LOG NO:	(FEB	1	7	1995	U	
ACTION:			-			
FILE NO:						

ASSESSMENT REPORT

-

(

ZN CLAIM GROUP

Duncan Lake, B.C.

NTS 82/K7

by

W. Don Sutherland, BASc Geological Engineer

January 27, 1995

FILMED

GEOLOGICAL BRANCH ASSESSMENT REPORT

23.7

Table of Contents

,

.

.

Subject		Page
Introduction	•	1
Location and Access		3
Physiography and Timber		3
Property and Ownership		5
Summary of Work Done		6
Geology		7
1994 Program		9
Program Results		. 9
Geochemical Sampling		9
Test Pitting		. 11
Geophysical Surveys		. 11
Expenditures		. 14
Conclusions		. 15
Statements of Qualifications		. 17

Figures

1. Location Map	2
2. Claim Map	4
3. Geology Map	8

Appendices

٠

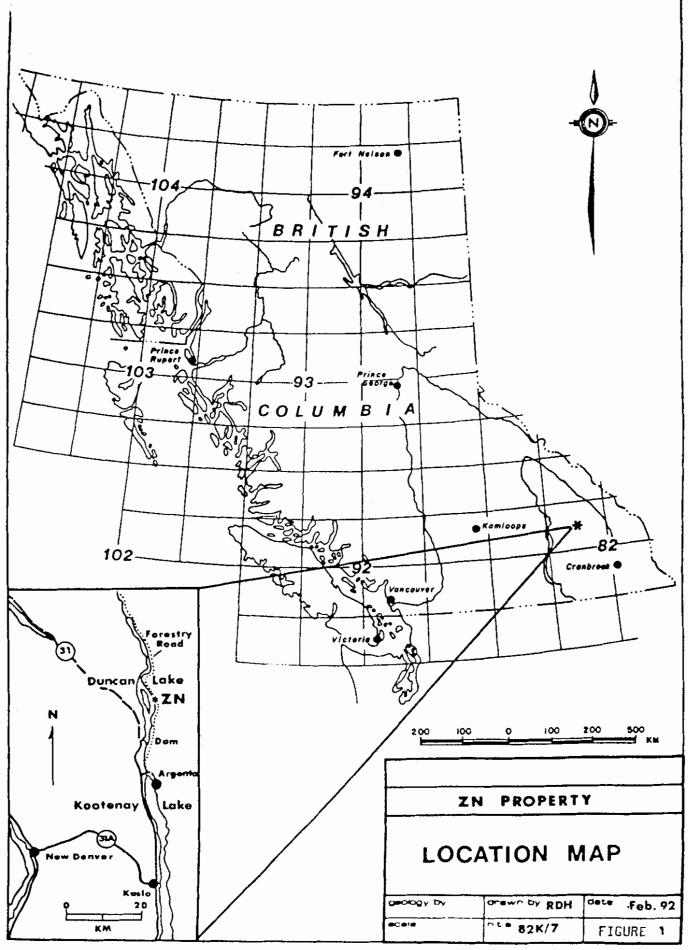
- I Geochemical Results Plan
- II Composite Assay Profiles
- III Stacked Assay Profiles
- IV Sample Data

Assay Certificates

V Geophysical Profiles

ZN CLAIM GROUP ASSESSMENT REPORT

Introduction


The ZN Claim Group is comprised of 100 claim units located along the east side of Duncan Lake, Slocan Mining Division, British Columbia.

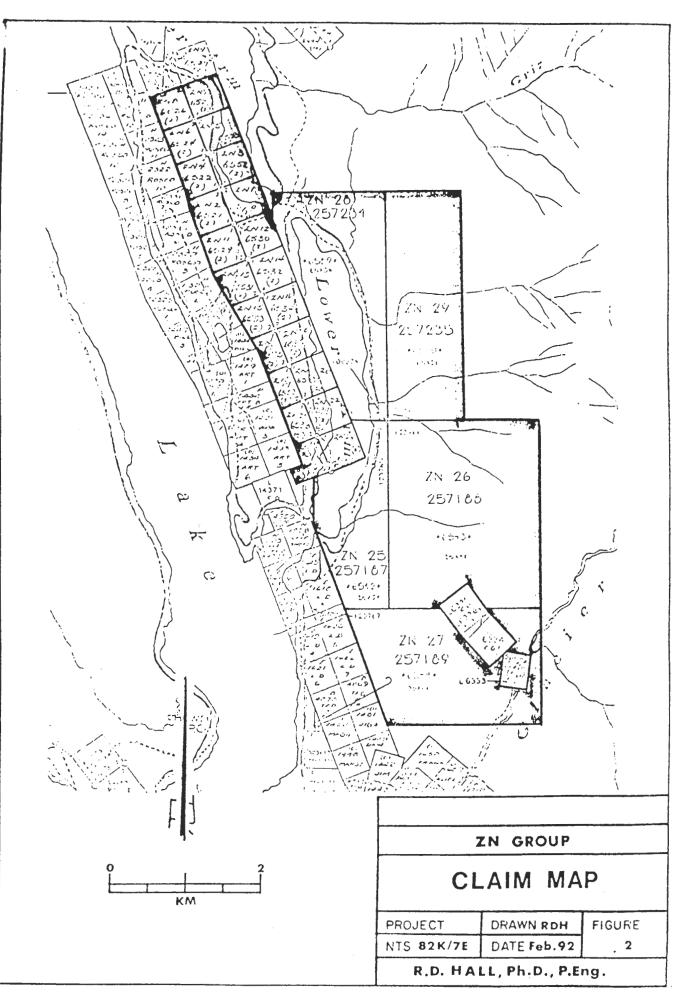
The claims were staked in 1991 as a geological exploration target. The claims were located to encompass the eastern limb of the Howser Syncline which hosts the Duncan Mine lead-zinc deposit on the western limb. It was postulated that the duncan Mine deposit would project onto the claim group at depth and that similar deposits may occur along the eastern limb of the syncline.

A large caliche gossan was discovered along the east shore of Duncan Lake in 1991. The exposure resulted from shoreline erosion caused by the flooding of the Duncan Dam reservoir. This caliche would not have been exposed during the period of exploration and development of the Duncan Mine, which pre-dated the dam building and flooding. The caliche gossan, which is actively expanding, supports the hypothesis that other sulphide deposits existed up-slope to the east, i.e., along the east limb of the Howser Anticline.

Subsequent exploration has concentrated on the area immediately up-slope from the caliche gossan. A grid was established up slope from the gossan and geophysical and geochemical surveys were performed. One diamond drill hole was drilled in 1993 to test a magnetic trend which coincided with a moderate copper geochemical anomaly. Disseminated magnetite and elevated copper values were intersected in schistose volcanics but nothing of economic significance was encountered. Reconnaissance soil sampling up-slope from the diamond drill site returned highly anomalous zinc values at the higher elevations. The 1994 program expanded the geochemical sampling grid along strike from the reconnaissance sampling, up slope from the grid sampling completed in prior years. The geophysical survey was also extended to the east to include the area of geochemical sampling.

1

Location and Access


The Zn Claim Group is located at 50°21' north latitude and 116° 54' west longitude, NTS 82 K/7. The claims extend for approximately 7 km north-south and 3 km east-west. They straddle the lower arm of Duncan Lake and lie along the Duncan Lake Peninsula and the east shore of the lake.

Access is by way of the Duncan Lake Forestry Road from Cooper Creek. This is an all weather road that crosses the property for 5 km. The 17 km marker on the Duncan Lake Forestry Road is 100m south of the hub for the geophysical and geochemical grid. This base station is coincident with the common location post for Claim ZN 25, ZN 26, ZN 28 and ZN 29. Cooper Creek is on paved Provincial Highway No. 31, 40 km north of Kaslo.

Physiography and Timber

The property is situated in the Columbia Mountains and lies between Duncan Lake and Mount Simpson. Elevations range from 580m at Duncan Lake to 1,675m along the eastern border. Terrain slopes vary from moderate near the lake shore to very steep inland to the east. The lower elevations support a mature growth of fir and cedar which declines uphill with increasing immature to scrub cedar above the 1,000m elevation. There is a large area of clear-cut in the north-east section of the property.

3

Property and Ownership

The property consists of 100 claim units made up of 22 two-post claims and 5 four post claims. They are:

<u>Claim Name</u>	<u>Tenure No.</u>	<u>No. of Units</u>	Expiry Date
ZN-1	257165	1	Feb 16/97
ZN-2	257166	1	Feb 16/97
Zn-3	257197	1	Feb 16/97
Zn-4	257167	1	Feb 16/97
ZN-5	257168	1	Feb 16/97
ZN-6	257169	1	Feb 16/97
ZN-7	257170	1	Feb 16/97
ZN-8	257171	1	Feb 16/97
ZN-11	257174	1	Feb 17/97
ZN-12	257175	1	Feb 17/97
ZN-13	257176	1	Feb 17/97
ZN-14	257177	1	Feb 17/97
ZN-15	257178	1	Feb 17/97
ZN-16	257179	1	Feb 17/97
ZN-17	257180	1	Feb 17/97
ZN-18	257181	1	Feb 17/97
ZN-19	257198	1	Feb 17/97
ZN-20	257182	1	Feb 17/97
ZN-21	257183	1	Feb 17/97
ZN-22	257184	1	Feb 17/97
ZN-23	257185	1	Feb 17/97
ZN-24	257186	1	Feb 17/97
ZN-25	257187	10	Feb 18/97
ZN-26	257188	20	Feb 18/97
ZN-27	257189	18	Feb 18/97
ZN-28	257234	18	Apr 09/97
ZN-29	257235	12	Apr 09/97

Summary of Work Done

1991 - Geological reconnaissance and prospecting, 15 man days

1992 - Geochemical Surveys:

423 Samples396 Assays for Cu, Pb, Zn27 Multi-element Analyses

Petrographic Study and Whole Rock Analysis: 4 Samples

Geophysical Surveys:

Line-kilometres
 2000 Stations
 7200 Readings

1993 - Diamond Drilling: 153.61 metres (NQ-2 core)

Sampling:

- 71 Samples
- 37 Assays for Cu
- 34 Assays for Cu, Pb, Zn
- 5 Multi-element Analyses

1994 - Geochemical Surveys:

198 Samples

- 198 Assays for Cu, Pb, Zn
- 198 Assays for Au, Ag

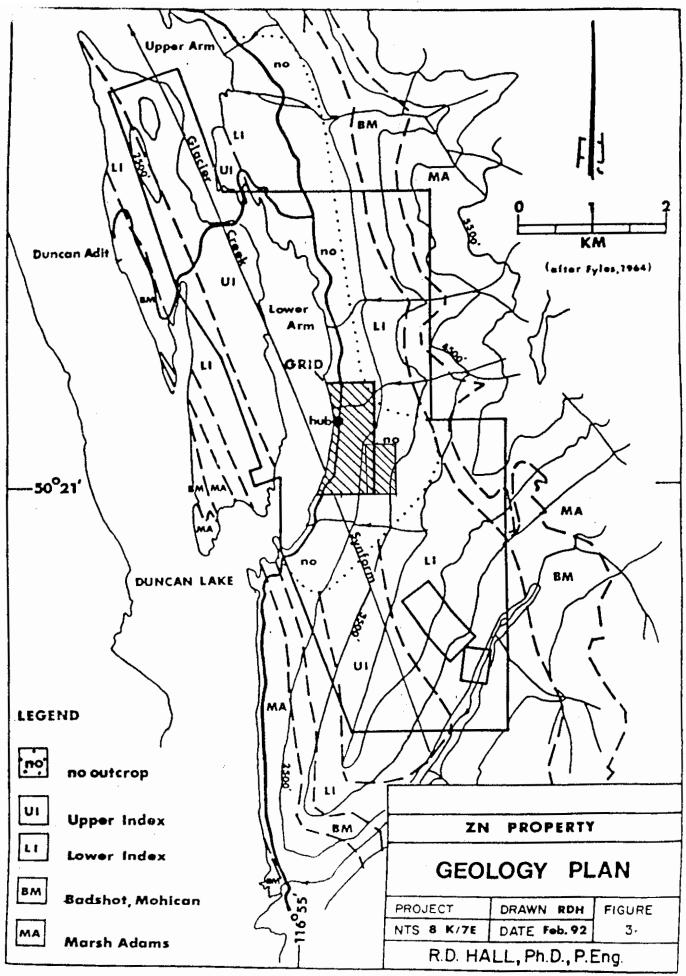
Geophysical Surveys:

2.1 Line Kilometres427 Stations2908 Readings

The Geochemical and Geophysical surveys reported herein were performed on Claim ZN-26.

<u>6</u>

<u>Geology</u>


The Duncan Lake area lies within the Kootenay tectonic terrain of the Omineca Belt structural subdivision of the Columbian orogen.

The Duncan Anticline and the Howser Syncline are the principle structural elements of the area. The property covers the west limb of the Duncan Anticline, and both the core and east limb of the Howser Syncline.

Quartzites of the Marsh Adams Formation and carbonates of the Badshot-Mohican Formations, defining the east limb of the Howser Syncline are exposed along east perimeter of the property (Figure 3). The remainder of the property is thought to be underlain by younger strata of the Index Formation of the Lardeau Group as mapped by Fyles (1964). However, much of the property at lower elevations and in proximity to Duncan Lake has little or no outcrop, and the structural relationships within the Howser Syncline are complex. The Index Formation is subdivided into an upper division of green chloritic schists and a lower division of grey carbonaceous schists. Both strata and cleavage strike approximately 340° and dip moderately to steeply east. The dominant lineation plunges 10° to the north by northwest.

Figure 3 shows the relationship of the property to the prominent geological features. It also shows the location of the geophysical-geochemical sampling grid to the property boundary and main topographic features.

<u>7</u>

1994 Program

The 1994 exploration program was designed to test the area up-slope from that explored in 1992 and 1993. The existing grid, with the origin at the mutual claim corner of claims ZN-25, ZN-26, ZN-28 and ZN-29 was expanded to 700m east along lines 400m south through 1000m south. The location of the expanded grid is shown on Figure 3.

Soil sampling and geochemical surveys were performed over the expanded grid area. Soil samples were taken at 10m intervals and geophysical readings taken at 5m intervals along the newly established grid lines. Lines were run by compass and hip chain with flagged stations every 10m. 100m stations were double flagged (red + blue) for ease of identification and to facilitate retrievability in the future. Terrain in the grid area is very steep, varying from 60% slopes on the west to 100% slopes on the east with the occasional vertical rock face. No allowance was made for elevational differences and the grid is "uncorrected" for slope. The area explored is +95% overburden covered. Most rock exposures are in the extreme south-east corner of the grid.

One test pit was dug to bedrock on line 3+00S at 5+20E. The pit was dug to check an anomalous copper geochemical result obtained at the site in 1992.

Program Results

Geochemical Sampling

The geochemical results for copper, lead, zinc, gold and silver are shown in plan in the accompanying Appendix I. Values for copper, lead and zinc are shown in composite on grid line assay profiles in Appendix II. Stacked assay profiles for copper, lead and zinc are shown individually in Appendix III. Sample particulars with corresponding assays and assay certificates are presented in Appendix IV.

The assay results show a consistently high zinc environment with soil geochemical values exceeding 1,000 ppm Zinc on five consecutive lines from 5+00S to 10+00S i.e., over 500m and still continuing to the south. The highest value was 1730 ppm Zinc on line 6+00S. Anomalous copper and lead values accompany the high zinc values on all six lines.

Anomalous copper values in the plus 100 ppm range occur on all grid lines, with the highest value of 314 ppm Cu on line 4+00S. The stacked assay profiles for copper show three possible anomalous trends striking slightly east of south.

Anomalous lead values show a more subdued but similar trend to the anomalous copper values. The highest lead value recorded was 274 ppm Pb on line 5+00S. Given that the mobility of lead in ground water is less than that of copper and markedly less than zinc, it may be that the anomalous lead values in the soils are a better indication of the precise location of mineralization in the bedrock than either copper or zinc. Three en echelon mineralized zones are inferred from the stacked geochemical profiles for lead. Follow-up trenching is warranted on at least three of the grid lines. The assay results for these are presented below. The assays for the sample highest up slope is listed on the top line of each table followed by successive down slope samples.

<u>Line</u>	<u>Station</u>	Copper ppm	Lead ppm	Zinc ppm
5+00S	4+60E	41	17	435
	4+50E	192	274	1390
	4+40E	118	69	531
	4+30E	90	109	733
	4+20E	197	83	770
6+00S	4+60E*	7	7	94
	4+50E	120	129	1530
	4+40E	78	131	1430
	4+30E	56	52	1070
	4+20E	95	30	660
9+00S	6+70E*	14	52	17
	6+60E	224	142	823
	6+50E	145	101	818
	6+40E	109	237	920
	6+30E	50	73	650

* Outcrop

There were no anomalous gold values (i.e., >20 ppb Au) in any of the soil samples and the variation in gold content bears no relationship to anomalous base metal values. One gold assay of 108 ppb Au was recorded from a rock chip sample taken at 6+40E on line 10+00S. This is near the extreme south-east corner of the grid and follow-up sampling is warranted to the east and south of this sample site.

Silver values in the soil samples were generally less than 1 ppm except in the proximity of high zinc values where silver values were frequently in the 1.0 ppm to 4.0 ppm range. One high silver assay of 14.0 ppm Ag was recorded in association with high zinc and lead values of 1390 ppm and 274 ppm respectively.

