LOG NO:	FEB 1 7 1995 U	
ACTION:		_
FILE NO:		

1994 REPORT DIAMOND DRILLING PROGRAM ON THE EHOLT 2 CLAIM EHOLT PROJECT

> Greenwood Mining Division British Columbia

> > NTS 82E/2E Latitude 49⁰10' N Longitude 118⁰32' W

FILMED

lan Thomson and Doyle Albers

Orvana Minerals Corp. O GICAL BRANCH ASSESSMENT REPORT January 5, 1995

5.//

TABLE OF CONTENTS

INTRODUCTION	1
PROPERTY	1
LOCATION AND ACCESS	1
PHYSIOGRAPHY AND CLIMATE	4
PREVIOUS WORK	4
1994 PROGRAM	4
CONCLUSIONS	7
RECOMMENDATIONS	7
STATEMENT OF COSTS	7
STATEMENT OF QUALIFICATIONS	8
REFERENCES	8

LIST OF FIGURES

Page

LOCATION MAP	2
CLAIM MAP	3
DRILL HOLE LOCATION MAP	5
GENERALIZED GEOLOGIC CROSS SECTION	6

APPENDICES

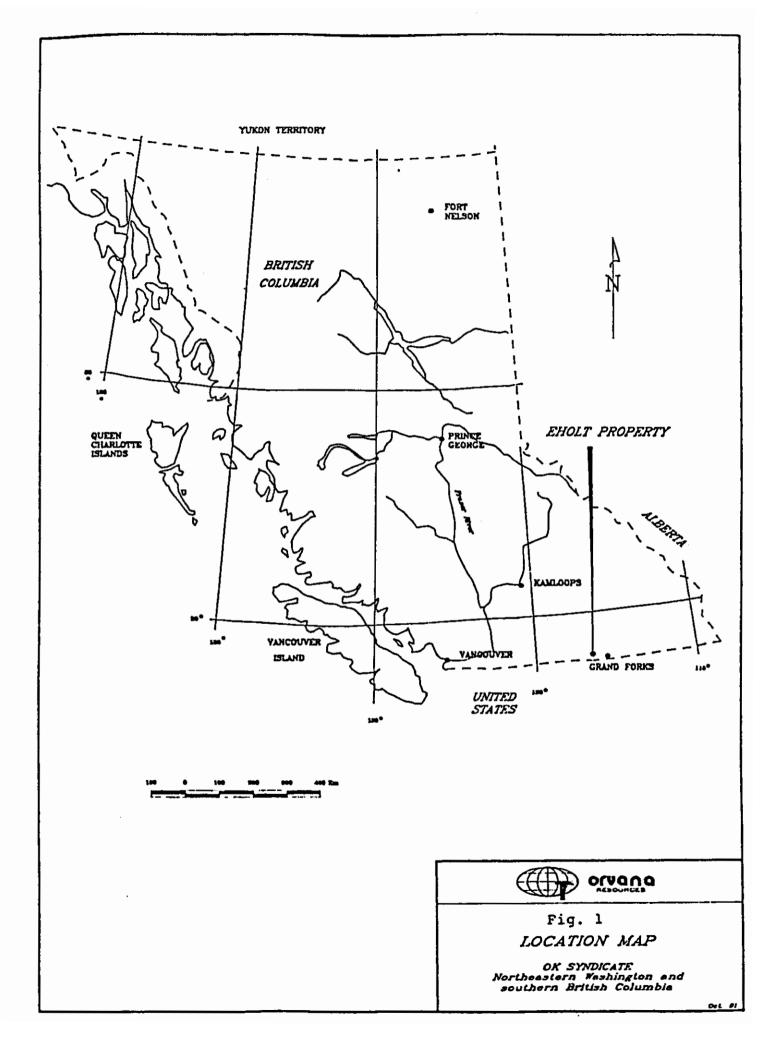
Appendix 1	Diamond Drill Logs
Appendix 2	Laboratory Assays

