RECLYCD
FED 1 6 1995
Gold Commission and Uiflige VANCOUVER 15.C.

		,	
LOG NO:	MAR 0 7 1995	U	
ACTION:			
-			
FILE NO:			i

GEOCHEMICAL AND GEOPHYSICAL

REPORT

ON THE

RAINBOW 2 AND 3 MINERAL CLAIMS

Tulameen District - Similkameen Mining Division British Columbia $49^{\circ}34' \rightarrow 120^{\circ}50'$

NTS 92H/10W

Field Work Performed: October 16, 1994 to November 16, 1994.

Office Work Performed:

November 17, 1994 to January 15, 1995.

by

T.E. Lisle, P. Eng. and E. A. Ostensoe, P. Geo.

January 15, 1995.

FILMED

GEOLOGICAL BRANCH ASSESSMENT REPORT 23,798

CONTENTS

•

1. INTRODUCTION	1
2. LOCATION AND ACCESS	2
3. PROPERTY	2
4. CLIMATE, TOPOGRAPHY AND VEGETATION	2
5. HISTORY	5
6. 1994 WORK PROGRAM	5
7. REGIONAL SETTING	6
8. GEOLOGY OF THE RAINBOW CLAIMS	8
9. MAGNETIC SURVEY	9
10. VLF-EM SURVEY	10
11. GEOCHEMISTRY	11
12. CONCLUSIONS	13
13. RECOMMENDATIONS	13
14. REFERENCES	14
 15. PERSONNEL (a) T. E. Lisle, P. Eng. (b) E. A. Ostensoe, P. Geo. 	15
16. STATEMENT OF EXPENDITURES	16
17. APPENDICES	17

ILLUSTRATIONS

page	
P	

FIGURE 1. Location Map - Rainbow Claims	3
FIGURE 2. Claim Map	4
FIGURE 3. Regional Geology	7
FIGURE 4 (a) Ground Magnetometer Survey - Profile Map (b) - Contour Map	in pocket
FIGURE 5. VLF-EM Survey - Fraser Filtered Tilt Angle Data	**
FIGURE 6. Geochemical Survey	**
TABLES	
TABLE 1. Rainbow Claims	2

TABLE 2.	Work - Proposed and Completed	6

1. INTRODUCTION

The authors submitted, in May, 1994, a proposal to the Prospectors Assistance Program, British Columbia Ministry of Energy, Mines and Petroleum Resources, for partial funding of a limited exploration program of the Rainbow claims, Tulameen district, Similkameen Mining Division, B.C.

The proposal included preparation of 23.3 kilometres of grid lines, 32 line kilometres of geological, magnetic and electromagnetic surveys, and the collection and analysis of 640 soil samples and 100 rock samples. The estimated cost of the combined program was \$27,679.20. The authors wish to acknowledge with thanks the assistance of grants received that funded a significant part of the cost of their work.

The authors, in the period October 16, 1994 to November 16, 1994, completed a large part of the proposed program of work. Unusually early and heavy snowfalls in the project area, combined with time and budget constraints, frustrated geological mapping and caused elimination of parts of the electromagnetic survey.

This report describes exploration work completed with the help of the 1994 Prospectors Assistance Program funding. All technical observations are presented and are discussed in the report Several maps have been prepared and various appendices contain the basic data. Some interpretation has been attempted and suggestions for additional work are included.

2. LOCATION AND ACCESS

The Rainbow claims lie on the north slope of the Tulameen River valley six to ten kilometres west and northwest of the village of Tulameen in southcentral British Columbia (Figures 1 and 2). Geographic coordinates are 49° 43' north and 120°50' west and NTS sheet is 92H/10W.

Elevations are between 840 metres asl at Tulameen River and 1646 metres asl in the central part of Rainbow 3 claim. Terrain is relatively subdued but near Lawless Creek and its tributary streams, slopes are steep.

Access to the claims is by the Lawless Creek Forest Service road that passes from the Coquihalla Highway easterly toTulameen and by the Princeton to Tulameen paved road. A logging road along the north side of Tulameen River west of the town gives access to the south part of the Rainbow 4 claim. Roads have gravelled, all weather surfaces and are maintained throughout much of the year. The common claim line of the Rainbow 2 and Rainbow 3 claims crosses the Lawless Creek Forest Road about 8.1 km northwest of Tulameen.

3. PROPERTY

The Rainbow property comprises three claims with a total of 46 units (Table 1). They are located within the Similkameen Mining Division and are owned jointly by T. Lisle and E. Ostensoe (Figure 2).

Claim Name	Units	Record No.	Located	Expiry
Rainbow 2	20	309158	May 6, 1992	May 6, 1995
Rainbow 3	16	309159	May 7, 1992	May 7, 1995
Rainbow 4	10	323956	March 1, 1994	March 1, 1995

Table 1. Rainbow Claims.

4. CLIMATE, TOPOGRAPHY AND VEGETATION

The climate in the Rainbow claims area is transitional between dry conditions of the southern Interior Plateau and wetter conditions of the Cascade Mountains. Summers are hot and dry and winters are cold with substantial snowfalls. More than one metre of snow fell in the project area in the period October 16 through November 16, 1994.

The Rainbow claims span elevations from the Tulameen River, about 900 metres asl, and the top of Boulder Mountain, about 1675 metres asl. North of the Lawless Creek forest road, the terrain is forested and topography is mostly gentle; the lower portion, south of that road, is steep and

LOCATION MAP, RAINBOW CLAIMS TULAMEEN AREA SIMILKAMEEN MINING DIVISION BRITISH COLUMBIA

Fig 1

3

RAINBOW PROJECT, CLAIM MAP. BRITISH COLUMBIA CLAIM MAP 92 H 056

Figure 2.

characterized by bluffs and canyons. Several small streams originate on Boulder Mountain and flow either southerly to Lawless Creek or easterly to Boulder Creek.

The upper parts of the area are forested with thick stands of spruce, fir, and balsam, and a few red cedar trees. Large yellow pine trees are present but not numerous on south facing parts of upper slopes. Large parts of the area north of the Lawless Creek forest road have been logged in recent years.

5. HISTORY

The mining history of the Tulameen area is documented in numerous government publications and in more than 120 technical reports that have been filed as assessment work on mineral prospects in a 300 square kilometre area approximately centred on Tulameen.

The first comprehensive geological map of the Tulameen area was included in GSC Memoir 26, authored by Charles Camsell and issued in 1913. Camsell showed a small granitic stock intrusive into Nicola Group and dioritic rocks at Boulder Mountain.

Early prospectors were undoubtedly attracted to the Tulameen area by placer mining possibilities, particularly by discoveries of platinum in nearby streams and by production of large nuggets from Lawless and Boulder Creeks. A large gossaned alteration zone, now exposed by sidecuts along the Lawless Creek forest road, occurs along a substantial creek valley that passes through Rainbow 2 claim. Several small bedrock pits located north of the road were excavated many decades ago and expose local concentrations of pyrite and magnetite within the zone.

Geological and geochemical assessment work reports numbered 16016 and 17271 apply to parts of the Rainbow claims. A preliminary prospecting report by Lisle and Ostensoe in 1993 presents some information concerning the geology of the claims. Important background information may be obtained from these and other sources.

6. 1994 WORK PROGRAM

The following work was completed on the Rainbow claim between October 16 and November 16, 1994:

	Rainbow 2		Rain	bow 3
	Proposed	Completed	Proposed	Completed
Linecutting (100 m lines - 25 m spacing)	11.3 km	11.3 km	12.0 km	11.0 km

Soil Geochemistry * - 412 of 608 soil sa	340 mples have be	359* en analysed.	300`	249*
Rock Geochemistry	50	6	50	0
Magnetic Survey	17.0 km	17.0 km	15.0 km	10.0 km
VLF-EM Survey	17.0 km	10.0 km	15.0 km	7.0 km
Geological Survey	17.0 km	0	15.0 km	0

Table 2. Work - Proposed and Completed

7. REGIONAL SETTING

The Nicola Group in southern British Columbia is part of a linear northwesterly Cordilleran belt of volcanic and sedimentary rocks developed in an Upper Triassic island arc environment. The Groups is, at least in the Princeton-Merritt area, a westward younging assemblage comprising

a) an eastern belt of alkalic and calc-alkalic submarine volcanic rocks, lahar deposits, basaltic flows, and high-level syenitic stocks,

b) a central belt of alkalic and calc-alkalic subaerial and submarine assemblages of andesite, basalt and co-magmatic intrusions of diorite and syenite, and breccia, conglomerate and lahar deposits,

c) a western belt of calc-alkalic flow and pyroclastic rocks ranging in composition from andesite to rhyolite, with minor interbedded limestone, volcanic conglomerate, sandstone and argillite. This assemblage underlies much of the Tulameen area.

The Nicola Group rocks, west of Tulameen, are bounded on the west by the Eagle Granodiorite, a syntectonic intrusion of apparent Upper Jurassic age. The contact area is marked by an amphibolitic zone. Both the Nicola and Eagle rocks dip westerly along a regionally developed northwest foliation. Figure 3 illustrates some features of the regional geology near the Lawless Creek area.

Several small intrusions are present in the Tulameen area, including Late Traissic to Early Jurassic granites and the Tulameen ultramatic complex of apparent Late Triassic age (Nixon, 1988). Tertiary-age granite stocks, particularly the Otter Granite, are important relatively young plutons.

All of the older rock units are disrupted by northeast faults of mid-Tertiary age that mark significant right-lateral and vertical displacement. One such fault is believed to form the northern

boundary of the Tulameen ultramatic complex at Grasshopper Mountain a few kilometres southwest of the Rainbow claims and to trend northeasterly through the Rainbow. Regional evidence suggests that rocks on the north side of the fault are offset four kilometres northeasterly.

Nicola Group volcanic rocks and related intrusions are hosts to world-class copper-gold porphyry deposits at Kamloops and Princeton, and copper-molybdenum porphyry deposits at Highland Valley, north of Merritt, and elsewhere in the Cordillera. The western belt of the Nicola Group embraces many mineral prospects in addition to the large Craigmont copper-iron deposit.

8. GEOLOGY OF THE RAINBOW CLAIMS

The geology of the Tulameen area was described by C. Camsell in 1913 in GSC Memoir 26. He identified, within the current Rainbow 3 claim, a stock of Otter Granite intrusive into Nicola Group rocks, and to the south, a smaller augite syncite pluton.

The Otter Granite stock is of Early Tertiary age and is commonly medium grained and pink coloured. Composition varies from granite to, in a border phase, quartz diorite. Prospecting by the writers during 1992 (assessment report, 1993) revealed that it may have dimensions about 1.5 by 2.0 kilometres, that it is elongate northwesterly, and it is possibly truncated on its south side by a northeast fault. Enclosing rocks have been to variable degrees altered by siliceous potassic feldspar metasomatism.

Camsell noted the presence of a small elongated intrusion of augite syenite south of the Otter Granite. Rice (GSC Memoir 243, 1947) determined that this intrusion is of Late Triassic to Early Jurassic age, and that it includes some peridotite, pyroxenite and gabbroic phases. Details of the dimensions and composition of this body on the Rainbow claims have not been determined. It is known however to be dark grey-green, fine to medium grained, and dioritic and has been observed to be magnetically distinct from neighboring rock types.

East of the Otter Granite-type stock, a formation previously described as a breccia forms a persistent belt that trends north-northwesterly through much of the eastern part of the Rainbow survey grid. This unit is tuffaceous, locally cherty, and includes sections that contain beige to pink coloured fine-grained clasts up to 40 cms in diameter, as well as subordinate amounts of small mafic clasts. At 27+00N, 5+00W, it is well-bedded, strikes northwest and dips $-72^{()}$ west. The writers believe that this breccia is similar to, possibly part of, a formation known to be present near sulphide mineral occurrences elsewhere on Boulder Mountain. Copper mineralization was noted near the east boundary of Rainbow 2 claim.

Prospecting by the writers during 1992 investigated a large pale coloured alteration zone situated between the Otter Granite-type complex on the west and the above-described breccia on the east. The zone is siliceous, weakly porphyritic, and exhibits strongly developed argillic (clay-sericite-pyrite) alteration. It is well exposed along the Lawless Creek Forest road at 19+50N, 3+50 to 5+50 W and in a logging slash at 25+00N, 5+00 to 6+00W. The presence of finely disseminated

sulphide grains, localized concentrations of coarse grained sulphides, and the weakly to vaguely expressed porphyritic textures are similar to, and suggest an affinity to, a series of mineralized porphyry dykes that is exposed elsewhere in the Princeton-Tulameen district. Old prospector's workings found at 20+00N, 3+50W and 22+00N, 5+00W explored limonitic, very highly altered zones with 10% pyrite and up to 5% magnetite. These workings occur within a distinct magnetic trend that is described in the following section of this report.

Parts of the Rainbow claims are underlain by andesitic to dacitic flows and fragmental rocks of the Nicola Group. A distinctive coarsely porphyritic andesite rock type also occurs in other parts of the Boulder Mountain-Rabbitt Mountain area.

A satisfactory more comprehensive discussion of the petrology, structure, alteration and mineralization of the Rainbow property cannot yet be presented. Detailed geological mapping was planned as part of the 1994 work program but was precluded by onset of winter conditions.

9. MAGNETIC SURVEY

A magnetic survey was conducted over the Rainbow claim grid in the fall of 1994 using two GSM-19 (19-T) high sensitivity proton magnetometer/gradiometers equipped with inbuilt microprocessors and memory. The field instrument was synchronized with a similar unit that was set up in Tulameen as a base station.

The magnetometers were initially tuned to a total magnetic field intensity of 58,000 nT, appropriate for the survey area. Observations were taken at 12.5 metre intervals on all 100 metre spaced grid lines with the exception of lines 35+00N and 36+00N. Steve Lowe, geophysical technician, data processor and auto-cad operator, was given the Rainbow grid data and executed corrections and procedures to produce computer generated plan and profile presentations (Figures 4(a) and (b).

Technical data and specifications of the GSM-19 and 19T magnetometer systems are included in Appendix 2(a) of this report.

The results of the magnetic survey are summarized as follows:

- 1) Magnetic relief in the survey areas low and commonly within a range of 300 nT near 58,000 nT
- 2) Magnetic values tend to be slightly higher in the north and east parts of the grid relative to values observed elsewhere
- 3) The southwest corner of the grid, in particular lines 8+00N through 14+00N from about 5+00W to 10+00W, exhibits high magnetic relief (up to about 1100 nT) and is magnetically distinct from the balance of the grid
- 4) A series of narrow magnetic "highs", up to about 500 nT, form a conspicuous, but locally broken, north-northwesterly linear trend from the southeast to northwest corners of the grid.

This linear trend is locally flanked at distance about 200 metres to the east by a series of magnetic highs that are either isolated or are part of a weaker north-northeasterly linear trend.5) An overall northerly to northwesterly magnetic grain to the grid is emphasized by a small number of line to line responses of small amplitude, both positive and negative.

Preliminary interpretation of the magnetic data relative to 1992 prospecting and mapping, indicates that the magnetic response noted in 3) above is a reflection of the underlying dioritic unit. The cause of the north northwest linear magnetic texture is more obscure. That part of the grid between 20+00N and 24+00N may reflect pyrite-magnetite accumulations between the large felsic alteration zone to the west and the bedded clastic unit to the east A secondary linear magnetic feature between lines 28+00N and 34+00N is at least in part coincident with an eastern section of the Otter Granite member.

10. VLF-EM SURVEY

A very low frequency electromagnetic survey was conducted over about two-thirds of the Rainbow property grid using a Sabre model 27 VLF-EM receiver.

The VLF-EM technique measures the field-strength of signals that are generated by distant very powerful radio transmitters. Variations in dip angle and field strength are recorded in the field, processed using the Fraser Filter method, plotted, and then interpreted in terms of conductivity contrasts. Conductive areas can be identified and related to geological features including structures and, possibly, mineralization. Results can be confused by conductive clay layers and by terrain effects. Faults and shear zones may produce anomalous data but only if conductivity is associated with them.

The Sabre model 27 VLF-EM instrument is a sensitive precise radio signal receiver. For purposes of the Rainbow grid survey the 18.6 Khz. signal generated by a station near Seattle, Washington, was employed. The ideal station should be located so that the direction of the signal is approximately perpendicular to the direction of the grid lines. The Cutler, Maine and Annapolis, Maryland stations would also have been appropriate signal sources.

Two measurements were recorded in the field:

- 1) tilt angle of the resultant field, measured in degrees of tilt
- 2) field strength of the horizontal component of the VLF field

Tilt angle measurements were "Fraser Filtered", a process that enables data to be presented on a plan map and contoured. Instrument specifications and detailed field procedures are described in Appendix 2(b) of this report.

Figure 5 displays Fraser filtered tilt angle observations. Data have been extended between grid lines where appropriate and have been contoured where sufficient information is available. No overall electromagnetic pattern has been recognized but several trends have been identified. Better interpretation of data will be possible when the remaining grid lines have been surveyed.

11. GEOCHEMISTRY

Bedrock exposure in the Rainbow claims area varies greatly but, in general, outcrop distribution suggests that parts of the property have only shallow overburden cover, in the order of a metre or less. The east part of Rainbow 3 claim has few outcrops and along parts of the Lawless Creek Forest road some till deposits are obviously several metres deep.

Juvenile podzolic soils that prevail in most of the Rainbow area are developed on tills and colluvium deposits. Southwest of the Rainbow property, eutric bronisols are dominant in a plateau-like area and on gentle westerly slopes but both eutric bronisols and humo-ferric podsols are present on steep southerly slopes (Cook, Fletcher, 1994).

Soil samples were taken from the Rainbow claim grid as a means of investigating the distribution of metal values in the underlying bedrock. The samplers recorded the soil characteristics at the time of sample collection (Appendix 1). Where topography is subdued, soil horizons are well developed in the till and the depth of overlying 'A' horizon soils varies from about 10 cm to in excess of one metre. 'B' horizon soils are generally less than 40 cms deep, are reddish brown coloured, and include 10 to 20% gravel-sized fragments and a few cobble-sized clasts. 'B' soils may rest directly on bedrock but more commonly overlie 'C' soils that are pale to yellow-brown with highly variable amounts of clay, silt, sand and clast content. Soil horizon development is rudimentary on steeper terrain where active colluvium or till and colluvium deposits prevail.

The intent of the soil sampling program was to sample the lower 'C' horizon. The practical limit of our sampling tools and methods was about 1 metre and if the 'C' was not encountered then the deepest available soil was sampled. Samples were taken from pits (average depth about 0.5 m) that were dug at 50 metre intervals along the grid lines. Soils were placed in standard kraft soil envelopes. Details of colour, depth, horizon were recorded, along with estimates of clay, silt, sand and fragment contents on sample sheets that comprise Appendix 1(a).

All soil samples were air dried and then transported to Vancouver, B. C. Four hundred and twelve soil samples, up to the time of this report, were submitted to Acme Analytical Laboratories Ltd. for drying and screening, followed by geochemical analysis for gold by acid leach and atomic absorption methods and for 30 other elements by induced coupled plasma determination. Five rock samples, collected from old prospecting workings on lines 20+00N and 22+00N, were analyzed for the same elements plus platinum and palladium. One rock sample was analysed by whole rock ICP methods. Analytical data is contained in Appendix 1(b) of this report. One

hundred and ninety-eight soil samples have been placed in temporary storage and will be analysed when funds are available for that purpose.

The results of the analyses for five of the elements of particular interest to us, gold, silver, copper, lead and zinc, are summarized herewith:

Element	No. of Samples	Range of Contents	Remarks
Gold	412	≤ 1 to 290 ppb	44 samples ≥ 10 ppb
Silver	412	≤ 0.1 <i>to</i> 0.70 <i>ppm</i>	17 samples≥ 0.30 ppm
Copper	412	≤1 <i>to</i> 466 <i>ppm</i>	15 samples \geq 100 ppm
Lead	412	≤ 2 <i>to</i> 270 <i>ppm</i>	5 samples≥ 20 <i>ppm</i>
Zinc	412	6 to 517 ppm	8 samples≥ 200 <i>ppm</i>

Contouring, due to wide line spacing and gaps in analytical information, is not practical. The data does not permit much line to line correlation of possibly anomalous metal values but does indicate that some areas of the grid are anomalous.

The strongest clustering of anomalous gold-copper-zinc values occurs in the southeast section of the grid from about 10+00N to 20+00N. The higher responses are located near north to northwest trending magnetic features. The grid section 24+00N, 4+00W to 34+00N, 0+00W contains several soils anomalous in copper and gold and increasingly to the northeast, zinc. Anomalous copper and zinc analyses appear to be related to eastern parts of the grid that are thought to be underlain by a clastic sedimentary unit.

Anomalous gold analyses are to some extent clustered along the western side of the Rainbow grid, an area that is underlain by Otter Granite in the north, a mafic diorite complex in the south, and by Nicola volcanic rocks in the central portion. Some possible zones appear to trend westerly off the grid.

A few, generally isolated, anomalous gold analyses occur within or near the large alteration zone that occupies central parts of the grid. The more easterly section of this zone is partly marked by strong magnetic patterns and old trenches expose significant pyrite-magnetite mineralization. Five rock samples from the alteration zone did not generate analyses of interest but the wide scattering of anomalous gold in soil values suggest that further examination is warranted.

12. CONCLUSIONS

The writers have completed programs of geophysical surveys and geochemical soil sampling on the Rainbow 2 and 3 mineral claims. Data have been plotted and evaluated. Approximately 198 soil samples remain to be analysed. Geological mapping and additional geophysical work are required in order to provide complete coverage of the existing grid. Approximately one half of the property remains to be explored by prospecting and surveys.

The Rainbow claims are located in an area of Nicola Group volcanic and sedimentary rocks that have been intruded by granitic rocks of Jurassic age and by dioritic rocks of Early Tertiary age. One major zone of intense argillic alteration is exposed on Rainbow 3 claim. Geochemically anomalous metal values are present in some areas of magnetic and electromagnetic activity.

It is concluded that the Rainbow claims exhibit geological characteristics favourable for the location of worthwhile deposits of massive sulphide and precious metals.

13. RECOMMENDATIONS

- 1) Analyse remaining soil samples and complete in-fill soil sampling at 25 metre spacing in areas of continuing interest
- 2) Map geologically all of the existing grid
- 3) Extend grid to northwest to provide coverage in the area of the apparent geophysical/ geochemical trend along the Otter Granite contact. Complete soil sampling, geological mapping, and magnetic and VLF-EM surveys of the grid extension
- 4) Extend grid to southeast onto Rainbow 4 claim to cover anticipated geophysical/geochemical trend in that direction
- 5) Methodically prospect remaining areas of the Rainbow claims
- 6) Compile and correlate Rainbow project data with detailed exploration data from claims that adjoin to the east and compile available data, geology, magnetics, electromagnetics and geochemistry, at suitable scale onto a single map.
- 7) Investigate other possible contouring configurations of VLF-EM data

T.E. Lisle, P. Eng

Erik A. Ostensoe, P. Geo Eik A. Astensoe

14. REFERENCES

1) Lord, T. and Green, A.	Soils and Surficial Geology of the Tulameen Area, Agriculture Canada, 1974
2) Cook, S.J. and Fletcher, W. K.	Platinum Distribution in Soil Profiles of the Tulameen Ultramafic Complex, Souther British Columbia, Journ. Geochem. Expl., July, 1994
3) Camsell, C.	Geology and Mineral Deposits of the Tulameen District, British Columbia, Geol. Surv. Canada Memoir 26, 1913
4) Monger, J.W.H.	Geology of the Hope and Ashcroft Map Areas, British Columbia, Maps 41-1989, 42-1989, Geol. Surv. Canada
5) Preto, V. A.	Geology of the Nicola Group between Merritt and Princeton, Bulletin 69, B.C. Ministry of Energy, Mines and Petr. Resources, 1979
6) Rice, H.M.A.	Geology and Mineral Deposits of the Princeton Map Area, Geol. Surv. Canada, Memoir 243, 1947
7) Nixon, G. T.	Geology of the Tulameen Ultramafic Complex, Open File 1988-25, BC Ministry of Energy, Mines and Petr. Resourses, 1988
7) Lisle, T. E. and Ostensoe, E.	Prospecting Report on the Rainbow 2 and 3 Mineral Claims, Tulameen Area, Similkameen Mining Division, B. C., January 15, 1993.

•

15. PERSONNEL

The following persons carried out the field work and prepared the accompanying report:

1) T. E. LISLE, P. Eng.	-	geologist, (UBC, 1964)
	-	more than thirty years experience in mineral exploration, principally
		in western and northern North America
	-	member of APEGBC, Geol. Assoc. Canada, CIMM
	-	performed field work as described in this report in the period
		October 16 through November 16, 1994

2) E. A. OSTENSOE, P. Geo. - geologist, (UBC, 1960)

- more than thirty years experience in mineral exploration, principally in western North America
- member of APEGBC
- performed field work as described in this report in the period October 16 through November 16, 1994.

