
LOG NO:	FEB 1 7 1995	-
ACTION:		
ļ		
FILE NO:	SSESSMENT REPOR	от.
	ON	

ON GEOCHEMICAL WORK ON THE FOLLOWING CLAIM

JONAS 251070

located

40 KM NORTH-NORTHWEST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 19 minutes latitude 130 degrees 06 minutes longitude

N.T.S. 104B/8E

PROJECT PERIOD: July 13 to Oct. 10, 1994

ON BEHALF OF TEUTON RESOURCES CORP. 509-675 W. HASTINGS ST. VANCOUVER, B.C.

REPORT BY

D. Cremonese, P. Eng. 509-675 W. Hastings Vancouver, B.C.

Date: January 30, 1995

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

1.	INTRODUCTION	1
	A. Property, Location, Access and Physiography B. Status of Property C. History D. References E. Summary of Work Done	1 1 2 3 5
2.	TECHNICAL DATA AND INTERPRETATION	6
	A. Regional Geology	6
	B. Property Geology	7
	C. Beep Mat Survey	9
	a. Introduction	9
	b. Treatment of Data	10
	c. Discussion	10
	D. Petrographic Samples	11
	E. Geochemistry Rock Samples	12
	a. Introduction	12
	b. Sample Descriptions	12
	c. Discussion	12
	F. Field Procedure and Laboratory Technique	13
	G. Conclusions	13

APPENDICES

.

- I Work Cost Statement II Certificate III Assay Certificates IV Documentation -- Beep Mat

ILLUSTRATIONS

Fig. 1	Location Map	Report Body
Fig. 2	Claims Map	Report Body
Fig. 3	Regional Geology	Report Body
Fig. 4	Rock GeochemistrySample Locations	
	& Values	Map Pocket
	Sample Sites	-

1. INTRODUCTION

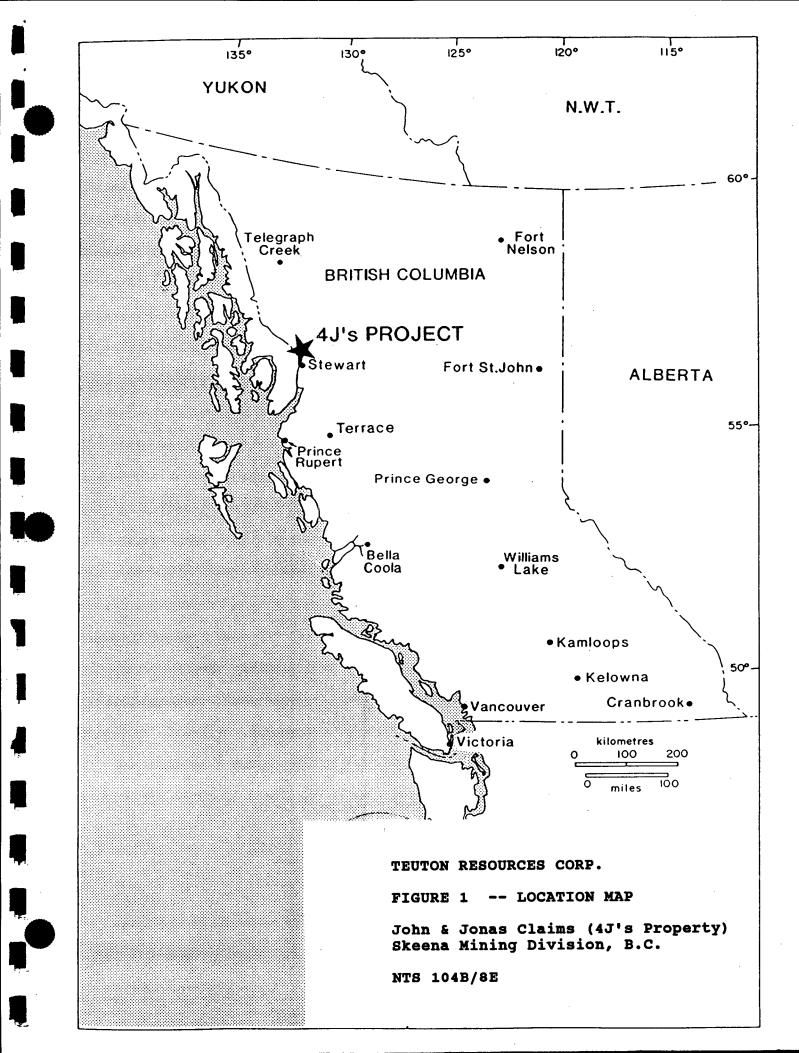
A. Property, Location, Access and Physiography

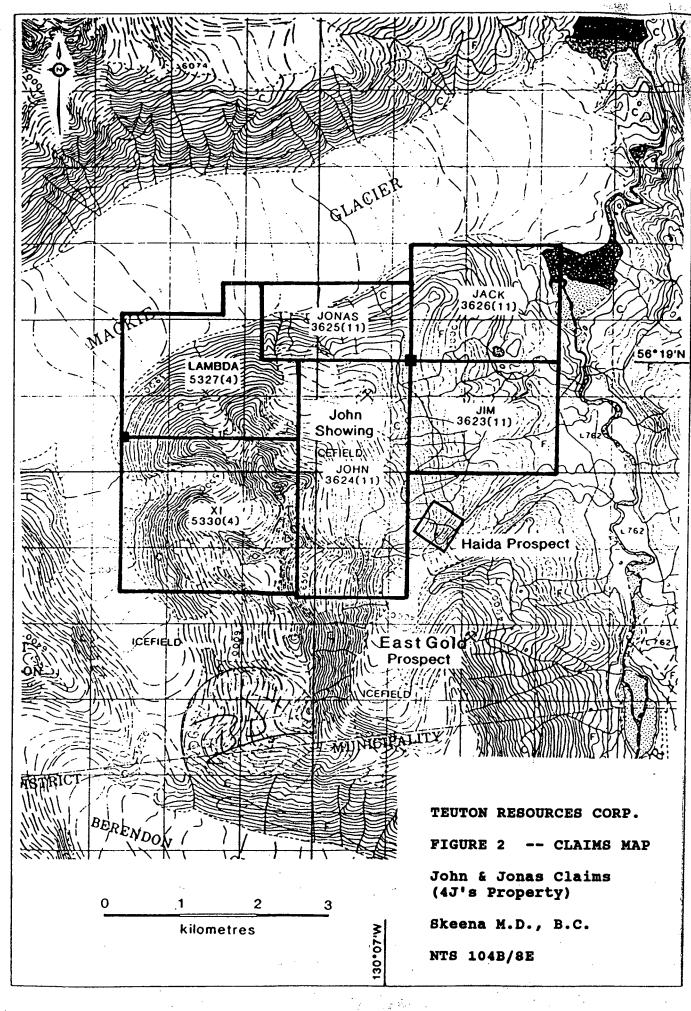
The Jonas claim is situated approximately 8km northwest of the airstrip at Tide Lake Flats (just north of the old Granduc Mine concentrator). Access from Stewart, 40 air-kilometres to the south, is by helicopter; alternative access is via the Granduc mining road to the previously mentioned airstrip and thence by helicopter. Access by foot is possible from the terminus of the Granduc road system near the old East Gold Mine but there is no trail in place at present.

The Jonas claim was originally part of the so-called 4-J's property, lying immediately south of the Frank Mackie Glacier. The Smalles icefield encroaches onto the west side of the claims, occupying the height of land. Elevations varies from about 600m in the valley of the Bowser River on the east side of the 4-J's to 2275m on the peaks to the west. Ongoing ablation throughout the Stewart region exposes about 50m per year of fresh outcrop. This is important, as many discoveries recently have been in these newly uncovered areas [the surface outcrop of the rich, gold-bearing Marc Zone at Lac's Red Mountain property lay in a snow gulley that was probably only recently exposed].

Low lying regions on the property are vegetated by mature mountain hemlock and balsam. This changes to subalpine and alpine vegetation consisting of stunted shrubs and grasses. Outcrop is plentiful and, in those areas were the ice has receded, is virtually continuous except where covered by talus.

The exploration season is from late June to early October, with higher elevations having a shorter span. In general, winter months are severe with heavy snowfall.