Test Pitting

One test pit was dug at a location where prior soil sampling had recorded copper values of 368 ppm (3+00S 5+20E). Bedrock of graphitic argillite with rust seams was reached at a depth of 1m. The soil profile and bedrock were sampled and yielded the following results:

Sample	Number	Cu ppm	Pb ppm	Zn ppm	Au ppb
1992 Soil	D-377	368	11	310	
0-20 cm	D-735	42	16	415	17
20-75 cm	D-736	151	6	385	14
75-100 cm	D-737	93	2	51	7
Bedrock	D-715	42	<2	31	7

Geophysical Surveys

Geophysical results are plotted in profile for each of the grid lines and are shown in Appendix V.

Readings were recorded at 5m intervals along the grid for Magnetic Total Field, VLF InPhase, VLF Quadriture and VLF Total Field. The instrument used was an Omni Plus. Readings were automatically stored by the instrument, then downloaded into a computer each evening. Computer print-outs of each traverse line were produced daily as the survey progressed. Compiled data was processed to produce a Fraser Filter profile for each traverse upon completion of the field work.

<u>11</u>

There is no apparent co-relation between the Total Field Magnetics and the geochemical results. There are no significant magnetic trends evident except a slight general decrease in Total Field Magnetics along most of the lines proceeding up slope to the east. This may represent the transition from the metavolcanics of the Index Formation to the calcareous Badshot and Mohican Formations that host the lead-zinc deposits at the Duncan Mine.

VLF In Phase and Quadriture profiles do not show any distinct features. The Fraser Filter profiles however do show zones of enhanced conductivity. These correspond to the geochemical soil profiles for lead on all lines except Line 7+00S. This supports the assumption that the lead anomalies define the location of elevated copper, lead and zinc values in bedrock.

Stacked profiles of Fraser Filter values are presented in Appendix V. Stacked Total field magnetic profiles are also presented in Appendix V.

Expenditures

•

Field Work: W. Don Sutherland, Geological Engineer Sept. 6, 1994 to Sept. 19, 1994		
14 days at \$200 / day E. Allan Tipman, P.Eng	2,800.00	
Sept. 13, 1994 to Sept. 17, 1994 6 days at \$200 / day	1,200.00	4,000.00
Field Living:	1 000 00	
18 Man Days - Motel and Meals 2 Man Day Meals	1,080.00 <u>60.00</u>	1,140.00
Field Supplies:		
Flagging Tape, Hip Chain Thread	82.39	
Saw Chains and Files	87.35	
Other	<u>30.61</u>	200.35
Rentals:		
OmniPlus VLF-Mag Instrument	1 800 00	
6 days at \$220 / day Chain Cove 4 days at \$20 / day	1,320.00	
Chain Saw 4 days at \$30 / day	120.00	
2 days at \$10 / day All Terrain Vehicle and Trailer	20.00	
6 days at \$100 / day	600.00	
Computer and Printer	000.00	
10 days at \$75.00 / day	750.00	2,810.00
		_,
Vehicles:		
4x4 Pickup 1 week at \$230.00	230.00	
2 wheel drive 2 weeks at \$150.00	300.00	530.00
Analyses:		
10 Rock Preparation at \$4.10	41.00	
188 Soil Sample Preparation at \$1.00	188.00	
198 Cu, Pb, Zn analyses at \$4.50	891.00	
10 Au, Ag analyses at \$9.75	97.50	
188 Au, Ag analyses at \$8.50	1,598.00	3 010 50
G.S.T. on above	197.09	3,012.59
Computer Processing, Printing		1,725.00
Report Preparation		2,000.00
Total		\$15,417.94

Conclusions

Results from soil sample analyses were highly anomalous in zinc. The high zinc values are supported by elevated copper values which indicate three possible en echelon mineralized zones within the broad zinc anomaly. This is reinforced by lead values which show three discrete anomalies co-incident with the copper anomalies.

Fraser Filter profiles of the VLF In Phase readings show enhanced conductivity over the lead anomalies on five of the six grid lines. It is concluded that the Fraser Filter-Lead Geochemistry combination defines the position of enhanced mineralization in bedrock. The inferred mineralized zones are up slope from the extensive caliche gossan exposed along the eastern shoreline of Duncan Lake. The calcium carbonate and iron in the gossan may be sourced by the same mineralized zones that contribute the copper, lead and zinc to the soil geochemical anomalies.

The geochemical and geophysical indications continue southerly beyond the existing grid and there is another 3 km of untested strike in this direction on the ZN Claim Group.

Additional field work is warranted as follows:

1. Test pitting in the following locations-

Line 9+00S from 6+40E to 6+60E Line 6+00S from 4+30E to 4+50E Line 5+00S from 4+30E to 4+50E

- 2. Outcrop sampling for gold to the south and west of 10+00S 6+40E.
- 3. Expansion of the present geochemical and geophysical surveys to the south of Line 10+00S.

Respectfully submitted,

U Don Lethertand

W. Don Sutherland Geological Engineer

January 27, 1995

Statement of Qualifications

I, W. Don Sutherland of Glenbow Road, R.R. #2 Cochrane, Alberta hereby certify:

- 1. That I am a graduate of the Faculty of Applied Science and Engineering of the University of Toronto.
- 2. That I graduated with the degree of Bachelor of Applied Science (BASc) in 1949.
- 3. That my profession is that of Geological Engineer and that I have practised my profession continuously since graduation.
- That my undergraduate studies included mining geophysics and that I have been actively engaged in the application of mining geophysics since 1953.
- 5. That I am familiar with the use of geochemistry in mineral exploration and have personal experience relating thereto dating back to 1955.
- 6. That I conducted the soil sampling program and supervised the geophysical program on which this report is based.

Signed

W. Don Sutherland Geological Engineer

January 27, 1995

APPENDIX I

GEOCHEMICAL RESULTS PLANS

Copper

Lead

Zinc

Gold

Silver

ZN CLAIM GROUP SAMPLING PLAN 1994 PPM COPPER

	LINE 400S	LINE 500S	LINE 6005	LINE 700S	LINE 800S
700	14		23	58	139
690	12	16	32	51	93
680	13	19	31	56	110
670	27	18	46	66	85
660	21	32	44	49	144
650	17	46		45	102
640	21	65	91	38	73
630	15	42	39	90	134
620	51	41	37	63	102
610	79	33	110	59	66
600	70	22	28	57	65
590	61	24	20	56	59
580	45	25	83	49	61
570	17	17	47	47	63
560	31	26	40	28	76
550	32	22	41		88
540	58	34	46	51	91
530	25	49	90	117	137
520	18	78	73	38	105
510	33	40	77	95	94
500	31	45	31	93	
490	30	27	40	63	45
480	54	26	120	60	74
470	295	36	38	36	57
460	314	41	7	38	56
450	86	192	120		51
440	57	118	78	26	26
430	42	90	56	43	35
420	155	197	95	34	39
410	84	30	60	52	64
400	60	49	107		37
		LINE 500S	LINE 600S	LINE 700S	LINE BOOS

LINE 900S LINE 1000S ZN CLAIM GROUP

LINE 900S

METRES

EAST

LINE 1000S

DUNCAN LAKE, B.C. NTS 82K/7 SOIL SAMPLE ANALYSIS - COPPER GRID LINE SPACING 100 M SEPTEMBER, 1994

ZN CLAIM GROUP SAMPLING PLAN 1994 PPM LEAD

METRES EAST 700	LINE 400S	LINE 500S	LINE 600S	LINE 700S	LiNE 800S 26 -	
690	15	13	11	18	12	
680	15	15	19	15		
670	17	14	20	15	15	
660	21	13	16	16	17	
650	15	11		13		~*************************************
640	18	13	9	12	18	
630	13	11	8	13	20	
620	18	9	15	11	24	
610	16	12	14	15	17	
600	16	11				
590	14	10	11	17	16	
580	12	11	10	14	17	
570	13	12	13	11	18	
560	9	14	12	10	19	
550	11		13		20 -	
540	14	13	13	20	29	
530	28	14	11	31	75	
520	11	15	10	17	40	
510	13	14	12	19	65	
500	14		14		41 -	
490	12	14	12	55	46	
480	13	13	23	22	23	
470	18	14	24	19	21	
460	23	17	7	23	19	
450	23		129		28 -	
440	19	69	131	35	25	
430	20	109	52	32	23	
420	18	83	30	23	22	
410	61	58	24	22	20	
400	34	42			19 -	
		LINE 500S	LINE 600S	LINE 700S	LINE 800S	

ì

.

1

. .

i

Ì.

į

DUNCAN LAKE, B.C. NTS 82K/7 SOIL SAMPLE ANALYSIS - LEAD GRID LINE SPACING 100 M SEPTEMBER, 1994

ZN CLAIM GROUP DUNCAN LAKE, B.C. NTS 82K/

 LINE 9005 28		LINE 1000S	METRES EAST 700
24			690
31		8	680
52		6	670
142		2	660
 101		34	650
237		5	640
73		50	630
150		59	620
74		48	610
 37	••••••••••••••••••••••••••••••••••••••	46	600
35		53	590
40		37	580
38		35	570
41		26	560
 44		15	550
42		20	540
28		15	530
37		12	520
55		13	510
 32	**************************************	11	500
32		18	490
34		21	480
41		20	470
35		17	460
 37		20	450
30		26	440
36		19	430
30		15	420
25		20	410
 33 LINE 900S		22 LINE 1000S	400

.

ZN CLAIM GROUP SAMPLING PLAN 1994 PPM ZINC

METRES					
EAST 700	LINE 400S 113	LINE 500S	LINE 600S	LINE 700S 157	LINE 800S 936
690	147	104	146	192	267
680	127	119	156	283	474
670	124	104	141	284	413
660	162	191	288	270	324
650	226	293	340	287	337
640	195	314	445	330	540
630	280	348	314	645	577
620	345	352	670	677	490
610	575	315	807	732	372
600	496		450		540
590	493	240	351	506	522
580	520	339	419	520	507
570	476	190	595	229	495
560	342	300	503	344	554
550	638			402	610
540	605	480	610	655	735
530	510	414	473	1120	1120
520	399	485	500	721	650
510	270	464	418	605	615
500	242	230	457		582
490	171	252	532	711	700
480	259	365	1200	560	376
470	422	454	1010	335	389
460	440	435	94	545	335
450	581		1730	565	396
440	598	531	1530	722	380
430	814	733	1070	570	458
420	212	770	660	526	314
410	850	855	755	330	237
400	ā16	1220	798	255	584
		LINE 500S	LINE 600S	LINE 700S	LINE 800S

.

DUNCAN LAKE, B.C. NTS 82K/7 SOIL SAMPLE ANALYSIS - ZINC GRID LINE SPACING 100 M SEPTEMBER, 1994

ZN CLAIM GROUP

650	854
852	 1130
700	820
644	 855
866	946
925	673
1010	710
820	425
675	 286
781	300
527	342
745	313
656	357
500	 280
652	360
473	324
605	345
442	330
679	 370
440	365
395	276
423	198

 LINE 900S 697	
610	
705	
17	
823	
 818	
920	
650	
852	
700	
 644	
866	
925	
1010	
820	
 675	
781	
527	
745	
656	
 500	
652	
473	
605	
442	
 679	
440	
395	
423	

LINE 900S

METRES LINE 1000S EAST - 700

LINE 1000S

ZN CLAIM GROUP SAMPLING PLAN 1994 PPB GOLD

METRES EAST	LINE 400S	LINE 500S	LINE 600S	LINE 700S	LINE 800S	
700	15	15	3 -			
690	14	5	7	18	8	
680	9	7	9	11	. 16	
670	6	4	10	6	12	
660	13	9	14	8	11	
650	12	10			14	
640	16	7	14	14	10	
630	12	11	7	9	16	
620	4	8	8	10	14	
610	18	12	15	7	8	
600			17 -	19 -		
590		9	13	11	11	
580		11	10	6	12	
570		6	9	14	9	
560		8	11	17	3	
550		7	4 •			
540		12	10	6	10	
530		5	8	10	11	
520		8	7	11	6	
510		10	9	17	7	
500		4	12 -	18		
490		10	17	12	11	
460		16	12	9	6	
470		13	14	7	7	
460		10		8	7	
450		16		10 -		
440		6	8	7	14	
430		11	. 11	11	9	
420		16	6	10	8	
410		٥	11	11	10	
400	LINE 400S	15	7 -	6	5	
	LINE 4003	LINE 500S	LINE 600S	LINE 700S	LINE BOOS	

-

 LINE 9005 13		LINE 1000S	METRES EAST 700
18			690
11		10	680
6		9	670
10		11	6 60
 17		12	650
14		108	640
15		6	630
16		14	620
11		11	610
 18		15	600
17		10	590
15		17	580
12		8	570
10		7	560
 9		14	550
10		9	540
8		15	530
7		16	520
12		18	510
 10	*******************************	14	500
9		8	490
10		4	480
5		11	470
7		6	460
 12	•••••	7	450
10		15	440
9		9	430
7		7	420
8		9	410
 7 LINE 9005		5 LINE 1000S	400

ZN CLAIM GROUP

DUNCAN LAKE, B.C. NTS 82K/7 SOIL SAMPLE ANALYSIS - GOLD GRID LINE SPACING 100 M SEPTEMBER, 1994

ZN CLAIM GROUP SAMPLING PLAN 1994 PPM SILVER

		LINE 400S			LINE 600S	E 700S		LINE 800S	
	700 690	0.5		0.2	0.4	0.4		1.8	
• .	680	0.2		0.3	0.2	0.2		0.4	
	670	0.4		0.2	0.2	0.2		0.5	
	660	0.3		0.5	0.2	0.2		0.6	
	850	0.5		0.5	0.4	 0.2		0.5	
	640	0.7		1,3	0.2	0.3		0.4	
	630	0.2		0.3	2.6	0.6		0.9	
	620	0.9		0.3	1.4	0.7		0.2	
	610	0.3		0.4	2.3	0.6		0.3	
	600			0.6	0.2	 1.0		0.4	
	590			0.9	0.2	0.4		0.2	
	580			1.0	0.6	0.3		0.6	
	570			0.4	0.8	0.2		0.2	
	560			0.2	0.7	0.2		0.5	
	550			1.3	0.4	 0.7		0.9	
	540			0.8	1.0	2.3		3.2	
	530			0.7	1.2	2.6		1.4	
	520			1.4	1.1	1.0		0.8	
	510			0.5	0.5	2.2		0.3	
	500			0.2	0.4	 2.0		0.4	
	490			1.2	2.6	1.2		0.6	
	480			1.0	4.4	0.8		0.2	
	470			0.9	1.9	0.3		0.2	
	460			1.8		0.4		0.2	
	450			14.0	1.1	0.8		0.7	
	440			3.4	0.9	0.5		0.5	
	430			1.6	0,6	0.9		0.8	
	420			0.5	0.4	0.4		1.1	
	410			0.6	0.3	0.3		0.7	
	400		[1.3	0.6 -	0.2 E 700S		0.6 LINE 800S	

METRES

ZN CLAIM GROUP

DUNCAN LAKE, B.C. NTS 82K/7 SOIL SAMPLE ANALYSIS - SILVER GRID LINE SPACING 100 M SEPTEMBER, 1994

1.7			690
8.0			680
			670
2.1			660
 1.0		1.5	650
1.9			640
0.5		0.4	630
0.9		0.7	620
0.2		0.2	610
 0.4		0.3	600
0.6		0.3	590
0.9		0.5	580
0.8		0.6	570
0.3		0.4	560
 0.4		0.2	550
0.5		0.2	540
0.2		0.3	530
1.1		0.2	520
0.7		0.2	510
 0.8	****	0.3	500
0.4		0.6	490
0.9		0.7	480
1.5		0.6	470
0.6		0.4	460
 0.5		0.8	450
0.5		1.0	440
1.2		0.7	430
0.2		0.3	420
0.4		0.5	410
 0.5 LINE 900S		0.4 LINE 1000S	400