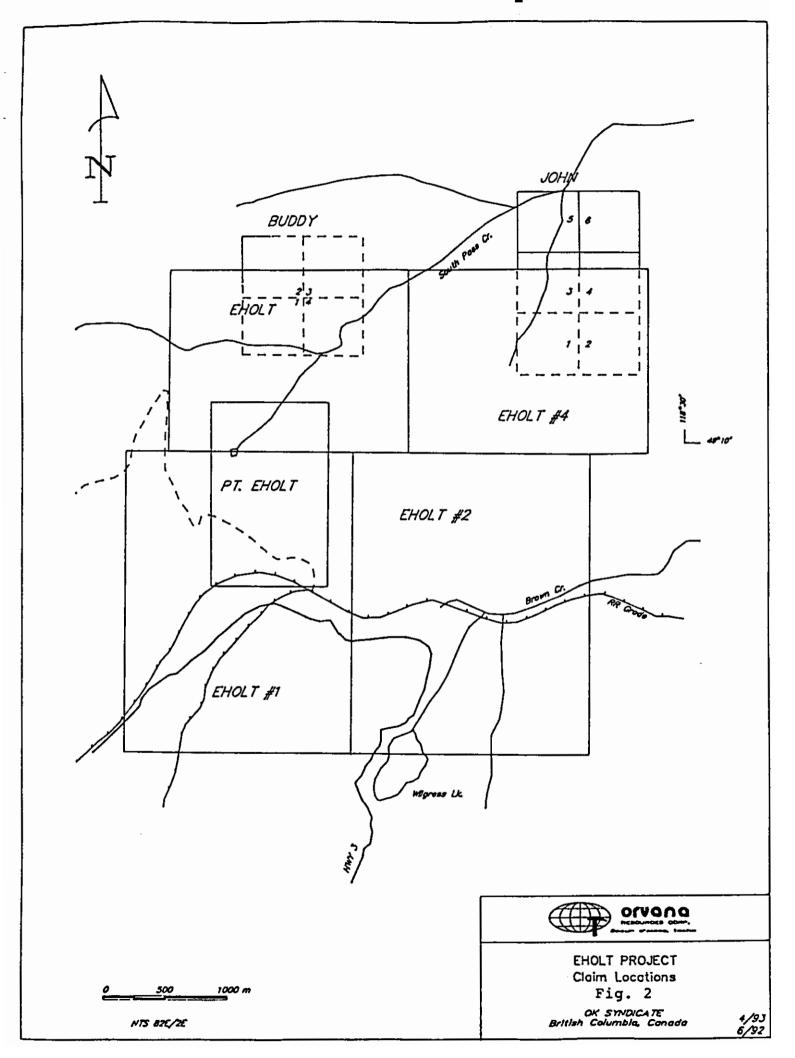
<u>Page</u>

INTRODUCTION

The Eholt Project is located approximately 20 Km west of Grand Forks, British Columbia (Fig. 1). The property lies northeast of the Phoenix-Greenwood Mining Camp, which has been a significant producer of Cu-Au ores from skarn deposits. The largest deposit discovered thus far in the camp was at Phoenix, where almost 27 million tonnes of ore grading 0.85% Cu and 1.1 grams/tonne Au were mined earlier this century. The Eholt property is underlain by a stratigraphic package similar to that in the Phoenix camp. The property is accessed from a series of logging roads which intersect B.C. Hwy 3, at the Kettle Valley Railroad siding of Eholt.

PROPERTY


The Eholt property consists of five contiguous 4-post mineral claims and ten 2-post claims comprising a total of 58 units (Fig. 2). The claims are held under option by Orvana Mineral Corp. from Mr. Herman Hoehn of Grand Forks, B.C.


Pertinent claim information is summarized below:

Name	No. of Units	Record No.
Pt. Eholt	6	1810
Eholt	12	4867
Eholt # 1	20	4906
Eholt # 2	20	4907
Eholt # 4	12	215013
Buddy # 1	1	215975
Buddy # 2	1	215976
Buddy # 3	1	215977
Buddy # 4	1	305778
John #1	1	305797
John # 2	1	305798
John # 3	1	305799
John # 4	1	305800
John # 5	1	305801
John # 6	1	305802

LOCATION AND ACCESS

The Eholt property is located 11 km NE of Greenwood and 16 km NW of Grand Forks, B.C. at latitude 49°10'N, longitude 118°32'W. Access is good and is provided by Highway 3, which traverses the property, several logging roads, and two old abandoned railroad grades. The site of Eholt, a loosely-bounded settlement which is still inhabited, is located just north of Highway 3, on the property.

PHYSIOGRAPHY AND CLIMATE

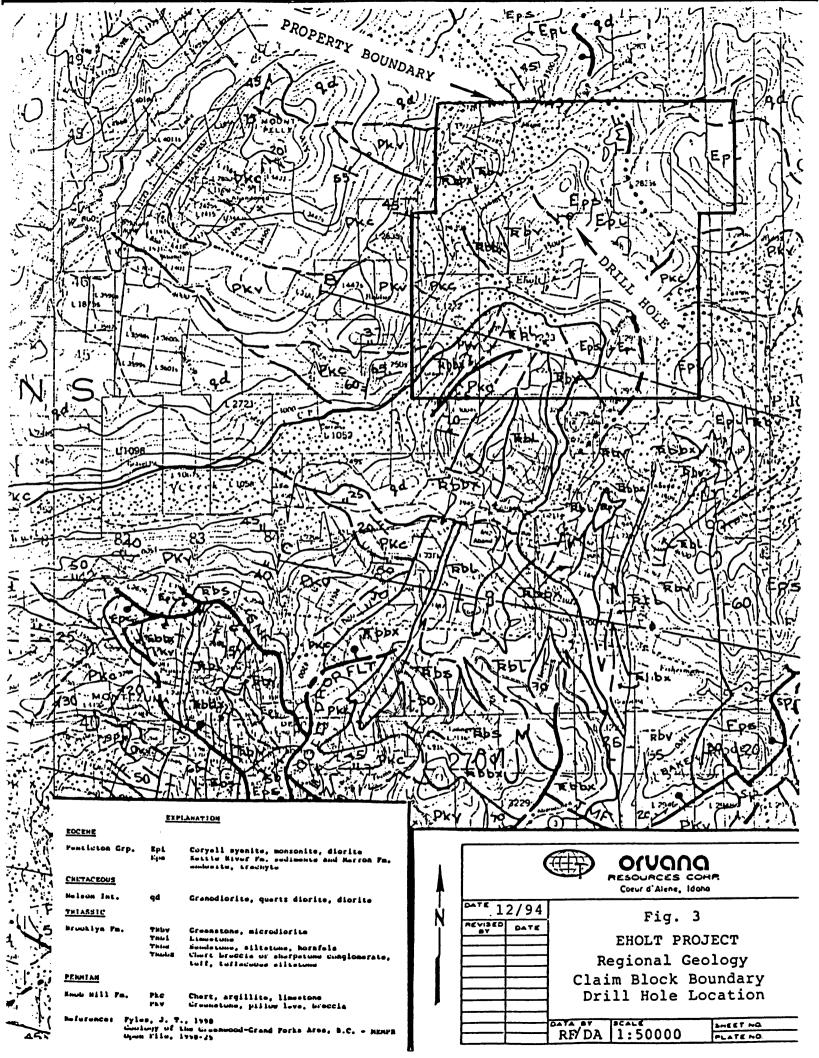
The Eholt property is characterized by relatively subdued, low-lying, mountainous terrain. Elevations range 900-1200 m. Relief is generally mild, though a few bluffs do occur on the hill immediately north of the Eholt settlement site. Most of the property is covered with timber land, with some brush-grassland on slopes with southern exposure.