B. Status of Property


Relevant claim information is summarized below:

Name	Tenure No.	No. of Units	Expiry Date*
Jonas	251070	8	Nov. 1, 1995

Claim location is shown on Fig. 2 after government N.T.S. maps. The John claim, adjoining immediately to the south of the Jonas claim, is the only other surviving claim of the original Four J's property. Teuton Resources Corp. of Vancouver, British Columbia owns the property.

*Assuming approval of assessment credits

C. History

Exploration in the immediate area of the property began roughly in 1926 when free gold was discovered on the East Gold property (about 2.5 km southeast). Thereafter, in the early 1930's, prospecting uncovered a series of auriferous, cross-cutting quartz-sulfide veins and shear zones on ground now controlled by the Haida claim (owned by Silver Standard Mines). / This latter property, called the "Portland", originally consisted of 16 claims, and probably covered portions of the present day John and Jonas claims.

A buoyant market for precious metal prices revived interest in this part of the Stewart area in 1980. Many former prospects along with proximate zones of favourable geology were subjected to reconnaissance surveys by exploration companies. A summary of this recent activity is presented below.

- 1980-82 The Catspaw claim [adjoining due east of John claim] was staked by Elan Exploration Ltd. of Calgary and optioned to E & B Exploration. E & B undertook minor prospecting, sampling and geological mapping before returning the property to Elan. Several of the streams draining the Catspaw and Jim claims were noted to carry gold colours when panned by prospectors.
- 1983 The Catspaw claim was optioned to Teuton Resources Corp.; the property was enlarged by staking the Four-J's claims and the Gamma claim. A stratiform lead-zinc-antimony (gold-silver) occurrence and a boulder train of argentiferous quartz sulfide mineralization was discovered on the John claim. This latter work was undertaken by Billikin Resources under option (the option was relinquished the following year).
- 1984 The Four-J's claims were optioned by Teuton to Canadian United Minerals Inc. An airborne EM and Mag survey disclosed two EM anomalies under ice cover proximate to the stratiform mineralization noted on the John claim.
- 1985 Noranda Exploration Company re-optioned the Four-J's from Canadian United. Prospecting, sampling and geophysical surveys were carried out identifying several types of mineralization prior to returning the property to Teuton (A lingering snowpack prevented examination of the stratiform occurrence.)
- 1986 Work by Teuton prospectors on the Gamma claim [2.5 km north of Jonas claim] uncovered several argentiferous quartz sulfide veins and an auriferous, pyritic, quartz brecciated agglomerate. A small rock geochemical program on the Catspaw claim disclosed several gold anomalies.

- 1987 Property optioned by Teuton to Wedgewood Resources. Field program supervised by Kruchkowski Consultants of Calgary concentrated on prospecting, trenching, sampling and geochemical surveys on the Four-J's and surrounding claims.
- 1988 Wedgewood carried out further rock sampling and mapping on the Four J's, Catspaw and Gamma claims before discontinuing the option.
- 1989 Maple Resource Corporation Exploration entered into an agreement with Teuton to earn a 60% interest in the Four-J's claims. A field program was carried out by Maple concentrating on the Main, Centre, South and North Zones. The primary target areas were defined as: the sedimentary exhalative style lead-zinc-silver mineralization in the Main and North Zones and a zone of highly anomalous soil samples collected along contours northeast of the grid area.
- 1990 Maple drilled 334.06m to test a strong gold-in-soil geochem anomaly in the FM Zone. The first two holes intersected significant gold mineralization in an argillite/siltstone unit: Hole MA-90-1 returned 0.078 oz/ton gold over 9.84m and Hole MA-90-2 returned 0.069 oz/ton gold over 7.16m. Two gold-in-soil geochem anomalies were identified elsewhere on the property.
- **1991** Maple was unable to obtain financing for further work and dropped the option on the property.
- **1992** Teuton carried out a small program of sampling and trenching in the Main Zone area. This work defined additional small outcrops of laminated sulfides such as were originally discovered in 1983.
- 1993 A small work program involving a limited Beep Mat survey and some minor rock geochemical sampling was conducted over the John and Jonas claims. The Beep Mat survey did not disclose any significant mineralization.

References

ALLDRICK, D.J. 1983: Salmon River Project, Stewart, B.C.; in Geological Fieldwork, 1982, BCMEMPR, Paper 1983-1, p.183-195.

1984: Geological Setting of the Precious Metals Deposits in the Stewart Area, Paper 84-1, Geological Fieldwork 1983", BCMEMPR.

1985: Stratigraphy and Petrology of the Stewart Mining Camp

(104B/1E), p. 316, Paper 85-1, Geological Fieldwork 1984, BCMEMPR.

1987: Geology and Mineral Deposits of the Salmon River Valley, Stewart Area, NTS 104A and 104B; BCMEMPR, Geological Survey Branch, Open File Map 1987-22.

1988: Detailed Stratigraphy of the Stewart Mining Camp; Paper Given at the Stewart Mineral Exploration Conference, 1990, Stewart, B.C. 14;.

1989: Volcanic Centres in the Stewart Complex in BCMEMPR Geological Fieldwork, 1988, Paper 1989-1.

BAERG, R. and BRADISH, L. 1986: Geological, Geochemical and Geophysical Report on the 4-J's Property for Noranda Exploration Company Ltd. Assessment Rept. #14386.

BURSON, M.J. 1988: 1988 Program on the Gamma-Four J's-Catspaw Claim Groups (Frank Mackie Property) for Wedgewood Resources Ltd., unpublished report.

CARTER, N.C. 1985: Geological Report on the 4-J's Property, Skeena Mining Division, B.C. for Canadian United Minerals Inc., unpublished report.

CHAPMAN, J., LEWIS, L., BAILLIE, S. 1991: Summary Report on Maple Resource Corporation's 4-J's Project, Iskut-Sulphurets Area, Skeena M.D., B.C.

CREMONESE, D.M. 1994: Assessment Report on the John and Jonas Claims, Stewart, B.C., Skeena Mining Division, NTS 104B/8E; on file with BCMEMPR.

DEWONCK, B. and BARNES, B. 1990: Report on the Maple Resource Corporation's 4'J's Project, Iskut-Sulphurets Area, Skeena M.D., B.C.; unpublished report.

GROVE, E.W. 1971: Geology and Mineral Deposits of the Stewart Area, B.C., BCMEMPR, Bulletin No. 58.

1982: Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.

1983: Geological Report and Work Proposal on the Teuton Resources Corp. Catspaw Property in the Bowser River Area, Stewart District, Northwestern B.C., Skeena M.D., NTS 104A/5W.

1987: Geology and Mineral Deposits of the Unuk River-Salmon

River-Anyox Area, Bulletin 63, BCMEMPR.

Î

GROVES, W.D. 1988: Geological Report on the Frank Mackie Property for Wedgewood Resources Ltd. in Prospectus Dated June 10, 1988.

GROVES, W.D. and R. SHELDRAKE 1984: Assessment Report on Geophysical Work on Five Areas in the Bowser River Area, B.C.; on file with BCMEMPR.

HALL, B. 1991: Trenching Summary -- 4J's Property; Handwritten Preliminary Report for Teuton Resources.

KRUCHKOWSKI, E.R. 1981: Exploration Summary - Catspaw Claim, for E & B Explorations Ltd.

1983: Report on the 4-J's Property, Bowser River Area, Stewart, B.C., NTS 104B/8E; private report for Billikin Resources.

KRUCHKOWSKI, E.R. & KONKIN, K. 1988: Assessment Report on the Catspaw Claim, Stewart, B.C., Skeena Mining Division, NTS 104B/8E; on file with BCMEMPR.

1988: Assessment Report on the Gamma Claim, Stewart, B.C., Skeena Mining Division, NTS 104B/8E; on file with BCMEMPR.

1988: Draft Report -- Catspaw-Gamma Claim Group, Stewart, B.C. Private

LOGAN, JAMES M. 1985: Preliminary Polished Section Report, 4-J's Property, for Canadian United Minerals Inc.

SHEARING, R. 1986: Field notes and maps, 1986 work program on the Gamma, John and Jonas claims.