LINE 900S

1.2 ~

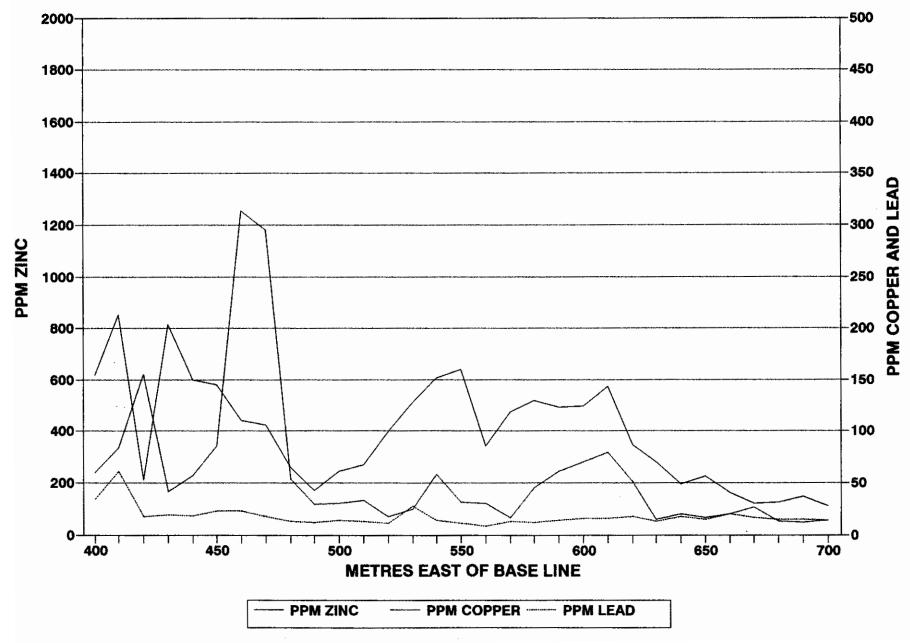
METRES

700

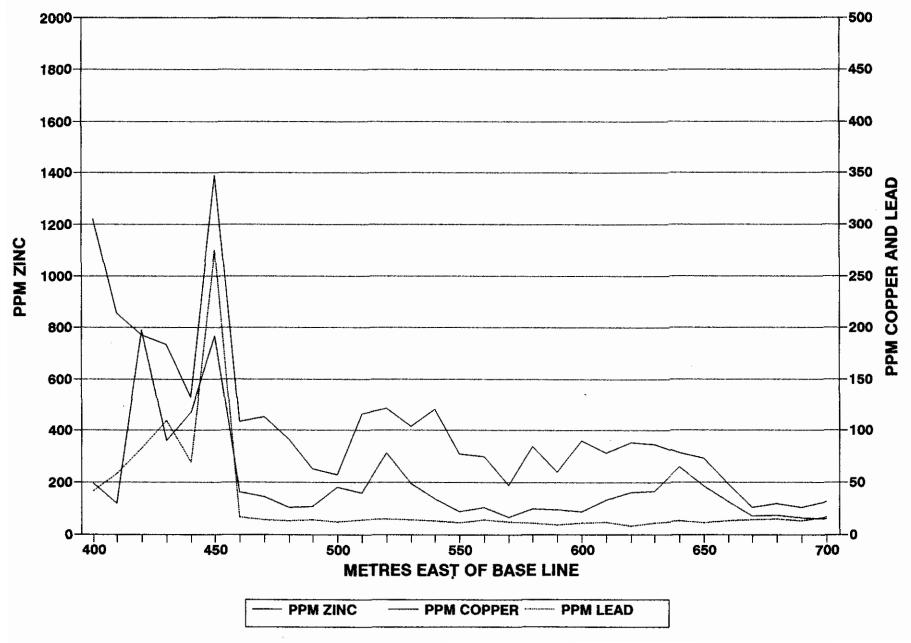
LINE 1000S EAST

APPENDIX II

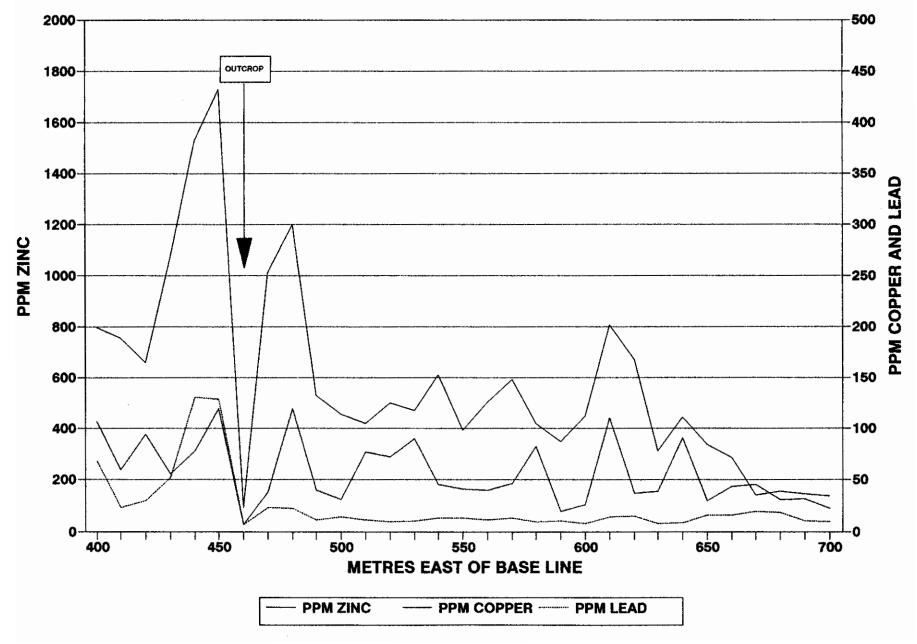
.

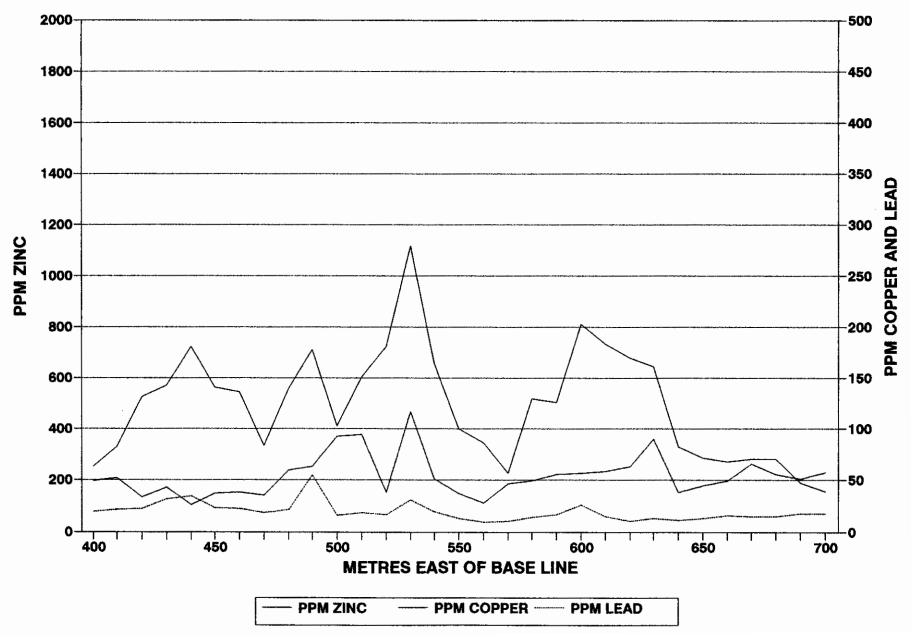

COMPOSITE ASSAY PROFILES

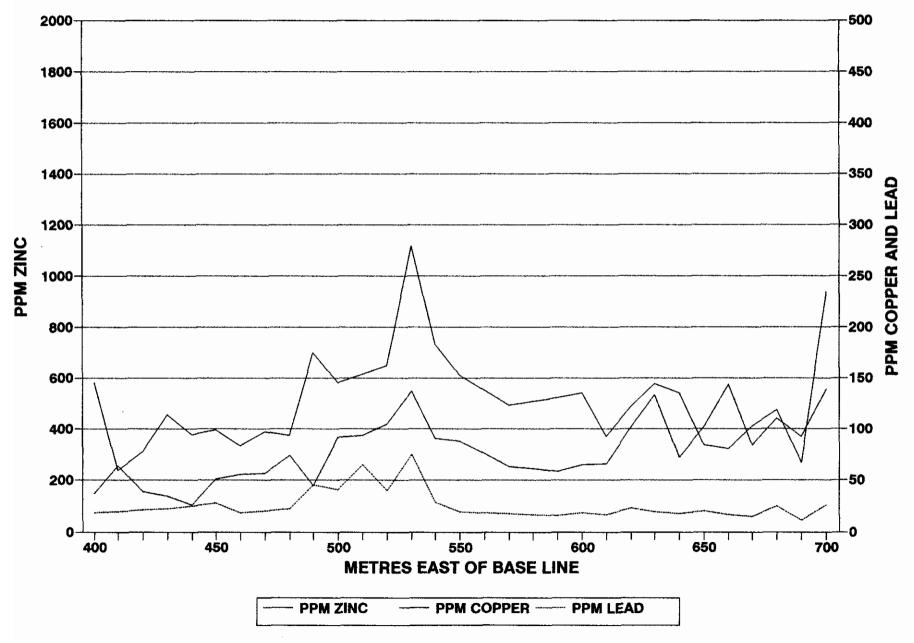
Copper

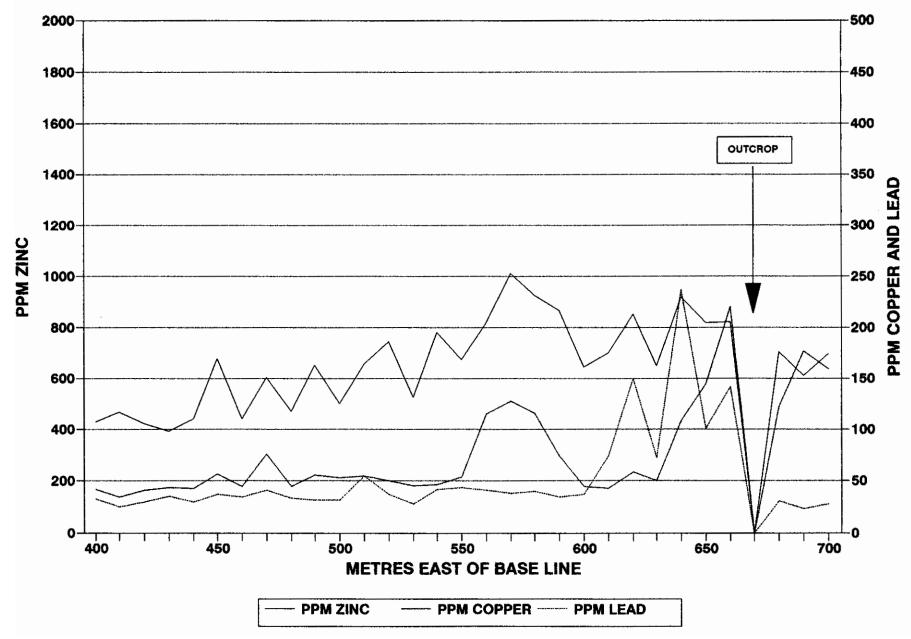

Lead

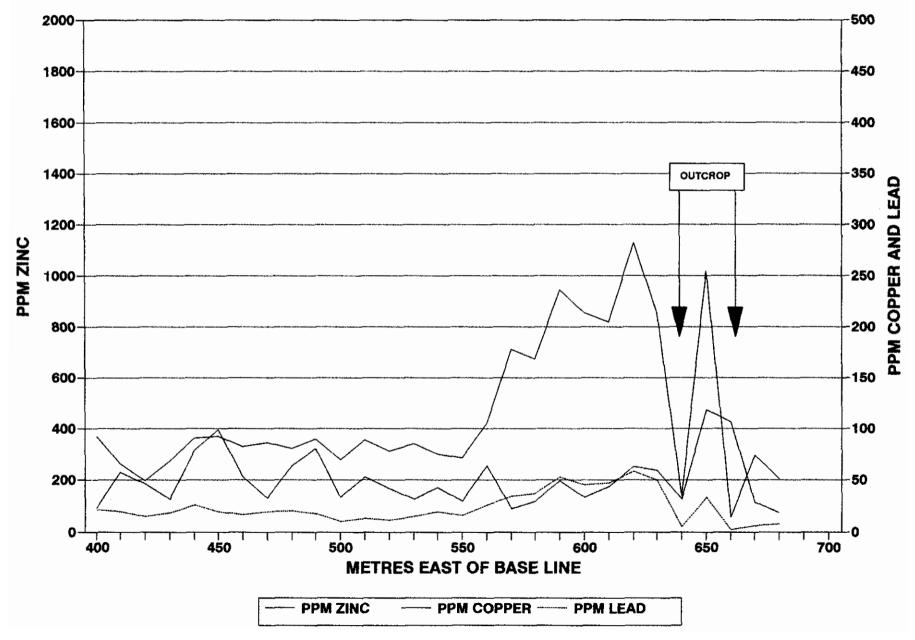
Zinc


1994 SOILS SURVEY: ZN CLAIMS GEOCHEMICAL VALUES LINE 400S


1994 SOILS SURVEY: ZN CLAIMS GEOCHEMICAL VALUES LINE 500S


1994 SOILS SURVEY: ZN CLAIMS GEOCHEMICAL VALUES LINE 600S

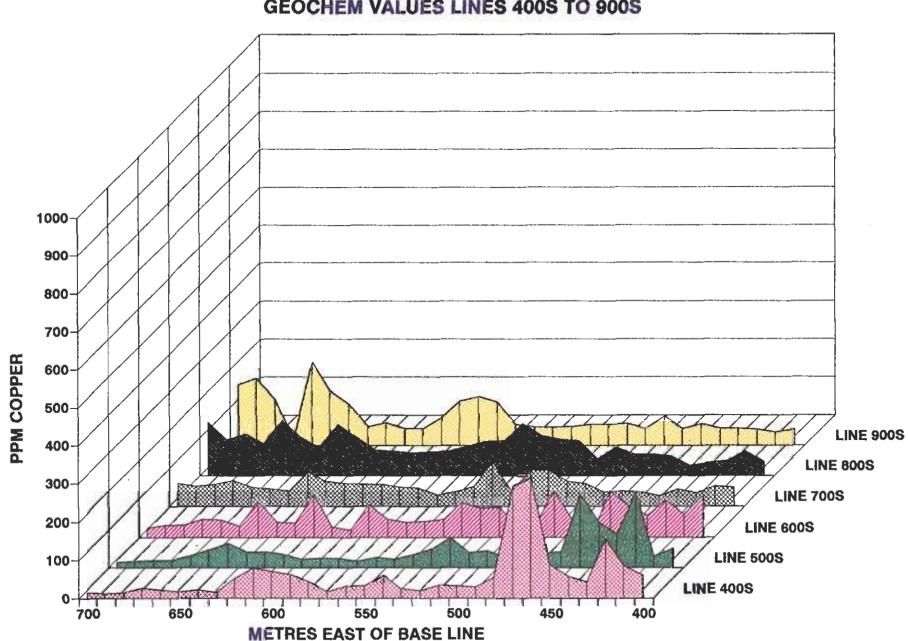

1994 SOILS SURVEY: ZN CLAIMS GEOCHEMICAL VALUES LINE 700S


1994 SOILS SURVEY: ZN CLAIMS GEOCHEMICAL VALUES LINE 800S

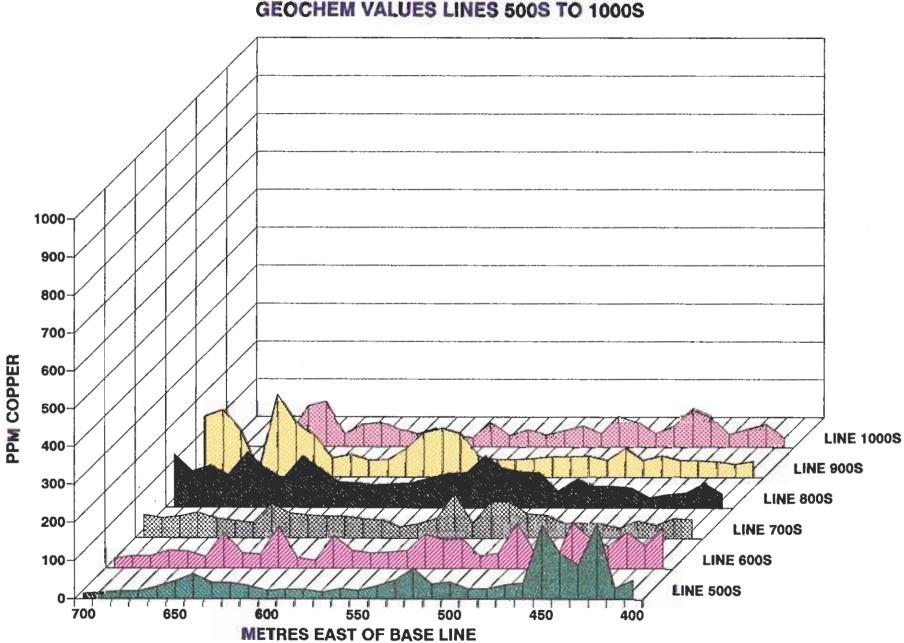
1994 SOILS SURVEY: ZN CLAIMS GEOCHEMICAL VALUES LINE 900S

1994 SOILS SURVEY: ZN CLAIMS GEOCHEMICAL VALUES LINE 1000S

APPENDIX III


.

