

LOG		MAR 0 7 1995	U	
ACT	ION:			
FILE	NO:			

DRILLING

ASSESSMENT REPORT

ON THE

KLIYUL GROUP OF CLAIMS

LATITUDE: 56°30'N LONGITUDE: 126°08'W

DECEMBER 1994

FILMED

GEOLOGICAL BRANCH ASSESSMENT REPORT

Author:

D.G. GILL, EXPLORATION GEOLOGIST

Operator:

NORANDA EXPLORATION COMPANY, LIMITED

(No Personal Liability)

TABLE OF CONTENTS

		P	AGE
1.0	INTRO	DDUCTION	1
	1.1	Location and Access	1
	1.2	Topography and Physiography	1
	1.3	History	2
	1.4	Claims	4
	1.5	Economic Potential	. 5
	1.6	Survey Control	5
	1.7	Sampling	7
2.0	GEOL	OGY	8
	2.1	Regional	8
	2.2	Detailed	8
3.0	DIAM	OND DRILLING.	11
	3.1	Presentation of Drill Holes 20-28 Data	11
	3.2	Synopsis of Drill Holes	11
4.0	KLIYU	JL EAST	18
	4.1	Geology, Alteration, Structure	18
	4.2	Geochemistry (Rocks and Soils)	20
5.0	PRESE	ENTATION OF DRILL HOLE 29 DATA	22
	5.1	Synopsis of Drill Hole	22
6.0	CONC	LUSIONS	23
	REFEI	RENCES	
		<u>APPENDICES</u>	
Anne	endix I:	Laboratory Analytical Techniques	
		Kliyul East Soil and Rock Geochemical Results and Descriptions	
		Drill Core Geochemical Results	
		Diamond Drill Logs	
		Statement of Costs	
		Statement of Qualifications	

DRAWINGS

	SCALE
Location Map	1:2,000,000
Claim Location Map	1:50,000
Regional Geology	1:20,000
Property Geology	1:5,000
Drill Hole Plan Map	1:5,000
Drill Hole Locations (Main Zone)	1:1,000
Section 2620E/DDH NK94-20	1:250
Section 2720E/DDH NK94-21	1:250
Section 2780E/DDH NK94-22	
Section 2880E/DDH NK94-23	1:250
Section 2866E/DDH NK94-24	1:250
Section 2555E/DDH NK94-25	1:250
Section 1300E/DDH NK94-26	1:250
Section 3370E/DDH NK94-27	1:250
Section 3710E/DDH NK94-28	1:250
Kliyul East Geology	1:5,000
Kliyul East Alteration	1:5,000
Kliyul East Structure	1:5,000
Kliyul East Rock Sample Locations	1:5,000
Kliyul East Au in Soils	1:5,000
Section 79477E/DDH NK94-29	
	Section 2720E/DDH NK94-21 Section 2780E/DDH NK94-22 Section 2880E/DDH NK94-23 Section 2866E/DDH NK94-24 Section 2555E/DDH NK94-25 Section 1300E/DDH NK94-26 Section 3370E/DDH NK94-27 Section 3710E/DDH NK94-28 Kliyul East Geology Kliyul East Alteration Kliyul East Structure Kliyul East Rock Sample Locations Kliyul East Au in Soils

1.0 INTRODUCTION

During the period between August 1 and August 15, 1994 Noranda Exploration Company, Limited and Britton Bros. Diamond Drilling Ltd. conducted a 9 hole, 1046.7 meter drill programme on portions of the Kliyul property to test magnetic highs, coincident copper-gold soil anomalies and areas of anomalous gold mineralization discovered during a 1993 test pit programme. The main focus of this drill programme was to test the lateral and downdip potential of the auriferous and cupriferous magnetite-silica replacement body drill tested previously by Sumac Mines Ltd. (1974), Kennco/Vital Pacific Resources Ltd. (1981) and Noranda (1993). The first portion of this report describes the entire 9 hole drill programme although only work performed between August 1 and 10 is being applied for assessment.

The second portion of the report describes a second drill programme conducted between October 4 - 11, 1994 which targeted extremely altered, pyritic and sheared volcaniclastics and monzonite dykes with coincident gold in soil anomalies. A brief discussion of the earlier geological and geochemical surveys conducted over this area known as Kliyul East has been included prior to the drilling section to describe targeting rationale. All work performed during this last phase of drilling is being applied toward assessment as shown in the Statement of Work forms in the front of this report.

1.1 Location and Access

The Kliyul group of claims is located approximately 200 km north-northeast of Smithers, B.C. on N.T.S. Mapsheets 94D/8 and 9 in the Omineca Mining Division.

Camp mobilization was achieved by helicopter based at Johanson Lake (refer to Drawing 1 for a rough location of the property).

1.2 Topography and Physiography

The Kliyul group of claims is situated above treeline with elevations ranging from 5600 to 7000 feet. The claims straddle an east-northeast trending glacial valley which is drained to the east and northeast by Lay Creek and to the southeast and southwest by tributaries at the headwaters of Kliyul Creek.

Slopes to a maximum of 45° occur in the northern portion of the property along an east-west trending ridge whereas the southwestern part of the claim group covers a gently sloping, wide, marshy valley floor. The southeastern area of the property is dominated by two northwesterly trending ridges with moderate to steep relief.

1.3 History

Below is a brief outline of documented work performed on the property in chronological order.

1970-1972: Original property staked and geochemically and geophysically surveyed by Kennco Explorations. These surveys delineated a 2.5 km x 1.0 km I.P. chargeability anomaly and coincident (yet smaller) copper soil geochemical and magnetic anomalies.

1973: Property optioned to Sumac Mines Ltd. who drilled 3 x-ray holes (no results available).

Sumac Mines drilled 6 'BQ' holes to test the West and East Zone copper soil anomalies and 5 'BQ' holes into the magnetic high. The latter drill holes intersected magnetite-copper-gold mineralization within a well fractured, sericite, chlorite, epidote, carbonate, quartz, pyrite skarn hosted by calcareous andesite tuffs and agglomerates and lesser dioritic units. A reserve of 2.5 million tons of 0.3% Cu and 0.03 opt Au was returned from this skarn zone.

1981: Kennco and Vital Pacific drilled 4 more holes into the central skarn zone all in a southerly direction. Results on this programme were less than favourable.

BP Minerals relogged and sampled portions of available core and conducted geological mapping and geochemical sampling.

1990: Placer Dome conducted linecutting, magnetometer and VLF-EM surveying, soil and rock sampling and prospecting in order to delineate magnetic anomalies similar to the known skarn zone, possible porphyry style mineralization and/or mineralized structures parallel to the large glacial valley.

1992: Noranda conducted 1:5,000 geological mapping concentrating on alteration assemblages as well as rock and minor soil sampling.

1993: Noranda completed a 6 hole, 560 meter reverse circulation drill programme to test magnetic highs and coincident copper-gold soil anomalies in the vicinity of the previously drilled 'skarn' zone. Subsequently more detailed mapping and a ground magnetic survey was conducted and a 288 test pit programme was also completed over areas of anomalous geochem, alteration and magnetic highs distal to the known magnetite occurrence.

1.4 Claims

The Kliyul group of claims is comprised of 52, two-post mineral claims and 1, 18 unit mineral claim (Drawing 2) owned by Hemlo Gold Mines Inc. and Golden Rule Resources Ltd. respectively.

CLAIM	RECORD		RECORD	ANNIVERSARY
NAME	NUMBER	UNITS	DATE	DATE
KLI 1	245065	1	AUG. 10, 1970	AUG. 10, 2005
KLI 2	245066	1	AUG. 10, 1970	AUG. 10, 2005
KLI 3	245067	1	AUG. 10, 1970	AUG. 10, 2005
KLI 4	245068	1	AUG. 10, 1970	AUG. 10, 2005
KLI 5	245069	1	AUG. 10, 1970	AUG. 10, 2005
KLI 6	245070	1	AUG. 10, 1970	AUG. 10, 2005
KLI 7	245071	1	AUG. 10, 1970	AUG. 10, 2005
KLI 8	245072	1	AUG. 10, 1970	AUG. 10, 2005
KLI 9	245073	1	AUG. 10, 1970	AUG. 10, 2005
KLI 10	245074	1	AUG. 10, 1970	AUG. 10, 2005
KLI 11	245075	1	AUG. 10, 1970	AUG. 10, 2005
KLI 12	245076	1	AUG. 10, 1970	AUG. 10, 2005
KLI 13	245077	1	AUG. 10, 1970	AUG. 10, 2005
KLI 14	245078	1	AUG. 10, 1970	AUG. 10, 2005
KLI 15	245059	1	AUG. 10, 1970	AUG. 10, 2005
KLI 16	245080	1	AUG. 10, 1970	AUG. 10, 2005
KLI 17	245081	1	AUG. 10, 1970	AUG. 10, 2005
KLI 18	245082	1	AUG. 10, 1970	AUG. 10, 2005
KLI 19	245083	1	AUG. 10, 1970	AUG. 10, 2005
KLI 20	245084	1	AUG. 10, 1970	AUG. 10, 2005
KLI 21	245155	1	SEP. 11, 1970	SEP. 11, 2005
KLI 25	245156	1	SEP. 11, 1970	SEP. 11, 2005
KLI 26	245157	1	SEP. 11, 1970	SEP. 11, 2005
KLI 27	245158	1	SEP. 11, 1970	SEP. 11, 2005
KLI 28	245159	1	SEP. 11, 1970	SEP. 11, 2005
KLI 39	245682	1	JUL. 12, 1971	JUL. 12, 2005
KLI 40	245383	1	JUL. 12, 1971	JUL. 12, 2005
KLI 41	245384	1	JUL. 12, 1971	JUL. 12, 2005
KLI 42	245385	1	JUL. 12, 1971	JUL. 12, 2005
KLI 43	245386	1	JUL. 12, 1971	JUL. 12, 2005
KLI 44	245387	1	JUL. 12, 1971	JUL. 12, 2005
KLI 45	245388	1	JUL. 12, 1971	JUL. 12, 2005
KLI 46	245389	1	JUL. 12, 1971	JUL. 12, 2005
KLI 47	245390	1	JUL. 12, 1971	JUL. 12, 2005
KLI 48	245391	1	JUL. 12, 1971	JUL. 12, 2005
KLI 49	245392	1	JUL. 12, 1971	JUL. 12, 2005
KLI 50	245393	1	JUL. 12, 1971	JUL. 12, 2005

CLAIM NAME	RECORD NUMBER	UNITS	RECORD DATE	ANNIVERSARY DATE	
UTA 4	245777	1	AUG. 29, 1973	AUG. 29, 2005	
UTA 6	245778	1	AUG. 29, 1973	AUG. 29, 2005	
UTA 8	245779	1	AUG. 29, 1973	AUG. 29, 2005	
YUL 3	318890	1	JUL. 6, 1993	JUL. 6, 2005	
YUL 4	318891	1	JUL. 6, 1993	JUL. 6, 2005	
YUL 5	318892	1	JUL. 6, 1993	JUL. 6, 2005	
YUL 6	318893	1	JUL. 6, 1993	JUL. 6, 2005	
YUL 7	319492	1	JUL. 15, 1993	JUL. 15, 2005	
YUL 8	319493	1	JUL. 15, 1993	JUL. 15, 2005	
YUL 9	319494	1	JUL. 15, 1993	JUL. 15, 2005	
YUL 10	319495	1	JUL. 15, 1993	JUL. 15, 2005	
YUL 11	319496	1	JUL. 15, 1993	JUL. 15, 2005	
YUL 12	319497	1	JUL. 20, 1993	JUL. 20, 2005	
YUL 13	319498	1	JUL. 20, 1993	JUL. 20, 2005	
JO 6	242398	1	JUL. 12, 1990	JUL. 12, 1997	
DARB 2	316541	1	MAR. 10, 1993	MAR. 10, 2005	

1.5 Economic Potential

Historical drilling on the Kliyul property by Sumac Mines Ltd. and Kennco/Vital Pacific in 1974 and 1981 has outlined a Cu-Fe-Au skarn zone estimated to contain 2.5 million tons of 0.3% Cu and 1.03 gpt Au which is situated on the northern flank of one of several magnetic highs which constitute a larger zone of high magnetic susceptibility measuring 450 m x 350 m. Previous examination of the old drill core and drill logs suggests that the higher grade copper and gold values are associated with higher magnetite content. Based on this information the potential for increasing the tonnage of the Cu-Fe-Au 'skarn' zone is considered excellent.

1.6 Survey Control

The surveying of drill hole collars during this programme was conducted utilizing Placer Dome's 1990 metrically chained and slope corrected grid for control. This grid was also used by Noranda field personnel during the 1992 mapping programme and subsequent surveys on the main Kliyul property. A second grid system was established in the Kliyul East area to better cover the northwest trending geology and structural fabric. This grid was established with winglines at 200 meter intervals and 25 meter station spacings and was also slope corrected and tied into topographic features for control.

1.7 Sampling

Sampling of the drill core was done primarily at 2.0 meter intervals. Interval length was dependent on lithologies as well as abundance of mineralization encountered. All samples were sent to Noranda Exploration Laboratory at Unit #1, 7550 - 76th Street, Delta, B.C.

Refer to Appendix I for laboratory analytical techniques and Appendix III for geochemical results of the drill core.

2.0 GEOLOGY

2.1 Regional (Drawing #3)

The Kliyul property is situated within the Intermontane Belt which is comprised of Upper Triassic to Lower Jurassic island arc volcanics, volcaniclastics and minor sediments of the Takla Group which hosts such Cu-Au porphyry deposits as Mt. Milligan and Kemess. The dominantly volcanic package in the Kliyul Creek area has been intruded by Jura-Cretaceous aged diorites, monzonites and syenites associated with the Hogem Batholith.

Prominent structural features in the area include NW, E-W, N-S and NNE-SSW trending fault systems. At Kliyul the first two systems seem to be closely related to mineralization.

2.2 Detailed

Geological surveying of the Kliyul project area was conducted at 1:5,000 scale on the Kliyul grid using flagged, metrically chained grid lines and topographic bases for control. The resulting map (Drawing 4) for the Kliyul property is a combination of Noranda's 1992 and 1993 mapping and shows rock types, rock sample locations, test pit locations and drill sites.

Mapping has confirmed that the survey area is underlain by a late Triassic aged volcanosedimentary succession of Takla Group rocks intruded by Triassic-Jurassic aged gabbro/pyroxenites, listwanites, monzonites and diorites and Cretaceous aged quartz monzonites/diorites.

The southeast section of the property is dominated by massive feldspar +/- augite phyric andesitic tuffs and flows (Unit 1) which are intercalated with beds of fine grained laminated, white to grey limestones and agglomerates with a limy matrix containing large clasts (up to 30-40 cm) of limestone and volcanic derived material (Unit 3). Pyritic, dark grey, finely laminated sediments (sandstones, argillites, Unit 4) stratigraphically overly the section of impure limestones. Locally the sedimentary pile also contains sections of graphitic mudstones and shales (Unit 5). Bedding and foliation orientations suggest that the volcano-sedimentary package in this area of the grid strikes northwest and dips moderately northeast.

Unconformably overlying the above mentioned stratigraphy in the far southeast portion of the map area are flat lying, massive dark green augite porphyry flows and tuffs which are typically magnetic and well epidotized. Brecciation of this unit (#6) is thought to be related to faulting and late cross-cutting dykes.

Similar stratigraphy is evidenced in the north-central portion of the grid area where the rocks are folded in a shallow syncline with an east-west axial trace. The southern limb strikes east-west with shallow dips to the north. Local north-south strikes, easterly dips within the sediments on this limb of the fold are due to moderate intrafolding. The northern limb of the syncline exhibits moderately steep dips to the southeast which are exposed on the north facing slopes of an east-west trending ridge underlain by augite porphyry flows.

In the west-central portion of the grid the predominantly volcanic rich sequence of undifferentiated andesitic tuffs and flows is observed with a basic east-west trending orientation and intercalated with a pervasively epidotized fragmental andesite which exhibits predominantly angular felsic intrusives clasts (Unit 2). Further west the stratigraphy begins to strike north-south with moderate to shallow east dips observed in the sedimentary package.

It is postulated that the sedimentary sequences within the Takla Group observed in the gridded area represent one distinct stratigraphic horizon. However, it is unclear whether the sequence of argillites/limestones to the south and west of the large northwest-southeast trending fault (marked by listwanite outcroppings) is connected below surface to the similar sedimentary package in the northern portion of the survey area by gentle, east-west trending folds or if the large east-west trending fault marked by the headwaters of west Kliyul Creek and Lay Creek and by patches of ferrocrete (or another unobserved fault to the north of the baseline) has caused vertical displacement between the two major sedimentary occurrences.

Intrusive rocks observed during the mapping programme consist of listwanites (Unit 8), gabbro/pyroxenites (Unit 9), altered monzonite/diorite (Unit 10), melanocratic diorites (Unit 11 including microdiorite dykes), leucocratic diorites (Unit 12), quartz monzonites (Unit 13) and fine to medium grained feldspar porphyry dykes (Unit 14).

The predominant trend of intrusive occurrences on the grid appears southeast to northwest. In the southeast portion a gabbro/pyroxenite intrusive occurs along a sheared/faulted contact between the sedimentary-volcanic package to the south and highly altered and foliated monzonite/diorite to the north. This ultramafic intrusive grades or alters to listwanite and continues northwest for 2500 meters before disappearing under glacial drift cover of the West Kliyul Creek valley and is again exposed in the far northwest portion of the map area. It is not known if the listwanite dyke crosscuts the east-west trending fault along the baseline or if the listwanite and altered monzonite/diorite intrusives have been left laterally displaced for approximately 1.5 km in an east-west direction.

The most visually striking intrusive in the survey area consists of an intensely sheared, bleached, pyritic (5-10%), strongly to moderately sericite-quartz-clay altered and gossaned sheeted dyke complex ranging in composition from feldspar porphyritic diorite to feldspar +/-quartz porphyritic monzonite. This intrusive complex also strikes northwest and exists near Divide Lake through to the main skarn mineralization and area of drilling and test pitting. Other occurrences of Unit 10 can be observed as plugs/dykes on lines 2600E and 2800/2500N and in the northwest corner of the grid along line 800E.

Field observations of contact relationships suggest that the next phase of intrusion consists of the massive, medium to coarsely crystalline, melanocratic diorite which outcrops as a plug on the east side of the headwaters of East Kliyul Creek between lines 400E & 4800E, on line 3200E, 1800N, intruding the altered feldspar porphyritic monzonite/diorite, on lines 1000E & 1200E, 2400N, on the southwest portions of the Morraine grid and to the far east-central part of the grid on lines 5600-6000E/2400N. This unit stands out as a strong magnetic anomaly on the airborne vertical magnetic gradient map due to finely disseminated magnetite. The unit appears relatively fresh and uniform and averages 40% mafics (hornblende), 50% plagioclase and minor potassium feldspar. It is believed that this intrusive phase is responsible for the subsequent altering of the feldspar porphyry monzonite/diorite and introduction of the Fe-Cu-Au skarn mineralization.

Other smaller dykes and plugs of medium grained, leucocratic diorite and felsic, feldspar porphyry dykes occur throughout the property while to the northwest and northeast corners of the grid exist larger, younger, fresh looking quartz monzonites of probable Cretaceous age.

3.0 DIAMOND DRILLING PROGRAMME (PHASE I)

The main focus of the 1994 drill programme was to test the lateral and depth extensions of the previously drilled magnetite-silica replacement zone known as the Kliyul Main skarn zone. Drill holes 94-20, 21, 22, 23, 24 and 25 were spotted south and west of previously drilled holes targeting what was believed to be a WNW-ESE trending flat-lying magnetite-silica body dipping 20-30° SSW with coincident high magnetic susceptibility readings and anomalous Cu and Au values obtained from soil geochemistry and test pit sampling.

3.1 Presentation of Drill Hole Data

Drilling parameters for holes 20 through 28 are listed in the table below. Refer to Drawings 5, 6, 7-15 for plans and sections of these holes. Sections show copper results (ppm) with corresponding sample width in meters.

HOLE #	TOTAL LENGTH (meters)		DINATES NORTH	AZIMUTH (TRUE)	DIP	DATE COLLARED	DATE COMPLETED
NK-94-20	152.4	2620	1870	035	-70	AUG 2, 1994	AUG 4, 1994
NK-94-21	125.0	2720	1845	035	-70	AUG 4, 1994	AUG 6, 1994
NK-94-22	108.5	2780	1760	035	-70	AUG 6, 1994	AUG 7, 1994
NK-94-23	152.4	2880	1740	035	-70	AUG 7, 1994	AUG 9, 1994
NK-94-24	64.0	2866	1908	035	-70	AUG 9, 1994	AUG 11, 1994
NK-94-25	131.1	2555	1910	035	-70	AUG 11, 1994	AUG 12, 1994
NK-94-26	118.9	1300	2315	035	-70	AUG 12, 1994	AUG 13, 1994
NK-94-27	91.4	3370	2105	035	-45	AUG 13, 1994	AUG 14, 1994
NK-94-28	103.0	3710	1545	210	-45	AUG 14, 1994	AUG 15, 1994

3.2 Synopsis of Drill Holes (Phase I)

DDH-NK-94-20

This hole was drilled to test the western lobe of a large magnetic anomaly measuring 500 x 400 m and the downdip extension of two mineralized horizons encountered in RC-KL93-5 which returned 0.46 gpt Au, 0.25% Cu over 10 meters (12-22) and 2.3 gpt Au, 0.27% Cu over 24 meters (50-74 meters).

After 9.0 meters of overburden the hole began in very broken and shattered feldspar phyric andesite with weak to strong sericite alteration and weak to moderate chloritization. Fine grained, disseminated pyrite was observed throughout the interval (9.0 - 51.2 m) up to 7% and increasing in areas of more intense sericite. Magnetite occurs as very fine grained disseminations and forms local patches or clots from 44.9 m to the end of the hole. Only trace amounts of chalcopyrite was observed as isolated blebs from ≤1 mm to 2 mm.

From 51.2 to 114.4 m the bedrock encountered remained andesitic in composition but with a high chlorite content and sericite alteration ranging to weak only. This interval also signifies an increase in carbonate fracture filling and epidotization. Magnetite occurs as in the previous section from 0.5 to 4.0% but averaging <1%.

From 114.4 to the bottom of the hole (152.4 m) the core becomes much more competent with 15 to 40% gypsum microfractures and veinlets. This section is moderately pervasively chloritized with weak to moderate sericite. Magnetite occurs in small <2 cm patches and in sections of up to 2 m in length of up to 8-15% disseminated magnetite. Locally, rare chalcopyrite crystals were observed associated with pyrite often hosted in quartz/gypsum veinlets.

Best results returned from this hole were 0.12% Cu/7.8 m (44.0 - 51.8 m), 0.18% Cu/21.3 m (61 - 82.3 m), 0.13% Cu/8.1 m (88.4 - 96.5 m) and 0.17% Cu/19.6 m (114.4 - 134 m) with no appreciable gold values in any of the intervals.

DDH-NK-94-21

This drill hole was targeted on the downdip extension of a mineralized magnetite-silica zone intersected in RC-KL93-4 which returned 1.85 gpt Au, 0.5% Cu over 20.0 m (68 - 88.0 m) and on a >1000 ppm Cu, >200 ppb Au soil anomaly returned from test pit sampling.

After casing to 12.3 m this hole encountered well broken, shattered, moderately chloritized feldspar phyric andesite with weak to moderate chloritization, moderate sericite alteration and 3-4% very fine grained pyrite.

From 76.8 m to the end of the hole (125.0 m) the core becomes much more competent with a distinct gypsum +/- calcite and/or quartz filled crackle breccia texture and several andesite dykes. This section is mainly moderately chloritized with occasional sections of epidotization and sericitization. Magnetite occurs as small centimeter sized clots, as disseminations and associated with quartz veinlets. An increase in very fine grained magnetite is locally observed (to 30% over 2-3 meters) when silica flooding is present and along the margins of silica-pyrite enriched zones. Minor disseminated chalcopyrite was also observed associated with pyrite and occurring along quartz +/- calcite vein selvages.

The best reported copper values from this hole are 0.14%/6.1 m (39.6 - 45.7 m), 0.16% Cu/6.7 m (70.1 - 76.8 m), 0.17% Cu/32 m (84 - 116 m) and 0.27%/3.0 m (122 - 125 m). No appreciable gold values were returned from this hole.

DDH-NK-94-22

Drill hole 94-22 was targeted on the southern most magnetic lobe associated with the larger 400 x 500 m high magnetic susceptibility anomaly which hosts all of the gold and copper bearing mineralization intersected to date. A >1000 ppm Cu, >200 ppb Au in test pit soils anomaly is also located in the collar vicinity.

As in the case of the previous two holes bedrock encountered in this area tends to very broken and shattered from 6.1 (overburden/bedrock interface) to 86.0 m in depth. However, hole 94-22 shows more pronounced foliation, chloritization and sericitization in this upper section than the holes previously mentioned with more frequent dyking. Pyrite concentrations vary from 1 to 12% and averages approximately 5% occurring mainly as fine grained disseminations with local chalcopyrite observed associated with the pyrite grains.

At 86.0 m the core becomes more competent where healed gypsum microfractures occur and dominate the texture to the bottom of the hole. This interval is also characterized by moderate to strong sericite alteration, locally intense quartz veining and local areas of silica flooding with associated fine grained magnetite. Chalcopyrite is most often seen where an increase in fine grained pyrite occurs and along gypsum veinlet selvages.

This hole was stopped at 108.5 meters due to faulting and caving.

The best copper grades returned from this hole are listed below.

- 1. 0.23%/6.0 m (17-23 m)
- 2. 0.16%/9.0 m (31 40 m)
- 3. 0.13%/6.0 m (50-56 m)
- 4. 0.21%/6.0 m (64-70 m)
- 5. 0.14%/28 m (76 104 m)

DDH-NK-94-23

This hole was targeted on the same magnetic anomaly as DDH-NK-94-22 but 100 meters to the east-southeast.

The upper section of this hole is dominated by a series of well broken and esitic and feldspar phyric and esitic flows and tuffs with moderate sericite alteration and local sections of magnetite/silica flooding to 30.5 m.

From 30.5 m to 117.6 m the composition of the core again varies from non-feldspar phyric to feldspar phyric andesites but exhibits more foliation and strong sericitization. Locally magnetite/silica flooded zones occur in thin bands over zones of up to 12 meters wide. Pyrite content within this section ranges from 2 to 5% and has associated very fine grained chalcopyrite.

An increase in gypsum microfracturing, quartz/calcite veinlets and core competency marks the last main section of this hole from 117.6 to 152.4 m (End of hole).

Best copper results from this hole are listed below.

- 1. 0.28% Cu/6 m (31-37 m)
- 2. 0.17% Cu/38 m (50-88 m)
- 3. 0.15% Cu/12 m (92-104 m)
- 4. 0.12% Cu/4 m (118-122 m)
- 5. 0.15% Cu/10 m (134-144 m)
- 6. 0.13% Cu/4 m (148-152 m)

No amomalous gold results were returned from this hole.

DDH-NK-94-24

Drill hole NK94-24 was targeted upon the easternmost lobe of the high magnetic susceptibility anomaly coincident with anomalous WNW trending soil and test pit rock geochemistry values and upon the updip and lateral extension of the mineralized horizon intersected in RC-KL-93-4 which returned 1.85 gpt Au, 0.5% Cu/20.0 m (68-88 m).

The hole was collared in overburden and reached bedrock at a 6.4 m depth where a mottled dark grey and green andesite was cored containing spots of magnetite and silica, disseminated fine grained magnetite, 5% disseminated pyrite, and moderate quartz veining containing some chalcopyrite. Below the 30.5 m depth larger areas or patches of magnetite/silica appear. This interval continues to 45.8 m with an overall magnetite content of 30-40% explaining the ground magnetic response.

From 45.8 to 49.4 m magnetite/silica was observed to replace the entire protolith. Magnetite content of this zone reaches 70% and occurrs as massive, fine grained disseminations and associated with silica flooding. Chalcopyrite in this zone is disseminated and very fine grained and hosted within quartz filled fractures and siliceous zones without magnetite. Core recovery from this interval was less than 40%.

The interval between 49.4 and 60.1 m is dominated by monzonitic dykes cutting andesite similar to that observed from 6.4 to 45.8 m. The larger of these dykes contains disseminated magnetite and chalcopyrite occurring along the edges of magnetite grains and on fracture surfaces.

Foliated, moderately chloritic andesite occurs from 60.1 to 64.0 m with up to 15-20% magnetite and minor chalcopyrite. The hole ended at 64.0 m due to caving problems.

The best reported values of copper from this hole are listed below.

- 1. 0.2%/10.2 m (8.1 18.3 m)
- 2. 0.12%/6.1 m (20.3 26.4 m)
- 3. 0.18%/4.1 m (33.5 37.6 m)
- 4. 0.11%/10.2 m (53.8 64.0 m)

Only two samples returned anomalous values of gold; 69815 = 0.011 opt (0.377 gpt) and 69819 = 0.016 opt (0.549 gpt). Both samples were taken from the interval above the more mineralized horizon.

DDH-NK-94-25

This hole was drilled to test the same anomalies as those hole NK-94-20 tested but was collared 75 meters along strike to the west-northwest.

Bedrock was reached at 9.1 m where a large section of well broken to shattered, locally chloritized, sericitized and epidotized andesites, andesite volcaniclastics, and dacites occurs cut by numerous andesite to monzonite dykes to a depth of 89.4 m. Magnetite in this interval occurs as fine grained disseminations commonly associated with areas of chloritized mafics and with more siliceous zones or patches. Many of the monzonite dykes are well sericitized and more foliated and chloritic sections are observed in host rock between dykes and along dyke contacts.

At 89.4 m to the bottom of the hole (131.1 m) the core continues to exhibit seriticization but calcite veining and gypsum healed microfracturing become much more prevalent.

Magnetite occurs as disseminations, fracture fillings and within and along gypsum vein selvages. Very minor chalcopyrite was observed associated with fine grained disseminated pyrite, with pyrite in gypsum and quartz veins and solely within gypsum veins.

Only two sections of elevated copper were returned from between 41.9 to 43.9 m (2.0 m) at 0.114% and 129.4 to 131.1 m (1.7 m) at 0.14%.

DDH-NK-94-26

This hole was drilled to test the possible western extension of the Main Kliyul mineralized horizon north of the E-W trending 'Kli' fault (which parallels the headwaters of Lay Creek) and which appears to have offset certain sedimentary units and dykes for up to 1.5 km (see geological section). Stratigraphic mapping coupled with a large coincident magnetic high, intrusive activity and altered monzonites carrying up to 0.21% Cu and 5.7 gpt Au suggested similar mineralization to that at the Main zone may have existed at this location.

NK94-26 collared and ended in fine to coarse grained melanocratic diorite which ranged from weakly to moderately magnetic with local epidotization and chloritization of mafics, chloritic fractures and minor quartz, quartz-carbonate +/- chlorite and carbonate veinlets. The dioritic intrusive is also cut by gabbro to quartz monzonite composition dykes.

No mineralized sections or anomalous values are reported from this hole.

DDH-NK-94-27

NK94-27 was drilled to test coincident magnetic susceptibility, anomalous test pit rocks to 0.42 gpt Au and anomalous values in copper and gold returned from test pit soils located immediately downslope of the magnetic/rock geochem target.

After 9.1 m of overburden this hole began coring a section of foliated, strongly sericitized monzonite containing 7-10% fine grained disseminated and fracture filled pyrite with weak to moderate carbonate veining and no magnetite or chalcopyrite to a depth of 33.8 m.

Between 33.8 m and 53.0 m the hole penetrated foliated, chloritized and locally sericitized layers of andesite and smaller interbeds of less foliated, more sericitized dacite intruded by several monzonitic dykes. Carbonate fracture fillings and veining were observed throughout the section and fine grained, disseminated pyrite concentrations of 1-2% were noted.

Weakly to moderately sericitized monzonites with up to 3-10% disseminated and fractured filled pyrite were intersected from 53.0 to 69.7 m.

Moderately sericitized and weakly to moderately chloritic andesites and lesser dacites were observed to the bottom of the hole (91.5 m) with an increase in carbonate +/- quartz veinlets and localized silica flooding. Pyrite concentrations vary from <1% to 20% locally where more felsic, foliated units are encountered.

No observable concentrations of magnetite or chalcopyrite were noted in this hole and no anomalous copper or gold values were returned.

DDH-NK-94-28

A value of 0.58 gpt Au returned from gossanous, sericite-clay altered monzonitic intrusives in test pit sampling along the WNW trending intrusive body associated with the main Kliyul mineralized zone (located 1000 meters to the WNW) was the target for drill hole NK94-28.

An overburden depth of 4.6 m was cased before bedrock was reached which consisted of broken, weakly to moderately sericitized monzonite with pervasive and fracture filled carbonate and fine to medium grained fracture filled pyrite from 2-5%.

From 18.3 m to 27.4 m well broken andesite volcaniclastics were encountered with local strongly sericitized sections, carbonate fracture fillings and fine grained disseminated and fracture filled pyrite from 2-7% and minor monzonitic dykelets.

At 27.4 m to 86.2 m more monzonitic dykes with minor intervals of andesite volcaniclastics were cored. This section contains a strongly pyritic (disseminated and fracture filled) upper zone, weak to strong silicified sections throughout, variable foliation strongest in moderately to strong sericitized zones and abundant carbonate filled fractures as well as carbonate flood zones.

The last section from 86.2 m to 103.0 m is dominated by carbonate altered and veined andesites with fine grained disseminated and fracture filled pyrite. The last 4.5 m is very sericitic and foliated with an increase in pervasive carbonate alteration and quartz veining. The hole was stopped 17 meters short of the intended depth due to caving.

No anomalous values of gold or copper were returned from the samples taken.

4.0 KLIYUL EAST

The area described in this section of the report is located in the southeast corner of the Kliyul claim block adjacent to the KC and Bap claims. Due to the differing alteration and mineralization styles between this area and that at the Main Kliyul zone this section has been separated from the main body of the report. Below is a brief description of the geology, alteration, structure and geochemical results obtained earlier in 1994 during a more detailed programme than the one conducted in 1992-1993. Refer to Appendix II for geochem results for this area and Drawings 17-20 for a graphic display of this data. The grid system for this portion of the claims also differs to that used over the Main zone however the location of DDH NK94-29 has been accurately plotted on both grid systems (see Drawings 5 and 17-20) for reference.

4.1 Geology, Alteration and Structure

Geological surveying on the Kliyul East portion of the property was conducted at 1:5,000 scale using flagged, metrically chained, slope corrected grid lines and topographic bases for control. The resulting maps (Drawings 16-19) show rock types, rock sample locations and alteration as well as structural information.

Mapping has confirmed that the survey area is underlain by a late Triassic aged volcanosedimentary succession of Takla Group rocks intruded by Triassic-Jurassic aged gabbro/pyroxenites, monzonites, and diorites. These are separated into 7 mappable units which are described below and exist in a northwest trending, eastward dipping succession.

Unit 1 is described as andesite volcaniclastics which consist of massive, medium green coloured, crystal and crystal/lithic tuffs. Crystal composition is mainly feldspars which are 1-3 mm, white, block and broken. Fragments observed are monolithic, feldspar phyric volcaniclastics similar to the host matrix and range in size from 2 mm to 1 cm. Fragment content makes up less that 1% of the rock.

At the top (east) of the volcaniclastics and below the augite porphyry unit is an andesite breccia. The majority of the clasts are monolithic and appear to be similar in composition to the matrix; feldspar phyric andesite in a chloritic groundmass and feldspar crystals to 3 mm. The clasts are subangular to subrounded and range in size from less than 1 cm to 30 cm. The brecciated texture is generally difficult to see, especially fresh, broken surfaces. In rare occasions the clasts consist of unaltered, medium grey, silty limestone.

Epidote alteration occurs throughout this unit and varies from weak to strong. Locally pervasive carbonate is present towards the top of the unit.

Lying stratigraphically above the andesite volcaniclastics are rocks of Unit 2 and 3 which consist of fine grained, thinly laminated, grey to black, rusty weathering argillites and grey, medium grained to black, gritty, fine grained limestone. These 2 units mark a period of quiescence between the lower feldspar phyric andesite and the upper augite porphyry flows and flow breccias of Unit 4. Rocks of Unit 4 are described as dark grey-green in color with massive blocky fracturing which form prominent rugged ridge crests. Generally both the flows and flow breccias (monolithic) are porphyritic with euhedral to subhedral pyroxene phenocrysts to 5 mm and 1-2 mm euhedral feldspar crystals and locally appear non-porphyritic and fine grained. Magnetism of these rocks varies from weak to strong. Augite porphyry dykes are also observed cutting underlying stratigraphy.

The remaining units observed on the property consist of a series of intrusive rocks ranging from gabbro through monzonite.

Unit 5 is described as a gabbro complex which contains abundant 3-5 mm euhedral to subhedral pyroxene crystals, is strongly magnetic and exhibits epidote altered feldspars.

Marginal to the gabbro is a melanocratic, hornblende-biotite diorite which locally grades to leucocratic. It is variably magnetic with the more mafic-rich phase having the strongest magnetic signature. This diorite (Unit 6) occurs as dykes/sills as part of the sheeted dyke complex primarily composed of monzonite. The diorite is grey-green, fine grained, equigranular, hornblende rich with weak to strong chlorite alteration and is locally epidotized.

Unit 7 consists of orange weathering, light grey-green monzonite which contains more than 60% feldspar and is fine to medium grained and equigranular. Weathering of this unit creates massive, block fracturing. The monzonite occurs as a sheeted dyke complex occurring mainly between Lines 650N through 656 N.

The most visually striking area of the surveyed grid is a large gossanous zone occurring on the Kli 25, 27 & 28 mineral claims and extends southeastward onto the Bap 10, 14 and 18 mineral claims. This is attributed to the following three types of alteration.

- 1. Silica alteration of the andesite volcaniclastics which is characterized by dark, brick red weathering due to the oxidation of up to 10% fine grained, disseminated silvery, colored pyrite within a grey-green, siliceous matrix. This alteration type is restricted to rocks grid north of line 65600N.
- 2. Propylitic alteration of the andesite volcaniclastics characterized by dark orange weathering and a weakly to strongly chloritized matrix as well as epidotized/clay altered feldspars. Pervasive weak carbonate alteration occurs locally and the rock type contains from 0 to 4% fine grained disseminated, brassy yellow pyrite.

3. The third main alteration type is described as sericite-clay-pyrite (argillic) alteration of volcaniclastics and monzonite. This assemblage is characterized by light orange to yellow-white weathering due to pervasive sericitization and epidotization with or without feldspars altering to kaolinite. This alteration type occurs between lines 648N and 655N topographically below the upper gossanous areas and locally displays a distinct schistose fabric. The rusty fractures and local boxwork texture are indicative of leached pyrite although these areas can contain up to 10% non-weathered, very fine grained, disseminated silvery pyrite.

The two varieties of pyrite observed suggest at least 2 alteration events; propylitic (2) followed by a later silica-sericite rich event (1 & 3) leading to the destruction of the brassy, yellow pyrite and an introduction of the finer grained silvery pyrite.

The predominant strike of the volcano-sedimentary package is northwest-southeast, with dips of 20° to 45° to the northeast. The strike of the foliations in both the altered monzonite and in the altered volcanic tuffs is generally conformable to the strike of the bedding, with dips to the northeast from 23° to 60°. Several distinct narrow shear zones were noted. Joint plane orientations appear to be both subparallel to and crosscutting the foliation.

4.2 Geochemistry

The rock geochemical programme conducted over the Kliyul East portion of the property focused on the gossanous ridge covered by the Kli 25, 26, 27 & 28 and Bap 10, 14 & 18 claims and local rusty weathering pyritic horizons.

All of the rocks sampled within the gossanous/sericite zone have gold values of <100 ppb. Two rocks with gold values of 170 and 330 ppb were collected from a cirque in the northeast portion of the grid. Samples PM0173 and PM0176 were collected from talus boulders of andesite composition with pervasive iron carbonate, 5% disseminated pyrite and some degree of silicification.

The soil geochemical programme essentially focused on the gossanous ridge where anomalous geochemistry had been outlined by previous operators. For the purpose of this report only the Au values are illustrated.

A large >100 ppb Au soil anomaly is located between lines 65200N and 66200N, centered at approximately 79400E (the base line). This anomalous zone averages 700 m in width and strikes for 1.0 km in a northwest direction. It is open in both directions.

Contained within the >100 ppb Au zone is one main northwest striking secondary zone of >200 ppb Au, with values up to 3700 ppb Au. This lies between line 65200N and 65600N and is semi-coincident with the gossan/sericite alteration zones.

Gold values of >200 ppb Au are also found in the northeast part of the grid within a north facing cirque known to contain anomalous rock samples.

5.0 PRESENTATION OF DRILL HOLE NK94-29 DATA

Drilling parameters for the second phase of drilling on the Kliyul property in 1994 are listed below.

HOLE	TOTAL LENGTH (meters)		DINATES NORTH	AZIMUTH (TRUE)	DIP	DATE COLLARED	DATE COMPLETED
NK94-28	73.76	4820	1405	215	-65	OCT 6, 1994	OCT 10, 1994
		(79477)	*(65190)				

*Shows the differing grid coordinates for the location of DDH-NK-94-29. The coordinates in parantheses are from the Norex established grid while the other set corresponds to the translated Placer grid used on the rest of the Kliyul property.

5.1 Synopsis of Drill Hole NK94-29

A strongly sericitized, gossaned, foliated area of andesites and numerous monzonitic dykes with coincident gold soil anomalies was the target for this drill hole. Although no anomalous rock samples were returned from this area it was felt that if the extremely oxidized bedrock was penetrated an increase in in-situ gold mineralization may occur at depth below the leached cap.

This hole cased through 7.62 m of talus fines and rubble before hitting bedrock. From this point to 17.4 m a very broken, chloritized and weakly epidotized diorite was intersected. The rock in this interval was so broken that only a 16% recovery was achieved.

From 17.4 m to the bottom of the hole broken and oxidized andesitic volcaniclastics were encountered with numerous small diorite dykelets noted. Carbonate +/- quartz veinlets were observed throughout the section and pyrite content varies from trace to 5% (disseminated and fracture filled).

At 73.76 m the hole was abandoned as rods seized. The total overall recovery from this hole was only 30.5%. The hole never reached the unoxidized underlying strata as hoped and no anomalous values in gold or copper were returned.

6.0 CONCLUSIONS

- 1. Drilling of the Main Kliyul mineralized horizon in 1994 failed to intersect any significant copper or gold grades associated with the hydrothermally replaced magnetite/silica zone drill tested previously.
- 2. No evidence of limestones, abundant epidote, diopside or garnet was returned from the 1994 drill core or from the previous drill holes indicating that the Kliyul deposit may be a hydrothermally replaced zone of silica/magnetite +/- copper and gold hosted within somewhat calcareous, foliated, well broken and faulted, chloritic volcanics. Core analysis of the deeper holes drilled indicates a gypsum healed, quartz/carbonate veined, propylitically (locally sericitized) altered crackle breccia begins at depths of 75-100 m vertically. This zone may represent a propylitic halo surrounding a larger porphyry system located at depth or peripheral to the Klilyul replacement body.
- 3. The 1994 drill programme on the main Kliyul zone indicates that the silica/magnetite replacement zone is of limited and variable extent both laterally and to depth. Copper and gold grades drop off significantly away from the area of 1974, 1981 and 1993 drilling and therefore no further drilling is warranted.
- 4. Drill core examinations and analysis of NK94-26 failed to intersect any magnetite/silica/copper/gold mineralization perceived to exist at this location as a faulted extension of the main Kliyul zone.
- 5. Drill testing of the area northeast of the Kliyul Main zone in NK94-27 failed to intersect mineralized bedrock similar to that found in test pit rock samples collected in this vicinity in 1993.
- 6. Drilling results from NK94-28 failed to intersect any gold mineralization similar to that found in sheared and altered monzonites returned from the 1993 test pitting programme.
- 7. As DDH NK94-29 failed to penetrate the oxidized subsurface it is not known whether increased gold values exist in non-leached, sericitized, quartz veined, pyritic strata in the southeast portion of the Kliyul property.

REFERENCES

1.	Assessment Report #675:	Geology of the Soup Claims, K.C. McTaggart, 1965.
2.	Assessment Report #5562:	Mineralogical Study of Soup Claims, A.J. Sinclair, 1975.
3.	Assessment Report #5985:	Ground Magnetics, Soup Claims, A.J. Sinclair, 1976.
4.	Assessment Report #6410:	Geochemical Survey, Soup Claims, B.P. Minerals, 1977.
5.	Assessment Report #7033:	Lithogeochemistry, Soup Claims, A.J. Sinclair, 1978.
6.	Assessment Report #9485:	Geochemistry, Soup Claims, Vital Resources, 1981.
7.	Assessment Report #10,743	Geochem, Geophysics, Geology, Soup Claims, Noranda Exploration, 1982.
8.	Assessment Report #13,315	Geology, Geochem, Soup Claims, B.P. Minerals, 1984.
9.	Assessment Report #15,201	Magnetometer, Rock Sampling, Soup Claims, C.M. Rebagliati, 1986.
10.		Summary Report on the Soup Claims, Rebagliati Geological Consulting Ltd. for Athlone Resources Ltd., 1988.
11.		Summary Report on the Soup Claims (Drilling), Rebagliati Geological Consulting Ltd. for Athlone Resources Ltd., 1989.
12.		Exploration Report on the Soup Property, Teck Explorations Ltd., 1991.
13.	Assessment Report #2818:	Magnetometer Survey on the Kli Claims, Kennco, 1970.
14.	Assessment Report #3312:	Soil and Silt Survey, Kli Claims, Kennco, 1971.

15.	Assessment Report #3313:	Geophysical Survey, Kli Claims, Kennco, 1971.
16.		Compilation Report on the Kliyul Property, R.W. Stevenson, 1973.
17.	Assessment Report #5211:	Drilling Report, Kli Claims, Sumac Mines Ltd., 1974.
18.		Report on the Diamond Drilling on Kli Claims, Koji Hashimoto, 1975.
19.	Assessment Report #9464:	Drilling on the Klisum Group, Kennco & Vital Resources, 1981.
20.	Assessment Report #13258:	Geology, Geochem on the Kli Claims, B.P. Minerals, 1984.
21.		Geochemical, Geophysical and Prospecting Report on the KLI claims, S. Price, G. Linden, R. Cannon, P. Eng., G Ditson for Placer Dome, November, 1990.

APPENDIX I LABORATORY ANALYTICAL TECHNIQUES

ANALYTICAL METHOD DESCRIPTIONS FOR GEOCHEMICAL ASSESSMENT REPORTS

The methods listed are presently applied to analyse geological materials by the Noranda Geochemical Laboratory at Vancouver.

Preparation of Samples:

Sediments and soils are dried at approximately 80° C and sieved with a 80 mesh nylon screen. The -80 mesh (0.18 mm) fraction is used for geochemical analysis.

Rock specimens are pulverized to -120 mesh (0.13 mm). Heavy mineral fractions (panned samples * from constant volume), are analysed in its entirety, when it is to be determined for gold without further sample preparation.

Analysis of Samples:

Decomposition of a 0.200 g sample is done with concentrated perchloric and nitric acid (3:1), digested for 5 hours at reflux temperature. Pulps of rock or core are weighed out at 0.4 g and chemical quantities are doubled relative to the above noted method for digestion.

The concentrations of Ag, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn can be determined directly from the digest (dissolution) with a conventional atomic absorption spectrometric procedure. A Varian-Techtron, Model AA-5 or Model AA-475 is used to measure elemental concentrations.

Elements Requiring Specific Decomposition Method:

Antimony - Sb: 0.2 g sample is attacked with 3.3 ml of 6% tartaric acid, 1.5 ml conc. hydrochloric acid and 0.5 ml of conc. nitric acid, then heated in a water bath for 3 hours at 95°C. Sb is determined directly from the dissolution with an AA-475 equipped with electrodeless discharge lamp (EDL).

Arsenic - As: 0.2 - 0.3 g sample is digested with 1.5 ml of perchloric 70% and 0.5 ml of conc. nitric acid. A Varian AA-475 equipped with an As-EDL is used to measure arsenic content in the digest.

Barium - Ba: 0.1 g sample digested overnight with conc. perchloric, nitric and hydrofluoric acid; Potassium chloride added to prevent ionization. Atomic absorption using a nitrous oxide-acetylene flame determines Ba from the aqueous solution.

Bismuth - Bi: 0.2 - 0.3 g is digested with 2.0 ml of perchloric 70% and 1.0 ml of conc. nitric acid. Bismuth is determined directly from the digest with an AA-475 complete with EDL.

Gold - Au: 10.0 g sample is digested with aqua regia (1 part nitric and 3 parts hydrochloric acid). Gold is extracted with MIBK from the aqueous solution. AA is used to determine Au.

Magnesium - Mg: 0.05 - 0.10 g sample is digested with 4 ml perchloric/nitric acid (3:1). An aliquot is taken to reduce the concentration to within the range of atomic absorption. The AA-475 with the use of a nitrous oxide flame determines Mg from the aqueous solution.

Tungsten - W: 1.0 g sample sintered with a carbonate flux and thereafter leached with water. The leachate is treated with potassium thiocyanate. The yellow tungsten thiocyanate is extracted into tri-n-butyl phosphate. This permits colourimetric comparison with standards to measure tungsten concentration.

Uranium - U: An aliquot from a perchloric-nitric decomposition, usually from the multi-element digestion, is buffered. The aqueous solution is exposed to laser light, and the luminescence of the uranyl ion is quantitatively measured on the UA-3 (Scintrex).

N.B.: If additional elemental determinations are required on panned samples, state this at the time of sample submission. Requests after gold determinations would be futile.

LOWEST VALUES REPORTED IN PPM:

Ag - 0.2	Mn - 20	Zn - 1	Au - 0.01
Cd - 0.2	Mo - 1	Sb - 1	W - 2
Co - 1	Ni - 1	As - 1	v - 0.1
Cu - 1	Pb - 1	Ba - 10	
Fe - 100	v - 10	Bi - 1	

APPENDIX II SOIL AND ROCK GEOCHEMICAL RESULTS AND DESCRIPTIONS KLIYUL EAST

NORANDA DELTA LABORATORY

Geochemical Analysis

Project Name & No.:

CROYDON - 45583

Geol.: G.G.

Date received:

AUG. 12

9408-033

Material:

57 Soils

Sheet: 1 of 2

Date completed: AUG. 29

LAB CODE:

Remarks:

* Sample screened @ -35 MESH (0.5 mm)

□ Organic, Allumus, S Sulfide

Au - 10.0 g sample digested with aqua-regia and determined by A.A. (D.L. 5 PPB) -..

ICP - 0.2 g sample digested with 3 ml HClO4/HNO3 (4:1) at 203 °C for 4 hours diluted to 10 ml with water. Leeman PS3000 ICP determined elemental contents.

N.B. The major oxide elements and Ba, Be, Ce, La, Li, Ga are rarely dissolved completely from geological materials with this acid dissolution method.

T.	SAMPLE	Λu	Λg	N	Λs	Ba	Ве	Bi	Ca	Ct	Ce	Co	Cr	Cu	Fe	K	La	L	Mg	Ma	Мо	Na	Ni	P	Pb	Sr	Ti	v	Zn
lo.	No.	_ppb	ppm	%_	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm		%	<u>%</u>	ppm	ppm	<u>%</u>	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	<u>ppm</u>
	65800N - 78900E	25	0.2	3.55	8	166	0.5	5		2.0	36	199	34	331	14.19	0.31	12	10	0.82	3648	5	0.06	41	0.15	14	87	0.15	103	230
	78950 •	15	0.2	0.69	7	109	0.2	5	2.55	0.9	29	97	5			0.18	3	2221122277411	0.14	3034	4	0.03	7	0.09	3	73	0.02	23	96
	79000	30	0.2	2.06	31	211	0.9	5	0.70	43	39	574	28	72	17.24	0.32	17	6	0.46	15000	22	0.04	90	0.14	28	78	0.07	65	1258
	79050	130	0.6	7.48	6	1349	0.5	5	0.36	0.5	27	11	8	49		2.11	11	16	1.62	697	8	0.20	8	0.16	11	69	0.18	210	150
	65800N -79100E	150	8.0	7.32	10	1360	0.5	5	0.33	0.7	27	6	8	65	7.06	2.16	12	16	1.56	477	9	0.22	8	0.18	13	73	0.17	211	141
	65800N -79150E	140	0.6	5.85	11	1069	0.4	5	0.12	0.2	17	7	7	70	8.17	1.67	9	13	1.16	393	4	0.32	6	0.19	19	55	0.11	188	122
	79200	130	0.8	5.20	15	724	0.4	5	0.97	0.9	33	21	16	138	8.85	1.15	10	13	1.76	1304	3	0.07	16	0.19	94	78	0.32	222	254
)	79250	130	0.8	5.32	26	1532	0.4	5	1.07	1.4	35	13	10	93	8.48	1.48	11	13	1.70	1268	7	0.07	10	0.18	104	92	0.33	206	376
1	79300	160	1.0	6.96	4	887	0.6	5	0.54	0.6	32	18	17	138	8.83	1.89	14	13	1.58	895	4	0.12	15	0.27	49	88	0.34	218	245
2	65800N -79350E	110	0.8	6.25	2	967	0.5	5	0.49	1.0	28	34	12	156	7.88	1.61	11	15	1.36	1756	2	0.13	14	0.18	92	69	0.19	185	321
3	65800N -79400E	90	1.2	5.79	_	1013		5		3.0	<	45	16	100000000000000000000000000000000000000		1.47	12	200000 T-1800		3256	1	0.16	25	0.15	100	87	0.14	164	375
1	79450	85	0.8	5.99	2			5	1.39	0.7	41	32	9	208	×	1.22	12	1000000000000	1.38	1622	5	0.09	11	0.18	42	167	0.29	207	223
5	79500	120	1.2	6.27	2		0.6	5	0.89	0.6	38	27	12	200000000000000000000000000000000000000	e	1.37	13		•	1859	4	0.11	14	0.20	47	168	0.21	176	295
,	79550	85	1.0	6.84	2			5		1.6		35	8	10000000000		1.62	14			2496	3	0.10	14	0.19	46	133	0.19	166	327
7	65800N -79600E	160	1.2	6.35	2	565	0.7	5	0.80	1.7	38	31	16	286	5.91	1.09	14	18	2.10	3420	1	0.06	21	0.15	25	77	0.13	167	203
3	65800N -79700E	430	3.0	5.57	2	922	0.9	5	0.75	1.2	36	38	13	310	6.94	1.53	12	2 16	1.87	3980	6	0.05	18	0.12	23	74	0.11	183	125
)	65800N - 79750E	360	1.0	4.89	2	548	0.6	5	1.30	0.9	41	32	30	22A	6.31	0.86	12	2 36	2.18	2979	5	0.04	21	0.13	16	120	0.21	190	120
)	66000N - 78800E	35	0.2	5.41	3	245	0.5	5	1.92	0.7	40	20	26	145	4.94	0.53	10) 14	1.39	821	1	0.09	24	0.12	2	177	0.24	161	93
1	78850	40	0.2	5.17	3	353	0.7	5	1.80	0.8	44	28	30	319	5.57	0.69	13	3 18	1.70	1068	1	0.11	29	0.10	7	144	0.24	171	114
;	66000N -78900E	20	0.2	5.17	2	210	0.5	5	1.69	0.3	40	25	27	149	4.71	0.44	11	1 15	1.37	1098	1	0.08	22	0.15	2	132	0.24	147	112
1	66000N -78950E	25	0.2	5.66	2	243	0.4	5	1.66	0.4	37	18	26	130	5.08	0.50	9) 13	1.39	675		0.08	21	0.11	2	129	0.24	156	91
i	79000	20	0.4	5.53	2	500 700 000	0.4	5	1.76	0.5	42	13	30			0.55	11	100000000000000000000000000000000000000	1.21	553	· i	0.09	19	0.21	• 5	143	0.28	158	92
i	79050	50	0.2	5.61	2	333	0.4	5	1.79	0.3		23	25	800.0000	· · · · ·	0.65	10	900000000000		808	•	0.09	21	0.11	2		0.23	161	100
j	79100	30	0.8	5.38	2			5	1.09	0.4	33	13	26	******	×	0.61	10	40000007.70		561		0.08	19	0.17	7	84	0.24	141	216
,	66000N -79150B	50	0.2	5.48	2	344	0.4	5		0.8		21	27			0.67	10	800000000000000000000000000000000000000		1111	i	0.09	21	0.14	8		0.27	171	
3	66000N -79200E	120	0.6	5.73	4	379	0.5	5	1.55	0.8	39	29	20	180	7.42	0.95	11	16	1.88	1852	4	0.07	20	0.15	49	99	0.29	179	379
•	79250	35	0.6	5.50	2	451	0.5	5	1.05	0.5	35	17	24	136	5.62	0.80	9) 88 16	1.56	955	2	0.08	20	0.18	37	81	0.25	153	243
)	79300	110	1.0	6.25	7	993	0.5	5	1.06	0.3	33	21	14	116	7.75	1.53	10) 8 16	1.68	1585	3	0.09	18	0.18	146	93	0.29	197	311
	79350	90	1.0	7.11	5	959	0.8	5	0.54	0.7	32	26	23	164	7.21	1.83	13	3 20	1.77	2300	4	0.10	26	0.19		61	0.22	192	
;	66000N -79400E	100	12	6.34	2	989	0.6	5	0.43	13	28	33	13	149	7.43	1.70	12	2 16	1.48	2247	2	0.14	19	0.18	86	58		181	200.702.2
ŀ	66000N -79450E	190	1.6		7	800		5	1.40	2.3		31	26	- 000 O TO TO TO		1.37	12	2 19		2362	1	0.12	24	0.14	95	111	0.23	191	455
ŀ	79550 *¤	10	0.8	1.80	4	340	0.2	5	0.78	1.7		14	8	64	×	0.44	6	5 💚 4	0.37	2348	***	0.03	6	0.21	22	40	0.07	56	95
į	79600	55	0.6	5.99	2			5	1.14	0.7		20	19	- 5000 T 1007		0.82	10) 14	1.76	1814	1	0.07	16	0.17	26	188	0.24	168	155
	79650	100	1.0	6.22	6			5	1.14	0.7	:	27	21			1.04	11			2140	1	0.07	26	0.16	41	95	0.22	172	220
•	66000N ~79700E /	140	1.0	5.94	8	563	0.6	5	1.49	1,0	44	31	27	221	6.10	1.02	12	2 16	1.85	2356		0.08	23	0.14	36	127	0.22	173	216

31/08 GR 49

·.T	SAMPLE	Au	Ag	Λ	j A	B	ı Be	Bi	<u>Ca</u>	CA	Ce	Co	G	Cu	Fe	K	La	-u	Mg	Mn	Мо	Na	- Ni	P	Pb	Sr	Ti	v	Zn 9406-033
lo.	No.	ppb	ppm	9	6 ppm	_ppu	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	- %	%	ppm	ppm	<u>%</u>	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm Pg. 2 of 2
3	66000N - 79800E	280	0.6	4.9	2 7	44	0.5	5	1.84	P.6	43	34	24	255	6.51	0.80	11	14	2.07	1329	I	0.08	23	0.13	15	127	0.25	176	149
•	66200N - 78800E	65	0.2	5.0	5 6	24	0.4	5	1.79	0.5	43	30	24	406	5.59	0.53	12	12	1.41	930	1	0.09	26	0.11	2	109	0.21	153	98
)	78850	20	0.6	4.9	6 3	19	0.4	5	1.54	0.5	42	18	28	549	4.93	0.46	13	14	1.33	606	1	0.09	22	0.16	22	99	0.22	143	93
ı	78900	15	0.4	5.3	4 2	20	0.5	5	1.14	0.4	39	23	32	197	6.46	0.48	12	14	1.32	650	2	0.08	21	0.21	7	81	0.29	157	97
2	66200N -78950E	15	0.2	5.5	6 2	25	0.4	5	1.80	0.3	43	36	25	315	5.52	0.58	12	15	1.53	1391	1	0.09	24	0.13	2	113	0.24	164	103
3	66200N -79000E	30	0.4	5.1	7 2	25		5	1.73	0.3	42	24	20	245	5.54	0.59	11	14	1.41	825	1	0.09	20	0.08	2	113	0.23	155	86
1	79050	25	0.2	4.8	92	32		5	1.49	0.2	38	12	20	113	5.19	0.62	10	12	1.42	617	1	0.08	16	0.15	\$ 4	108	0.27	163	90
5	79100	55	0.4	5.5	6 2	29	7 0.5	5	1.41	0.4	39	44	21	254	7.81	0.72	- 11	12	1.22	2214	. 1	0.08	22	0.12	35	93	0.19	161	141
í	79150	50	0.2	5.0	0 2	25	2 0.4	5	1.95	0.4	44	21	32	134	6.42	0.57	11	13	1.47	901	. 1	0.09	19	0.13	16	131	0.27	180	101
7	66200N -79200E	190	8.0	4.3	8 2	22	0.3	5	1.63	0.4	42	11	18	56	5.14	0.41	11	10	0.99	621	87	0.05	10	0.13	32	115	0.25	147	78
3	66200N -79250E	50	100			: 17		5	0.97	0.2	35	12		- XXXXXXXXXX	y	0.34	10	9	0.96	639	2	0.05	11	0.18	4	65	0.26		94
l	79300	30	0.2		_	28		5	1.47	0.3		12	23	90	×	0.51	11	12	1.33	730	2	0.06	14	0.16	13	107	0.29	150	106
Ş	79350	15				100000		5	1.41	0.4	38	9	7	31		0.71	9	12	1.89	· 1495	1	0.04	8	0.11	13	97	0.34	162	164
3	79400	290	17. 30. 5	4.7		30		5	1.48	0.3	56			90000000000000		0.61		13	1.29	847	1	0.09	19	0.13	21	110	0.24	141	127
1	66200N -79450E	25	0.4	4.7	8 2	28	2 0.3	5	1.67	0.4	44	13	22	70	5.03	0.44	12	10	1.14	676	1	0.06	13	0.14	12	131	0.32	176	89
5	66200N -79500E	90	0.4	4.7	3 2	2 25	5 0.3	5	1.55	0.3	43	14	26	71	5.19	0.41	11	10	1.21	893	2	0.06	13	0.16	16	105	0.29	151	116
5	79550	120	0.6	6.9	9 2	2 71	3 0.6	5	0.98	0.9	36	26	17	153	6.89	1.26	13	19	1.89	1956	6	0.11	20	0.18	93	86	0.25	190	466
7	79600	120	ð.0 (5.1	5 2	23	4 0.4	5	1.67	0.4	42	18	25	116	5.74	0.48	10	11	1.27	716	1	0.07	15	0.14	13	109	0.23	148	104
3	79650	50	0.4	5.3	9 3	37	3 0.5	5	1.37	0.7	45	26	18	218	5.72	0.75	12	15	1.52	1270	2	0.08	19	0.15	24	102	0.23	158	213
)	66200N -79700E	50	9.0	6.3	7 2	S 60	7 0.5	5	0.81	0.5	33	15	16	126	5.67	1.18	10	15	1.55	1301	3	0.09	· 15	0.18	42	81	0.23	174	195
)	66200N -79750E	100	0.6	4.5	9 2	2 31	1 0.4	5	1.58	0.6	45	23	42	176	5.56	0.67	11	14	1.40	1096	1	0.08	25	0.14	16	118	0.22	160	119
t	66200N - 79800E	45	0.2	4.4	4 2	2 20	9 0.4	5	0.96	0.3	35	8	21	. 80	634	0.35	10	- 8	0.91	543	2	0.04	9	0.21	61	70	0.25	126	99

•

T.	SAMPLE No.	Au	Ag ppm	Al ««	As	Ba	Be	Bi			Cc ppm				Fe %		La ppm				Mo ppm	Na ««	Ni	P ex	Pb	Sr	'l'i «		Zn 9406-026 ppm Pg. 6 of 7
6	IW.	PPO	hhm		P. P. P.	- F.F.iii	Phin	Nhm.		P.F.	PP.	Mail.	hhim"	PYW.			PP-	<u> </u>		Prin.	. 172		<u>. թթա</u>		FKM.	四二.		frm.	5.6 € 6 01 \
7	65200N-79700E •	510	2.4	6.75	2	520	0.5	5	3.62	0.9	41	31	3	153	6.00	1.74	9 (27	2.39	1764	5	0.07	5	0.07	2	48	0.19	204	94
8	79650	125	0.4	6.29	13	1232	0.8	5	1.14	13	89	53	26	217	6.28	1.60	36		2.02	4195	:	0.06	32	0.17	10	74	0.28	163	133
9	79600	150	0.2	5.64	7	493	0.5		1.96	0.2	67	40	13		6.45	0.84	21 🖔	G-0057010	1.50		3	0.07	14	0.10	7	269	0.24	155	108
0	65200N-79550E	140	0.2	5.42	2	514	0.5	5	1.45	0.2	61	37	9	125	5.64	0.85	17	19	1.33	2201	\$	0.06	12	0.12	. 8	149	0.21	127	105
- 7	65200N-79500E	120	7		2		0.5	-	2.36	0.9	51	71	5	263	7.10	0.98	15		1.97		4	0.06		0.11	3		0.30	187	172
2	79450	900	1.4	6.38	2		0.5		2.09	0.7	53	53	7	্তত ড	7.29	0.82	16	3 5 5 5	1.82			0.06		0.15	10	272	0.30	174	187
3	79400 79350	3700 210	5.4	6.48 6.73	2 5	546 730	0.5 0.4		1.22 0.71	1.3 1.4	52 40	84 42	15 11	. Aller 18	9.90 8.68	0.99 1.58	18 16	. 7.2	2.13 1.39		8	0.08 0.12		0.20 0.21	17 58	138 122	0.30 0.22	192 184	287 394
4	65200N-79300E	75	95. 5	7.48	2		0.7		1.17		49	298	6	7.0	8.59	0.99	13			5648		0.12		0.21	9		0.25	109	442
,	0320011-7330013	,,	U.7	7.40			,	,	1.17		- 72	200	J		0.37	0.77			1.00	<i>5</i> 010		0.12	20	V.27	1 11 1 √ √ 1	701	0.23	107	31 4
6	65200N-79250E	1430	0.4	5.34	12		0.3		0.13		16	68	4		11.05	1.64	9	30 T 1	0.54	760	2.5	0.15		0.17	24	64	0.08	155	230
7	79200	120	5 7	7.74	17		0.3		0.17	0.2	21	6	6		9.77	2.39	13	9	1.06	297	6	0.28		0.23	5	81	0.17	200	97
В	79150 •	75	- 7	7.15	4	662	0.3	-	0.51	0.3	33	14	4		7.34	1.91	12		1.17	706	3	0.19	-	0.17	15	189	0.15	172	174
9	79100 65200N=79050B •	100 15		7.21 1.25	5 5	-, -, -,	0.3 0.2		0.25 1.97	0.2 5.5	28 42	10 11	5 i	1.30 59	9.38 1.92	1.85 0.36	13 . 7	12	1.27 0.34	489 790	7 3	_		0.26 0.17	15	102 65	0.14	193 38	132 171
1,	WJARNY TOUSKS	13	U.Z	1.23	,																-								
- 1	65200N-79000E	55		6.40		61.5	0.3		0.54	0.2	38	9	7		6.48	1.27	14	12	1.15	416	6	0.16		0.16	8	109	0.12		122
2	78950	5		4.62			0.9		0.54	0.2	31	48	187	31	5.70	2.26	13	72	7.05	807	1	0.02		0.26	2	48	0.21	126	74
3	78900	5	9.7	3.65					0.55	0.4	24	38 28	380 184	21 87	6.09 5.89	0.17 0.64	10 14	28 41	5.92 3.61	549 557	. i	0.04 0.11		0.19 0.25	2 2	38 90	0.34 0.39	180 198	80 75
•	78850 65200N-78800E	20 35	1.0	4.72 5.00	_	70.0			1.27 1.59	200	44 52	23	27	221		0.70	16	100	1.55			0.08		0.20	16	207	0.19	199	96
,	UJZANIN-100KAIL	33	U. Ţ	3.00	,	داد	1.0	,	1.37	***	<i>J</i> 2	~	_,		V.J.	0.70					5					_	_	-	
-	65400N - 79700E	100		6.44			0.4		1.12		47	29	_		7.09	1.10	15	20		2210	- 3	0.14		0.17	25	121			177
7	79650	170							1.30	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	52	38	10	204	8.05	1.34 0.95	17 17 k	21	2.03		3	0.09	14	0.20 0.27	44	131	0.30 0.34		234 297
5	79550 79500	90 35		6.74 7.61		5 6 7 6			1.36 0.71	- C - C - O - O - O - O - O - O - O - O	55 41	28 134	14 : 35 :		8.65 8.69	0.54	16	14	1.77 2.48			0.07		0.26	90 24	149 91	0.32		1186
7	65400N-794 5 0E	33 40	9 3					_	0.71		34	3	11		11.10	1.70	15	iŏ	1.18	674		0.10		0.20	43	108	0.34		193
		-			•						i	_													17				
3	65400N-79400E	45		6.71		100 100 100			0.81			103	9	298	1	0.97	18	14	_	3172				0.39	41	138	0.33		631
4	79350	_	0.6			100 000 00			1.03 0.65		51 44	37 105	6 :		9.65 8.80	1.39 1.22	18 17	12 23	1.20 1.91			0.14	10 54		92 51	178 104	0.30 0.18		547 1701
5	79300 79250		44			1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			0.83	40 7 7 X	46	53		414		1.42	16			2449		0.05	20		34	191	0.10		843
7	65400N-79200E		1.0	6		7.7			0.97		· 51	62	16		9.13	1.26	18	17		2720		0.13	_		56	157			
				\$ 11 \$: [<u> </u>														
	65400N-79150E		0.6		_			_	1.00			40	6	468		1.24	18	17				0.13	11		::		0.23		411
9	79100	180	7.00			100.00			1.04			37	6		9.07	1.29	18	. 17		1769	- 3 W W B	0.13	10			216			409
U	79050	55	· 0 7						1.09			14			7.42	1.07	14	14	1.67	736	****	0.15	12			131			113
7	79000 #* 65400N-78950E	' 13 30	1.2 0.2			2.00.00			0.28 0.94	4 3:3		5 7	7 24	A 11 T		0.80 1.13	6 i	11	0.53 1.10		7.	0.08 0.12	3 8	- 1	· 7	62 95			86 76
		30				3 (3.	:		U.74	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		•	-		.				1.10		- T	:	•			93			/ U
3	65400N-78900E	25	1.00					_	0.75	- S. 4215		6				0.45		. 8	0.63			0.07	6			70			66
4	65400N-78850E	65	- 10 X Z			176		_	1.90			12		1217		0.40		13				0.07	14				_		72
5	65600N-79750E		02									29			6.94	1.31	15	12		1832		0.13	14	0.17	43	88			268
7	79700 65600N-79650E	43 30	0.2 0.2	5.0: 5.21	1 5	559 500	0.5)	0.86	0.4	41	22 26	13 15		6.04 6.14	0.99 0.81	13 13	10	1.50	1906		0.09	13	0.20	19 17	71 77		164 180	
_							}.															Ve							
8	65600N-79600E		0.4			82	5 0.4	5	0.75	0.4	47				8.54	1.50						0.13			67		0.25		
9	79550		0.4				0.4	5	0.62	0.5	46				8.33			11	1.33	1044		0.11		0.24			0.24		313
0	79500 79450) 0.4) 3.4			77				11					8.19			16 18				0.14		0.22				3 152	70.
,	79430 65600N-79400E •		, 3.4 5 0.4			589 1179		, 3	U.43	12.9	37 32				8.79 8.15			12				0.06		0.14	138) 168) 190	
2	VANALI TAME	. 0.	<u> </u>	. J.J.		* ***	<u> </u>	<u></u>	4.42	·	. 36	10	- 11	200	. 9.13	1.70	17		1.40	, tall		U.U		22.1			9.2	130	311

. .