SHELDRAKE, R.F. 1985: Letter Report on 4-Js Project, Stewart, B.C., Apex Airborne Surveys Ltd.

E. Summary of Work Done.

The 1994 work on the Jonas claim was part of a much larger program spanning the period from July 13 to Oct. 10 and involving more than 20 separate claim groups in the Stewart area. The field crew on the Jonas claim work consisted of the author and geologists E.R. Kruchkowski and K. Konkin. Access to and from the property was by helicopter (Sept. 14, 1994) from the Vancouver Island base on the

Bear River in Stewart.

The original intention was to evaluate zones of recent ablation on the eastern edge of the Smalles Icefield at higher altitudes on the John claim (due south of the Jonas). Unfortunately, the weather in the area turned out to be far more severe than in and around Stewart so that it was impossible to land anywhere on the property except out on the Frank Mackie glacier. For safety reasons, it was decided not to attempt a climb up the slick, steep slopes to the target area in the blustering rain and mist . Accordingly, the focus of the program was redirected to collecting rock geochemical samples near and along the edge of the Frank Mackie glacier.

A total of 14 rock geochemical samples, all from float boulders, was collected during the program. All rock samples were prepared at the Eco-Tech Laboratories facility in Stewart. Au geochem and assays were conducted in the Stewart lab with all ICP analyses carried out at the main Eco-Tech facility in Kamloops. One of the samples, unfortunately, was lost during sample preparation.

2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology

The Stewart area is adjacent to the east margin of the Coast Plutonic Complex. Mesozoic volcanic and sedimentary rocks are intruded by Coast granitic rocks ranging in age from early Jurassic to Tertiary and which take the form of large plutons and related dyke swarms.

Mineral deposits in the area are of several styles, and include quartz sulfide veins and replacement systems related principally to repeated Mesozoic volcanism and Tertiary granitic intrusions (Alldrick, 1985).

Oldest rocks in the area are a late Triassic-early Jurassic subaerial andesitic volcanic sequence with intercalated siltstones, equivalent to Grove's Unuk River Formation. These are overlain by epiclastic and felsic volcanic sequences (Betty Creek Formation--Grove, 1983) of early to middle Jurassic age, and by a sedimentary sequence (Salmon River Formation--Grove, 1983), part of the middle to late Jurassic Bowser assemblage.

These Mesozoic layered rocks are contained in a regional northtrending synclinal structure, modified by northeast and northwest faults.

Intrusive rocks, principally the Summit Lake granodiorite (Alldrick, 1985), are coeval with lower units of the andesitic volcanic sequence. Related to the main intrusion are feldspar porphyry dykes and sills.

Mineral deposits in the immediate vicinity of the 4-J's property include Scottie Gold massive pyrrhotite veins in andesitic rocks adjacent to the Summit Lake granodiorite pluton and quartzcarbonate veins containing base and precious metal sulfides in schistose volcanic rocks at the East Gold and Haida (Portland) prospects.

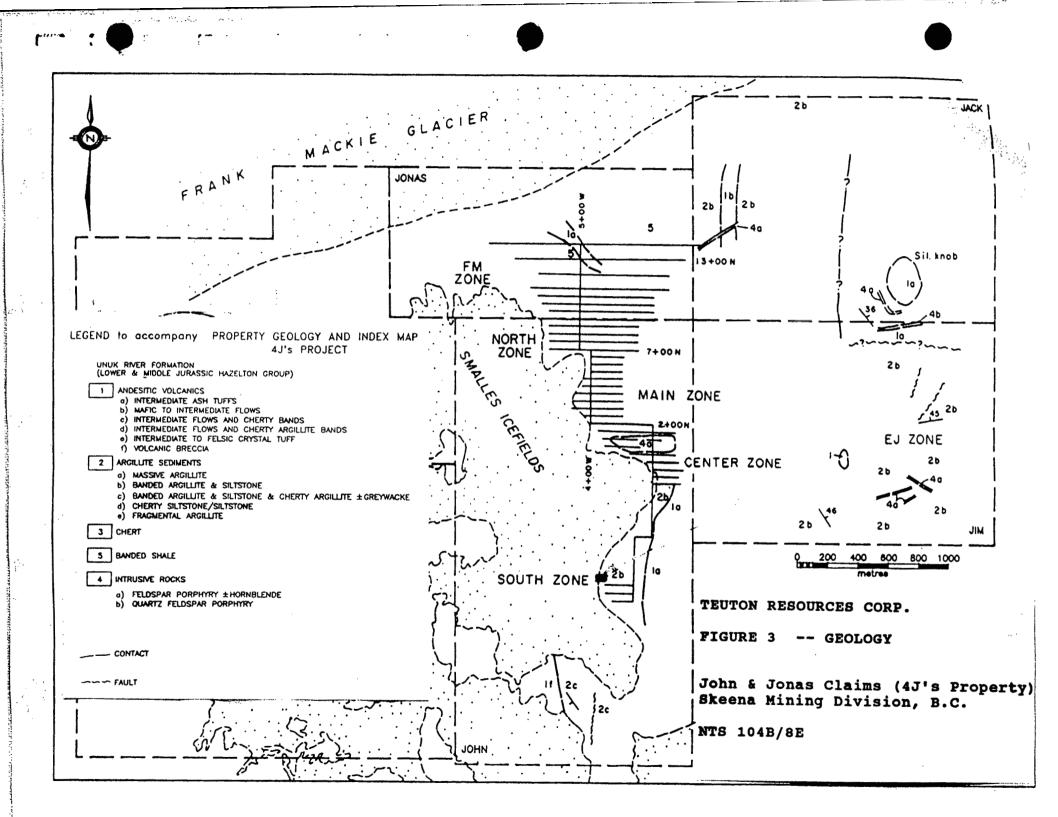
Geology in relation to claim area is shown in Fig. 3.

B. Property Geology

As previously stated, due to inclement weather the 1994 assessment work program was limited to the area lying along the southern edge of the Frank Mackie Glacier. Most of this area is covered by moraine with occasional outcrops of banded shales and argillites.

The more interesting portions of the property occur to the south at higher elevations on the Jonas and John claims. Previous exploration has established the existence of five mineralized areas called the FM, North, Main, Center and South zones (cf. Fig. 3).

The Main Zone is the name now used to describe the laminar or stratiform lead-zinc-antimony mineralization originally discovered in 1983 by Billikin Resources. It is bounded to the west by an alpine glacier and to the east by a blanket of talus debris. The westernmost unit exposed on the zone is a massive deformed black argillite containing <1% fine siltstone interbeds. The unit is exposed over 70m but may be as much as 200m thick.


Prolific quartz carbonate veinlets define foliation at 024/85 NW. Carbonatization is pervasive with local silicification and limonitization. Pyrite mineralization occurs as <1% finely disseminated, blebby and fracture controlled crystals. A localized zone of poddy white pyrite and purple sphalerite occurs adjacent to, and mostly covered by, the glacier. Pods are subparallel to foliation, up to 40cm in length and 5 to 10cm wide. They contain 10-20% fine sphalerite and 80-90% pyrite mineralization.

Adjacent to the argillite lies the southern extension of the felsic to intermediate crystal tuff, locally up to 80m wide. It is pervasively silicified and has local fracture controlled carbonization associated with <1% pyrite. Less than 1% fracture controlled galena and trace blebby sphalerite also occur.

The crystal tuff is intruded by a 25m wide concordant hornblendefeldspar porphyry in the northern section of the Main Zone. To the south the porphyry narrows to <10m wide and changes orientation as it intrudes the rock units lying to the southeast. Only traces of pyrite were noted.

To the east is an interbedded argillite/siltstone unit with a

7

distinct banded appearance. Bedding and foliation are parallel at 025 to 030/85 to 35W in the north, but variable in the south. Bedding is typically <5cm wide and consists of 70% argillite and 30% siltstone. The unit is moderately to strongly carbonatized and locally silicified, resulting in some cherty argillite development. Locally limonitic, it contains <1% blebby and fine grained disseminated pyrite.