16	STATEMENT OF EXP	ENDITURES - Rainbow Project - Tulameen, B. C. - October-November, 1994	
1.	Travel and Transportation	- Four wheel drive-equipped Chev. Blazer (Ostenso - one month @ \$1000	e) \$ 1000.00
		- Four wheel drive-equipped Ford Bronco (Lisle) - one month @ \$1000	1000.00
2.	Soil and Rock Sample Ana	lyses - Acme Analytical Laboratories Ltd.	
		- invoice 94-4193	3996.05
		- invoice 94-4562	1309.68
3.	Equipment, supplies, phot	ocopying, map reproduction	863.95
4.	(a) Accommodation - hou	se in Tulameen - one month	1000.00
	(b) Food		743.65
5.	Report Preparation - ten p	erson days @ \$250/day	2500.00
	- fee fe	or magnetometer data processing	200.00
6.	Wages - field - 64 p	erson days @ \$250/day	16000.00

Total Expenditures------\$28,613.33

E. A. OSTEMBOR COURSIA D OSCIENT

·

16

17. APPENDICES

APPENDIX 1. (a) GEOCHEMICAL DATA SHEETS (b) Certificates of Analysis

APPENDIX 2. GEOPHYSICAL INSTRUMENTS

- (a) Instruction Manual GSM-19T Magnetometer
- (b) Specifications and Instructions Sabre Model 27 VLF-EM Receiver

APPENDIX 1

GEOCHEMICAL DATA

Abbreviations used on data sheets.

Type of survey	:	S = soil; SS = Silt; R = Rock
Depth	:	Recorded in meters.
Material	:	T = Till; Co = Colluvium; A = Alluvial; GF = Glaciofluvial. F = Fluvial; O = Organic
% Organic	:	L = Low; M = Moderate; H = High
Colour	:	<pre>Br. = Brown; (L = Light; P = Pale; Y = Yellow; R = Red; G = Grey, Dk = Dark) Bl= Black. G = Grey. O = Orange</pre>
% Gravel	:	Estimated % of gravel sized fragments.* Till commonly contains up to 10% cobble-sized fragments.
Horizon.	:	 A. Commonly black organic-rich surface material. B. Commonly Brown to red-brown. C. Commonly pale to yellow brown occurring at a depth of 0.5 meters or deeper.
Clay	:	L = Low; M = Moderate; H = High.
Silt	:	L = Low; M = Moderate; H = High.
Sand	:	L = Low; M = Moderate; H = High.

•

	PROJEC	. 7	RAINBO	au Z.						PLC	DTTED	AIR PHOTO		921401	6		
;	DATE LOCAL		TULAM	BBN 1	<i>B.C</i> .	`				s AA	APLER	MAP	T,E	LISLE		2	BN
SA	MPLE	LOC	ATION		TYPE SURV	BDRK	PT.S	mat Depth	erial organ	colour ic	CON % G	ravel Hori:	on Clay	Silt San	a`-	REMARK	5
	4 5 6 7 8	Z <u>9 10 11</u>	12,13,14,1510 017, 90	NORTH 511718,19120121 1814 99	22 5	23124	25	26127128 • 415	29 <u>30</u> T	31,32 YiBR	33 4. 4 2	35 <u>36.37</u> 0 C	37139 M	40 41 M	HO	er proc local (p dissource)	, bred
2	ii		0,4,50	181420] 5	Ê		.60		BR.	2	5 C?	LTM	M M-1	i Claci	o Maria	
3			1,000	18,499	[E]	?		• 45	7 L	YBe		5 C	L-M	MM			
4			1450	181 flag] [3			•40	TL	P.Be	5	20 G	M	M M-	Н		
5			2,7,00	1814 99	5	Ĵ		• 40	7 L	YB.	7	5 Ç	M	M M	H 5 M	2 51	212.
6			2450	1814144		2		•45	7?.L	YBR		5 C_	H	LL	Dey	city of	-4. <i>.</i>]/-
7			13, +, 0, 0	18,7,00		?		•40		YBR	- 20	È C	L-M	MM	HARD	COMPRET	<i>T</i> .
8			3,+,5,0	18,+001] []	2		•55		PiBa	Ĺ	5 C	Ľ	MH	10-75	Britiser	A-SA
9			4,700	8+1010		7		.50	TL	PBR	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	o <u> </u>	M	MM			
10			A + 5,0 5100	Bitiopi Btou	5	7 7.		•60 •40	F [T? [P.Be P.Be	2	ρ C Z 0% C Z	M	MM	tor. 5 Very	Hard.	a.

8/4.

	- 1	Roinsow					PL O T		PHOTO	•			
DATE		x100.4,1	19+4				PLOT		МАР		97 H 0	056	
LOCAL	LITY	ULAMBON	B.C	`•			SAM		7.	<u>er . L .</u>			
SAMPLE	LOCATIO	NTS UTM GRID	TYPE SURY	DR BDRK PT.S	Depth	naterial organ	colour ic	% Gravel	Horizor	n Cl. ays	ilt Sand	R	MARKS
1,2,3,4,5,6,7,8	Z [*] <u>EA</u> <u>9 10 11 12 1</u> 1 <u>5</u>	ST- W NORTH 3,14,15 16,17,18,19, 4,5-0 , 8,+	20121 22 qq	23124 25 Ş	26127128 • 1 45	29 T?L	31,32 YBe	33 + 20	36.37 Ç ?	30139 4	40 41 M H	R-geall	IN FELS.
	16,	+00 181+1	010		.65	τL	BR	+ 20	رم	4	M M-H	:07. 3A.	SR. Printin
	6.	1,5,0 , 8,+,	5		• 45	TL	P.BR	15720	Ç	L-M	M M-H	12 200 34 1- 7	6 - 5 /
	. 7.	+00,0, 8+	0,0 5		•30	T L	PiBR	15-20	Ç	MTH	MM	Szeri	l' ce l
	17.	+50 . E+	0,0 5	7	•50	71	PBe	20	C	M	M		
	. 8	700 8+	00 <	G37.	•20	۲:۱۳	BR	+30	C٢	4	m Mt	Taling	
		+50 8,+	0,0 5	GST	.25	Car. L	BR	+35	¢?	4	m H	Lower St.	n fan en stander op en sjonen. Se gegen taan een stander op en stander op en sjonen. Se stander stander op en sjone
		+,0,0 , 8,+	005	GS7 + D10	•25	CZL	BR	130	C	4	MM	Bass Fr. The Bloght	
Ť	. 9	150 B+	00 5	GST ± DIO	.15	TL	P BR	~ 15	Ç	H	MM	Clayry fill	antina Tanana tan dar
	1.0	+00, 8,+	90 5	2	.50	7 L	YBA	15-20	C	M-H	MM	Neur ISR. SA. Frays.	and the second

SN.

					L	19N						Γ	
	PROJECT	RAINBOW					PLOTT	ED AIR	рното	<u></u>			
	DATE	NOVEMBER	4, 1999	4					MAP				
	LOCALI	TY LAWLESS CR.	TULAME	52, B.C.			SAMPL	.er <u></u>	rik	Oste	nsor		
	SAMPLE	LOCATION - GRID	TYPE	DR BDRK PT.S	Depth mate	organic erial	colcur	% Grave	l Horizo	on Clay S	Silt Sand	REMARKS	
	1,2,3,4 5,6,7,8	$\begin{bmatrix} z & W \\ e \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	DRTH 8,19,20,21 22 9,+,0,0	23124 25	26127128 • 50	29 30	31,32 JK	34,35	36.37 B/C	37,39 H	40 41 M M	sort not till. Roc Flatground	ky.
2		5,4,5,0			·160				B/C	H	MH	Above fill. Also took second spl-from B horizon at depth 40	à
3		16,+00			:40		Gr [5	Ċ	Н	ML	Flatter terrain to	han he.w.
		6,+,5,0,,	<u>, , (</u>		•3,0		br [] [?	C_	H		Slope 25 W.	3.
5					.50		Iar [5	C	H	ML	ts beidw.	
5		. 7+50			.50		br	10	Ç	A	ML	Modified till.	•
7		8+00			·40		Rech	5	B	M	ML	Near top of steepe terrain. Good ma	est ternal.
3		8+50			·4.5		lar [15	C	M	ML	Por mich and Por mich and	2-1 - 60W
7		19+100			:35		Lierd [15	Bc	LH	MM	14947 5011 m c 211.9	lum.
0		10+00			·30 ·50		Lt br.	3	B C	M	MML	Much Colluvium. Of Close by. Near top of st	ps ope ·
		• • • • • • • • • • • • • • • • • • •						¥				Side hill drops Starply to Es	'44 st.

						LION	1						1
PROJEC	RAINBOW)					PLO	TTED AIR	PHOTO				
DATE	Novembe	er 3,199	4						MAP				
LOCAL	ITY LAWLESS C	REEK, TUL	AMEE	NBC			SAN	PLER				T.E	LISLE
SAMPLE	LOCATION TO		YPE	DR RK PT.S	' Depth ma	organ terial.	ic colour	% Grave	l Horixo	n Clay S	Silt San	d.	REMARKS
1121314 5161718	Z WEAST 2,1011,12,13,14,151 1 0,1+10,0	NORTH 6 <u>117</u> 18,19 <u>20,21</u> 1 (10,+10,0	22 23	124 25	26127128 • 45	29 30 T 4	31,32 B-PB -	33 34,35 15-20	36.37 C	38139 M	40 A M R	L Find	alma Bour
	0,+,5,0	1/19+190	5		125	7 L	PBA	±15	ç	H		A. Server,	ins to chai
	, 1,+,0,0	1/101+1010	S		.35	7 L	PBR	15	Ç	M	M	<u>מ</u>	
	, 1,+,50	1/10+00	5		.60	TL	PB	+ 20	C	4	H	-]	
	, 2,+,0,0	110400	5		•40	M	Br	±15	B	H	M [
	, 2+50	1/10+100	S		.70	?	PBr	15-20	ç۲	L ₁	L	- Sain	• 1 • • • • • • • • • • • • • • • • • •
	3+00	1/10+100	5		.70	TL	PBe	15-20	, <u>د</u>	L_	L-M		1
	3+50	110+00	5		.60	TL	Y BR Pibe	15-20	с С	ĻM	MM	- to be a later	a series and the series of the
	A 4, 40,0	(10140101	5		·55	TL	P.Ba	15-20	ç	L-M	Im I	N local	· · · · / /- · · ·
	4,+,5,0	1/0400	5		· A5	ΤL	YBg.	15-20	p Ç	L-14	MM	the Sand	t. tell
(F	3) 4+00W	10400	S		.15	T. L	RBR	15	В	M-H	m 1:	-M. C.s.	in the second

Ç

0

	PROJEC	T KAINBOW				PLOTTED	AIR PHO	το			
	DATE	November 6, 1777					M				— 12 N.
	LOCAT	NTS	NISC			SAMPLER	eri eri	K US	ensoe		
_	SAMPLE	LOCATION LORIDI SURV BDS	DR K PT.S	Depth mat	erial	colour	% Gravel Ho	rizon Clay	Silt Sand	K REA	MARKS
	1121314 5161718	Z W ZAST NORTH 9.10.11.12.13.14.15.16.17.18.19.20.21 2.2 23.1	24 25	26127128	29 30	31,32 33	34,35 36	37 37139	40 41		
1		5, +, 0, 0, 1, 2, +, 00		.55		Ltbr	B	CM	ML	T.11	
2		4,+,5,0		.60		Lebr	[10]	C M	ML	T.11	
3				.50		DK Br	5	c H	M	Road cut. side of roa	East d is at J side
4		3,+,5,0,,,,,		.45		Lt br	.5	СН	ML	Till	$\Delta + \frac{12}{10}$
5		3,+,0,0		.50		22 br	_3	C H	HL	T.11-c1-	ayey.
6		. 2+50		.35		PK Redor	8	3 M	ML	Good soil	but rock
7		Z,+,0,0		13,0		brown		3 M	ML	V. rocky Colluvium	$n + sol^1$.
8		1,1,4,5,0		13,5		Br			M	T.11?	
9				12,5		Yellow Br	B	C H	H O	Rocky, C neat. Fine	Powdery Soill.
10		0,+,5,0		:3,5		46-	5	C H	HL	v.finely te	xtured,
		0 + 00		•23		Greybr	High D	C H	ML	Trenches,	Angular
										large rock Clay Infil	frags with

			L13	N								
PROJEC	RAINBOW		_	PLOTTER	D AIR PHOTO							
DATE	NOVEMBER 1/2, 1994.		MAP									
LOCAL	ITY LAWLESS CR. TULAMEEN.	BC		SAMPLE	R ERVK	OSTEN	308					
SAMPLE	LOCATION GRID SURV BORK	DR PT.S	or Depth material	ganic colour	% Gravel Horiz	on Clay Sil	t Sanð	REMARKS				
1,2,3,4,5,6,7,8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	26,127,128 29 •17,0	10 31,32 33 UK OR	34,35 50 B	30,139 40 <u>L</u>	41 M	much takes fines. Angular frags.				
	$[1] O_i t_i \overline{5_i} O_{1} + 1 + 1 = [1]$.60] Val.Br	15 C	MM	M	Till DA Sispe 20°50-1th				
			.7.0			M] [1]	? Pot Usual till. Modered Til?				
			.7,0] Un []	15 Ç	M		Ti 11.				
	, , 2, +, 0,0		•60					Not the france.				
	, ,2,+,50		.50			H IN		- t: ,				
,	3,+,00]	.50] grey []	15 C	HM	M	Hard till.				
	3, +, 5, 0		.40	Grey	20 (Hard -111.				
,	4+00		.50	br	15 C	H	M	Till ROAD				
0	4.4.5.0]	.50	br	1,0 _C	H P		ТіШ.				
								1				

.

-'

					L14N							
PROJEC	RAINBOW					PLOTTED		рното				. L
DATE	OCT 31, Nov.	1,1994				5		MAP				- 14N
LOCAL	ITY LAWLESS CR.	TULAME	ien, BC			SAMPLE	r E	RIK	057	ENSO	E	-
SAMPLE	LOCATION GRID	TYPE SURV	DR BDRK PT.S	Depth mat	organic erial	c colour	% Gravel	Horizo	n Clay S	511t Sand	REMA	RKS
1121314 5161718	Z WEAST NOR 9,10,11,12,13,14,15,16,17,18,14 10,+00,14,45	Η 2 <u>120121</u> 22 ΕΡΡ	23124 25	26127128 • SIO	29 30	31,32 33 Grey	34,35	<u>36.37</u>	38139 H	40 41 H	Til.	
	19-150			150		Bre.	5	C	H	A M	Maybe til likely ovi	(
	,1,+,00			·5		Br.	10	Ç	M	HH	, ,	
	, 1,t,s,o			.20		DK BR	1,0	C	M	MH		F II
	,Z,t;0,0			.5,0		br	5	C	M	ML	Also took s Sample for	Lonparison
	12,4,5,0			•7,0		BR []	3	EC	H.	HL	5012.1)0+ -	6,17 ·
7				.50		Dkg y	5	C	H	AN L	Tille	
3	13,+,5,0			:55		br []	2	CB	H	ML	clayey. Dar	k soil.
	4.4010			.55		ka br	3	9B	M	M M	Fair To good M Road E side	aterial. $at 4+08_{W}$
•	4,4,5,0			•55		BR	5	B/C	M	M m	Flatter gro to the west.	und than Not till,

.

.

20015CI	RAINBONS	
DATE	Cz- 29/44	MAP 92 N 056
LOCALITY	10 LAMEEN.	SAMPLER T.B.L.
SAMPLE	LOCATION GRID TYPE DR	organic Depth material colour % Gravel Horizon Clay Silt Sand REMARKS
1,2,3,4 5,6,7,8		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0175P 1171 #010	·30 T L BR. +25 G2 H-M. M M Bediock'. Approx
	1+00 17+00 5 7	55 TL P.Ba ZO C M M M
	1+50 17+00 2	·45 TLPBA +15 GMMMA-M
	1, 2,+,0p 1,7+,00 E	+ 40 TL P.B. 15-20 CM. MM
	12+50 17+00 5 7	.55 TL BA + 15 G M MAH. Top of C
,	3+00 1,7+,00 5 7	50 TLM. DK.B. D. B. M.H. M. L. Low Draw.
	3+50 17+00 5 7	50 TLP,B. IS CIMMM.
·	A + 100 1 7 + 100 5	.45 7 L P.B. +15 G M. MM
0 4.4.3.)	4,+50,1,7+,00	25 T L P.B 20 G H M MA Lower Roan BANK by dife

.

LITN

		LIBN	
	PROJECT RAINBOW	PLOTTED AIR PHOTO	
	DATE OCT 29, 1994	MAP	
	LOCALITY LAWLESS CR. TULAN	EEN, HC, SAMPLER E. OSTENSOE	
	SAMPLE LOCATION GRID SURV	Organic DR DDSK PT.S Depth material colour % Gravel Horizon Clay Silt Sand	REMARKS
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. 2+ 5+20W 6 5+25W. Honey.
2	4+50		Road ++1010 +0
3			TT !!.
:	3,+50	AO BE C M M M	Contraction de
5			Dr. Arderson
5			en ensige of the two
7		LI LAS LAS MEL LI C. H M M ;	story the Much
3		I 40 20 Be I I C M M M -	Till. V. hard story
9			ina trees.
0	0,+,5¢	·20 Rabe B M M M	FAIR Krocky ground
			land shi

	PROJECT	RAINB	ow ·				PLOTT	ED AIR	рното				L
	DATE	007	199%						MAP .	92	405	6	
	LOCALITY	TULAM	SON, BC	•			SAMPI	LER		1.8.LISL	<u>e</u>		
	SAMPLE	OCATION SRI	D TYPE	DR BD3K PT.S	Depth mate	organi erial-	colour	% Grave	1 Horizo	n Clay Sil	t Sand	RI	MARKS
1	<u>1,2,3,4</u> <u>5,6,7,8</u> <u>9,1</u>	EAST W 011 1121131141151611 14175P	NORTH 7,118,19,20,21 22 1,9,1,0,0	23124 25	26127128 •40 T	27 F7. L	31,32 3 RB	3 34.35 - 36	36.37 B ² .	38139 41 4-M .	A:	er of the second	
2		4+00	(191700)		120 1	FL	RIBA	+ <i>5</i> 0	C, ?	4	M	head the	ية ولا 1 1
3		3,4,50	1.9.7 00		.55	J L	P,Be	20	C ²	M	M		
4		3+00	19+00 5	<u>_</u>	.45	TL	PBr.	25	ς?	L-M. 1	1 м-н)	
5		1217150	1,9,+,0,0 8	?	.45	TL	P.Br.	15	C	M. A	M		
6		121+100	1,9,+,0,0 5].	.50	TL	P.B.o.	15	5	M-H	y M		
7		,1,7,50	19+00 5	Clester	·15		DKB	10-15	Ç	MTH.		، بر بر المراق (مان ا	-2.
8		1+00	19+00 5	2	• 40		P.Br.	15	Ç	M	n M		
9		0,+50	1,9,+00 5	\$.45		P.Br.	+15	G .	m.	1 1		-
10		,Otop	19,7,90		· 40		P.B.	+15	ç"	M.	4 M		

ź

	2201201	RAINTEO	w				PLOTTE		PHOTO					
	DATE	001.2	\$ 194						MAP	921	4056			1974
	LOCALITY	TULAM	80N -				SAMPLE	R	1. B. L	ISLE				
	SAMPLE L	OCATION GRI	D TYPE	DR DDRK PT.S	Depth mater	organic ial	colour	% Gra	vel Horiz	zon Clay	Silt Sand		REMARKS	,
1	1,2,3,4 5,6,7,8 9,1	EAST W 10 0 11 12,13,14,15 16,11 1.0, + 0,0 1/	NORTH 7.18,19,20,21 22 1.9,7,0,0	<u>23124</u> <u>25</u>	26127128 •50	27 <u>30</u> 7 L	31,32 33 BR.	34.35 1 5-20	36.37 Ç	38139 M-H	40 41 m m-L	claye	y Till	
2		19171510 11	1914010		80	7	Br	10	C	H	ML	EAO SI brown	emple Liayey t	Fall .
3		19,7,0,0,1	19.490		.50	TL	Pale, BR	15	Ç	M	M L-M			
4		18,7,50	1,9,1,00		.40	7 2	YB	- 15	Ģ	М-Н	MM			
5		BITIOP	19,10,0		.55	7 2	RB	±20	13°.	M	MM			
6		7+50	1,9,+,00		.60	7	YB	20	C	M-H	n m-44			
7		7,700	1,9,+,00 3		.65	7 6	YB	±20	ζ	₩-H	m m.			
8		67.50	1,9,2,0,0 5		.60	7 L	YB	# ZU	Ç	1-M	MM	10M	wor. CK	<u>/</u>
9		6+00	1,9,1,00 6		.50	7 L	Y3	20	Ç	L-M-	m mit		a conferm	
10		5750	19+00 S		·65 ·55	7 L 7 L	R-V Pale	25 15-20	€ C ² .	L=M. L-M.	M M M H	Rocks to Sol	Hugo ur congo la r.	

ŝ

19N.

		RAI	NBOUL	2							•					20N
	PROJEC	0ct	27/94					POTTE	DAIR	MAP		424	050	e.		
		TULAM	Leron.	•				SAMPLE	R		-7. 5	·usi	5			
	SAMPLE	LOCATION	NTS UTM GRID	TYPE SURV B	DR DRK PT.S	Depth mat	organ erial	colour	% Grave	el Horiz	on Clay	Silt S	and	R	EMARKS	5
1	1121314 5161718	Z EASTA 9.10 11,12,13,14,1 0,4,0	$\begin{array}{c c} & \text{NORTH} \\ 5 & 16_{1}7_{1}8_{1}9_{2}0_{2}2_{1}2_{1} \\ 0 & 12_{1}9_{1}9_{1}9_{1}2_{1}2_{1}2_{1}2_{1}2_{1}2_{1}2_{1}2$	22 5	23124 25 ?	26127128 • 60	29 <u>30</u> T	<u>31,32</u> <u>33</u> <u>33</u>	34,35 ZÓ	36.37 C	30139 M.	40 A	s,			
2		101+151	201700	5	4	•40	TL	PIBe.	+15	¢?	M		3			
3		, itor	201+190	ķ [•50	7 4	YBR.	15	C	M.	M	1			
4	*	1+5	0 12 10 1000] [. [:45	TL	Y.B.	15	Ç	M	M	M			
5		12, +10,	2,2,9+,00] [] [.60		RBe	15	B?	M	M	M			
6		1 121+156	24490			•60		P.BR.	15	B; C;	гŅ	M	M	C?		
7		: 3,f,0	201100	, (•30	TL	BR	20	B	Ņ		M	Suber	op. ?	
8		13+159	120+00			• 70	FL	YBR	+15	C	.M	M	M	Vear' o	alat p	14535
9		L LAHO	0 20400			:40	TL	P.B.	20	Ç	M	M	M			
10		4,+,50 5+00	20+00			·50 ·65		YBe. BR	20	c B?	M ⁺ H M	M	m m	Near ^B É	ligde eetro	èk.

`

20N

	21039	cī	RAINBO	w 2							81.0	TTFD	AIR	HOTO						20N
	DATE		007 2	7 /94										MAP		921-	1 05	6		
	LOCA	LITY	TULAM	าษาง							\$ AM	PLER			T. E .	<u>L.</u>				
	SAMPLE	LOC	ATION G	M ND	TYPE SURV	PDRK	DR PT.S	Depth ma	o teria	rgani 1	c . colou	r ¦%0	Gravel	Horizo	n Clay	silt s	Sand		REMAR	KS
	1,2,3,4 5,6,7,8	Z 9,10	12,13,14,15,16	NORTH 17,18,19,20,21	<u>22</u>	23124	25	26127128 •1 25	29	30 L	31,32 YBR	33	34,35 30	36.37 Ç	37,39 H	40	۸: 	1		
2			16,+10,0	1210+1010				· 50	T	L	P Bro.		20	¢	MTH	M.	м-4		t d'and	
3			6,+SP	20,+,0,0	\leq			.60		Н	BI		45	A	41	L	L	12 61		
			1+00	20,+,00	\leq			.50	T	L	GB		15	<i>C</i> ?	M	M	M	t Ry Litrae		
5			17,+,5,0	20,+,0,0	R			·60	7	2	R BQ Y BR		15	C 2	M	Μ	Μ			
5			18,400	201+00	5			.65		L	R-Br Y-Br		20	C?	M	Μ	M			
7			8+5P	20,400	Ż			.70	T	L	R BR	- 4	20	C;	M	Μ	M			
8			9400	20,100	3			-60	T	L	YBR	<u> </u>	15	Ç	M	M	1 1.	Top	of C'	
9			19,450	12101+160	5			.60	Т	L	BR.		15720	٢?	\mathcal{H}^{+}	Μ	L			
0			1,0,+,0,0	,20+90 +	5			.50	ſ	L	YBA R BA		20	Ç?	M	M	M	Ê		
						*														

					L						
	D'SLOSE D'ATE	T RAINBOW OCTOBER 25, 199	<u>4.</u>			PLOTTED	AIR PHOTO MAP	92	H - 05	6	14 22N
	LOCAL	NIS	1 61 6247	12.278 JS C_		SAMPLER					
	SAMPLE	LOCATION HGRID	TYPE SURV D	DR DRK PT.S	Depth material	colour	Gravel Horiz	on Clay	Silt Sand	REMAR	ĸs
I	1121314 5161718	$\begin{bmatrix} z \\ 9,10 \\ 11,12,13,14,15 \\ 1,5,+,0,0 \\ 1,2,2,+,0,0,0 \\ 1,2,2,+,0,0,0 \\ 1,2,2,+,0,0,0 \\ 1,2,2,2,+,0,0,0,0 \\ 1,2,2,2,+,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$	22	23.24 25 Schist	26127128 29 30 •140	31,32 Red br	34,35 <u>36,37</u> <u>10</u> <u></u>	38139 L	40 41 M M	Rocky. BR off Spi. site. Rust	Stoow y serici Contin
2		4,+,5,0 1 1 1 1			.70	br		Μ	MM	to 5+25 Not till,	With Di
3		4422			15,0	dk br	1,0 C	M	MM	Till	
ļ		3+50			:5,0	br]	_ک _	μ	M	From immedi	ately
5		<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u>_</u> <u>_</u> <u>_</u> <u>_</u> <u></u>			:6,0	lor	1,0 C	M	M	As more	
5		, 12,4,5,0			·3.0	DK br	5 C/B	, W	M	BR other	
7		2,+0,0			.30	Br	1,0 B	M	MM	Collyvium. and reddish	-br.
3		1, 1, +, 5,0			14.0	br	1,0 B/c	M	MH	Not a till.	
9		1,1,+10,0			:40	Br	1,5 C	M	MH	Sandy , Tock	r 7,11.
0		0+00			·50	Grey Ibr		H		Muchy Till Would Fusty	- clay B'be Her?
						L				Tree root All	clay.