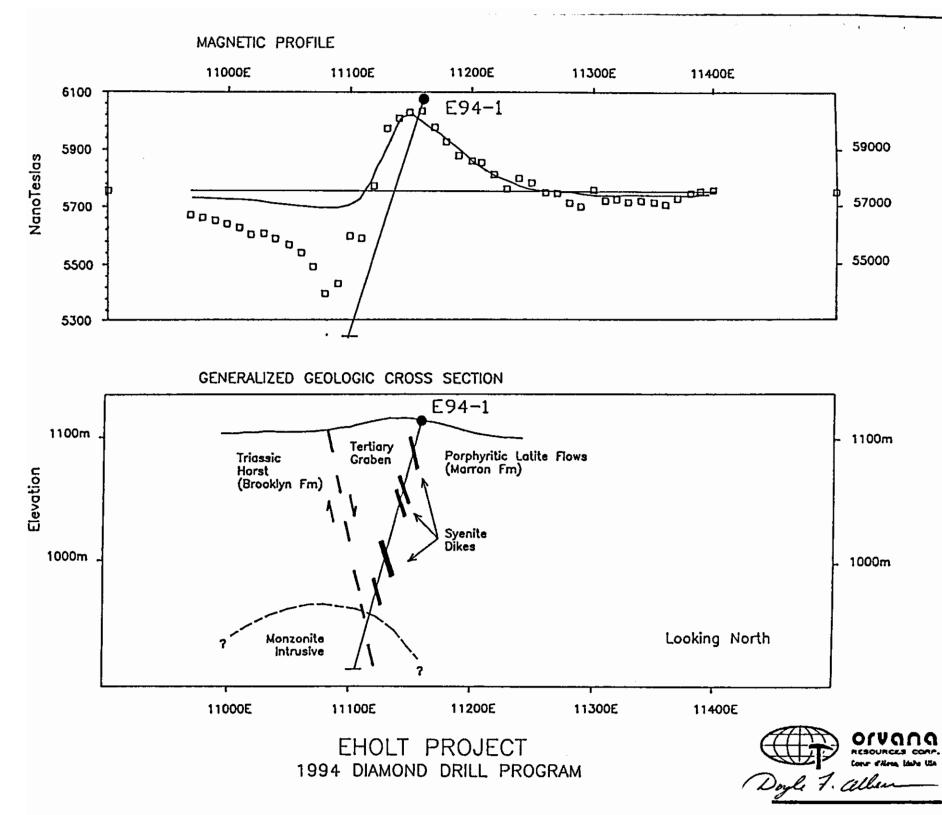
The climate is moderate. Precipitation is typically low during the summer and fall, and moderate during the rest of the year.

Snow cover during December-February averages 0.5-1.5 m. Annual temperature range is approximately -20° to 35°C.

PREVIOUS WORK

Mining and exploration in the Eholt area began around the beginning of the 20th century. Production during the period of several hundred thousand tons of ore grading approximately 1% Cu and 0.02 oz/ton Au came from the Oro Denoro and Emma mines located 3 km south of Eholt. Numerous old shallow shafts, short adits, and prospect pits, probably dating from this period, occur on the Eholt property.


Recent, documented exploration on the Eholt property was conducted by Golden Kootenay Resources, Inc. during the period May 11, 1987-January, 1989. This work included grid installation, soil geochemistry, and diamond drilling (3 holes). VLF-Em was run over the grid, and a magnetometer survey was run over part of the grid. Different core drilling programs have reportedly been carried out on the property by Mr. Herman Hoehn of Grand Forks, and Mssrs. Cashman and Stanley, also of Grand Forks. These programs are apparently undocumented.