I.	. SAMPLE	Au	Λg	· Al	As	Ba	Bc	Bi	Ca	Cd	Cc	Co	Cr	Cu	Fe	K	l.a	1.	Mg	Mn	Mo	Na	Ni	P	РЬ	Sr	Ti	V	Zn 9408-026
<u>).</u>	<u>No.</u>	ppb	ppm	<u>%</u>	ppm	ppm	ppm	PPM.	96	ppm	ppm	ppm	ppm	PP#	- 75	<u>%</u>	ppm	ppm	<u> </u>	ppm	ppm	%	ppm	%	ppm	<u>ppm</u>	<u>%</u>	. 22 00	PPM Pg. 7 of 7
. 3	65600N-79350E	90	0.6	8.12	2	1149	0.2	5	0.39	0.2	38	3	6	. 82	7.05	3.03	18	- 6	0.82	375		0.17	1	0.19	22	88	0.48	202	133
- 4	79300	130	0.6	6.98	2	1020	0.3	5	0.28	0.2	34	5	4	88	8.00	2.43	16	8	1.05	453	. 1	0.15	1	0.21	16	74	0.28	162	165
5	79250	300	1.0	7.68	2	1044	0.4	5	0.34	1.0	40	29	6	174	8.81	2.14	18	319	1.58	1561	11	0.11	9	0.25	21	74	0.26	189 .	301
6	79200	200	1.4	7.25	2	1060	0.4		0.24		40	43	6	220	8.38	2.11	17	15	1.36	1699	1	0.18	14	0.22	16	63	0.14	157	410
7	65600N-791 5 0E	130	0.4	7.57	2	966	0.4	5	0.27	0.9	40	25	6	220	9.51	2.24	19	16	1.38	1007	1	0.21	9	0.24	15	75	0.12	166	344
3	65600N-79100E	160	0.2			1026	0.4		0.20		41	21			9.93	2.42		13			1				16		0.14		316
9	79050 •	50	0.4	6.80	2	862	0.5	5	0.09		25	6		. 83		1.86		33 19 .			• • • • • • •	0.34		0.18			0.07		79
Ð	79000	120	0.2	7.61	2	452	0.3	5	0.17	0.2	27	16	6	212	11.85	1.02	14	15	1.46	575	20	0.43	3	0.29	10		0.07		82
1	78950	150	0.2	6.55	2	340	0.3	5	1.14	0.2	43	11	11	128	8.28	1.06	14	911	1.23	607	. 7	0.21	6	0.19	2	110	0.37	186	72
2	65600N-78900E •	70	0.2	6.71	2	448	0.3	5	0.53	0.2	32	51	7	224	8.37	0.99	12	15	1.26	2189	10	0.35	8	0.19	2	104	0.15	149	· 89.
																													l
														•															

Geochemical Analysis

Project Name & No.:

CROYDON - 45583

Geol.: G.G.

Date received: JULY 07

LAB CODE:

9407-010

Material: Remarks: 50 Rx

" Organic, Allumus, S Sulfide

* Sample screened @ -35 MBSII (0.5 mm)

Sheet: 1 of 2

Date completed: JULY 13

Au - 10.0 g sample digested with squa-regis and determined by A.A. (D.L. 5 PPB)

ICP = 0.2 g sample digested with 3 ml HCIO4/HNO3 (4:1) at 203 °C for 4 hours diluted to 10 ml with water. Leeman PS3000 ICP determined elemental contents.

N.B. The major oxide elements and Ba, Be, Ce, La, Li, Ga are rarely dissolved completely from geological materials with this acid dissolution method.

T.T. No.	SAMPLE No.	Au ppb	Ag	Al %	As	Ba	Bc ppm	Bi			Ce ppm			Cu	Fe %		La ppm	Li Dom	Mg %		Mo ppm	Na %	Ni ppm	P %	Pb ppm	Sr DDM	Ti %	V ppm	Zn ppm
					<u> </u>					-																			
131	18	5	0.2		13	640	0.4		3.01		71	11	15	44	6.02	0.94	17	21	2.35	2107	84j 1	0.09		0.10	15		0.39	206	246
132	GG – 20	5	0.2	5.65	6	471	0.4	5	4.54	0.8	71	28				0.76	15	20	2.64	1159	1	0.09	11	0.08	2	169	0.41	249	76
133	GG- 27	5	0.2	5.10	15	470	0.3	5	1.97	0.5	61	5	16	42	6.02	0.75	17	16	2.65	1449	2	0.10	9	0.07	16	158	0.36	194	256
135	50 51	. 5		5.20 5.61		844 839	0.3 0.3		1.76 2.45		57 69	4 13		59 41	6.43 6.15	0.86 0.78	14	14	2.29	1955 2178	1	0.10 0.09		0.09 0.10	229 43		0.46 0.37	221 190	355 332
136	21	<u> </u>	0.2			4,100				100		13				0.76			2.07			0.07		0.10			0.57	170	
																					978 1881								
																						.,							
143	PM31	5	0.2	4.73	15	289	0.2	5	2.58	0.6	70	7	17	62	5.88	0.26	16	12	2.08	1646	Ż	0.08		0.06	24		0.39	229	146
144	32	5	0.2	4.39	14	950	0.3	5	1.33	8.0	52	6	23	66	5.52	1.11	13	10	1.24	1192	1	0.08	4	0.05	110	112	0.32	187	184
148	PM- 36	5	0.3	5.79	12	664	0.3	. 10	2.76	0.9	71	11	15	1	6.16	1.10	18	17	2 19	1327	13	0 10	10	0.08	7	174	0.41	229	147
151	37	_		6.90		941	0.3	5	2.85	ii	70	19			5.95	1.63	15	17	2.25	1433	<u> </u>	0.09	9		- 11		0.33		
																	-		i i		17,47								
158	44	5	0.2	5.62	19	441	0.2	5	0.05	0.2	15	9	4	19	6.01	2.38	9	8	2.15	424	13	0.08	1	0.08	3	5	0.05	249	132
159	PM- 45			6.31		592		5	1.22	0.2 0.2	54	4		99	5.19	1.43	12	17				0.17		0.09					84
160	PM- 47	5	0.2				0.2	7	0.28	0.5	41	20			5.39	1.40			1.97			0.14		0.06		30		162	
161 162	48 49	5 90		6.13	2	183 576	0.2	5		0.2	23	4 2	10	176	4.55	0.60 2.07	11	11	1.74 1.23	3 444	3	0.19 0.12	3	0.07 0.07	4	124 66	0.22	133 149	95
163 164	50 PM- 51			5.51 4.00		302 162					69	8 11			5.50 5.37	0.53 0.27			1.96 2.02	906 2 1170		0.09 0.11		0.10		222 176		173 198	
/	. 1/																												

14/07 com of

Г.Т.	SAMPLE	Αu	Ag	Al	A	s Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cı	Fe	K	La	Li	Mg	Ma	Mo	Na	Ni	P	Pb	Sr	Ti	V	Za 94 07-
No.	No.	ppb	ppm	- %	pps	n ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	75	ppm	ppm	%	ppm	ppm	<u>%</u>		%	ppm	ppm	%	ppm	ppm Pg. 2
165	PM- 52	5	0.2	4.56	,	4 464	0.2			0.2		3	12		5.22	0.76	12		2.55	243		0.27	3	0.08	2		0.29		43
166	PM-53	5	0.2	4.41	1 '	9 317	0.2	8	0.27	0.7	21	9	7	30	2.98	1.40	9	ii	2.76	167	. 1	0.16	6	0.05	2	32	0.24	132	62
169	I.E- 66	5	0.2	4.38	,	5 255	0.2	6	1.80	0.7	60	14	20	3.5	4.68	0.59	14	21	1.88	464		0.10	4	0.05	6	167	0.15	120	51
170	LE- 69	5	0.2	9.71	l 1	0 1041	0.3	13	1.66	1,3	85	6	21	100	9.97	2.64	27	30	3.39	733	7	0.34	3	0.14	8	270	0.24	300	259
172	72	5	0.2	4.52	2	2 439	0.3	5	0.02	0.2	17	2	8	28	3.63	1.41	11	6	0.97	87	2	0.28	1	0.03	3	43	0.07	133	37
173	LE-74	5	0.2		/ 1	3 270	0.3			0.7		16	19	70	4.75	1.05	16	10	1.73	1023	4	0.17	7	0.09	2	134	0.24	139	97
			773			12 5 2 2				7////											(#K) (#				8 8 8 8				100
175	KP 46	5	0.2	2.87	7 1	2 214	0.2	6	0.09	0.2	28	10	34	36	4.51	0.58	14	13	2.06	800	2	0.11	8	0.06	7	28	0.21	112	149

Geochemical Analysis

Project Name & No.:

CROYDON - 45583

* Sample screened @ -35 MBSH (0.5 mm)

Geol.: G.G.

Date received: JULY 14

LAB CODB:

9407=013 #

Material:

Remarks:

44 Rx

n Organic, A Humus, S Sullide

Sheet: 1 of 2

Date completed: JULY 26

Au - 19.0 g sample digested with squa-regia and determined by A.A. (D.L. 5 PPB)

ICP - 0.2 g sample digested with 3 ml HClO4/HNO3 (4:1) at 203 °C for 4 hours diluted to 10 ml with water. Leeman PS3000 ICP determined elemental contents.

N.B. The major oxide elements and Ba, Be, Ce, La, Li, Ga are rarely dissolved completely from geological materials with this acid dissolution method.

T.T.	SAMPLE	Au Ag Al	As Ba Be	Bi Ca Cd	Ce Co C	or Cu Fe	K La Li	Mg Ma Mo	Na Ni P		Ti V Zn
No.	No.	ppb ppm %	ppm ppm ppm p	pm % ppm	ppm ppm pp	na ppna %	% ppm ppm	% ppm ppm	% ррш %	ppm ppm	% ppm ppm
Ĩ											
266	LE-85	5 0.2 6.48	15 1553 0.2	5 1.59 QA	53 19	15 53 7.86	1.67 18 19 0.72 18 20	2.66 1919 1 2.12 2435 2	0.12 10 0.08 0.10 8 0.08	26 79 66 238	0.47 285 362 0.46 221 255
267	LE-87	5 0.2 6.48 5 0.2 6.44	15 1553 0.2 12 451 0.3	5 1.59 0.4 5 4.55 0.8	53 19 72 16	15 53 7.86 15 37 6.90	0.72 18 20	2.12 2435 2	0.10 8 0.08	66 238	0.46 221 255
											200
-2/	61 66										

Geochemical Analysis

Project Name & No.:

CROYDON - 45583

Geol.: G.G.

Date received: AUG. 05

LAB CODE;

9408-020

Material:

20 Soils & 24 Rx

Sheet: 1 of 2

Date completed: AUG. 22

Remarks:

* Sample screened @ -35 MRSH (0.5 mm)

Organic, A Humus, S Sullide

Au - 10.0 g sample digested with aqua-regia and determined by A.A. (D.L. 5 PPB)

ICP - 0.2 g sample digested with 3 ml HCIO4/HNO3 (4:1) at 203 °C for 4 hours diluted to 10 ml with water. Leeman PS3000 ICP determined elemental contents.

N.B. The major oxide elements and Ba, Be, Ce, Le, Li, Ga are rarely dissolved completely from geological materials with this acid dissolution method.

<u>.T.</u>	SAMPLE	Au Ag	AJ	As Ba	Be	Bi	Ç,	Ci	Ce	Съ	<u>Cr</u>	C ₁	Fe	K	La	u	Mg	Ma	Мо	Na	Ni	P	Pb	Sr	Ti	V	Za
lo.	No.	ppb ppm	70 P	opm ppm	ppm	ppm	70	ppm	ppm_	901	ppm	PP .	%	70 1	pea p		_79	ppm	PPM.	70	10m_	_7b_	010)101	DDBQ	_70_[OM.	ppm
-																											
13	168	5 0.2	3.42	2 38 20 786 28 566	0.2		0.26	0.2 6.4	34	1		10	13.86	0.24	8		0.04	87		0.53		0.11	2	65	0.22	222	18
74 75	169	10 1.6	3.94	20 786 28 566	0.2 0.2		2.44	6.4	60 105	15 14	30	20	4.21	1.05 0.67	. 9			2027				0.05			0.18 0.13	105 96	1168
13	PM - 170	20 5.6	2.50	25 × 300	0.2	10	10.00	121.6	103	14	29	145	3.70	V.O./	***		0.75	1020	***	0.07	•	U.U3	7764	49	0.13	70 0	9993
16	PM - 171	5 0.2	4.58	8 490	0.2	5	2.78	0.5	63	21	24	27	5.82	1.08	11	13	1.81	1265	2	0.10	13	0.07	17	54	0.29	152	93
n	172	5 0.2 10 28 170 02	3.24 5.12	7 540	0.2	5	2.78 2.68	80.2	63 61 67	21 10 31	30	27 27 27	1.97	1.41	8		0.30	661	33	0.06	7	0.03	3953 16	20	0.04	152 78	13000 105
78 79	173 176	170 0.2 330 2.0	5.12	2 533 16 2624	0.4 0.2	5	3.94 6.59	0.5 80.2 0.6 1.4	67 80	31 31	14 267	100 m	6.07 2.59	1.97 0.17	11 8	4	1.47 1.94	991 3308		0.07 0.04		0.09 0.03	16		0.07 0.01	202 45	105 49
	1/0	الله الله	J.00	10 37074	8 U.Z		0.37	2000 10 2	- 	31	<i>(</i> 3)		6-77	U.1./	7 3	2000. S	1.71	3300	33333 A	J.U4	134	U.U.		_	J.U1	1 2 ⊗	8052

Geochemical Analysis

Project Name & No.:

CROYDON - 45583

m Organic, A Humus, S Sulfide

• Sample screened @ -35 MBSH (0.5 mm)

Gcol.: G.G.

Date received: SEP. 09

LAB CODE:

9409 - 013

Material: Remarks: 5 Rx

Sheet: 1 of 1

Date completed: SEP. 27

Au - 10.0 g sample digested with aqua-regia and determined by A.A. (D.L. 5 PPB)

ICP - 0.2 g sample digested with 3 ml HClO4/HNO3 (4:1) at 203 °C for 4 hours diluted to 10 ml with water. Leeman PS3000 ICP determined elemental contents.

N.B. The major oxide elements and Ba, Bc, Ce, La, Li, Ga are rarely dissolved completely from geological materials with this acid dissolution method.

T.T.	SAMPLE	Aц	Ag	Al	As	Ba	Bc	Bi	<u>Ca</u>	Cd	Ce	Co	Cr	Cu	Fe	K	La	LI	Mg	Mn	Мо	Na	Ni	P	Pb	Sr	Ti	v	Zn
No.	No.	ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	DDM	%	ppm	DDM
42	RL0304 nx	20	0.2	8.50	9	1399	0.5	5		1.0		27		76		3.17	14	23				0.18	17	0.08			0.36		302
43	RL0305	70	2.4	6.79	2	387	1.7	5	5.01	2.8	52	25	18	19	5.08	2.95	11	7	1.66	1122	1	0.17	15	0.08	6	153	0.06		240
44	RL0308	40	0.2	4.90	8	1770	0.4	5	0.38	0.2	21	8	19	20	5.44	2.18	10	14	1.51	886	1	0.07	4	0.08	23		0.30	T	133
45	RL0309	10	0.2	4.65	16	685	0.3	5	2.05	0.5	50	9	17	60	5.00	0.96		15			1	0.09	5	0.08	537500 773				i53
46	RL0312 rx	20	0.2	5.88	7	342	0.5	5	3.02	0.7	53	14	14	31	6.27	1.11		21				0.07	7		18				297
i						er to other		-		AN 1 747 1		• •		400 (7.7 .)			••;	::::::: ::::::::::::::::::::::::::::::			111 J. *	0.0.	•	V.12	. 4. ##	.,,	0.23	2.5	::#*6 f

		LOCATIONY	EXPOSURE		COLOR	TEXTURE	HORNFELS	PROPYLITC	ARGILLIC	SERICITIC	POTASSIC	SILICA	CARBONATE	CHLORITE	EPIDOTE	PYRITE	PYRRHO	CPY.	MAGN	штю	SAMPLETYP	COMMENTS
0031	678220	6265122	OUTCROP		LTGREEN	fc	none	110019	none	none	none	mod	none	none	none	tr	none	none	none	XTLTF	GRAB	heavy if stain, perticularly on ff.
0032	678243	6265099	OUTCROP		LTGREEN	fg	none	none	none	mod	none	week	none	week	none	2	none	none	none	XTLTF	GRAB	heavy ii stain on fi, py disa through and as strings, rusty vugs, cut by 3mm qz
10036	678264	8265048	SUBOTC	ANDESITE	MDGREEN	mg	none	none	none	weak	none	weak	none	none	week	5	none	none	none	TUFF	GRAB	alt makes ident difficult, opi concen around feld xits.
0037	678308	8264979	SUBOTC	ANDESITE	LTGREEN	fo	none	none	none	week	none	mod	none	none	week	15	none	none	none	TUFF	GRAB	same as pm0036. Entire cobble taken as sample.
10044	678067	6264959	OUTCROP		LTGREEN	fp	none	mod	mod	mod	none	none	none	week	week	4	none	none	none	TUFF	GRAB	highly alt tuff in contact with dyke? Samp, taken at old unreedable flag.
10045	678063	6265018	OUTCROP		LTGREEN	fo	none	mod	mod	week	none	none	none	weak	mod	5	none	none	none	TUFF	GRAB	alt. varies in int. locally. Strong argillic alt in some levers. Extremly rusty
0047	679063	5264965			WHITE	foliated	none	work	etrong	strong	none	none	none	none	week	6	none	none	none	TUFF	GRAB	extreme alt makes ident diff, py as diss species throughout.
0048	678059	6264930	OUTCROP		LTGREEN	<u> </u>	none	week	week	mod	none	mod :	none	none	week	2	none	none	none	XTLTF	GRAB	weater alt in this locality makes ident, as a tuff positive.
0049	678097	6265067	OUTCROP		LTGREEN	fo	none	med	week	none	none	none	none	week	mod	t	none	none	none	TUFF	GRAB	highly rusty esp. along ff.
0050	679063	6265078	OUTCROP		MOGREEN	mg	none	weak	weak	none	none	none	none	week	week	2_	none	none	none	TUFF	GRAB	es above, py as species and rusted pits dies throughout.
0051	678006	6265265	OUTCROP		LTGREEN	fq	none	week	none	none	none	mod	none	none	Week	5	none	none	none	TUFF	GRAB	rusted along ff. Py dies throughout.
0052	677846	6295090	OUTCROP		WHITE	foliated	none	week	strong	mod	none	mod	none	none	week	5	none	none	none	TUFF	GRAB	highly aftered, difficult to ident, py dies throughout
0053	677886	6295098	OUTCROP		WHITE	foliated	none	none	strong	mod	none	mod	none	none	none	8	none	none	none	TUFF	GRAB	as above, sample taken beside old flag 42E, 1350N
0168	677997	6265686	TALUS	SKARN	BLK	∨fg	none	none	none	none	none	mod	week	none	weak	2_	none	none	strong		GRAB	rock heavy, carb appears leached
40169	677944	6265655	TALUS	ANDESITE	LTGREEN	fg	none	week	none	week	none	mod	mod	week	week	4	none	none	none		GRAB	rusty on surf., py diss, random carb vna throughout
0170	677985	6265648	TALUS	ANDESITE	LTGREEN	10	none	none	none	none	none	mod	strong	none	none	3	none	none	none	TUFF	GRAB	highly iron carb aftered, unident metallic mineral 6-7%, unattered meterial tuff
0171	678080	6265620	TALUS	ANDESITE	LTGREEN	√fg	none	mod	none	none	none	weak	strong	week	week	5	none	none	none	TUFF	GRAB	py, chi, epi, carb perv, rusty on ws
0172	678067	6265605	TALUS	ANDESITE	LTGREEN	√fg	none	week	mod	mod	none	none	strong	week	weak	3	none	none	none	TUFF	GRAB	perviron cerb attered
10173	678113	6265613	TALUS	ANDESITE	LTGREEN	fg	none	week	none	none	none	week	mod	week	week	4	none	none	none	XTLTF	GRAB	part of bull white qtz bidr, possible fit tx? breccie clests up to 1,5cm wide
10176	678373	6265620	TALUS	ANDESITE	MDGREEN	10	none	none	week	none	none	strong	strong	mod	none	5	none	1	none		GRAB	extreme iron carb alt, mai stain on frace, sulphides dies throughout
0046	678306		OUTCROP		LTGREEN	√fg	none	week	none	none	none	strong	none	week	hone	2	none	none	none	XTLTF	GRAB	heav, sil,f diss py, heav surf limonite, most tex destroyed.
30018	678063	6265328	OUTCROP	ANDESITE	LTGREEN	fg	weak	week	none	none	none	week	Week	week	mod	4	none	none	none	XTLTF	GRAB	fg,perv epid. well frac,rusty. Inc in silice = inc in py.
0020	678294	6265399			GREEN-GRY	mg	week	none	none	none	none	none	none	none	week	1	none	none	mod	LAPTE	GRAB	frags to 10cms, vfg, diss mgnt.
30027	678162	6265187	OUTCROP		LTGREEN	fg	rnod	none	week	none	none	mod	none	none	none	5	none	none	none	ASHTF	GRAB	v. limonitio fracs. fg,diss and ff py, gz stringers.
60050	678250	6265068	SUBOTC	ANDESITE	LTGREY	fp	week	попе	mod	none	none	none	none	none	week	4	none	none	none	TUFF	GRAB	alt (clay), and tuff il rem py boxworks ev of gz
G0051	678259	6265067	OUTCROP	ANDESITE	LTGREY	mg	week	none	mod	none	none	none	none	none	mod	4	none	none	none		GRAB	rusty deep red py,epi on if end in feld phenos w blin feld
00066	678060	6264978	OUTCROP	ANDESITE	GREEN-GRY	10	none	none	none	weak	none	none	none	none	weak	7	none	none	none	XTLTF	GRAB	vfgd Py
0069	678106	8265001		ANDESITE	LTGREY	fg	none	none	week	week	none	none	none	week	week	10_	none	none	none	XTLTF	GRAB	figd Py, local chi replac melics,serio ff,ep fi/dis
0072	678036	6264981	OUTCROP	ANDESITE	WHITE	fg	none	none	mod	weak	none	none	none	none	none	t	none	none	none	XTLTF	GRAB	Py leached out, may have been up to 20% Py
0074	678034	6264947	OUTCROP		LTGREY	fg	none	none	none	попе	none	mod	none	none	week	7	none	none	none	XTLTF		fpd Py
0065	677872	6265346	OUTCROP	ANDESITE	GREEN-GRY	fo	none	none	none	none	none	none	none	none	week	10	none	none	none	XTLTF	GRAB	locally Fs to clay, silvery Py, fpdPy
0087	677888	6265357	OUTCROP		GREEN-GRY	fg	none	none	none	week	none	none	none	none	week	15	none	none	none	XTLTF		perv ep, vigdPy, Py appears to be secondary
3304	677956	6265689	TALUS	ANDESITE	DKGREEN	Vfg	none	week	none	none	none	mod	mod	week	none	2	none	none	none	ASHTF	FLOAT	py perv and in fis, rock found sporadically in tatus
0305	677938	6265689	TALUS	ANDESITE	MDGREY	fg	none	none	none	mod	none	none	strong	none	none	3	none	none	none		FLOAT	strong anker altn py perv carb perv
2308	677688	6265486	OUTCROP	ANDESITE	LTGREEN	mg	none	mod	none	mod	none	none	none	week	week	1	none	попе	none	ASHTF		py perv and conc in ffs.RWS,
0309	677622	6265468	OUTCROP	ANDESITE	MDGREEN	√O	none	mod	none	none	none	weak	mod	week	strong	2	none	none	none			py pervistrong epi alt in patches and in vnits.RWS.
0312	677798	6265394	OUTCROP	ANDESITE	GREEN-GRY	mg	none	mod	none	mod	none	none	week	mod	strong	7	none	попе	none	TUFF	GRAB	interbedded with 311

-:

APPENDIX III DRILL CORE GEOCHEMICAL RESULTS

PHONE (604) 253-3158 FAX (

GEOCHEMICAL ANALYSIS CERTIFICATE

Kliuul

Noranda Exploration Co. Ltd. (Lab) PROJECT 9408-025 548 File # 94-2540 Page 1 Delta Laboratory, 1 - 755, Delta BC V4G 1A6

																		94 174												
SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	ppm B	Al %	Na %	K X	ppm oz/
70101 70102 70103 70104 70105	1 3 4 2 1	1068 1309	19 32 10 12 24	218 173 83 108 123	.9 1.7 1.2 .8	48 8 8 14 9	13 15 13 11 13	922 : 581 : 531 : 958 : 921 :	4.51 4.80 4.61	2 6 5 7 8	ঠ ঠ ঠ ঠ	<2 <2 <2 <2 <2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	26 14 16 18 25	<.2 <.2 <.2 <.2	\$ \$ \$ \$ \$	3 7 2 <2 <2	49 44 37	1.76 1.72 1.97	.052 .064 .063 .067 .076	<2 3 2 2 <2	5 4 11	2.52 1.09 1.00 1.60 1.83	24 169 147 65 55	.09 .01 .01 .01	<2 <2 <2	2.95 1.30 1.16 1.86 2.28	.03 .03 .03 .02	.03 .15 .17 .19	3<.00 2 .00 2 .00 5 .00 2 .00
70106 70107 70108 70109 70110	1 2	2490 1427 562 3442 464	32 15 8 7 8	879 98 92 93 69	1.4 1.9 .8 2.9	50 41 36 37 7	15 11	1032 841 689 800 659	4.15 3.38 3.79	5 4 4 5 3	\$ \$ \$ \$	<2 <2 <2 <2	2 <2 <2 <2 <2	15 25 25 23 32	.2 .5 <.2 <.2 <.2	<2 <2 <2 <2 <2	<2 <2 5 <2 4	43 41 30	2.34 .84 1.54	.069 .052 .052 .047 .085	2 2 <2 <2 2	48 45	1.63 1.99 1.89 1.70 1.26	43 34 28 33 101	.03 .02 .10 .05	<2 : <2 : 2	2.12 2.22 2.21 1.89 1.65	.02 .03 .03 .02	.16 .14 .12 .15	2526 .00 5 .00 4 .00 47 .01 3 .00
RE 70110 70111 70112 70113 70114	1 4 2	477 1391 2575 3661 937	8 9 6 8 8	70 117 72 75 72	.7 1.0 1.7 2.7	7 11 9 10 32	13 11 17	656 501 513 537 323	3.93 3.64 3.65	3 2 7 5 3	5 5 5 5 5	<2 <2 <2 <2	<2 <2 <2 <2 <2	33 20 17 19 15	<.2 <.2 <.2 .3 <.2	<2 <2 <2 2	<2 <2 5 5 <2	59 41	.80 .76 1.73	.086 .071 .071 .073 .053	<2 <2 <2 <2	9 9 3 5 45	1.26 1.61 .99 1.08 1.50	104 37 71 71 53	.04 .07 .08 .02 .07	<2 <2 <2	1.67 2.05 1.53 1.43 1.77	.03 .03 .03 .03	.20 .11 .20 .18	2 .00 2 .00 5 .00 2 .00 2 .00
70115 70116 70117 70118 70119	2	748 1362 879 1774 532	6 7 2	89 89 97 82 74	.7 .9 .7 1.2	34 29 32 35 31	13 19 12 13 11	559 707 467	4.10 2.96	4 3 3 2 <2	\$ \$ \$ \$ \$	<2 <2 <2 <2	<2 <2 <2 <2 <2	24 25 23 18 19	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2	3 6 3 <2 4	65 50 35 48 61	.56 .67 .42	.049 .062 .059 .051 .053	<2 <2 <2 <2 <2	46 40 38 43 47	1.68 1.86 1.86 1.76 1.49	44 38 52 46 49	.10 .09 .10 .09	<2 <2 <2	1.95 2.18 2.09 1.97 1.75	.04 .04 .04 .03	.12 .14 .20 .14	3 .00 5 .00 2 .00 1 .00
70120 RE 70120 70121 70122 70123	1 1 2	732 533 185	9 2 6	68 68 83 92 96		27 28 85 107 550		443	5.51 5.37	4 2 <2 2 2	ঠ ঠ ঠ ঠ	<2 <2 <2 <2 <2	\$\$ \$\$ \$\$		<.2 <.2	<2 <2 <2	<2 <2 <3 <3 <4	117	4.52		<2 <2 5 6 2		1.21 1.24 3.68 5.36 10.47	46 46 55 54 49	.05 .01	<2 <2 <2	1.50 1.53 2.90 3.87 4.35	.03 .03 .02 .02		2 .00 2 .00 1 .00 1 .00
70124 70125 70126 70127 70128		463 4615 1666 1269 1030	5 5	106 101 113	3.9 1.6 1.4	12		761		2 2 3 2 2	\$ \$ \$ \$	<2 <2 <2 <2 <2	\$ \$ \$ \$	64 71 69	<.2 .5 .2 .3	<2 <2 <2	<2 4 3 <2 <2	43 39 44	2.50 2.64 2.62	.106 .066 .062 .058	7 <2 <2 <2 <2	106 8 16 8 5	1.86	56 43 38 41 28	.09 .07	<2 <2 <2	3.81 2.00 1.98 1.98 1.41	.02 .03 .02 .02	.11 .10 .13	2 .00 1 .00 1 .00
70129 · 70130 · RE 70130 · 70131 · 70132		3 1273 3 1290 3 1353 3 1429 2 2201	3 4	77 79	1.1 1.1 1.2	7 7 6 9 6	21 25	414 439 372	5.04 4.03 4.29 5.49 4.29	<2 3 5 5 4	\$ \$ \$ \$	<2 <2 <3 <4 <2	\$ \$ \$ \$ \$	196 203 1 3 9		<2 <2 3	<2 4 <2 <2 <2	38 40 40	5.38 5.60	.070 3 .048 3 .051 5 .056 9 .053	\$\$ \$\$ \$\$	4 5 5 3 3	1.63 .85 .90 .72	49 50 48	.04	<2 <2 <2	1.56 .86 .90 .85	.02 .02 .02 .02	.08 .10 .09	2 .00 1 .00 1 .00
70133 * 70134 STANDARD C/AU-1	1	0 1501 3 1401 0 58	չ 3	41	1.5	6	22	606 326 1056		4 6 41	<5 <5 16	<2 <2 7	<2 <2 36	179		<2	<2	14	5.66	0 .064 5 .045 9 .092		2	.77	38	.02	<2	1.43 .82 1.88	.01 .01 .06	. 14	1 .00

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-NNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI () AND LIMITED FOR MA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZM AS > 1%, AG > 30 PPM & AU > 1000 PPB

AU** BY FIRE ASSAY FROM 1/A.T. SAMPLE. Samples beginning 'RE' Tare duplicate samples. - SAMPLE TYPE: CORE

DATE RECEIVED: AUG 11 1994 DATE REPORT MAILED:

...D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Noranda Exploration Co. Ltd. (Lab) PROJECT 9408-025 548 FILE # 94-2540

Page 2

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	12 mqq	Cd ppm	Sb ppm	Bi ppm	bbu A	Ca %	P %	La ppm	PPM Cr	Mg %	Ba ppm	Ti %	ppm B	Al %	Na %	K %	W Au** ppm oz/t
70135	80	798	8	59	.6	7	15	389 4.	30	9	<5	<2	2	147	.2	<2	2	40 4	01	.043	2	5 '	1.11	34	.02	2 1	.30	.02	.11	<1 .006
70136	4	328	6	65	.3	9	9	447 3.	22	<2	5	<2	<2	66	.2	2	<2	45 2	2.40	.051	<2	12 '	1.59	27	.05	2 1	.72	.03	.08	<1 .001
70137	5	863	4	50	.6	8	10	344 3.	52	<2	6	<2	<2	87	.2	<2	2	47 3	3.10	.034	<2	6	1.61	36	.05	<2 1	.61	.02	.09	<1 .003
70138	3	427	7	58	.4	8	10	329 3.	.55	<2	5	2	<2	82	.2	<2	2	50 3	3.12	.049	<2	6 7	2.22	26	.08	<2 1	.96	.03	.09	1 .002
RE 70138	3	420	4	56	.3	8	10	323 3.	48	<2	7	<2	<2	80	<.2	<2	<2	49 3	3.05	.047	2	7 2	2.17	26	.08	2 1	.92	.03	.09	<1 .002
70139	5	759	. 7	48	.5	7	14	290 3.	.31	6	<5	<2	<2	127	.3	<2	<2	31 4	4.01	.052	<2	6	1.48	30	.06	<2 1	.32	.02	.10	<1 .003
70140 .	3	1560	<2	66	1.2	6	10	479 2	.78	4	<5	<2	<2	124	<.2	<2	<2	26 !	5.32	.043	2	4	1.20	20	.06	<2 1	.18	.02	.09	5 .004
70141	6	1022_	5	72	1.5	8	8	568 2	.50	7	<5	<2	2	121	.3	<2	<2	18 !	5.46	.039	2	6	1.13	22	. 05	2 1	.10	.01	.11	<1 .006
70142	4	670	4	80	.8	6	13	558 3	.07	7	<5	<2	2	131	.2	2	<2	19	4.50	.057	2	3 '	1.13	33	.04	<2 1	.20	.01	.11	3 .003
70143	4	657	3	111	.7	7	11	625 3	.39	2	7	<2	<2	96	.2	2	<2	50	3.27	.065	<2	7	1.92	34	.09	2 1	.67	.03	.10	<1 .002
STANDARD C/AU-1	20	56	36	124	6.9	72	32	1041 3	.96	44	14	6	36	51	16.8	15	23	60	.51	.090	40	59	.92	190	.08	33 1	.88	.06	.16	9 .101

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

852 E. HASTINGS ST NANCOUVER B.C. V6A 1R6

604) 253-1/16

GEOCHEMICAL/ASSAY CERTIFICATE

Noranda Exploration Co. Ltd. (Lab) PROJECT 9408-034

Delta Laboratory, 1 - 755, Delta BC V4G 1A6

File # 94-2701

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	ppm V	Ca %	P %	La ppm	Cr Mg ppm %	Ba ppm	Ti %	B Al ppm %	Na %	K %	W Au** ppm oz/t
70144 70146 70147 70148 70149	11 11 2 4 4		15 17 12 9 7	58 48 153 50 78	.9 .8 .5 .4	8 4 5 7 8	29 20		5.01 5.27 4.15	17 9 32 14 16	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2	12 10 17 22 22	.2 .3 .3 .3	<2 4 2 2 3	<2 <2 <2 <2 <2	34 53 43	1.00 .74 1.69 .93 1.95	.055 .058 .064	2 <2 <2 <2 3	6 1.24 3 1.58 3 2.11 5 1.75 7 1.48	60 < 40 < 24 < 40 < 52 <	.01 .01	<2 2.12 3 2.23 4 2.69 3 2.33 <2 2.08	.04 .03 .06 .06	.14 .14 .09 .10	<1 .004 <1 .002 <1 .001 <1 .001 <1 .003
70150 70151 70152 70153 70154	2 7 1	1639 978 1811 614 903	6 3 <2 4 5	101 67 70 84 117	.9 .5 1.2 .5	5 6 9 7 12	7 ′8 10	630 484 516 605 557	3.59 3.36 4.17	7 10 6 8 5	<5 <5 <5 <5	<2 <2 <2 <2	5 5 5 5 5 5 5	26 114 109 87 186	.6 <.2 .5 .4	<2 <2 <3 <4 <5	<2 6 <2 <2 4	48 41 48	.76 3.78 3.20 3.31 4.64	.044 .054 .065	<2 <2 <2 <2	7 1.68 4 1.27 6 1.30 8 1.71 5 1.36	32 32 30	.12 .09 .08 .05	3 2.19 3 1.43 2 1.50 4 1.97 2 1.51	.06 .04 .05 .05	.14 .09 .10 .12	<1 .005 <1 .003 <1 .007 <1 .002 <1 .002
RE 70154 70155 70156 70157 70158	4 3 19	913 1675 1251 2029 1984		117 118 126 94 80	1.2 1.0 .7 1.2 1.2	11 6 7 11 2	13	375 423	3.64 3.43 5.70	3 3 5 8 8	<5 <5 <5 <5	<2 <2 <2 <2	<2 <2 <2 <2	187 122 124 168 134	<.2 .3 .3 .3	2 <2 <3 <5	<2 <2 5 <2 3	40 47 80	4.69 3.75 3.59 4.13 3.95	.060 .066 .053	<2 <2 <2 <2	4 1.37 4 1.08 5 1.53 14 1.37 4 1.42	32 47 35	.01 .07 .08 .05	<2 1.52 <2 1.29 <2 1.68 2 1.51 <2 1.48	.02 .04 .04 .04		<1 .002 <1 .003 <1 .002 <1 .006 <1 .005
70159 70160 70361 70162 70163	3 3 3	1789 2169 1084 930 2159	9 4 3 <2 3	69 77 92 78 49	1.6 .7 .5	7 8 8 10 13	11 10	404 639 419 355 182	3.87 3.39	5 10 11 7 10	<5 <5 <5 <5	<>> <> <> <> <> <> <> <> <> <> <> <> <>	<2 <2 <2 <2	148 137 123 148 164	.3 <.2 .4 <.2 .4	<2 <2 <2 2 2	5 <2 <2 <2 <2	44 47 42	3.96 3.96 3.64 3.93 4.28	.056 .063 .060	<2 <2 <2 <2 <2	6 1.24 5 1.37 6 1.22 15 1.19 11 .59	35	.07 .02 .08 .08	5 1.45 <2 1.58 5 1.50 3 1.41 <2 .80	.05 .04 .06 .04	.09 .10 .12 .10	<1 .003 <1 .006 <1 .002 <1 .002 <1 .003
70164 70165 70166 70167 70168	3 3 4	1410 1556 1492 1686 2867	2 <2 5 2 4	61 82 74 76 83	1.0 .8 .9	8	12 9 11		3.67 3.23 3.80	7 11 8 11 10	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 <2 <2 2 <2	162 160 144 152 222	<.2 .3 .2	2 3 <2 <2 <2	<2 <2 <2 3 <2	46 41 41	4.00		<2 <2 <2 <2	7 1.37 4 1.43 5 1.18 8 .78 12 .82	37 40 67 77 30	.03 .05 .08 .05	2 1.47 <2 1.64 2 1.44 2 1.09 <2 .88	.03 .05 .05 .05	.10 .11 .13	<1 .003 <1 .004 <1 .005 <1 .004 <1 .008
70169 70170 70171 70172 70173			7 <2 2 5 6	70 84 74 81 127	.8 1.0 .7	11 12 35	13 12 17	474 559 674 791 1187	3.45 3.90 4.33	11 12 7 5	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	140 136 155 149 117	<.2 .2 <.2	<2 <2 <2 <2	3 <2 <2 <2 <2	45 58 77	3.73 4.41	.052	<2 2 2 2 <2	17 1.22 13 1.59 38 2.08 100 2.85 162 4.28	30 28 28 20 20	.01 .01 .01 .01	7 1.45 4 1.78 5 2.01 <2 2.48 4 3.10	.05 .06	.10 .09 .07	<1 .005 <1 .004 <1 .004
70174 70175 STANDARD C/AU-1		2414 3350 58	3 5 38	128 92 122	3.3	3	7	762 796 1051	3.45	9 3 42	<5 <5 20	<2 <2 7	<2 <2 34	168 178 50		<2 <2 15	3 <2 18	20	4.20	.042 .039 .090	<2	5 1.51 4 1.24 56 .91	45	<.01 <.01 .08	4 1.70 4 .87 32 1.88	.03		<1 .018

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: CORE AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE'/are duplicate samples.

AUG 16 1994 DATE REPORT MAILED: /frg/18/94 DATE RECEIVED:

852 E. HASTINGS ST.

ANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX

FAY 04)253-171

GEOCHEMICAL/ASSAY CERTIFICATE

KUyul NU94-21 (LE)
File # 94-2731 Page 1

Noranda Exploration Co. Ltd. (Lab) PROJECT 9408-040 548 File # 94-2731

										··· Del	ta Le	bora	ory,	() -	/55, I	lette	: Le 1/	4G IA	•											
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Ço	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	K	W Au**
	bbu	ppm	ppm	ppm	ppm	bbu	ppm	ppm	*	ppm	ppm	ppm	ppm	bbu	ppm	ppm	ppm	ppm	*	<u> </u>	bbu	ppm	<u> </u>	ppm	*	ppm	*	*	X	ppm oz/t
69751		1458	5	38	.6	6	28	433		16	<5	<2	<2	7	<.2	2	<2	29			<2		1.76	29	.02		1.68	.02	. 13	2 .003
69752	-	3680	5	61	1.4	8	24	629		12	<5 -E	<2	<2 -2	14 25	<.2	<2	7 3	52 64	.37 .75		<2 <2		2.36 2.54	31 26	.04		2.35 2.75	.03	.12	<1 .009 1 .005
69753 69754	3	1771 380	6 5	64 49	.6	7 10	27 24	648 540		7	<5 <5	<2 <2	<2 <2	18	<.2 <.2	<2 4	2	53			<2		2.58	33	.02		2.66	.05	.09	1 .003
69755	4	925	6	46	.5	13	26	498		7	< 5	< <u>2</u>	<2	33	<.2	2	<2	58	.48		<2		2.75	28	.02		2.80	.05	.08	<1 .002
RE 69755	4	931	8	46	.4	13	26	499	4 82	10	<5	<2	<2	33	<.2	<2	<2	58	.48	.062	<2	21	2.77	28	.02	٠,2	2.81	.05	.08	<1 .001
69756	2	558	<2	44	<.1	11	24	429		11	< 5	<2	<2	20	<.2	<2	3	60	.62		<2		3.11	25	.02		2.92	.05	.07	<1 .001
69757	5		3	31	.1	6	26	323		3	<5	<2	<2	10	<.2	<2	2	44		.058	<2		2.42	23	.01	_	2.33	.02	.08	1 .001
69758	6		6	32	.4	7	23	278 290		2	<5	<2 -2	<2 <2	10 11	<.2 <.2	4	2	52 59		.039	<2 <2		2.21	19 16	.02		2.41	.03	.08 .08	1 .004 <1 .005
69759	د ا	1719	5	35	.5	7	15	290	4.12	3	<5	<2	~2	11	۲.2	2	4	29	.39	.045	٧2	*	2.47	10	.04	``	2.02	.02	.00	VI .003
69760	1	1324	4	48	.5	7	15		4.76	3	<5	<2	<2	12		2	4	49		.034	<2		2.74	17	.06		2.78	.03	.09	<1 .004
69761 69762		1646 1428	5 <2	52 55	.6 .5	8 7	25 18	518	4.90 4.35	6 10	<5 <5	<2 <2	<2 <2	14 18	<.2	<2	5 2	52 32	.59 1.19		<2 <2		2.74	19 47	.08		2.60	.02	.10	1 .006 2 .004
69763		1350	4	52	.5	5	23		4.48	8	< 5	<2	<2	16	<.2	₹2	<2	39	.86		₹2		2.28	26	.06		2.33	.02	.12	<1 .003
69764		1157	<2	54	.3	7	20	514	4.75	5	<5	<2	<2	24	<.2	<2	<2	58	.84	.060	<2	5	2.63	20	.08	2	2.75	.03	.08	2 .002
69765	1	683	3	68	.2	7	22	698	4.47	9	<5	<2	<2	19	<.2	2	4	63	1.09	.083	<2	5	2.77	21	.07	2	2.70	.02	.07	<1 .001
69766	2	917	6		.4	7	23		4.42	10	<5	<2	<2	22	<.2	<2	2		1.10		<2		2.59	29	.07		2.49	.03	.09	2 .002
69767	1	773	5 4		.6	8	19 25		4.06	6 17	<5 <5	<2 <2	<2 <2	27 16	<.2 <.2	<2 <2	2 5	51 48		.088 .038	<2 <2		2.55	30 28	.07 .07		2.33	.02	.10	<1 .002 2 .006
69768 69769	1	2624 2099			-	9 9		672		8	<5	<2	<2	17	<.2	~2	<2	51	.49		<2 <2		2.56	28	.07		2.67	.03	.10	2.004
	_	4545				40	27	470	, ,,	10	-5		-9	47		,	,	40	.,	070	ر.		2 71	71	00	2	2 42	02	11	2 .003
69770 69771	3	1542 954					23 25		4.42	10 13	<5 <5	<2 <2	<2 <2	17 18	<.2 <.2	2	2	49 38	.64 .71		<2 <2		2.71	31 33	.09		2.62	.02	.11	<1 .003 <1 .002
69772	2					-			3.94	6	<5	<2	<2	19	<.2	<2	3	41		.042	<2	_	2.66	37			2.43	.02	.11	1 .002
69773	9								4.34	2	5	<2	<2	16		<2	2			.046	<2		2.68	36			2.29	.02	.12	2 .001
69774	3	1833	3	63	1.0	9	20	593	4.09	13	<5	<2	<2	13	<.2	<2	2	25	1.11	.046	<2	4	1.96	36	.09	٧2	1.77	.01	.14	<1 .004
69775	5		-						4.02	4	<5	<2	<2	19		<2	2			.043	<2		2.62	27			2.28	.02	.09	2 .002
69776		1000 1793					20 21		4.63	6 2	<5 <5	<2 <2	<2 <2	17 17		<2 2	2 <2			.038 .036	<2 <2		2.98 3.07	25 21	.09		2.79	.02	.09 .08	<1 .003 <1 .005
69777 69778	_	1431					31		4.63	7	<5	\2 <2	<2			2	2			.042	_		2.97	28			2.77	.02	.11	<1 .003
69779		710							4.58	<2	<5	<2	<2	68		2	2			.035	<2		2.61	17			2.23	.01	.07	<1 .001
69780	5	1532	. <2	54	1.0	9	23	477	3.86	9	<5	<2	<2	67	.2	<2	<2	28	4.37	.031	<2	5	2.72	15	.06	2	1.86	.01	.07	2 .004
69781	1	1067							4.02	4	<5	<2	<2			<2	3			.030	<2	6	2.95	14		<2	2.21	.01	.06	<1 .002
69782		1260	_						3.76	10	<5	<2	<2			<2	<2			.033			2.74				2.09	.02		2 .003
69783 69784		1619 1212					23		4.25 3.99	10 3	<5 <5	<2 <2	<2 <2	79 66	.2 <.2	<2 <2	<2 2			.038 .046		_	2.82			_	2.16	.02 .02		<1 .005 <1 .002
07704	3	1616	. \	. 43	3	, ,	20	200	3.77	,	ر,	~2	_			_	2												.04	
STANDARD C/AU-1	20	60) 42	126	6.8	72	33	1044	3.96	41	18	6	37	53	17.0	16	24	61	.49	.092	40	58	.90	182	.08	33	1.88	.06	.16	10 .098

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: CORE AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning / RE are duplicate samples.

DATE RECEIVED: AUG 18 1994 DATE REPORT MAILED: 199 23/94

SIGNED BY ... D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Noranda Exploration Co. Ltd. (Lab) PROJECT 9408-040 548 FILE # 94-2731

Page 2

44

IL	ACHE AMALTISCAL																														707E 707E111CAE
	SAMPLE#	Mo ppm	Cu	Pb ppm	2n ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	ppm U	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr	Mg X	Ba ppm	Ti %	ppm B	Al %	Na %	K %	W Au** ppm oz/t
	69785 69786 69787 69788 69789	3	1220 2132 1600 685 571	7 4 5 3 <2	42 27 39 47 53	.5 1.1 .7 .4	9 10 11 10 12	19 22 30 22 25	341 4 455	2.85 4.02 4.47	5 11 9 7 5	<5 <5 <5 6 <5	<2 <2 <2 <2 <2	\$\$ \$\$ \$\$	102 150 73 41 20	<.2 <.2 <.2 <.2	<2 <2 <2 <2 <2	3 <2 <2 2 2	19 33	3.75 3.35 2.64	.027 .036 .040	<2 <2 <2 <2 <2 <2		.53	25 21 19 15 15	.02 .01 .01 .01	<2 2 <2	2.09 1.26 1.93 2.45 2.91	.02 .02 .02 .03	.08 .09 .09 .05	3 .003 2 .010 3 .005 <1 .001 3 .001
	RE 69789	3	567	3	54	.4	11	25	513	4.83	2	<5	<2	<2	20	<.2	3	<2	59	.76	.043	<2	8 3	.13	15	.02	<2	2.91	.03	.06	1 .001

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

ICAL LABORATORIES LTD.

852 E. HASTINGS ST. VI

OUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (6

GEOCHEMICAL/ASSAY CERTIFICATE Klight NU94.23 (UE)
Noranda Exploration Co. Ltd. (Lab) PROJECT #20880522578 File # 94-2813 Page 1 Delta Laboratopy, 1 - 755 Detra Bdw/d#1AG

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	2n ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Hg X	Ba ppm	Ti X	B ppm	Al X	Na %	K X		Au** oz/t≼
69835 69836 69837 69838 69839	3 4 2	727 1170 3413 3822 562	3 5 9 5 3	56 60 89 237 54	.9 .9 .7 1.2	7 8 7 95 9	27 28 24 18 14	480	5.07 5.28 4.24	14 12 14 10 5	5 5 5 5 5	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	19 14 8 8 38	.5 .6 1.0 1.0	2 3 3 5 4	<2 <2 <2 <2 <2	45 27 48 47	1.74 .68 .51	.073 .065 .073 .078	2 2 2 2 3	3 1 3 1 2 4	.36 .61 .99 .93	38 32	<.01 <.01 <.01 .01	2 <2 <2 <2	1.73 1.85 1.69 1.69 1.76	.03 .03 .03 .04	.13 .17 .12 .16 .15	2 <1 <1 1111	.002 .002 .003
69840 69841 69842 69843 69844	1 2 2	1228 1774 1203 1751 2400	3 <2 3 3 29	51 65 39 42 58	.8 .4 .6 1.0	11 10 8 6 8	37 16 15 15 15	465 606 359 355 460	5.33 4.32	12 6 4 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<	<2 <2 <2 <2 <2	12 12 17 14 17	.5 .5 .4 .4	5 2 3 <2 3	<2 <2 <2 <2 <2	37 60 47 31 29	.54	.048 .046 .048	\$ \$ \$ \$	3 3 3	1.88 1.71 1.25 1.52 1.76	28 27 38 29 45	.01 .02 .03 .06	<2 2 2	2.45 2.68 2.10 2.00 2.43	.02 .03 .04 .03	.11 .10 .14 .13 .20	36 1	.002 .004 .002 .002 .004
RE* 69844 69845 69846 69847 69848	3 3 5	2425 2877 2386 1003 1083	25 7 28 19 9	58 58 737 62 64	1.0 1.1 1.0 .6	9 10 276 9 27	16 28 30 27 23	453 525 516	3.02 4.62 4.68 5.09 4.80	3 4 10 4 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2	<2 <2 <2 <2	17 15 8 9 20	.6 .8 .9 .7	5 3 6 6 3	<2 <2 <2 <2	30 50 34 36 52	.53 .40 .51 .74 1.18	.051	<2 <2 <2 <2 4	5 5 4	1.77 1.88 1.75 1.91 2.46	45 28 34 35 37	.08 .02 .01 .01	2 <2 <2	2.49 2.63 2.60 2.64 3.15	.02 .04 .02 .02 .03	.20 .12 .15 .15	<1 <1 1924 3 <1	.003 .004 .003 .002
69849 69850 69851 69852 69853	1	1046 1141 1509 587 893	2 5 6 4 4	84 76 69 57 62	.4 .7 .3	14 9 12 10 11	22 27 36 20 21	586 533 451	4.27 4.43 5.12 3.80 4.01	<2 3 8 3 3	5 5 5 5 5 5	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<	15 14 18 12 14	.7 .6 .2	5 5 4 4 <2	\$\$ \$\$ \$\$	45 46 42 42 52	.43 .54 .51 .59	.049 .054 .050	<2 <2 <2 <2 <2	5 5 4	2.37 2.38 2.11 2.23 2.53	23 33 33 58 35	.02 .02 .02 .01	2 <2 2	3.06 2.95 2.67 2.78 3.03	.03 .03 .04 .03 .04	.08 .12 .11 .10	48 <1 <1 7 <1	.001 .002 .002 .001
69854 RE 69854 69855 69856 69857	1 1	1339 1412 1771 2007 836	4 <2 3 8 2	68 70 60 62 51	.5 .6 .6 .8	10 10 11 9 8	22 23 25 26 22	523 449 420	4.23 4.39 3.84 3.92 3.84	3 4 <2 7 8	\$ \$ \$ \$	& & & & &	43 43 43 43 44	15 16 17 17 23	.4 .3 .6 .3 <.2	5 4 3 4	\$ \$ \$ \$ \$	55 56 47 51 59	.60 .61 .46 .42	.056 .048 .049	<2 <2 <2 <2 <2	5 5 5	2.33 2.38 2.24 2.21 2.45	33 35 28 28 30	.01 .01 .01 .02	<2 2 3	2.99 3.11 2.88 2.77 2.82	.04 .05 .03 .04	.11 .12 .09 .09	<1 <1 <1 <1	.002 .002 .002 .003
69858 69859 69860 69861 69862	1	1770 1397 1336 1037 762	6 3 2 5 4	56 60 55 48 46	.4 .7 .7 .8	8 10 11 10	17 16 18 17 13	611 320 480	3.84 3.82 4.85 3.00 2.87	7 4 8 5 5	\$ \$ \$ \$	<2 <3 <3 <4 <4 <5 <4 <5 <5 <6 <6 <6 <7 <6 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7<	<2 <3 <3 <4 <4 <5 <4 <5 <5 <6 <6 <6 <6 <6 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7<	18 56 93 300 222	.2 .3 .5	<2 4 4 5 3	5 5 5 5 5	34 51 29	8.18	.079 .058 .031	<2 2 3 <2 <2	4 4 3	2.58 1.81 2.66 2.01 2.18	51 26 19		2 <2 <2	2.86 1.97 2.77 1.62 1.67	.03 .03 .03 .02	.10 .15 .12 .08	<1 <1 <1 1 <1	.002 .001 .003 .002
69863 69864 RE 69864 69865 469866	1 1 1 4	998 479 472 787 1097	3	42 40 39 36 32	.7 .4 .3 .4	9 8 9 11	23 14 14 12 21	264 264 210	3.59 3.12 3.13 2.37 2.92	10 5 6 4 5	<5 <5 <5 <5	\$ \$ \$ \$	\$ \$ \$ \$	236 235 238 217 187	.4 .2 <.2 <.2	2 4 3 4 2	\$ \$ \$ \$	38 39 40	6.78 7.05 7.33 7.06 7.14	.040 .040 .036	<2 <2 <3 <3 <4	3 3 3	1.88 1.56 1.60 1.44 1.37	21 21 19	<.01 <.01 <.01 <.01 <.01	2 2 3	1.64 1.53 1.54 1.26 1.30	.02 .02 .02 .03	.13 .08 .07 .05	<1 1 1 1 <1	.001
69867 69868 STANDARD C/AU-1	1 2 18	991 1385 59	-		.5 .7 7.1	10 9 75	19		2.63 2.70 3.96	4 5 42	<5 <5 19	<2 <2 7	<2	168 220 49		4 4 16	<2 <2 16	37	6.43 6.83 .50		<2 <2 40		2.15 1.52 .89	17 22 185	<.01 .01 .08	3	1.67 1.30 1.88	.03 .03 .06	.05 .07 .15	:<1 ::<1 :13	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-MN03-M20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TIEB W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

AU** BY FIRE ASSAY FROM A A.T. SAMPLE. Samples beginning 'RE' are duplicate samples. - SAMPLE TYPE: CORE

DATE RECEIVED: AUG 23 1994 DATE REPORT MAILED: HMS

SIGNED BY D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Noranda Exploration Co. Ltd. (Lab) PROJECT 9408-052 548 FILE # 94-2813

Page 2

AT.

AMPLES	Mo	Cu	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb	Bi ppm	V ppm	Ca %	P %	Le ppm	Cr	Mg %	Ba ppm	Ti %	B At	Na %	K %	W Au** ppm oz/t
69869) 69870	_	1261 1950	7	31 24	.2	10	15	179 2. 150 2.	40 45	<2 <2	5	<2 <2	3 <2	176 149	<.2 <.2	2 <2	3			.028	2	-	1.42 1.45	19 26	.02	<2 1.37 2 1.29	.02	.03	2 .009
69871 [™] - 69872	1	1065 1610	2 <2	30 40	<.1 .3	7 9	13 18	194 2. 260 3.	72 03	2 <2	<5 <5	< <u>\$</u>	<2 <2	163 69	<.2 <.2	2	2	32 41	5.76 3.45	.038 .031	<2 <2	6	1.96 2.39	26 19	.01	<2 1.65 <2 2.10	.02	.05	4 .002 2 .003
₩873 ₩874	1 5	985 719	<2 4	38 30	.2	7 5	17	245 2. 188 2.	_	<2 2	<5 <5	<2 <2	<2 <2	84 131	<.2 <.2	<2 <2	2 <2		3.33 3.73	.039	<2 <2		2.74 2.18	14 25	.03	<2 2.14 <2 1.76		.02	2 .001 3<.001
E 69874 69875	_	740 1007	<2 6	30 31	.1	5	12 12	192 2. 163 2.	15 24	<2 <2	<5 <5	<2 <2	<2 <2	137 163	<.2 <.2	<2 <2	2	30 33	3.79 5.00	.051	<2 <2	5	2.23	26 · 22	.03	<2 1.79 <2 1.78	.02	.05	<1<.001 3<.001
69876 FANDARD C/AU-1	19	1593 58	<2 37	29 122	.3 6.8	73	19 30	164 2. 1023 3.		<2 39	<5 18	<2 6	<2 35	92 49	<.2 17.0	<2 15	2 18	36 62		.030 .088	<2 41	6 56	2.16 .86	21 184	.07 .08	<2 1.70 33 1.80		.03	3 .001 11 .098

ample type: CORE. Samples beginning 'RE' are duplicate samples.

ICAL LABORATORIES LTD.