L22N

	PANSON						15
PROJEC	OCT. 25 1994			PLOTTED	AIR PHOTO MAP	72H - 05	G 22N
LOCAL	ITY LAWILESS CR T	ULAMEEN RC		SAMPLER	Erik	Ostersoe	
SAMPLE	LOCATION GRID	TYPE DR SURY BDRK PT.S	organ Depth material	colour 9	6 Gravel Horiz	on Clay Silt Sand	REMARKS
1,2,3,4,5,6,7,8	Z MAST NORTH 2.1011.12113141516117181222	<u>0,21</u> 22 23,24 25	26127,28 29 30 •50	31,32 33 bir	34.35 <u>36.37</u> 1.5 C	30,139 40 41 M M M	Topmost layer of till?
	9, +, 5,0		[•:8:0		1,0 [C	HML	Soil taken at 9+41W from road
			:6.0		5 C	MHM	Not the usual hard Dacked youxy till
	3,+,5,0		•.4.0	dk bir	5 .C	MMM	Dirt from top of till layer
	13,-10,0		•.8p	lt b,r	5 C	MMM	TII
	, 17,4,5,0		.9.0	lt Lr	10 C	H M L	Spl from creek barn Rocky Kill layer. Forest east of 7+50h
,	.7,+,0,0		.,8,0	lt br	1,0 C	H M M	TIL
			.6.5		1) C	MMM	1.1
	161-1010		150	br	1,5 6		Pale brown to grey Hard stoney till.
°	5,+,5,0		.20		10 C		Stoney till From slope Willy to creek at S+S4W

Г

L23N

124N

1 24N RAINBOW PROJECT AIR PHOTO PLOTTED Oct. 26, 1994 MAP DATE LOCALITY Lawless Creek, Tulameen, B.C. ERIK OSTENISOE SAMPLER LOCATION GRID organic TYPE DR REMARKS SAMPLE SURV BDRK PT.S Depth material colcur % Gravel Horizon Clay Silt Sand Ζ WEAST NORTH 26127128 1,2,3,4,5,6,7,8 0,10,11,12,13,14,15,16,17,18,19,120,21 22 25 36.37 38139 40 23124 29 30 31,32 33 34.35 L Tree root special. Not till. L Э, H. :5.0 Br .5 |0, +, 0, 0|2,4,+,0,0 Possible Till, Pate M M 9, +, 5,0 M Till. Dense Rocky. M 9,+,0,0 0 Road troug+72 to Slash to 8-55 8 + 77mW M M 3,+,5,0 Μ Till. On slope. Creekbed at 8+33 Slash <+ 20 to 7+75W M L 8,+,0,0 br Goodspl. Clay. M 7,+,5,0 4 Cr. at 71224 Er 7,+0,0 R L Blash 15 15m N M 6+50 1t M .0 Μ 6+00 Μ 0 M 5+50 H

2

6

7

8

9

L25+00N

	PROJECT	RAINBOW	PLOTTED AIR PHOTO	<u> </u>
	DATE	October 24, 1994	MAP 92H-056	
	LOCALITY	LAWLERS CREEK, TULAMEN, BC	SAMPLER Erik Ostensoe	
,	SAMPLE	LOCATION GRID SURV DORK PT.S	organic Depth material Colour %Gravel Horizon Clay Silt Sand	
1	1121314 5161718	Z W AST NORTH 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 $0_1 + 10_1 0_1 - 215_1 + 10_1 0_1 0_1 - 215_1 + 10_1 0_1 0_1 - 215_1 + 10_1 0_1 0_1 - 215_1 + 10_1 0_1 0_1 - 215_1 + 10_1 0_1 - 215_1 - 21$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2			150 DET ZEHMUUturach Arroc Hard packed of Hard packed of	brey
3			·4.0 Ror Br B B M M M Many roots!	,
4			A.O. THE SCHED ON FORMER	
5		2, 10,0	.50 Br 3 C H U M Upper till	
6		, 12, +, 5,0	ETO THE TO TO MH H Sandy	
7			.90 I I I I I I I I I I Voot area, N	inday
8		, , 3, +, 5, 0 , , , , , , , , , , , , , , , , ,	Br 30 70 MH Vpccv material Br 30 70 MH BR 15 at 150	A.
9			50 20 E L H H Stoney brown	+.4
10		4, +, 50	·3,5 Br 20 BC L M. M. Hoorly develop norizon: Edge Forest at 4+ Otps all arou	30W

						L'LSN)
PROJE	ct					PLOTTED	AIR PHO	τΌ		12
DATE						SAMPLE	R			
SAMPLE	LOCATION - GRID	TYPE SURY DDR	DR	Depth mate	organi erial	colour	% Gravel Ho	rizon Clay	' Silt Sand	REMARKS
1,2,3,4,5,6,7,8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 23,2	4 25	26127128 115	29 30	31,32 33 Rd	34,35 36.	37 <u>38139</u> B M	40 M	White prock at Rusty soil.
	5,+,5,0,1,1,1			.30		Blue	20	CH	ML	V sticky blue-black clay, some brown soil. This is beside
				·4,5		Real		B H	MM	Not till
				•			10		MM	111?
	17, 10,0			• 3,0		Por	5	C H	MM	Τ, ΙΙ
	. 171+1510			. 50		Mid		C H		T. 18
	0ct 25/94			·10		br	1,5	CM	MM	Till. Rocky!
	.8,+,5,0			16,0		Vet br	10	C AT	M 4	Till, Edge of Woods at 8+75 W. Cr. 2t 8+70m
,	19,+0,0			:50		bronn grey	.0	C H		Till. 1 hard
	, , q, +, 5, 0			•55		bir		C H		Till. Till claim post
	10+00			•35		Lt br	10	<u> </u>	1 141 141	1 11 2* 9+ 75W

	PROJEC	RAINBO	~·					PLOTTE	D AIR	рното			L_
	DATE	007 24	,1994							MAP	92	- 4 01	6.
	LOCAL	ITY TULAMOGAL	ITS					SAMPL	E R	7. (
	SAMPLE	LOCATION	RIDE	TYPE Sury de	DR DR D	epth mater	organiec ial	colour	% Gra	vel Hori	zon Clay	Silt San	a REMARKS
1	1121314 5161718	Z EAST W 2,1011,12,13,14,151	NORTH 611718,19120121 2611+1010	22 5	3124 25	26127128 · 510	29 30 51H?. L	31,32 33 BR.	34.35 ZO	36.37 B?	38139 H	40 41 M X	CREEK BOB - Clay-S. Poor Squeler + Goover
2		0 1+1510	2161 171010	5		: 70		YBe	157	ç	MrH	ML	15M tosE of star
3		1 d1+1+00	216 14 90	Sa C		.65		R BR Y BR	15-20	Ç	M	M	Ta of 'c'
4		1 + 50	ZGHOO	5		.50	76	YIB	10-15	Ç	Mrlt	M	TREE FRONT
5		24 1+1010	261 1+ 90	5		.70	Z C	XB RB	15	Ç	M	m m	
6		1 21 1+150	2161 1+ 90	5		, 60		BBR	15	C	M	m M	THEL SOF-AM NON
7		3. 1700	26 14 90			.50	7 2	RBe	15-20	C ⁷		<u>-</u>	Bottom B.
8		3, + 50	261+100	<u>[</u>]		.50	7 2	YB2.	20	C			shonden segular. I
9		4 + 100	2,4,4,90	5		.60	74	P se	+15	c ?	M	n n	,
10		4 + 50	26 1400	G [•45		BR.	20	<u> </u>	M	M M	Subciop- augulus Frags
			10 T 00			99		·					- i

26 N.

26 N.

	220150	, RAINBO	w.				DI OTTE		PHOTO			
	PROJEC	OC7	1994				FLOTTE		MAP	921	4 056	
		TULAME	510'				SAMPLE	R		TC	LISLE	
			TS	5 00	Depth mater	ial					-	
7	SAMPLE	LOCATION ZO	RIDE SUR	V <u>BDRK PT.S</u>		organic	colour	% Gravel	Horizon	Clay Si	lt Sand	REMARKS
	1,2,3,4 5,6,7,8	Z CAST w 21011 121314151 51 1+156	$\frac{\text{NORTH}}{6_{1}17_{1}18_{1}19_{1}20_{1}21} = 22$ $\frac{2}{2} \frac{1}{6_{1}} \frac{1}{1} \frac{1}$	23124 25	26127128 •69	29 30 [31,32 33 Pare Be	34.35 + 115	36.37 Ç	30139 M	40 41 M M	
		6,+0,0	26 +00		.40	7	Pale BR	. 15	Ę	M	MM	
3		6 + 50	26,+00		.15	72	Pale BR	+15	ζ^{2}	\sim	MM	Brocont?
		7 +10,0	261+1010		.55	TE	Polo- 7/Ba	15	e	K-M	MMH	Edge of MK bank
5		7, +50	26 +100 5		0.40		YBe	25	Ę	L-M	М м-н	
5		8 + 00	2161 171010		0,30	76	Y.BR	20	<u> </u>	M	MM	
7		8 +50	2, 6, 17, 10, 0 5		-40	7	Y.Be,	20	e	M	MM	
8		9 + 00	26 +00		.12:0		Pal-e BR	25	Ç	M	MM	ON BE
9		9 + 50	261 +190		.55	TL	Bre.	20	B?	M	M M	Poss C
10		1,0,1,00	ZGTOU		• 50	70	Be	+20	B'	M.	m	c ?
												1

LZ7N

.

LZ7N

10.

	PROJECT	RHIWBOW			PLOTTED	AIR PHOTO			
DATE		OCT 24, 1994				MAP	92 H	056	
	LOCALITY	TULAMEEN	•		SAMPLER		T.C. USU	. 8-	
SAMPLE		LOCATION GRID	YPE DR	organ Depth material	colour 35, %	Gravel Horiz	on Clay Silt	Sand	REMARKS
	<u>1,2,3,4</u> 5,6,7,8	<u>EAST</u> W NORTH 1011 12131415 16171819 20121 1014 100 28+00	22 23124 25	26127128 22 30 0140 T L	31,32 33 34 YBR	1.35 <u>36.37</u> 1.5 C	38139 40 M M	41	
		0,7,50 12,8,7,00	5	.55 TM-L	BR.	· FB	M mg	4	
3		1+00 28+00	5	150 7 L	YIBR	TIS C	MM	м.	
		11+50 28+100	9	· 60 T L	BR	10 B?	MM	Μ	/ \ \
5		2 +1010 28+100	5	.50 TL	Be 1	ş Ç	M	M	TOP OF C
5		12+50128+00	9	·60 T 4	YBe +	15 C	Mit M	al	φ. γ
7		3+00,0,28+00		· 6,0 T L	YIB -	15 C	Mit "	2	TREE ROUT ANS WET
3		3+50 28+00	5	1.65 T L	- <u>B</u> e	15 6?	M	M	4.0 Moters Norry
9		\$ +100 28+00	5	·307L	- Y.Be.	15: G	M-H M	4	TREE ROOT
10		4+50 18+00 5+00 28+00	5 7	0.70 T L	BR.	0115 B 15 C	M. M M-H M	al M	E Below Tree Coo
			5: 3.1						

ZBN

281.

		RAMPONI	L2911											
	PROJECT	Detaber 23,1994	PLOTTED	AIR PHOTO	05%									
	DATE	, Lawless Creek, Tulameen. B.C.	SAMPLER	Erit Matensore										
	SAMPLE	LOCATION GRID SUBY BD3K PLS	organic lial cplour %	& Gravel Horizon Clay Silt Sam	nd REMARKS									
1	1,2,3,4 5,6,7,8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34.35 36.37 30.39 40 41 15 C M M	place - BR.									
2] a ×									
3														
:		. 3,+,5,0	YPH [Some the									
5		13,+,0,0		15 C L A H	a ang gras. Shafana									
5		. 121+1510	br [20 C L # F	Tra daya									
7		12,4,0,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	B-gr	40 6? 0 4	H Sand and shuck									
3		1/1+150		JO AM	Favr + . Clars.									
9					= [- qood syn									
0					M Good stancy till. All organic! Deep									
		0+00 ·30	Black	<u> </u>	hole. Btm of slope.									

1	2	9	N
5	_	-	•

PROJEC	RAIN BOW.	· .		PLOTTED	AIR PHOTO	HOTO MAP 92H 1056					
LOCAL	TULAMBEN.			SAMPLER		T.E. LISLO					
SAMPLE	LOCATION GRID	TYPE DR SURM BDRK PT.S	org Depth materia:	ganic 1 colour	% Gravel Horizo	on Clay Silt Sand	REMARKS				
1,2,3,4 5,6,7,8	Z <u>EAST</u> NORTH 2,10 11,12,13,14,15 16,17,18,19,20,2 J J-4,0,0 30,70,10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26127128 222 3 0:60 .7	30 31,32 33 - BR	34,35 15	38139 40 41 M M M					
	4+50 30+1010		0150 T	L Be.	15 G?	M M M.					
	4,+,00,30,+,00		0.50 7	Pole Ar	15% C	MMM					
	3,+5P 30+ 00		0,5,0 T	L BR	15%						
	3,+,0,0,3,0+,00	$2 \overline{P} \overline{A} \overline{P}$	0:15 7	R.B.	5-10 BC?	Lim m M	ON Edge = Fiperi. Bulling				
	1 121+50 301700		0,5,0 7	L Pula R.P.	15% C						
	12+ 8 0 30+100		.67 7	H, B 1.	45 A?	H, L L	Poor Sample.				
	11+50 30+00		·65 7	LRB	+1,5% B'C'	Hi M L.					
	1/400 30+00		.60 7	M Be	15% 32	HML	O.S.M. Clark. Styr				
	0+00 30+00		·45 7 1	K BR Hale X Bale	10-15 C?	L-M M L M M W					

30 N'

.

															
	PROJECT	RAINBOW.				PLOT	TED	AIR PHOT	ro 92H /056						
	LOCALITY	TULAM DEN.				. SAM						TELISLE			
	SAMPLE	LOCATION GRID	TYPE	BD3K	DR PT. S	Depth mate	or erial	ganic	Colour		% Gravel Ho:	izon Clay	y Silt S	Sand	REMARKS
1	<u>1,2,3,4</u> <u>5,6,7,8</u> <u>2</u>	10 11 12 13 14 15 16 17 18 19 20 12 12 12 12 12 12 12 12 12 12	2 2 S,	23124	25	26127128 1 85	29	30	<u>31,32</u> Q	33	34,35 <5 A B	38139 M-14	40		BOG. Cft. 7450 W ORANGE Feat? OBANGE Feat? OBANGE Feat? OBANGE Hard Stark 'A
2		19+50 1310+1010	٤			.45	T		PBR.		10715 4	M	M	<u>N</u> ,	Bottom of B'?
3		19+100 30+190	٤			0:55	Ħ		BR		10 G	M	\sim	M	Good sample at edge of bog.
4		1817150 319+100	5								, , , ,				Beg. Decentin Water @ DEOM.
5	1/5	8,7,00,3,0,+,00	5												Bog 11 - 4
6		71+15P 301+00	S			0.50	?		0		~5 A B	4	#	?	BOG - Thin or and a layer below Black. doyey 'A' Ho you
7		7,+0P 3,0+00	٦			0.50	7	2	BR.		15 B?	M	M	2	
8		6++50 3,0+00	S			0,40	7	4	Pule BR.		15 G	M	#	M.	Subcrop Schust
9		6,100 30,100] [3			c:55	7	L	B _R .		10.15 @	M		м.	
10		5,+50 3,9+,00	S	7.		1.40	7		R.B.R.		15 3	?	~	æ	
	1														

30 N

L 32N

														4					
	PROJECT KALYBOW								PLOTTED AIR PHOTO										
	DATE Detance 22, 1241											MAP		····					
	LOCAL	L 17 Y	Land Cap	JTS							S AM	PLER		E. C	Osten	soe			
-	SAMPLE	L	OCATION E	JTM SRID	TYPE SURV	DDRK	DR PT. S	Depth ma	orga terial	nie . c	olour		% Grav	vel Hori	zon Cla	y Sil	t Sand	REMARK	< S
	1,2,3,4 5,6,7,8	Z 9.11	WFAST 111,12,13,14,151 0,1+0,0	NORTH 16117,18,19,2012 13,2,+10,0	22) S	23124 1	25	26127128 1610	29 5	10	31,32 LT bir.	33	90 34.35 2,0	36.37 B	<u>38139</u> H	40 M	41 L	5°slope E. 20cm organic.	. Till,
			101+1510					1410			Red Gr.		2,5	B	H	L	L	Fair spl. Much rock frags.c	harcoal?
			1,+,0,0					,6,0			Red		1_0	C	[,H]	M	L	Possible deep E underlies velle brown layer.	5- 1.11?
			,1,+5,0					,50			Y.Dr		1,5	Ľ	Н	Μ	Μ	v. dry. Ca'e yello	שנים שנים
			2+,0,0					_3,5			Brown		30	2	M	H	H	Till V rocky Frag 1- 10	Cr
			12,+,5,0					,2,5			Mid br		35	C	М	н	Μ	oto V. close by V. rocky.	
,			,3,+,0,0					,4,0			Mid		3,5		M	H	H	basal Hill. V. rocky. Frags. t	5 IOCM
3			3+50					,6,5			M.d br		35	C	M	Н	М	basal rocky ti more pale col than 3+00	11. 045 045
7			4+00					,40			L+ br		4,0	Ç	M	Μ	Μ	till. Large fr.	aqs.
0			4+50					4,5			LF br Dall		3.5	C	H	M	L	basel till. U. pack gravel + cobb Crest of a r	les idgeN-s
								50			vea br.		20	DIC	L	/ 1	د کر	Drainage. Like ense packed gr nugular tragn	ly B. duel nents.

,

	L32N														5					
	PROJEC	c٦	RAINBO	ω							PLOT	TED	AIR	рното				<u></u>		Ľ
	DATE		Octobe	r 22,	1994.							5		MAP	<u> </u>		······			
	LOCAT	L 17 Y	Lawless	Creek,	Tula	incer	<u>NB</u>	2			5 AM	PLER	Ē	, Os-	tenso	<u>e.</u>				
	SAMPLE	L	OCATION -	IIN RID	TYPE Surv	DDRK	DR PT. S	Depth ma	o terial	rgani	colour		% Gra	vel Hor:	izon Cla	ay Sil	t San	đ	REMARKS	5
1	1121314 5161718	2 9 11	12113,14,15 5, +, 5,0	NORTH 6117,18,19,201 32,+10	21 0 5	23124	25	26127128 20127128	29	30	31,32 R-by Pale or	33	34,35 30	36.37 C	38139 M	40 M	<u>a i</u> M	On otp Densely	B/C packed	+(1).
2			161+1010					12,0			Y br		50		M	M		On rock	y rudge	B
3			6+50					:30			9.br		20	Ċ.	Н	M	L	THI. R	acish/y	ne in Li
1		ı	17,+,0,0					:40			Y, of		20	,C	Ч	Μ	4	Hard re	to Ally 1	. : :
5			,7,+,5,0	<u> </u>				.3,5			Ybr		20		Ϋ́,	$[\wedge 1]$		F	inve. 9°	
6			18,+,0,0					:5,5			Ybr				Н	$\overline{\mathcal{N}}$		Fr. a'c		
7			8+,50	<u> </u>				12,5			R br		65		M	Ч	M	1. 902 F	1. 1	
8			,9,+,0,0	i I I				:3,5			R/Y hr		25		, fi	\mathcal{H}_{i}		5		
9			19,4,50					.45			12 by		15		H	H			÷ • • .	
10			1,0,+,0,0					.50			Br		10	C	4	\sim	M	Good	soil.	

L33N

1 **4** 14
			23	3N			6
PROJE	CT <u>KAINISOW</u>			PLOTTED A	AIR PHOTO		
DATE	027.22,1994	· • •			MAP		,
LOCA	LITY Lawless Creek, Jula	meen B.C.		SAMPLER	E. Usleasse		-
SAMPLE	LOCATION GRID	TYPE DR	%Organio Cepth material	colour %	Gravel Horizon Cla	y Silt Sand REMA	RKS
1,2,3,4 5,6,7,8	Z WEAST NORTH 9.1011.12.13.14.1516117.18.19.20121	22 23124 25	26127,28 29 30 11,5	31,32 <u>33</u> 34,3 DIBR H	<u>36.37</u> <u>38.39</u> B M	M L V shallow sver vock	Soil Poor
2			·A.0	BR 2	B/C M	H M Good soil 10 NOT 2 good	at c horizo
3	<u> </u>		.30	Blask.	A H	L L BADS Soil -	edge of
	19.1-170		:50	BR. I	O C H	ML	
5	12,+,0p		:5,0	BR 2	5 C 世	M L Fair Rockie	orts.
5	, 17,4,5,0		35	Br. 2	o C H	PL Gour March	5 ° A 1.
7	, ,,+,,,,, , , , , , , , , , , , , , ,		25	Brun 3	0 C .H	H? Sharow se	
3	6,+,5,0		·Z.0	B.R. 3	e c A	MM V. they for	
9	6,40,0		.60		5 C M	M M 2008 510!	TELY
0	5,+,5,0		:15	R.B	B ² C ² M	M. M Dr. otp. Do From bedrock (TEL)	:- 2M.
	······································					`	

		-		,								3	4	3
		RAINTA) w							- NACTO				
	DATE	017 21	194					PLO		MAP		924	056	
	LOCALIT	r3	4N Tout	mozro	· · · · · · · · · · · · · · · · · · ·			SAM	PLER	7.	E.LIS	LC		
	SAMPLE	LOCATION	TS TM RID - SI	YPE URY BDR	DR K PT.	Depth mai	organic terial	colour	% Grav	el Horizo	on Clay S	Silt San	3	REMARKS
1	· ·3·4 5·6·7·8	2 FAST W 2101111211311411510 1 194790	NORTH 5117,18,19,20,21 134,19,00	22 2317 2	25	26127128 59	29 <u>30</u> 7	31,32 D 1 B 1	<u>33</u> 34,35 2,5	36.37 3	<u>30130</u>	40 41 L L	1 1 i geom	sample
2		1 DITISI	314100	5		1.710	70	Y-R Be	10-15	Btc	L-M	M	Thene C	"some to low
3			3.4. 00	5 7		.50	5	Pule RBQ	10115	BE	٢	m	2.5%	dalen. Laber
4		11452	34,00			:65	2	Р Ве У 182	10	B+C	4	MM	1	$\phi \in \mathcal{C}$
5		FTPY	34,00			.50	2	DK BR Palc Gy.	10	₿ŧ C	M	L	•	?
6		, EtE?	34:00	5		.50	70	R BR	Ioris	ß?	M	Mn	1 Inline sub	choj B
7		2+ 00	341'QQ	S L		.45	\square	Y Be	+10	C	M	M n	1 7154	Fre or
8		13459	34100			.50	70	Y Be R BR.	15	Bt C.	ĿM	Mr	1 2500	Prov Sal.
9		1-1+1=P	3.4100			2 .45	7	Y BR	15	C	L-M	Mn	1 Tor or	с. э. р.
10		A+15P 5+00	34, p.0 34, 00	5		· <u>2</u> 0		YBR. BR.	[[] 10-15	G B	Ľ M	MM	1. Noan 1. Boxter	IS K I B