Orvana installed 37.5 km of grid, and conducted a soil sampling program over this grid during 1991 and 1992. Orvana also conducted a ground magnetic survey, VLF-EM survey, and an I.P. survey during the 1991-1992 field season. This work is documented in an assessment report filed May 17, 1993.

1994 PROGRAM

The ground magnetic survey mentioned above delineated a substantial dipole anomaly near Eholt Mountain. A single NQ diamond drill hole was completed on this magnetic anomaly during December 1994. The Orvana grid coordinates for this hole are 9760N, 11160E (UTH 388100E/5446750N); the azimuth for this hole was 270°, with an inclination of -75° (see Fig 4). The hole went to a depth of 202m. The diamond drill log for this hole can be found in the Appendix along with the assay data. All work was conducted on the Eholt # 2 claim. Core is stored undercover in Greenwood.

The first 152 m (500 feet) of this hole is dominantly comprised of fine grained, porphyritic latite extrusive volcanic rocks which are preserved in a north-trending graben structure. These rocks are believed to be Tertiary in age. They are in fault contact with, and intruded by younger monzonite and syenite intrusive rocks. All of these rocks are weakly magnetic, containing <0.5% finely disseminated magnetite and minor magnetite veinlets. Some very minor quartz-pyrite zones cross-cut the core, and all of these were sampled, but most of the rock in this hole shows little hydrothermal alteration or mineralization.

24%27

CONCLUSIONS

The objective of this hole was to evaluate the large dipole anomaly in hopes that it would correspond to a large replacement body within the older Triassic marine sediments and volcanics of the Brooklyn Formation; however, no Triassic rocks were seen in this drill hole. Upon exiting the Tertiary-filled graben, this hole intersected what are believed to be younger Tertiary-aged intrusive rocks. We had hoped that the Tertiary volcanic cover would be relatively thin, masking the older Triassic rocks from view, but this hole demonstrates that the Tertiary volcanic cover is quite thick (at least 150 m), and the minor disseminated magnetite within these volcanics must be responsible for the magnetic dipole anomaly.

RECOMMENDATIONS

This program has eliminated one potential target from a list of several good possibilities. Other areas of known alteration and mineralization exist with coincident geophysical anomalies, and these could be further evaluated with continued drilling. Plans to further evaluate the Eholt area are being finalized, and hopefully exploration work will continue next field season.

STATEMENT OF COSTS

Drilling Mob-Demob, set-up, plus 202 m (663 feet) NQ	\$ 13189
Salaries 14 man days @ \$200/day	2800
Room and Board 10 days @ \$60/day	600
Laboratory Assays	250
Vehicles/Transportation	1000
Field Supplies	300
TOTAL (Cdn)	\$ <u>1</u> 8139

STATEMENT OF QUALIFICATIONS

I, Doyle F. Albers, of Sagle, Idaho, U.S.A., certify that:

- 1. I am a geologist employed by Orvana Minerals Corporation, 710 1177 West Hastings Street, Vancouver, B.C., V6E 2K3, in their office located at 1755 Silver Beach Loop Coeur d'Alene, Idaho 83814 U.S.A.
- 2. I am a graduate of the University of Idaho, Moscow, Idaho, and hold a M.S. degree in Geology.
- I have been practicing my profession for the past nineteen years.
- 4. This report is based on information that I and others under my supervision obtained while on the Eholt property during the period December, 1994.

Doyle F. Albers Geologist, Orvana Minerals Corporation.

Dayle 7. alber

STATEMENT OF QUALIFICATIONS

I, Ian Thomson of 1628 West 66 Avenue, Vancouver, British Columbia, V6P 2S2, do hereby certify that:

- 1. I am a graduate (1967) of the University of London, England, with a Bachelor of Science degree in Geology and a graduate (1971) of the University of London, England, with a Doctor of Philosophy degree in Applied Geochemistry.
- 2. I am a registered Professional Geoscientist in the Province of British Columbia.
- 3. I have been continuously employed as a geologist-geochemist involved with mineral exploration for 21 years.
- 4. I hold the position of Chief Geologist with Orvana Minerals Corp.
- 5. This report is based on information obtained by myself and others working under my guidance and from analytical data obtained from commercial laboratories.

Ian Thomson, B.Sc., Ph. D., P. Geo. Chief Geologist, Orvana Minerals Corporation

REFERENCES

- Church, B.N., 1986, Geologic Setting and Mineralization in the Mount Attwood Phoenix Area of the Greenwood Mining Camp, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1986-2 65 pp.
- Fyles, J.T., 1990, Geology of the Greenwood-Grand Forks Area, British Columbia, NTS 82E/1,2, British Columbia Geological Survey Open File 1990-25.
- McLeod, J.W., 1988, Report on the Eholt Property, Unpublished Assessment Report #17488.
- McLeod, J.W., 1991, Report on the Eholt Property, Unpublished Report on behalf of Golden Kootenay Resources, Inc.