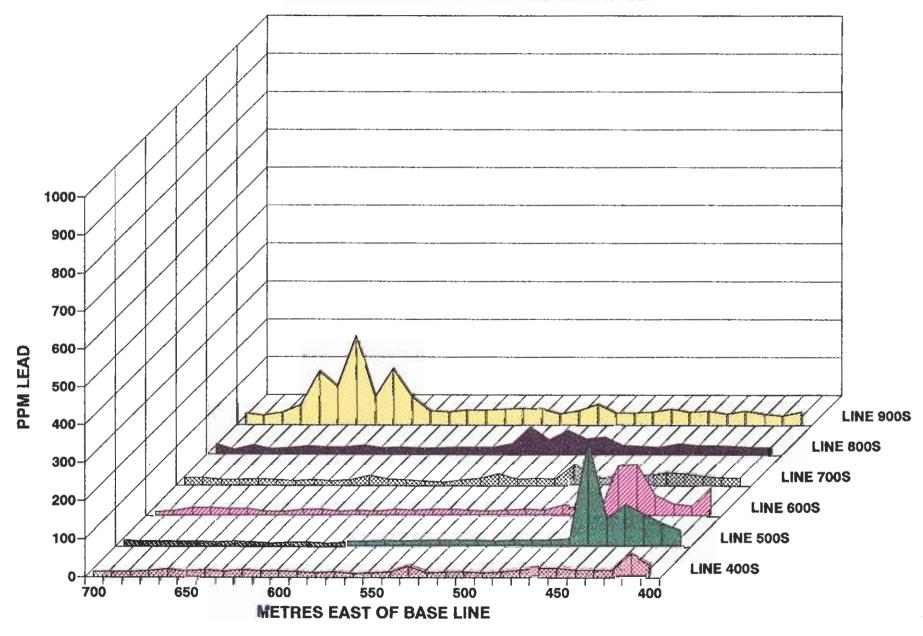
STACKED ASSAY PROFILES


Copper

Lead

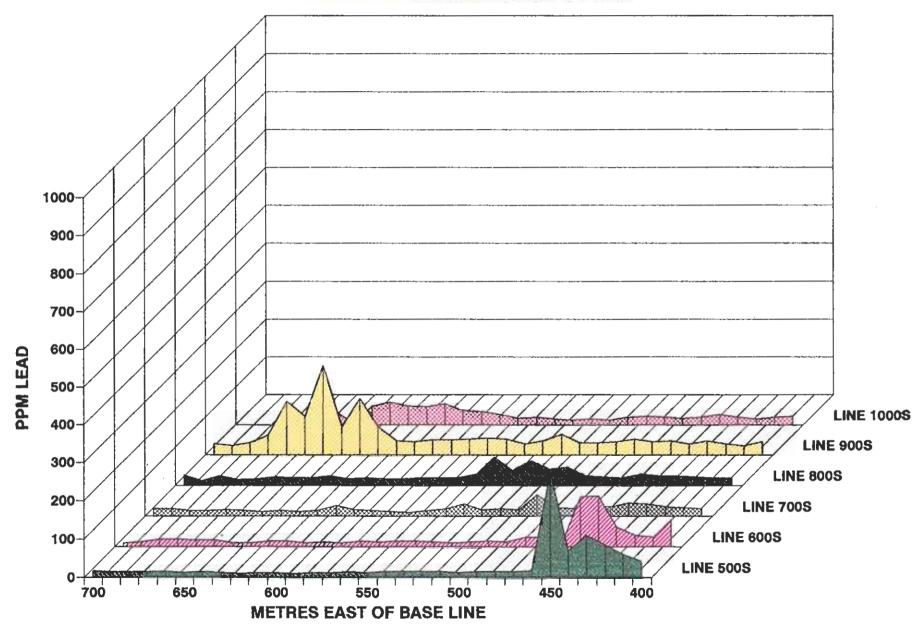
Zinc

1994 SOILS SURVEY: ZN CLAIMS GEOCHEM VALUES LINES 400S TO 900S



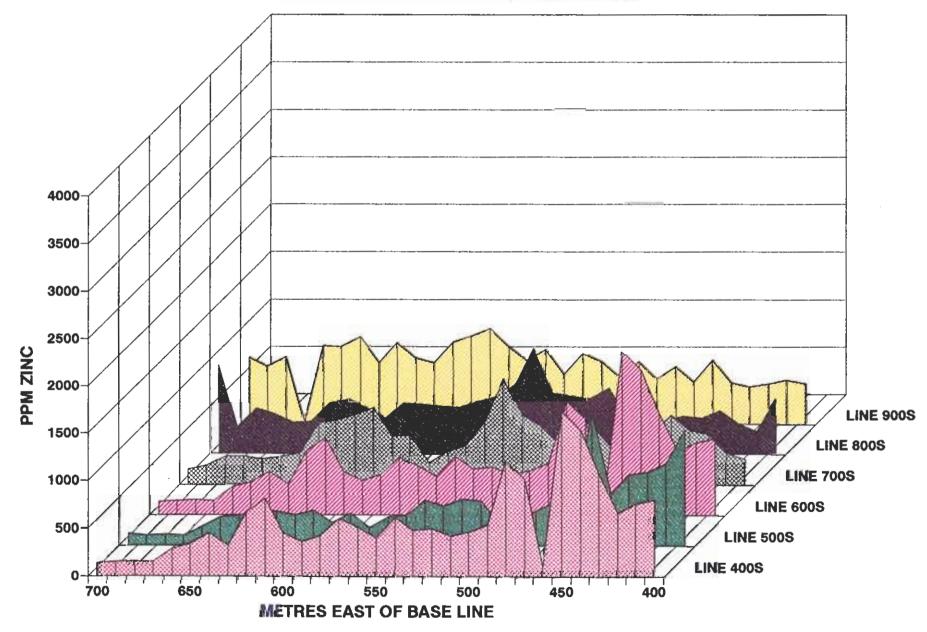
1994 SOILS SURVEY: ZN CLAIMS GEOCHEM VALUES LINES 500S TO 1000S

1


1994 SOILS SURVEY: ZN CLAIMS GEOCHEM VALUES LINES 400S TO 900S



1994 SOILS SURVEY: ZN CLAIMS GEOCHEM VALUES LINES 500S TO 1000S


-

1994 SOILS SURVEY: ZN CLAIMS GEOCHEM VALUES LINES 500S TO 1000S

APPENDIX IV

.

SAMPLE DATA

ASSAY CERTIFICATES

Line 4+00S

SAMPLE DATA

•

.

<u>Station</u>	<u>Sample</u>	<u>Depth cm</u>	Description	<u>Cu ppm</u>	<u>Pb ppm</u>	<u>Zn ppm</u>	<u>Au ppb</u>	<u>Ag ppm</u>
4+00E	D-413	40	Dark Grey	60	34	616		
10	414	35	Dark Grey	84	61	850		
20	415	40 Da	ark Grey + Brown	n 155	18	812		
30	416	35	Grey	42	20	814		
40	417	35	Grey	57	19	598		
50	418	40	Grey	86	23	581		
60	419	40	Grey	314	23	440		
70	420	40	Grey	295	18	422		
80	421	30	Grey	54	13	259		
90	422	35	Grey	30	12	171		
5+00E	423	30	Grey-Brown	31	14	242		
10	424	30	Light Brown	33	13	270		
20	425	35	Light Brown	18	11	399		
30	426	30	Grey-Brown	25	28	510		
40	427	35	Grey-Brown	58	14	605		
50	428		Dark Grey-Brown	32	11	638		
60	429	35	Grey-Brown	31	9	342		
70	430	25	Grey	17	13	476		
80	431		Dark Grey-Brown	45	12	520		
90	432	40	Black	61	14	493		
6+00E	433	40	Dark Grey	70	16	496		
10	610	42	Grey	79	16	575	18	0.3
20	609	42	Grey-Brown	51	18	345	4	0.9
30	608	44	Light Brown	15	13	280	12	0.2
40	607	40	Light Brown	21	18	195	16	0.7
50	606	41	Light Brown	27	15	226	12	0.5
60	605	34	Orange-Brown	21	21	162	13	0.3
70	604	42	Light Brown	27	17	124	6	0.4
80	603	40	Light Brown	13	15	127	9	0.2
90	602	37	Orange-Brown	12	15	147	14	0.4
7+00E	601	38	Light Brown	14	14	113	15	0.5

<u>Line 5+00S</u>

SAMPLE DATA

.

Station	<u>Sample</u>	<u>Depth cm</u>	Description	<u>Cu ppm</u>	<u>Pb ppm</u>	<u>Zn ppm</u>	<u>Au ppb</u>	<u>Ag ppm</u>
4+00E	D-663	44	Grey	49	42	1220	15	1.3
10	664	40	Grey	30	58	855	9	0.6
20	665	36	Grey-Brown	197	83	770	16	0.5
30	666	43	Dark Grey	90	109	733	11	1.6
40	667	40	Grey	118	69	531	6	3.4
50	668	40	Grey	192	274	1390	16	14.0
60	669	40	Grey-Brown	41	17	435	10	1.8
70	670	32	Grey-Brown	36	14	454	13	0.9
80	671	34	Brown	26	13	365	16	1.0
90	672	38	Brown	27	14	252	10	1.2
5+00E	631	43	Grey-Brown	45	12	230	4	<0.2
10	630	36	Grey-Brown	40	14	464	10	0.5
20	629	32	Grey-Brown	78	15	485	8	1.4
30	628	40	Ğrey	49	14	1414	5	0.7
40	627	38	Grey-Green	34	13	480	12	0.8
50	626	34	Brown + Grey	22	11	311	7	1.3
60	625	35	Grey-Green	26	14	300	8	0.2
70	624	34	Grey-Green	17	12	190	6	0.4
80	623	48	Grey-Green	25	11	339	11	1.0
90	622	41	Grey-Green	24	10	240	9	0.9
6+00E	621	37	Grey-Green	22	11	362	7	0.6
10	620	46	Grey-Green	33	12	315	12	0.4
20	619	47	Grey	41	9	352	8	0.3
30	618	38	Grey	42	11	346	11	0.3
40	617	50	Grey-Green	65	13	314	7	1.3
50	616	41	Grey	46	11	293	10	0.5
60	615	36	Grey-Brown	32	13	191	9	0.6
70	614	32	Brown	18	14	104	4	0.2
80	613	37	Brown	19	15	119	7	0.3
90	612	40	Light Brown	16	13	104	5	<0.2
7+00E	611	38	Brown	15	17	126	15	0.2

SAMPLE DATA

<u>Station</u>	<u>Sample</u>	<u>Depth cm</u>	Description	<u>Cu ppm</u>	Pb ppm	Zn ppm	<u>Au ppb</u>	<u>Ag ppm</u>
4+00E	D-653	43	Grey	107	68	798	7	0.6
10	654	38	Grey	60	24	755	11	0.3
20	655	40	Grey	95	30	660	6	0.4
30	656	38	Grey	56	52	1070	11	0.6
40	657	44	Grey	78	131	1530	8	0.9
50	658	30	Dark Grey-Brown	120	129	1730	10	1.1
60	659	0.C.	Argillite	7	7	94	12	
70	660	30	Grey-Brown	38	24	1010	14	1.9
80	661	34	Grey	120	23	1200	12	4.4
90	662	38	Grey-Green	40	12	532	17	2.6
5+00E	652	34	Grey	31	14	457	12	0.4
10	651	42	Grey	77	12	418	9	0.5
20	650	32	Grey-Brown	73	10	500	7	1.1
30	649	36	Grey	90	11	473	8	1.2
40	648	40	Grey-Brown	46	13	610	10	1.0
50	647	32	Grey	41	13	395	4	0.4
60	646	45	Grey	40	12	503	11	0.7
70	645	43	Grey	47	13	595	9	0.8
80	644	38	Grey	83	10	419	10	0.6
90	643	32	Grey-Green	20	11	351	13	<0.2
6+00E	642	38	Grey-Green	26	8	450	17	0.2
10	641	32	Grey	110	14	807	15	2.3
20	640	38	Grey	37	15	670	8	1.4
30	639	36	Dark Grey	39	8	314	7	2.6
40	638	30	Dark Grey	91	9	445	14	0.2
50	037	36	Dark Grey	30	16	340	8	0.4
60	636	38	Grey-Brown	44	16	288	14	0.2
70	635	40	Brown	46	20	141	10	<0.2
80	634	38	Brown	31	14	156	9	<0.2
90	633	42	Brown	32	11	146	7	0.3
7+00E	632	40	Brown	23	10	139	3	0.4

Line 6+00S

Line 7+00S

SAMPLE DATA

<u>Station</u>	Sample	<u>Depth cm</u>	Description	<u>Cu ppm</u>	Pb ppm	Zn ppm	<u>Au ppb</u>	<u>Ag ppm</u>
4+00E	D-759	32	Brown	49	20	255	6	0.2
10	760	32	Brown-Grey	52	22	330	11	0.3
20	761	34	Grey-Brown	34	23	526	10	0.4
30	762	36	Grey-Brown	43	32	570	11	0.9
40	763	38	Light Brown	26	35	722	7	0.5
50	764	38	Light Brown	37	24	565	10	0.8
60	765	32	Brown-Grey	38	23	545	8	0.4
70	766	28	Grey	36	19	335	7	0.3
80	767	30	Grey	60	22	560	9	0.8
90	768	32	Grey-Brown	63	55	711	12	1.2
5+00E	693	34	Grey-Brown	93	16	414	18	2.0
10	692	42	Grey-Brown	95	19	605	17	2.2
20	691	38	Grey-Brown	38	17	721	11	1.0
30	690	36	Dark Brown	117	31	1120	10	2.6
40	689	38	Grey-Brown	51	20	655	6	2.3
50	688	40	Grey-Brown	37	13	402	12	0.7
60	687	38	Grey-Brown	28	10	344	17	0.2
70	686	34	Grey-Brown	47	11	229	14	<0.2
80	685	50	Grey-Brown	49	14	520	6	0.3
90	684	38	Grey	56	17	506	11	0.4
6+00E	683	40	Grey-Brown	57	26	810	19	1.0
10	682	50	Grey	59	15	732	7	0.6
20	681	34	Grey	63	11	677	10	0.7
30	680	34	Grey-Brown	90	13	645	9	0.6
40	679	38	Brown-Grey	38	12	330	14	0.3
50	678	32	Grey	45	13	287	16	0.2
60	677	30	Grey	49	16	270	8	0.2
70	676	40	Grey	66	15	284	6	<0.2
80	675	45	Grey	56	15	283	11	0.2
90	674	36	Grey-Brown	51	18	192	18	0.3
7+00E	673	48	Brown	58	18	157	12	0.4

Line 8+00S

SAMPLE DATA

<u>Station</u>	<u>Sample</u>	<u>Depth cm</u>	Description	<u>Cu ppm</u>	<u>Pb ppm</u>	<u>Zn ppm</u>	<u>Au ppb</u>	<u>Ag ppm</u>
4+00E	D-778	36	Brown-Grey	37	19	584	6	0.6
10	777	40	Grey	64	20	237	10	0.7
20	776	40	Grey + Brown	39	22	314	8	1.1
30	775	36	Brown-Grey	35	23	458	9	0.8
40	774	38	Grey + Brown	26	25	380	14	0.5
50	773	30	Grey + Brown	51	28	396	12	0.7
60	772	30	Grey + Brown	56	19	335	7	0.2
70	771	36	Grey + Brown	57	21	398	7	<0.2
80	770	32	Grey	74	23	376	6	0.2
90	769	34	Grey	45	46	700	11	0.6
5+00E	714	30	Grey	92	41	582	9	0.4
10	713	26	Grey-Brown	94	65	615	7	0.3
20	712	34	Grey	105	40	650	6	0.8
30	711	36	Dark Brown	137	75	1120	11	1.4
40	710	30	Grey	91	29	735	10	3.2
50	709	38	Dark Grey	88	20	610	1 4	0.9
60	708	30	Dark Brown	76	19	554	3	0.5
70	707	30	Grey + Brown	63	18	495	9	0.2
80	706	28	Grey + Brown	61	17	507	12	0.6
90	705	38	Grey	59	16	522	11	0.2
6+00E	704	30	Dark Grey	65	19	540	7	0.4
10	703	36	Grey	66	17	372	8	0.3
20	702	36	Grey-Brown	102	24	490	14	0.2
30	701	43	Grey	134	20	577	16	0.9
40	700	40	Grey-Brown	73	18	540	10	0.4
50	699	46	Dark Brown	102	21	337	14	0.5
60	698	40	Brown-Grey	144	17	324	11	0.6
70	697	38	Grey-Brown	85	15	413	12	0.5
80	696	46	Grey	110	25	474	16	0.4
90	695	o.c.	Argillite	93	12	267	8	
7+00E	694	36	Black	139	26	936	17	1.8

Line 9+00S

SAMPLE DATA

<u>Station</u>	<u>Sample</u>	<u>Depth cm</u>	Description	<u>Cu ppm</u>	Pb ppm	<u>Zn ppm</u>	<u>Au ppb</u>	Ag ppm
4+00E	D-798	38	Brown-Grey	42	33	430	7	0.5
10	797	40	Grey-Brown	35	25	467	8	0.4
20	796	30	Grey	41	30	423	7	<0.2
30	795	38	Light Grey	44	36	395	9	1.2
40	794	38	Grey + Brown	43	30	440	10	0.5
50	793	48	Brown	57	37	679	12	0.5
60	792	48	Grey	45	35	442	7	0.6
70	791	45	Brown-grey	76	41	605	5	1.5
80	790	44	Grey	45	34	473	10	0.9
90	789	35	Grey-Brown	56	32	652	9	0.4
5+00E	758	42	Grey-Brown	53	32	500	10	0.8
10	757	40	Grey-Brown	55	55	656	12	0.7
20	756	38	Dark Grey	50	37	745	7	1.1
30	755	40	Brown-Grey	46	28	527	8	0.2
40	754	38	Dark Grey	47	42	781	10	0.5
50	753	30	Grey	54	44	675	9	0.4
60	752	42	Dark Grey	115	41	820	10	0.3
70	751	40	Dark Grey	128	38	1010	12	0.8
80	750	48	Grey	116	40	925	15	0.9
90	749	50	Dark Grey	74	35	866	17	0.6
6+00E	748	36	Dark Grey	45	37	644	18	0.4
10	747	34	Dark Brown	43	74	700	11	0.2
20	746	34	Dark Grey	5 9	150	852	16	0.9
30	745	36	Grey-Brown	50	73	650	15	0.5
40	744	38	Grey	109	237	920	14	1.9
50	743	38	Grey	145	101	818	17	1.0
60	742	32	Dark Brown	224	142	823	10	2.1
70	741	o.c.	Chert	14	52	17	6	
80	740	32	Grey-Brown	122	31	705	11	0.8
90	739	40	Dark Grey	177	24	610	18	1.7
7+00E	738	33	Black	15 9	28	697	13	1.2

Line 10+00S

SAMPLE DATA

.