PROJECT	RAINBOW	3				PLOTTE		рното				
DATE	OCT 21/94							MAP		92HO	56	
LOCALITY	TOLAMER	Nº B.C.	`			SAMPLE	R		TEL	SLB		
	NIS	TYPE	202		% organı	с						
SAMPLE	LOCATION GRID -	SURV	BDRK PT.S			colour	% Gra	vel Hor	izon Cla	y Silt Sar	1a	REMARKS
<u>1121314 5161718</u> <u>9</u>	1011,12,13,14,15,16,17,18 15,7,0,0,13,5	12,20,21 22 14,00 5	23174 25	26127128 •1410	29 30 - L	31,32 33 Baller	34.35 1 <u>5</u>	36.37 B	38139 L	40 41 M H	3 20	15 cm FRAGS
	At-1510 1315	5-010 S		·50	TL	RIBE,	10115	B?	LM	MM	50-50	1 421 ju
	4,4,0,0,36	+005		·,5,0		Ribe,	5-10	B?	4	Mm-H	1,2000	
	3+50 3.5	1+100 2		,45	TL	P.BR	15	B ?	Ŀ	M		
	3,70,0,0,35	+ 00 5		.5.0		R.Br	15	B?	4	M	=1.01	
	RH50 35	īt,00		.35	TL	R.Br.	10	B ?	L-M	MM		
	2+00 35	1±100		.40	TL	Relie Be	10	BC?	L-M	MM		
	11+50 35	+00		.50	TL	BR,	<u>+</u> 10	¢2	LM	MM	1.7 1	
	11:100 35	ή φ ο <		0 ک.		RiBa,	5-10	B;	L-M	MM		· d · ·
	0+00 30	14.00		. 40 .50		RBQ. YBR	015 15	B ²	H	M L M ?	319900	r

,

15.11

36 N

L36N

36 N

ACME ANP	TICA	l la	BOR	ATOR	IES	LTD	•	8	52 E	. Ha	STI	NGS	ST.	V ?"	COU	/ER	B.C.	V	6A 1	R6	1	PHON	IE (6	04)2	53-3	158	FA	X(f'	<u>^4)2</u>	53-1	716
44							TO	n T.	G] isl	EOCI	IEM]	CAJ	L AI R-	VA	SI Sil	5 C) ⊳ #	ERT] 94.	(FI) -479	CAT 93	E D:	ane	1								4	4
										145	₩. Ro	cklan	id Roa	à, No	rth V	ancou	iver B	c ิัv7พ	2v8		190	<u> </u>								L	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppn	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	AL X	Na %	К %	₩ ppm	Au* ppb
L36N 10+00W L36N 9+50W TRE L36N 9+50W L36N 9+00W L36N 8+50W	1 1 2 1	44 32 30 29 42	15 8 7 3 <2	58 53 50 58 73	~ <.1 ~ <.1 ~ <.1 ~ <.1	18 22 20 15 21	13 14 11 13 15	1198 1047 1033 723 977	4.49 4.30 4.19 4.60 4.84	4 4 5 2 2	১ ১ ১ ১ ১ ১ ১ ১ ১	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	24 27 26 31 23	.3 <.2 <.2 <.2 <.2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 2 4 2 11	70 69 68 72 73	.28 .31 .30 .40 .24	.106 .071 .069 .062 .088	12 12 11 29 9	36 33 32 30 37	1.05 .95 .93 .97 1.16	137 148 141 229 136	.08 .09 .09 .08 .06	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.83 3.56 3.45 3.96 3.59	.01 .02 .01 .02 .02	.10 .10 .10 .11 .11	v v v v v v v v v v	2 1 1 3
L36N 8+00W L36N 7+50W L36N 7+00W L36N 6+50W L36N 6+50W	1 1 13 5 5	32 33 54 57 104	62367	86 66 109 76 116	<.1 <.1 1 3 5	25 21 17 12 25	15 14 20 10 13	1081 786 5266 2690 1514	4.69 4.65 5.18 3.56 5.20	<2 5 <2 4 3	<5 <5 10 13 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	35 25 81 73 63	<.2 <.2 .4 .6	~ 2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2	<2 5 2 6 4	72 75 66 59 69	.42 .26 1.10 1.13 .95	.069 .062 .152 .084 .075	15 16 40 19 36	37 34 30 29 34	1.20 1.06 .77 .87 .92	157 157 329 190 251	.06 .08 .05 .04 .06	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.41 4.17 4.10 2.88 5.12	.02 .02 .03 .02 .03	.10 .08 .08 .08 .10	<1 <1 <1 <1 <1	2 4 3 4 4
L36N 5+50W L36N 5+00W L36N 4+50W L36N 4+00W L36N 3+50W	$\begin{array}{c c c c c c c c c c c c c c c c c c c $															3 3 1 5 32															
L36N 3+00W L36N 2+50W L36N 2+00W L36N 1+50W L36N 1+50W	<1 1 <1 <1	34 26 29 29 42	6 10 6 10 10	91 89 82 109 102	<.1 <.1 1 <.1 <.1	18 12 12 15 11	11 11 10 13 14	563 418 593 672 712	4.03 3.88 3.46 3.89 4.44	4 3 <2 6 10	ৎ ৎ হ ৎ হ ৎ হ	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 3 2	33 25 29 23 26	<.2 <.2 <.2 <.2 <.2	2 <2 2 2 2 2 2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	66 61 57 59 55	.34 .27 .33 .26 .29	.051 .088 .043 .078 .080	13 8 11 10 13	31 26 26 26 22	.83 .69 .81 .72 1.10	109 113 114 123 84	.08 .07 .06 .07 .04	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.29 2.37 2.43 2.62 2.26	.01 .01 .02 .01 .01	.06 .06 .06 .07 .09	<1 <1 <1 <1	4 3 2 6 2
L36N 0+50W L36N 0+00W L34N 10+00W L34N 9+50W L34N 9+00W	<1 1 2 2 1	29 32 35 23 33	10 17 10 3 7	115 118 51 57 85	<pre>/ .1 / .1 / <.1 / <.1 / <.1 / <.1 / <.1 / <.2</pre>	16 10 19 14 19	12 12 16 13 14	711 600 462 512 1332	4.10 4.17 4.53 3.86 4.27	3 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 5 3 3	25 28 18 17 25	<.2 <.2 <.2 <.2 <.2	4 3 5 2 2 2	4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	62 63 66 65 73	.26 .23 .13 .16 .25	.092 .080 .054 .054 .054	11 11 14 11 10	23 26 32 26 34	.91 1.04 1.19 .68 1.04	101 83 113 103 177	.06 .06 .06 .10 .07	<> <> <> <> <> <> <> <> <> <> <> <> <> <	2.58 2.65 3.89 3.17 3.51	.01 .01 .01 .01 .01	.09 .07 .09 .08 .09	<1 <1 <1 <1	2 9 27 4 18
L34N 8+50W L34N 8+00W L34N 7+50W L34N 7+00W L34N 6+50W	1 7 1 1 3	34 53 38 58 30	14 13 15 3	74 89 101 93 74	- <.1 1 - <.1 - <.1	17 24 16 26 21	13 11 15 16 13	826 517 891 1010 532	4.27 3.91 4.39 4.98 4.10	7 4 2 4 2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 3 3 5	17 38 17 19 22	<.2 .7 <.2 <.2 <.2	4 5 5 2 6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	70 62 71 74 63	.15 .47 .15 .16 .24	.075 .046 .112 .100 .049	13 26 11 11 17	30 33 37 33 30	.83 .99 .94 1.43 .90	107 255 100 111 191	.08 .08 .07 .06 .06	3 <2 5 <2 4	3.53 5.45 3.57 4.09 3.53	.01 .02 .01 .01 .01	.07 .09 .09 .13 .08	<1 <1 <1 <1	1 3 2 3 1
L34N 6+00W L34N 5+50W L34N 5+00W L34N 4+50W L34N 4+00W	2 2 1 1	28 31 44 34 36	11 9 7 11 13	91 ⁻ 109 118 95 ⁻ 103	<.1 <.1 <.1 <.1	16 15 21 18 13	19 10 14 13 12	2185 708 755 685 685	4.34 3.89 4.21 3.94 4.13	2 5 5 2 3		<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2	39 51 54 38 27	<.2 .4 .2 .2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	77 63 69 62 63	.53 .58 .63 .49 .27	.101 .045 .046 .056 .047	42 24 15 14 13	25 32 36 27 29	1.01 .95 .96 1.09 1.00	156 168 161 104 112	.07 .08 .08 .06 .05	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.60 2.75 2.82 2.55 2.58	.01 .01 .02 .01 .01	.07 .06 .08 .08 .09	<1 <1 <1 <1	1 2 2 1 3
STANDARD C/AU-S	19	57	41	141	6.5	74	31	1051	3.96	41	15	7	35	51	18.7	15	21	62	.51	.094	39	62	.92	190	.08	34	1.88	.06	. 15	9	50
•		ICP THIS ASSA - SA Samp	50 LEAC Y REC MPLE les b	O GRA H IS COMMEN TYPE: begin	M SAM PARTI IDED F P1~P	PLE I AL FO OR RO 10 SO RE' a	S DIG R MN OCK AN DIL P1 I <u>re du</u>	ESTEC FE SF D COF 1-P17 plica	WITH R CA P RE SAM R ROCK	3ML LA C PLES mples	3-1-2 R MG IF CU AU* A - ,	HCL- BA TI PB Z NALYS	HNO3- BW NAS ISBY	H2O A AND L > 1%, ACID	T 95 IMITE AG > LEAC	DEG. D FOR 30 P	C FOR NA K PM & FROM	ONE AND AU > 10 GM	HOUR AL. 1000	AND I PPB PLE.	S DIL	UTED	TO 10	I ML W	ITH W	ATER.	•				
DATE REC	EIVE	D:	NOV 1	8 19	94 I	DATE	REP	ORT	MAI	LED:	No)√2	5/9	ÿų	SI	GNE	D BY		h	••••	.D.T	DYE,	C.LEO	NG, J	. WANG	; CER	TIFIE	D B.C	. ASS	AYERS	
	· · · · · · · · · · · · · · · · · · ·																		• •												

.

Tom Lisle PROJECT R-1 FILE # 94-4193

Page 2

SANPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppn	Th ppm	Sr ppm	Cđ ppm	Sb ppm	8i ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B Al ppm %	Na %	К %	W ppm	Au* ppb
L34N 3+50W L34N 3+00W L34N 2+50W L34N 2+00W L34N 1+50W	1 1 2 1 1	46 35 39 25 40	 13 13 18 19 10 	154 142 148 132 141	2 <.1 <.1 <.1	18 17 14 11 13	12 13 18 13 14	821 751 1053 615 613	4.60 4.03 5.03 3.46 4.24	5 <2 3 <2 <2		<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 <2 <2 <2 3	28 36 27 41 20	.3 .6 .9 .4 .6	<2 <2 <2 <2 <2 <4	2 3 2 2 2 2	67 64 83 59 61	.31 .40 .30 .60 .18	.087 .051 .111 .035 .075	15 15 11 15 14	32 30 23 21 23	.92 .90 .85 .84 .95	149 142 155 205 123	.06 .08 .07 .05 .06	2 3.72 3 2.60 4 3.32 2 3.45 5 3.40	.01 .02 .02 .03 .03	.11 .08 .07 .06 .10	1 <1 1 <1 2	3 3 1 2
L34N 1+00W L34N 0+50W L34N 0+00W L32N 10+00W L32N 9+50W	1 <1 1 2	41 49 94 29 32	 11 12 19 11 17 	189 141 198 79 131	.1 .1 .2 .1	13 14 22 23 23	14 12 13 15 13	844 472 1196 930 820	4.49 4.28 4.97 4.30 4.34	3 3 3 2 2 2	5 5 5 5 5 5 5 5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3 2 3 2 3	29 32 49 38 40	.6 .3 1.0 .3 1.0	<2 4 2 2 2 2 2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	64 62 69 72 72	.30 .37 .63 .46 .49	.096 .052 .072 .060 .049	16 18 42 14 19	25 23 31 37 35	.98 .89 1.08 1.33 1.09	152 161 234 101 170	.05 .05 .05 .09 .10	3 3.37 <2 3.06 7 4.71 3 2.65 3 2.86	.01 .03 .03 .03 .03	.12 .10 .16 .12 .11	1 <1 <1 <1 1	2 2 4 3 11
L32N 9+00W L32N 8+50W L32N 8+00W L32N 7+50W L32N 7+00W	2 3 2 5 2	41 17 34 46 40	8 6 11 10 17	137 96 100 135 137	<.1 1 .2 .3	15 9 16 24 21	14 11 15 13	874 522 819 938 815	4.74 5.35 4.51 4.85 4.15	3 <2 4 <2 5	ও ও ও ও ও	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 5 3 3 <2	32 14 27 48 45	1.0 .4 .4 .3 .9	<2 3 <2 <2 <2 <2	< 2 < 2 < 2 < 5 < 2 < 5 <> 2	63 84 68 75 65	.35 .11 .24 .58 .53	.084 .219 .066 .031 .062	33 10 18 42 16	26 20 30 38 32	.09 .82 1.08 1.12 1.01	173 76 113 192 154	.05 .05 .08 .06 .07	2 3.99 7 3.38 7 2.69 6 3.88 4 3.02	.02 .01 .02 .03 .02	.14 .08 .11 .11 .11	1 <1 <1 <1	11 22 6 2 1
L32N 6+50W L32N 6+00W L32N 5+50W L32N 5+00W RE L32N 5+00W	3 2 1 5 5	46 55 39 75 76	10 10 16 15 14	133 75 - 121 - 176 - 168-	<.1 .1 1 1	23 23 16 24 23	12 24 11 31 32	818 559 979 2424 2390	4.36 6.23 4.73 6.11 6.09	2 6 2 9 6	ও ও ও ও ও	<2 <2 <2 <2 <2 <2	<2 4 <2 4 5	51 16 20 49 49	1.2 .9 1.0 1.3 1.1	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 5 <2	68 103 72 80 81	.62 .14 .23 .49 .50	.050 .206 .170 .108 .107	20 11 9 42 42	37 24 28 35 34	1.16 1.12 .97 .94 .95	140 103 116 147 137	.08 .06 .06 .08 .08	2 2.99 6 3.40 3 3.58 <2 3.96 9 3.98	.02 .01 .02 .01 .01	.11 .07 .12 .09 .09	1 <1 <1 <1	2 2 1 3 3
L32N 4+50W L32N 4+00W L32N 3+50W L32N 3+00W L32N 2+50W	1 2 1 1	37 112 321 66 52	12 16 17 14 20	88 - 99 - 85 - 122 - 134 -	.1 .2 <.1 .1 .3	21 22 20 20 15	17 24 19 21 17	680 1015 830 902 1101	4.32 4.78 4.43 4.74 4.52	7 6 2 10 7	ও ও ও ও ও ও	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 4 3 2 3	26 21 31 21 20	1.0 .7 1.0 .5 .8	2 \$2 \$2 \$2 \$5	₹ ₹ ₹ ₹ ₹ ₹	63 74 68 82 72	.24 .20 .40 .22 .17	.052 .088 .042 .068 .084	13 15 29 11 11	27 27 34 31 26	1.06 1.18 1.54 1.34 .95	117 134 167 171 141	.07 .07 .07 .08 .07	5 2.44 4 3.82 3 3.09 3 3.95 7 3.60	.03 .02 .03 .01	.09 .08 .10 .09 .09	<1 1 2 <1	2 2 1 3
L32N 2+00W L32N 1+50W L32N 1+00W L32N 0+50W L32N 0+00W	2 1 2 3 2	41 / 51 / 49 / 64 /	15 15 18 23 17	136 156 183 172 115	- 1 - 1 - 3 .2	16 14 15 18 19	13 17 13 12 13	618 4 796 4 841 4 1035 4 825 3	4.27 4.71 4.24 4.44 3.94	<2 5 3 6 3	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 2 2	25 18 36 46 42	.5 .7 1.0 1.2 .9	<2 3 2 2 2 2 2 2	<2 10 <2 5 <2	73 65 62 62 59	.30 .17 .51 .74 .60	.059 .063 .072 .056 .053	10 14 27 35 22	23 25 24 25 26	.74 .98 .87 .90 .89	170 209 207 288 161	.11 .06 .06 .07 .07	4 3.51 3 3.92 3 3.32 <2 3.83 <2 2.55	.02 .01 .02 .03 .03	.09 .13 .12 .12 .11	ব ব ব ব	4 2 3 4 3
L30N 10+00W L30N 9+50W L30N 9+00W L30N 7+50W STANDARD C/AU-S	6 1 1 19	12 38 36 30 58	8 20 11 13 42	16- 89- 84- 6- 136	<.1 .1 .1 7.1	5 15 18 4 72	<1 14 11 1 31	33 490 331 26 1043	.30 4.36 3.62 .31 3.96	<2 9 8 5 43	<5 <5 <5 <5 19	<2 <2 <2 <2 7	<2 2 <2 3 38	35 25 29 28 52	.4 .7 .6 <.2 19.3	6 <2 <2 9 13	<2 <2 <2 <2 18	8 71 65 13 60	.58 .24 .29 .21 .51	.056 .059 .041 .059 .095	10 11 19 56 40	3 35 29 7 63	.08 .05 .80 .09 .91	46 139 139 89 185	.11 .08 .08 .10 .08	<2 2.28 2 3.11 3 3.52 2 2.64 34 1.88	.05 .02 .02 .04 .06	.01 .08 .08 .02 .16	<1 <1 <1 <1 13	1 2 2 <1 48

Sample type: SOIL_ Samples beginning 'RE' are duplicate samples.

44

-1007

Tom Lisle PROJECT R-1 FILE # 94-4193

ACHE ANALYTICAL																														CHE ANAL	TTICAL	_
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppn:	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	8 ppm	Al X	Na %	K %	W ppm	Au* ppb	
L30N 7+00W L30N 6+50W L30N 6+00W L30N 5+50W L30N 5+50W	3 4 2 4 2	24 + 54 + 40 + 37 + 56 +	7 13 11 8 13	59 - 73 - 68 - 46 - 62 -	• .1 • .1 • .1 • .1 • .1	13 17 23 22 21	15 17 21 20 22	358 637 1082 889 850	5.00 4.94 4.67 4.89 4.69	7 <2 <2 <2 2	১ ১ ১ ১ ১ ১ ১ ১ ১	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 5 3 2 4	16 28 23 25 27	.2 .7 <.2 .7 .7	10 2 7 7 7	3 5 4 2 2	64 68 69 80 72	.10 .13 .21 .25 .29	.110 .118 .078 .066 .091	16 19 12 9 23	20 27 26 29 30	.88 .95 1.06 1.23 1.41	92 110 138 131 113	.05 .10 .06 .08 .08	2 3. <2 3. <2 3. <2 3. 2 3.	92 50 18 58 92	.02 .02 .01 .01 .01	.07 .09 .09 .09 .09	<1 <1 <1 <1	1 4 1 2	
L30N 4+50W L30N 4+00W L30N 3+50W L30N 3+00W L30N 2+50W	1 1 1 1	64 71 67 81 55	12 16 17 15 12	122 101 149 109 109	1 1 -<.1 -<.1 1	21 22 17 21 21	22 18 20 27 15	1061 909 1107 1413 811	4.64 4.56 4.61 5.02 4.25	2 6 6 2 5	ণ্ড	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 3 2 3 3	27 33 28 30 25	.8 .8 .5 .6	65 254	11 8 <2 <2 <2	72 69 66 80 66	.26 .30 .29 .33 .26	.096 .061 .081 .144 .087	15 13 15 12 14	29 27 25 26 24	1.57 1.36 1.24 1.38 .86	141 126 202 155 164	.05 .06 .06 .06 .09	<2 3. <2 3. <2 3. 2 3. <2 3.	26 10 39 77 < 35	.01 .01 .01 .01	. 12 . 12 . 14 . 13 . 09	<1 <1 <1 1 <1	1 1 2 4	
L30N 2+00W L30N 1+50W L30N 1+00W L30N 0+50W L30N 0+00W	8 4 5 2 1	46 √ 75 √ 62 √ 53 √ 34 √	4 31 15 12 12	52 - 135 - 99 - 102 - 105 -	.3 <.1 .2 .1	15 19 21 23 18	10 21 10 10 11	553 1117 1442 802 521	2.57 6.33 3.78 4.09 3.88	<2 <2 <2 <2 3	9 <5 <5 <5 <5	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2	90 64 69 69 43	.2 1.2 .6 .8	<2 2 <2 <2 7	5 7 3 2 4	35 72 50 60 58	2.60 1.32 1.39 1.43 .67	.066 .099 .063 .049 .037	12 21 19 24 18	13 27 21 24 25	.90 .62 .82 .88	106 204 177 212 169	.02 .05 .05 .06 .08	4 1. <2 3. 4 2. <2 3. 2 2.	77 91 51 29 90	.01 .02 .03 .02 .02	.07 .07 .06 .08 .08	<1 <1 <1 <1	2 14 12 3 2	
L28N 10+00W RE L28N 10+00W L28N 9+50W L28N 9+00W L28N 8+50W	4 4 3 4 2	27 ↓ 27 ↓ 25 ↓ 26 ↓	5 10 10 9 9	98 105 104 55 63	· .1 · .1 · .1 · .1 · .1	19 21 20 20 15	13 13 15 18 17	430 433 470 602 539	4.16 4.19 4.30 5.11 4.67	<2 <2 <2 4 9	<5 <5 7 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 3 4 5	33 33 26 31 18	.3 .6 .2 .2	6 4 <2 3 3	6 3 4 <2 <2	68 68 69 64 66	.45 .45 .25 .36 .17	.087 .089 .093 .077 .116	11 11 16 36 14	30 30 27 24 24	.91 .91 .72 .97 .74	169 165 107 161 104	.09 .09 .10 .07 .07	4 3. 3 3. 5 3. 3 2. 3 3.	34 < 37 26 98 < 26	.01 .02 .01 .01	.08 .08 .07 .08 .07	<1 <1 <1 <1	2 1 3 4 6	
L28N 8+00W L28N 7+50W L28N 7+00W L28N 6+50W L28N 6+50W	4 5 3 2	34 24 45 47 40	6 8 12 5 15	60 - 56 - 64 - 59 - 69 -	<.1 <.1 <.1 .1 .2	18 15 19 14 20	20 14 19 20 18	652 305 822 576 491	5.14 4.79 5.18 4.98 4.82	2 4 <2 <2 5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 8 5 6 6	23 18 25 18 26	.6 <.2 <.2 <.2	<2 <2 3 <2 7	<2 5 8 5 8	65 68 78 66 72	.23 .18 .23 .14 .15	.085 .098 .158 .184 .091	41 78 15 16 19	23 24 26 22 25	.90 .81 1.20 .89 1.14	111 65 86 54 89	.08 .08 .05 .08 .06	<2 3. <2 3. 4 3. <2 4. <2 3.	42 31 90 < 42 85	.02 .01 .01 .01 .01	.09 .05 .08 .07 .08	1 <1 <1 <1	3 6 1 6 2	
L28N 5+50W L28N 5+00W L28N 4+50W L28N 4+50W L28N 4+00W L28N 3+50W	2 1 2 4 2	52 - 84 60 52 - 46	10 18 13 14 13	98- 49- 82- 81- 114-	<.1 <.1 <.1 .2	28 49 36 25 16	18 24 23 17 17	771 824 1161 950 648	4.33 5.40 4.73 4.38 4.25	<2 <2 <2 3 <2	<5 <5 <5 <5 <5	< < < < < < < < < < < < < < < < < < <	2 5 3 2 2	32 27 24 53 22	.4 <.2 .3 .2 <.2	4 <2 <2 2 <2	4 3 <2 11 4	75 93 82 67 64	.31 .26 .18 .65 .20	.059 .108 .114 .047 .101	18 14 13 24 17	36 68 36 26 25	1.38 3.00 1.24 1.27 .89	156 109 115 116 118	.07 .04 .10 .07 .07	<2 4. <2 4. <2 3. <2 3. 3 3.	18 33 < 78 06 50	.01 .01 .01 .02 .01	.09 .09 .07 .09 .10	<1 <1 <1 <1	1 1 2 2 2	
L28N 3+00W L28N 2+50W L28N 2+00W L28N 1+50W L28N 1+50W	1 2 3 2	67 × 84 65 × 42 ×	10 17 13 13 10	86 101- 92- 102 83-	.1 .1 .1 .1 .1	20 17 16 18 17	16 21 20 12 14	610 839 925 920 743	4.51 4.93 5.08 3.98 4.00	7 8 2 2 4	<5 <5 <5 5 <5	< < < < < < < < < < < < < < < <> <> <> <	2 5 2 2 2 2 2	32 46 55 85 46	<.2 .2 .3 .7 <.2	< < < < < < < < < < < < < < <> <> <> <>><><> </td <td><2 10 10 8 9</td> <td>67 77 68 60 59</td> <td>.34 .48 .55 .86 .62</td> <td>.062 .073 .072 .040 .037</td> <td>16 25 20 18 20</td> <td>24 28 25 24 24 24</td> <td>1.20 1.06 1.02 .75 .90</td> <td>87 90 97 131 116</td> <td>.06 .06 .05 .06 .05</td> <td><2 2. 2 2. <2 2. <2 3. 2 2.</td> <td>85 94 87 04 56 <</td> <td>.01 .02 .01 .01</td> <td>.09 .08 .07 .07 .07</td> <td><1 <1 <1 <1</td> <td>5 7 47 2 4</td> <td></td>	<2 10 10 8 9	67 77 68 60 59	.34 .48 .55 .86 .62	.062 .073 .072 .040 .037	16 25 20 18 20	24 28 25 24 24 24	1.20 1.06 1.02 .75 .90	87 90 97 131 116	.06 .06 .05 .06 .05	<2 2. 2 2. <2 2. <2 3. 2 2.	85 94 87 04 56 <	.01 .02 .01 .01	.09 .08 .07 .07 .07	<1 <1 <1 <1	5 7 47 2 4	
STANDARD C/AU-S	20	56	43	134	6.9	74	33	1048	3.96	39	22	6	38	52	19.1	13	22	60	.52	.094	40	61	.93	190	.08	34 1.	88	.06	. 16	10	49	