APPENDIX 1 DIAMOND DRILL LOGS

Company		DIAMOND D	RILL	HOLE LO	G	raye 1 01									
SURVEY SURVEY Inclination at Cellur, -75° Readpetitive Specific Mediants Read at the specific Mediants Read at the specific Mediants Massard Readpetitive Specific Mediants Read at the specific Mediants Read at the specific Mediants Massard Readpetitive Specific Mediants Read at the specific Mediants Read at the specific Mediants Itthology, ALTERATION, MISC. FT. GRAPHIC Log MINERALIZATION Recovery ANALYTICAL BOX Itthology, ALTERATION, MISC. FT. GRAPHIC Log MINERALIZATION Recovery ANALYTICAL BOX Itthology, ALTERATION, MISC. FT. GRAPHIC Log MINERALIZATION Recovery ANALYTICAL BOX Itthology, ALTERATION, MISC. FT. GRAPHIC Log MINERALIZATION Recovery ANALYTICAL BOX Itthology, ALTERATION, MISC. FT. GRAPHIC Log MINERALIZATION Recovery ANALYTICAL BOX Itthology, ALTERATION, MISC. FT. GRAPHIC Log MINERALIZATION Recovery ANALYTICAL BOX Itthology, ALTERATION, MISC. FT. GRAPHIC Log MINERALIZATION Recovery ANALYTICAL BOX Itthology, ALTERATION, MISC. FT. GRAPHIC Log MINERALIZATION Recovery ANALYTICAL		Company	Cana							le anor	Aly Bear	No <u>E</u>	<u>94-1</u> ar_27	0	
Interval Little Veriss Parte Part						Inclination at Collar -75°									
March II. Redress II. Exercision Ex		Acheite veins			aring Inclination	Coord	1 Collar N E		1160		Leng)th	663'		
Completed 12/14/24 Logge by PFA LITHOLOGY, ALTERATION, MISC. FT. GRAPHIC MINERALIZATION RECOVERY ANALYTICAL BOX 10 10 Image: bar of a chart program 10 Image: bar of a chart program 10 10 10 20 - 56,5,5,- Mineralization 10 10 10 10 10 10 20 - 56,5,- Mineralization 10 10 10 10 10 10 20 - 56,5,- Mineralization 10 10 10 10 10 10 20 - 56,5,- Mineralization 10 10 10 10 10 10 20 - 56,5,- Mineralization 10 10 10 10 10 10 20 - 56,5,- Mineralization 10 10 10 10 10 20 - 56,5,- Mineralization 10 10 10 10 10 20 - 56,5,- Mineralization 10 10 10 10 10 20 - 56,5,- Mineralization 10 10 10 10 10 20 - 56,5,- Mineralization 10 10 10 10 10						11				21	Core	size	NQ		
LITHOLOGY, ALTERATION, MISC. FT. UNING UOG MINERALIZATION Run Men for a standard interval Do Do Do Do Do Do Do Do Do Do				<u> </u>		- 11			1 1		Log;	ed by	DFA		
LITHOLOGY, ALTERATION, MISC. FT. UNING UOG MINERALIZATION Run Men for a standard interval Do Do Do Do Do Do Do Do Do Do															
$\frac{1}{20-56.5} - \frac{1}{20}$ $\frac{1}{20-56.5} - 1$	LITHOLOGY,	ALTERATION, MISC.	FT.		MINERALIZA	rion	R	T		-∦	T				вох
$\frac{20}{20-56.5} - \frac{1}{20} \frac{1}{100} \frac{1}{100$							Run	length	Core *	Sample	Interval		+-+		
$\frac{20}{20-56.5} - \frac{1}{20} \frac{1}{100} \frac{1}{100$	E						E								<u> </u>
$\frac{20}{20-56.5} - \frac{1}{20} \frac{1}{100} \frac{1}{100$							E								=
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E_		10 -				E								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							E								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							E								-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E						E								20 -
Very weakly altered to chlogite, with might might might might might might might be might be might might might be might	20-56.5 - porphyritic	Medium to dark gray-seen atite flows, 20-3070					F	3.0	3.0 100	,					=
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	probably both	plag + Kisper, generally			0.2.0.5% Liss with some minor	m mt	+								
$\frac{1}{490}$	Very weakly minor calcite	altered to chlorite, with veining. Also minor		° ₄X	E a lta E	. kl.	E	/0.0	10.0 100						1 =
	minok veinin	5 - partly elfered to hen.	30 -		hagnetic Acmeli is small by zone	and	· [=			.31.0	3,0				
	E				DENC SILLET		33.0			-					=
	<u> </u>						E								37 -
	<u>E</u>		40 -				E	7.0	7.0						<u> </u>
							<u>- 42.0</u>			-					=
							E	7.0	7.0 10						2-
							- 49 D								Ē
							E								<u> </u>
	E						F								=