852 E. HASTINGS ST. V

OUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(6

253-1716

1

GEOCHEMICAL/ASSAY CERTIFICATE

Klique Nk 94-24 (LE)

File # 94-2730 Page 1 Noranda Exploration Co. Ltd. (Lab) PROJECT 9408-051 548 Delta Laboratory, 1 - 755, Delta BC V4G 1A6

											N.O.L.																			
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	В	Αl	Na	K	W AU**
<i>:</i> .	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	*	ppm	ppm	<u> </u>	ppm	*	ppm	*	*	*	ppm oz/t
69790	1	2204	5	419	1.8	4	17	823 3	72	8	<5	<2	<2	16	1.2	2	6	35	52	.073	<2	5	1.43	49	. 13	5	1.75	.02	.22	<1 .002
69791		2373	3	346	2.0	4	18	936 3		11	< 5	<2	<2	14	1.0	3	5	22		.075	<2		1.50	39	.13		1.78	.01	.23	<1 .003
69792		1504	<2	380	1.3	4	12	677 3		14	<5	<2	<2	23	1.1	2	<2	34		.074	<2		1.48	53	. 13		1.71	.03	. 19	<1 .003
69793	1	1772	3	472	1.5	3	11	614 4		6	<5	<2	<2	19	1.2	<2	11	49		.072	<2		1.46	55	. 13		1.68	.04	.20	<1 .004
69794	1	1049	<2	261	1.0	4	8	637 4	. 18	7	<5	<2	<2	22	.5	2	<2	50	.52	.072	<2	3	1.57	53	. 14	<2	1.82	.04	.24	<1 .004
69795	1	1003	<2	284	.9	3	7	544 4	. 17	2	<5	<2	<2	21	.6	<2	2	44	.49	.070	<2	3	1.33	49	.12	<2	1.59	.03	. 18	<1 .002
69796	2	2512	<2	265	2.3	8	21	597 4	.75	12	<5	<2	<2	24	.3	2	3	52	.54	.069	<2	4	1.52	56	.14	<2	1.81	.04	.20	<1 .004
69797	2	3321	5	264	2.7	6	27	583 4		13	<5	<2	<2	28	.5	<2	11	48		.063	<2		1.46	56	. 13		1.77	.04	.17	<1 .004
69798	1	999	4	249	.9	4	14	601 4		4	<5	<2	<2	24	.4	2	6	54		.070	<2		1.62	54	.13		1.88	.04	.17	<1 .001
69799	1	916	6	256	.9	4	13	667 5	.01	2	<5	<2	<2	20	<.2	<2	<2	65	.52	.069	<2	25	1.83	53	. 13	<2	2.08	.03	.17	<1 .002
RE 69799	1	925	2		.8	5	13	671 5		3	<5	<2	<2	21	<.2	<2	<2	65		.070	<2		1.84	52	.14		2.08	.04	.17	<1 .002
69800	1	2008	3		2.1	6	15	605 4		9	<5	<2	<2	25	.2	3	2	57		.062	<2		1.39	46	.13		1.69	.04	. 18	<1 .003
69801	<1		3		.5	2	12	469 4		5	<5 -5	<2	<2	29	.2	2 3	<2 3	74 72		.065	<2 <2		1.62	95 113	.16		1.84 1.93	.05 .05	.33	<1 .001 <1 .001
69802 69803		1073 2135	2 <2	270 245	.7 1.1	6 2	13 26	442 5 358 6		6	<5 <5	<2 <2	<2 <2	24 16	<.2 .8	<2	6	57		.067	<2		1.30	106	.14		1.52	.03	.28	<1 .001
07003		2133	~_	243		-	20	330 (-	٠,	``	~_	.0	.0	``_	Ū			.00.	`-	•		100	. 17	· ·	1.72	.04		11 .002
69804	1	282	<2		.3	5	13	385 4		6	<5	<2	<2	18	<.2	2	<2	84		.068	<2		1.47	146	.18		1.57	.05	.39	<1<.001
69805	!	1104	6		.7	7	13	322		5	<5	<2	<2	18	<.2	<2	<2	70		.066	<2		1.22	114	.17		1.37	.05	.35	<1 .002
69806 69807	1 1	969 530	5 2		.6 .3	4	12 14	320 5 359 4		6	<5 <5	<2 <2	<2 <2	12 23	<.2 .3	<2 <2	<2 6	62 69		.068	<2 <2		1.05	132 100	.16	-	1.32 1.47	.04	.52 .46	<1 .002 <1 .001
69808	;	2379	3		1.7	8	14	347 3		4	<5	<2	<2	24	.6	2	3	73		.065	<2		1.20	106	.19		1.45	.03	.44	<1 .005
	Ì				• • • •	_	• •			•	_	_	_		•	_	-	_			_							-		
69809	1		_		.3	5	13	362		2	<5	<2	<2	25	.2	<2	<2	82		.068	<2		1.19		. 19		1.43	.04	.50	<1 .001
69810	1	1697	3 5		.9	4	12	362 !		5	<5 -5	<2	<2	13	.5	<2	5	74 74	.63 .68	.073	<2 <2	-	1.14	134 124	.19		1.38	.04 .04	.57 .49	<1 .003 <1 .002
69811 69812	<1 <1		_		.5 .4	5 3	13	380 ! 318 (-5 -<2	<5 <5	<2 <2	<2 2	14 12	.4 <.2	<2 2	<2 <2		1.14		<2	4		106	.19 .12	3	.82	.02	.35	<1 .002
69813		1438			.8	4	15			18	<5	<2	2	17	.2	ر <u>ک</u>	<2			.069	<2	7		110	.17	_	1.18	.04	.35	<1 .005
											_	_	_		-															
69814	1	801	2			4	9			4	<5 -5	<2	<2	13	.2	<2	<2	67		.078	<2	4	.67	124	.16		.99	.04	.34	<1 .003
69815 69816		24 7 7 25 3 2	6			4	9 7	437 ! 424 :		2	<5 <5	<2 <2	<2 <2	10 26	.3	2	<2 3	64 35	.96 71	.059	<2 <2	17 9		106 80	.12	_	1.10	.03	.32 .31	<1 .011 <1 .013
69817		761	5		1.5	6		466		3	<5	~2	<2	22	<.2	3	2	65		.067	<2		1.15	76	.16		1.38	.04	.35	<1 .003
69818	1	594	-			_				5	< 5	<2	<2	25	.3	2	<2	71		.066	<2		1.02	80	.17		1.25	.05	.34	<1 .003
						_					_	_	_			_	-				-							٠.	_,	
69819	1	3471				7	13			7	<5	<2	<2	31	.6	2	<2	65		.060	<2		1.24	68	.16		1.54	.04	.31	<1 .016
69820 69821	1				.9	_				3 2	<5 <5	<2 <2	<2 <2	25 27	<.2	2 2	<2 4	42 70		.072	<2 <2	_	1.20	72 72	. 15 . 16	_	1.51	.02	.33 .24	<1 .002 <1 .003
69822		947								6	<5	<2	<2 <2		<.2 <.2	4	<2	47		.082	<2		1.02	61	. 12		1.27	.04	.16	
69823		1259	_			_		314		2		<2	<2	17	<.2	2	<2	88	.68		<2	5		68	.11	<2	.76	.03	.21	1 .005
					-	_						_				4=	4=							404						44 00/
STANDARD C/AU-1	19	57	38	122	6.6	68	31	1043	5.96	43	18	6	35	50	17.5	15	17	60	.51	.090	42	56	.91	191	.08	33	1.88	.06	. 15	11 .096

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning TRE are duplicate samples. - SAMPLE TYPE: CORE

DATE RECEIVED: AUG 18 1994 DATE REPORT MAILED:

D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Noranda Exploration Co. Ltd. (Lab) PROJECT 9408-051 548 FILE # 94-2730

Page 2

L

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	υ	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	Ŀa	Cr	Mg	Ba	Ti	В	Al	Na	K	W Au**
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*		bbw	ppm	*	ppm	<u> </u>	ppm	*	*	*	ppm oz/t
69824	1	572	4	181	.6	4	11	410 7	7.74	6	5	<2	2	14	.2	2	2	91	.78	.070	<2	3	.70	129	. 15	<2 1	.02	.04	.26	<1 .002
69825	2	830	4	195	.8	6	11	616		4	<5	<2	<2	23	<.2	3	<2	54		.074	<2	6	1.08	119	.18	<2 1		.05	.21	<1 .003
69826	3	732	<2	186	.6	4	15	473		4	<5	<2	<2	21	<.2	<2	<2	50		.073	<2	6	.93	110	. 15	<2 1		.04	.20	<1 .002
69827	2	1098	8	178	.9	7	15	475	.95	2	<5	<2	<2	17	<.2	<2	. 7	48	.54	.074	<2	4	1.00	125	. 14	<2 1	1.35	.03	.25	<1 .003
RE 69827	2	1066	10	170	.9	5	15	462	.83	2	<5	<2	<2	17	<.2	<2	6	47	.54	.072	<2	4	.97	127	. 14	<2 1	1.31	.03	.25	<1 .002
69828	1	928	<2	156	.7	4	13	431 5	5.29	<2	<5	<2	<2	15	<.2	3	5	51	.52	.062	<2	5	.81	123	. 15	4 1	1.10	.03	.20	<1 .002
69829	1	3360	3	155	2.2	2	18	469	1.13	<2	<5	<2	<2	13	.5	<2	3	37	.55	.060	<2	3	.80	129	.14	<2 1	1.10	.03	.22	<1 .006
69830	1	858	3	134	.6	4	13	495	5.18	<2	<5	<2	<2	16	<.2	3	7	48	.50	.062	<2	4	.90	129	. 15	<2 1	1.19	.03	.21	<1 .002
69831	2	1500	9	145	1.6	5	14	565 !	5.25	<2	<5	<2	<2	17	<.2	4	<2	48	.59		<2	4	1.00	134	. 15	<2 1	1.28	. 03	.20	<1 .005
69832	1	912	13	148	1.7	5	15	653	5.08	3	<5	<2	2	23	.5	3	<2	53	.98	.067	2	4	1.09	130	.14	<2 '	1.38	.03	.20	<1 .005
69833	1	842	<2	135	1.2	6	14	813 !	5.07	<2	<5	<2	2	14	.4	<2	4	38	1.47	.076	2	4	1.29	107	.12	<2 ·	1.48	.02	.24	<1 .003
69834	3	1137	26	78	2.2	7	14	563	.32	5	<5	<2	<2	14	<.2	3	<2	20	1.70	.067	3	4	.70	88	.01	<2	.99	.01	.31	<1 .005
STANDARD C/AU-1	19	. 58	37	123	6.7	65	30	1040	3.96	40	19	6	35	50	16.7	15	22	60	.50	.089	42	56	.89	187	.08	33	1.88	.06	. 15	11 .096

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

4

UVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (66

GEOCHEMICAL/ASSAY CERTIFICATE

Klyne (UE) NK94-25,26,28

Noranda Exploration Co. Ltd. (Lab) PROJECT 9408-058 548

File # 94-2855 Page 1

										Del	ta La	borat	ory,	1 - 7	755, I	elta:	BC V	G 1A6											
SSAPLES.	Mo	Cu ppm	Pb ppm	2n ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb	Bi ppm	ppn v	Ca %	P 1	.a om	Cr Mg ppm %	Ba ppm	Ti %	ppm B	Al %	Na %	K X	W Au** ppm oz/t
69877 69878 69879 69880 69881	2 2 4 3 3	688 199 367 389 172	5 <2 <2 2 2	55 55 46 67 52	.6 .1 .2 .3	3 17 11 7 7	10 16 12 16 11	648 650 400 639 531	4.72 4.21 4.54	<2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 2 <2 <2 <2 <2	35 52 21 17 23	.5 .4 .4 <.2 .5	<2 <2 <3 <4	<2 2 2 2 3	41 3.65 3.65 28 2.47 1.59 1.	43 .00 14 .00 54 .01	7 · 60 · 55 ·	<2 <2 <2 <2 <2	6 1.83 43 2.42 10 1.61 16 2.04 9 2.22	42	<.01 <.01 <.01 .01	7 2 4 1 6 2	1.84 2.02 1.70 2.19 2.75	.04 .04 .05	.09 .11 .10 .07	1 .004 <1 .001 2 .003 <1 .002 <1<.001
69882 69883 69884 69885 69886	5 2 2 2 2	88 20 97 21 40	<2 6 4 3 3	41 48 46 54 39	.2 <.1 .1 .1	11 7 10 9 5	13 18 14 15 15	547 296 325 287 382	5.02 4.37 5.41	<2 <2 <2 3 <2	<5 <5 <5 <5	<2 <2 <2 <2	<2 <3 <3 <4 <5 <5 <5	20 20 20 16 23	.2 .4 <.2 .5	<2 <2 <2 <2 <2	<2 <2 6 4 <2	38 2. 47 1. 35 1. 44 1. 45 2.	42 .0! 27 .0! 04 .0!	i9 i7 i3	<2 <2 <2 <2 <2	6 2.11 8 2.03 7 2.03 6 1.88 5 1.98	26 26 24 18 34	.03 .03 .04 .07	6 4 2	2.00 1.94 1.94 1.71 1.82	.05 .08 .07 .06	.08 .05 .07 .07	<1 .001 <1<.001 1<.001 1 .001 <1 .001
69887 69888 69889 69890 69891	1 3 6 1 2	24 88 56 9 20	<2 2 3 5 4	69 77 60 45 49	.1 .2 .2 .1	10 6 6 8 10	15 11 19 8 7	458 500 412 655 511	4.45 6.54 3.30	<2 2 3 <2	\$ \$ \$ \$	<2 <3 <5 <5 <5 <5 <5 <5 <5 <5	<2 <2 <2 <2	23 23 15 22 20	.5 .2 .9 .5	<2 <2 <2 <2 <2	<2 2 6 3 <2	37 1. 43 1. 20 1. 10 3. 13 2.	23 .0 20 .0 01 .0	54 58 54	<2 <2 <2 <5	10 1.96 11 2.11 3 1.32 6 1.30 9 1.29		.03 .04 .04 <.01 <.01	3 7 <2 2	1.82 2.00 1.31 1.25 1.25		.07 .08 .12 .14	<1<.001 <1 .001 <1 .001 1<.001 1 .002
69892 69893 RE 69893 69894 69895	1 3 3 1 6	236 50 51 74 489	5 6 3 4 5	47 119 118 116 153	.3 .1 <.1 .1	7 9 8 25 5	13 13	767 1131 1123 1305 874	4.62 4.58 5.70	<2 <2 3 3 <2	\$ \$ \$ \$ \$	<2 <3 <3 <5 <5	<2 <2 <2 <2	29 30 30 92 12	.3 .5 .7 .7	<2 <2 <2 <2	<2 <2 5 <2 <2	37 3. 49 2. 48 2. 119 5. 28 1.	80 .0 76 .0 64 .0	54 55 53	2 3 <2 <2 <2	8 1.72 9 2.10 9 2.08 77 3.78 4 1.33	45 41	<.01 <.01 <.01 <.01 .05	2 3 <2	1.60 2.22 2.20 2.93 1.75	.04 .05 .05 .02	.06 .07 .07 .08	1 .001 <1<.001 <1 .001 <1 .001 <1 .002
69896 69897 69898 69899 69900	5 5 6 11 8	844 1135 671 659 795	7 7 10 6 3	156 197 116 191 237	.7 .8 .3 .8	9 7 6 11 10	14 20 21 14 10	630 716 449	5.71 4.43 4.77 3.53 4.69	<2 3 2 8 3	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	11 16 11 13 16	.7 1.4 <.2 1.4	<2 <2 <2 <2	5 2 <2 <2 <2	21 1. 23 . 14 .	71 .0 62 .0 95 .0 88 .0 63 .0	63 66 89	<2 <2 <2 <2 <2	6 .83 3 .80 2 1.19 14 .52 22 .81	52 37 36 49 39	.05 .02 .01 .01	<2 <2 <2	1.35 1.24 1.75 .89 1.39	.02 .01 .01 .01	.19 .19 .19 .19	<1 .002 <1 .003 <1 .001 <1 .003 <1 .002
69901 69902 69903 69904 69905	2 6 13 11 4	159 271 534 431 596	4 5 2 5 4	147 522 118 109 194	.2 .3 .5 .4	10 7 12 10 6	6 12 18 17 10	415 535 469	3.37 3.96 4.83 4.00 3.73	<2 <2 6 6	<5 <5 <5 <5	<2 <2 <2 <2	<2 <2 <2 <2	16 19 23 16 52	.3 2.9 .6 .3 1.0	<2 2 2 2 <2	<2 <2 <2 <2 <2	22 . 25 1.	60 .0 64 .0 37 .0 02 .0 43 .0	81 85 81	<2 <2 <2 <2 <2	13 .96 12 .69 7 .51 8 .53 7 1.41	44 63 49 52 26	<.01	<2 <2 4	1.56 1.24 .98 1.00 1.77	.02 .02 .01 .02	.17 .19 .20 .20	<1<.001 <1 .001 <1 .002 <1 .001 <1 .001
69906 69907 69908 69909	1 1 19 9 6	634 357 348 433 574	<2 <2 <2 3 <2	509 158 98 64 82	1.1 .4 .4 .8 1.0	6 9 8 6 8	12 15 15 47 16	439 416 675	4.59 4.36 4.54 4.53 4.05	<2 <2 <2 2 3	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2 <3 <3 <3 <3	52 60 72 68 115	5.1 .8 .3 .5	<2 <2 <2 <2 <2	3 <2 <2 <2 <2	44 3. 38 2. 34 2. 16 3. 29 3.	50 .0 79 .0	66 54 71	<2 <2 <2 <2	4 1.77 3 1.79 4 1.35 3 1.06 6 1.17	26 31 34 28 31	.01 .01	<2 <2 <2	2.11 2.06 1.68 1.22 1.45	.02 .02 .01 .01	.08 .09 .09 .12 .10	<1 .002 <1 .001 <1 .001 <1 .002 <1 .002
STANDARD C/AU-1	19	58	38	128	6.9	68	30	1039	3.96	43	15	6	35	49	17.3	15	17	60	51 .0	89	40	56 .91	181	.08	34	1.88	.06	.15	12 .099

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000/PPB

AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning RE Fare duplicate samples. - SAMPLE TYPE: CORE

DATE RECEIVED: AUG 25 1994 DATE REPORT MAILED:

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Noranda Exploration Co. Ltd. (Lab) PROJECT 9408-058 548 FILE # 94-2855

Page 2

ALL MALENTEN

SAMPLE#		Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As	ppm	Au ppm	Th ppm	Sr ppm	Cd	Sb	Bi ppm	bibw A	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	lobw B	Al %	Na %	K %	W Au** ppm oz/t
69911		8	435	15	105	2.9	17	25	711 4		4	<5	<2	3	131	.5	<2	<2	14 4.		065	2		1.25		<.01		1.33		.14	9 .005
69912) }	5	330	6	82	.3	14	14	825 3		6	<5	<2	<2	78	۲.2	<2	<2	20 3.		081	3 <2		1.33 1.33	45 38	.01		1.72 1.79	_	.15	<1 .001 <1 .001
69913	1 1	6	523	5	90	.4	10	19	679 4		0	<5 ====================================	<2	<2	103	.2	<2	<2	30 3.		067	٠,	12	.56	30	.02		1.11		.11	<1 .001
69914	/ 1	0	884 744	7	64 . 79	- • [12 10	23 18	316 4		<2	<5 <5	<2 <2	<2 <2	124 101	.2 .2	<2 <2	<2 <2	24 3. 23 2.		074	· <2	12	.99	39	.02		1.36	.02	.10	<1 .002
69915	/ 1	3	744	3	17	.6	טו	10	358 4	. 14	٧٢	13	٧2	12	101	٠.	٧٢	٧.	23 2.	ω.	014	``	12	. ,,	3,	.02	~~	1.30	.02	. 10	VI .002
69916	/	6	453	9	94	.4	8	15	402 4	.06	5	<5	<2	<2	110	.2	<2	<2	38 3.	05 .	078	<2	9	1.34	51	.02	<2	1.76	.02	.12	<1 .001
69917		7	443	6	76	.4	8	14	385 4	.72	<2	<5	<2	2	121	<.2	<2	<2	42 3.	92 .	059	<2	6	1.27	40	.05	<2	1.54	.02	.11	<1 .001
69918	76	4	757	3	83	.5	7	15	374	.16	3	<5	<2	<2	106	<.2	<2	<2	32 3.	63 .	059	<2	5	.70	44	.05	<2	1.29	.02	.12	1 .001
69919	>25.	4	408	11	116	.2	6	10	452	.76	3	<5	<2	<2	96	.2	2	2	40 3.	28 .	.070	<2	5	1.27	42	.07		1.67	.02	. 13	1<.001
69920	′	8	755	3	82	1.1	10	15	592	3.23	3	<5	<2	<5	86	.2	<2	<2	22 3.	63.	.064	<2	6	.85	42	.05	<2	1.39	.01	.19	<1 .003
69921		5	732	6	85	.7	6	16	703	70	<2	<5	<2	<2	104	<.2	<2	<2	25 4.	31 .	050	<2	3	1.29	29	.06	<2	1.50	.01	.11	<1 .002
69922		R	540	5	71	.4	6	11	575		٦,	<5	<2	2	134	<.2	<2	<2	26 4.			<2	3	.89	33	.06		1.34	.02	. 13	<1 .001
69923	\	6	834	11	70	1.3	7	10	643		3	<5	<2	2	128	.2	<2	<2	30 4.			<2	4	1.25	34	.03		1.39	.01	. 12	<1 .003
69924	1	20	777	9	39	.9	7	20	415		3	< 5	<2	2	130	<.2	<2	<2	18 4.	97 .	049	<2	3	.41	31	.03	<2	.79	.01	. 14	7 .002
69925]			6	99	1.7	5	14	606		4	< 5	<2	<2	99	.2	<2	2	29 3.	.74 .	.044	<2	5	.84	29	.06	<2	1.27	.01	.12	1 .006
\sim											_	_	_	_	_	_				20			7,	• 2/	,,	47	-3	1 /0	04	25	1<.001
69926)	3	250	6	26		30	29	417		<2	2	<5	_	73	<.2	2	<2			.066	<2		1.26	43	.13		1.49 1.62	.06 .05	.25	1<.001
69927	/	2	88	6	35	<.1	19	15	520		<2	<5	<5	<2	83 .	<.2	2	-2	94 1.		.085	<2		1.30	96	.17		1.57	.05	.45	1<.001
RE 69927	26	2	87	<2	34	<.1	18	15	509		2	<5 -E	<2	<2	79	<.2	<5	<2	92 1.		. 083 . 086	<2		1.28	93 132	.17		1.62	.06	.82	<1<.001
69928		!	60	<2	43	<.1	9	14	539		<2	<5 -e	<2		79	<.2	<5	2	103 1. 109 1.		.092	<2 <2		1.14		.18		1.37	.05	.25	<1 .001
69929	•:	'	134	6	37	<.1	11	14	496	3.42	<2	<5	<2	<2	89	<.2	<2	٧2	109 1	.07 .	. 472	٠.	20	1.14	46	. 10	٠.	1.31	. 00	.23	`1 .001
6993D)	,	1	69	4	43	<.1	9	14	517	3.35	<2	<5	<2	<2	76	<.2	2	3	109 1	.47	.099	<2	15	1.25	118	.21	<2	1.75	.05	. 78	<1<.001
STANDARD	C/AU-1	19	58	38			72		1027		40	13	5	34		19.0	14	18	62	.50 .	.090	41	55	.91	181	.08	37	1.88	.06	. 15	10 .099

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

ACME ANA

ICAL LABORATORIES LTD.

852 E. HASTINGS ST. V

OUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (

253-1716

GEOCHEMICAL/ASSAY CERTIFICATE

GEOCHEMICAL/ASSAY CERTIFICATE

Noranda Exploration Co. Ltd. (Lab) PROJECT 9408-064 548

File # 94-2914 kL 94 27

SAMPLE#	Mo ppm	Cu	Pb ppm	2n ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	ppm U	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr	Mg %	Ba ppm	Ti %	ppm ppm	Al %	Na %	K %	W Au** ppm oz/t
		477		7,		••	45	/74 ^								-2		0/	• //	002			4 44	71	47		2/	~	46	7 000
69931	_!	137	8	34	.2	11	15		-81	<2	<5	<2	<2	64	<.2	<2	2		1.46	.092	<2		1.16	31	.17	3 1	.24	.06	.18	3 .001
69932 26	21	493	8	13	.9	8	>	237 1		2	′	<2	<2	18	<.2	<2	2	32	.91	.023	<2	13	.29	13	.06	2	.42	.03	.08	2 .001
69933	1	55	10	38	.3	11	18		.42	<2	<5	<2	<2	57	<.2	<2	4		2.15	.094	<2	21	1.46	86	.17	<2 1	-65	.06	.57	1<.001
70076	3	47	99	168	.5	17	16	235 3		3	6	<2	<2	8	.4	2	3	13	.80	.083	<2	10	.63	32	.03	2	.9 1	.03	.17	<1 .001
70077 27.	5	24	42	153	.3	18	15	200 3	.27	<2	<5	<2	<2	7	<.2	<2	<2	11	.79	.090	<2	32	.95	31	<.01	<2	.90	.02	.17	<1<.001
70078	4	39	60	220	.4	14	17	167 3	.99	<2	6	<2	<2	6	.7	2	2	10	.69	.084	<2	7	.61	30	<.01	2	.79	.02	.15	<1<.001
70079	5	38	18	78	.4	47	19	424 4		3	<5	<2	<2	21	<.2	<2	<2	28	2.38	.076	<2	78	2.10	24	<.01	<2 1	.41	.01	.13	<1 .001
70080	2	105	20	62	. 2	22	14	312 3		<2	<5	<2	<2	10	<.2	<2	2				<2		1.31		<.01		1.12	.02	.17	<1<.001
RE 70080	1	103	18	61	.3	22	14	308 3		<2	<5	<2	<2	10	₹.2	2	5				<2		1.28		<.01		1.12	.02	.16	<1 .001
	;	118	42	509		19	19	_	.00	3	< 5	<2	<2	Ŷ		<2	7		1.39		<2	12	.64		<.01	2	.85	.01	.16	<1 .001
70081	,	110	42	307	.6	17	17	300 0	.00	,	٠,	``	12	,	1.6	``	~	• • •	1.37	.000	``	12	.04	20	1.01	-	.07	.01	. 10	· · · · · · · · · · · · · · · · · · ·
70082	7	57	44	257	.6	26	21	220 5	.07	<2	<5	<2	<2	7	.5	<2	5			.080	<2	15	.83	32	<.01	2	.91	.02	.19	<1 .001
70083	4	126	36	106	.7	21	20	266 4	.66	3	6	<2	<2	9	<.2	2	<5	11	1.52	.068	<2	12	.96	25	<.01	<2	.86	.01	. 14	<1 .001
70084	1	76	17	93	.6	23	14	490 3	.79	<2	<5	<2	<2	41	<.2	2	2	12	2.16	.086	<2	10	1.20	48	<.01	2	.80	.02	. 19	1 .001
70085	3	83	7	94	.6	27	11	751 3		2	<5	<2	<2	82	.2	2	2	15	3.27	.081	2		1.81	73	<.01	<2	.92	.02	. 15	<1 .001
70086	4	306	8	121	.9	17	14	566 3		<2	<5	<2	<2	34	.3	<2	2	8	2.81	.076	<2		1.35	33	<.01	2	.63	.01	. 16	<1 .003
i						_				_	_	_	_			_	_						4	70	. 04					
70087	1	192		1661	.6	9	12	868 3		<2	<5	<2	2	42	8.8	<2	3			.065	<2		1.59		<.01		1.26	.02	.12	<1 .002
70088	12	70	10	176	.6	10	21	743 5	.56	2	7	<2	<2	20	<.2	<2	<2		1.80		<2		2.21	55	.01		2.23	.04	.10	<1 .002
70089	2	104	7	265	.6	11	14	721 4	.77	<2	<5	<2	<2	28	<.2	<2	3		2.29		<2		2.38	37	<.01	<2	1.91	.03	.06	<1 .002
70090	67	29	10	60	.7	14	16	1258 4	.06	<2	<5	<2	2	52	.4	<2	<2	9	4.25	.033	<2	11	2.22	23	<.01	<2	.22	.03	.06	1 .003
STANDARD C/AU-1	21	59	37	133	7.4	74		1088 4		41	16	7	39	52	18.7	14	20	57	.50	.096	41	60	.91	186	.09	34	1.97	.07	. 16	11 .098

Delta Laboratory, 1 - 755, Delta BC V4G 1A6

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: CORE AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: AUG 30 1994 DATE REPORT MAILED: Sept 8 94

ACME CLYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. ANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAC 604) 253-1716

GEOCHEMICAL/ASSAY CERTIFICATE (Lipul (E) NU94-2)

Noranda Exploration Co. Ltd. (Lab) PROJECT 5409-016 548 File # 94-3148 Page 1

Delta Laboratory, 1-755, Delta BC V4G 1A6

L	2000000		4 - 94-199			1000000000	0.0000000000000000000000000000000000000		100000000000000000000000000000000000000		000000000000000000000000000000000000000	00.000000000000000000000000000000000000	200000000000000000000000000000000000000	********	000000000000000000000000000000000000000	(0.000000000000000000000000000000000000				000000000	************		*****	040000000000000000000000000000000000000		0.000000					20000
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cď	Sb	Bi	٧	Ca	P	La	Cr	Mg	8a	Ti	8	Αl	Na	K	W Au**	
	ррп	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	_ %	ppm	ppm	X	ppm	*	ppm	*	*	X	ppm oz/t	
70091	3	205	25	119	.4	19	15	392 4	.91	<2	<5	<2	<2	24	.5	<2	<2	25	2.29	.072	2	24 1	.30	38	.01	5	1.26	.05	.12	<1 .002	
70092	1	104	5	64	.3	13	14	348 4	.01	<2	<5	<2	<2	14	<.2	<2	4	23	1.33	.080	<2	14 1	.45	45	.02	3	1.38	.05	.10	<1 .001	
RE 70092	1	105	5	63	.2	12	15	354 4	.04	<2	<5	<2	<2	14	<.2	<2	<2	23	1.35	.081	<2	14 1	.46	48	.02	<2	1.40	.05	.10	<1 .001	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: CORE AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE'/are duplicate samples.

Geochemical Analysis

Project Name & No.:

KLIYUL DDH-NK-94-29 - 45548

Geol.:GG/LE

Date received: OCT. 19

LAB CODE:

9410--022

Material:

11 CORES

Sheet: 1 of 1

Date completed: OCT. 25

Remarks: • Sample screened @ -- 35 MESH (0.5 mm)

и Organic, Δ Humus, S Sulfide

Au - 10.0 g sample digested with aqua-regia and determined by A.A. (D.L. 5 PPB)

ICP = 0.2 g sample digested with 3 ml HClO₄/HNO₃ (4:1) at 203 °C for 4 hours diluted to 10 ml with water. Leeman PS3000 ICP determined elemental contents.

N.B. The major oxide elements and Ba, Be, Ce, La, Li, Ga are rarely dissolved completely from geological materials with this acid dissolution method.

T.T	SAMPLE	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	K	La	Li	Mg	Mn	Mo	Na	Ni	P	Pb	Sr	Ti	V	Zn
No.	No.	ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	%	ppm	<u>ppm</u>	%	.ppm	PDW.	%	ppm	%	ppm	ppm .	%	ppm.	<u>ppm</u>
146	70176 CORE	50	0.2	5.17	10	538	0.5	5	3.57	0.2	66	18	13	46	5.67	0.80	13	14	2.37	1591	1	0.08	10	0.14	94	185	0.40	212	175
147	70177	10	0.2	5.24	12	253	0.4	8	4.27	0.5	64	22	12	65	5.70	0.42	15	15	2.36	1297	1	0.09	12	0.09	20	296	0.39	206	130
148	70178	10	0.2	6.00	12	572	0.4	6	4.15	0.9	62	25	28	83	5.97	0.94	15	18	2.79	2400	- 1	0.07	25	0.09	31	189	0.36	206	306
151	70179	15	0.2	4.58	23	189	0.5	5	4.99	0.8	72	33	161	34	5.86	0.24	14	16	4.19	2247	į	0.09	93	0.11	9	153	0.29	174	248
152	70180	40	0.4	5.87	14	807	0.5	5	2.96	1.2	60	16	10	48	4.99	1.34	14	12	1.76	2276	1	0.08	7	0.10	22	160	0.26	170	246
i						4.																							
153	70181	10	0.2	5.41	20	691	0.4	5	3.87	0.8	67	16	28	67	6.18	0.93	16	16	2.28	1929	1	0.09	22	0.11	15	171	0.31	229	269
154	70182	20	0.4	5.33	27	667	0.4	5	2.09	0.2	52	10	11	89	6.17	1.03	15	14	2.32	1464	. 1	0.08	8	0.10	13	138	0.39	234	213
156	70183	10	0.2	5.38	23	416	0.4	5	2.69	1.1	59	13	11	. 66	5.79	0.68	14	15	2.05	1697	1	0.08	8	0.08	17	167	0.34	206	370
157	70184	10	0.2	6.47	22	1891	0.4	7	2.12	0.5	57	7	9	52	5.48	1.61	15	14	2.04	1985	1	0.08	6	0.08	50	131	0.46	241	329
158	70185	35	0,6	5.82	22	1390	0.4	6	2.73	0,6	61	8	10	58	5.84	1.13	17	13	1.69	1668	1	0.09	6	0.08	40	186	0.49	253	298
ĺ																													-
159	70186 CORE	10	0.2	5.68	21	1419	0.4	12	2.04	1.5	57	13	10	68	5.88	1.34	17	14	1.89	1635	1	0.08	8	0.09	54	1.38	0.47	250	468
1																													

APPENDIX IV DIAMOND DRILL LOGS

3=moderate 5=very strong 1=very weak 4=strong PROJECT NO. 548 N.T.S. No. 94D GRID NORTH (W.R.T. TRUE) PROPERTY KLIYUL **DIP TESTS** DATE COLLARED Aug 2/94 DATE COMPLETED Aug 4/94 CORE SIZE BDBGM Sheet 1 of 12 MAGNETIC DECLINATION DEPTH BEARING ANGLE FIELD CO-ORDINATES LOGGED BY L. ERDMAN HOLE No. RECORDED CORRECTED RECORDED CORRECTED LAT. ELEV. DIP DIP -70° 152.4 ELEV. 1750 m LAT. 1870N NK-94-20 DATE: August 3 to 6 1994 LENGTH BEARING -70 DEP. LENGTH 152.4 BEARING 035° DEP. 2620E ASSAY **GEOCHEM GEOTECH** SAMPLE 96 Frac % RECO % DESCRIPTION ROCK FROM TO Carb Chio Ep Ser Sil Gyp FROM TO No. VERY Py Ср Mt Po | Dens FROM TO **TYPE** FROM TO OB Overburden 9.0 47 6.1 9.0 OB Overburden 60 6.1 9.1 Rubbly core pieces of many lithologies. <0.5 12.2 9.1 12.2 55 <1 MZ MONZONITE 9.0 12.2 Very broken, most fragments <2 cm in size. Green-gray colour. Indistinct ghostly textures, fine grained, quartz eyes. Local fracture fill carbonate, also fracture fill epidote. Epidote and carbonate are not observed in the same fracture. Overall pyrite content is <1%, fine grained and disseminated but locally dust size pyrite forms aggregates in chloritic fractures and ranges up to 15%. Non-magnetic. 13.5 15.5 70101 <0.5 60 12.2 18.4 1 2 100 <0.5 Trl 12.2 15.2 12.2 18.9 MZIMONZONITE <0.5 60 15.2 18.3 100 Similar to previous interval but core is less rubbly/broken and locally forms 0.5 cm to 2 cm "plates", fractured at 100 to 110° to CA. Feldspar crystal fragments more apparent but still ghosty. Minor quartz veinlets (<0.5 mm), no preferred orientation. 14.6 m Trace of chalcopyrite in a 1 cm carbonate vein. Pyrite content has decreased except as below 16.1 m to 17.2 m. Sericitic, foliated with 20% coarse grained pyrite in stringers, much of the pyrite is distinctly cubic (1mm). Similar disseminated pyrite (2%) also occurs within this interval. 18.4 21.3 <0.5 60 18.3 21.3 100 21.3 AND ANDESITE 18.4 Light green-gray, feldspar crystals are absent, equigranular. Pervasive sericite, no visible mafics. Similar to 16.1 to 17.2. Fracturing at 100 to 110° to CA. Medium to coarse grained disseminated pyrite occurs throughout, locally occuring in fractures. Most of the disseminated pyrite is actually pyrite clusters, no individual crystals. No carbonate, non-magnetic.

1=very weak

3=moderate 4=strong 5=very strong

DATE CO	LAREDA	uri2/94	DATE COMPLETED Aug 4/94	CORE SIZE BDBGM			IP TESTS	3		PROP	ERTY I	KLIYUL		PROJEC	T NO. 5	48	N.T.	S. No.	94D	GRIC	NOR	TH (W.R	T. TRU	E)
DAIL OO	CONTINUE A	Og D O V	FIELD CO-ORDINATES	00112022000	DEPTH		RING		GLE					4			Shee	t 2 of	12	MAG	NETIC	DECLIN	IATION	
LAT. 187	MN		ELEV. 1750 m	DIP -70°			CORRECTER		CORRECTED	LAT.		ELEV.		DIP			HOL	E No.		LOG	GED B	Y L. ERI	MAN	
DEP. 26			LENGTH 152.4	BEARING 035°		035		-70		DEP.		LENG	тн	BEARING	G		NK-	94-2	0	DAT	E: Aug	just 3 to 6	3, 1994	
1			CENTITION TOLLY	DO WING GO	<u></u>		<u> </u>		OTECH							GE	ОСН	EM					ASSA	Ϋ́
:		ROCK	DESCR	RIPTION				% RECO	96	%	96	%	Frac			T		Ī		Γ				SAMPLE
FROM	то	TYPE				FROM	то	VERY	Py	Ср	Mt	Po	Dens	FROM	то	Carb	Chio	Еp	Ser	Sil	Gyp	FROM	то	No.
21.3	24.4		ANDESITE			21.3	24.4	50	7	-	-	-		21.3	24.4		-	-	4	-				
			Same as previous interval.																					
																		l						
24.4	30.5	AND	ANDESITE VOLCANICLASTIC			24.4	27.4			-	•	•		24	30.5	-	3	-	3	•	•			
			Green-grey foliated with mafic			27.4	30.5	37	3	•		<0.5						<u> </u>						
			spar crystal fragments. Pervas	sive sericite, local se	ctions													<u> </u>						<u> </u>
			completely sericitic without ma	ifics. Fine grained to	medium											<u> </u>		<u> </u>	<u> </u>	L	Ш			
			pyrite. No pyrite blebs. Foliate	ed.												<u> </u>	ļ	<u> </u>						
										<u> </u>						<u> </u>	ļ	↓	_		Ш			<u> </u>
30.5	33.5		MONZONITE		IATTERED						╚	<0.5		30.5	33.5	_	<u> </u>	↓ -	4	<u> </u>			<u> </u>	ـــــ
			Light green with ghosty white b		n. Pyrite	33.5					<u> </u>	<0.5		33.5			┵	-	4					
			in foliation plane as discontinue	ous strikes.		36.6					<u> </u>	<0.5		36.6	39.6		<u> </u>	╁	1 4		<u> </u>			ļ
						39.6	42.7	30	1	┷		<0.5	ļ	39.6	42.7	1_1	2	-	4	<u> </u>				
						ļ	.			<u> </u>	 	 	<u> </u>	-		 	-	 	├	├	-		 	
33.5	42.9	AND	ANDESITE		IATTERED			 				 		-		₩	├ ─		├-	-				
			Green-grey, foliated. Sections			 		 		 	ļ	<u> </u>		 		┼	┼—	├	├—	 	\vdash		 	
			increasing mafics downhole sir	milar to 24.4 - 30.5 n	<u>n</u>	ļ				├		 		-	-	┼	┼—	┼		-	\vdash			
42.9	44.1	DVV	DVVE (ANDEOLTES)	VED	Y BROKEN	42.9	44.1	98		-				42.9	44.1	2	3	-	4		\vdash			\vdash
42.8	44.1	DYK	DYKE (ANDESITE?) Light cream to grey. Pervasive			42.8	44.1	80	 	┿		 '		42.5	44.1	 	 	 	 	╁┈╴	\dashv			
			Chlorite varies. Carbonate als	o present locally as	eub	 		 		1	-	 		 	 	╁	 	 	\vdash	├	Н			
- 			parallel veinlets at 10°. Fine to			 		 		 	_	-	-	 	-	┼─	+-	\vdash	_	Ι	\vdash			
			pyrite and pyrite in some of the					 		 	 	-		1	-	+-	t	 	 	_				<u> </u>
			as fine fractures and on foliation		Official	<u> </u>						_	_			 	 	1		†				
			as mis maxares and on ionatio	on planes.		 		 	 		†			1		1	1	t		l				
44.1	45.1	AND	ANDESITE	SH	ATTERED	44.1	45.1	100	<0.5	1	2			44.1	45.1	1	1	-	4	<u> </u>		44.0	46.0	70102
	,,,,,		Medium green-grey. Local pat			1		<u> </u>																
			nated magnetite and also discr			† — <u> </u>		<u> </u>		—														
			locally up to 10%.			T				T			1											
			Pervasive/veinlet carbonate.														1							
			Traces of very fine grained cha	alcopyrite throughou	ì.				T					1										
45.1	45.7	DYK	DYKE (ANDESITE?)			45.1	45.7	100	<1	-		1		45.1	45.7	2	1		3	L	•			
			As from 42.9 to 44.1 m.																					

1=very weak

3=moderate

5=very strong

4=strong N.T.S. No. 94D GRID NORTH (W.R.T. TRUE) PROPERTY KLIYUL PROJECT NO. 548 **DIP TESTS** DATE COMPLETED Aug 4/94 CORE SIZE BDBGM DATE COLLARED Aug2/94 Sheet 3 of 12 MAGNETIC DECLINATION DEPTH BEARING **ANGLE** FIELD CO-ORDINATES LOGGED BY L. ERDMAN 152.4 RECORDED CORRECTED RECORDED CORRECTED LAT. ELEV. DIP HOLE No. DIP -70° ELEV. 1750 m LAT. 1870N NK-94-20 DATE: August 3 to 6 1994 LENGTH BEARING 035 -70 DEP. BEARING 152.4 LENGTH 152.4 DEP. 2620E **GEOCHEM** ASSAY **GEOTECH** SAMPLE % Frac % DESCRIPTION % RECO % ROCK TO Carb Chio Ep Ser SII Gyp FROM TO Mt Dens FROM **FROM** TO **VERY** Po TYPE **FROM** 51.2 46.0 51.8 70103 45.7 45.7 51.2 45.7 51.2 AND ANDESITE 45.7 48.8 50 Similar to 44.1 to 45.1 but with 2% medium grained 48.8 51.8 chalcopyrite at 45.8 and 46.8 m. 5 < 0.5 51.2 51.9 51.2 51.9 RHY RHYOLITE(?) DYKE 51.2 51.9 Light grey-green, minor clear 1-2 mm quartz veinlets. Weak pervasive chlorite atteration. Bleached adjacent to quartz veinlets. Trace very fine grained disseminated chalcopyrite at 51.3 m. 0.5 cm carbonate and quartz-carbonate veins hosting medium grained pyrite. 51,8 m Chalcopyrite in chlorite fractures. 3 2 1 51.8 54.9 70104 51.8 54.9 <0.5 AND ANDESITE FELDSPAR PHYRIC SHATTERED 51.8 53.8 70 53.8 Looks feldspar phyric, but core is very badly broken. Pervasive carbonate as well as fine fractures. No carbonate veinlets noted. Locally 5% disseminated magnetite, and dust-size patchy magnetite. More chloritic and less sericitic than previous magnetic interval (45.7 to 51.2 m). Local pervasive epidote. 53.8 54.3 53.8 54.3 70 54.3 DAC DACITE(?) TUFF Grey-green colour, not magnetic, local pervasive carbonate. Very fine grained, with a "squashed" texture producing a fine foliation. Rare quartz eyes with "flow" lines around them. 54.9 54.9 54.3 AND ANDESITE VOLCANICLASTIC 70 54.3 54.9 Dark green colour. Pervasive chlorite. Pervasive carbonate begins at 54.6 m. Overall 2% disseminated fine grained magnetite, locally 5%. Minor fine fractures and pervasive epidote. 61.0 70105 54.9 <0.5 54.9 57.9 54.9 57.9 10 57.9 AND ANDESITE VOLCANICLASTIC SHATTERED Dark green colour. Similar to previous interval. Some pleces are magnetic, other pieces are not. Pervasive chlorite. Carbonate fine fractures. Feldspar to epidote.

4=strong

5=very strong

DATE COL	LARED A	ua2/94	DATE COMPLETED Aug 4/94	CORE SIZE BDBGM		D	IP TESTS			PROP	ERTY	KLIYUL		PROJEC	T NO. 54	8	N.T.S	. No.	94D	GRID	NOR	TH (W.R.	.T. TRUE	<u>=) </u>
			FIELD CO-ORDINATES		DEPTH	BEA	RING	AN	GLE								Sheet	4 of	12	MAG	NETIC	DECLIN	IATION	
LAT. 187	ON		ELEV. 1750 m	DIP -70°	152.4	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOG	SED B	BY L. ERC	NAMC	
DEP. 262			LENGTH 152.4	BEARING 035°		035		-70		DEP.		LENG	TH	BEARING	3		NK-	94-2	0	DATE	: Aug	gust 3 to 6	3 1994	
								GE	OTECH							GE	CHE	ΞM				l	ASSA	Ϋ́
		ROCK	DESCR	RIPTION				% RECO	%	%	%	%	Frac											SAMPLE
FROM	то	TYPE	1			FROM	то	VERY	Py	Ср	Mt	Po	Dens	FROM			Chlo	Ер	Ser	Sil	Сур	FROM	TO	No.
57.9	60.5	AND	ANDESITE	SH	ATTERED	57.9	60.5	-	<0.5	•	<0.5	•		57.9	61.0	•	3	3	1	1	-			
			Dark green colour. Finely frac	tured epidote makes	light	57.9	61.0	52																
			green lines. Core is too broke	en to determine any	fracture												\sqcup		\sqcup			ļ'		
			direction. Carbonate as fine fr														Ш							
			except for 1 quarter-sized piec	e. Patchy, pervasiv	e silica														\square					
			alteration from 57.9 to 58.4, ho																Щ					
			Remainder of interval has not	pyrite. Fine grained	to epidote.							ļ					Ш		 				 '	
												<u> </u>	ļ	ايييا		<u> </u>	ليسا		igwdap					
60.5	61.0	AND	ANDESITE		IATTERED		61	52	-	•	3	-	L	60.5	61.0		3	2			-			
			Dark green colour, pervasive o			<u> </u>				L	<u> </u>	ļ					\vdash		\vdash				 '	
			epidote fine fractures, pyrite no			↓							↓				\vdash		\sqcup					
			of the broken pieces are magn								<u> </u>	ļ	<u> </u>						┝			·	<u> </u>	ļ
			patchy/banded magnetite. The			ļ				ļ		ļ					Ш			— ∤				
			on chloritic fracture surfaces so	uggesting the magne	tite is		!				<u> </u>						\vdash		 				├ ───	
			also a fracture fill.			ļ						<u> </u>				<u> </u>	\vdash						 -	
						 			-0.5		├	├	├	- 64 0	64.0	\vdash	-		\vdash			61.0	64.0	70106
61.0	61.6	MZ	MONZONITE		ATTERED	61.0	61.8	70	<0.5	-	<u> </u>	-		61.0	64.0	-			-			61.0	64.0	70100
			Fine grained, light grey, mainly	y feldspar, some qua	πz,	 					 -	 				—			\vdash	-			 	
			few mafics.				.					-	-			-	\vdash		├┤	-	\dashv			
		4115			ATTERER	- 64.0		70		0.5	<0.5	├	├			-	1	2	3			 '	 	
61.6	62.9	AND	ANDESITE		ATTERED	61.8	62.9	/0	<u> </u>	0.5	\U.5	 				⊢'				<u> </u>			 	\vdash
			Dark green, mafics are chloriti			 	ļ			-						\vdash	┝		\vdash			·	 	
			fractured. <1% fine grained py	ynte, locally 5% diss	emmated	 				├	 	 				 	-				\dashv		 	
			pyrite associated with mafics.			 	ļ					-		 	-	-	\vdash						 	\vdash
- 62.0	-64.6	AND	ANDESITE	- CL	IATTERED	62.9	64.0	70	<0.5	0.5		 		62.9	64.0	1	3	2	3	_			 	
62.9	64.0	AND				02.8	04.0	- 10	70.5	0.5		-	-	02.8	04.0	-	H		┝┦	\dashv	-	r		
			Dark green, poorly defined foli				 			├─	 	 	-			-								-
			associated with chlorite forms			 	 			_		 		 	-	-	\vdash		 	\dashv			 	
			patches. Trace very fine grain			 	 			 		-	\vdash	┢──┤		\vdash	\vdash						 	
			grained to coarse grained pyrit	e. Pervasive chlom	E,	 		 			 	 	 	 		-	$\vdash\vdash$		├── ┤		-		 -	
			locally very strong.			 				\vdash	├	 	—	├		-	Н		┤	{			 -	
			 			 	 	ļ		 	 	├	 		-		\vdash		 		-		 	\vdash
-						 	 			├	 	+	 	 		 		_	┞╌┤				├──	
											├	+	├──	 		\vdash	\vdash	-	├┤				┢──	
<u></u>			<u> </u>			1	L		L	L	<u> </u>	<u> </u>	<u> </u>	L									لـــــا	

4=strong

5=very strong

DATE COL	LAREN A	um2f0.4	DATE COMPLETED Aug4/94	CORE SIZE BDBGM	T	Г	IP TESTS	}		PROP	ERTY I	KLIYUL		PROJEC	T NO. 54	8 8		S. No.	94D		NOR	rh (W.R.	r. TRUE)
DATE COL	LAKEU A	ug2/94	FIELD CO-ORDINATES	TOURE SIZE BUBGIN	DEPTH		ARING		GLE	1							Shee	5 of	12	MAG	NETIC	DECLIN	ATION	
LAT. 187	ONI		ELEV. 1750 m	DIP -70°			CORRECTED		CORRECTED	LAT.		ELEV.		DIP			HOL	E No.		LOG	SED B	Y L. ERD	MAN	
			LENGTH 152.4	BEARING 035°	102.4	035		-70		DEP.		LENG	ГН	BEARING	3		NK-	94-2	o l	DATE	: Aug	ust 3 to 6	1994	
DEP. 262	70E		LENGTH 152.4	IDEARING WS	<u> </u>	- 000	1		OTECH						-	GE	осн	EM					ASSA	Y
		2004	DESCE	RIPTION				% RECO	%	96	%	%	Frac			<u> </u>								SAMPLE
		ROCK	DESCR	ar non-		FROM	то	VERY	Pv	Ср		Po	Dens	FROM	то	Carb	Chlo	Еp	Ser	Sil	Gy	FROM	то	No.
FROM 64.0	70.4		ANDESITE(?) VOLCANICLAS	STIC SH	ATTERED			95			•	<0.5		64.0	67.1		1				-	64.0	66.0	70107
- 04.0	70.7	AND	Medium to light grey green. Lo			67.1		95			_	-		67.1	70.1	1	1	2	2	1	-	66.0	68.0	
			pervasive and finely fractured	enidate Three sect	ions of	3																68.0	70.0	70109
			strongly epidotized rock at 66.8	8 68 0 and 68 2	10.10 01																			
-			69.0 to 70.4 Chloritic section v	vith pervasive and fi	nely		† ·																	
			fractured carbonate, 3% fine gr				 																	
			69.3 to 69.7 m. 7% medium to		issemi-		1																	
			nated and finely fractured pyrit	e associated with ca	rbonate		 			1														
			fine fractures. From 64.0 to 69	0.0 m <0.5% fine are	ained	T				I]	
			finely fractured pyrite. The ent	ire interval is non-m	agnetic.	1										L_								
			Quartz eves noted.																					
																	<u> </u>		Ш					
70.4	81.0	AND	ANDESITE FELDSPAR PHYR	IC SH	ATTERED	70.1	73.1				<0.5			70.1	73.1				3	-	<u> </u>		73.0	
			Grey-green. Moderately serici	tic feldspar phyric ar	ndesite.	73.1				_	<0.5		<u> </u>	73.1	76.2						\Box	73.0		
			Slightly larger pieces of core s	how. Feldspar phyri	c texture.	76.2	79.2	45	2		2		<u> </u>	76.2	79.2	1	2	2	3	-	-	79.0	81.0	70112
			Local random, carbonate fine f	ractures. Mangetic	intervals						<u> </u>	ļ				ļ	<u> </u>		Ш		\sqcup			
			from 71.6 to 71.9, 72.3 to 72.5								ļ	ļ		ļ		ļ	↓	-	-		\vdash			
			79.4. Pyrite content varies fro	m 0% to 2%, not ass	sociated						ļ	<u> </u>		1		₩	 	<u> </u>						
			with any particular alteration ty					<u> </u>		ļ	ļ	Ļ	ļ	 		1_	-	 	\vdash		 			
			grained and disseminated. No							 	<u> </u>			 		ļ	ــــ	├—	₩		\vdash			
			Locally sericite atteration is ve			<u> </u>				↓		<u> </u>	ļ	-		 -	-	├	₩		┝╌┤			
			epidote fine fractures becomin		ion.	<u> </u>		<u> </u>		<u> </u>	 		├	 	 	<u> </u>	┼	├	₩		\vdash			
			Minor alteration of feldspar to	epidote.		ļ		ļ		├	ļ	↓	 	┼	-	╀	-		├		\vdash			
							00.5	100	 	1-2	<0.5	+		79.2	82.3	1	2	1	4			81.0	82.3	70113
81.0	83.1	AND	ANDESITE FELDSPAR PHYR		HATTERED	79.2	82.3	100	2	 	 <0.5	1	\vdash	19.2	02.3	 	 -	┼	+ 4	_	┝╌┤	01.0	02.3	10113
			Extremely broken. Dark green	, pervasive sericite.	10% of	-		 	ļ	⊢	├			┿		┯	┼	├	╁─┤		\vdash			
			core pieces contain trace amo					<u> </u>	·	-	-	┼	-	-		├	├	┼─			 			
			disseminated magnetite. At 82	2.5 m small (0.5 mm) "glob"			 	ļ	+	-	┼	 	 		┿	╁	-	\vdash		-			
			off chalcopyrite in a 3 mm carl	bonate vein. 5 cm o	r magnetic		 	 	 	+	-	+		+	 	╁	╁─╴	-	-	 	├─┤			-
			rock on either side of the vein.	Magnetite content	<0.5%.	 		 	 	+-	+	+	\vdash	 	-	+	+-	┼	 					
			2% fine grained pyrite through		110m U.5%		 	 	 	\vdash	+	+-	-	 	-	+-	+	┼	-	\vdash	\vdash			
			to 4%. Minor fracture fill epide	ote.	and Garate	 	 	 	 	+-	┿	╂	\vdash	+	 	+-	+	 		├-	\vdash			
			No pervasive carbonate altera	tion, chlorite blebs a	na tinely	 	 	 		+	+	+	┼	 	\vdash	+	+	\vdash	╁		 			
			fractured chlorite. Very fine gr	rained chalcopyrite t	nrougnout.	 		 	 	┼	+	+	-	+		+-	+	+	1-	 	 			
		L	<u> </u>	 		1	<u> </u>	1			Ц.	ــــــــــــــــــــــــــــــــــــــ	т	1	1		т		<u> </u>	L	لــــا			

1=very weak 3=moderate 5=very strong

4=strong PROJECT NO. 548 N.T.S. No. 94D GRID NORTH (W.R.T. TRUE) PROPERTY KLIYUL **DIP TESTS** CORE SIZE BDBGM DATE COLLARED Aug2/94 DATE COMPLETED Aug 4/94 MAGNETIC DECLINATION ANGLE Sheet 6 of 12 DEPTH BEARING FIELD CO-ORDINATES HOLE No. LOGGED BY L. ERDMAN RECORDED CORRECTED LAT. ELEV. DIP RECORDED CORRECTED DIP -70° 152.4 ELEV. 1750 m LAT. 1870N NK-94-20 DATE: August 3 to 6 1994 -70 DEP. LENGTH BEARING 035 BEARING 035° LENGTH 152.4 IDEP. 2620E **ASSAY** GEOCHEM **GEOTECH** SAMPLE % RECO % % % Frac DESCRIPTION ROCK Ser Sil Gyp FROM TO No. Ср Mt Po FROM TO Carb Chlo Ep VERY Py **FROM** TO TYPE FROM TO 85.3 70114 2 82.3 <0.5 82.3 AND ANDESITE (FELDSPAR PHYRIC) SHATTERED 82.3 85.3 45 Τr 85.3 88.4 70115 70 85.3 88.4 3 Extremely broken as in previous interval. Dark green, 85.3 88.4 2 3 96.4 88.4 91.0 70116 88.4 91.4 80 <1 88.4 chloritic alteration pervasive. Pervasive epidote has 91.0 94.5 70117 91.4 96.5 94.5 70 <0.5 increased from previous interval. Carbonate occurs as 91.4 fracture fill, very rare. No visible pyrite. Magnetite occurs as fine grained, disseminations or as dust-size aggregates and bands(?). Magnetic interval from 84.4 to 87.4 m, and 90.0 to 90.2 m. Local feldspar to epidote. 94.5 97.5 94.5 96.5 70118 97.5 AND ANDESITE (FELDSPAR PHYRIC) SHATTERED 94.5 85 95.0 104.3 70119 97.5 100.6 96.5 100.6 97.5 100.6 20 2 As in previous interval but magnetite content has increased. 70120 100.6 103.6 100.6 103.0 4 < 0.5 103.6 95 Carbonate fine fractures are rare. Magnetic sections from 100.6 103.0 107.0 70121 <0.5 103.0 106.7 106.7 40 95.0 to 97.9, 100.6 to 103.6, and 104.1 to 104.3 m. 103.6 Magnetite occurs as in previous interval. 103.6 106.7 103.6 106.7 <0.5 0.5 <0.5 3 SHATTERED ANDIANDESITE 106.7 104.3 Interval starts out as in previous interval but then the rock becomes waxy due to strong sericite atteration. Sericite begins at 106.4 in the core box but recovery was poor so may have started earlier. Moderate fine fractures and pervasive carbonate in the sericitic section, non-magnetic. Very fine grained chalcopyrite noted in a few pieces. 106.7 109.7 106.7 109.7 **BROKEN TO SHATTERED** 107.8 AND ANDESITE 106.7 Pervasive sericite gives a waxy appearance. Numerous carbonate veinlets and finely fractures. Chlorite on some of the fracture surfaces. Pervasive carbonate alteration. No pyrite. Some of the pieces are magnetic and host aggregates of dust-size magnetite.

1=very weak

3=moderate

5=very strong

																2=we			4=str					
DATE CO	LLARED A	\ug2/94	DATE COMPLETED Aug 4/94	CORE SIZE BDBGM		0	IP TESTS			PROP	ERTY I	KLIYUL		PROJEC	T NO. 54	18	N.T.S	S. No.				TH (W.R.)
			FIELD CO-ORDINATES		DEPTH	BEA	RING	AN	GLE								Shee	t 7 of 1	12	MAG	NETIC	DECLIN	ATION	
LAT. 187	70N		ELEV. 1750 m	DIP -70°	152.4	RECORDED	CORRECTED		CORRECTED	LAT.		ELEV.		DIP				E No.		LOG	GED B	SY L. ERC	MAN	
DEP. 26	20E		LENGTH 152.4	BEARING 035°		035		-70		DEP.		LENG	ГН	BEARING	G			94-2	0	DATE	: Aug	just 3 to 6		
								GE	OTECH							GE	CH	EM					ASSA'	Y
		ROCK	DESC	CRIPTION				% RECO	%	%	%	%	Frac											SAMPLE
FROM	то	TYPE				FROM		VERY	Py	Ср	Mt	Po		FROM	TO	Carb			Ser	Sil	Сур	FROM	TO	No.
107.8	110.7	DYK	DACITE DYKE			109.7	112.8	100	<0.5	<0.5	3	4	30	109.7	112.8	4	2	Ŀ	3	<u>_</u> :	-	107	110	70122
			Light green-grey colour. Fine	ely foliated. The rock	appears												L	L!		\Box				
			to be more acidic and one qu								نـــــا													
			phyric textured. Foliation is		efined by													Ш						
			planes of chlorite/magnetite(?)								<u> </u>							L					
			110.7 to 110.9 m Intense can									L					<u> </u>	Щ		\square				
			invaded the rock. Trace to m								L									Ш				
			ated with the veinlets. Magn	etic section starts at 1	10.3 m.				.,				$ldsymbol{\sqcup}$			<u> </u>		Щ		\sqcup				
																	<u></u>	Щ		Щ				
110.7	110.9		ANDESITE(?)		IATTERED	110.7	110.9	100	1	<0.5	<0.5	1		110.7	110.9	3	4	1	2	ᆜ				
			Very chloritic, dark green, qu	artz-carbonate vein to	4 mm						<u> </u>	ļ				<u> </u>	<u> </u>		<u> </u>	⊢⊣				
			with epidote on selvage and									L	_				<u> </u>	Ш		Щ				
			pyrite and trace chalcopyrite((?). <1% of the pieces	are	ļ					—		_			\vdash		Ш	_	ш				
			moderately magnetic.			ļ				—						<u> </u>	<u> </u>	\vdash		\vdash				
-112.5	112.2					440.0	1100	400		—	-0.5	├		440.0	440.0	—	<u> </u>	\vdash	_	H	_	440	440	70400
110.9	113.3	DAC	DACITE ASHFLOW TUFF		- 004	110.9	113.3	100	2		<0.5	4	30	110.9	113.3	-	<u> </u>	⊣	2	H		110	112	70123
			Light grey-green. Squashed			 						├		<u> </u>		—		Н		Н				
			quartz eyes observed, and w	truin the foliation are s	Received	ļ				 		 	-			-	 	-	-	-		-		
$\overline{}$			fragments. Fine grained pyrimore chloritic at 112.7 m, ab	te ranges from U-5%.	becomes	 										-	—			-				
			occurrence on foliation plane							 			\vdash			-	\vdash			-	-			
			(4 cm). 1% (2-3 mm) white of		1011		<u> </u>			├	<u> </u>	 		_		\vdash		\vdash		Н				
			(4 Gi). 176 (2-3 min) Write C	iotaramyguules(?).		 					 	├──				-	 	\vdash		\vdash				
113.3	114.4	AND	ANDESITE(?) SHATTERED			113.3	114.4	100	- 21	<0.5	<0.5	<u> </u>		1122	114.4	3	<u> </u>	-	7	닌		112	114.4	70124
110.0	117.7	ZIAD	Pervasive sericite, carbonate		tures	113.3	11-77	130		10.0	10.5	-	 	110.0	117.7	<u> </u>	⊢ ≛	\vdash	⊢ٽ	\vdash			· · · · · · ·	
			more rarely pervasive. Rare			 				 			\vdash				_			\vdash				
-			2% fine grained pyrite, disser			 	 					├──	-				\vdash		\vdash	\vdash	\dashv			
-	 - 		location. <1% of pieces are			 				 	-	 								\vdash	\dashv			
			gypsum fractures.	girouo. Ondioopyiii		 	 			\vdash	 	$\vdash \vdash$			-	1		М		$\vdash\vdash\vdash$				
			Stranii ilanino			 			 		T							\vdash		$\vdash \vdash$	_		-	
<u> </u>						1						 						\vdash	Н Т	\vdash	-			
						+		 -		 	1	 					\vdash			\vdash	_			
,				<u> </u>		1		 		†	† —						<u> </u>			\vdash	_			
·				 		1	 									\Box				М			$\neg \neg$	
						1							-				\vdash	-		-			─ →	

1=very weak

3=moderate

5=very strong

4=strong N.T.S. No. 94D GRID NORTH (W.R.T. TRUE) PROPERTY KLIYUL PROJECT NO. 548 **DIP TESTS** DATE COMPLETED Aug 4/94 CORE SIZE BDBGM DATE COLLARED Aug2/94 ANGLE Sheet 8 of 12 MAGNETIC DECLINATION FIELD CO-ORDINATES DEPTH BEARING LOGGED BY L. ERDMAN RECORDED CORRECTED RECORDED CORRECTES LAT. HOLE No. 152.4 ELEV. DIP ELEV. 1750 m DIP -70° LAT. 1870N -70 DEP. LENGTH BEARING NK-94-20 DATE: August 3 to 6, 1994 035 LENGTH 152.4 BEARING 035* DEP. 2620E **GEOTECH** GEOCHEM ASSAY SAMPLE % RECO % Frac DESCRIPTION ROCK FROM TO TO Carb Chio Ep Ser Sil Gyp No. VERY Сp Po Dens FROM FROM Py TYPE TO FROM TO 114.4 119.8 1 2 2 2 114.4 116.0 70125 119.8 100 25 114.4 119.8 AND ANDESITE FELDSPAR PHYRIC 116.0 118.0 70126 Green-grey colour. Pervasive chlorite, sausseritized feldspar, locally feldspar going to epidote. Horsetailing microfractures, predominantly at 45° to CA but ranging from 20° to 90°. Microfractures filled with clear gypsum. Epidote as fine fractures and locally as selvage on gypsum fractures. Minor gypsum fractures host pyrite. Rare carbonate as fine fractures. Sericite observed on fractured surface. Local veinlets to 8 mm of gypsum +/- quartz. Patchy areas of pervasive very fine grained disseminated magnetite. Pyrite +/- pyrrhotite occurs as disseminated blebs, rarely single crystals, also forming wisps and filling fractures. Chalcopyrite in gypsum veinlets and as very fine grained dissemi-115.5 to 115.7 m Quartz-chlorite-chalcopyrite vein at 45° to CA (3% chalcopyrite). 115.8 m 1 cm quartz-gypsum vein with central band of chlorite-pyrrhotite. 116 m 1 cm gypsum-epidote-pyrrhotite-chlorite-chalcopyrite(?) vein at 90°. Epidote very fine grained (0.5%). Marginal to these latter 2 veins the rock is magnetic for a distance of up to 4 cm, no visible magnetite or pyrrhotite is observed. 115.6 m 2 cm quartz-carbonate-gypsum-pyrite vein at 30°. 115 m 4 mm quartz-gypsum-pyrite-pyrrhotite at 20°. 114.5 m Quartz-chlorite-chalcopyrite vein parallel to CA (only get part of it) (0.5% chalcopyrite). 116-116.7 m 0.5% very fine grained chalcopyrite in matrix, associated with gypsum.