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

ACHE AMALYTICAL

Tom Lisle PROJECT R-1 FILE # 94-4193

44

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	fe %	As ppm	U ppm	Au ppm	ĩh ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B	Al %	Na %	K %	W ppm	Au* ppb
L28N 0+50W L28N 0+00W L26N 10+00W L26N 9+50W L26N 9+00W	1 <1 2 1 3	55 38 43 22 13	14 8 5 9 6	123 130 100 78 59	3 2 2 2 2	16 22 12 8 8	10 12 11 13 15	1018 819 761 476 854	4.19 3.86 4.06 3.69 4.23	7 3 5 3 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 4 3	80 45 31 24 37	.5 .4 <.2 <.2 <.2	<2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 2 2 2 2 2 2	51 61 64 52 48	1.25 .56 .54 .34 .35	.077 .041 .054 .083 .168	14 16 40 17 11	26 33 25 21 11	.73 .98 .88 .68 .48	141 165 244 200 438	.07 .06 .07 .05 .02	<2 3 4 2 <2 3 <2 2 3 2	.17 .65 .10 .50 .55	.03 .01 .02 .01 <.01	.08 .10 .09 .08 .11	<1 <1 <1 <1 <1	<1 4 3 2 1
L26N 8+50W L26N 8+00W L26N 7+50W L26N 7+00W L26N 6+50W	<1 <1 1 2 <1	31 28 27 17 30	6 5 2 6 6	75 47 47 43 67	- <.1 2 - <. 1 - <. 1 2	14 12 21 13 17	17 15 16 17 18	560 650 580 406 778	4.19 3.93 4.03 3.63 4.66	<2 5 2 6 2 2	\$ \$5 \$5 \$5 \$5	<2 <2 <2 <2 <2 <2 <2 <2	5 4 3 2	25 27 20 22 26	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 <2 <2 3 <2	58 54 61 54 73	.22 .29 .20 .21 .27	.082 .079 .074 .110 .106	15 11 11 25 11	23 22 25 22 24	1.11 1.19 1.05 .84 1.16	116 95 94 82 107	.06 .05 .04 .05 .05	<2 2 4 2 <2 2 3 2 3 3	.82 .23 .64 .28 .08	.01 <.01 .01 <.01 .01	.09 .07 .08 .05 .09	<1 <1 <1 <1	2 1 <1 1 2
L26N 6+00W L26N 5+50W L26N 5+00W L26N 4+50W L26N 4+00W	<1 1 <1 1 1	47 63 41 41 58	17 14 12 6 7	97 147 88 170 94	1 4 2 3 - <.1	15 33 19 20 13	20 23 15 21 21	1021 856 742 2292 1122	4.77 4.94 4.13 4.80 4.74	7 3 5 2 2	ৎহ ২5 ২5 ২5 ২5	<2 <2 <2 <2 <2 <2 <2	3 5 2 3 2	28 60 23 26 26	.4 <.2 .4 .5 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 5 2 2 2 2 2 2 2 2	70 62 61 76 70	.27 .80 .23 .29 .27	.123 .075 .092 .183 .093	11 37 13 13 16	26 29 23 22 23	1.13 1.07 1.00 .87 1.12	150 129 118 157 105	.06 .09 .05 .07 .06	2 3 2 3 2 2 <2 3 <2 3	.35 .93 .82 .28 .50	.02 .03 .01 .01 .01	.11 .08 .09 .09 .09	<1 <1 <1 <1 <1	4 6 2 3 2
L26N 3+50W L26N 3+00W RE L26N 3+00W L26N 2+50W L26N 2+00W _	2 1 1 2 2	55 - 84 - 87- 72 75	14 9 11- 10 10	84 79 - 84 95 100	1 1 4 4	21 21 19 23 14	24 27 28 23 18	858 1110 1129 1011 688	5.34 4.65 4.73 4.93 4.71	<2 <2 <2 4 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	3 <2 3 4 4	26 27 26 22 28	.3 .5 .5 .7 <.2	<2 <2 <2 <2 3	<2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	84 66 66 76	.24 .25 .25 .20 .27	.081 .135 .140 .103 .069	14 13 13 16 17	24 21 23 23 23	1.32 1.06 1.07 .99 1.07	90 104 110 107 123	.05 .06 .06 .07 .08	<2 3 2 3 3 3 4 3 <2 2	.51 .21 .27 .32 .83	.02 .01 .01 .02 .01	.09 .08 .08 .10 .06	<1 <1 <1 <1	2 2 5 9 3
L26N 1+50W L26N 1+00W L26N 0+50W L26N 0+00W L24N 10+00W	1 1 1 2 1	36 49 55 79 33	9 13 8 12 12	84 84 94 124 80	.3	19 14 17 29 15	13 9 13 11 14	687 946 1302 852 442	4.01 3.91 3.86 4.77 4.09	3 <2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 2 3 2 3	44 54 60 6 8 26	.4 .2 .3 1.1 .4	2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	60 55 54 61 57	.56 .92 .77 1.18 .27	.047 .056 .080 .080 .080	18 17 19 30 19	29 27 30 34 23	.89 .75 1.00 .98 .92	141 121 149 210 113	.07 .07 .06 .04 .06	<2 2 <2 2 <2 2 2 3 <2 2	.38 .54 .21 .68 .58	.01 .03 .03 .03 .02	.07 .05 .08 .10 .08	<1 <1 <1 <1	3 2 3 3 24
L24N 9+50W L24N 9+00W L24N 8+50W L24N 8+00W L24N 7+50W	1 1 1 1	40 29 41 50 58	46769	79 91 123 90 83	<.1 .3 .2 .1 .2	13 17 14 16 10	13 14 11 14 10	471 636 716 656 749	4.04 3.83 4.27 4.31 3.89	<2 <2 <2 <2 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 4 <2 3 2	29 25 27 26 28	.6 .3 .4 .8	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 5 7 <2 <2	60 56 67 63 55	.28 .27 .29 .25 .31	.051 .082 .099 .076 .056	16 12 13 14 16	24 22 31 25 20	1.11 1.02 1.02 1.07 .81	109 83 119 157 90	.05 .05 .05 .05 .05	<2 2 <2 2 <2 2 <2 3 <2 1	.47 .26 .73 .49 .79	.01 .01 .01 .01	.06 .09 .11 .11 .10	<1 <1 <1 <1	2 4 1 3 17
L24N 7+00W L24N 6+50W L24N 6+00W L24N 5+50W L24N 5+50W	2 1 2 1 <1	41 36 32 33 43	10 13 10 2 12	62 - 81 - 72 - 92 -	<.1 .1 .1 <.1	17 14 14 16 14	15 20 20 21 15	640 1026 750 955 754	4.57 4.32 4.84 4.73 4.34	<2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 4 7 8 <2	34 24 27 35 29	.3 .2 .6 .5 1.0	2 4 2 4 2 2	<2 <2 <2 5 <2	62 61 70 65 63	.39 .22 .20 .33 .30	.091 .111 .129 .087 .084	19 19 21 40 14	22 20 19 18 21	1.09 .88 .81 .84 1.27	96 142 151 96 86	.05 .06 .05 .06 .05	<2 2 <2 2 <2 3 <2 2 <2 2 <2 2	. 12 .85 .11 .66 .57	.01 .01 .01 .02 .01	.10 .11 .10 .07 .11	<1 <1 <1 <1 <1	5 9 5 13 6
STANDARD C/AU-S	19	58	38	124	6.7	70	31	1048	3.96	40	14	6	36	51	18.9	14	22	63	.51	.093	40	60	.92	186	.08	38 1	.88	.06	.16	9	49

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

#

Tom Lisle PROJECT R-1 FILE # 94-4193

SAMPI F#	Mo	Eu	Pb	Zn	Aa	Ni	Co	Mn	Fe	As			Th	Sr	Cd	sb	Bi	v	Ca	P	La	Cr	Ma	Ba	Ti	B	Al	Na	ĸ	u l	Au*
	ррп	ррп	ppm	ppm	ppm	ppm	pom	ppm	*	ppm	ррп	ppm	ррт	ppm	ppm	ppm	ppm	ppm	%	X	ppm	ppm	X	ppn	X	ppm	X	X	X	ppm	ppb
L24N 4+50W L24N 4+00W L24N 3+50W L24N 3+00W RE L24N 3+00W	2 2 1 <1 _1	56 69 48 44 44	 14 10 16 15 15 	69 - 96 - 97 - 136 - 138	.1 <.1 1 2 .1	7 24 20 25 22	21 27 25 17 18	572 885 898 885 923	5.78 5.08 4.63 4.10 4.27	9 9 3 5 11	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	7 5 4 4 4	30 29 24 25 25	.6 2.2 2.> .5	<2 4 <2 <2 4	<2 4 2 3 2	77 66 66 58 60	.23 .26 .20 .23 .24	.135 .105 .095 .085 .088	16 21 16 13 14	19 23 23 23 23	1.16 1.05 1.08 .96 1.00	119 87 134 148 160	.05 .06 .08 .06 .06	<2 <2 <2 <2 <2 <2 <2 <2 <2	2.84 3.00 3.11 2.92 3.01	<.01 .02 <.01 .01 .01	.10 .09 .09 .10 .10	<1 <1 <1 <1 <1	23 3 11 1 3
L24N 2+50W L24N 2+00W L24N 1+50W L24N 1+00W L24N 0+50W	1 1 1 1 <1	65 \ 47 \ 41 \ 33 \ 39 \	15 20 17 9 16	134 - 165 - 132 - 88 - 103 -	.3 .2 <.1 .3 .2	34 17 15 12 15	15 14 15 12 12	754 968 628 687 369	4.58 4.08 4.15 3.70 3.76	5 5 10 8 5	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	4 2 3 4 2	47 30 23 62 29	2. 6. 2. 6. 2.>	3 4 3 5 3	10 7 <2 2 3	66 66 66 64 64	.51 .33 .22 .49 .27	.063 .097 .068 .023 .029	17 15 12 17 14	33 26 25 27 26	1.17 .86 .78 1.03 .78	202 155 148 148 147	.05 .06 .06 .10 .06	<2 <2 <2 <2 <2 <2 <2 <2	3.39 3.01 3.06 2.35 3.25	.01 .01 .01 .02 .01	.09 .09 .08 .09 .07	<1 <1 <1 <1 <1	3 4 3 3 6
L24N 0+00W L22N 10+00U L22N 9+50W L22N 9+00W L22N 8+50W	1 1 1 1	31 × 41 × 81 × 49 × 51 ×	16 11 20 13 17	138 - 97 - 128 - 210 - 162	2 <.1 <.1 1 .1	8 22 19 18 22	13 14 20 17 16	511 633 1178 1557 900	3.61 4.02 5.32 4.40 4.17	10 7 13 6 7	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 3 6 2 4	36 38 48 28 33	.6 .5 .4 .9 .2	7 <2 3 <2 3	4 8 <2 5 4	60 60 67 67 64	.41 .40 .61 .27 .30	.042 .049 .103 .118 .083	12 22 28 18 27	23 24 28 30 27	.77 1.04 1.29 .91 .88	155 96 151 163 162	.06 .06 .05 .06 .07	<2 <2 <2 <2 <2 <2	2.66 2.22 2.27 3.73 3.14	.02 .01 .01 .01 .01	.08 .07 .11 .14 .11	<1 <1 <1 <1 <1	7 20 11 3 5
L22N 8+00W L22N 7+50W L22N 7+00W L22N 6+50W L22N 6+50W	1 1 1 1	38 × 30 × 57 × 42 × 36 ×	16 12 12 14 9	81 69 88 110 - 79 -	.1 <.1 <.1 2	18 16 22 18 19	17 14 18 17 16	649 707 637 540 555	4.11 3.92 4.94 3.97 3.95	7 <2 6 5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	4 2 4 3 2	36 38 41 26 37	<.2 .2 <.2 .2 .3	5 <2 4 5 3	9 <2 2 <2 <2 <2 <2	59 60 65 57 55	.38 .38 .41 .24 .34	.078 .059 .094 .089 .066	15 20 23 15 24	26 24 23 19 18	1.22 1.05 1.39 .92 .96	56 84 96 111 79	.07 .05 .06 .06 .05	<2 <2 <2 <2 <2 <2 <2 <2	2.05 2.08 2.36 2.65 2.06	<.01 .01 <.01 .02 .01	.08 .09 .08 .08 .07	<1 <1 <1 <1	5 4 5 18 2
L22N 5+50W L22N 5+00W L22N 4+50W L22N 4+00W L22N 3+50W	2 7 2 1	23 v 31 - 44 - 58 - 38 -	11 15 12 11 16	48 - 27 - 69 - 82 - 99 -	*<.1 *<.1 *<.1 .1 .2	10 8 12 22 18	14 16 20 27 19	554 326 511 554 563	3.94 9.90 5.46 5.26 4.49	6 <2 5 <2 10	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	4 5 4 5	68 150 63 42 35	<.2 .6 <.2 .5	2 <2 6 9 7	<2 <2 3 5 2	55 144 83 88 79	.37 .29 .31 .41 .28	.092 .275 .123 .131 .078	22 25 20 22 13	16 13 20 18 23	1.08 1.46 1.18 1.05 1.01	52 208 157 228 145	.05 .12 .10 .11 .09	<2 <2 <2 3 <2	1.75 2.72 2.95 3.03 3.07	.02 .05 .02 .02 .02	.09 .11 .11 .10 .12	<1 <1 <1 <1	10 3 3 2 1
122N 3+00W 122N 2+50W 122N 2+00W 122N 1+50W 122N 1+50W	1 1 8 3 1	42 + 62 + 466 + 44 + 35 +	9 17 12 16 7	133 110 - 79 - 69 - 87 -	.1 <.1 <.1 <.1 <.1	16 21 18 77 23	17 18 34 26 16	654 813 577 660 669	4.15 4.33 8.02 5.47 4.08	3 7 8 *2 *2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	4 4 7 3 2	30 29 21 45 23	.4 .4 <.2 <.2 <.2	2 <2 <2 3 5	<2 3 2 2	66 73 86 87 63	.26 .29 .14 .44 .22	.094 .140 .332 .056 .060	14 19 18 29 11	25 22 16 75 32	.92 .81 .94 1.58 1.28	176 118 81 137 108	.09 .12 .12 .07 .05	<2 <2 <2 <2 <2 <2 <2	2.97 3.62 4.77 3.97 2.66	.01 .02 .02 .02 <.01	.11 .08 .06 .06	<1 <1 <1 <1 <1	2 12 4 4 2
L22N 0+50W L22N 0+00W L20N 10+00W L20N 9+50W L20N 9+00W	2 1 1 1 1 1 1	72 × 61 × 42 × 40 ×	21 18 17 9 17	139 - 128 - 112 - 91 - 87 -	.2 <.1 <.1 <.1	13 20 16 16 22	13 14 14 13 14	864 846 823 799 688	4.31 4.26 4.00 3.70 3.87	6 7 3 <2 5	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	4 3 3 4	32 27 30 40 32	1.0 <.2 <.2 .3	5 <2 8 5 3	7 3 9 7 <2	58 60 60 64 57	.55 .38 .30 .40 .35	.055 .054 .080 .057 .093	27 18 20 26 15	25 25 25 27 22	.99 1.12 .91 .85 .96	156 100 140 104 92	.05 .05 .07 .08 .06	4 <2 <2 <2 <2 3	2.43 2.35 2.73 2.14 2.10	.02 .01 .01 .02 .01	.10 .09 .10 .08 .09	<1 <1 <1 <1	6 3 2 4 5
STANDARD C/AU-S	19	59	37	132	6.9	72	31	1042	3.96	39	15	7	37	52	19.3	15	19	60	.51	.095	40	63	.92	184	.08	34	1.88	.06	.16	12	50

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

.

Page 6

SAMPLE#	Мо	,	Cu	Pb	Z	n Ag	I N	i	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	= V	Ca	P	La	Çr	Mg	Ba	Ti	6	AL	Na	= <u></u>	V	Au*
	ррп	ŗ	xpm .	ppm	pp	n ppr	pp	m p	pm	ppm_	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	%	ppm	ppm	*	ppn	%	ppm	*	X	X	ppm	ppb
L20N 8+50W L20N 8+00W L20N 7+50W L20N 7+00W L20N 6+50W	1 1 2 5		44 40 43 43 35	15 10 10 11 5	11! 74 61 71 51	5 - < : 5 : 7 : 1 - < : 2 - < :	1 1 1 2	7 1 1 2	16 16 14 10 14	770 506 458 621 157	4.40 4.07 4.04 2.97 1.50	<2 2 <2 3 <2	ণ্ ণ্ ণ্ ণ্ ণ্	<2 <2 <2 <2 <2 <2	5 5 4 3 2	18 20 15 34 55	<.2 <.2 <.2 .3 <.2	<2 <2 <2 3 3	<2 3 <2 <2 5	54 49 49 42 46	.18 .21 .18 .43 .76	.102 .063 .076 .029 .069	12 13 8 37 77	19 19 17 21 13	.67 .71 .66 .81 .52	94 120 93 128 85	.07 .06 .05 .04 .01	<2 2 <2 1 <4 1 <2 1 <2 2	.32 .68 .87 .90 .25	<.01 <.01 <.01 .01 .01	.07 .05 .05 .07 .06	<1 1 <1 <1 <1	2 3 3 3 2
L20N 6+00W L20N 5+50W L20N 5+00W L20N 4+50W L20N 4+50W	1 3 1 <1 5		30 29 35 36 24	4 5 16 8 6	58 69 132 98 74	3 ~ <. 1 2 ~ <. 1 3 ~ <. 1	1 2 1 1	3 6 3 0 2	16 24 1 23 14 12	522 008 993 541 575	3.96 4.59 3.97 3.79 3.96	<2 <2 <2 3 <2	ৎ ৎ ৎ ৎ ৎ ৎ ৎ ৎ	<2 <2 <2 <2 <2 <2 <2	2 14 4 3	24 25 21 30 36	<.2 .4 .4 .4 .2	<2 <2 2 4 3	<2 4 <2 <2 <2 <2	53 42 56 58 56	.28 .37 .24 .32 .28	.167 .128 .094 .074 .082	11 92 29 14 10	16 12 19 17 18	.81 1.28 .84 .93 1.25	78 56 79 81 87	.06 .02 .07 .08 .06	<2 2 <2 1 <2 2 <2 1 <2 2	.02 .94 .37 .78 .10	.01 <.01 .01 <.01 .01	.05 .07 .08 .07 .11	<1 <1 <1 <1	2 6 2 2 <1
L20N 3+50W L20N 3+00W L20N 2+50W L20N 2+00W L20N 1+50W	3 <1 1 20 1		34 23 35 35 52	14 10 14 8 11	10 10 12 6 11	5 <.1 7 5 <.1 3 <.1	1 1 1	5 7 8 8 2	19 14 16 1 10 14	614 997 293 435 829	4.81 3.57 3.97 8.03 3.95	<2 <2 <2 <2 <2 <2	ৎ ১ ১ ১ ১ ১ ১ ১	<2 <2 <2 <2 <2 <2 <2	4 2 3 4 2	31 25 20 37 20	.7 .2 .3 .4 .4	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	66 55 60 59 54	.20 .38 .23 .19 .24	.117 .102 .116 .098 .062	14 7 12 10 12	20 23 24 24 23	1.03 .90 .74 .86 .92	116 99 139 137 103	.05 .05 .07 .04 .05	<2 2 2 <2 2 2 <2 2 2 <2 2 2 <2 2 2	.71 .35 .80 .10 .23	<.01 <.01 .01 .01	.08 .09 .09 .09 .08	<1 1 <1 <1	1 1 3 1 3
L20N 1+00W RE L20N 1+00W L20N 0+50W L20N 0+00W L18N 10+00W	1 1 1 1		40 37 52 43 38	12 11 13 20 8	100 	5 - < 1 5 - < 1 5 - < 1 5 - < 1	1 1 1 1	3 3 2 3 1	12 12 12 14 12	675 680 952 711 548	3.59 3.66 3.98 4.02 3.63	<2 2 5 5	ৎ ১ ১ ১ ১ ১ ১ ১	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 2 3 3 3	22 21 15 15 26	.7 1.0 .6 .4	<2 <2 <2 2 5	<2 <2 <2 <2 <2 <2 <2	54 55 61 62 52	.30 .30 .20 .14 .27	.042 .043 .072 .064 .060	13 13 12 14 19	22 24 24 23 20	.88 .89 .82 .81 .78	114 119 120 122 128	.05 .05 .06 .06	<2 2 <2 2 <2 2 <2 2 <2 2 <2 2 <2 2 <2 2	. 14 . 15 . 03 . 44 . 23	.01 .01 <.01 .01 <.01	.07 .07 .08 .07 .07	ব ব ব ব ব	2 17 1 <u>3</u> 5
L18N 9+50W L18N 9+00W L18N 8+50W L18N 8+00W L18N 7+50W	1 <1 1 <1	N. N	40 · 34 43 24 · 21 ·	4 7 6 8	9 10 13 10 8	3- <.1 2 3)1	1 2 1 1	2 0 5 9 7	15 13 14 14 1 14 1	530 514 658 019 763	4.27 3.40 3.98 3.63 3.42	4 ~2 ~2 ~2 ~2 ~2 ~2 ~2	৩ ৩ ৩ ৩ ৩ ৩ ৩	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 2 4 2 3	21 31 22 27 20	.2 .5 .6 .5 .3	3 3 2 2 2 2 2	8 ~2 5 ~2 ~2 ~2	53 52 58 54 52	.22 .34 .20 .28 .16	.089 .082 .095 .085 .083	10 13 15 10 9	20 20 22 18 17	.74 .76 .71 .84 .70	114 90 112 110 103	.06 .05 .07 .05 .05	<2 2 <2 1 <2 2 3 2 <2 1	.03 .80 .81 .07 .92	.01 .01 .01 <.01 .01	.08 .08 .08 .09 .06	<1 1 <1 <1 1	2 2 1 3
L18N 7+00W L18N 6+50W L18N 6+00W L18N 5+50W L18N 5+00W	1 1 1 1		32 33 41 35 54	8 11 15 8 9	10; 11; 11; 11; 10;	2	1 1 1 1	0 8 2 6 7	15 14 17 16 18	662 630 530 734 907	3.76 3.83 4.24 4.06 4.22	4 <2 4 7 2	ৎ ৎ ৎ ৎ জ	२ २ २ २ २ २ २ २	3 3 3 3 3	20 19 25 23 35	.6 .2 .7 .6	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	53 54 56 55 58	.21 .18 .25 .21 .49	.108 .103 .108 .106 .058	11 9 16 10 20	18 18 17 17 26	.68 .63 .75 .75 .99	108 101 103 88 120	.06 .07 .07 .06 .06	<2 2 <2 2 <2 2 2 1 <2 2		.01 .01 .02 .01 .01	.07 .06 .06 .07 .08	<1 <1 <1 <1 1	2 16 14 6 5
L18N 4+50W L18N 4+00W L18N 3+50W L18N 3+00W L18N 2+50W	1 1 1 2	•	38 54 41~ 63 79~	8 13 10 11 13	70 120 109 16 9)- <.1 51 5- <.1	1 1 2 2 1	3 3 1 3 9	14 18 14 10 11	610 1 725 6 641 1 961 6 863 1	3.91 4.46 3.73 4.44 3.66	<2 4 10 12	হ হ হ হ হ হ হ	< < < < < < < < < < < < < < < < < <> <>	<2 3 <2 3 <2	30 24 29 45 45	.8 .3 .7 1.1 .7	4 7 8 2 2	<2 <2 <2 <2 <2 <2	58 62 58 58 52	.33 .29 .42 .94 .86	.074 .099 .061 .044 .055	10 13 14 26 24	20 22 25 26 21	.98 .79 .90 .75 .68	87 117 97 1 9 5 119	.06 .06 .06 .07 .07	<2 1 <2 2 <2 2 <2 4 <2 2	.82 2.44 2.14 .28 2.81	.01 .01 .01 .01 .02	.07 .08 .09 .09 .05	<1 2 1 <1 <1	4 3 6 4 8
STANDARD C/AU-	3 20	}	59	38	129	6.9	7	4	33 1	042	3.96	41	18	7	37	52	18.6	15	17	60	.51	.094	40	62	.92	182	.08	33 4	.88	.07	. 15	_15	48

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

.

