REC		.*
MAP 3 - 1995		
	1 1 1	هل

- -

, ---

LOG	N0:	MAR	0	7	1995	 U	
ACT	10N:						

FILE NO:

DALMATIAN RESOURCES LTD

REPORT

ON

1994 PHASE 1 DIAMOND DRILL PROGRAM

ON THE

TAY MAIN (EAST) ZONE

AND

SLIDE ZONE

WITH A SUMMARY OF ECONOMIC POTENTIAL

ON THE

TAY PROPERTY

TAYLOR RIVER AREA, ALBERNI MINING DIVISION

N.T.S. 92F/6

FILMED

BY

LEO J. LINDINGER, P. Geo.

CONSULTING GEOLOGIST

25

JULY 20, 1994 GEOLOGICAL BRANCH ASSESSMENT REPORT

×

Dalmatian Resources Ltd. 5245 Fairmont St. Vancouver, BC V5R-3V4 Ph/Fax (604)451-4484

July 20, 1994

Dalmatian Resources Ltd has recently arranged financing for continued exploration on its 40 square km, 100% owned Tay Gold Property west of Port Alberni B. C.

The financing will allow for \$180,000.00 to be spent as a partial completion of the proposed Phase One-Extension exploration program discussed in this report.

The funding will by used to finance a property wide low altitude multi-instrument helicopter borne geophysical survey to define prospective zones on the property. This is expected to cost about \$100,000.00.

The remainder of the monies will be used to extend and define known and prospective ground within epithermal style alteration and mineralized zones in the Tay area by using a suitably sized excavator. Also planned are preliminary examinations of Dalmatians' newly acquired Sunshine and Diane claims. The Sunshine Claim covers the historic Morning and Apex veins which abuts the best explored Tay mineralization. The Diane Claims cover recently discovered high grade gold and mercury showings.

Additional financing to complete the planned exploration work is being sought.

DALMATIAN RESOURCES LTD

REPORT

ON

1994 PHASE 1 DIAMOND DRILL PROGRAM

ON THE

TAY MAIN (EAST) ZONE

AND

SLIDE ZONE

WITH A SUMMARY OF ECONOMIC POTENTIAL

ON THE

TAY PROPERTY

TAYLOR RIVER AREA, ALBERNI MINING DIVISION

N.T.S. 92F/6

BY

LEO J. LINDINGER, P. Geo.

CONSULTING GEOLOGIST

JULY 20, 1994

TABLE OF CONTENTS

DA ODO

			PAGES
1.0	SUM	MARY	1.1
2.0	RECO	DMMENDATIONS	2.1
3.0	INTR	ODUCTION	3.1
4.0	LOCA	ATION, ACCESS AND PHYSIOGRAPHY	4.1
5.0	CLAI	MS AND OWNERSHIP	5.1
6.0	HIST	ORY	6.1
7.0	REG	ONAL GEOLOGY	7.1
8.0	PROF	PERTY GEOLOGY	8.1
9.0	1994]	PHASE 1 EXPLORATION PROGRAM	9.1
10.0	DISC	USSION AND INTERPRETATION OF EXPLORATION R	ESULTS 10.1
11.0	CON	CLUSIONS	11.1
12.0	STAT	EMENT OF EXPENDITURES	12.1
13.0	REFE	RENCES	13.1
14.0	STAT	EMENT OF QUALIFICATIONS	14.1
APPE	NDIC	ES	
Ι	GEO	CHEMICAL ANALYSES AND ASSAYS	
п	COD	ED DIAMOND DRILLING LOGS AND ASSAY SUMMAR	ES
LIST	OF TA	BLES	
TABL	E 1	PHASE 1 EXTENSION - PROPOSED EXPENDITURES	2.3
TABL	E 2	PHASE 2 - PROPOSED EXPENDITURES	2.4
TABL	E 3	CLAIM STATUS	5.2
LIST	OF FI	GURES	after page
FIGU	RE 1	LOCATION MAP	4.1
FIGU	RE 2	PROPERTY MAP	5.1
FIGU	RE 3	PROPERTY PHOTO-PANORAMA	10.11
FIGU	RE 4	TAY AREA COMPILATION MAP	10.15
FIGU	RE 5	PROPERTY COMPILATION MAP	10.16
FIGU	RE 6	SURFACE DRILL PLAN	back pocket
FIGU	RE 7	LONG SECTION	back pocket
			I

CROSS SECTIO	NS		
FIGURE 8 A1	9205 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 A2	9205 E	ASSAYS AND MINERALIZATION	•
	INT	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 B1	9180 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 B2	9180 E	ASSAYS AND MINERALIZATION	
	INT	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 C1	9160 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 C2	9160 E	ASSAYS AND MINERALIZATION	
	INI	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 D1	9145 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 D2	9145 E	ASSAYS AND MINERALIZATION	
	INI	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 E1	9130 E	GEOLOGY AND ALTERATION	hack nocket
FIGURE 8 E2	9130 E	ASSAYS AND MINERALIZATION	ouch pochet
	INI	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 F1	9090 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 F2	9090 E	ASSAYS AND MINERALIZATION	•
	INT	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 G1	9070 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 G2	9070 E	ASSAYS AND MINERALIZATION	
	INT	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 H1	9055 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 H2	9055 E	ASSAYS AND MINERALIZATION	
	INT	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 I1	9040 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 I2	9040 E	ASSAYS AND MINERALIZATION	
	INT	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 J1	9025 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 J2	9025 E	ASSAYS AND MINERALIZATION	
	INI	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 K1	9010 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 K2	9010 E	ASSAYS AND MINERALIZATION	
	INI	ERPRETED GEOLOGY AND ALTERATION	back pocket

FIGURE 8 L1	8990 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 L2	8990 E	ASSAYS AND MINERALIZATION	
	INT	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 M1	8970 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 M2	8970 E	ASSAYS AND MINERALIZATION	
	INTI	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 N1	9955 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 N2	8955 E	ASSAYS AND MINERALIZATION	
	INTI	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 O1	9940 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 O2	8940 E	ASSAYS AND MINERALIZATION	
	INTI	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 P1	8925 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 P2	8925 E	ASSAYS AND MINERALIZATION	F
	INT	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 Q1	8890 E	GEOLOGY AND ALTERATION	back pocket
FIGURE 8 Q2	8890 E	ASSAYS AND MINERALIZATION	-
	INTI	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 8 R2	8850 E	ASSAYS AND MINERALIZATION	
	INTI	ERPRETED GEOLOGY AND ALTERATION	back pocket
LEVEL PLANS			
FIGURE 9 A/	120 M EAS	ST ASSAYS AND MINERALIZAT	TON
_	INTI	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 A2	120M WES	ST ASSAYS AND MINERALIZAT	TON
	INTI	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 B/	110 M EAS	ST ASSAYS AND MINERALIZAT	TON
	INTI	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 BZ	110M WES	ST ASSAYS AND MINERALIZAT	TON
	INTI	ERPREIED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 C1	100 M EA	ST ASSAYS AND MINERALIZAT	TION
DIALIDE A CO	INTI	ERPRETED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 CZ	100 M WE	ST ASSAYS AND MINERALIZAT	
	INTI	ERPRETED GEOLOGY AND ALTERATION	Dack pocket

. LIST OF FIGURES CONT,D

FIGURE 9 D1	90 M EAST	ASSAYS AND MINERALIZAT	TON
	INTERPRE	TED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 D2	90 M WEST	ASSAYS AND MINERALIZAT	ION
	INTERPRE	TED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 E1	80 M EAST	ASSAYS AND MINERALIZAT	TON
	INTERPRE	TED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 E2	80 M WEST	ASSAYS AND MINERALIZAT	ION
	INTERPRE	TED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 F1	70 M EAST	ASSAYS AND MINERALIZAT	TON
	INTERPRE	TED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 F2	70 M WEST	ASSAYS AND MINERALIZAT	TION
	INTERPRE	TED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 G1	60 M EAST	ASSAYS AND MINERALIZAT	TON
	INTERPRE	TED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 G2	60 M WEST	ASSAYS AND MINERALIZAT	
	INTERPRE	TED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 H1	50 M EAST	ASSAYS AND MINERALIZAT	TION
	INTERPRE	TED GEOLOGY AND ALTERATION	back pocket
FIGURE 9 H2	50 M WEST	ASSAYS AND MINERALIZAT	TION
	INTERPRE	TED GEOLOGY AND ALTERATION	back pocket

FIGURE 9 I2 40 M WEST ASSAYS AND MINERALIZATION INTERPRETED GEOLOGY AND ALTERATION back pocket

SLIDE ZONE CROSS SECTIONS

FIGURE 10A1	GEOLOGY AND ALTERATION	back pocket
FIGURE 10A2	ASSAYS AND MINERALIZATION	back pocket
FIGURE 10 B 1	GEOLOGY AND ALTERATION	back pocket
FIGURE 10 B2	ASSAYS AND MINERALIZATION	back pocket

1-0 SUMMARY

The Tay Property wholly, owned by Dalmatian Resources Ltd. is in mountainous terrain located 37 km west of Port Alberni, B.C. in the Alberni Mining division. The property covers the southeastern end of the dioritic Bedwell Batholith where it intrudes Karmutsen basalts. Gold bearing quartz breccia veins and stockwork zones located on and near the property have been the focus of exploration activity for nearly 100 years.

The Tay Vein system is located adjacent to a small dioritic stock, and within an east-west striking dyke riddled zone. Dilatant structures formed during the waning phases of this intrusive activity host this mineralization. Moderate to intense hydrothermal alteration of the rocks surrounding these veins has made them soft and easily eroded. The Tay and Morning mineralized zones are hosted in relatively resistant hornfelsed basalt. Thick coverings of glacial till blanket these areas. Gold mineralization found east of the Tay showings is hosted by several separate veins. Where these veins intersect broad stockwork zones of low grade mineralization are found. There is also a new zone of near surface erratic high grade free gold mineralization. Most of these zones, as discreet veins or as bulk tonnage blocks are open to the east and at depth. These zones are in a broad magnetically depressed area probably due to magnetic mineral destruction by hydrothermal alteration.

One of the westernmost holes of the 1994 program reported a 7.2 g/t gold intercept over 1.2 meters. The part of the Tay vein is open at depth to the west from this intercept.

The Slide Zone was drilled tested for the first time. Results were disappointing,. however the strength of the mineralized system is increasing with depth and there are untested geophysical targets to the south.

The Sunshine Claim was staked to cover the former Morning-Apex Crown Grants which have an exploration history spanning 95 years. The veins found on this property are essentially a continuation of the Tay mineralization.

The Tay Center and Tay west soil and mineralized float anomalies are located in large topographically and magnetically recessive areas, possibly representing hydrothermally altered areas masked by thick till blankets. Gold bearing mineralized float is found in

this area. A bedrock source for this mineralization has not been located, however one highly weathered subcropping vein was located. It was however barren for gold.

The Tay, Morning, Tay Center, Tay West, and showings on the Men Claims east of the Morning Veins are located in a 3 km long structural zone called the Tay-Morning Fissure System. Long sections of this structure are relatively unexplored.

The newly acquired Diane Claims extended the properties northeast corner where past prospecting by other operators has located high grade gold and mercury mineralization.

The Diane Claims cover the northeast end of a 5 km long topographically depressed zone extending to Doran Lake.

To further explore this mountainous property an effective target development tool is required. As part of a "Phase I- Extension" program, a detailed multi-instrument low level helicopter geophysical survey is proposed to complete this task. A trenching program and flat hole drilling program to test for near surface mineralized zones in the Tay areas is also proposed. Preliminary target Development on the Sunshine and Diane Claims will be started.

A Phase 2 program would continue developing existing targets and preliminary examination of new targets developed by the airborne geophysical survey is proposed.

Further exploration efforts would be focused on the areas of greatest economic potential.

feo

2-0 **RECOMMENDATIONS**

Large geothermal systems have large alteration haloes. These haloes of weakened soft rock would be recessive, easily eroded or glacially scoured features is potholes. Such features would, in the Tay area be within noticeable topographic lows and probably covered by extensive blankets of glacial till and other debris. Such areas would probably now be under lakes and swamps and would be difficult to explore from ground programs.

A "Phase 1 Extension" program with exploration efforts focussing on delineating surface and near surface mineralization is proposed. This can be accomplished on the Tay Property as a whole by a low level multi-instrument helicopter survey. Magnetometer, horizontal loop and vertical loop EM and, radiometric systems would be used. Local surface exploration in the Tay areas by surface trenching with an excavator capable of 8 meters depth penetration is recommended. Targets in steep inaccessible areas would be explored by shallow, flat and even up dip diamond drilling, utilizing underground drill equipment from suitable sites. Deeper drill definition of structures hosting potential underground reserves may continue.

Additional ground work would be surface exploration on the newly acquired Diane claims to relocated and explore the known mineralization zones. Prospecting and surveying on the Sunshine Claims to maintain its claim status until the ownership dispute has been resolved is planned.

A Phase 2 program would further develop the Tay areas, with trenging and drilling. The Knob-Diane zones would be explored by trenching, drilling and other suitable techniques. The Apex vein would be trenched. Targets developed by the airborne geophysical survey would be explored.

TABLE 1

•

TAY PHASE 1-EXTENSION

Multi-instrument	Airborne Helicopter Survey	<u>\$</u>	<u>100,000.00</u>
Tay Area	Geological Mapping 45 mandays @ \$400/manday	\$	18,000.00
	Trenching 200/hrs @ \$150/hr	\$	30,000.00
	Diamond Drilling 1000 M @ \$100/meter	\$	100,000.00
	Geological Assistant 80 mandays @ \$150/manday	\$	12,000.00
	Sampling 1000 rock samples @ \$30.00/sample	\$	30,000.00
	Soil Sampling 100/samples @ \$27.00/sample	\$	2,700.00
	Project Supervision 7 mandays @500/day	\$	3,500.00
Tay Area	Subtotal	<u>\$</u>	<u>196.200.00</u>
Sunshine Claim	Prospecting and Surveying	<u>\$</u>	<u>1,000,00</u>
Diane Area	Prospecting 15 mandays @ \$200/manday	\$	3,000.00
	Geological Mapping 15 mandays @ \$400/manday	\$	6,000.00
	100 rock samples @ 30.00/sample	\$	3,000.00
Diane Area	Subtotal	<u>\$</u>	<u>12.000.00</u>
Food and Accom	modation 170 mandays @ \$120.00/manday	\$	20,400.00
Transportation	2 vehicles @ 60 days @ \$50.00 day	\$	6,000.00
Interim Report	\$10,000.00	\$	10,000.00
Subtotal	Ground Exploration	Ĵ.	245.600.00
Contingency	@ 20 %	Ś	49,120.00
Grand Total	Phase 1 Extension	GER	394.720.00
Budget	BRIJISH~	×.	400,000.00
	V. V. OSCIEN	() 1 ²	γ ²
	· · · · · · · · · · · · · · · · · · ·		

TABLE 2

.

TAY PHASE 2

Preparatory work	c - Computerization of the Tay Data Base	<u>\$</u>	<u>20,000.00</u>
Tay Area	Diamond Drilling NQ 2000 meters @ \$80.00/meter	\$	160,000.00
	Trenching 200/hrs @ \$150/00 /hr	\$	30,000.00
	Geological Assistant 100 mandays @ \$150/manday	\$	15,000.00
	Sampling 1000 rock samples @ \$30.00/sample	\$	30,000.00
	Core logging-mapping 40 mandays @ \$400/manday	\$	16,000.00
	Ground Geophysics-magnetometer	\$	4,000.00
Tay Area	subtotal	<u>\$</u>	255.000.00
Knob Zone	Trenching 100 hrs @ \$150/hr	\$	15,000.00
	Diamond Drilling NQ 1000 meters @ \$80.00/meter	\$	80,000.00
	Ground Geophysics Magnetometer and Suitable EM	\$	6,000.00
	Geological Support 30 mandays @ \$400/manday	\$	12,000.00
	Geological Assistant 50 mandays @ \$150/manday	\$	7,500.00
	Sampling 300 rock samples @ \$30.00/sample	\$	9,000.00
Knob Zone	Subtotal	<u>\$</u>	<u>129,500.00</u>
Diane Zone	Grid Preparation 20 mandays @ \$200/manday	\$	4,000.00
	Geological Mapping and sampling		
	20 mandays @ \$300/manday	\$	6,000.00
	Soil sampling400 samples 14mandays@\$175/manday	\$	2,450.00
	Soil Samples 400 @ \$27.00/sample	\$	10,800.00
	100 rock samples @ \$30.00/sample	\$	3,000.00
Diane Area	Subtotal	<u>\$</u>	<u>26,250.00</u>
Airborne Follow	up		

TAY PHASE 2

.

(cont,d)	Ground Examination using various suitable	<u>\$</u>	<u>75,000.00</u>
	geological, geophysical and other techniques to best		
	explore the outlined targets		
Food and Accom	modation 300 mandays @ \$120.00/manday	\$	36,000.00
Transportation	3- vehicles @ 60 days @ \$50.00 day	\$	9.000.00
	Project Supervision 20 mandays @500/day	\$	10.000.00
Final Report	Level FESSIO		30,000.00
Subtotal	VC FROVINGE	< }\$_	¥90,750.00
Contingency		Eß	18,150.00
Grand Total	Phase 2	} { \$ _2¢	<u>708,900.00</u>
Budget	SCIEN	o\$	700.000.00

3-0 INTRODUCTION

In late December 1993 the author was asked by Dalmatian Resources Ltd. director Daniel MacIsaac to design and supervise a proposed 1800 meter diamond drilling program budgeted at \$300,000 on the Tay Property west of Port Alberni, B. C.

Permitting was applied for in early January 1994, and when financing came through in late January the permitting procedure was already underway. Primary permitting concerned both rehabilitation and construction of new roads during the late winter and early spring, a time heavy snow and rainfall associated with sudden thaws resulting in flash floods. A second concern was proximity of the work site to the nearby Taylor River, a major steelhead and spring salmon spawning stream. Final permitting was obtained on February 25 1994.

Cameron Contracting of Port Alberni was retained for much of the required road work, comprising ditching, culverting, and recrowning of substandard road way.

LDS Diamond drilling of Kamloops B.C. was retained for this project. A D6 bulldozer was mobilized to the site on February 23, 1994. to prepare drill sites on existing abandoned logging roads and to clear snow on access roads. The unitized Longyear Super 38 diamond drill was mobilized to the site on February 27, 1994 and coring commenced on February 28, 1994. The drilling phase program was completed on April 15, 1994 with 2320 meters being drilled in 18 holes.

Ecotech Laboratories of Kamloops was retained for all analytical work.

Project Management was under direction of Mr. Daniel MacIsaac Senior Vice President of Exploration for Dalmatian. Permitting procedures, and onsite project supervision was by Leo J. Lindinger, P.Geo., Consulting Geologist. Other contractors retained on behalf

of the project were Mr. Ian Lyn; geologist from Vancouver, and Mr. Barry Campbell; core splitter - labourer of Port Alberni B.C.

Able Drafting of Kamloops was retained for computerized drafting and plotting purposes.

.

Appreciation is extended to Mr. Frank Milakovich: President of Dalmatian Resources Ltd. and Especially Mr. Daniel MacIsaac for their broad support during this project.

4.0 LOCATION, ACCESS AND PHYSIOGRAPHY

4.1 LOCATION

The property is located 37 kilometers west-northwest of Port Alberni, and spans the Taylor River Valley west of the west end of Taylor Arm of Sproat Lake, extending to Great Central Lake to the north. The property is in the Alberni Mining Division, British Columbia and is centred at longitude 125°15'00" west and latitude 49°19'00" north as found on NTS map sheet 92F/6.

4.2 ACCESS

Hwy 4 from Port Alberni to Tofino crosses the southern part of the Property. Numerous abandoned and active logging roads operated and maintained by MacMillan-Bloedel provide access to over 50% of the Property. These roads are; the South Taylor Main which parrallels the Taylor River on its south side. This road is the main offroad haulage for the Taylor and Kennedy river areas of TFL #44 and sees frequent offroad truck traffic. Subsidiary logging roads accessing the property are BR 450 which opens the south part of the property south of the Taylor river and BR 500 (the Doran Lake Road) and its numerous subsidiary spurs which lead to the east and north central areas. A privately developed and maintained access road crossing between Hwy 4 and an abandoned portion of BR500 leads to the Tay and Morning areas.

4.3 PHYSIOGRAPHY

The property occupies the eastern part of the mountainous western spine of Vancouver Island. The eastward flowing Taylor River occupies a deep, steep walled glacially carved valley. The lowest topographic point on the property would be where the Taylor River crosses the east property boundary at an elevation of 30 meters. The highest point on the property is 1220 meters at a point just north of Mt. Porter. Above 700 meters elevation the topography is more moderate, especially around and to the east of Doran Lake.

Climate is temperate coastal with hot dry summers and cool damp winters. Snowfall can occur from November to April with accumulations of over 2 meters possible. Snowpack at higher elevations can linger until July.

Vegetation consists of coastal Douglas fir, red and yellow cedar, and hemlock. Deciduous species include alder and cottonwood, in floodplain and logged off areas, with huckleberries, and azalea as understorey species in forested areas. Arbutus groves can occur on well drained southfacing rocky areas.

5.0 CLAIMS AND OWNERSHIP

The Tay property currently comprises a contiguous block of 24 two post and 9 modified grid claims totalling 184 units and covering approximately 40 square km, all owned 100 percent by Dalmatian Resources Ltd..

Several claims were recently staked to cover prospective open ground adjacent to Dalmatians' property.

The Sunshine Claim was staked over the former Morning Apex reverted crown grant claims. The concerned area covered by this claims is currently in a dispute with another owner. A decision by the Provincial Claims Inspector is expected by September 1994. The Diane 1-6 claims were staked to cover a series of base and precious metal showings on what was called the G.C. claims. These 2 post claims were staked to improve the strength of tenure over key ground. The 20 unit Diane Claim was staked to encompass the Diane 1-6 claims and additional highly prospective ground found north of Mt. Porter.

TABLE 3 - CLAIM STATUS

.

CLAIM	TYPE	UNITS	TAG	TENURE#	RECORD	GROUP	EXPIRY
TAY # 1	MC2	1	301616	200016	17 MAR 78	ΤΑΥ Α	17 MAR 96
TAY #2	MC2	1	301617	200017	17 MAR 78	TAY B	17 MAR 96
TAY #3	MC2	1	301618	200018	17 MAR 78	TAY A	17 MAR 96
TAY #4	MC2	1	301619	200019	17 MAR 78	TAY B	17 MAR 96
TAY # 5	MC2	1	301620	200020	17 MAR 78	TAY B	17 MAR 96
TAY #6	MC2	1	301621	200021	17 MAR 78	TAY B	17 MAR 96
TAY #7	MC2	1	301622	200022	17 MAR 78	TAY B	17 MAR 96
TAY #8	MC2	1	301623	200023	17 MAR 78	TAY B	17 MAR 96
TAY 9	MC2	1	497314	200041	14 FEB 79	ΤΑΥ Α	14 FEB 96
TAY 10	MC2	1	497315	200042	14 FEB 79	ΤΑΥ Α	14 FEB 96
TAY 11	MC2	1	497316	200043	14 FEB 79	ΤΑΥ Α	14 FEB 96
TAY 12	MC2	1	497317	200044	14 FEB 79	ΤΑΥ Α	14 FEB 96
TAY 13	MC2	1	497318	200045	14 FEB 79	TAY A	14 FEB 96
TAY 14	MC2	1	497319	200046	14 FEB 79	ΤΑΥ Α	14 FEB 96
TAY 15	MC2	1	497320	200047	14 FEB 79	ΤΑΥ Α	14 FEB 96
TAY 16	MC2	1	497321	200048	14 FEB 79	TAY B	14 FEB 96
TAY 17	MC2	1	497322	200048/	14 FEB 79	TAY B	14 FEB 96
TAY 18	MC2	1	497323	200050	14 FEB 79	TAY B	14 FEB 96
MIR	MGS	20	4236	200244	28 MAY 84	TAY B	28 MAY 95
D.A.	MC4	20	4235	200245	28 MAY 84	TAY B	28 MAY 95
Triumph 2	MC4	20	37731	200485	06 MAR 87	ΤΑΥ Α	06 MAR 95
Triumph 3	MC4	20	37732	200486	06 MAR 87	ΤΑΥ Α	06 MAR 95
Nora 3	MC4	16	4239	200487	06 MAR 87	TAY B	06 MAR 95
DTN	MC4	15	4240	200488	06 MAR 87	TAY B	06 MAR 95
Triumph 1	MC4	20	4241	200508	26 MAR 87	ΤΑΥ Α	26 MAR 95
Sunshine*	MC4	9	216156	324000	07 MAR 94		07 MAR 95
Diane 1	MC2	1	629648	324738	07 APR 94		07 APR 95
Diane 2	MC2	1	629649	324739	07 APR 94		07 APR 95
Diane 3	MC2	1	629650	324740	07 APR 94		07 APR 95
Diane 4	MC2	1	629651	324741	07 APR 94		07 APR 95
Diane 5	MC2	1	629652	324744	07 APR 94		07 APR 95
Diane 6	MC2	1	629653	324745	07 APR 94		07 APR 95
Diane	MC4	20	216158	325281	08 MAY 94		08 MAY 95
TOTAL	<u>.,</u> ,	184					

6.0 HISTORY

6.1 **REGIONAL HISTORY**

Minister of Mines Reports describes significant mineral exploration activity and development by the 1890's. The bulk of this activity was concentrated along the Alberni "Canal". By the late 1890's descriptions of mineral occurrences being developed in the Great Central Lake and Taylor River areas are found.

Significant mineral occurrences in the Taylor River area (excluding the Tay and Morning areas which are described below) are the Snow White property where since the mid 1980's Area exploration have been developing gold bearing gold veins grading over 1.570 oz/ton over 4.5 feet (Christopher 1992); the Nora Group owned by Frank Milakovich where pyritiferous quartz veining reported up to 26.6 ppm gold over narrow widths (Lindinger, 1993); the Vent porphyry copper-molybdenum occurrence; and the Arch copper prospect to name a few.

Numerous other small gold and /or copper showings occur in the Taylor River area.

6.2 **PROPERTY HISTORY**

6.2.1 Morning and Apex Veins

The first mention of mineral exploration activity in the Taylor River area is the 1899 Minister of Mines Annual Report P 781. Which mentions a R.W. Lindsay, as the owner of the Jingo Bird. and Jingo Bird No. 2. claims which were "reached from the lake by a trail of 3 miles, and at an altitude of 2500 ft. The described vein and location are very similar to what is now known as the Apex Vein.

The property was "the first claim located hereabouts, was discovered only last summer" (1898).

The 1907 Annual Report further describes the Silver Star Group. Further descriptions would place these claims over what is now known as the Morning vein and possibly the

Tay area. Considerable development work had been completed by this point as"200 feet above the creek (Taylor River?) a tunnel has been driven into the hillside a distance of 103 feet.... The strike of the main vein is N. 40^o E., (magnetic ?) running directly into the hillside and dipping nearly perpendicular:..."

The report also describes several other workings reporting"... an average sample which gave the following assay :-Gold, .08 oz.; silver, .60 oz; copper, .08 %... "

The 1908 report briefly mentions both the Silver Star and the Jingo Bird groups both owned by Mr. Lindsay. and both being developed further.

The 1917 report describes the Columbia Group owned by a Robert W. Lindsay and Associates. The report describes several workings and several assays grading up to 1.7 oz/t of "selected ore" and 0.18 oz/ton for vein material.

By 1923 the part of the lapsed Columbia Group was restaked as the Morning Claims. by a Mr. A. L. Smith of Alberni.

The 1924 report states the Morning, Morning No.1, and Apex claims now comprised the property and goes further to describes rehabilitation work and the discovery of a 343 foot adit apparently driven prior to 1916 but not previously reported.

The 1926 report describes considerable development work including significant geological studies including a statement suggesting the ore was amenable to "oil-flotation selective methods" for concentrating.

The 1929 report states that the Group now consisted of six claims and that further development work had been completed. and that flotation results from a 4 to 1 concentration ratio gave "... a recovery of 98.77 per cent. of the copper and 89.77 per cent. of the gold, making a concentrate of 4.67 per cent. copper and 1.12 oz. gold to the ton, ...".

The 1934 report describes the formation of Taylor River Gold Mines Ltd. to further develop and exploit the veins. The report goes on further to describe 11 separate veins with numerous workings including 2 adits on the Morning Group and "... on the MT claim some 1500 ft west of the *Morning* showings ... low-grade galena-pyrite mineralization has been exposed in several large open cuts. ... at 450 feet elevation. ..." The according to Lammle, and this author concurs that these working very nearly

describe the surface exposures of what is now called the Tay Vein. For the History subsequent to 1934 Lammle 1988 States:

> "...Silurian Chieftain Mining Company Ltd. owned the crown grants in 1960 and drilled four X-ray holes totalling "430 feet at a point 50 feet below the main vein", and in 1961, four more holes totalling 309 feet. The work ceased "when it was found the gold values were low", but the claims were maintained at least until 1963.

