustal extension, felsic and basic volcanism, unroofed metamorphic complexes, large and small scale calderas and associated plutons, pull-apart sedimentary basins, and basin and range geomorphology. This Eocene tectonic-metallogenic belt extends from northwestern British Columbia and crosses all major geologic terranes of the northern Cordillera to the Columbia River basalt plateau in Washington State. The Tertiary tectonic evolution and volcanism of the Nechako Basin are similar to that of the Great Basin of Nevada and adjacent States and the potential for volcanic-hosted and hot-spring type epithermal deposits is similar.

Two epithermal precious metals deposits are currently being mined within this Eocene metallogenic province: the Cannon mine (Wenatchee District), and the Golden Promise in the Republic District. Three have recently been mined out the Equity Silver Mine, the Blackdome, and the Kettle deposits. High sulphide replacement deposits of the Republic graben, although not strictly epithermal, are part of the same metallogenic event.


PHYSIOGRAPHY AND ACCESS

The Nechako Basin is part of the Interior Plateau of the Canadian Cordillera, comprising the Nechako Plateau north of the Blackwater River, and the Fraser Plateau south of it.

The North of the Basin, where the Yellow Moose property is located, is a plateau with a fairly constant overall elevation, but quite dissected at the local scale in a distinctive basin and range (horst and graben) topography producing more abundant outcrop than in the other two areas. Elevations vary from 1,417 m at the top of Deerhorn Hill to 715 m on François Lake.

Access is good, using a network of forestry roads starting from Highway 16; one of these reaches the centre of the property and another cuts the northeast corner. There are no major environmental concerns.

On the Yellow Moose property, outcrop conditions are quite variable; they are good in the southeastern third, but poor in the northwestern two-thirds, except on the cuestas underlain by Endako basalt.

REGIONAL GEOLOGY

The Tertiary geologic elements of the Nechako Basin are part of a regional extensional system that extends from the Republic area of northern Washington State, northwesterly for some 1000 kilometres into the Babine district of north central British Columbia. This belt trends northwest with the approximate dimensions of 1000 X 200 kilometres. It crosses major terrane boundaries and underlies the Quesnel, Kootenay and Omineca Terranes in the south and the Stikine Terrane in the north, crossing the oceanic Cache Creek Group. It overlaps the southern margin of the Bowser Basin where it continues northward as a thin strip along the eastern margin of the Coast Range.

Stratigraphic and intrusive rocks in the Stikine Terrane range in age from Palaeozoic to Pleistocene. With respect to the Eocene mineral setting, the geologic elements of the Stikine Terrane may be divided into three separate packages: basement rocks, latest Upper Cretaceous-Eocene rocks associated with mineralization, and cover rocks (Table 1).

LEGAL DESCRIPTION AND HISTORY OF THE PROPERTY

The Yellow Moose property consists of 11 4-post claims with a total of 173 units. They are owned 100% by COGEMA Resources Inc. The claims are listed in table 1 and shown on figure 2. The Arrow showing was discovered by Newmont Exploration of Canada Ltd prospectors in 1987 after regional exploration in the area in 1986 and 1987. Four 20-unit claims were staked (White claims). Work in 1987 and 1988 included prospecting, mapping, geochemistry (soil, stream, and rock), geophysics (magnetics and VLF-R surveys), as well as some hand trenching on the Arrow and Gus showing. The property was optioned in 1989 by Windflower Mining Ltd who did an IP-Resistivity survey on the Newmont grid.

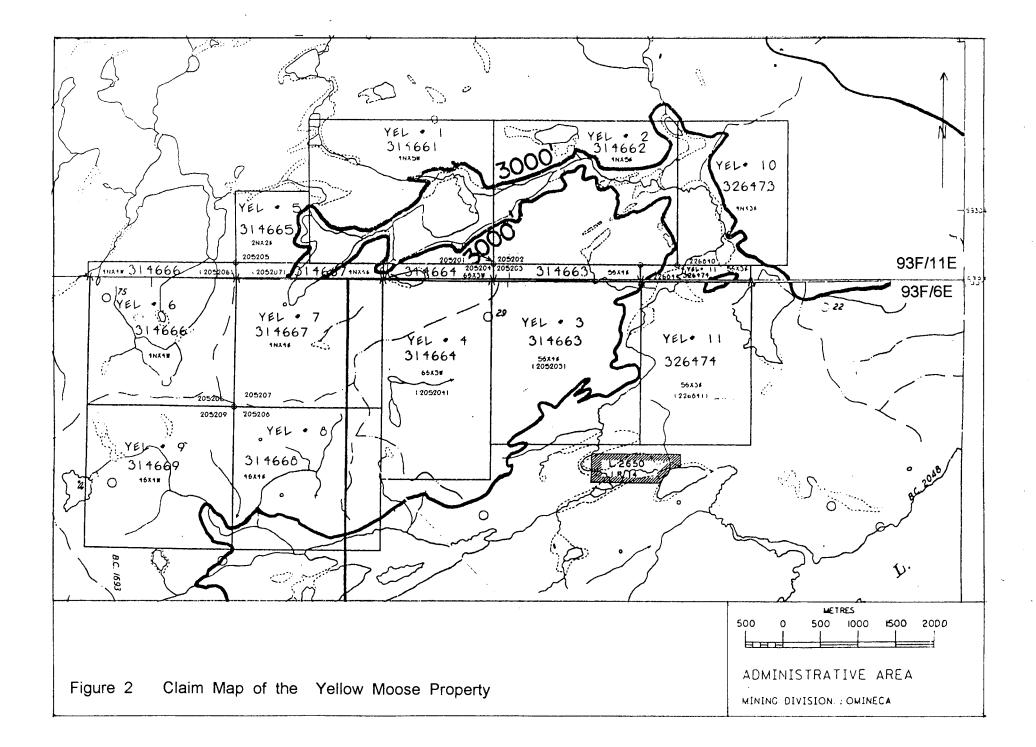
COGEMA staked 9 claims in 1992 following a regional reconnaissance to cover the Gus and Arrow showings, mineralized boulder trains and till geochemical anomalies. Work in 1993 included property-wide heliborne Mag-EM survey, bedrock and surficial geology mapping, till geochemistry, and prospecting. Two more claims were added in 1994 to cover geophysical targets.

METHODOLOGY

The summer programme of work on the Yellow Moose property included (Map 1):

mapping and prospecting: mostly on the new claims, around the IPA showing, and around two small lakes with high geochemical anomalies in the GSB Regional Lake Sediment Survey

Tab	le 1: Main Geologic Map Units o	f the	Nechako Basin
	Stratified Rocks		Intrusive and Metamorphic Rocks
11.	Anahim Volcanics (Pliocene-Pleistocene)		
10.	Chilcotin Volcanics (Miocene		
9.	Endako Group (Eocene-Oligocene)		
8.	Ootsa Lake Group (Eocene and Palaeocene)	G.	Eocene (stocks, plugs, dykes, rhyolite, felsite, porphyry, diorite, gabbro)
7.	Kasalka-Kingsvale Groups (Upper Cretaceous)	F.	Upper Cretaceous-Palaeocene (Quanchus Intrusions: stocks and batholiths, diorite to quartz monzonite)
6.	Skeena-Jackass Mountain Groups (Lower Cretaceous)		
	(Lower Cretacous)	E.	Mid-Cretaceous (mainly tonalite to quartz monzonite of Coast Range complex)
5.	Gambier Group (Upper Jurassic-Lower Cretaceous)		
		D.	Jurassic-Cretaceous (François Lake Batholith; quartz diorite to granite, includes quartz-feldspar porphyry)
4.	Relay Mountain-Bowser Groups (Upper Jurassic-Lower Cretaceous)		porpuòry)
3.	Hazelton Group (Lower and Middle Jurassic)	C.	Middle Jurassic (locally foliated granodiorite and quartz monzonite)
2.	Stuhini Group (Upper Triassic)		
1.	Cache Creek Group (Upper Palaeozoic)	В.	Permian (mainly granodiorite in lower Chilcotin River)
		A.	Metamorphic Rocks (gneiss, schist, metavolcanics, cataclasites)


. .

NAME	RECORD	UNITS	STA	KED	GOOD	MINING	NTS
	No		DATE	YEAR	UNTIL	DIVISION	
YELLOW N	OOSE PRO	PERTY					
YEL 1	314661	20	11-Nov	1992	1996	OMINECA	93F/11E
YEL 2	314662	20	11-Nov	1992	1996	OMINECA	93F/11E
YEL 3	314663	20	11-Nov	1992	1996	OMINECA	93F/11E+6E
YEL 4	314664	18	11-Nov	1992	1996	OMINECA	93F/11E+6E
YEL 5	314665	4	09-Nov	1992	1996	OMINECA	93F/11E
YEL 6	314666	16	09-Nov	1992	1996	OMINECA	93F/6E+11E
YEL 7	314667	16	09-Nov	1992	1996	OMINECA	93F/6E+11E
YEL 8	314668	16	09-Nov	1992	1996	OMINECA	93F/6E
YEL 9	314669	16	09-Nov	1992	1996	OMINECA	93F/6E
YEL 10	326473	12	01-Jun	1994	1995	OMINECA	93F/11E
YEL 11	326474	15	01-Jun	1994	1995	OMINECA	93F/11E+6E
	TOTAL	173					

Table 2 List of Claims: Yellow Moose Property

-

,

geophysics: IP-Resistivity reconnaissance lines;

trenching: Gus and IPA showings and along the road to the Gus showing;

drilling: Gus and IPA showing.

A camp located on Stubb Bay was used for most of the work. Trenching was done by I & J Schultz and drilling by Leclerc Drilling Ltd. Results from the geophysical surveys are presented in separate reports; all other work is discussed in the present report.

Trenches were cleaned and washed by hand and systematically sampled where sufficient alteration and mineralization was observed.

Core description and sampling was done in a core shack at the Stubb Bay camp and is stored on an old landing on the north side of the 500 Forestry Road, 500 m west of the entrance to the Stubb Bay camp.

Reclamation of trenches and drill pads was done in the fall.

Analyses of all rock and core samples were done by Acme Analytical Laboratories Ltd. The analytical procedures were as follows:

- Au: Aqua regia digestion, MIBK extraction, atomic absorption; 50 g for till;
- 30 Elements: Aqua regia digestion, ICP on 0.5 g for till and rock

Hg: Flameless atomic absorption

Aqua regia digestion results in partial analysis for the following elements: Ca, Mg, Fe, Mn, Cr, Ba, Sr, U, Th, La, Ti, B, Al, Na, K.

Based on comparisons done in 1993 between Au analysis as above and by fire assay, it was not considered necessary to use the latter for verification of high grade samples; the main reason being that the type of mineralization encountered on this property produces very little nugget effect.

MAPPING/PROSPECTING

Mapping and prospecting concentrated on the new claims, around the IPA showing, and around two small lakes with high geochemical anomalies in the GSB Regional Lake Sediment Survey.

The new claims consist dominantly of various facies of the Ootsa Lake Group rhyolite and associated volcanogenic sediments and pyroclastics. A series of outcrops and proximal float of Ootsa Lake Group rocks with argillization and silicification, including quartz veins, form an alignment from the Argus showing southeastward, more or less in a N150° direction that parallels lineaments visible on the regional aeromagnetic map. This alignment is also located on a resistivity anomaly from the 1993 heliborne survey that follows the same trend. These rocks are anomalous in Hg and Sb (Map 1).

The IPA showing was discovered by following up on a chargeability/resistivity anomaly from an IP reconnaissance line. Several outcrops and subcrop were found at the edge of a clearcut. They consist of rhyolitic pyroclastics/volcanogenic sediments of the Ootsa Lake group and locally show silicification and pyritization. One sample (1200A) is high in Hg, and anomalous in Sb, As, and Au.

Some more prospecting was done around the Arrow showing. The Arrow showing consists of bleached and silicified rhyolite, outcropping on a series of small knolls along Arrow Lake to the southwest, and a series of shoreline outcrops of sediments to the Northeast. Veinlets of massive coarse stibnite cut arkosic sandstone and grit that is dipping slightly to the Southeast. The sediments are cut by many N150°/ \pm 90° fractures and the stibnite veinlets and impregnations appear to follow these fractures. Rhyolite samples show the same Hg-Sb anomalous pattern as in last years sampling.

The area in the centre of the property, around the two lakes with lake sediment anomalies (Map 1) is underlain by dacitic to rhyolitic rocks of the Ootsa Lake Group. Some bleaching and propylitic alteration is visible in the South; two samples (1201A and 1202A) are anomalous in Hg, Sb, and As. The northern lake, with the highest values is bordered the North by kaolinized and pyritized rhyolites with local silicification and anomalous Au (1993 sampling). The lakes are located on an alignment of till geochemical anomalies running about N150°.

TRENCHING

Trenching included two trenches each on the Gus and IPA showings, and a subcrop of sediments along the road south of the Gus showing which appeared to have some strong clay alteration, for a total of 353 m. They are shown on maps 2 and 3.

The two trenches on the Gus showing, near the old Newmont hand trenches are essentially in pyroclastic and/or reworked fragmentals of dominantly rhyolitic composition. A more mafic component is present in the western quarter of trench YT2. Massive rhyolite is present in trench YT2 at the east end and in the centre. Weak pervasive silicification and pyritization is present throughout the two trenches, although it appears weaker at the west end of trench YT2. Rusty and silicified shears as well as quartz veinlets are scattered throughout the silicified areas. The two old Newmont trenches shown on map 2 have more massive silicification which appears to forma a structure trending at about N45° with a possible southeasterly dip. Similar silicification occurs in trench YT2 at about 25 m from the east end, but none has been observed in trench YT1. Rock geochemistry yields mainly anomalous Hg, Sb, and As with a few high Au values (maximum 220 ppb).

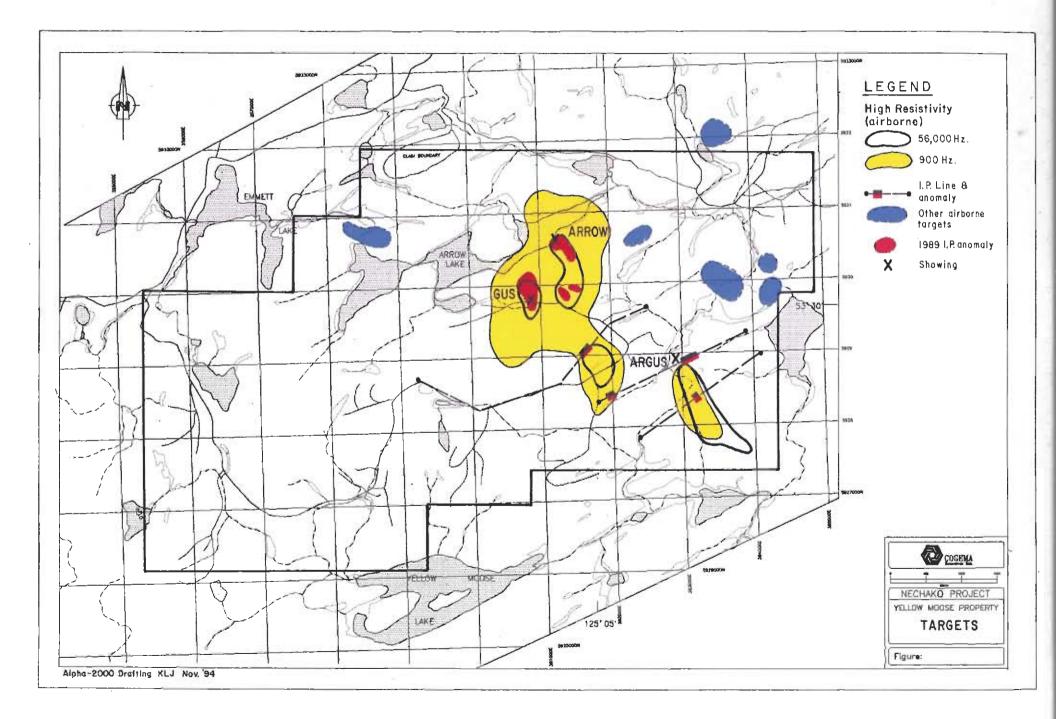
The two trenches excavated on the IPA showing have very variable overburden thicknesses, and one of the trenches did not reach bedrock. What is exposed consist of pyroclastic to volcaniclastic felsic kaolinized Moat facies similar to the Gus showing trenches. Pervasive variable, but mainly weak, silicification and pyritization occurs throughout. Bedding of the units can be observed only at the east end of trench YT5 where the facies is more sedimentary; the dip is about 20° to the East.

The two trenches along the road show a succession of black argillite, white clay horizons corresponding to kaolinized ash layers, kaolinized crystal tuff with fresh biotite and siltstone. Bedding is quite variable to almost chaotic, indicative of faulting in trench YT3, but perfectly horizontal in trench YT4 across the road; bedding attitude of about N150°/40°W suggest N150° faulting, i.e. parallel to the structural trend observed at the Arrow showing and in the geophysical data. Two samples are anomalous in Hg mainly.

DRILLING

The objective of the drilling on the Gus and IPA showings are to test zones of alteration and weak mineralization that show a clear correlation to various geophysical surveys (Fig. 3).

The 1989 IP-Resistivity of Windflower Mining on the Gus grid shows good correlation of chargeability + high resistivity with the Gus showing and, to a lesser extent, with the Arrow showing. The 1994 IP-Resistivity reconnaissance lines show good correlation of chargeability + high resistivity with airborne high resistivity anomalies.


The airborne resistivity anomalies form small fairly sharply defined areas on the 56 000 hz map, but in the case of the Gus-Arrow-line A area these anomalies coalesce on the 900 hz map suggesting a broad, approximately 3 km^2 , silicified area at depth. The Gus chargeability anomaly also appears to be more intense at depth.

The 1989 chargeability and high resistivity anomalies, as well as the airborne resistivity anomalies tend to have a trend oriented approximately N150°, i.e. parallel to lineaments observed on the 1:250 000 colour aeromagnetic compilation.

Three holes, YM9401, 9402, 9403 were drilled at the Gus showing (Map 2 and 4); they intersected a thick sequence of rhyolitic pyroclastics varying from lapilli to block tuff; rhyolite is present at the top of holes 9402 and 9403:

- YM9401 spotted west of the showing, it intersected a monotonous sequence of rhyolitic lapilli to block tuff with very minor silicification and pyritization;
- YM9402 spotted east of the old Newmont trenches carrying the higher Au grades; it intersected a silicified structures similar to the one in the trenches between 45 and 55 m, i.e. 40 m down dip;
- YM9403 intersected the same structure, albeit of lesser thickness, 25 m further down dip; confirming the easterly dip of the mineralized structure in this area.

Three holes, YM9404, 9405, and 9406 were drilled on the IPA zone (Map 3 and 5); they intersected a thick sequence of coarse (some blocks > 1 m) pyroclastics of dominantly rhyolitic composition containing metric beds of fine ash and of devitrified ignimbrite:

Yellow Moose Property 1994 Drilling, Trenching, Geological and Geochemical Surveys

- YM9404 spotted 55 m east of the centre of the chargeability and high resistivity anomaly on the IP line (950W); it intersected a silicified and mineralized structure at 55 to 62 m;
- YM9405 at the same location and orientation as YM9404, but at a 70° angle it intersected the same mineralized structure at 78-81 m; this projects to surface at the location of the IP anomaly;
- YM9406 drilled from the same location as YM9404 and 9405 but in different direction (to the NW) to define the trend of the mineralized structure, it did not intersect any significant mineralization, indicating that the trend of the mineralized structure in this area is not to the northeast as on the Gus showing.

Table 3 summarizes the drill hole locations, orientations, and depths.

Results on the IPA zone and on the Gus showing show a good correlation of the drilling with geophysics (IP survey): although the mineralized zones sensu stricto are restricted, silicification and disseminated sulphides (mainly marcasite, with some pyrite) extend over a broader part of the drill holes in both areas, including parts of the drill holes which at first sight might be considered unaffected by the mineralizing event.