1=very weak 3=moderate 5=very stron

DATE COLLARED Aug 2/94		un 2/94	DATE COMPLETED Aug 4/94 CORE SIZE BDBGM			DIP TESTS				PROP	ERTY	KLIYUL		PROJEC	8	N.T.S. No. 94D GRID NORTH (W.R.T. TRUE))	
DAILOO		.09 201	FIELD CO-ORDINATES		DEPTH	BE/	ARING	AN	GLE							Sheet 9 of 12			MAG					
LAT. 187	mN		ELEV. 1750 m	DIP -70°	152.4	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE			LOG				
DEP. 26			LENGTH 152.4	BEARING 035°		035		-70		DEP.	DEP.		TH	BEARING		NK-94-20			DATE	E Aug	ust 3 to 6			
DEF. 20	201		ELITOTTI 101.7		l	1		GE	OTECH							GEG	OCHE	M					ASSA	
		ROCK	DESC	RIPTION				% RECO	96	%	96	%	Frac											SAMPLE
FROM	то	TYPE	5 55			FROM	то	VERY	Py	Ср	Mt	Po	Dens	FROM	то	Carb	Chilo	Ер	Ser	SII	Сур	FROM	TO	No.
119.8			ANDESITE(?)			119.8	120.5	100	1	-		-	15	119.8	120.5	2	-	-	3	-	4	118.0	120.0	70127
-110.0	.20.0		Light grey colour. Pervasive sericite and gypsum(?) 2 cm																					
			vein of milky white gypsum a																					
	-		120.1 m at 10° to CA. Microf																					
			some hosting fine grained pyr	rite. Non-magnetic in	terval.												Ш							
			Lower vein contact is indisting	ct and there appears t	o be a												Ш				Ш			
			different (grey coloured) gyps	sum-pyrite vein invadi	ng the	1											Ш				Щ			
			milky white gypsum vein.														Ш		Ш		L			.
											I						Ш		lacksquare		$ldsymbol{ldsymbol{ldsymbol{eta}}}$			
120.5	122.0	AND	ANDESITE			120.5	122.0	100	<0.5	-	4	•	30	120.5	122.0	1	3	1	3	-	_2	120.0	122.0	70128
			Dark green. Pervasive serici	te/chlorite. Micro (gy	osum)	1															L			
			fractures as before at 45° to 5	50° to CA. Minor carb	onate														Ш					
			as fine fractures. Patchy mag	gnetic areas as in inte	rval from	1											\sqcup		<u> </u>					
			114.4 to 119.8 m but also 159			1							<u> </u>				Ш		Щ					
			fine grained magnetite. Serio	cite on fractures.													Ш							
			120.6 m 5 mm gypsum vein	with 1% medium grain	ned					<u> </u>		1	↓				\sqcup							
			magnetite and 0.5% fine grain	ned pyrite at 30° to Ca	Ä.					<u> </u>		1	<u> </u>			Ь	\sqcup		lacksquare					
										<u> </u>						Щ.	1_1							
122.0	133.1		ANDESITE FELDSPAR PHY			122.0	133.1	100	2	<u> </u>		5 1	30	122.0	133.1	_1	2	2	2		3		124.0	
			Medium green. Microfracture	es as in previous secti	ons.					<u> </u>	<u> </u>		ļ		ļ	<u> </u>	1						126.0	
			Appears brecciated (crackle t							<u> </u>	<u> </u>		<u> </u>		ļ		\vdash		_				128.0	
			veinlets/fractures. Local per-	vasive epidote. Perva	sive			<u> </u>		<u> </u>	<u> </u>		<u> </u>			L	Ш		1		ļ		130.0	
			sericite. Rare carbonate as fi	ine fractures, <0.5% v	reining.					<u> </u>	<u> </u>		<u> </u>	<u> </u>			1		_			130.0	132.0	70133
			125.3 to 125.9 m, 126 to 126					<u> </u>		↓	ļ		<u> </u>	 		ļ					!		<u> </u>	ļ
			Stockwork 1 mm to 3 mm gy	psum veinlets with pe	rvasive					<u> </u>	<u> </u>	1	ļ	<u> </u>	<u> </u>		1		ш		 		ļ	-
			disseminated magnetite +/- p					<u> </u>		↓	<u> </u>	↓	1	ļ		L								
			adjacent to the veined area is		ed and has				<u> </u>	1_	↓	↓	ــــــ										ļ	<u> </u>
			2% of very fine grained chalc	copyrite.					<u></u>	ļ		↓	<u> </u>	L	L	<u> </u>			1		١			ļ
			130.7 m 4 mm quartz-pyrite-	-magnetite veinlets at	35° to				ļ		↓	 	ļ	ļ	.	<u> </u>	_				Ь—			ļ
			CA.						<u> </u>		ļ		ļ	1		!	<u> </u>		\sqcup		<u> </u>			
			131.6 to 131.8 m Stockwork	gypsum veinlets with	very fine				<u> </u>	1	ļ	4_	<u> </u>	L	ļ		1		1		Ь—			
			grained pervasive magnetite.	. 1% disseminated py	rite					1	<u> </u>	1	 	ļ	ļ	<u> </u>					Ь			ļ ——
			(pyrrhotite) in this section.									4	ļ	ļ		ļ	ļ		igwdap		├		<u> </u>	
			132.6 to 133.1 m Similar to				ļ	ļ	ļ	_	↓	1	 		-	!	-		-	ļ	₩		L	<u> </u>
			magnetite as observed before	e but also small disse	minated		<u> </u>	ل	<u></u>				<u></u>		L	<u> </u>			L	L	<u> </u>	L	<u> </u>	<u> </u>

3=moderate

4=strong

		454	DATE 00101 FTFD 4 404	CORE SIZE BDBGM			IP TESTS			PROPI	ERTY I	KI IYUI		PROJEC	T NO 54	18	IN T.S	S. No.	94D		NOR	TH (W.R.	T. TRUE)		
DATE CO	FIELD CO-ORDINATES DEPTH				ARING		GLE						.,					GRID NORTH (W.R.T. TRUE) MAGNETIC DECLINATION								
LAT. 187	POAL			DIP 70°					CORRECTES	LAT		ELEV.		DIP			HOL			LOGGED BY L. ERDMAN						
					132.4	035		-70		DEP. LENGTH				BEARIN		NK-			DATE: August 3 to 6 1994							
DEP. 26.	2620E LENGTH 152.4 BEARING 035°					033	L		OTECH	JUEF.		ELITO	<u></u>	DESTINA		OCH		·	ASSAY							
			DESCE	RIPTION		 	1	% RECO	%	96	%	%	Frac			<u> </u>	T	<u> </u>					1.000	SAMPLE		
		ROCK	DESCR	RIP HON		FROM	то	VERY	Py	C _P			•	FROM	то	Carb	Chio	Fo	Ser	Sil	Gvo	FROM	то	No.		
FROM	то	TYPE	magnetite blebs of <2 mm. Magnetite blebs	nanatita content vari	00	PROM	- '''	VERT	-7-	-	- WII.	''	00.10	1 KOW		1	10,	<u></u>								
-			throughout from 0% to 70% be	ayriette content van	orester	 				\vdash	 	 	_			H		\vdash								
-			throughout from 0% to 70%, however sections with greater than 5% are localized to veins and fractures, or to fuzzy			 		 		-			 			1		1								
			areas of <1 cm in size.	and maddres, or to	IUZZY	┼		 		\vdash			 			 	一	1								
 			130 to 130.1 m Stronger seric	itization aives sectio	n a light	 	 	 					-			T	1									
-			green colour.	ilization gives sectio	ri a ngin	 	 						 			\vdash	<u> </u>	$\overline{}$								
			green wout.			 	 		 			\vdash					I	<u> </u>								
133.1	134.4	DAR	DACITE DYKE(?)			133.1	134.4	100	2	<0.5	1	-	25	133.1	134.4	-	١.	-	4	-	2	132	134	70134		
133.1		אוע	Lighter grey colour with strong	pervasive sericite	Foliated	,,,,,,	1	 		1	T i	Ì					1									
			at 100° to CA. Upper contact	at 30°, lower contact		 																				
 			gradational. Possible very fine	grained chalcopyrit	e	 		† — —																		
 			associated with disseminated	ovrite. Pvrite is fine	grained																					
			and also occurs in gypsum frac															l								
			magnetic with small blebs of (I									
			tite or magnetite in gypsum mi																							
																		<u> </u>								
134.4	138.6	AND	ANDESITE FELDSPAR PHYR	RIC		134.4	138.6	100	1	50.5	7	<u> </u>	20	134.4	138.6	-	2	3	2	<u> </u>	3	134				
			Dark green, pervasive sericite/]							<u> </u>	L		┖	<u> </u>					136	138	70136		
			epidote and minor epidote as f										ļ	<u> </u>		╙		<u> </u>	!							
			interval from 122.0 to 133.1 m							L		<u> </u>	<u> </u>	ļ		<u> </u>	↓	<u> </u>		<u> </u>	Ш					
			magnetite as before but also 4							↓			<u> </u>			↓	ļ	!	!							
			very fine grained magnetite. F				ļ			<u></u>		ļ		<u> </u>		↓_	 	!	└ ─	<u> </u>	Щ					
			Fine grained pyrite. Local ser		par to			<u> </u>		<u> </u>	<u> </u>			<u> </u>		↓	↓	_	Ь.	<u> </u>	Щ					
			epidote gives a spotty appeara	ince.		<u> </u>		ļ		<u> </u>			ļ			<u> </u>	 	<u> </u>								
			137.9 m - 1 cm quartz vein ho	sting 20% fine grain	ed pyrite.	<u> </u>	<u></u>				<u> </u>		 	ļ		-	-	<u> </u>	—		\vdash					
			Possible chalcopyrite associate	ed with the pyrite. 1	0° to CA.	<u> </u>	<u> </u>	<u> </u>	ļ	↓	ļ		 			╄	-		 		-					
						 	ļ	<u> </u>		 			├	 		₩-	 	 	├	 	\vdash					
						ļ		<u> </u>		↓			├ ──	ļ		₩	├	₩	 	₩						
								 		↓	—	<u> </u>	├			₩		├	ļ	-						
igsquare				· · · · · · · · · · · · · · · · · · ·			ļ			 	<u> </u>		├	<u> </u>		+		₩	 	\vdash						
						-		↓		↓	 	ļ	├ ─			₩	-	-		├						
						ļ				 	—	ļ	├	ļ	<u> </u>	↓	1		 	├			L			
						 		<u> </u>	-	₩	 	\vdash	 	-	ļ	₩	├	₩		 	-					
L						-	ļ			┼	₩	 	┼	 	├ ──	₩	┼	├	├	├	\vdash					
	L		L	. <u></u>		1	<u> </u>		<u> </u>	1	<u> </u>	L	<u> </u>	<u> </u>	Ь		<u> </u>	L	<u> </u>	L	لــــا		Ц			

1=very weak

3≈moderate

5=very strong

																2=we			4≈str						
DATE COLLARED Aug 2/94			DATE COMPLETED Aug 4/94 CORE SIZE BDBGM			D	IP TESTS			PROP	ERTY I	KLIYUL		PROJEC					GRID NORTH (W.R.T. TRUE)						
			FIELD CO-ORDINATES		DEPTH		RING		GLE										MAGNETIC DECLINATION						
LAT. 187	ON		ELEV. 1750 m	DIP -70°	152.4	RECORDED	CORRECTED		CORRECTED			ELEV.		DIP			HOLE No.					Y L. ERD			
DEP. 26	20E		LENGTH 152.4	BEARING 035°		035		-70		DEP.		LENG	TH	BEARING			NK-94-20		0	DATE	: Aug	just 3 to 6			
	T I							GEOTECH							GE	<u>och</u>	EM					ASSA'	Υ		
;		ROCK	DESC	RIPTION				% RECO	%	%	%	%	Frac			1					- 1		[SAMPLE	
FROM	то	TYPE				FROM	TO	VERY	Py	Ср	Mt	Po		FROM			Chlo	Ер	Ser		Gyp	FROM	· TO	No.	
138.6	141.8	AND	ANDESITE FELDSPAR PHY	RIC		138.6	141.8	100	<1	<1	5	-	10	138.6	141.8		2	1	4	<u> </u>	_2	138		70137	
			Similar to previous interval bu	ut not mottled and frac	ture												<u> </u>			Ш		140	142	70138	
			density is less. Minor epidote													L	ļ	Ш		Ш					
			microfractures as before with fine grained magnetite on some								<u> </u>							Щ		Ш					
			of the margins. Rare isolate specks of chalcopyrite(?)													L_	<u> </u>		L_	Щ					
			hosted by gypsum fragments.															Щ		Ш					
			Locally 20% very fine grained									L					!			Ш					
			before but in continuous 4 cm														ļ			Ш					
			grained pyrite occurs on selva	ages of gypsum fractu	res and is											<u> </u>			L	 	\blacksquare				
			rarely (<1%) disseminated wit	thin the matrix.									<u> </u>			L	<u> </u>			\square					
			141.6 m - 3 mm gypsum-serie	cite-magnetite veinlet	at 30° to												_	<u> </u>		\sqcup	\Box				
			CA.						ļ				<u> </u>				<u> </u>			\sqcup					
											<u> </u>					L	! —	<u> </u>	L	Ш		445			
141.8	145.7	AND	ANDESITE FELDSPAR PHY			141.8	145.7	100	3	<1	20	<0.5	20	141.8	145.7	-	1	1	4	┟╌╽	2	142			
			Green-grey, pervasive sericit	e, sausseritized feldsp	oar.			ļ			L						<u> </u>		<u> </u>	\vdash		144	146	70140	
			Mottled appearance, local epi	idote veinlets and pat	chy				<u> </u>		<u> </u>		ļ				—	 							
			epidote. Pyrite content increa	ases from <1 at top of	interval				Ļ	L		<u> </u>	└				 	_	 	igspace					
			to 20% down the hole. Chalc	opyrite(?) specks intir	nately				 	ļ	Ļ					!	 			Ш					
			associated with the pyrite.						ļ				<u> </u>			Ь—	├	 	├	Ш	${oldsymbol{\sqcup}}$				
			142.37 to 142.47 m Gypsum	-magnetite-pyrite-chic	rite			ļ			<u> </u>	<u> </u>	↓			 	<u> </u>	 	 	\vdash	\vdash				
			flooded section with 15% fine	grained pyrite (trace	pymhotite)	ļ		<u></u>		<u> </u>	ļ.—		<u> </u>	ļ		-		ļ	_		\vdash				
			10% magnetite.					ļ				L	Ь		<u> </u>	<u> </u>	 	_	├—	\vdash	-				
			143.9 to 144.2 m More serici	tic within gypsum +/-	magne-						1						 	—		Ш					
			tite +/- pyrite microfractures a							Ļ	↓				L	_	₩-	⊢	 		${oxdot}$				
			Chalcopyrite in the gypsum m			ļ			ļ		_		<u> </u>		L	L	₩		<u> </u>	▃┤	\square				
			with the pyrite in the gypsum-	pyrite microfractures.							L			ļ		<u> </u>	ļ	!	<u> </u>	lacksquare					
			144.9 - 145.3 m Gypsum vei			ļ					L			<u> </u>	<u> </u>	<u> </u>	—	<u> </u>	<u> </u>	<u> </u>					
			Minor 0.5 cm quartz veins c								<u> </u>		<u> </u>	<u> </u>	L	ļ	!	<u> </u>	<u> </u>	1					
			to CA. Siliceous patches with	n 10% very fine grains	ed pyrite	<u> </u>		L		<u> </u>	<u> </u>	L	Ļ	<u> </u>	<u> </u>	↓	<u> </u>	↓	<u> </u>						
			(pyrrhotite)-chalcopyrite clust	ered along their marg	ins.					L	<u> </u>	<u> </u>			ļ	!	↓	!	Ь	Щ					
			The quartz veins have very fi	ine grained magnetite	margins						<u> </u>		<u> </u>		ļ	↓	 	ļ	_	Ь					
			(2 mm width).							ļ	└		\vdash		<u> </u>	L_	_		<u> </u>						
									ļ		└			Ļ	ļ	ļ	<u> </u>	ļ	<u> </u>	 					
									<u> </u>				ـــــ		Ļ	<u> </u>	_	₩	L_	\sqcup					
						1		i	1	I	I	ł	1	l .	İ	1	i	ł	ı	1			1		

1=very weak

3=moderate

5=very strong

4=strong **DIP TESTS** PROPERTY KLIYUL PROJECT NO. 548 N.T.S. No. 94D GRID NORTH (W.R.T. TRUE) DATE COLLARED Aug 2/94 DATE COMPLETED Aug 4/94 CORE SIZE BDBGM MAGNETIC DECLINATION ANGLE Sheet 12 of 12 FIELD CO-ORDINATES DEPTH BEARING RECORDED CORRECTED HOLE No. LOGGED BY L. ERDMAN LAT. ELEV. 152.4 RECORDED CORRECTED DIP -70° LAT. 1870N ELEV. 1750 m 035 -70 DEP. LENGTH BEARING NK-94-20 DATE: August 3 to 6, 1994 BEARING 035° LENGTH 152.4 DEP. 2620E **GEOTECH GEOCHEM ASSAY** SAMPLE **DESCRIPTION** % RECO % 96 96 ROCK Carb Chio Ep Ser Sii Gyp FROM VERY Ср Dens FROM TO TO No. FROM TO TYPE **FROM** TO 70141 148 148.6 <0.5 30 145.7 148.6 145.7 145.7 148.6 AND ANDESITE Light green to light green-grey. Crackle breccia. Pervasive sericite/chlorite. Local pervasive epidote, 2% fine grained pyrite ranging up to 5% locally and rarely <0.5%. Magnetic sections are rare, only 2% overall. Locally patchy areas of 60% disseminated magnetite but the magnetite is primarily associated with the microfractures. 148.4 m Gypsum with 10% fine grained pyrite in a vein at 40° to CA. Offset left laterally 1 cm up hole by a microfracture. Possible chalcopyrite(?) associated with the pyrite. 20 < 0.5 20 148.6 150.4 150 70142 AND ANDESITE FELDSPAR PHYRIC 148.6 150.4 100 <1 150.4 148.6 As in previous section but not as brecciated. Similar to 141.8 to 145.7 m. 150 152.4 70143 2 < 0.5 30 150.4 151.3 150.4 151.3 100 151.3 AND ANDESITE 150.4 Similar to 145.7 to 148.6 m. Chalcopyrite bleb in quartz fracture at 151.1 m. 5 151.3 152.0 151.5 152.0 DYKIANDESITE DYKE 151.3 152.0 100 Dark green, fine grained. Chloritic, 10% patchy quartz + epidote "veins" at 40° to CA. These host disseminated magnetite and have pyrite on margins. Upper contact 45°, lower contact 20% gypsum microfractures. Very fine grained magnetite in the chloritic section of the dyke. 152.0 152.4 AND ANDESITE 152.0 152.4 100 <0.5 15 152.0 152.4 3 3 Similar to 145.7 to 148.6 m. Silicified section for 20 cm at beginning hosts 20% fine grained magnetite and 20% epidote microfractures. Pervasive chlorite/sericite, brecciated then healed.

1=very weak

3=moderate

5=very strong

			110.0	NIDA LAI LO	<i>57</i> 0 117.0			<u> </u>								2=wea	k		4=stro	ng			•	
DATE CO	LARED A	ug 4/94	DATE COMPLETED Aug 6/94	CORE SIZE BDBGM			OIP TESTS	3		PROP	ERTY I	KLIYUL		PROJECT	NO. 54	3	N.T.S	, No. 9	4D/9	GRID	NORTH	(W.R.	r. TRUE	()
			FIELD CO-ORDINATES		DEPTH	BE	ARING	AN	GLE									T 1 O				ECLIN/		
LAT. 184	15N		ELEV. 1750 m	DIP -70°		RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY	L. ERDI	MAN	
DEP. 2720E			LENGTH	BEARING 035°		1				DEP.		LENG	тн	BEARING	1		NK-8	94-21		DATE:	Augus	t 6, 199	4	
1				<u> </u>	T		GE	OTECH							GE	EOCH	ŀΕΜ					ASS	4Y	
:]		ROCK	DESCF	RIPTION				% RECO	96	%	%	%	Frac											SAMPLE
' FROM	то	TYPE				FROM	то	VERY	Py	Ср	Mt	Po	Dens	FROM	то	Carb	Chlor	Ep	Ser	Sil	Gyp	FROM	ΤO	No.
1																								
0	12.3	ОВ	OVERBURDEN			6.1											<u> </u>							
						9.1	12.2	63								L		↓		<u> </u>				
-																	<u> </u>							
12.3	39.6	AND	ANDESITE (FELDSPAR PHY)		L BROKEN					<0.5	-	Ŀ		12.3	39.6	1	1 2	<u> </u>	4		-		21.3	
			Green-grey, foliated with foliat	tions subparallel to C	.A.	15.2										<u> </u>	<u> </u>			<u> </u>		36.6	39.6	70147
			Carbonate fracture fill (rare).	Pervasive sericite, o	hlorite	18.3						L				Ь	ļ	↓			<u> </u>	<u> </u>		
			along foliation planes. 3% me	dium grained pyrite i	in planes	21.3										L_	↓	 		ļ				
			of foliation. Pyrite content van	ies from <1% to 15%	ó.	24.4											├	↓_	L	<u> </u>		—		
			Sericite content varies from m			27.4						L						↓		ļ				
			overall it is moderate. Slightly			30.5				L				ļ		↓	<u> </u>	-		ļ				
			lens intense sericite. Elongate	ed chloritic "blebs" in	plane of	33.5						<u> </u>	<u> </u>	<u> </u>		↓ —	 	-		 -				
			foliation. Possible very fine gr	rained chalcopyrite in	a few of	36.6	39.6	80		↓				ļ		<u> </u>	├	↓	ļ					
			the fragments.				ļ		ļ			 	 	ļ		 	-	∔		 	-		\vdash	
									 	_				20.0	40.6	—	 _	.	-	 	├	20.6	45.7	70144
39.6	44.8		ANDESITE (FELDSPAR PHY		L BROKEN			47		2	•			39.6	49.8	-	-	4	-	<u> </u>		39.0	45.7	70144
			Dark green, pervasive sericite	/chlorite, 7% fine gra	ined	42.7	45.7	30	 	-						 		+	├─	├			\vdash	
			pyrite. Very fine grained chalc				 	ļ	 	-		 -	-	 		 	 	+			 	├		
			some of the pyrite, slightly yell				ļ	 								┼	┼	⊹ —	-	-	├──	-	_	
			chloritic "blebs" are more rare	than above interval.		<u> </u>	 			ļ	<u> </u>	├	-			-	├	+-			-	-		
14.0	45.4	546	DA OUTE DAVE (O)		14 TTERES	44.8	45.4	×	3	-		├		44.8	45.4	-	 	 	5	 	 	-		
44.8	45.4	DAC	DACITE DYKE (?)		ATTERED	44.6	45.4	· · · · · ·	\	-		-	├	77.0	43.4	'	1-		Ĭ	<u> </u>	 	 		
			Grey-green colour, waxy surfa Fine to medium cubic silvery p	ice, completely send	Eault			 	 	1		├	├	 			╁	+	 		 	 		
			gouge at 45.4 m marks bottom		rauit	 		 	 	-		 	├	-		 	+	╅╾╌			 	 		
		ļ	gouge at 45.4 m marks botton	n or unit.		 	 	 	 	_	 	 	-	 	-	 	 	+	 		 	\vdash		
45.4	52.5	ANID	ANDESITE	\A/EI	L BROKEN	45.4	52.5	, ×	 		├-	 - -	 	45.4	52.5	, ,	,	il .	4	-	 	_		
45.4	52.5	AND	Dark apple green colour, more			45.7			1	-	-	 	_	10.4			1	+	┯	 	 	\vdash		
\vdash	<u> </u>		beginning of hole. Folations n	not as well defined by	n etill	48.8				 	 	 	 	 	 	1	 	+-	 	 	 			
			parallel to C.A. 1-5% medium			70.0	31.0	100	' 	1		 	 	 		†	 	+	\vdash	 	 	\vdash		
<u> </u>			carbonate fracture fill increase			 	+	 	 		_	 		 		+	 	+	\vdash	 	 	\vdash		
			at 51.7 m, no sulfides.	os at 40.5 III. Fault	Jougo	 	 	 	 	 	 	\vdash	 	 	 	+	†	+		 	t-	_		
\vdash			at 01.7 III, 110 Sulliues.			 	+	 	 	 	 	\vdash	\vdash	1	 	+	1-	+-		_				
-		 				 	 	 	 	 	-	\vdash	 	 		†	1-	+				\vdash		
						 	 	 	 	 		 		 		1	1	+						
	L		<u> </u>					4																

NORANDA EXPLORATION COMPANY LTD. 3=moderate 5=very strong 1=very weak 2=weak 4=strong GRID NORTH (W.R.T. TRUE) PROPERTY KLIYUL PROJECT NO. 548 N.T.S. No. 94D/9 **DIP TESTS** DATE COLLARED Aug 4/94 DATE COMPLETED Aug 6/94 CORE SIZE BDBGM SHEET 2 OF 9 MAGNETIC DECLINATION DEPTH BEARING **ANGLE** FIELD CO-ORDINATES LOGGED BY L. ERDMAN RECORDED CORRECTED RECORDED CORRECTED LAT. ELEV. DIP HOLE No. DIP -70° 125 m LAT. 1845N ELEV. 1750 m BEARING NK-94-21 DATE: August 6, 1994 DEP. LENGTH BEARING 035° LENGTH DEP. 2720E ASSAY **GEOCHEM GEOTECH** SAMPLE Frac DESCRIPTION % RECO % ROCK Sil Gyp FROM TO No. FROM TO Carb Chior Ep Ser TO VERY Ср Mt Po Dens FROM **TYPE** FROM 52.5 64.2 54.9 57.9 70148 WELL BROKEN 52.5 64.2 52.5 64.2 AND ANDESITE (FELDSPAR PHYRIC) Green-grey, feldspar easily visible, less sericite than 54.9 100 51.8 previous interval. By 60.5 m carbonate becomes pervasive 54.9 57.9 100 57.9 61.0 80 along foliation. Pervasive chloritization of mafics. "Dotted" 61.0 64.0 100 texture. 100 2 < 0.5 64.2 65.6 SHATTERED 64.2 65.6 64.2 65.6 **ANDIANDESITE** Darker apple green, pervasive sericite, no chlorite. 2% fine grained cubic disseminated pyrite, trace of yellower sulfide which may be chalcopyrite(?). Finely foliated. 70149 67.1 70.1 65.6 76.55 SHATTERED 65.6 76.55 76.55 AND ANDESITE 70.1 76.8 70150 100 interval varies from strongly sericitic to more chloritic. 64.0 67.0 23 67.0 70.1 Foliated to 73,15 m. Pervasive carbonates becoming more 70.1 73.1 intense. 2 cm fault gouge at 67.9 m, 40 cm fault gouge from 69.2 to 69.6 m. Chloritic from 65.8 to 65.95 m, 66.25 to 66.6 m, and 73.4 to 76.55 m. Very fine grained to fine grained pyrite varies from 1-7%, the higher percentages occurring in the more chloritic intervals. Bottom of interval has disseminated magnetite blebs. 6.6 m 0.5% disseminated chalcopyrite in quartz vein. 76.55 76.88 76.55 76.8 3 AND ANDESITE SHATTERED 76.55 76.8 20 76.2 Dark green, mafics to chlorite, fracture filled and pervasive 73.1 79.2 100 76.2 epidote. Fracture filled pyrite, locally occurring with epidote. Fine grained pyrite and pyrite-carbonate veinlets (broken fragments observed). Disseminated pyrite (1%), pyrite in veinlets up to 10%. Fine grained chalcopyrite associated with pyrite, magnetite blebs and fracture fills

			NORANDA	EXPLO	RATIO	ON CC	MPAN	NY LT	D.							1=very	weak		3≂mod	erate		5=very	strong	
																2=weal	k		4=stror	ng				
DATE CO	LABEDA	110 A/DA	DATE COMPLETED Aug 6/94 CORE S	IZE BDBGM		C	IP TESTS	3		PROPE	ERTY I	CLIYUL		PROJECT	NO. 548		N.T.S.	No. 9	4D/9	GRID N	NORTH	(W.R.	r. TRUF)
DATE CO	LLANEU	- CO	FIELD CO-ORDINATES		DEPTH	BE/	RING	AN	GLE								SHEE		9	MAGN	ETIC D	ECLIN/	ATION	
LAT. 184	EN		ELEV. 1750 m DIP -7	0*	125 m	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY I	L. ERDI	MAN	
DEP. 27				G 035'		<u> </u>				DEP.		LENGT	ГH	BEARING			NK-9			DATE:	Augus	t 6, 199		
10EP. 27.	20E		LENGTH JOSANIA	<u> </u>		 	····	GE	OTECH							GE	OCH	EM					ASS/	
		ROCK	DESCRIPTION	ı				% RECO	96	96	%	%	Frac											SAMPLE
FROM	то	TYPE	<i>52551</i> 1151	•		FROM	то	VERY	Py	Cp	Mt	Po	Dens	FROM	ΤO	Carb	Chlor	Ер	Ser	Sii		FROM		No.
76.80	80.0		ANDESITE			76.8	79.6	100	1	-	5	•	5	76.8	79.6	1	2	2	3	-	1		78.8	70151
70.00	00.0	AIND	First interval of competent core. Medi	um grev-gre	en in																	78.8	80.0	70152
			colour with weak pervasive and fractu			†																	ш	
			Epidote fractures at 45°. No carbonat	e fracture fill		 				1													igsquare	
			Fractures in all directions, gypsum fille	d Locally o	vosum																			
			veinlets (1-2 mm) at 20° to C.A. Perv	asive chlorite	Quartz	 																		
			veinlets with up to 20% fine grained p	rite on mam	ins.	1																		
			Pyrite also occurs on margins of gyps			†																		
			imately 40% of interval contains very	ine grained	issemi-	†			1															
			nated magnetite (10-15%) forming ma	anetite secti	ons of																			<u> </u>
			2 cm to 7 cm in length.			 														<u> </u>				
			79.6 m - 1 cm quartz vein at 50° to C.	A. Strong di	ssemi-																			
			nated magnetite (20%) in host rock m	aminal to vei	n.	1												<u> </u>						
			79.9 to 80.0 m - Epidote (50%) - carbo	nate (40%) -	chlorite																			
			(10%) "vein" with lower contact at 45°	to CA. No s	ulfides.															<u> </u>	<u> </u>			
																<u> </u>		<u> </u>		<u> </u>				
80.0	82.3	AND	ANDESITE			80.0	82.3	100	1	0.5	5	<0.5	15	80.0	82.3	2	3	2	3	ٔــــــــٰ	1	80.0	82.0	70153
			Medium grey-green colour, pervasive	chlorite, wea	k pervasiv	e]			Ī.,						<u> </u>		<u> </u>			 '	
			epidote and local epidote fracture fill.	Horsetailing					Ĭ <u>.</u>							<u> </u>		<u> </u>		<u> </u>			L	
		·	fractures at 45° to CA, also other fract		us													<u> </u>	L				<u> </u>	ļ
			orientations. Fractures filled with gyp																	—	ļ		<u> </u>	ļ
			gypsum veinlets (5%) at 60° to 80° to	CA.							<u> </u>	<u> </u>					<u> </u>	↓		<u> </u>				
			81.25 m - Quartz vein (5 mm) with 5%	fine grained	dissemi-						<u> </u>		<u> </u>			L	L		<u> </u>	↓				
			nated pyrite and trace chalcopyrite 45	° to CA.									<u> </u>			L	<u> </u>	ļ	<u> </u>	 	<u> </u>	Ь—	<u> </u>	ļ
			81.9 to 82.0 m - Carbonate-chlorite-py	rite (pyrrhoti	te) (30%)											<u> </u>		-	<u> </u>	↓	<u> </u>		ļ	
			- gypsum quartz vein @ 45° to CA.														L	<u> </u>	<u> </u>	1	<u> </u>	↓	Ļ'	
			Local fine grained pyrite in trace amount	ints .								L					<u> </u>	<u> </u>	<u> </u>	—	 	1	——'	
		1	Approximately 50% of interval is mag	netic with ub	quitous								<u> </u>			L		<u> </u>		↓	L		<u> </u>	
			fine grained magnetite in amounts fro															L		↓		<u> </u>	 	ļ
			areas (<1%) <0.5 cm of over 80% ma	gnetite.								ļ	1			ļ	<u> </u>			↓	↓	<u> </u>	↓ ˈ	ļ
			Chlorite as fracture fill and mafics alte	ring to chlori	te.											<u> </u>	ļ	ـــــ	<u> </u>	igspace			↓	
																L		ـــــ		—	<u> </u>	<u> </u>	<u> </u>	<u> </u>
																<u> </u>	↓	<u> </u>		↓	<u> </u>	 	 	Ļ
																	<u> </u>	↓_	<u> </u>	↓ _		 	↓	Ļ
-		 									1	1	1	1	1		1	l	l .	1		l	L	

every weak 3≂moo

3=moderate

																2=wea	k		4=stro					
DATE CO	LIAREDA	un 4/94	DATE COMPLETED Aug 6/94	CORE SIZE BDBGM	1		OIP TEST	3		PROP	ERTY	KLIYUL		PROJECT	NO. 548	3	N.T.S					1 (W.R.)		<u>:)</u>
DATECO	LUNKEU	top war	FIELD CO-ORDINATES	001120112000111	DEPTH	BE	ARING	AN	GLE								SHEE	T 4 O	F 9	MAGN	IETIC E	DECLINA	TION	
LAT. 18	45N		ELEV. 1750 m	DIP -70°	125 m	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY	L. ERDI	MAN	
DEP. 27			LENGTH	BEARING 035°	1		1	 		DEP.		LENG	ГН	BEARING			NK-8	4-21		DATE	Augus	st 6, 199	4	
DEP. 21	20E	· · · · · · · · · · · · · · · · · · ·	LENGTH	DEARING GG		1	<u> </u>	GE	OTECH							GI	EOCH	EM					ASSA	AY
i		ROCK	DESC	CRIPTION		— —		% RECO	%	%	%	96	Frac											SAMPLE
FROM	то	TYPE	_ = = -	511 7 .		FROM	то	VERY	Py	Cp	Mt	Po	Dens	FROM	то	Carb	Chlor	Ep	Ser	Sil	Gyp	FROM	ТО	No.
82.3	82.5		DANDESITE			82.3	82.5	100			2	-	15	82.3	82.5	2	2 1	-	4	-	1			
02.0	02.0	7.1.1	Medium grey-green horsetai	ling fractures at 55° to	CA.					1						Ī					<u> </u>	I		
			filled with gypsum.			1												<u> </u>						
\vdash		 	Gypsum - magnetite veinlet	at 45° to CA at 83.1 n	n.											<u> </u>					<u> </u>	<u> </u>	 	
—	-	 	Rare disseminated pyrite.																				Щ	
			Carbonate as fracture fill.							1						<u> </u>		<u> </u>	ļ		<u> </u>	<u> </u>	igsquare	
	T																		<u> </u>	ļ			احيا	
82.5	99.2	ANI	DANDESITE			82.	99.2	100	<1	1	10	-	30	82.5	99.2	3	3 2	2	3	-	2			
			Medium grey-green, unfoliat	ed, local sections of s	trong											<u> </u>	<u> </u>	ــــــــــــــــــــــــــــــــــــــ		L	<u> </u>	84		
	i	·	sericitization but overall seri	cite is moderate. Can	bonate											ļ	ļ	_		<u> </u>	ļ	86		
			veinlets (1 mm) at 45° to CA	. Minor epidote as fro	acture							<u> </u>	<u> </u>					↓_	ļ		ļ	88		
			fill at 45° to CA. Weak perv	asive epidote. Fractu	res						L	ļ		ļ		ļ	ļ	↓	↓	<u> </u>	ļ	90		
		1	at all directions so that some	sections display a cr	ackle		<u> </u>						L	ļ		ļ		—	ļ	ļ		92		
			breccia texture. Many fractu							↓			<u> </u>	<u> </u>		<u> </u>	↓	↓	-		ļ	94		
			disseminated chalcopyrite as	ssociated with gypsun	n fractures					↓		<u> </u>			ļ		╂	┼	 		—	96		7016 7016
			(96 m) and on selvages of g	ypsum fractures. Fra	ctures	<u> </u>				↓	ļ	_	L			↓	—	┼	₩	├	├ ──	80	100	7016
			locally horsetail but this is no	ot a pronounced featu	re.				ļ		ļ	ļ	<u> </u>	ļ	<u> </u>		┼		┼	-	₩-	╂	\vdash	
			Magnetite in patchy areas a	nd fractures (80% mag	gnetite),				ļ	 		ļ	_	<u> </u>		-	-	┼			+		igcup	
1		l	and approximately 50% of the	ne core has 5%-10% v	very fine			<u> </u>		_	ļ	ļ	!	-		-	↓	₩	├ ─	-		 	┝──┤	
			grained disseminated magne	etite .				ļ				ļ		 		├ ─	╀	₩	├	↓ —	↓	-	 	
			85.0 to 85.4 m - Section has							 	ļ	ļ		ļ		₩		-	-			┼	 	
			throughout and also 5% qua	rtz-magnetite veinlets	(70%				ļ	1		ļ		ļ <u> </u>	·	 	┼	┼		 	 	┼	├	
		<u> </u>	magnetite).					<u> </u>	<u> </u>	 		 			<u> </u>		+	+	 		↓ —	₩-	├──	
			Minor pervasive carbonate a				<u> </u>	<u> </u>		↓	<u> </u>	↓	↓					+	┼	↓	 	+	 	├
			90.7 m - 1 cm quartz-chlorite	e vein at 25° to C.A.	Minor			ļ		-			-	 		╁	+	+	┼	-	├ ──	+-	 -	
			gypsum.			<u> </u>		L		1			_	↓	<u> </u>	┼	 	+	+	ļ	-	+		-
			96.4 to 96.6 m - Silicified int	erval with central gyp	sum vein	<u> </u>		<u> </u>		 	<u> </u>	ļ	 	 	<u> </u>	₩	-	+-		+	╂	 	igwdapsilon	
			(1cm), quartz margins (1 cm	n) and paler green silic	zified host				ļ	4	ļ	1		-	-	┼		╂	 	┼	+-	┼	 	
			rock outward from quartz ma					ļ	 		ļ	ļ	 	L	ļ	+	-	+-		 	┼—	₩	\vdash	
		l	lower contact at 40°. 25% d					ļ	1	↓	ļ	↓		 	ļ	↓	 	┼		 	+	 		
			the quartz rich margins, but				<u> </u>	↓			—	↓	ļ	 	ļ	-	+	╁	┼—	+	┿	₩	 	
			97.2 m - 10 cm interval simi		al vein		<u> </u>	<u> </u>	ļ	 	<u> </u>	↓	<u> </u>		ļ	↓	-	+-	+	-		∔	├ ──	—
			and margin are only 0.5 cm	thick.						↓	₩	↓ —	.	_	 	+	+	┼—	┼	 	₩		├ ──	
						ļ		 		+	 		↓	ļ	ļ		+	+-	-	-	 	 	┢╼╾┦	

NORANDA EXPLORATION COMPANY LTD. 5=very strong 1=very weak 3=moderate 4=strong PROJECT NO. 548 N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) **DIP TESTS** PROPERTY KLIYUL DATE COLLARED Aug 4/94 DATE COMPLETED Aug 6/94 CORE SIZE BDBGM MAGNETIC DECLINATION DEPTH BEARING ANGLE SHEET 5 OF 9 FIELD CO-ORDINATES RECORDED CORRECTES RECORDED CORRECTED LAT. HOLE No. LOGGED BY L. ERDMAN ELEV. DIP 125 m ELEV. 1750 m DIP -70° LAT. 1845N NK-94-21 DATE: August 6, 1994 DEP. LENGTH BEARING BEARING 035° LENGTH DEP. 2720E **GEOCHEM** ASSAY GEOTECH SAMPLE % RECO % Frac ROCK DESCRIPTION Mt Po Dens FROM TO Carb Chlor Еp SII Gyp FROM TO FROM VERY Ср TO Py TYPE FROM TO 96.1 m to end of interval. Two distinct fracture directions at 45° and 130/135° (3% density). These are 1 mm (thicker than the gypsum fractures) and filled with gypsum +/carbonate. Crackle breccia texture with "fragments" <1 mm to 1 mm, some to 4 mm. <1% pyrite, along margins of carbonate, carbonate/gypsum gypsum, or epidote fractures/veinlets. Rarely disseminated in host rock. 2 100 102 70163 99.2 107.5 100 15 35 99.2 107.5 107.5 AND ANDESITE 102 104 70164 Interval starts with a strong sericitic section (10 cm) with 104 106 70165 a 4 mm magnetite vein in center at 50° to C.A. Appears 106 108 70166 similar to previous interval but a greater abundance of gypsum +/- carbonate veinlets still at same orientation as previous (7% density). More magnetic throughout and more magnetite fractures/veinlets (2%) observed than in previous sections. Pervasive epidote/chlorite. 103.9 m - Quartz-pyrite-magnetite vein at 60° to CA (1 cm). Pyrite on margins and disseminated (10%) but part of the vein has a 2 mm magnetite margin (trace pyrite in the magnetite). Most of the interval carries only traces of fine grained pyrite, except where noted below. 100.3 to 101.9 m - More sericitic but still moderately chloritized. Fracture density has increased to 50% and rock has a crackle breccia texture. Pyrite blebs of very fine grained pyrite in fracture "blowouts" (overall 5% pyrite). Magnetite in many of the fractures (30° to CA) (20% magnetite in total). 2% fine grained chalcopyrite in fractures. 105.6 m - 3% dissemined chalcopyrite. At contact with dyke below is a quartz-magnetite vein (30% disseminated magnetite) and 20% fine grained pyrite away

from the magnetite. Possible chalcopyrite (rare) with

magnetite.

very weak 3=moderate 5=very strong

											_					2=wea	k		4=stro	ng				
DATE CO	LLAREDA	ua 4/94	DATE COMPLETED Aug 6/94	CORE SIZE BDBGM	***************************************		IP TESTS	3		PROP	ERTY I	KLIYUL		PROJEC	NO. 548		N.T.S.	. No. 9	94D/9	GRID	NORTH	H (W.R.1	r. TRU	E)
37.1.2 33	<u></u>	-0	FIELD CO-ORDINATES		DEPTH	BE/	RING	AN	GLE								SHEE	T60	F 9	MAGN	ETIC D	ECLIN/	ATION	
LAT. 184	15N		ELEV. 1750 m	DIP -70°	125 m	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE			rogg	ED BY	L. ERD	MAN	
DEP. 27			LENGTH	BEARING 035°				1		DEP.		LENGT	ГН	BEARING	3		NK-9	4-21		DATE	Augus	st 6, 199		
JEI.	1						<u> </u>	GE	OTECH							GE	EOCH	EM					ASS/	
1 1	ļ	ROCK	DESC	RIPTION			I	% RECO	%	%	%	%	Fraic											SAMPLE
FROM	то	TYPE				FROM	то	VERY	Py	Ср	Mt	Po	Dens	FROM	TO	Carb	Chlor	Ep	Ser	Sil	Gyp	FROM	TO	No.
107.5	108.8		ANDESITE DYKE			107.5	108.8	100		-	•	-		107.5	108.8	1	1	1	1	_	-			
1	1,4		Upper contact @ 35°.																			<u> </u>		
			Lower contact broken (but may	y be 45°). Green-gre	у,																L		igsqcup	
			pervasive chlorite/epidote cart																	<u> </u>				
			pyrite. Carbonate veinlets (1-	2 mm) at 50° and 140	° to CA.																			
			(1% density).																					
																		<u> </u>	<u> </u>					
108.8	111.3	AND	ANDESITE			108.8	111.3		3	3	20	•	35	108.8	111.3	-		<u> </u>	1	1	4		110	
			Grey/green colour. Flooding	by gypsum with loca	I												L			<u> </u>	ļ	110	112	70168
			silicified sections. No carbona			Γ											<u> </u>	Ц_		ļ		L		
			Gypsum flooded sections of co	ore appear brecciated	l, swirly												L	ـــــ						<u> </u>
			texture with "fragments" to 2 c											<u> </u>				_		<u> </u>	ļ	<u> </u>	igspace	
			flooded sections, forming wisp							ļ							_	┞		—		 		
			7% fine grained sulfides in the					<u> </u>					<u> </u>					<u> </u>	ļ	ļ		<u> </u>		
			is chalcopyrite (very fine grain	ed and associated wi	th				ļ	ļ	<u> </u>		<u> </u>	ļ				↓		ļ		ļ		
			pyrite). More sericitic sections						ļ					ļ			<u> </u>	ļ					igwdapprox	
			pyrite (no chalcopyrite), disser	minated and on marg	ins of						ļ					 	ļ			—		ļ	 	<u> </u>
			gypsum veinlets. Minor horse	tailing of these veinle	ts at 30°					↓	Ļ		<u> </u>			<u> </u>	-		-	├	ļ	├ ──	 	
1			to CA but in general veinlets a			ļ	ļ		ļ <u>.</u>	_	ļ	1	ļ			<u> </u>	┞		_	ļ				
<u> </u>			to CA. 60% of chloritic section	ns have 10% very fin	e grained	ļ	Ļ			-	-	1		ļ		<u> </u>	├	┼	 	├		ļ	 	
			magnetite.			 		ļ		-	 			ļ				↓	├		<u> </u>	 	 	
										!	 			444.0	444.0		├ ─्	٠.,	—	—	-	142	44.4	70460
111.3	114.6	AND	ANDESITE			111.3	114.6	100	2	<0.5	4	-	30	111.3	114.6	1	2	1		1		112	114	70169
<u></u>			Medium green/grey, similar to	the interval 99.2 to 1	07.5 m					↓	ļ	-		ļ			₩	╀			-	—	igwdapprox	<u> </u>
			but overall less magnetic secti				ļ	ļ		₩	-	.		ļ				┼	<u> </u>		-	 	igwdapprox	
1			margins of gypsum filled fracti			 		ļ		├	-	ļ	-			ļ	├ ──	┿		-	-			
	\longrightarrow		matrix adjacent to fractures. I			 	ļ	 	 		├	_		 	ļ	├	 	┼	 	├	├	-		-
			ly chloritized towards bottom of				 	 	 	┼	1-	-		 		-		┼		├	-	 		
		·····	(<1 mm) at 25° and 160° to C			 	ļ	 	 	 	 	 	 				 	┿	 	 	-	 	┝┯┩	
			see similar veinlets at various				 		ļ	+	₩-	-	-	 	-		 	╁-		-			$\vdash \vdash \vdash$	
<u> </u>			sericite in plane of foliation (pa		m filled	 	 	 	 	┼	┼—	ļ		+			 	┼	 	├	 	 	\vdash	
\vdash			microfractures, also carbonate	e tracture filled.		 	├──	 	}			-		 			┼──	╂	\vdash	┼	₩	├	┝──┤	
—						 	ļ	 	 	 		\vdash		 		-	 	+	 	\vdash	\vdash	\vdash		\vdash
							-	ļ	 	┼─	 	 	├	 		-	┼	+	 	-	\vdash		 	
:			L			1	I	<u> </u>	<u> </u>		<u> </u>		<u> </u>	1	<u> </u>		<u> </u>		Ь		1	┸		

3=moderate 5=very strong 1=very weak 2=weak 4=strong N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) PROPERTY KLIYUL PROJECT NO. 548 **DIP TESTS** DATE COLLARED Aug 4/94 DATE COMPLETED Aug 6/94 CORE SIZE BDBGM MAGNETIC DECLINATION SHEET 7 OF 9 DEPTH BEARING **ANGLE** FIELD CO-ORDINATES LOGGED BY L. ERDMAN 125 m RECORDED CORRECTED RECORDED CORRECTED LAT. ELEV. DIP HOLE No. DIP -70° ELEV. 1750 m LAT. 1845N BEARING INK-94-21 DATE: August 6, 1994 DEP. LENGTH BEARING 035° LENGTH DEP. 2720E **GEOCHEM** ASSAY **GEOTECH** SAMPLE 96 Frac % DESCRIPTION % RECO ROCK FROM TO Carb Chlor Ep Ser Sii Gyp FROM FROM TO **VERY** Py Ср Mt Po Dens **TYPE** FROM TO 113.7 to 114.0 m - Looks brecciated from fracturing. Silica/pyrite (30% disseminated) flooding with 20-80% very fine grained magnetite in chloritic andesite adjacent to the siliceous rock. 113.5 m - 2 specks chalcopyrite on margins of quartzcarbonate fractures at 10° to CA. 7017C 1 114 116 0.5 0.5 30 114.6 118.2 100 AND ANDESITE (FINE GRAIN) 114.6 118.2 114.6 118.1 116 118 70171 Medium grey-green. Numerous microfractures at varying degrees to CA causes the core to look brecciated. "Frags" to 1 cm. Fracture filled with carbonate or gypsum, or gypsum/carbonate. Chlorite fracture fill. Magnetite occurs as discrete patches of <1 cm, containing 70% very fine grained magnetite. These comprise only 1% of interval. Thin quartz veins at 116.9 m (5 mm) 55° to CA, and 117.3 m (1 cm) 80° to CA. The vein at 117.3 m shows 1 cm of right lateral (down hole) offset. Neither vein carries sulfides. 116.9 m - Quartz vein with bleb of chalcopyrite. 117.28 m - 3 mm bleb of chalcopyrite in a gypsum - magnetite patch of 2 cm diameter. 116.6 m - 1cm gypsum vein with 15% medium grained pyrite at 40° to CA. 116.8 m - 3 mm gypsum-magnetite part of a vein (not continuous through core). 116.0 m - 1 cm quartz-pyrite-chalcopyrite(?) vein at 45° to Pyrite occurs locally on margins and within fractures, and dissseminated in host rock adjacent to the fractures. 117.9 m - Chalcopyrite-quartz-gypsum oval, 2 cm in length. Chalcopyrite (3%).

NORANDA EXPLORATION COMPANY LTD. 1=very weak 3=moderate 5=very strong 4=strong **DIP TESTS** N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) PROPERTY KLIYUL PROJECT NO. 548 DATE COLLARED Aug 4/94 DATE COMPLETED Aug 6/94 CORE SIZE BDBGM FIELD CO-ORDINATES DEPTH MAGNETIC DECLINATION BEARING ANGLE SHEET 8 OF 9 125 m RECORDER CORRECTED RECORDED CORRECTED LAT. ELEV. HOLE No. LOGGED BY L. ERDMAN LAT. 1845N ELEV. 1750 m DIP -70° DIP DEP. 2720E BEARING 035° BEARING NK-94-21 DATE: August 6, 1994 LENGTH DEP. LENGTH **GEOTECH GEOCHEM** ASSAY ROCK DESCRIPTION % RECO % % 96 Frac SAMPLE VERY FROM TO Sii Gyp FROM TO FROM TO TYPE FROM TO Еp Py 118.1 118.5 DYK DIORITE(?) DYKE 118.1 118.5 100 <0.5 118.1 118.5 118 120 70172 Dark geen, highly chloritic, trace pyrite on fracture fill, pervasive carbonate and carbonate veinlets at 30° to CA. Upper contact at 20°. Lower contact broken. Non-magnetic. Upper contact has numerous carbonate veinlets (40%) parallel to contact. Rare microfractures of carbonate cross cut veinlets at 90°. Rare quartz eyes observed. 118.5 120.3 AND ANDESITE (FINE GRAIN) 118.5 120.3 100 <0.5 0.5 30 118.5 120.3 Dark grey-green. Quartz and quartz/carbonate veinlets at 45° to CA (1%). Some of these contain blebs and very fine grains of chalcopyrite (0.5% total). Gypsum or carbonate filled fractures at 30° to 80° to CA. Quartz-pyrite (50% pyrite) vein at 119.4 m, 50° (1 cm). Silicified section for 40 cm uphole from this vein. Rare patchy magnetite throughout but not in silicified section. Pyrite along some fractures. 120.3 121.35 DYK DACITE(?) DYKE 120.3 121.35 100 120.3 121.35 1 120 122 70173 Upper contact @ 20° to CA. Lower contact @ 40° to CA. Rare fractures at 45° to CA. Foliation at 20° to CA. Local pervasive carbonate, carbonate fracture fill and carbonate veinlets. No sulfides, not magnetic. Rare quartz eyes in a dark green fine grained matrix . Foliation defined by discontinuous 1-2 mm ghosty quartz-carbonate spots. AND ANDESITE 121.35 122.2 121.35 122.2 100 35 121.35 122.2 Dark grey-green, similar to 114.6 m to 118.1 m.

NORANDA EXPLORATION COMPANY LTD. 3=moderate 5=very strong 1=very weak 4≃strong **DIP TESTS** PROPERTY KLIYUL PROJECT NO. 548 N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) DATE COLLARED Aug 4/94 DATE COMPLETED Aug 6/94 CORE SIZE BDBGM SHEET 9 OF 9 MAGNETIC DECLINATION ANGLE FIELD CO-ORDINATES DEPTH BEARING 125 m RECORDED CORRECTED RECORDED CORRECTED LAT. ELEV. DIP HOLE No. LOGGED BY L. ERDMAN DIP -70° LAT. 1845N ELEV. 1750 m BEARING NK-94-21 DATE: August 6, 1994 DEP. LENGTH BEARING 035° DEP. 2720E LENGTH **GEOCHEM** ASSAY **GEOTECH** SAMPLE DESCRIPTION % RECO Frac % ROCK Sil Gyp VERY Po Dens FROM TO Carb Chlor Ep Ser FROM TO No. FROM TO Py Ср TYPE FROM TO 122 124 70174 122.2 100 <1 45 122.2 124.6 124.6 124.3 AND ANDESITE 122.2 Medium grey-green. Numerous microfractures at 80° to CA but also in other directions, gypsum filled. Crackle breccia texture. Local discrete patchy 5% disseminated magnetite areas, total 2% of section. From 124 to 124.6 m is 5% very fine grained magnetite throughout. Locally pervasive carbonate and carbonate veinlets. 123.8 m - Quartz-pyrite (40%) flooding for 2 cm. Disseminated fine grained pyrite lies adjacent to and within fractures and locally is disseminated (7%) throughout. <1% quartz veinlets. Chalcopyrite (yellower in colour) is seen as very fine grains with the pyrite and also marginal to some of the quartz veinlets. 124.6 125 2 124 125 70175 AND ANDESITE(?) 124.6 125 100 25 125 124.3 Light grey. Pervasive sericite with rare siliceous sections. Foliations at 45° to CA. Fractures filled with gypsum +/carbonate at 50° to 80° to CA. Minor horsetailing at fractures but not a general feature. Quartz veinlets parallel to foliation with minor chalcopyrite on margins at 126.0 m. 124.7 m - Gypsum-pyrite vein (30% medium grained pyrite) 70° to CA Fine grained pyrite varies from none to 5% the greater concentration occurring in the more silica-rich areas. Pyrite (<1%) also along fractures.

l=very weak

3=moderate

																2=wea			4=stro						
DATE CO	DLLARED A		DATE COMPLETED Aug 7/94	CORE SIZE BDBGM		0	IP TESTS			PROF	PERTY	KLIYU	L	PROJE	CT NO	. 548						H (W.R.		<u>=)</u>	
			FIELD CO-ORDINATES		DEPTH		RING		GLE								SHEE		F 9			DECLIN			
LAT. 17	760N		ELEV. 1750 m	DIP -70°	108.5	RECORDED	CORRECTED	RECORDED	CORRECTED			ELEV.		DIP			HOLE					L. ERD			
DEP. 2	780E		LENGTH	BEARING 035°						DEP.		LENG	TH	BEARI	NG _		NK-9		-	DATE	: Augu	st 8, 199	94		
	Ţ							GE	OTECH								GE	OCH	IEM					ASSA'	
1 [1	ROCK	DESCR	RIPTION		[% RECO	%	%	%	%	Frac						1	{		Argil-	1 1		SAMPLE
FROM	то	TYPE				FROM		VERY	Py	Ср	Mt	Po	Dens	FROM	то	Carb	Chlor	Ep	Ser	Sii	Gyp	lic	FROM	то	No.
0	6.1	ОВ	OVERBURDEN.																				l		
																	<u> </u>			<u> </u>		<u> </u>	ļ	'	
6.1	15.9	AND	ANDESITE (FELDSPAR PHY	RIC) - WELL BRO	KEN	6.1	15.9	X	5	-	•			6.1	15.9		1	<u> </u>	4		<u> </u>	·	<u> </u>		
			Apple green colour, pervasive			6.1	9.1			<u> </u>										<u> </u>			<u></u>		
			foliation plane (mafics?). 2%			9.1						<u> </u>					<u> </u>	丄	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>		
			grained cubic pyrite. Fault go	ouge from 10.2 to 10	0.3 m.	12.2	15.2	100		\Box		<u> </u>					<u> </u>		<u> </u>	<u> </u>	ļ	ļ			
																		<u> </u>		 					
15.9	17.2		ANDESITE (FELDSPAR PHY			15.9				-				15.4	17.2		2	1	4	<u> </u>	<u> </u>	·		<u> </u>	
			Similar to above interval but r			15.2	18.3	95									<u> </u>				1	<u> </u>			
	T		chloritic atteration, giving the	rock a medium gre	en colour.															<u> </u>			لــــا		
										\Box							ļ	↓	L	<u> </u>	<u> </u>	1			
17.2	17.5		SILICEOUS VOLCANICLAST			17.2	17.7	X	10					17.2	17.5	:	<u> </u>	1 -	4	<u> </u>	↓ :	\	17	19	69751
			Light grey colour. Pervasive s									<u> </u>	L					↓	ļ	↓	↓	ļ	<u> </u>	<u> </u>	
			grained disseminated pyrite. 1	1 cm piece of brecc	iated					Ш							<u> </u>	ļ		↓	↓			<u> </u>	
			core at 17.3 m.									ļ					ļ	-	_	 	↓	├		\longmapsto	
										ļ.,		<u> </u>		1= -	45.5		-	 	!	 	-	 	-	 	!
17.5	18.0		ANDESITE (FELDSPAR PHY			17.5	18.0	X	7	_1		<u> </u>		17.5	18.0		2	-	1-9	'	\ —:	-		 	-
			Similar to 15.4 to 17.2 m but							_		ļ					-	-	ļ	↓	ـ	-	-	ļ	
\Box			with 1% chalcopyrite blebs, al		nated					Щ.		<u> </u>		_			↓	-	-	↓ -	 	+	-	ļ	<u> </u>
			grains intimately associated t	with pyrite.		ļ	ļ			1		ļ		Ш		<u> </u>	 	↓	ļ	 	├	├ ──	 	ļ	
						ļ	ļ						 	12.3		-	<u> </u>	┺	ļ.,	.├	 	├ ─	—-	 	ļ
18.0	18.4		SILICEOUS VOLCANICLAST			18.0	18.4	100	15	<0.5	<u> </u>	-		18.0	18.4	<u> </u>	├ —-	\ 	4	'		`		ļ	-
			Light grey colour, similar to 1		haicopy-					\sqcup			1			 -	ļ	-	├ ─	┼	↓	┼	 	 	!
L		1	rite associated with pyrite as i	in above interval.		ļ				<u> </u>		ļ				<u> </u>	-	\vdash	ļ		├ ─	-		 	-
									ļ	_		<u> </u>		40.4	40.0	<u> </u>		\vdash			 	—	1		
18.4	19.0	DAC	DACITE VOLCANICLASTIC			18.4	19.0	100	3		<u> </u>	 	⊢—	18.4	19.0	<u> </u>	 	₩-	4	' 	\ '	-	 	 '	
\vdash			Light grey-green colour. Per-	vasive sericite. Fin	e grained	!				\vdash	 	├ ──				 _	 	-	-	┼		┼	 		
			pyrite in foliation planes.			ļ						├	├ ──	$\vdash \vdash$		⊢—	┼	 		┼		 	₩-	 	
						1 46.5	00.0	 	<u> </u>	1		├	├ -	40.0	22.0	⊢—	1	+-	-	+	 	+	19		69752
19.0	22.0		ANDESITE (FELDSPAR PHY			19.0	22.0	<u> </u>	10	2	 -	├ ─¨	├	18.0	22.0	<u> </u>	1	 	1 -	' 	`	┼	18		08/32
			Dark apple green, pervasive :				- 26.5	1		 			 			<u> </u>				+	₩-	+	 	 '	
			grain disseminated pyrite, loc			18.3		1		 	ļ	 	├			 -	 	┼—	├—	┼	├	┼	 	 	
L			blebs of chalcopyrite. One from			21.3	24.4	80		-		 	├	-		 	 	₩		+	+	┼	 	 	
			pyrite in a quartz veinlet. Loc			ļ	1			ļ			 			├—		↓ —	├		 	+	 	 	ļ
1			as at 15.9 to 17.2 m. Foliated	i, defined by dark st	reaks.	<u> </u>	<u> </u>	<u> </u>	<u> 1</u>	<u> </u>		<u></u>	<u> </u>	ـــــا		<u></u>	<u> </u>	<u> </u>		1				L	

1≖very weak

3=moderate

			NOTOTI	DA LAI LO	101110		1411 / 11 4									2=wea	le		4=stro	10		·	-		
				Table over popular	r		IP TESTS			IPPOI	PERTY	KLIYU	11	PROJE	CT NO			No 9			NORTH	(W.R.	T. TRUE	<u> </u>	
DATE C	OLLARED	Aug 6/94	2.1.2	CORE SIZE BDBGM	DEPTH		ARING		GLE	FRO	ERTT	KLITO	·	Jr NOSE	.01 110	. 0.0	SHEE				ETIC D				
			FIELD CO-ORDINATES		108.5	RECORDED			CORRECTED	LAT		ELEV.		DIP			HOLE	_	<u> </u>		ED BY				
	760N		ELEV. 1750 m	DIP -70°	108.5	RECUMPER	CURRECTED	UCCOUNCE	CUARECTED	DEP.		LENG		BEARI			NK-9				Augus	<u> </u>			
DEP. 2	780E		LENGTH	BEARING 035"	<u> </u>		l	L	L	DEP.		LENG	IH	BEAKI	NG			OCH		DATE	Augus	x 0, 183	-	ASSAY	's
							1		OTECH	T = 1	-		I	 			I GL	T	LIVI	· · · · ·		Argil-			SAMPLE
.		ROCK	DESCR	RIPTION		ļ.		% RECO	96	96	%	%	Frac				0.1			611			FROM		No.
FROM	TO	TYPE				FROM	TO	VERY	Py	Ср	Mt	Po	Dens	FROM			Cnior 3		Ser	511	Сур	IRC	21	23	
22.0	23.4	AND	ANDESITE (FELDSPAR PHY			22.0	23.4	X	 '	<0.5			-	22.0	23.4		 	-	- 4	<u> </u>	┷		- 21		09733
			Medium green, not well foliate	ed. Could be a dyk	elet.	ļ .	<u> </u>			+			 - -	1			-	┼	├		—				
			Chlorite alteration has increas		sed. Fine			ļ	<u> </u>	-			<u> </u>	ļ		ļ	├	↓ —		ļ	—				
!		l	grained disseminated pyrite ra	anges from 0-3%.				<u> </u>					Ь	Ļ		<u> </u>		ļ			 -	ļ	 		
									<u> </u>			<u> </u>					ļ	ـــــ							00754
23.4	24.6	AND	ANDESITE (FELDSPAR PHY	RIC) - WELL BRO	KEN	23.4	24.6	X	7	<u>' </u>		<u> </u>	L	23.4	24.6	<u> </u>	-	 -	4	<u> </u>	 -	<u> </u>	23	25	69754
			Similar to 19 - 22 but no obse	rvable chalcopyrite	and less							L		igsquare				↓			 	_	 		
	7		pyrite. Pyrite is fine to mediu	m grained dissemi	nated and				Ĭ			<u> </u>					<u> </u>	ļ			<u> </u>		ļ		
			ranges from 1 to 15%.						Ĭ								<u> </u>	<u> </u>			<u> </u>				
$\overline{}$		† 											I						<u> </u>						
24.6	25.7	AND	ANDESITE VOLCANICLASTI	C -WELL BROKE	V	24.6	25.7	100	3	-	•	-	L.	24.6	25.7		2	<u>: </u>	3			<u> </u>			
		1	Medium green colour. Pervas														<u> </u>				$oxed{oxed}$				
		 	mafic crystals (augite) altered													<u> </u>		<u>l</u>			<u> </u>	<u> </u>			
		—	fine grained disseminated pyr															<u> </u>			<u> </u>				
		 	but not always.				1						Ι						L					<u> </u>	
		 																							