Lou-Mex Mines Ltd. acquired the crown grants and adjoining mineral claims in 1971, and did some diamond drilling before optioning the property to Teck Mining group interests in 1974.

In the Mid 1970's, the crown grants and other claims were subject to a surface and underground exploration program under lease (M.L. 66) by Highland Mercury Mines Ltd. This work lengthened the adit to 147 metres. . . ."

"... In the late 1970's the crown grant reverted and were acquired upon application by G.E.A. vonRosen."

6.2.2 Tay Vein - Tay Gold Property Lammle 1988 states;

> During 1974, Gold Valley Resources Ltd. held the Joe 1 - 12 claims south of the Taylor River, in an area now occupied by the northern parts of Triumph 2 and 3. An assessment work program consisting of a magnetometer survey on lines totalling 12.2 kilometres in length and trending S80^o E was completed.

A summary of previous work by Dalmatian on the Tay Property is summarized below from Dalmatian data:

- 1974 Six original Tay Claims staked, 5 kilometres west-northwest of the west end of Sproat Lake;
- 1975 Geochemical reconnaissance, some copper anomalies detected:
- 1976 Limited bulldozer trenching, Tay 1 claim area;
- 1978 Original Tay Claims abandoned and restaked, limited geological mapping, VLF-EM survey, Main Showing rediscovered;
- 1979 East-west initial grid cut, geological and geochemical soil EM-16 survey, additional staking, trenching, limited diamond drilling;
- 1980 Detailed magnetic survey, diamond drilling 3 holes, 89.6 metres on Main Showing;
- 1983 Diamond drilling, Main Showing, 6 holes, 436.3 metres with gold values reported;
- 1984 Property optioned to Bowes Lyon Resources Ltd. and Gladiator Resources Ltd., additional staking east and northeast of Doran Lake, additional diamond drilling on Main Showing - 9 holes, 1070.7 metres. Property returned to Dalmatian stating (in the assessment report) that the vein was generally low grade, that its eastern third lacked extension at depths exceeding 37 metres below the surface, that it lacked continuity to the west, and that the remainder of the property should be evaluated;
- 1985 North-south "Tay Grid" cut on area of Tay 1, 2, and 9; geological, magnetic and soil geochemical, Max-Min and test IP surveys done on Tay Grid;
- 1987 Prospecting, additional staking north and west of Doran Lake

or River, IP survey on Tay Grid. Two drilling programs on Main Showing - 6 holes, 484.8 metres and 5 holes. 255.2 metres.

Lammle's 1988 program was a multiphased one which, iincluded 17 drill holes drilled on the Tay Vein area, plus line cutting, geochemical and ground geophysical coverage of the most of the property for the first time. This work resulted in the discovery of the Knob Zone; a gold in soil anomaly within a larger zone of I. P. and magnetometer signatures about 1 km east of Doran Lake. A reconfirmation soil survey and selective I.P. geophysical surveys were completed in the Tay area. Lammle's conclusions were: that the Tay Vein with a uneconomic calculated mineral inventory of 145.000 short tonnes grading 0.065 oz/ton, was "thoroughly drilled", that the mineralization continued on the east, but was cut off to the west by a later intrusion (Lammle's interpretation); that the Tay Center and Tay West anomalies are probably of similar economic potential to the Tay east; that the Knob zone soil anomaly required drilling, and that the geophysical anomalies to the east required further work; and that the Apex west extension required further work.

Sookochoff in 1991 completed 4 diamond drill holes on the Knob soil anomaly and 2 holes north of the Apex Vein. Two of the four Knob zone holes intercepted gold and copper mineralization in a quartz-carbonate stockwork breccia zone of unknown strike and dip, and reporting grades of up to 2200 ppb gold (0.064 oz/ ton) over a 3.1 m drill width within a much wider lower grade zone. The two holes drilled in the Apex area failed to intersect significant mineralization. He concluded that the Tay vein was moderately thin low grade deposit, however the Knob Zone and the geophysical anomalies to the east had the potential for bulk tonnage low grade gold mineralization.

7.0 REGIONAL GEOLOGY

The area lies within the Insular Belt, the westernmost tectonic belt of the Canadian Cordillera. The oldest exposed rocks are the Permian Sicker group volcanic and sedimentary rocks. These are overlain in part and separated the regionally dominant mid to upper Triassic Vancouver Group rocks. The basal member of the Vancouver Group is the Karmutsen Formation, as describe by (Muller, 1977):

"... is composed of tholeitic volcanic rocks, up to 6000 m thick and underlying a large part of the island. .." "... the formation is composed of a lower member, about 2600 m thick. of pillow lava; a middle member, about 800 m thick, of pillow breccia and aquagene tuff: and an upper member, about 2,900 m thick, of massive flows with minor interbedded pillow lava, breccia and sedimentary layers. Except in contact zones with granitic intrusions the volcanics exhibit low-grade metamorphism up to prehnite-pumpellyite grade. .." "... The basaltic eruptions apparently started with pillow lavas in a deep marine rift basin, continued with aquagene tuff and breccia as the basin became shallower, and terminated with intrusion of subareal basaltic flows. Because the volcanics were formed on a rifting oceanic crust they are probably only in some areas underlain by Sicker Group rocks, whereas elsewhere they constitute new oceanic floor"

The Karmutsen Volcanics are overlain in part by the Upper Triassic Quatsino limestone and Parson Bay argillites and greywackes. The presence of rather limestone pods in the Taylor River drainage may be Quatsino. or just interbedded limestone laid down during a hiatus of volcanism.

These rocks are intruded by the Jurassic age Island Intrusions which (Muller 1977) states are:

"...Batholiths and stocks of granitoid rock ranging from quartz diorite (potash feldspar <10% of total feldspar quartz 5 to 20%) to granite (potash feldspar < 1/3 of total feldspar; quartz < 20%). they underlie about one quarter of the island's surface..."

They are apparently comagmatically related to the Bonanza Volcanics, an extrusive suite of rocks overlying the Vancouver and Sicker Group rocks.

.

To the west in the Kennedy Lake and Clayquot Sound areas Tertiary feldspar and quartz porphyritic intrusives occur. Several occurrences of a distinctive feldspar quartzeye porphyry in the Taylor River area may be Tertiary in age.

8.0 **PROPERTY GEOLOGY**

8.1 LITHOLOGIES

The Dominant lithologies in the area include the Triassic Karmutsen basaltic pillowed flows, massive flows and related breccias. According to Lammle the basalts on the north side of the Taylor River grade form pillowed flows at lower elevations grading to basalt breccia at about 600 meter altitude. Dips are generally indeterminate but on the adjacent Men Claims to the east, east west strikes with moderate north dips are reported. In the Taylor River valley adjacent to the new Taylor River Bridge right of way, exposures of vesicular flow basalt with generally southeast dips have been mapped (Lindinger, 1994). This area is highly faulted, and it is not known how representative this trend is.

Parts of the Island Intrusive Complex, namely the southeast surface exposures of the Bedwell Batholith and numerous smaller intrusive bodies occur on the property, intruding the Karmutsen rocks as porphyry textured dioritic rocks and their derivatives. A large part of the batholith surrounds Doran lake and extends to the northwest and near the southern shore of Great Central Lake to the east for several kilometers. Numerous smaller intrusive bodies occur south of the main batholithic mass. Approximately 1.3 km south of the south end of Doran Lake and a 100 or more meters north of the Island Highway a small (quartz) diorite intrusion called the Tay Quartz Diorite occurs as large isolated outcropping masses. The masses are separated by glacial till. Intruding this body and the adjacent pillow basalt are innumerable dykes and sills? of diorite, tonalite, andesite, dacite, and rare quartz eye porphyry. A general trend appears to be coarser grained porphyritic phaneritic diorite subsequently intruded by succeeding finer grained and increasingly more felsic rocks.

8.2 STRUCTURE

The dominant structure on the property is the 110 ^o striking Taylor River Fault. This regional structure crosses through the south central part of the property (Figure 4 and

5). A second set of 140 $^{\circ}$ striking structures appears to form a conjugate with the Taylor River Fault. Several of these structures cross the property, one of the most prominent crossing through Doran Lake.

Other major structural trends are north, northeast and westerly striking. Many of these host mineralization in the form of intrusive associated breccia veins and stockwork zones. These latter structures may be associated with the tectonic regime at the time of emplacement of the Bedwell Batholith. Structures related to the Taylor River Fault are seen displacing intrusive and vein contacts.

A 5 km by 1 km long recessive feature beginning at Doran Lake and striking at about 060° appears to be a down dropped block. This feature hosts several mineralized zones associated with north trending structures crossing through the area.

8.3 ALTERATION AND MINERALIZATION

Evidence to date suggest that the emplacement of the intrusive rocks within the Karmutsen rocks hornfelsed these basalts forming very hard, brittle, and resistant lithologies. Overprinted onto the hornfelsed and intrusive rocks are structurally hosted hydrothermally altered areas which can host auriferous mineralization. These altered rocks are relatively soft and are present as recessive usually glacial till covered areas on and adjacent to major structures. Details of alteration and mineralization are discussed in Section 10 of this Report.

9.0 1994 EXPLORATION PROGRAM

9.1 PURPOSE

Prior to designing the 1994 Phase 1 drill program a thorough re-evaluation of the Tay Main (East) Zone was completed. This was accomplished by computerization of the existing diamond drill database. The geology, alteration, mineralization and gold grades in g/t were codified into four letter codes for rock and two letter codes for alteration and mineralization. Using the existing survey data from Lammle's 1988 Program the database entered into PC EXPLOR and the resulting 3 dimensional database was fed into AutoCad for final plotting.

As the strike of the Tay Zone (east-west), and most of the drill holes (northerly), did not fit with the existing Tay grid a new grid was designed with baseline 5000 north striking 090° along the Tay vein with 9000 east near the Tay Main Showing. Thus the due west facing letter coded cross sections in Lammle's report were given easterly coordinates. These renamed sections were replotted with the computerized information. Also for the first time level plans were created and plotted. The resulting database was extremely revealing. Numerous manual drafting errors were corrected, several survey errors were revealed. and the level plans revealed that the Tay Vein was more complex than preciously thought. Details will be discussed later with the discussion of drill results.

Using this preliminary database a Phase 1 programme was designed to improve the definition of the highest grading mineralized areas of the Tay East (Main) Zone by using 10 to 15 meter stepouts and carefully located and oriented drill holes. Previous drilling programs endeavoured to drill the Tay zone on about 30 or more meter centers, assuming the Tay to be a fairly planar zone of mineralization. Several fairly high grade intercepts were "open" to further exploration if the philosophy of 10 to 15 meters step outs were to be tried. Several significant strike and dip changes on the Tay Vein revealed by the evaluation near higher grade intercepts were to receive additional drill testing.

The Slide Zone was also to be drill tested in this phase. Two holes were planned to drill test below the best exposed mineralization in northwest striking zones where (Lammle 1988 p 8-18) sampled) 0.102 oz/t gold (3.5 g/tonne) over 0.3 meter, and about 20 meters south where (Sookochoff, 1991, p 9) sampled up to 0.594 oz/t (20.4 g/tonne) in a similar structure. A third hole was tentatively planned to test for strike extension if results of the first two holes were encouraging.

9.2 PHASE 1 PROGRAM

9.2.1 Diamond Drill Program

The program as discussed in the Purpose was largely followed through as originally conceived. Several on site modifications in the program were made due; to the inability of the drill to access certain proposed drill targets, and additional drilling of significant mineralization intercepted in earlier holes of this program while the drill was at the same site.

15 holes totalling 1703.6 meters were completed in the Tay Area. 3 holes totalling 616.6 meters were drilled on the Slide Zone. For additional information refer to the cross-sections, level plans and long section of the Tay Area and cross-sections of the Slide Zone accompanying this report.

All core was logged and split in a temporary camp setup on site to allow for maximum supervision of the drill program. All the core was logged by Mr. Leo Lindinger, P. Geo and Mr. Ian Lyn both geologists experienced in exploration and mining of gold deposits and more specifically epithermal gold systems. Particular care was taken to noting hydrothermal alteration patterns, as well as mineralization and structure of the mineralized areas.

Upon completion of the drill program all 1994 Tay Zone drill holes were surveyed with a transit and EDM. the survey comprised several closed loops to ensure accuracy. Several

pre 1994 drill sites were surveyed to improve the detail of the old database and as site checks to compare Lammle's database. All the new survey and diamond drilling results were compiled and fed into PC-Explor database and plotted out on 1:250 scale cross sections and level plans one 1:500 scale long section and plan map in AutoCad format..

9.2.2 Analytical Procedures

The core was split with one half sent to the Eco-tech Laboratories Ltd. in Kamloops for analysis. Evidence from past results with some reanalysis suggested that erratic gold mineralization was a definite possibility. In an effort to minimize this possibility, instructions for a 30 gram subsample were given to the lab for all analyses. Rock samples were cone crushed to 100 % passing 10 mesh (1/8 inch). From this an approximately 250 gram subsample was pulverized to minus 140 mesh. From this subsample the aforementioned 30 gram split was taken. Gold was analyzed by "ore grade" fire assay with A.A. finish techniques.

In addition to gold a Pathfinder trace element package was run on all samples analyzed. These elements are silver (Ag), arsenic (As), copper (Cu), molybdenum (Mo), lead (Pb), antimony (Sb), and zinc (Zn). The pathfinder packages have "Digestion and Analytical Procedures optimized for each element".

Results were received in oz/ton and g/tonne gold, and the pathfinders metals results were received in parts per million (ppm). Where pathfinder results exceeded trace element thresholds the results were automatically rerun at percent levels.

9.2.3 Additional Work and Findings

In addition to the diamond drill programs some prospecting was carried out over the Tay Center area in an effort to locate a bedrock source for mineralized quartz veining found at that location over the past 20 years. Some highly weathered sub-cropping vein was found but reported only trace gold.

Prospecting on a new highway construction site for the new Taylor River bridge where considerable blasting and excavating exposed numerous new rock exposures revealed an outcrop south of the Taylor River containing sheared intensely altered diorite containing

visible chalcopyrite and bornite mineralization. The sample reported 385 ppb gold and 4285 ppm (0.42%) copper, 105 ppm arsenic, and 20 ppm antimony.

10 DISCUSSION AND INTERPRETATION OF EXPLORATION RESULTS

10.1. Tay Main (East) Zone

A geological discussion of the Tay area follows.

10.1.1 Lithology

Two main rock types dominate the Tay area. These are Triassic aged Karmutsen pillowed and massive basalts, and intruding them Jurassic aged porphyry textured dioritic rocks of the Island Intrusions. Locally the intrusive rocks can be subdivided into the Tay "quartz diorite" a medium to coarse grained hornblende rich feldspar with very minor quartz porphyry. This body forms the southeastern outcropping of an irregularly shaped mass extending south from the Doran lake area. Exposed in outcropping to a limited extent but revealed by diamond drilling are numerous later stage finer grained porporyritic dioritic to tonalitic to rarely granodioritic dyke swarms that crosscut all preexisting lithologies. There does not appear to be a preferred orientation to these intrusives in the gross sense. However concentrated multiphased dyking is localized within the Tay- Morning structural trend as outlined on Figure 4. Care was taken to log the different intrusive phases to determine if the mineralizing event was related to one or more of them. The mineralizing event(s) appear to largely postdate all intrusive phases except for perhaps one or more of the very last dioritic or tonalitic phases where small glassy flow banded porphyritic dykes with altered rip up wall rock clasts logged in holes in the Tay structures apparently grade upward over 10 or so meters into auriferous quartz breccia veins. Rare granodiorite dykes appear to post date mineralization based on alteration evidence.

10.1.2 Structure

The regional 110 ° striking steeply dipping Taylor River Fault (TRF) is the dominant structure in the area. This right lateral dip-slip south side down structure crosses the area about 350 meters south of the Tay Vein system. Horizontal displacement is unknown, however vertical displacement is significant as the Karmutsen rocks found south of the TRF are vesicular and porphyritic flows found hundreds if not thousands of meters above the pillowed basalts north of the TRF. Subsidiary to this structure are

several northwest (140 °) striking structures that periodically cross from the Taylor River Valley over the ridge to Great Central Lake to the north. The nearest one is locally termed the Doran Lake Fault (DLF) and crosses through Doran lake. These structures may predate and definitely postdate the mineralizing events as the DLF crosscuts and displaces the Apex Vein in an apparent left lateral sense. This displays a classic "normal" conjugate shear pattern between the TRF and structures such as the DLF.

The Tay - Morning system may to be a local? subsidiary reverse conjugate fault system with 090 $^{\circ}$ striking "Tay" system and the 060 $^{\circ}$ striking "Morning" system. Movement along these structures would generally left lateral and down to the south with the maximum tensional stress axis at 345 $^{\circ}$ 20 $^{\circ}$ south dip. This stress regime may have been assisted in being an ideal situation for hydrothermal plumbing system for fissure vein formation by the cooling, shrinkage and dewatering of an intrusive body at depth below the Tay area. The above scenarios imply no major rotation of these rocks subsequent to vein formation. ie a south dip rotation of 40 degrees would make the Tay - Morning system a "normal" structural regime There is some evidence to support that the structural regime during emplacement of the Bedwell Batholith and subsequent vein formation has been replaced and offset (including block rotation?) by the TRF System. Both scenarios would generate; given the hydrothermal regime a suitable plumbing system for fissure vein formation.

10.1.3 Alteration

Two distinct alteration patterns are evident in the Tay area. The first pattern is related to the emplacement of the Bedwell Batholith and related smaller intrusive bodies. This appears to be a relatively dry event with hornfelsing of the surrounding basalts into a melanocratic very hard, brittle rock. Interpillow selvages and were usually filled with quartz, grossular garnet, ankerite and calcite with minor to trace amount of hydrothermal feldspar, pyrite, chalcopyrite, bornite, hematite and magnetite. Barren silicate phases were early, forming the outer rinds of these fillings with carbonate and sulphide phases depositing in the core areas. This mineralization is apparently barren for gold.
Overprinting the first event in part is a second epithermal style hydrothermal event directly related to the mineralization found in the Tay - Morning area.

Upon detailed study a "classic" epithermal style alteration pattern emerges from the Tay area. A broad envelope of chlorite alteration overprints preexisting lithologies and alteration. Replacing the chloritic alteration in sequence towards the gold bearing breccia vein margin are chlorite - calcite, calcite - clay (microscopic sericite = phengite?), ⁺/. pyrite, sericite (phengite), and sericite (phengite), silica ⁺/. pyrite and, proximal to and within intravein wallrock fragments, sericite-silica⁺/. pyrite alteration. The end members could be classified as chloritic and phyllic with intermediate zones of argillic alteration. This classification was not used because it was considered too generalized and that varying intensities of each alteration mineral was more informative to interpreting the existing alteration patterns.

The basalts and dioritic rocks reacted quite differently to hydrothermal alteration. Alteration haloes in basalt tend to be quite narrow with the entire halo occupying at the most 3 meters. Small veins have alteration haloes 3 to 10 times the vein width. Chloritic alteration in basalt is subtle, usually evident as greenish sheen and a slight softening of the black melanocratic, very hard rock. The presence of pervasive calcite with increasing clay and/or phengitic sericite sometimes with pyrite bleaches the rock to a medium brown colour. With increasing sericitic alteration and eventually silicification the basalt becomes paler brown with a slight pinkish tinge. Kspar staining revealed no potassic feldspar alteration. and their is little evidence of albitic alteration. Extremely faint staining in intensely sericitized rock may be due to staining of potassium within the sericite or trace microscopic kspar.

Dioritic rocks are much more reactive to hydrothermal alteration. Alteration haloes in these intrusives may be up to an order of magnitude greater than that found in basalt. Broad envelopes of chloritized dioritic rocks are common in the Tay area. This alteration phase reveals itself as increasing chloritation and pyritization of the hornblende porphyroblasts, softening the rock somewhat. With increasing alteration the chloritized hornblendes are replaced by clay-calcite and/or phengitic sericite-calcite, usually with accompanying similar alteration of the feldspar porphyroblasts and matrix.

This phase greatly changes the appearance of the diorite as all evidence of mafics are removed resulting in a "dacitic" appearing rock. In its most intense form the rock is so softened and weakened that a 30 cm piece of unfractured NQ core can be broken by hand. Phengitic sericite is the dominant mineral present appearing as vitreous limey green pseudomorphed porphyroblasts, and disseminated stringers and masses. Up to 3 % disseminated pyrite may also be present. The reactivity of the diorite to this alteration has a direct impact on vein formation. Due to its soft, weak characteristics the altered diorite along the mineralizing structures behave in a ductile fashion forming mineralized quartz pyrite stockwork zones rather than discreet breccia veins.

The "Tay 1 Vein" has on its footwall and hangingwall side a zone of disseminated (replacing hornblende?) magnetite-hematite "alteration" within or overprinting the part of the sericitic envelope. This alteration is not present within the vein zone and proximal alteration halo and has not been noted elsewhere. This could explain distinct magnetometer low overlying the Tay vein in this area. This signature is not present east of 9040 E where significant gold veining and mineralization is known to occur.

10.1.5 Veining and Mineralization

The vein styles present on the Tay are intense, multiepisodic breccias with numerous wallrock and earlier vein shards and fragments, diffuse stockworks and minor banded veins. The veins occupy tensional fissures which in the Tay area tend to be east to northeast striking and northerly dipping. A typical vein has at least three and up to 5 separate episodes. For significant gold to be present at least one episode must be well mineralized with fine disseminations and stringers of arsenopyrite and pyrite, usually in a chalcedonic quartz gangue. Wall rock fragments would be well to intensely silicified often containing wispy stringers of pyrite and arsenopyrite. There have not been more than three such episodes observed in any one vein. As a general rule the earliest vein phase is a barren, white quartz breccia vein. The intermediate episodes are mineralized to various degrees, and sometimes, but not always one or two calcite breccia episodes finish the sequence. The calcite breccia veining may start out as an often mineralized quartz dominated phase, followed by the barren calcite. Rarely calcite mineralized with

galena and arsenopyrite and possibly sphalerite has been noted.

Often at the bottom or below vein bearing structures and below economic mineralization small glassy flowbanded to brecciated dykes appear to grade upward into actual breccia veins. The wall rock surrounding these dykes are intensely sericitically altered similar to the wall rock surrounding the "economic" mineralization at higher elevations. Close observation of highly altered wall rock clasts contain banded sulphide stringers as

part of the alteration pattern. This, at a quick glance can be interpreted as altered flow banded "rhyolite" however similar pyrite banding can be seen as alteration fronts in the altered basalt wallrock.

The auriferous sections accompanies arsenopyrite and pyrite with trace to minor amount of silver, galena, antimony, copper and molybdenum in order of importance. Zinc forms no discernable pattern related to gold mineralization. Mercury was not analyzed for in the Tay area. The average gold-silver ratio within mineralized areas varies from 1 to over 10.

The following observations are noted from analysis of hole 94-02 from which the entire hole was split to well into the unaltered wallrock. This was done to observe the various pathfinder metal patterns within the various rock types observed. Copper displayed some interesting patterns. In the wallrock basalts copper averages between 150 and 200 ppm sometimes exceeding 300 ppm, and 50 to 90 ppm in the intrusive rocks. There appeared to be no increase or depletion of copper with the alteration haloes and veins themselves. The values within the veins seemed to mimic the surrounding wallrock values high for basalt, low for diorite and mixed where both rock types were present. Arsenic showed noticeable increases with vein mineralization and was predictable from core logging.

10.2.0 Separate Vein Descriptions

This section describes the individual interpreted veins of significance with the Tay area. The interpretations were completed on 1:250 scale cross-sections outlining gold mineralization exceeding 0.8 g/t, dominant metallic mineralization, vein types and moderate to intense sericitic alteration. General geology and less intense alteration were

left out of this interpretation. The cross sections depicting geology and alteration are included for reference. The interpreted cross sections, to maintain clarity were interpreted on a drill hole by drill hole basis where the data was simple and consistent. Where conflicting drill information was present a best fit approach was used with the data projected to the plane of the section.. Thus the bulk of the data on the cross sections is interpreted directly from drill hole data and not projected onto section. As the majority of the sections are virtually perpendicular to the data this was generally not a problem. Where a vein splayed out into several separate subparrallel structures these were labelled starting from the north "a" to "e" depending on the number of important splays present.

The level plans were interpreted from the completed cross-section data and all information was projected to the specific elevation. Again gold mineralization exceeding 0.8 g/t was contoured, with dominant metallic mineralization, vein types and moderate to intense sericitic alteration also shown. General geology and less intense alteration were left out.

A long section showing composited grades (both high grade and "bulk widths" where warranted of each separate interpreted vein, the outline of the Tay 1 Vein, and Tay 3 Vein where grades in excess of 1.6 g/t over an interpreted horizontal with of a least 1.2 meters (0.05 oz/t Au over 4 feet) are outlined.

A separate description of the salient features of the major interpreted veins follows.

10.2.1 Tay 1 Vein

The Tay 1 Vein was the original vein explored by Dalmatian and others since the late 1970's. For the most part it is a 090 $^{\circ}$ to 080 $^{\circ}$ striking north 70 $^{\circ}$ dipping fissure vein raking down to the west at 30 $^{\circ}$. It is hosted by basalt and late fine grained dioritic dykes. It has been explored for a strike length of 195 meters. DDH 12 on section 8925 East reports 7.2 g/t over a 1.2 meter horizontal width with a wider intercept of 4.10 g/t over 2.1 meters at 52 meters elevation. The vein is open towards the surface 50 meters above and along strike raking down towards the west from this intercept. At depth the vein splays out into four or more subparallel to anastomosing structures. Near its

eastern end the vein appears to follows another 060° striking structure at about 9035 east and continues east for another 35 meters before abruptly ending. Hydrothermal alteration continues for a short distance at depth and along strike so post mineral faulting is only one possibility for the vein to "die out". Another possibility is that another 090° structure intersects the 060° striking vein structure preventing further vein formation ie dilation past that point. Such a east-west structure at that northing is present to the east at depth where the "Tay 1 Vein" continues. Values grading over 1.6 g/t over 1.2 meters true width form a steeply eastward raking zone that is open and widening at depth to the east. The best values reported are 5.81 g/t Au over 0.8 meters with a wider intercept of 3.72 g/t over a horizontal width of 1.8 meters in DDH 94-09 at 9160 East and 48 meters elevation.

Interpretation of the Tay 1 Vein was complicated because it has the most historic data on it. The survey control for past diamond drilling is suspect as errors of nearly 10 meters both horizontally and vertically have been found.

Drill holes of contention are 4-80 which when interpreted with other 1980 holes results in a vein dip of about 80 $^{\circ}$ N creating very awkward geometry with known surface and deeper drill information.

The pre 1994 drilling along the western part of the Tay 1 vein consistently lie about 5 meters south of the 1994 data resulting, in a zigzag vein along strike. Thus the interpreted cross-sections and level plans are a "best fit" anchored to the 1994 and surface data.

The vein mineralization found in DDH 83-3, "the bonanza hole" where 5.96 g/t Au over a drill width of 14.02 meters including 24.14 g/t over 1.53 meters) was endeavoured to be intersected by both holes 94-01 and 94-02. both of which failed to intersect mineralization at that specific location. In fact previous interpretation showed that the mineralization intersected by DDH 93-3 was actually south of the interpreted Tay 1 Vein by about 5 meters. Two possible scenarios exist for this situation; first is that this hole intersects a small high grade splay (on section the hole nearly parrallels the dip on the Tay 1 Vein in that area). Relogging and resampling of this holes was completed. Visual examination revealed that the vein contact core angles were about 5 $^{\circ}$ to 8 $^{\circ}$ to the core

axis is subparrallel (this was not recorded in <u>all</u> earlier logging in fact core angles were rarely recorded). This implies that the true vein width is a little as 5 % of the drill width. A small splay vein striking at 060 $^{\circ}$ and dipping to the north at 60 to 80 $^{\circ}$ could fit into the local geometry available. Similar geometry observed on the adjacent Nora claims by the author has been recorded. These splays actually curve from the dominant structure in with right lateral movement.

Another interpretation is that the hole was recorded at the wrong dip. Shallowing the hole from 55 degree to 50 degrees would make a very good fit with all surrounding diamond drill data, including the large intercept would now be at the Tay structure. This hole formed a significant "reserve" with greatly exagerated widths in past calculations.

Reanalysis of the remainder of mineralized core reported 3.07 g/t Au over a drill width of 14.33 meters, still a healthy intersection, but roughly half of the previous intersection in grade. Upon re-analysis the 24.14 g/t Au intersection was reported about 4.5 g/t Au as different assay intercepts were used. For further details refer to DDH 83-3 in Appendix 2.