The correlation shown on map 4 between the silicified structures intersected in drill hole 9402 and 9403 and the silicified structures in the Newmont trenches is tentative. On Map 5 two silicified sections in holes YM9404 and 9405 are correlated to each other. Correlation with the location of the IP chargeability/resistivity anomaly at surface which is on a line almost at right angle to the section and may be correspond to a structure at some depth is very tentative. The structure was not intersected in hole YM9406 which makes it plausible that the structures trend is parallel to the N150° trend observed elsewhere.

Analytical data is shown in appendices 1 and 2.

At the Gus showing, hole YM9401 has a fairly consistent elevated Hg in the 100 to 300 ppb range, but not much else. Hole YM9402 shows elevated Hg and As throughout with a zone of higher values, including Au between 52.0 and 55.4 m: maximum values of 260 ppb Au, 1.3 % As and 16 ppm Hg. Hole YM9403 is similar to 9402 but with weaker "high" zone (maximum 93 ppb Au, 0.3 % As, 12 ppm Hg).

At the IPA showing, Au is uniformly low, but in the more silicified zones Hg reaches 53 ppm; As is weaker, up to 663 ppm only.

Drilling on the Yellow Moose property was a technical success in that it intersected at depth mineralized structures corresponding well the geophysical interpretation.

	Grid	North	East	Elev.	Azim.	Incl.	EOH Incl	Depth	Cum.Depth
YM9401	GUS	2139S	231W	945	90	-60	-45.0	150.3	150.3
Y M94 02	GUS	2050S	180W	949	270	-45	-45.0	72.2	222.5
YM9403	GUS	2050s	180W	949	270	-70	-66.0	90.5	313.0
Y M 9404	IPA	5929100	361700	950	270	-45	-45.0	124.1	437.1
YM9405	IPA	5929100	361700	950	270	-70	-70.0	92.1	529.2
YM9406	IPA	5929100	361700	950	320	-45	-44.0	96.6	625.8

YELLOW MOOSE PROPERTY : Summary of Drilling 1994

,

,

CONCLUSIONS

The Yellow Moose property shows a number of features favourable for epithermal mineralization. A central basin of permeable pyroclastics and volcanogenic sediments contains several showings dominated by Hg-Sb-As \pm Au, with broad zones of silicification and pyritization (+ marcasite), indicating the presence of a very large epithermal mineralizing system. Geophysics correlates well with the known showings. Wide spaced till geochemistry produced a number of anomalies, most of which related to this basin.

The 1994 exploration work on the Yellow Moose property tested only selected geophysical and geological targets, without the benefit of detailed geochemical surveys. Prospecting on the new claims and at the IPA showing showed that airborne geophysical targets, such as lineaments and high resistivity areas, correspond to alteration and mineralization (albeit weak in this case). Results from the IP reconnaissance lines showed good correlation with the airborne survey data, demonstrating that IP-Resistivity can be used to define drill targets.

Detailed geophysical surveys combined with detailed geochemistry (till and/or bark sampling) are required to properly investigate the airborne anomalies and delineate the better parts of these broad anomalous areas before drilling. The use of short overburden drilling should be considered as a follow-up. Appendix 1

Summary Logs, Drill Logs, and Core sample Lists

.

Project: <u>N</u>	ECHAKOProperty: YELLOW MOOSE Grid: GUSHole #:_9401
Claim: YEL	1Contractor: LECLERC DRILLING Logged by: K.MACDONALD
Dip Test:	<u>-61° @ 130.1 m N: 2139 S Az: 090°</u> Start: <u>Sept. 8/1994</u> E: 231 W Incl: <u>-60°</u> End: <u>Sept. 9/1994</u> Elev: <u>1006 m T.D.: 150.3 m</u>
Target:	Gus showing delineated by trenching. Samples: 28
Result:	Intersected massive rhyolitic tuffs. Confirmed easterly dip of zone.

Lithology

0-4.3 m	Casing: overburden and unconsolidated bedrock.
4.3-6.3 m	Heterolithic lapilli tuff.
6.3-7.4 m	Quartz-phyric fine ash tuff: clay gouge from 6.3-6.4 m @ 45 TCA.
	Lower contact sheared @ 25 TCA.
7.4-120.3 m	Heterolithic lapilli tuff: local strong shearing from 76.8-77.2 m;
	oriented @ 15 TCA.
120.3-144.7 m	N Rhyolitic lapilli tuff: dominantly monolithic.
144.7-147.9 m	Rhyolite breccia: highly variable devitrified textures common.
	Poorly developed ignimbritic sequence.
147.9-150.3 m	a Fine ash-lapilli tuff.

Alteration

4.3-150.3 m	Weak clay alteration of fragmentals coincident with incipient
	syngenetic silicification of fine grained matrix.
	Intermittent weak secondary silicification comprised of narrow
	quartz-sulphide veinlets; variably oriented from 5-50 TCA.

Project: <u>NI</u>	ECHAKO Property: YELLOW MOOSE Grid: GUS Hole #: 9402
Claim: <u>YEL</u>	1 Contractor: LECLERC DRILLING Logged by: K.MACDONALD
Dip Test:	<u>-45° @ 72.2 m N: 2050 S Az: 270°</u> Start: <u>Sept. 9/1994</u> <u>E: 180 W Incl: -45°</u> End: <u>Sept. 10/1994</u> <u>Elev: 1010 m T.D.: 72.2 m</u>
Target:	East dipping Gus showingSamples: 38

Results: <u>Massive quartz/sulphide breccia from 48.9-55.3 m: comprised of pervasive</u> pale grev sulphide alteration and abundant late marcasite which coats open fractures and vugs in silica cemented breccia.

Lithology

. . . .

0.0-3.0 m	Casing.
3.0-48.9 m	Series of bedded ignimbritic sequences repeating downhole @ 55 TCA
	including:
3.0-15.5 m	Rhyolite ash flow - limonite coated shears common @ 20-55 TCA.
15.5-22.7 m	Rhyolite lapilli tuff.
22.7-33.0 m	Rhyolite ash flow.
33.0-37.2 m	Rhyolite flow breccia-well developed devitrified textures.
37.2-39.5 m	Rhyolite lapilli tuff.
39.5-42.5 m	Rhyolite ash flow gradational to rhyolite flow breccia.
42.5-46.5 m	Rhyolite ash flow gradational to rhyolite flow breccia-interval of
	soft friability coincident with numerous millimetric clay shears @
	40-50 TCA.
46.5-48.9 m	Rhyolite ash flow gradational to Rhyolite flow breccia-distinctive
	flow banding @ 50 TCA.
48.9-53.3 m	Mineralized fault zone-massive quartz healed breccia at contact
	between Rhyolite flows/fine ash tuff.
53.3-55.3 m	Quartz phyric fine ash tuff-brecciated and quartz flooded.
55 3-72 2 m	Heterolithic lapilli-block tuff Massive airfall unit

55.3-72.2 m Heterolithic lapilli-block tuff. Massive airfall unit.

Alteration

- 3.0-72.2 m Syngenetic silicification comprised of cementation of fine grained matrix. Preferential incipient clay alteration of fragmental clasts common throughout.
- 11.0-40.5 m Weak intermittent silicification comprised of numerous vuggy pale grey silica/marcasite veinlets. Main vein set @ 30-40 TCA; also common at lithologic contacts at 55 TCA -rare clay alteration associated with local tectonism.
- 48.9-55.3 m Strong silica flooding coincident with pale grey pyrite alteration and local massive marcasite mineralization. Trace cinnabar observed. Zone present along contact between alternating ignimbritic sequence and massive tuff.

COGEMA RESOURCES INC

SUMMARY LOG

Project: N	ECHAKO Property: YELLOW MOOSE Grid: GUS Hole #: 9403
Claim: <u>YEL</u>	<u>1</u> Contractor: <u>LECLERC DRILLING</u> Logged by: <u>K.MACDONALD</u>
Dip Test:	<u>-66° @ 89.7 m N: 2050 S Az: 270° Start: Sept. 10/1994</u> <u>E: 180 W Incl: -70° End: Sept. 11/1994</u> <u>Elev: 1010 m T.D.: 90.5</u>
Target:	Deep test of mineralized quartz-breccia intersected in YM9402. Second of two hole fan. Samples: 109
Results:	<u>Quartz/Sulphide breccia intersected from 63.1-66.8 m. Massive marcasite</u> found coating open fractures, shears & yugs.
Lithology	

norogy

0.0-3.0 m	Casing.
3.0-20.1 m	Ignimbritic sequences repeating downhole. Highly gradational and
	diffuse contacts occur between following units:
3.0-10.2 m	Rhyolite ash flow gradational downhole to rhyolite flow breccia-
	strong limonite coated fractures and narrow clay gouges @ 10-30 TCA.
10.2-17.9 m	Rhyolite lapilli tuff.
17.9-22.1 m	Rhyolite ash flow gradational downhole to rhyolite flow breccia.
22.1-63.1 m	Heterolithic lapilli tuff-subtle coarsening downhole to block tuff.
63.1-66.8 m	Mineralized fault zone-massive silica flooding coincident with
	pyritized brecciation and late fracture and vug coated marcasite
	mineralization. Bedding contact preserved @ 55 TCA.
66.8-68.2 m	Quartz phyric fine ash tuff-delicate layering parallel @ 50-55 TCA.
	Upper 50 cm highly brecciated and silicified.
68.2-88.7 m	Heterolithic lapilli tuff.
88.7-89.7 m	Quartz phyric fine ash tuff-multiple parallel marcasite headed shears
	from 89,2-89,5 @ 50 TCA.

Alteration

3.0-89.7 m	Syngenetic matrix silicification and post depositional weak clay alteration of fragmentals common to most lithologies.
11.0-55.5 m	Intermittent weak silicification comprised of minor silica/marcasite
11.0~55.5 m	veinlets-range 10-30 TCA.
55.5-67.0 m	Moderate passing to intense silicification comprised of abundant pale grey silica/marcasite veinlets coincident with pyrite alteration and late marcasite coated fractures and vugs.
88.7 m	Sheared upper contact @ 20 TCA marked by local intense silicification and marcasite stringers.
89.2-EOH	Intermittent weak silica/marcasite veinlets.

```
Mineralization: None
```

Project: <u>NEC</u>	HAKO Property: YELLOW MOOSE Grid: GUS Hole #: 9404
Claim: YEL 3	Contractor: LECLERC DRILLING Logged by: K.MACDONALD
Dip Test: <u>-</u> -	45.0° @122,2 m N: Az: 270° Start: Sept. 11/1994 E: Incl: -45° End: Sept. 11/1994 Elev: T.D.: 124.1 m
Target: D	rill test of I.P. anomaly. Samples: 32
5	eophysical response explained by zone of sulphide mineralization from 4.7-62.7 m coincident with strong quartz-pyrite alteration, weak rgillic alteration and abundant late marcasite mineralization.
Lithology	
0.0-3.0 m 3.0-14.4 m	Casing. Heterolithic lapilli tuff-local strong limonite coated
14.4-16.3 m	shears/fracture oriented 35-50 TCA. Quartz phyric fine ash tuff-broken upper contact at 60 TCA-sheared & brecciated lower contact @ 60-70 TCA.
16.3-19.6 m 19.6-24.4 m	Heterolithic lapilli tuff-subtle coarsening downhole. Quartz phyric fine ash tuff-silica veining mimics primary bedding at 65 TCA-sheared contacts at 60-65 TCA.
24.4-37.6 m 37.6-38.0 m 38.0-50.1 m	Heterolithic lapilli tuff. Quartz phyric fine ash tuff-both contacts @ 40 TCA. Heterolithic lapilli tuff.
50.1-51.8 m	Plag phyric ash tuff, upper contact @ 45 TCA, lower contact @ 55 TCA. Interval is broken and fractured with numerous silica/marcasite veinlets, common orientation at 40 TCA.
51.8-62.7 m	Quartz phyric fine ash tuff-upper contact marked by intense brecciation and shearing at 50 TCA.
54.7-62.7 m	Mineralized fault zone-strong faulting and brecciation coincident with alteration and coarse marcasite mineralization. Main shear set possibly @ 40 TCA-overall highly variable shear/fracture orientations, silicification and pyrite alteration bedding controlled at 50 TCA.
62.7-64.9 m	Plag phyric ash tuff-megacrystic plag common throughout. Local pyritized silica veinlets @ 50 TCA cross-cut by marcasite coated fractures/shears at 30 TCA.
82.0-117.7 m	Heterolithic block tuff. Plag phyric ash flow-massive unit-well developed flow banding @ 60 TCA-delicate devitrification features observed.
	m Quartz phyric fine ash tuff. m Plag phyric ash flow-incipient spherulitic textures found.
Alteration	
3.0-14.4 m	Incipient pervasive matrix silicification common to fragmental units;

•••	indepient politabelo metric offeeteeteeteeteeteeteeteeteeteeteeteetee
	inferred to be primary- weak clay alteration of fragmental clasts
	common throughout. Surficial limonitic fracture/shear coatings.
16.3-16.8 m	Local strong shearing/brecciation coincident with pyrite-quartz
	alteration-bedding controlled @ 60-70 TCA.

23.2-23.7 m Local strong pyrite alteration and fine sulphide/silica veinlets common @ 65 TCA.

50.1-54.7 m Intermittent strong quartz-pyrite-marcasite alteration coincident with veining @ 40 TCA.

54.7-62.7 m Intense silicification pyrite alteration and marcasite mineralization-bedding controlled at 50 TCA followed by structural disruption and marcasite mineralization @ 30-40 TCA.

62.7-75.3 m Weak intermittent quartz/sulphide alteration associated with minor veining/shearing @ 30-50 TCA.

50.1-75.3 m Weak argillic envelope associated with above disruption.

75.3-124.1 m Local strong sulphide/silica alteration coincident with shearing/veining at 30-50 TCA.

Project: <u>NE</u>	CHAKO Property: YELLOW MOOSE Grid: IPA Hole #: 9405
Claim: YEL	3Contractor: LECLERC DRILLING Logged by: K.MACDONALD
Dip Test:	<u>-70° @ 92.0 m N: Az: 270° Start: Sept. 11/1994</u> E: Incl: <u>-70 End: Sept. 11/1994</u> Elev: T.D.: <u>92.0 m</u>
Target:	Deep test of mineralized fault structure cut in DDH 9404. Samples: 29
	Mineralized fault zone encountered from 79.2-82.2 m with associated strong silica-pyrite alteration, and massive late marcasite mineralization.
Lithology	
0.0-1.2 m 1.2-17.6 m	Casing. Heterolithic lapilli tuff-local strong limonite coated fractures from
17.6-19.4 m	collar to 7.4 m-few yellow clay gouges @ 50 TCA. Quartz phyric fine ash tuff-both contacts parallel to poorly developed primary bedding @ 55 TCA.
19.4-25.3 m	Heterolithic lapilli tuff-lower sheared contact @ 50 TCA. Subtle coarsening downhole.
25.3-31.9 m	Quartz phyric fine ash tuff-well developed bedding @ 40 TCA-both contacts sheared and broken @ 40-50 TCA.
31.9-65.8 m	Heterolithic lapilli block tuff-large blocks of devitrified rhyolite and plag phyric ash tuff-well preserved mantle bedding @ 40 TCA.
65.8-79.4 m	Plag phyric ash tuff-broken, faulted contacts at 40 TCA.
68.7-69.8 m	Fault breccia, intense quartz-pyrite alteration masks lithology; possibly a quartz phyric fine ash tuff. Dominant shear set @ 40 TCA.
69.8-72.6 m	
72.6-73.9 m	Intense parallel shearing @ 40 TCA.
73.9-79.2 m	Weak fracturing and numerous marcasite-silica veinlets-main set @ 30 TCA.
79.2-82.2 m	intense alteration and abundant marcasite mineralization-developed at contact between overlying plag phyric ash flows/tuffs and underlying lapilli-block tuff - 55% core recovery throughout zone.
79.4-92.0 m	
Alteration	

	Primary matrix silicification developed throughout. Weak clay
	alteration, primarily of fragmental clasts, found throughout.
1.2-7.4 m	Strong surficial limonite alteration.
19.4-31.9 m	Patchy pyrite alteration-common silica-sulphide veinlets, typically
	1-2/m, and oriented @ 30 TCA.
65.8-79.4 m	Weak passing to locally intense pyrite-silica alteration coincident
	with strong structural disruptions and weak argillic alteration-late
	marcasite mineralization abundant from 79.2-82.2 m. Bedding
	controlled alteration @ 40 TCA, overprinted by structural controlled
	marcasite (30-40 TCA). Weak argillic alteration associated with
	faulting.
70 1 02 0	T_{a}

79.4-92.0 m Local sulphide veining at 20-40 TCA.

.

Project: <u>N</u>	ЕСНАКО	Property: <u>Y</u>	ELLOW MOOSE	_Grid: IPA	AHole #:	9406
Claim: <u>YEL</u>	<u> </u>	ontractor: <u>LE</u>	CLERC DRILLI	NG Logo	ged by: <u>K.MACI</u>	ONALD
Dip Test:	<u>-44° @ 96</u>	.6 m N: E: Elev:	Incl	<u>320°</u> St : <u>-45°</u> En : <u>96.6</u> m	tart: <u>Sept.</u> nd: <u>Sept.</u>	11/1994 12/1994
Target:					fault intersec _Samples: _20	
Results:		lized fault and veining			ially undistu shearing.	irbed. Minor

Lithology

0.0-1.2 m	Casing.
1.2-16.5 m	Heterolithic lapilli-block tuff-local strong limonite coated
	fracturing from 1.2-8.3 m. Main fracture set at 30-80 TCA.
16.5-18.5 m	Quartz phyric fine ash tuff-pyritized and sheared contacts parallel
	to bedding at 60 TCA.
18.5-19.0 m	Heterolithic lapilli-block tuff.
19.0-23.8 m	Quartz phyric fine ash tuff massive, undisturbed.
23.5-41.3 m	Heterolithic lapilli-block tuff-massive, competent; lower pyritized
	contact at 50 TCA.
41.3-45.5 m	Plag phyric ash tuff
45.5-47.6 m	Quartz phyric fine ash tuff-local strong shearing coincident with
	friability and weak argillic clay alteration-main shear set at 50
	TCA.
47.6-56.1 m	Plag phyric ash tuff.
56.1-70.9 m	Heterolithic block tuff-irregular non-planar broken contacts.
70.9-75.1 m	Quartz phyric fine ash tuff-local friable contacts at 50-60 TCA.
75.1-96.6 m	Heterolithic block tuff-coarsening downhole; large blocks of plag
/J.1-J0.0 m	phyric ash tuff.
	phylic ash cull.
Alteration	
	Weak incipient matrix silicification observed. Weak clay alteration
	of fragmental clasts found throughout. Local limonite coated
	fractures from 1.2-8.3 m. Minor silica-pyrite alteration at several
	contacts and coincident with strong shearing at 60 TCA. Rare quartz-

marcasite veinlets at 30 TCA. 45.5-47.6 m Weak pervasive argillic alteration-coincident with strong shearing.