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	8a ppm	Ti X	8 ppm	AL X	Na %	К %	W ppm	Au* ppb
L18N 2+00W L18N 1+50H L18N 1+00W L18N 0+50W L18N 0+50W	1 1 1 2 1	65 • 79 • 59 • 103 • 203 •	10 12 16 20 14	99 517 245 134 123	2 <.1 <.1 - <.1	12 15 15 15 13	14 14 23 35 19	917 881 1615 1142 1107	4.00 4.34 4.33 4.97 4.69	5 <2 <2 4 <2	\$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2	4 3 4 3	50 32 25 26 30	1.4 3.5 .8 .5 .8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <5 <2	66 64 66 70 77	.70 .56 .27 .30 .48	.087 .051 .114 .085 .067	20 21 14 15 13	18 26 21 23 20	1.12 .93 .99 1.19 .84	114 120 154 137 154	.05 .08 .06 .05 .06	2 <2 2 <2 <2 <2 <4	3.31 3.26 3.62 3.62 3.81	.01 .01 .01 .01 .01	.09 .12 .10 .11 .09	1 <1 <1 <1 <1	2 4 30 4 2
L16N 10+00W L16N 9+50W L16N 9+00W L16N 8+50W L16N 8+00W	1 <1 <1 2	30 47 35 44 24	14 14 8 15 11	129 142 82 74 83	2 2 - <.1 .1 .1	9 10 11 17 9	13 9 14 20 12	1010 936 798 499 714	3.73 3.84 4.02 5.44 5.11	8 <2 8 3 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 3 2 5	27 44 32 45 52	.8 .7 .4 .4 1.0	3 5 3 2 2 2	5 3 2 9 2	56 61 58 60 59	.28 .52 .34 .25 .27	.127 .044 .071 .106 .142	10 28 14 13 17	20 23 22 19 16	.70 .74 1.03 .92 .64	116 147 62 157 215	.06 .07 .06 .06 .09	<2 5 <2 3 <2	2.25 2.47 2.02 2.33 2.13	.01 .02 .01 <.01 .02	.07 .09 .09 .09 .09	<1 <1 <1 <1	1 4 25 16 4
L16N 7+50W L16N 7+00W L16N 6+50W L16N 6+00W L16N 5+50W	1 3 7 2	42 45 44 66 81	14 9 10 9 14	94 113 104 51 141	<.1 1 1	17 16 21 8 19	17 18 23 20 17	635 574 575 623 940	4.62 5.65 6.15 7.26 4.70	4 3 2 5 2	<5 <5 <5 <5 <5	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 8 6 11 4	38 22 27 36 38	.7 .3 .2 .3 .5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2 3 <2 <2 <2	63 64 68 69 60	.32 .20 .27 .39 .52	.087 .137 .157 .166 .083	16 19 16 67 53	21 18 22 17 21	1.10 .69 .97 1.17 .78	98 99 106 72 174	.08 .11 .06 .05 .07	<2 <2 <2 2 2	2.26 2.93 2.80 2.11 3.32	.01 .01 .01 .01 .02	.07 .07 .07 .08 .09	<1 <1 <1 <1	2 5 4 8 3
L16N 5+00W L16N 4+50W L16N 4+00W L16N 3+50W CL16N 3+00W	1 <1 <1 <1	50 - 45 - 43 27 - 58 -	12 21 15 10 7	169 126 118 128 136	- <.1 1 1 1 1	16 20 17 14 11	17 20 15 13 14	747 690 713 702 696	4.40 4.60 4.00 3.47 3.9 9	7 6 5 6 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 2 2 2 2 3	32 36 33 28 36	.7 .9 .5 .5	<2 <2 3 5 <2 <	<2 3 <2 5 <2	66 68 62 59 65	.32 .38 .37 .33 .38	.121 .121 .120 .081 .055	14 14 11 10 13	21 22 22 22 23	.79 .86 .93 .75 .82	130 123 102 116 126	.09 .08 .07 .08 .09	<2 <2 <2 3 2	2.62 2.57 2.24 2.47 2.50	.02 .01 .01 <.01 .01	.07 .09 .10 .10 .09	<1 <1 2 <1 1	3 1 6 <1 9
RE L16N 3+00W L16N 2+50W L16N 2+00W L16N 1+50W L16N 1+50W	- 1 <1 1 1 <1	59 × 51 × 53 × 70 × 61 ×	10 14 10 16	138 135 126 166 170	<.1 - <.1 1 1	13 12 15 19 16	14 14 16 15 14	711 694 656 998 996	4.10 3.90 4.02 4.27 4.14	4 2 7 2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 <2 2 2 3	36 33 36 30 27	<.2 .5 .6 .3	<2 2 2 2 <2 2 2 <2 2 2	<2 <2 3 <2 3	68 64 64 66	.38 .41 .43 .36 .29	.056 .064 .044 .087 .079	14 13 13 17 15	23 22 22 24 26	.83 .79 .98 .97 .96	133 115 88 122 129	.09 .08 .07 .06 .06	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2.53 2.58 2.05 2.74 2.73	.01 .01 .01 .01 <.01	.08 .09 .07 .12 .10	1 <1 <1 <1	8 10 10 2 1
L16N 0+50W L16N 0+00W L14N 10+00W L14N 9+50W L14N 9+00W	<1 <1 1 <1	45 29 28 44 35	12 11 10 7 8	110 130 117 106 78-	1 1 1 1	16 14 15 12 11	12 12 13 16 12	806 775 570 561 578	3.86 3.61 3.59 4.67 3.82	10 6 8 5 3	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 <2 3 4 2	29 29 24 24 33	.2 .3 .4 <.2 <.2	6 2 5 2 2 2	<2 <2 <2 7 <2	63 61 55 60 63	.35 .37 .25 .24 .33	.067 .076 .056 .071 .033	14 11 9 17 10	23 24 18 22 23	.98 .88 .62 .74 1.10	91 108 119 102 67	.06 .07 .08 .10 .07	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2.28 2.44 1.82 2.53 2.03	<.01 .01 <.01 <.01 .01	.08 .08 .07 .09 .10	<1 <1 <1 <1 <1	4 10 3 6 2
L14N 8+50W L14N 8+00W L14N 7+50W L14N 7+00W L14N 6+50W	<1 <1 <1 <1 1	75 - 39 - 24 - 55 - 71 -	11 9 13 11 20	90 105 124 101 132	<.1 <.1 <.1 .3 	17 16 14 13 17	18 15 12 12 14	965 648 647 778 953	4.67 3.79 3.32 3.99 4.45	6 2 6 8 7	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 3 2 3 2	42 34 29 41 46	.6 .7 <.2 <.2	<2 9 4 2 2 2 2	10 3 9 7 <2	72 60 55 60 64	.58 .34 .32 .59 .65	.091 .087 .124 .095 .091	19 13 9 17 20	33 23 19 26 30	1.51 .93 .60 1.20 1.15	85 170 101 78 108	.08 .09 .09 .07 .06	4 2 2 4 4	2.90 2.71 2.36 2.00 2.13	.01 .01 .01 .02 .06	.13 .14 .10 .15 .13	<1 <1 <1 <1	5 3 2 5 8
STANDARD C/AU-S	19	59	39	123	6.8	72	32	1037	3.96	39	22	6	37	52	18.4	14	22	60	.51	.095	40	62	.91	183	.08	33	1.88	.07	.16	14	50

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

ACHE ANALYTICAL							To	om 1	Lis:	lel	PROJ	JEC	r R.	-1	FI	LE ;	# 94	4-4:	193]	Page	e 8			L VTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bî ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg %	8a ppm	⊺i %	B ppm	Al X	Na %	K X	V ppm	Au* ppb
L14N 6+00W L14N 5+50W L14N 5+00W L14N 4+50W L14N 4+50W	1 1 1 2 1	40 36 33 57 52	12 5 7 6 5	115 140 118 183 - 157 -	1 1 2 - <.1 - <.1	11 12 14 18 13	12 12 12 19 15	586 691 569 830 814	3.72 3.36 3.52 4.83 3.87	3 5 5 4 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	4 3 2 4 2	33 28 33 31 34	.3 <.2 .3 .2 .6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2	55 55 57 65 58	.37 .35 .35 .31 .37	.043 .116 .050 .114 .079	15 10 13 13 16	22 23 24 23 21	1.01 .76 .85 .86 .83	67 124 89 147 163	.07 .08 .09 .10 .08	4 4 <2 <2 2	1.66 2.08 1.89 2.97 2.61	.01 .03 .01 .02 .01	.10 .10 .14 .10 .10	1 <1 <1 <1 <1	4 = 3 = 4 = 21 = 7
L14N 3+50W L14N 3+00W L14N 2+50W L14N 2+00W A L14N 2+00W B	1 1 <1 <1 1	37 41 55 39 37	6 13 6 10 6	145 123 219 113 186	4	13 13 14 11 12	10 12 13 12 12	604 662 908 606 781	3.23 3.58 3.90 3.51 3.42	<2 5 4 <2 5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 2 3 4 2	32 31 27 28 27	.2 .2 .5 .4	<u>~~~~~</u>	<2 <2 <2 <2 <2 <2 <2	57 60 61 56 55	.35 .33 .28 .32 .31	.041 .044 .113 .084 .139	16 11 13 11 12	21 22 23 22 20	.71 .89 .81 .81 .69	109 89 169 92 115	.08 .08 .07 .07 .07	2 <2 <2 3 2	1.95 1.86 3.11 1.76 2.17	.02 .01 .02 .01 .01	.08 .10 .14 .08 .10	<1 <1 <1 <1	4 7 3 14 5
L14N 1+50W L14N 1+00W L14N 0+50W L14N 0+00W L14N 0+00W	1 1 1 1	39 52 39 48 32	11 9 4 9	118 127 125 92- 80	.3 .2 .3 .3 	13 15 14 14 10	13 15 11 11 12	649 850 813 545 496	3.72 4.30 4.12 3.77 3.55	5 9 7 6 2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2	25 30 24 32 32	.2 .6 .4 .2 <.2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 8 <2 <2 <2	59 67 65 63 54	.30 .37 .28 .39 .36	.074 .129 .154 .052 .047	11 12 17 12 11	22 21 19 26 21	.90 .83 .66 1.03 .93	92 159 121 44 54	.07 .09 .05 .07 .06	<2 <2 <2 <2 <2 <2 <2 <2 <2	1.91 2.19 2.09 1.74 1.70	.01 .01 .01 .01	.08 .10 .10 .12 .11	<1 <1 <1 <1 <1	2 - 10 - 8 - 3 - 3 -
RE L12N 10+00W L12N 9+50W L12N 9+00W L12N 8+50W L12N 8+50W L12N 8+00W	- 1 <1 <1 <1 1	33 - 37 - 30 - 27 - 30 -	13 <2 4 <2 8	74 74 70 104 74	.1 1 - <.1 .2 - <.1	8 16 12 13 9	11 13 13 11 10	497 609 540 540 522	3.55 3.65 3.55 3.23 2.88	<2 5 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2	32 35 34 29 29	<.2 <.2 <.2 .2 .2	᠔᠔᠘᠔ᠵ	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <5	54 61 55 55	.36 .39 .39 .33 .36	.047 .058 .044 .046 .078	10 11 9 9 9	20 26 26 24 23	.94 1.01 .98 .94 .79	58 74 57 88 101	.06 .08 .10 .07 .07	2 <2 <2 <2 <2	1.69 1.87 1.77 1.92 1.77	<.01 .01 .01 .01 <.01	.11 .13 .10 .13 .08	<1 <1 <1 <1	4 1 2 4 3
L12N 7+50W L12N 7+00W L12N 6+50W L12N 6+00W L12N 5+50W	1 2 1 1 1	54 45 41 34 44	13 7 12 11 <2	109 70 117 76 149	1 2 1 1	15 12 10 11 13	14 13 11 10 14	790 857 641 547 744	3.89 4.11 3.40 3.37 3.87	4 6 3 2 2 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 3 2 <2 <2 <2	44 39 35 37 33	.3 <.2 <.2 .4 .4	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2	63 63 51 54 64	.63 .57 .41 .38 .32	.091 .087 .077 .058 .060	18 17 14 13 12	30 25 22 24 22	1.02 1.00 .81 .83 .79	94 74 84 40 134	.08 .07 .07 .08 .10	<2 <2 <2 <2 <2 <2 <2 <2	1.86 1.73 1.61 1.56 2.30	.02 .02 .01 .01 .02	.13 .10 .13 .13 .10	<1 <1 <1 <1 <1	7 5 23 3 1
L12N 5+00W L12N 4+50W L12N 4+00W L12N 3+50W L12N 3+50W	1 1 1 <1	68 47 50 43 40	7 11 11 2 9	192 - 201 - 121 - 101 - 117	5 3 2 2 3 	17 14 16 17 12	16 15 11 16 14	881 880 769 653 641	4.26 3.68 4.09 4.19 3.76	3 6 13 6 10	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 2 3 2 2	35 27 49 34 35	.2 .5 .2 .7 <.2	5 4 2 5 3	<2 <2 4 <2 <2	68 58 74 71 58	.33 .30 .51 .40 .46	.090 .084 .068 .058 .112	15 11 16 13 13	26 22 26 35 24	.86 .71 .84 1.14 1.04	151 151 127 103 76	.10 .08 .11 .09 .07	4 <2 <2 <2 <2	2.66 2.28 2.41 1.97 1.88	.01 .02 .02 .01 .01	.11 .10 .12 .12 .10	<1 <1 <1 <1 <1	3 12 6 10 10
L12N 2+50W L12N 2+00W L12N 1+50W L12N 1+00W L12N 1+00W	<1 1 1 1	52 36 61 39 53	12 9 <2 11 9	199- 118- 89- 131- 136-	2	19 8 15 10 16	13 13 13 9 13	791 1016 624 705 600	3.96 4.07 3.79 3.06 3.80	10 6 11 5 10	জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 2 4 3	30 42 36 16 22	.6 .4 <.2 .3 <.2	<2 3 3 2 9	<2 2 <2 <2 <2 <2	61 57 63 51 62	.37 .40 .42 .14 .26	.220 .136 .133 .085 .164	13 14 11 7 10	22 19 21 20 21	.72 .71 .88 .59 .69	144 181 119 154 208	.08 .06 .06 .07 .07	<2 <2 <2 <2 <2 <2	2.41 2.14 1.94 3.04 2.85	.02 .03 .01 .02 .02	.10 .10 .10 .07 .08	<1 <1 <1 <1	4 5 48 26 4

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

.

Tom Lisle PROJECT R-1 FILE # 94-4193

i	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min. Pipimi	Fe X	As ppm	U mete	Au ppm	Th ppm	Sr ppm	Cď ppm	Sb ppm	Bi ppm	V ppm	Ca %	Р Х	La ppm	Cr ppm	Mg %	Ва ррп	Ti X	A 8 ppm	,l X	Na %	K X	W ppm	Au* ppb
1	L12N 0+00W L10N 10+00W L10N 9+50W L10N 9+00W L10N 8+50W	1 1 1 <1	152 × 33 × 36 × 28 × 30 ×	3 8 4 5 7	116 - 167 - 76 - 103 - 77 -	<.1 <.1 <.1 <.1	8 8 10 10 5	12 11 10 10 11	644 3 695 3 640 3 586 3 496 3	.67 .31 .71 .47 .51	5 4 ~2 4 6	<5 <5 <5 <5 6	<>> <> <> <> <> <> <> <> <> <> <> <> <>	4 3 3 2	27 28 44 37 30	<.2 .3 <.2 <.2 <.2	7 3 <2 <2 <2	9 2 8 4 3	69 54 68 60 61	.33 .35 .64 .48 .32	.079 .124 .091 .057 .040	13 11 12 10 8	21 20 35 25 24	.93 .63 1.08 .92 .90	185 140 73 74 68	.06 .09 .10 .10 .08	<2 2.4 2 2.2 4 1.8 <2 1.7 <2 1.7	9	.01 .02 .02 .01 .01	.10 .09 .13 .11 .07	<1 2 <1 <1 <1	5 / 1 3 / 1 / 5 /
	LION 8+00W RE LION 8+00W LION 7+50W LION 7+00W LION 6+50W	マ - イ - イ - イ - イ - イ - イ	25 26 37 33 24	<2 -2 -9 -3 -5	50- 51- 105- 107- 76-	<.1 <.1 <.1 <.1 <.1	10 10 14 18 9	13 13 13 8 10	547 3 550 3 738 4 457 3 589 3	.49 .52 .11 .30	5 5 2 2 5	<5 <5 6 <5 <5	<> <> <> <> <> <> <> <> <> <> <> <> <> <	5 5 3 2 2 2	66 66 44 36 41	<.2 <.2 <.2 <.2 <.2	4 <2 <2 <2 <2 <2	7 <2 4 <2 5	69 70 73 55 58	.60 .61 .49 . 3 7 .49	.053 .051 .059 .053 .045	11 11 13 12 10	16 16 34 29 29	1.07 1.07 1.25 .85 1.08	74 72 86 87 53	.14 .14 .09 .10 .10	<2 1.8 2 1.8 3 2.3 <2 1.8 4 1.7	8 . .5 . .1 . .18 . .11 .	.01 .01 .01 .01 .01	. 10 . 10 . 14 . 12 . 12	<1 <1 <1 <1	<1 <1 2 2 88
	L10N 6+00W L10N 5+50W L10N 5+00W L10N 4+50W L10N 4+50W A	1 <1 <1 1	80 42 53 42 38	, 7 8 8 5 7	107 - 122 - 135 - 129 - 145 -	< 1 < 1 .1 .2 < 1	11 13 12 11 11	12 11 11 12 13	569 4 650 4 603 4 612 3 776 3	17 08 01 74 85	4 3 5 4	<5 <5 <5 <5 <5	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 3 4 <2 <2	45 37 35 32 32	<.2 <.2 <.2 <.2 <.2 <.2	3 <2 5 4 <2	<2 <2 3 5 3	71 68 64 61 61	.50 .46 .37 .38 .37	.056 .088 .051 .101 .086	20 13 15 11 12	27 29 27 23 25	1.26 1.08 .97 .91 .92	49 93 92 103 119	.07 .09 .08 .07 .08	5 1.9 4 2.0 <2 2.0 4 1.9 3 2.1	9 <. 17 . 12 . 16 .	.01 .01 .01 .01 .01	.09 .11 .09 .10 .10	<1 <1 <1 1 <1	13 7 5 9 4
	L10N 4+00W B L10N 3+50W L10N 3+00W L10N 2+50W L10N 2+00W	<1 1 1 1	25 36 42 66 30	12 8 12 9 12	273 - 122 - 151 - 125 - 152	3 1 1 1 1 < 1	12 12 15 15 13	12 11 15 14 15	1368 3 606 3 740 4 847 4 1494 3	41 .67 .04 .11 .97	5 6 5 3		<2 <2 <2 <2 <2 <2 <2	3 3 4 <2	28 29 32 26 47	<.2 <.2 <.2 <.2 <.3	3 7 3 5	3 <2 2 2 7	56 61 66 65 60	.30 .35 .38 .31 .58	.148 .063 .091 .054 .192	10 10 12 15 12	21 24 28 25 22	.65 .87 .85 .86 .80	171 103 118 113 219	.07 .08 .08 .08 .08	3 2.2 4 1.7 5 2.0 <2 1.8 <2 2.2	6. 5. 10. 19. 22.	.02 .02 .01 .02 .02	.11 .09 .08 .08 .14	<1 <1 <1 <1 <1	1 2 4 1
	L10N 1+50W L10N 1+00W L10N 0+50W - L10N 0+00W L8N 10+00W	3 1 1 <1 <1	169 42 57 32 97	9 3 7 6 5	67 89- 114- 112- 97-	<.1 <.1 .2 <.1	15 14 19 14 25	26 14 18 13 20	590 5 637 4 1393 5 705 3 615 4	.24 .05 .19 .69 .09	4 5 7 2 7	\$ \$ \$ \$ \$	<>> <> <> <> <> <> <> <> <> <> <> <> <>	2 3 3 2	44 34 47 33 38	<.2 <.2 <.2 <.2 <.2	<2 <2 2 3 2	8 <2 <2 3 <2	93 66 81 68 71	.50 .41 .80 .44 .45	.100 .066 .118 .076 .066	14 14 22 13 11	31 33 38 30 31	.87 .91 1.36 .84 .98	66 60 117 106 83	.08 .07 .07 .09 .10	2 1.7 2 1.6 9 2.3 4 1.7 3 2.4	3. 2. 16.	.02 .01 .03 .02 .01	.12 .15 .17 .19 .11	<1 1 <1 <1	290 4
	L&N 9+50W L&N 9+00W L&N 8+50W L&N 8+50W L&N 8+00W L&N 7+50W	1 1 1 1 1	57 37 62 45 26	4 ~2 9 3 ~2	117 - 345 - 67 - 62 - 109 -	.1 .2 .1 .1 .2	14 14 24 9 14	11 16 31 13 10	694 4 887 3 1108 5 511 3 385 3	.07 .85 .46 .60 .39	10 8 5 <2 <2	<5 6 5 7 5	<2 <2 <2 <2 <2 <2 <2	2 3 6 3 3	40 42 52 48 26	<.2 <.2 <.2 <.2 <.2	5 2 <2 3 5	<2 12 <2 <2 <2	73 80 89 75 58	.47 .45 .60 .42 .29	.045 .076 .065 .042 .060	23 7 20 11 9	37 21 60 20 26	1.09 1.15 2.35 .94 .71	88 144 154 84 83	.09 .08 .07 .11 .08	3 2.3 3 2.4 3 2.9 <2 1.8 3 1.6	i6 ,5 29 38	.01 .01 .01 .02 .01	.12 .12 .16 .13 .11	<1 <1 <1 <1	18 1 24 2 2
	L8N 7+00W L8N 6+50W L8N 6+00W L8N 5+50W L8N 5+00W	1 <1 <1 1	22 30 41 25 34	6 3 9 3 5	62 78 106 55 96	1 2 2 2	9 11 14 12 16	9 10 17 10 10	412 3 510 3 759 4 373 3 473 3	.20 .21 .40 .00	3 5 8 6 5	5 6 7 \$ 5	<> <> <> <> <> <> <> <> <> <> <> <> <> <	3 3 5 4 3	38 36 30 35 31	<.2 .2 <.2 <.2 <.2	3 5 ~2 7 6	4 8 <2 4 3	63 59 63 48 57	.45 .44 .35 .36 .39	.041 .055 .134 .058 .065	10 12 22 13 13	25 25 21 15 24	.80 .77 .94 .64 .87	58 72 157 61 88	.10 .08 .07 .08 .08	<2 1.2 2 1.6 <2 2.1 2 1.6 2 1.6	i4 i4 i9 i2 78	.01 .01 .01 .02 .01	.11 .10 .09 .08 .12	<1 <1 <1 <1 <1	1 1 2 3 1
	STANDARD C/AU-S	19	57	38	141	6.8	68	32	1032_3	.96	42	16	6	34	51	18.0	14	19	62	.51	.094	40	60	.91	190	.08	33 1.8	. 8	.07	. 15	12	53

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

.