10.2.2 The Tay 2 Vein

This vein subparallels the Tay 1 Vein and lies approximately 50 meters south of the Tay 1 Vein. It consists of several surface showings on the rock bluff on the north side of the BR 500 logging road at about 8970 to 9025 east and at about 4945 north, and from several drill hole intercepts grading up to 3.7 g/t Au over short widths and 1.61 g/t Au over 2.0 meters (true width), (DDH 84-2). The surface exposures (No 2 showing) show narrow, steeply north dipping veins striking at 90 ° and 060 °.

East of 9050 E several veins are intersected, on any one section. Descriptions follow.

10.2.3 Tay 3 Vein

This vein begins on at 9050 East, 5020 North at 95 meters elevation and with > 1.6 g/t values rakes irregularly downwards to the east in a narrow 15 meter high shoot. This

vein could actually be an continuation of the western part of the Tay 1 Vein below 100 meters elevation as it may occupy the same structure. Intercepts grade up to 3.24 g/t. Au over 1.2 meters with a bulk grade of 2.48 g/t Au over 3.8 meters DDH 94-08. Both are true horizontal widths.

10.2.4 The Tay 4 Vein

This is a 060 ° striking very steeply dipping structure south of the Tay 3 vein that has been intersected by many holes from 9120 to 9180 east and 85 to 105 meters elevation. Grades are consistently good with values reporting up to 10.54 g/t over a horizontal with of 0.9 meters. This vein has not been outlined because it is open in all directions with the exception of DDH 88-7 on section 9180 at 70 meters elevation. This vein is significant in its grade and continuity. One characteristic of this vein its the noticeable lack of late stage calcite breccia which tends to dilute pre-existing quartz breccia veining in other veins. This vein also subparallels the Morning vein some 250 meters east which has exposed mineralization over a strike length exceeding 130 meters, and appears to host a similar style of mineralization.

10.2.5 Tay 5 Vein

This local vein is centered at 9160 E 5000 N 85 meters elevation where DDH 88-13 reports 5.28 g/t Au over 1.2 meters true width or 3.45 g/t Au over 1.9 meters true width. This vein apparently strikes 090 $^{\circ}$ and with a vertical dip. It appears to die out within 25 meters of that location.

10.2.6 Tay 6 Vein

This vein is between the Tay 1 and Tay 3 Vein extending from 9150 to 9185 E. from 50 to 70 meters elevation. There is some evidence that this vein may in part be a bridging structure between the Tay 1 and Tay 3 Veins.

10.2.7 VG Zone

North of the Tay 4 Vein and south of the Tay 3 and 5 Veins is a zone of erratic high grade gold intercepts including the presence of visible gold. DDH 94-08 reported a spectacular 420 g/t gold and 93 g/t silver over 0.08 meter in a druzy chalcedonic quartz followed by calcite breccia vein. This, and other intersections in holes 94-09, and 94-10 have an atypical low sulphide signature ie only moderately enriched in pyrite, arsenopyrite and lead. Personal comunication with Mr. Frank Pezzotti of Ecotech Laboratories confirmed the presence of nugget gold in this area. Re-assays from different splits however returned between 50 and 150% of the original result.

10.2.8 Other Veins and Mineralized Zones

Numerous other small veins occur in and to the south of the immediate Tay Area. They have locally significant values but for the most part appear to be narrow and limited in strike extent.

10.2.9 Genesis

In long section the economic veins rake down to the east and west from 9060 to 9100 east at 90 meters elevation. Numerous feldspar sometimes with minor hornblende porphyry dykes underlie and extend into the vein zone. These dykes seen to crosscut the coarser grained and more mafic Tay "Quartz Diorite." These dykes are invariably altered by hydrothermal fluids resulting in complete feldspar destruction. It can be theorized that a local heat source generated by these dykes intruding preexisting structures generated a medium sized short lived hydrothermal system of less than 10 "ore" episodes that deposited the Tay - Morning mineralization. The previously hornfelsed alteration and erosion resistant basalts overlying and being penetrated by these dykes and being very brittle proved an ideal host rock to support structural dilatant zones that, under the right thermo-dynamic conditions formed sites for auriferous quartz - pyrite - arsenopyrite fissure vein deposition. These rocks comprise the bulk of the explored areas do date as they from local areas of positive relief easily exposed for exploration. The metals were probably derived from both the basalts and intrusive rocks.

The known richest shoots appear to have a limited vertical extent of about 10 to 40

meters near the bottom of arsenopyrite bearing quartz-pyrite breccia veins. Lower grade veining extend upward for 10's of meters. This implies that the bulk of the gold dumped out at the vein bottoms. The limited vertical exploration to date is insufficient to predict any stacking, or vertical periodicy of economic mineralization.

Later stage, usually barren calcite veining often diluted the preexisting quartz rich veining.

10.3 Slide Zone

Three diamond drill holes explored the NW striking Slide Zone as part of the 1994 Phase 1 Program.

DDH S94-01 was collared on the BR 500, 60 meters southwest of the location that reported "1.02 oz/t gold over 0.3 meters" in Lammle's 1988 report. The hole dips -35° and was designed to intersect the zone 50 meters below the surface exposures. A zone of calcite - pyrite breccia veining was intersected from 66.62 to 68.05 meters. Within this zone from 67.13 to 67.41 meters a section of chalcopyrite bearing calcite breccia veining reported 3.96 g/t Au, 2.5 g/t Ag and 2.03 % copper. Quartz breccia is a later phase not related to the copper mineralization. A broader envelope of slightly anomalous copper and mercury surrounds this zone. A second zone of quartz calcite breccia veining at 96.5 to 96.7 meters ran 0.59 g/t gold, was slightly anomalous for arsenic, weakly anomalous for lead, but depleted in copper. Zinc showed a weak enrichment adjacent to the veining but was not anomalous within the vein. Other zones showed similar weak patterns. The other pathfinder metals did not show any significant change.

A broad zone of very weak arsenic and copper enrichment runs from 133 meters to 155 meters.

DDH S94-02 was collared for the same site as DDH S94-01. This hole was drilled at -45 ° to intersect the target 25 meters below the first intercept. The target was intercepted and was a broad zone of intermittent quartz calcite stockwork and breccia veining from 60.85 meters to 76.82 meters. This zone was moderately anomalous for

copper with values to 5545 (background 200 ppm) weakly anomalous for gold with values to 110 ppb (background 5-10), silver to 0.9 ppm (background 0.01 ppm), arsenic to 69 ppm (background 10), antimony to 0.7 ppm (background =/-.08), and zinc 131 ppm (background 70 ppm).

Two more zones are encountered, one at 122.7 meters where 215 ppb gold was encountered and another zone centered at 168.25 meters with values up to 65 ppb gold and both with similar pathfinder signatures. The latter zone displays anomalous gold in DDH S94-2 whereas in no anomalous gold was encountered in DDH S94-01.

DDH S94-03 was collared 55 meters bearing 289 ° from the first Slide Zone setup. Overall this hole displayed weaker alteration than encountered in the previous two holes. The highest gold value encountered at depth was 280 ppb at 180.7 to 188.0 meters, however a value of 475 ppb gold, 1212 ppm arsenic, 1.2 ppm antimony was encountered from 19.8 to 20.4 meters. This intersection is in a highly sericitized structure. Another feature unique to this hole (and the first few meters of DDH S94-02 is the presence of kidney red hematite and hematite rich ankerite veins. These veins are usually subparrallel to the core axis implying a very different strike and dip to the target veins. They are so far geochemically "dead".

10.3.1 Discussion of Slide Zone Drilling

The drilling did not prove or disprove conclusively that significant mineralization exists at depth under the Slide Zone. What was learned is that the strength of quartz breccia veining is increasing with depth under holes S94-01 and S94-02 in the Slide structure, and that gold mineralization weak though it is occurs within strong structures displaying breccia veining, and usually adjacent to structurally bound dykes. The Slide structure is interpreted to strike 340 ° and dip steeply to the south west. The strong isolated stringer of auriferous copper mineralization hosted within a calcite breccia gangue encountered in Hole S94-01 is interpreted to be a small hydrothermal vein which deposited metals derived from solutions leaching the surrounding relatively copper rich basalts. In a very broad sense both arsenic and antimony decrease down all three holes. The basalts at the

top of all three holes is more altered than that encountered further to the northwest ie down hole, such that one gets a "sense" that these holes may actually be drilling out of a system. As the Tay center soil anomaly with its blocks of mineralized float lies along strike to the south-east, this supposition is not without merit.

10.4. Discussion of Property Potential.

In addition to the Tay Vein and Slide systems described above, several other zones of interest are found on the Tay Property. A brief description on the location and salient economic features of each area follows. Refer to Figure 3; Property Photo-Panorama, Figure 4; Tay Area Compilation Map, and Figure 5; Property Compilation Map.

10.4.1 Tay Main (East) Zone

This was the area explored by the 1994 program in the Tay area. Mineralized intercepts are open to the west and to the south at depth and near surface. The grades encountered so far preclude potential mining of high grade shoots as none of significant size have been defined to date. However several intercepts have produced interesting grades over bulk tonnage widths. Previously uninterpreted hydrothermal alteration haloes have resulted in reinterpretation of vein geometry and physical characteristics of the altered rock. The clay and sericitic alteration of the intrusive rocks in the area has rendered these rock very soft and weak. The deep glacial scouring of these altered rocks has been noted.

The eastern part of this zone is magnetically very flat in sharp contrast to the west where an unusual magnetite alteration halo is found adjacent to the Tay 1 Vein. The vein in that area is defined by a pronounced magnetometer low.

10.4.2 Tay Center Soil Anomaly and Mineralized Float Occurrence.

A weak gold in soil anomaly and a historic producer of auriferous quartz breccia float define this area. This topographically recessed area overlies a broad magnetometer low implying very deep overburden and/or extensive zones of hydrothermally altered rock. There is a chance that the mineralized float may have been transported to the area as rock fill removed from the Tay "east" and Morning areas during road construction. However one subcrop of highly weathered quartz breccia veining has been found near an untested IP anomaly at the northeast end of the soil anomaly. There are also unsubstantiated reports of outcropping vein mineralization grading over 1 oz/t over 4 feet (Fawley 1974).

10.4.3 Tay West Soil Anomaly

This tenuous anomaly is partially defined at the extreme western end of the "Tay Grid". It is in line with other gold bearing features found in the Tay-Morning Fissure System including auriferous vein mineralization in outcrop on the adjacent Nora claims 300 or so meters to the west.

10.4.4 Slide Zone

The northwest striking structure appears to br strengthening to the southeast and wall rock alteration suggest the zone is on the northern edge of a hydrothermal system. That is buried under glacial till to the south. The till may be masking recessive hydrothermally altered area. There is also a localized magnetometer low 100 or so meters southeast of the Slide Zone.

10.4.5 502 Soil Anomaly

This previously unmentioned anomaly lies north of the 502 logging main and northwest of the Tay Vein. It is a broad partially defined arsenic in soil anomaly with values to 1045 ppm arsenic. There are also anomalous gold sample locations to the north and northeast of the known arsenic anomaly. Arsenic was not sampled over the "northeast" gold anomaly. There is also a possible large and pronounced magnetometer low east of the anomaly possibly extending past the Morning vein and nearly to the Apex Vein.

10.4.6 Apex Vein West Extension, this is a structural zone defined by a narrow 300 meter plus long magnetometer low. There is no geochemical signature to the "structure".

10.3.7 Knob Zone

Reinterpretation of the exploration data suggest that the mineralization encountered in the Knob area are within north to northeast striking steeply dipping structures that form part of a larger zone running through "Renegade Lake" (the small lake north of the Knob Zone) and into the valley to the north. This zone is a pronounced linear magnetometer low surrounded by numerous magnetometer highs. It is no coincidence that the Knob gold in soil anomaly is a north-northeast striking feature paralleling the hillside. Airphoto analyses reveals a that "Renegade Lake" occurs at the junction of northwest, northeast and northerly trending recessive airphoto features. Due to the orientation of the ground surveys (Lammle, 1988), only the northwest trending geochemical and geophysical zones are readily apparent. The IP anomalies appear to be related to pronounced magnetometer anomalies of locally high relief. The economic significance of this pattern is unknown.

10.3.8 Diane Zone

The Diane Zone, formerly the G.C. Claims were staked in April and May 1994. Selected samples of quartz pyrite chalcopyrite breccia vein reports up to 18.2 ppm gold. and other areas reported over 2000 ppm mercury over 7 meters in a chip. (Bilquist, 1986). His descriptions suggest a large alteration zone that is largely hidden in very steep topography. The presence of mercury is intriguing as it suggests the very top of an epithermal system. As the known gold showings are at least 100 meters stratigaphically lower and approximately 1 km northeast of the mercury showings, a system of some size may be present. Altered rock is reported another 500 meters southwest. Several samples ran very high in calcium, presumably they are calcite breccia veins. However the presence of limestone cannot be ruled out.

The large 5 km by 1 km 060 ° striking airphoto feature present from Doran Lake through "Renegade Lake" through to the Diane Zone. This depression may be the surface expression of a down dropped block or series of blocks. The Knob Occurrence and the Diane Showings indicate mineralization extending over 4 km. They may be expressions of mineralized systems developed along tensional fractures along this zone.

The local topography is deeply pitted with numerous hummocks and small lakes possibly representing surface expressions of, in the case of the depressed areas hydrothermally weakened rock hat has been scoured out by glacial activity. Finally both the Knob and Diane showings are present near the junction of north trending and northeast recessive structural zones.

10.3.9 Sunshine Claim

The Sunshine Claim was a restaking of the historic Morning-Apex property immediately east of the Tay Vein. Numerous workings on this property follow auriferous quartz pyrite veining.

There is currently a legal dispute over ownership of the property. Until this dispute is resolved no major work programs will be planned other than basic assessment work.

10.3.8 Other

The steep north facing slopes of the Tay property remain unexplored. The intrusive contact of the Bedwell Batholith runs through this area. Gold bearing showings have been found in intrusive rocks off the property to the west.

11 CONCLUSIONS

Low to high grade gold mineralization of epithermal affinity occur in 090 $^{\circ}$, 060 $^{\circ}$ and 340 $^{\circ}$ striking vertical to steeply dipping quartz-calcite breccia and stockwork veined structures on the Tay property. The explored veining indicate a rather short lived event that failed to generate the numerous episodes responsible for forming an economic deposit.

The Tay portion of the program succeeded in increasing the definition of a westerly plunging zone of gold mineralization ending with an intersection grading 7.2 g/t over a horizontal width of 1.3 meters within a larger low grade zone. This zone is open to the west at depth and to the surface. To the east, easterly plunging zones grading to 5.81 g/t over 0.8 meters horizontal width within a broader zone grading 3.72 g/t over 1.8 meters remain open to the east and at depth. Additional mineralization in partially delineated veins and zones grading to 10.54 g/t over 0.9 meters true width (#4 vein) and previously unrecorded intersections of visible gold mineralization grading to 420 g/t over 0.08 meters, and 28.02 g/t over 0.5 meters have been found in near surface veining. These veins do not form significant geophysical anomalies, possibly due to wider alteration zones destroying primary magnetic and sulphide minerals as well as masking by thick conductive till.

Hydrothermal wallrock alteration form predictable patterns within different host rocks; narrow and structurally controlled shoots in the hornfelsed basalts, and much broader diffuse zones within more reactive intrusive rocks.

Areas of altered intrusive rocks are physically recessive and rarely outcrop, whereas the hard physically resistant brittle fracturing hornfelsed basalt form bedrock knobs that have been the focus for the bulk of the exploration efforts to date.

The glacial till on the Tay area is a very dense packed unweathered clay matrix supported cobble to boulder till. Examination of clasts suggest a source distant from the Tay property. This material is an extremely effective geochemical and possibly geophysical mask.

Potentially economic near surface gold mineralization is present of Tay property. Due to past exploration focus on "deep" underground vein mineralization and the difficult terrain to effect exploration this potential has been largely ignored.

Diamond drilling of the Slide Zone revealed a northwest striking steeply southwest dipping tensional structure hosting auriferous chalcopyrite mineralization of local extent. Similarities to Tay mineralization are; dilatant structure and pre-vein dioritic dyking. possibly serving as local heat sources. Surface geophysical trends and diamond drill evidence suggest that alteration and veining may increase at depth and to the south. Elsewhere on the Tay Property the Tay Center and Tay West Anomalies overly noticeable recessive areas possibly masking soft recessive highly altered rock. The 502 arsenic and gold anomaly remains unexplained,

These mineralized zones are all is within a 3 or more km long east-west striking recessive structure called "Tay-Morning Fissure System". This feature is detectable from airphoto and topographic studies.

The Apex Vein remains unexplored.

The Knob Zone has auriferous breccia vein mineralization open on strike and at depth on a northerly trending structural zone detectable by air photo, geophysical and geochemical trends.

The Diane Zone encompasses high grade gold, and mercury anomalies, located at the structural intersection of northerly and northeasterly striking regional structures. The northeasterly structural zones may extend from the easterly border of the Diane Claim southwest to Doran lake, a distance of over 5 km. This trend would encompass the previously discussed Knob Zone.

The steep north facing hillsides facing Great Central Lake to the north and the Taylor River Valley on the south end of the property remain virtually unexplored. The Nora 3 Claim also remains unexplored. **12 STATEMENT OF EXPENDITURES**

LDS DIAMOND DRILLING DIAMOND DRILLING

ECOTECH ANALYTICAL LABS - ANALYSES \$ 28,022.28

SUPERVISION - GEOLOGICAL SUPPORT	\$ 36,992.31
GEOLOGICAL SUPPORT	\$ 7,244.60
LABOUR	\$ 6,018.38

LOGISTICAL SUPPORT

STAKING AND RELATED COSTS

REPORT

J. EL. JUNDINGER J. EL. JUNDINGER SOCIENTS

\$

\$

\$ 133,294.72

43,505.00

4,150.00

TOTAL EXPENDITURES

13 REFERENCES

Bilquist, R.J. 1986, Dec.; Assessment Report. Prospecting Report G.C. #1 Claim, Alberni Mining Division, NTS92F/6E

British Columbia Ministry of Mines, Annual Report

1899. p 781
1907. pp L 147 - 148
1908. p J 142
1917. pp K 318 - 319
1922. p N 229
1923 p A 242
1926 pp A 297 - 298
1929 p C 373
1930 pp A 292 - 293
1934 pp F 4 - 5
1960 p 116
1961 p 103
1963 p 121
1974 p 176

- Christopher P.A. 1992: Report on the Men Property. Alberni Mining Division. Sproat Lake Area, B.C. for Area Explorations Ltd. Assessment Report # 22451
- Christopher P.A. 1992: Geological and Geochemical Assessment Report on the Snow White Property. Alberni Mining Division, Sproat Lake Area, British Columbia. NTS 92F/6W For Snowfield Resources Ltd. Assessment Report # 22,443.
- Cukor, V., 1980. Jan.; Tay Group; Summary of Exploration program. unpub report, 10 pp.
- Cukor, V., 1980, Aug.; Dalmatian Resources Ltd. Tay Group. Report on 1980 Exploration program. 11pp
- Cukor, V., 1983; Dalmatian Resources Ltd. Summary of Exploration Programs on the Tay Gold Property. 16pp.
- Cukor, V., 1985, May; Dalmatian Resources Ltd. Tay Gold Property. Assessment of Exploration Results. Unpublished Report. 22pp.
- Cukor, V., 1985, Dec; Dalmatian Resources Ltd. Tay Gold Property. Alberni M.D. NTS92F/6W. Engineering Report. 17pp.

Cukor, V., 1987; Dalmatian Resources Ltd. Tay Gold Property. Report on Spring 1987

Exploration Program. 25pp.

Fawley, A.P. 1974. Press release for Lou-Mex Mines Ltd.

- Goldsmith L.B. 1988; Geological and Rock Geochemical investigation. Morning and Apex Claim Group. Taylor River-Sproat Lake Area. Alberni Mining Division. Assessment Report #17420
- Goldsmith L.B. 1989; Geological and Geochemistry. Morning and Apex Claim Group. Taylor River-Sproat Lake Area. Alberni Mining Division. Assessment Report #18819.
- Graham et al, 1979; prospecting report on the Ken Claims
- Jones, H. M. 1976; Geological report on the AJ Claim Group, Sproat lake Area, Vancouver Island, British Columbia. Alberni Mining Division, for Highland Mercury Mines Limited. Assessment Report #5858
- Lammle, C.A.R. 1988; 1988 Exploration Program. Tay Gold Project. Alberni Mining Division, B.C. 92F/6 for Dalmatian Resources Ltd.
- Lindinger, J.E.L., 1993; Assessment Report. Geological and Geochemical Report on the Nora Group, for Frank Milakovich. 12pp.
- Lindinger, J.E.L. 1994; Unpublished exploration results from the 1994 Phase 1 Diamond Drilling Program on the Tay Property. Report in Progress
- Lindinger, J.E.L. 1994; Unpublished exploration results from the 1994 Assessment work on the Nora Group, Alberni Mining Division, B.C. Report in progress.
- Muller, J.E. 1977; Geology of Vancouver Island, Geological Survey of Canada, Open File 463.
- Pantaleyev, A., 1986; A Canadian Cordilleran Model for Epithermal Gold-Silver Deposits. Geoscience Canada Volume 13, Number 2. Ore deposits #10.
- Sillitoe, R.H., 1980; Styles of Low-Grade Gold Mineralization in Volcano-Plutonic Arcs, in Nevada Bureau of Mines & Geology Report 36, "Papers Given At The Precious Metals Symposium Sparks, Nevada, November 17-19, 1980.", pp 52-68.
- Sookochoff, L. 1991; Dalmatian Resources Ltd. Summary Report and Exploration Results on the Tay Gold Property. Alberni Mining Division. NTS 92F/6W. 19 pp.

Stevenson, W. G. 1969; Geological report on the Vent Mineral Claims, Kennedy River

Area, Alberni Mining Division, British Columbia. Assessment Report # 1902.

- Stevenson. W. G. 1970; Geological, Geochemical and Magnetometer Report on the Vent Mineral Claims, Kennedy River Area, Alberni Mining Division, British Columbia. Assessment Report # 2464.
- Vincent, J.S., 1988; Tay Gold Property. Dalmatian Resources Ltd. A Summary Report on the Tay Gold Property for Dalmatian Resources Ltd. 15 pp.

STATEMENT OF QUALIFICATIONS

I, Joseph E. L. Lindinger, hereby do certify that:

I am a graduate of the University of Waterloo (1980) and hold a BSc. degree in honours Earth Sciences.

I have been practising my profession as an exploration and mine geologist continually for the past 14 years.

I am a fellow in good standing with the Geological Association of Canada (1987).

I am a registered member in good standing as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (1992).

I have no direct or indirect interest, financial or otherwise in Dalmatian Resources Ltd. or any of its assets including mineral properties, nor do I expect to receive any.

I consent to the use of this report on the Tay Property for a Prospectus or a Statement of Material Facts so long as it is not condensed or excerpted in any way so as to portray a meaning different from that of the whole.

STATEMENT OF QUALIFICATIONS

I, Ian A. Lyn. hereby do certify that:

I am a graduate of the University of Toronto (1978) and hold a BSc. degree in Specialist Geology.

I have been practising my profession as an exploration and mine geologist for the past 15 years, including several gold properties and mines throughout western Canada.

I have no direct or indirect interest, financial or otherwise in the Tay Property, or Dalmatian Resources Ltd. nor do I expect to receive any.

Ian lyn

Ian A. Lyn May 9, 1994

APPENDIX 1 - GEOCHEMICAL ANALYSES AND ASSAYS

5

5

-

- ---

•---

~

.

-

		DALMATIAN RESOURCES LTD. RTK 94-132
E	CO-TECH LABORATORIES LTD.	5245 FAIRMONT STREET
10	0041 E.T.C.HWY RR#2	VANCOUVER, B.C.
ĸ	ANLOOPS, B.C. V2C 2J3	
P	HONE - 604-573-5700	
FI	NX - 604-573-4557	ATTENTION: FRANK MILAROVICH
MARCE 21, 1994		
		114 ROCK SAMPLES RECEIVED MARCH 15, 1994
VALUES IN PPH UNLESS OTHER	RWISE REPORTED	SHIPMENT #: K94-01

. ₽ ₽	DESCRIPTION	i yn(bbp)	AG	А L (%)	AS	в	BA	BI	CA(\$}	СÞ	co	CR	CU	FB(\$)	К(%)	LA	MG (%)	MN	HO	NA(\$)	NI	P	РВ	SB	SN	SR	TI(\$)	U	v	W	Y	ZN
		ی بر عدید کا الطبیب		و بو به به به به	الباعد فقراه المتع				******						****		a mana at at a		a shi a	الاشكك فا	-	*****								-	e at = Ad	tesas.
113-	128653	135	<.2	3.58	310	6	70	5	.47	6	42	210	335	7.92	.14	<10	1.59	659	5	<.01	68	520	<2	25	<20	B	, 38	<10	162	<10	35	59
114-	128654	385	1.2	2.48	105	8	70	<5	1.01	2	22	105	4283	4.89	.15	<10	1.50	706	5	<.01	29	210	<2	20	<20	9	<.01	<10	67	10	4	68

QC/DATA:

STANDARD 1991 1.4 1.99 55 8 165 5 1.68 1 19 61 92 3.92 .38 <10 .95 651 <1 .02 27 620 4 20 <20 71 .11 <10 76 <10 12 77

NOTE: < - LESS THAN

.

": Leo Lindinger/Dan Macisaac

-

SC94/Dalmation

•

.

ECO-TECH LABORATORIES LTD. FRAME J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

- 10041 E. Trans Canada Hwy . R R. 12. Kamloops B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

MARCH 22, 1994

CERTIFICATE OF ASSAY ETK 94-132

.

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C.

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 114 ROCK SAMPLES received MARCH 15, 1994 SHIPMENT #: 94-01

ET#	Description	Au (g/t)	Au (oz/t)	85 (\$)	
1 -	122601	.05	==== === === .001	-	:=====################################
2 -	122602	2.36	.069	_	
3 -	122603	.08	.002	_	
4 -	122604	.03	.001	-	
5 -	122605	.05	.001	-	
6 -	122606	.06	.002	-	
7 -	122607	.17	.005	-	
8 -	122608	1.58	.046	1.02	
9 -	122609	.29	.008	-	
10 -	122610	1.41	.041	-	
11 -	122611	2.43	.071	-	
12 -	122612	.43	.013	-	
13 -	122613	.10	.003	-	
14 -	122614	.12	.003	-	
15 -	122615	.32	.009	-	
16 -	122616	.06	.002	-	
17 -	122617	.05	.001	-	
18 -	122618	.04	.001	-	
19 -	• 122619	.04	.001	-	
20 -	122620	.04	.001	-	
21 -	- 122621	.04	.001	-	
22 -	• 122622	.04	.001	-	
23 -	- 122623	.04	.001	-	
24 -	- 122624	.04	.001	-	
25 -	- 122625	.04	.001	-	
26 -	- 122626	.04	.001	-	
27 -	- 122627	.04	.001	-	
28 -	- 122628	.04	.001	-	
29 -	- 122629	.03	.001	-	
30 -	- 122630	.04	.001	-	
	Jellen 194	, 			

FRANK J. PEZZØTTI, A.Sc.T. B.C.Certified Assayer

٠

PAGE 2

			Au Au	
ET# 		Description	(g/t) (oz/t)	
31	-	122631	.03 .001	
32	-	122632	.03 .001	
33	-	122633	.03 .001	
34	-	122634	.03 .001	
35	-	122635	.03 .001	
36	-	122636	.03 .001	
37	-	122637	.03 .001	
38	-	122638	.11 .003	
39	-	122639	.58 .017	
40	-	122640	.04 .001	
41	-	122641	.04 .001	
42	-	122642	.03 .001	
43	-	122643	.03 .001	
44	•	122644	.22 .006	
45	-	122645	.03 .001	
46	-	122646	.03 .001	
47	-	122647	.03 .001	
48	-	122648	.03 .001	
49	-	122649	.03 .001	
50	-	122650	.03 .001	
51	-	122651	.03 .001	
52	-	122652	.03 .001	
53	-	122653	03 .001	
54	-	122654	.03 .001	
55	-	122655	.03 .001	
56	-	122656	.03 .001	
57	-	122657	.17 .005	
58	-	122658	.03 .001	
59	-	122659	.03 .001	
60	-	122660	1.08 .031	
61	-	122661	.03 .001	
62	-	122662	.03 .001	
63	-	122663	.03 .001	
64	-	122664	.03 .001	
65	-	122665	.03 .001	
		•••	(1)	
			Contraction of the second s	

FRANK J. PEZZOTTI, A.Sc.T. B.C.Certified Assayer

DALMATIAN RESOURCES LTD. ETK 94-132 MARCH 22, 1994

•

PAGE 3

		Au	Au	As	
ET#	Description	(g/t)	(oz/t)	(8)	
=====			=======================================		:=
66 -	122666	.03	.001	-	
67 -	122667	.03	.001	-	
68 -	122668	.03	.001	-	
69 -	122669	1.41	.041	-	
70 -	122670	.04	.001	-	
71 -	122671	.07	.002	-	
72 -	122672	.03	.001	-	
73 -	122673	.17	.005	-	
74 -	122674	.06	.002	-	
75 -	122675	.03	.001	-	
76 -	122676	3.23	.094	1.77	
77 -	122677	.15	.004	-	
78 -	122678	.03	.001	-	
79 -	122679	.45	.013	-	
80 -	122680	.29	.008	-	
81 -	122681	.03	.001	-	
82 -	122682	.07	.002	-	
83 -	122683	.14	.004	-	
84 -	122684	.07	.002	-	
85 -	122685	.26	.008	-	
86 -	• 122686	.03	.001	-	
87 -	122687	1.14	.033	-	
88 -	122688	.03	.001	-	
89 -	122689	.16	.005	-	
90 -	122690	.03	.001	-	
91 -	- 122691	.03	.001	-	
92 -	- 122692	.08	.002	-	
93 -	• 122693	.04	.001	-	
94 -	- 122694	.08	.002	-	
95 -	- 122695	.03	.001	-	
96 -	- 122696	.03	.001	-	
97 -	- 122697	.03	.001	-	
98 -	- 122698	.03	.001	-	
99 -	- 122699	.05	.001	-	
100-	- 122700	.03	.001	-	
	$\overline{\mathcal{C}}(,\overline{\mathcal{T}})$				

FRANK J. PECZOTTA, A.Sc.T. B.C.Certified Assayer

DALMATIAN RESOURCES LTD. ETK 94-132

PAGE 4

ET#	Description	Au (g/t)	Au (oz/t)	AS (%)	
======	##2# == ==##22	******************	********	********	
101-	122701	.15	.004	-	
102-	122702	1.46	.043	-	
103-	122703	.09	.003	-	
104-	122704	.03	.001	-	
105-	122705	3.66	.107	-	
106-	122706	3.10	.090	-	
107-	122707	.04	.001	-	
108-	122708	.03	.001	-	
109-	122709	.63	.018	-	
110-	122710	.49	.014	_	
111-	128651	4.66	.136	1.33	
112-	128652	2.34	.068	1.01	

cc: Leo Lindinger/Dan Macisaac

C. tong

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI,A.Sc.T. B.C. Certified Assayer

SC94/Dalmatian

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

•

10041 E. Trans Canada Hwy., R.R. 12. Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

MARCH 22, 1994

CERTIFICATE OF ANALAYSIS ETK 94-132

.