25.7	27.2	AND	ANDESITE VOLCANICLASTI	IC - SHATTERED	·	25.5	27.2	100	7	7 <0.5	-	-		25.5	27.2		•	•	4			<u> </u>	25	27	69755
		1	Apple green colour, pervasive		ne arsined		1																		
		†	disseminated pyrite, possible										1												
		 	edge of pyrite noted in one fra					†																	
<u> </u>		<u> </u>	ougo or pyrice record record					1									1	T						i	
27.2	27.8	DKY	ANDESITE DYKELET - BRO	KEN		27.2	27.8	100		-	-		1	27.2	27.4			- 1	3		-				
			Feldspar phyric, 2-10% mediu		inated				1	1		1		T		Ι	T								
-		 	pyrite, epidote fracture fill, so	me sausserization	of	 				1		1		1			1	T						ſ	
		 	feldspar. Pervasive sericite.	THE SEEDING		 		1	1	1								1							
		 	reidspar. I civasive serioite.			 	+	1	<u> </u>	1		†		-				1		1	\Box				
27.8	32.9	AND	ANDESITE - BROKEN			27.1	39.2	100	1!	5 <0.5	-	1 -		27.8	39.2	! .		1	4			2	27	29	69756
27.6	32.8	AND	Apple green, crumbly surface	on fractures Den	vasive		- 50.2	· · · · · · · · · · · · · · · · · · ·	1	1 3.5	_	 	 	1			1	1				<u> </u>	29	31	69757
	 	 	sericite, weak clay alteration.	5.20% fine to med	ium arain	+	 	 	1	+	-		1	 		T	T	1		1			1		
			disseminated pyrite, the highe			+	 	 	 	+	 	1	 	1	t		1	1	1	1	$\overline{}$	1	T		
-		 	fractures and foliation planes.			+	+	 	+	+	_	 	+	 	\vdash	t	 	1	t		<u> </u>	†	\vdash	·	1
	L	 		. russible chalcop	Auto Milli	+	 	 	+	+-	 	+-	+	+	1	 	+	+-	 	t	\vdash	1	 		† · · · · · ·
—		 	pyrite noted in 2 fragments.			+	 	 	 	+-	 	+	+-	+-	 	 	+	+		 	 	1	 		
— —		 	 			+	+	+	+	+		+	+	+-	\vdash	+	1	+		1	 	+	t		
1			ī										1	1		1	1				1				

3=moderate

																2=wea			4=strc						
DATE CO	DLLARED	Aug 6/94	DATE COMPLETED Aug 7/94	CORE SIZE BDBGM		C	IP TESTS			PROI	PERTY	KLIYL	JL	PROJE	CT NO	548						_	T. TRUE	:)	
SAIL OC			FIELD CO-ORDINATES		DEPTH	BE/	RING	AN	GLE	Ĭ							SHEE		F 9			DECLIN			
LAT. 17	760N		ELEV. 1750 m	DIP -70°	108.5	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE			LOGG	ED BY	L. ERD	MAN		
DEP. 2			LENGTH	BEARING 035°						DEP.		LENG	TH	BEARI	NG		NK-8			DATE	: Augu	st 8, 199	4		
1	7002						*	GE	OTECH								GE	OCH	IEM_				<u> </u>	ASSAY	
		ROCK	DE	ESCRIPTION				% RECO	%	%	%	%	Frac					İ	1		ļ	Argii-			SAMPL
FROM	то	TYPE	ł			FROM	TO	VERY	Py	Ср	·Mt	Po	Dens	FROM			Chlor	Εp	Ser	Sil	Gyp	lic	FROM	то	No.
32.9	40.2	AND	ANDESITE (FELDSPAR	R PHYRIC) - WELL BRO	KEN	32.9	40.2	100	7	<0.5			·	30.9	40.2	1	3	1	4	<u> </u>	<u> </u>	1	31	33	
			Interval starts where chic	orite content starts to inc	rease												<u> </u>	↓_		↓	ļ	<u> </u>	33	35	
			from none to weak. Pyri	ite content varies from 1	to 20%.					$oxed{L}$			<u> </u>				ļ	ļ		ļ	ļ	ļ	35	37	
			Possible 1% chalcopyrite			I								<u> </u>	<u> </u>		ļ		└	 	ļ	 	37	40	6976
			36.7 m.											L	L		ļ	↓	<u> </u>	 	-				ļ
			39.1 m - Minor epodite a	Iteration along foliation	planes for							<u> </u>		<u> </u>			<u> </u>	₩	ļ	 	ļ		ļ		1
			2-3 cm.								<u> </u>	ļ				L		 	 		<u> </u>	—			ļ
			Epidote along foliation p	lanes in bottom 40 cm o	f interval.		<u> </u>					<u> </u>	<u> </u>				-	 	ļ	<u> </u>	ļ	├			
			Carbonate as 1 mm vein	niets and as fracture fill.						ļ	<u> </u>	<u> </u>	 	<u> </u>		ļ	ļ	ļ	ļ	 	ļ	 			
			Minor sections with weal	k clay alteration.						_			Ļ	<u> </u>	ļ	ļ	ļ	-	ļ	 —		₩			
			Chlorite alteration along	foliation planes.			<u> </u>				L		 	↓			ļ	 	-	₩	-	 	-		
													ļ				↓	↓ —	١.,		<u> </u>	—			
40.2	50.3	MZ	FELDSPAR PORPHYR	Y MONZONITE		40.2	50.3	100	<0.5	-	2	 	- 5	40.2	50.3		ļ	+-	1 1	<u>' </u>	∐ :	-			
			Light grey with 10-15% f	feldspar phenocrysts to 3	mm,					 		ļ	.	┞				┼—		 	₩	┼			
			generally 1.5 mm. Very	weak sericite alteration	seen on	<u> </u>	ļ			↓	<u> </u>	ļ	-	 			├ ──	+		+	┼	├	\vdash		
			fractures. Pervasive epi	idote alteration of ground	mass	ļ		ļ	ļ	 	<u> </u>	ļ		<u> </u>	ļ. —	-	 	╂	-		-	┼	\vdash		
			feldspar. Traces of disse			ļ					<u> </u>	ļ	—		-			-	-	╁—	+-		-		
			and fracture fill. Fine gr	ained magnetite through	out.	<u> </u>				—	<u> </u>	1	-				╀	+-	-	 	+	┼			}
						ļ			L		!		↓—	1	55.4		├	, –	 		+	+	50	52	6976
50.3	55.4	AND	ANDESITE - BROKEN			50.3	55.4	100	5	1	└	<u> </u>	;—	50.3	55.4	-	-	4—	\ 	'	+	-	52	54	
			Medium green-grey colo	our, well foliated. Similar	to NK-94		ļ		ļ	1	ļ						├ ─	┼┈		┼	┼	+-	32	54	09/0
			-21 from 12.2 to 39.6 m.				ļ		<u> </u>	-		 	┼				 	 		┼	}	+	-		
			stretched ovals in the pla			ļ	<u> </u>		ļ	1-	<u> </u>	├	┼	ļ	<u> </u>	ļ	-	+-	 	 	┼	+	 		
			to be subparallel to CA.			 			ļ	┼	-			 		├	+		╁	┽	+	+			
			possible associated chal		r) noted in				1	-		₩	-	 -			┼	+	-	+	 	+	-		
			a few locations (51.8, 52	2.1, 52.4, 54.7).			<u> </u>		ļ	₩	ļ	-	 	-		 	┼	┿┈	┼─	+	┼	+	-		
								400	ļ	.—	-	-		EE A	58.6	2	, - ,	2 1	┼	3	┼	+	54	56	6976
55.4	58.6	AND	ANDESITE - SHATTER			55.4	58.6	100	' 	<u> </u>	1	╁—	1-	33.4	30.0	 	+ 4	' 	 '	4-	1	-	56		
			Dark green to medium gre			ļ	 		 	╂	├	╂	+	+-	1		+	+	+	+	+	+	 ~	Js	1 3870
<u> </u>			to above interval but chlori			ļ	 	├ ──	ļ	+	-	┼	╂	+	├	├	+	+	+-	+-	┼	+	+-		
			Possibly a different litholog			1	 	ļ		 		┼	 	 	├		╂	╁	 	+	+	+	_		┼
			Fine grained pyrite is prese			 			 	┼		 	-	├ ─	├	} —	+	+-	+	+	┼──	+	├		
			fracture fillings and varies			ļ	.	 	—	┼	┼	 	+	+	 	├	+	+	+	+	+	+	\vdash		┼
			the most chloritic section.			ļ	 	 	 	┿	₩	╂	┼	-	 	 -	+	+	┼	+	-	+	┼──		
			(1 mm)" fracture fill carbo	nate and a few carbonate	reinlets.		1	<u> </u>	1		Ь	Ь			<u> </u>	ــــــــــــــــــــــــــــــــــــــ		ــــــــــــــــــــــــــــــــــــــ			┸	Ц.	<u> </u>		┸——

1=very weak

3=moderate 4=strong

DATEC	OLLARED	Aug 6/94	DATE COMPLETED Aug 7/94	CORE SIZE BDBGM			OIP TESTS	3		PROF	PERTY	KLIYU	JL	PROJE	CT NO	. 548		_					T. TRUE	.)	
1			FIELD CO-ORDINATES	D CO-ORDINATES DEPTH 1750 m DIP -70° 108.5				AN	GLE								SHEE	T 4 0F	9	MAGN	IETIC I	DECLINA	ATION		
LAT. 1	1760N		ELEV. 1750 m					RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE			LOGG	ED BY	L. ERDI	MAN		
DEP.			LENGTH							DEP.		LENG	TH	BEARI	NG		NK-9			DATE	: Augu	st 8, 199	14		
	T							GE	OTECH								GE	OCH	IEM				Ĺ	ASSA'	
	1 1	ROCK	DESCR	IPTION				% RECO	%	%	%	%	Frac									Argil-			SAMPLE
! FROM	то	TYPE				FROM	to	VERY	Py	СР	Mt	Po	Dens			Carb	Chlor	Ep	Ser	Sil	Gyp	tic	FROM	TO	No.
58.6			ANDESITE DYKE - SHATTER	RED		58.6	59.3	100	•	-	•		-	58.6	59.3	2	1	2		-	<u> </u>				
			Fine grained, dark green. Per	vasive and fracture	filled																				
			carbonate plus fracture filled e																	L	ļ <u> </u>	<u> </u>	igspace		
			light green lines.										<u> </u>				L	<u> </u>	ļ	<u> </u>		↓	└		
														L				<u> </u>		<u> </u>		↓ ′	lacksquare		
59.3	60.1	AND	ANDESITE (FELDSPAR PHY	RIC) - SHATTERE	D	59.3	60.1	100	2	2				59.3	60.1	2		1	4	-		<u> </u>	59	62	69766
			Light grey, fracture filled carbo	onate. Dyke? Fine	grained								<u> </u>	<u> </u>	i		<u> </u>		L	<u> </u>	↓	 _	 		
			chalcopyrite associated with v	ery fine grained dis	semi-						L		<u> </u>	<u> </u>			<u> </u>			<u> </u>			└		
!			nated/fracture filled pyrite.								<u> </u>		<u> </u>	L				!			ļ		\vdash		<u> </u>
													ļ					Ь.		ļ	ļ	 			ļ
60.1	61.5		ANDESITE - WELL BROKEN			60.1	61.5	100	5	1 -	<u> </u>	-	—	60.1	61.5	1	2	1	3	↓ :	ļ	4	-		
			Similar to 55.4 to 58.6 m. Loc			<u></u>			ļ		ļ			ļ				Ь.	ļ	ļ	ļ		⊢—Н		
			is readily visible. Foliations h			L			<u> </u>		L		ļ					<u> </u>		<u> </u>	 		\vdash		
			mafics but the foliations are n				<u> </u>		ļ			↓	ļ	<u> </u>				<u> </u>		ļ	↓	 _	\vdash		
			to 55.4 m. 2-10% fine grained					<u> </u>	ļ	1		<u> </u>	 				<u> </u>	├		ļ	ļ	 	├		ļ
			epidote/carbonate veinlets an	d fracture fill. Loca	lly feldspar				<u> </u>			ļ	-	 -			<u> </u>	—		-	-	. 	├		
			to epidote.					<u> </u>		1		↓	ļ	 	L		<u> </u>	⊢		-	1-	┼──	├		 -
						1			ļ	1	ļ	1	_	l				<u> </u>	<u> </u>	_	 	┼	├		ļ
61.5	62.4		ANDESITE DYKE - WELL BR			61.5	62.4	100	-	-		-		61.5	62.4	2	1	2	2	-	ļ	┼	├ ──┤		
			Medium grey colour, fine grain			ļ	<u> </u>	ļ	ļ <u>.</u>	4	ļ	-	 					⊢		├ ─	 	 	 		
	<u> </u>		fractures/veinlets and epidote				 			1		 	<u> </u>				 	-		-	-	+	├──┤		
l 			weak pervasive epidote. Wea	ak pervasive sericit	е.					igspace			-		ļ	<u> </u>	├—	├	├─-	├ ─	 	+	\longmapsto		
	ļ					ļ.,		122	<u></u>			├ ─	├	100.4	66.4		 _	 -	3	┼		 	62	64	69767
62.4	68.1		ANDESITE			62.4	68.1	100	7	1	<u> </u>	┼	 	02.4	68.1	1	2	 '	3	 	-	+	64	66	
			Well foliated, medium green-					 	 	-	<u> </u>	↓		├ ─		-	├	⊢	├	-	┼	 	66		
			Very fine grained disseminate			1	 		 	-	├ ─	-		+		-		⊢	├	 	┼	+	- 60		09703
			with fine grained disseminated					ļ	ļ	1-	<u> </u>	┿	├	+			 	┢		-		+	├		
	<u> </u>		fracture fill at 67.2 m but over					1	 	-				├		┡—	┢	├-	-	├	┼	 	╁		
L	 		ranges from 3-15%. Chlorite	replacing mafics(?)	forms	ļ		ļ	 	₩	 	+	├	┼	ļ	├		₩	├	 	├	┼─-	╂━━┤		
	ļi		elongate blebs in foliation plan			↓	 	ļ	<u> </u>	 	<u> </u>	 	-			 	├	├-	├		 	 	╂┻┩		
			texture diminishes down the in	nterval. Chloritizat	ion in-	ļ			-	1	! —	-		₩	 	-	-	₩	ļ	 		₩	igspace		
			creases downhole.			ļ <u> </u>		<u> </u>	 	↓_	↓	-	-		<u> </u>		₩	├	 	 		┼—	╀		
						 				₩	ļ		↓	↓ —			 	 	-	├	↓	+	╁┻┩		
	ļi					 		-	1	↓	—	-	↓	+	├		—	₩	 	+	 	┼	├ ──┤		
	I					<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u></u>		L	1	<u>L.</u>		<u> </u>			لــــــــــــــــــــــــــــــــــــــ		<u> </u>

1=very weak

3≖moderate

																2=wea	k		4=stro	ng					
DATEC	LABED	Aug 6/04	DATE COMPLETED Aug 7/94	CORE SIZE BDBGM			IP TESTS	3		PRO	PERTY	KLIYU	L	PROJE	CT NO). 548	N.T.S.	No. 9	4D/9	GRID	NORTH	(W.R.	T. TRUE	<u> </u>	
DATEC	JLLAKED !	Aug ara-	FIELD CO-ORDINATES	TOOKE GIZE DODGOOM	DEPTH		ARING		GLE								SHEE	T 5 OF	9	MAGN	IETIC D	ECLIN	ATION		
LAT. 17	60N		ELEV. 1750 m	DIP -70*	108.5		CORRECTED		CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY	L. ERD	MAN		
			LENGTH	BEARING 035°						DEP.		LENG	TH	BEARI	NG		NK-9	4-22		DATE	: Augus	st 8, 199	14		
IDEP. 2	76UE		LENGTH	DEARING 000				GE	OTECH	1		1						OCH						ASSAY	7
l		ROCK	DESCE	RIPTION				% RECO	%	96	96	%	Frac				Γ					Argii-			SAMPLE
		TYPE	DESCR	AF HON		FROM	то	VERY	Pv	Ср	Mt	Po		FROM	τo	Carb	Chlor	Еp	Ser	Sii	Gyp	lic	FROM	то	No.
FROM 68.1	TO 72.7	AND	ANDESITE (FELDSPAR PHY	(RIC) - WELL BRO	KEN	68.1		100		<0.5		-	-	68.1			1	1	4		-		68	70	69770
00.1	12.1	AND	Medium grey-green. Local se	ections with chloritic	hlehs in		, <u></u>		· · · · ·	1	 -												70	72	69771
			foliation but less than previou	s 3.20% very fine	areined to	 		 			<u> </u>	 										1			
			medium grained disseminated	d nurita Associated	with the	 		 		\vdash						T	1								
-			very fine grained pyrite is a ve	on fine grained vel	lower		 		 		 	 					1		<u> </u>		†				
			sulfide (chalcopyrite?). This	ery line grained yer	tions of	 	 			 	 	 					 								*******
-			5% but is very rare over the in			 	 	 		1	 		 				_	_	_		†				
-					NO 83	 	 	 			 	-				-	 				†				
<u> </u>			fracture fill. 4 cm fault gouge	8t / 1.0 m.		 		 		-		-	 				 	┰							,
		4415	ANDESITE MELL BOOKEN			72.7	77.3	100		<0.5		 _		72.7	77 3	1	1 4	1 2	4	١.	1	1	72	74	69772
72.7	75.7		ANDESITE - WELL BROKEN			12.1	11.3	100	 	70.5	 	-		72.7	77.0	-	 '	 	-	_	 	 	74		
L			Mottled green buff - medium	green. 10 cm rauk	gouge at	 			 				-				╁	 	-	 	 	<u> </u>	1		
			73.2 m. Sausseritization and				 		 			├					 	╁			 	 		-	
			feldspar produces mottled ap	pearance. Gypsun	1(7) On	ļ	 	 	 	1	 	├					 	├		 	†	_	-		
			fracture surfaces. Local carb			 	 	 		-	 	├		-			 	╁┈		-	 	-	\vdash		-
1			coarse grained disseminated			ļ	ļ	 		┼		├		-		 	 	╁╾		╁	 	-			
			Possible very fine grained dis	seminated chalcop	ynte as	-	ļ	 	ļ	+	├—	├	-	-			\vdash	├	 	 	+-	-			
			noted in previous interval. M					 	 	-	_	-	-	-		-	 	├─	├	┼──	╁	├─			
			foliation "blebs" so foliation is	not an obvious tea	iture.		 			-		├	├					╁	├	 	 	 			
		:	AND COLTE (EEL DOOM DIN	(DIO) OLIATTED	-	75.7	77.8	100	 	 	├			75.7	77.8	1	 	Η.	5	١.	1 1	1	76	78	69774
75.7	77.8	AND	ANDESITE (FELDSPAR PHY	Highly agricition No	opidato/	13.1	17.0	100	 	╁	_	-		,		 	\vdash	┼─	-	 	 	 	<u> </u>		
,			Light grey to light green-grey.	fragily sencials. N	Jepiuole/	. 	- 	 	 	 	-	-	 		 	 	 	 	 	 	 	 	1		
-			chlorite. Possible gypsum on	Tracture Surfaces.	JP 10 20%			 		┼		┼		 	 		 	-	 	 	! 	 	1		
			very fine to fine grained disse			 	+	 		 	-	 		_	├	 	 	╁	├	 	+	╁	 		
-			subparallel to CA. Very weak	carbonate as trac	ure m.	 	 		 	╁		 	 				├	╁	-	+-	 	 	 	·	
1 ====		5).64	LANDERITIO DVICE DECICE	A.1		77.8	78.7	100	 	+	 		╁	77.9	78.7	-	1	 _	1 2	+ -	 	 			
77.8	78.7		ANDESITIC DYKE - BROKE			11.8	70.1	100	<u> </u>	╁	┼—‐	+	├	77.0	70.7	├─	 '	H		+	-	 	 		
			Medium grey, fine grained. S			 	 	 		├		├ ──				-	+	 	├	1	+-		-		
			minor epidote alteration of fe				 	-		┼—	├	╀—				 	-	 	┼	┼─	┼		_	 	
			disseminated pyrite. Quartz		ets. very	 	<u> </u>	 	 		 	-			-		┿	-		┼		-	\vdash	 	
			weak carbonate as fracture fi	II			ļ			┼	-		-	 		├	+	┼	├─	 	+		 - 	\vdash	
						 	<u> </u>	ļ		┼	-	1-		<u> </u>			 	┼	 	\vdash	┼		 	 	ļ
			ļ			 	 	 	 	₩		-				├	₩	┼	-	┼	+	 		 	
							↓			├	 	 	├	 		₩	 		├	┼—	┼	┼	 	 	
						1	1	1	1	1	1	1	1	Ι΄.	l	I	1	ı	1	i	1	ŀ	1	1 '	l

1=very weak

3≃moderate

5≖very strong

2=weak 4=strong

							ID TECTS			lono:	roty	KLIYU		DDO 15	CT NO	2=wea	_	No.	4=800 0417/0		NORTH	IWP.	T. TRUE	3	
DATE C	OLLARED A	Aug 6/94	DATE COMPLETED Aug 7/94	CORE SIZE BDBGM	DEDT:		IP TESTS			PROF	EKIY	KLITU	L	FROJE	CINC		SHEE		-	_		ECLIN/			
			FIELD CO-ORDINATES	T:	DEPTH		RING CORRECTED		GLE CORRECTED	1.47	-	ELEV.		DIP			HOLE					L. ERD			
LAT. 1	760N		ELEV. 1750 m	DIP -70°	108.5	RECORDED	CONNECTED	RECORDED							***		NK-9		1			st 8, 199			
DEP. 2	780E		LENGTH	BEARING 035*						DEP.		LENGT	Н	BEARI	NG			OCH		IDATE	. Augus	St 0, 198	1	ASSA	v
									OTECH	1			_				GE		T IVI	T	_	Annii	 		SAMPLE
į		ROCK	DESCR	RIPTION				% RECO	96	%	%	%	Frac					_		011	Gyp	Argil- lic	FROM		No.
FROM	TO	TYPE				FROM	то	VERY	Py	СР	Mt	Po	Dens				Cnior 3				Сур	IIC	78	80	
78.7	80.9	AND	ANDESITE (FELDSPAR PHY	'RIC) - WELL BRO	KEN	78.7	80.9	100	10	<0.5		<u> </u>		78.7	80.9		 	-	-	<u>`</u>	-	- -	 '° 		08773
			Dark green-grey. Foliated. S	<u>imilar to 50.3 to 55</u>	.4 m.			ļ		\vdash							-	-	 	+-	┼		╌┤		
			Strong fracture filled epidote ((30%) at 78.1 to 78	.9 m.			<u> </u>		\vdash							├	╁		+	┼	├	 	——	
			Fracture fill epidote continues	to 80.0 m but beco	omes less				ļ	\square							-	├—	 	\vdash	-		 		
			intense. Carbonate associate	d with epidote. So	me of the					Ш		<u> </u>				_	├	├		┼	-				
			pieces show chloritic "blebs" i	n foliation and thes	e contain			ļ		Ш		L_					-	├	├ ──	 	-		 		
			disseminated pyrite. Pyrite va	aries from very fine	grained to					\sqcup							ļ	├			 	├ ──			
			medium grained and ranges f							$ldsymbol{\sqcup}$							 	├	├		├ ─	-	 		
			copyrite intimately associated	with the very fine	grained	<u> </u>			ļ								-		ļ	-	-		 		
			pyrite.						ļ				ļ				 	-	ļ		-		├ ──┤		
										Ш							<u> </u>	<u> </u>	 _ ,	-	-	-			60776
80.9	81.1	DYK	DYKE - FELDSPAR PHYRIC	ANDESITE - BRO	KEN	80.9	81.1	100	3	╙		<u> </u>		80.9	81.1	-	3	3	י	!	 - :	-	80	82	69776
			Medium green with light greer	n epidotized feldsp	ar. 3% fine			ļ	ļ	Ш		ļ				L	ļ	-	├ ─	-	₩	├ ─			
			grained disseminated pyrite.	Weak pervasive ca	arbonate.			<u> </u>	ļ	L					<u> </u>	<u> </u>	<u> </u>	├	-	-	├	 	╌╌┥		
																ļ	-	 _	 _		 		 		60777
81.1	86.0	AND	ANDESITE (FELDSPAR PHY	(RIC) - SHATTERE	D	81.1	86.0	100	10	1	-		L	81.1	86.0	_	2	1_1] 3	<u> </u>	 	-	82 84	84 86	
			Similar to 78.7 m to 80.9 m b													<u> </u>	ļ	 _	ļ		↓	-	84	86	69778
			sections. Very fine grained cl		84.0,				ļ <u> </u>	1					Ь—		↓	—	ļ	₩	↓	ļ			
			85.8. Very fine to coarse grai	ined cubic pyrite,					<u> </u>					<u> </u>		ļ	ļ	₩	ļ	-	—		 	,	
			disseminated and on fractures	s, 2-20%. Sausser	itized					L		<u> </u>					ļ	 	↓	↓		├			
			feldspar and locally feldspar g							Ц.			<u> </u>			ļ	ļ	ـ	!	—	<u> </u>	-	!		<u> </u>
			"spotty" appearance. Foliated	d. Gypsum fracture	fill.		<u> </u>			ļ							<u> </u>	ļ	<u> </u>	↓	<u> </u>	├ ─			
																L	Ь.	₩	ļ.,	<u> </u>	 _	1			00770
86.0	87.0	AND	ANDESITE			86	87	100	5	1		<u> </u>	10	86	87	1	1	╙	4	1	- 3	-	86	88	69779
			First competent core. Medium g												<u> </u>		↓	1	↓			ļ	ļi		
			tailing microfractures at 50° to C									ļ	L				-	↓	↓	↓	↓			,	
			parallel to CA. Fine and medium	grained disseminate	ed pyrite,	l		<u> </u>				<u> </u>		L			ļ	<u> </u>			ļ	<u> </u>			
,			very fine grained chalcopyrite(?)									1			ļ	<u> </u>	 		 	1	 	1	1		
			vasive gypsum forms white <1 b	lebs. Pervasive serie	cite.								L	<u> </u>	L	ļ	↓	↓_	_	↓	1	<u> </u>	igsquare		
			Sausseritization of feldspar. Loc									L		L	ļ	Щ	1	1		1	↓		1	,	
			(2 mm - 4 mm). Non-horsetailin												ļ		ļ	↓	↓		1	↓	igsquare		
			50° to CA. Chloritic along foliati															<u> </u>		1	<u> </u>			ļ	
																					1	<u> </u>	Ш		Ļ
																L	1	<u> </u>		1	ļ			ļ	
			T											<u> </u>		L	Щ.					<u></u>	<u> </u>		L

3=moderate

																2=wea			4=stro						
DATE C	OLLARED	Aug 6/94	DATE COMPLETED Aug 7/94	CORE SIZE BDBGM		[OIP TESTS	3		PROP	PERTY	KLIYU	IL	PROJ	CT NO	548							T. TRUE)	
			FIELD CO-ORDINATES		DEPTH	BE	ARING	AN	GLE								SHEE	T 7 OI	F 9	MAG	ETIC E	DECLIN	ATION		
LAT. 1	760N			DIP -70°	108.5	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY	L. ERD	MAN		
DEP. 2			LENGTH	BEARING 035°						DEP.		LENG	TH	BEAR	NG		NK-8	4-22		DATE	: Augu	st 8, 199) 4		
1	1							GE	OTECH								GE	OCH	IEM					ASSA	Ϋ́
1		ROCK	DESCR	RIPTION				% RECO	%	%	%	%	Frac				I					Argil-			SAMPLE
FROM	то	TYPE				FROM	то	VERY	Py	Cp	Mt	Po	Dens	FROM	TO_	Carb	Chlor	Ep	Ser	Sil	Gур	lic	FROM	TO	No.
87.0	87.9		ANDESITE			87	82.9	100	<0.5	-	15	-	10	87	87.9	-	3	3	2		3				
			Dark green/light green spotty mo	ottled colour. Gypsun	n													l	<u> </u>			<u> </u>			
			microfractures at 45° or 50° to C																		Ĭ				<u> </u>
			Gypsum veinlets at 20° to 90°.																	I					<u> </u>
			locally 70%, but patchy and disc		iza-											l									
			tion of feldspar plus 2-3 mm spo			1											I								
			the rock a mottled appearance.														Ĭ								
			grained pyrite is rare. Epidote fr														L								İ
																					<u>.</u>	l			
87.9	90.2	AND	ANDESITE			87.9	90.0	100	5	0.5	-	-	30	87.9	91.4	•	1	2	4		3		88	90	69780
01.0	33.5		Medium grey/green. Horsetailing	g gypsum microfractu	res at																	Ĭ			
			50°. 90 m - trace of disseminate																		<u> </u>				
			of gypsum fractures. Very fined																	<u> </u>					
			pyrite on margins of gypsum frac																			L			<u> </u>
		-	in the matrix, greater concentrati																		<u> </u>	<u> </u>			<u> </u>
			fractures. Although fractures tre		e																				
			dominant set is 45° to 50° with a																	<u> </u>					<u> </u>
	·		Swirly, mottled texture throughou											Ĺ			<u> </u>			<u>L</u>					<u> </u>
			88.4 m - 10 cm gypsum - 30% p	yrite - 5% quartz veir	@ 20° to													<u> </u>		L		<u> </u>			<u> </u>
			CA. 89.7 m - 5 mm quartz vein													<u> </u>	<u> </u>	<u> </u>		1					
																		<u>l</u>			<u> </u>				
90.2	90.9	AND	ANDESITE (FELDSPAR PHY	YRIC)		90.2	90.9	100	5	0.5	-	-	30	90.2	90.9	•		1	4	<u>.</u>	3		90	92	69781
			Similar to above interval but		pots.																	<u> </u>			
			90.4 m - Parallel gypsum-epic	dote veinlets separ	ated by 1					I															
			cm at 65° to CA. These host	2% very fine grain	ed chalco-		1									l				1	İ				
			pyrite.											I											
																				Ĭ		<u> </u>			<u> </u>
···																l					I				
· · · · · ·																			<u> </u>				L		<u> </u>
<u> </u>																									
	1																								
	1									L															
	 					1	1	T		T	1		1	1	I	1	1					1			

101.3 m - 2 cm round area of quartz-gypsum with pyritechalcopyrite on margins. Part of a vertical vein. 1=very weak

3=moderate

											_					2=wea			4=stror						
DATE	COLLARED	Aug 6/94	DATE COMPLETED Aug 7/94	CORE SIZE BDBGM			IP TESTS	5		PROF	PERTY	KLIYU	L	PROJE	CT NO	. 548							T. TRUE	.)	
-			FIELD CO-ORDINATES		DEPTH	BE/	RING	AN	GLE								SHEE					ECLIN/			
LAT.	1760N		ELEV. 1750 m	DIP -70°	108.5	RECORDED	CORRECTED	RECORDED	CORRECTES	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY	L. ERDI	MAN		
DEP.			LENGTH	BEARING 035°						DEP.		LENG	TH	BEARI	NG		NK-9	4-22		DATE:	Augus	t 8, 199	4		
	1						1,	GE	OTECH								GE	OCH	EM					ASSAY	(
1		ROCK	DESCR	IPTION				% RECO	%	%	%	%	Frac									Argli-			SAMPLE
FROM	то	TYPE				FROM	то	VERY	Py	Cp	Mt	Po	Dens	FROM	то	Carb	Chlor	Еp	Ser	Sil	Сур	lic	FROM	то	No.
90.9	_		ANDESITE			90.9	98.4		7	1	-	2	30	90.9	98.4	1	1	•	4	•	3		92	94	69782
	1		Similar to 87.9 to 90.2 m with	short sections of m	ore ob-	1																	94	96	69783
	 		viously feldspar phyric andesi																				96	98	69784
-			magnetic with magnetite abun							П															Ĺ
	1		prised of discrete fuzzy <1 cm																						Ĺ
<u> </u>	1		magnetite.	<u></u>																					Ĺ
 	1	<u> </u>	Fine grained disseminated py	rite with local very	fine																				
<u> </u>	†		grained chalcopyrite mixed in			1																			
	†		grained disseminated pyrite in																						
	1		Interval begins with 10 cm fau					i																	
	1		94.3 m - 6 cm quartz-carbona	te-gypsum-chlorite	vein at				Ĭ															J	
			25° to CA with trace magnetite	e.													<u> </u>								
			94.9 m - Horsetailing microfra	ctures at 60° to C/	A, also															Ļ					
			quartz-chlorite-gypsum vein (2 cm) at 25° to CA.	Trace								<u> </u>				L								
			chalcopyrite.											L								lacksquare			
	1		97.0 m-8 mm quartz-pyrite-m	agnetite veinlet at 4	45° to CA.													_			L		Ш		
			98.1 m-Gypsum microfracture	es horsetailing at 10	00° to CA.							ļ							<u> </u>						
			97.9 m - 1 cm gypsum vein (t	race pyrite) at 45° t	o CA.]		L				ļ								ļ					
			Local chlorite in foliation plane	es.						$oxed{oxed}$								<u> </u>		ļ	ļ				
						l		<u> </u>	<u> </u>	1		<u> </u>	Ļ					<u> </u>							
98.4	104.5	AND	ANDESITE			98.4	104.5	100	5	3	-		30	98.4	104.5	1	:	<u> </u>	4	2	3	ļ	98	100	
-			Medium green-grey. Interval beg									<u> </u>						<u> </u>					100	102	
			sericite-chlorite (trace chalcopyri	te), fractured vein at	10°.							ļ					<u> </u>	<u> </u>		ļ		Ļ	102	104	69787
			More altered then previous interv	rals with quartz veins	,		<u> </u>					<u> </u>						L							
			sericite veins, local clay alteratio				<u> </u>	<u> </u>									L	<u> </u>	<u> </u>	L	L	L	ļ	,i	
		I	with a fracture density of 40%.	Sypsum fractures as	before.								<u> </u>				<u> </u>	L	ļ						
			99.0 m - 1 cm quartz vein at 10°	to CA.				L		<u> </u>		ļ	<u> </u>					<u> </u>				L			
			99.2 to 100.2 m - Pervasive gyps				L			<u> </u>		<u> </u>	ļ					 							<u> </u>
			density of 40%, rare quartz-pyrite							Щ			L_				1					L			
			100.6 to 101.2 m - Quartz-sericit	te flooded vein at 15°	to CA					<u> </u>		<u> </u>	L								<u> </u>	<u> </u>		,l	
			containing 5% very fine grained	disseminated chalco	pyrite								<u> </u>			L	<u> </u>	<u> </u>						,	
			(3 cm width) wandering in and o	ut of core, not a shar	р				<u> </u>									<u> </u>				<u> </u>			
			boundary.					1	L		Ĺ			L								L			

1=very weak

3=moderate

5=very strong

4=strong PROJECT NO. 548 N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) PROPERTY KLIYUL **DIP TESTS** DATE COLLARED Aug 6/94 DATE COMPLETED Aug 7/94 CORE SIZE BDBGM MAGNETIC DECLINATION ANGLE SHEET 9 OF 9 FIELD CO-ORDINATES DEPTH BEARING LOGGED BY L. ERDMAN RECORDED CORRECTED RECORDED CORRECTED LAT. HOLE No. ELEV. DIP DIP -70° 108.5 ELEV. 1750 m LAT. 1760N NK-94-22 DATE: August 8, 1994 BEARING DEP. LENGTH DEP. 2780E LENGTH BEARING 035° ASSAY **GEOCHEM GEOTECH** SAMPLE Argil-Frac DESCRIPTION % RECO % ROCK Dens FROM TO Carb Chlor Eр Sil Gyp lic FROM TO No. Ср Po VERY FROM TO FROM **TYPE** TO 101,6 m - Quartz-sericite-gypsum vein at 30° to CA. 3% chalcopyrite. Alteration halo 2 cm of pervasive gypsum with 5% pyrite - trace chalcopyrite. 102.1 m - Gypsum-chalcopyrite (5%) vein at 20° to CA (6 mm). Gypsum-sericite flooded alteration halo for 3 cm with 3% pyrite, 1% chalcopyrite. 102.4 m - Gypsum veinlet (2 mm) with chalcopyrite in selvage. Downhole to 102.5 m is gypsum flooded with 3% fine grain disseminated pyrite and 1% fine grain disseminated chalcopyrite. A gypsum fracture at 102.5 m marks the lower limit of the atteration, also with fine grained chalcopyrite on selvages. 3% fine grain disseminated chalcopyrite continues to 102.6 m. Below this chalcopyrite still occurs but is 103.0 m - Horsetailing gypsum fractures at 110°. Other fractures at 30°, 40°, 60°. 104.3 m - 20% gypsum veinlets (<5 mm), some with chalcopyrite. Primarily oriented at 45° and 135°. Surrounding rock is gypsum flooded. 69788 10 104.5 108.5 104 106 104.5 108.5 100 3 40.5 MZ MONZONITE 104.5 108.5 108.5 69789 Mottled, medium/light grey-green. Pervasive sericite, mafics to chlorite. Weakly developed foliation. Very fine grained to medium grained disseminated/fracture fill pyrite (3-5%) Good core until 105.3 m and then it is well broken. Gypsum microfractures at 25°, 80°, 70°, 135° to CA. Coarse pyrite in carbonate fractures (rare). Pyrite is a silvery colour. Rare epidote fractures and local pervasive epidotization of feldspar? Contact with overlying andesite is not distinct. Two fracture directions at 70° and 135°. Possible very fine grained disseminated chalcopyrite on selvages of gypsum microfractures.

1=very weak

3=moderate

5=very strong

2=weak 4=strong PROJECT NO. 548 N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) PROPERTY KLIYUL **DIP TESTS** DATE COLLARED Aug 7/94 DATE COMPLETED Aug 9/94 CORE SIZE BDBGM SHEET 1 OF 11 MAGNETIC DECLINATION FIELD CO-ORDINATES DEPTH BEARING ANGLE DIP HOLE No. LOGGED BY L. ERDMAN RECORDED CORRECTED LAT. ELEV. RECORDED CORRECTED 152.4 LAT. 1740N ELEV. 1755 m DIP -70° LENGTH BEARING NK-94-23 DATE: August 11, 1994 DEP. LENGTH BEARING 035° IDEP. 2880E **GEOCHEM** ASSAY GEOTECH SAMPLE % Frac % DESCRIPTION % RECO % % ROCK SII GYP FROM TO Ср Mt Dens FROM TO Carb Chlor Ep Ser **FROM** TO **VERY** Py TYPE FROM TO 9.1 OB OVERBURDEN 9.1 12.2 AND ANDESITE (FELDSPAR PHYRIC) VOLCANICLASTIC 9.1 12.2 100 12.2 9.1 Brown surface - oxidation. Fracture density 5%, all fractures are rusty. Masive mag-silica following fractures at 9.3 m and again at 10.9 m. Rusty fractures decrease by 11.1 m. Very fine grained pyrite, 0-7%. A few pieces are completely silicified but these total only 1-2%. 12.2 12.8 2 <1 25 12.2 12.8 100 AND ANDESITE (FELDSPAR PHYRIC) - WELL BROKEN 12.2 12.8 Medium grey-green. Mottled texture. None to 1% fine grained disseminated pyrite, sausseritized feldspar. Locally it is very magnetic with discontinuous 1mm - 4mm bands and discrete oblongs of 80-90% magnetite, plus quartz. The magnetite contains <1% medium to coarse grained pyrite, some of which are 1 mm pyrite cubes. Also 1% disseminated magnetite in the host rock. 2 12.8 14.0 12.8 14.0 100 < 0.5 AND ANDESITE VOLCANICLASTIC(?) - WELL BROKEN 14.0 12.8 Medium grey/green, mottled. Local pervasive epidote and fracture fill epidote. Sausseritized feldspar. Rare pyrite. Large pieces have 3% fracture density. 2 14.0 14.5 AND ANDESITE(?) FINE GRAINED - WELL BROKEN 14.0 14.5 100 14.0 14.5 Green grey, 3%, 1 mm brown spots. Spots are very fine grained agglomerations of pyrite which have been oxidized. Epidote fracture fill, sausseritized feldspar. Local fine grained pyrite and pyrite fracture fill. 14.5 16.0 100 16.0 AND ANDESITE - WELL BROKEN 14.5 16.0 14.5 Green-grey colour. Interval alternates rock types with some sections of non-pyritic rock similar to 12.8 - 14 m and other sections have applomerations of fine grained pyrite in spots as at 14.0 to 14.5 m. Fracture fill and pervasive epidote.

1=very weak 3=moderate 5=very strong 2=weak 4=strong

DATE CO	II ABED A	7/D4	DATE COMPLETED Aug 9/94 CORE	SIZE BDBGM			IP TESTS			PROP	ERTY I	KLIYUL		PROJE		. 548		No. 940)/9		NORTH	(W.R	T. TRU	JE)	
DATE CO	LLAKEU A		FIELD CO-ORDINATES	CILL DUDGMI	DEPTH		RING		GLE									7 2 OF 1					NOTA		
LAT. 174	40N		ELEV. 1755 m DIP	-70°	152.4				CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY	L. ERI	DMAN		
DEP. 28				ING 035°						DEP.		LENGT	TH	BEARI	NG		NK-94	4-23		DATE:	Augus	t 11, 1	994		
DEP. 20	OUE		CENGIA						GEOTEC	Н							G	EOCI	HEM					ASSA'	Υ
		ROCK	DESCRIPTIO	N			T	% RECO	96	96	%	%	%	Frac											SAMPLE
FROM	то	TYPE		•		FROM	то	VERY	Py	Ср	Mt	Po	Bo	Dens	FROM	то	Carb	Chior	Еp	Ser	Sil	Сур	FROM	ΤO	No.
16.0	20.2		ANDESITE VOLCANICLASTIC - W	ELL BROKE	N	16.0		100	5		3				16.0	20.2	-	1	-	3	2	-			
10.0	20.2		Light grey-green. Brown, oxidized p																	l					
			interval. 3-10% silvery unoxidized t	fine to mediu	m grained				T																L
			fracture fill pyrite increasing towards																	<u> </u>					<u> </u>
\vdash			with magnetite are moderately silici	fied. Local fr	actures																				
			are chloritized. Rare quartz eyes.	Some pieces	appear	1																L			
		-	to be a light coloured fine grain intru																			<u> </u>	L		<u> </u>
			16.2 m - 4 mm siliceous magnetite		ntral				l														Щ	<u></u>	ļ
			1 mm vuggy quartz fracture.																						ļ
			17.1 to 17.6 m - White/light grey co	mpletely silic	ified with	17.1	17.6	100	5	-					17.1	17.6	1		-	-	5	<u> </u>			
			quartz and quartz-carbonate veins (<1 to 1.5 cm), 30°,																				ļ
			20° to CA. Fine to medium grained	pyrite - gene	rally in													.				L			ļ
			the silicified host rock and on quarta																	<u> </u>		Ь.			
			in the quartz veins. Fractures are n						ļ	ļ		<u> </u>	L	<u> </u>				\square							
			chlorite fracture has boxwork textur		n" halo.							└	ļ												
			18.8 m - Coarse pyrite in quartz vei				<u> </u>		ļ			<u> </u>	Ь		12.2	45.4				 _	 _	-			
			18.75 to 19.35 m - Magnetic section			18.75	19.35	100	•	-	20	-	_		18.8	19.4				2	3	<u> </u>	\vdash		-
			grained magnetite and massive ma					ļ		1	ļ	ļ						 		 	├				
			Trace of very fine grained pyrite in	fracture fill. I	Magnetic			<u> </u>		↓	Ь—	<u> </u>								 	├─	-			
			"areas" are siliceous.			<u> </u>	<u> </u>	<u> </u>	ļ		┡		-	<u> </u>				-		├	┢	├			
								L				ļ			00.0	04.0				3		├			
20.2	24.2		ANDESITE (FELDSPAR PHYRIC)			20.2	24.2	100	3	<u> </u>	├	-	 		20.2	24.2					├	⊢⁻			
			Medium grey-green. Pervasive ser		fine						 	├—	 		 							\vdash	_		
			grained crystals. Local oxidization			ļ	ļ	 _	ļ	 	₩	ļ	├	-	 					 	 	 	\vdash		
			Unfoliated. 2-5% fine to medium gr			 		<u> </u>	ļ	-	-			<u> </u>	ļ						\vdash	├			
			fracture fill pyrite. Feldspar have sa	ausseritizatio	n "spots"	ļ	ļ			ļ	 	├								-	├	-	-		
			in centers.					ļ	 	┼		├ ──		ļ	\vdash					├	├—	\vdash	\vdash		
							J	 	 	1-	 	 			24.5	27.6		2		3	 	 			
24.2	27.6		ANDESITE(?) - WELL BROKEN			24.2	27.6	100	1 1	 -	20	 -	-		24.2	21.6		- 2		1-3	 	┷			-
			Light green-grey to dark green. Da							₩	1-	-	├	₩-						 	├	 	-		-
			contain from 10% disseminated, to			ļ		 	ļ	—	 	-		├				-	_	-	├	├			+
			hosted massive magnetite. Local s			ļ	 		 	┼		₩	 	 				\vdash		├	-	 			
			magnetic and show weak sausseriti			ļ	-	 	ļ	₩		₩	 					-		 	-	├	-		
			Mafics to chlorite + pyrite. <1% me	edium grained	1 pyrite	 		 	 	 	├	-	├	├				-			├	-			
	L		occurs with magnetite.	···		1	l	1	<u> </u>		<u> </u>	<u> </u>	Ц		L	L	L	لــــا		1	L	<u>.</u>	L		<u> </u>

3=moderate

										,						2=weak			4=str						
DATE CO	LLARED A	ug 7/94	DATE COMPLETED Aug 9/94	CORE SIZE BDBGM		D	IP TESTS			PROP	ERTY I	KLIYUL		PROJE	CT NO		-	. No. 94					t.T. TRUE	<u>E)</u>	
			FIELD CO-ORDINATES		DEPTH		RING		GLE									T 3 OF	11				NOITAN		
LAT. 174	40N		ELEV. 1755 m	DIP -70°	152.4	RECORDED	CORRECTED	RECORDED	CORRECTED			ELEV.		DIP			HOLE				ED BY				
DEP. 28			LENGTH	BEARING 035°			\			DEP.	ت	LENGT	TH	BEARI	NG		NK-9				Augus	x 11, 1			
T									GEOTEC	<u>H</u>				لــــــ	<u> </u>			GEOC	HEM	<u> </u>			<u> </u>	ASSA'	
	l	ROCK	DESCR	RIPTION			·	% RECO	%	%	%	%	•	Frac	1							1	1		SAMPLE
FROM	то	TYPE	1			FROM	то	VERY	Py	СР	Mt	Po	Во	Dens	FROM	то	Carb	Chlor	Ep	Ser	Sil	Сур	FROM	то	No.
			27.2 to 27.6 m - Oxidized rust	ty fractures. No ma	gnetic													تــــــــــــــــــــــــــــــــــــــ	<u> </u>	نَـــا	<u> </u>		igsquare		
			laminations in oxidized section																	تـــــا		igsquare	igsquare		
			1 to 5%. Pervasive sericite ha															تـــــا		\Box			<u> </u>		<u> </u>
			but in some sections there are																<u></u>		L		igspace		
			(1-3 mm) which may be altere	ed pyrite. Interval c	ould be a																<u> </u>	ш	$ldsymbol{ldsymbol{\sqcup}}$		L
			monzonite(?).																						
		·															匚		匚	نسا]
27.6	29.1	MZ	MONZONITE (FELDSPAR-H	ORNBLENDE) DY	Œ -	27.6	['] 29.1	100	-	·	2				27.6	29.1	2	2 2	11	1	<u> </u>	\Box	\coprod		
			BROKEN																						
 	-		Light grey-green colour. Grad	diation at upper and	lower																		$oxedsymbol{ox{oxedsymbol{oxedsymbol{ox{oxedsymbol{oxedsymbol{ox{oxedsymbol{ox{oxed}}}}}}}$		
			contact. Middle section has w	vell developed felds	par																		$oxed{oxed}$		
			phenos to 3 mm, upper contact																匚				\coprod		
			a mottled texture, feldspar phe														匚		\Box				\Box		
			hole and lathe shaped 1 mm l															oxdot	匚		匚	آلا	\Box		
			Sections with feldspar phenoc																匚	لتا			$oxedsymbol{oxed}$		
			medium grained magnetite. F	Pervasive carbonate	e increas-														匚				\coprod		
-			ing down interval - none to we																\Box				\coprod		
						T													\Box				\coprod		
29.1	30.5	AND	ANDESITE(?) - WELL BROK	ŒN		29.1	30.5	100	3	1	5				29.1	30.5	<u> </u>			4		آسا	29	31	69835
			Interval same as before the d		gnetic													匚					\Box		
		,	sections. Possible fine graine	ed chalcopyrite on f	ractures														\Box						
			in non-magnetic sections. No																						
			a general increase in sulfides			1										1			L^-						
			2-7%.				 						T			(
		 				1	 		1			Т				1			Ι						
30.5	33.0	AND	ANDESITE (FELDSPAR PHY	(RIC) - WELL BRO	KEN	30.5	33.0	100	7	1	1 -	⊤		1	30.5	33.0	Τ-	- 1	Ι-	4	<u> </u>	-	31	33	69836
	- 55.5		Light green, foliated. Fine foliated			† <u>* * * * * * * * * * * * * * * * * * *</u>	 		<u> </u>		T						L								
			streaky mafics and fine grained			1		1				1													
			chlorite, Very fine grain chalcopy			1	 			\top				1					Γ						
		——	The state of the s	, Lacondition will (1	1		 	1		1	1						\Box						
33.0	35.8	AND	ANDESITE (FELDSPAR PHY	(RIC) - WELL BRO	KEN	33.0	35.86	X	5	1 -	1	1 -			33.0	35.8	_	. 1	Τ-	4	_	-	33	35	69837
33.0	33.0		Brown colour caused by oxida			32.5				1	 	1		\top				 	1						
			Local sections are unoxidized	Land contain 5% fir	e grained		 	 	 	T	T	1	1	1			 		T^{T}				1		
	-	 	pyrite. Some of the oxidized	nieces are mannet	C. with	1	 	 	 	 	1	1	1	\top	1		T	\top	1		 		1		
		 	20% very fine grained magne	tite.	·	+	 	 	†	1	\top	1	1	1			T	T	\top						
			vory mio graniou magne																						

1=very weak

2=weak

3=moderate 4=strong 5=very strong

GRID NORTH (W.R.T. TRUE) DIP TESTS PROPERTY KLIYUL PROJECT NO. 548 N.T.S. No. 94D/9 DATE COLLARED Aug 7/94 DATE COMPLETED Aug 9/94 CORE SIZE BD8GM SHEET 4 OF 11 MAGNETIC DECLINATION FIELD CO-ORDINATES DEPTH BEARING ANGLE DIP HOLE No. LOGGED BY L. ERDMAN RECORDED CORRECTED RECORDED CORRECTED LAT. ELEV. DIP -70° 152.4 LAT. 1740N ELEV. 1755 m LENGTH BEARING NK-94-23 DATE: August 11, 1994 BEARING 035° DEP. DEP. 2880E LENGTH GEOCHEM ASSAY **GEOTECH** SAMPLE % Frac **DESCRIPTION** % RECO % ROCK Dens FROM TO Carb Chlor Ep Sil Gyp FROM Во Ser TO FROM TO VERY Py TYPE **FROM** 37 69838 35.8 38.3 35.8 38.3 35.8 38.3 AND ANDESITE (FELDSPAR PHYRIC) - SHATTERED 37 39 69839 75 Green-grey. Oxidation continues to 36.0 m but cannot 36.6 39.6 determine exactly where the contact is. 3% to 5% fine grained chalcopyrite/bornite at 35.9 m. Fine grained disseminated pyrite, locally with very fine grained chalcopyrite associated with the pyrite. Locally pieces are magnetic with 10% very fine grained magnetite. 38.3 43.4 <0.5 38.3 43.4 100 38.3 43.4 MZ MONZONITE (FELDSPAR-HORNBLENDE) DYKE **BROKEN** Same lithology as 27.6 to 29.1 m. Rare disseminated pyrite. Pervasive fracture filled carbonate. Matrix has chlorite/epidote alteration of mafics and sausseritized feldspar. 50 52 69840 43.4 51.0 51.0 AND ANDESITE - WELL BROKEN 43.4 51.0 43.4 100 24.7 45.7 Green-grey, well foliated. Similar to foliated intervals 45.7 48.8 100 in holes 94-21 and 94-22. Coarser foliations than 48.8 51.8 60 previous foliations in this hole. Foliation defined by dark coloured (mafic) blebs in foliation plane. Medium-coarse grained disseminated pyrite and coarse pyrite as fracture fill. Mafics to chlorite. <1 51.0 51.9 AND ANDESITE - WELL BROKEN 51.0 51.9 51.0 51.9 Dark green-grey, foliated, but foliations are not defined by mafic streaks. 7-10% fine grained pyrite at 51.8 m. Very fine grained chalcopyrite in foliation plane.

1≃verv weak

3=moderate

			<u> </u>	10/1 2/1 20					_							2=weal	k		4=str	ong					
DATE CO	LLAREDA	um 7404	DATE COMPLETED Aug 9/94	CORE SIZE BDBGM	T		OIP TESTS	3		PROP	ERTY	KLIYUL		PROJE	ECT NO			No. 94	ID/9	GRID	NORTH	l (W.R	.T. TRL	JE)	
DATECO	CLAREDA		FIELD CO-ORDINATES	TOOKE OLE DODOM	DEPTH		ARING		GLE								SHEE			MAGN	ETIC E	ECLIN	NOITAN		
LAT. 17	40N		ELEV. 1755 m	DIP -70°	152.4	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY	L. ERI	DMAN		
DEP. 28			LENGTH	BEARING 035°						DEP.		LENG1	H	BEARI	NG		NK-9	4-23		DATE	Augu	st 11, 1	994		
DEP. 20	OUE I		LENGTH	DEARING GGS	l <u></u>	 	<u> </u>	J	GEOTEC	Н		-						SEOC	HEM	<u> </u>				ASSAY	
		ROCK	DESCR	RIPTION			i	% RECO		96	%	96	%	Frac		Γ									SAMPLE
FROM	то	TYPE	920011	11011		FROM	то	VERY	Pv	Ср	Mt	Po	Во	Dens	FROM	то	Carb	Chior	Еp	Ser	Sil	Gyp	FROM	то	No.
51.9	64.1	AND	ANDESITE(?) - WELL BROK	EN TO SHATTER	-D	51.9		X		2	1				51.9	64.1	-	-	-	4	-	-	52		69841
31.8	04.1	AND	Green-grey. 3 cm fault gouge	at start of interval		1																	56	62	69842
			Immediately below the fault a	re pieces with 40%	very fine	51.8	54.9	17																	
			grained magnetite in discrete			54.9			<u> </u>										1						
			disseminated pyrite and very			57.9				<u> </u>		1			-										
-			(especially 52.1 m, 3%). Pen	vasive sericite has	destroyed		4	<u> </u>		1							Î T	T	Π			Ţ			
\vdash			the texture and locally the sm	all pieces appear in	ntrusive	 	 		 	1															
\vdash			rather than volcanic (monzon			+			 	 															
_			just before 61 m but recovery					 																	
-			only 10%. From 61 m downh								1														
			1-3 cm platy pieces.	olo tilo oolo lo olla.		1	 																		
_			61.3 m - Pieces with discrete	patches of 80% ma	sanetite.						1					·									
			Adjacent to the magnetite the				 																		
			chalcopyrite but chalcopyrite			†	1					1									I				
-			magnetite sections of the inte																	L					
-																									
64.1	70.1	AND	ANDESITE - SHATTERED			64.1	70.1	l x	3	1	<u> </u>	-			64.1	70.1	•	-	-	5	-	-	62	66	69843
1 54.1	70	71.10	Apple green. Completely ser	icitic Foliated Ve	ery fine			1												I			66	70	69844
			grained pyrite appears to be r	eplacing where ma	fic	64	67.1	53						1											
 			minerals once were. Traces	of very fine grained	dissemi-	67.1		10						ľ											
			nated chalcopyrite associated																						Ĺ
-			Local fracture filled carbonate					1											Π	Ι					
 			platy fractures.			<u> </u>																			
			platy muctarios.			 				1							Ĭ								
70.1	71.8	AND	ANDESITE VOLCANICLAST	IC - SHATTERED		70.	71.8	X	3	<1	Τ.	-			70.1	71.8	-			4			70	76	69845
70.1	11.0	74142	Grey-green with ghosty dark		fine to	70.1	73.1	53			1	1													
 			fine grained disseminated py	rite. <1% very fine	grained									1				Γ							
 			chalcopyrite overall but local	v up to 3%. Local f	racture fill	1																			
	 		carbonate and local weak per			1																			
	 		may be remnant pyroxene.				1			Ī	Ī														
	 	 		· · · · · · · · · · · · · · · · · · ·		1				1								I							
—	 					1			1	Ī															
							1			Ī															
-	 		 	···································			1	1																	
			<u> </u>				1	1		1	7		Т	1	T	T	1	1		1	T			7	

1=very weak

3=moderate 4=strong

DATE COL	LLARED A	ug 7/94	DATE COMPLETED Aug 9/94	CORE SIZE BDBGM			IP TESTS		****	PROP	ERTY	KLIYUL		PROJE	CT NO	. 548	N.T.S.	No. 94	4D/9		NORTH	(W.R	.T. TRU	Ξ)	
			FIELD CO-ORDINATES		DEPTH	BE/	ARING	AN	GLE								SHEE	T 6 OF	11	MAGN	ETIC D	ECLI	NOITAN		
LAT. 174	ION		ELEV. 1755 m	DIP -70°	152.4	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY	L. ERI	DMAN		
DEP. 288	BOE		LENGTH	BEARING 035°		1				DEP.		LENG	TH	BEARI	NG		NK-9	4-23		DATE	Augus	t 11, 1	1994		
				*************************************	4		'		GEOTEC	Н							(EOC	HEM	i				ASSA	7
	ŀ	ROCK	DESCR	RIPTION				% RECO	%	%	%	%	96	Frac											SAMPLE
FROM	то	TYPE				FROM	то	VERY	Py	Ср	Mt	Po	Во	Dens	FROM	то	Carb	Chlor	Еp	Ser	Sii	Gyp	FROM	то	No.
71.8	81.2	AND	ANDESITE VOLCANICLASTI	C - SHATTERED		71.8	81.2	Х	3	<0.5	-				71.8	81.2	-	-	-	4	-	-	76	78	69846
			Grey-green. Similar to preced	ding interval but "s	pots" not	73.1	76.2	10															78	80	69847
			as common. Very fine to med	dium grained disse	minated	76.2	79.2																80	82	69848
			pyrite, perhaps some very fine	e grained chalcopy	rite	79.2	82.3	80																	
			associated with pyrite.							l															
									<u> </u>	Ĭ		L													
81.2	81.6	DYK	FELSIC DYKE - SHATTERED)		81.2	81.6	80		•					81.2	81.6	3	-		2		-			
			Light grey, fine grained, quart	z eyes. No sulfide	S.					<u> </u>															
			Pervasive carbonate.																						
81.6	82.3	AND	ANDESITE (FELDSPAR PHY			81.6	82.3	80	2	<u> </u>	<u> </u>	-			81.6	82.3	<u>·</u>	<u> </u>	Ŀ	4	<u> </u>	-			
			Green-grey. Foliated with feld							<u> </u>	ļ	<u> </u>													
			dark grey "ghosty" elongate s						ļ <u></u>	<u> </u>	ļ	ļ	ļ					L							
			parallel to foliation but not in f					ļ		ļ	ļ	ļ		<u> </u>											
			grained disseminated pyrite, r	no visible chalcopy	rite.					ļ	<u> </u>	ļ							<u> </u>			Ш			
												ļ							<u> </u>	<u> </u>					
82.3	93.1	AND	ANDESITE - WELL BROKEN			82.3				<0.5	└	-	 	ļ	82.3	93.1	2	1	-	4	-		82		
			Grey-green with 5% stretched			82.3		95		_	-	↓	<u> </u>						<u> </u>	<u> </u>		Ш	84	86	69850
			Mafics to chlorite, groundmas			85.3		80				┡	<u> </u>						ļ	<u> </u>		L	86	88	69851
			carbonate. 2-7% very fine to			88.4		100		-		ļ	├ ──						├	<u> </u>			88	90	69852
			pyrite. Possible chalcopyrite		nte	91.4	94.5	100	 		├		├						<u> </u>			\vdash	90	92	69853
			(<0.5%). Non-magnetic. Well	foliated.		ļ	ļ			 	-								ļ	ļ		Ь	\vdash		
93.1	101.2	AND	ANDESITE (FELDSPAR PHY	PIC) - WELL BRO	KEN	93.1	101.2	100	 	<0.5	 	 	 	 	03.1	101.2	1	1	-			┝╌╢	92	94	69854
- 50.1		7110	Similar to hole NK-94-22 from			- 55.1	101.2		 	10.0	<u> </u>	\vdash	 -	 	00.1	101.2	-	⊢	┼╌	-		\vdash	94	96	69855
			grey-green mottled texture. C			 	 			 	 	 							 		-		96	98	69856
		-	Fracture fill carbonate, locally							 	1	1	 						 		-		98	100	
			fractures host coarse grained			 				_	 	<u> </u>									-	Н			3333.
			inated pyrite ranges from 3-15			 	 	<u> </u>	 	t	t							\vdash	\vdash		<u> </u>	\vdash			
			fractures @ 99.0 m. Probable			 	 		 	1	1	 							<u> </u>						
			nated chalcopyrite hosted in a			†	1			t —	t	1						 	 			Н			
			chlorite form fine dark spots, t				†	†		†	†	1										Н			
			as in previous interval.				1			1	1							\vdash			_	М			
						1	T			1				†											
												1						 -							