ACME ANALYTICA	L						Ť	om	Lis	le	PRO	JEC	Γ R	-1	FI	LE ;	# 9·	4-4	193							P	ag	e 1	0	ACME	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	ĸ	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	*	ppm	*	ppm	%	%	%	ppm	ppb
L8N 4+50W	1	47 -	13	103	<.1	19	15	1011	3.86	9	<5	<2	3	34	.5	<2	3	66	.41	. 126	16	29	.92	119	.10	4 2	.19	.01	.11	1	2
L8N 4+00W	<1	46	/ 8	- 99	· <.1	12	13	781	3.92	6	<5	<2	2	33	.4	<2	7	63	.39	.062	18	29	.98	96	.09	21	.95	<.01	. 13	<1	3
L8N 3+50W	2	26	6	56 -	<.1	5	12	494	3.02	4	<5	<2	5	43	<.2	5	<2	50	.34	.051	17	14	.73	69	.03	31	.63	<.01	.10	<1	57
L8N 3+00W] 1	33	10	98	1	13	13	703	3.70	7	<5	<2	3	35	.3	3	2	66	.44	.071	11	31	1.07	96	.09	21	.83	.01	. 13	<1	4
L8N 2+50W	2	33	9	141	• .4	15	12	895	3.50	3	<5	<2	3	54	.4	8	3	53	.74	.041	13	25	.85	150	. 10	32	.48	.03	.10	<1	2
RE L8N 2+50W	2	33 -	13	-136	.2	17	12	888	3.58	2	<5	<2	<2	53	.7	4	<2	53	.74	.040	13	26	.86	138	. 10	52	.52	.02	.10	<1	7
L8N 2+00W	1	29	13	75	.1	12	12	564	3.75	7	<5	<2	2	38	.4	7	3	74	.49	.067	10	34	. 84	53	.10	21	.68	.02	.10	2	3
L8N 1+50W	3	63	17	96	.3	14	13	881	4.28	<2	<5	<2	2	61	.3	<2	<2	65	.83	.039	23	32	1.00	184	.08	<2 2	.62	.02	.11	<1	4
L8N 1+00W	2	40	12	79	<.1	16	15	938	3.94	11	<5	<2	<2	54	.6	5	10	65	.74	-034	18	32	.96	150	.09	22	.23	.01	.17	<1	3
L8N 0+50W	2	29	10	71	< 1	15	14	6 36	3.83	3	<5	<2	2	51	.5	<2	9	66	.70	.017	19	30	- 98	161	.09	22	.21	.02	.13	<1	6
L8N 0+00W	1	27	10	102 -	.1	16	15	672	3.70	8	<5	<2	2	29	.3	2	3	57	.39	.072	14	27	.92	118	.06	31	.81	.01	.16	<1	1
STANDARD C/AU-S	22	62	42	128	7.5	72	32	1078	4.09	41	24	7	41	53	19.1	14	22	62	.51	.095	42	62	.92	190	.09	34 1	.94	.07	.17	14	49

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

G		
me	ANALYTICAL	

SAMPLE#	Мо ррп	C PP	u mp	РЪ рт	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As pprn	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca X	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	At %	Na %	K %	W ppm	Au** ppb	Pt** ppb	Pd** ppb	
91618 91619 91620 91621 91622	<1 1 4 1	15	7 8 4 7 7	16 <2 2 5 <2	6 9 <1 5 <1	<.1 <.1 <.1 <.1 <.1	7 25 9 3 6	167 9 3 7 10	604 434 84 114 108	17.19 3.99 1.41 3.85 3.76	<2 6 2 8 <2	১ ১ ১ ১ ১ ১ ১ ১ ১ ১	<2 <2 <2 <2 <2 <2	5 3 7 4 4	43 73 6 45 41	.8 7.2 3.2	<2 <2 <2 2 5	7 <2 <2 <2 <2	51 65 9 62 57	.74 1.10 .04 .73 .72	.119 .154 .023 .157 .156	9 10 21 8 7	4 29 8 7 8	2.75 2.96 .46 1.49 1.54	7 7 10< 14 10	.12 .18 .01 .28 .27	< <2 <2 <2 <2 <2 <2 <3	2.29 2.56 .57 1.18 1.23	.01 .03 .06 .05 .04	.01 .03 .10 .10 .09	<1 <1 <1 <1	11 15 <1 <1 3	<3 4 <3 3 <3	<3 5 3 3 3 3 3	
RE 91622 STANDARD C/FA-100S	1 19	5	7 9	<2 38	<1 123	<.1 7.0	8 71	12 31	112 1052	3.80 3.96	<2 44	<5 18	<2 7	2 38	41 53	.3 19.4	<2 14	9 21	57 60	.71 .49	. 159 . 096	7 40	7 60	1.55	13 184	.26 .08	3 32	1.26 1.88	.05 .07	.10 .16	<1 15	3 50	<3 53	<3 51	

Sample type: ROCK. Samples beginning 'RE' are duplicate samples. AU** PT** & PD** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE.

							WI	IOL	E RC	OCK	_CI	AN	ALY	SIS									
			T	<u>'om I</u>	is]	e P 145	<u>'ROJ</u> V. I	JEC'	<u>r R-</u> and Ro	- <u>1</u> ad, N	Fi] Worth	e # Vancou	94 Ner B	-41 10 v7N	93 12V8	Pa	ıge	12					Ļ
	SAMPLE#	SiO2	Al 203 %	Fe203 %	Mg0 %	CaO %	Na20 %	К20 %	Ti02 %	P205	Mn0 %	Cr203 %	Ba ppm	N i ppm	Sr ppm	Zr ppm	Y ppm	Nb ppm	Sc ppm	LOI X	SUM X		
	91623 RE 91623	69.83 69.37	16.32 16.24	2.13 2.11	.69 .70	.42 .40	5.79	2.01 2.10	.67 .67	. 16	.02 .01	<.002 <.002	2 73 271	<10 11	206 204	248 251	1 9 20	10 11	6 6	1.9 2.0	100.05 99.53	· ·	
.200 GRAM S	AMPLES ARE #	FUSED W	ITH 1.2	2 GRAM	OF LI	BO2 AI	ND AF	RE DI	SSOLVE	D IN	100 M	ILS 5%	HNO3.	Ba 1	s sum	I AS B	aSO4	AND O	THER	METAL	s are su	MAS OXI	ES.
- SAMPLE TY	PE: P1-P10 \$	SOIL P1	1-P12	ROCK	<u>San</u>	ples_	begin	<u>nning</u> /	<u>'RE'</u> /	<u>are c</u>	<u>tupiic</u>	ate sa	amples	$\overline{)}$	P								
DATE RECEIVED:	NOV 18 199	94 DA	TE R	EPORI	MA:	ILED	: \	lova	7 5 9	ų.	S	IGNE	D BY		\mathbb{N}	<u>ا ،</u>	.D.T	DYE,	C.LEO	NG, J	.WANG; C	ERTIFIED	B.C. ASSAYE
									1							ļ							
	-																						

·																														96	
ACMEA	YTIC	AL L	ABOI	RATO	RIES	(LT)	D.		852	Е. Э	AST.	INGS	ST		NCOL	IVER	BC	V6A	1R	6	PI	IONE	(604	1)25:	3-31	58	FAX	(×	,25.	9-17	16
AA									Gl <u>To</u> r	30CI 145	HEMI Lsle W. Ro	ECA] cklan	L Al File d Roa	NAL' 2 # d, NC	YSI 94- rth V	5 C] -45(ancou	52 ver B	EFIC Pa c v7n	CAT age 2V8	E 1											
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As pom	U moqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppn	Cr ppm	Mg %	Ba ppm	Ті %	B	Al %	Na %	K %	₩ PPm	Au* ppb
L35N 10+00W L35N 9+50W L35N 9+00W L35N 8+50W L33N 10+00W	15 3 1 2 <1	40 39 31 35 37	9 8 6 11 10	73 63 88 86 67	.2 .2 .1 <.1	22 26 23 23 22	19 11 12 13 13	960 641 755 578 615	4.67 4.03 3.79 4.42 4.39	<2 3 <2 3 7	6 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 2 2 2 2 2	23 46 64 25 18	<.2 .2 .2 .2 <.2	3 <2 2 2 4	<2 <2 <2 <2 <2 <2	81 77 74 83 83	.21 .53 .72 .20 .16	.079 .046 .043 .037 .092	39 20 18 19 13	33 40 38 32 34	1.06 1.29 1.10 1.13 1.25	132 200 281 187 99	.07 .08 .07 .07 .05	2 <2 2 3 <2	3.34 2.86 3.12 3.51 3.54	.01 .02 .02 .02 .02	.09 .08 .08 .09 .10	1 1 2 2 1	4 2 1 5 6
L33N 9+50W L33N 9+00W L33N 8+50W L33N 8+00W L33N 1+50W	1 5 <1 2 1	47 58 27 34 53	11 12 13 9 15	106 70 74 67 147	.2 .4 .1 <.1 .4	24 25 17 22 19	15 18 11 14 14	783 703 312 420 794	4.48 4.08 3.81 4.28 4.47	8 4 ~2 5	<5 8 5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 3 2	25 45 19 20 30	.2 .2 <.2 <.2 .3	4 3 3 4 3 3 4 3	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	86 80 77 81: 76 :	.17 .48 .18 .17 .51	.059 .041 .048 .057 .073	20 56 28 10 19	38 37 30 28 30	.85 1.02 .87 .86 .91	177 199 100 115 271	.08 .05 .06 .10 .05	<2 4 3 2	4.04 3.93 3.81 3.81 3.30	.02 .02 .01 .02 .02	.09 .09 .06 .11 .09	1 1 2 3	3 4 1 4
L33N 1+00W L33N 0+50W L33N 0+00W L31N 10+00W L31N 9+50W	<1 <1 1 2 3	45 37 40 37 37	19 12 11 11 12	187 132 116 92 82	.2 .1 .1 .3 .1	17 16 16 22 20	14 12 12 17 16	722 786 720 747 720	4.35 4.06 4.02 4.55 4.72	9 7 2 7 4	ব ব ব ব ব ব ব ব ব	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 3 2 3 2	24 32 35 29 37	.3 .2 .2 <.2 <.2	3 <2 <2 3 3	<2 <2 <2 <2 <2 <2 <2 <2 <2	75 69 72 83 80	.31 .41 .40 .27 .43	.127 .069 .048 .069 .073	13 17 19 19 20	23 22 19 30 30	.77 1.04 .97 1.07 1.22	180 114 135 145 137	.06 .06 .06 .08 .05	2 3 2 2 2	3.26 2.40 2.43 3.52 3.05	.02 .01 .02 .01 .01	.10 .09 .08 .10 .10	2 2 1 1	3 7 3 2 1
L31N 9+00W L31N 8+50W L31N 8+00W L31N 1+50W L31N 1+00W	1 1 <1 2 2	34 36 35 121 44	9 9 13 16 15	101 78 64 95 107	-2 -2 -1 -3	20 24 20 18 18	13 17 15 16 13	607 939 960 749 642	4.45 4.66 4.14 4.48 4.43	<2 9 3 8 13	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 2 3 2	30 38 35 28 32	<.2 <.2 <.2 <.2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	79 83 77 74 74	.34 .41 .40 .46 .45	.064 .063 .051 .046 .034	17 16 17 35 17	28 42 34 21 29	1.05 1.41 1.01 1.00 .94	128 108 77 190 246	.05 .07 .09 .07 .05	3 2 3 2 2	3.10 2.63 1.91 3.88 2.88	.01 .01 .02 .02 .02	.10 .11 .07 .08 .08	2 1 1 2	4 2 6 2 5
L31N 0+50W RE L31N 0+50W L31N 0+00W L29N 7+50W L29N 7+00W	<1 <1 <1 2 4	50 48 38 42 19	8 9 11 11 10	114 106 127 69 44	.1 <.1 .2 <.1 .2	21 20 18 22 22	14 14 11 19 22	573 566 703 736 297	4.52 4.46 3.87 5.02 7.34	7 7 8 8	<5 <5 <5 6	<2 <2 <2 <2 <2 <2 <2 <2	22246	32 31 33 21 57	<.2 <.2 <.2 <.2 <.2	4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<2 <2 <2 <2 <2 <2 <2 <2 <2	72 71 73 75 88	.45 .44 .46 .20 .31	.051 .051 .054 .118 .101	15 15 17 13 25	26 28 21 21 26	.85 .84 .83 1.09 .82	188 186 159 98 138	.05 .05 .06 .06 .07	3 <2 2 3 2	2.57 2.53 2.91 3.29 3.23	.02 .02 .02 .01 .02	.08 .08 .08 .09 .07	2 1 2 <1 1	8 5 5 5 3
L29N 6+50W L29N 2+50W L29N 2+00W L29N 1+50W L29N 1+00W	1 6 2 4 3	28 67 69 280 96	12 16 14 12 14	61 88 114 63 68	.1 .6 .2 .7 .5	19 18 14 24 19	24 13 11 10 10	1122 760 367 463 433	4.89 4.72 2.68 3.86 3.45	6 7 5 2 6	5 5 5 5 5 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2	5 2 2 2 2 2 2	15 54 53 62 55	<.2 .4 .5 .3 .2	8 8 8 8 8 8 8 8 8 8	<2 <2 <2 <2 <2 <2 <2 <2	: 75 75 51 60 58	.14 .95 1.15 1.25 .95	. 143 . 031 . 059 . 056 . 043	21 30 15 23 25	21 25 23 26 26	.90 .72 .87 .69 .68	85 223 96 109 128	.07 .05 .05 .07 .08	2 3 2 3 2 2	3.51 3.48 2.12 2.87 2.93	.01 .02 .02 .02 .02	.07 .08 .06 .05 .06	1 2 1 1 <1	4 7 5 6 2
L27N 3+00W L27N 2+50W L27N 2+00W L25N 7+00W L25N 6+50W	1 <1 2 1 2	59 108 53 35 33	12 12 13 10 7	103 80 100 88 115	-3 -4 -5 -1	33 21 19 16 18	22 24 16 13 15	949 677 796 652 767	4.87 4.77 4.46 3.67 3.93	5 5 12 <2 - 4	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	3 2 2 2 3	35 32 30 33 23	<.2 <.2 <.2 <.2 <.2	\$ \$ \$ \$ \$ \$ \$ \$ \$	4 <2 <2 <2 <2 <2	84 87 73 67 68	.44 .34 .37 .36 .23	.110 .080 .087 .066 .093	16 12 18 21 19	32 25 20 23 22	1.04 .98 .87 .84 .79	105 112 114 113 142	.08 .07 .06 .06 .07	2 3 2 2 4	3.52 3.29 2.73 2.52 3.05	.02 .02 .02 .02 .02	.09 .07 .08 .08 .09	2 <1 1 <1	2 1 13 ~ 4 1
STANDARD C/AU-S	17	56	38	126	6.6	74	31	1031	3.96	44	18	7	3 5	49	17.2	14	18	60	.50	.093	40	61	.90	188	.08	33	1.88	.06	. 15	10	47

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. - SAMPLE TYPE: SOIL

AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginging 'RE' are duplicate samples.

DATE RECEIVED: DEC 29 1994 DATE REPORT MAILED: 49 9/95

SIGNED BY D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Tom Lisle FILE # 94-4562

\mathbf{P}	ac	₹€	2	2
		-		

44

ACAC ANALYTICAL																														
SAMPLE#	Mo ppm	Cu	Pb	Zn	Ag	Ni	Co Ppm	Mn	Fe %	As	U mag	Au	Th	Sr ppm	Cd ppm	Sb ppm	Bi	V	Ca %	P %	La	Cr ppm	Mg %		Ti %	B Ali ppm %	Na %	K %	W mqq	Au*
L25N 6+00W L25N 5+50W L25N 5+00W L25N 4+50W L25N 4+50W	1 2 1 5	38 26 35 139 44	10 2 9 14 11	100 48 67 92 69	<.1 <.1 .2 .1 .1	15 10 15 32 25	17 20 12 41 24	1389 667 518 594 645	4.52 4.87 5.02 5.62 6.86	<2 4 3 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 6 5 4 4	30 40 49 25 36	.4 <.2 <.2 <.2 <.2	<2 <2 <2 <2 ~2 ~2 ~2 ~2 ~2	2 7 ~2 3 6	74 76 65 93 109	.30 .59 .17 .19 .20	.114 .125 .151 .208 .134	13 75 18 16 20	21 12 17 25 20	.89 .99 .90 .98 1.38	157 97 102 113 132	.06 .01 .04 .09 .13	7 3.39 5 2.17 7 3.22 8 4.48 10 3.86	.02 .01 .02 .01 .02	.13 .10 .09 .07 .08	1 <1 <1 1 <1	2 3 2 1 59
RE L25N 4+00W L23N 10+00W L23N 9+50W L23N 6+50W L23N 6+50W	5 1 2 1 2	45 44 53 35 54	9 4 6 8 13	68 85 76 80 106	<.1 .1 .2 .2 <.1	26 17 20 13 18	24 18 17 17 24	649 669 618 602 934	6-88 4-36 4-26 4-23 5-22	2 5 5 <2 11	5 5 5 5 5 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 3 3 3 3 4	36 30 32 33 29	<.2 <.2 .4 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	112 66 68 64 73	.20 .31 .33 .35 .27	. 133 . 096 . 081 . 101 . 150	20 20 17 21 25	20 24 26 20 23	1.40 1.16 1.28 1.02 1.10	140 101 95 70 119	-13 -06 -06 -05 -07	6 3.86 6 2.65 3 2.62 3 2.21 <2 3.20	.02 .01 .01 .01 .01	.07 .08 .08 .08 .12		45 3 8 4 2
L23N 5+50W L23N 5+00W L23N 4+50W L23N 4+00W L23N 4+00W L21N 4+50W	2 2 1 2 1	14 61 38 54 35	13 14 9 4 7	40 99 85 96 98	<.1 .2 <.1 <.1 .2	8 25 18 17 16	6 21 18 23 17	242 808 354 786 650	4.39 5.58 5.85 5.07 5.62	2 5 <2 3 10	<5 <5 <5 <5 <5	<> <> <> <> <> <> <> <> <> <> <> <> <> <	9 4 2 3 4	60 30 49 28 35	<.? <.? <.?	\$ \$ \$ \$ \$ \$	<2 4 <2 2 3	64 72 130 79 80	.20 .23 .42 .20 .31	. 178 . 182 . 143 . 150 . 151	61 19 28 18 13	13 23 20 21 23	1.27 1.15 1.30 1.08 .91	108 148 129 138 129	.01 .06 .03 .11 .08	7 2.51 6 3.48 5 3.84 <2 3.22 8 3.33	.04 .02 .02 .01 .01	.11 .10 .09 .09 .12	2222	1 2 3 27
L21N 4+00W L21N 3+50W L19N 4+00W L19N 3+50W L19N 3+00W	2 2 13 2 2	50 66 45 45 232	4 7 9 11 8	90 92 21 92 57	<.1 <.1 <.1 <.1	19 11 7 17 20	24 22 21 23 18	800 658 464 632 874	5.12 5.42 7.24 4.49 5.48	5 7 2 3 5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 2 5 2 2 5 2 2	49 41 72 38 100	<.? <.? <.? <.?	~2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5 <2 7 <2 5	85 86 89 84 133	.50 .36 .37 .33 .88	. 134 . 135 . 184 . 129 . 108	17 18 27 15 14	20 21 9 23 28	1.17 1.13 1.07 .90 1.47	129 133 76 106 70	.13 .10 .02 .11 .06	5 2.95 4 2.81 4 2.04 4 2.85 6 2.70	.01 .01 .01 .02 .01	.11 .10 .09 .09 .11	<1 <1 <1 <1 <1	4 10 11 2 7
L19N 2+50W L19N 2+00W L19N 1+50W L19N 1+00W L19N 0+50W	1 3 1 2 1	49 50 55 208 84	14 12 15 6 16	93 118 124 104 132	.3 <.1 .2 <.1 .1	16 16 17 16 20	13 22 17 16 16	704 3 912 4 1095 4 853 4 943 4	3.93 4.57 4.21 4.41 4.65	4 10 <2 9 5	かかかか	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 2 2	34 44 30 34 32	<.2 <.2 <.2 .3 <.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 27 4 4	63 70 70 69 72	.46 .34 .39 .58 .52	.060 .095 .082 .041 .061	15 17 12 22 18	25 23 22 24 28	.98 .90 .87 1.08 1.10	80 133 145 124 123	.07 .08 .07 .06 .07	4 1.97 3 3.11 <2 3.33 6 2.89 4 2.83	.01 .01 .01 .02 .01	-08 -13 -11 -09 -13	<1 <1 <1 <1 <1	2 1 3 2 2
L19N 0+00W L17N 10+00W L17N 9+50W L17N 9+00W L17N 8+50W	2 1 1 1 1	109 31 43 38 34	270 6 9 11 7	347 103 127 99 162	.1 .1 .3 .1	24 17 13 11 15	17 15 15 14 25	1644 561 643 582 523	4.54 3.71 3.90 4.01 4.06	<2 10 7 4 6	\$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2 <2	2 2 2 3 2 3 2	24 27 31 30 22	.9 <.2 .4 <.2 <.2	<2 3 5 2 3	3 <2 4 <2 <2	70 61 61 59 63	.40 .29 .33 .29 .20	.121 .058 .049 .067 .114	24 11 18 15 9	36 20 22 19 21	1.68 .66 .75 .79 .61	177 115 111 109 115	.05 .08 .08 .07 .07	5 4.09 <2 2.44 <2 2.18 3 1.92 2 2.87	.01 .01 .02 .01 .02	. 15 . 06 . 06 . 07 . 08	ব ব ব ব	1 1 2 3
L17N 8+00W L17N 7+50W L17N 7+00W L17N 4+00W L17N 3+50W	1 2 3 1 2	39 45 39 39 42	10 4 10 10 3	114 116 125 103 126	.2 .2 .1 <.1 .1	20 15 17 14 16	15 18 19 13 13	888 777 864 605 614	3.94 4.36 5.13 3.73 3.75	11 12 6 10 4	\$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 4 2 2	30 36 21 38 37	.6 <.2 <.2 .6 <.2	3 4 2 2 2 2 2 2	2 3 2 2 3 2 3	73 73 65 65 64	.29 .30 .18 .52 .45	.087 .107 .163 .045 .067	12 13 13 16 13	27 23 19 23 26	.69 .85 .56 .83 .84	143 153 136 113 119	.11 .10 .12 .08 .09	5 2.97 4 2.85 5 2.87 5 2.28 6 2.38	.02 .01 .02 .02 .02	.08 .09 .07 .09 .09	<1 <1 <1 <1 <1	1 18 240 2
STANDARD C/AU-S	19	62	40	128	7.0	71	31	1049	3.96	42	19	6	36	51	18.6	15	Z2	60	.51	.093	40	59	.91	190	.08	33 1.88	.06	. 15	11	47

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

Tom Lisle FILE # 94-4562

Page 3

																								-							TYTCAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	\$ ⊳	Bi	v	Са	P	La	Cr	Mg	Ba	τi	В	Al	Na	ĸ	¥	Au*
	ppm	ppm	ppm	ppm	ppn	ppm	ppm	ppm	%	ppm	ppin	ppm	nqq	ppm	ppm	ppn	ppm	ppm	%	%	ppm	ppm	%	ppm	74	ppm	%	%	%	ppm	ppb
L17N 3+00W	1	95	10	115	.5	Ž2	14	1062	4.19	<2	<5	<2	2	49	.5	<2	<2	67	1.09	.046	31	34	1.02	163	.05	18 3	. 12	.0 2	.13	2	3
L17N 2+50W	; 1	69	12	126	.2	18	14	712	4.12	4	<5	<2	3	35	.2	2	<2	75	.42	.051	18	27	- 95	143	.08	32	-68	.02	-09	2	4
L17N 2+00W	2	49	11	134	.1	18	14	925	4.25	<2	<5	<2	2	39	.2	4	<2	78	.60	.053	17	32	.91	141	.08	23	.09	.02	.10	2	11
L17N 1+50W	2	60	12	160	<.1	18	20	932	4.52	<2	<5	<2	2	35	.2	4	<2	76	.42	080	14	32	1.30	108	.06	2 2	.62	-01	. 10	2	3
L17N 1+DOW	2	122	13	122	3	21	20	869	5 29	2	<5	<2	-	30	< 2	5	<2	00	31	080	22	30	1 13	186	05	43	10	01	11	1	15
2	-					2.	20			-	.,		2	20			14	,,		,		20		100					• • •	•	
L17N 0+50W	1	63	13	118	<.1	41	20	731	4.77	7	<5	<2	2	27	<.2	2	<2	90	.27	.089	10	74	1.34	149	.06	23	.45	.01	.11	1	2
L17N 0+00W	1	77	15	113	.2	17	15	726	4.53	<2	<5	<2	2	30	<.2	2	<2	85	.53	-066	22	35	.88	142	.04	32	.60	.01	.09	2	2
L11N 10+00W	2	46	10	75	<.1	15	12	668	3.88	4	<5	<2	2	38	<.2	3	<2	67	-48	.043	21	30	1.07	55	.07	<2 1	-84	.01	.10	1	3
RE L11N 10+00W	3	45	12	69	.1	15	12	637	3.69	7	<5	<2	2	36	<.2	3	<2	63	.46	.042	20	28	1.02	53	.06	2 1	.73	.01	.10	1	2
L11N 9+50W	1	41	10	97	-1	16	12	719	3.56	2	<5	<2	<2	32	<.2	3	<2	66	30	078	21	29	.89	95	-07	<2 2	.23	- 02	.10	1	2
										-	-	-				-							•=-							•	-
L11N 9+00W	1	26	8	83	. 1	13	10	580	3.41	<2	<5	<2	2	37	-2	<2	<2	69	.48	-070	11	28	-85	85	.10	21	-82	- 02	.11	1	2
L11N 8+50W	2	36	17	55	<.1	15	14	519	4 26	5	<5	<2	2	32	< 2	2	~2	85	41	052	10	31	07	55	.08	21	98	01	.08	<1	2
111N 8+00W	1	53	13	74	1	15	15	050	3 02	Ĺ.	-5	-2	2	41	~ 7	2	-2	70	57	082	18	30	1 18	55	07	3 1	04	01	12		5
11N 7+50V	1	28	.2	42	- 1	11	17	461	3 3/	7	-5	~2	7	4.2	~ 2	5	~2	67		05/	15	21	80	67	.0,	21	52	.01		-1	1
111 7+001		55	10	170		11	10	401	7 00	2	<5 .5	2	2	42		2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	02	.4/	.034	15	27	.00	107	.00	21		.01	.07		
LIIN /+OOW	· ·	22	17	130	• •	10	12	050	2.92	2	< 5	×2	2	54	<.z	2	<2	04	.57	-079	10	21	-02	107	.07	2 2	.00	-01	. 14		c
111N 6+50W	1	34	4	86	1	15	21	7/5	3 54	<2	~5	-2	1.	36	- 2	2	-2	61	٨٥	045	18	22	1 07	76	06	2 2	07	01	17	1	2
1111 6+004	1	45	10	67	- 1	16	11	577	3 67	~2	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	~2	70	.40	.005	1/	21	1.05	52	00	-2 1	50	.01	. 1.5	ا ب	5
1111 5+501		70	10	07		1/	11	520	7 45	12	-	-2	2	30		2	~2	70	.40	.045	14	21	.07	70	.09	21		.01	. 14		-
11N 5+000	-1	30	10	00		14	12	520	2.02	~	<5 	22	2	50	5.2	2	< <u>2</u>	10	- 22	.058	10	21	.00	07	-09	~ ~ 1	. 15	-01	.00	-	4
LIIN STOOW		44	11	90	<.1	10	12	245	5.11	8	<2	<2	2	55	<.2	2	<2	71	. 33	.047	13	21	.90	85	.09	<2 1	.92	-01	-09	. 1	2
LIIN 4+50W	1	45	10	127	.1	17	14	667	3.94	<2	<5	<2	<2	36	-2	2	<2	74	-39	.059	12	29	1.04	99	-08	<2 2	.05	-01	.10	-2	3
L11N 4+00W	1	54	10	111	< 1	17	14	788	4 n 4	4	-5	<2	~2	36	< 2	2	c2	7/	41	070	17	30	1 08	00	08	<2 2	00	01	10	1	21
111N 3+50W	1	41	10	123	1	18	17	608	3 86	-2	-5	-2	2	22		6	-2	73	37	061	12	30		110		-2 1	07	01	o	2	5
1111 3+000	-1	0/	11	101		10	10	1050	/ 75	~		2	2	22		4	12	12	- 27	.001	12	20		110	.07	-2 2	.7(.07	.07		Ĩ
1110 34000		74	11	101		10	15	7/0	4.75	ý	< <u>></u>	~2	2	42	<٠٢	د	<2	80	. 22	.097	25	20	1.19	407	.07	~~ ~		.01	. 12	i	2
LIIN 2+30W	51	39		154	-2	16	12	748	3.48	0	<5	<2	2	30	-2	<2	<2	67	- 34	.099	12	24	.69	142	-08	21	.97	.02	.11	2	د
LIIN 2+00W	<1	48	14	181	.1	19	12	1138	3.53	4	<5	<2	2	21	.3	2	<2	66	.25	.216	12	22	.68	161	.09	2 2	.64	.02	.09	2	3
L11N 1+50W	1	69	Q	64	< 1	16	12	537	3 00	5	<5	<2	2	32	< 2	2	<2	76	42	700	17	27	07	60	08	<2 1	.77	01	00	1	3
111N 1+00W	1	34	ó	159	< 1	14	10	1066	2 02	Ŕ	-5	-2	-2	23	2	-2	<2	50		771	2.	14	57	200	00	2 2	20	02	08	2	120
1111 0+504	-1	81	11	108	1	17	1/	6/2	/ 01	11	~	~2	2	70	- 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~2	7		047	10	79	1.0/	102	.00	7 2	2/	- 02	11	1	120
1110 04000	1	45	12	100	_ 1	10	14	900	. 0/	10	<5 -5	-2	4	20		ົ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14	. 32	.003	10	20	1.04	1102	.0/	2 4		-01		1	4
CTANDADD C/ALLC	17	62	20	120	2.7	70	14	1074	4.04	10	<2	~2	- 2	20	~~~	2	<2	11		.063	13	22	1.09	110	-00	~~ ~		.01	- 11		5
STANDARD C/AU-S	17	21	39	128	6./	15	5	1051	3.96	42	18		36	50	17.4	15	18	60	-51	.094	39	61	.91	189	.08	55 1	.88	.06	.15	10	51