The eastern third of the Main Zone contains intermediate volcanic flows intercalated with argillite and cherty argillite bands, typically less than 10cm wide. The flows are massive, bleached and locally silicified. Mesocratic siliceous bands and cherty argillite bands make up 35 to 40% of the rock and are oriented at 030/30NW in the north, but gradually shift to 004/82-75W in the south. Trace pyrite occurs throughout the unit, although scattered strongly limonitic and silicified zones occur which contain approximately 2% fracture controlled pyrite.

Seven distinctive geologic units, forming three broad genetic categories underlie the FM Zone: an andesitic volcanic sequence, a distal basin argillite sequence and a porphyritic intrusive. The zone is dominated by the andesitic volcanic complex which consists of intermediate ash tuffs to the southwest, a central belt of mafic to intermediate flows, and intermediate flows intercalated with cherty bands to the northeast. The ash tuff is bounded to the east by a strong but poorly mineralized graphitic fault oriented at 010 to -065/60 to 75W. To the north, talus cover becomes excessive and masks unit contacts. An alpine glacier cuts off exposure of the sequence to the west.

The volcanic sequence hosts at least four east-west striking, south dipping shear zones, and a series of north-south striking, west dipping faults in an area of sharp relief toward the north.

An aerially restricted and irregular pocket of heterogeneous units including hornblende feldspar porphyry, banded argillite and felsic to intermediate crystal tuff occurs along the central portion of the western margin of the volcanics adjacent to the glacier.

The mafic to intermediate volcanic flows are grey green to dark green in colour and are massive and fine grained with local clusters of acicular black hornblende crystals. The contact between the flows and ash tuffs occupies a strong 080 trending shear zone. Discontinuous, strongly limonitic horizons are abundant immediately north of the contact shear. Zone orientations range from N-NE trending with a vertical dip, to SE trending with a moderate south dip.

East of the volcanics lies an argillite sequence consisting of massive deformed argillite with minor fine siltstone interbeds and a sequence of intercalated argillite, siltstone, chert and greywacke. Bedding and foliation are parallel to subparallel in the massive argillite and strike N-NE, dipping steeply to the west. In the interbedded facies, bedding strikes E-W and dips steeply to the south. Thickness of the unit varies on surface from 100m to less than 20m.

Due to a shift in foliation and decreasing elevation northward, the surface trend of the sedimentary sequence wraps to the northwest around the volcanic sequence.

The black argillite is very finely interbedded with <10% siltstone. It shows strong irregular deformation and shearing defined by abundant discontinuous and boudinaged quartz carbonate veinlets. The unit is moderately to strongly silicified and carbonatized throughout and its weathered surface is commonly limonitic. Sulfide mineralization is very fine grained and consists of less than 1% blebby, fracture controlled and disseminated pyrite with metre scale zones containing up to 3%.

The heterogeneous banded argillite, siltstone, cherty argillite, greywacke facies consist of beds ranging from 1 to 11cm thick, with textures ranging from aphanitic to gritty and earthy. Bedding is typically 090 to 130/80S. Sulfide mineralization is sparse with <1% fine grained pyrite.

The eastern extents of the North and FM Zones are underlain by a fine to medium grained hornblende/feldspar porphyry. It is a light blue colour, massive and contains clusters of millimetre scale randomly oriented feldspar phenocrysts and < 1cm sale hornblende megacrysts in a fine grained groundmass. The concentration of hornblende decreases to the north.

C. Geochemistry--Rock Samples

a. Introduction

After an investigation of the main target areas on the property (at higher elevations in zones of ablation near the FM, North, Main, Center and South zones) was precluded by weather conditions, the focus of the 1994 program was redirected to collection of float samples in the moraine field along the southern edge of the Frank Mackie glacier. Sample locations and values for gold, silver, arsenic, lead and zinc for the thirteen samples analyzed (fourteen samples were taken but one was lost during sample preparation) are presented in this report on Fig. 4. Locations for the "KK" samples were fixed in the field using a GPS unit; other samples taken were tied into these by pace and compass.

b. Treatment of Data

The 13 rock samples analyzed during the 1994 work program comprise too small a set for efficient use of standard statistical methods for determining threshold and anomalous levels. In lieu of such treatment, the author has simply chosen anomalous levels by reference to several rock geochemical programs conducted over other properties in the Stewart region over the past ten years. Anomalous values, on this basis, are indicated below:

Element	<u>Anomalous Above*</u>
Gold Silver Arsenic Lead Zinc	100 ppb 3.6 ppm 120 ppm 160 ppm 320 ppm

* Anomalous ranges will vary greatly according to rock type. For this reason, defining anomalous levels for any particular property based on regional averages is somewhat arbitrary.

c. Rock Sample Descriptions

Following are rock sample descriptions from field notes. Samples containing anomalous levels for either gold, silver, arsenic, lead or zinc have values for all five of these elements included directly below the description (with anomalous elements highlighted in bold type).

The samples have been described as follows:

KK94-799 Float, rounded 0.3m. Severe sericite alteration, possibly intrusive, with 7-10% very fine-grained to medium-grained pyrite, disseminated and in seams. Intense Fe oxidation.

Gold	-	110	ppb	Silver	-	4.4	ppm
Arsenic	-	60	ppm	Lead	-	46	ppm
				Zinc	-	118	

KK94-800 Float, 0.3m sub-angular. Silicified black siltstone breccia; 10-15% qtz veinlets with 10-15% disseminated and veinlet pyrite. Intense Fe oxidation.

Gold	-	260	ppb	Silver	-	5.6	ppm
Arsenic	-	540	ppm	Lead	-	40	ppm
				Zinc	-	73	

KK94-801 Float, 0.4m. Rhyodacite, siliceous with 7-10% v.f.g to f.g. disseminated pyrite. Intense Fe ox.

Gold-90 ppbSilver-2.4 ppmArsenic-220 ppmLead-22 ppm

Zinc - 51

- KK94-802 Float, fist-sized. Angular, fine-grained diorite. Strong Fe ox., 3-5% disseminated pyrite.
- KK94-803 Float, football sized. Brecciated, leached, v.f.g. intermediate volcanic with 7-10% v.f.g. laminar and disseminated pyrite. Vuggy goethite veinlets (5-7%) and 1-2mm qtz veinlets.
- KK94-804 Float, 0.4m round boulder. From qtz vein with 7-10% v.f.g. disseminated and interstitial pyrite, intense Fe oxidation.
- ERK94-786 1.5m massive pyrite boulder. Weak qtz stockwork thru rock, 2-5 cm wide veinlets.

 Gold
 0.055 opt
 Silver
 21.6 ppm

 Arsenic
 875 ppm
 Lead
 1,782 ppm

 Zinc
 1,254 ppm

ERK94-787 Float, 0.3m boulder. Sericite altered volcanic with qtz stockwork. Heavy f.g. pyrite, 10%.

Gold	-	265	ppb	Silver	-	6.0	ppm
Arsenic	-	1,110	ppm	Lead	-	1,004	ppm
				Zinc	-	394	ppm

ERK94-788 Float, 0.3m. Pale, cream coloured schist with barren qtz stockwork. Abundant green mariposite or fuschite.

[No analysis: sample lost during preparation at lab]

- ERK94-789 Float boulder, 0.2m. Grey, sericite altered volcanic with 70% massive pyrite.
- ERK94-790 Float, 0.15m. Black, sheared argillite with pyrite and pyrrhotite, 3-4%.
- DC94-19 Float, 0.2m, angular. Fine-grained volcanic rock with disseminated and veinlet pyrite, 5-7%.

Gold	-	55	ppb	Silver	-	0.8	ppm
Arsenic	-	285	ppm	Lead	-	52	ppm
				Zinc	-	253	

- DC94-20 Angular float boulder, 0.8 x 1.6m. Sericite altered volcanic with qtz carbonate stockwork. About 15% finegrained disseminated pyrite.
- DC94-21 Float, angular, 0.3m. Black argillite with abundant small gtz veinlets. Unidentified mineral weathers bright

red.

c. Discussion

Four of the samples returned anomalous gold values with the best returning 0.055 opt. The sample descriptions for these four generally coincide with styles of mineralization previously noted on the property (uphill from the float boulders). The 0.055 opt gold sample may be from a small area of massive pyrite mineralization previously observed near the western edge of the North zone. This zone deserves more work to determine extent of the mineralization.