		GRAP			R	ECOV	/ERY	,	<u> </u>	AN	ALYT	ICAL	<u> </u>
LITHOLOGY, ALTERATION, MISC.	FT.	LOG		MINERALIZATION	Pun	Fut length	Core	•%	Sampie	Interval			BOX
- 56.5-69.0 Lt. green to pink fine grained porphyritic symite (poluskile) dike, 5-770 phonos of K-spart plag in a fine grained aphanitic matrix - <170 masic phonos (altered	8 1111111		/	Feldspan phonos in the latite posphyry are hematity stained near the margins of the polaskite	<u>53.0</u>	<i>k</i> 0.0	4.0 10.0						55.5
E to chlorite) E 69.0-158.5 E Dark grey por phyritic Latite with	70		/	69.0-158.5 Generally 20.58 Mognetite dissem throughout		16.0	10.0	100					3 1 1 1 1 1 1 1 1 1
20-30% phenos of feld in a fine grained aphanitic matrix. 2-3% matic phenos mostly altered to chlorite.			X	also ~ c.5% calcite comm as veinlets throughout. occassional minor pyrite along fxs.	E	<i>]0.</i> 0	11.0	100					
			1			(G. 0)	10 0	100					4-
	، ا		K X			A0	/0 6	/00					1111
			X	110-125 brokt cone		100	10.0	/00					
	11	N)	X			/2.0	/t.D	100	113.D 118 0	5.0 5.0			

· •

Ī	LITHOLOGY, ALTERATION, MISC.	FT.	GRAPHI	c	MINERALIZATION	R	ECO	VERY	{		AN	ALYT	ICAL	
	LITHOLOGY, ALTERATION, MISC.		LOG			חער	Run length	Core	•	Sample	Interval			BOX
	69.0 - 158.5 - Dark gray porphyritic Latite flows - 20-30% planos of Falk; - Loth plog + K. spar - often zmel. Minor calcite veining Generally <0.5% mynelite dissem throughout, v minor mt veining	/20 			113-123 minor ben with weak bleaching and calcile fx - fill, minor headite 69:0-158.5 - Generally 10.52	E	7.0	7.0	100	<u>123 p</u>	5.0			6
	_	111 111 111 111			69:0-158.5 - Generally co.52 dissem magnetite, partly attack to hem.		10.0	Jc.0	100					
		111 111 /50		,	142-158 broke core		10 0	10 0	100					111111111111111111111111111111111111111
		l.ı.				- - - - 	80	80	100					8
	158.5-181 Fine grained greenish — Pink monzmite with plag + biotite phenos up to Icm in a pink, K-space Rich ground mass. Phenos account				158.5 - 181 - weakly magnetic, <0.5% Lissem magnetite; Little to no	- - - -/64	6.0	6.0	100					
	for 25-30% of Rock, Very minor alteration to chl + epd - some gtz.				sulfides.		9.0	90	/00	/70.0				
	181-210 AT Least 3 stages of poppyritie	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/ \ \ 		181-210 weakly nognetic;		10.0	10 0	100	<u>175.0</u>	5.0			
	of plag in a f.g. pink groundnoss.	 			co.s?a dissem magnetite. v. weak cht-erd alteration mostly along fist minor calente veinlets.									

	GRAPHIC MINISPALIZATION				RI	RECOVERY				ANALYTICAL						
LITHOLOGY, ALTERATION, MISC.	FT.	L	G	MINERALIZATION	Run	Run Itrigin	Core	•	Sample	Interval				BOX		
- 190-210 (see previous page)	190		× /		- - - - - - - - - - - - - - - - - - -	10.0 9.0		100						10-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
- 210 - 311 Dark grey porphyritic Latite with 15-2070 planos of plag	20			krokm core		10.0	10.0	100								
210-311 Dark grey porphyritic Latite with 15-2070 phenos of plag + K-spar in a f.g. almost black aphanitic ground mass. Feld phenos often zoned. 1-270 matic phenos (mostly biotite)	220	N. N.	XXX	210-311 Weakly magnetic throughout; generally 20.570 mt dissem. partly altered to hem.	- 219	7.0	7.0	100						219		
			/ / /	some cale filled fxs. weak alleration to chit epd.	- - - - - - - - - - -	/0. D	10.0	100								
	230		~ ~ *	broka conc		6.0	6.0	100								
	24 <u>0</u>		X / /			8.0	8.0	100								
	250					10 Đ	10.0	100						13		
	260	Nr.	\		-									255		

.

,

		GRAPHIC		GRAPHIC MINERALIZATION		RECOVERY			·	ANALYTICAL							
LITHOLOGY, ALTERATION, MISC.	FT.	LOG		MINERALIZATION	Run	Run length	Core	•.	Sample	Interval					вох		
-	260_		,		E		10.0										
			/		-263												
-					E										14]		
			`,		E	10.0	10.0	100									
	276				E		l ·										
			ĺ		<u>-</u> 223_										273 -		
-			\setminus														
			/		E	10.0	10.0	100									
	280 -		/		-	1											
F					-283										15 -		
			\setminus		-												
F			1	.*	IE	0.0	10.0	100									
	2 <u>90</u>		/												291.5-		
F					293									l ·			
			$\setminus $														
Ę			Ì		E	10.0	10.0	100									
	300 -								3010		-				16 -		
F			/		303					5.0							
<u>E</u>									306.0								
		X			IE	10.0	10.0	100		1					310		
	3 10 -		1														
511-354 Fine grained greenish pink		, []]		311-354 - Weakly magnetic	3/3												
= 311-354 Fine grained greenish pink porphyritic monzonite with phenos of plag, hold + bio up to 1 cm. 15-20%				311-354- Weakly magnetic 20.570 dissem mt; weak chl-eps alteration.	E												
E phenos in a fig. pink K-span-Rich	-			also minor calcite veilet	E	10.0	10.0	100							17 =		
phenos in a fig. pink K-span-Rich ground mass. some gtz. Could be	3 <u>20</u> -		ì	throughout (co.5%).													
E considered a polaskite, but seems more holo xlline than most polaskites				inkonghoni (1000).	-323												
in the area.	_		/		E												
			'		F										529.5-		
Ł	330 -					1	1	<u> </u>	U	l							