3=moderate

5=very strong

4=strong

DATE COLLARED A LAT. 1740N DEP. 2880E FROM TO 101.2 103.8	ROCK TYPE 3 AND	ANDESITE (FELDSPAR PH Green-grey. Foliated, mafic fractures and veinlets have in grained disseminated pyrite. disseminated chalcopyrite, no Pyrite content increases dow	"spots" are rare. Cancreased. 1-7% fine Local 3% very fine ot associated with p	KEN arbonate e to coarse grained	BEA	то	AN RECORDED % RECO	GLE CORRECTED GEOTEC % Py 5	DEP. H % Cp	% Mt	ELEV. LENGT	Н %	DIP BEARI Frac	NG		SHEE HOLE NK-9	T 7 OF No.	11 HEM	MAGN LOGGI DATE:	ETIC D ED BY Augus	ECLIN L. ERD L11, 1!	MAN 994 FROM	ASSA)	Y SAMPLE No.
AT. 1740N DEP. 2880E FROM TO 101.2 103.8	ROCK TYPE 3 AND	FIELD CO-ORDINATES ELEV. 1755 m LENGTH DESCI ANDESITE (FELDSPAR PH' Green-grey. Foliated, mafic fractures and veinlets have in grained disseminated pyrite. disseminated chalcopyrite, n Pyrite content increases dow	BEARING 035* RIPTION YRIC) - WELL BRO "spots" are rare. Cancreased. 1-7% fine Local 3% very fine of associated with p	KEN arbonate e to coarse grained	FROM	CORRECTED TO	% RECO VERY	GEOTEC % Py	DEP. H % Cp	% Mt	LENGT	H %	BEARI			HOLE NK-9	No. 4-23 SEOC	HEM	LOGGI DATE:	Augus	L ERD	MAN 994 FROM		SAMPLE
FROM TO 101.2 103.6	ROCK TYPE 3 AND	ELEV. 1755 m LENGTH DESCI ANDESITE (FELDSPAR PH' Green-grey. Foliated, mafic fractures and veinlets have in grained disseminated pyrite. disseminated chalcopyrite, n Pyrite content increases dow	BEARING 035* RIPTION YRIC) - WELL BRO "spots" are rare. Cancreased. 1-7% fine Local 3% very fine of associated with p	KEN arbonate e to coarse grained	FROM	то	% RECO VERY	GEOTEC % Py	DEP. H % Cp	% Mt	LENGT	H %	BEARI			NK-9	4-23 GEOC		DATE:	Augus	11, 1	994 FROM		SAMPLE
FROM TO 101.2 103.6	ROCK TYPE 3 AND	DESCI ANDESITE (FELDSPAR PH' Green-grey. Foliated, mafic fractures and veinlets have in grained disseminated pyrite. disseminated chalcopyrite, no Pyrite content increases dow	BEARING 035* RIPTION YRIC) - WELL BRO "spots" are rare. Cancreased. 1-7% fine Local 3% very fine of associated with p	arbonate e to coarse grained			% RECO VERY	% Py	H % Cp	% Mt	%	%	Frac			G	SEOC					FROM		SAMPLE
FROM TO 101.2 103.6	ROCK TYPE 3 AND	ANDESITE (FELDSPAR PH' Green-grey. Foliated, mafic fractures and veinlets have in grained disseminated pyrite. disseminated chalcopyrite, no Pyrite content increases dow	RIPTION YRIC) - WELL BRO "spots" are rare. Cancreased. 1-7% fine Local 3% very fine of associated with p	arbonate e to coarse grained			% RECO VERY	% Py	% Cp	Mt				FROM	то					Sil	Сур	FROM		SAMPLE
101.2 103.6	TYPE AND MZ	ANDESITE (FELDSPAR PH Green-grey. Foliated, mafic fractures and veinlets have in grained disseminated pyrite. disseminated chalcopyrite, no Pyrite content increases dow	YRIC) - WELL BRO "spots" are rare. Ca ncreased. 1-7% fine Local 3% very fine of associated with p	arbonate e to coarse grained			% RECO VERY	% Py	% Cp	Mt				FROM	то	Carb	Chior	Еp	Ser	Sil	Gур		то	i .
101.2 103.6	TYPE AND MZ	ANDESITE (FELDSPAR PH Green-grey. Foliated, mafic fractures and veinlets have in grained disseminated pyrite. disseminated chalcopyrite, no Pyrite content increases dow	YRIC) - WELL BRO "spots" are rare. Ca ncreased. 1-7% fine Local 3% very fine of associated with p	arbonate e to coarse grained			VERY	Py	Ср	Mt	Ро	Во	Dens	FROM	то	Carb	Chior	Еp	Ser	Sil	Сур		то	l No
101.2 103.6	B AND	Green-grey. Foliated, mafic fractures and veinlets have in grained disseminated pyrite. disseminated chalcopyrite, no Pyrite content increases down	"spots" are rare. Cancreased. 1-7% fine Local 3% very fine ot associated with p	arbonate e to coarse grained																				1 170.
	3 MZ	Green-grey. Foliated, mafic fractures and veinlets have in grained disseminated pyrite. disseminated chalcopyrite, no Pyrite content increases down	"spots" are rare. Cancreased. 1-7% fine Local 3% very fine ot associated with p	arbonate e to coarse grained	701.2		1.00	<u>_</u>	I U.J		l -l			101.2	103.6	3		•	4	-	-	100	102	69858
103.6 117.6	B MZ	fractures and veinlets have in grained disseminated pyrite. disseminated chalcopyrite, n Pyrite content increases dow	ncreased. 1-7% fine Local 3% very fine ot associated with p	e to coarse grained				1	1													102	104	69859
103.6 117.6	B MZ	grained disseminated pyrite. disseminated chalcopyrite, n Pyrite content increases dow	Local 3% very fine ot associated with p	grained		1	-			1						-								
103.6 117.6	3 MZ	disseminated chalcopyrite, no Pyrite content increases dow	ot associated with p	yrite.				f																
103.6 117.6	3 MZ	Pyrite content increases dow		yine.				· · · · · · · · · · · · · · · · · · ·																
103.6 117.6	3 MZ		minole.					†	 	\vdash														
103.6 117.6								 	_	\vdash								1						
103.61 117.6			CDAD HODAIDI ENI	ne .	103.6	117.6	100	<0.5		7			3	103.6	117.6	3	2	1	-	-				
		MONZONITE (DYKE) FELD: As at 38.3 - 43.4 m. Medium			100.0	117.0		1	一	-					_							1		
		4 mm, 1 mm homblende nee			 		 	 	\vdash															
	-	Pervasive weak epidote alter	ention Emoture fill of	and veinlet					 															
		carbonate or carbonate/chlor					 	<u> </u>	 	1							<u> </u>							
		medium grained magnetite,						 	\vdash								1					\neg		
	+	tic. Chloritic fracture surface	e Fractures range	fmm 10°			1		 	_														
		to 45° to CA. Local sausseri	tization of amundas	ass feld-			 	 	1	 														
	 	spar. Upper contact shows a	chilled mamin which	ch con-																				
	 	tinues to 104.1. Feldspar ph			 		 																	
	 	needles present, foliated. Ap	nnears more acidic v	with less	 	 	†		1	<u> </u>														
	+	mafics overall. Lower contact		WILL 1000	·	-	 	 	1															
	┼	mancs overall. Lower contact	ot is sharp at zo .		 		† · · · · · · · · · · · · · · · · · · ·		1															
117.6 119.2	AND	ANDESITE (FELDSPAR PH	VPIC)		117.6	119.2	100	2	<0.5	-	1		5	117.6	119.2	2	3	-	4	1	2	118	120	69860
117.0 119.2	- 7110	Green-grey, gypsum veinlets	s (<1 mm) et 50° to 1	85° to CA	1																П			
	+	Quartz-carbonate veinlets at	45° displace gypsul	m veinlets				····																
		left laterally (3 mm) downhol	le Gynsum veinlets	have	 	 	<u> </u>																	
		pyritic selvages. Fine to me			 			1	1								1							
	+	occurs disseminated in host			 				1		1													
	+	to ghosty chloritized mafics.			 			 																
	+	sausseritized. One 1 mm ch					 											П						
	+	of quartz-carbonate veinlet.	ia.oopyino opeon oii		 	 	1		1								T	1						
	+	118.3 to 119.2 m - Lighter gr	reen locally silicified	d. Veining		<u> </u>		 		1	\Box					1								
	+	has increased so that the co				1	1	1	†	1	T			T			T	Π						
	+	texture. Gypsum and quartz				 	†	1	1															
	-	pervasive carbonate. Pyrite		,	1	<u> </u>	†	1	1	1						l T								
	+	portusive carbonate. Fyrite	Contone only 170.		 	 	1	<u> </u>	1	 							T							
	+				1	†	†	1	1	1	1													

 1 =very weak
 3=moderate
 5=very strong

 2=weak
 4=strong

DATE CO	LLARED A	ug 7/94	DATE COMPLETED Aug 9/94	CORE SIZE BDBGM			OIP TESTS	3		PROP	ERTY	KLIYUL		PROJ	ECT NO	D. 548	N.T.S.	No. 94					t.T. TRU		
			FIELD CO-ORDINATES		DEPTH	BE/	ARING	AN	GLE								SHEE	T 8 OF	11	MAGN	ETIC C	ECLI	NOITAN		
LAT. 174	ION		ELEV. 1755 m	DIP -70°	152.4	RECORDED	CORRECTED	RECORDED	CORRECTES	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY	L. ERI	DMAN		
DEP. 28	80E		LENGTH	BEARING 035°						DEP.		LENGT	ГН	BEAR	ING		NK-9	4-23		DATE	: Augus	ŧ 11, 1	1994		
									GEOTEC	Н					l			SEOC	HEN	1				ASSA'	Y
.		ROCK	DESCR	IPTION				% RECO	%	%	%	96	%	Frac											SAMPLE
FROM	то	TYPE				FROM	то	VERY	Py	СР	Mt	Po	Во	Dens	FROM	то	Carb	Chlor	Ер	Ser	Sil	Сур	FROM	то	No.
119.2	132.2	AND	ANDESITE (FELDSPAR PHY	RIC)		119.2	132.2	100	1	0.5	1	•		35	119.2	132.2	3	1	-	4	-	4	120	122	69861
			Medium to light green. Abunc	lant (30%) white ve	ins,																		122	124	
			veinlets, fractures, locally con]																	124	126	
			is mottled, or has been fragme	ented. Veins etc. a	re filled						<u> </u>									<u> </u>			126	128	69864
			with gypsum, carbonate, quar	tz-carbonate, or qu	artz.											<u> </u>					<u> </u>		128	130	
			Overall the core has a stockw	ork texture. Carbo	nate																		130	132	69866
			veining has increased over pr			e																			
			carbonate but may be due to	microscopic fractur	es.					<u> </u>										L					
			Trace amounts of chalcopyrite												<u> </u>										
			gypsum veinlets at 120.9, 12								<u> </u>														
			128.1, 131.2, 131.3, 131.6, 12	8.4, 128.5, 129.1,	129.3,																				
			129.4, 129.8, 130 m. Dissemi	nated magnetite al:	so occurs			<u> </u>																	
			in gypsum veinlets at 126.5-1:	26.9, 128.2, 129.5,	129.8,												<u> </u>								
			131.3 m.								I.							<u> </u>							
			Locally the dominant veinlet d							<u> </u>	<u></u>					<u></u>		<u></u>			<u> </u>				
			set at 90° to that. Minor veini	ng runs parallel to	CA.			<u> </u>		L				<u> </u>											
			124.2 m - 1 cm quartz vein at					<u> </u>																	
			only rarely disseminated within																						
<u> </u>			occurs on selvages of veins, v	veinlets. Local floo	ding by				<u> </u>																
			gypsum.						<u> </u>	<u> </u>					<u> </u>		ļ								
			3% very fine grained dissemin	nated pyrite and ch	alcopyrite																				
			occurs at 121.1 m and 121.7 r	m.																					
132.2	132.5		ANDESITE DYKE			132.2	132.5	100	1	2	<u> </u>			10	132.2	132.5	-	3	<u> </u>	4	<u> </u>	2			
			Medium green-grey. "White"			L			1		ļ						L		<u></u>						
			1%, at 20° and 110° to CA. C						L	<u> </u>	<u> </u>						<u> </u>						1		
			gypsum at some angles, horse																						
			veinlets or at 80° to CA. Fine			I					<u> </u>				L		<u> </u>	L							
			selvages of veinlets and fracti			I																			
			tact at dyke are both 45° to Co																						
			may be remnant pyroxene. N	lo carbonate fractu	es on																				
			veinlets.																						
							L																		

1=very weak 3=moderate 5=very strong
2=weak 4=strong

DATE CO	LAPEDA	7/04	DATE COMPLETED Aug 9/94	CORE SIZE BDBGM		D	IP TESTS			PROP	ERTY	KLIYUL		PROJE	CT NO	. 548	N.T.S.	No. 94					T. TRU	Ξ)	
DATE CO	CONINCOA	og nov	FIELD CO-ORDINATES		DEPTH	BEA	RING	AN	GLE								SHEET	9 OF 1	11	MAGN	ETIC D	ECLIN	ATION		
LAT. 174	ON.		ELEV. 1755 m	DIP -70°	152.4	RECORDER	CORRECTED	RECORDER	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY I	ERD	MAN		
DEP. 28			LENGTH	BEARING 035°						DEP.		LENG1	ГН	BEARI	NG		NK-9	4-23		DATE:	Augus	11, 1	994		
DEF. 28	30E		CENOTI	JOE MARKET CO.					GEOTEC	H							G	EOC	HEM					ASSAY	
: 1		ROCK	DESCE	RIPTION				% RECO	96	%	%	%	%	Frac										1	SAMPLE
FROM	то	TYPE]			FROM	то	VERY	Py	Ср	Mt	Po	Во	Dens	FROM	TO	Carb	Chior	Еp	Ser	Sil		FROM	то	No.
132.5	140.4		ANDESITE		·	132.5	140.4	100	1	1	1	-		30	132.5	140.4	•	1	•	4	•	3	132	134	69867
102.0	140.4	7.110	Similar to interval 119 to 132	2.2 m but less carbo	nate, and	1																	134		
-			white coloured veinlets are n																				138		69869
 			abundant (20%). Chalcopyri																				138	140	69870
—			associated with gypsum fract	tures or veinlets as	before.																				
:			Microfractures healed by gre																						
			from 20° to 90° to CA. Core I	has a swirty, mottled	ог															L					
			breccia texture but not section	ns of stockwork vei	ning as															<u> </u>					
-			as in 119 to 132.2 m.																	<u> </u>					
			Chalcopyrite at 132.5 - 132.6	3 (3%), 133.8, 133.9	to 134.1														<u> </u>	L		\Box			
			(2%), 134,1-134,6 (0.5%), 13	5%), 135.0, 135.3, 135.6, 135.9- 136.6-136.7 (1%), 137.1, 137.5,															L						
			136.0 (5%), 136.25, 136.6-13																L_			_			
			137.7, 137.8, 138.0, 138.25,																$ldsymbol{ldsymbol{ldsymbol{eta}}}$						
			(1%), 139.2 139.3, 139.6-140	0 (3%), 140.2.			Ī				<u> </u>	ļ	<u></u>						ļ	<u> </u>					
			Magnetite at 135.2, 137.6-13	8.0 (5%), 138.4.		Ĭ				<u> </u>		ļ							_			_		\longrightarrow	
			Some chalcopyrite is associa	ated closely with pyr	ite.					<u> </u>		<u> </u>								<u> </u>	ļ. —			——	
			Pyrite occurs on selvages of	gypsum veinlets an	d									ļ						ļ		-			
			fractures, and only rarely is d	disseminated.					<u> </u>			ļ		<u> </u>					Щ		<u> </u>				
			135.1 m - 0.5 mm quartz vei								ļ	<u> </u>						ļ	<u> </u>						
			marked by 1 cm gypsum-ma	gnetite vein at 15° 1	o CA.		1			Ļ		<u> </u>							Ļ						
						<u> </u>				<u> </u>		<u> </u>							<u> </u>						
140.4	146.85	AND	ANDESITE (FELDSPAR PH	YRIC)		140.4	146.85	100	2	<1	2	<u> </u>		20	140.4	146.9	1	2	1_1	4		3	140		
			Green-grey, ghosty white mo	ottled spotting in sor	ne					ļ				ļ			<u> </u>			<u> </u>		\square	142	144	69872
			sections. Very few (<5%) wt	nite veinlets. Subpa	rallel					<u> </u>			L	<u> </u>			<u> </u>		<u> </u>			$oxed{oxed}$	144	146	69873
			fractures, subparallel to CA.								ļ.,	<u> </u>	<u> </u>				ļ	<u> </u>	<u> </u>	L		\sqcup			
			core a shattered appearance								<u> </u>		<u> </u>					ļ	Ь		<u> </u>				
			at all angles to CA. Pyrite ge	enerally occurs in ve	einlet and		<u> </u>			<u> </u>				ļ			L		ļ	<u> </u>			\rightarrow		
			fracture selvages but downho	downhole minor sections show fine				<u> </u>			<u> </u>	<u> </u>			L								\rightarrow	\longrightarrow	
			grained pyrite to 2%. Siliced	ous magnetite occur	s as			<u> </u>		↓	L	<u> </u>	ļ					↓	L	<u> </u>		\Box			
			bands with gypsum forming	pistachio green "vei	ns".			<u> </u>		ऻ	1	ļ		<u> </u>	ļ				<u> </u>	L		\vdash			
			Chalcopyrite is not as abund	ant, but occurs with	gypsum	<u> </u>			ļ	ļ	<u> </u>	 	ļ	ļ					<u> </u>			$\vdash \vdash \vdash$			
			as seen previously. Chalcop	oyrite decreases dov	vnhole.						ــــــ	<u> </u>	<u> </u>	L			ļ		₩		ļ	$\vdash \vdash$			·
			Rare local "spots" of epidote					Ļ	<u> </u>			!	<u> </u>	┞	<u> </u>				<u> </u>	 	├	\sqcup			
			sections are a pistachio gree				<u> </u>	<u> </u>	1	<u> </u>	 	 	ļ	ļ					_	├	 	\vdash			
		L	associated with quartz or gy	psum in white veinle	ets.		<u></u>	Щ.	<u></u>		<u> </u>	<u></u>	<u></u>		<u> </u>	L	L	L	<u> </u>	<u> </u>	<u> </u>	L.J			

1=very weak

3=moderate

				· · · · · · · · · · · · · · · · · · ·			10 TC			1				1===		2=wea			4=st						
DATE CO	LLARED A		DATE COMPLETED Aug 9/94	CORE SIZE BDBGM			IP TESTS			PROP	ERTY	KLYUL	·	PROJ	ECT NO), 548							R.T. TRU	<u>E)</u>	
			FIELD CO-ORDINATES		DEPTH		RING		GLE									T 10 O	F 11				NATION		
AT. 17	40N		ELEV. 1755 m	DIP -70°	152.4	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE				ED BY				
DEP. 28	380E		LENGTH	BEARING 035°		[<u> </u>				DEP.		LENG	TH	BEAR	ING		NK-9				: Augus	# 11, 1	994		
									GEOTEC	<u>H</u>								SEOC	HEN	1		لــــــــــــــــــــــــــــــــــــــ	<u> </u>	ASSA'	
	ł	ROCK	DESCI	RIPTION				% RECO	%	%	%	96		Frac	1				1	1			í [SAMPL
FROM	TO	TYPE				FROM	то	VERY	Py_	Ср	Mt	Po	Во	Dens	FROM	TO	Carb	Chlor	Ep	Ser	Sil	Gyp	FROM	TO	No.
			Chalcopyrite at 140.6, 140.7,									<u> </u>	<u> </u>	<u> </u>	ļ			<u> </u>		<u> </u>	↓	┦	\longmapsto		<u> </u>
			144.1, 144.3 (gypsum vein a						<u> </u>	Ļ	<u> </u>	<u> </u>							<u> </u>	! —	↓	\sqcup	\longmapsto		
			145.9, 146.7. Magnetite at 14			<u> </u>		·	<u> </u>	ļ		<u> </u>	ļ	Ļ_					 		<u> </u>	Щ	\longrightarrow		↓
			(30° to CA), 143 (45° to CA)			<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	Ļ	<u> </u>				<u> </u>		ــــــ	Ш	\longrightarrow		↓
			135° to CA). Some sections							<u> </u>	L		↓		<u> </u>				<u> </u>	Ļ	↓	↓	\longrightarrow		↓
			on a fractured surface, possi	bly remnant pyroxer	10.						<u> </u>	<u> </u>			<u> </u>			<u> </u>	\vdash	_	Ļ	igspace	\longrightarrow		<u> </u>
									<u> </u>		<u> </u>	<u> </u>		L.,	<u> </u>			<u> </u>	₩.		<u> </u>	$oxed{oxed}$			ļ
146.85	149,6	AND	ANDESITE FELDSPAR PHY			146.85	149.6	100	<0.5	<0.5	<u> </u>	<u> </u>		30	146.9	149.6	1	1	<u> </u>	4	2	4	146	148	
			Light green, local breccia tex							<u> </u>	ļ	<u> </u>	L	<u> </u>			L		ļ	<u> </u>	↓	Ш	148	150	6987
			locally moderately silicified.							ļ	_		<u> </u>				ļ		-	<u> </u>	ـــــ	┦	\longmapsto		ļ
			Local mottled appearance wi				<u></u>	ļ	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>		ļ	ļ	Ь	L	ــــ	↓	<u> </u>	<u> </u>	\longrightarrow		<u> </u>
			Short sections of pervasive (use the	ļ.,			<u> </u>	ļ	↓		↓	↓	<u> </u>	ļ			-	<u> </u>	╙	 	⊢		ļ
			core to be clay-like. Gypsun			<u> </u>			<u> </u>	<u> </u>	ļ	↓	↓	<u> </u>	<u> </u>	ļ			┝	↓	—	\vdash	\vdash		↓
			148.4 m - 5 mm gypsum vei					ļ		<u> </u>	↓	ļ	↓		↓				 	-	ـــــ	\vdash	\vdash		├
			Disseminated or fracture fille			ļ	.			ļ	↓	<u> </u>	₩	↓			<u> </u>		 		<u> </u>	igspace			└
			very fine grained chalcopyrit	e at 149.5 m. Breco	iaa	<u> </u>			ļ <u>.</u>		 -	 		ļ					ļ	 	├	\vdash	\longrightarrow		ļ
			sections have fragments from						 	ļ	ļ	 	ļ <u> </u>	ļ		<u> </u>		<u> </u>	ऻ		—	11	\longrightarrow		ļ
			matrix, and trend at 10° to C	A, may contain som	e very	ļ	ļ	<u> </u>				<u> </u>	_	-					├-	ļ	₩	\vdash			├ ─
			fine grained chalcopyrite.			ļ				ļ	ļ		ļ		├				-	-	—	╄	\longrightarrow		
									 	<u> </u>	ļ	-	ļ		ļ		<u> </u>	ļ			_ _	ايا	 		l
149.6	152.0	AND	ANDESITE (FELDSPAR PH			149.6	152.0	100	1	0.5	•	-	ļ	30	149.6	152.0	1	-	1—	4	3	3	150	152	6987
			Similar to bottom section of					ļ	 	 	┡	↓	<u> </u>		—	-	├	 	├	ļ	├	igspace	├──┼		←
			fractures at 45° and 135° to			ļ	ļ			-	ļ	 	├ ─	 		<u> </u>	<u> </u>	├		├ ─	—	₩			
			trend in all other directions a		is related	1	<u> </u>	ļ	<u> </u>	├	-	├ ─	 	 					├	<u> </u>	├	┟┷┥	├──-		
			to quartz veinlets. Minor qua					 	ļ	-		 —	 					₩			├ ──	igwdapprox			 _
	ļ		150.3 m - 2 cm gypsum bred		94-64			ļ	 		├ ─		⊢	├	├ ─	ļ		 	├		₩	₩	┝━┩		
	 		150.4 m - 4 mm quartz (50%			-	ļ	 	 	 	 	┼	 	-	⊢-			<u> </u>	₩	 	Ь—	\vdash	├─┼		
			149.8 m - 2 cm quartz-gypsu			 	 	 	 	-	1	├ ──	├	├				<u> </u>	├		Ь—	$\vdash \vdash$	├──┤		
	 		Gypsum in center - quartz or		гасе		<u> </u>		 	 	 	₩	↓	 	├		 		├	-	—	┦	 -		<u> </u>
	 		chalcopyrite on outer edge o		· · · ·	ļ.——	ļ		 	 	ļ	↓	 		ļ	⊢ —	 		 		—	├			
	 		150.7 to 150.9 m - Silicified		te and			 		-	1		<u> </u>	 	—	L			₩.		—	┦	$-\!\!\!-\!\!\!\!-\!\!\!\!\!+$		 _
			0.5% chalcopyrite dissemina				L			ļ	↓	_	<u> </u>	ļ	↓		ļ		!	L	—	Щ			—
			151.2 m - Quartz-gypsum fra					<u> </u>	!	-	<u> </u>	↓	ļ		<u> </u>	1			<u> </u>	ļ	—	ш			
			with 5% disseminated chalco				<u> </u>	ļ		<u> </u>	₩	 		<u> </u>	!		<u> </u>		↓	<u> </u>	↓	igspace			
	<u> </u>		pyrite appears to be associate	ted with the quartz r	ich parts	<u></u>	<u> </u>		<u> </u>	<u> </u>	1		<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>		Щ_	لــــــــــــــــــــــــــــــــــــــ			

1=very weak

3=moderate

																2=weal			4=str						
DATE CO	LLARED A	ug 7/94	DATE COMPLETED Aug 9/94	CORE SIZE BDBGM			IP TESTS			PROP	ERTY	KLIYUL		PROJE	CT NO										
			FIELD CO-ORDINATES		DEPTH		RING		GLE								SHEET		- 11	MAGN	ETIC D	ECLIN	IATION		
LAT. 174	ION		ELEV. 1755 m	DIP -70°	152.4	RECORDED	CORRECTED	RECORDED	CORRECTER	LAT.		ELEV.		DIP			HOLE			LOGG	ED BY	L. ER(MAN		
DEP. 28	BOE		LENGTH	BEARING 035°		···				DEP.		LENGT	Ή	BEARI	NG		NK-9	4-23		DATE:	Augus	111,1	994		
		_				<u> </u>		-	GEOTEC	Н							0	SEOC	HEN	1				ASSA'	Y
		ROCK	DESCR	RIPTION				% RECO	%	%	%	%	%	Frac											SAMPLE
FROM	то	TYPE				FROM	то	VERY	Py	Ср	Mt	Po	Во	Dens	FROM	TO	Carb	Chlor	Εp	Şer	Sil	Gyp	FROM	TO	No.
			of the vein rather than the gy	psum parts.																					
			151.6 m - Trace chalcopyrite	in and on selvages	of 2 mm																				
			quartz veinlet (45° to CA). The	he vein is within a s	licified			•																	
	- "		section of this interval.																						
			151.9 m - 1 m gypsum veinle	t at 40° to CA with	1%					-															
			chalcopyrite on selvage.																						
152.0	152.4	AND	ANDESITE (FELDSPAR PHY	(RIC)		152.0	152.4	100	<0.5	<0.5	-			25	152.0	152.4		-		1	4	1			
			Light green-grey, completely:	silicified. Quartz fro	acture																				
			fill, minor gypsum fractures.	Interval begins with	1 cm																				
			quartz vien @ 60°. Veinlets a	at 40° to 80° (quartz	filled),																				
			rare ones at 130°. Fractures	from 40 to 80° also																					
			Chalcopyrite in fractures at 15	52.1 m.																					
			Sausseritized feldspar forms	1 mm buff coloured	dots.																				
			Rare disseminated pyrite note	ed.																					
						·													<u>L</u> .						
										I															
											L														
																				<u> </u>		$oxed{oxed}$			
																				L					
										<u> </u>		$oxed{oxed}$		$oxed{oxed}$											
												$oxed{oxed}$													
																						Ш			
																			L			لـــا			

1=very weak

3=moderate

			NORA	INDA EXPLO	<u>//X//C</u>	<u> </u>	MAII AVI	<u></u>	<u> </u>							2			44	rong.			•		
											===-					2=weak		-1- 0	4=str		NORTH	LAM P	.T. TRUE)	=	
DATE C	OLLARED	Aug 9/94	DATE COMPLETED Aug 11/94	CORE SIZE BDBGM			DIP TESTS			PROP	ERTY	KLIYUL		ROJE	CT NU			T 1 OF			NETIC D				
			FIELD CO-ORDINATES		DEPTH		ARING		IGLE	 		T-: -:-									SED BY				
LAT. 19	908N		ELEV. 1750 m	DIP -70°	64.0 M	RECORDED	CORRECTED	RECORDED	CORRECTED			ELEV.		DIP			HOLE								
DEP. 2	2866E		LENGTH	BEARING 035°						DEP.		LENGT	<u>/H [</u> P	BEARIN	NG	'		94-24			: Augus	<i>t</i> 12, 19	94	ACCA	
	- T								GEOTEC	H							 '	GEO	<u>JHE</u>	<u>*</u>		 '	+	ASSAY	
J	, 1	ROCK	DESC	RIPTION				% RECO	%	%	96	96	(L		i^{-1}	1 '	1				1 . '	'	1		SAMPI
FROM	то	TYPE	1			FROM	TO	VERY	Py	Ср	Mt	Po	4		FROM	TO	Carb	Chlor	ᅣ	Sil	Ser	 '	FROM	то	No.
			Entire core is shattered into	small pieces.								\perp	4		'	 '		—	—	↓	↓ '	 	4		
		ſ <u>'</u>										\perp			<u></u> '	 '	Щ.	↓	—	↓	↓ '	 	1	لـــــــــــــــــــــــــــــــــــــ	
0.0	6.4	OB	OVERBURDEN			6.1	1 9.1	1 50	/			\perp			!	<u> </u>	Щ.		—	┸—	↓ '	 '	+	لــــــ	4
	_ 	,,				1									'	'	↓		_		'بــــــــــــــــــــــــــــــــــــ	<u> </u>	ليب	ليبيب	1-222
6.4	34.4	AND	ANDESITE			6.4	4 34.4	4 X		5 3	40	<u>اا</u>			6.4	34.4	1	1 1	1 3	3 3	3 1	 _'	8.1	10.1	
			Core has a spotted-mottled a	appearance of greer	n and dark	9.1	1 12.2	2 50							'	<u> </u>					<u> </u>	<u> </u>	10.1	12.2	
			grey. Pervasive and fracture	e filled epidote vary	ina in	12.2		2 100							<u> </u>			<u> </u>		<u></u>		<u> </u>	12.2		
			intensity. Very fine grained t	to fine grained mag	netite is	15.2												<u> </u>	<u> </u>				13.2		
			disseminated throughout (4-	15%), but in addition	n there are				<u></u> ار				\Box					L_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	14.2		
			spotty magnetite-silica areas	s (5 mm). Moderate	lv	21.3												<u> </u>	L	<u> </u>	<u> </u>	<u> </u>	15.2		
			silicified with 0-20% very fine	e grained dissemine	rted pyrite.					1		1						<u> </u>	L		<u> </u>		16.2		
	\longrightarrow		Quartz veinlets, some host to	o 1% chalcopyrite.	Chlorite	27.4						1							L		<u> </u>		17.2		
		 	fracture fill. Spotted appear	cance develagily cans	ed by	30.5						1							L				18.3		
			magnetite-silica concentration	one but some spots	are non-	+	+	1	 			1							工	Ι			19.3		
		 	magnetic mafic minerals (py	myene?). Locally f	racture fill	+		 	1			1							\mathbf{L}				20.3		
		 	carbonate and pervasive car	rhonete in fracture f	nvelope	+	+		1			1							L				21.3		
	 		(26.2, 27.4, 33.2, 34 m). Ve			+	+	+	1	1		1											22.3		
			chalcopyrite throughout (trac		//////	+	+	1	1	1	\vdash	1											23.3		
	 		At 30.6 m - <1 cm pieces of	black silica-magnet	ite Larger	1	+	+	 	1	\vdash	1											24.4		
		 	pieces show quartz veinlets	within disseminated	chalco-	+	+	+	+-	1	1	1											25.4	26.4	
			pyrite, and silica-magnetite		Ond. T	+	+	†	+-	+		1		1					T_				26.4		
	-		28.9 m - 5% very fine graine	ad disseminated the	elconvrite.	+	+	+	+	+	 	+-						Τ_					27.4		
	\longrightarrow		30.2 m - 5% very fine graine	ad disseminated the	Icopyrite.	+	+	+	+	+	+	1		i^{-}				1					28.4		
	├		33.3 m - 2% fracture fill chair	Jonnette and chalce	nurite in	+	+	+	+	+	+	1	1					† _	1_				29.4		
			guartz veinlets.	COPYTIC and Granes	pyrice	+	+	+	+	+	+	+-	 				1	1_		1_			30.5		
<i>'</i>	├ ──	├─	32.7 m - 3% fine grained dis	comingted chalcon	vrito	+	+	 	+	+	+-	+	1	$\overline{}$	\vdash		T		1	1_	1		31.5		
	igwdapprox	—	associated with quartz-magr	Seminated Grandy	fractings	+	+	+	+	+-	+	+	1		\vdash		+		1		1		32.5	33.5	698
<u> </u>	₩		30.5 to 34.4 m - 50% magne	Telle and "enotty" to	dura is	+	+	+	+	+	+	+	1			 	†	1	1	1			33.5	34.5	698
·'	↓ _	╀		Bille and sporty tox	luie 13	+	+	+	+	+-	+	+-	+		\vdash		+	_	+	1	1		1		
<u> </u>	├ ──	—	absent.		local	+	+	+	+	+	+	+-	+		 		 	+	1	1	1	1	1		
	 '	₩	Above 30.5 m - Magnetite c	Ontent is ~3076 with	locai :	+	+	+	+	+	+	+-	+		\vdash	 	_	+	+-	+	+	1	1	ſ	
-	 '	—	sections of 20%.				+	 	+	+	+-	+	 			+	+-	+-	+	+	+-	+	 		
	 '	↓					+	+	+	+	+-	+	+		+	+-	+	+-	+	+-	+	+	1		\vdash
	↓ ′	 				+-	+	+	+	+	+-	+	++		+	+	+	+-	+	+-	+-	+	+		
1	1	i					1	1	1	_1		i					ــــــــــــــــــــــــــــــــــــــ						 -		+

1=very weak

3=moderate

				HIDA LALEC												2=weal	k		4=str	מממ					
		4	DATE COMMISTED AND 4454	CORE SIZE BDBGM			OIP TESTS			PROPE	DTV I	a IVIII		PROJE	ECT NO.			No 94			NORTH	(W.R.	T. TRUE		
DATEC	DLLAKED	Aug 9/94	DATE COMPLETED Aug 11/94 FIELD CO-ORDINATES	CORE SIZE BUBGM	DEPTH		ARING		GLE	rkort	-1(111	CI, UL		11000	.01 110.		SHEE				ETIC D				
	2004		ELEV. 1750 m	DIP -70°	64.0 M			RECORDED	CORRECTES	LAT		ELEV.		DIP			HOLE				ED BY				
LAT. 18					04.0 IVI	RECORDED	- CONNECTED	RESORDED	SAULTOILE	DEP.		LENG		BEARI	NG		NK-9				Augus				
DEP. 2	866E		LENGTH	BEARING 035°		-	<u> </u>	L	GEOTEC			LENG		DENKI				GEOC			Augus		ĭ	ASSA	,
- 1	ļ		DECO	PIDTION			Τ	% RECO	%	%	%	96	Frac		т			1	1			r—-	-		SAMPLE
		ROCK	DESC	RIPTION		FROM	то	VERY	Py	CD	Mt	Po	Dens		FROM	TO	Carth	Chlor	Ep	Sil	Ser	l	FROM	то	No.
FROM	то	TYPE	AUDEOITES (FEL DODAD D	I NON OR MONTO	AUTEO	34.5							Dale		34.5			011101	2			 	34.5	35.5	69814
34.4	35.5	ANU	ANDESITE? (FELDSPAR P			34.5	33.3		1	 	20	<u> </u>	-		97.0	00.0		├─	-	 _	-	 	97.5		
			Light coloured with black ma	grietite spois (20%)	lico/	├	}	 	 	-		_							1			┝──	 	$\overline{}$	
			Silicified, with silica - chalco	pyrite tractures, or si	IICE/	 	 			\vdash				_	 		_			-		\vdash	 		
			epidote fractures. <1% fine			 	 	 	} -			_		_	 		\vdash	 	1			\vdash	 		
			the host rock. Rare dissemi	nations and tracture	Tillea	 	 	├	 	-	—			_	-				\vdash		 	 -	 		
			pyrite.			+	 		 				\vdash		 			 	 		\vdash	 	 		——
	45 5	A 1.100	ANDERITE /EEI DODAD DU	(VPIC)		35.5	45.8	×	+	2	30			-	35.5	45 R	1	1	3	3	1	 	35.5	36.6	69815
35.5	45.8	AND	ANDESITE (FELDSPAR PH			35.5	45.0	' 			30	_	-	_	33.5	75.0	-	<u> </u>	۳		┝	┢	36.6	37.6	
,—			Generally similar to first inte	rval from 0.0 to 30.5	M WILL	 	 -	 	 	\vdash		-	\vdash						┼	_	\vdash		37.6	38.6	
			30% magnetite and a "spotte			ļ	 	1	-	-			-	_	 		_		 	-	-	-	38.6	39.6	
			and pervasive carbonate is	or local occurrence.	No	 	 	 	 -			\vdash	-		├──┼						-		39.6	40.6	
			pyritic concentrations >2%.	-N Wh 400/	414	 	 	 	 	-							\vdash		\vdash	-	-	\vdash	40.6	41.6	
			35.5 to 37.1 m - More magn					 	 			\vdash	_		 			-	 			_	41.6	42.6	
			and 3-5% very fine grained	disseminated chaico	pyrite.	ļ		 				—	_		-		_		\vdash		 	 	42.6	45.7	
						 	├	 				-	-		╌┤		\vdash		\vdash	 	 	├─	72.0	45.7	08022
	- 10 1	4415	ANDERITE			45.8	49.4	, ,	<0.5	2	70	├	_		45.8	40.4	-		1	5	_	├─	45.7	49.4	69823
45.8	49.4	AND	ANDESITE(?)		: <i>6</i> 4	45.7					70		-	├	43.0	70.7	-	 	-	 	<u> </u>	┝	175.1	70.7	03023
			From 45.8 to 48.8 m there w			45.7						_	-	 				-	┼─	 		├	 		
			core barrel. The second try			40.0	51.0	00	 			<u> </u>	_	-	 				-		_	 	 		
			to white/black spotted pieces			 	<u> </u>						-		-			├		-		├─	-		
			Completely silicified with ep			ļ	-			├			-	 	 			├	-	-	├──	├─			
			disseminated very fine grain			 		<u> </u>	ļ	-		_						├	-	├		├─			
			silica in bands. Very fine gr			ļ	ļ		ļ	-			-				 	 		 		 -			
			pyrite in the matrix, appears			ļ		ļ	ļ				<u> </u>	-					-		<u> </u>				
			fractures and in siliceous are	eas without magnetit	e. Trace							<u> </u>			 					<u> </u>	 	 	-		
		ļ	disseminated pyrite.			ļ		ļ	ļ			<u> </u>		ļ	 		<u> </u>]	<u> </u>	<u> </u>	├─-	\vdash		
						ļ			ļ	_	L	<u> </u>			40.4	£4.6			1	<u> </u>	_	├─	40.4		00004
49.4	51.6	AND	ANDESITE(?) OR MONZON			49.4	51.6	66	-	2	30			 	49.4	51.6	-	├	1	3	1	<u> </u>	49.4	51.6	69824
			Similar to interval 34.4 to 35				↓	ļ	ļ				<u> </u>	ļ			<u> </u>		↓			Ь—	\longrightarrow		
			with black magnetite "spots"				 	<u> </u>	ļ		<u> </u>	<u> </u>	ļ	ļ			<u> </u>		—	ļ		Ь.	 		
			pyrite varies from 1% to 5%		n quartz-	ļ			1		<u> </u>	<u> </u>					ļ		1		<u> </u>				
			rich fractures. Rare epidote	fracture fill.		ļ		ļ	↓	L	<u> </u>	ļ			├				₩-		<u> </u>		igwdown		
						1	1	<u> </u>	Ļ		L		L		ļļ		<u> </u>	ļ	├	<u> </u>	ļ	-			
						ļ	<u> </u>	1	Ļ	_	<u> </u>				\longmapsto			├ ─	ļ		ļ		 		
			<u> </u>			<u> </u>	<u></u>	<u> </u>	<u> </u>	L.,	<u> </u>	<u> </u>	<u></u>	<u> </u>	$ldsymbol{\sqcup}$			L		L	<u> </u>	L	L		

NODANDA EYDI OBATION COMPANY I TD

ASSA1 M TO B 52.8	SAMPLE No.
ASSA'	SAMPLE No.
ASSA'	SAMPLE No.
и то	No.
	69825
—	
1	
	1
1	1
53.8	8 69826
54.9	
1	1
+	
 	+
+	+
 	+
+	+
50 0	9 69832
/	1 00000
+	+
+	+
+	+
+	+-
	+
+	+
 	
+	+
+	+
+	+
+	+
+	+
	1
9	9 58.6 9 57.6 9 58.6

NORANDA EXPLORATION COMPANY LTD. 5=very strong 1=very weak 3=moderate 4=strong PROJECT NO. 548 N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) **DIP TESTS** PROPERTY KLIYUL CORE SIZE BDBGM DATE COLLARED Aug 9/94 DATE COMPLETED Aug 11/94 SHEET 4 OF 4 MAGNETIC DECLINATION ANGLE FIELD CO-ORDINATES DEPTH BEARING 64.0 M RECORDED CORRECTED RECORDED CORRECTED LAT. ELEV. DIP HOLE No. LOGGED BY L. ERDMAN DIP -70° ELEV. 1750 m LAT. 1908N NK-94-24 DATE: August 12, 1994 DEP. LENGTH BEARING LENGTH BEARING 035° DEP. 2866E **GEOCHEM** ASSAY **GEOTECH** SAMPLE % RECO % Frac **DESCRIPTION** ROCK FROM TO Sii **VERY** Ср Po Dens FROM TO Carb Chior Ep **FROM** TO TYPE TO 60.9 62.0 61 64 69834 0.5 DAC DACITE DYKE? 62.0 50 60.9 60.9 62.0 Light grey, well foliated. Non-magnetic. 1-7% fine to medium grain (cubic) pyrite. Local fracture fill carbonate. Two pieces show very fine grain chalcopyrite in fractures. Quartz veinlets (rare). Fault gouge mud at 61.0 m. Chalcopyrite does not appear to be associated with pyrite. Trace chalcopyrite in quartz veinlets. 62.0 64.0 20 64.0 50 <0.5 AND ANDESITE(?) 62.0 64.0 Medium to dark green, foliated. Dark green streaks in foliation plane are moderately chloritized and host 30% fine grained disseminated magnetite. Magnetite also occurs as (5%) discrete grains within the host rock. Rare disseminated pyrite within foliation planes. No visible chalcopyrite. Interval is similar to 60.1 to 60.9 m but foliations are more well defined. The hole was stopped due to caving.

			NOR/	ANDA EXPLO	ORATIO	ON CO	<u>MPAI</u>	NY LT	<u>D.</u>							1=very v	veak			oderate	à		5≃very s	trong	
																2=weak	,		4=str						
Date Col	lared Aug	11/94	DATE COMPLETED Aug 12/94	CORE SIZE BDBGM		0	IP TESTS	3		PROPE	RTY	KLIYUL	F	PROJEC	T NO. 5	48	N.T.S.			-			W.R.T. TI		
			FIELD CO-ORDINATES		DEPTH	BEA	RING		GLE								SHEE		10				LINATIC		
LAT. 1	910N		ELEV. 1760	DIP -70°	131.1	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.	(DIP			HOLE						ERDMAN	<u></u>	
DEP. 2			LENGTH	BEARING 035°						DEP.		LENGT	Н 8	BEARING	3		NK-9			DATE	<u> </u>	gust 1	5, 1994		
									GEOTEC	Н							GE	DCHE	M				L	ASSA	
		ROCK	DESC	RIPTION				% RECO	%	%	%	Frec	- 1								1	1	'		SAMPLE
' FROM	то	TYPE				FROM	TO	VERY	Py	Ср	Mt	Dens			FROM	TO	Carb	Chlor	Ep	Ser	Sil	Gyp	FROM	TO	No.
- 0	9.1	ОВ	OVERBURDEN														<u> </u>	ļ	<u> </u>	Ь.	╇	₩			
										Ш									<u> </u>	 -	┿	₩	<u> </u>		 _
9.1	24.3		ANDESITE VOLCANICLAST		BROKEN				1	<0.5	15				9.1	24.3	1	2	1	-ئــــــــــــــــــــــــــــــــــــ	<u>3 -</u>	╙	<u> </u>	-	ļ <u> </u>
			Medium grey-green colour, p	platy to chlorite. Epi	dote	9.1													Щ	—	┿	₩	 '		} .
			fracture fill, local epidote "sp	ots" (remnant feldsp	ar).	12.2													₩	₩	┿	₩			
			0% to 2% fine grained to me			15.3	18.3					\longmapsto						<u> </u>		₩	┿	├ ──			├
			nated pyrite. Sausseritized t			18.3				\sqcup		 							├ ──	₩	┿	┟──	├──		
-			locally 20% magnetite as dis	seminated grains, a	ssociated	21.3	24.3	73				├						<u> </u>	—	—	┿	₩	 	├──	
			with chloritized mafics or as						ļ				_ _	_					₩	┼	+-	╁──	 	├──	
			carbonate as fracture fill. Ra									lacksquare					 	<u> </u>	—	┿	+	├ ──	├──	 	
			coarse grained pyrite and tra	ace very fine grained	chalco-							\vdash						├	}—	┼	十	 		 	
			pyrite.							\square		├						<u> </u>	├	↓ —	+-	₩			
															- 04 0	- 64 6	_		├	┼—	4 -	 	├ ──	 	
24.3	32.0	AND	ANDESITE(?) VOLCANICLA		L BROKEN				12	<u> </u>		1	\rightarrow		24.3	31.8	-	 	├	 	* - -	 '		├──	├──
			Light green, pervasive serici			24.3													-	┼	╁	├─	 		
			is probably primary. Fragme			27.4	30.5						\rightarrow			-			₩	┼─	┿	 	├──	├──	
			crystals, in matrix of strongly			30.5	33.5	100	ļ			├ ─┤				-	├	├	├	╁	+-		 	\vdash	
			coarse grained (cubic) pyrite						<u> </u>			╂╼					├	├	╁	┼	┿	₩	 	$\vdash \!\!\!\!\!-$	
			carbonate fracture fill. Beco	ming more visibly fo	oliated			ļ	<u> </u>			 		- 			├		├	₩	+-	\vdash	├──	⊢—	
	ļ		downsection with more highl	ly sericitic elongate t	olebs in			ļ			<u> </u>	 					 		-	+-	┿	 	├──	├──	-
			foliation plane.						ļ			1					├	├	╁	┼─	十	 	$\vdash \!$	 	
									10.5	1					32.0	35.3	1		3	, 	2 3	 	\vdash	 	
32.0	35.3	AND	ANDESITE(?) (AUGITE-FEL	LDSPAR) WELI	L BROKEN				<0.5	0.5	2				32.0	35.3	-	 	1 3	┼—⁴	쒸	 	-		
	ļ	ļ	Dark/light green, spotted ap	pearance. Epidote t	racture	33.5	36.6	83	<u> </u>		├──	+ +		-			-	┼	+	+		 	 	\vdash	
		ļ	fill and pervasive. Moderate	ely silicitied. Some p	Dieces	ļ	 	 	 	-	 						 	┼──	╁	+-	+	┼─	 	 	
			show very fine grained chalc			 	ļ	 	 	\vdash	├—		-				╁	 	┼	+-	+	┼─	├	├──	
			Locally moderately magnetic			 	ļ	 	 	 		 						\vdash	┼	+	+-	\vdash	 	 	
	ļ		magnetite. Feldspar to epid	ote, matics to chlori	e. Irace		ļ <u></u>	 	 	 				-			\vdash	├	┼	 	┰	┼─	 	 	
			disseminated pyrite.			 			 		-	+					-	\vdash	+	+-	+	\vdash		 	
		B \(\alpha\)	AMBCOITE DIGGE		BROKEN	35.3	36.6	83			1			 -	35.3	36.6	3	2	1 4	.+	+	. 		 	
35.3	36.6	DYK	ANDESITE DYKE	alala I judaliataa ili		35.3	30.0	1 83	'	-	 '	+	 		33.3	30.0	 		' '	+	+-	一	\vdash	 	
	 	ļ —	Feldspar phyric fine grained			 	 	+	 	 		+	 	- 			+	\vdash	+	+-	+	1	 	 	
	ļ	ļ	chloritic. Rare epidote/carbo			-	 		 	\vdash	-	+	 	 		 	1	+	+-	+-	+	+-			
<u> </u>	 	ļ	carbonate. Feldspar to epid		mateu	 	 	+	 	 	 	+		 			 	 	+	+	十	 	 		
L	<u> </u>	<u></u>	magnetite grains throughout	<u>. </u>		<u> </u>	<u> </u>	<u> </u>		L	<u> </u>	لــــــــــــــــــــــــــــــــــــــ		ــــــــــــــــــــــــــــــــــــــ		Ь	ــــــــــــــــــــــــــــــــــــــ	L	1	—					

1=very weak

3=moderate

																k 4=strong										
Date Collared Aug 11/94			DATE COMPLETED Aug 12/94 CORE SIZE BDBGM DIP TESTS							PROPERTY KLIYUL PROJECT NO. 548						N.T.S.	No. 94		GRID NORTH (W.R.T. TRUE)							
			FIELD CO-ORDINATES DEPTH		BE/	RING	AN	ANGLE							SHEET 2 OF 10			MAGNETIC DECLINATION								
LAT. 1910N			ELEV. 1760	DIP -70°	131.1	RECORDED CORRECTED ME		RECORDED CORRECTED		LAT. ELE		ELEV.	DIP			HOLE No.			LOGGED BY L. ERDMAN							
DEP. 2555E			LENGTH	BEARING 035°						DEP.		LENGTH BEARI		ING		NK-94-25			DATE: August 15, 1994							
							GEC				CH					GE	OCHE	М				ASSA		Ý		
ROCK		ROCK	DESCRIPTION					% RECO %	%	%	%	Frac												SAMPLE		
FROM	то	TYPE				FROM	то	VERY	l Py	Ср	Mt	Dens	ı	FROM	то	Carb	Chlor	Еp	Ser	Sil	Gyp	FROM	то	No.		
36.6	38.9		ANDESITE	WELI	BROKEN	36.6	38.9	100	5	-	•			36.6	38.9	1	1	1	4	-	-					
-			Light green-grey, foliated. Po	ony defined foliation	ns of																					
			slightly darker green, chloritic, elongated blebs (mafics).																							
			Minor epidote fracture fill 2-79	% medium to coars	e grained																					
	pyrite, and pyrite in foliation planes. Local short sections														<u> </u>	l										
-			of more highly sericitic rock o																							
	grained pyrite. Minor carbonate fracture fill.																									
	1																									
38.9	41.0	AND	ANDESITE (FELDSPAR PHY		ATTERED	38.9	41.0	100	1	-	2			38.9	41.0	2	2	<u> </u>	3			38.9	40.9	69895		
			Medium green-grey, locally fo	oliated as in previou	ıs interval													<u> </u>								
			but generally unfoliated. Maf	ics altered to chlori	te (ghosty		<u> </u>									<u> </u>	<u> </u>	<u> </u>		L						
			dark patches), some of which			<u> </u>										Ļ	<u> </u>	<u> </u>	ļ	\sqcup						
			to the magnetite/chlorite area											<u> </u>			<u> </u>	<u> </u>		Ш	\Box		 _			
			grained magnetite as discrete														ļ	↓		┦						
			medium grained pyrite ranges					<u> </u>								ļ	↓	<u> </u>		\vdash			igsquare			
			sections to 3% in foliated sections. Carbonate as fracture			<u> </u>		ļ						ļ		<u> </u>	<u> </u>	↓		₽			igsquare			
			fill, locally pervasive.				ļ					1	_	ļ		<u> </u>	 	 		┦						
						<u> </u>	<u> </u>					\vdash	_			ļ.,	ļ	لــــ	ļ	H			 			
41.0	41.6	AND	ANDESITE(?)		IATTERED	41.0	41.6	100	3	1	15			41.0	41.6	1	 	1	1-4	4-4		40.9	41.9	69896		
			Medium green-grey, foliated.	2-10% fine grained	d pyrite,	 	ļ	<u> </u>		ldash		$\vdash \vdash$		-	ļ	├	├ ──	₩	-	\vdash			 			
			also fracture fill pyrite. 20% r											 	ļ	┞	├	-	ļ	╀┤						
			grains or as magnetite/silica b				ļ					$\vdash \vdash$		↓				<u> </u>		\vdash			\vdash	 ;		
			These blebs parallel foliation.			-	ļ	ļ			<u> </u>	 		 	<u> </u>		₩	 	 	H		-				
			pyrite. Carbonate fracture fill	, epidote fracture fi	II.	-	ļ				<u> </u>	 		 		├		-	-	Н	$\vdash\vdash$					
-	15.5	500.000	A SUBJE BY (CAS)		LA TTERES	1- 12 6	400	100	4.		 	 		41.6	42.2	1 4	 	-	1	Н		41.9	43.9	69897		
41.6	42.2	DYK	ACIDIC DYKE(?)		IATTERED	41.6	42.2	100	10	┝╾╌	⊢ •	 		41.6	42.2	+	 	 -	 	H	⊢ -i	41.8	73.8	09097		
			Light grey. Interval starts with			 	 		 	-	<u> </u>	 		 			├	┼──	-	H				\vdash		
			Fine grained to medium grain				 		 		├			 		 	\vdash	_		\vdash	$\vdash\vdash\vdash$		I			
			along foliation planes. Weak	pervasive carbona	ite.	 	+		ļ	\vdash	-	\vdash		 		 	 	 	-	H						
-				· · · · · · · · · · · · · · · · · · ·		 	 	 				 		 		 	 		├	-			 			
-						 	 			-		-		+			├	├		Н			$\vdash \vdash \vdash$			
						+	+	-			 -			 				+-	 	+						
							1		 		-	-		 		 	+	1		\vdash	\vdash					
—			 			+	-	 	 	-	-			 	-	 	-	-		\vdash						
, , , , ,					1	1	1	I	1	•	ı 1	I	I	I	1	1	1	ı			I	4				

DATE COMMAND AND STATE STATE COMPLETED AND 1224 CORE SOTE DEPCH DIP TESTS PROPERTY KILVIU PROJECT NO. 96 M. 15, ME. 9809 GINDIOTH (W.R.T. TRUE)				NOR	ANDA EXPLO	ORATIO	ON CO	MPA	NY LT	<u>D.</u>						1	l=very v	veak		3=mc	oderate			5=very si	trong	
Deficition (Company) Deficition (Company)																2	2=weak									
FIELD CC-ORDINATES DEPTH BEANING ANGLE SHEET 3 OF 10 MAGNIFITIO DECLMATION	Date Callered Ave 11/04			DATE COMPLETED Aug 12/94	DIP TESTS				PROPERTY KLIYUL PROJECT N					NO. 54	48	N.T.S.	No. 94	4D/9	GRID NORTH (W.R.T. TRUE)							
LEEV TOPO DIP - 70" 131.1 Received a personal part Leev DIP Hole Received LEEV DIP Hole Received LEEV DIP Hole Received LEEV LEEV DIP Hole Received LEEV	TO ALLO COMMITTED THE PROPERTY OF THE PROPERTY					BEA										SHEET 3 OF 10			10	MAGNETIC DECLINATION						
DESCRIPTION BEARING GSS DESCRIPTION SHATTERED RECED STATE RECEDIT RECE	LAT 1	D10N			101101120			CORRECTED	RECORDED CORRECTED		LAT. ELEV.			DI	DIP			HOLE No.			LOGGED BY L. ERDMAN					
ROCK DESCRIPTION FROM TO WREV Py Sy W Description SHATTERED 42.2 45.9 AND ANDESITE SHATTERED 42.2 45.9 AND AND ESTITE SHATTERED 42.2 45.9 AND ESTITE SHATTERED 42.2 45.9 AND ESTITE SHATTERED 42.2 45.9 AND ESTITE SHATTERED 42.2 45.9 AND ESTITE SHATTERED 42.2 45.9 AND ESTITE SHATTERED 42.2 45.9 AND ESTITE SHATTERED 42.2 45.9 AND ESTITE SHATTERED 42.2 45.9 AND ESTITE AND ESTITE SHATTERED 42.2 45.9 AND ESTITE AND EST										1	DEP.	DEP.		н в	EARING			NK-9	NK-94-25			: Aug	ust 15	5, 1994		
FROM TO TYPE TYPE	DEF. Z	ж.	r	LENGTH			<u> </u>		•	GEOTEC	Н							GE	CHE	M					ASSA'	
FROM TO TYPE FROM TO Very Pr Cp Mr Dees FROM TO Cere Claser Ep Set Set Cps ROM TO No.	1		BOCK	DESC	RIPTION			I	% RECO	96	96	%	Frac												, ,	SAMPLE
Modium green-grey, poorly defined foliation, 2% mafics, 42,7 45,7 83 42,2 45,9 3 1 4, 4 43,9 45,9 69698 42,7 45,7 83 42,7 45,7 83 43,8 16,4 0,1 marking to chlorite 4-b prite, 0-5% fine grained to medium grained pyrite. 43,8 16,4 0,1 marking to chlorite 4-b prite, 0-5% fine grained to medium grained pyrite. 43,8 16,4 0,1 marking to chlorite blebs and streaks. Local magnetitle occurs in chloritic blebs and streaks. Local magnetitle-rich 5,8 16,7 16,7 16,7 16,7 16,7 16,7 16,7 16,7	EBOM	1 1					FROM	то	VERY	Pv	Ср	Mt	Dens	i	F	ROM	TO	Carb	Chlor	Еp	Ser	Sil	Сур	FROM		
Medium green-grey, poorly defined foliation, 2% mafics, 42,7 45,7 83 altering to chlorite +/- pyrite, 0-5% fine grained to medium grained pyrite. 43,8 to 44,0 m and 45 to 45,2 m - 20% magnetite occurs in in chlorific blotes and streaks. Local imagnetite-fich sections also host pyrite. Pervasive carbonate. Some pleose sook intrusive, others are silicified. 45,9 61,7 MZ MONZONITE DYKE BROKEN 45,9 61,7 100 <0,5 X <1 45,9 61,7 3 2				ANDESITE			-	3	-	2				42.2	45.9	3	1	•	4			43.9	45.9	69898		
altering to chlorite */- pyrite. 0.5% fine grained to medium grained pyrite. 43.8 to 44.9 m and 45 to 45.2 m - 20% magnetite occurs in chloritic blebs and streaks. Local magnetite-octo sections also host pyrite. Pervasive carbonate. Some pieces look intrusive, others are silicified. 45.9 61.7 MZ MONZONITE DYKE Light grey, fine grained. 30%, <1 mm mafics, many of them needlelike (hombiender). Rare fine grained pyrite. 13.1% discrete, disseminated fine grained magnetite grains. 46.2 to 46.7 m - Vertical "clay" fault gouge on ½ of core. 61.7 62.3 AND ANDESITE (FELDSPAR PHYRIC) SHATTERED 61.7 62.3 - 5 - 61.7 62.3 3 1 - 3 - 61.7 62.3 3 1 - 3 - 61.7 62.3 64.0 DACITE Pervasive carbonate. Local pieces have a breccia texture. Not magnetic. Broken quartz veins. "Clay" fault gouge occurs throughout the interval. 62.3 64.0 DAC DACITE WELL BROKEN 62.3 64.0 90 - 62.3 64.0 3	72.2	45.5																								
medium grained pyrite.				attering to chlorite +/- pyrite	0-5% fine grained t	o									$\neg \vdash$						Ĭ					
43.6 to 44.0 m and 45 to 45.2 m = 20% magnetite occurs			 	medium argined swite	. 0-070 into gramou i																	П				
In chlorific blebs and streaks. Local magnetite-rich			 	43.6 to 44.0 m and 45 to 45	2 m - 20% magnetit	e occurs				<u> </u>	 											П				
Sections also host pyrite. Pervasive carbonate. Some			 	in chloritic blake and streak	Local magnetite-ri	ich			1		—											П				
Decess look Intrusive, others are silicified.			├ ┈──	sections also host purits. D	ervesive carbonate	Some	 															П	I			
45.9 61.7 MZ MONZONITE DYKE BROKEN 45.9 61.7 100 <0.5 X <1 45.9 61.7 3 2 · · · . Light grey, fine grained. 30%, ≤1 mm mafics, many of them needlelike (homblende?). Rare fine grained printe. ≤1% discrete, disseminated fine grained mapetite grains. ≤1% discrete, disseminated fine grained mapetite grains. ≤46.2 to 46.7 m - Vertical "clay" fault gouge on ½ of core. ≤46.2 to 46.7 m - Vertical "clay" fault gouge on ½ of core. ≤46.2 to 46.7 m - Vertical "clay" fault gouge on ½ of core. ≤46.2 to 46.7 m - Vertical "clay" fault gouge on ½ of core. ≤46.2 to 46.7 m - Vertical "clay" fault gouge on ½ of core. ≤46.2 to 46.7 m - Vertical "clay" fault gouge on ½ of core. ≤46.0 to 46.0 so ≤46.0				places look intrusive others	e are cilicified	Come	 			<u> </u>												П				
Light grey, fine grained. 30%, ≤1 mm mafics, many of them needletike (homblende?). Rare fine grained pryrite. Light grey, fine grained angenetic grains. Light grey, fine grained angenetic grains. Light discrete, disseminated fine grained magnetite grains. 48.2 to 46.7 m - Vertical "clay" fault gouge on ⅓ of core. 61.7 62.3 AND ANDESITE (FELDSPAR PHYRIC) SHATTERED 61.7 62.3 - 5 - 61.7 62.3 3 1 - 3 - Medium green-grey, 2-7% fine grained to coarse grained 61.0 64.0 80 pyrite. Pervasive carbonate. Local pieces have a brecia texture. Not magnetic. Broken quartz veins. "Clay" fault gouge occurs throughout the interval. 62.3 64.0 DAC DACITE WELL BROKEN 62.3 64.0 90 62.3 64.0 3 Ash flow tiff. Squashed shards form a foliation. Rare 1 mm quartz eyes. 1% white amygdules (2-4 mm) filled with quartz or 7 (not carbonate). Rare darker green elongated squashed blebs with pink/purple carbonate interiors, possibly altered volcanic glass. 64.0 64.6 AND ANDESITE(?) DYKE(?) BROKEN 64.00 64.6 92 64.0 64.6 4 2 - 11 - Fine grained, medium grey, pervasive carbonate, well foliated. 5%, 4 mm long, discontinuous dark grey-green stretched chloritic streaks @ 30" define foliation. Rare			 	pieces look initiusive, others	are smorred.		 		 	 			 									\Box				
Light grey, fine grained. 30%, ≤1 mm mafics, many of them needlelike (homblende?). Rare fine grained pryrite. Light grey, fine grained angeetite grains. Light server, light discrete, disseminated fine grained magnetite grains. 48.2 to 46.7 m - Vertical "clay" fault gouge on ⅓ of core. 61.7 62.3 AND ANDESITE (FELDSPAR PHYRIC) SHATTERED 61.7 62.3 - 5 - 61.7 62.3 3 1 - 3 - 61.7 62.3 3 1 - 3 - 7 - 61.7 62.3 3 1 - 3 - 7 - 7 - 61.7 62.3 3 1 - 3 - 7 - 7 - 61.7 62.3 3 1 - 3 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	45.0	04.7	147	MONZONITE DVVE		PROKEN	45.0	R1 7	100	<0.5	×	<1	 			45.9	61.7	3	2	-		1 -1				
them needlelike (homblende?). Rare fine grained pyrite. 1	45.8	01.7	NIZ.		9/ <1 mm matics m		40.0		 	1	1	i i			$\neg \vdash$					1		П				
21% discrete, disseminated fine grained magnetite grains. 48.2 to 46.7 m - Vertical "clay" fault gouge on ½ of core. 61.7 62.3 AND ANDESITE (FELDSPAR PHYRIC) SHATTERED 61.7 62.3 - 5 - 61.7 62.3 3 1 - 3 - 61.7 62.3 64.0 80			 				 		├─ ─				1							1		П				
46.2 to 46.7 m - Vertical "clay" fault gouge on % of core. 61.7 62.3 AND ANDESITE (FELDSPAR PHYRIC) SHATTERED 61.7 62.3 - 5 61.7 62.3 3 1 - 3 - Medium green-grey, 2-7% fine grained to coarse grained 61.0 64.0 90 pyrtte. Pervasive carbonate. Local pieces have a breccia texture. Not magnetic. Broken quartz veins. "Clay" fault gouge occurs throughout the interval. 62.3 64.0 DAC DACITE WELL BROKEN 62.3 64.0 90 62.3 64.0 3							 		 	 	1	-	1									\sqcap				
61.7 62.3 AND ANDESITE (FELDSPAR PHYRIC) SHATTERED 61.7 62.3 - 5 - 61.7 62.3 3 1 - 3 - 61.7 62.3 3 1 - 3 - 61.7 62.3 3 1 - 3 - 61.7 62.3 3 1 - 3 - 61.7 62.3 3 1 - 3 - 61.7 62.3 3 1 - 3 - 61.7 62.3 3 1 - 3 - 61.7 62.3 3 1 - 3 - 61.7 62.3 3 1 - 3 - 61.7 62.3 3 1 - 3 - 61.7 62.3 3 1 - 3 - 61.7 62.3 64.0 90 -							 		 	 			1		$\neg \vdash$							TT				
Medium green-grey, 2-7% fine grained to coarse grained 61.0 64.0 90			 	46.2 to 46.7 m - Vertical Ca	ay lault gouge on 72	or core.				 	 		 						1	1		11				
Medium green-grey, 2-7% fine grained to coarse grained 61.0 64.0 90			ANID	ANDECITE (EEL DEDAR DI	TVDIC) CL	IATTEDED	617	82 2				Η.				61.7	62.3	3	1	1 -	3	st - 1				
pyrite. Pervasive carbonate. Local pieces have a breccia texture. Not magnetic. Broken quartz veins. "Clay" fault gouge occurs throughout the interval. 62.3 64.0 DAC DACITE WELL BROKEN 62.3 64.0 90 62.3 64.0 3	61.7	62.3	AND							1	+							<u> </u>		1		\Box				
texture. Not magnetic. Broken quartz veins. "Clay" fault gouge occurs throughout the interval. 62.3 64.0 DAC DACITE WELL BROKEN 62.3 64.0 90 62.3 64.0 3				medium green-grey, 2-7% i	Local pieces have	o braccia	01.0	04.0			1	_						\vdash		1		1				
fault gouge occurs throughout the interval. 62.3 64.0 DAC DACITE WELL BROKEN 62.3 64.0 90 62.3 64.0 3 - 0 62.0 3 - 0 62.							 			 	 	\vdash	 							T		\Box				
62.3 64.0 DAC DACITE WELL BROKEN 62.3 64.0 90 62.3 64.0 3 SASS Flow tuff. Squashed shards form a foliation. Rare 1 mm quartz eyes. 1% white amygdules (2-4 mm) filled with quartz or ? (not carbonate). Rare darker green elongated squashed blebs with pink/purple carbonate interiors, possibly altered volcanic glass. 64.0 64.6 AND ANDESITE(?) DYKE(?) BROKEN 64.00 64.6 92 64.0 64.6 4 2 - 1 - Fine grained, medium grey, pervasive carbonate, well foliated. 5%, 4 mm long, discontinuous dark grey-green stretched chloritic streaks @ 30° define foliation. Rare						lay	 		 	+	╁		 					_	 	十一	1	1 1				
Ash flow tuff. Squashed shards form a foliation. Rare Ash flow tuff. Squashed shards form a foliation. Rare I mm quartz eyes. 1% white amygdules (2-4 mm) filled with quartz or ? (not carbonate). Rare darker green elongated squashed blebs with pink/purple carbonate interiors, possibly altered volcanic glass. 64.0 64.6 AND ANDESITE(?) DYKE(?) BROKEN 64.00 64.6 92 64.0 64.6 4 2 - 1 - Fine grained, medium grey, pervasive carbonate, well foliated. 5%, 4 mm long, discontinuous dark grey-green stretched chloritic streaks @ 30° define foliation. Rare				raun gouge occurs inrought	out the interval.		 	 	 	+	 		 		-			\vdash	 	╁		+			$\overline{}$	
Ash flow tuff. Squashed shards form a foliation. Rare Ash flow tuff. Squashed shards form a foliation. Rare I mm quartz eyes. 1% white amygdules (2-4 mm) filled with quartz or ? (not carbonate). Rare darker green elongated squashed blebs with pink/purple carbonate interiors, possibly altered volcanic glass. 64.0 64.6 AND ANDESITE(?) DYKE(?) BROKEN 64.00 64.6 92 64.0 64.6 4 2 - 1 - Fine grained, medium grey, pervasive carbonate, well foliated. 5%, 4 mm long, discontinuous dark grey-green stretched chloritic streaks @ 30° define foliation. Rare	- 55.0	04.0	546	DAOITE	W/CI	PROVEN	62.2	64.0	1 00		-	<u> </u>	 			62.3	64.0	3	-		 	.† .†				
1 mm quartz eyes. 1% white amygdules (2-4 mm) filled	62.3	64.0	DAC				02.3	04.0		1	-	 	1		-			 	 	 	 	11			$\overline{}$	
with quartz or ? (not carbonate). Rare darker green lelongated squashed blebs with pink/purple carbonate linteriors, possibly altered volcanic glass. 64.0 64.6 AND ANDESITE(?) DYKE(?) BROKEN 64.00 64.6 92 64.0 64.6 4 2 - 1 - Fine grained, medium grey, pervasive carbonate, well foliated. 5%, 4 mm long, discontinuous dark grey-green stretched chloritic streaks @ 30° define foliation. Rare								 	 	+	 		1	_				 	_	t	 	11	_		$\overline{}$	
elongated squashed blebs with pink/purple carbonate interiors, possibly altered volcanic glass. 64.0 64.6 AND ANDESITE(?) DYKE(?) BROKEN 64.00 64.6 92 64.0 64.6 4 2 - 1 - Fine grained, medium grey, pervasive carbonate, well foliated. 5%, 4 mm long, discontinuous dark grey-green stretched chloritic streaks @ 30° define foliation. Rare							 	 	┼	+	+	_	 		 -			 	_	†	—	1 1			-	
interiors, possibly altered volcanic glass. 64.0 64.6 AND ANDESITE(?) DYKE(?) BROKEN 64.00 64.6 92 64.0 64.6 4 2 - 1 - Fine grained, medium grey, pervasive carbonate, well foliated. 5%, 4 mm long, discontinuous dark grey-green stretched chloritic streaks @ 30° define foliation. Rare								-	 	+	+	╁	1 1		_	-		 		†		1-1	\neg			
64.0 64.6 AND ANDESITE(?) DYKE(?) BROKEN 64.00 64.6 92 64.0 64.6 4 2 - 1 -			ļ			onate	. 	 -		+	+	+	 	-	_	 +		 	 	1	 	1-1			ii	
Fine grained, medium grey, pervasive carbonate, well foliated. 5%, 4 mm long, discontinuous dark grey-green stretched chloritic streaks @ 30° define foliation. Rare			_	interiors, possibly aftered vo	oicanic glass.			 	 	 	+	-	1 1					 		†	†	++			$\overline{}$	
Fine grained, medium grey, pervasive carbonate, well foliated. 5%, 4 mm long, discontinuous dark grey-green stretched chloritic streaks @ 30° define foliation. Rare		0.7.2	1	AND FOLTE (O) DOWN (C)		PROKEN	1 64.00	84.6	00		 	 	\vdash		_	64.0	64 6	1	1 2	, .	1	 				
foliated. 5%, 4 mm long, discontinuous dark grey-green stretched chloritic streaks @ 30° define foliation. Rare	64.0	64.6	AND				04.00	04.0	94		+	 		-		37.5		 	╁─╴	1	 	++	\dashv			
stretched chloritic streaks @ 30° define foliation. Rare			ļ				ļ	 	 		┼	├	\vdash		 -			+	 	+	+	╅┪	_		·	
			Ļ					<u> </u>	┼ ──	 	+	├	 					+	 	+		╅╾╅	-			
			<u> </u>		2 30° define foliation	. Rare	 	├	 	 	┼		├ ─┤					+-	-	+	┼	╅╾╅	-		 	
			<u> </u>	carbonate veinlets @ 45°.			 	<u> </u>	 	 	 	-							├	+-	┼	╂╼┤				
			<u> </u>				 	 		├	 	 	 		-			-		+	-	+ +	\dashv	\vdash		

NORANDA EXPLORATION COMPANY LTD. 1=very weak 5=very strong 2=weak 4=strong PROJECT NO. 548 N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) PROPERTY KLIYUL **DIP TESTS** DATE COMPLETED Aug 12/94 CORE SIZE BDBGM Date Collared Aug 11/94 SHEET 4 OF 10 MAGNETIC DECLINATION ANGLE DEPTH BEARING FIELD CO-ORDINATES LOGGED BY L. ERDMAN HOLE No. RECORDED CORRECTED RECORDED CORRECTED LAT. ELEV. DIP -70° 131.1 ELEV. 1760 LAT. 1910N DATE: August 15, 1994 BEARING NK-94-25 DEP. LENGTH BEARING 035° LENGTH DEP. 2555E **ASSAY GEOCHEM** GEOTECH SAMPLE % RECO Frac DESCRIPTION **ROCK** FROM TO Carb Chlor Ep Ser Sil Gyp FROM TO No. Mt Dens FROM VERY Py Ср TO TYPE 1 FROM TO 64.6 66.1 DACIDACITE WELL BROKEN 64.6 66.1 93 66.1 64.6 Ash flow tuff. Same as 62.3 to 64.0 m. 68.7 **Q.5** 66.1 68.7 95 AND ANDESITE? VOLCANICLASTIC SHATTERED 66.1 68.7 66.1 Medium grey-green, ghosty spotted texture. Pervasive/ fracture fill carbonate. Rare quartz eyes. A few pieces of white quartz indicates veining. Trace to 3% medium grained pyrite and 1% pyrite blebs replacing mafics. Some pieces show sub-rounded "blebs" of chlorite/ magnetite. 68.7 70.7 69899 68.7 70.1 3 SHATTERED 68.7 70.1 68.7 70.1 MZ MONZONITE(?) Buff to light grey. Fine grained magnetite in streaks, needle like crystals and round patchy areas. Patchy areas are siliceous. 1% quartz blebs. 1-3% very fine grained pyrite in 1 mm disseminated blebs, appears to be replacing mafics, also fine grained pyrite. Pervasive/ fracture fill carbonate. 69900 70.1 76.3 70.7 71.7 <1 <0.5 10 SHATTERED 70.1 76.3 70.1 76.3 MZ MONZONITE 69901 71.7 73.7 70.1 73.1 100 Spotty texture of medium/dark green. Feldspar are 73.7 76.4 69902 sausseritized or have altered to epidote. 2-3% glassy 73.1 76.2 37 quartz blebs of <1 mm. Rare fine grained pyrite. Nonsiliceous magnetite blebs of 80% magnetite forming dark spots. Epidote fracture fill at 73.1 m. Rare very fine grained chalcopyrite on selvage of quartz blebs and possibly on selvage of magnetite blebs. 76.3 79.0 2 31 76.3 79.0 100 < 0.5 BROKEN 76.3 79.0 AND ANDESITE DYKE Light grey, fine grained carbonate veinlets and fracture fill, local 1-2 mm carbonate "spots". No homblende. Bieb of chalcopyrite(?) on carbonate veinlet at 76.8 m. Locally 10%, <0.5 mm, black dots of magnetite. Chlorite fracture fill. Local disseminated epidote "spots" (altered mafics).