			DIAMOND	DRILL	LOG					COG			SOURC		INC	YM	LOG.X		Page	1	
Proje	ct : NEC		Property :	YELLOWM	OOSE	G	Grid :	ĞUS			Hole							Page	1	of	2
	Claim :		N : 2139 S				az :								Drilling Lt	d					
Dip	Test :	68	E : 231 W					: -60°					pt. 8, 19	994							
			Elev: 1006	m ASL			T.D.:	150.3 m		E		<u> </u>	9, 1994								
											Ŀ	.ogge	dby:K	K. Ma	cDonald						
	From	То	DESCRIPTION																		
	0.0	4.3 m	Casing and c	overburden	<u>(3.7-4.3</u>)	m - coi	red over	rburden)													
			m Haterolithic Ignilli tuff: steel blue grey massive matrix supported highly angular fragments. Claste dominantly thyolitic including some boards																		
100	4.3 m	120.3m	n Heterolithic lapilli tuff: steel blue-grey, massive, matrix supported, highly angular fragments. Clasts dominantly rhyolitic, including some heavily kaolinized, some silicified, and some fresh.																		
	<u> </u>													<u> </u>							
			Clasts set in		-	-										gillite a	ind min	or andes	site po	rphy	ry. T
	I	 	Py as few dis							<u> </u>	ith sub	tle co	arsenin	ig dov	wnhole.						
	_		Minor fracturing/shearing observed, but unit is generally undisturbed																		
	. 	ļ	4.3-7.4 m: few heavily limonite coated fractures @ 25° TCA. 6.3-7.4 m: Shear bounded band of fractured, bleached and kaolinized quartz-phyric rhyolite fine ash tuff. Pervasive silicification below 7.0 m.																		
											• •		•						on dei	DW 7	. U m
		1	Massive whit							Imonite	coating	gs on	open tr	actur	es @ 30	TCA.					
		ļ	Silicified and																		
• ·			11.1-14.1m:						5-20° 10A	۱.											
			12.1-120.5 n							alı anı									(01	4/-1-
			17.2-17.3 m														liss. Py	(devitri	riea).	Clas	ST/CIC
	<u> </u>	 	measures 4x					y & white	e quanz (a	illered q	uartz-e	ye m	yonte pi	reser	veu ili si	ica).					
	 		30.2 m Pyriti							<u> </u>											
			31.8 m 2mm		-																
			33.4 m Wea						U° ICA,												
	 	<u> </u>	44.3 m Pale																		
			58.7 m Dark			<u> </u>		I TCA.													
		+	59.1 m Mino 61.5 m 30cm				r cizo ol	oct													
			66.7-68.0 m						riably orio	ntod co	alasca	into i	ntoretiti	ol cili	co purit	o flood	lina				
		<u> </u>	74.5 m Pyriti					JCIS. VO	nably one	nieu, co	aleste		mersuu	ai 3111	ca - pyrii		ing.				
			75.8 m Few					racke (O	5º TCA)		-										
			76.8-77.2 m								1000	and a	hundan	t dice	Dv 5	9% Dv	overal	Main	choor	cot c	+ 15
			TCA.	LUCAI SUUI	y sheam	ng con		WILLI WE	an mability	ciay yu	uyes a		Dunidani	1 1155	o.r≊y. J≂	070 Fy	Uveran		Silcai	351 6	
			83.4 m Grad	led bedding	of 3º TC	·Δ Μα	ntle her	ddina nr	served - i	bin on t	on incr	nizea	a to rela	atival	v thickor	towar	trough	s on oith	nor cid	•	
	-		84.6 m Mino									cuom	y to role	auver	y unokoi	tomaic	ruougn			v .	
	-		87.2 m Wisp																		
			88.4 m Wisp							-											
			90.6 m Wisp									•									
			93.4 m 2mm	<u> </u>					at 5° TCA												
			94.7 m Pale																		
		·	96.4 m Few		<u> </u>																
			97.2 m Wisp																		
		ł		v wispy silic						·····											

			DIAMOND DRILL LOG	····	COGEMA RESO	URCES	INC	YMLOG.XLS	Page 2	
Proje	ct : NEC	HAKO	Property : YELLOWMOOSE Grid	GUS	Hole No :	YM9401		Page		
	Claim :		N : 2139 S	az: 90°	Contractor :	Leclerc Dri	ling Ltd			
Dip	Test :	68	E : 231 W	incl: -60°	Start : Sept.	8, 1994				
			Elev : 1006 m ASL T.	D.: 150.3 m	End : Sept. 9, 1	1994				
					Logged b	y: K. MacD	onald		·····	
	From	То	DESCRIPTION							
			108.0-108.6 m Wispy green chlorite/minor	grey silica veinlets at 0-	-2° TCA.					
			112.1 m Wispy pale grey opaque silica/mir		CA.					
			113.6 m Black silica/clotty Py veinlet at 5°	TCA.						
			121.1 Tiny silica/pyrite vein at 20° TCA.	·						
			121.2 m Open shear at 20° TCA.							
100	120.3m	144.7m	Rhyolitic lapilli tuff- subtle and gradationa					dy clay altered frag	gments (p	ossibly
			montmorillonite) scattered throughout, con							
			Silicification pervasive throughout. Matrix	supported - higher prop	portion of highly clay	altered corro	oded rhyo	plite and banded rh	yolite frag	ments.
			Also large boulders of devitrified rhyolite.							
			128.6-129.0 m Devitrified rhyolite: large ra		res intergrown or coal	escing along	original	flow banding.		
			125.3 m Grey opaque/pyrite veinlet, healed							
	·		136.3-144.1 m Several 10-30 cm intervals	of jet black fine grained	d mud matrix engulfir	ng ash to lap	illi fragm	ents (restricted sub	aqueous	basins
100	144.7m	147.9m	Devitrified rhyolite breccia. Highly variable	e texture developed the	roughout-crackle text	ure to swirls	to stron	gly brecciated to	ocal intert	bedded
100	147.9m	150.3m	Fine ash-lapilli tuff-similar to above but wit	h fine ash matrix and be	etter sorting. Clay alto	ered, flow ba	nded rhy	olite fragments cor	nmon, also	0 3-5%
			Few tiny hairline silica cracks, tr. Py.					-		
		150.3m	FOH							

	CO	RE S	AMPLE	LIS	Г	COG	ema ri	ESOURC	ES INC	YMCORE.XLS
Project :	NECHAI	KO	Prop	erty : YE	LLOWN	IOOSE	Grid : G	JS Hol	e No:YM	9401 Page 1 of 1.
Sample	Туре	From	То	Length	Rec %	Au ppb	Ag ppm	As ppm	Hg ppb	Comments
2269	comp	4.7	7.7	3.0	100	9	0.3	45	300	
2270		7.7	8.7	1.0	100	3	0.1	47	290	
2271	cont	8.7	14.3	5.6	100	1	0.2	21	255	
2272		14.3	20.4	6.1	100	3	0.2	48	255	
2273		20.4	26.5	6.1	100	1	0.2	20	195	
2274		26.5	32.6	6.1	100	1	0.1	23	160	
2275	cont	32.6	38.7	6.1	100	1	0.1	25	180	
2276	cont	38.7	44.8	6.1	100	1	0.1	38	155	
2277	cont	44.8	50.9	6.1	100	1	0.2	38	195	
2278	cont	50.9	57.0	6.1	100	1	0.1	24	135	
2279	cont	57.0	63.1	6.1	100	1	0.2	20	145	
2280	cont	63.1	69.2	6.1	100	1	0.2	24	130	· · · · · · · · · · · · · · · · · · ·
2281	cont	69.2	75.3	6.1	100	1	0.1	21	145	
2282	cont	75.3	81.4	6.1	100	2	0.1	73	105	
2283	cont	81.4	87.5	6.1	100	2	0.2	28	135	
2284	cont	87.5	93.6	6.1	100	2	0.2	20	90	
2285	cont	93.6	99.7	6.1	100	1	0.1	25	100	
2286	cont	99.7	105.8	6.1	100	3	0.2	10	95	
2287	cont	105.8	111.9	6.1	100	1	0.2	17	100	
2288	cont	111.9	118.0	6.1	100	2	0.1	22	100	
2289	cont	118.0	124.1	6.1	100	2	0.2	25	140	
2290		124.1	130.2	6.1	100	2	0.2	16	130	
2291	cont	130.2	136.2	6.0	100	3	0.1	26	140	
2292		136.2	142.3	6.1	100	2	0.2	20	115	
2293	cont	142.6	150.3	7.7	100	4	0.2	40	190	
1424	grab	17.2	17.3	0.1		1	0.6	251	215	
1425	grab	66.7	68.0	1.3		5	0.3	209	155	
1426		76.8	77.2	0.4		5	0.5	491	205	

.

			DIAMOND DRILL LOG	COGEMA RESOURCES INC YMLOG.XLS Page 3
Proje	ct : NEC	HAKO	Property : YELLOWMOOSE Grid : GUS	Hole No: YM9402 Page 1 of 2
	Claim :		N : 2050 S az : 270°	Contractor : Leclerc Drilling Ltd
	Dip Test		E : 180 w incl : -45°	Start : Sept. 9, 1994
	53.5° (D 72.2	Elev : 1010 m ASL T.D.: 72.2 m	End : Sept. 10, 1994
				Logged by : K. MacDonald
Rec.%	From	To		ESCRIPTION
	0.0 m	3.0 m	Casing	
100	3.0 m	15.5 m		v rhyolite fragments in pale grey incipient opaque silica matrix pervasive to
			locally intensely silicified. Clasts comprise 70% of interval, typical	
				kaolinized rhyolite -< 1% others, including few black siliceous mudstone chips.
			Tr. Py observed diss. in some clasts. Ignimbritic sequences repea	
				clay gouges common throughout. Shears/fractures range from 20-55° TCA.
			11.0 m Few parallel grey silica veinlets at 35° TCA.	
				and healed with black silica/pyrite. Cracks variably oriented. Brown silica
			13.0-13.1 m Intense limonite stained silica flooding with multiple p	
				A. One veinlet comprises massive and diss. marcasite, pale yellow with slight
			13.8 m Open vuggy silica healed shear at 40° TCA. Globular to n	
			14.5 m Open vuggy silica healed shear with flattened prismatic two	nned crystals and tiny nodular crystals of marcasite.
100	15.5 m	22.7 m	Rhyolite lapilli tuff: weakly clay altered rhyolite fragments in silicit	ied aphanitic matrix. Clasts range from granules to coarse boulders, but are
			dominantly lapilli sized, variably sub-rounded to angular, with com	
				others, including black siliceous mudstone fragments. Incipient pervasive
			primary silicification found-common pale brown, clay altered devit	
			Marked by dark grey-black pyritized opaque silica veining. Lower	r contact broken and marked by local silicification (secondary) and marcasite
			15.2 m Flattened prismatic marcasite x-stals and cubic twinned Py	clay coating shear/fracture plane at 30° TCA.
			16.1 m Highly brecciated, silica healed interval with 5% fine dir	ss. marcasite? pyrite? (yellow-greenish tinge), oriented at 70° TCA (intense
			17.0-17.4 m Numerous large pale yellow-brown lapilli clasts, weak	
			22.5-22.7 m Fine diss. and flattened prismatic yellowish green ma	ircasite with highly brecciated and silica flooded interval, oriented at 55° TCA
			23.1-23.5 m Welded flattened devitrified spherulitic fractures at 40	
				mon drusy marcasite flattened shapes and nodules found in vugs, veining
			23.1-26.5 m Several tiny hairline silica +- fine Py cracks, variably	
			27.3 m Fine diss. Py/silica healed fracture/shear at 70° TCA.	
			28.5 m Few parallel fine sulphide/silica veinlets at 60° TCA.	
			29.9 m Tiny hairline sulphide/silica cracks at 20° TCA.	
100	22.7 m	37.2 m	Rhyolite ash flow: massive rhyolite and highly brecciated fine r	hyolitic clasts engulfed in incipient silica matrix. Highly variable devitrified
			textures evident. Rare yellow green clay alteration pervasive.	
	1			below 33.0 m to the lower contact at 37.2 m. Well developed coalescing

			DIAMOND DRILL	LOG	_	COGEMA	RE	SOURCES	INC	YMLOG.XLS	Page	4
Proje	ct : NEC	HAKO	Property : YELLOWMO	DSE Grid :	GUS	Hole	No :	YM9402		Page	_	of 2
	Claim :		N : 2050 S	az				Contrac	tor: Leck	erc Drilling Ltd		
	Dip Test		E: 180 w		: -45°				Sept. 9, 1			
-	53.5° (<u>p</u> 72.2	Elev: 1010 m ASL	T.D.:	72.2 m			End : Sept				
								Log	ged by :	K. MacDonald		
Rec.%	From	To				DESCRIPTIC	N					
100	37.2 m	39.5 m	Rhyolite lapilli tuff: sharp								/-pale g	reen cla
			38.5-38.6 m Vuggy silicifie	d brecciated interva	al. Large vug	infilled with large	latten	ed prismatic o	crystals of	marcasite.		
100	39.5 m	42.5 m	Rhyolite ash flow devitrifie	d breccia passing g	radational do	wnhole to a pale g	rey-gr	een diffuse d	evitrified	rhyolite flow breccia	also gr	adation
100	42.5 m	46.5 m	Rhyolite ash flow passing			ffuse devitrified rh	yolite	flow breccia.				
			42.1 m Pale grey opaque									
			42.5-45.5 m Local interva								ars rang	je 40-50
			46.3-46.5 m Dark grey-bla	ck silica/minor marc	casite vein at	20° TCA. Local v	iggy te	exture infilled	with mare	casite.		
100	46.5 m	48.9 m	Rhyolite ash flow breccia matrix silicification).	passing gradational	I to diffuse gr	ey devitrified rhyd	lite flo	w breccia, m	nillimetric	grey opaque silica (incipien	t primai
			Parallel veins at 40° TCA.	Distinctive flow/ove	erpainted by s	econdary shear p	attern	developed pa	rallel to v	eining at 50° quartz	looding	/veining
100	48.9 m	55.3 m	Massive quartz breccia: in ash tuff. Pale orange-red				ified v	uggy rhyolite	breccia, p	bassing gradational/d	ownhole	e to a fin
			Interval is broken & rubbly								ry silici	fication
			Vugs-pale grey silicified pa									
			Very fine grained quartz p tuff beds. Few bedding pl				appea	rs rotated and	d locally f	aulted, with intercala	ted coa	rse lap i
			Ash tuffs, varicolored pal	e yellow to dark ste	el-blue grey	where strong pyril	izatior	has occured	d, fine dis	s Py observed in tu	ffs. Lov	ver shar
100	55.3 m	72.2 m	Heterolithic lapilli tuff: mas weak silicified matrix-3% l	lack siliceous argilli	ite chips, stee	I blue-grey matrix	color.		-			•
			Fragments varicolored fro bedding features observed				ed fra	igments pred	ominate	with rare boulders.	No cor	spicuou
			68.0-68.5 m Quartz phyric				ment	of phyric text	ure @ 40°	TCA. Strong local s	tructura	l clay a
		72.2 m										

	co	RE S	AMPLE	LIS	r	COG	EMA R	ESOURC	ES INC.	YMCORE.XLS
Project :	NECHA	KO	Prop	erty : YE	LLOWN	NOOSE	Grid : G	US Ho	e No: YM94	402 Page 1 of 1
Sample		From	То	Length	Rec %	Au ppb	Ag ppm	As ppm	Hg ppb	Comments
2294		3.0	5.2		81	2				
2295	cont	5.2	6.7	1.5	100	2	0.2	124	680	
2296	cont	6.7	8.2	1.5	100	1	0.2	146	1300	
2297		8.2	9.8	1.6	100	1	0.2	99	650	
2298	cont	9.8	11.3	1.5	100	3	0.3	197	1250	
2299	cont	11.3	12.0	0.7	100	1	0.3	217	1320	
2300	cont	12.0	12.8	0.8	100	1	0.1	182		
2301	cont	12.8	14.3	1.5	100		0.3	101	1715	
2302	cont	14.3	1 <u>5</u> .8	1.5	100	5	0.3			
2303		15.8	17.4	1.6	100	2	0.1			
2304		17.4	23.5	6.1	100	1	0.1			
2305		23.5	29.6	6.1	100	2	0.1			
2306		29.6	35.7	6.1	100	1	0.1			
2307		35.7	41.2	5.5	100	1	0.2			
2308		41.2	42.3	1.1	100	4	0.2			
2309		42.3	43.3	1.0	100	7	0.2			
2310		43.3	44.3	1.0	100	1	0.1			
2311		44.3	45.3		100	1	0.1			
2312		45.3	45.8	0.5	100	7	0.3			
2313		45.8	46.8		100	23	0.4			
2314		46.8	47.8		100	5	0.3			
2315		47.8	48.8	1.0		16	0.5			
2316		48.8	49.8		100		0.6			·····
2317		49.8	51.0	1.2	100	52	0.7			
2318		51.0	51.5	0.5	100	5				
2319		51.5	52.0	0.5		8	0.1			
2320		52.0	52.5	0.5		130	1.6			
2321		52.5	53.0			31	0.4			
2322		53.0	53.5			48	0.4			
2323		53.5	54.0			130	0.5			
2324		54.0	54.5	0.5	100	52	0.6			
2325		54.5	55.4							
2326		55.4		0.5						
	comp	55.9	63.1	7.2						
2328		63.4	69.2							
2329		69.2	72.2	3.0						
	grab	22.5		0.2						
1428	grab	25.1	25.2	0.1	100	26	0.6	856	4870	

			DIAMOND DRILL LOG COGEMA RESOURCES INC YMLOG.XLS Page 5
	ct : NEC		Property : YELLOWMOOSE Grid : GUS Hole No : YM9403 Page 1 of 2
	im : CU		N: 2050 S az: 270° Contractor: Leclerc Drilling Ltd
	Dip Test	:	E : 180 W incl : -70° Start : Sept. 10, 1994
	-66		Elev : 1010 m A.S.L. T.D.: 90.5 m End : Sept. 10, 1994
			Logged by : K. MacDonald
Rec.%		To	DESCRIPTION
			Casing.
100	3.0 m	10.2 m	Rhyolite ash flow breccia passing gradationally downhole to a grey diffuse, devitrified rhyolite flow breccia. Pale yellow weak clay alteration of
			fragments in an incipient pervasive silicified matrix. Ignimbritic sequences repeating downhole.
			Strong limonite alteration overprint coincident with strong fracturing from 3.0-8.0 m. Dull grey opaque matrix bellow 8.8 m due to weak pyrit
	 		Local weak secondary silica veining, roughly parallel at 50° TCA.
100	10.2 m	17.9 m	Rhyolite lapilli tuff: very poorly sorted pale brown to yellow to green clay altered clasts. Highly angular to sub-rounded, set in an incipier
			Gradational upper contact marked by massive cubic Py and nodular marcasite lining open vuggy silica veinlet at 2° TCA.
			11.0 m Marcasite lined vug at 40° TCA.
			11.3 m Marcasite and cubic Py lined open fracture at 22° TCA.
			11.4 m Pale grey opaque silica/marcasite veinlet at 3° TCA.
			13.6 m Fine massive marcasite healed crack at 10° TCA.
			14.0 m Pale grey opaque silica/marcasite veinlet at 40° TCA.
			14.6-17.4 m Numerous pale brown quartz phyric rounded rhyolite clasts - common throughout - weakly clay altered with thick reaction rims of
			16.5 m Few parallel pale grey opaque silica/marcasite veinlets at 30° TCA.
100	17.9 m	22.1 m	Rhyolite ash flow breccia passing rapidly downhole to diffuse pale yellow-grey devitrified rhyolite flow breccia. Pale yellow-green clay alteratio preserved in incipient primary silicification.
			Tr. Py to local strong pyritic alteration halo, coincident with fine network of tiny hairline silica veinlets and rare coarse silica/marcasite veins a 60-65° TCA.
			20.5-22.1 m Highly mixed interval of underlying heterolithic tuff and devitrified rhyolite breccia, possibly flow stopped underlying unit an
100	22.1 m	66.8 m	Heterolithic lapilli tuff as observed in holes 1 and 2. Very poorly sorted, fresh to clay altered flow banded rhyolite clasts set in an incipier pervasively silicified matrix, up to 5% black siliceous argillite chips.
			Clasts range from sub-rounded to highly angular, and from granule to large boulder size (->64 mm). Black matrix passes to familiar steel-blu
			26.1-49.4 m Weak fracturing, main fracture set at 40° TCA. Few marcasite/grey opaque silica veinlets at 30° TCA.
			41.8 m Massive marcasite/silica veining at 10° TCA (veinlets measure 2 mm across).
			43.3 m Marcasite/silica veinlet at 20° TCA.
			47.3 m Massive marcasite/silica veinlet at 12° TCA.
			55.5-56.7 m Dark grey pyrite alteration of local interval, coincident with wispy silica/marcasite veins.
			57.3 m Vuggy pale grey silica veinlet at 11° TCA.
			59.2 m Vuggy marcasite/silica veining at 25° TCA.
			60.0-63.1 m Vuggy marcasite/silica veinlets throughout, approximately 2.3/m, roughly parallel at 40-50° TCA.
-			63.1-67.0 m Zone of pervasive strong secondary silicification and coincident vein-type marcasite mineralization. Highly vuggy broken interva
			Marcasite habit ranges from tabular flattened prism to tiny modules to fine clusters.
	1		Zone occurs at contact with underlying ash tuff. Marked by intense silicification and local strong brecciation. Bedding contact preserved at 55