	GRAPHIC			GRAPHIC			FT. GRAPHIC				F	ECO	VERY	·		AN	ALYT	ICAL		
LITHOLOGY, ALTERATION, MISC.	F1.	LO	G	MINERALIZATION	Run	Bun length	Core	2	Sample	Interval				BOX						
	330 		1		- 3333	10.0	10.0	100												
	8 8 1111111		× /		<u>343</u> 	/0.D	10 0	100						349 						
= 354 - 422.8 Dark grey f.g popphynitic Latite with 15-2070 phenos of feld in a nearly black aphanitic ground mass. 1-270 phenos of bio.	340			354-422.8 weakly magnetic; c0.590 dissem magnetite; weak calcite filled fys + veining, with some minon calcite in	- - - - - - - - - - - - - - -	10 0	16.D	100												
	320		$\overline{\langle \cdot \rangle}$	the volc groundmass. weak chl-epd alt.	- - - - - - - - - - -	10.0	10 0	100						317						
	389111		×××	some pink K.spur Rich vults.		10 0	10 0	/00												
	350		27/2	Pick Kesper Rich veislets	- - - - - - - - -	10 0	10.0	100						386						
	- - - - - - - - - - - - - - - - - - -		1	Pink K-spar Rich veinlets. 10-20° to cone axis.		(Q.D	10.0	/ 0D						211						

	1	0040440	1		RE	ECON	VERY	,	T	AN	ALYT	ICAL	<u></u>	<u> </u>	
LITHOLOGY, ALTERATION, MISC.	FT.	GRAPHIC LOG	MINERALIZATION			Run length		{	Semple	Interval					BOX
	400		Rtz-pyrite bx zone w numerous subrounded vo	TA.	- 	/0.0			407.0	3.0					+++ +++ +++
	420		clasts in a clast tonat supported by with gta py cement weakly magnetic with weak-m chl-epd alt.	ciy -	- <u>4/3</u>	8.0	8.0	100	414.0	4.0					
422.8-445 Fine grained greyish-pink porphyritic polaskite w 5-1070 feld phenos and 3-570 hbl·bio phenos in a pink, kispar rich matrix.	4 <u>30</u>				421	9.0	9.0	100							423
E (Could pass as either monzoniteor symite)	440				- 440	Jo.o	10.0	100							
<u> </u>					- - 443	3.0	3.0	100							442-
- nearly black aphanitic matrix -			445-514 - weakly magnet with <0.570 dissem m minon calcite vnlts; Little to no sulfides.		- -	10.0	10.0	100							
Feld's community zmed - 1-270 matic phonos -	460		weakly alt -> chl + epd.			10 0	10 0		461.0						
	- - - - - - - - - - - - - - - - - - -		Rf2-pyrite bx zone similar to above, but Less intense.		-	10.0	16 D	100	411.0	5.0	-				25-

· · · ·

		GRAPH	110		R	ECO	/ERY	,	ANALYTICAL								
LITHOLOGY, ALTERATION, MISC.	FT.	LOG		MINERALIZATION	Run	Bun Jength	Core	%	Sample	Interval					BOX		
	470		/ \ \		- <u>473</u> 	16.0	/0.0	190							251111 479		
	490		X			8.0	8.0	100									
			1		- - - 497	6.0	6.0	100		-					49 <i>C</i>		
	5 <u>00</u> -	Ŧ	/	broken cone		6.0	6.0	60									
	- - - - - - - - - - - - - - - - - - -		Ž			7.0	7.0	106							27-		
514-567 Fine-medium grained, medium gray to gray-pink monzaite;		and a state of the		seadational contact. V. broken corre 514-567 - weakly	-518	8.0	8.0	100							5/3		
514-567 Fine-medium grained, medium gray to gray-pink monzanite; weakly porphyritic with 50-60% feld; 10-15% matics (bio+hbl) minor gtz and some chl.	<u>520</u>		/	514-567 - weakly magnetic with co.59. dissem mt. v. minor calcite valts; grades to more potassic - rich Rock near contact with polaskite	11	10.0	10.0	100							281111		
	5 <u>30</u>		/	polaskite	- - - - - - - - - - - - - - - - - - -	/0 0	J6.J	/00							530 11 29 11		