Mafics to chlorite/epidote.

NORANDA EXPLORATION COMPANY LTD. 3=moderate 5=very strong 1 =very weak 2=weak 4=strong N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) **DIP TESTS** PROPERTY KLIYUL PROJECT NO. 548 DATE COMPLETED Aug 12/94 CORE SIZE BDBGM Date Collared Aug 11/94 FIELD CO-ORDINATES ANGLE SHEET 5 OF 10 MAGNETIC DECLINATION DEPTH BEARING RECORDED CORRECTED RECORDED CORRECTED LAT. LOGGED BY L. ERDMAN ELEV. DIP HOLE No. LAT. 1910N ELEV. 1760 DIP -70° 131.1 NK-94-25 LENGTH BEARING DATE: August 15, 1994 DEP. 2555E LENGTH BEARING 035° DEP. GEOTECH **GEOCHEM** ASSAY SAMPLE ROCK DESCRIPTION % RECO 96 % Frac Ser Sii Gyp Mt FROM TO Carb Chlor Ep FROM то **VERY** No. TYPE FROM TO Ср ' FROM TO 81.8 MZ MONZONITE SHATTERED 79.0 81.8 100 79.0 81.8 3 -79.0 81.0 69903 79.0 Light grey, fine grained, sugary texture. 2-3% quartz blebs, quartz veinlets, pervasive/fracture fill carbonate. fracture fill/disseminated pyrite (2-10%). Needles and discrete grains of magnetite (5%) but locally strongly magnetic in the 70% magnetite in silica/magnetite fracture fill and streaky blebs. 81.0 83.0 69904 81.8 82.3 AND ANDESITE VOLCANICLASTIC SHATTERED 81.8 82.3 100 0.5 81.8 82.3 Dark grey-green, foliated. Mafics altered to chlorite + magnetite. Rare quartz blebs. 0-2% fine grained/fracture fill pyrite. 2% fine grained magnetite plus magnetite in the chloritized mafics. Locally it appears the chlorite is altering to sericite(?). 82.3 100 82.3 83.8 DACIDACITE(?) VOLCANICLASTIC SHATTERED 83.8 82.3 83.8 Light grey, foliated. 1% very fine grained magnetite throughout, 1%-10% fine grained to coarse grained cubic pyrite, greater abundances in the foliation plane. Sugary streaky texture. Final 0.5 m is shattered and "clay" fault gouge. 83.8 89.4 83.8 89.4 DYK MONZONITE DYKE **BROKEN** 83.8 89.4 100 <0.5 <1 3 Light grey. Similar to 45.9 to 61.7 m but homblende crystals are larger, <2 mm. Quartz vein pieces at 88.0 m.

			<u>NOR</u> A	ANDA EXPLO	DRATI	ON C	OMPA	NY LT	<u>D.</u>							1≖very v 2=weak	weak		3≈m 4=st	oderate		5=very si	irong	
Data Ca	liared Aug 1	1104	DATE COMPLETED Aug 12/94	CORE SIZE BDBGM		F	IP TESTS			PPAR	EDTY	KLIYUL		PPO IE	CT NO. 5		NTS	No 0			NORTH (W.R.T. TF	PILE)	
Date Co	nared Aug		FIELD CO-ORDINATES	COKE SIZE BUBGM	DEPTH		RING		GLE	FROF	ERIT	KLITUL		PROJE	.CT NO. 3	+0	SHEE			+		CLINATIO		
	04001			loup zoe	131.1		CORRECTED	RECORDER	CORRECTED			ELEV.		DIP			HOLE		10			ERDMAN		
	910N		ELEV. 1760	DIP -70°	131.1	RECORDED	CURRECTED	MEGAMUES.	COMMECTED				\rightarrow		-		NK-9							
DEP.	2555E	,——	LENGTH	BEARING 035*				<u> </u>		DEP.		LENGT	тн п	BEARIN	VG					DATE:	August	15, 1994	7551	
	1					<u> </u>	,		GEOTEC		1	-					GE	OCHE	<u>-M</u>	, 		 	ASSAY	
		ROCK	DESCI	RIPTION			1	% RECO	%	%	96	Frac					l		l_	l .		l		SAMPLE
FROM	то	TYPE				FROM	TO	VERY	Py	СР	Mt	Dens			FROM		Carb				Sil Gyp		то	No.
89.4	95.9		ANDESITE		200	89.4	95.9	100	<0.5	1	1	30			59.4	95.9	1	1 2	2	4	- 3		91.4	69905
			Medium grey-green. Gypsur			<u> </u>	ļ			<u> </u>		\vdash	-					 	₩			91.4	93.4	69906
			some fractures at 45%. Hors			ļ							-				<u> </u>	! —	╄		—	93.4	95.4	69907
			(<0.5%) at 20° to CA. Magne			ļ					<u> </u>						<u> </u>		-	 	4	ļ		
			gypsum fractures but local si			ļ <u></u>		!					\longrightarrow				<u> </u>	1	<u> </u>	ļ	Ц_	1		
			disseminated blebs. Carbon			<u> </u>							\sqcup				<u> </u>							
			below 91.0 m. Chlorite fracti			1		<u></u>			<u> </u>						<u></u>		<u> </u>	L				
			grained pyrite. Pyrite conten			<u> </u>													<u> </u>					
			selvages and adjacent to sor																<u>L</u>					
			it increases to 15%. Epidote	fracture fill at 50° to	70°,																			
			some with associated gypsur	m or carbonate.															<u> </u>					
			92.0 m - 1 cm gypsum-magn	etite-epidote-trace o	halco-														I					
			pyrite vein at 20°.																					
			93.2 m - Gypsum veinlet - tr	race chalcopyrite at	30°.																			
			95.0 m - 2-3 mm gypsum-py	rite (60%) veinlet at	15°.														П					
			95.8 m - gypsum - pervasive	magnetite fracture	at 45°,																			
			locally widening.														T							
			95.4 m - Gypsum-msv magn	etite fracture, trace	pyrite at																			
-			70°.					<u> </u>																
						1								一						1				
95.9	106.2	AND	ANDESITE (FELDSPAR PH	YRIC)		95.9	106.2	100	5	<0.5	1	30			95.9	106.2	1	1	1	4	- 3	95.4	97.4	69908
			Medium grey green, local sa		spar.														1			97.4	99.4	69909
-			Minor discontinuous carbona			 		<u> </u>										1				99.4	101.4	69910
			(hairline) fractures horsetailir			 											 	t	T	—	_	101.4	103.4	69911
			epidote fracture fill. Fine gra			 						1	1	\neg				1	1	1	1	103.4	105.4	69912
			Pervasive sericite, unfoliated			 	 	——		 	-		-					1	1	1		105.4	107.4	69913
			veins with massive fine grain			 		 		 	-							 	┼			1.551.1		
	 		rare (yellowish) chalcopyrite(1					 	_	 	 		1		
	 		pyrite? Massive magnetite of				 				 	 	-				1	 	t	 		1		
	 		veins and is disseminated in			 	 			\vdash	 						 	 	+		 	 		
			fine grained magnetite). Loc			 	 	 	 	 		\vdash	 - 	-			 	 	 	\vdash	 - - - - - - - - - 			
	\vdash		fine grained magnetite). Loc			+	 					\vdash					 	├	\vdash	$\vdash \vdash$		1		
	 		green, fine grained, rhyolite(-	\vdash	\vdash		 	+	
<u> </u>	 		gypsum fractures. In genera			 		 			 						├─	 	┢		-	 		
-	 		as fine grained or in 1 mm "t			+		 	<u> </u>	 	 	1					-	├—	┼	-	- -	 		
<u> </u>		<u> </u>	as mie gramed or in 1 mm "C	DEUS . VERY THE, 10	<u>,aı</u>	.L	<u> </u>	<u> </u>	L	<u> </u>	L		نــــا	1				Ц		ئــــــــــــــــــــــــــــــــــــــ	Щ_			

1≖very weak

2=weak

3=moderate 4=strong

							ID TEOT							I		2-W681	1		45.5						
Date Col	lared Aug 1	1/94	DATE COMPLETED Aug 12/94	CORE SIZE BDBGM			IP TESTS			PROP	ERTY	KLIYUL	<u> </u>	PROJ	ECT NO. 5	48							R.T. TRUE	<u> </u>	
			FIELD CO-ORDINATES		DEPTH		RING		IGLE								SHEE		10				NATION		
LAT. 19	910N		ELEV. 1760	DIP -70°	131.1	RECORDED	CORRECTED	RECORDED	CORRECTED			ELEV.		DIP			HOLE					Y L. ER			
DEP. 2	2555E		LENGTH	BEARING 035°				<u> </u>		DEP.		LENGT	TH	BEAR	NG		NK-9			DATE	Aug	ust 15, 1			
						L			GEOTEC	<u>H</u>							GE	OCHE	M			_	AS	SAY	
		ROCK	DESCR	RIPTION				% RECO	%	96	%	Frac	1					1	l	İ	11	- 1		S	SAMPLE
FROM	то	TYPE				FROM	TO	VERY	Py	Ср	Mt	Dens	<u> </u>		FROM	TO	Carb	Chlor	Ep	Ser	Sil	Syp F	ROM T	·o	No.
			chlorite, usually as <1 cm "pie	aces" within gypsun	n veins.														<u> </u>		Ш	\bot	$-oldsymbol{\perp}$		
			The most common occurrence										<u> </u>						<u> </u>		Ц				
			selvages of gypsum veins or '						l												Ш				
			Chalcopyrite - 98.5 to 94.6 m																		Ш				
-			rite in a gypsum-cabonate bre	ccia at 20°), 103.5	m,																Ш	\perp			
			103.7 m (5%), 104.9 m.											L				<u></u>	<u> </u>		Ш			i_	
			Magnetite - 95.9 to 96.6 m (fr																		$\Box \Gamma$	\bot			
			10%), 96.6 m (3 mm massive																<u> </u>						
			99.6 m (4 mm magnetite (3%	pyrite) (gypsum) 5	0°), 99.6																	\perp	\bot		
			to 99.8 m 10% fine grained m																匚		Ш				
			massive magnetite in dissemi	inated gypsum "blo	wout"),																Ш				
			100.7 m (fracture fill magnetit																<u> </u>		Ш	丄			
\Box			in fractures and as 2 mm bleb	s), 105.7 to 106 m	(fractures												<u> </u>				Ш				
			and blebs as previous).																		Ш	\bot			
			101.9 to 102.6 m - Pyrite-gyps	sum flooded section	n,								<u> </u>								Ш				
			appears to be a footwall alters	ation envelope to a	gypsum														<u> </u>	L	Ш	\bot			
			vein (5 mm) at 5°.						<u> </u>				Ĺ					<u></u>			Ш				
			103.7 m - 3 cm, rhyolite dykel																		Ш	\bot			
			105 m - Similar dykelet, uppe	r contact at 20°, lov	wer con-																Ш	\bot			
\Box			tact at 10°.																<u> </u>						
																			<u> </u>						
106.2	108.8	AND	ANDESITE			106.2	108.8	100	3	0.5	20	35			106.2	109	-	2	1	4	Ŀ	4 1	07.4 10	9.4	69914
			Medium green-grey with blead																						
			108.4 m. Abundant gypsum,	fractures at 80° to	90° give																				
			core a cracked appearance.	Gypsum veinlets (<	1 mm)																				
. 1			at 110°. Chalcopyrite within a	and on selvages of	gypsum														<u> </u>						
			veins. No carbonate. Rare e																					$\Box \Box$	
			magnetite on selvages of gyp	sum fractures, veir	s and																				
			disseminated in altered envel																						
			fractures/veins do not parallel						T.												$\Box T$				
			generally trend 30° to 45° to 0																						
			been altered by pervasive gy					Ţ.											I		\sqcap				
			has magnetite fractures at ma			1															\sqcap				
			grained pyrite and pyritic bieb										T								П				
			pyrite content increases to 10																Г		\Box		\neg		

NORANDA EXPLORATION COMPANY LTD. 1=very weak 3=moderate 5=very strong 4=strong N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) PROJECT NO. 548 DIP TESTS PROPERTY KLIYUL DATE COMPLETED Aug 12/94 CORE SIZE BDBGM Date Collared Aug 11/94 SHEET 8 OF 10 MAGNETIC DECLINATION DEPTH BEARING ANGLE FIELD CO-ORDINATES DED CORRECTED LAT. ELEV. DIP HOLE No. LOGGED BY L. ERDMAN DIP -70° 131.1 RECORDED CORRECTED ELEV. 1760 LAT. 1910N NK-94-25 BEARING DATE: August 15, 1994 DEP. LENGTH LENGTH BEARING 035° IDEP. 2555E ASSAY **GEOTECH GEOCHEM** SAMPLE % RECO DESCRIPTION ROCK Mt FROM TO Carb Chior Ep Ser Sil Gyp FROM TO No. FROM TO VERY Dens TO TYPE FROM gypsum veins and veinlets. Chlorite fracture fill. Chalcopyrite - 106.5 m Gypsum-pyrite-trace chalcopyrite veinlet at 50°, 107.4 m Quartz-chlorite (1 cm) vein with bleb of pyrite-chalcopyrite, 50° to CA. 108.5 m - Gypsum quartz vein (4 mm at 30° with 1% chalcopyrite blebs on selvages and within vein, magnetite also on selvages, 108.8 m gypsum-massive magnetite-trace chalcopyrite and fine grained pyrite in a 45° fracture. 107.6 to 108.4 m - Bleached by pervasive gypsum. Abundant magnetite rich fractures generally at 45° but locally subvertical and blebs of massive magnetite (<1 to 2 mm). Total magnetite content is ~30%. 2%, <1 mm blebs of Other magnetic sections from 106.5 to 106.6 (fracture fill and disseminated 10%), and 106.8 to 107.3 (fracture fill magnetite 15%, 45°). Massive magnetite on selvage of gypsum fracture at 108.8 m, 45°. 69915 <1 <0.5 20 108.8 113 3 109.4 111.4 100 35 AND ANDESITE 108.8 112.8 108.8 112.8 111.4 113.4 69916 Medium green-grey. Similar to 106.2 m but slightly more fractured as in above interval. Also 80% of this interval is magnetic, with fracture fill magnetite and disseminated blebs. Magnetite and chalcopyrite are associated with gypsum veinlets and fractures, varying from subvertical to 60° to CA. Not associated with the gypsum fractures 108.9 m - 1 cm gypsum-magnetite vein at 10°. 110.0 m - Quartz-gypsum-epidote (5 mm) vein at 35° with 2% chalcopyrite. Epidote fracture fill extends 10 cm downwards.

111.5 m - Gypsum-chlorite (1 cm) vein at 40° with trace

chalcopyrite.

1=very weak

3≈moderate

																2=weak	_		4=stn						
Date Co	itared Aug 1	41/04	DATE COMPLETED Aug 12/94	CORE SIZE BDBGM	/ 		DIP TESTS	š		PROP	ERTY	KLIYUL	ات-	PROJ'	JECT NO. 5					GRIF	O NO	RTH (V	W.R.T. TF	RUE)	
Date Com	arou nuy		FIELD CO-ORDINATES	100.12 222 222	DEPTH		ARING		NGLE								SHEF	ET 9 OF					CLINATIO		
LAT. 19	010N		ELEV. 1760	DIP -70°	131.1		CORRECTES	RECORBED	CORRECTED	LAT.		ELEV.		DIP			HOLE	≟ No.		LOG	JGED	BY L.	ERDMAN	A	
DEP. 2			LENGTH	BEARING 035°		+	-			DEP.		LENGT	JTH T	BEARI	ING		NK-F	94-25		DAT'	E: A	ugust 1	15, 1994		
DEP.	<u> </u>		LENGIN	BEARING GO.		+		<u></u>	GEOTEC			<u> </u>					GE	OCHE	έM					ASSA'	
1	4 1	ROCK	DES/	CRIPTION			1	% RECO		%	%	Frac							T		T	—	,		SAMPLE
	то	TYPE	1	Will Lion		FROM	то	VERY	Py	Cp	Mt	Dens	. 1	1 _'	FROM	то	Carb	Chlor	Ep	Se	a sp	I Gyp	FROM	1 TO	No.
FROM			Rare carbonate fracture fill.	Trace dissemined /	ovrite but	+	+	+		1		1									I				
			pyrite is seen along selvage			+	+	+	†	 		†	1								I				
			not the ones @ 80°. Local h			+	+	 				—									I				
			HOL WIS OHES ES OU . LOCAL I	MOISCLAIMING COACHIO.		+	+	 		\vdash		1	—								\mathbf{I}				
112.8	131.1	+ ANE	ANDESITE			112.8	8 131.1	1 100	ر ا د	1 2	30	0 40	٠ار		112.8	131.1	1	1 1	1 2	4	4	- 4	113.4	4 115.4	4 69917
112.6	131.1)	+ AND	Medium green-grey to bleac	shad Eradura dans	ity has	+	1 ::::	+		 		1	1						\top		T		115.4	4 117.4	4 69918
		 '	increased, locally to 50%, at	A PO to PO to CA er	that the	+	+	+	 	 	1	1	1						1		\top		117.4	1119.4	69919
			core appears cracked. This			+	+	+	 	 		+	1						1				119.4	121.4	69920
		 '	types as seen in the above t	- Micrival Valles Chair	Amirita and	4	+	+	 	1		+	1				1	\top	1				121.4	123.4	
			magnetite occur as describe				+	+	+	+		+-	1					1					123.4	1 125.4	69922
			ing of gypsum fractures but			+	+	+	+	+		+	+				1				1		125.4	4 127.4	69923
\longrightarrow	 -		this texture. Overall most o				+	+	+	+	 	+	1		1	\vdash	1	1	1	\top	\top		127.4	1 129.4	69924
	↓	4'	fill, vein, blebs and diffuse a	COLG IS HIGGINGUE WI	All Hawuis	4	+	+	 	+		+	 		\vdash			_	\top	1	1	1	129.4	4 131.1	1 69925
		 '	grained magnetite. The latte	ATORS BITT DRIVES OF THE	Ally make	+	+	+	+	+		1-	1				1	1							
		← —'	the rock appear spotted (114	44 8 to 115 2 117 4	118 2	+	+	+	+	+		+	 			1			1_						
\longrightarrow			121.1 to 121.9, 122.4 to 124			+	+	+	+	 		+	1					1	1_						
\vdash		 '	128 m). Some of the spots			+	+	+	+	 		+					1	1	1		_				
			118.3 m - 60° to CA gypsum-p			+	+	+	+	1-		+	 				1	\top	1						
$\overline{}$		 	116.55 m - 60° to CA, 4 mm			+	+	+	+	+	 	+	 		 	†	1	1	+		\top		1	,	
}		 '	chalcopyrite/pyrite on selvar	1 gypsum vem man e	m that	+	+	+	+	+-	1	+	1		—	1	1		1		1			,	
$\overline{}$		4'	1 mm massive magnetite.	ges and outward non	A unac	+	+	+	+	+	 	+	+	 	 	1	1	\vdash	+		\top				
<u> </u>		 '	117 m - 50° to CA, massive		~ /5 mm)	+	+	+	+	+		+	+	+	+	 	+	+	+	+	1	1			
					u (a min)	+	+	+	+	+	\vdash	+	+	_	+	1	+	+	+	+	\top	1			
			veinlet, trace associated pyr	mte/chalcopyrite.	/70° tc	.——	+	+	+	+		+-	+	 	+	 	+	+	+	+	\top	+			
	4'	 	114.7 m - 7% smeared epid	10te on tracture surre	CB (10 10	.+	+	+	+	+	+	+	+	+	 	+	+	+-	+	+	+	+-	 	 	
	 '	4'	CA).Rare carbonate veinles			+		+	+	+-	+-	+	+	+	+	+	+-	+-	+	+	+	+-	+	1	1
	 '	 	116.9 to 117.2 m, 118.6 to 1			+	 	+	+	+	+	+	+	+	+	+	+	+-	+	+-	十	+	+		1
	 '	 '	125.5 to 126.1 m, 127.9 to 1					+	+	+	+	+-	+	+	+	+	+	+	+	+-	+	+-	+	1	
<u></u> '	↓ '	 _'	of pervasive gypsum and 10	0% magnetite in trac	tures,				4	+	+	+-	+	+	+	+	+-	+	+-	+-	+	+	+		+
<u></u> '	 '		veins and blebs as describe							+	+	+	+'	+	+	+	+	+	+	+-	+	+	+	 	+
'	<u> </u>		of the patchy magnetite are	sas have pervasive e	pidote.	- 			4	+	+	+	4	+	+	+	+	+-	+-	+	+	+-	+	+	+
<u> </u>	<u> </u>									+	 	+	4'	+	+	+	+	+-	+-	+	+	+-	+-	+	1
			Disseminated pyrite <1% ex	xcept on selvages of	gypsum						 	 	 '	+-	+	+	+	4-	+-	+	+	+	+		+
'			veins.							 	—	+-	- '	+-	+	+	+	+	+-	+-	+	+	+	+	+
<u> </u>			118.1 m - 15*, gypsum vein		.e in	_					4—	 	 '	—	+		—		—	+-	+	+	+		+
			center, trace associated cha	alcopyrite.						Щ.			'ـــــــــــــــــــــــــــــــــــــ				Щ.			┸		ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	

3=moderate 5=very strong 1=very weak 4=strong GRID NORTH (W.R.T. TRUE) DATE COMPLETED Aug 12/94 CORE SIZE BOBGM DIP TESTS PROPERTY KLIYUL PROJECT NO. 548 N.T.S. No. 94D/9 Date Collared Aug 11/94 SHEET 10 OF 10 MAGNETIC DECLINATION FIELD CO-ORDINATES DEPTH BEARING ANGLE 131.1 RECORDED CORRECTED RECORDED CORRECTED LAT. ELEV. DIP HOLE No. LOGGED BY L. ERDMAN LAT. 1910N ELEV. 1760 DIP -70° BEARING NK-94-25 DEP. 2555E LENGTH BEARING 035° DEP. LENGTH DATE: August 15, 1994 GEOCHEM ASSAY GEOTECH DESCRIPTION SAMPLE ROCK % RECO % Frac TO Carb Chlor Ep Ser Sil Gyp FROM FROM TO FROM TO TYPE FROM TO VERY CD Dens No. 121.1 to 121.9 m - Epidote/magnetite "clasts" may be a primary texture, a flow breccia?? 124.5 m - 60° to CA massive pyrite veinlet (2-3 mm) with 125.8 m - 45° to CA gypsum-magnetite (1 cm vein), trace chalcopyrite. 130.7 m - 10° to CA gypsum fracture/veinlet with 30% very fine grained disseminated pyrite and 2% very fine grained chalcopyrite associated with the pyrite. 129.8 m - 50° to CA, 3 cm gypsum vein with 40% magnetite, 1% disseminated chalcopyrite below this for 10 cm, 1 cm chalcopyrite occurs along 50° fractures (gypsum).

1=very weak

3=moderate

5=very strong

2=weak 4=strong PROJECT NO. 548 N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) PROPERTY KLIYUL **DIP TESTS** CORE SIZE BDBGM Date Collared Aug 12/94 Date Completed Aug 13/94 SHEET 1 OF 5 MAGNETIC DECLINATION DEPTH ANGLE FIELD CO-ORDINATES BEARING DIP HOLE No. LOGGED BY L. ERDMAN ELEV. 118.9 RECORDED CORRECTES RECORDED CORRECTED LAT. ELEV. 1860 m DIP -70° LAT. 2315N BEARING NK-94-26 DATE: August 16, 1994 DEP. LENGTH BEARING 025° **DEP. 1300E** LENGTH **GEOCHEM** ASSAY **GEOTECH** SAMPLE % RECO Frac **DESCRIPTION** ROCK FROM TO Carb Chlor Ep I FROM TO No. Dens **FROM** TO VERY FROM TO 2.1 **OB OVERBURDEN** 100 <1 2.1 DIOIDIORITE 9.4 Medium grey, medium grained, locally magnetic. Pyroxene phyric with well developed pyroxene ≤2 mm. 100 9.4 10.2 9.4 10.2 10.2 DYK MAFIC DYKE Dark green/black with 10%, 1-3 mm cream dots of feldspar. Moderately magnetic. 10.2 15.2 10.2 100 <0.5 15 15.2 10.2 15.2 DIO DIORITE At upper contact 20 cm of very dark (melanocratic) diorite. 15.2 19.5 15.2 19.5 100 15.2 19.5 DIO DIORITE Variable sections with good diorite texture, locally fine grained but generally medium grained. 16.8 m - Oxidized 2 cm fault. 19.5 23.0 19.8 21.8 69926 <1 19.5 23.0 100 19.5 23.0 GAB GABBROID Dark green spots in a light green-grey groundmass. Approximately 60% chloritized pyroxene crystals and crystal traces in a feldspar rich groundmass. Locally pervasive epidotization of the feldspar has turned the groundmass a light green colour. Epidote also as fracture fill @ 45°. Medium grained pyrite ranges from <1 to 3% but generally is only 1%, evenly distributed. Local silica flooding. Rare, grey xenoliths to 3 cm. Pyroxene crystals range in size from <1 mm to 5 mm. Grading downwards to a more dioritic phase (see below). <1% Bi.

1≃very weak

3≈moderate

			MOIV	NDA EXPLO	<u>// (</u>	<u> </u>	MAIL VII.	1 6 1	<u> </u>							~			4-04				,		
																2=wea		*1= O/	4=atr		HORTH	1 14/ D '	TOU		
Date Coll	lared Aug 1	12/94	Date Completed Aug 13/94	CORE SIZE BDBGM			OIP TESTS			PROP	RTY	KLIYUL		PROJE	CT NO						NORTH				
			FIELD CO-ORDINATES		DEPTH		ARING		IGLE	<u> </u>		T						T 2 OF			VETIC D				
LAT. 23	J15N		ELEV. 1860 m	DIP -70°	118.9	RECORBED	CORRECTES	RECORDED	CORRECTED			ELEV.		DIP			HOLE				ED BY				
DEP. 1	300E		LENGTH	BEARING 025°		<u> </u>	Ι			DEP.		LENGT	<u>rh</u>	BEARI	NG		NK-9				: Augus	± 16, 19	94		
						T			GEOTEC	H								GEOC	<u>HEN</u>	<u> </u>			L	ASSA	
J	. 1	ROCK	DESCF	RIPTION				% RECO	%	%	%	Frac	1 1												SAMPLE
FROM	то	TYPE	1			FROM	то	VERY	Py	Ср	Mt	Dens					Carb			Sil	<u> </u>		FROM		No.
23.0	32.8		DIORITE (MELANOCRATIC?	?)		23.0	32.8	100	<1		1	1		ليت	23.0	32.8	<u> </u>	2	2		<u> </u>	igspace	30.5	32.5	69927
			Coarse grained, gradational v	with gabbroid (see a									\Box				↓	↓	Щ	ــــــ	<u> </u>			 '	 '
			<1 mm crowded euhedral feld											لا			↓	 	ㄴ	<u> </u>		igspace	LI	 '	 '
,			Overall a darker grey colour of				T		Ι					لا			<u> </u>		丄	↓		<u> </u>	igsquare	 '	 '
. 1			<1 mm mafics. Pyroxene cry						T								<u> </u>		ــــــــــــــــــــــــــــــــــــــ	↓	<u> </u>			 ′	 '
			3 cm as above. About 20% of	of the smaller crysta	als are									لا		<u> </u>		<u> </u>	↓	<u> </u>		igsquare		 '	
 			lathe shaped and may be hor	mblende. 1% fine ;	rained											<u> </u>		Щ.	<u> </u>	<u> </u>				'	
		$\overline{}$	discrete disseminated magne	etite in ground mass	i. Local												<u> </u>	<u> </u>		<u> </u>		$ldsymbol{ld}}}}}}}$		'	
	,		pervasive epidote. The textu	ure is not as "spotty"	as the	†													L	L		'		'	
			gabbroid, as only 10% of the																<u> </u>	<u> </u>				'	 '
:	,		14 mm.			1		Ī									<u> </u>	<u> </u>			<u> </u>		$oxed{oxed}$	 '	 '
	, 		31.6 m - 45° to CA. 5 cm this	ck, completely chlo	ritized			T								<u> </u>	<u> </u>		<u> </u>		<u> </u>			'	
·			zone with mafic crystals com	pletely altered to gi	nosty	1																<u> </u>	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	'	 '
	,		white, pervasive carbonate.													<u> </u>	<u> </u>	<u> </u>	<u> </u>				igsquare	ـــــ '	 '
1			Pyrite is disseminated on ma	amins or within chlo	ritic	1										<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		لـــــــا	'	L'
- 1			pyroxene, or occurs as fractu			1												<u> </u>	<u> </u>	<u> </u>	<u>↓</u>		igsquare	 '	 '
							1									<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		$ldsymbol{ld}}}}}}$	 '	<u> </u>
32.8	37.7	QMZ	QUARTZ-MONZONITE DYK	Œ		32.8	8 37.7	7 100	<1		10	1			32.8	37.7	<u> 1</u>	1	<u></u>	<u>. </u>	· <u> </u>		$oxed{oxed}$	'	
	(Dark grey, 10% white round of	dots of quartz or fel	dspar,	1	1										<u> </u>		<u> </u>	<u> </u>	<u> </u>			 '	↓
			<1 mm to 2 mm. 30% needle	e like homblende, r	iot		1	Ι										<u> </u>	<u> Ш</u>	<u> </u>	<u> </u>	<u> </u>		<u></u> '	ــــــ
—			aligned. Homblende beginning			1	T										<u> </u>		<u></u>		<u> </u>	<u> </u>		<u> </u>	
<u> </u>			pyrite. <1% fine grained/frac			1		1									<u> </u>	<u></u>	L		<u> </u>				 '
			quartz veins (5 mm - 8 mm)			1												<u> </u>	L	L	<u> </u>	<u> </u>			 '
\vdash			pervasive carbonate. 10% v																L			<u> </u>			
 			disseminated magnetite "dots					1									Ι	<u> </u>	<u> </u>		$oxed{L}$		'	 '	
			Upper contact @ 45° to CA is		A .		1	1										<u> </u>	$oxed{\mathbb{L}}$						<u> </u>
 	r - r'		carbonate-chlorite-quartz "ve				1	1	T								<u> </u>		<u> </u>		<u> </u>				
-		1	Fracture density increases to			1		1	1											<u> </u>	\prod				
—			Lower contact @ 10°.			1		1	1			1					<u> </u>				<u> </u>				
-	<u> </u>							1											L						
-	\vdash	 	†				1	1	1																
		 	†			1	1	1	1			1													<u> </u>
$\overline{}$	 					1	1	 	1			1													
		 	 			+	 	1	1	\top	1	1	1												
•	4	1														+	_	_	+-	_		-			

1=very weak 3=moderate 5=very strong
2=weak 4=strong

Date Co	lared Aug 1	2/94	Date Completed Aug 13/94	CORE SIZE BDBGM			IP TESTS	3		PROP	ERTY	KLIYUL		PROJE	CT NO	. 548	N.T.S.	No. 94	ID/9	GRID	NORTH	(W.R.	T. TRUE)	
,			FIELD CO-ORDINATES		DEPTH		RING	AN	GLE								SHHE	T 3 OF	5	MAGN	ETIC D	ECLIN/	ATION		
LAT. 2	315N		ELEV. 1860 m	DIP -70°	118.9	RECORDER	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY	L. ERD	MAN		
DEP. 1	300E		LENGTH	BEARING 025°						DEP.		LENG	TH	BEAR	NG		NK-8	4-26		DATE:	Augus	t 16, 19	94		
								A	GEOTEC	H								GEOC	HEN	A				ASSA	₹
. 1	,	ROCK	DESCR	IPTION				% RECO	%	%	%	Frac													SAMPLE
FROM	то	TYPE				FROM	то	VERY	Py	Ср	Mt	Dens	1 1		FROM			Chlor	Еp	SII			FROM	то	No.
37.7	39.2	DIO	DIORITE	***		37.7	39.2	100	<1	0.5	3	<1			37.7	39.2		2	2	•					
			Same as 23.0 to 32.8 m but x	enoliths are rare.																					
			38.3 m - 0.5 mm blebby chalc	opyrite on selvage	s of																				
		-	quartz fractures (5%) 45°.																						
			38.4 m - Bleb of chalcopyrite i	in matrix. Magneti	te	1																			
			content slightly increased over	r previous diorite.																					
39.2	39.8	DIO	DIORITE			39.2	39.8	100	2	-	1	-			39.2	39.8	•	3	-	3					
			Completely veined and floode	d by quartz so that	rock																				
			looks brecciated.								L														
39.8	40.4	DIO	MELANOCRATIC DIORITE			39.8	40.4	100	<0.5	•	15	<1			39.8	40.4	•	•	-	•					
			Very dark grey, medium grain	ed, <5% phenocry:	sts.																				
			Fine grained magnetite. Grad																						
			fine grained feldspar phyric di																			<u> </u>			
			fill @ 30°. Feldspar phyric dic																						
			euhedral feldspar in a fine gra	ined, dark grey gro	oundmass															L					
			(magnetic).																						
												L													
40.4	57.7	DIO	DIORITE (MELANOCRATIC)			40.4	57.7	100	<1	-	5	<1			40.4	57.7	-	3	2	•			40.7	44.7	69928
			Same as 23.0 to 32.8 m but o	nly 1% phenocryst	s >2mm,				I																
			xenoliths are rare.			1						L					Ĺ		l						
			40.8 m - 2 cm quartz-chlorite-										L												
			44.3 to 44.5 m - Completely s					I																	
			45°, lower contact at 20°. Pyr	ite fracture fill, 1%	fine			I																	
			grained magnetite								<u> </u>											L			
			44.7 to 45.2 m - Silicified sect																						
			Upper contact irregular along	fractures at 10°, lo	wer con-				I																
		· .	tact at 40°.																						
			47.6 to 48.8 m - Similar silicifi	ied section. Upper	contact	,													<u> </u>						
			20°, lower contact 30°.																						
			Xenolith content increases to	0.5% below 57.0 m	1.																				
						L																			

NORANDA EXPLORATION COMPANY LTD. 1=very weak 3=moderate 5=very strong 4=strong 2=weak **DIP TESTS** PROPERTY KLIYUL PROJECT NO. 548 N.T.S. No. 94D/9 **GRID NORTH (W.R.T. TRUE)** CORE SIZE BDBGM Date Completed Aug 13/94 Date Collared Aug 12/94 SHEET 4 OF 5 MAGNETIC DECLINATION ANGLE FIELD CO-ORDINATES DEPTH BEARING RECORDED CORRECTED LAT. HOLE No. LOGGED BY L. ERDMAN ELEV. 118.9 RECORDED CORRECTED ELEV. 1860 m DIP -70° LAT. 2315N NK-94-26 DEP. LENGTH BEARING DATE: August 16, 1994 BEARING 025° LENGTH DEP. 1300E ASSAY **GEOCHEM GEOTECH** SAMPLE % RECO % Frec DESCRIPTION ROCK FROM TO **VERY** FROM TO Carb Chlor Ep | No. TO FROM FROM TO TYPE 57.7 58.9 58.9 100 58.9 DIO DIORITE(?) 57.7 57.7 Gradational with above interval. Fine grained, moderately silicified, epidote fracture fill, chlorite fracture fill. Fine grained pyrite. Carbonate fracture fill. 63 69929 58.9 119 2 2 DIO DIORITE (MELANOCRATIC) 58.9 118.9 100 <0.5 58.9 118.9 81.3 69930 79.3 Similar to 23 to 32.8 m with 3% xenoliths, some of them 94.5 96.5 69931 15 cm large. Subangular. More pyroxene phenocrysts 104.4 69932 than previous interval, ~15% so core is somewhat 69933 117 118.9 "spotted". Epidote fracture fill, carbonate fracture fill, local pervasive epidote. Quartz veins (5 mm) at 25° to CA. Trace fine grained pyrite, discrete disseminated fine grained magnetite. Two fracture sets 45° and 135°. Euhedral feldspar in groundmass is more localized. 63.9 to 66.4 m - Section of carbonate veining and flooding. Local quartz veins, carbonate-chlorite veins, quartzcarbonate veins. Pyrite in veins and as fracture fill (3%), locally as blebs replacing mafics. Fractures @ 45°. Not magnetic. 69.2 to 69.35 m - Fine grained, magnetic, medium green dyke @ 70°. 76.8 to 77.5 m - Chloritized with 10% magnetite, not spotted", 1 mm euhedral ghosty feldspar in a fine grained 77.5 to 78.0 m - Carbonate and carbonate/quartz veined section with 5% pyrite as fracture fill. Silicified to chloritic. Below 78 m xenoliths become rare and phenocrystic pyroxene >1 mm decreases to 1%, similar to interval from 40.4 to 57.7 m. 88.2 to 88.4 m - Silicified, similar to 44.7 to 45.2 m. Upper and lower contacts @ 20°. Feldspar phyric dyke. 1 mm feldspar phenos in a very fine grained grey matrix. Siliceous. Upper contact at 30°, lower contact @ 45°.

Magnetic.

94.4 to 101.7 m - Large xenoliths as before.

1=very week

3=moderate

																weak			=strong					
Date Col	Bared Aug	12/94	Date Completed Aug 13/94	CORE SIZE BDBGM			DIP TESTS			PROP	ERTY	KLYUL	P	ROJEC	T NO. S							T. TRUE	.)	
			FIELD CO-ORDINATES		DEPTH		ARING		GLE								HET 5 ()F 5			DECLINA			
LAT. 2	.315N		ELEV. 1860 m	DIP -70°	118.9	RECORDED	CORRECTED	RECORDED				ELEV.)IP			LE No.				L ERD			
DEP. 1	300E		LENGTH	BEARING 025°						DEP.		LENGT	Н В	EARING	3	N	(-94-2		DATE	: Augu	st 16, 19)94		
									GEOTEC	H							GE	OCH	EM				ASSA'	
; J	1 1	ROCK	DESCF	RIPTION				% RECO	%	%		Frec											, ————————————————————————————————————	SAMPLE
FROM	то	TYPE				FROM	то	VERY	Py	Ср	Mt	Dens		FI	ROM 1	O C.	nb Chi	or E	Ep Sil	<u> </u>		FROM	TO	No.
			102.5 to 103.9 m - White qua	artz vein. Upper co	intact at																	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	· · · · · · · · · · · ·	
			70°, lower contact @ 30°. Or	one bleb of chalcopy	rite. One	<u> </u>											\bot			<u> </u>	Щ	igsquare	· · · · · · · · · · · · · · · · · · ·	4
			chloritic fracture fill with pyrite	te.				·										_		↓	<u> </u>	\sqcup	,	
			109.7 to 111.1 m - Vertical to					<u> </u>		<u> </u>							_	_	—	<u> </u>	<u> </u>	↓	<u> </u>	—
		<u> </u>	fracture, widening to quartz-c	:arbonate vein (2 cr	n) at				<u> </u>	L		<u> </u>			_		_ _	\bot		<u> </u>	ļ	├ ──-		
لــــــــــــــــــــــــــــــــــــــ		<u> </u>	lower end (with 4 mm silicified	d envelope).			<u> </u>	<u> </u>	<u> </u>								Ц.,	-		 	↓'	 	,	₩
	لي	<u> </u>	116.1 m - 3 mm carbonate-ch	nlorite-epidote (selv	/age)			<u> </u>	<u> </u>					_				_		↓	——	├		
			veinlet at 15°. 5% dissemina	ated pyrite in alterati	ion		<u> </u>								-		-	4		↓	Ļ—	├	·	
			envelope.			<u> </u>						1	-		$-\!\!\!\!\!+$			_		ļ	<u> </u>	├	,	4
	للسلا	ـــــــــ′	118.4 m - Vuggy quartz-carbo	onate (open) vein (5	<u>5 mm)</u>	 	 	 '		igsquare	<u> </u>		-	_		-		4-		↓	 _ 	├	'	+
		 '	at 008°.			 	 	↓ '	 				1					+		↓	├ ─-	┸	<u> </u>	1
!		 '					 		 _	<u> </u>	ļ	-		_			+	+			 		'	4
L	└─ ─-	 '	ļ					 '	 	\vdash		-	 -	\rightarrow		-		+		 	 	╀╼╼┥	'	1
		 '	ļ					 	├	<u> </u>	<u> </u>	<u> </u>	-	\dashv				-	—	 	 	╀╼╾┤	·'	1
		 '				 					<u> </u>			-			+		 -	┼		╂━┥	'	+
	 '	'ـــــــــــــــــــــــــــــــــــــ					 	 	ļ	 	ļ							+		ļ —	} '	 	'	1
	─ ─	 '	<u> </u>					 	 	├ ─┤						-		+		 	—	 	'	
	 '	 '	ļ					 	 		<u> </u>	ļ	-+			-		+		 	 -		'	+
<u> </u>	 '	 ′						 	 _		├─					-	_			┼	 -	╂━┤	'	1
<u> </u>	↓ ——'	↓'	<u> </u>							— —	<u> </u>		┷			-		-	 -	+	 '	╀	'	+
ļ'	 '	 '	1					 	ļ	 		ļ	\vdash				-	-		┼	├──	╀──┤	'	
	 '	 '						 	 	ļ	<u> </u>		┡			-		+		┼	 	╂╼╼┤	'	+
<u> </u>	 '	 '	<u> </u>				 	┼	 		ļ	ļ			-		-				 	╀	·	+
<u> </u>	 '	 '	 _				 	 	 		 	\vdash		_	-			-		 	 	╁┻┩	'	+
<u> </u>	 '	 					 	 	 		ļ	-		-				-	+-	┿	 	├ }	'	+
	 /	 '				 	 	├ ──	ļ	ļ		—		-+				+		+-	┼	╀──┤	'	+
ļ'	 '	 '					 	 	 			 	 		\dashv		+	+		+	┼──	╂──┤		+
 	 '	 '	 			 	 	 	 			├		-+	-			+		┼	├ ──	╄		+
 	 '	 '	 			┼──	 	 	 	├				\rightarrow						┼—	 	╀	, '	
<u> </u>	 	 '	 			+	├	 		├ ─	├	₩-	 -	-+	$-\!\!\!+$		\dashv	+	$+\!\!-\!\!\!-$	 		} -}		+
ļ	 '	 '					↓	┼	 	 	 -	-	├	-+		\dashv				+-	 	┼╌┤		+
<u> </u>	 '	 '				——	 	┼──	ļ	⊢ —	<u> </u>	ļ	┡	 -	-		-	+		↓	 	┼	<u>'</u>	+
	 '	 '				 		┼	 	 	ļ	 	 +		-		_	+		-	 	╀		+
<u></u>	 '					+	 	┼	 	- -	_	-	 	-				-		+	├ ──	┼─┤	'	+
	'ـــــــــــــــــــــــــــــــــــــ	'ـــــــــــــــــــــــــــــــــــــ					ــــــــــــــــــــــــــــــــــــــ				1	1		1_			1		——		Ь	نـــــ ا		

1=very weak

3=moderate

						-									2=w			4=st						
Date Colla	ered Aug	13/94	Date Completed Aug 14/94	CORE SIZE BDBGM		D	IP TESTS	3		PROP	ERTY	KLIYUL	PF	OJECT	NO. 54)	
			FIELD CO-ORDINATES		DEPTH		RING	AN	GLE	L							T 1 OF	7						
LAT. 21	05N		ELEV. 1740 m	DIP -45°	91.4 M	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.	DI	•		HOLE	No.		LOGG	ED BY	L. ERD	MAN		
DEP. 3			LENGTH	BEARING 035°			<u> </u>			DEP.		LENGT	TH BE	ARING		NK-	94-27		DATE	: Augi	ust 18, 1	1994		
T		!				1			GEOTEC	H							GEO	CHE	VI				ASSA'	4
		ROCK	DESC	CRIPTION				% RECO	96	96	%	96												SAMPLE
FROM	то	TYPE				FROM	то	VERY	Pv	Ср	Mt	Mo		FR	ом то	Carb	Chlor	Ep	Ser	Sil		FROM	TO	No.
- ROW			OVERBURDEN											\neg										
	0.1	-	O VERBORDER			†		 	† · · · · · · ·					\neg		1								
9.1	19.9	M7	MONZONITE?	WELL	BROKEN	9.1	19.9	100	7	-	-				9.1 19.	9	11		4	-		9.1	15.2	70076
9.1	10.0		White, bleached. Complete				-										1	1				15.2	17.2	70077
-			grained to medium grained	disseminated nyrite	Foliated	 	 	 	1			1					 			i –		17.2	19.2	70078
-		 	Local sections altering to cl		1 Onatou.	† 				1		1		$\neg \vdash$			1	T	1		1	19.2	21.2	70079
		-	16.2 m - Possibly mariposit			 		 	†				<u> </u>	\neg	\neg	-					1	\Box		
		-	10.2 m - Possibly manposit	.0.		 	-	 	 	 	\vdash		\vdash	\neg	_	 	 	 	i T	t	1	1		
19.9	20.2	DYK	DYKE			19.9	20.3	100	1	 .	-			11	9.9 20.	31 4	1 2		2	1	1			······
19.9	20.3	DIK	Very fine grained, medium	amon populacive car	honata	10.0	20.0	100	 	\vdash				Ť	-	+	† 			1	 	\Box		
		 	Pyrite "blebs" to 2 mm. 5 n	one cuerty vein et 40°	to CA	 		 	<u> </u>	 		1		_		+-	1		 	†				
			in middle of dyke. 30% wh			 			 		┢	 		\top	_	+	1		1					
				ite discontinuous cart	Milate	 	 	 	 	\vdash		 	 			+	1	 		 		1	-	
		 	streaks.				 	 	 	 	\vdash	 		_		1	1	一	 	┢				
20.0	22.0	147	MONZONITE			20.3	23.8	100	 	 	Η.			12	0.3 23.	8	1 .	!	4	 	1	21.2	24.4	70080
20.3	23.8	IMZ	Same as 9.1 to 19.9 m.			20.0	20.0	1	<u>'</u>	┼──	$\vdash \vdash$	 	 	╅		1	+	1	<u> </u>	†				
<u> </u>		 	Same as 9.1 to 19.9 m.			+	 	+		+		${f -}$	 		_		+	\vdash	ļ		 			
00.0	- 40.4	147	MONZONITE	CL	ATTERED	23.8	33.1	100	10	1-	 .	+	 	12	3.8 33.	1	3		. 5		t —	24.4	27.4	70081
23.8	33.1	MZ	White bleached. Core is m			23.0	33.1	100	' '`	' 	 	 		┯	3.5 33.	+	+	╁	 	1			30.5	
		 				}	 		 	+	├─	 	!	_	_	+-	+	† 	†	 	†		32.5	
 		 	into small platy pieces. Te					+	+	 	╁	 	 	\dashv		+	+	†	 	 	 		34.5	
						 	 	 	 	┼─	 	 	 -	\dashv	_	+	 	1	 	 	+	1		
		ļ	as veinlets, as well as local	ily pervasive. 3-15%	pyrite.	+	 	 	 	+	 	!	 -	\dashv		+	+	╁	1	1	+	 		
	00.0	1.47	MONZONITE			33.1	33.8	3 100	, 	 	 _	+	 	- 3	3.1 33	8	2	. 	5	:	1-	 		
33.1	33.8	MZ		- shellered Cleans	orielto	33.1	33.0	100	' 	 	-	} 	 	- °	0.11 00.	'	+-	+	┼─╌	1	+	 		
			Buff coloured, not broken o			-	 	 	+	+	-	+		_		+-	+	+-	+	 	+	1		
<u> </u>		-	well foliated. Very fine gra	inea pynte, not stretc	neu. No	+			-	+	-	+	 -	-		+	+	+	+	├-	+-	 		
		ļ	original textures. Fracture	tili carbonate and car	Donate	 	 	 	 	┼		┼	 -	-+		+	+	╁	┼	\vdash	┼	+-+		
<u> </u>		1	in foliation planes.			 	}	 	+	┼		 	 	+		+	+-	┿	+	╁	┼─	 		
- <u></u> -	- 22 -		AND FOITE OF IEE			33.8	38.5	5 100) 10	. 	_	 	 	- 12	3.8 38	5 10	0 10	 -	+-	+-	+-	34.5	36.5	70085
33.8	38.5	AND	ANDESITE? TUFF		Heres	33.6	38.3	100	7 70	"	1	+	┼╌╌┼╴	- °	3.0 30	기 '''	''' '''	╫	╁—	 	┼		38.5	<u> </u>
		1	Green to buff streaky textu			 	-	 	 	+-	┼		 			+-	+-	+	\vdash	+	┼	30.3	30.3	70000
		 _ _ 	contact at 45°, lower conta			 	 	 	 	┼	┯	┼	 			┰	+	+	+	┼	┼	╂─┤		
		↓	waxy surface. Some quart			 	 	+	+	₩	┼	┼	 			+	+	╀	+	┼	+-	╂╌╾┤		
		 	pyrite in the foliation plane				 	+	-	┼		 	+			+	+	+	+	┼	 	╂		
l	1	1	fill and carbonate in foliation	on plane. Foliation is	15" to CA.				1		<u> </u>		<u> </u>						<u></u>	ل	1			<u> </u>

1=very weak

3=moderate 4=strong

Date Colla	and Area	13/04	Date Completed Aug 14/94 CORE	SIZE BDBGM		D	IP TESTS			PROPE	RTY I	TIYUL		PROJE	CT NO	. 548	N.T.S.	No. 94	D/9	GRID I	NORTH	(W.R.	T. TRUE	i)	
Date Colle	and Aug	13/54	FIELD CO-ORDINATES	OLL DODG.	DEPTH		RING		GLE						-		SHEE	2 OF	7	MAGN	ETIC D	ECLIN/	ATION		
LAT. 21	05N		ELEV. 1740 m DIP -	45°	91.4 M	-			CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY	L. ERD	MAN		
DEP. 33				NG 035°						DEP.		LENGT	TH	BEARI	NG		NK-9			DATE:	Augu	st 18, 1	994		
T I	3702	1	LENGTH DEAKIN	100 000		<u> </u>		<u> </u>	GEOTEC								(GEOC			-			ASSA'	Y
		ROCK	DESCRIPTION	N				% RECO	%	96	%	%													SAMPLE
FROM	то	TYPE	5255Kiii 1167	•••		FROM	то	VERY	Py	Co	Mt	Мо			FROM	то	Carb	Chlor	Εp	Ser	Sil		FROM	TO	No.
38.5	39.0		MONZONITE			38.5	39.0	100			-				38.5	39.0	2	2	-	2	-		38.5	39.6	70087
30.5	- 00.0	1714-	Fine grained, medium grey, non-folia	ated. Weak	pervasive				i																
		\vdash	sericite. Sausseritized feldspar. 109	%. <1 mm m	afic																				
-		 	specks (homblende?). Mafics altering																						
			grained and blebs of pyrite. Blebs re																						
		 	Carbonate veinlets.	, 1																					
																			<u> </u>		<u> </u>				
39.0	39.6	AND	ANDESITE?			39.0	39.6	100	5	•	-				39.0	39.6	2	1		4					
			Medium to light grey, foliated with ch	hloritic streak	cs in																		_	·	ļ
			foliation plane. Medium grained to c	coarse graine	ed pyrite									L						L					
			associated with chlorite, fine grained	d disseminate	ed pyrite																				
			away from chlorite. Carbonate fract																L	<u> </u>	ļ	<u> </u>			
			increases at 39.2 m and core becom	nes more bro	ken and				<u> </u>				L		ļ			ļ		ļ	<u> </u>	<u> </u>			
			clay-like. Pieces of carbonate vein t							L			ļ		_		<u> </u>		_	<u> </u>	<u> </u>	ļ	—		├ ──
			39.4 to 39.6 m - Completely silicified	d, mottled cr	eam/grey,												₩	<u> </u>	<u> </u>	<u> </u>		<u> </u>	-		
			"fuzzy" breccia texture, no pyrite.														├ ─		-			<u> </u>			
]				<u> </u>						<u> </u>		├—	1000	20.0	 _		-	3			\vdash		
39.6	39.9	MZ	MONZONITE			39.6	39.9	100	<1		-	<u> </u>		-	39.6	39.9			 -	3	-	 	-		
			Similar to 38.5 to 39.0 m.			ļ					<u> </u>			├	-		-		-		-				
		ļ	<u> </u>			L	<u> </u>	122	 ,		├		<u> </u>		20.0	40.3	 		-	3		├			
39.9	40.3	DAC	DACITE TUFF?			39.9	40.3	100	<u> </u>	-	 -				39.9	40.3			₩'	-	-	├─			
		<u> </u>	Light grey, slightly spotty texture of	(epidote), sa	usseri-				├		 		 	├—			├		-			 	├		
		<u> </u>	tized feldspar and blebs of pyrite. F	racture fill ar	nd weak	ļ						-			-		╁		-			-	 		
<u> </u>			pervasive carbonate. Pervasive ser			ļ		ļ				┢		 	-			-	-			├	-		
		 _ _	grained disseminated pyrite (<1%).	Rare bright	green				<u> </u>			 	-		-		-	├	-	├	├──	 	├──		
ļ		ļ	dots are possibly mariposite.			 		-	 		-	┼	├	 			╁	├	-			╁─	┼		
12.5			A 1550155			40.3	40.9	100	1			├		╁	40.3	40.0	1	 	1	3	1	 	 		
40.3	41.5	AND	ANDESITE	Chlodiland	ofice	40.3	40.8	100	 	 	 	 	 	 	70.3	70.0	`	 	+ -		- '	 	 		
		↓ —	Medium grey-green, fine grained. C	CHIORUZEO M	alics.		 	 	 	 	 	 	 	\vdash	-		 	$\vdash \vdash$	┼	\vdash	_	t-	 		
 		 	Carbonate/epidote fracture fill. Mind	or saussemiz	auon or		 	 	 	├—	 	\vdash	\vdash		 		 	├─	 	\vdash	\vdash	\vdash	\vdash		\vdash
├			feldspar. Carbonate veinlets and fra	acture fill. V	ery illie	 	 	 	 	├	₩	 	\vdash	 	\vdash		 	\vdash	-		 	\vdash	 		
\vdash		 	grained disseminated pyrite and <1	TO Subjust Ithin	d at 44 4	+	 	 	 	1	├─	 	 	╁	 	_	 	\vdash	1	 	t —	 	\vdash		
		+	grained pyrite. Texture becoming m m and core is silicified. Quartz-cart			}		 	 	\vdash	\vdash	 		 	 	\vdash	 	 	 	 	\vdash	 		$\overline{}$	
\vdash		+	at 10° to 30° to CA.	DUITALE 1-2 III	iii veiillets	 	 	 	 	├──	╁	┼	 	+-		\vdash	1	+	 	 	\vdash	 	t		
			Jat 10 to 30 to CA.	-:		<u> </u>		J		Ц	Ь		Ь	۰	——			4			<u> </u>				

1=very weak

3≃moderate

															2=wea			4=8tr						
Date Colla	ered Aug	13/94	Date Completed Aug 14/94	CORE SIZE BDBGM			IP TESTS	3		PROP	ERTY	KLIYUL	PROJ	ECT NO					-		(W.R.T)	
			FIELD CO-ORDINATES		DEPTH	BE/	RING	AN	GLE							SHEE	T 3 OF	7	MAGN	ETIC D	ECLINA	TION		
LAT. 21	05N		ELEV. 1740 m	DIP -45°	91.4 M	RECORDED	CORRECTED	RECORDED	CORRECTER	LAT.		ELEV.	DIP			HOLE	No.		LOGG	ED BY	L. ERDN	AAN		
DEP. 33			LENGTH	BEARING 035°						DEP.		LENGTH	BEAR	ING		NK-9	4-27		DATE:	Augu	st 18, 19	994		
1									GEOTEC	H							GEO	HEN	Λ				ASSA'	Υ
- 1		ROCK	DESCF	RIPTION				% RECO	%	%	%	96												SAMPLE
FROM	то	TYPE				FROM	то	VERY	Py	Ср	Mt	Mo		FROM	то	Carb	Chlor	Еp	Ser	Sii	l	FROM	TO	No.
41.5			DACITE TUFF			41.5	42.0	100	7	-	-			41.5	42.0	2		1	3	-				
			Similar to 39.9 to 40.3 m.				<u> </u>																	
$\overline{}$																		L						
42.0	42.7	AND	ANDESITE			42.0	42.7	100	1	-	-			42.0	42.7	1	2	-	3	1				
			Similar to 40.3 to 41.5 m.													l								
		 						i								Ī								
42.7	43.9	QMZ	QUARTZ MONZONITE?	WELL	BROKEN	42.7	43.9	100	15	-		1		42.7	43.9	L		<u> </u>		_ •				
72			Light green, pervasive sericit	e. Fine grained to	medium						1					Г								
 			grained disseminated pyrite.	Obscure, muddy te	xture.																			
- 		 	Very weakly foliated. 1-2% of			1																		
			sausseritization of feldspar.																					
 			fracture fill.													1	l							
: -		 				1	1							Π]						
43.9	45.8	AND	ANDESITE	WELI	L BROKEN	43.9	45.8	100	0.5	<0.5	1			43.9	45.8	1	2		2	•				
			Medium green-grey, fine grai	ined, locally feldspa	r phyric			Ī						İ										<u> </u>
: 1		1	(≤1 mm feldspar). Carbonate	e fracture fill. Perva	asive	1									l					<u> </u>				
-			sericite, <0.5% very fine grai																					
	···		44.3 to 44.6 m 15% fine grain			1										L								l
		†	44.3 to 44.6 m is a light gree		.7 to												L							<u> </u>
		1	43.9 m and is probably a dyk	e.																l				<u> </u>
			Chlorite as fracture fill. Trac		ed	1											I			<u> </u>				
			"smeared" chalcopyrite on fra					Ī								}								<u> </u>
			weakly magnetic with very fir	ne grained magnetit	e and <1																			
			mm magnetite blebs.			T												<u> </u>						
						I]							ļ						
45.8	53.0	AND	ANDESITE (FELDSPAR PH	YRIC) WEL	L BROKEN	45.8	53.0	100	2	-				45.8	53.0	1	1	1	3	1				
			A gradual contact. Medium	green with a ghosty	spotted										<u> </u>			<u> </u>						
		1	texture of light green/buff. E	pidote fracture fili.	Down the			I	Ĭ									L .	l	<u> </u>				
			hole (below 47.1 m) the textu																					
			feldspar crystals and crystal																					
			are readily observed. Appro-																					
			crystals in random orientation							I														
			fill. Pyrite in blebs possibly r			Ι																		
			also occurs as fracture fill an																					
		1	inated fine grains. 1% fine g																					

1=very weak

3=moderate 4=strong 5=very strong

2=weak PROJECT NO. 548 N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) PROPERTY KLIYUL **DIP TESTS** CORE SIZE BDBGM Date Completed Aug 14/94 Date Collared Aug 13/94 SHEET 4 OF 7 MAGNETIC DECLINATION DEPTH BEARING ANGLE FIELD CO-ORDINATES LOGGED BY L. ERDMAN RECORDED CURRECTED RECORDED CORRECTED LAT. ELEV. DIP HOLE No. 91.4 M DIP -45° LAT. 2105N ELEV. 1740 m NK-94-27 BEARING DATE: August 18, 1994 DEP. LENGTH BEARING 035° LENGTH IDEP. 3370E **GEOCHEM** ASSAY **GEOTECH** SAMPLE DESCRIPTION % RECO 96 % ROCK FROM TO Carb Chlor Ep Ser FROM ΤO FROM TO VERY Mt Mo ' FROM TO TYPE to chlorite. Sections with disseminated fine grained pyrite are slightly silicified, these comprise 2% of the interval. Below 52.1 the feldspar becomes ghosty and obscure as at the start of the interval. 53.0 57.4 **WELL BROKEN** 53.0 57.4 100 10 57.4 MZ MONZONITE Light/medium grey, mottled texture. Pyrite fracture fill (coarse grained cubic) and fine grained pyrite in blebs and disseminated. Sausseritized feldspar. Discrete disseminated sericite as alteration of ? (mafics). <1% chloritized mafics. Well developed sericite on fractures. 57.4 58.4 **WELL BROKEN** 57.4 58.4 100 57.4 58.4 AND ANDESITE (FELDSPAR PHYRIC) Similar to 45.8 to 53.0 m with a well defined feldspar crystal section in the center and ghosty feldspar crystal texture at the top and bottom of the interval. 58.4 64.5 WELL BROKEN TO SHATTERED 58.4 64.5 100 64.5 MZ MONZONITE 58.4 Medium green-grey, fine grained, local mottled texture. Fine grained pyrite in blebs and disseminations, locally replacing mafics. Sausseritized feldspar. Carbonate fracture fill +/- pyrite, <1% fine grained mafics aftered to chlorite +/- pyrite, other mafics(?) are completely replaced by pyrite. 64.5 69.7 **WELL BROKEN** 69.7 100 64.5 69.7 MZ MONZONITE Medium grey/cream mottled texture. Locally light grey/ cream where flooded with pervasive carbonate (<5% of interval). Quartz vein at 67.1 m with silica flooded margins Weakly foliated. 1-5% blebs of pyrite, possibly replacing mafics, and rare fine grained pyrite. Carbonate fracture 68.5 to 69.0 m - Highly sericitic with 30% very fine grained pyrite. Pervasive carbonate along foliation planes. Well foliated.