	$\left[\right]$	1	DIAMOND DRILL LO	G		COGEMA	RESOURCES	INC	YMLOG.XLS	Pa	je 6	
Proje	ct : NECH	HAKO	Property : YELLOWMOOSE	E Grid :	GUS	Hole	No: YM9403		Page	2	of	2
Cla	im : CUT	Т5	N : 2050 S	az	: 270°		Contrac	or: Lecle	rc Drilling Ltd			
I	Dip Test :	:	E: 180 W	incl	: -70°		Start :	Sept. 10, 1	994			
	-66		Elev : 1010 m A.S.L.	T.D.:	90.5 m		End : Sep	t. 10, 1994	,			
							Log	ged by: K	. MacDonald			
Rec.%	From	То				DESCRIPTION						
												_
100	66.8 m	68.2 m	Quartz phyric fine ash tuff-pal	le yellow grey ve	ry fine grained	with 3-5% euhedra	al quartz crystals.	Delicate p	parallel layering at 50)-55°	TĊA.	
100	66.8 m		Quartz phyric fine ash tuff-pal Silicified sheared upper conta					•				Lowe
				act 55° TCA pas	ssing to 40cm o	of sheared highly		•				Lowe
100	68.2 m	88.7 m	Silicified sheared upper conta	act 55° TCA pas al to above. Very	ssing to 40cm o y weak fracturin	of sheared highly ng.	brecciated tuff do	own throug	h massive undistrib	uted t	uff.	

roject · N		RE S	AMPLE	LIS:	Г	COG	ema ri	ESOURC	ES IN	C. YMCORE.XLS
	NECHAP	(0	Prop	erty : YE	LLOWN	IOOSE	Grid : Gl	JS Hole	e No:YN	19403 Page 1 of 1
Sample	Туре	From	То	Length	Rec %	Au ppb	Ag ppm	As ppm		Comments
2330	cont	3.0	11.3	8.3	100	2	0.3	111	735	
2331	cont	11.3	17.4	6.1	100	2	0.2	50	290	
2332	cont	17.4	23.5	6.1	100	2	0.1	299	1695	
2333	cont	23.5	29.6	6.1	100	1	0.2	72	280	
2334	comp	29.6	35.7	6.1	100	1	0.2	434	835	
2335	comp	35.7	41.8	6.1	100	1	0.1	40	355	
2336		41.8	47.9	6.1	100	1	0.1	126		
2337		47.9	53.9	6.0	100	4	0.1	88		
2338		53.9	60.0	6.1	100	6	0.2	229		
2339	cont	60.0	61.0	1.0	100	38	0.4	712	4350	
2340	cont	61.0	62.0	1.0	100	17	0.4	598	1980	
2341	cont	62.0	63.0	1.0	100	8	0.2	220	4800	
2342	cont	63.0	64.0	1.0	100	20	0.3	643	6110	
2343	cont	64.0	65.0	1.0	100	21	0.3	570	2785	
2344	cont	65.0	66.0	1.0	100	80	0.6	1199	12490	
2345	cont	66.0	67.0	1.0	100	21	0.2	555	1155	
2346	cont	67.0	68.0	1.0	100	93	0.2	2998	1520	
2347	cont	68.0	68.9	0.9	100	7	0.2	460	810	
2348		69.2	75.3	6.1	100	3	0.1	50	195	
2349		75.2	81.4	6.2	100	3	0.1	120	170	
2350	cont	81.4	88.3	6.9	100	1	0.1	20	140	
2351	cont	88.4	89.5	1.1	100		0.1	179		
1429	grab	9.9	10.2	0.3	100			324		
1440	grab	11.4	11.7	0.3	100	32	1.0	666	5440	

			DIAMOND DRI				COGEMA	RESOURCES	INC	YMLOG.XLS	Page 7
Proje	ct : NEC	HAKO	Property : YELLO	WMOOSE	Grid :	IPA	Hole N	o: YM9404		Page	1 of 2
	Claim :		N: 5929100		az :			Contractor	: Leclerc	Drilling Ltd	
	Dip Test		E: 361700		incl :	-45°		Start : Se	ot. 11, 199)4	· · · · · · · · · · · · · · · · · · ·
	47°@8	35.6 m	Elev : 950		T.D.:	124.1 m		End : Sept.			
								Logge	edby:K.	MacDonald	
Rec.%		То	DESCRIPTION								
	0.0 m	<u>3.0 m</u>	Casing.								······
00	3.0 m	14.4 m	Heterolithic lapilli t								fresh fragmer
			Dominantly flow bar								
			Incipient pervasive	matrix silicific	cation. Clas	sts commonly	weakly clay altered	I. Clasts range 4	to > 64	mm in length. Loo	cal strong limon
			<u> </u>								
100	14.4 m	16.3 m	Quartz phyric fine					r contact at 60°	TCA. Vug	igy silicified sheare	ed and brecciate
			16.3-16.8 m Sheare	d broken, fria	ble interval.	Highly variab	le orientations.				
00	16.2 m	10.6 m	Hotoralithia Ianilli tu	ff Sama as a	hour with l	ama magad bl	ooko of undorbilog a	waste aburda aab t			·····
00	10.3 m	19.0 m	Heterolithic lapilli tu	n. Same as a	above with la	arge ragged bi	ocks of underlying a	uanz phyric ash t	иπ.		
00	19.6 m	24.4 m	Quartz phyric fine	ash tuff <u>S</u> an	ne as abovi	e Few fine s	ulphide/silica_crack	ent 30° TCA	cal strong	a pyrite alteration	from 23 2 23 7
	13.0 111	24.4 111	Upper sheared, clay							y pyrite alteration	1011 23.2-23.1
			opper sileared, ola				Ken Suphicic day a		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
00	24.4 m	37.6 m	Heterolithic lapilli tu	ff. Same as a	bove.	• • • • • • • • • • • • • • • • • • •					
								1			
100	37.6 m	38.0 m	Quartz phyric fine a	sh tuff. Uppe	r contact at4	40° TCA, lowe	r contact at 40° TCA	. Pyritized shear	at 30° TC	A. lined with fine no	odular marcasite
	1			••			······································				
100	38.0 m	50.1 m	Heterolithic lapilli tu	ff : same as a	bove. Subt	le coarsening	downhole. Few larg	e boulders of palo	phyric rh	yolite.	
00	50.1 m	51.8 m	Plag phyric rhyolitic	ash tuff. Sh	attered coar	rse plag crysta	als set in very fine g	rained ash matrix	x. Weak	corroded phenocrys	st coarse replac
			Lower contact, shar								
			Interval is moderate	ely broken wit	h coincident	t strong pyrite	alteration and loca	strong silica veir	ning. Corr	nmon shear/vein at	titude at 40° TC
00	51.8 m	62.7 m	Quartz phyric fine a								
			51.8-53.0 m Zone o				te/pyrite coated she	ars-parallel @ 40	° TCA. Up	oper contact marked	d by intense py
			Grey clay millimetri								
			53.9 m Bleaching, c								
			54.7-62.7 m Zone	of strong fa	ulting and	brecciation co	oincident with pyri	e alteration, loca	al intense	silicification and	coarse marcas
			54.7-54.8 m Strong								
			54.8-58.2 m Shear							veining. Highly var	riable orientatio
			spider-web like but								
			58.2-59.1 m Highly		veined with	massive marc	casite, typically nod	ılar in habit. Dark	grey pyrit	te alteration intense	where adjacen
		1	strongest fracturing								

			DIAMOND DRILL LOG	COGEMA RESOURCES INC	YMLOG.XLS	Pag	e 8
Projec	ct : NEC	HAKO	Property : YELLOWMOOSE Grid : IPA	Hole No: YM9404	Page	2 0	f 2
	Claim :		N: 5929100 az: 270°	Contractor :	Leclerc Drilling Ltd		
l	Dip Test	:	E: 361700 incl: -45°	Start : Sept.	11, 1994		
	47° @ 8	5.6 m	Elev : 950 T.D.: 124.1 m	End : Sept. 11	l, 1994		
				Logged by	: K. MacDonald		
Rec.%	From	То		DESCRIPTION			
			59.1-62.0 m Massive fault breccia healed with intense silica/m				marcasi
			62.0-62.7 m Highly brecciated and silica/marcasite veined fine	ash/plag phyric ash contact zone. Dark g	grey pyrite alteration w	aning.	
100	62.9 m		Plag phyric fine ash tuff. Coarse plag phenocrysts set in a ve	ery fine grained ash matrix, as above, mo	derate passing to wea	k shear	ing. Loca
			Few coarse marcasite open fractures/shears at 30° TCA.				
			64.0-64.2 m Several parallel greasy white talc coated shears a				<u>.</u>
100	64.9 m	82.0 m	Heterolithic block tuff. Granule to massive angular blocks set		orly sorted. Mostly and	jular cla	asts-matr
			Large sub-rounded plag phyric ash tuff and 3% black siliceous				
			Waning argillic alteration associated with massive fault above		elow 75.3 m.		<u> </u>
			77.8-78.3 m Massive block/bed (?) of silicified plag phyric ash	tuff, contacts broken.			
400	00.0	4477	Disc shufe ask flav massive with the 4.401 way first disc				
100	82.0 M	117.7m	Plag phyric ash flow-massive unit - tr. < 1% very fine diss.		enocrysts. Minor wea	k silica	/marcasi
			veining at 50° TCA. Unit has local strong flow banding at 60°				
			Weak sulphidation/alteration coincident with faulting, pervasiv Incipient weak matrix silicification. Plag phenocrysts typically			occur a	pprox 1-
			89.6 m Flow banding/incipient devitrification textures at 60° T		bynuc cores.		
		· ·	99.8-100.0 m 20cm of intensely silicified heavily pyritized inte		asite coated at 35° TC	Δ	
			102.0-117.0 m Few millimetric silica/massive marcasite veinle			<u> </u>	
		· · ·	104.5 m Massive grey clay gouge at 50° TCA, sandwiched bet				
			106.9 m Marcasite/grey clay coated shear at 20° TCA.	theon compotent, relatively undistarbed re			
			112.4 m Flow banding/incipient devitrification texture at 40° T	CA.			
100	117.7m	120.0m	Quartz phyric fine ash tuff-as above except very heavily pyri	te altered medium to dark arev. Intense	tiny laced network of	bale ve	low-brow
			Local strong silica/fine sulphide healed parallel shears at 30° 1				
100	120.0m	124.1m	Plag phyric fine ash flow. Weak incipient matrix silicification.	Weak pyrite alteration and local silica/ma	rcasite cracks and veir	nlets.	
				••			
		124.1m					

	CC	dre si	AMPLE	LIS	T	COG	EMA R	ESOURC	ES IN	C.		YMC	ORE XLS
oject :	NECHA	ко	Pro	perty : Y	ELLOW	MOOSE	Grid : IF	A Hole	No : YM	9404	Page	1 of	1
						LIST O	F SAMP	LES					
Imple	Туре	From	То	Length	Rec %	Au ppb	Ag ppm	As ppm	Hg ppb		Cor	nment	S
2352	cont	3.0	11.3	8.3	100	1	0.1	31	635				
2353	cont	11.3	17.4	6.1	100	1	0.1	19	715				
2354	cont	17.4	23.5	6.1	100	1	0.1	14	550				
2355	cont	23.5	29.6		100	1		11	640				
2356	cont	29.6	35.7	6.1	100	1	0.1	15					
2357	cont	35.7	41.8		100	1		18	660				
2358		41.8	47.9		100	1		19	635				
	comp	47.9	53.9	6.0	100	2		86	1655				
2360	cont	53.9	54.4	0.5	100	1		37	1145				
2361		54.4	55.2		62	3		74	7445				
2362		55.2	56.4	1.2	100	2		177	23710				
2363		56.4	58.2	1.8	100	2		193	14685				
2364		58.2	59.5	1.3	100	4		16 9	6020				
2365		59.5	60.0	0.5	100	3		498	17920				
2366		60.0	60.5	0.5	100			665	52750				
2367		60.5	61.0		100			613					
2368		61.0	61.5		100	3		199	9145				_
2369		61.5	62.0		100	3		364	20080				
2370		62.0	63.0	1.0	100			48	2900				
	comp	63.0	68.0		100	1		12	780				
	comp	68.0	75.3	7.3	100	1		14	525				
	comp	75.3	81.4	6.1	100	1		28	380				
	comp	81.4	87.5	6.1	100	1		16	1125				
	comp	87.5	93.6	6.1	100	1	0.1	32	935			-	
	comp	93.6	99.7	6.1	100	1		20	1235				
	comp	99.7	105.8		100	2			1320				
	comp	105.8	111.9		100				985				
	comp	111.9	117.2	5.3	100			24	560				_
2380		117.2	117.7	0.5	100			65	1145				
2381		117.7	119.0	1.3	100			279	3470				
2382		119.0	119.5	0.5	100			25	1195				
2383	comp	119.5	124.1	4.6	100	2	0.2	19	400				

			DIAMOND DRILL LOG	COGEMA	RESOURCES	INC	YMLOG.XLS	Page 9
Proje	ct : NEC	HAKO	Property : YELLOWMOOSE Grid : IPA	Hole No): YM9405		Page	1 of 1
	Claim :		N : 5929100 az : 270°		Contractor	: Leclerc	Drilling Ltd	
	Dip Test		E: 361700 incl: -70°		Start : Sep			
	70° @ 9	92.0 m	Elev : 950 T.D.: 92.0 m		End : Sept			
					Logge	dby:K.	MacDonald	
Rec.%		То	DESCRIPTION					
	0.0 m	1.2 m	Casing.					
100	1.2 m	17.6 m	Heterolithic lapilli tuff. Granule to block size, dominantly lapil	lli size coarse	tuff. Steel blue	-grey silic	cified matrix. Loca	I limonite coated
100	17.6 m	19.4 m	Quartz phyric fine ash tuff. Soft very weakly clay altered. Upp	er contact at 5	5°. Lower contac	ct broken	at 55° TCA. Faint	primary bedding
100	19.4 m	25.3 m	Heterolithic lapilli tuff: subtle coarsening downhole. Lower contact	ct sheared and	clay altered at 5	0° TCA.	Local irregular pyrit	e alteration stains
100	25.3 m	31.9 m	Quartz phyric fine ash tuff. Well developed bedding at 40° To	CA. Both cont	tacts sheared and	d pyrite a	Itered at 40-50° T	CA. Weak pyrite
100	31.9 m	65.8 m	Heterolithic lapilli-block tuff: coarsening downhole. Numerous la 40.2-42.4 m Well preserved mantle bedding at 40° TCA, coarsen			e flow bar	nded rhyolite and fs	p phyric fine ash
100	65. m	79.4 m	Plag phyric fine ash tuff. Sheared broken upper contact at 40° To passing to locally intense.				•	
			68.7-69.8 m Massive zone of intense structural disruption (fault alteration, probably developed in a band of quartz phyric fine ash				ndary silicification a	ind intense pyrite
			Massive white clay gouge at 40° TCA at 69.3 m. Pale to dark gre			d intermi	ttent throughout with	n minor marcasite
			69.8-72.6 m Moderate fracturing with coincident silica/fine sulphic					
			72.6-73.9 m Intense parallel shearing at 40° TCA coincident w coating open vuggy vein at 3° TCA at 73.6 m.	ith strong pyri	ite staining, weak	silica/ma	arcasite veining. M	lassive marcasite
			73.9-79.2 m Weak fracturing and intermittent marcasite/silica v exceed 1mm in width. Main set at 30° TCA.	einlets coincid	ent with sulphide	staining	in adjacent wallrocl	c. Veinlets rarely
			79.2-82.2 m Massive fault zone. Intense silicification (secondar	y) and marcas	site mineralizatior	n at 79.2	m passing below 7	9.3 m to silicified
			Developed at contact between overlying ash flow/tuff and underly	ring heterolithic	tuff. Contact not	preserve	d, but probably at a	bout 79.4 m.
100	79.4 m	92.0 m	Heterolithic lapilli-block tuff, parallel weak fracturing at 30° TCA.	Local sulphide	/silica veining at 2	20-40° TC	Α.	
	ļ		87.3-87.6 m Massive soft pale green clay altered boulder.					
			84.0-92.0 m Chaotic mix of large blocks of plag phyric fine as	n tuff/flow with	lesser heterolith	ic lapilli ti	uff matrix. No con	spicuous faulting,
·····		92.0 m	E.O.H.					<u> </u>

	co	DRE S	AMPLE	LIS!	r	COG	ema f	ESO	URC	ES INC	C. YMCORE.XLS
Project :	NECHA	КО	Pro	perty : Yl	ELLOW	MOOSE	Grid : I	PA	Hole	No : YM	9405 Page 1 of 1
Sample	Туре	From	То	Length	Rec %	Au ppb	Ag ppm	1 As	ppm	Hg ppb	Comments
2384	comp	1.2	8.2	7.0	100	2	0.1	I	48	520	
2385	comp	8.2	14.3	6.1	100	2	0.1		13	295	
2386	comp	14.3	20.4	6.1	100	1	0.1	1	3	435	
2387	comp	20.4	26.5	6.1	100	1	0.1	I T	19	735	
2388	comp	26.5	32.6	6.1	100	1	0.1		8	1030	
	comp	32.6	38.7	6.1	100	1	0.1		8	250	
2390	comp	38.7	44.8	6.1	100	1	0.1		11	205	
2391	comp	44.8	50.9	6.1	100	1	0.1		6	205	
2392	comp	50.9	57.0	6.1	100	1	0.1		3	205	
2393	comp	57.0	63.1	6.1	100	1	0.2	2	13	325	
2394	cont	63.1	67.7	4.6	100	1	0.1		58	300	
2395	cont	67.7	68.7	1.0	100	1	0.1		16	345	
2396	cont	68.7	69.7	1.0	100	1	0.1		138	690	
2397	cont	69.7	70.7	1.0	100	1	0.1		55	590	
2398	cont	70.7	72.2	1.5	100	1	0.1		_ 23	780	
2399	cont	72.2	73.2	1.0	100	1	0.1		67	1630	
2400	cont	73.2	74.1	0.9	100	1	0.1		189	6285	
2401	cont	74.1	74.6	0.5	100	2	0.2	2	66	4615	
2402	comp	74.6	78.3	3.7	100	1	0.1		62	1695	
2403		78.3	79.3	1.0	100	1	0.1		182	9115	
2404	cont	79.3	80.5	1.2	50	1	0.1		474	37985	
2405		80.5	82.0	1.5	40	1	0.1		55	4875	
2406	cont	82.0	82.9	0.9	100	1	0.1		19	3210	
2407	cont	82.9	84.4	1.5	100	1	0.1		31	1705	
2408	cont	84.4	86.0	1.6	100	2	0.1		77	975	· · · · · · · · · · · · · · · · · · ·
2409	cont	86.0	87.5	1.5	100	5	0.1		60	1540	
2410	cont	87.5	89.0	1.5	100	3	0.1		40	860	· · · · · · · · · · · · · · · · · · ·
2411	cont	89.0	90.5	1.5	100	2	0.1		23	1075	
2412	cont	90.5	92.0	1.5	100	2	0.1		38	1495	