		GRAPHIC			RECO	VER	1		AN	ALYT	ICAL	
LITHOLOGY, ALTERATION, MISC.	FT.	LOG	MINERALIZATION	Rui	Aun length	Core	•.	Sample	Interval			BOX
	540 5 <u>50 </u>				9.0	9.0	100					111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		2 X			7. //.0	7 11.0	100	Block missimg	7			301
= 567-5985 - Gravish pink f.g. ponphynitic pollaskite with 5-7% plag phenos in a f.g. pink aphaitic matrix - minor zhl - some ban near contact younger than	570		567-598.5 Weakly magnetic with 20.5% mt dissem through V. weak cll-epd alt. minon calcite valts.			10. D	100	<u>567.0</u> 572.0	5,0			
monzmite above.	580				·	10.0	100					3111
	590 -			- 59		10.0	100					<u>586</u>
598,5-663- Mmzmitesinilar to above slightly more porphyritic	6 <u>00</u>				•	10.D	100					

			GRAPHIC		RL	ECOV	/ERY			AN,	ALYT	ICAL	
	LITHOLOGY, ALTERATION, MISC.	FT.	GRAPHIC LOG	MINERALIZATION	Run	Run Jength	Core	~	Sample	Interval			BOX
بيليبينايين							10.0	100					33
سايسايي		4 <u>30</u>			1	<i>J</i> D. 0	10.0	120					624 -
سليسلي				~		10.0	10.0	100					
سليبيلي					-	<i>1</i> 0.0	10.0	100					351
ليبايينان					- - - - - - - - - - -		10.0	100					 <u>58</u> 36
	T.P. 663'				- Innlandar								

•

APPENDIX 2 LABORATORY ASSAYS

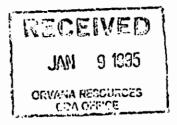
SVL ANALYTICAL, INC. REPORT OF ANALYTICAL RESULTS

SVL Job Number :X40343 Sample Receipt :12/21/94 Date of Report : 1/06/95 No. of Samples : 98 DC P.O. No. :SKARN PACKAGE Page 3 of 6

.

Client: PAUL DIRCKSEN ORVANA RESOURCES 1755 SILVER BEACH LOOP COEUR D'ALENE ID 83814

ATTN: DOYLE ALBERS


	Test : Units : Method:	Ац ррb FA+AA	Ag ppm FA+AA	As ppm ICP	Bi ppm ICP	Co ppm ICP	Cu ppm ICP	Pb ppm ICP	Mo ppm ICP
TM94-4:250-253		18.	0.3	<10	<10	11	56	17	<2
TM94-4:253-259		12.	1.0	<10	14	11	73	53	<2
TM94-4:343-348		21.	0.3	<10	<10	9	36	19	<2
<u>TM94-4:422-426</u>	. <u></u>	24.	0.7	<10_	<10	13	9.8	32	13
TM94-4:468-472.5		22.	1.9	<10	11	11	260	78	<2
TM94-4:501,5-508		33.	0.4	<10	13	13	96	26	<2
TM94-4:508-513	<u>.</u>	8.	0.2	<10	<10	6	27		<2
TM94-4:513-518		<5.	0.2	<10	<10	10	21	13	<2
E94-1:26-31		<5.	0.1	<10	34	9	9	59	<2
<u>E94-1:113-118</u>		<5.	<0.1	<10		14	14	85	<2
E94-1:118-123		<5.	0.1	<10	42	14	11	72	<2
E94-1:170-175		10.	<0.1	<10	<10	8	30	22	<2
<u>E94-1:301-306</u>		15.	0.1	<10	44	13	11	35	62
E94-1:407-410		20.	0.2	<10	<10	12	5	61	31
E94-1:410-414		29.	0.1	<10	<10	9	8	41	15
<u>E94-1:461-466</u>		21.	<0.1	<10	18	10	7	49	<2
E94-1:567-572		6.	0.1	<10	<10	<2	6	16	3
TM94-4:137-143 EXTR	A	31.	0.2	<10	<10	9	67	7	<2

SVL ANALYTICAL, INC. REPORT OF ANALYTICAL RESULTS

SVL Job Number :X40343 Sample Receipt :12/21/94 Date of Report : 1/06/95 No. of Samples : 98 DC P.O. No. :SKARN PACKAGE Page 6 of 6 Client: PAUL DIRCKSEN ORVANA RESOURCES 1755 SILVER BEACH LOOP COEUR D'ALENE ID 83814 ATTN: DOYLE ALBERS

Test : zn BĄ Units : ppm ppm CLIENT SAMPLE ID Method: ICP ICP TM94-4:250-253 150 66 TM94-4:253-259 150 280 TM94-4:343-348 51 200 77 TM94-4:422-426 38 TM94-4:468-472.5 180 67 TM94-4:501.5-508 60 71 TM94-4:508-513 30 11 TM94-4:513-518 39 120 E94-1:26-31 80 46 E94-1:113-118 87 280 E94-1:118-123 77 410 E94-1:170-175 35 23 E94-1:301-306 61 380 E94-1:407-410 87 56 E94-1:410-414 55 55 E94-1:461-466 110 57 E94-1:567-572 52 16 TM94-4:137-143 EXTRA 33 140

Reviewed By: Carolinians Date: 1/6/95 Charges : \$1,591.25