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C.

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 114 ROCK SAMPLES received MARCH 15, 1994 ----- SHIPMENT #: 94-01

			Ag	As	Cu	Mo	Pb	sb	Zn
et#		Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)(ppm)	(ppm)
	= =	122601	*======================================	=#==== 025	2222222 220		:====== ? 0	:==== ?	109
2	_	122601		5204	575	10	20	• 4	146
3	_	122602	3.1	317	219	13	50	• 2	105
Δ.	_	122603	.0	317	210	5	6	.0	58
5.	_	122605		**	210	7	6	.2	65
6	_	122605	.1	26	174	5	4	- 4	38
7	-	122607	1.6	412	521	7	12	. 4	54
8	_	122608	1.2	>10000	219	4	24	2.8	85
9	_	122609	.9	3517	176	6	10	1.4	110
10	_	122610	1.4	8185	203	2	28	.3	198
11	_	122611	1.2	9279	156	4	36	4.6	30
12	-	122612	1.0	3530	244	1	12	1.4	107
13	-	122613	.2	125	169	7	4	.6	36
14	-	122614	.1	64	355	3	4	.4	44
15	-	122615	.5	492	168	2	16	. 8	100
16	-	122616	.1	41	162	2	4	.6	34
17	-	122617	.1	21	151	2	4	. 4	38
18	-	122618	.1	12	95	5	2	.4	43
19	-	122619	.1	21	137	2	4	. 4	38
20	-	122620	.2	22	168	4	2	.4	47
21	-	122621	.1	25	191	2	2	.2	38
22	-	122622	.2	20	224	5	2	.2	30
23	-	122623	.2	23	219	2	2	. 4	38
24	-	122624	.1	14	340	3	4	.4	35
25	-	122625	.1	21	282	3	2	. 4	42
26	-	122626	.1	18	225	4	4	.4	39
27	-	122627	.1	12	90	6	4	.4	36
28	-	122628	.1	12	45	4	2	.2	52
29	-	122629	.1	16	110	6	. 6	.2	43
30	-	122630	.1	11	18	8	4	.2	59

DALMATIAN RESOURCES LTD. ETK 94-132

		-	Ag	As	Cu	Mo	Pb	sb	Zn
ET#		Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)()	ppm)	(ppm)
====	-	122666		24	188	======= 4	2	.4	42
67	-	122667	.1	20	331	5	4	.4	40
68	-	122668	.2	- 22	180	2	4	.4	31
69	-	122669	.2	5115	169	4	14	.2	72
70	-	122670	.1	162	213	2	6	.6	47
71	-	122671	.1	332	36	6	8	.6	46
72	-	122672	.1	86	215	5	6	.6	52
73	-	122673	.2	130	202	6	4	.6	51
74	-	122674	.1	151	184	7	4	. 8	73
75	-	122675	.1	230	75	6	4	.6	85
76	-	122676	.3	>10000	72	7	20	7.0	191
77	-	122677	. 4	3096	201	3	10	2.2	128
78	-	122678	.2	235	176	4	6	. 8	52
79	-	122679	.9	1270	202	6	26	1.6	114
80		122680	.6	1739	152	4	14	1.6	76
81	-	122681	. 2	60	138	1	8	.4	33
82	-	122682	.6	1796	178	7	10	1.4	54
83	-	122683	. 3	949	144	5	10	1.0	53
84	-	122684	. 4	637	64	6	14	.8	70
85	-	122685	.3	1775	72	2	10	1.2	82
86	-	122686	.3	220	142	5	10	.6	46
87	-	122687	.5	3055	90	5	16	1.8	54
88	-	122688	.1	251	34	7	6	.6	38
89	-	122689	.3	1830	42	3	12	1.4	89
90	-	122690	.1	121	161	5	6	.6	50
91	-	122691	.2	36	60	3	2	.6	48
92	-	122692	.2	49	72	8	6	. 4	42
93	-	122693	- 1	41	76	1	6	.4	44
94	-	122694	. 2	168	62	6	8	.6	63
95		122695	.1	34	64	6	6	.4	47
96		122696	.1	20	50	6	10	.4	45
97	-	122697	. 1	17	58	5	6	.4	40
98	-	122698	.1	16	62	6	4	- 4	42
99	-	122699	.2	34	93	10	4	. 4	55
10	0 –	122700	.1	25	52	4	6	.4	43

PAGE 3

•

DALMATIAN RESOURCES LTD. ETK 94-132

PAGE 2

MARCH 22, 1994

			Ag	As	Cu	MO	Pb	sb	Zn
ET#		Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)((mqq	(ppm)
====	===		3332222 20:			====#==	*******	22222	*====
31	-	122631	.1	30	196	5	2	. 4	39
32	-	122632	• 2	21	5,3	3	2	. 4	43
33		122633	.2	39	80	2	6	.4	54
34	-	122634	.2	80	72	1	6	.4	57
35	-	122635	.1	93	134	2	8	.6	68
36	-	122636	. 2	65	55	2	4	.6	69
37	-	122637	.2	123	50	1	10	.6	61
38	-	122638	.5	249	63	1	10	.8	72
39	-	122639	.6	1706	62	3	16	1.2	64
40	-	122640	.3	162	26	6	6	.6	58
41	-	122641	.2	20	72	8	4	.4	57
42	-	122642	.2	10	183	2	4	- 4	54
43	-	122643	.1	17	75	7	4	.4	72
44	-	122644	. 4	43	188	3	4	. 4	51
45	-	122645	.3	15	181	7	8	.4	98
46	-	122646	.3	19	61	4	6	.6	86
47	-	122647	. 2	13	180	3	4	. 4	56
48	-	122648	. 2	16	57	6	4	. 4	58
49	-	122649	. 2	22	154	5	4	.8	61
50	-	122650	. 2	20	137	7	4	.6	47
51	-	122651	.2	34	206	4	6	.6	44
52	-	122652	.2	38	266	8	4	.6	747
53	-	122653	.3	25	96	4	6	. 4	63
54	-	122654	.2	22	69	4	4	.6	63
55	-	122655	.3	34	132	4	6	. 4	60
56	-	122656	.2	25	172	5	4	.4	43
57	-	122657	.3	47	194	3	6	.6	82
58	-	122658	.2	43	200	4	2	.4	66
59	-	122659	.2	63	184	5	4	. 4	67
60	-	122660	1.0	2882	195	8	26	2.4	72
61	-	122661	.2	63	224	4	6	.6	70
62	-	122662	.1	26	212	3	4	. 4	48
63	-	122663	.1	23	213	5	4	- 4	46
64	-	122664	.2	93	248	3	2	. 4	36
65	_	122665	.2	33	121	2	6	. 4	54

.

MARCH 22, 1994

PAGE	4
------	---

		Ag	As	Cu	Mo	Pb	sb	Zn
ET#	Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm) (ppm)	(ppm)
=====					*******	.=======	*****	
101-	122701	.3	335	58	7	18	1.0	60
102-	122702	1.0	965	66	10	26	5.0	1020
103-	122703	.9	436	80	10	20	1.2	82
104-	122704	.1	108	10	4	20	.6	35
105-	122705	.8	1247	140	12	24	4.6	1333
106-	122706	1.0	1406	58	10	32	2.0	1743
107-	122707	.6	121	176	1	12	1.0	110
108-	122708	. 2	24	168	6	4	. 6	61
109-	122709	.6	1312	286	3	30	1.2	231
110-	122710	.1	63	204	6	4	. 4	42
111-	128651	1.9	>10000	152	12	38	9.2	72
112-	128652	1.1	>10000	132	11	64	8.2	291

NOTE: < = LESS THAN > = GREATER THAN

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI,A.Sc.T. B.C. Certified Assayer

SC94/Dalmation

.

10041 E. Trans Canada Hwy . R.R. 32. Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

MARCH 22, 1994

CERTIFICATE OF ASSAY ETK 94-137

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C.

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 84 CORE SAMPLES received MARCH 21, 1994 SHIPMENT #: 94-02

7	Description	Au	Au	As	
ET#	Description	(g/t)	(02/t) 	(*)	
1 -	122711	<.03	<.001	-	
2 -	122712	<.03	<.001	-	
3 -	122713	<.03	<.001	-	
4 -	122714	<.03	<.001	-	
5 -	122715	<.03	<.001		
6 -	122716	<.03	<.001	-	
7 -	122717	<.03	<.001	-	
8 -	122718	<.03	<.001	-	
9 -	122719	<.03	<.001	-	
10 -	122720	<.03	<.001	-	
11 -	122721	<.03	<.001	-	
12 -	122722	.62	.018	-	
13 -	122723	<.03	<.001	-	
14 -	122724	<.03	<.001	-	
15 -	122725	1.54	.045	1.48	
16 -	122726	.65	.019	-	
17 -	122727	.04	.001	-	
18 -	122728	.26	.008	-	
19 -	122729	<.03	<.001	-	
20 -	122730	<.03	<.001	-	
21 -	122731	.55	.016	-	
22 -	122732	<.03	<.001	-	
23 -	122733	<.03	<.001		
24 -	122734	<.03	<.001	-	
25 -	122735	<.03	<.001	-	
26 -	122736	.77	.022	-	
27 -	122737	<.03	<.001	-	
28 -	122738	.15	.004	-	
29 -	• 122739	<.03	<.001	-	
30 -	122740	<.03	<.001	-	
	Cha				
	- CLAPTA				
	FRANK J. PEZZOTZYI, A.SC	.T. B.C.	Certifi	ed Assayer	
DALMATIAN RESOURCES LTD.

MARCH 22, 1994

٠

PAGE 2

.

...

.

			Au Au	
ET#		Descript:	ion (g/t) (oz/t)	
21		1007/1		1822222£2¥¥
27	-	122741	.10 .005	
32	-	122/42	.37 .011	
33	-	122743	31 .009	
34	-	122744	.23 .007	
35	-	122745	<.03 <.001	
36		122746	<.03 <.001	
37	-	122747	<.03 <.001	
38	-	122748	<.03 <.001	
39	-	122749	<.03 <.001	
40	-	122750	<.03 <.001	
41	-	122751	<.03 <.001	
42	-	122752	<.03 <.001	
43	-	122753	<.03 <.001	
44	-	122754	<.03 <.001	
45	-	122755	<.03 <.001	
46	-	122756	<.03 <.001	
47	-	122757	<.03 <.001	
48	-	122758	.04 .001	
49	-	122759	<.03 <.001	
50	-	122760	<.03 <.001	
51	-	122761	<.03 <.001	
52	-	122762	.04 .001	
53	-	122763	.04 .001	
54	-	122766	<.03 <.001	
55	-	122767	<.03 <.001	
56	-	122768	<.03 <.001	
57	-	122769	<.03 <.001	
58	-	122770	<.03 <.001	
59	-	122771	.06 .002	
60	_	122772	.10 .003	
61	-	122773	<.03 <.001	
62	-	122774	<.03 <.001	
63	_	122775	<.03 <.001	
64	-	122776	<.03 <.061	
65	_	122777	.05 .001	
			2 2 4	
			- cho	
			C C C C C C C C C C C C C C C C C C C	

FRANK J. PEZZOTTI, K.Sc.T. B.C. Certified Assayer

DALMATIAN RESOURCES LTD.

MARCH 22, 1994

PAGE 3

			Au	Au	
ET#		Description	(g/t)	(oz/t)	
====	===	========================		**********	**************
66	-	122778	<.03	<.001	
67	-	122779	<.03	<.001	
68	-	122780	.07	.002	
69	-	122781	<.03	<.001	
70	-	122782	<.03	<.001	
71	-	122783	<.03	<.001	
72	-	122784	.13	.004	
73	-	122785	<.03	<.001	
74	-	122786	<.03	<.001	
75	-	122788	<.03	<.001	
76	-	122789	.05	.001	
77	-	122790	<.03	<.001	
78	-	122791	.03	.001	
79	-	122804	<.03	<.001	
80	-	122805	<.03	<.001	
81	-	122806	.59	.017	
82	-	122807	.08	.002	
83	-	122808	<.03	<.001	
84	-	128655	<.03	<.001	

NOTE: < = LESS THAN

cc: Leo Lindinger/Dan Macisaac

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI,A.Sc.T. B.C. Certified Assayer

SC94/Dalmatian

•

t0041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

MARCH 24, 1994

CERTIFICATE OF ANALAYSIS ETK 94-137

.

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C.

LABORATORIES LTD.

ATTENTION: FRANK MILAKOVICH.

		Ag	As	Cu	Mo	Pb	Sb	Zn
ET#	Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1 -	· 122711	.1	37	188	8	6	.4	49
2 -	122712	.1	9	70	1	4	<.2	44
3 -	122713	.1	20	197	5	6	.2	55
4 -	122714	.1	9	171	3	4	.4	39
5 -	- 122715	.1	13	209	7	6	.2	51
6 -	122716	.1	11	190	3	6	.2	45
7 -	122717	.1	20	129	7	4	.2	56
8 -	122718	.1	13	164	3	6	.6	42
9 -	122719	.1	17	46	8	6	.2	88
10 -	122720	.1	39	159	4	4	.2	34
11 -	122721	.1	98	208	3	6	<.2	48
12 -	• 122722	1.0	1916	250	3	24	2.4	70
13 -	- 122723	.1	56	194	5	8	. 4	54
14 -	- 122724	.1	37	172	4	2	. 4	44
15 -	- 122725	.7	>10000	220	5	20	8.6	69
16 -	- 122726	.6	6420	186	5	14	4.0	134
17 -	- 122727	.1	135	156	7	8	.6	51
18 -	- 122728	.1	2504	83	2	10	1.4	72
19 -	- 122729	.1	81	66	- 6	8	.6	48
20 -	- 122730	.1	27	60	2	6	.2	35
21 ·	- 122731	.8	4001	174	2	66	2.6	277
22 .	- 122732	.1	141	111	4	4	.6	44
23 -	- 122733	.1	115	61	4	10	. 4	48
24 -	- 122734	.1	42	77	3	4	.4	59
25	- 122735	.1	65	185	4	4	.6	72
26	- 122736	.2	1559	175	3	70	1.6	137
27	- 122737	.1	35	168	2	4	1.2	44
28	- 122738	.8	410	133	8	22	. 4	69
29	- 122739	.1	36	148	6	6	.4	60
30	- 122740	.1	28	230	4	4	.6	50

•

.

PAGE 2

			Ag	As	Cu	Hg	Mo	Pb	Sb	Zn	
ET#		Description	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	
====	==		222233		======				======		
31	-	122741	.1	317	137	-	9	14	1.4	432	
32	-	122742	.6	1276	146		6	18	1.2	331	
33	-	122743	.5	. 575	104	-	8	18	1.2	70	
34	-	122744	.1	362	40	-	1	24	.6	44	
35	-	122745	.1	56	174	-	6	8	.6	80	
36	-	122746	.1	13	102	-	7	8	1.4	60	
37	-	122747	.1	61	84	-	3	6	.8	65	
38	-	122748	.1	53	10	-	3	8	.4	85	
39	-	122749	. 2	14	37	-	5	6	. 4	97	
40	-	122750	.2	35	75	-	5	6	.6	42	
41	-	122751	.1	14	50	-	9	6	. 4	44	
42	-	122752	.2	50	93	-	8	8	. 4	45	
43	-	122753	.1	15	101	-	8	6	.4	48	
44	-	122754	.2	14	104	-	6	6	.2	39	
45	-	122755	.1	12	94	-	6	6	.2	41	
46	-	122756	.1	25	188	-	7	10	.6	60	
47	-	122757	.1	14	133	-	3	8	.4	48	
48	-	122758	- 1	28	112	-	8	10	.6	118	
49	-	122759	.1	12	198	-	3	6	.4	50	
50	-	122760	.1	16	76	-	5	8	. 4	76	
51	-	122761	.1	20	202	105	6	4	.2	193	
52	-	122762	.2	54	169	25	5	8	.6	64	
53	-	122766	.1	Ż2	9.8	30	6	8	. 4	81	
54	-	122767	.1	19	160	45	4	10	. 4	104	
55	-	122768	.1	15	193	30	5	6	. 4	44	
56	-	122769	.2	9	174	35	1	6	.2	48	
57	~	122770	.1	10	201	50	3	8	. 4	72	
58	-	122771	.2	18	227	40	6	6	.2	55	
59	-	122772	.1	12	156	40	3	4	. 4	78	
60	-	122773	.2	54	116	130	4	6	.4	214	
61	-	122774	.1	14	134	25	4	6	.2	60	
62	-	122775	.2	35	69	30	5	4	. 4	74	
63		122776	.1	16	82	30	3	4	.2	46	
64	-	122777	.1	13	110	45	5	6	.4	82	
65	-	122778	.1	19	48	35	8	6	.4	106	

MARCH 24, 1994

PAGE 3

D #		Description	Ag	As	Cu	Hg	Mo	Pb	sb	Zn	
21# =====		Description	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	
66	_	122779	.1	12	 12	35	- 6	6	.2	88	
67	-	122780	.1	6	188	. 35	2	4	. 4	80	
68	-	122781	.1	. 9	31	60	10	4	.2	75	
69	-	122782	.1	7	10	35	4	6	.2	90	
70	-	122783	.1	12	21	30	6	6	.2	92	
71	-	122784	.1	6	145	25	3	6	. 4	74	
72	-	122785	.1	6	14	20	4	6	.2	61	
73	-	122786	.2	28	488	85	3	8	. 4	122	
74	-	122787	.1	20	156	35	6	8	. 4	116	
75	-	122788	.2	33	495	145	8	12	. 8	99	
76	-	122789	.1	75	79	190	2	10	. 8	53	
77	-	122790	.1	31	301	75	3	6	.6	103	
78	-	122791	.1	13	226	70	2	4	. 4	94	
79	~	122804	.1	12	202	25	3	4	. 4	62	
80	-	122805	.1	15	185	30	4	6	. 4	90	
81	-	122806	.1	120	35	45	5	10	.6	68	
82	-	122807	.1	42	183	40	4	6	. 4	114	
83	-	122808	.1	11	144	30	3	6	. 4	94	
84	-	128655	.1	38	56	-	8	2	.4	61	

cc: Leo Lindinger/Dan Macisaac

NOTE: < = LESS THAN

ECO-TECH LABORATORIES LTD.

FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

SC94/Dalmatian

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

APRIL 7, 1994

,

CERTIFICATE OF ANALAYSIS ETK 94-153

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 113 CORE SAMPLES received MARCH 25, 1994 ----- SHIPMENT #: 94-03

••

			Au	Ag	As	Cu	MO	Pb	sb	zn
ET	ŧ	Description	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
===:			INDFARA					*=====*		**====
1	-	122809	60	<.1	51	162	<1	6	• 14	88
2	-	122810	20	<.1	3	194	6	6	<.02	72
3	-	122811	60	<.1	5	113	<1	6	.04	80
4	-	122812	80	<.1	25	177	5	4	.2	120
5	-	122813	60	<.1	57	32	1	6	.17	52
6	-	122814	25	<.1	22	118	2	4	.2	180
7	-	122815	25	-1	2	62	4	4	<.02	80
8	-	122816	10	<.1	6	32	3	4	.27	84
9	-	122817	10	<.1	4	93	2	4	.16	72
10	-	122818	25	<.1	1	156	2	6	.16	71
11	-	122819	15	.1	2	180	2	4	<.02	51
12	-	122820	15	<.1	5	210	2	6	<.02	55
13	-	122821	45	<.1	6	204	3	6	.21	95
14	-	122822	30	<.1	8	215	2	4	.11	61
15	-	122823	15	<.1	19	209	5	4	.08	90
16	-	122824	20	<.1	9	161	1	6	.09	91
17	-	122825	20	<.1	27	83	4	4	.08	320
18	-	122826	55	<.1	16	97	2	4	.19	96
19	-	122827	60	<.1	9	108	2	4	.04	92
20	-	122828	15	<.1	25	168	2	6	.16	103
21	-	122829	15	<.1	4	222	<1	4	<.02	58
22	-	122830	20	<.1	2	162	1	4	.05	80
23	-	122831	145	.1	6	280	4	6	.03	92
24	-	122832	20	<.1	1	100	4	4	<.02	76
25	-	122833	30	<.1	10	130	2	6	.06	105
26	-	122834	10	<.1	7	43	<1	4	.06	84
27	-	122835	5	<.1	1	16	2	4	<.02	88
28	-	122836	5	<.1	45	20	3	2	<.02	91
29	-	122837	10	<.1	9	31	3	6	.02	64
30	-	122838	10	<.1	8	160	5	2	.33	93

APRIL 7, 1994

.

PAGE 2										
			Au	Ag	As	Cu	Mo	Pb	sb	Zn
ET#		Description	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
===:	==									*****
31	-	122839	10	<.1	10	162	4	2	.10	68
32	-	122840	5	<.1	10	43	<1	4	.09	101
33	-	122841	90	.3	69	70	2	6	.70	89
34	-	122842	5	<.1	17	159	<1	8	.26	94
35	-	122843	15	<.1	14	365	4	6	.53	101
36	-	122844	10	.3	4	1624	1	4	.42	107
37	-	122845	45	<.1	10	165	<1	6	.36	84
38	-	122846	55	<.1	12	515	<1	4	.18	102
39	-	122847	5	.9	43	5545	<1	8	.13	131
40	-	122848	110	<.1	3	250	<1	6	.22	92
41	-	122849	15	<.1	62	19	4	10	.31	124
42	-	122850	5	<.1	9	118	1	8	.17	104
43	-	122851	10	.1	17	143	2	8	.23	74
44	-	122852	60	<.1	10	183	3	6	.11	80
45	-	122853	5	.3	8	161	1	8	.22	81
46	-	122854	5	.1	4	178	<1	10	.10	56
47	-	122855	10	<.1	8	197	2	4	.10	62
48	-	122856	5	<.1	2	176	1	4	.10	70
49	-	122857	5	<.1	1	162	1	4	.10	83
50	-	122858	5	<.1	1	173	1	4	.04	62
51	-	122859	5	<.1	9	29	2	4	.10	109
52	-	122860	5	.2	7	200	4	4	<.02	38
53	-	122861	5	<.1	6	162	2	4	<.02	45
54	-	122862	5	<.1	2	210	1	4	<.02	47
55	-	122863	5	<.1	4	134	2	2	.05	86
56	-	122864	5	<.1	7	207	3	2	<.02	40
57	-	122865	5	<.1	1	140	1	4	<.02	89
58	-	122866	5	.1	2	201	2	2	<.02	41
59	-	122867	5	<.1	6	198	3	4	<.02	48
60	-	122868	5	<.1	6	152	<1	2	<.02	76
61	-	122869	5	<.1	12	178	2	4	<.02	54
62	-	122870	5	.1	8	189	3	2	<.02	52
63	-	122871	5	<.1	11	122	<1	4	<.02	78
64	-	122872	5	<.1	5	145	2	2	<.02	50
65	-	122873	5	. 1	11	200	2	4	< . 02	44

.

PAGE 3

APRIL 7, 1994

			Au	Ag	As	Cu	Нg	Mo	Pb	Sb	Zn
ET#		Description	(ppb)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
====	=										
66	-	122874	215	-1	30	66	-	2	2	.03	80
67	-	122875	5	<.1	18	156	-	2	2	.06	137
68	-	122876	5	<.1	3	68	-	4	4	.04	110
69	-	122877	45	<.1	5	149	-	2	4	.05	98
70	-	122878	5	<.1	9	151	-	4	4	.02	120
71	-	122879	5	<.1	9	127	-	1	4	.15	132
72	-	122880	5	<.1	4	138	-	2	2	.08	106
73	-	122881	5	<.1	4	188	-	2	2	.04	72
74	-	122882	5	<.1	8	174	-	7	2	.05	75
75	-	122883	5	<.1	11	177	-	1	4	.08	76
76	_	122884	5	<.1	17	112	-	4	2	.1	87
77	-	122885	5	<.1	9	177	-	3	4	.11	72
78	_	122886	5	<.1	8	171	-	¥ 3	4	.14	106
79	-	122887	30	<.1	15	142	-	<1	6	.06	112
80	-	122888	10	<.1	17	94	-	5	6	.1	113
81	-	122889	5	<.1	9	173	-	1	4	.13	76
82	-	122890	65	<.1	43	333	-	5	4	.21	210
83	-	122891	5	<.1	36	88	-	5	6	<.02	50
84	-	122892	5	<.1	17	106	-	2	4	<.02	49
85	-	122893	15	<.1	29	202		2	4	<.02	73
86	-	122894	5	<.1	15	88	-	2	4	<.02	48
87	-	122896	5	<.1	17	135	10	2	6	<.02	82
88	-	122897	5	<.1	1	201	40	3	4	<.02	43
89	-	122898	5	<.1	10	166	20	2	4	<.02	92
90	-	12289 9	5	<.1	2	195	10	2	4	<.02	41
91	-	122900	5	<.1	8	149	25	<1	6	.05	96
92	-	122901	35	<.1	32	27	110	<1	6	.1	77
93	-	122902	10	<.1	17	190	65	1	8	.12	118
94	-	122903	5	<.1	21	33	70	1	6	.1	122
95	-	122904	5	<.1	9	134	10	2	4	<.02	72
96	-	122905	5	<.1	11	54	10	<1	4	<.02	82
97	-	122906	5	<.1	11	69	25	<1	4	<.02	67
98	-	122907	5	<.1	14	77	25	<1	4	<.02	79
99	-	122908	5	<.1	9	64	5	<1	4	<.02	60
100		122909	5	<.1	1	214	10	1	6	<.02	116

APRIL 7, 1994

PAGE	4									
		Au	Ag	As	Cu	Ħд	MO	Pb	Sb	Zn
ET#	Description	(ppb)	(ppm)	(ppm)	(bbw)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
101-	122910	:=====: 5			163	=======================================		ت===== ہ		105
102-	122911	5	<.1	19	231	15	<1	2	<.02	53
103-	122912	5	<.1	20	289	20	<1	6	<.02	58
104-	122913	5	<.1	22	296	85	<1	6	<.02	41
105-	122914	5	<.1	9	160	10	<1	6	<.02	99
106-	122915	5	<.1	4	202	10	<1	4	<.02	38
107-	122916	5	<.1	4	139	35	<1	4	<.02	66
108-	122917	5	<.1	23	580	5	<1	8	<.02	104
109-	122918	5	<.1	2	201	15	<1	6	<.02	55
110-	122919	5	<.1	6	117	25	<1	6	<.02	52
111-	122920	5	<.1	4	33	90	<1	6	<.02	78
112-	122921	5	<.1	9	106	35	<1	6	<.02	59
113-	122922	5	<.1	9	143	5	<1	6	<.02	72

cc: Leo Lindinger/Dan Macisaac FAX @ 451-4484 723-9405 ECO-TECH LABORATORIES LTD.