The anomalous gold values were accompanied by elevated silver and arsenic values in the KK series and by elevated silver, arsenic, lead and zinc in the ERK series.

D. Field Procedure and Laboratory Technique

Analysis of rock specimens collected during the 1994 program was carried out at the Eco-Tech Laboratories facilities in Stewart and Kamloops.

After standard rock sample preparation, the 30 element Inductively Coupled Argon Plasma analysis was initiated by digesting a 0.5 gm sub-sample from each field specimen with 3ml 3-1-2 HCl-HNO3-H20 at 95 deg. C for one hour, followed by dilution to 10 ml with water. The Atomic Absorption measurement for ppb tolerance gold was preceded by subjecting 10 gram samples to standard fire-assay preconcentration techniques to produce silver beads which were subsequently dissolved.

E. Conclusions

Four gold anomalous samples were collected from moraine at the southern edge of the Frank Mackie glacier. These samples probably originate in or close to known zones of mineralization previously investigated upslope on the Jonas and or John claims. The goldbearing massive pyrite float boulder which returned 0.055 opt deserves some limited work to trace to source.

Respectfully submitted,

J. Lemmen

D. Cremonese, P.Eng. Jan. 30, 1995

-		13
APPENDIX I - WORK COST STATEMENT		
Field PersonnelPeriod July 13 to Oct. 10, 1994: E. R. Kruchkowski, Geologist 1.0 day @ \$300/day K. Konkin, Geologist	;	300
1.0 day @ \$294/day D. Cremonese, P. Eng.		294
1.0 day @ \$375/day		375
Helicopter VIH/Stewart Base Crew drop-offs/pick-up 1.6 hrs @ \$722.79/hr.	1	,156
<pre>Shared project costs (prorated at 1.80%*)Logistics/supervision/bad weather standby in Stewart</pre>		290
1.80% of \$10,459)		188
Food/accommodation 1.80% of \$9,138)		164
Local transportation/expediting/radios 1.80% of \$6,493		116
Field supplies/misc. 1.80% of \$4,266		77
Workman's compensation 1.8% of \$3,592)		65
Assay costsEco-Tech Labs Au geochem + 30 elem. ICP + rock sample prep 13 @ \$19.5275/sample Au assay		254
1 \$ \$9.63/sample		10
Report Costs Report and map preparation, compilation and research D. Cremonese, P.Eng., 1.5 days @ \$375/day Draughting RPM Computer Word Processor - 3 hrs. @ \$25/hr.		562 90 75
Copies, report, jackets, maps, etc. TOTAL	3 4	35
- Amount Claimed Per Statement of Exploration: \$2,800**		

* Based on ratio of field man-days to total project field man-days (excludes time crew spent in Stewart due to weather, etc.)

**Please adjust PAC account accordingly.

13

APPENDIX II - CERTIFICATE

- I, Dino M. Cremonese, do hereby certify that:
- 1. I am a mineral property consultant with an office at Suite 509-675 W. Hastings, Vancouver, B.C.
- I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- 3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practised my profession since 1979.
- 5. This report is based upon fieldwork carried out on the Jonas claims, Skeena Mining Division in September of 1994.
- 6. I am a principal of Teuton Resources Corp., owner of the Jonas claim: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 30th day of January, 1995.

I homenen

D. Cremonese, P.Eng.

APPENDIX III

ASSAY CERTIFICATES

GEOCHEMISTRY **ANALYTICAL CHEMISTRY** ENVIRONMENTAL TESTING

13-Oct-94

AYING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETS3107

TEUTON RES. CORPORATION 509-675 W. HASTINGS ST.

VANCOUVER, BC V6B 1N2

Attention: Dino Cremonese

80 ROCK samples received September 17, 1994 Sample run date: September 26, 1994 Samples submitted by: Ken Konkin Client Project Number: OEX

		Au	Au	Ag	Ag	As	Cu	Pb	Zn
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	%	%	%	%
4	KK94789	5.30	0.155	48.3	1.41	-	2.13	:	-
<u>,</u> 11	KK94796	5.40	0.157	49.2	1.44	-	-	-	3.72
12	KK94797	1.66	0.048	30.8	0. 9 0	0.78	-	-	-
13	KK94798	1.06	0.031	-	-	· _	-	-	-
22	KK94807	4.15	0.121	46.3	1.35	-	2.56	-	
23	KK94808	8.85	0.258	56.5	1.65	-	3.47	-	-
24	KK94809	10.40	0.303	91.2	2.66	-	5.10	-	-
25	KK94810	1.26	0.037	-	-	-	-	-	
31	KK94816	1.98	0.058	36.8	1.07	-	2.16	-	
36	ERK94766	1.29	0.038	-	-	-	·	-	1.40
37	ERK94767	-	-	-	-	-	-	-	2.60
38	ERK94768	1.08	0.031	-	-	-			-
39	ERK94769	2.36	0.069	84.2	2.46	-	- .	-	4.73
40	ERK94770	2.32	0.068	51.3	1.50	-		· -	-
41	ERK94771	-	-	1263.0	36.83	-	1.89	2.99	11.82
42	ERK94772	1.66	0.048	31.2	0.91	0.87	·	-	-
45	ERK94775	-	-	42.3	1.23	-	-	-	- ·
46	ERK94776	25.75	0.751	2634.0	76.82	4.47	. –	7.30	6.79
47	ERK94777	-	-	79.4	2.32	-	-	· 🕳	·· .
50	ERK94780	-	-	1394.0	40.65	-	-	30.31	. 8.14
51	ERK94781	-	-	246.4	7.19	1.64	-	4.37	11.21
52	ERK94782	· –	-	31.6	0.92	-	• –	· _	1.46
53	ERK94783	6.15	0.179	763.4	22.26	-	· _	13.32	1.52
54	ERK94784	36.50	1.064	219.2	6.39	-	-	5.26	2.68
55	ERK94785	42.50	1.239	919.8	26.82	-	-	17.63	10.38
56	ERK94786	1.89	0.055	· · · · -	-	-	•		
63	ERK94794	5.15	0.150	-	-	-	1997 - S -	•	-
64	ERK94795	15.00	0.437	261.2	7.62	-	1.09	-	
65	ERK94796	6.70	0.195	-	· -	с. 1911 г. т			
66	ERK94797	16.25	0.474	66.7	1.95	-	-		

66.7 0.474

Page 1

Frank J Pezzotti, R Certified Assayer С

5-Oct-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

TEUTON RESOURCES CORPORATION ETS-3107 509-675 W. HASTINGS ST. VANCOUVER , B.C. V6C-1N2

ATTENTION: Dino Cremonese

80 rock samples received September 17, 1994 Sample run date: 01 October, 1994 Samples Submitted By: Ken Konkin Client Project Number: OEX