	· ·		DIAMOND DRILL LOG	COGEMA	RESOURCES	INC	YMLOG.XLS	Pag	e 10	
	ct : NEC		Property : YELLOWMOOSE Grid : IPA	Hole N			Page	1	of 1	1
	aim : CU		N : 5929100 az : 320°				lerc Drilling Ltd			
	Dip Test		E: 361700 incl: -45°			Sept. 11,				
	44° @ 9	/6.5 m	Elev : 950 T.D.: 96.6	<u>5 m</u>		Sept. 12, '	K. MacDonald			
Per %	From	To		DESCRIPTION		Jyeu ny .		-		
NG0.70			Casing.						<u> </u>	
		[· · ·			
100	1.2 m	16.5 m	Heterolithic lapilli-block tuff-coarse, very poorly sorted	i, mtx supported w/weak	incipient silicificat	ion of mt	x. Pale green-whi	e weak	clay	alt. of
	<u> </u>		Local limonite coated fracturing flow. 1.2-8.3 m main f	fracture set 30-50° TCA.						
1.0.0	<u> </u>		a state of the second s	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
100	16.5 m	18.5 m	Quartz phyric fine ash tuff. Pale buff color very fine g	grained incipient suicificat	ion of matrix. Up	per conta	ct sheared and py	ritizea a	at 60°	TCA.
100	185 m	10 0 m	Heterolithic lapilli: block tuff, coarse, sheared lower cor	ntact at 70° TCA (?)			·····		<u>-</u>	<u> </u>
	10.0 m	18.0	Helefontino lapini. Diook turi, ooarae, anearoa iomor ea.							
100	19.0 m	23.8 m	Quartz phyric fine ash tuff. Massive undisturbed, mino	or talc coated shearing at	30° TCA. Few fin	e sulphide	e/silica veinlets at	30° TC/	A.	
·						•				
100	23.8 m	41.3 m	Heterolithic lapilli-block tuff. Massive competent, rare	marcasite coated shear	plane at 30° TCA	. Sheare	d, broken, drill-gro	und up	per co	Intact
	<u> </u>	<u> </u>								
100	41.3 m/	<u>45.5 m</u>	Plag phyric fine ash tuff-coarse plag phenocrysts set in	1 fine silicified ash mtx. 2	Ocm of grey lapilli	tuff from	42.5-42.7 m (pos	sibly spi	lled c	ore or
 	↓ ′	l	Minor fine hairline silica/sulphide cracks.					<u></u>		
100	45.5 m	47 6 m	Quartz phyric fine ash tuff: very weak sulphide alteration	on coincident with strong	local shearing & fi	riability, \	Neak nervasive c	av alter	ation.	Ven
100	1	41.0	Main shear set at 50° TCA-broken, sheared rubbly con		ivoai onotanna	laving	Weak portacity -	ay a	auon	<u> </u>
,	+	[
	I ,	•								
100	47.6 m	56.1 m	Plag phyric fine ash tuff. Massive silicified essentially	undisturbed. Few weak s	hears at 30° TCA	•				
· ···				······						
100 100			Plag phyric fine ash tuff. Massive silicified essentially Heterolithic block tuff: massive blocks of devitrified rhy	······			uff. Lower contac	t irregul	ar and	l non
100	56.1 m	70.9 m	Heterolithic block tuff: massive blocks of devitrified my	yolite, flow-banded rhyolite	e and plag phyric	ash flow/t		•		
· ···	56.1 m	70.9 m		yolite, flow-banded rhyolite	e and plag phyric	ash flow/t		•		
100	56.1 m 70.9 m	70.9 m 75.1 m	Heterolithic block tuff: massive blocks of devitrified rhy Quartz phyric fine ash tuff: massive unit, local intense	yolite, flow-banded rhyolite	e and plag phyric clay alteration at t	ash flow/t	ects. Main shear s	et at 50	-60° T	FCA.
100 100	56.1 m 70.9 m	70.9 m 75.1 m	Heterolithic block tuff: massive blocks of devitrified my	yolite, flow-banded rhyolite	e and plag phyric clay alteration at t	ash flow/t	ects. Main shear s	et at 50	-60° T	FCA.

	CC	RE S.	AMPLE	LIS	r	COG	EMA R	ESOURC	ES INC	YMCORE.XLS
Project :	NECHA	ко	Pro	perty: Y	ELLOW	MOOSE	Grid : IF	PA Hole	No : YM9	9406 Page 1 of 1
Sample	Туре	From	То	Length	Rec %	Au ppb	Ag ppm	As ppm	Hg ppb	Comments
2413	comp	1.4	8.2	6.8	100	2	0.1	32	520	
2414	comp	8.2	14.3	6.1	100	3	0.1	23	540	
	comp	14.3	20.4	6.1	100	2	0.1	65	455	
2416	comp	20.4	26.5	6.1	100	2	0.1	7	920	
	comp	26.5	32.5	6.0	100	2	0.1	32	365	
	comp	32.5	38.7	6.2	100	1	0.1	28		
2419	comp	38.7	44.8	6.1	100	2	0.1	27	725	
2420	cont	44.8	45.3	0.5	100	2	0.1	6	475	
2421	cont	45.3	45.7	0.4	100	1	0.1	50	890	
2422	cont	45.7	47.2	1.5	100	1	0.1	27	4055	
2423	cont	47.2	48.2	1.0	100	1	0.1	53	785	
2424	cont	48.2	49.2	1.0	100	1	0.1	12	535	
2425	comp	49.2	56.4	7.2	100	1	0.1	6		
2426	comp	56.4	62.5	6.1	100	1	0.1	9	260	
2427	comp	62.5	68.6	6.1	100	2	0.1	3	140	
2428	comp	68.6	75.3	6.7	100	1	0.1	7	330	
2429	comp	75.3	81.4	6.1	100	1	0.1	10	765	
2430	comp	81.4	87.5	6.1	100	1	0.1	9	390	
2431	cont	87.5	93.6	6.1	100	1	0.1	17	550	
2432	comp	93.6	96.6	3.0	100	1	0.1	23	665	

Core Sample Analyses

YMCOREX.XLS Page 1

.

Hole	Sampl	From	To	Au	Ag	As	Sb	Hg	Мо	Cu	РЫ	Zn	Ba	Ni	Cr	Co	Mn	Fe	V	Sr	Mg	Ca	Ti	P	La	U	Th	Cd	Bi	В	W	A	Na	R
		m	m	_	ppm	ppm	ppm	ppb	ppm	ppm		ppm	ppm 70	ppm	ppm	ppm	ppm	%	date .	ppm	%	%	%	%	ppm	ppm E	· · ·	++	_	ppm	ppm	· · · · ·	- %	*
YM9401	2269	4.7	7.7		0.3	45	4	300		8	16		70	3	4	1	490	2.48	4	<u> </u>	0.11	0.1	0		2	5	2		2	6		0.37		0.20
YM9401	2270	7.7	8.7	3	0.1	47	2	290	4	9	13	92	123	7	5	2	496	2.08	4		0.12	0.1		0.03	2	5	2	0.4	2		1	0.34		0.19
YM9401	2271	8.7	14.3	1	0.0	21	2	255	5	9	17	97	97	10	4	3	1244	2.73	5		0.26	0.3		0.04	3		2		2	6	1	0.35		0.20
YM9401	2272	14.3	20.4	3	0.2	48	2	255	7	8	20	93	136	9	6	2		2.54	4		0.23	0.3		0.04	3		2	-	2	7	1	0.41		0.23
YM9401	2273	20.4	26.5	1	0.2	20	2	195	5		17	88	93	8	5	2		2.64	5		0.30	0.5		0.04	3	-	2	0.3	3	5	1	0.37		0.20
YM9401	2274	26.5	32.6		0.1	23	2	160	4	9	13	98	66	8	4	2	+	2.56	4		0.25	0.3	<u> </u>	0.04	3		2	0.6	2	6	-	0.38		0.21
YM9401	2275	32.6	38.7	1	0.1	25	3	180	6	11	19	117	111	12	7	2		2.38	4		0.21	0.2		0.05		5	2	0.4	2	6	1	0.45		0.24
YM9401	2276	38.7	44.8	1	0.1	38	2	155	6	8	12	87	83	8	4	3		2.43	4	++	0.23	0.2		0.04	3	5	2	0.2	2	5	1	0.47		0.24
YM9401	2277	44.8	50.9	1	0.2	38	4	195	6	8	16	89	68	12	4	3		2.98	4	1 - 1	0.30	0.4		0.04	3	5	2	0.5	2	3		0.40		0.21
YM9401	2278	50.9	57	1	0.1	24	2	135	6		11	83	60	11 6	5	2		2.93	4		0.34	0.5		0.04			2	0.5	2	5	1	0.46		0.22
YM9401	2279	57	63.1	1	0.2	20	2 2	145	6 5	6		96	34	9	4	2		2.60	4		0.24	0.3		0.00	+	<u> </u>			2	4	1	0.40		0.24
YM9401	2280	63.1	69.2		0.2	24	2	130			12 17	89 109	91 36	9 11	4	2		2.00	4		0.24	0.2		0.04		5		+	2	6		0.40		0.22
YM9401	2281	69.2	75.3	1	0.1	21	4	145 105	5	-	13	80	50	6	4	2		2.70	3	++	0.29	0.4					2		2	5	1	0.42		0.23
YM9401	2282	75.3 81.4	81.4	2		73 28	4	135	- 5 - 4	+ +	16	102	63	10	6	5	973	2.95	5		0.32	0.4				5	-		2	6	1	0.40		0.23
YM9401 YM9401	2283 2284	87.5	87.5 93.6		0.2	20	3	90		6		82	34	10	7	2		2.33	3	· · · · · · · · · · · · · · · · · · ·	0.24	0.3				5				5	1	0.38		0.22
YM9401	2285	93.6	99.7		0.2	25	2	100	4	6		86	326	7	5	2		2.39	4		0.28	0.4						-	2	5	1	0.42		0.25
YM9401	2285	99.7	106		0.1	10	2	95	6			76	44	9	5	- 1	828	2.28	4		0.27	0.4	Ŏ			5		-	2	4	1	0.32		0.19
YM9401	2280	105.8	112		0.2	17	2	100	8	· ·	12	91	53	8	7	2	792	2.46	3		0.22	0.2	0	0.03		÷ · · ·	2		2	5		0.40		0.23
YM9401	2288	111.9	118		0.1	22	2	100	8		13	89	49	7	5	2	806	2.34	3		0.17	0.2	Ō	+			2		2	5	1	0.38		
YM9401	2289	118	124		0.2	25	2	140	6	<u> </u>	15	87	59	7	5	2	764	1.90	2		0.13	0.3	Ō		_		2	0.2	2	5	1	0.35		
YM9401	2290	124.1	130		0.2	16	2	130	4	÷	10	72	61	9	6	1	673	1.79	2	25	0.10	0.1	Ō		2	<u> </u>	2	+	2	4	1	0.30		0.19
YM9401	2291	130.2	136		0.1	26	2	140	4		17	89	114	6	6	1	524	1.57	2		0.09	0.1	0				2	2 0.2	2	-	1	0.33	0	0.21
YM9401	2292	136.2	142	2		20	2	115	3	8	15	76	38	7	4	1	671	1.72	2	24	0.10	0.1	0	0.00	5	5	2	0.3		6	1	0.28	0	0.18
YM9401	2293	142.6	150		0.2	40	5	190	4		11	74	37	13	6	1	458	1.70	2		0.08	0.1	0		7	5	2	2 0.2	5	5	1	0.31	0	0.19
YM9402	2294	3	5.2	2	0.1	68	5	605	8	4	8	73	51	4	5	1	66	1.55	2	4	0.01	0	0	0.00	14	5	3	0.3	2	4	1	0.39	0	0.20
YM9402	2295	5.2	6.7	2	0.2	124	8	680	10	8	14	61	126	4	5	1	69	2.03	2	10	0.01	0	0	0.00	9 9	5	2	0.2	2	4	1	0.37	0	0.26
YM9402	2296	6.7	8.2	1	0.2	146	53	1300	9	6	15	81	160	2	5	1	384	2.17	2	20	0.07	0.1	Č	0.00	4	5	2	2 0.4	2	4	1	0.39		
YM9402	2297	8.2	9.8	1	0.2	99	24	650	9	7	21	24	99	2	4	1	50	1.69	2	11	0.02	0	0	0.00) 3	5	2	2 0.2	2	4	1	0.30		
YM9402	2298	9.8	11.3	3	0.3	197	19	1250	9	3	23	39	76	5	6	1	74	1.63	2	16	0.02	0	0	0.00) 3	5	2	2 0.2	2	5	1	0.36		0.25
YM9402	2299	11.3	12	1	0.3	217	17	1320	7	7	41	107	53	2	5	1	225	1.59	2	16	0.04	0.1	0	0.00	3	5	2	2 0.6	2	7	1	0.43	0	0.20
YM9402	2300	12	12.8	1	0.1	182	14	1025	4	4	35	113	39	4	5	1	307	1.91	2	16	0.06	0.1	Ö	0.01	2	5	2	2 0.2	2	5	1	0.37		0.17
YM9402	2301	12.8	14.3	2	0.3	101	42	1715	7	4	22	110	68	6	8	1	440	1.78	2		0.07	0.1		0.01	2	5	2	2 0.2	2	-	1	0.35		0.18
YM9402	2302	14.3	15.8	5	0.3	167	31	1250	4	6	22	106	47	4	6	1	501	2.19	2	32	0.10	0.1	0	0.02	2 2	5	2	2 0.2	2		1	0.38		
YM9402	2303	15.8	17.4	2	0.1	102	17	705	7	4	17	141	60	3	2	2	508	2.19	3		0.15			0.03	_	5	L	2 0.4	L	+	1	0.34		
YM9402	2304	17.4	23.5	1	0.1	27	6	205	5	4	17	114	52	5	5	2	704	2.71	5	53	0.24	0.2	<u> </u>	0.06	<u>+</u>	<u> </u>	2		+	6	1	0.48		
YM9402	2305	23.5	29.6	2	0.1	103	8	375	6	4	9	72	37	2	4	1	416	1.31	2	16	0.08		+	0.00		5	2	_	2	6	1	0.31		
YM9402	2306	29.6	35.7	1	0.1	77	7	240	8	6	12	77	58	5	4	1	474	1.30	4	+	0.08	+	0	0.00	6 0	5	<u> </u>	8 0.2	+	3	1	0.29		0.17
YM9402	2307	35.7	41.2		0.2	135	11	685	7			116				1		1.83						0.03	3 4		2	2 0.2	2	2		0.38	0	0.22
YM9402			42.3		0.2	115	14	795	4			101						0.66						0.01				2 0.2	2	6		0.31		0.17
YM9402			43.3		0.2	161	54	2470	4	4	18	70	46					1.67						0.01		5		2 0.2	2	6		0.29		0.17
YM9402					0.1	74	9	890	3	3	16	137	27	4			559	2.12	2	20	0.12	0.1		0.01				2 0.2	2	5		0.32		0.19
YM9402			45.3		0.1	115	7	505	4		22						269	1.91	2	37	0.06	0.1	0	0.01	2	5	2	2 0.2	2	3	1	0.34		0.17
YM9402			45.8		0.3	288	16	940	8		20							1.46					0	0.01	2	5	2	2 0.2	2	2		0.31		0.16
YM9402			46.8		0.4	772	55	2235	9		12	61						1.71						0.00	2	5	2	2 0.2	2	4		0.31		0.15
YM9402	2314	46.8	47.8	5	0.3	706	26	1360	8	6	18	62	46	5	6	1	74	1.39	2	19	0.03	0.1		0.00	<u> </u> 3	5	2	2 0.2	2	5	1	0.34	0	0.21