SC94/Dalmation

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. *2, Kamioops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

APRIL 18, 1994

CERTIFICATE OF ASSAY ETK 94-174

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C.

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 187 ROCK SAMPLES received APRIL 6, 1994 ----- SHIPMENT #: 94-04

. .

		As	Au	Au	
ET#	Descripti	ion (%)	(g/t)	(oz/t)	
====:		*************			==============
1 .	- 122923	-	.10	.003	
2 -	- 122924	-	.08	.002	
3.	- 122925	-	.03	.001	
4 -	- 122926	-	.88	.026	
5.	- 122927	-	.09	.003	
6 -	- 122928	-	.05	.001	
7 -	- 122929	-	.17	.005	
8 -	- 122930	-	.04	.001	
9 -	- 122931	-	.03	.001	
10 -	- 122932	-	.10	.003	
11 -	- 122933	-	.11	.003	
12 -	- 122934	-	.03	.001	
13 -	- 122935	-	.05	.001	
14 -	- 122936	-	.05	.001	
15 -	- 122937	-	.04	.001	
16 -	- 122938	-	.05	.001	
17 -	- 122939	-	.87	.025	
18 -	- 122940	-	.21	.006	
19 -	- 122941	1.51	1.68	.049	
20 -	- 122942	-	1.19	.035	
21 -	- 122943	2.60	5.29	.154	
22 -	- 122944	-	1.24	.036	
23 -	- 122945	-	.98	.029	
24 -	- 122946	1.16	1.63	.048	
25 -	- 122947	-	.03	.001	
26 -	- 122948	-	1.82	.053	
27 -	- 122949	1.01	2.01	.059	
28 -	- 122950	1.61	3.41	.099	
29 -	- 122951	2.08	.24	.007	
30 -	- 122952	-	.71	.021	
		0.1			
		13 Jum	m		
ner	FRANK J.	PEZZOTTI, A.S	Sc.T. B.C.	Certified	l Assayer
4					

DALMATIAN RESOURCES LTD. ETK 94-174 APRIL 18, 1994

٠

PAGE 2

INGU			_	
		Au	Au	
ET#	Description	(g/t)	(oz/t)	
			========	
31 -	122953	.03	.001	
32 -	122954	.05	.001	
33 -	122955	.03	.001	
34 -	122956	<.03	<.001	
122-	126894	<.03	<.001	
123-	126895	<.03	<.001	
124-	126896	<.03	<.001	
125-	126897	<.03	<.001	
126-	126898	<.03	<.001	
127-	126899	<.03	<.001	
128-	126900	<.03	<.001	
129-	126901	<.03	<.001	
130-	126902	<.03	<.001	
131-	126903	<.03	<.001	
132-	126904	<.03	<.001	
133-	126905	<.03	<.001	
134-	126906	<.03	<.001	
135-	126907	<.03	<.001	
136-	126908	<.03	<.001	
137-	126909	<.03	<.001	
138-	126910	<.03	<.001	
139-	126911	<.03	<.001	
140-	126912	<.03	<.001	
141-	126913	<.03	<.001	
142-	126914	<.03	<.001	
143-	126915	<.03	<.001	
144-	126916	<.03	<.001	
145-	126917	<.03	<.001	
146-	126918	<.03	<.001	
147-	126919	<.03	<.001	
148-	126920	<.03	<.001	
149-	126921	<.03	<.001	
150-	126922	<.03	<.001	
151-	126923	<.03	<.001	
152-	126924	<.03	<.001	
153-	126925	<.03	<.001	
154-	126926	<.03	<.001	
155-	126927	<.03	<.001	

BIMM PR^FRANK J. PEZZOTTI, A.SC.T. B.C. Certified Assayer

APRIL 18, 1994

PAGE 3

	Ав	Au	Au	
ET# Description	(&)	(g/t)	(oz/t)	
====================================		=======	=======	*************
156- 126928	-	<.03	<.001	
157- 126929	-	<.03	<.001	
158- 126930	-	<.03	<.001	
159- 126931		<.03	<.001	
160- 126932	-	<.03	<.001	
161- 126933	-	.35	.010	
162- 126934	-	2.73	.080	
163- 126935	-	<.03	<.001	
164- 126936	1.73	4.03	.118	
165- 126937	-	.06	.002	
166- 126938	-	1.12	.033	
167- 126939	-	<.03	<.001	
168- 126940	-	.06	.002	
169- 126941	-	.78	.023	
170- 126942	_	<.03	<.001	
171- 126943	-	<.03	<.001	
172- 126944	-	1.82	.053	
173- 126945	-	.78	.023	
174- 126946	-	<.03	<.001	
175- 126947		<.03	<.001	
176- 126948	-	<.03	<.001	
177- 126949	-	<.03	<.001	
178- 126950	-	<.03	<.001	
179- 126951	-	<.03	<.001	
180- 126952	-	<.03	<.001	
181- 126953	-	<.03	<.001	
182- 126954	-	.03	.001	
183- 126955	-	<.03	<.001	
184- 126956	-	.79	.023	
185- 126957	-	.49	.014	
186- 126958	-	<.03	<.001	
187- 126959	-	.60	.017	

NOTE: < = Less than

cc:Leo Lindinger/Dan Macisaac

<u>B.J. Munu</u> ECO-TECH LABORATORIES LTD. per frank J. pezzotti, A.Sc.T. B.C. Certified Assayer

•

sc94/Dalmatian

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

APRIL 18, 1994

CERTIFICATE OF ANALAYSIS ETK 94-174

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

		Au	Ag	Ав	Cu	Мо	Pb	Sb	Zn
ET#	Description	(ppb)	(ppm)	(ppm)	(ppm)	(mqq)	(ppm)	(ppm)	(ppm)
====± 1 _				====== 756	=======================================		======= 10	1 2	76
2 -	122923	_		659	254	-	17	4.2	50
2 -	122524	_	~ 1	23	68	6		.0	27
- J -	122929	_	~.1	3752	83	л 1	12	 	51
5 -	122520	_	- 1	640	82	7	7	1 2	68
6 -	122327	_	~.1	374	74	2 2	ے ج	1.2	52
7 -	. 122320	_	.2	1304	51	2	6	1 8	52
- / - -	122929		• 2	1204	136		6	1.0	44
0 - 9 -	122930	_	1	40 10	133		о Э	.0	14 H 0 D
10 -		_	- 1	27	100	2	10	.0	02
10 -	122932	_	• /	11	174	2	12	. 0	50
12 -	122955	_	- 1	97	193		• •	.0	60
12 -	122954	_	1	20	161	2	2	.0	00
14 -	122933	-	- 1	22	2012	J /1	8	.0	73
15 .	122930	_	~ 1	20	151	1	6	.0	67
15 -	· 122337	_	< 1	17	70	4 2	10	.0	64
17 -	122330	_	<.1 2	5627	107	נ ר	10	.0	75
10	122933	-	 /	1994	1/7	3	12	1 9	61
10 -	122340	-	•4 1 C	1004 	743	د د	20	1.0	120
20	122341	-	1.0	5200	334	د ۱	20	0.2	120
20 -	122342	-	1.1	5203	329	<u>۲</u>	20	4.4	267
21 -	· 12294J	-	1.0	210000	221	0 7	40	14.0	207
22 -	122944	-	1.0	221/	231	с г	140	3.4	4/4
23 -	· 122943	-	1 0	2032	200		290	3.4	907
24 - 25	122940	-	1.0	210000	191	0 7	124	20.2	100
25 -	• 122947	-	.1	12/	12/	د.	8	1.8	102
20 *	· 122948	-		1/1/	257	<1	52	5.0	129
21 -	- 122949 122050	-	1.1	>10000	30/	2	58	5.4	116
28 -	122950	-	1.2	>10000	124	6	55	1.8	2/66
29 -	122951	-	<.1	>10000	93	6	12	1.6	97
- UL	122952	-	.9	4597	280	6	330	4.0	769

APRIL 18, 1994

PAGE	2								
		Au	Ag	As	Cu	МО	Pb	sb	Zn
ET#	pescription	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
	====================================	-======		========		========	******		
31 -	- 122953	-	<.1	54	130	1	2	.6	98
32 -	- 122954	-	<.1	43	20	19	12	.6	67
33 -	- 122955	-	<.1	28	110	4	2	.6	64
34 -	- 122956	-	<.1	19	140	2	4	.6	96
35 ·	- 122957	5	<.1	15	171	<1	2	.4	110
36 -	- 122958	10	<.1	13	213	<1	2	.6	83
37 •	- 122959	5	<.1	11	158	2	6	.4	98
38 -	- 122960	5	<.1	18	172	3	2	.6	80
39 ·	- 122961	5	<.1	18	179	6	12	.4	98
40 ·	- 122962	475	<.1	1212	197	6	8	1.2	115
4 1 ·	- 122963	5	<.1	12	229	3	8	.6	51
42 ·	- 122964	5	<.1	19	240	4	8	.4	76
43 ·	- 122965	5	<.1	19	273	8	8	.6	82
44 -	- 122966	5	<.1	13	211	3	8	.4	62
45 ·	- 122967	5	<.1	15	188	1	2	. 4	86
46 -	- 122968	5	<.1	18	204	2	2	.4	102
47 ·	- 122969	5	<.1	12	207	<1	2	.4	80
48 -	- 122970	5	<.1	13	239	4	2	.4	82
49 -	- 122971	155	<.1	105	70	8	20	.6	85
50 -	- 122972	5	<.1	9	191	6	2	.6	77
51 ·	- 122973	5	<.1	16	257	8	2	.8	119
52 ·	- 122974	5	<.1	8	172	4	2	.4	73
53 ·	- 122975	5	<.1	15	219	7	2	.6	100
54 ·	- 122976	5	<.1	11	198	9	2	.4	61
55 ·	- 122977	20	<.1	27	139	7	2	.6	92
56 -	- 122978	5	<.1	14	194	5	2	.4	73
57 ·	- 122979	5	<.1	34	162	8	2	.8	133
58	- 122980	20	<.1	28	163	10	2	.8	143
59 ·	- 122981	5	<.1	17	178	2	2	.4	90
60 -	- 122982	5	<.1	12	230	4	2	.4	81
61 ·	- 122983	5	<.1	22	204	6	2	.4	103
62 ·	- 122984	10	<.1	18	170	4	2	.4	75
63 ·	- 122985	5	<.1	15	135	6	2	.6	104
64	- 122986	5	<.1	21	210	7	2	.6	95
65 ·	- 122987	5	<.1	27	225	6	2	.4	80

ECID . TECH LABORATORIES LTD.

Ŧ

PAGE 3

APRIL 18, 1994

			Au	Ag	As	Cu	Mo	Pb	Sb	Zn
ET#		Description	(ppb)	(ppm)						
66	_	122988	5	<.1	14	196	6	2	.4	67
67	-	122989	10	<.1	20	132	7	2	.4	75
68	-	122990	10	<.1	20	143	8	2	.4	89
69	-	122991	5	<.1	17	186	6	2	.2	48
70	-	122992	5	<.1	20	150	6	2	.2	42
71	-	122993	200	<.1	99	240	15	4	.4	100
72	-	122994	5	<.1	39	191	3	2	.2	39
73	-	122995	5	<.1	25	187	9	2	.4	111
74	-	122996	5	<.1	19	56	8	2	.2	73
75	-	122997	10	<.1	17	200	8	2	.2	56
76	_	122998	10	<.1	23	223	7	2	.2	45
77	-	122999	5	<.1	10	137	4	2	.2	49
78	-	123000	5	<.1	15	98	4	10	.2	38
79	-	126851	5	<.1	15	173	4	4	.4	84
80	-	126852	5	<.1	20	127	5	10	.2	72
81	-	126853	5	<.1	14	160	2	8	.2	68
82	-	126854	5	<.1	14	161	4	6	.2	65
83	-	126855	5	<.1	10	150	4	6	.2	70
84	-	126856	5	<.1	16	209	3	6	.2	73
85	-	126857	5	<.1	6	178	1	4	.2	60
86	-	126858	10	<.1	10	213	4	8	.2	53
87	-	126859	5	<.1	5	176	4	10	.2	88
88	-	126860	5	<.1	8	137	2	6	.2	67
89	-	126861	5	<.1	7	205	2	4	.2	33
90	-	126862	5	<.1	14	148	6	8	.2	96
91	-	126863	25	<.1	22	373	2	22	.4	316
92	-	126864	60	<.1	12	229	3	4	.2	65
93	-	126865	30	<.1	16	110	5	8	.2	91
94	-	126866	5	<.1	11	128	3	16	.2	78
95	-	126867	5	<.1	17	159	2	4	.2	67

3

APRIL 18, 1994

PAGE	4								
		Au	Ag	As	Cu	Mo	Pb	Sb	Zn
ET#	Description	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
96 -	126868	10	<.1	16	153	2	6	.2	47
97 -	126869	5	<.1	13	128	4	6	.4	87
98 -	126870	10	<.1	20	62	5	4	.4	69
99 -	126871	65	<.1	11	137	2	2	.2	78
100-	126872	25	<.1	13	123	3	4	.2	54
101-	126873	5	<.1	12	102	<1	6	.2	70
102-	126874	85	1.1	8	1692	3	28	.4	140
103-	126875	5	<.1	11	576	6	18	.2	86
104-	126876	5	<.1	10	182	4	8	<.2	51
105-	126877	280	1.2	14	370	3	4	<.2	394
106-	126878	10	<.1	13	149	3	8	<.2	56
107-	126879	5	<.1	13	140	2	10	.4	77
108-	126880	5	<.1	10	55	5	10	.2	71
109-	126881	5	<.1	12	56	3	4	.2	54
110-	126882	5	<.1	10	124	4	8	<.2	50
111-	126883	5	<.1	6	142	2	4	<.2	47
112-	126884	5	<.1	5	137	1	6	.2	70
113-	126885	5	<.1	9	195	4	6	.2	32
114-	126886	5	<.1	4	125	3	4	.2	39
115-	126887	5	<.1	8	178	1	8	<.2	56
116-	126888	5	<.1	9	187	5	8	<.2	62
117-	126889	5	<.1	10	188	1	4	.2	53
118-	126890	5	<.1	6	216	4	18	.2	67
119-	126891	5	<.1	18	78	5	10	.2	66
120-	126892	5	<.1	11	138	4	10	.2	87
121-	126893	5	<.1	8	183	5	6	<.2	37
122-	126894	_	<.1	10	206	4	2	.2	55
123-	126895	-	<.1	20	226	7	2	.2	48
124-	126896	-	<.1	23	156	3	2	.4	57
125-	126897	-	.2	210	226	4	2	.6	77
126-	126898	-	2.1	54	1346	12	18	.6	129
127-	126899	-	<.1	79	150	3	12	.2	48
128-	126900	-	<.1	29	156	2	12	.2	57
129-	126901	_	<.1	18	133	2	6	.2	35
130-	126902	_	<.1	22	168	5	12	.2	29
131-	126903	_	<.1	36	163	3	4	.2	30
132-	126904	_	<.1	16	73	3	8	<.2	24
133-	126905	_	< 1	16	69	5	4	<.2	23
134-	126906	_	<.1	18	201	4	а Я	.2	32
135-	126907	_	<.1	20	37	5	6	< .2	36

PAGE 5

APRIL 18, 1994

		Au	Ag	As	Cu	Мо	Рb	sb	Zn
ET#	Description	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
136-	126908	-	<.1	11	51	2	6	.2	 42
137-	126909	-	<.1	26	168	4	14	.2	73
138-	126910	-	<.1	9	187	3	6	.2	31
139-	126911		<.1	11	199	3	4	.2	32
140-	126912	-	<.1	15	166	3	4	.2	35
141-	126913	-	<.1	1161	162	3	8	5.8	70
142-	126914	-	.1	12	188	7	б	.2	31
143-	126915	-	<.1	9	193	1	2	.2	50
144-	126916	-	<.1	19	194	5	2	1.2	56
145-	126917	-	<.1	10	208	3	2	.2	50
146-	126918	-	.1	10	38	5	6	<.2	31
147-	126919	-	<.1	4	77	3	2	<.2	58
148-	126920	-	<.1	13	40	6	4	<.2	37
149-	126921	-	.1	. 15	160	2	4	.2	48
150-	126922	-	<.1	12	91	6	4	.2	29
151-	126923		<.1	2	102	4	2	.2	53
152-	126924	-	<.1	15	152	1	4	.2	34
153-	126925	-	<.1	35	226	6	2	.4	69
154-	126926	-	<.1	8	136	5	2	.2	33
155-	126927	-	<.1	7	187	2	2	.4	34
156-	126928	-	<.1	9	596	4	2	1.0	48
157-	126929	-	<.1	4	149	2	2	.6	40
158-	126930	-	<.1	4	107	7	2	<.2	26
159-	126931	-	<.1	5	159	4	2	.2	37
160-	126932	-	<.1	60	245	7	4	. 8	85
161-	126933	-	1.8	1998	47	2	34	18.6	62
162-	126934	-	1.3	9876	198	4	36	10.8	54
163-	126935	-	.1	271	246	4	2	1.2	75
164-	126936	-	.9	>10000	134	5	30	7.0	60
165-	126937	-	<.1	804	195	5	2	1.0	61

PAGE 6

APRIL 18, 1994

ET#	Description	Au (ppb)	Ag (mgg)	As (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	sb (ppm)	Zn (ppm)
====== 166-					=======================================	:=====)	======= 0	====== 1 9	
100-	120930	-	.0	-1020	190	2	0	1.0	71
167-	120939	-	< 1	22	02	2	2	• 2	39
108-	126940	-	<.1	731	103	د ۱	2	.0	50
169-	126941	-	.2	/5//	163	4	10	3.0	53
170-	126942	-	<.1	84	75	6	2	.6	48
171-	126943	-	<.1	40	126	4	2	.6	71
172-	126944	-	.8	1458	166	5	22	1.8	73
173-	126945	-	.5	2217	209	8	180	1.8	381
174-	126946	-	<.1	155	206	4	6	1.0	86
175-	126947	-	<.1	62	10	6	2	.4	58
176-	126948	-	<.1	44	104	6	2	.4	68
177-	126949	-	<.1	14	73	5	2	.2	52
178-	126950	-	<.1	33	70	6	2	.4	46
179-	126951	-	<.1	12	74	4	2	<.2	38
180-	126952	-	<.1	19	268	4	2	.4	38
181-	126953	-	<.1	10	359	5	2	.6	34
182-	126954	-	<.1	216	241	4	2	.6	167
183-	126955	-	<.1	28	182	4	2	.6	39
184-	126956	-	1.2	688	566	25	23	1.2	99
185-	126957	-	1.1	220	90	13	425	.6	470
186-	126958	-	<.1	151	72	6	6	.4	58
187-	126959	-	<.1	3813	78	4	10	1.2	43

cc: Leo Lindinger/Dan Macisaac FAX @ 451-4484

723-9405

Bul mun ECO-TECH LABORATORIES LTD. PRI FRANK J. PEZZOTTI, A.SC.T. B.C. Certified Assayer

.

SC94/Dalmation

-

10041 E. Trans Canada Hwy., R.R., 2. Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

APRIL 15, 1994

CERTIFICATE OF ASSAY ETK 94-178

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C.

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 77 ROCK SAMPLES received APRIL 8, 1994 ------ SHIPMENT #: 94-05

		Au	Au	
ET#	Description	(g/t)	(oz/t)	

1 -	126960	.03	.001	
2 -	126961	<.03	<.001	
3 -	126962	.04	.001	
4 -	126963	<.03	<.001	
5 -	126964	.07	.002	
6 -	126965	.71	.021	
7 -	126966	<.03	<.001	
8 -	126967	.57	.017	
9 -	126968	<.03	<.001	
10 -	126969	.08	.002	
11 -	126970	.20	.006	
12 -	126971	.17	.005	
13 -	126972	.14	.004	
14 -	126973	<.03	<.001	
15 -	126974	<.03	<.001	
16 -	126975	<.03	<.001	
17 -	126976	.09	.003	
18 -	126977	.33	.010	
19 -	126978	1.04	.030	
20 -	12697 9	.03	.001	
21 -	126980	.87	.025	
22 -	126981	.06	.002	
23 -	126982	.43	.013	
24 -	126983	<.03	<.001	
25 -	126985	<.03	<.001	
26 -	126986	<.03	<.001	
27 -	126987	<.03	<.001	
28 -	126988	<.03	<.001	
29 -	126989	.92	.027	
30 -	126990	<.03	<.001	
	$\partial \mathbf{I}$			
~ <i>0</i> 1	1500-Mu	no		•
Per	FRANK J.PEZZOTI	, A.SC.T. B.C.Ce	ertified	Assayer

•

PAGE 2

1102	~	A11	An	
T#	Description	(q/t)	(oz/t)	
====	=====================================	=========		========================
31 -	126991	<.03	<.001	
32 -	126992	<.03	<.001	
33 -	126993	<.03	<.001	
34 -	126994	<.03	<.001	
35 -	126995	<.03	<.001	
36 -	126996	<.03	<.001	
37 -	126997	.10	.003	
38 -	126998	3.64	.106	
39 -	126999	5.02	.146	
40 -	127000	.06	.002	
41 -	128601	<.03	<.001	
42 -	128602	<.03	<.001	
43 -	128603	<.03	<.001	
44 -	128604	<.03	<.001	
45 -	128605	<.03	<.001	
46 -	128606	.04	.001	
47 -	128607	2.62	.076	
48 -	128608	.03	.001	
49 -	128609	<.03	<.001	
50 -	128610	<.03	<.001	
51 -	128611	<.03	<.001	
52 -	128612	1.02	.030	
53 -	128613	.03	.001	
54 -	128614	1.42	.041	
55 -	128615	1.17	.034	
56 -	128616	.07	.002	
57 -	128617	.21	.006	
58 -	128618	<.03	<.001	
59 -	128619	.32	.009	
60 -	128620	.34	.010	
61 -	128621	.76	.022	
62 -	128622	.81	.024	
63 -	128623	1.61	.047	
64 -	128624	<.03	<.001	
65 -	128625	.43	.013	
	Bd min			
	FRANK J.PEZZOTT, A.Sc.I	B.C.Ce	rtified	Assayer
٩				

PAGE 3

ET#		Description	As (%)	Au (g/t)	Au (oz/t)	
66	-	128626	-	.18	.005	
67	-	128627	-	<.03	<.001	
68	-	128628	-	.37	.011	
69	-	128629	-	.06	.002	
70	-	128630	-	3.17	.092	
71	-	128631	-	.24	.007	
72	-	128632	-	.28	.008	
73	-	128633	-	<.03	<.001	
74	-	128634	-	.03	.001	
75	-	128635	-	.40	.012	
76	-	128636	-	1.09	.032	
77	-	128637	1.17	2.07	.060	

cc: Leo Lindinger/Dan Macisaac

BJL Munn. ECO-TECH LABORATORIES LTD. PRJ FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

SC94/Dalmatian

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

APRIL 18, 1994

CERTIFICATE OF ANALAYSIS ETK 94-178

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH _____

SAMPLE IDENTIFICATION: 77 CORE SAMPLES received APRIL 8, 1994 ------

SHIPMENT #: 94-05

		Ag	As	Cu	Mo	Pb	Sb	Zn
et# 	Description	(ppm)						
1 -	126960	.1	682	34	5	4	.6	55
2 -	126961	<.1	706	33	5	2	.6	56
з –	126962	.1	163	37	6	6	. 4	112
4 -	126963	<.1	26	218	6	6	.6	56
5 →	126964	.2	64	194	4	4	.8	84
6 -	126965	. 4	318	15	3	16	3.4	67
7 -	126966	<.1	38	5	3	2	.8	42
8 -	126967	.6	768	165	2	88	2.0	250
9 -	126968	.1	43	13	2	2	.6	60
10 -	126969	1.2	159	630	5	126	.8	314
11 -	126970	<.1	270	34	2	4	.6	85
12 -	126971	. 2	531	40	2	4	.8	104
13 -	126972	<.1	128	42	1	2	.6	93
14 -	12697 3	<.1	11	49	<1	2	.4	57
15 -	126974	<.1	40	110	5	2	. 4	68
16 -	126975	.2	82	423	<1	2	.6	124
17 -	126976	.1	555	21	2	12	. 8	117
18 -	126977	.3	1795	116	1	20	1.4	117
19 -	126978	.6	805	180	2	52	1.4	363
20 -	126979	.2	145	156	1	8	1.0	123
21 -	126980	.3	1016	164	2	14	1.4	112
22 -	126981	.1	115	203	2	6	1.0	94
23 -	126982	.2	219	96	<1	24	1.4	162
24 -	126983	<.1	19	121	2	2	.6	52
25 -	126985	.1	27	135	6	2	.4	60
26 -	126986	<.1	91	100	4	6	1.0	71
27 -	126987	. 2	70	189	<1	2	.6	60
28 -	126988	.1	77	153	6	6	.2	44
29 -	126989	. 4	6589	130	6	4	2.6	82
30 -	126990	.1	52	134	5	2	. 4	32

DALMATIAN RESOURCES LTD. ETK 94-178 APRIL 18, 1994

PAGE 2

			Ag	As	Cu	Мо	Pb	Sb	Zn
ET#		Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
====	==	******************	***======	*******	======				=====
31	-	126991	.1	23	125	6	2	.2	35
32	-	126992	<.1	14	19	7	2	.2	34
33	-	126993	.1	43	208	4	2	.6	48
34	-	126994	.1	42	216	6	2	.6	62
35	-	126995	.1	36	124	5	2	.8	58
36	-	126996	<.1	28	109	7	2	.2	44
37	-	126997	.2	2603	38	3	2	1.2	57
38	-	126998	1.8	6685	264	8	39	7.2	56
39	-	126999	2.6	2383	336	2	38	6.2	58
40	-	127000	.3	82	54	4	2	.8	48
41	-	128601	.2	19	44	2	2	.4	38
42	-	128602	<.1	8	82	7	2	.4	37
43	-	128603	<.1	18	27	7	2	.4	48
44	-	128604	<.1	34	23	4	2	.4	55
45	-	128605	<.1	8	174	2	2	.4	41
46	-	128606	.1	82	233	3	2	.6	63
47	-	128607	1.0	1015	483	9	16	1.6	76
48	-	128608	<.1	19	224	4	2	.4	42
49	-	128609	<.1	15	157	5	2	.4	52
50	-	128610	<.1	149	121	7	2	.4	63
51	-	128611	<.1	50	249	5	2	.6	41
52	-	128612	1.2	3734	240	6	658	3.0	1442
53	-	128613	<.1	115	180	4	2	.8	64
54	-	128614	.8	1167	89	2	48	2.2	128
55	-	128615	. 4	4784	41	8	32	2.0	88
56		128616	.2	153	32	14	8	. 4	31
57	-	128617	.2	558	44	5	6	.8	91
58	-	128618	<.1	31	151	4	6	. 4	46
59	-	128619	.3	587	149	4	10	1.2	81
60	-	128620	.6	484	136	12	16	.8	46
61	-	128621	.6	1334	200	5	18	1.4	160
62	-	128622	.7	1194	132	10	12	1.6	88
63	-	128623	.6	5602	62	13	20	17.4	24
64	~	128624	<.1	56	301	5	2	1.2	51
65	-	128625	.6	1048	385	7	14	2.0	75

	PAGE	3
--	------	---

			Ag	As	Cu	Mo	РЬ	sb	Zn
ET#		Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
==== 66	-	128626	.9	352	401	5			===== 75
67	-	128627	<.1	28	223	5	6	.8	70
68	-	128628	.7	1005	289	4	14	1.4	98
69	-	128629	.2	375	164	3	10	1.4	97
70	-	128630	1.1	4345	202	12	22	3.2	89
71	-	128631	. 2	1068	155	3	10	1.2	78
72	-	128632	.2	779	223	7	2	1.0	83
73	-	128633	<.1	61	84	7	2	.4	57
74	-	128634	.5	201	306	8	8	1.2	102
75	-	128635	<.1	1426	64	6	4	.8	65
76	-	128636	.6	3482	93	11	17	1.4	50
77	-	128637	.7	>10000	103	8	16	4.4	76

cc: Leo Lindinger/Dan Macisaac

FAX @ 451-4484

723-9405

Bel Munic ECO-TECH LABORATORIES LTD. PRIFRANK J. PEZZOTTI, A.SC.T. B.C. Certified Assayer

SC94/Dalmation

10041 El Trans Canada Hwy I R R. 12. Kamloops, B C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

APRIL 20, 1994

CERTIFICATE OF ASSAY ETK 94-188

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C.