Values in ppm unless otherwise reported

	Et #	Tag #	Au (ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	IJ	v	w	Y	Zn	
1		KK 94786	30	1.0	2.40	110	85	10	4.22	3	25	71	45	8.02	<10	1.40	1048	7	0.03	5	1460	62	5	<20	126	<.01	<10	96	<10	<1	103	
2	2	KK 94787	30	<.2	0.11	<5	30	10	6.06	<1	5	142	16	2.42	<10	1.74	1195	6	0.01	6	190	10	25	<20	210	<.01	<10	6	<10	2	13	
3	3	KK 94788	125	9.0	0.15	140	20	<5	> 15	5	87	76	3865	3.27	10	0.20	1627	<1	<.01	32	<10	58	5	<20	790	<.01	<10	9	50	32	71	
4	\$	KK 94789	>1000	>30	0.22	335	55	<5	10.90	25	195	66	>10000	12.20	<10	0.21	1463	<1	<.01	70	<10	66	<5	<20	628	<.01	<10	10	40	8	275	
5	5	KK 94790	80	10.4	0.50	115	40	<5	11.10	5	65	119	3128	4.93	<10	0.55	1207	3	<.01	34	130	34	<5	<20	459	<.01	<10	21	20	9	81	
e	5	KK 94791	150	12.0	0.70	200	55	<5	10.20	7	160	70	3882	10.50	<10	0.84	1106	2	<.01	39	30	34	30	<20	572	<.01	<10	21	<10	<1	106	
7	r	KK 94792	105	6.4	1.27	995	40	<5	12.10	16	83	66	2581	7.99	<10	1.73	1375	<1	<.01	27	160	28	40	<20	557	<.01	<10	35	20	3	32	
8	3	KK 94793	200	9.0	3.07	90	50	<5	1.75	2	43	75	3255	7.12	<10	3.24	764	<1	<.01	13	820	48	15	<20	63	0.01	20	48	50	<1	121	
9	•	KK 94794	60	5.2	2.17	170	65	<5	2.07	2	157	90	1897	8.81	<10	2.32	710	<1	<.01	11	570	92	<5	<20	84	0.01	10	43	20	<1	86	
10	0	KK 94795	25	<.2	0.67	15	25	4	0.40	<1	12	73	227	2.63	<10	0.51	192	8	0.04	3	950	6	<5	<20	21	0.05	10	44	20	<1	27	
1	1	KK 94796	>1000	>30	0.11	85	35	10	0.79	540	34	212	267	7.02	<10	0.22	545	<1	<.01	22	120	8234	<5	<20	66	<.01	40	7	<10	<1 :	>10000	
1:	2	KK 94797	>1000	>30	0.08	>10000	40	<5	0.32	246	35	224	538	8.51	<10	0.02	240	3	<.01	17	<10	3398	20	<20	33	<.01	20	6	<10	<1	3683	
1:	3	KK 94798	>1000	15.4	0.05	2500	35	<5	0.30	48	38	178	688	8.71	<10	0.03	228	2	<.01	21	<10	484	<5	<20	24	<.01	<10	4	<10	<1	731	
1	4	KK 94799	110	4.4	0.43	60	20	-5	0.57	3	16	88	59	4.59	<10	0.10	91	<1	<.01	4	800	46	10	<20	9	<.01	20	32	20	<1	118	_
2 1	5	KK 94800	260	5.6	0.35	540	35	10	0.67	8	17	125	43	9.42	<10	0.04	93	<1	<.01	7	1200	40	<	<20	25	<.01	10	24	40	<1	73	å c
ŭ																																N L
A 10	6	KK 94801	90	2.4	0.93	220	40	15	2.27	3	30	97	104	5.85	<10	0.85	518	<1	<.01	15	1920	22	10	<20	93	<.01	40	87	30	<1	51	A A
s 17	7	KK 94802	25	<.2	3.41	20	45	<5	1.96	<1	47	66	105	8.93	<10	1.88	769	<1	0.02	14	510	26	<5	<20	14	0.24	<10	149	30	11	96	S I
- 18	в	KK 94803	55	0.4	0.50	85	20	20	0.11	<1	9	109	13	4.78	<10	0.23	129	4	0.05	2	700	14	5	<20	9	<.01	<10	57	40	<1	51	ี ค
19	9	KK 94804	80	2.4	0.15	65	30	5	1.71	2	11	220	19	6.30	<10	0.04	86	4	0.01	8	350	12	<5	<20	25	<.01	10	21	50	<1	27	
2	0	KK 94805	20	<.2	3.47	40	65	10	1.82	<1	34	42	40	6.50	<10	1.65	449	<1	0.24	4	1460	36	25	<20	108	0.17	<10	102	50	11	37	
21	1	KK 94806	40	<.2	1.61	<5	50	30	1.23	2	56	50	23	8.09	<10	0.51	350	<1	0.09	6	1250	18	<5	<20	71	0.11	10	53	50	1	31	
2	2	KK 94807	>1000	>30	0.09	115	40	<5	0.06	2	26	238	>10000	9.26	<10	<.01	48	824	<.01	7	<10	2	4	<20	7	0.01	20	10	40	<1	26	
23	3	KK 94808	>1000	>30	0.08	105	20	<5	0.04	2	19	169	>10000	8.71	<10	<.01	58	921	<.01	9	<10	10	<5	<20	<1	0.01	<10	7	60	<1	28	
24	4	KK 94809	>1000	>30	0.03	170	45	<5	0.02	3	35	250	>10000	13.30	<10	<.01	34	977	<.01	19	<10	4	<5	<20	<1	0.02	40	6	60	<1	44	
25	5	KK 94810	>1000	16.6	0.04	130	10	<5	0.03	2	17	233	4895	4.61	<10	<.01	57	143	<.01	13	10	<2	<	<20	2	<.01	<10	5	420	<1	12	
																									_							
26	5	KK 94811	160	5.2	0.72	20	75	<5	0.05	2	208	101	5344	> 15	<10	0.06	166	23	<.01	31	<10	24	4	<20	4	0.01	10	24	50	<1	35	
27	7	KK 94812	90	1.8	3.11	5	55	<5	> 15	<1	33	16	1598	7.47	<10	2.75	3034	3	<.01	<1	90	<2	30	<20	266	0.05	<10	74	20	1	46	
28	3	KK 94813	840	8.6	1.67	5	75	<5	0.40	<1	35	146	7468	5.14	<10	0.88	583	127	0.01	2	760	18	<	<20	8	0.06	<10	71	30	2	68	
2	9	KK 94814	100	19.6	1.81	30	75	<5	0.65	<1	72	52	7443	> 15	<10	0.81	1077	33	<.01	37	460	28	-5	<20	12	0.06	60	78	920	<1	81	
•											-									5.			-	14	-				- 20	•	21	