YMCOREX.XLS Page 2

1

Hole	Sampl	From	To	Au	Ag	As	Sb	Hg	Мо	Cu	Pb	Zn	Ba	Ni	Cr	Co	Mn	Fe	V	Sr	Mg	Cä	Ti	P	Lä	U	Th	Cd	Bi	В	w	A	Na	רא
VI40402	0245	m 47.0	m 40.0	ppb	ppm	ppm	ppm	ppb	ppm	_	ppm	ppm	ppm	ppm	ppm			%		ppm	%	*	%	%	_	_	_	n ppm	_	_		%	%	%
YM9402	2315	47.8	48.8	16		893	59	3960	14	4		72	60	6		1	63	1.18			0.02	0		0.00	3	_		2 0.2	2	4		0.30		0.19
YM9402	2316	48.8 49.8	49.8		0.6	465 530	112 87	7295	<u>10</u> 7	- 7	5	49	34	6	7	1	59	0.44			0.02	0		0.00	3	-			3	4		0.28		0.13
YM9402 YM9402	2317	49.0	51 51.5	52	0.7	205		6045	5	$\frac{1}{7}$	-	25	50	2	5	1	62 56	0.40			0.02	0		0.00	3			2 0.2	2	5	_	0.32		0.16
YM9402	2319	51.5	51.5	8	0.1	154	30 77	2130 6100	- 5 7	· ·		13 10	87 68	5	6	· · · · ·	+	0.35			0.02	0.1		0.00	3	<u> </u>		2 0.2	2	4		0.31		0.18
YM9402	2319	51.5	52.5	130		1602	183	16165	12	2 14	6	15	42	5 6	6	1	+	0.39		_	0.02	0		0.00	4	5			2	5	_	0.35		0,19
YM9402	2320	52.5	53	31		219	96	8495	9	6	7	26	79	3	4	1		0.50		_	0.02	0		0.00	2 4	5	-		2	6 3				0.11
YM9402	2322	53	53.5	48		1002	149		12	4	9	52	62	4	4	- 1	59	0.30			0.02	0.1		0.00	4	5			2			0.27		0.15
YM9402	2323	53.5	54	130		2770	119	4615	9	9	-	46	42	6	6	1	63	0.48		_	0.02	0.1		0.00	2		· · · · · ·		2	3	_			0.21
YM9402	2324	54	54.5	52		4396	96	1340	9	4		61	54	6	4	1	205	0.95			0.02	0.1		0.00	2		_	-	2	5		0.30		0.16 0.20
YM9402	2325	54.5	55.4	260		12939	270	1810	7	3		60	52	8	5		87	1.45			0.02	0.1		0.00	2	5		0.2	2	4		0.34		0.20
YM9402	2326	55.4	55.9	6		544	23	455	6	8		78	63	7	6	2		1.57		_	0.13	0.2		0.03	3		2		2	4	_	0.40		0.22
YM9402	2327	55.9	63.1	-	0.1	80	12	270	5	<u> </u>		83	73	6	5	2		2.13			0.17	0.2		0.03	2		-	-	2	2	-1	0.42		0.22
YM9402	2328	63.4	69.2		0.1	110	9	200	4	11	10	83	50	7	5		+	3.86			0.33	0.5		0.12	8		_		2	-7	-	0.51		0.25
YM9402	2329	69.2	72.2	4		313	13	525	3		11	74	55	8	4	1		3.18		_	0.18	0.2		0.02	8			0.2	2	5	_	0.38		0.21
YM9403	2330	3.0	11.3	2	+	111	11	735	6	6	• •	118	70	5	4	2		2.16			0.03	0.1		0.02	4				2	2		0.44		0.23
YM9403	2331	11.3	17.4	2	_	50	7	290	10	4		136	58	4	3	3	<u> </u>	3.93			0.29	0.3		0.08	5				2	2		0.47		0.27
YM9403	2332	17.4	23.5	2		299	123	1695	13	6	11	118	66	7	5	4		2.39		\rightarrow	0.10	0.1		0.02	3			-	2	4		0.42		0.22
YM9403	2333	23.5	29.6	1	0.2	72	12	280	5	6	12	111	46	9	4	2	717	2.44			0.23	0.2		0.03	2	5			2	3	1	0.38		0.23
YM9403	2334	29.6	35.7	1	0.2	434	45	835	5	4	11	101	62	9	5	2	867	3.00	4	26	0.20	0.2		0.03	2	5		-	2	2	1	0.42		0.23
YM9403	2335	35.7	41.8	1	0.1	40	10	355	5	6	11	110	38	7	4	2	947	2.35	4	30	0.19	0.2	0	0.03	3	5			2	3	1	0.39		0.21
YM9403	2336	41.8	47.9	1	0.1	126	14	505	6	6	11	124	46	10	4	2	717	1.80	4	37	0.17	0.3	0	0.03	3	5	2	2 0.2	4	3	1	0.40		0.23
YM9403	2337	47.9	53.9	4	0.1	88	9	255	5	6	10	83	51	12	6	2	822	2.45	4	31	0.20	0.2	0	0.03	3	5	2	2 0.2	2	4	1	0.40	0	0.23
YM9403	2338	53.9	60	6		229	26	1080	6	8	12	92	56	9	6	3		1.82	4	37	0.12	0.2	0	0.03	3	5	2	2 0.2	2	3	1	0.45	0	0.24
YM9403	2339	60	61	38		712	89	4350	6	6		86	50	8	4			1.73			0.02	0.1		0.02	2				2	3	1	0.37	0	0.18
YM9403	2340	61	62	17		598	66	1980	9	6		78	60	12	6	2		1.19			0.03	0.1		0.02	2				2	4	1	0.40		0.20
YM9403	2341	62	63	8		220	75	4800	7	6		89	60	9	5	2		1.21			0.02	0.1		0.02	3		_		3	3	1	0.41		0.19
YM9403	2342	63	64	20	_	643	110	6110	14	5		63	41	9	5	2		1.62			0.02	0		0.00	2				5	4	_	0.32		0.17
YM9403	2343	64	65	21	+	570	96	2785	11	9		68	43	13	7	3	-	2.16			0.02	0.1		0.00	2			2 0.2	4	4		0.37		0.20
YM9403	2344	65	66	80		1199	287	12490	132	11	11	41	23	12	7	4		3.86			0.02	0		0.00	2			2 0.2	2	2	4	0.33		0.16
YM9403	2345	66	67	21		555	41	1155	8	5		59	62	8	5	2		0.60			0.02	0		0.01	2	5			2	3	1	0.27		0.15
YM9403	2346	67	68		0.2	2998	85	1520	4	2		79	51	5	4	1		1.56	\rightarrow		0.07	0.1		0.00	2	5			2	4		0.35		0.21
YM9403	2347	68	68.9	7		460	16	810	6	4	13	78	43	7	3			2.47	+		0.15	0.2		0.06	5		2		2	6		0.44		0.25
YM9403	2348	69.2	75.3	3		50	6	195	4	6	11	87	62	7	5	3		2.54	_		0.21	0.2		0.06	4	· · · ·	· · · · ·	_	_7	3		0.36		0.21
YM9403	2349	75.2	81.4	3		120	6	170	5		14	88	37	10	7	3	4	2.38			0.25	0.3		0.05	4	5	2		2	4	-	0.42		0.23
YM9403	2350 2351	81.4	88.3	4	0.1	20 179	4	140	4	12	12	85	94	8	5	3	608	2.63		_	0.29	0.3		0.04	3	<u> </u>			2	_4		0.41		0:22
YM9403		88.4	89.5	4	0.1			225	_	12	14	67	41	4	2	5	958	4.15		_	0.23	0.5	0	0.13	(5	2		3	_4		0.48		0.26
YM9404 YM9404	2352 2353	<u>3</u> 11.3	11.3		0.1	31	8 6	635 715	7	8	24	81	60	12	9	2	919			34	0.27	0.5	0		3				2	2		0.36		0.17
YM9404	2353				0.1	19 14	5	550	4		9 8	67	112 69	4		2	1003 1446	3.21	9	40 55	0.30	0.5	0	0.08	7	5 5		0.2	2	5	1	0.43		0.19
YM9404	2354	23.5			0.1	14	4	640				76		4			914	2.0/	3	75	0.27	0.5	0	0.03	2	ວ 5		0.2	2	2	1	0.41		0.20
YM9404	2355	29.6			0.1	15		170	5	4	9	83					1040				0.38		0	0.03	3	5		0.2	2			0.34		0.18
YM9404	2350		41.8		0.1	18		660	7	6	11	84	43 57	9			1137						0	0.04 0.05	- J - A	2 	2	0.2	2	2		0.35	- 0	0.19 0.16
YM9404	2358			1	0.1	19		635			12		43	9		3	1130	3 10	8	66	0.00	0.5	0	0.00	4	ວ 5	2	0.2	2			0.38		0.16
YM9404	2359	47.9			0.1	86		1655	8	7	46	92		5			1255						0	0.03 0.02	- 2	5	2	0.3	- 2	2		0.35		0.10
YM9404					0.1	37						96		3		1	11233	2 22	2	35	0.13	0.3	0	0.02	2	5	2	0.4	2			0.35		0.17
11110404	2000	00.0	<u>.</u>		0.1	57	03	143				30	200			1	1 1 2 2	2.22	2	55	0.10	0.1	0	0.00	2	3		0.2	2	- 4		0.31		u. 17

YMCOREX.XLS Page 3

Hole	Sampl	From	То	Au	-	As	Sb	Hg	Мо	Cu	-		Ba	Ni		Co	Mn	Fe	V	Sr	· · · · · ·	Ca	Ti	P	La			Çq		BV		Na	K
YM9404	2361	m 54.4	m 55.2	<u>ррь</u> З	ppm 0.1	ppm 74	ppm 89	^{ррь} 7445	ppm 3	ppm 3	200 <u>ppm</u> 18	ррт 87	ppm 44	ppm 3	ppm 3	ppm 1	_{ррт} 783	% 2.62	<u>ppm</u> 2	ppm 34	% 0.11	<u>%</u> 0.1	% 0	<u>%</u> 0.00	2 ppm	_{ppm} 5	<u>թթա</u> 2	0.2	2	opmipp ⊿	<u>m %</u> 1 0.33	<u>*</u>	% 0.20
YM9404	2362	55.2	56.4		0.1	177		23710	1			69	34	2	2	1	22	2.15	2	36	0.04	0.1	-	0.00	2	5		0.3	2	4	1 0.35		
YM9404	2363	56.4	58.2		0.1	193	95	14685	2		14	78	39	2	3	1	31	2.03	2	37	0.04	0.1		0.00	2	5		0.4	2	4	1 0.34	-	
YM9404	2364	58.2	59.5		0.1	169	110	6020	4	3	21	72	32	3	3	1	25		2		0.03	0.1		0.00	2	5		0.3	2	4	1 0.31		
YM9404	2365	59.5	60		0.1	498	250	17920	2	4	18	39	18	3	3	1	30		2	27	0.03	0.1		0.00	2	5		0.2	2	5	2 0.29		
YM9404	2366	60	60.5	1	0.1	665	577	52750	2	5	17	59	12	3	3	1	29	7.31	2	26	0.03	0.1		0.00	2	5		Ö.2	4	5	1 0.26	· · · · ·	0.14
YM9404	2367	60.5	61	2	0.1	613		49955	2	3	15	58	12	3	4	1	36	6.85	2	22	0.03	0.1	0	0.00	2	5	2	0.2	2	5	1 0.23		
YM9404	2368	61	61.5	3	0.1	199	129	9145	4	4	16	- 58	25	3	3	1	21	2.33	2	29	0.03	0.1	0	0.00	2	5	2	0.2	2	4	1 0.30	0	
YM9404	2369	61.5	62	3	0.1	364	157	20080	7	5	22	47	19	5	3	1	39	4.16	2	23	0.02	0.1	0	0.00	2	5	2	0.2	2	5	1 0.23	0	0.14
YM9404	2370	62	63	2	0.1	48	30	2900	5	3	16	98	39	6	5	2	654	2.36	4	36	0.10	0.1		0.01	2	5		0.3	2	3	1 0.36	0	0.18
YM9404	2371	63	68	1	0.1	12	8	780	3	4	15	74	27	4	4	2	568	2.04	3	41	0.14	0.2		0.02	3	5		0.2	2	3	1 0.36	+	0.15
YM9404	2372	68	75.3	1	0.1	14	10	525	4	7	16	95	37	6	4	2	927	2.93	6		0.25	0.4	0		6	5		0.2	2	4	1 0.35		0.14
YM9404	2373	75.3	81.4	1	0.1	28	8	380	5		16	81	48	7	6	2	1100	2.41	4	47	0.14	0.2	0		2	5	_	0.4	2	3	1 0.35		_
YM9404	2374	81.4	87.5	1	0.2	16	7	1125	6	5	19		27	3	4	1	625	1.95				0.1	0			5		0.2	2	3	1 0.40	0	
YM9404	2375	87.5	93.6	1	0.1	32	4	935	5	4	18	148	42	4	4	1	716	2.11	2	20	0.07	0.1	0			5		0.3	2	2	1 0.33		0,11
YM9404	2376	93.6	99.7		0.1	20	4	1235	4		21	113	41	6	6	1	496	1.58	2	20	0,06	0.1	0			5		0.2	2	3	1 0.37		0.13
YM9404	2377	99.7	106		0.6	12	4	1320	2		23	132	38	3	4	1	450	1.76	2		0.06	0.1		0.00		5		0.3	2		6 0.38		0.13
YM9404	2378	105.8	112	2	0.3	17	6 5	985		I I	24	136	36	4	4	1	386	1.77		17	0.05	0.1	0			5 5		0.2	2	3	1 0.34	-	0.11
YM9404	2379	111.9	117	-	0.1	24 65	5 7	560 1145	<u>/</u> 5	4	20 13	142 125	35 28	6 5	6		435 584	1.93	2	19	0.08	0.1	0		+	5 5	5 2	0.2	2	4	1 0.32		0.13
YM9404 YM9404	2380 2381	<u>117.2</u> 117.7	118 119	2	0.1 0.2	279	42	3470	3	8	17	125	20 31	3	2	6	1420	4.98	2	28 72	0.13	0.5	0		12	5	_	0.2	2	6	1 0.38 1 0.46	-	
YM9404	2381	119	120		0.2	279	42 9	1195	3	3	12	118	114	3	2	2	1948	3.81	5	<u> </u>		0.0	0		10	5		0.2	2		1 0.40		
YM9404	2383	119.5	124		0.2	19	11	400	3	4	17	99	44	2	3	2	1131	3.49	1		• · · · · · · · · · · · · · · · · · · ·	0.4	0		9	5		0.2	2	5	1 0.43		
YM9405	2384	1.2	8.2		0.1	48	16	520	5	9	12	82	81	10	6	3	857	2.72	5			0.2	Ő		4	5		0.2	3		1 0.40	+	0.16
YM9405	2385	8.2	14.3	2	0.1	13	7	295	4	6		83	41	10	7	2	1003	2.74	8			0.7	0	0.04	4	5		0.2	2	2	1 0.32		0.13
YM9405	2386	14.3	20.4	1	0.1	3	6	435	3	6	8	90	124	7	6	2	1175			52		0.5	0		5	5		0.2	2	3	1 0.36	-	
YM9405	2387	20.4	26.5	1	0.1	19	9	735	7	7	12	77	67	9	4	3	778	2.79		53		0.4	Ō		4	5		0.2	2	3	1 0.36		
YM9405	2388	26.5	32.6	1	0.1	8	5	1030	3	3	11	71	39	4	4	1	1056	2.31	2			0.3	0		4	5		0.2	3	3	1 0.43	+	-
YM9405	2389	32.6	38.7	1	0.1	8	5	250	5	7	11	86	71	8	5	3	794	2.67	6		0.33	0.6	Ö	0.06	4	5	2	0.2	2	3	1 0.42	0	0.20
YM9405	2390	38.7	44.8	1	0.1	11	75	205	5	10	12	84	186	12	5	2	1225	3.15	5	71	0.32	0.5	0	0.04	3	5	2	0.2	2	4	1 0.37	0	0.17
YM9405	2391	44.8	50.9	1	0.1	6	6	205	6	7	16	91	41	10	6	3	1032	2.97	7	82	0.45	0.9	0	0.06	5	5	2	0.2	2	5	1 0.36	0	0.18
YM9405	2392	50.9	57	1	0.1	3	5	205	5	7	11	97	47	7	4	5	1447	4.11	13	81	0.51	0.7	0	0.12	9	5	2	0.2	2	4	1 0.45	0	0.19
YM9405	2393	57	63.1	1	0.2	13	8	325	6	9	15	102	- 38	5	3	5	1126	3.66	8	74	0.26	0.4	Ō	0.11	9	5	2	0.2	2	3	2 0.45	0	0.21
YM9405	2394	63.1	67.7	1	0.1	58	6	300	_ 5	2	14	77	28	6	4	2	976	2.62	5		0.16	0.3	Ō		5	5		0.2	2	3	1 0.48		
YM9405	2395	67.7	68.7	1	0.1	16	8	345	5	3	15	47	12	3	3	1	1052	1.94	2		0.08	0.1	0		2	5		0.2	2	2	1 0.39		0.13
YM9405	2396	68.7	69.7	1	0.1	138	22	690	8	1	16	30	28	4	3	1	560	1.53	+	-		0.1	0		2	5		0.2	2	4	1 0.26		
YM9405	2397	69.7	70.7	1	0.1	55	5	590	4	1	14	39	37	3	3	1	905	2.01	2	40		0.1	0		2	5		0.2	2	_	2 0.38	<u> </u>	
YM9405	2398	70.7	72.2	1	0.1	23	5	780	3	2	9		28	2	3	1		· · · · · · · · · · · · · · · · · · ·	+		0.08	0.1	0		2	5		0.2	2	3	1 0.42		0.16
YM9405	2399		73.2		0.1	67	15	1630	7	3	18	38	45			1		1.24			0.03		0	0.01	2	5	2	0.2	2		1 0.33		0.17
YM9405	2400	73.2			0.1	189	35	6285	3		12		20	5		1					0.02			0.00			2				1 0.42		0.12
YM9405	2401	74.1	74.6		0.2	66	11	4615	3		10		24	2							0.04		0	0.01	2	5		0.2	2		1 0.41		0.09
YM9405	2402	74.6			0.1	62	7	1695	3		10			2			1085	2.39	2	29	0.09			0.01	2	5		0.2	2		1 0.41		0.10
YM9405	2403	78.3			0.1	182	55	9115	4		11			3							0.08		0	0.01 0.02	2	5	2	0.2	2		1 0.39		0.11
YM9405	2404	79.3			0.1			37985	5		11										0.03			0.02		5	2	0.2	2	2	1 0.29		0.11
YM9405	2405	80.5	82		0.1	55	21	4875	5			52		6				1.00	3	44	0.02	0.2		0.04		5	2	0.2	2	2	1 0.37		0.16
YM9405	2406	82	82.9	1	0.1	19	11	3210	6	5	11	112	48	9	6	3	669	2.39	5	46	0.11	0.2	0	0.04	4	5	2	0.3	2	3	1 0.42		0.19

YMCOREX.XLS Page 4

Hole	Sampl	From	То	Au Ag	As	Sb	Hg	Мо	Cu Pl	Zn	Ba	Ni	Cr	Co	Mn	Fe	VI	Sr Mg	Ca	Ti	Р	La	σ	Th C	d Bi	i B	W	A	Na	רא
		m	m	ppb ppm	ppm	ppm	ppb	ppm	ppm ppi	n ppm	ppm	ppm	ppm	ppm	ppm	%		pm %	%	%	%	ppm p	pm r	xpm pp	m ppr	m ppm	ppm	_	%	%
YM9405	2407	82.9	84.4	1 0.1	31	8	1705	6	3 1	68	41	5	4	_ 2	744	2.60		<u>40 0.13</u>	0.2		0.03	4	5		_	2 3		0.34		0.16
YM9405	2408	84.4	86	2 0.1	77	10	975	11	7 2) 111	71	8	3	4	884	3.51		57 0.15	0.2		0.05	4	5	2 0.		2 2	1	0.37		0.16
YM9405	2409	86	87.5	5 0.1	60	8	1540	6	4 2	_	39	6	5	1	592	2.30		25 0.08	0.1		0.00	5	5		_	2 2	1	0.38		0.12
YM9405	2410	87.5	89	3 0.1	40	7	860	7	4 1	3 96	57	6	4	2	636	2.41		6 <u>1 0.12</u>	0.2	0	0.03	3	5		_	2 2		0.40		0.19
YM9405	2411	89	90.5	2 0.1	23	5	1075	3	2 1		49	3	3	1	423	1.41		29 0.06	0.1	-	0.00	10	5		_	2 2	_	0.26	0	0.17
YM9405	2412	90.5	92	2 0.1	38	6	1495	15	5 2	4 124	61	5	5	2	847	2.35		43 0.10	0.1		0.02	6	5	2 0.		2 2		0.38		0.17
YM9406	2413	1.4	8.2	2 0.1	32	12	520	5	9 1	5 81	63	10	6	3	771	2.67		30 0.12	0.4	0	0.04	4	5	2 0.	_	2 2	-	0.37		0.17
YM9406	2414	8.2	14.3	3 0.1	23	4	540	4	5 1		47	9	5	3		3.07		43 0.25	0.5	-	0.06	4	5	2 0.		2 5		0.35		0.16
YM9406	2415	14.3	20.4	2 0.1	65	5	455	4	3 1	0 65	27	7	4	2	1097	2.92	6	40 0.18	0.3		0.07	7	5	2 0.		2 3	1	0.45		0.18
YM9406	2416	20.4	26.5	2 0.1	7	3	920	2	3 1	08 0	152	4	3	1	1654	3.68			0.2		0.03	4	5	2 0.		2 4	<u> </u>	0.41		0.20
YM9406	2417	26.5	32.5	2 0.1	32	6	365	4	6 1	2 85	65	10	5	3	960	3.02		65 0.22	0.4	0	0.04	3	5	2 0.		2 2	1	0.34		0.18
YM9406	2418	32.5	38.7	1 0.1	28	10	755	6	6 1	3 72	49	10	7	3	851	2.36	5	56 0.17	0.5		0.03	2	5	2 0.		2 4	1	0.37		0.19
YM9406	2419	38.7	44.8	2 0.1	27	5	725	4	3 1	1 74	29	5	3	2	1284	2.65	3	<u>41 0.11</u>	0.2	0	0.03	2	5	2 0.	2	2 2	1	0.37		0.18
YM9406	2420	44.8	45.3	2 0.1	6	4	475	4	2 1	2 63	10	2	1	1	1352	1.81	2	31 0.07	0.1	0	0.01	2	5	2 0.	2	2 3	1	0.44		0.10
YM9406	2421	45.3	45.7	1 0.1	50	14	890	7	2 1	3 67	15	3	2	1	962	2.86	2	38 0.10	0.2	0	0.01	3	5	2 0.	2	2 3	1	0.33		0.16
YM9406	2422	45.7	47.2	1 0.1	27	7	4055	2	3 1	0 73	101	1	2	1	2385	3.21		<u>4</u> 1 0.11	0.2	0	0.02	5	5	2 0.	_	2 4	1	0.38		0.20
YM9406	2423	47.2	48.2	1 0.1	53	7	785	3	2 1		52	1	1	1	1014	2.86		51 D.11	0.2	0	0.02	2	5	2 0	2	2 3	1	0.35		0.17
YM9406	2424	48.2	49.2	1 0.1	12	4	535	4	2 1	3 75	23	2	2	1	594	2.12		36 0.08	0.1	0	0.02	2	5	2 0		2 3	1	0.43		0.16
YM9406	2425	49.2	56.4	1 0.1	6	3	265	3	3 1	7 97	93	2	2	1	807	2.92		41 0.10	0.4	0	0.01	2	5	2 0.	_	2 2	1	0.28		0.14
YM9406	2426	56.4	62.5	1 0.1	9	3	260	4	7 1	6 83	61	6	4	4	797	3.05		45 0.16	0.4	0	0.07	5	5	2 0		2 2	1	0.31		0.15
YM9406	2427	62.5	68.6	2 0.1	3	2	140	4	5 1	1 104	81	8	5	2	935	3.28		60 0.42	0.9	0	0.03	5	5	2 0		2 2	1	0.31		0.16
YM9406	2428	68.6	75.3	1 0.1	7	4	330	6	4	9 79	52	3	3	1	1789	3.08		52 0.19	0.3	0	0.05	7	5	2 0	_	2 4	1	0.39		0.22
YM9406	2429	75.3	81.4	1 0.1	10	5	765	4	5 1	0 87	71	6	4	2	824	2.58		48 0.19		0		7	5	2 0		2 3	1	0.40		0.20
YM9406	2430	81.4	87.5	1 0.1	9	3	390	6	6 1	0 80	30	8	4	3	994	2.98		56 0.30	0.6	0		6	5	2 0		2 2	1	0.44		0.19
YM9406	2431	87.5	93.6	1 0.1	17	5	550	4	5 1	0 78	76	7	5	2	824	2.36	5	31 0.18	0.2	0	0.03	4	5	2 0	.3	2 2	. 1	0.32		
YM9406	2432	93.6	96.6	1 0.1	23	5	665	2	5 1	1 97	54	6	4	3	1049	3.05	9	60 0.31	0.5	0	0.08	7	5	2 0	.2	2 3	1	0.42		0.20
YM9401	1424	17.2	17.3	1 0.6	251	9	215	8	13 4	1 57	29	16	4	2	753	4.19	3	25 0.17	0.2	0	0.03	2	5	2 0		2 6	1	0.30		
YM9401	1425	66.7	68	5 0.3	209	6	155	7	11 2	1 93	172	14	6	2	673	2.41	3	36 0.19	0.2	0	0.03	2	5	2 0	.3	2 4	, 1	0.39		0.24
YM9401	1426	76.8	77.2	5 0.5	491	10	205	5	15 3	5 65	13	16	3	2	1318	8.24	3	30 0.29	0.2		0.03	2	5	2 1	.5	2 6	i <u>1</u>	0.51		0.31
YM9402	1427	22.5	22.7	35 0.9	2499	165	17715	11	17 2	4 70		7	4	4	82	5.17	2	8 0.03	0	0	0.00	2	5	2 1	.0	2 7	1	0.29		0.16
YM9402	1428	25.1	25.2	26 0.6	856	99	4870	7	9 1	8 60	29	8	7	1	64	2.54	2	13 0.02	0	0	0.00	2	5	2 0	6	36	1	0.29		0.15
YM9403	1429	9.9	10.2	6 0.5	324	62	3390	3	7 2	5 109	21	3	4	4	111	3.07	2	31 0.03	0.1	0	0.01	2	5	2 0	.4	28	1	0.33		
YM9403	1440	11.4	11.7	32 1.0	666	62	5440	3	72	1 135	15	1	2	5	397	6.72	6	38 0.07	0.3	0	0.09	7	5	2 1	.3	2 5	<u>, 1</u>	0.40	0	0.24