-

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

GSM-19T

Instruction Manual

TERRAPLUS INC., 52 West Beaver Creek Road, Unit 14, Richmond Hill, Ontario L4B 1L9 (Canada)

Telephone: (416) 764-5505 Fax: (416) 764-9329

GEM Systems Inc.

52 West Beaver Creek Rd. Unit 14 Richmond Hill, Ontario Canada L4B 1L9

Phone: (905) 764-8008 Fax: (905) 764-9329

1. THEORETICAL DESCRIPTION

1.1 Introduction

The GSM-19T is a portable standard proton magnetometer/gradiometer designed for handheld or base station use for geophysical, geotechnical, or archaeological exploration, long term magnetic field monitoring at Magnetic Observatories, volcanological and seismic research, etc. The GSM-19T is a secondary standard for measurement of the Earth's magnetic field, having O.2 nT resolution, and 1 nT absolute accuracy over its full temperature range.

The GSM-19T is a microprocessor based instrument with storing capabilities. Large memory storage is available (up to 2 Mbytes). Synchronized operation between hand held and base station units is possible, and the corrections for diurnal variations of magnetic field are done automatically. The results of measurement are made available in serial form (RS-232-C interface) for collection by data acquisition systems, terminals or computers. Both on-line and post-operation transfers are possible.

The measurement of two magnetic fields for determination of gradient is done concurrently with strict control of measuring intervals. The result is a high quality gradient reading, independent of diurnal variations of magnetic field.

Optionally the addition of a VLF sensor for combined magnetometer/gradiometer-VLF measurement is available.

1.2 Magnetic Field Measurement

The magnetic field measuring process consists of the following steps:

- a) **Polarization.** A strong DC current is passed through the sensor creating polarization of a proton-rich fluid in the sensor.
- b) Deflection. A short pulse deflects the proton magnetization into the plane of precession.
- c) **Pause.** The pause allows the electrical transients to die off, leaving a slowly decaying proton precession signal above the noise level.
- d) **Counting.** The proton Precession frequency is measured and converted into magnetic field units.
- e) Storage. The results are stored in memory together with date, time, and coordinates of measurement. In base station mode, only the time and total field are stored.

1.3 Earth's Magnetic Field

Appendix B shows the nominal distribution of the Earth's magnetic field, with dotted lines separating the equatorial and polar regions. In polar regions the inclination of the magnetic field vector is approximately vertical, while in equatorial regions it is horizontal. To obtain the best precession signal the sensor must be aligned with the magnetic field. In polar regions the sensor axis must be horizontal, in equatorial vertical. Horizontal orientation of the sensor can be universal if the operator keeps the sensor oriented in an East-West direction (important only in equatorial regions).

Initially, the tuning of the instrument should agree with the nominal value of the magnetic field shown for the particular region in Appendix

n Magnetic field direction should ideally be perpendicular to sensor axis

B. After each reading the instrument will tune itself automatically. If large changes in magnetic field are encountered between successive readings, a warning will be given to the operator and it may be necessary to repeat the reading to obtain an accurate result.

Local ferromagnetic objects like screws, pocket knives, wristwatches, tools etc. may impair the quality of measurement or in drastic cases even destroy the proton precession signal by creating excessive gradients. For best results, **ferromagnetic objects should be kept away from the sensor.** In normal applications, the magnetometer console does not produce appreciable effects on measurements provided that the sensor is installed on the staff and kept at least at arms length from the operator and the console.

Release 4.0

B

2. INSTRUMENT SPECIFICATIONS

2.1 Magnetometer / Gradiometer

Sensitivity:	+/- 0.2 nT (gamma), magnetic field and gradient.
Accuracy:	+/- 1 nT over operating range.
Range:	18,000 to 120,000 nT, automatic tuning requiring initial set-up.
Gradient Tolerance:	Over 7,000 nT/m
Operating interval:	3 seconds minimum. Readings initiated from keyboard, external trigger, or carriage return via RS-232-C.
Input/Output:	6 pin weatherproof connector, RS-232C, and (optional) analog output.
Power Requirements:	12 V, 730 mA peak (during polarization), 30 mA standby. 1500mA peak in gradiometer mode.
Power Source:	Internal 12 V, 1.9 Ah sealed lead-acid battery standard, others op- tional. An External 12V power source can also be used.
Battery Charger:	Input: 110/220 VAC, 50/60 Hz and/or 12 VDC (optional). Output: 12V dual level charging.
Operating Ranges:	Temperature: -40 °C to +60 °C.
	Battery Voltage: 10.0 V minimum to 15V maximum. Humidity: up to 90% relative, non condensing.
Storage Temperature:	-70°C to +65°C
Dimensions:	Console: 223 x 69 x 240mm.
	Sensor staff: 4 x 450mm sections.
	Sensor: 1/0 X / Imm dia. Weight: Console 2 1kg. Staff () 9kg. Sensors 1 1kg each
	Treight. Console 2.1 kg, Stan 0.5 kg, Schsols 1.1 kg each.
2.2 VLF	
Frequency Range:	15 - 30.0 kHz.
Parameters Measured:	Vertical In-phase and Out-of-phase components as percentage of total field.
	Absolute amplitude of total field.
Resolution:	0.1%.
Number of Stations:	Up to 3 at a time.
Storage:	Automatic with: time, coordinates, magnetic field/gradient, slope, EM field, frequency, in- and out-of-phase vertical, and both horizon- tal components for each selected station.
Terrain Slope Range:	0° - 90° (entered manually).
Sensor Dimensions:	14 x 15 x 9 cm. (5.5 x 6 x 3 inches).
Sensor Weight:	1.0 kg (2.2 lb).

3. INSTRUMENT DESCRIPTION

3.1 Physical Overview

The parts of the GSM-19T magnetometer/gradiometer are as follows.

- The sensor is a dual coil type designed to reduce noise and improve gradient tolerance. The coils are electrostatically shielded and contain a proton rich liquid in a pyrex bottle.
- The sensor cable is coaxial, typically RG-58/U, up to 100m long.
- The staff is made of strong aluminum tubing sections (plastic staff optional). This construction allows for a selection of sensor elevations above ground during surveys. For best precision the full staff length should be used. Recommended sensor separation in gradiometer mode is one staff section (56cm from sensor axis to sensor axis), although two or more sections are sometimes used for maximum sensitivity.
- The console contains all the electronic circuitry. It has a 16 key keyboard, a 4 x 20 character alphanumeric display, and sensor and power/input/output connectors. The keyboard also serves as an ON-OFF switch.
- The power/input/output connector also serves as RS232C input/output and optionally as analog output and/or contact closure triggering input.
- The keyboard, front panel, and connectors are sealed i. e. the instrument can operate under rainy conditions.
- The charger has 2 levels of charging, full and trickle, switching automatically from one to another. Input is normally 110V 50/60Hz. Optionally, 12 VDC input can be provided.
- The all-metal housing of the console guarantees excellent EMI protection.

3.2 Software Version 4.0

There are several major versions of software for the GSM-19. As of August 92, GEM Systems added a major software upgrade to its GSM-19 family, enhancing its capabilities. This new generation of software (version 4.0) has the following advantages.

- 1. Diurnal correction (reduction) with interpolation can be used in conjunction with other GSM-19 models with software version 4.0. This allows the base mag to run with longer cycle time. Previous software could do interpolation only with fast GSM-19 types.
- 2. Memory filing system. Now 50 files can be stored in a directory, and mode of operation can be changed without erasing memory. With the software previous to version 4.0, only 1 file could be retained in memory, and this would be lost when modes of operation were switched.
- 3. Line and station numbers have been enlarged. Lines can now be 5 digits as opposed to 4 digits in previous software. Station numbers are now 7 digits as opposed to 6 in the previous software.
- 4. Transmission time has been significantly shortened.

Determining your instrument's software version

There are several visible indications that can be checked to determine if the GSM-19 has Version 4.0 software installed. Upon turning on the unit, if Version 4.0 software is present the third line of the display will indicate v4.0. Otherwise just the date of the software will be shown. Furthermore, from the main menu, **B-diurn.cor** is displayed in version 4.0 units. **B-reduction** is displayed in previous software version units. Finally, the header for every RS-232C transmission will have a v4.0 indicator and a file name.

Files

A new file will be opened in the following cases:

- 1. New file programmed by user.
- 2. Survey on a new day will automatically create a new file.
- 3. A base restart will automatically create a new file.
- 4. After the erase function is performed.

Note: The walking mag or grad has further modifications. See section 4.5 under the Walking Mag Mode subheading.

SABRE ELECTRONIC INSTRUMENTS LTD.

4245 EAST HASTINGS STREET

BURNABY, B.C. V5C 2J5

SABRE MODEL 27 VLF-EM RECEIVER

The Model 27 EM unit was designed originally for a large Canadian mining company to overcome the deficiencies inherent in existing units.

The instrument is so stable and selective that completely reliable measurements can be made on distant stations without interference from nearby powerful transmitters. Stability and selectivity are especially important when making field-strength measurements, which are now being emphasized as a means of locating conductors.

This EM receiver is very compact, requires no earphones or loudspeakers and is housed in a heavy scotch saddle leather case. All of these features add up to make an ideal one-man EM unit of unexcelled electrical performance and mechanical ruggedness.

SPECIFICATIONS

<u>Source of Primary Field</u> - VLF radio stations (12 to 24 KHz.) <u>Number of Stations</u> - 4, selected by switch; Cutler, Maine on 17.8 KHz. and Seattle, Washington on 18.6 KHz. are standard, leaving 2 other stations that can be selected by the user.

Types of Measurement

- 1. Dip angle in degrees, read on a meter-type inclinometer with a range of $\frac{+}{60^{\circ}}$ and an accuracy of $\frac{+}{-10^{\circ}}$.
- 2. Field strength, read on a meter and a precision digital dial with an accuracy exceeding 1%.
- 3. Out of phase component, read on the field strength meter as a residual reading when measuring the dip angle.

Dimensions and Weight

Approximately $9\frac{1}{2}$ " x $2\frac{1}{2}$ " x $8\frac{1}{2}$ "; Weighs 5 lbs.

Batteries

8 alkaline penlite cells. The instrument will run continuously on 1 set of batteries for over 200 hours; so that in normal on-off use, the batteries will last all season. The battery condition under load is shown by pushing a button and reading voltage on the field strength meter.

VLF-EM OPERATING INSTRUCTIONS

The equipment is operated in the usual way as follows:

- With the instrument held horizontal in front of you, turn around until a null appears on the field strength meter. You should now be facing the station.
- 2) With the receiver still facing the station, lift it to the vertical position and rotate it slightly in the vertical plane to your right or left until the best null appears on the field strength meter. Record the angle on the inclinometer at which the null appears. This is the DIP ANGLE (Positive or Negative).
- 3) Return the instrument to the horizontal plane and turn around until the field strength meter is at its maximum reading. Set this maximum reading at 100 on the meter and record the reading on the gain control dial. This is the Field Strength Reading.
- 4. Repeat steps 1, 2, and 3 at each station.
- 5) To test the batteries turn the power switch on and push the test button. The field strength meter should read above the red mark. Battery life is approximately 200 hours and if the instrument is turned off between readings, the batteries should last for an entire season.
- NOTE: An alternative way of measuring field strength is as follows: Proceed as in step 3, setting the meter to 100. Now push the field strength button (marked FS) and the meter will read 50. (If it doesn't, adjust the gain control slightly). Leave the Gain Control setting where it is and take comparative Field Strength readings at each station by pressing the Field Strength button and recording the meter reading, which will vary from its Base Station Reading as you pass over the conductive zones.

This is the method used in Part 2 of this book entitled: "DETAILED FIELD PROCEDURE".

SELECTION_OF STATIONS:

The stations are selected by the switch on the control panel, with the following abbreviations being used:

С	=	Cutler, Maine	Frequency	=	17.8	Khz.
S	=	Seattle, Wash.	Frequency	=	18.6	Khz.
A	Ŧ	Annapolis, Md.	Frequency	=	21.4	Khz.
Н	=	Hawaii	Frequency	=	23.4	Khz.

The two most useful stations are Cutler and Seattle and these will be used almost exclusively. Note that Seattle is off the air for several hours on Thursday for maintenance (between 10 A.M. and 2 P.M. usually). Cutler is off the air for the same length of time every Friday.

If Equipment fails to operate:

- (a) Check that station is transmitting (see above). If one station appears to be dead, check another one to see if it is operating normally.
- (b) Check batteries. If they are low or the reading begins to drop after the test button is held down for a few seconds, replace them. Note also that there are 8 batteries in the instrument and they cannot be individually checked by the test button. If the batteries have been in the unit for a long time it is possible that one is dead or very weak but that the total voltage indicated by the test button is near normal. It is cheap insurance to instal new batteries before starting a big survey.
- (c) If unit still fails to operate check that battery connectors are tight, then check wiring of battery connectors for breaks or damage.

PART 2: DETAILED FIELD PROCEDURE

OPERATING INSTRUCTIONS

SABRE VLF-EM RECEIVER

INTRODUCTION:

The VLF-EM method utilizes electromagnetic fields transmitted from radio stations in the 15-25 KHz range. The signals are propagated with the magnetic component of the field being horizontal in undisturbed areas.

Conductivity contrasts in the earth create secondary fields, producing a vertical component and changes in the field strength or amplitude. These conductive areas may be located, and to a degree, evaluated by measuring the various parameters of this electromagnetic field.

The Sabre VLF-EM receiver is tuned to receive any 4 transmitter stations: usually C - Cutler, Maine; S - Seattle; H - Hawaii; and A - Annapolis.

The station used in the survey should be selected so that the direction of the signal is roughly perpendicular to the direction of the grid lines which, in turn, should be laid out perpendicular to the regional strike.

MEASUREMENTS:

The Sabre VLF-EM receiver can be used to measure the following characteristics of the VLF field:

- (a) Tilt angle of resultant field;
- (b) Field strength of (a) horizontal component of field;

(b) vertical component of field.

Field Procedure

The following procedure should be followed to measure the dip angle of null and the field strength of the horizontal component of the VLF field.

Initial Field Strength Adjustment

Adjust the gain control to provide a suitable relative field strength measurement, as follows:-

(a) hold receiver in horizontal position (meter faces horizontal) and rotate in a horizontal plane until a null is indicated on the F.S. meter; rotate 90° in this horizontal plane (F.S. meter reads maximum)

(b) adjust gain control so that the F.S. meter reads 100

(c) record gain control setting (000 to 999), and do not readjust unless a major field strength occurs.

The above procedure should be carried out at the beginning of each day's survey and checked during the day.

Dip Angle Measurement Procedure

1. Hold receiver in horizontal position and rotate in the horizontal plane until a null is observed. This aligns receiver in the field and the operator should be facing southerly or easterly depending on transmitter location.

2. Bring receiver up to the vertical positon (meter faces vertical) and rotate the receiver in the vertical plane perpendicular to the transmitter direction until a null or minimum reading is observed on the field strength meter.

3. Hold the receiver in this field strength null position and read the inclinometer in degrees. Record this dip angle of null along with sign (+ or -).

Horizontal Field Strength Measurement Procedure

1. Return receiver to the horizontal position.

2. Re-establish null bearing in horizontal plane.

3. Rotate receiver 90° in the horizontal plane.

4. Depress F.S. push button switch and observe field strength meter reading for sufficient time to obtain an average F.S. meter reading. (Depressed F.S. switch slows needle action and reduces meter reading

by half. The reading will normally range around 50).

5. Record F.S. reading.

Filtering Technique For VLF-EM Dip Angle Data

The standard profile method of presenting dip angle data may be difficult to interpret. A filtering technique, described by D.C. Fraser, 1969 (Geophysics, Vol. 34, No. 6, p. 958-967) enables the data to be presented on a plan map with conductive areas defined by contours.

The following explains the calculation:-

Line	Station	Nu11	Fil	ter
8N	0 E	+3		
	1 E	+4	* +3+4= +7	
	2 E	+4	+4+4= +8 +7-(+10)=	-3
	3 E	+6>	+4+6= +10 +8-(+13)=	-5
	4 E	+7	+13 +10-(+16)=	-6
	5 E	+9	+16	-8
	6 E	+12	+21	-12
	7 F	+16	+28	+3
	8 F	+2	+18	+30
	9 5	_4	-2	+32
	10 E	_10	-14	+14
	11 5	-10	-16 > -14-(-7)=	-7
	12 5		-6-1= -7	
	46 L	-1-		

Figure 1 is an example of a field sheet showing null angle reading, filtered reading and relative field strength. Figure 2 shows the field sheet with filter card overlaid. The small window in the side of the card shows the four readings used to calculate the filtered reading, and an arrow showing that the filter reading is to be plotted between Station 8E and 9E as indicated in Figure 1. The card is moved down the field sheet, one reading at a time as a guide while carrying out the filter procedure. Throughout the survey care must be taken to ensure that the filtered data has the correct sign. The positive values only are plotted and contoured while for negative values, only the negative sign is plotted. Crone suggests in instructions for the Radem VLF-EM, the use of N-S or E-W notation instead of (+ or -) signs, however, for filtering a sign must be substituted.

The following convention may be used to ensure the correct sign of filtered data and provide a consistent cross-over pattern when studying the profiled null angle data.

1. When taking a reading, <u>always</u> face southerly, on east-west lines, and always face easterly on north-south lines.

2. Record data on field sheets (top to bottom) as follows:

on N-S lines record from south to north

on E-W lines record from west to east.

3. Plot and profile dip angle data on plan maps facing map north or map west.

The above convention will provide correct data regardless of the property location relative to the transmitter being used.
Gain- 024 VLF-EM SURVEY							
PPOPERTY G. 1.7.5. TRANS SEATTLE PAGE OPERATOR INSTR. SABRE DATE MAY 4/74							
Line	Stn.	Null	Filter	F.S.			
8N	OE	+3		50	[
	IE	+4		50			
<u> </u>	2.E	+4.	-5	52			
	35	+6	-6	52			
	4E	+7		52			
	5E	+9	=/2	52			
	6 E	+12	+3	53			
	7E	+16	+30	60			
	<u>8E</u>	+2	+ 32-	65	XOVER		
	9E	-4	+ 14	6Z			
	10 E	-10	7	50			
	IIE	-6	18	48			
	12 E	-1	-14	48	<u></u> .		
	136	+2	6	50			
	14E	+4		52			
	15 E	+4	+6	50	·		
	16E	-4	+/0	55	X OVER		
	17E	- 2	+	55			
	18E		=2	50			
	19 E	+/					
	LOE	-/			·		
					·		
<u>``</u>							
			l				

Fig. 1 Example of Field Sheet

	Gain - 024 VLF-EM SURVEY					
· .	PPOPERTY (<u>7.1.7-5.</u> TRANS INSTR.	SEATTLE SAURE	PAGE /. DATE <u>MAY 4/74</u>		
	······		Filter	F. S.		
· · ·			1	50		
(-3_	50		
FILTER	CARD		-5	52		
	•		-6	52		
				52		
			-=-/2	52		
			+3	53		
· · · · · · · · · · · · · · · · · · ·	<i>+ a</i>	+ 16	+-30	-60		
-FULTERED READIN	(G + b	+2	-+-32	65		
(a+b)-(C+d)	- C	-4	+14-	.62		
	- d	-/0	-7	50		
(+16+2) -(-4+(-	(0)) =		/8	48		
(+18) - (-14)	= +32			48		
			6	50		
			_=/	50.		
			+6	<u> </u>		
			-+-10	55		
	······································		<i>#/</i>	23		
(-=-2	- 30		
			·			
			·			
·!	J					
			·			

Field Sheet with Filter Card Overlayed

LIZN 12+0 -28-1 2,6 0-11-5 2 2 2 4 0 14,18 15/2415 -9-24-7-1,-1-7-8-6-12-12-10-94 1 2 6,6 4 2 -2-5-2-1-4-5/ -4/011/1-3/015/9 5, 2/-4-7-7-4,-2/1 /13/7 -8-12-7-4-13-13/3/17,12 6 1 - LIIN 2N ON OW OE LOP RAINBOW 4 (323956) 2 21 1 3/6 15/25/29 A 9/19-5-9/19-8-24/12/9-8-20-22-33-19-20-25-16-7-10-14-13-12-14-6 4/-1/1 6/011 0/-3/3 8/11,5/-2 2 -2,-6-11-21-9/922/2 /7/8 8/-10-10-64/14/066/4 5 7 6/-5.0 LION 10+00 -1 -12-13 -14-16-24-11 -8-12-3/7 5/16-11 3 5-1-5-9 5 9-5-6-6-2 5 1 -9-35-27-7 4/13 6 8 8-1 4 9 0-9 9 4 3 0 7 4 -4-21 -1-4-9-2 LON 694,020596813,19162-57211992/-2-9-53-5-45 9+00 0 5 6 3 9 13 8 14 15 10 19 14 12 2 8 6 -7 -9 2 6 0 4 0 19 14 5 -6 -4 5 0 -3 0 4 1 -1 -1 -4 -3 -2 -2 -6 -6 2 2 -2 -3 -7 -18 -47 -27 -8 -1 8 8 4 0 0 0 6 3 -5 2 10 9 -1 -2 0 10 -4 -8 4 9 9 9 LBN 8+00-GEOLOGICALOBRANCH ASSESSMENTEREPORT RAINBOW PROJECT Tilt Angle (degrees) VLF-EM SURVEY Fraser-Filtered Tilt Angle Data 2012 TULAMEEN DISTR - SIMILKAMEEN MD BRITISH COLUMBIA Sabre Model 27 Receiver NTS 92H-IOW N Primary Field Transmitter - SEATTLE - 18-6 KHz Scale 1:2500 November, 1994-Filletinsoe Figure 5.