Page 1

Et #.	Tag #	Au (ppb)		AI %	As	Ba		Ca %	Cd	Co	Cr		Fe %	_	Mg %	Mn		Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	<u>w</u>	Y	Źn	
- 30	KK 94815	425	5.8	0.14	585	25	<5	0.09	8	52	231	1063	5.62	<10	<.01	116	1384	<.01	39	<10	18	<5	<20	<1	<.01	10	11	100	<1	13	
31	KK 94816	>1000	>30	1.82	<5	65	<5	0.49	<1	173	55	>10000	> 15	<10	0.97	546	2545	0.01	8	620	22	<5	<20	16	0.10	40	103	1130	<1	52	
32	KK 94817	305	10.4	2.28	5	55	<5	0.37	<1	26	88	2017	10.00	<10	1.39	683	61	0.02	1	1170	16	<5	<20	16	0.10	30	110	880	<1	54	
33	KK 94818	130	4.2	1.05	215	85	<5	0.21	7	80	85	2630	> 15	<10	0.35	624	22	<.01	23	<10	32	<5	<20	8	0.02	60	102	270	<1	68	
34	KK 94819	155	7.8	1.63	60	40	<5	0.32	3	116	130	4484	14,80	<10	0.95	788	1806	<.01	22	50	44	<5	<20	3	0.01	<10	118	310	<1	126	
35	ERK 94765	70	2.4	1.78	150	35	10	0.80	5	46	108	185	6.54	<10	2.02	543	34	0.07	33	1320	74	20	<20	40	0.07	<10	154	120	1	189	
36	ERK 94766	>1000	12.4	0.11	1500	75	<5	0.72	219	225	107	972	> 15	<10	0.01	211	<1	<.01	117	<10	230	25	<20	38	<.01	20	8	<10	<1	>10000	
37	ERK 94767	185	3.8	0.49	455	75	<5	5.12	350	219	67	1437	11.90	<10	0.78	1863	<1	0.01	137	60	60	<5	<20	245	0.01	40	20	<10	<1	>10000	
38	ERK 94768	>1000	12.8	0.42	2050	60	<5	0.36	45	202	204	889	> 15	<10	0.32	188	12	0.03	57	<10	342	45	<20	37	<.01	20	26	<10	<1	768	
39	ERK 94769	>1000	>30			75	80		> 1000	17	93	308		<10	1.52	2913	<1	< 01	13	480	5208	10	<20	356	<.01	<10	13	<10	<1	>10000	
40	ERK 94770	>1000	>30	0.23		85	100	1.58	55	39	105	99		<10	0.39	1404	<1	0.01	25	370	4812	10	<20	92	<.01	50	4	<10	<1	909	
	Ent sano	- 1000	- 00	0.20	20			1.00				~	- 10		0.00	1-10-1		0.01	20	0.0	-012		-20			00	•		- •	000	
41	ERK 94771	85	>30	0.52	475	95	<5	6.16	> 1000	49	17	>10000	13.10	<10	2.61	3562	<1	<.01	41	<10	>10000	4245	<20	503	<.01	10	18	<10	<1	>10000	
42	ERK 94772	>1000	>30		>10000	45	<5	3.33	282	43	276	428	8.19	<10	1.02	1580	11	0.01	22	100	2076	65	<20	237	<.01	<10	10	<10	<1	5800	
42 43	ERK 94773	170	11.2		145	50	<5	4.94	13	42	182	1602		<10	0.12	1393	<1	<.01	17	<10	182	20	<20	333	<.01	<10	4	<10	<1	429	
	ERK 94774	35	1.8		45	65	10	0.33	2	16	82	109	3.47	<10	0.93	286	1	0.01	17	550	66	20	<20	16	<.01	10	18	20	<1	107	
44		480	>30	0.15	675	50	<5	0.18	24	23	240	447	7.03	<10	<.01	237	6	<.01	11	50	1116	15	<20	18	<.01	<10	5	<10	<1	648	
45	ERK 94775	400	~30	0.15	6/5	50	43	0.10	24	23	240	447	7.05	\$10	S.01	231	0	<.01		50	1110	15	~20	10	<.ui	-10	5	510	~1	040	
46	ERK 94776	>1000	>30	0,16	>10000	55	<5	0 17	> 1000	27	146	2145	13.20	<10	<.01	231	<1	<.01	18	20	>10000	2215	<20	18	<.01	<10	7	<10	<1	>10000	
47	ERK 94777	550	>30		1445	105	<5	7.92	38	585	11	6398	> 15	<10	0.58	1560	<1	<.01	70	<10	570	15	<20	493	<.01	40	11	<10	<1	578	
48	ERK 94778	80	15.8		995	145		3.41	29	678	3	761	> 15	<10	0.31	717	<1	<.01	128	<10	1502	<5	<20	382	<.01	70	9	<10	<1	404	
49	ERK 94779	55	24.6		200	60	<5	3.14	10	105	83		12.10	<10	3.63	643	<1	<.01	31	270	548	25	<20	144	<.01	<10	47	<10	<1	259	
		820	>30	0.15	190	50	<5		> 1000	26	89	1663	3.98	<10	0.40	683	<1	<.01	10		>10000	1320	<20	73	<.01	<10		<10	•	>10000	
50	ERK 94780	020	-30	0.15	130		~	1.55	- 1000	20	03	,000	3.30	-10	0.40	005	-1	4.01	10	110	~10000	1320	~20	13	01	10		-10	•	-10000	
51	ERK 94781	970	>30	0.24	>10000	80	15	3 47	> 1000	73	89	475	7.35	<10	1.28	1511	<1	<.01	41	360	>10000	245	<20	220	<.01	<10	9	<10	<1	>10000	
52	ERK 94782	155	>30			60	<5	3.71	464	19	243	2409	3.83	<10		1122	<1	<.01	43	540	2688	25	<20	158	<.01	<10	11	<10		>10000	
53	ERK 94783	>1000	>30		1450	75	ঁ	0.79	261	21	84		> 15	<10	0.13	715	<1	<.01	14		>10000	450	<20	67	<.01	<10	9	<10	-	>10000	
54	ERK 94784	>1000	>30		345	50	ঁ	0.20	852	79	168		13.60	<10	<.01	125	<1	<.01	21		>10000	45	<20	14	<.01	<10	7	<10		>10000	
55	ERK 94785	>1000	>30		400	65	ৰ		> 1000	96	80	2360		<10	<.01	186	<1	<.01	21		>10000	765	<20	9	<.01	<10	4	<10		>10000	
35	ERK 94/03	~1000	-30	0.00	400	5	~	0.07	- 1000	30	00	2300	- 13	-10	5.01	100	~,	01	21	-10	~10000	700	-20	3	~.01	~10	-	-10	-1	-1000	
56	ERK 94786	>1000	21.6	0.03	875	60	55	0.02	57	28	123	92	> 15	<10	<.01	10	1	<.01	29	<10	1782	50	<20	2	<.01	30	7	<10	<1	1254	JONAS
57	ERK 94787	265	6.0	0.27	1110	55	10	0.03	29	4	89	26		<10	<.01	33	8	<.01	2	40	1004	175	<20	4	<.01	<10	4	10	<1	394	JON4-
58	ERK 94789	90	2.4	0.39	85	70	25	0.14	3	38	102	27	> 15	<10	<.01	272	50	0.01	1	440	118	<5	<20	11	<.01	30	13	<10	<1	72	CLAIN
59	ERK 94790	50	0.8	3.06	25	60	10	2.37	4	31	363	81	6.56	<10	3.39	710	4	0.03	127	260	106	30	<20	38	0.15	<10	122	<10	5	241	
60	ERK 94791	60	0.6	0.44	<5	15	- 3	0.26	1	22	70	16	4.28	<10	0.06	35	1	<.01	6	960	26		<20	<1	<.01	<10	8	<10	1	8	
~	2.0004101				•			0.23	•						2,00		•		-								-		•	-	
61	ERK 94792	105	0,8	0.38	<5	15	5	0.07	2	12	152	32	5.55	<10	<.01	19	1	<.01	5	530	62	<5	<20	<1	<.01	<10	4	<10	<1	17	
62	ERK 94793	105	0.6	0.36	<5	15	<5	0.04	1	27	53	36	7.42	<10	<.01	10	<1	<.01	4	430	24	<5	<20	<1	<.01	<10	4	<10	<1	<1	
63	ERK 94794	>1000	24.0	2.22	3435	45	<5	0.15		2859	76	8420	> 15	<10	0.54	627	49	<.01	5	680	96	<5	<20	<1	<.01	30	30	<10	<1	76	
64	ERK 94795	>1000	>30	3.14	1555	65	-5	0.09	4	135			> 15	<10	0.83	846	17	<.01	š	580	1728	10	<20	<1	0.01	30	45	<10	<1	253	
65	ERK 94796	>1000		3.10	1110	55	<5	3.91	2	350	35		12.80			1660	<1	0.02	3	1170	48	<5	<20	71	0.02	20	70	10	<1	60	
05	ERK 34/30	-1000	0.4	0.10	1110	35	-0	0.91	2	3.00	30	002	12.00	10	1.13	1000	-1	0.02	5	1170	-40	~	-20		0.02	20	,0	10	-1		