Trench Sample Analyses

Analyses	
Sampe	
Trench	

-
Page
YMTRR.XLS

			28	g	6	3	Ω.	<u></u>	Ø	9	2	5	e	0	g	8	2	E.	g	g	ŋ	8	2	N	4	ผ	5	মা	ഉ	5	ŝ	4	ري ا	ß	<u> </u>	୭	Ø
	¥	8	Ö			1 0.2	10.2	1 0.2	10.7	10	2 0.4	1 0.2	1 0.13	1 0.10	1 0.2	1 0.18	1 0.2	1 0.2	10.1	0.0		1 0.18	1 0.2	1 0.5	0.0	0	4	0	<u>0</u>	0.1	_		1 0.15	1 0.2	<u>6</u>	0	0
Page 1	Na	*	_	t 0.01		s 0.01		o	o	o		•	1 0.01		0.01				7 0.01			4 0.01							o	o				o	0	0	0
	R	*	8. 8	0 4	9 8			<u> </u>	o		0.28		0.24	0.47	0.57	0.28	0.5	0.35		_		_	0.34	- 1			0		o				0.34	0.44	0.39		0.36
YMTRR.XLS	3	mdd	-	-	-					2			8	-	-	-		-	-			-	-	-		2		-			2	-	1	1	-	-	-
IMY	m	d				1		1																υ Ω													
	Ξ	ă																						31													
	3	g																						3 0													
	£	mdd																						2													
	Э	ē																																			
	Га	đđ		5 19	3 15																			2 7													
	٩	*	0.008	0.005	0.0	0.00	0.034	0.05	0.003	0.01	0.013	0.003	0.038	0.032	0.035	0.009	0.039	0.007	0.480	0.040	0.280	0.002	0.004	0.042	0.004	0.015	0.132	0.043	0.033	0.066	0.040	0.046	0.027	0.026	0.032	0.036	0.033
	Ē	×	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	800	<u>0</u>	<u>0</u>	0.01	0.01	0.01	0.01	0.01	0.01	0.0	0.01
	Ca		8	-			0.04	0.08	0.02	0.07	0.05	0.03	60.0	0.05	60.0	0.05	0.11	0.04	0.91	0.09	0.40	0.03	0.05	0.07	0.04	0.05	6.62	0.21	0.0 8	0.16	0.25	0.20	0.16	0.08	0.24	0.12	0.42
			8		-	-			0.01					0.02																			0.05		0.05	0.0	0.17
	r Mg	0.			12 (16 (_		6											168 (<u>ج</u>					18 (31
	S	ppm p	~	2	2	7	4	2	2	3	3	2	2	8	8	7	7	8	67	ß	12	2		ġ				<u>_</u>	~	11	10	7	8	5	8	S	9
	>		2.28	8	1.98	8	1.81	1.50	1.07	2.86	8.56	1.00	1.81	2.75	2.78	0.82	3.03	0.85	7.97	2.23	5.51	2.67	0.97	19.89	0.59	1.81	<u>6.5</u>	2.88 2.88	3. 8.	3.81	2.90	1.91	2.12	2.02	2.51		2.50
	Fe	8		179					19			25				ន		19						272 1						844	732			363	812	6	652
	o Mn	mqq mo		1	1	-	-	-		7	•	-	+	*	3		2		16 99		2		-	-		5			-								2
	ပိ ၂	ppm ppm	S.	2	4	4	3	5	9	9	3	S	2	S	S	4	4	7	٦	3	1	e	e	2	3	5	3	ω	~	7	7	7	ß	5	7	2	2
	Ū.	ppm p	e	1	4	4	-	9	2	2	-	7	7	S	11	-	9	2	2	4	۱	e	*	1	5	4	5	12	1	9	12	8	8	5	8	8	æ
	E Z	c	106	139	82	113	2	8	153	178	199	168	42	ន	5	ស	ន	R	221	61	125	8	176	101	45	104	610	41	8	8	35	32	59	52	46	Q	47
	Zn Ba	-					31	L		15		e		8		'n					\$			78						78				46		ß	
	Pb Z	ppm p	13	12	6	7	କ୍ଷ	4	6	14	2	2	42	11	5	2	÷	5			æ			2		13		7	6	:	11	S	12	17	2	8	ଝ
	CuP		3	2	4	3	e	S	-	3	-	e	16	S	2	e	g	2	2	e	4	16	9	-	9	4	9	80	9	S	80	5	9	12	S	5	G
	о М	ppm ppm	4	5	2	5	R	4	ç	13	ĸ	5	80	21	~	4	~	S	2	œ	9	4	4	72	e	2	2	7	5	2	9	2	2	2	5	7	14
	л ВН	ppb	1050	735	515	7040	ŝ	625	3 8	4880	4875	2005	8	245	175	1360	8	9360	88	330	630	835	660	2000	330	175	345	175	240	1155	ß	760	505	310	4	2960	155
		ppm p	10 1	9	9		17	φ	13		635 4	17	19	4	~	ଞ୍ଚ	5	329	80	÷	27	4	27		13	e	2				e	7	13	20	4	12	9
	дS СР	ppm pi	121	104	47	202	186	127	127		3663	184	141	6	4	117	121	1327	19	33	323	157	285	179 1	23	2	6	10	ଷ	8	12	21	35	111	18	9	8
	As		0		0			0	0	8 0	8 0	ō	L.	0	0		0	-	0		õ			0	<u> </u>	0	_	_	0	_		0	0	0	0	0	0
9	Ag -	b ppm	9	-	13	9	-	-	2	2	11	2	3	-	-	=	-	220	e	2	e	6	41	130	e	-	3	2	-	2	-	-	2	-	-	1	-
valys	o Au	ppb	3	11		L	କ୍ଷ	L.,		26				-	17	-	╞─	2		39		16		-	8		_		g	65	8				35		
ipe Ar	L mo		0	6	15	5	2		1	53		67	2.5	13.2		ន	25.3	28.5	32.3		55		17	2				8				4	16	8	32	57	78
Trench Sampe Analyses	Tren Sample From To		1515	1516	1517	1518	1519	1520	1521	1522	1523	1524		1530 1		1532	1533		1535 3	[1537	1538	1539	1540	1541	1547	1548	1549	1525	1526	1527	1528	1542	1543	1544	1545	1546
Tre	ren S		YT-1	YТ-1	YT-1	1 -1-	YT-1	Т-1	Т -1	۲ -1	<u>1-1</u>	\1 -1	YT-1	۲1 -1	۲1 -1	<u>1</u> -1	۲ -1	YT-2	YT-2	YT-2	YT-2	YT-3	YT-3	Υ 1 -5	YT-5	1.5	YT-5	YT-5	YT-5	YT-5	YT-5	71 -5	41-5 1				
	Area Tr		Gus 7	Gus Y		Gus Y	Gus Y	-	Τ	1	Gus		GUS 7				GUS Y	GUS Y	GUS Y	GUS Y	GUS Y	GUS Y	GUS Y	GUS Y	PA Y				PA Y				PA Y				
	Ā		อี	ื้อ	Gus	ō	ō	σ	อี	Q	ิเอี	ō	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	O	Ū	Ū	Ű	Ű	Ø	U	1	PAI	PAI	IPA	<u>в</u>	IPA	<u>e</u>	ΙPΑ	<u> </u>

/

Prospecting Sample Description and Analyses

Number	Туре	Name	Description	Sampler
1200	oc	rhy	from trench; light grey/green rhy; hematite and limonite staining; qtz veinlets.	LA
1201	oc	rhy	white rhy.; rusty staining and clay alt; minor py.	LA
1202	oc	rhy	rusty rhy.bx with qtz and calcite flooding.	LA
1203	oc	rhy	clay alt. rhy with minor silica flooding.	LA
1204	ос	rhy	strong silica alt. rhy; rusty staining.	LA
1304	SC	sed/tuff	Silica alt. sed. or tuff, no vis. sx; drusy cavaties	RB
1305	sc	sed/tuff	Same as above	RB
1306	SC	rhy bx	2-44 mm thick qz stringers	RB
1307	SC	breccia	cemented with silica; tr Py	RB
1200A	oc	rhy tuff	rhy pyroclastic, minor py and silicification	LA
1201A	SC	rhy/dac	bleached to red/green dacite, py	LA
1202A	SC	rhy/dac	bleached to red/green dacite, py	LA
1529	fit	rhy	qz veining in rhy, minor py	PN
1530	SC	rhy	rhy with minor qz brx	PN
1547	OC	tuf ss	strongly clay altered tuffaceous sandstone	KS
1548	oc	tuf ss	very hard, carb cemented tuffaceous sandstone (fine lapilli tuff?)	KS

YMPROSR.XLS Page 1

Sample	Au	Ag	As	Sb	Hg	Мо	Cu	Pb	Zn	Ba	NI	Cr	Co	Mn	Fe	V	Sr	Mg	Са	Ti	P	La	U	Th	Cd	Bi	B	W	AI	Na	ĸ
	ppb	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	%	%	%	ppm	ppm	ppm	ppm	ррт	ppm	ppm	%	%	%
1200R	4	0.2	62	21	310	3	5	15	63	104	1	3	1	162	1.60	2	13	0.01	0.04	0.01	0.006	20	5	2	0.2	2	4	3	0.26	0.01	0.17
1200AR	72	1.0	100	63	3500	38	6	11	11	507	6	6	1	59	0.97	2	33	0.01	0.03	0.01	0.006	2	5	2	0.2	2	3	1	0.36	0.01	0.15
1201R	2	0.1	7	2	95	4	5	13	40	48	3	3	1	88	0.74	2	8	0.02	0.05	0.01	0.008	34	5	6	0.2	2	3	2	0.35	0.02	0.18
1201AR	1	0.1	22	4	465	9	1	4	10	41	4	3	1	61	0.34	2	23	0.03	0.38	0.01	0.004	44	5	13	0.2	2	2	1	0,56	0.77	0.49
1202R	2	0.2	48	22	555	2	2	14	30	28	3	3	1	283	1.09	2	6	0.01	0.03	0.01	0.006	14	5	2	0.2	2	3	1	0.25	0.01	0.16
1202AR	1	0.1	82	25		5	2	8	19	48	ອ ເ	4	1	254	0.70	3	21	0.03	0.16	0.01	0.014	39	5	10	0.2	2	2	2	0.58	0.03	0.51
1203R	12	0.4	387	243	2780	2	3	11	7	103	1	2	1	28	0.88	2	21	0.01	0.03	0.01	0.004	16	5	2	0.2	2	3	1	0.29	0.01	0.19
1204R	2	0.3	71	17	255	2	3	14	59	43	2	3	1	82	0.98	2	4	0.01	0.01	0.01	0.006	16	5	2	0.2	2	4	2	0.36	0.01	0.14
1304R	2	0.1	28		8665	24	4	13	26	135	2	2	1	17	0.26	2	10	0.01	0.01	0.01	0.002	9	5	3	0.2	2	2	1	0.45	0.01	0.06
1305R	2	0.1	50	47	4210	7	4	21	6	67	1	2	. 1	18	0.33	2	11	0.01	0.03	0.01	0.004	9	5	2	0.2	2	2	1	0.42	0.01	0.08
1306R	9	0.2	6	7	1720	5	8	7	48	112	7	5	2	450	1.69	5	11	0.02	0.13	0.01	0.015	10	5	2	0.2	2	4	3	0.27	0.04	0.15
1307R	1	0.1	4	2	780	4	4	8	70		2	2	3	1045	3.29	4	35	0.12	0.29	0.01	0.036	7	5	2	0.2	2	3	1	0.24	0.07	0.10
1529R	3	0.1	141	19	890	8	16	42	92	42	7	7	1	226	1.81	7	9	0.02	0.09	0.01	0.038	4	5	2	0.2	2	8	2	0.24	0.01	0.13
1529R	1	0.1	13	5	80	2	8	5	33	385	7	3	1	243	0.98	2	43	0.03	0.09	0.01	0.003	2	5	2	0.2	2	9	1	0.37	0.01	0.20
1547R	1	0.1	7	3	175	7	4	13	41	104	4	5	2	534	1.81	6	14	0.02	0.05	0.01	0.015	5	5	2	0.2	2	2	2	0,38	0.03	0.22
1548R	3	0.1	9	2	345	2	3	7	153	610	5	3	4	1745	6,54	72	271	1.00	6.62	0.08	0.132	27	5	5	0.2	6	2	1	0.64	0.04	0.21

Statement of Expenditures

APPENDIX V

STATEMENT OF EXPENDITURES

YELLOW MOOSE PROPERTY

Geology, Geochemistry Trenching, Drilling, Reclamation

June to December 1994

Trenching and Reclamation

Contractor:

I&J Schultz	\$ 4 297	
Personnel K. Schimann L.Allen and P.Newman Field Costs (Food, camp, truck and A freight and misc. supplies		\$ 2 628 \$ 1 407 \$ 1 703
Rock analyses	35 samples @ \$15	\$ 525
Data processing and report prep	paration	\$ 845
	Total	\$11 405
YEL 1: YEL 3: YEL 4:	\$ 3 338 \$ 6 231 \$ 1 836	
Drilling		
Contractor: Leclerc Drilling L	.td	
Claim YEL 1 Claim YEL 3	\$ 17 287 \$ 16 973	
Personnel		
K. Schimann K.MacDonald L.Allen	7 days @ \$438 7 days @ \$157 5 days @ \$201	\$ 3 066 \$ 1 099 \$ 1 005

APPENDIX V (cont'd)

.

.