1=very weak

3=moderate

								_							2=wea			4=str						
Date Col	tared Aug	13/94	Date Completed Aug 14/94	CORE SIZE BDBGM		D	IP TESTS			PROP	ERTY	KLIYUL	PRO	JECT N	0. 548						(W.R.T.		<u>) </u>	
1			FIELD CO-ORDINATES		DEPTH		RING		GLE								T 5 OF				ECLINA1			
LAT. 2	105N	-	ELEV. 1740 m	DIP -45°	91.4 M	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.	DIP			HOLE					ERDM			
DEP.			LENGTH	BEARING 035°						DEP.		LENGTH	I BEA	RING		NK-9				Augus	18, 199	4		
, DET.	7.02							(GEOTEC	Н							GEO	HEN	1				ASSAY	
•		ROCK	DESC	RIPTION				% RECO	%	%	%	%	T T											SAMPLE
FROM	то	TYPE				FROM	то	VERY	Py	Ср	Mit	Mo	l	FRON	A TO	Carb	Chlor	Еp	Ser	Sil	F	ROM	TO	No.
69.7	71.2		ANDESITE (FELDSPAR PH	YRIC) WELL	ROKEN	69.7	71.2	100	<0.5	-	•			69.7	71.2	2	1	1	2	•				
00	- ' ' ' '	, 410	Medium green, spotted with																			Ī		
-			mm, white feldspar crystals. F	eldspars are weakly	aligned.										T									
-			5% mafic minerals altered to	chlorite Trace fine	orained									1										
			disseminated pyrite. Minor le											1			1							
ļ			and minor rare epidote "spot											1										
-			Quartz veins at 10° to CA.	Olfudito odibo				 						1			1							
			Caudita Vellis at 10 to OA.			-			<u> </u>			1		1										
71.2	72.8	AND	ANDESITE?	WELL	BROKEN	71.2	73.6	-	<0.5	-	_	1		71.2	73.6	2		_	3					
11.2	13.0	ZIYU	Medium green-grey, very fin			72	, 5.0	 	1			 		1		1		1						
-			phyric texture. Ground mass	tevture ennears "c	actic"	 		-				1-1		1	1	1	1	Г				$\neg \neg$		
-			perhaps a crystal tuff. Perva	siexture appears of	listed			 	 						1	 								
			Rare pyrite on fractures and	even more rerely di	esemi-			 			_	1 1		1	1	1						一		
	ļ		nated. Carbonate fracture fi			 			 			\vdash		1	1 -	1	 							
			sive.	ii, locally very weak	y porva-	 		 	 			+ +			1	1	\dagger	1	1					
<u> </u>			sive.			 		 	 		1	1		+-	+	†	†	 	_					
70.6	74.0	DAC	DACITE TUFF?	WEL	BROKEN	73.6	74.8	95	20	-	 .			73.6	74.8	1	1 .	-	4	2				
73.6	/4.0	DAC	Light green to cream, varies			75.0	17.0	 	<u> </u>		 	+ +		1	1	1	1	 						
			completely silicified. Silicifie	d codions are quar	7 flooded	+	-			-	1			+	1	 	 	<u> </u>	<u> </u>					
			and have a swirled texture.	Von fine amined or	rite in	 		 			 	1 1		+	1	1	 		1					
			fractures, as disseminations	and concentrated in	foliation	 		 		-		 -		1	+-		†—	<u> </u>						
——	 		planes. Carbonate fracture			+	 -	 	 		_	1-1		+	+	 	 	\vdash			\Box	$\neg \neg$		
		ļ						 			-	 			+	t	+	t				\neg		
		 	Local bleaching of highly ser	TORIC TORBLEU SECTION	13.	 		 	 	-	\vdash	 		+	 	+	+	 						
74.5	70.0	AND	ANDESITE	VAIET	L BROKEN	74.8	76.2	95	<0.5	 	 	. 		74 1	76.2	2 2	2 2	-	2					
74.8	/6.2	AND				/4.0	70.2	1 33		+	 	+ +		1,4.5	1	 	 	1	╅	_				
<u> </u>		-	Medium green-grey, fine gra	thenete and cotton	oto in	+	ļ	 	 	\vdash	 	++		+-	+	1	+	 	 	 				
-	ļ		sericite. Weak pervasive ca			 		\vdash	 	├──	 	1		+-	+	+-	+-	 	 	 				
—			veinlets (<1 mm). Minor sau			 		 	 	 	┼	1		+	+	+	┼	+-			 			
<u></u>			Trace fine grained dissemina		376	 	 	 	 	├	┼	1		+	+	+-	╁	\vdash	\vdash	 				
<u> </u>	 _	—	pyrite in carbonate veinlets.	veinlets total 1%.		 	 	 		-	₩	╁╼╼╁		+	+-	+	+	├	 	\vdash	┝╌╌┼			
<u> </u>			_			 	 	 	 	 		╂╼╌╂		+	+	+	+	├	-	├	 			
						 	1	<u> </u>	 		 	╅			┿	+	+	₩-	├ -	├				
	1	<u> </u>	<u> </u>			 	 	ļ	<u> </u>	 	-	4			+	┼—	+	₩	├		┝		·	
		<u> </u>			-	 	ļ		 		╁	↓	—	-	┼		+	\vdash	┷	├	 	\dashv		
	1		1			l	1	<u> </u>	1	<u> </u>	<u> </u>	.1			1	1	.1	<u></u>	<u> </u>	1				<u> </u>

1=very weak

3≖moderate 4=strong

Date Coll	ared Aug	13/94	Date Completed Aug 14/94	CORE SIZE BDBGM		D	IP TESTS	3		PROPE	ERTY I	KLIYUL		PROJE	CT NO	. 548	N.T.S.	No. 94					. TRUE)	
0000			FIELD CO-ORDINATES		DEPTH	BEA	RING	AN	GLE									T 6 OF				ECLIN/			
LAT. 2	IOSN		ELEV. 1740 m	DIP -45°	91.4 M	RECORDED	CORRECTES	RECORDED	CORRECTES	LAT.		ELEV.		DIP			HOLE	No.		LOGG	ED BY	L. ERDI	MAN		
DEP. 3			LENGTH	BEARING 035°						DEP.		LENG	TH	BEARI	NG		NK-9	4-27		DATE:	Augus	t 18, 19	94		
1	5700					1			GEOTEC	H								GEO	CHEN	1				ASSA'	
		ROCK	DESC	CRIPTION				% RECO	%	%	%	%													SAMPLE
FROM	то	TYPE	525			FROM	то	VERY	Py	Ср	Mt	Mo	i	i	FROM			Chlor	Ep	Ser	Sil		FROM	TO_	No.
76.2			DACITE TUFF?	WEL	L BROKEN	76.2	76.7	100	20	-	-				76.2	76.7	2	•	•	5					
		-	Light grey, boxwork texture																						
			(5 mm). 15-30% fine grain	ed to medium pyrite.	some of																				
		 -	it cubic. Foliated, very crur	mbly, altering to clay.	Weak																				
			pervasive carbonate. Perv	asive sericite.																					
76.7	78.4	AND	ANDESITE			76.7	78.4	100	<0.5	-	-	<0.5			76.7	78.4	1	2	-	2			76.0	78.0	70088
			Medium green, fine grained	. same as 74.8 to 76	.2 m.	1		I																	<u> </u>
			Locally highly sericitic.															<u> </u>							
		——	77.8 m - 1 cm (?)quartz car	rbonate vein (broken)	with 20%																				
			medium grained pyrite and	3% Mo(?).														<u> </u>			<u> </u>				
		1												<u> </u>				ļ				lacksquare			
78.4	82.3		ANDESITE	•		78.4	82.3	100	<1	•					78.4	82.3	2	2	1	2			78.0	79.2	70089
			Dark green, fine grained as	in previous interval l	but this one									<u> </u>	L		ļ	<u> </u>	\perp		ļ				
			has 5% opaque cream qua								<u> </u>	ļ	<u> </u>	ļ				Ļ	₩.	<u> </u>	ļ	<u> </u>			<u> </u>
			Minor localized silica floodi							L	ļ	<u> </u>		ļ			ļ	 	↓ '		Ļ				L
			Trace pyrite as disseminati					1		<u> </u>		<u> </u>	<u> </u>	Ļ				ļ	1_						L
		I	where silicified rock with nu	umerous veins is host	to 15%			<u> </u>		<u> </u>			<u> </u>	<u> </u>	ļ		ļ	ļ	ļ						ļ
			pyrite.								<u> </u>		<u> </u>	-			<u> </u>	ļ							
										<u> </u>		<u> </u>	↓	↓			!	ļ	ļ		<u> </u>	ļ			50000
82.3	85.3	AND	ANDESITE			82.3	85.3	50	7	-	-	0.5		 	82.3	85.3	1 1	 -	 -	4	4		82.3	85.3	70090
			Cream to white coloured.						<u> </u>	ļ	<u> </u>	ļ	ļ	↓			├ ──	-	₩		├				
		<u> </u>	At least two quartz events,			<u> </u>		<u> </u>		<u> </u>	<u> </u>	↓	ļ	↓			-	-	ļ		├	ļ	\vdash		— —
			creamy white. Veins are v			<u> </u>	ļ		ļ	ļ	<u> </u>	↓	ļ	 			-	 	ļ	-	_	·			—
		<u> </u>	crystals. One fracture with				ļ	<u> </u>	ļ	ļ	Ь—		ļ			ļ		 	-		ļ				
			quartz hosts 3% fine grains			<u> </u>	1		<u> </u>	ļ	<u> </u>	ļ	ļ	-	-			 	┼	 —		├			├─
			15% fine grained pyrite. To	race disseminated Me	o in grey				ļ.,. <u></u>	<u> </u>	ļ			—			-	-		—	├		\vdash		
		<u> </u>	quartz at 85.0 m. Below 8				ļ	ļ	ļ	<u> </u>		₩	-	↓	<u> </u>		₩	+	₩	-	 	├			——
			interval are pieces of host				ļ	ļ	↓	ļ	Ļ	↓	1	↓		ļ	↓ —	├ ──	┼—	 	├		<u> </u>		├ ──
			foliated, lighty grey/cream,			ļ					ļ	ـــــ	₩	-			₩	+	┼	├	├				—
			grained pyrite dacitic tuff(?) similar to 73.6 to 74	.8 m.			ļ	<u> </u>	—	ļ	₩	₩	↓		<u> </u>	↓ —	+	+-		ļ	₩	<u> </u>		├ ─
								 		ļ	_		↓	↓	-		┼	 	┼	-	-	 			
						↓	<u> </u>	_	Ļ		ļ	4—	_		 		₩		₩	├ ─		₩			
			ļ			ļ	 _	 	ļ	\vdash	-		₩	-	—		-	+	 	├ ─	 	-	┥		
		L	<u> </u>			1	<u> </u>	.1	<u> </u>			<u> </u>			L	L	1	1		<u> </u>	Ь	L			<u> </u>

NORANDA EXPLORATION COMPANY LTD. 5=very strong 3=moderate 4=strong PROJECT NO. 548 N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) **DIP TESTS** PROPERTY KLIYUL CORE SIZE BDBGM Date Collared Aug 13/94 Date Completed Aug 14/94 SHEET 7 OF 7 MAGNETIC DECLINATION FIELD CO-ORDINATES DEPTH **BEARING** ANGLE DIP HOLE No. LOGGED BY L. ERDMAN 91.4 M RECORDED CORRECTED RECO ED CORRECTED LAT. ELEV. ELEV. 1740 m DIP -45° LAT. 2105N NK-94-27 DEP. LENGTH BEARING DATE: August 18, 1994 BEARING 035° DEP. 3370E LENGTH **GEOCHEM** ASSAY **GEOTECH** SAMPLE % RECO DESCRIPTION **ROCK** FROM VERY Ср M FROM TO Carb Chior Ep Ser TO TYPE **FROM** TO TO FROM 85.3 87.7 85.3 87.7 100 87.7 AND ANDESITE/MONZONITE(?) WELL BROKEN 85.3 Medium green/grey to medium grey, mottled texture below 86.5 m. Gradational with the interval below. Quartz-carbonate veinlets. Start of interval is strongly sericitic and foliated. Below 85.7 m foliations have disappeared and sericitization is weak. Fracture fill carbonate. Chloritization of mafics. Short sections look like a monzonite(?) and may be dykelets. These sections have <1% mafics and sericitic alteration is moderate. Feldspar are locally sausseritized. Pyrite blebs and fracture fill, 2% in the andesite, up to 5% in the monzonite(?). 70091 89.5 87.7 91.4 ANDESITE FELDSPAR VOLCANICLASTIC 87.7 91.4 100 15 91.4 AND 91.4 70092 89.5I Light grey-green/white, finely mottled texture. Carbonate fracture fill. 10-20% very fine grained to fine grained disseminated pyrite, some cubic. Highly sericitic on fractures and locally pervasive. Sericite is very strong so that core is waxy and foliated. Foliation in less sericitic sections is more poorly defined. Minor carbonate veins.

1=very weak

3=moderate

5=very strong

2=weak

4=strong

														1		2=wea			4=811		1057				
Date Colla	ared Aug 14		Date Completed Aug 15/94 CORE SIZ	BDBGM			IP TESTS			PROP	ERTY	KLIYUL		PROJE	CT NO								T. TRUE	<u> </u>	
			FIELD CO-ORDINATES		DEPTH		RING		GLE	<u> </u>							SHEET		5			ECLIN/			
LAT. 154	45N		ELEV. 1735 m DIP -45°		103 M	RECORDED	CORRECTED	RECORDED	CORRECTED			ELEV.		DIP			HOLE					L. ERDI			
DEP. 37	710E		LENGTH BEARING	210°						DEP.		LENG'	TH	BEARI	NG		NK-9				Augu	st 17, 19	294		
									GEOTEC	H							(GEOC	HEN	1	,	·	↓	ASSA'	
- 1	1	ROCK	DESCRIPTION					% RECO	96	%	%			l '					1	Ì		1 '	1 1		SAMPLE
FROM	то	TYPE				FROM	TO	VERY	Py	Ср	Mt		<u> </u>		FROM	TO	Carb	Chlor	Ep	Sil	Ser		FROM	ŤΟ	No.
0	4.6		OVERBURDEN																						
					· · · · · · · · · · · · · · · · · · ·														<u> </u>				oxdot		
4.6	6.7	MZ	MONZONITE			4.6	6.7		20	-	-				3		-	-	3			1			
	- 311		Light grey (bleached), mottled texture.	Fracture	d and	4.6	6.1	50													l				l
			vuggy with oxidation (brown) of fracture	sufaces	. Pervasive	6.1	9.1	66																	
			and fracture fill carbonate. Fine graine	d/fracture	fill pyrite.																				
			locally in blebs and streaks.		<u>F 2 · · · = 1</u>						Ι														
-			Towns of the state								T														
6.7	8.9	AND	ANDESITE(?)			6.7	8.9		2		-				6.7	8.9	2	2	-	-	2				
		7110	Medium green-grey, fracture fill carbon	ate local	lv	***																			
			pervasive. Fractured and vuggy with o	xidized fr	actures						<u> </u>														
			Pyrite fracture fill.	MULEUU II		1																			
\longrightarrow			r ynte nacture int.			 			<u> </u>		1										1				
8.9	11.7	MZ	MONZONITE - WELL BROKEN			8.9	11.7		5	-					8.9	11.7	2	-	-	1	3		9.1	11.1	69877
0.5	11.7	1412	Similar to 4.6 to 6.7 m. Light/medium	rev colo	ur matics	9.1	12.2	93			†											\Box			
			rare; quartz veins and fracture fill. Frac	ture den	sity 45%	<u> </u>				\vdash	†	1							П						
-+			Carbonate fracture fill? Pervasive serie			1			†	 									\top	1				-	
\longrightarrow			weak to strong. Pyrite fracture fill. Mo	Hed text	ire of	 		 	 	<u> </u>	—			1						1					
			grey colours.	tied text	110 01	·		 	 	 		 		1											
			grey colouis.			 			 	 	_	 	 	 			 	 	1	t		 			
11.7	12.1	DVV	DYKE			11.7	12.1		 	 	2	 	+-	+	11.7	12 1	3	1 3		 	١				
- 11.7	12.1	שוע		eturo fill	corbonate	11.7	12.1		 		1 -		1				Ť	 			 	\vdash			
\longrightarrow			Grey-green, fine grained, pervasive/fra		Carbonate	-			 	\vdash	 	┼─	 	 	Н		 	_			_	\vdash			
	<u>_</u>		(45° to CA), very fine grained magnetit	ᠸ.		 				+	\vdash	+	 	 			 	 	\vdash	\vdash	\vdash	_	 	-	
-45-4	46.5	- 17-	MONTONITE BROKEN			12.1	18.3	 	5	_	 	1		+	121	18.3	2	1	Η.	 	3		11.1	13.1	69878
12.1	18.3		MONZONITE - BROKEN	10/	a altered	12.1				╁┷╌	-	1	+	+	'' 	10.0	 -	 '	1-	 	t	\vdash	13.1	15.2	
			Medium grey, ghosty spotted texture.	1% matic	s altered			1		├			├	 	_	-	-	 	╁	 		╁	15.2	18.3	
			to chlorite +/- pyrite. Fine grained to m	ealum gr	ained/	15.2	10.3	30	'\		+		┼		-		├	 	╁─	╁	 	 	1.5.2	10.0	- 00000
			fracture fill pyrite. Carbonate fracture t	ill, locally	pervasive				ļ	├	┼	-		+	_	-	 		╁	├	├	+	 		
			Fracture density 20%.			ļ			ļ	 	┼	-		 			-	 	┼	 	├	╁─	 		
						ļ			 		┼	—	 	-			\vdash	├	┼	├	├	 	├ -		
	i					ļ			<u> </u>	 	 	 				-	\vdash	 	┼—	ļ	├	┼─	┼┤		
						ļ		<u> </u>	1	ļ	↓	1	 	 		 	├	├ ─	-		-	₩	╁┻┩		
			<u> </u>				ļ		<u> </u>	↓		ļ	 			<u> </u>	ļ	ļ	₩	ļ	├	₩	↓		
								<u> </u>			↓	↓	↓	↓		ļ	-	Ļ	₩.	ļ	├	₩	↓		├ ──┤
				-			1	I	1	1	1	1	1	1	I	ŀ	l	1	1	1	1	1	1		

1=very weak

3=moderate

								********							2=wea	k		4=sti	rong					
Data Cal	ared Aug 1	14/04	Date Completed Aug 15/94	CORE SIZE BDBGM	T		OIP TESTS	3		PROP	ERTY	KLIYUL	PROJ	ECT NO	D. 548	N.T.S.	No. 94	4D/9	GRID	NORTH	(W.R.	T. TRUE)	
Date Col	area Aug	1757	FIELD CO-ORDINATES	100112 022	DEPTH		ARING		GLE							SHEE	T 2 OF	5	MAGN	ETIC D	ECLIN	ATION		
LAT. 1	545N		ELEV. 1735 m	DIP -45°		RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.	DIP			HOLE	No.		LOGG	ED BY	L. ERD	MAN		
DEP. 3			LENGTH	BEARING 210°						DEP.		LENGTH	BEAR	ING		NK-9	4-28		DATE	Augu	st 17, 1	994		
DEP. 3	/10E	r	LENGTH	IDEANING ZIO		†			GEOTEC	Н				Ι			GEO	CHE	V			Ι.	ASSA'	7
		ROCK	DESCR	RIPTION				% RECO	%	96	96							Т						SAMPLE
	то	TYPE) DEGG!			FROM	то	VERY	l Pv	Ср	Mt	i I		FROM	то	Carb	Chlor	Ep	Sil	Ser		FROM	TO	No.
FROM 18.3	23.5		ANDESITE(?) - WELL BROK	EN TO SHATTERS	FD	18.3					-			18.3	23.5	1	1	٠.	1	2		18.3	21.3	69881
10.3	23.3	AND	Medium grey, feldspar phyric	with eubedral felds	spar <1	21.3							\neg	1				T				21.3	24.4	69882
			mm. Fine grained pyrite as fr	recture fill and diss	emina-	-	1					1 1	\neg											
		 	tions. Pieces of monzonite co	accure in and class	val	 	+	-		 			\neg					T						
-			suggest interfingering dykelet			+	 	1		1														
			is a large xenolith (raft). Loca	ally etmnoly sericiti	c with	+	╅┄──	†	1	 								Т						
-			platy cleavage forming shatte	any strongly scrict	Pieces	+	+	 	-	†								Т						
-			with quartz veins having 20%	nvrite on selvace	Carbonate		 	 	<u> </u>	1		11			1									
			fracture fill.	pyrite on servage.	Carbonato	'	 	 		\vdash	1	† <u> </u>		 				1		1				
			macture mi.				 				t —	t			1			1						
23.5	27.4	AND	ANDESITE VOLCANICLAST	C-WELL BROKE	N	24.4	27.4	37	7	-	1			23.5	27.4	1	-		4	-				
23.5	21.4	AND				 	'	·	<u> </u>	†	\vdash			1				1						
-		├	Medium grey, strongly silicified, quartz veins, local carbonate fracture fill. Fracture filled pyrite, rarely		1	 	 		1								1							
-		 	disseminated.	ne mieu pynte, ran		+	+	1		1	 							1						
		-	disserimated.			+	1	1		1								1						
27.4	33.5	N/2	MONZONITE - WELL BROK	EN		27.4	4 33.5	:	10	-	Τ.			27.4	33.5	2	-		3	1				
27.7	33.3	1412	Medium grey, ghosty spotted		ery strong	 	-							1						,				
 		-	pervasive carbonate and cart			5)		 								1								
<u> </u>			sericitic fractures. Fine grain				<u> </u>	1						1										
			fracture filled pyrite. Below 3	0.5 m strong to ve	ry strong		· · · · · · ·	†		1				1										
——		 	silicification.	o.o in oliong to ve	.,			 								1								
-		 	Silication.	 		+	+	 	<u> </u>		1							1						
33.5	35.6	347	MONZONITE			27.	4 30.5	23	15		1			33.5	35.6	2	-		2	2		33.5	35.5	69883
33.3	33.0	1412	Light grey (bleached). Fine g	rained pyrite in ble	hs and	30.				1								1						
		1	wisps, locally 25%. Also fine	areined pyrite car	bonate	33.					1			†										
<u> </u>		┼──	fracture fill. Sericitic fracture			+			1	 	t		1	1	1					Ī				
		 	tion. Other pieces have perv		, Ollioniou	 		+		†					1		1	T						
		├	Thom: Other pieces have perv	asive ourbonate.		+	+	1		1	1					1		1						
35.6	41.0	ANI	ANDESITE VOLCANICLAST	IC - WELL BROKE	EN.	36.	6 39.6	93	10) -	1		<u> </u>	35.6	41.0	1		- 1	3	1		35.5	37.5	69884
33.0	71.0	AIVE	Similar to 23.5 to 27.4 m. Me			+		1						†			1	1				37.5	39.5	69885
		 	fracture fill, moderately to str			1	+	1	 		T	1	—	1								39.5	41.0	69886
-		-	grained pyrite, also fracture f			+	 	1	†		T													
-		 	fracture fill. Above 36.1 m m			 	 	†			T	1					1	T						
			Induction Inc. Above 55.1 III III	mior portabile opi	20.0.	+	1	 		1	†	1	\neg	1 .		1	T	1		1				

3=moderate

															2=wea			4=str						
Date Cot	ared Aug 1	4/94	Date Completed Aug 15/94	CORE SIZE BDBGM		D	IP TESTS	<u> </u>		PROP	ERTY	KLIYUL	PRO.	ECT NO), 548						(W.R.T			
			FIELD CO-ORDINATES		DEPTH	BEA	RING		GLE							-	T3OF				ECLINA			
LAT. 1	545N		ELEV. 1735 m	DIP -45°	103 M	RECORDED	CORRECTER	RECORDED	CORRECTED	LAT.		ELEV.	DIP			HOLE			LOGG	ED BY I	L. ERDN	MAN		
DEP. 3	710F		LENGTH	BEARING 210°						DEP.		LENGTH	I BEAR	ING		NK-9				Augu	st 17, 19	94		
1									GEOTEC	H							GEOC	HEN	Λ				ASSAY	7
:		ROCK	DESC	RIPTION				% RECO	%	%	%													SAMPLE
FROM	то	TYPE				FROM	то	VERY	Py	Ср	Mt		1	FROM	то	Carb	Chlor	Ep.	Sil	Ser		FROM	īΟ	No.
41.0	42.7		ANDESITE DYKE - BROKE	:N		39.6	42.7	93	<1		-			41.0	42.7	4	3	-	-	-				
1.0	72./		Medium green with 10% dis		aks	42.7	45.7																	
<u> </u>			Upper contact at 40°. Trace	disseminated pyrite	. weak																			·
			pervasive carbonate. White	streaks are carbona	te Also													Г						
			carbonate fracture fill. Low	er contact is broken	Pervasive	 								1			1	П						
			chlorite.	DI COINCO DI DI CADILI.	. 0, (40, (10	1				\vdash	1				T	1		1						
 			wholks.			1		 	<u> </u>	1	†		1	1	1			Ī						
42.7	45.1	147	MONZONITE			42.7	45.1		1	-	<u> </u>			42.7	45.1	3	-	1	-	3				
 4 2./	70.1	r/IZ	Medium grey with 15% disc	ontinous white carbo	nate	72.7		 	<u> </u>		1			1			1	\Box						
			veinlets, local flooding by c						 			1		\dagger								\neg		
			spots (altered feldspar) but					 						1										
			and muddy. Vertical quartz			 				\vdash	 	1		1		1	1	<u> </u>	1					
\vdash		-	at 43.8 m with 50% very fin		11 (0 11:11)	 	 	1						1		1	1							
-			groundmass pyrite ranges f			†	 	1			 					—	1					1	Î	
			groundinass pyrite ranges i	10111 40.0 to 270.		 		 			\vdash						1						• 1	
45.1	51.5	AND	ANDESITE (FELDSPAR PI	YRIC) - BROKEN		45.7	48.8	100	3	-	١.			45.1	51.5	1	1	3	-	-				
73.1	31.3	AND	Dark grey-green, carbonate		er ettering	48.8					\vdash			1		1								
\vdash			to epidote, blebs of very fin			70.0			 		 			 										
\vdash			feldspar, local pyrite fractur			 		 				1		1	†		1							
			Rare quartz veinlet. Pyrite								_	1		† 	 	1	1							
			raie quartz veimet. Fyrite	Content Hom 40.5 to	1 70.	 		 	 		_	1		 	† • • • • • • • • • • • • • • • • • • •	1	†	T						
51.5	60.3	147	MONZONITE(?) - WELL BI	POKEN		51.8	54.9	80	15	 	 	1 1		51.5	60.3	2		١.	-	3		51.5	53.5	6988
31.3	00.3	1412	Light/medium grey, very fin		ssemi-	54.9				 	 			1 122		1		 				53.5	55.5	
—			nated blebs. Locally strong			57.9					 	 	\neg	†		T		 	-			55.5	57.9	
			Carbonate fracture fill, loca			37.0	01.0	1	 	 	\vdash	 		+	<u> </u>	1	1	†	1			57.9	59.9	
			fill and very weakly pervasi			 		 	 	┼──	 	 	_	 	 	 	_	 	-			59.9	61.0	
\vdash			interval ghosty feldspar are		Bild Oi	+	 	1		┼──	 	 		+	1	†	+-						- 112	
			Interval gliosty felospar are	present.		 	 	 		 	-	 		+	 	 	-	 		_	 			
60.0	65.0	9.87	MONZONITE(?) WELL BR	OVEN		61.0	64.0	23	10	+	 	 		60 3	65.0	1	 	<u> </u>	5	1		61.0	67.1	69892
60.3	65.0	IVIZ	Light grey, completely silici		denar	64.0			1	 	 	 		100.0	1 33.0	' '	+	1	 	 	$\vdash \vdash \vdash$			
<u> </u>			pyrite replacing or on selva	neu, saussenuzeu le	uspai,	04.0	07.1		 	1	 	++		+	1	t^-	\vdash	t -	-	 				
-			fracture fill. Sericitic fractu		JUILLE	 	-	├──	 	-	+-	+ +		+	 	+	 	 		 	\vdash	+		
<u></u>			macure IIII. Sencitic Iraciu	e surfaces.		 	ļ	-	 		┼	 		+	 	+	+-	+		_		\dashv		
<u></u>		ļ	ļ			 	 	 	 	╁	┼	├ -		+	\vdash	+	+-	+	\vdash		$\vdash\vdash$	-+		
<u> </u>				<u> </u>		 		 	+		-	╀──┼		+	+-	+	+	+	 	 	 			
	<u></u>	<u></u>	<u> </u>			ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u> </u>	l	ــــــــــــــــــــــــــــــــــــــ	Ь	ــــــــــــــــــــــــــــــــــــــ			<u> </u>		1		·	Ь			A	

1=very weak 3=moderate 5=very strong
2=weak 4=strong _____

Date Col	ared Aug 1	4/04	Date Completed Aug 15/94 CORE SIZE BDBGM		П	IP TESTS			PROP	FRTY	KLIYUL	PRO	JECT NO	2=Wea		No 9		GRID	NORT	H W R	T. TRU	=)	
Date Co.	alou Aug 1	434	FIELD CO-ORDINATES	DEPTH		RING		IGLE				1,		5. 4.0	4	T 4 OF				DECLIN		-/	
LAT. 1	5.45N		ELEV. 1735 m DIP -45°	103 M				CORRECTED	LAT		ELEV.	DIP			HOLE		<u> </u>	+		L ERD			•
DEP. 3			LENGTH BEARING 210°	100 101	(ICSONDED	-cimico i ca			DEP.		LENGTH		INC		4	4-28				est 17, 1			
DEP. 3	T		LENGTH DEARING 210			ــــــــــــــــــــــــــــــــــــــ	<u> </u>	GEOTEC			LENGTH	JOEAN	T			GEO	CHE		. Augi	ASK 17, 1	334	ASSA	~
		ROCK	DESCRIPTION				% RECO		96	%	1 1		+	1	T	T	T	"	1	1	 	7007	SAMPLE
FROM	то	TYPE	DESCRIPTION		FROM	то	VERY	Pv	Ср	Mt			EBON	то	Cart	Chlor	Ep	Sil	Ser	ľ	FROM	то	No.
65.0	70.3		ANDESITE (FELDSPAR PHYRIC) - WELL BRO	KEN	67.1	70.1	63		 " -	 ""	+			70.3				311	1	+	FROM	-10	+ 10.
03.0	70.3		Dark grey-green. Similar to 45.1 to 51.5 m but w		07.1	70.1	- 00	' 	 	 	1	_	03.0	70.5	 	+	₩	 	 '	' 	 	ļ	+
			carbonate veins. Sericite on fractures.	raii iiiore		<u> </u>	-	 	-	╁─	+ +		+	├	╁	 	+-	╁	╌	\vdash			+
			Carbonate Venis. Sericite on fractures.								+ +		+	\vdash	┢	+	┼	├─	\vdash	┰			+
70.3	76.2	147	MONZONITE - WELL BROKEN		70.1	73.1	50	<1	-	Η.			70.3	76.2	1 2	2	1 2	Η.	1	+	-		+
70.5	70.2	1012	Medium grey-green, spotted ghosty texture. Per	vesive	73.1		100		_	 	 		1.5.5	1	+	 	╁	-	 	 	1		┼──
			epidote atteration of some of the feldspar. Carbo		, 5.1	· · · · ·		 		t	 		+	\vdash	 	 	1	 	\vdash	\vdash			+
-			fracture fill.	Jilato				 		<u> </u>	 		+	1	 	 	1-	1	┪	 			
			70.3 to 71.0 m. Strong carbonate veining and al	teration				 		†	 -	_	1	 	 	1	\dagger	1	 	 			
			destroys texture.	COLUMN	-			 	1		+	_	+	 		t	†	 	 	 			
			abolity's texture.		 	 			 	十一	 		1	 		_	1	1	 	 -			
76.2	82.7	MZ	MONZONITE		76.2	79.2	23	5	_	 		_	76.2	82.7	1 2	1	1	Η.	3	1	76.2	82.3	69893
			Medium grey-green, foliated, contorted texture p	ervasive	79.2		30			t	1 - 1 -		1			 		 	 	1			
			and fracture filled carbonate and veinlets. Chlor										1		1	†	1	<u> </u>	1	1			
			fracture fill and locally in groundmass (mafic alte		· · ·		-		<u> </u>	1			 	 			 	 	1	1			
			Pyrite in disseminated "blebs" and grains, paralle		<u> </u>								1							1	1		1
			foliation.			<u> </u>				† <u> </u>		_	<u> </u>			1		 		†	1		—
								<u> </u>		†			1		—		1	 					
82.7	83.4	DYK	DYKE MAFIC		82.3	85.3	80		-	2	2		82.7	83.4	3	4	-				82.3	84.3	69894
			Dark grey-green, fine grained, white carbonate for	acture						1			1		Ì		1					· · · · ·	
			fill and veinlets. Pervasive carbonate. Weakly t																			-	
			Very fine grained magnetite.			i				1			1				1						
										1				1			\vdash				1 1		
83.4	85.6	MZ	MONZONITE		83.4	85.6		5	-	Ι.	.1		1										1
	Ì		Same as 76.2 to 82.7 m.			T		†															
85.6	86.2	DYK	ANDESITE DYKE (?)		85.6	86.2	i	<1	-	1	1 1		85.6	86.2	4	1	Τ.	├ -	3				
			Pervasive carbonate, weakly magnetic with fine	grained	85.3	88.4	100			1			1					 					
			magnetite. Poorly foliated, mafics to chlorite (ra					†															
\Box														1				<u> </u>	i	T	\Box	-	
86.2	91.0	AND	ANDESITE(?)		88.4	91.4	30	<1	-	-			86.2	91.0	3	3	-	-	2				
			Dark grey, pervasive/fracture filled carbonate. F	inal 80 cm		Ϊ	i						T	T -					1		\Box		
			is a shattered fault gouge. Poorly defined foliation										1				Т			1	\Box		
			Brecciated at 87.2 m.				<u> </u>			1				Ī	I								
					T				T	Ī	1		T	T	Ι								

5=very strong 2=weak 4=strong **DIP TESTS** PROPERTY KLIYUL PROJECT NO. 548 N.T.S. No. 94D/9 GRID NORTH (W.R.T. TRUE) CORE SIZE BDBGM Date Collared Aug 14/94 Date Completed Aug 15/94 SHEET 5 OF 5 MAGNETIC DECLINATION FIELD CO-ORDINATES DEPTH BEARING ANGLE 103 M RECORDED CORRECTED RECORDED CORRECTED LAT. DIP ELEV. HOLE No. LOGGED BY L. ERDMAN ELEV. 1735 m DIP -45° LAT. 1545N DEP. LENGTH BEARING NK-94-28 DATE: August 17, 1994 LENGTH BEARING 210° DEP. 3710E **GEOCHEM** ASSAY **GEOTECH** SAMPLE **DESCRIPTION** % RECO ROCK FROM VERY FROM TO Carb Chlor Eρ SH Ser FROM то No. TYPE TO **FROM** TO 91.0 93.7 93.7 DYK MONZONITE DYKE(?) 91.4 94.5 91.0 Dark green-grey with 10% white "spots" of feldspar spots to 4 mm but generally <2 mm. Local sausseritization of feldspar. Carbonate fracture fill. 93.7 96.3 AND ANDESITE VOLCANICLASTIC 93.7 96.3 93.7 96.3 Medium grey with "clastic" texture. Mafics to chlorite, weak carbonate fracture fill, fine grained pyrite disseminations within mafics and in adjacent groundmass. Local weak pervasive carbonate. Pyrite fracture fill. 96.3 103 96.3 103.0 AND ANDESITE (FELDSPAR PHYRIC) 94.5 97.5 60 10 Medium grey with 25%, <1 mm white feldspar "dots" 97.5 100.6 95 carbonate fracture fill. Fine grained and blebs of pyrite, 100.6 103.0 some replacing feldspar. Becoming strongly sericitic down hole so that final 4.5 m is foliated. Quartz veining pervasive carbonate in the foliated section, probably along foliation planes. 99.1 to 99.5 m - Feldspar phyric dyke with epidote alteration of feldspar, 1% fine grained pyrite rock has buff coloured "dots".

1=very weak 3=moderate 5=very strong
2=weak 4=strong

							IS 250-1			I	==-									/8 GRID NORTH (W.R.T. TRUE) 330°							
Date Coll	ared Oct 6/			CORE SIZE BDBGM			IP TESTS			PROPE	RTY	CLIYUL		[PROJ	CT NO	. 548	_										
			FIELD CO-ORDINATES		DEPTH		RING		GLE	L	-	<u> </u>						T 1 of 2	2	-			IATION	UZ3"E			
LAT. 65	51+90N			DIP -65°	73.76	RECORDER	CORRECTED	RECORDED	CORRECTER			ELEV.		DIP			HOLE				SED BY						
DEP. 7	94+77E		LENGTH	BEARING 215°	<u> </u>		•			DEP.		LENGT	Н	BEAR	NG		NK-9				: Octo	ber 11,	1994		-		
									GEOTEC	H					L,		G	EOCI	HEM					ASSA			
I		ROCK	DESCRI	IPTION				% RECO	96					l				1	l						SAMPLE		
FROM	то	TYPE				FROM	TO	VERY	. Py	<u> </u>					FROM	то	Chlor	Carb	Ep				FROM	TO	No.		
. 0	7.62	ОВ	OVERBURDEN												Ш			<u> </u>	<u> </u>								
. 1]									<u> </u>								
7.6	17.4	DI	DIORITE - VERY BROKEN			7.6	17.4			·					7.62	17.4	3	1 1	2				7.6	17.4	70176		
			Medium green, fine grained. C	Quartz +/- carbona	te veinlets	7.6												<u> </u>									
			<2 mm at 45° to CA. Minor pic	eces of andesitic t	uff but	8.2												<u> </u>	<u> </u>								
			recovery is so poor the relation	nship between dio	rite and	9.1	13.4	20																			
			andesite cannot be determined			13.4	16.5	10																			
						16.5	17.4	3																			
																			<u> </u>								
17.4	50.6	AND	ANDESITIC VOLCANICLASTI	IC - VERY BROKE	EN	17.4	50.6	>	(17.4	50.6	3	1	3				17.4		70177		
			Overall very poor recovery. M			17.4	20.4	3															41.8	50.6	70178		
-			cream coloured 1 mm "spots"			20.4	23.5	10																			
			fractures from 44.8 to 48.9 m.	<1%, 1-2 mm qu	artz	23.5	26.5																		Ĺ		
			veinlets at 40-60° to CA. Rare			26.5																					
			diorite suggesting dykes. Loca			38.7	41.8	30																			
			Cicito opposition cytos.			41.8	44.8		3										1								
						44.8													1								
						47.9													П								
\vdash		-				1			1										1								
50.6	53.3	DI	DIORITE - BROKEN			50.6	53.3	43	3						50.6	53.3	4	2	2				50.6	53.3	70179		
30.0	33.0		Medium green, fine grained, m	nafics to chlorite	Carbonate			i i	1			\Box															
\vdash			veinlets to 2 mm as well as ca						†								1								Ī		
\vdash		-	TOTAL TO E THAT ES WOIL GO GO	in Deliate in a dealer in	···	 		1	—	1									Т								
53.3	56.0	AND	ANDESITIC VOLCANICLAST	IC - BROKEN		53.3	56.0	50) T	r				†	53.3	56.0	2		. 3				53.3	56.0	70180		
33.3	30.0	VIAD	Medium green with 30-40% <1		ıred	1											1			Ī							
			"spots" of feldspar. Trace fine			 		 	1.	1				<u> </u>					1	1					T .		
			ghosty, fragments of same co		.u. 0,	 							—	† —					1	1							
	-		griosty, tragitiettis or same col	mposition.		+		 	 	T	-		<u> </u>	†	†			†	1	1			\Box				
56.0	57.0	ANID	ANDESITE TUFF - BROKEN			56.0	57.0	5	d	.†	 	\vdash		 	56.0	57.0	3	1 3	1 2	:1				-			
30.0	57.0	AND	Medium green, fine grained tu		r fronment		77.0	 	1	1	┢	$\vdash \vdash$	\vdash	 	-	<u> </u>	 	1 -	1-	1							
	i		to 2 mm. Pervasive and fract	ure fill cerbonete	Final 5 or	 	 	 	+	1	 	 		 	 	\vdash	 	†	_	 		-					
-			is a white quartz vein with car			' 	 	-	 	+		├		+	 	 	†	 	 	†							
	 		is a write quartz vein with car	IDOMACE HACKURE III	11.	+	 	† 	+	+		\vdash	 	 	_	\vdash	†	1	 	\dagger			\vdash				
						 	-	+	+	+		\vdash	-	+-	+	_	 	+	+	†			\vdash				
<u> </u>	 					+	 	 	+	+	 	+	\vdash	+	+	 	 	1	1	+	 	\vdash	\vdash				
			<u> </u>			1	Ь	J	1		L			L	<u> </u>	L			Щ.		I	L					

1=very weak

3=moderate

Date Coll	ered Oct 6	/94	Date Completed Oct 10/94	CORE SIZE BDBGM	T	D	IP TESTS	;		PROPE	RTY F	CLYUL		PROJE	ECT NO	. 548	N.T.S.	No. 94	D/8	GRID	NORT	H (W.R	.T. TRU	E) 330°	
			FIELD CO-ORDINATES		DEPTH		RING	AN	GLE								SHEE	T 2 of 2		MAG	NETIC	DECLIN	IATION	023°E	
LAT. 65	1+90N		ELEV. 2070 m	DIP -65°	73.76	RECORDED	CORRECTED	NECONDER	CORRECTED	LAT.		ELEV.		DΡ			HOLE			LOG	GED BY	L ER	MAN		
DEP. 7			LENGTH	BEARING 215°						DEP.		LENGT	ſΗ	BEARI	NG		NK-9				: Octo	ber 11,	1994		
<u> </u>	T							(GEOTEC	Н							G	SEOCI	HEM					ASSA	
į		ROCK	DESCR	RIPTION				% RECO	%				, i											1	SAMPLE
FROM	то	TYPE				FROM	то	VERY	Py						FROM		Chlor		Ep				FROM	†O	No.
57.0	62.8		ANDESITIC VOLCANICLAST	TIC - BROKEN		57.0	62.8	Х							57.0	62.8	2	•	2				56.0		
			Medium green with 30-40%,	<1 mm cream color	ured	57.0	60.0	50											<u> </u>				60.0	63.1	70182
			feldspar "spots". Ghosty <5 n	nm subrounded fra	gments	60.0	63.1	· 47									<u> </u>]	
$\overline{}$	1		of same composition compris	e <1% of core. Ru	isty brown													<u> </u>	<u> </u>						
			fractures.														<u> </u>		1						
																		<u> </u>	ļ.,	lacksquare				لبيب	
62.8	73.76	AND	ANDESITIC LAPILLI TUFF -	BROKEN		62.8	73.76	X	1					<u> </u>	62.8	73.76	2	-	3		<u> </u>		63.1	66.1	70183
			Medium green with rusty brov	vn fractures and cr	eam	63.1	66.1							L	Ь.,		\vdash	↓	₩	\vdash			66.1	69.2	
			spots, similar to above interva	al but fragment cor	ntent has	66.1	69.2			igsquare					<u> </u>		<u> </u>	ļ	 		<u> </u>	\vdash	69.2	72.2	
			increased locally to 5%. Feld	Ispar altered to epic	dote.	69.2								Щ.			ļ	ļ	┞	1	<u> </u>		72.2	/3./6	70186
			Fragments are either similar t	to matrix rock or ta	n colored	72.2	75.76	66					<u> </u>		<u> </u>		↓	<u> </u>	!	₩.	<u> </u>				
			and more felsic. Size ranges	up to 1.5 cm, subs	angular		<u> </u>						ļ	ļ				<u> </u>	1	₩	<u> </u>	$\vdash \vdash$			
			to subrounded. Trace to 5%	very fine grained d	issemi-							<u> </u>		ļ	<u> </u>		-	ļ	├	↓	ļ				
			nated pyrite. Magnetite on so	ome fracture surfac	æs.									<u> </u>		ļ	├	—	 	\vdash					<u> </u>
										1.		<u> </u>				-	├	┼	 	┼					
													ļ	<u> </u>			├	╁	-	┼	-	H			├
			<u> </u>			 		ļ		-							 -	├	├	╂	-	-	-		
				v		ļ		ļ	<u> </u>			<u> </u>					 	-	╂	├	-	_			
						 			 	-			-		-		├		₩	+	-		\vdash		
						ļ	ļ		├──				├	-	-		╁	┼	₩	+-	 				
							ļ	ļ			_			├─	 		-		╁┈	┼	├				
,							<u> </u>	ļ	 					-		 	╁	╁	╁	┼	├	 			
				 		 	 	 				├	 		├		┼	1-	╁	+					
-							 	 	 			├	 		\vdash	 		+-	\vdash	╁	 	 	\vdash		
							 	 	 	1		├	₩	₩	├	 	┼—	+	+-	╁	 	 	 		
-		ļ				 	ļ	 		-	\vdash		╁──	\vdash	 		1	+	+-	\vdash	-		$\vdash\vdash\vdash$		
						 	 	├	 	\vdash	<u> </u>	-	\vdash		-		+	+	+	+-					-
						 	 	-	ļ	-	\vdash		├──	├─	 		+-	+	+-	+	1		\vdash		
						 	 	┼	 	 	 	 		├	 	 	+	+	+	+	 	-	$\vdash\vdash\vdash$		
—						 	 	 		 			₩		├		+-	+	╂	1	 		$\vdash \vdash$		
		 				 	 	 		-			1	 		 	 	╁──	+	+	 		\vdash		
						 		 	 	-	-	-		+-		\vdash	┼	+-	╁	+	╁	 	$\vdash\vdash\vdash$		
		<u> </u>				 	 	 	 	1	├─	 		┼		 	 	+	┼─	+	 	\vdash	Н		
		ļ		····.		+	 	-	 	 		 -	-	 	 	\vdash	+	╁	1	+	 	 	-		
	L	<u></u>	<u> </u>	 					J	Ц	Ц	L		<u> </u>		<u></u>			ч			Ь			

APPENDIX V STATEMENT OF COSTS

NORANDA EXPLORATION COMPANY, LIMITED STATEMENT OF COSTS

DATE: DECEMBER, 1994 PROJECT: KLIYUL

TYPE OF REPORT: DIAMOND DRILLING

a) Wages:

No. of Mandays:

22 mandays (Geologist and Assistant)

Rate per Manday:

Dates From

\$181.36/manday August 1 - 10, 1994

Total Wages

22 x \$181.36

\$3,990.00

Food & Accommodations: b)

No. of Mandays:

62 mandays (including drillers)

Rate per Manday:

\$18.03/manday

Dates From

August 1 - 10, 1994

Total Costs

62 x \$18.03

\$1,117.86

c) Transportation:

No. of Mandays:

22 mandays

Rate per Manday:

\$42.32/manday

Dates From

August 1 - 10, 1994

Total Costs

22 x \$42.32

\$931.00

d) **Instrument Rental:**

Type of Instrument:

No. of Mandays:

Rate per Manday:

Dates From

Total Costs

Type of Instrument:

No. of Mandays:

Rate per Manday:

Dates From

Total Costs

e)	Analysis: (See attached		\$3,200.00
f)	Cost of Prepa Author: Drafting: Typing:	aration of Report: 2 mandays @ \$260.00 2 mandays @ \$260.00 1 manday @ \$180.00	\$520.00 \$520.00 \$180.00
g)	Other: Drillin	ng	
	Contractor:	Britton Bros. Diamond Drilling Ltd.	\$49,136.91
	Other: Helico	otper	
	Contractor:	Pacific Western Helicopters Ltd.	
		13.3 hrs @ \$702.00/hr including fuel	\$9,339.00
		TOTAL COST	\$68,934.77
h)	Unit Costs fo No. of Units Unit Costs Total Cost	: 602.3 meters : \$114.45/meter	\$68,934.77

NORANDA EXPLORATION COMPANY, LIMITED DETAILS OF ANALYSIS COSTS

PROJECT: KLIYUL

ELEMENT NO. OF DETERMINATIONS COST PER DETERMINATION TOTAL COSTS

ICP (30 Element)

200

\$16.00

\$3,200.00

+ Geochem Au

NORANDA EXPLORATION COMPANY, LIMITED STATEMENT OF COSTS

PROJECT: KLIYUL DATE: DECEMBER 1994

TYPE OF REPORT: DRILLING

a) Wages:

No. of Mandays:

11 mandays

Rate per Manday:

\$222.27/manday

Dates From

October 4-11, 1994

Total Wages

11 x \$222.27

\$2,445.00

b) Food & Accommodations:

No. of Mandays:

27 (16 driller mandays + 11 geologist mandays)

Rate per Manday:

\$18.03/manday

Dates From

October 4-11, 1994

Total Costs

27 x \$18.03

\$486.81

c) Transportation:

No. of Mandays:

11 mandays

Rate per Manday:

\$54.91/manday

Dates From

October 4-11, 1994

Total Costs

11 x \$54.91

\$604.00

d) Instrument Rental:

Type of Instrument:

No. of Mandays:

Rate per Manday:

Dates From

Total Costs

Type of Instrument:

No. of Mandays:

Rate per Manday:

Dates From

Total Costs

e)	Analysis: (See attached	11 Samples I schedule)	\$176.00
f)	Author: Drafting:		\$260.00 \$200.00 \$180.00
g)	Other: Drillin	ng	
	Contractor:	Britton Bros. Diamond Drilling Ltd.	\$9,703.76
	Other: Helice	opter	
	Contractor:	Pacific Western Helicopters Ltd. (10.7 hrs @ \$702.00/hr including fuel)	\$7,5 11.40
		TOTAL COST	\$21,566.97
h)	Unit Costs for No. of Units Unit Costs Total Cost	: 73.26 meters : \$292.39/meter	\$21,566.97

NORANDA EXPLORATION COMPANY, LIMITED **DETAILS OF ANALYSIS COSTS**

PROJECT: KLIYUL

ELEMENT NO. OF DETERMINATIONS COST PER DETERMINATION TOTAL COSTS

11

ICP (30 Element) + Geochem Au

\$16.00

\$176.00

APPENDIX VI STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, D. Graham Gill of the City of Vancouver, Province of British Columbia, hereby certify that:

I am a geologist residing at 5442 - 7th Avenue, Delta, B.C.

I have graduated from the University of British Columbia in 1983 with a BSc in geology.

I have worked in mineral exploration since 1979.

I have been a temporary employee with Noranda Exploration Company, Limited since May, 1983 and a permanent employee since November 1987.

I am a member in good standing of the Professional Engineers & Geoscientist of British Columbia.

D. Graham Gill, P.Geo.

D.G. GILL

1200E	1600E 2200E 2200E	3000E 3200E	3400E 3800E 4000E	4400E 4600E 5200E 5400E
2600N 2400N				2600N
NK94-26				2200N
20001		KL81-19 KL81-19 KL81-19 KL74-9 KL81-19 KL74-5	NK94-27	
1800N		KL74-5 KL93-5 KL74-6 KL93-6 KL93-6 KL93-6 KL93-2 KL74-9 KL74-9 KL74-14	KL74-15 KL74-10 P	1800N
1600N	KL74-12 O	NK94-22 NK94-23 KL93-1		
1400N			NK94-28	AS SESSMENT REPORT NK94-29 O
				25 0 25 50 75 100M
30E 1500N	300E	300E	300E	REVISED KLIYUL PROPERTY DRILL HOLE PLAN PROJ. No. 548 SURVEY BY: G.GILL DATE DEC.22,1994 N. R. G. DAD (D. DRAN) BY: G.GILL SCALE 1:5000
14		N N N	ω <u>ω</u> <u>ω</u> <u>Α</u> <u>4</u>	PROJ. No

. •

GEOLOGICAL BRANCH ASSESSMENT REPORT 100 50 0 KLIYUL PROPERTY REVISED DDH NK94-21 SECTION 2720E (LOOKING WEST) BY: G.GILL DATE NOV.17,1994
BY: G.GILL SCALE: 1:250

NORANDA EXPLORATION
OFFICE: VANCOUVER PROJ. No. ___548 ____ SURVEY BY: _____ N.T. S. __94D/9 ____ DRAWN BY: _____ DWG No. 8

2780E			
1770			
1750			
	TVERBURDEN		
	FELD PHYR ANDES		
	1458 2.00 PARTE JACO PARTE THE PHYR ANDES FELD PHYR ANDES		
	380 2.00 ANDESITE SEB 2.00 ANDESITE ANDESITE		
	1699 2.00 1719 2.00 1324 2.00 FELD PHYR ANDES		
4	1646 3.00 FELD PIR MINIZ		
1700	142B 2.00 1350 2.00 ANDESITE		
	1350 ANDES DYKE 683 300 ANDES DYKE ANDES FELD PHYR ANDES 917 300 ANDES DYKE		
	2624 200 ANDESITE 2699 2.00 ANDES		
	954 200 B35 200 ANDESITE S85 200 FELD PHYR ANDES		
	1833 2.00 ANDES DYKE 788 2.00 FELD PHYR ANDES 1000 2.00 FELD PHYR ANDES 1793 2.00 FELD PHYR ANDES		
	1532 200 ANDESITE 1547 200 FELD PHYR ANDES		
	1212 2.00 1212 2.00 1212 2.00 1220 2.00		
1650	213E 2.00 1600 2.00 685 2.00 MINIZINITE 571 2.50	· ·	
	108.50 n. NK94-22		
		GEOLO (GICAL BRANCH MENT REPORT
1600		23	797
			PRO D.G.
			10 20 30
			YUL PROPE
		121/1	DDH NK94-22 ECTION 278 (LOOKING WEST)

	1750N				
2880E					2880E
1770					1770
1750	DVERBURDEN				1750
	FELD PHYR ANDES				
	ANDESITE ANDESITE ANDESITE ANDES TUFF				
	FELD PHYR ANDES				
	ANDESITES HONZOUTE (FS-HB) ANDESITES				
	1170 2.00 3413 2.00. FELD PHYR ANDES				
	PUDISCIPITE (FS-HB)				
	1228 2.00				
1700	1203 6.00 ANDES				1700
	1751 400				
	2877	5.00 CESTRE TUFF			
		ANDES.			
		1083 2.00 FELD . 1084 2.00 FELD . 1141 2.00 ANDESITE			
		1509 2.00 587 2.00 993 2.00			
		1771 200 2007 200 836 200			
		1770 2:00 1397 2:00			
1650		MDMS DAKE			1650
	·	1336 200 1 1037 200 7 762 200 FELD PHYR ANDE	:s		
		998 200 479 200 787 200	VE		
	•	200 Lannes 1 00. 1861	DESTTE		
		1002 500 1062 500 1561	1		
		985 ²¹ 740 	200 FELD PHYR ANDES		
		15	152.40 m. NK94-23		
					GEOLOGICAL BRANCH ASSESSMENT REPORT
1600					23,79
					OFESSION
					Cu(ppm) / Interval(m) Coology Coology D.G. GILL BRITISH COLUMBIA COLUMBIA COLUMBIA COLUMBIA
					100 50 0 10 20 30 40M.
					KLIYUL PROPERTY DDH NK94-23
				PRO	SECTION 2880E
	1750N			N.T. DW	SURVEY BY: G.GILL DATE NOV.17.1994 S.S. 94D/9 DRAWN BY: G.GILL SCALE 1:250 NORANDA EXPLORATION OFFICE: VANCOUVER

	N0001	N0561	N0002
2866E			2866E
1800			1800
1750	(IVERBURDEN		1750
	2204 200		
	1504 1.00 1772 1.00 1049 1.00 1003 1.00 2512 1.00 2512 1.10		
	925 1.00 ANDESTIE 2008 1.00 707 1.00 1073 1.00 2135 1.00 2882 1.00 1104 1.00		
	969 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		
	801 1.00 2477 1.10 2532 1.00 761 1.00 594 1.00 3471 1.00 714 1.00		
•	963 310 963 370 ANDESTE?		
1700	572 2.40 MONZONITE 330 1.00 MONZONITE 928 1.00 MONZONITE 3360 1.00 MONZONITE		1700
	858 1.00 1500 1.00 912 1.00 BAS 1.10 ANDESITE? BAS 1.10 ANDESITE?		
	nk94-24		
			`
1650			1650
		A	EOLOGICAL BRANCH SSESSMENT REPORT
			3,79 _{N0002}
			Cu(ppm) / interval(m) Cu(ppm) / interval(m) Cu(ppm) / interval(m) Cu(ppm) / interval(m)
		100 50	0 10 20 30 40M.
		REVISED	KLIYUL PROPERTY
1600		1600 PROJ.No. 548	DDH NK94-24 SECTION 2866E (LOOKING WEST) SURVEY BY: G.GILL DATE NOV.17,1994
	NOOP OO	PROJ.No548	SURVEY BY: G.GILL DATE NOV.17,1994 DRAWN BY: G.GILL SCALE 1:250 NORANDA EXPLORATION OFFICE: VANCOUVER

	N0061	N0261		N0000
2555E	·			25551
1790				1790
	9			
	UVERBURDEN.			
1750				1750
	ANDESITE			
	ANDESITET			
	ANDESTTE DYKE ANDESTTE			
	844 1.00 FELD PHYR ANDES BA4 1.00 FACIDIC DYKE NUESITE			
	671 200			
	NCH	Z DYKE		
		FELD PHYR ANDES		
1700		DACITE ANDES DYKE DACITE ANDESTIE		1700
		159 2.00 MONZONITE 1		
		271 270 ANDES DYKE MINISTRITE		
		ANDESTTE DACTTE? HUNZ DYKE		
		596 200 ANDESTTE		
		357 200 348 200 433 200		
		330 200 FELD PHYR ANDES		
		523 2.00 864 2.00		
1650		453 200 443 200 751 200		1650
		755 2.00 732 2.00		
		540 2.00 834 2.00 777 2.00		
		1390 L70		
			GEOLOGICA	I. RPANCE
			GEOLOGICA	TREPORT
			25,1	S0000N
			Cu(ppm) / Interval(m)	OFESSION PROVINCE OF D.G. GILL BRITISH COLUMBIA
				oscientiful (
1600			1600	20 30 40M.
		<u>-</u> .	D	JL PROPERTY DH NK94-25
			PROJ. No. 548 SURVEY BY: G.C	TION 2555E LOOKING WEST) GILL DATE NOV.17,1994 SILL SCALE 1:250
	1900N	1950N	DWG No. 12 NORA OFFICE:	NDA EXPLORATION VANCOUVER

	S300N	2400N
	1300E	1300E
	1880	1880
		O INVERBURIUEN
	1850	HAFTE DYKE
,		DIDRITE
		250 2.00 CABBRUID
		DIDRITECHELAND
		BB 500
		MIDRITE
		60 400
		TITE (ME), ANIE)
		numatre .
	1800	1300
		69 200
		DIDRITECHELAND
		720 721
		340
		A93 240
	1750	1750
		55 (90) 118.90 n. NK94-26
		F FOIOCICAT RRANCH
		GEOLOGICAL BRANCH ASSESSMENT REPORT
	1700	FESSION
		Cu(ppm) / interval(m) Ceology Continue
	•	BRITISH COLLIMBIA SCIEN SULL D-H-SULL
		100 50 0 10 20 30 40M.
		REVISED KLIYUL PROPERTY
		DDH NK94-26
		SECTION 1300E (LOOKING WEST)
		PROJ. No. 548 SURVEY BY: G.GILL DATE: NOV.17.1994 N.T. S. 94D / Q. DRAWN BY: G.GILL SCAIR: 1:250
	8300N	DWG No. 13 N.T.S94D/9 DRAWN BY:
L		OFFICE.

.

33705	N0012		2150N	
1790				3370
1750				1750
	THE EASTERN			
	24 200 MARKANTE? 28 200 MARKANTE			
	16 300 16 37 310 126 5	200 200 AMORESTE TUTE		
		200 200 LINE FIRE TUPE TO LANGE THE LANGE THE LANGE THE LANGE THE LANGE THE LANGE THE LANGE THE LEVEL OF THE AMES		
1700		FELD PAPE ANDES	RECUEN	1700
		RELA PELA	ANTESTIC TUFF ANTESTIC TUFF ANTESTIC TUFF ANTESTIC TUFF ANTESTIC TUFF ANTESTIC TUFF	
		78 V	22 200 ANDESTR. 25 200 ANDESTR. ANDESTR. ANDESTR. ANDESTR. ANDESTR. ANDESTR. ANDESTR.	
			91.40 m. 10 ⁴ n . 94-27	
1650		•		1650
				GEOLOGICAL BRANCH ASSESSMENT REPORT
				ofession and the second
				Cu(ppm) / interval(m) Geology Geology D.G. GILL BRITISH COLUMBIA COLUMBIA SCIENTS A A A A A A A A A A A A A
1600			1600	REVISED KLIYUL PROPERTY DDH NK94-27
	N0001		2150N	DDH NK94-27 SECTION 3370E (LOOKING WEST) PROJ. No548 N.T.S94D/9 DWG No. 14 DWG No. 14 DDH NK94-27 SECTION 3370E (LOOKING WEST) G.GILL DATE: NOV.17,1994 DRAWN BY: G.GILL SCALE: 1:250 NORANDA EXPLORATION OFFICE: VANCOUVER

3710E		
1785		
1750		
		On the same of the
		So, Co, Martiner, Adata of the control of the contr
		So All AMASIR.
	देत ^१ वर १९	**************************************
	To Cop Markets Andre Markets A	
1700	Ex Cas Anna Mars	
	To to to to to to to to to to to to to to	
	Triad Print Models	
	To to to to to to to to to to to to to to	
	ANDESTICS ANDESTICS ANDESTICS	
	103.00 n. NK94-28	
1650		
		GEOLOGICAL BR ASSESSMENT RE
		NOSS1 2 3
		Cu(ppm) / Interval(m) Gaology
1600		100 50 0 10 20 30
		REVISED KLIYUL PROIDDH NK94-2
		SECTION 37 (LOOKING WES M.T.S. 94D/9 DWG No. 15 DRAWN BY: G.GILL SCA SURVEY BY: G.GILL SCA SCA SCA SURVEY BY: G.GILL SCA

>

	1 N	Noce of the state	
79477E			79477E
2120			2150
2100			2100
		OVERBURDEN	
		46 9.80	
2050			2050
		65 24.40 ANDESITE	
		83 880	
	,	34 2.70 Altro-	
		ANDESTTE ANDES TUFF	
		89 310 ANDESTTE	
	•	Se 300 ANDES TUES	
2000		73.76 n. NK94-29	2000
			GEOLOGICAL BRANCH ASSESSMENT REPORT
1950			23,797
			ROFESSION REPROVINCE TO
			Cu(ppm) / interval(m) Gaology Caclogy D.G. GILL BRITISH COLUMBIA COLUMBIA COLUMBIA
			100 50 0 10 20 30 40M.
			KLIYUL PROPERTY DDH NK94-29 SECTION 79477F
			SECTION 79477E
-		651.5	DWG No 21 NORANDA EXPLORATION OFFICE: VANCOUVER