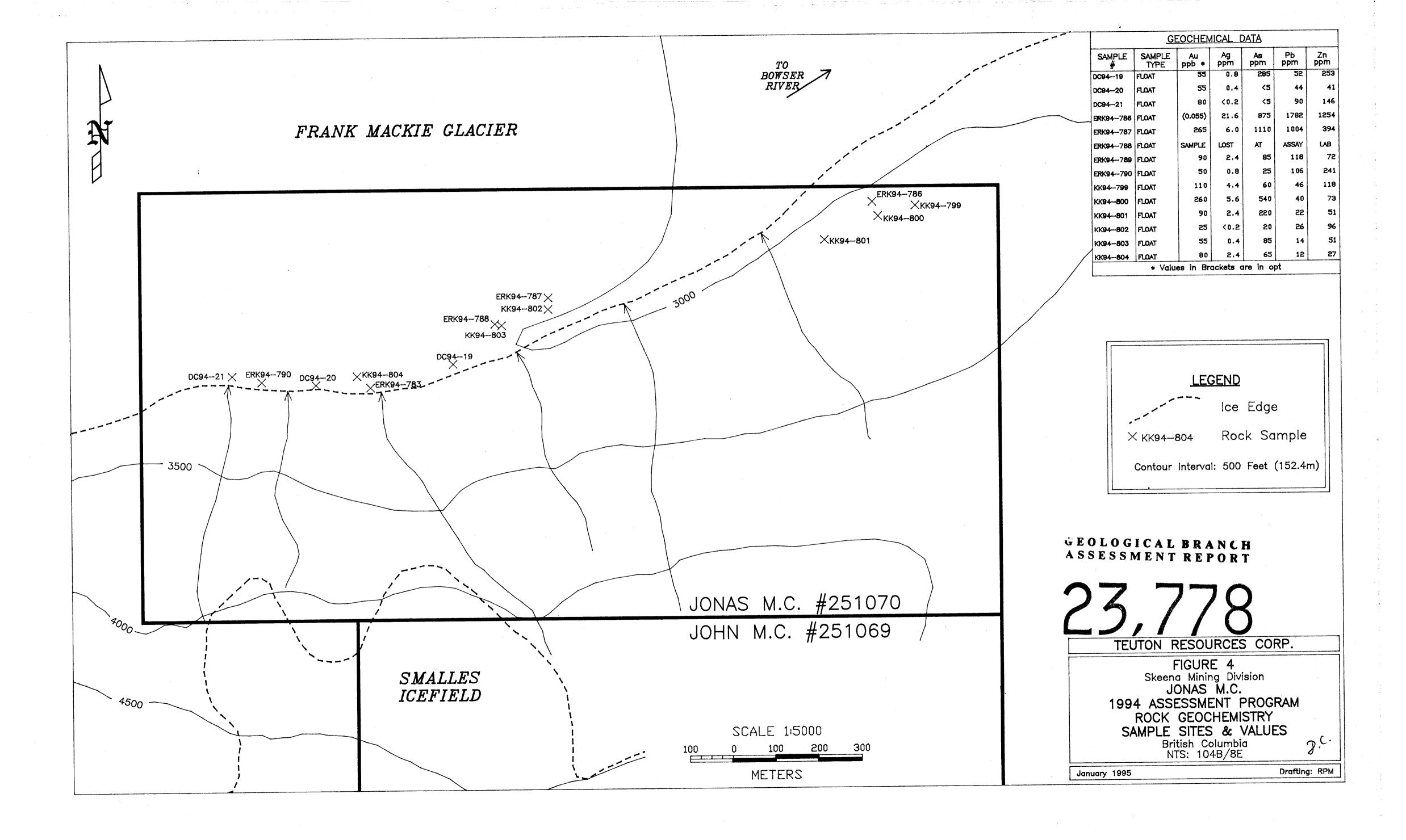
ECO-TECH LABORATORIES LTD.

Page 2

ECO-TECH LABORATORIES LTD.

3

ECO-TECH LABORATORIES LTD. Frank J. Pezrott, A.Sc.T. B.C. Certified Assayer


Et #	Tag #	Au (ppb)	Ag	AI %	<u>As</u>	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	<u> </u>	Pb	Sb	Sn	Sr	<u>Ti %</u>	<u> </u>	<u>v</u>		<u> </u>	Zn	
66	ERK 94797	>1000	>30	0.99	2470	40	415	0.08	2	77	73	3879	> 15	<10	0.14	301	4	<.01	2	270	82	<5	<20	<1	<.01	30	21	<10	<1	68	
67	ERK 94798	>1000	17.2	0.99	2880	35	<5	0.04	1	123	150	3678	> 15	<10	0.19	322	38	<.01	4	170	68	<5	<20	<1	<.01	20	17	<10	<1	58	
68	ERK 94799	>1000	22.0	1.49	3985	50	220	0.06	<1	115	66	768	> 15	<10	0.23	649	<1	<.01	3	40	52	<5	<20	<1	<.01	40	31	<10	<1	59	
69	ERK 94800	>1000	21.4	0.10	110	<5	<5	0.02	2	14	262	>10000	3.03	<10	0.03	40	38	<.01	4	690	22	<5	<20	<1	<.01	<10	4	<10	<1	30	
70	ERK 94801	>1000	>30	0.28	525	25	<5	0.04	2	94	196	>10000	11.30	<10	0.03	290	95	<.01	58	980	56	<5	<20	<1	<.01	20	8	<10	<1	39	
71	ERK 94802	>1000	>30	0.06	120	30	<5	0.04	1	25	244	>10000	12.60	<10	<.01	46	570	<.01	14	>10000	10	<5	<20	<1	<.01	10	з	20	<1	31	
72	ERK 94803	140	2.2	3.81	85	20	<5	5.97	2	24	111	1135	5.69	<10	0.01	282	4	<.01	6	1330	104	<5	<20	3	0.14	<10	69	20	<1	56	
73	ERK 94804	>1000	26.4	2.87	25	45	<5	1.55	2	95	88	>10000	13.50	<10	1.28	613	45	0.03	5	2060	46	<5	<20	7	0.11	10	143	1380	<1	113	
74	ERK 94805	220	2.8	1.30	245	30	<5	0.46	<1	25	126	805	12.10	<10	0.50	370	21	<.01	15	1380	32	<5	<20	<1	0.08	20	50	500	<1	22	
75	ERK 94806	185	6.2	2.16	<5	45	<5	0.47	1	51	189	7180	> 15	<10	0.44	983	16	<.01	9	730	24	<5	<20	19	0.06	30	98	900	<1	32	
																						·									
76	DC 941 29	55	0.8	0.35	285	20	<5	0.30	4	41	139	111	11.60	<10	<.01	43	15	<.01	10	60	52	<5	<20	4	<.01	20	12	<10	<1	253	JONA S
77	DC 9420	55	0.4	0.80	<5	30	5	12.60	1	28	138	79	9.72	<10	0.11	835	24	0.02	91	170	44	<5	<20	210	0.06	<10	54	10	<1	41	CLAIM
78	DC 9421	80	<.2	3.86	<5	30	<5	2.11	2	17	57	83		<10	4.06	428	39	0.01	35	740	90	30	<20	13	0.22	<10	112	<10	10		
79	Tandy #1	>1000	>30	0.40	110	30	<5	0.14	120	22	121	988	7.88	<10	0.01	307	1	<.01	14	520	9044	10	<20	7	<.01	<10	8	<10	<1	5490	
80	Tandy #2	720	>30	0.04	120	10	<5	0.45	53	30	196	6608	4.56	<10	<.01	231	3	<.01	10	410	>10000	30	<20	28	<.01	<10	2	<10	<1	2741	
QC DATA																															
Resplits	:																														
R/\$37	ERK 94767	165	4.2	0.49	430	70	<5	5.20	359	209	67	1437	11.90	<10	0.78	1863	<1	0.01	132	70	80	5	<20	245	0.01	40	20	<10	<1 :	>10000	
R/\$77	DC 9420	40	0.6	0.78	<5	25	5	11.10	3	28	137	77	8.87	<10	0.12	768	22	0.02	89	140	52	<5	<20	190	0.06	<10	53	<10	<1	51	
Repeats	:																														
1	KK 94786	35	1.2		105	80		4.04	2	26	73	47		<10		1045	9		8	1380	68	10	<20	119	<.01	<10	102	<10	<1	111	
37	ERK 94767	-	4.2		440	60		6.24	350	189	72		10.50	<10	0.76	1869	<1	<.01	121	70	60	<5	<20	261	<.01	30	18	<10		>10000	
39	ERK 94806	-	>30		385	65		5.74 :	> 1000	16	87		6.50		1.46	2905	<1	<.01	16	450	5218	10	<20	325	<.01	40	14	<10		>10000	
77	DC 9420	-	0.6	0.76	-	30	-5	11.50	2	28	134	80	9.84	<10	0.11	813	27	0.01	91	160	42	⊲	<20	170	0.05	10	51	<10	<1	59	
Standar	ds:																														
		-	1.4	1.95	70	175	5	2.02	1	22	72	85	4.67	<10	1.04	756	<1	0.03	27	730	24	5	<20	64	0.14	<10	88	<10	5	82	
		-	1.4	1.84	70	180	5	1.75	1	21	62	87	4.26	<10	0.93	692	<1	0.02	25	660	22	10	<20	60	0.11	<10	77	<10	4	78	
		-	1.4	1.73	75	155	<5	1.83	7	20	61	88	4.14	<10	0.96	681	<1	0.02	27	680	24	5	<20	53	0.11	<10	75	<10	6	82	
		-	1.2	1.70	65	155	<5	1.75	1	19	61	88	4.08	<10	0.94	660	<1	0.02	26	690	16	5	<20	53	0.11	<10	80	<10	6	77	

XLS/Teuton3 df/3106&3107

΄.

.

Page 3