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 1 ROCK SAMPLE received APRIL 13, 1994 SHIPMENT #: NONE GIVEN

 Au
 Au
 As

 ET# Description
 (g/t) (oz/t)
 (%)

 1 - 126984
 9.93
 .290
 1.31

PATHFINDER RESULTS TO FOLLOW

NOTE: < = LESS THAN

cc: Leo Lindinger/Dan Macisaac

ECO-TECH LABORATORIES LTD. P? FRANK J. PEZZOTTI,A.Sc.T. B.C. Certified Assayer

SC94/Dalmatian

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. 72, Kamloops, B.C. V2C 2J3 Phone (604) 573 5700 Fax (604) 573 4557

APRIL 20, 1994

CERTIFICATE OF ANALAYSIS ETK 94-188

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 1 CORE SAMPLE received APRIL 13, 1994 ----- SHIPMENT #: NONE GIVEN

		Ag	As	Cu	Mo	Pb	sb	Z	
ET#	Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm,	
=====		=================	*******						=====
1 -	126984	3.6	>10000	365	12	120	.8	112	

cc: Leo Lindinger/Dan Macisaac

NOTE: > = GREATER THAN

Bl mune ECO-TECH LABORATORIES LTD. PR^N FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

SC94/Dalmatian

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. <2. Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

APRIL 26, 1994

CERTIFICATE OF ASSAY ETK 94-200

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 233 CORE SAMPLES received APRIL 19, 1994 ----- SHIPMENT #: 94-07

		Au	Au	As	
ET#	Description	(g/t)	(oz/t)	(%)	
====		***********		=======================================	====
1 -	129001	1.42	.041	-	
2 -	129002	.16	.005	-	
3 -	129003	<.03	<.001	-	
4 -	129004	<.03	<.001	-	
5 -	129005	<.03	<.001	-	
6 -	129006	<.03	<.001	-	
7 -	129007	<.03	<.001	-	
8 -	129008	<.03	<.001	-	
9 -	129009	<.03	<.001	-	
10 -	129010	.04	.001	-	
11 -	129011	.03	.001	-	
12 -	129012	<.03	<.001	-	
13 -	129013	<.03	<.001	-	
14 -	129014	1.72	.050	1.33	
15 -	129015	.03	.001	-	
16 -	129016	<.03	<.001	-	
17 -	129017	<.03	<.001	-	
18 -	129018	<.03	<.001	-	
19 -	129019	<.03	<.001	-	
20 -	129020	<.03	<.001	-	
21 -	129021	<.03	<.001	-	
22 -	129022	<.03	<.001	-	
23 -	129023	<.03	<.001	-	
24 -	129024	<.03	<.001	-	
25 -	129025	<.03	<.001	-	
26 -	129026	<.03	<.001	-	
27 -	129027	<.03	<.001	-	
28 -	129028	15.49	.452	-	
29 -	129029	4.77	.139	1.47	
30 -	129030	.19	.006	-	
	3:1 mun	ur_			

De V FRANK J.PEZZOTTI, A.Sc.T. B.C.Certified Assayer

PAGE 2

			Au	Au	Ag	Ag	
ET#		Description	(g/t)	(oz/t)	(g/t)	(oz/t)	
=====		129031	<.03	<.001	-	-	
32	~	129032	<.03	<.001	-	-	
33	_	129033	<.03	<.001	-	-	
34	_	129034	<.03	<.001	-	-	
35	-	129035	<.03	<.001	-	-	
36	_	129036	<.03	<.001	-	+	
37	-	129037	<.03	<.001	-	-	
38	_	129038	<.03	<.001	-	-	
39		129039	<.03	<.001	-	-	
40	_	129040	<.03	<.001	-	-	
41	-	129041	.04	.001	-	-	
42	-	129042	420.65	12.267	93.3	2.72	
43	-	129043	.72	.021	-	-	
44	-	129044	1.16	.034	-	-	
45	-	129045	<.03	<.001	-	-	
46	-	129046	<.03	<.001	-	-	
47	-	129047	<.03	<.001	-	-	
48	-	129048	<.03	<.001	-	-	
49	-	129049	.04	.001	-	-	
50	-	129050	<.03	<.001	-	-	
51	-	129051	.17	.005	-	-	
52	-	129052	.06	.002	-	-	
53	-	129053	<.03	<.001	-	-	
54	-	129054	<.03	<.001	-	-	
55	-	129055	.03	.001	-	-	
56	-	129056	<.03	<.001	-	-	
57	-	129057	<.03	<.001	-	· -	
58	-	129058	<.03	<.001	-	-	
59	-	129059	<.03	<.001	-	-	
60	-	129060	<.03	<.001	-	-	
61	-	129061	<.03	<.001	-		
62	-	129062	.08	.002	-	-	
63	-	129063	<.03	<.001	-	-	
64	-	129064	<.03	<.001	-	-	
65	-	129065	<.03	<.001	-	-	
		Bot my	m				
pe	5	FRANK J.PEZZC	TTI, A.Sc	T.B.C.Ce	rtified	Assaye	r

PAGE 3 Au Αu As (%) ET# Description (g/t) (oz/t)66 - 129066 <.03 <.001 -67 - 129067 <.03 <.001 _ .04 .001 _ 68 - 129068 69 - 129069 .12 .003 _ .04 .001 70 - 129070.001 .04 71 - 129071 _ 72 - 129072 1.91 .056 73 - 129073 .17 .005 _ .06 .002 74 - 129074 _ .16 75 - 129075 .005 .48 76 - 129076 .014 _ 77 - 129077 4.02 .117 2.32 3.24 78 - 129078 .094 1.30 2.44 79 - 129079 .071 1.36 80 - 129080 1.45 .042 _ .011 81 - 129081 .39 -82 - 129082 2.09 .061 _ .044 83 - 129083 1.51 84 - 129084 1.99 .058 _ 5.67 85 - 129085 _ .165 86 - 129086 3.51 .102 1.30 87 - 129087 1.20 .035 _ 88 - 129088 -.20 .006 89 - 129089 1.13 .033 _ .08 90 - 129090 .002 _ .04 91 - 129091 .001 -<.001 92 - 129092 <.03 _ 93 - 129093 <.03 <.001 -94 - 129094 <.03 <.001 _ 95 - 129095 .03 .001 mini Per FRANK J.PEZZOTTI, A.Sc.T.B.C.Certified Assayer

FILL LABORATORIES LTD

PAGE	4			
		Au	Au	As
ET#	Description	(g/t)	(oz/t)	(%)
=====	120096			
90 -	129090	.25	< 001	_
97 -	129097	< 03	< 001	_
90 -	129090	< 03	< 001	_
<u> </u>	129099	< 03	< 001	_
100-	129100	< .03	< 001	-
101-	129101	<.03	< .001	_
102-	129102	<.03	< .001	-
103-	129103	<.03	<.001	-
104-	129104	<.03	<.001	-
105-	129105	.18	.005	-
106-	129106	.15	.004	-
107-	129107	.52	.015	-
108-	129108	.03	.001	-
109-	129109	<.03	<.001	-
110-	129110	<.03	<.001	-
111-	129111	<.03	<.001	-
112-	129112	.11	.003	-
113-	129113	4.84	.141	-
114-	129114	.03	.001	-
115-	129115	. 44	.013	-
116-	129116	<.03	<.001	-
117-	129117	.13	.004	-
118-	129118	<.03	<.001	-
119-	129119	<.03	<.001	-
120-	129120	<.03	<.001	-
121-	129121	<.03	<.001	-
122-	129122	<.03	<.001	-
123-	129123	<.03	<.001	-
124-	129124	<.03	<.001	-
125-	129125	2.21	.064	-
126-	129126	4.54	.132	-
127-	129127	4.72	.138	1.64
128-	129128	.18	.005	-
129-	129129	30.09	.878	-
130-	129130	.57	.017	-
131-	129131	<.03	<.001	-
132-	129132	<.03	<.001	-
133-	129133	<.03	<.001	_
134-	129134	<.03	<.001	-
135-	129135	<.03	<.001	-
	\sim (·			
	bit hum	~		
f. e	FRANK J.PEZZ	OTTI, A.Sc.	T.B.C.Ce	rtified Assayer

PAGE 5

.

		Au	Au	
ET# =	Description	(g/t)	(oz/t)	****
136-	129136	.11	.003	
137-	129137	<.03	<.001	
138-	129138	<.03	<.001	
139-	129139	<.03	<.001	
140-	129140	<.03	<.001	
141-	129141	<.03	<.001	
142-	129142	<.03	<.001	
143-	129143	<.03	<.001	
144-	129144	<.03	<.001	
145-	129145	<.03	<.001	
146-	129146	<.03	<.001	
147-	129147	<.03	<.001	
148-	129148	<.03	<.001	
149-	129149	28.02	.817	
150-	129150	<.03	<.001	
151-	129151	.04	.001	
152 -	129152	<.03	<.001	
153-	129153	<.03	<.001	
154-	129154	<.03	<.001	
155-	129155	<.03	<.001	
156-	129156	<.03	<.001	
157-	129157	<.03	<.001	
158-	129158	<.03	<.001	
159-	129159	<.03	<.001	
160-	129160	.04	.001	
161-	129161	<.03	<.001	
162-	129162	<.03	<.001	
163-	129163	<.03	<.001	
164-	129164	.03	.001	
165-	129165	<.03	<.001	
166-	129166	.03	.001	
167-	129167	.10	.003	
168~	129168	<.03	<.001	
169-	129169	<.03	<.001	
170-	129170	.18	.005	
	Bd hnin	m		
per	FRANK J.PEZZ	OTTI, A.Sc	T.B.C.Ce	rtified Assayer

PAGE 6

		Au	Au	As
ET#	Description	(g/t)	(oz/t)	(8)
≠==== 171-	129171	==== = == .94	.027	≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈
172-	129172	1.31	.038	-
173-	129173	1.58	.046	-
174-	129174	.66	.019	-
175-	129175	.18	.005	-
176-	129176	1.74	.051	-
177-	129177	1.47	.043	1.38
178-	129178	.12	.003	-
179-	129179	.17	.005	-
180-	129180	<.03	<.001	-
181-	129181	.03	.001	-
182-	129182	. 39	.011	-
183-	129183	.17	.005	~
184-	129184	.21	.006	_
185-	129185	<.03	<.001	-
186-	129186	.03	.001	_
187-	129187	<.03	<.001	_
188-	129188	<.03	<.001	_
189-	129189	<.03	<.001	-
190-	129190	.04	.001	_
191-	129191	<.03	<.001	-
192-	129192	<.03	<.001	-
193-	129193	<.03	<.001	-
194-	129194	.18	.005	-
195-	129195	1.70	.050	-
196-	129196	.06	.002	-
197-	129197	2.68	.078	_
198-	129198	<.03	<.001	-
199-	129199	.35	.010	-
200-	129200	<.03	<.001	-
201-	129201	3.28	.096	1.02
202-	129202	.08	.002	-
203-	129203	<.03	<.001	-
204-	129204	.33	.010	-
205-	129205	.08	.002	-
206-	129206	<.03	<.001	-
207-	129207	<.03	<.001	-
208-	129208	<.03	<.001	-
209-	129209	<.03	<.001	-
210-	129210	<.03	<.001	~
	129 h-1			
	Del Muni			
Per	FRANK J.PEZZOTTI	, A.SC.	T.B.C.Cer	tilled Assayer

EN TET LABORATORIES LTD

PAGE 7

		Au	Au	
ET#	Description	(g/t)	(oz/t)	
=====		=================		
211-	129211	<.03	<.001	
212-	129212	<.03	<.001	
213-	129213	<.03	<.001	
214-	129214	<.03	<.001	
215-	129215	<.03	<.001	
216-	129216	.04	.001	
217-	129217	<.03	<.001	
218-	129218	<.03	<.001	
219-	129219	<.03	<.001	
220-	129220	<.03	<.001	
221-	129221	<.03	<.001	
222-	129222	.03	.001	
223-	129223	<.03	<.001	
224-	129224	<.03	<.001	
225-	129225	.03	.001	
226-	129226	<.03	<.001	
227-	129227	<.03	<.001	
228 -	129228	<.03	<.001	
229-	129229	<.03	<.001	
230-	129230	<.03	<.001	
231-	129231	.08	.002	
232-	129232	<.03	<.001	
233-	129233	<.03	<.001	

NOTE: < = LESS THAN

cc: Leo Lindinger

ECO-TECH LABORATORIES LTD. P²⁰ FRANK J. PEZZOTTI,A.Sc.T. B.C. Certified Assayer

SC94/Dalmatian

.....

10041 E. Trans Canada Hwy., R.R. 12, Kamloops, B.C. V2C 2J3 Phone (604) 573:5700 Fax (604) 573:4557

APRIL 26, 1994

CERTIFICATE OF ANALYSIS ETK 94-200

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 233 CORE SAMPLES received APRIL 19, 1994 ------ SHIPMENT #: 94-07

		Ag	As	Cu	Мо	Pb	Sb	Zn
ET# =====	Description	(ppm) ==========	(mgq)	(ppm)	(ppm)	(ppm)(ppm)	(ppm)
1 -	129001	1.3	6602	44	6	16	2.2	95
2 -	129002	.2	1055	28	5	4	.2	92
3 -	129003	.2	53	18	3	4	<.2	49
4 -	129004	.2	27	29	6	2	<.2	63
5 -	129005	.3	33	203	4	2	<.2	51
б-	129006	.1	43	203	3	2	<.2	60
7 -	129007	.3	44	185	4	2	<.2	83
8 -	129008	.1	30	190	6	2	<.2	45
9 -	129009	.1	16	198	6	2	<.2	38
10 -	129010	.1	16	112	6	2	<.2	33
11 -	129011	.1	17	86	3	4	<.2	33
12 -	129012	.1	314	92	8	2	<.2	39
13 -	129013	.1	54	160	4	2	<.2	72
14 -	129014	.4	>10000	143	6	2	.6	96
15 -	129015	.1	190	289	6	2	<.2	76
16 -	129016	.2	34	170	5	2	<.2	42
17 -	129017	.1	18	127	4	2	<.2	48
18 -	129018	.1	10	146	5	4	<.2	32
19 -	129019	.1	11	75	4	2	<.2	40
20 -	129020	.1	26	150	5	2	<.2	67
21 -	129021	.3	105	138	4	2	<.2	80
22 -	129022	.1	18	123	4	2	<.2	58
23 -	129023	.2	24	136	4	2	<.2	65
24 -	129024	.3	42	207	4	2	<.2	68
25 -	129025	.2	29	204	5	4	<.2	63
26 -	129026	.1	21	53	4	2	<.2	48
27 -	129027	.1	22	41	6	2	<.2	45
28 -	129028	7.2	3205	721	8	100	.6	157
29 -	129029	1.4	>10000	82	14	20	1.0	30
30 -	129030	.3	487	46	7	2	<.2	71
	1	÷						

Per FRANK J. PEZZOTTI, A.Sc.T. B.C.Certified Assayer

PAGE	2
------	---

			Ag	As	Cu	Mo	Pb	sb	Zn
ET#		Description	(ppm)	(ppm)	(ppm)	(ppm) ((ppm) (ppm)	(ppm)
31		129031	.1	38	67	10	2	<.2	39
32	-	129032	.1	20	93	6	2	<.2	43
33	-	129033	.1	13	30	4	2	<.2	40
34	-	129034	.1	64	190	7	4	<.2	73
35	-	129035	.1	47	36	6	2	<.2	91
36	-	129036	.1	15	180	2	2	<.2	63
37	-	129037	.1	11	130	3	2	<.2	54
38	-	129038	.1	38	127	4	2	<.2	83
39	-	129039	.2	10	161	5	10	<.2	46
40	-	129040	.1	7	220	6	8	<.2	34
41	-	129041	. 2	37	408	5	8	<.2	42
42	-	129042	>30	1815	191	16	12	<.2	75
43	-	129043	. 3	37	164	8	12	<.2	50
44	-	129044	.1	11	180	4	8	<.2	47
45	-	129045	.1	6	197	4	6	<.2	44
46	-	129046	.1	6	152	3	6	<.2	43
47	-	129047	.1	17	148	6	8	<.2	53
48	-	129048	.1	7	205	4	4	<.2	42
49	-	129049	.1	16	180	4	8	<.2	58
50	-	129050	.1	31	153	4	8	<.2	49
51	-	129051	.2	192	102	4	16	<.2	90
52	-	129052	.1	5	226	4	4	<.2	40
53	-	129053	.1	6	146	6	6	<.2	35
54	-	129054	.1	9	56	6	8	<.2	58
55	-	129055	.1	10	21	5	8	<.2	56
56	-	129056	.2	9	96	6	6	<.2	39
57	-	129057	.1	13	214	4	6	<.2	43
58	-	129058	.2	16	192	6	6	<.2	58
59	-	129059	.1	10	190	5	8	<.2	44
60	-	129060	.1	19	180	6	8	<.2	45
61	-	129061	.2	39	111	8	4	<.2	52
62	-	129062	.1	11	158	8	4	<.2	51
63	-	129063	.1	10	156	5	6	<.2	43
64	-	129064	.1	9	88	6	4	<.2	39
65	-	129065	.1	6	63	8	4	<.2	42
		BI	- Whenen						
		C TRANK	J. PEZZOTTI	, A.Sc.1	r. B.C.	Certified	l Assa	yer	
		1						-	

APRIL 26, 1994

.

PAGE	3							
		Ag	As	Cu	MO	Pb	sb	Zn
ET#	Description	(ppm)	(ppm)	(mqq)	(ppm)	(ppm)	(ppm)	(ppm)
66 -	129066	.1	21	165	5	10	<.2	63
67 -	129067	.1	16	176	3	6	<.2	63
68 -	129068	.1	12	128	4	6	<.2	43
69 -	129069	.1	77	94	6	8	<.2	58
70 -	129070	.2	776	81	5	30	<.2	60
71 -	129071	.2	164	72	5	12	<.2	54
72 -	129072	.5	5962	86	6	22	.2	53
73 -	129073	. 2	643	134	5	10	<.2	60
74 -	129074	.1	210	74	6	6	<.2	46
75 -	129075	.1	100	78	5	6	<.2	44
76 -	129076	.2	332	118	4	14	<.2	44
77 -	129077	1.2	>10000	26	11	24	. 8	39
78 -	129078	1.3	>10000	23	12	30	.6	43
79 -	129079	.9	>10000	16	17	16	.6	17
80 -	129080	.6	8822	9	11	10	.4	10
81 -	129081	.3	753	21	12	14	<.2	40
82 -	129082	.5	5546	37	7	20	.2	39
83 -	129083	. 2	5800	19	12	22	.2	38
84 -	129084	1.1	6603	20	14	20	.4	23
85 -	129085	1.3	9149	85	14	42	.6	45
86 -	129086	1.1	>10000	114	12	134	1.4	672
87 -	129087	.6	2841	28	7	22	.8	33
88 -	129088	.5	583	110	3	222	1.4	86
89 -	129089	.7	3992	133	6	32	.6	75
90 -	129090	1.1	468	298	8	26	<.2	75
91 -	129091	.8	198	291	8	22	<.2	84
92 -	129092	.1	68	163	3	8	<.2	63
93 -	129093	.1	46	189	3	4	<.2	75
94 -	129094	.1	43	212	5	2	<.2	71
95 -	129095	.4	37	247	5	14	<.2	104
96 -	129096	.5	404	92	7	24	<.2	104
97 -	129097	.2	187	153	1	10	.6	110
98 -	129098	.1	47	237	3	8	<.2	60
99 -	129099	.1	115	117	2	10	<.2	73
100-	129100	.1	75	77	4	4	<.2	54
	ist.	Mun						
	FRANK	J. PEZZO	TTI, A.SC	.T. B.C.	Certifi	ed Assa	ayer	

#
DALMATIAN RESOURCES LTD. ETK 94-200

PAGE 4

APRIL 26, 1994

		Ag	As	Сц	Мо	Pb	sb	Zn
ET#	Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)((ppm)	(ppm)
101-	129101	======= 1 ، 1	110	95		·======= 8	<.2	40
102-	129102	.1	128	165	7	6	<.2	74
103-	129103	.1	57	216	2	10	<.2	70
104-	129104	.1	30	134	4	6	<.2	80
105-	129105	.8	982	159	6	20	.2	144
106-	129106	.7	2189	109	7	16	.4	106
107-	129107	.6	6371	73	1	18	. 4	95
108-	129108	.1	263	192	5	8	<.2	95
109-	129109	.1	30	29	5	8	<.2	57
110-	129110	.2	41	58	7	6	<.2	64
111-	129111	.1	19	50	4	8	<.2	44
112-	129112	.1	1950	37	5	8	<.2	61
113-	129113	1.2	4896	177	12	36	.4	59
114-	129114	.1	466	44	6	6	<.2	48
115-	129115	. 4	779	100	6	18	<.2	175
116-	129116	.1	35	184	4	8	<.2	47
117-	129117	.2	1484	104	5	12	<.2	75
118-	129118	.1	32	93	6	4	<.2	33
119-	129119	.2	34	296	4	10	<.2	46
120-	129120	.1	45	45	6	6	<.2	45
121-	129121	.1	43	24	6	8	<.2	52
122-	129122	.1	9	40	6	6	<.2	43
123-	129123	.1	19	194	4	8	<.2	46
124-	129124	.2	129	206	3	12	<.2	95
125-	129125	1.4	3843	220	5	36	1.2	85
126-	129126	2.7	6377	142	6	42	2.0	52
127-	129127	1.9	>10000	88	5	41	2.0	39
128-	129128	.8	445	210	4	24	.4	108
129-	129129	15.2	843	18	8	14	<.2	49
130-	129130	.6	1002	129	2	22	<.2	102
131-	129131	.1	49	133	3	6	<.2	50
132-	129132	.1	34	66	4	10	<.2	40
133-	129133	.1	33	176	4	8	<.2	51
134-	129134	.1	11	113	4	8	<.2	40
135 -	129135	.1	1226	109	4	6	<.2	42
136-	129136	.1	13	60	4	8	<.2	56
137-	129137	.2	65	89	3	10	<.2	79
138-	129138	. 4	55	138	6	16	<.2	79
139-	129139	.1	52	56	11	8	<.2	74
140-	129140	.1	110	137	2	14	<.2	92
	∩ 1							

Art FRANK J. PEZZOTTI, A.SC.T. B.C.Certified Assayer

ETT - TET LABORATORIES LTD

-

PAGE	5
------	---

		Ag	As	Cu	Mo	Pb	sb	Zn
ET#	Descripti	on (ppm)	(ppm)	(ppm)	(ppm)	(ppm) (ppm)	(ppm)
=====		***************************************			*=======	=======		======
141-	129141	.1	60	139	1	10	<.2	99
142-	129142	.1	17	55	5	12	<.2	52
143-	129143	.1	17	135	3	8	<.2	66
144-	129144	.1	24	267	2	10	<.2	61
145-	129145	.1	17	217	1	8	<.2	55
146-	129146	.1	53	94	2	18	<.2	59
147-	129147	.1	19	170	1	10	<.2	66
148-	129148	.1	17	120	1	6	<.2	65
149-	129149	1.1	49	103	5	4	<.2	68
150-	129150	.1	85	156	1	10	<.2	80
151-	129151	.1	249	87	1	12	<.2	80
152-	129152	.1	18	171	1	6	<.2	63
153-	129153	.1	12	154	4	2	<.2	51
154-	129154	.1	39	202	4	2	<.2	72
155-	129155	.1	11	176	3	2	<.2	49
156-	129156	.1	9	190	4	2	<.2	46
157-	1 291 57	.1	4	243	6	2	<.2	44
158-	129158	.1	7	222	4	2	<.2	57
159-	129159	.1	24	106	4	2	<.2	57
160-	129160	.2	226	55	5	6	<.2	68
161-	129161	.2	98	34	6	2	<.2	35
162-	129162	.1	17	49	6	2	<.2	31
163-	129163	.1	10	107	4	2	<.2	48
164-	129164	.4	43	353	5	2	<.2	84
165-	129165	.1	13	190	4	2	<.2	56
166-	129166	.2	153	81	6	4	<.2	50
167-	129167	.1	931	26	4	4	<.2	33
168-	129168	.1	66	80	4	- 2	<.2	53
169-	129169	.1	36	129	3	2	<.2	62
170-	129170	.3	509	60	6	6	<.2	56
		٨			-	-		
	ſ	bet noun	<u> </u>					
	VEV FR	ANK J. PEZZO	TTI, A.Sc	.T. B.C.	.Certifi	ed Assa	yer	

DALMATIAN RESOURCES LTD. ETK 94-200

•

PAGE t

.....

.

		Ag	As	Cu	Mo	Pb	Sb	Zn
ET# 	Description	(ppm)	(ppm)	(ppm)	(ppm))(mqq))	(mqq)
171-	129171	 .7	473	15	8	 8	<.2	10
172-	129172	.3	1070	18	8	18	<.2	18
173-	129173	1.2	1510	150	4	44	.2	86
174-	129174	.9	1126	166	6	19	. 2	73
175 -	129175	.6	1074	74	5	4	- 4	70
176-	129176	.5	8010	42	19	24	1.0	32
177 -	129177	.6	>10000	82	9	16	2.0	58
178-	129178	.3	776	75	7	10	.6	53
179-	129179	.2	653	86	4	2	<.2	49
180-	129180	.1	45	172	10	2	<.2	60
181-	129181	.1	24	170	5	2	<.2	65
182-	129182	.7	1492	190	5	12	<.2	101
183-	129183	.8	164	56	5	22	<.2	163
184-	129184	•2	530	93	4	22	<.2	126
185-	129185	.1	47	54	6	2	<.2	66
186-	129186	.3	72	66	6	2	<.2	86
187-	129187	.2	51	102	7	2	<.2	60
188-	129188	.7	82	126	6	2	<.2	79
189-	129189	.6	112	149	2	26	<.2	129
190-	129190	. 4	107	179	4	2	<.2	95
191-	129191	.1	6	137	2	2	<.2	34
192-	129192	.1	19	126	4	2	<.2	45
193-	129193	.2	62	102	3	2	2.0	58
194-	129194	. 4	1416	110	2	2	.4	66
195-	129195	1.0	3508	96	5	12	1.2	77
196-	129196	.1	163	78	2	2	1.0	59
197-	129197	- 6	7738	65	3	14	2.4	148
198-	129198	.1	33	3	3	2	3.2	29
199-	129199	.1	770	46	4	2	1.8	168
200-	129200	.1	69	4	2	2	1.6	49
201-	129201	1.2	>10000	1//	4	12	3.2	195
202-	129202	.1	266	104	2	2	2.0	40
203-	129203	.1	58	9	4	2	.8	33
204-	129204	.2	1034	14/	3	12	.8	80
205-	129205	.1	193	112	4	2	- 8	52
206-	129206	.1	16	51	4	2	- 4	32
207-	129207	.1	7	37	4	2	.4	48
208-	129208	.1	14	51	3	2	. 4	45
209-	129209	.1	6	224	2	2	.2	53
210-	129210	.1	4	48	2	2	.2	39
	ĺ,	Lhn.	~					

Ver FRANK J. PEZZOTTI, A.Sc.T. B.C.Certified Assayer

DALMATIAN RESOURCES LTD. ETK 94-200

APRIL 26, 1994

PAGE	7
------	---

		Ag	As	Cu	МО	Pb	Sb	Zn
ET#	Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)(ppm)	(ppm)
======								======
211-	129211	.1	5	49	3	2	.2	48
212-	129212	.1	7	31	2	2	- 2	49
213-	129213	.1	11	58	2	2	.2	64
214-	129214	.1	4	33	1	2	. 4	34
215-	129215	.1	1	13	3	2	. 2	36
216-	129216	.1	34	207	19	2	.2	31
217-	129217	.1	б	44	5	2	.2	30
218-	129218	.1	7	21	6	2	.2	33
219-	129219	.1	6	72	6	4	.2	19
220-	129220	.1	10	48	39	2	.2	25
221-	129221	.1	8	40	5	2	. 2	29
222-	129222	.1	42	35	17	2	.2	47
223-	129223	.1	7	57	5	2	.2	29
224-	129224	.1	10	53	4	2	.2	46
225-	129225	.1	49	51	2	4	.2	35
226-	129226	.1	5	46	7	2	. 2	35
227-	129227	.1	13	38	5	2	. 2	35
228-	129228	.1	46	43	4	2	. 2	39
229-	129229	.1	56	77	4	2	.2	47
230-	129230	.1	14	66	5	2	.2	45
231-	129231	.1	103	42	4	2	.2	65
232-	129232	.1	18	55	4	2	. 2	43
233-	129233	.1	10	43	6	2	<.2	32

NOTE: < = LESS THAN > = GREATER THAN

cc: Leo Lindinger

<u>FL Munn</u> ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

10041 E. Trans Canada Hwy., R.R. =2. Kamioops. B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

APRIL 21, 1994

CERTIFICATE OF ASSAY ETK 94-202

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 13 CORE SAMPLES received APRIL 19, 1994 ------ SHIPMENT #: NONE GIVEN

ET#	Description	Au (g/t)	Au (oz/t)	As (%)	
1 -	- 128638	4.02	.117	2.39	
2 -	- 128639	.32	.009		
3 -	128640	<.03	<.001	-	
4 -	- 128641	<.03	<.001	-	
5 -	- 128642	.08	.002	-	
6 -	- 128643	1.77	.052	-	
7.	128644	5.81	.169	-	
8 -	- 128645	.18	.005	-	
9 -	128646	<.03	<.001	-	
10 -	- 128647	.56	.016	-	
11 -	- 128648	<.03	<.001	-	
12 -	- 128649	.17	.005	-	
13 -	- 128650	1.77	.052	-	

NOTE: < = LESS THAN

cc: Leo Lindinger/Dan Macisaac

ECO-TECH LABORATORIES LTD. ψ (FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

10041 E. Trans Canada Hwy., R.R. -2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

APRIL 25, 1994

CERTIFICATE OF ANALAYSIS ETK 94-202

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. VSR 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 13 CORE SAMPLES received APRIL 19, 1994 ------ SHIPMENT #: NONE GIVEN

		Ag	As	Cu	Мо	Pb	Sb	Zn	
ET#	Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
=====		***********					=======		=====
1 -	128638	.9	>10000	76	10	18	1.0	35	
2 -	128639	.7	567	173	6	24	.2	104	
3 -	128640	. 2	93	99	5	2	<.2	47	
4 -	128641	.1	91	74	3	2	<.2	59	
5 -	128642	. 2	786	52	6	2	<.2	66	
6 -	128643	.7	4524	123	5	14	<.2	75	
7 -	128644	2.6	8147	239	17	36	. 4	110	
8 -	128645	<.1	626	105	4	2	<.2	94	
9 -	128646	<.1	38	83	9	2	<.2	62	
10 -	128647	<.1	3045	72	6	6	<.2	55	
11 -	128648	.1	28	93	7	2	<.2	64	
12 -	128649	<.1	1218	93	5	2	<.2	91	
13 -	128650	.3	6616	3	8	16	.2	69	

cc: Leo Lindinger/Dan Macisaac FAX @ 451-4484 723-9405

NOTE: > = GREATER THAN

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

APRIL 27, 1994

CERTIFICATE OF ASSAY ETK 94-205

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 63 CORE SAMPLES received APRIL 20, 1994 ------ SHIPMENT #: 94-08

	Au	Au	As	
ET# Description	(g/t)	(oz/t)	(8)	

1 - 129234	<.03	<.001	-	
2 - 129235	<.03	<.001	-	
3 - 129236	<.03	<.001	-	
4 - 129237	<.03	<.001	-	
5 - 129238	<.03	<.001	-	
6 - 129239	1.07	.031	-	
7 - 129240	.14	.004	-	
8 - 129241	.15	.004	-	
9 - 129242	.03	.001	-	
10 - 129243	4.56	.133	1.77	
11 - 129244	.12	.003	-	
12 - 129245	<.03	<.001	-	
13 - 129246	<.03	<.001	-	
14 - 129247	2.39	.070	-	
15 - 129248	.14	.004	-	
16 - 129249	3.03	.088	1.82	
17 - 129250	.09	.003	-	
18 - 12925 1	<.03	<.001	-	
19 - 129252	.83	.024	-	
20 - 129253	.11	.003	-	
21 - 129254	.03	.001	-	
22 - 129255	1.66	.048	1.18	
23 - 129256	<.03	<.001	-	
24 - 129257	2.94	.086	1.70	
25 - 129258	3.65	.106	-	
26 - 129259	.05	.001	-	
27 - 129260	<.03	<.001	-	
Bel miner		0		
PKI FRANK J.PEZZOTTI, A.SC	э.т., в.с.	Certilled	1 Assayer	

DALMATIAN RESOURCES LTD. ETK 94-205 APRIL 27, 1994

.