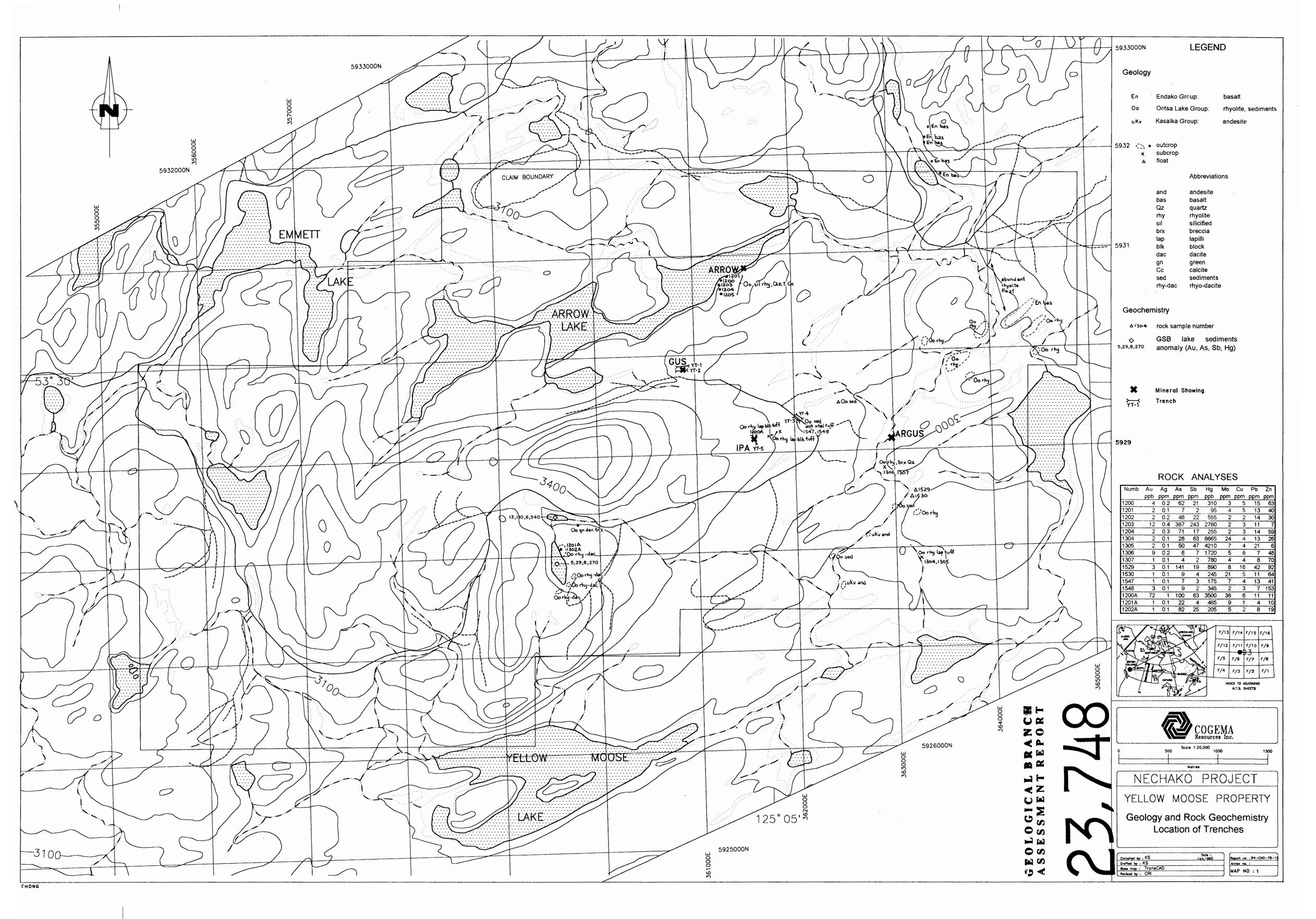
,

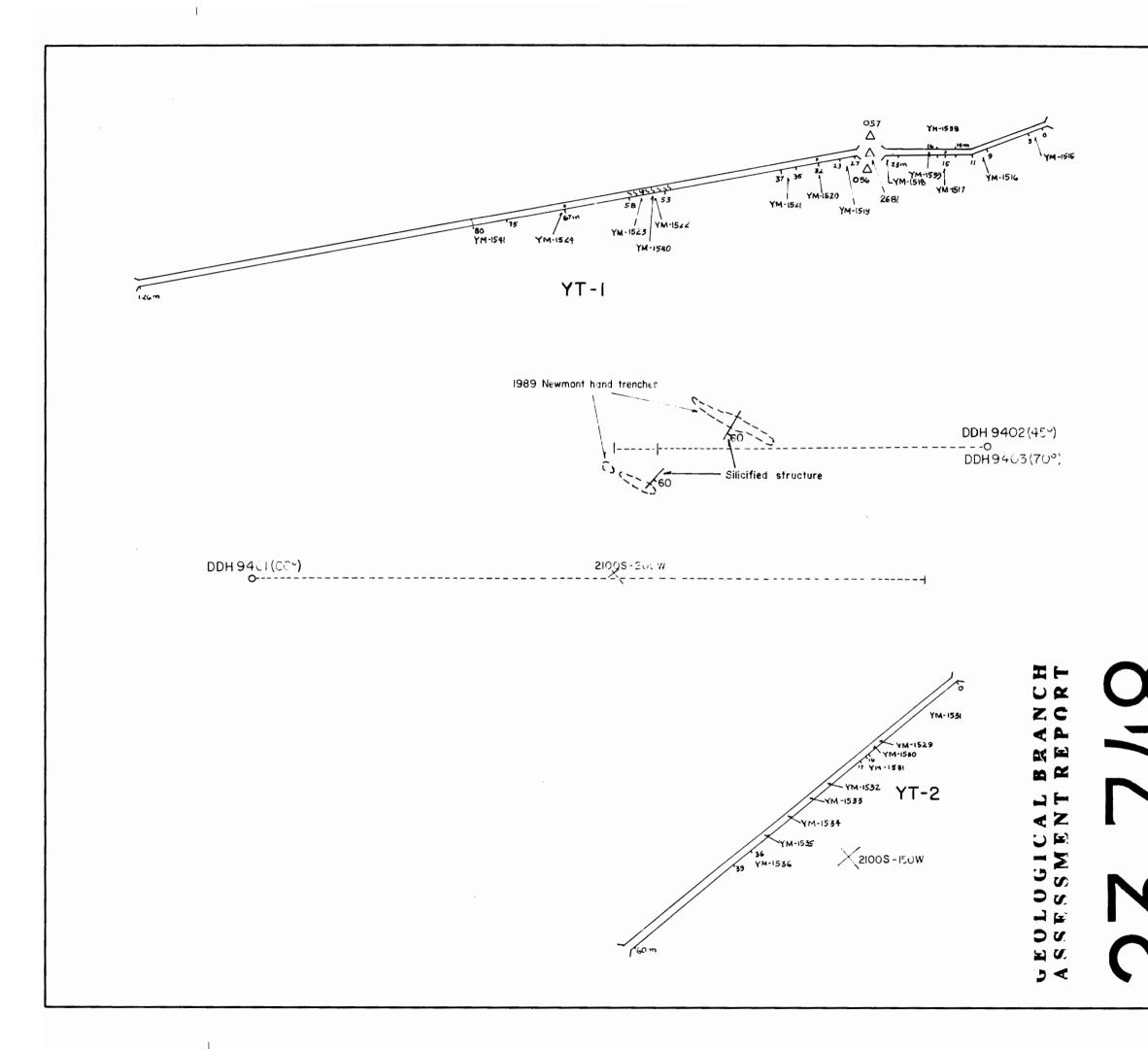
Field Costs		19 days @ \$131	\$ 2 489							
(Food freight	ATV rentals,									
Rock analyse	S	YEL 1 175 samples @ \$15 YEL 3 81 samples @ \$15	\$ 2 625 \$ 1 215							
Data processing and report preparation \$ 2 288										
		Total	\$ 48 047							
YEL 1 YEL 3		\$ 24 886 \$ 23 161								
Geology and	Geochemistry									
Personnel	K. Schimann R. Bilquist, P New and L. Allen		\$ 438 \$ 2 412							
	, camp, truck and A and misc. supplies		\$ 1 703							
Rock analyse	s	14 samples @ \$15	\$ 210							
Data process	ing and report prep	paration	\$ 381							
		Total	\$ 5 144							
	YEL 2, 3, & 4 YEL 10 & 11	\$ 3 396 \$ 1 748								

.

Statement of Qualifications

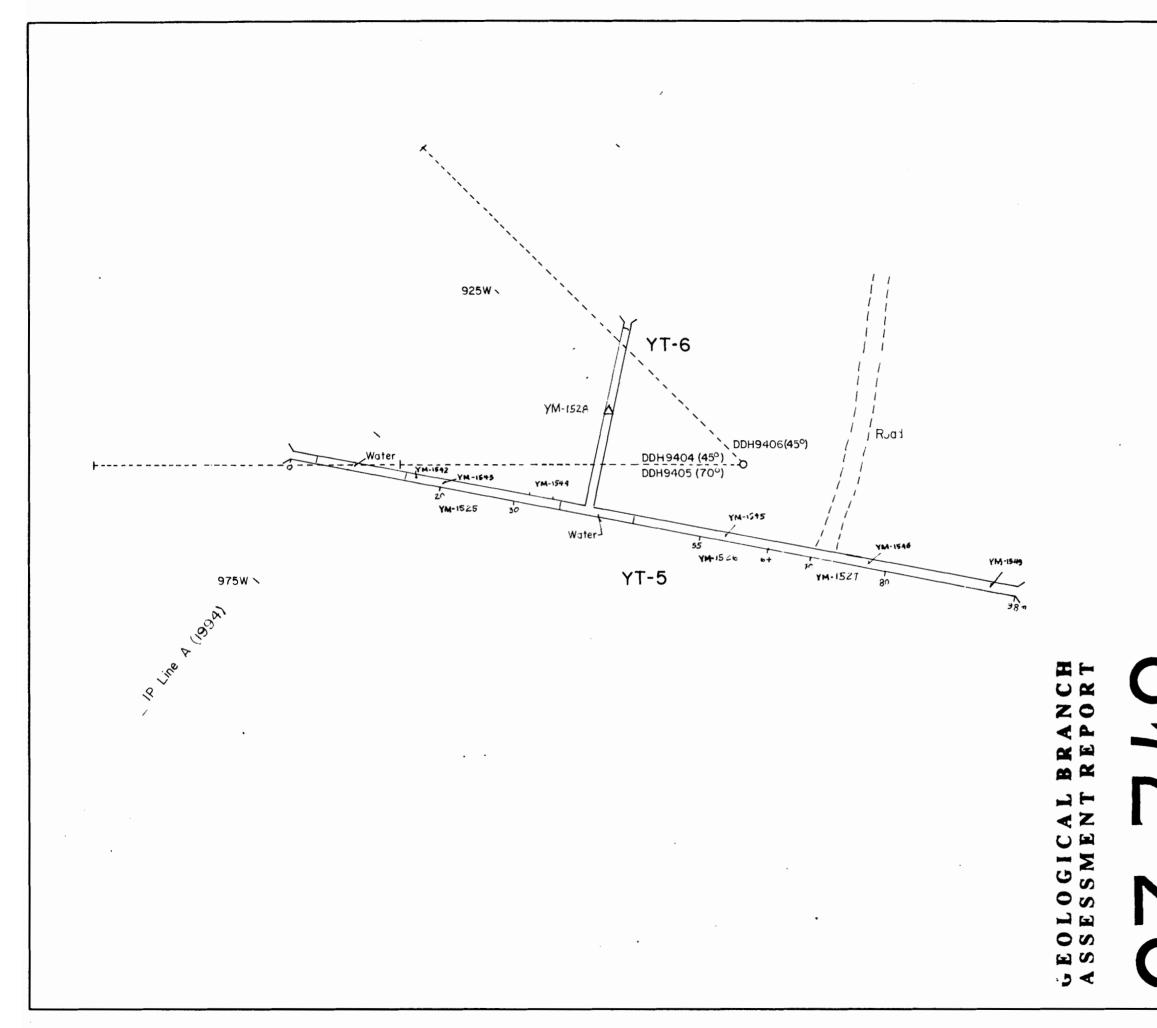
APPENDIX VI


STATEMENT OF QUALIFICATIONS


I, Karl Schimann, residing at 5442 Columbia Street, Vancouver, B.C., hereby states that:

- 1. I am the author of the report Drilling, Trenching, Geological and Geochemical Surveys, Yellow Moose Property (Nechako Project), 1994, Omineca Mining Division.
- I have worked on the property from January to December 1994 for 2. COGEMA Resources Inc. and supervised the work described in this report.
- 3. I graduated from the Universite de Montreal with a B.Sc. in Geology in 1968.
- I graduated from the University of Alberta with a Ph.D. in Geology 4. in 1978.
- 5. I am a Fellow of the Geological Association of Canada.
- I am a member in good standing of the Association of Professional 6. Engineers and Geoscientists of British Columbia

District Geologist

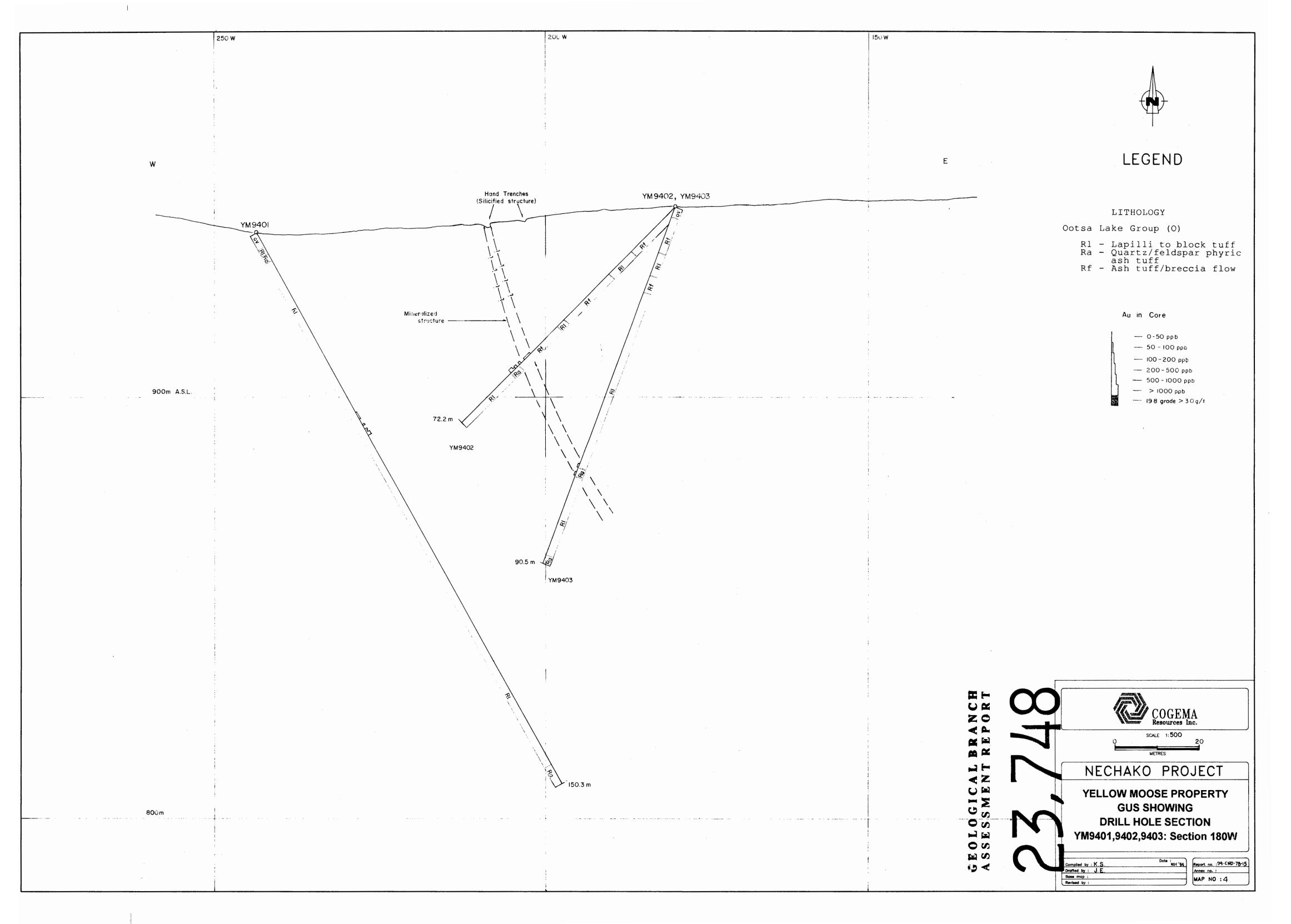


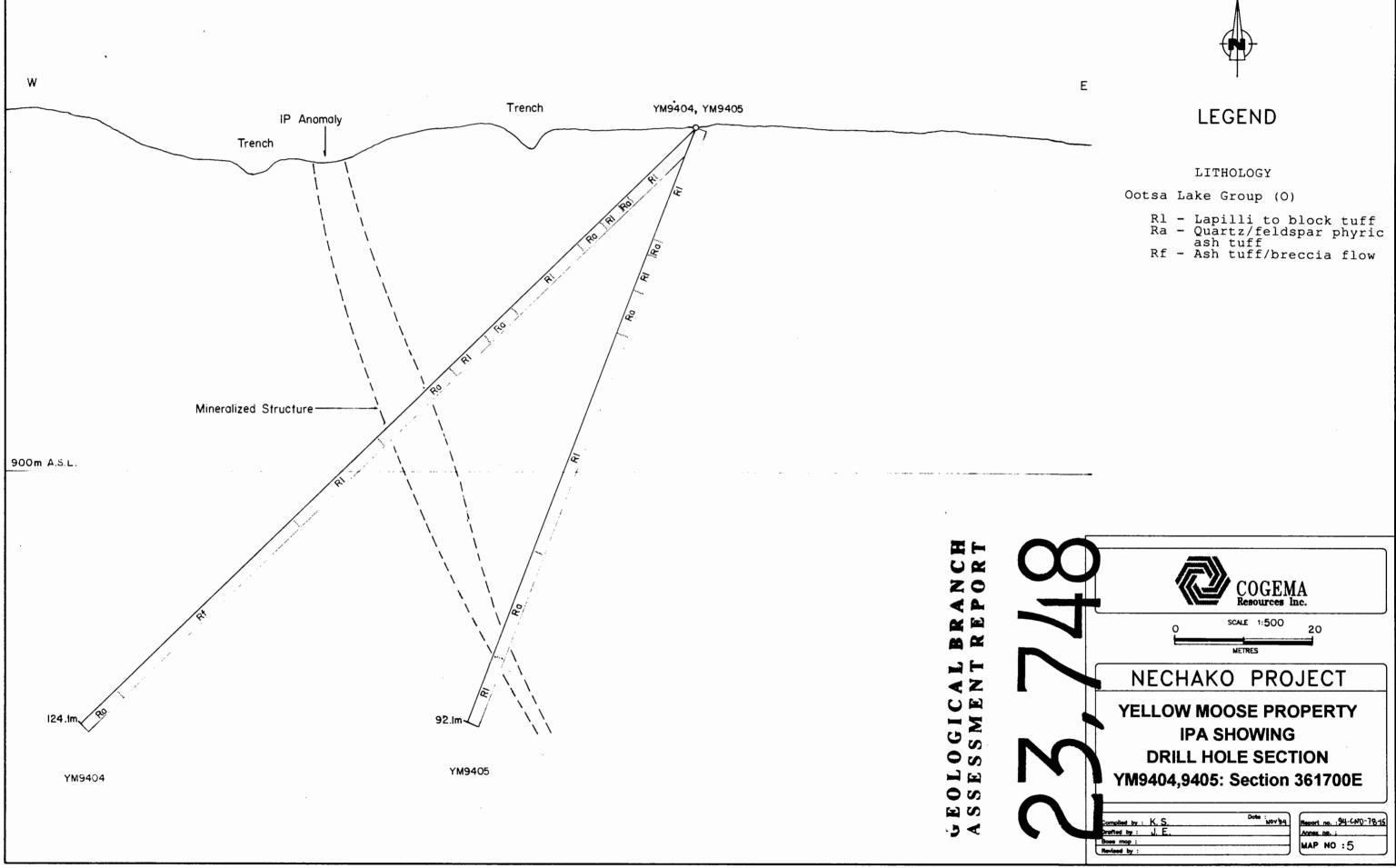
LEGEND

Trench No.	Sample No.	From	То	Length	Au*	Ag	As	Sb	Hg
YT-1	YM-1515	0	3	3 -	6	0.1	121	10	1050
YT-1	YM-1516	9	11	2	1	0.1	104	6	735
YT-1	YM-1517	15		Grab	13	0.1	47	6	515
YT-1	YM-1518	21	23	2	10	0.2	202	143	7040
YT-1	YM-1519	27	29	2	1	0.1	186	17	850
YT-1	YM-1520	32		Grab	1	0.1	127	6	625
YT-1	YM⊢1521	35	37	2	2	0.1	127	13	595
YT-1	YM-1522	53	56	3	70	0.3	2027	187	4880
YT-1	YM-1523	56	58	2	11	0.1	3663	635	4875
YT-1	YM-1524	67		Grab	2	0.1	184	17	2005
YT-1	YM-1529	12.5		Grab	3	0.1	141	19	890
YT-1	YM-1530	13.2		Grab	1	0.1	9	4	245
YT-1	YM-1531	16	17	1	1	0.2	43	7	175
YT-1	Y M -1532	22		Grab	11	0.3	117	39	1360
YT-1	YM-1533	25.3		Grab	1	0.1	121	12	190
YT-1	YM-1534	28.5		Grab	220	0.7	1327	329	9360
YT-1	YM-1535	32.3	32.7	0.4	3	0.1	19	8	280
YT-1	YM-1536	36	39	3	2	0.1	32	11	330
YT-1	YM-1537	55		Grab	3	0.3	323	27	630
YT-2	YM-1538	14	16	2	9	0.1	157	14	835
YT-2	YM-1539	17		Grab	41	0.3	285	27	660
YT-2	YM-1540	54		Grab	1 30	0.1	8179	1295	7000
YT-2	YM-1541	75	80	5	3	0.1	59	13	330

(3 digit sample numbers, see 1993 report; 2681, see 1992 report)

Complied by : P. N. Defined by : P. N. Complied by : P. N. Defined by : P. N. Complied by : P. N. Defined by : D. C. Revised by : C. Revised by :





LEGEND

Trench No.	Sample No.	From	То	Length	A⊔*	Ag	As	Sb	Hg
IPA	YM-1525	20	30	10	1	0.1	29	5	240
IPA	YM-1526	55	65	10	2	0.1	34	10	1155
IPA	YM-1527	70	80	10	1	0.1	12	3	205
IPA	YM-1528	40		Grab	1	0.1	21	7	760
IPA	YM-1542	16		Grab	2	0.1	25	13	505
IPA	YM-1543	20		Grab	1	0.1	111	20	310
IPA	YM-1544	32	35	3	1	0.1	18	4	140
IPA	YM-1545	57		Grab	1	0.1	3	12	2960
IPA	YM-1546	78		Grab	1	0.1	8	6	155
IPA	YM-1549	94 _		Grab	2	0.1	10	4	175