<u>Station</u>	<u>Sample</u>	<u>Depth cm</u>	Description	<u>Cu ppm</u>	<u>Pb ppm</u>	Zn ppm	<u>Au ppb</u>	<u>Ag ppm</u>
4+00E	D-779	34	Grey-Brown	24	22	373	5	0.4
10	780	36	Ĝrey	58	20	265	9	0.5
20	781	44	Grey + Brown	47	15	198	7	0.3
30	782	32	Brown	32	19	276	9	0.7
40	783	34	Dark Grey-Brown	79	26	365	15	1.0
50	784	34	Dark Grey	99	20	370	7	0.8
60	785	36	Grey	53	17	330	6	0.4
70	786	28	Grey	33	20	345	11	0.6
80	787	36	Grey	64	21	324	4	0.7
90	788	30	Grey-Brown	81	18	360	8	0.6
5+00E	734	20	Grey	34	11	280	14	0.3
10	733	36	Grey	53	13	357	18	0.2
20	732	34	Grey	42	12	313	16	<0.2
30	731	20	Grey	32	15	342	15	0.3
40	730	30	Grey-Green	43	20	300	9	0.2
50	729	36	Light Grey	30	16	286	14	<0.2
60	728	34	Grey	64	26	425	7	0.4
70	727	45	Grey-Brown	23	35	710	8	0.6
80	726	36	Brown-Grey	30	37	674	17	0.5
90	725	36	Grey-Brown	49	53	946	10	0.3
6+00E	724	48	Grey	34	46	855	15	0.3
10	723	32	Grey	44	48	820	11	0.2
20	722	38	Grey-Brown	63	59	1130	14	0.7
30	721	30	Dark Brown	60	50	854	6	0.4
40	720	0.C.	Argillite	32	5	139	108	
50	719	30	Dark Brown	119	34	1020	12	1.5
60	718	o.c.	Argillite	107	2	56	11	
70	717	36	Brown Talus	29	6	298	9	
80	716	o.c.	Argillite	19	8	205	10	
90								

7+00E

 4200B - 10 Street N.E.
 Kielne Waterstraat 2-6

 Calgary, Alberta
 Box 2510

 Canada T2E 6K3
 Paramaribo - Suriname

 Tel (403) 250-1901
 Tel (597) 421523

 Fax (403) 250-8265
 Fax (597) 421533

 2:8 - S E P - 9 4
 PAGE: 1 OF 9

 COPY: 1 OF 2
 E

AUTHORITY:D. SUTHERLAND

MR.	D	ND	SUTHERI	LANI)
R.R.	ŧ	2,	GLENBOW	ROAL)
COCHR	A	٧E,	ALBERTA	TOL	owo

WORK ORDER: 9335D-94

GEO	CHEMICAL	L LABO	RATORY	REPORT
SAMPLE T	YPE: SOIL			
	·	CU	PB	ZN
AMPLE	NUMBER	PPM	PPM	PPM
D:	601	14.0	14.0	113.0
D-:	602	12.0	15.0	147.0
D-:	603	13.0	15.0	127.0
D-:	604	27.0	17.0	124.0
D-:	605	21.0	21.0	162.0
D-:	606	17.0	15.0	226.0
D-:	607	21.0	18.0	195.0
D-:	608	15.0	13.0	280.0
. D− :	609	51.0	18.0	345.0
D-:	610	79.0	16.0	575.0
			N 18	
D-:	611	15.0	17.0	126.0
D-:	612	16.0	13.0	104.0
D-:	613	19.0	15.0	119.0
D - :	614	18.0	14.0	104.0
D-:	615	32.0	13.0	191.0
				· 이상 · · · · · · · · · · · · · · · · · ·
D-:	616	46.0	11.0	293.0
D-:	617	65.0	13.0	314.0
D-:	618	42.0	11.0	346.0
D-:	619	41.0	9.0	352.0
D-:	620	33.0	12.0	315.0
D-:	4.01	00 0		
D-:	621 622	22.0 24.0	11.0	362.0
D-:	623	25.0		240.0
D-:	624		11.0	339.0
D-: B-:	625	17.0 26.0	12.0	190.0
10 ···· e	لتمنا	40 x V	14.0	300.0
D-:	626	22.0	11.0	311.0
D-:	627	34.0	13.0	480.0
D-:	628	49.0	14.0	414.0
D-:	629	78.0	15.0	485.0
D-:	630	40.0	14.0	464.0

 $\begin{array}{c} 4200B-10 \; Street \; N.E. \\ Calgary, \; Alberta \\ Canada \; T2E \; 6K3 \\ Tel \; (403) \; 250-1901 \\ Fax \; (403) \; 250-8265 \\ 2\; B-S\; E\; P-9\; 4 \\ PAGE: \; 2\; OF \; 9 \\ COPY: \; 1\; OF \; 2 \end{array}$

Kleine Waterstraat 2-6 Box 2510 Paramaribo - Suriname Tel (597) 421523 Fax (597) 421533

AUTHORITY:D. SUTHERLAND

MR.	D	DN	SUTHER	LANE)
R.R.	#	2,	GLENBOW	ROAL) .
COCHI	RAI	1E.,	ALBERTA	TOL	owo

WORK ORDER: 9335D-94

*** FINAL REPORT ***

 π_{VV}

		GE	oc	HE	MÌ	CA	I.	LAI	BORATORY	REPORT	
	S	AMPLE	TYP	E: \$	50 I	L					
						_		CU	PB	ZN	
3	A	MPL	E N	υM	BI	R		PPM	PPM	PPM	
									n i T ikova (n		
		D-:		631				45.0	12.0	230.0	
	•	D-:		632		í.		23.0	10.0	139.0	
		D-:		633	:			32.0	11.0	146.0	
		D-:		634				31.0	14.0	156.0	
		D-:		635				46.0	20.0	141.0	
										전 경험구점 가슴 옷을 넣는 것이	
		D - :		636				44.0	16.0	288.0	
		D-:		637				30.0	16.0	340.0	
		D-:		638				91.0	9.0	445.0	
1		D:		639				39.0	8.0	314.0	
		D-:		640	1			37.0	15.0	670.0	
							1			2월 13일 않는 말을 하는 것이다.	
		D-:		641				110.0	14.0	807.0	
	5	D-:		642	2	18 - Ser	- 56,-	26.0	8.0	450.0	
		D-:	1. A. 1	643) (20.0	11.0	351.0	
		D-:		644				83.0	10.0	419.0	
		D-:		645				47.0	13.0	595.0	
									e e e e la tradición de la constante		
		D-:		646			2	40.0	12.0	503.0	
		D-:		647				41.0	13.0	395.0	
		D-:		648			1	46.0	13.0	610.0	
		D-:		649				90.0	11.0	473.0	
		D-:		650				73.0	10.0	500.0	
		- .									
		D-:		651				77.0	12.0	418.0	
		D-:		652				31.0	14.0	457.0	
		D-:		653				107.0	68.0	798.0	
		D-:		654				60.0	24.0	755.0	
		D-:		655				95.0	30.0	660.0	
				000				00+0	QV . V		
		D-:		656				56.0	52.0	1070.0	
		D-:		657				78.0	and the second		
		D-:		658					131.0	1530.0	
		D-:		660 660				120.0	129.0	1730.0	
		D-:				10		38.0	24.0	1010.0	
		D		661				120.0	23.0	1200.0	

4200B - 10 Street N.E. Kleine Waterstraat 2-6 Box 2510 Calgary, Alberta Canada T2E 6K3 Paramaribo - Suriname Tel (403) 250-1901 Tel (597) 421523 Fax (403) 250-8265 28-5EP-94 Fax (597) 421533 PAGE: 3 OF 9 COPY: 1 OF 2

AUTHORITY: D. SUTHERLAND

MR. DON	SUTHER	LAND
R.R. # 2,	GLENBOW	ROAD
COCHRANE,	ALBERTA	TOL OWO
a di kacala		11. TV

WORK ORDER: 9335D-94

*** FINAL REPORT ***

GEOC	HEMICAL	LABO	RATORY	REPORT
SAMPLE TYP	E: SOIL			
an an airte an		CU	PB	ZN
SAMPLEN	UMBER	PPM	PPM	PPM
D-:	662	40.0	12.0	532.0
Ď-:	663	49.0	42.0	1220.0
D-:	664	30.0	58.0	855.0
D:	665	197.0	83.0	770.0
D-:	666	90.0	109.0	733.0
and a second				
D-:	667	118.0	69.0	531.0
D-:	668	192.0	274.0	1390.0
D-:	669	41.0	17.0	435.0
D-:	670	36.0	14.0	454.0
D-:	671	26.0	13.0	365.0
	672	27.0	14.0	252.0
D-:	673	58.0	18.0	157.0
D-:	674	51.0	18.0	192.0
D-:	675	56.0	15.0	283.0
D-:	676	66.0	15.0	284.0
D-:	677	49.0	16.0	270.0
D-:	678	45.0	13.0	287.0
D-:	679	38.0	12.0	330.0
B-:	680	90.0	13.0	645.0
D-:	681	63.0	11.0	677.0
D-:	682	59.0	15.0	732.0
D-:	683	57.0	26.0	810.0
D-:	684	56.0	17.0	506.0
D-:	685	49.0	14.0	520.0
D-:	686	47.0	11.0	229.0
D-:	687	28.0	10.0	344.0
D-:	688	37.0	13.0	402.0
D-: D-:	689	51.0	20.0	655.0
D-:	690 691	117.0	31.0	1120.0
<i>u</i> – .	071	38.0	17.0	721.0
				Alle de la

 $\begin{array}{cccc} 4200B - 10 \text{ Street N.E.} & \text{Kle} \\ \text{Calgary, Alberta} & \text{Box} \\ \text{Canada T2E 6K3} & \text{Par} \\ \text{Tel } (403) 250 - 1901 & \text{Tel} \\ \text{Fax } (403) 250 - 8265 & \text{Fax} \\ 2.8 - S.E.F - 9.4 \\ \text{PAGE:} & \textbf{4} & \text{OF} & \textbf{9} \\ \text{COPY:} & \textbf{1} & \text{OE} & \textbf{2} \end{array}$

Kleine Waterstraat 2-6 Box 2510 Paramaribo - Suriname Tel (597) 421523 Fax (597) 421533

AUTHORITY: D. SUTHERLAND

MR. DON	SUTHER	LANI)		
R.R. # 2,	GLENBOW	ROA	0	15	
COCHRANE,	ALBERTA	TOL	õ₩o	e De t	

WORK ORDER: 9335D-94

*** FINAL REPORT ***

· .		HEMICA	L LABU	RATORY	REPORT
S	AMPLE TY	PE: SOIL		and a second	
	а.	te des	CU .	PB	ZN
A	MPLE	NUMBER	PPM	PPM S S	
	· · · · · · · · · · · · · · · · · · ·			and a second	
	D-:	692	95.0	16.0	414.0
	D-:	693	98.0	19.0	605.0
	D-:	694	139.0	26.0	936.0
	D-:	696	110.0	25.0	474.0
	D-:	697	85.0	15.0	413.0
	D-:	698	144.0	17.0	324.0
	D-:	699	102.0	21.0	337.0
	D-:	700	73.0	18.0	540.0
	D-:	701	134.0	20.0	577.0
	D — :	702	102.0	24.0	490.0
	D-:	703	66.0	17.0	372.0
	D-:	704	65.0	19.0	540.0
	D-:	705	59.0	16.0	522.0
	D-:	706	61.0	17.0	507.0
	D-:	707	63.0	18.0	495.0
	D-:	708	76.0	19.0	554.0
	D-:	709	88.0	20.0	610.0
	D-:	710	91.0	29.0	735.0
	D-:	711	137.0	75.0	1120.0
	D-:	712	105.0	40.0	650.0
	D-:	713	94.0	65.0	615.0
	D-:	714	92.0	41.0	582.0
	D-:	719	119.0	34.0	1020.0
	D-:	721	60.0	50.0	854.0
	B-:	722	63.0	59.0	1130.0
		· · · · ·	~~~~		
	D - :	723	44.0	48.0	820.0
	D-:	724	34.0	46.0	855.0
	D-:	725	49.0	53.0	946.0
	D-:	726	30.0	37.0	673.0
	D-:	727	23.0	35.0	710.0

 $(1-\overline{2}\alpha) = (1-1)^{1-1}$

 4200B - 10 Street N.E.
 Kleine Waterstraat 2-6

 Calgary, Alberta
 Box 2510

 Canada T2E 6K3
 Paramaribo - Suriname

 Tel (403) 250-1901
 Tel (597) 421523

 Fax (403) 250-8265
 Fax (597) 421533

 2 B - S E P - 9 4
 PAGE: 5 OF 9

 COPY: 1 OF 2
 E

AUTHORITY:D. SUTHERLAND

MR. DON SUTHERLAND R.R. # 2, GLENBOW ROAD COCHRANE, ALBERTA TOL OWO

WORK ORDER: 9335D-94

*** FINAL REPORT ***

GEOCHEMICAL	. LABC	RATORY	REPORT
SAMPLE TYPE: SOIL			
SAMPLE NUMBER	CU PPM	PB PPM	ZN PPM
D-: 728	G4-0	26.0	425.0
D-: 729	30.0	16.0	286.0
D-: 730	43.0	20.0	300.0
D-: 731	32.0	15.0	342.0
D-: 732	42.0	12.0	313.0
D-1 733	53.0	13.0	357.0
D-:	34.0	11.0	280.0
D-1 735	42.0	16.0	415.0
D-: 738	159.0	28.0	697.0
D-: 739	177.0	24.0	610.0
D-: 740	122.0	31.0	705.0
D-: 742	224.0	142.0	823.0
D-: 743	145.0	101.0	818.0
ľu-: 744	109.0	237.0	920.0
D-: 745	50.0	73.0	650.0
D-: 746	59.0	150.0	852.0
D-: 747	43.0	74.0	700.0
D-: 748	45.0	37.0	644.0
D-: 749	74.0	35.0	866.0
D-: 750	116.0	400°	925.0
D-: 751	128.0	38.0	1010.0
D-: 752	115.0	41.0	820.0
D-: 753	54.0	44.0	675.0
D-: 754	47.0	42.0	781.0
D-: 755	46.0	28.0	527.0
D-: 756	50.0	37.0	745.0
D-: 757	55.0	55.0	656.0
D-: 758	53.0	32.0	500.0
B-: 759	49.0	20.0	255.0
D-: 760	52.0	22.0	330.0
	1. A.	and the state of the state of the	

日本語にも成果で

ny degler 🦓

4200B - 10 Street N.E. Calgary, Alberta Canada T2E 6K3 Tel (403) 250-1901 Fax (403) 250-8265 2 8 - 5 E P - 9 4 PAGE: 6 0E 9 COPY: 1 0F 2 Kleine Waterstraat 2-6 Box 2510 Paramaribo - Suriname Tel (597) 421523 Fax (597) 421533

AUTHORITY: D. SUTHERLAND

MR. DON	SUTHERI	LAND	l	
R.R. # 2,	GLENBOW	RÜAL	L	
COCHRANE,	ALBERTA	TOL	OWO	

WORK ORDER: 9335D-94

GEOCHE	MICAL LAB	ORATORY	REPORT
SAMPLE TYPE:	SOIL		
	CU BER PPM	PB PPM	ZN PPM
D-: 761	34.0	23.0	526.0
D-: 762		32.0	570.0
D-: 763		35.0	722.0
D-: 764		24.0	565.0
D-: 765		23.0	545.0
D-: 766	36.0	19.0	335.0
D-: 767		22.0	560.0
D-: 768		55.0	711.0
D-: 769		46.0	700.0
D-: 770	74.0	23.0	376.0
D-: 771	57.0	21.0	398.0
D-: 772		19.0	335.0
D-: 773		28.0	396.0
D-: 774	26.0	25.0	380.0
D-: 775	35.0	23.0	458.0
D-: 776	39.0	22.0	314.0
D-: 777		20.0	237.0
D-: 778	37.0	19.0	584.0
D-: 779	24.0	22.0	373.0
D-: 780	58.0	20.0	265.0
D-: 781	47.0	15.0	198.0
D-: 782		19.0	276.0
D-: 783		26.0	365.0
D-: 784	99.0	20.0	370.0
D-: 785	53.0	17.0	330.0
D-: 786	33.0	20.0	345.0
D-: 787		21.0	324.0
D-: 788		18.0	360.0
D-: 789		32.0	652.0
D-: 790	45.0	34.0	473.0
	$(16e^{-1}e^{i\theta})^{-1}(1)=(1+e^{i\theta})^{-1}(1+e^{i\theta}$		

4200B - 10 Street N.E. Kleine Waterstraat 2-6 Calgary, Alberta Box 2510 Canada T2E 6K3 Paramaribo - Surinarne Tel (403) 250-1901 Tel (597) 421523 Fax (403) 250-8265 Fax (597) 421533 2 8 - S E F - 9 4 PAGE: 7 0F 9 COPY: 1 0F 2

AUTHORITY:D. SUTHERLAND

MR. DON	SUTHERLAND	
R.R. # 2,	GLENBOW ROAD	
COCHRANE,	ALBERTA TOL OWO	
1		

WORK ORDER: 9335D-94

	GE	oc	HEM	ICA	L LA	BORATOR	Y REP	ORT
	SAMPLE	TYP	e: so	IL				
s	AMPL	E N	имв	ER	CU PPM	PB PPM	ZN PPM	
	D-: D-: D-: D-: D-:	an An An Anna An	791 792 793 794 795		76.(45.(57.(43.(44.() 35.0) 37.0) 30.0	605.0 442.0 679.0 440.0 395.0	
	D-: D-: D-:		796 797 798		41.(35.(42.(25.0	423.0 467.0 430.0	(Marshall)
				n de la constante de la consta				
					х.			
2								
			•					
		: 1		: .				