PA	GE	2

		Ац	Au	As	
ET#	Description	(g/t)	(oz/t)	(१)	
28 -	129261	.18	.005	-	
29 -	129262	.10	.003	-	
30 -	129263	2.68	.078	-	
31 -	129264	.21	.006	-	
32 -	129265	4.06	.118	-	
33 -	129266	.11	.003	-	
34 -	129267	1.17	.034	-	
35 -	129268	3.04	.089	1.74	
36 -	129269	<.03	<.001	-	
37 -	129270	<.03	<.001	-	
38 -	129271	<.03	<.001	-	
39 -	129272	<.03	<.001	-	
40 -	129273	<.03	<.001	-	
41 -	129274	<.03	<.001	-	
42 -	129275	<.03	<.001	-	
43 -	129276	<.03	<.001	-	
44 -	129277	<.03	<.001	-	
45 -	129278	<.03	<.001	-	
46 -	129279	.21	.006	-	
47 -	129280	.20	.006	-	
48 -	129281	<.03	<.001	-	
49 -	129282	1.02	.030	-	
50 -	129283	<.03	<.001	-	
51 -	129284	<.03	<.001	-	
52 -	129285	<.03	<.001	-	
53 -	129286	<.03	<.001	-	
54 -	129287	.28	.008	-	
55 -	129288	.50	.015	-	
56 -	129289	.32	.009	-	
57 -	129290	.35	.010	-	
58 -	129291	.70	.020	-	
59 -	129292	2.98	.087	2.20	
60 -	129293	.93	.027	-	
	B2 mina				
pro	FRANK J.PEZZOTTI, A.Sc.I	с., в.с.	Certified	i Assayer	

DALMATIAN RESOURCES LTD. ETK 94-205

APRIL 27, 1994

PAGE 3

ET#		Description	Au (g/t)	Au (oz/t)	As (ዬ)	
====	==			*======		
61	-	129294	7.20	.210	3.32	
62	-	129295	.71	.021	L –	
63	-	129296	<.03	<.001	-	

NOTE: < = LESS THAN

cc: Leo Lindinger

Ś

ECO-TECH LABORATORIES LTD. VCV FRANK J. PEZZOTTI,A.Sc.T. B.C. Certified Assayer

10041 E. Trans Canada Hwy: R.R. -2. Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

APRIL 28, 1994

CERTIFICATE OF ANALYSIS ETK 94-205

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

.

SAMPLE IDENTIFICATION: 63 CORE SAMPLES received APRIL 20, 1994 ------SHIPMENT #: 94-08

		Ag	As	Cu	Mo	Pb	Sb	Zn
ET#	Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
 1 -	129234	.2	46	75	5	8	1.0	59
2 -	129235	.1	44	68	6	4	.6	63
3 -	129236	.1	9	110	5	8	. 4	50
4 –	129237	.1	9	94	4	2	.4	48
5 -	129238	.3	46	135	4	2	.2	52
6 -	129239	1.2	937	210	5	18	16.0	57
7 -	129240	.8	245	166	4	14	3.6	85
8 -	129241	.8	178	49	9	8	1.0	67
9 -	129242	.3	103	55	4	2	.6	83
10 -	129243	2.3	>10000	116	11	534	8.6	698
11 -	129244	.1	912	59	5	24	2.8	108
12 -	129245	.1	54	65	4	2	.6	52
13 -	129246	.3	73	343	3	6	.4	54
14 -	129247	1.2	9228	123	6	232	3.0	468
15 -	129248	.2	1365	280	3	14	1.6	77
16 -	129249	2.3	>10000	206	6	346	9.6	944
17 -	129250	. 4	313	93	4	52	2.2	191
18 -	129251	.2	86	142	5	6	. 4	60
19 -	129252	.6	1750	50	2	12	3.8	95
20 -	129253	.2	371	90	4	6	1.2	86
21 -	129254	.1	74	63	3	2	. 4	52
22 -	129255	.6	>10000	64	3	32	5.6	49
23 -	129256	.1	178	74	5	8	1.4	84
24 -	129257	1.2	>10000	65	4	78	7.0	183
25 -	129258	1.0	>10000	150	5	366	7.2	943
26 -	129259	1.3	239	85	5	16	1.6	81
27 -	129260	.1	64	65	2	2	12.0	54

DALMATIAN RESOURCES LTD. ETK 94-205 APRIL 28, 1994

PAGE 2

			Ag	As	Cu	Mo	Pb	sb	Zn
ET# 		Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
28	_	129261	<u></u> .2	334	71	7	6	.2	78
29	_	129262	.1	208	93	3	2	.4	63
30	_	129263	1.4	7358	163	4	104	3.4	296
31	-	129264	.6	726	140	4	20	1.2	95
32	-	129265	2.4	7953	293	9	332	4.4	973
33	-	129266	.3	1781	100	4	14	1.6	78
34	-	129267	1.7	7665	250	4	160	3.6	329
35	-	129268	1.2	>10000	94	6	120	9.6	440
36	-	129269	.1	141	35	4	2	2.2	45
37	-	129270	.1	50	57	4	2	. 4	29
38	-	129271	.1	38	214	5	2	1.4	44
39	-	129272	.2	34	106	5	4	.6	65
40	-	129273	.1	15	69	6	2	.2	64
41	-	129274	.1	17	102	4	2	<.2	68
42	-	129275	. 2	19	111	5	2	.2	89
43	-	129276	.1	32	158	4	2	.2	61
44	-	129277	.1	42	112	2	2	.2	49
45	-	129278	.3	26	208	19	2	<.2	29
46	-	129279	1.1	634	61	6	28	.4	39
47	-	129280	.6	567	93	9	8	.6	84
48		129281	.3	75	68	7	2	1.2	58
49	-	129282	1.6	1198	156	9	60	2.6	129
50	-	129283	.1	542	69	4	6	3.4	57
51	-	129284	.1	103	101	4	8	1.2	62
52	-	129285	.1	22	61	4	2	.2	46
53		129286	.1	113	162	6	2	<.2	61
54	-	129287	.3	646	45	13	6	.6	100

PC (FRANK J.PEZZOTTI, A.SC.T. B.C. Certified Assayer

PAGE 3

			Ag	As	Cu	Mo	Pb	sb	Zn
ET#		Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
	***	120200	*======================================	========= 20/1	146		========	=====: م	1 47
22	-	129288	. 4	2041	140	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10	• •	147
56	-	129289	.3	2396	115	11	16	.8	82
57	-	129290	.7	1171	89	15	22	. 8	72
58	-	129291	1.0	1954	187	15	22	1.0	302
59	-	129292	1.6	>10000	129	10	34	6.0	222
60	-	129293	.6	4607	123	15	18	2.6	157
61	-	129294	3.2	>10000	544	13	76	12.6	679
62	-	129295	1.2	4359	227	4	28	3.6	188
63	-	129296	.1	110	142	4	2	.8	92

cc: Leo Lindinger/Dan Macisaac FAX @ 451-4484 723-9405

<u>Bl munn</u> ECO-TECH LABORATORIES LTD. PCJ FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

.

10041 E. Trans Canada Hwy., R.R. *2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

MAY 6, 1994

CERTIFICATE OF ANALYSIS ETK 94-205

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

SAMPLE IDENTIFICATION: 63 CORE samples received APRIL 20, 1994

ATTENTION: FRANK MILAKOVICH

ET#	Description	BaO	P205	SiO2	MnO	Fe203	MgO	A1203	CaO	TiO2	Na2O	K20 1	L.O.I.
			******	======	=====		======				======	*====	_====
45 -	129278	.04	.05	75.01	.03	1.98	.66	11.97	4.14	.17	2.95	.98	2.02

QC DATA ====== STANDARDS:

SY2.08.3759.91.326.242.8111.757.88.154.194.481.84MRG-1.01.0539.55.1717.5113.098.1814.463.97.58.042.40

NOTE: VALUES EXPRESSED IN PERCENT

cc:Leo Lindinger/Dan Macisaac

sc94/Dalmatian

A.600

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.SC.T. B.C. CERTIFIED ASSAYER

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

APRIL 27, 1994

CERTIFICATE OF ASSAY ETK 94-206

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 37 CORE SAMPLES received APRIL 21, 1994 SHIPMENT #: 94-09

		Au	Au	As	
ET# Descrip	tion	(g/t)	(oz/t)	(%)	
=================	=======================================	*****			==:
1 - 129301		.08	.002	-	
2 - 129302		1.03	.030	1.22	
3 - 129303		<.03	<.001	-	
4 - 129304		.04	.001	-	
5 - 129305		.10	.003	-	
6 - 129306		<.03	<.001	-	
7 - 129307		<.03	<.001	-	
8 - 129308		<.03	<.001	-	
9 - 129309		<.03	<.001	-	
10 - 129310		.03	.001	-	
11 - 129311		.30	.009	-	
12 - 129312		.09	.003	-	
13 - 129313		.39	.011	-	
14 - 129314		<.03	<.001	-	
15 - 129315		<.03	<.001	-	
16 - 129316		.59	.017	-	
17 - 129317		.03	.001	-	
18 - 129318		<.03	<.001	-	
19 - 129319		.04	.001	-	
20 - 129320		<.03	<.001	-	
21 - 129321		.52	.015	-	
22 - 129322		.07	.002	-	
23 - 129323		.03	.001	-	
24 - 129324		.10	.003	-	
25 - 129325		<.03	<.001	-	
26 - 129326		. 39	.011	-	
27 - 129327		<.03	<.001	-	
Rol	min.				
PEV FRANK J	.PEZZOTTI, A.Sc.T.	в.с.с	Certified	Assayer	

PAGE 2

			Au Au
ET#		Description	(g/t) (oz/t)
===:	===		≈≈≈≈≈≈≈≈≈≈≈≈≈≈ ≈±≠≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈
28	-	129328	.33 .009
29	-	129329	.08 .002
30	-	129330	<.03 <.001
31	-	129331	<.03 <.001
32	-	129332	1.24 .036
33	-	129333	<.03 <.001
34	-	129334	<.03 <.001
35	-	129335	1.17 .034
36	-	129336	<.03 <.001
37	-	129337	.36 .010

NOTE: < = LESS THAN

cc: Leo Lindinger

PRE FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

APRIL 27, 1994

CERTIFICATE OF ANALYSIS ETK 94-206

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 37 CORE SAMPLES received APRIL 21, 1994

SHIPMENT #: 94-09

			Ag	As	Cu	Mo	Pb	Sb	Zn
ET#		Description	(mqq)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
====				*********					
1	-	129301	.2	626	94	2	2	2.0	55
2	-	129302	.6	>10000	142	4	14	2.8	65
3	-	129303	.1	102	120	5	2	.6	35
4	-	129304	.1	42	111	7	2	<.2	46
5		129305	. 4	639	78	6	14	.4	46
6	-	129306	.1	25	82	6	2	<.2	46
7	-	129307	.2	32	66	6	2	<.2	46
8	-	129308	.2	143	116	5	2	<.2	75
9	-	129309	.2	37	168	6	2	<.2	66
10	-	129310	.1	26	148	6	2	<.2	71
11	-	129311	.3	274	276	3	12	<.2	127
12	-	129312	.1	60	50	9	4	<.2	66
13	-	129313	.4	201	116	4	10	<.2	155
14	-	129314	.1	21	69	6	2	<.2	53
15	-	129315	.1	24	71	4	2	<.2	40
16	-	129316	.5	624	134	5	6	<.2	463
17	-	129317	.1	12	59	4	2	<.2	64
18	-	129318	.1	35	199	3	2	<.2	66
19	-	129319	.4	200	119	5	2	<.2	86
20	-	129320	.2	37	124	4	2	<.2	69
21	-	129321	.2	136	60	6	8	<.2	110
22	-	129322	.1	37	79	3	2	<.2	55
23	-	129323	.1	64	78	6	2	<.2	64
24	-	129324	.1	86	29	7	2	<.2	91
25	-	129325	. 2	29	169	3	2	<.2	83
26	-	129326	.3	639	160	4	22	<.2	117
27	-	129327	.1	51	57	5	2	<.2	45
			B.S. mm	<u></u>					

DALMATIAN RESOURCES LTD. ETK 94-206

APRIL 27, 1994

			Ag	As	Cu	Mo	Pb	sb	Zn
ET#		Description(ppb	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
====	-==		********			======	======		
28	-	129328	.2	1235	98	6	6	<.2	79
29	-	129329	. 3	1291	155	6	2	<.2	103
30	-	129330	.1	28	133	2	2	<.2	48
31	-	129331	.2	114	100	5	2	<.2	95
32	-	129332	.2	56	40	3	48	.4	159
33	-	129333	. 1	94	46	7	2	<.2	35
34		129334	.1	54	65	3	4	<.2	51
35	-	129335	.3	9796	46	12	124	. 4	223
36	-	129336	.1	63	52	7	8	<.2	45
37	-	129337	.1	1315	36	8	34	<.2	103

cc: Leo Lindinger

FAX @ 451-4484

PAGE 2

-

723-9405

Bumm ECO-TECH LABORATORIES LTD.

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

MAY 3, 1994

CERTIFICATE OF ASSAY ETK 94-207

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 21 CORE SAMPLES received APRIL 22, 1994 ------ SHIPMENT #: 94-10

ET#	Description	Au (g/t)	Au (oz/t)	A5 (%)	
1 -	129338	.03	.001		
2 -	129339	.56	.016	-	
3 –	129340	.93	.027	-	
4 –	129341	.19	.006	-	
5 -	129342	<.03	<.001	-	
6 -	129343	<.03	<.001	-	
7 -	129344	.73	.021	-	
8 -	129345	.86	.025	-	
9 -	129346	.05	.001	-	
10 -	129347	1.91	.056	-	
11 -	129348	3.90	.114	2.84	
12 -	129349	.08	.002	-	
13 -	129350	3.06	.089	-	
14 -	131001	1.66	.048	-	
15 -	131002	7.49	.218	3.08	
16 -	131003	3.70	.108	1.25	
17 -	131004	2.80	.082	-	
18 -	131005	5.54	.162	-	
19 -	131006	1.51	.044	-	
20 -	131007	.03	.001	-	
21 -	131008	.03	.001	-	

NOTE: < = LESS THAN

cc: Leo Lindinger/Dan Macisaac

FBANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

MAY 3, 1994

CERTIFICATE OF ANALYSIS ETK 94-207

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

		Ag	As	Cu	Mo	Pb	Sb	Zn
ET#	Description	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
	120330	:=====================================	:=====≈= 1 ^ 9	12/	=======================================		====×: 0	61 of
	129330	.2	100	134		0		01
2 -	129339	.2	607	36	4	8	1.0	34
3 -	129340	. 4	1767	55	5	8	1.0	70
4 -	129341	.4	251	84	6	2	.4	90
5 -	129342	.3	26	75	5	2	.4	59
6 -	129343	.3	27	46	4	2	.2	55
7 -	129344	.6	2505	121	6	52	.8	216
8 -	129345	.4	6848	46	5	26	1.6	110
9 -	129346	.2	226	157	5	2	.4	66
10 -	129347	.5	8597	140	6	84	2.2	224
11 -	129348	1.2	>10000	249	5	202	6.8	734
12 -	129349	.7	535	245	4	14	1.2	157
13 -	129350	1.4	8610	263	6	134	3.8	429
14 -	131001	.9	6190	193	3	28	3.4	416
15 -	131002	1.1	>10000	149	19	38	9.0	1020
16 -	131003	.1.4	>10000	73	13	24	4.4	968
17 -	131004	1.0	8186	47	15	18	3.4	1249
18 -	131005	1.7	1744	120	13	28	2.0	1832
19 -	131006	. 4	6531	71	14	10	3.2	194
20 -	131007	.4	148	225	3	2	1.4	106
21 -	131008	.2	35	213	4	2	.4	46

cc: Leo Lindinger/Dan Macisaac FAX @ 451-4484 723-9405

Edo-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

MAY 3, 1994

CERTIFICATE OF ASSAY ETK 94-215

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 31 CORE SAMPLES received APRIL 25, 1994 SHIPMENT #: 94-11

		Au	Au	As	
ET#	Description	(g/t)	(02/t)	(୫)	
=====			********	=========	
1 -	131009	<.03	<.001	-	
2 -	131010	<.03	<.001	-	
3 -	131011	<.03	<.001	-	
4 -	131012	.10	.003	-	
5 -	131013	<.03	<.001	-	
6 -	131014	<.03	<.001	-	
7 -	131015	1.06	.031	-	
8 -	131016	<.03	<.001	-	
9 -	131017	<.03	<.001	-	
10 -	131018	.05	.001	-	
11 -	131019	<.03	<.001	-	
12 -	131020	<.03	<.001	-	
13 -	131021	2.12	.062	-	
14 -	131022	<.03	<.001	-	
15 -	131023	<.03	<.001	-	
16 -	131024	.10	.003	-	
17 -	131025	1.19	.035	-	
18 -	131026	1.33	.039	-	
19 -	131027	1.11	.032	-	
20 -	131028	3.38	.099	2.89	
21 -	131029	3.52	.103	4.01	
22 -	131030	2.12	.062	3.21	
	150				
por FI	KANK J. PEZZOTTI, A.	SC.T., B.C.	Certliled	Assayer	

PAGE 2

•

ET#		Description	Au (g/t)	Au (oz/t)	
23	_	131031	.58	.017	
24	-	131032	.08	.002	
25	-	131033	<.03	<.001	
26	-	131034	3.37	.098	
27	-	131035	.75	.022	
28	-	131036	.09	.003	
29	-	131037	1.42	.041	
30		131038	<.03	<.001	
31	-	131039	.36	.010	

NOTE: < = LESS THAN

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Association

٠

cc: Leo Lindinger/Dan Macisaac SC94/Dalmatian

10041 E. Trans Canada Hwy., R.R. #2. Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

MAY 3, 1994

CERTIFICATE OF ANALAYSIS ETK 94-215

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 31 CORE SAMPLES received APRIL 25, 1994 SHIPMENT #: 94-11

		Ag	As	Cu	Mo	Pb	sb	Zn
ET#	Description	(bbw)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
=== = 1 -	131009	.1	25 25	======= 247	2	====== 2	.4	63
2 -	131010	.1	42	100	1	2	. 8	71
3 -	131011	.1	2	36	5	2	.2	49
4 -	131012	.2	4371	43	4	2	1.2	62
5 -	131013	.1	57	71	4	2	2.6	48
6 -	131014	.1	25	169	2	2	.6	56
7 -	131015	1.4	5434	346	4	4	2.6	117
8 -	131016	.1	75	215	3	2	.6	46
9 -	131017	.1	2	250	1	2	.4	69
10 -	131018	.3	56	164	5	2	.4	128
11 -	131019	.1	10	114	1	2	.4	68
12 -	131020	.2	4	141	1	2	.4	49
13 -	131021	.6	169	109	1	2	.4	321
14 -	131022	.1	2	86	1	2	.2	40
15 -	131023	.4	425	233	1	2	1.4	57
16 -	131024	.9	241	188	2	4	.6	64
17 -	131025	1.2	1475	69	10	16	1.0	376
18 -	131026	2.3	1773	243	4	16	11.2	87
19 -	131027	.4	5940	29	13	6	4.8	66
20 -	131028	.8	>10000	47	15	12	9.8	592
21 -	131029	1.0	>10000	57	7	19	8.0	165
22 -	131030	.8	>10000	46	14	16	5.8	69
23 -	131031	.9	992	162	1	8	1.6	130
24 -	131032	.6	469	203	2	2	.6	72
25 -	131033	.1	59	128	6	2	.4	40