 4200B - 10 Street N.E.
 Kleine Waterstraat 2-6

 Calgary, Alberta
 Box 2510

 Canada T2E 6K3
 Paramaribo - Suriname

 Tel (403) 250-1901
 Tel (597) 421523

 Fax (403) 250-8265
 Fax (597) 421533

 28 - SE P - 94
 PAGE: 8 0F 9

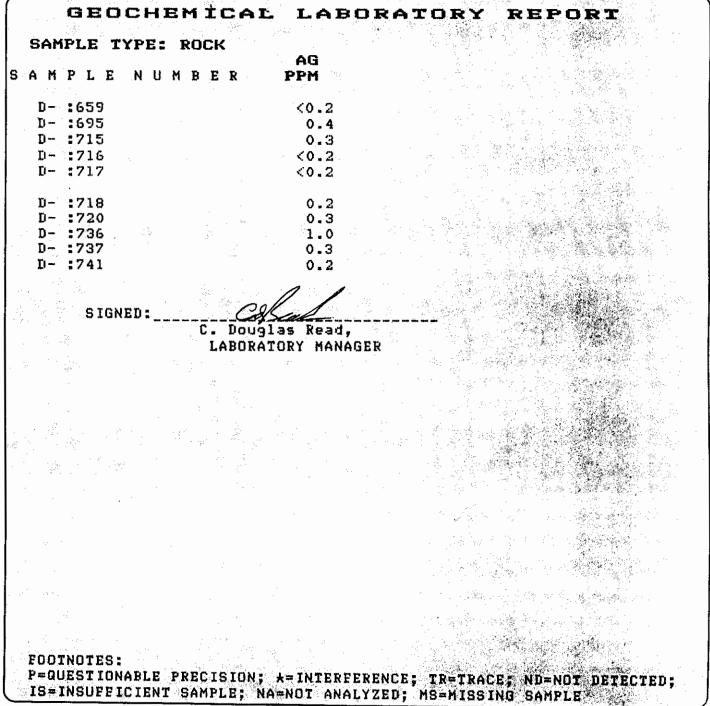
 COPY:
 1 0F 2

AUTHORITY:D. SUTHERLAND

MR. DON	SUTHERLAND
R.R. # 2,	GLENBOW ROAD
COCHRANE,	ALBERTA TOL OWO
	그는 그는 것은 가슴을 물을 알았는지 않는 것이 없다.

WORK ORDER: 9335D-94

GEOCHEMICAL	LABO	RATORY REPORT
SAMPLE TYPE: ROCK		
	CU	PB ZN 🚺 AU
S A M P L E N U M B E R	PPM	PPM PPM PPB
D- :659 D- :695	7.0	7.0 94.0 12.0 12.0 267.0 8.0
D- :715	42.0	<2.0 31.0 7.0
D- :716 D- :717	19.0 29.0	B.0 205.0 10.0 6.0 298.0 9.0
D- :718	107.0	2.0 56.0 11.0
	32.0	5.0 139.0 108.0
D- :736 D- :737	151.0 93.0	6.0 395.0 14.0 2.0 51.0 7.0
D- :741	14.0	52.0 17.0 6.0


4200B - 10 Street N.E. K Calgary, Alberta B Canada T2E 6K3 P Tel (403) 250-1901 T Fax (403) 250-8265 F 2 B - S E P - S 4 PAGE: 9 OF 9 COPY: 1 OF 2

Kleine Waterstraat 2-6 Box 2510 Paramaribo - Suriname Tel (597) 421523 Fax (597) 421533

AUTHORITY:D. SUTHERLAND

MR_	DON	SUTHERLAND			
R . R .	# 2,	GLENBOW	ROAD		
COCH	RANE,	ALBERTA	TOL OWO	÷.	
		· · ·			. •

WORK ORDER: 9335D-94

 4200B - 10 Street N.E.
 Kleine Waterstraat 2-6

 Calgary, Alberta
 Box 2510

 Canada T2E 6K3
 Paramaribo - Suriname

 Tel (403) 250-1901
 Tel (597) 421523

 Fax (403) 250-8265
 Fax (597) 421533

 1.3 - 0 C T - 9 4
 PAGE: 1 0F 7

 COPY: 1 0F 2
 Copy 2

AUTHORITY: DON SUTHERLAND

MR. DON	SUTHER	LAND
R.R. # 2,	GLENBOW	ROAD
COCHRANE,	ALBERTA	TOL OWO

WORK ORDER: 9335D-94

GBOC	HEMICAL	LABO	RATORY	REPORT
SAMPLE TY	PE: SOIL			and the state of the second
SAMPLE	UMBER	AU PPB	AG PPM	
D-:	601	15.0	0.5	and the second
D-:	602	14.0	0.4	
D-:	603	9.0	0.2	
D-:	604	6.0	0.4	
D-:	605	13.0	0.3	
D-: D-: D-: D-: D-: D-:	606 607 608 609 610	12.0 16.0 12.0 4.0 18.0	0.5 0.7 0.2 0.9 0.3	
D-:	611	15.0	0.2	
D-:	612	5.0	<0.2	
D-:	613	7.0	0.3	
D-:	614	4.0	0.2	
D-:	615	9.0	0.6	
D - :	616	10.0	0.5	
D- :	617	7.0	1.3	
D- :	618	11.0	0.3	
D- :	619	8.0	0.3	
D- :	620	12.0	0.4	
D-:	621	7.0	0.6	
D-:	622	9.0	0.9	
D-:	623	11.0	1.0	
D-:	624	6.0	0.4	
D-:	625	8.0	0.2	
D - :	626	7.0	1.3	
D - :	627	12.0	0.8	
D - :	628	5.0	0.7	
D - :	629	8.0	1.4	
D - :	630	10.0	0.5	
der stage in a				A Procession

 $\begin{array}{c} 4200B - 10 \; Street \, N.E. \\ Calgary, \; Alberta \\ Canada \; T2E\; 6K3 \\ Tel \; (403)\; 250-1901 \\ Fax \; (403)\; 250-8265 \\ 1\;\; 3\; -\; 0\; C\;\; T\; -\; 9\; 4 \\ PAGE: \; 2\;\; 0F\;\; 7 \\ COPY: \; 1\;\; 0F\;\; 2 \end{array}$

Kleine Waterstraat 2-6 Box 2510 Paramaribo - Suriname Tel (597) 421523 Fax (597) 421533

.

AUTHORITY: DON SUTHERLAND

MR. DON	SUTHER	LANE)
R.R. # 2,	GLENBOW	ROAL). Ale
COCHRANE,	ALBERTA	TOL	OWO
an That is a second		1.1	

WORK ORDER: 9335D-94

(GEOI	CHEMICAI	LABC	RATORY	REPORT
SAMPLE T	(PE: SOIL			
SAMPLE	NUMBER	AU PPB	AG PPM	
D-:	631	4.0	<0.2	
D-:	632	3.0	0.4	
D-:	633	7.0	0.3	
D-:	634	9.0	<0.2	
D-:	635	10.0	<0.2	
D - :	636	14.0	0.2	
D - :	637	8.0	0.4	
D - :	638	14.0	0.2	
D - :	639	7.0	2.6	
D - :	640	8.0	1.4	
D - :	641	15.0	2.3	
D - :	642	17.0	0.2	
D - :	643	13.0	<0.2	
D - :	644	10.0	0.6	
D - :	645	9.0	0.8	
D-:	646	11.0	0.7	
D-:	647	4.0	0.4	
D-:	648	10.0	1.0	
D-:	649	8.0	1.2	
D-:	650	7.0	1.1	
D-: D-: D-: D-:	651 652 653 654 655	9.0 12.0 7.0 11.0 6.0	0.5 0.4 0.6 0.3 0.4	
D-:	656	11.0	0.6	
D-:	657	8.0	0.9	
D-:	658	10.0	1.1	
D-:	660	14.0	1.9	
D-:	661	12.0	4.4	

V	Tech Laborato		4200B - 10 Street N.E. Kleine Waterstr Calgary, Alberta Box 2510 Canada T2E 6K3 Paramaribo - S Tel (403) 250-1901 Tel (597) 4215 Fax (403) 250-8265 Fax (597) 4215 1 3 - 0 C T - 9 4 PAGE: 3 0F 7 COPY: 1 0F 2
R.R. # 2,	SUTHERLAND Glenbow Road Alberta Tol owo		WORK ORDER: 9335D-94
GEC	CHEMICAL	LABOR	ATORY REPORT
SAMPLE J	YPE: SOIL	AU	AG
Sample	NUMBER	PPB	PPM
D-:	662	17.0	2.6
D-:	663	15.0	1.3
D-:	664	9.0	0.6
D-:	665	16.0	0.5
D-:	666	11.0	1.6
D-:	667	6.0	3.4
D-:	668	16.0	14.0
D-:	669	10.0	1.8
D-:	670	13.0	0.9
D-:	671	16.0	1.0
D-:	672	10.0	1.2
D-:	673	12.0	0.4
D-:	674	18.0	0.3
D-:	675	11.0	0.2
D-:	676	6.0	<0.2
D-:	677	8.0	0.2
D-:	678	16.0	0.2
D-:	679	14.0	0.3
D-:	680	9.0	0.6
D-:	681	10.0	0.7
D-:	682	7.0	0.6
D-:	683	19.0	1.0
D-:	684	11.0	0.4
D-:	685	6.0	0.3
D-:	686	14.0	<0.2
D-:	687	17.0	0.2
D-:	688	12.0	0.7
D-:	689	6.0	2.3
D-:	690	10.0	2.6
D-:	691	11.0	1.0

AUTHORITY: DON SUTHERLAND	4200B - 10 Street N.E. Kleine Waterstraat 2-6 Calgary, Alberta Box 2510 Canada T2E 6K3 Paramaribo - Surinarne Tel (403) 250-1901 Tel (597) 421523 Fax (403) 250-8265 Fax (597) 421533 1 3 - 0 C T - 9 4 PAGE: 4 0F 7 COPY: 1 0F 2
MR. DON SUTHERLAND R.R. # 2, GLENBOW ROAD COCHRANE, ALBERTA TOL OWO	WORK ORDER: 9335D-94 *** FINAL REPORT ***
GEOCHEMICAL LABORA SAMPLE TYPE: SOIL	
AU SAMPLENUMBER PPB 1 D-: 692 17.0 D-: 693 18.0 D-: 694 17.0 D-: 696 16.0 D-: 697 12.0	AG PPM 2.2 2.0 1.8 0.4 0.5
B-: 698 11.0 D-: 699 14.0 D-: 700 10.0 D-: 701 16.0 D-: 702 14.0 D-: 703 8.0	0.6 0.5 0.4 0.9 0.2 0.3
D-: 703 0.0 D-: 704 7.0 D-: 705 11.0 D-: 706 12.0 D-: 707 9.0 D-: 708 3.0	0.3 0.4 0.2 0.6 0.2 0.5
D-: 709 14.0 D-: 710 10.0 D-: 711 11.0 D-: 712 6.0	0.9 3.2 1.4 0.8
D-: 713 7.0 D-: 714 9.0 D-: 719 12.0 D-: 721 6.0 D-: 722 14.0	0.3 0.4 1.5 0.4 0.7
D-: 723 11.0 D-: 724 15.0 D-: 725 10.0 D-: 726 17.0 D-: 727 8.0	0.2 0.3 0.3 0.5 0.6

4200B - 10 Street N.E. Calgary, Alberta Canada T2E 6K3 Tel (403) 250-1901 Fax (403) 250-8265 1 3 - 0 C T - 9 4 PAGE: 5 0F 7 COPY: 1 0F 2 Kleine Waterstraat 2-6 Box 2510 Paramaribo - Suriname Tel (597) 421523 Fax (597) 421533

AUTHORITY: DON SUTHERLAND

MR. DON	SUTHER	LAND	
R.R. # 2,	GLENBOW	ROAD	
COCHRANE,	ALBERTA	TOL OWO	

WORK ORDER: 9335D-94

				NAL REFURI XXX
GEOC	HEMICA	L LABC	RATORY	REPORT
SAMPLE TYP	E: SOIL	•		
		AU	AG	
SAMPLE N	IUMBER	PPB	PPM	
D-:	728	7.0	0.4	
D-:	729	14.0	<0.2	
D-:	730	9.0	0.2	
D-:	731	15.0	0.3	
Ū-:	732	16.0	<0.2	
	/ OA	1010		
D-:	733	18.0	0.2	
D-:	m = 4	14.0	0.3	
D-:	735	17.0	0.5	
D-:	738	13.0	1.2	and the second
D-:	739	18.0	1.7	
· ·	/0/	1010		
D-:	740	11.0	0.8	
D-:	742	10.0	2.1	
D-:	743	17.0	1.0	
D-:	744	14.0	1.9	it is an
D-1	745	15.0	0.5	
	/ 1.1	1J=V		
D-:	746	16.0	0.9	
D-:	747	11.0	0.2	
D-:				
	748	18.0	0.4	
D-:	749	17.0	0.6	
D:	750	15.0	0.9 👘 👘	- 영향 약을 가 관객 것 않는 것이다. - 이번 전 전 이번 것 같은 것이다
r	751	10 0	A	
D-:	751	12.0	0.8	
D-:	752	10.0	0.3	
D-:	753	9.0	0.4	
D-:	754	10.0	0.5	
D-:	755	8.0	0.2	
Ti I	DEC	F3 A		
D-: D-:	756	7.0	1.1 0.7	S - Mr. ANTIGER
D-:	757	12.0	0.7	
D	758	10.0	0.8	
D-:	759	6.0	0.2	
D-:	760	11.0	03	
			$\frac{p}{m_{s}} = \frac{p^{2}}{m_{s}} \delta_{1}, \delta_{2} = 0$	
		4		

4200B - 10 Street N.E. Calgary, Alberta Canada T2E 6K3 Tel (403) 250-1901 Fax (403) 250-8265 1 3 - 0 C T - 9 4 PAGE: 6 OF 7 COPY: 1 OF 2

Kleine Waterstraat 2-6 Box 2510 Paramaribo - Suriname Tel (597) 421523 Fax (597) 421533

AUTHORITY: DON SUTHERLAND

MR. DON	SUTHER	LAND
R.R. # 2,	GLENBOW	ROAD
COCHRANE,	ALBERTA	TOL OWO
-8141		

WORK ORDER: 9335D-94

*** FINAL REPORT ***

GEOC	HEMICAL	. LABO	RATORY	REPORT
SAMPLE TYP Sample N	PE: SOIL	AU PPB	AG PPM	
D-:	761	10.0	0.4	
D-:	762	11.0	0.9	
D-:	763	7.0	0.5	
D-:	764	10.0	0.8	
D-:	765	8.0	0.4	
D -:	766	7.0	0.3	- 1 9
D-:	767	9.0	0.8	
D-:	768	12.0	1.2	
D-:	769	11.0	0.6	
D-:	770	6.0	0.2	
D-:	771	7.0	<0.2	
D-:	772	7.0	0.2	
D-:	773	12.0	0.7	
D-:	774	14.0	0.5	
D-:	775	9.0	0.8	
D-:	776	8.0	1.1	
D-:	777	10.0	0.7	
D-:	778	6.0	0.6	
D-:	779	5.0	0.4	
D-:	780	9.0	0.5	
D-:	781	7.0	0.3	
D-:	782	9.0	0.7	
D-:	783	15.0	1.0	
D-:	784	7.0	0.8	
D-:	785	6.0	0.4	
D-: D-: D-: D-:	786 787 788 789 790	11.0 4.0 8.0 9.0 10.0	0.6 0.7 0.6 0.4 0.9	

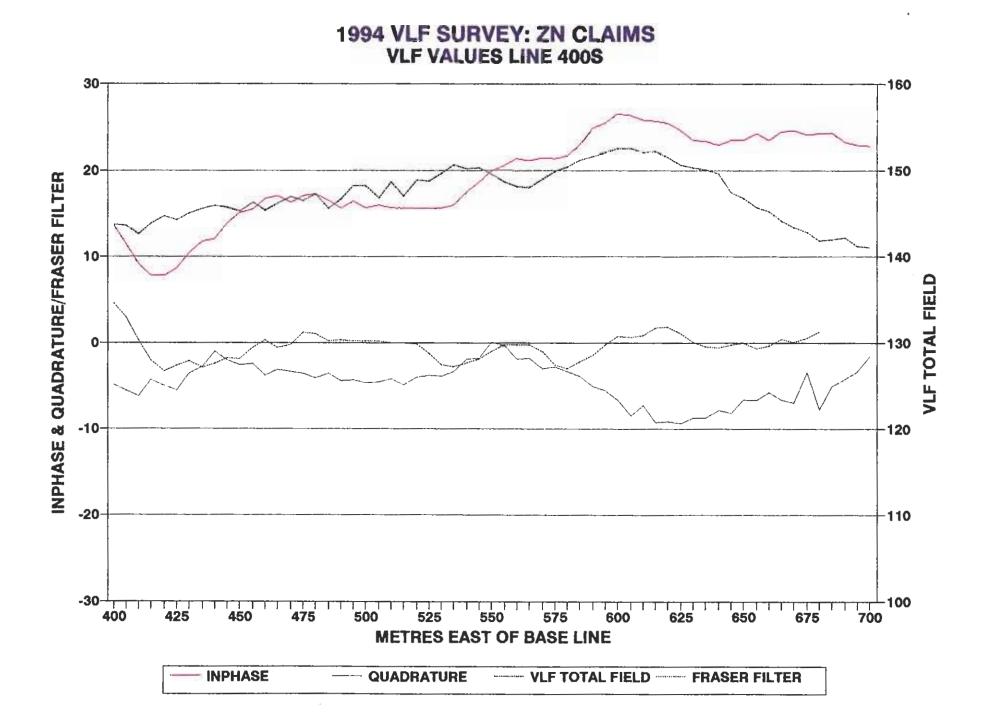
	DON SUTHERLAN		Calgary, Canada Tel (403	10 Street N.E. Alberta T2E 6K3 () 250-1901 () 250-8265 1 3 - 0 C T - 9 4 PAGE: 7 0F 7 COPY: 1 0F 2	Kleine Waterstraat 2- Box 2510 Paramaribo - Surinar Tel (597) 421523 Fax (597) 421533
MR. DON SUTH R.R. # 2, GLEN COCHRANE, ALBE	BOW ROAD			ER: 9335D-	
SAMPLE TYPE:		LABOR AU PPB	ATORY 1 Ag PPM	REPOR	
D-: 7 D-: 7 D-: 7	91 92 93 94 95	5.0 7.0 12.0 10.0 9.0	1.5 0.6 0.5 0.5 1.2		
D-: 7	96 97 98	7.0 8.0 7.0	<0.2 0.4 0.5		
SIGNED:	C. Dougla	s Read, RY MANAGER			
SIGNED.	LABORATO				
DIGKED.	LABORATO				
DIGNED.	LABORATO				
JIGNED.	LABORATO				

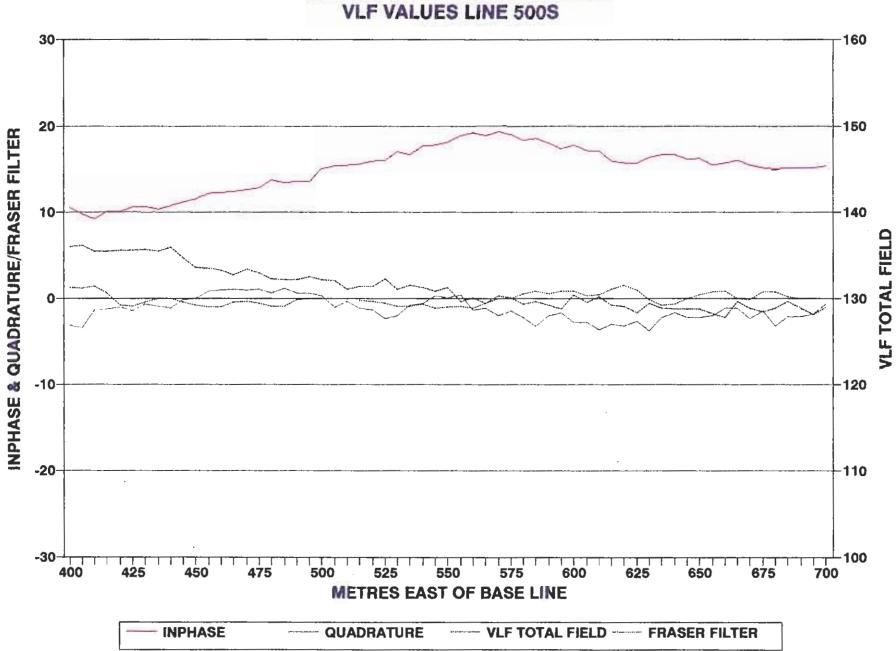
APPENDIX V

GEOPHYSICAL PROFILES

Composite: VLF In Phase

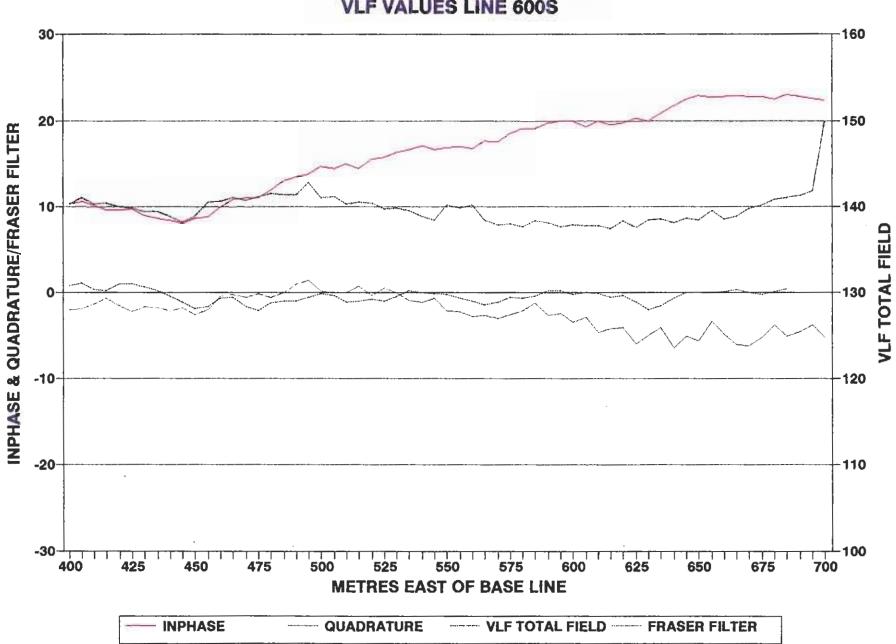
VLF Quadriture

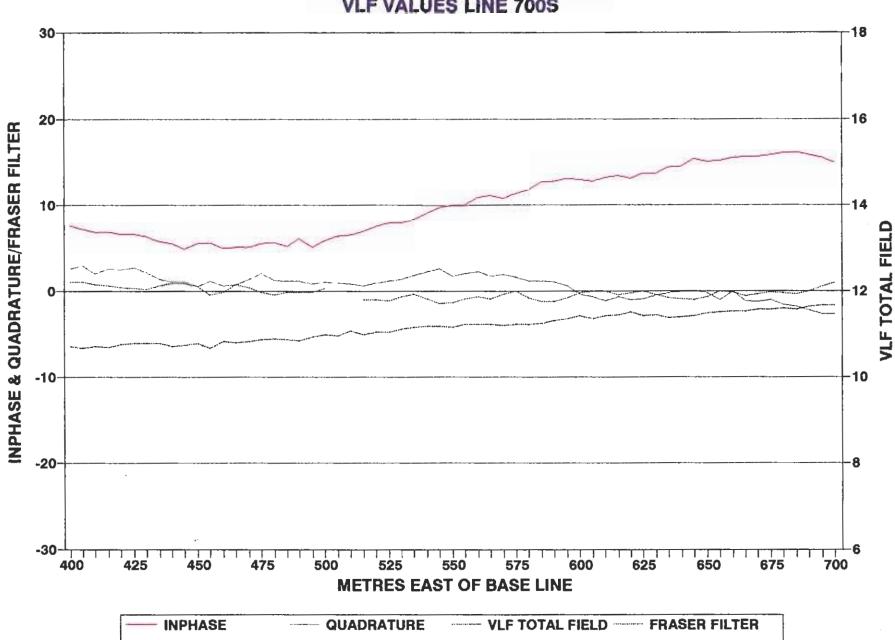

VLF Total Field


VLF Fraser Filter

Individual: Magnetic

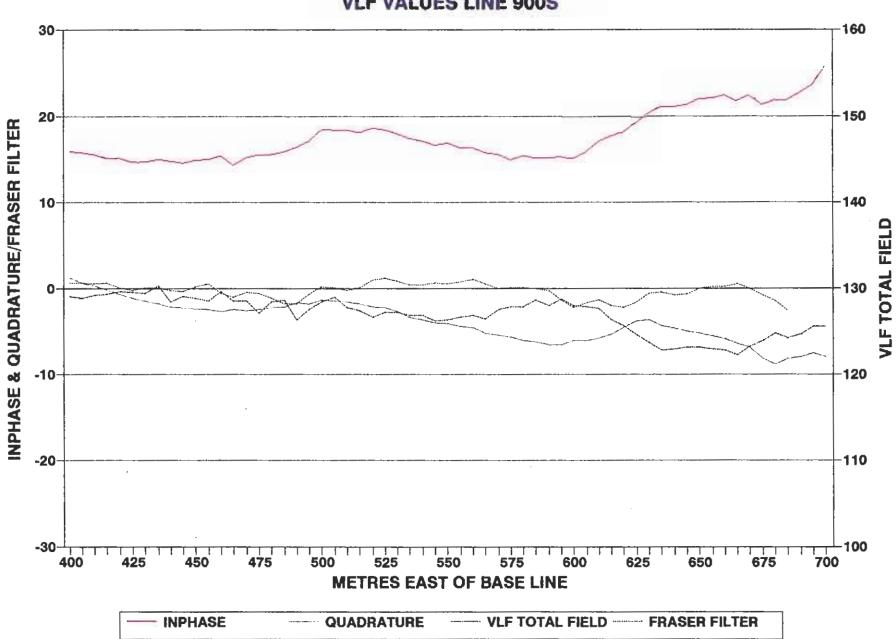
Stacked: Fraser Filter

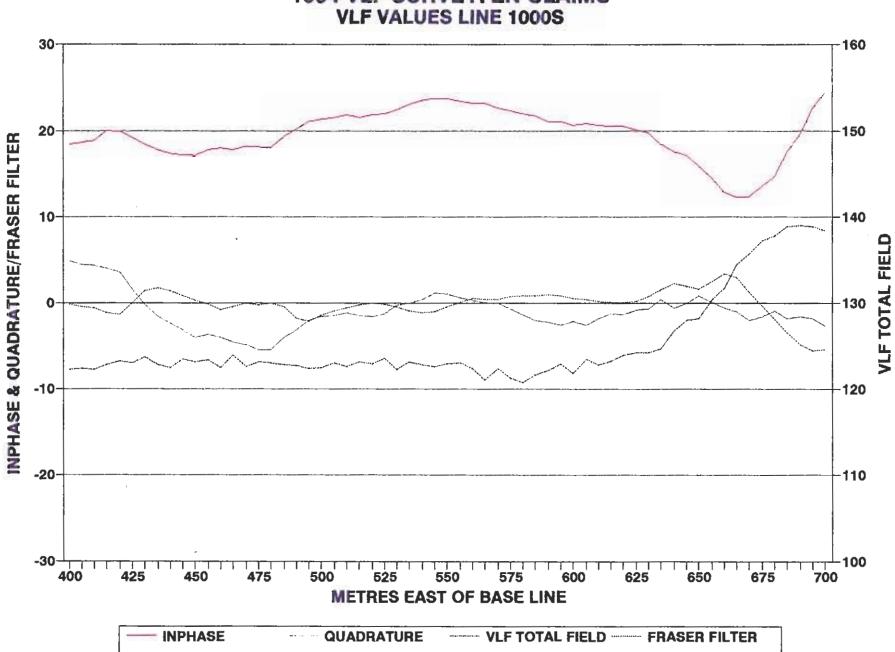

Magnetic

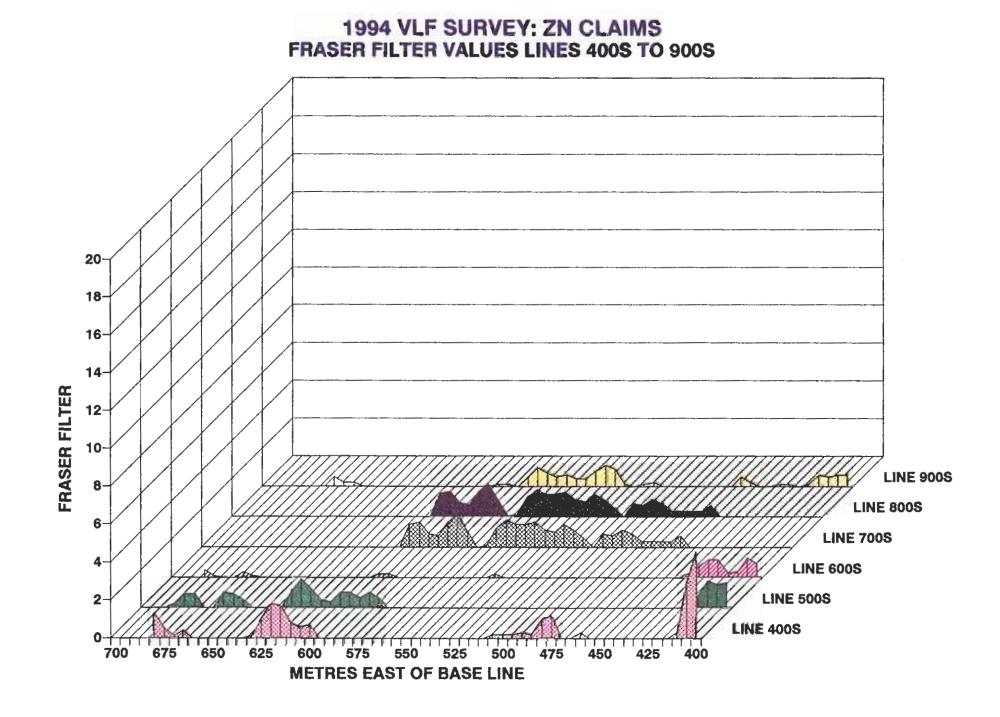


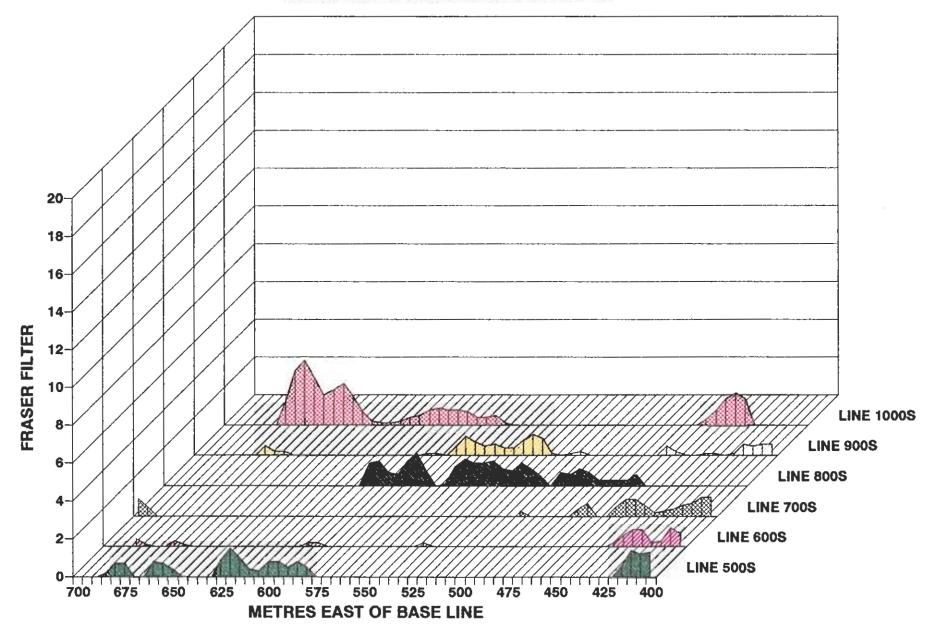
1994 VLF SURVEY: ZN CLAIMS VLF VALUES LINE 500S


T

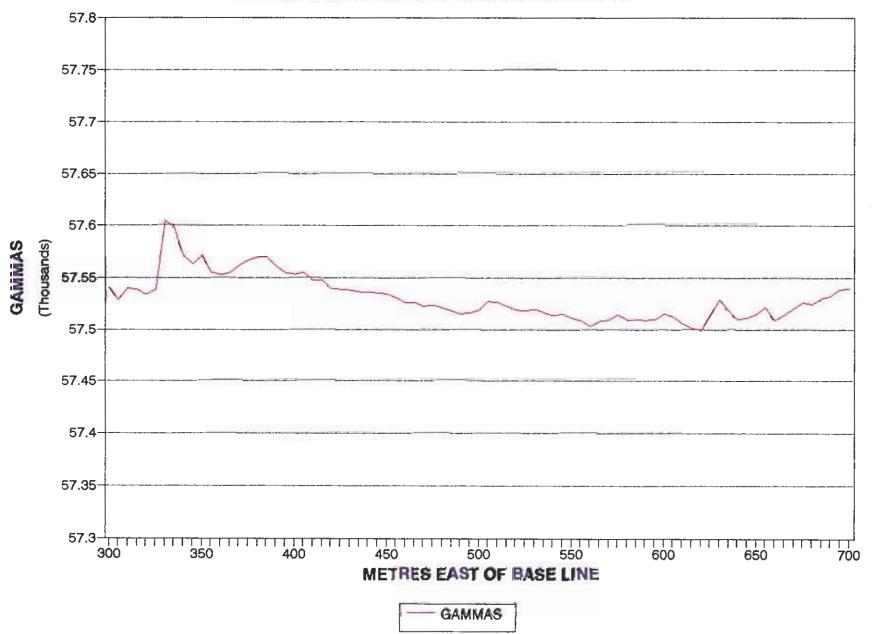

1994 VLF SURVEY: ZN CLAIMS VLF VALUES LINE 600S

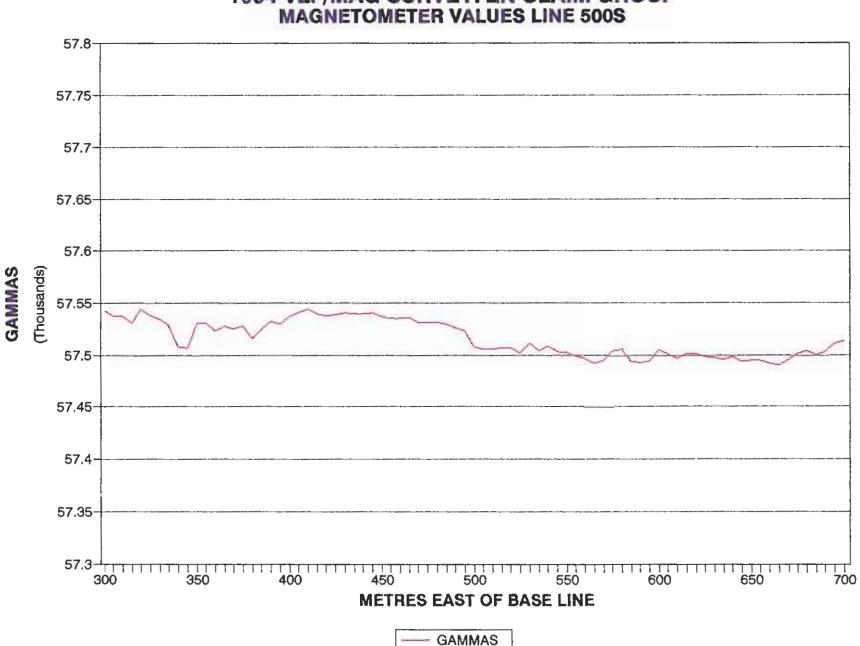

1994 VLF SURVEY: ZN CLAIMS VLF VALUES LINE 700S


1994 VLF SURVEY: ZN CLAIMS VLF VALUES LINE 800S


1994 VLF SURVEY: ZN CLAIMS VLF VALUES LINE 900S

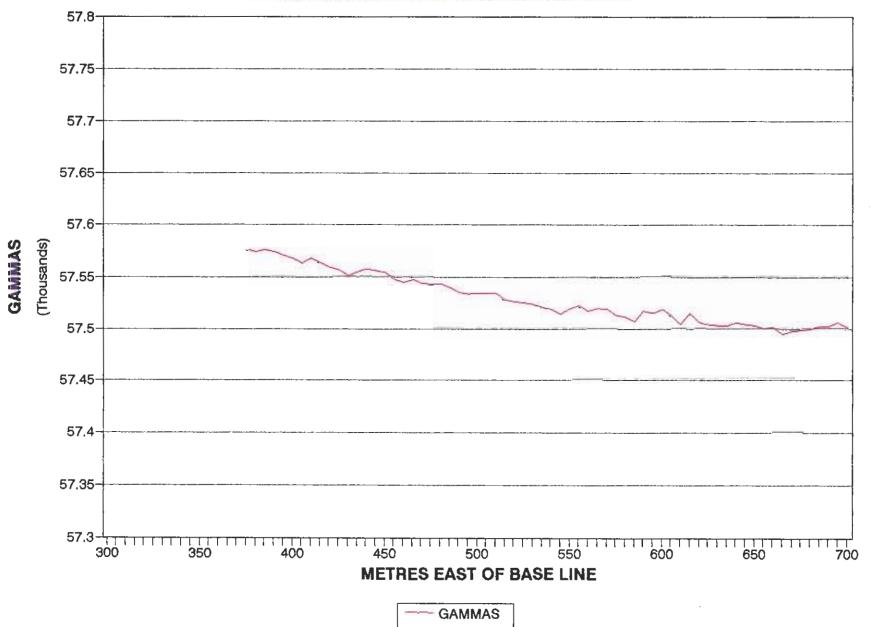
1994 VLF SURVEY: ZN CLAIMS

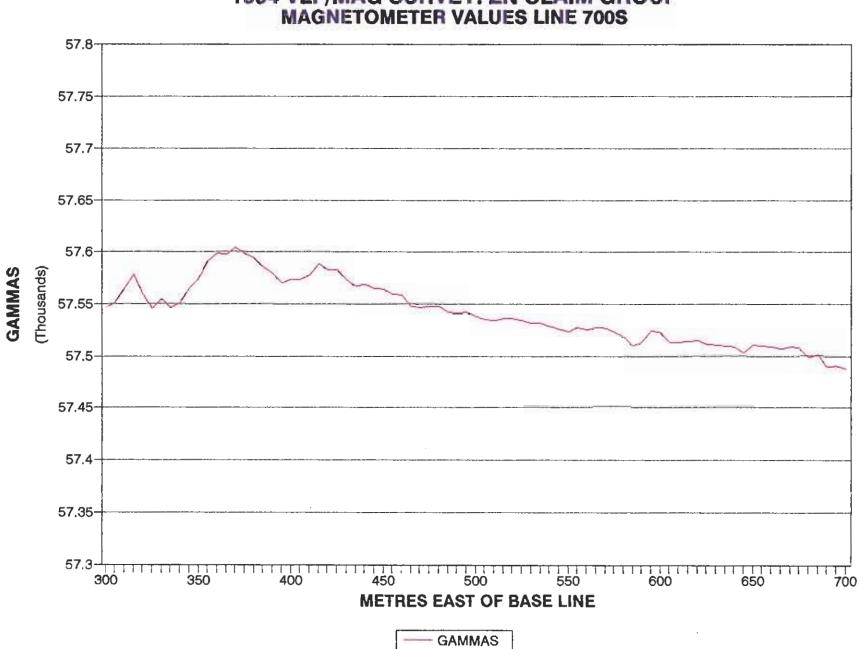



1994 VLF SURVEY: ZN CLAIMS FRASER FILTER VALUES LINES 500 TO 1000S

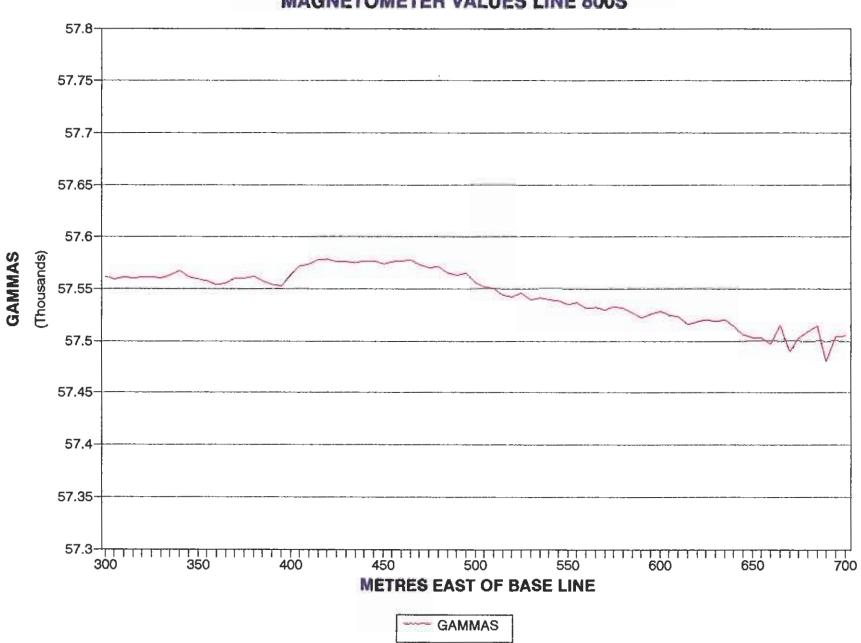
_

1994 VLF/MAG SURVEY: ZN CLAIM GROUP MAGNETOMETER VALUES LINE 400S

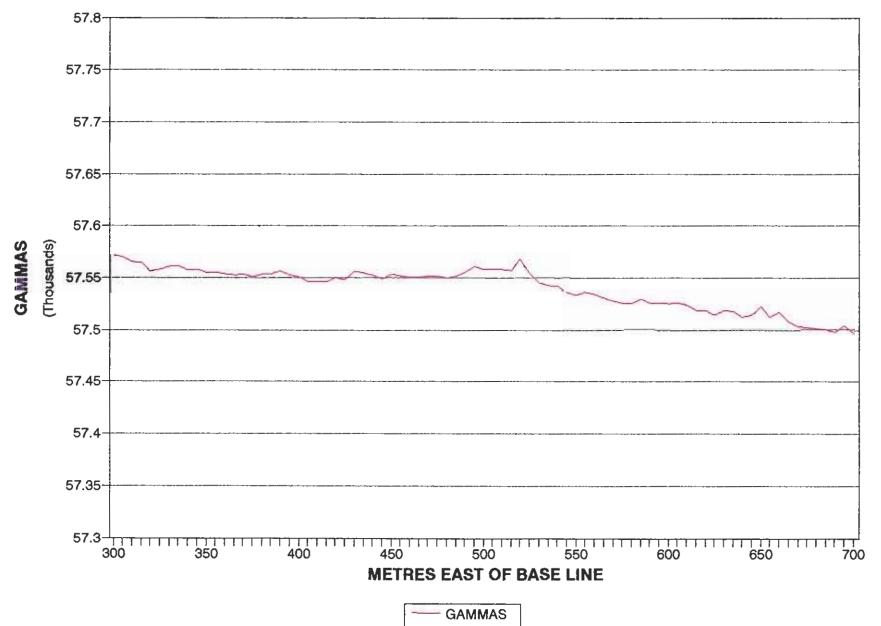




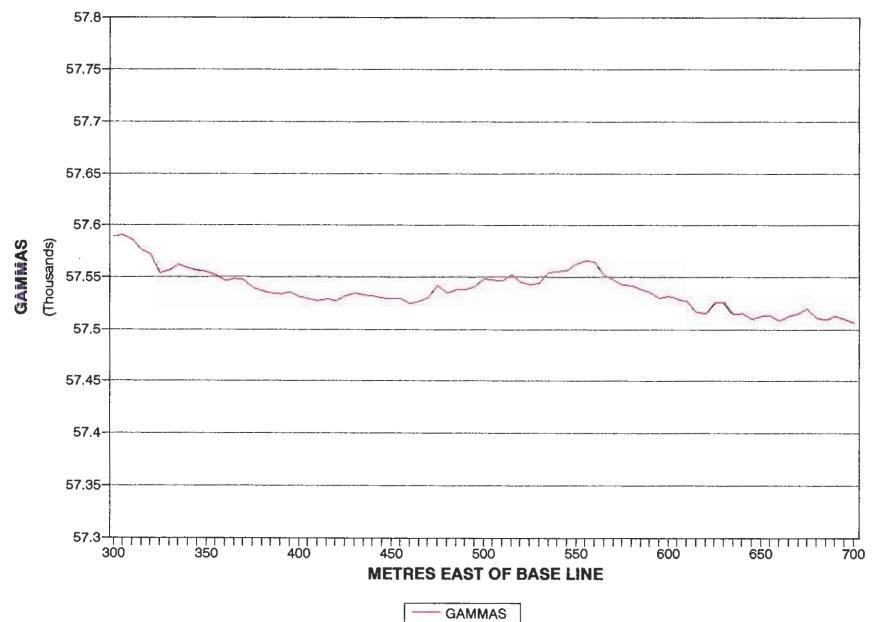
1994 VLF/MAG SURVEY: ZN CLAIM GROUP MAGNETOMETER VALUES LINE 500S


.

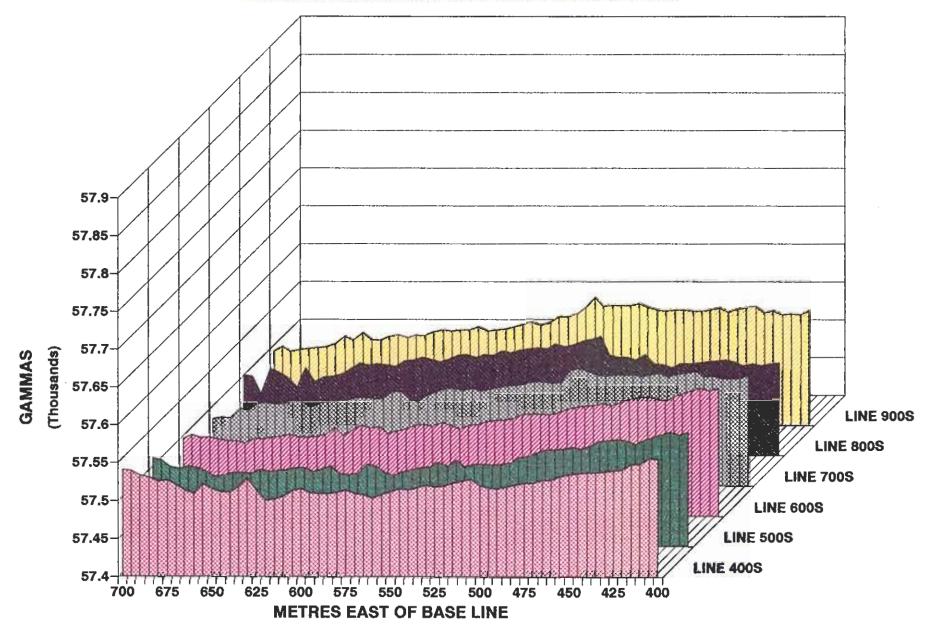
1994 VLF/MAG SURVEY: ZN CLAIM GROUP MAGNETOMETER VALUES LINE 600S

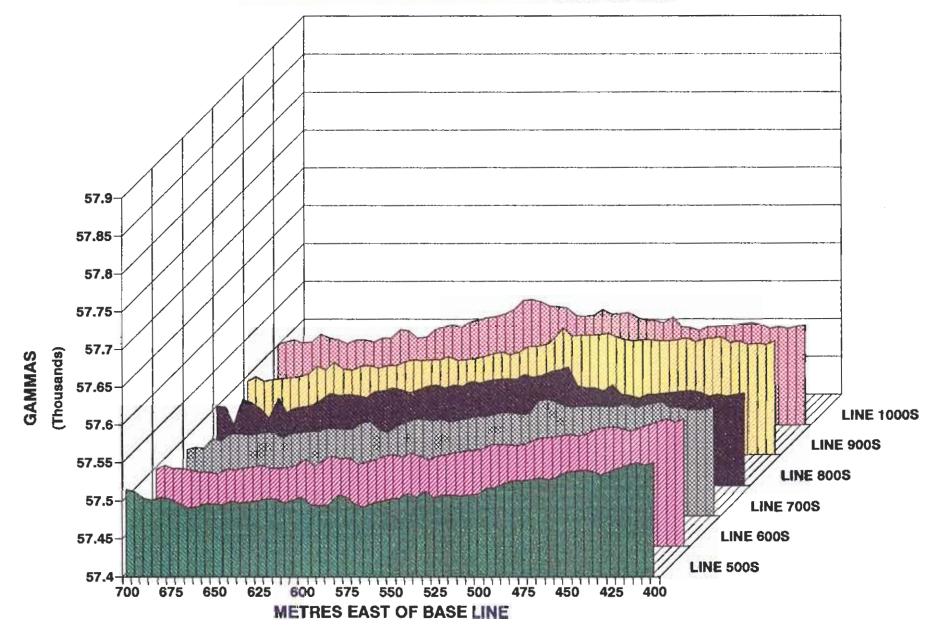


1994 VLF/MAG SURVEY: ZN CLAIM GROUP MAGNETOMETER VALUES LINE 700S



1994 VLF/MAG SURVEY: ZN CLAIM GROUP MAGNETOMETER VALUES LINE 800S


1994 VLF/MAG SURVEY: ZN CLAIM GROUP MAGNETOMETER VALUES LINE 900S


1994 VLF/MAG SURVEY: ZN CLAIM GROUP MAGNETOMETER VALUES LINE 1000S

1994 GEOPHYSICAL SURVEY: ZN CLAIMS MAGNETOMETER VALUES LINES 400S TO 900S

1994 GEOPHYSICAL SURVEY: ZN CLAIMS MAGNETOMETER VALUES LINES 500S TO 1000S