🖌 FRANK J. PEZZOTTI, A.SC.T., B.C. Certified Assayer

~~~~~

### DALMATION RESOURCES LTD. ETK215

MAY 3, 1994

PAGE 2

|     |             |        | Ag    | As          | Cul | CuMo       |    | Sb    | Zn      |
|-----|-------------|--------|-------|-------------|-----|------------|----|-------|---------|
| ET# | Description |        | (mqq) | (ppm) (ppm) |     | (ppm)(ppm) |    | (ppm) | (ppm)   |
|     |             |        |       |             |     |            | #= |       | ======= |
| 26  | -           | 131034 | . 2   | 12          | 61  | 4          | 2  | - 4   | 58      |
| 27  | -           | 131035 | .8    | 1676        | 131 | 5          | 11 | .6    | 802     |
| 28  | -           | 131036 | .2    | 368         | 92  | 2          | 2  | .2    | 63      |
| 29  | -           | 131037 | .7    | 3612        | 101 | 1          | 16 | . 8   | 205     |
| 30  | _           | 131038 | .1    | 97          | 120 | 3          | 2  | .2    | 47      |
| 31  | -           | 131039 | 1.0   | 633         | 163 | 1          | 82 | 1.8   | 240     |

cc: Leo Lindinger/Dan Mac FAX @ 451-4484 723-9405

ECOTTECH LABORATORIES LTD. PM FRANK J. PEZZOTTI, A.SC.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

#### MAY 4, 1994

## CERTIFICATE OF ASSAY ETK 94-216

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C.

V5R 3V4

ATTENTION: FRANK MILAKOVICH

-----

SAMPLE IDENTIFICATION: 21 CORE SAMPLES received APRIL 25, 1994 ----- SHIPMENT #: NONE GIVEN

| 5 <b>0</b> # | Description | Au    | Au     | As             |  |
|--------------|-------------|-------|--------|----------------|--|
|              |             | (9/C) | (02/0) | (8)<br>======= |  |
| 1 -          | 131040      | <.03  | <.001  |                |  |
| 2 -          | 131041      | <.03  | <.001  | -              |  |
| з –          | 131042      | <.03  | <.001  | -              |  |
| 4 -          | 131043      | <.03  | <.001  | -              |  |
| 5 -          | 131044      | .05   | .001   | -              |  |
| 6 -          | 131045      | 3.40  | .099   | 1.84           |  |
| 7 -          | 131046      | <.03  | <.001  | -              |  |
| 8 -          | 131047      | <.03  | <.001  | -              |  |
| 9 –          | 131048      | .10   | .003   | -              |  |
| 10 -         | 131049      | <.03  | <.001  | -              |  |
| 11 -         | 131050      | <.03  | <.001  | -              |  |
| 12 -         | 131051      | . 29  | .008   | -              |  |
| 13 -         | 131052      | 3.97  | .116   | 2.80           |  |
| 14 -         | 131053      | 2.54  | .074   | 1.44           |  |
| 15 -         | 131054      | 1.42  | .041   | -              |  |
| 16 -         | 131055      | 3.41  | .099   | 2.06           |  |
| 17 -         | 131056      | 2.22  | .065   | 1.11           |  |
| 18 -         | 131057      | 1.69  | .049   | 1.33           |  |
| 19 -         | 131058      | .43   | .013   | -              |  |
| 20 -         | 131059      | 3.03  | .088   | 1.88           |  |
| 21 -         | 131060      | <.03  | <.001  | -              |  |

NOTE: < = LESS THAN

cc: Leo Lindinger/Dan Macisaac

FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer





10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

### MAY 4, 1994

CERTIFICATE OF ANALYSIS ETK 94-216

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

----

SAMPLE IDENTIFICATION: 21 CORE SAMPLES received APRIL 25, 1994 ------ SHIPMENT #: NONE GIVEN

|                         |             | Ag    | As     | Cu    | Mo    | Pb    | sb    | Zn    |
|-------------------------|-------------|-------|--------|-------|-------|-------|-------|-------|
| ET#                     | Description | (ppm) | (ppm)  | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) |
| =====<br>1 <del>-</del> | 131040      | .1    | 91     | 440   |       | 2     | .4    | 49    |
| 2 -                     | 131041      | .2    | 110    | 1054  | 1     | 2     | .2    | 44    |
| 3 -                     | 131042      | .1    | 2      | 77    | 6     | 2     | <.2   | 37    |
| 4 -                     | 131043      | . 4   | 844    | 403   | 1     | 2     | .6    | 62    |
| 5 -                     | 131044      | .2    | 952    | 211   | 1     | 2     | .2    | 66    |
| 6 -                     | 131045      | 1.8   | >10000 | 57    | 12    | 42    | 2.8   | 146   |
| 7 -                     | 131046      | .5    | 250    | 164   | 3     | 2     | .8    | 91    |
| 8 -                     | 131047      | .1    | 34     | 171   | 1     | 2     | .4    | 65    |
| 9 –                     | 131048      | 1.0   | 311    | 247   | 3     | 2     | .6    | 96    |
| 10 -                    | 131049      | .2    | 14     | 188   | 1     | 2     | . 4   | 83    |
| 11 -                    | 131050      | .1    | 22     | 148   | 2     | 2     | .4    | 66    |
| 12 -                    | 131051      | 1.4   | 2212   | 166   | 3     | 2     | 2.8   | 56    |
| 13 -                    | 131052      | 1.0   | >10000 | 22    | 9     | 26    | 7.0   | 72    |
| 14 -                    | 131053      | .8    | >10000 | 94    | 10    | 16    | 3.0   | 255   |
| 15 -                    | 131054      | 1.0   | 5479   | 93    | 9     | 20    | 1.2   | 404   |
| 16 -                    | 131055      | 1.2   | >10000 | 58    | 19    | 54    | 3.2   | 544   |
| 17 -                    | 131056      | 1.1   | >10000 | 62    | 13    | 24    | 1.8   | 253   |
| 18 -                    | 131057      | 1.2   | >10000 | 140   | 8     | 64    | 2.6   | 278   |
| 19 -                    | 131058      | .6    | 3223   | 199   | 2     | 14    | 1.4   | 112   |
| 20 -                    | 131059      | 1.8   | >10000 | 173   | 4     | 228   | 3.6   | 401   |
| 21 -                    | 131060      | .1    | 344    | 221   | 1     | 2     | .6    | 67    |

cc: Leo Lindinger/Dan Macisaac FAX @ 451-4484

723-9405

TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.SC.T. B.C. Certified Assayer





10041 E. Trans Canada Hwy., R.R. #2. Kamloops, B.C. V2C 2J3 Phone (604) 573-5700. Fax (604) 573-4557

### MAY 3, 1994

CERTIFICATE OF ASSAY ETK 94-217

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 58 CORE SAMPLES received APRIL 25, 1994 ------ SHIPMENT #: NONE GIVEN

|        |             | Au    | Au     | As   |
|--------|-------------|-------|--------|------|
| ET#    | Description | (g/t) | (oz/t) | (8)  |
| 1 -    | 131061      | <.03  | <.001  | -    |
| 2 -    | 131062      | <.03  | <.001  | _    |
| 3 -    | 131063      | <.03  | <.001  | _    |
| 4 -    | 131064      | <.03  | <.001  | -    |
| 5 -    | 131065      | <.03  | <.001  | -    |
| 6 -    | 131066      | <.03  | <.001  | -    |
| 7 -    | 131067      | <.03  | <.001  | -    |
| 8 –    | 131068      | <.03  | <.001  | -    |
| 9 -    | 131069      | <.03  | <.001  | -    |
| - 10 - | 131070      | .07   | .002   | -    |
| 11 -   | 131071      | .06   | .002   | -    |
| 12 -   | 131072      | .48   | .014   | -    |
| 13 -   | 131073      | .03   | .001   | -    |
| 14 -   | 131074      | .12   | .003   | -    |
| 15 -   | 131075      | 1.72  | .050   | 1.82 |
| 16 -   | 131076      | 6.23  | .182   | 4.68 |
| 17 -   | 131077      | .23   | .007   | _    |
| 18 -   | 131078      | <.03  | <.001  | -    |
| 19 -   | 131079      | .10   | .003   | -    |
| 20 -   | 131080      | <.03  | <.001  | -    |
| 21 -   | 131081      | <.03  | <.001  | -    |
| 22 -   | 131082      | <.03  | <.001  | -    |
| 23 -   | 131083      | <.03  | <.001  | -    |
| 24 -   | 131084      | <.03  | <.001  | -    |
| 25 -   | 131085      | <.03  | <.001  | -    |
| 26 -   | 131086      | <.03  | <.001  | -    |
|        | 110         | 2     |        |      |

RRANK J. PEZZOTTI, A.Sc.T., B.C. Certified Assayer

PAGE 2

~

.

|      |     |             | Au    | Au     |                                        |
|------|-----|-------------|-------|--------|----------------------------------------|
| ET#  |     | Description | (g/t) | (oz/t) |                                        |
| ==== | === |             |       |        | :===================================== |
| 27   | -   | 131087      | <.03  | <.001  |                                        |
| 28   | -   | 131088      | <.03  | <.001  |                                        |
| 29   | -   | 131089      | .50   | .015   |                                        |
| 30   | -   | 131090      | <.03  | <.001  |                                        |
| 31   | -   | 131091      | <.03  | <.001  |                                        |
| 32   | -   | 131092      | <.03  | <.001  |                                        |
| 33   | -   | 131093      | <.03  | <.001  |                                        |
| 34   | -   | 131094      | <.03  | <.001  |                                        |
| 35   | -   | 131095      | .91   | .027   |                                        |
| 36   | -   | 131096      | <.03  | <.001  |                                        |
| 37   | -   | 131097      | .47   | .014   |                                        |
| 38   | -   | 131098      | <.03  | <.001  |                                        |
| 39   | -   | 131099      | <.03  | <.001  |                                        |
| 40   | -   | 131100      | <.03  | <.001  |                                        |
| 41   | -   | 131101      | <.03  | <.001  |                                        |
| 42   | -   | 131102      | <.03  | <.001  |                                        |
| 43   | -   | 131103      | .09   | .003   |                                        |
| 44   | -   | 131104      | .03   | .001   |                                        |
| 45   | -   | 131105      | <.03  | <.001  |                                        |
| 46   | -   | 131106      | <.03  | <.001  |                                        |
| 47   | -   | 131107      | <.03  | <.001  |                                        |
| 48   | -   | 131108      | <.03  | <.001  |                                        |
| 49   | -   | 131109      | <.03  | <.001  |                                        |
| 50   | -   | 131110      | <.03  | <.001  |                                        |
| 51   | -   | 131111      | <.03  | <.001  |                                        |
| 52   | -   | 131112      | <.03  | <.001  |                                        |
| 53   | -   | 131113      | <.03  | <.001  |                                        |
| 54   | -   | 131114      | <.03  | <.001  |                                        |
| 55   | -   | 131115      | <.03  | <.001  |                                        |
| 56   | -   | 131116      | <.03  | <.001  |                                        |
| 57   | -   | 131117      | <.03  | <.001  |                                        |
| 58   | -   | 131118      | <.03  | <.001  |                                        |

cc: Leo Lindinger/Dan Macisaac

S

CO-TECH LABORATORIES LTD. Per FRANK J. PEZZOTTI, A.SC.T. B.C. Certified Assayer

SC94/Dalmatian

EGO. TOCH LABORATORIES LTD.





10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

MAY 3, 1994

CERTIFICATE OF ANALAYSIS ETK 94-217

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

\_\_\_\_\_

SAMPLE IDENTIFICATION: 58 CORE SAMPLES received APRIL 25, 1994 SHIPMENT #: NONE GIVEN

| ET#        | Description | Ag<br>(ppm) | As<br>(ppm)    | Cu<br>(ppm) | Mo<br>(ppm) | (ppm)       | sb<br>(ppm) | Zn<br>(ppm) |
|------------|-------------|-------------|----------------|-------------|-------------|-------------|-------------|-------------|
| =====      | 121061      |             | =======<br>7 ^ |             | ======<br>? | :====:<br>י |             | =====       |
| 1 -<br>2   | 121062      | • 1         | 70             | 14/         | נ<br>ר      | 2           | - 0         | 90          |
| 2 -        | 131062      | • 1         | 2              | 94          | د           | 2           | .4          | 01          |
| - د        | 131063      | • 1         | . 2            | 1/0         | L A         | 2           | .4          | 68          |
| 4 <b>-</b> | 131064      | •1          | 2              | 30          | 4           | 2           | .0          | 45          |
| - c        | 131065      | •1          | 2              | 147         | 1           | 2           | .0          | 58          |
| 6 -        | 131066      | .1          | 49             | 240         | 1           | 2           | .4          | 183         |
| 7 -        | 131067      | .1          | 2              | 157         | 1           | 2           | .2          | 49          |
| 8 -        | 131068      | -1          | 2              | 489         | د           | 2           | .2          | 44          |
| 9 -        | 131069      | -1          | 2              | 167         | 2           | 2           | .6          | 55          |
| 10 -       | 131070      | •1          | 10             | 97          | 1           | 2           | 1.0         | 101         |
| 11         | 131071      | • 1         | 1136           | 215         | 1           | 2           | 1.2         | 67          |
| 12 -       | 131072      | .2          | 2343           | 105         | 17          | 244         | 1.8         | 346         |
| 13 -       | 131073      | .1          | 1148           | 153         | 2           | 2           | 1.0         | 53          |
| 14 -       | 131074      | .1          | 616            | 166         | 1           | 2           | .8          | 50          |
| 15 -       | 131075      | .2          | >10000         | 119         | 1           | 42          | 10.8        | 177         |
| 16 -       | 131076      | .5          | >10000         | 41          | 12          | 196         | 23.8        | 241         |
| 17 -       | 131077      | .1          | 4199           | 214         | 1           | 2           | 4.4         | 55          |
| 18 -       | 131078      | .1          | 82             | 297         | 3           | 10          | .6          | 116         |
| 19 -       | 131079      | .1          | 842            | 205         | 4           | 2           | .8          | 53          |
| 20 -       | 131080      | .1          | B              | 211         | 1           | 2           | .6          | 83          |
| 21 -       | 131081      | .1          | 16             | 87          | 1           | 2           | .2          | 34          |
| 22 -       | 131082      | .1          | 10             | 39          | 3           | 8           | .4          | 62          |
| 23 -       | 131083      | .1          | 6 B            | 43          | 7           | 6           | .2          | 77          |
| 24 -       | 131084      | .1          | 2              | 240         | 2           | 4           | .4          | 61          |
| 25 -       | 131085      | .1          | 1              | 104         | 3           | 2           | .4          | 66          |
| 26 -       | 131086      | .1          | 2              | 326         | 1           | 2           | .4          | 48          |
| 27 -       | 131087      | .1          | 21             | 43          | 4           | 2           | .4          | 54          |
| 28 -       | 131088      | .1          | 68             | 115         | 2           | 2           | .8          | 70          |
| 29 -       | 131089      | .4          | 991            | 218         | 5           | 6           | .4          | 54          |
| 30 -       | 131090      | .1          | 272            | 126         | 3           | 2           | .8          | 46          |

### DALMATIAN RESOURCES LTD. ETK 94-217

MAY 3, 1994

PAGE 2

|     |             | Ag    | As    | Cu    | Mo    | Pb    | Sb    | Zn    |
|-----|-------------|-------|-------|-------|-------|-------|-------|-------|
| ET# | Description | (ppm) |
| 31  | - 131091    | .1    | 4     | 157   | 2     | 2     | .6    | 52    |
| 32  | - 131092    | .1    | 2     | 99    | 6     | 2     | .4    | 39    |
| 33  | - 131093    | .1    | 49    | 126   | 2     | 2     | 1.0   | 76    |
| 34  | - 131094    | .1    | 83    | 77    | 1     | 2     | 1.0   | 67    |
| 35  | - 131095    | .2    | 842   | 60    | 7     | 6     | 2.2   | 88    |
| 36  | - 131096    | .1    | 32    | 115   | 3     | 2     | 1.6   | 65    |
| 37  | - 131097    | .6    | 453   | 230   | 2     | 6     | 1.8   | 103   |
| 38  | - 131098    | .1    | 2     | 154   | 3     | 2     | 1.2   | 117   |
| 39  | - 131099    | .1    | 1     | 280   | 1     | 2     | 1.0   | 123   |
| 40  | - 131100    | .1    | 1     | 239   | 1     | 2     | 1.0   | 90    |
| 41  | - 131101    | .1    | 73    | 78    | 2     | 2     | 1.8   | 64    |
| 42  | - 131102    | .1    | 12    | 103   | 3     | 2     | 1.0   | 67    |
| 43  | - 131103    | .1    | 225   | 136   | 3     | 2     | 1.0   | 63    |
| 44  | - 131104    | 1.2   | 95    | 70    | 5     | 2     | 1.4   | 55    |
| 45  | - 131105    | .1    | 70    | 85    | 2     | 2     | 1.0   | 68    |
| 46  | - 131106    | .1    | 158   | 94    | 4     | 2     | 1.0   | 59    |
| 47  | - 131107    | .1    | 2     | 100   | 3     | 2     | .4    | 40    |
| 48  | - 131108    | .1    | 1     | 63    | 5     | 2     | .2    | 51    |
| 49  | - 131109    | .1    | 2     | 28    | 3     | 2     | .4    | 72    |
| 50  | - 131110    | .1    | 2     | 187   | 1     | 2     | . 4   | 58    |
| 51  | - 131111    | .1    | 2     | 19    | 4     | 2     | .2    | 45    |
| 52  | - 131112    | .1    | 2     | 215   | 1     | 2     | .4    | 75    |
| 53  | - 131113    | .1    | 2     | 204   | 2     | 2     | .4    | 56    |
| 54  | - 131114    | .1    | 1     | 109   | 7     | 2     | . 4   | 48    |
| 55  | - 131115    | .1    | 1     | 99    | 2     | 2     | .2    | 58    |
| 56  | - 131116    | .1    | 1     | 192   | 1     | 2     | .2    | 46    |
| 57  | - 131117    | .1    | 2     | 175   | 1     | 2     | .6    | 71    |
| 58  | - 131118    | .1    | 27    | 248   | 2     | 2     | .4    | 50    |

cc: Leo Lindinger/Dan Macisaac FAX @ 451-4484 723-9405

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer



~

•



### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. -2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

### MAY 6, 1994

CERTIFICATE OF ASSAY ETK 94-225

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 14 ROCK SAMPLES received MAY 2, 1994 SHIPMENT #: 94-14

| ET#        | Description | Au<br>(g/t) | Au<br>(oz/t) |  |
|------------|-------------|-------------|--------------|--|
| =====<br>1 | 121110      | - 03        | - 001        |  |
| 1 -        | 131119      | <.03        | <.001        |  |
| 2 -        | 131120      | <.03        | <.001        |  |
| 3 -        | 131121      | <.03        | <.001        |  |
| 4 -        | 131122      | <.03        | <.001        |  |
| 5 -        | 131123      | <.03        | <.001        |  |
| 6 -        | 131124      | <.03        | <.001        |  |
| 7 -        | 131125      | <.03        | <.001        |  |
| 8 -        | 131126      | <.03        | <.001        |  |
| 9 -        | 131127      | <.03        | <.001        |  |
| 10 -       | 131128      | <.03        | <.001        |  |
| 11 -       | 131129      | <.03        | <.001        |  |
| 12 -       | 131130      | .12         | .003         |  |
| 13 -       | 131131      | <.03        | <.001        |  |
| 14 -       | 131132      | <.03        | <.001        |  |

cc: Leo Lindinger/Dan Macisaac

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI,A.Sc.T. B.C. Certified Assayer



10041 E. Trans Canada Hwy., R.R. 12. Kamloops, B.C. V2C 2J3 Phone (604) 573:5700 Fax (604) 573:4557

MAY 6, 1994

# CERTIFICATE OF ANALAYSIS ETK 94-225

DALMATIAN RESOURCES LTD. 5245 FAIRMONT STREET VANCOUVER, B.C. V5R 3V4

ATTENTION: FRANK MILAKOVICH

SAMPLE IDENTIFICATION: 14 CORE SAMPLES received MAY 2, 1994 SHIPMENT #:94-14

|      |              | Ag                                     | As    | Cu    | Mo    | Pb          | sb           | Zn          |
|------|--------------|----------------------------------------|-------|-------|-------|-------------|--------------|-------------|
| ET#  | Descriptionb | (ppm)                                  | (ppm) | (ppm) | (ppm) | (ppm)       | (ppm)        | (ppm)       |
|      | 121110       | ·===================================== |       | 107   |       | ======<br>י | =======<br>/ | =====<br>^^ |
|      | 131113       |                                        |       | 107   | ~ ~   | 2           | • *          | 40          |
| 2 -  | 131120       | <.2                                    | <1    | 123   | 4     | 2           | .4           | 44          |
| 3 -  | 131121       | <.2                                    | 44    | 71    | <1    | 2           | .2           | 52          |
| 4 -  | 131122       | <.2                                    | <1    | 157   | 4     | 2           | .4           | 67          |
| 5 -  | 131123       | <.2                                    | <1    | 247   | 1     | 2           | . 4          | 62          |
| 6 -  | 131124       | <.2                                    | <1    | 79    | 3     | 2           | .2           | 32          |
| 7 -  | 131125       | <.2                                    | <1    | 92    | 1     | 2           | .4           | 49          |
| 8 -  | 131126       | <.2                                    | 5     | 71    | 6     | 2           | .2           | 27          |
| 9 -  | 131127       | <.2                                    | 1     | 217   | 2     | 2           | .4           | 47          |
| 10 - | 131128       | <.2                                    | <1    | 211   | 1     | 2           | .4           | 41          |
| 11 - | 131129       | <.2                                    | <1    | 173   | 1     | 2           | .4           | 32          |
| 12 - | 131130       | .6                                     | 3170  | 327   | 1     | 2           | 2.0          | 65          |
| 13 - | 131131       | <.2                                    | 166   | 171   | <1    | 2           | .6           | 47          |
| 14 - | 131132       | <.2                                    | 86    | 107   | <1    | 2           | .6           | 58          |

cc: Leo Lindinger/Dan Macisaac FAX @ 451-4484 723-9405

BCO-TECH LABORATORIES LTD. Ser-FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

### APPENDIX 2 - CODED CORE LOGS AND ASSAY SUMMARIES

gold and silver in g/t, pathfinder elements in ppm except where noted.

•

|        | -              |       | GEOL  | OGICAL | DATA   |       | AS    | SAY DA | TA    |      |        |             |
|--------|----------------|-------|-------|--------|--------|-------|-------|--------|-------|------|--------|-------------|
| REF.NO | DDH            | FROM  | TO    | ROCK   | ALTRTN | MINRL | FROM  | TO     | WIDTH | GOLD | SILVER | ARSEN       |
|        | '3-80          | 0     | 2.9   | CASG   |        |       | 7.01  | 8.53   | 1.52  | 1.30 | 0.1    | 12,600      |
|        | '3-80          | 2.9   | 7.01  | PLBT   | Cxcv   | pymg  | 8.53  | 10.78  | 2.25  | 0.62 | 0.1    | 300         |
|        | '3 <b>-8</b> 0 | 7.01  | 8.53  | QTVN   |        | Ру    | 10.78 | 12.34  | 1.56  | 2.33 | 0.1    | 3000        |
|        | '3-80          | 8.53  | 10.78 | BAST   | QT     | Py    | 12.34 | 13.89  | 1.55  | 0.62 | 0.1    | 700         |
|        | '3-80          | 10.78 | 12.34 | QTVN   | Bx     | Pyas  | 13.89 | 15.48  | 1.59  | 0.89 | 0.1    | <b>9</b> 00 |
|        | <b>'3-8</b> 0  | 12.34 | 13.89 | BAST   | CX     | ру    |       |        | 1     | 0    |        |             |
|        | '3-80          | 13.89 | 15.48 | QTVN   | Bx     | Py    |       |        | 1     | 0    |        |             |
|        | '3- <b>8</b> 0 | 15.48 | 19.9  | BAST   | Qt     | py    |       |        |       | 0    |        |             |
|        | ' <b>3-8</b> 0 | 19.9  | 22.25 | BAST   |        |       |       |        | 1     | 0    |        |             |
|        | <b>'3-8</b> 0  | 22.25 | 22.55 | BAST   | Qv     |       |       |        | 1     | 0    |        |             |
|        | '3-80          | 22.55 | 28.04 | BAST   | -      |       |       |        |       | 0    |        |             |

.

•

DDH 3-80

### DDH 4-80

|        |      |       | GEOLOGICAL DATA |      |        |       | AS    | ASSAY DATA |       |      |               |             |
|--------|------|-------|-----------------|------|--------|-------|-------|------------|-------|------|---------------|-------------|
| REF.NO | DDH  | FROM  | TO              | ROCK | ALTRIN | MINRL | FROM  | TO         | WIDTH | GOLD | <u>SILVER</u> | ARSENIC     |
|        | 4-80 | 0     | 1.83            | CASG |        |       | 18.28 | 19.2       | 0.92  | 0.34 | 0.1           | 200         |
|        | 4-80 | 1.83  | 18.28           | PLBT | qtva   | РУ    | 19.2  | 20.72      | 1.52  | 1.1  | 0.1           | 1000        |
|        | 4-80 | 18.28 | 25.29           | QCSW |        | Ру    | 20.72 | 22.25      | 1.53  | 0.89 | 0.1           | 2600        |
|        | 4-80 | 25.29 | 28.34           | BAST |        |       | 22.25 | 23.77      | 1.52  | 1.1  | 0.1           | 500         |
|        | 4-80 | 28.34 | 35.66           | QCBX |        | PYas  | 23.77 | 25.29      | 1.52  | 0.34 | 0.1           | 200         |
|        | 4-80 | 35.66 | 41.14           | PLBT | qtch   |       | 28.34 | 29.87      | 1.53  | 1.85 | 0.1           | 4200        |
|        | 4-80 |       |                 |      |        |       | 29.87 | 31.39      | 1.52  | 0 89 | Ŭ I           | 1300        |
|        | 4-80 |       |                 |      |        |       | 31.39 | 32.92      | 1.53  | 0.75 | 0.1           | <b>~0</b> 0 |
|        | 4-80 |       |                 |      |        |       | 32.92 | 34.13      | 1.21  | 1.78 | 0.1           | 2600        |
|        | 4-80 |       |                 |      |        |       | 34.13 | 35.66      | 1.53  | 2.13 | 0.1           | 4900        |
|        |      |       |                 |      |        |       | 0     | 0          | 0     | 0    | 0             | ō           |
|        |      |       |                 |      |        |       | 0     | 0          | 0     | 0    | 0             | o           |

٠

### DDH 5-80

|        |      | GEOLOGICAL DATA |           |      |               |       | ASSAY DATA                   |           |       |             |               |         |
|--------|------|-----------------|-----------|------|---------------|-------|------------------------------|-----------|-------|-------------|---------------|---------|
| REF.NO | DDH  | FROM            | <u>T0</u> | ROCK | <u>ALTRTN</u> | MINRL | FROM                         | <u>T0</u> | WIDTH | <u>GOLD</u> | <u>SILVER</u> | ARSENIC |
|        | 5-80 | 0               | 1.22      | CASG |               |       | 6.16                         | 7.62      | 1.46  | 2.4         | 0.1           | 9600    |
|        | 5-80 | 1.22            | 3.35      | PLBT |               | PyAS  | 7.62                         | 9.14      | 1.52  | 1.65        | 0.1           | 1200    |
|        | 5-80 | 3.35            | 4.57      | DIOT | qcvn          |       | 9.14                         | 10.66     | 1.52  | 1.85        | 0.1           | 5800    |
|        | 5-80 | 4.57            | 6.16      | PLBT |               |       | 10.66                        | 12.19     | 1.53  | 1.51        | 0.1           | 3600    |
|        | 5-80 | 6.16            | 13.59     | QCVN |               |       | 12.19                        | 13.59     | 1.4   | 1.71        | 0.1           | 400     |
|        | 5-80 | 13.59           | 13.71     | GOUG |               |       |                              |           |       |             |               |         |
|        | 5-80 | 13.71           | 15.54     | QCVN |               | ру    | REAASAY Au ONLY from rejects |           |       |             |               |         |
|        | 5-80 | 15.54           | 20.42     | PLBT |               | qcpy  | 6.16                         | 7.62      | 1.46  | 2.19        | 0             | 0       |
|        |      |                 |           |      |               |       | 7.62                         | 9.14      | 1.52  | 1.37        | 0             | 0       |
|        |      |                 |           |      |               |       | 9.14                         | 10.66     | 1.52  | 1           | 0             | 0       |
|        |      |                 |           |      |               |       | 10.66                        | 12.19     | 1.53  | 0.55        | 0             | 0       |
|        |      |                 |           |      |               |       | 12.19                        | 13.59     | 1.4   | 0.55        | 0             | 0       |

### DDH 83-2

|               |     |       | GEOLO     | GEOLOGICAL DATA |               |       | <u>ASS</u> | SAY DAT |       |      |        |
|---------------|-----|-------|-----------|-----------------|---------------|-------|------------|---------|-------|------|--------|
| <u>REF.NO</u> | DDH | FROM  | <u>TO</u> | <u>ROCK</u>     | <u>ALTRTN</u> | MINRL | FROM       | TO      | WIDTH | GOLD | SILVER |
|               |     | 0     | 3.04 C    | ASG             |               |       | 7.92       | 8.53    | 0.61  | 0.14 | 1.7    |
|               |     | 3.04  | 7.01 Pl   | LBT             | Qv            |       | 27.13      | 27.73   | 0.6   | 0.14 | 1.7    |
|               |     | 7.01  | 7.31 Q    | TVN             | epch          | ру    | 27.73      | 29.87   | 2.14  | 1.61 | 3.4    |
|               |     | 7.31  | 7.92 PI   | LBT             | qtab          |       | 29.87      | 30.48   | 0.61  | 0.31 | 2.7    |
|               |     | 7.92  | 8.44 Q    | FVN             | ep            | ру    | 33.22      | 35.05   | 1.83  | 0.4  | 1.26   |
|               |     | 8.44  | 12.8 PI   | LBT             |               |       | 44.8       | 45.41   | 0.61  | 1.41 | 2.7    |
|               |     | 12.8  | 13.71 D   | TFP             |               |       | 45.41      | 47.24   | 1.83  | 3 19 | 6.9    |
|               |     | 13.71 | 27.73 Pl  | LBT             | qcvn          |       | 47.24      | 49.37   | 2.13  | 0.41 | 1      |
|               |     | 27.73 | 29.87 Q   | твх             |               | Py    | 49.37      | 49.99   | 0.62  | 0.24 | ł      |
|               |     | 29.87 | 30.48 B   | AST             | Scch          | ру    |            |         |       |      |        |
|               |     | 30.48 | 44.51 D   | TFP             |               |       |            |         |       |      |        |
|               |     | 44.51 | 49.37 Q   | TBX             |               | Ру    |            |         |       |      |        |
|               |     | 49.37 | 51.51 B.  | AST             | Qtpy          |       |            |         |       |      |        |

•
DDH 83-3

|        |     |       | GEO     | LOGICAL I   | ATA        |       | <u>A.</u> | SAY DATA | Ī     |              |        |          |        |      |        |      |      |
|--------|-----|-------|---------|-------------|------------|-------|-----------|----------|-------|--------------|--------|----------|--------|------|--------|------|------|
| ref no | DDH | FROM  | ΤQ      | <u>ROCK</u> | ALTRIN     | MINRL | FROM      | TO       | WIDTH | GOLD         | SILVER | ARSENIC  | COPPER | MOLY | LEAD   | ANII | ZINC |
|        |     | 0     | 3.04    | CASG        |            |       | 31.69     | 32.31    | 0.62  | 0.14         | 1      | 0        | 0      | 0    | 0      | 0    | 0    |
|        |     | 3.04  | 9.3     | PLBT        | Схас       | ру    | 32.32     | 33.52    | 1.2   | 0.86         | 1.7    | 0        | 0      | 0    | 0      | 0    | 0    |
|        |     | 9.3   | 10.06   | QTBX        |            | РУ    | 33.52     | 35.05    | 1.53  | 1.37         | 2.1    | Û        | 0      | 0    | 0      | 0    | 0    |
|        |     | 10.06 | 31.08   | DIFP        | Qv         | ру    | 35.05     | 35.96    | 0.91  | 0.62         | 1      | 0        | 0      | 0    | 0      | 0    | U    |
|        |     | 31.08 | 32.61   | DIFP        | SC         | ру    | 35.96     | 37.49    | 1.53  | 0 21         | 1      | 0        | 0      | 0    | 0      | 0    | 0    |
|        |     | 32.61 | 34.44   | QCVN        |            | Py    | 37.49     | 39.01    | 1.52  | 0.24         | 0.7    | 0        | 0      | 6    | 0      | 0    | 0    |
|        |     | 34.44 | 54.25   | DIFP        | QV         | Ру    | 39.01     | 40.53    | 1.52  | 0.24         | 1      | 0        | 0      | 0    | 0      | 0    | û    |
|        |     | 54.25 | 54.55   | GOUG        |            |       | 40.53     | 42.06    | 1.53  | 0.86         | 1.3    | 0        | 0      | 0    | 0      | 0    | U    |
|        |     | 54.55 | 60.65   | QCVN        |            | PY    | 42.06     | 43.58    | 1.52  | 0.62         | 1.3    | 0        | 0      | 0    | 0      | 0    | 0    |
|        |     | 00.05 | 03.4    | BASI        | qv         | ру    | 43.58     | 45.11    | 1.53  | 1.03         | 1./    | 0        | 0      | 0    | 0      | 0    | 0    |
|        |     |       |         |             |            |       | 45.11     | 40.03    | 1.52  | 0.27         | 1./    | 0        | 0      | 0    | 0      | 0    | 0    |
|        |     |       |         |             |            |       | 40.03     | 48.10    | 1.52  | 2.98         | 2.1    | 0        | Û      | 0    | 0      | 0    | 0    |
|        |     |       |         |             |            |       | 48.15     | 49.08    | 1.55  | 1.80         | 2.1    | 0        | 0      | 0    | 0      | 0    | 0    |
|        |     |       |         |             |            |       | 49.08     | 51.21    | 1.53  | 1.37         | 1.1    | 0        | 0      | 0    | 0      | 0    | 0    |
|        |     |       |         |             |            |       | 51.21     | 52.75    | 1.32  | 3.27         | 3.1    | 0        | 0      | 0    | 0      | 0    | 0    |
|        |     |       |         |             |            |       | 52.73     | 54 55    | 0.61  | 2.03         | 5.4    | 0        | 0      | 0    | 0      | 0    | 0    |
|        |     |       |         |             |            |       | 54 55     | 56.08    | 1.53  | 0.02<br>4 97 | 51     | 0        | 0      | 0    | 0      | 0    | 0    |
|        |     |       |         |             |            |       | 56.08     | 57 61    | 1.53  | 24.14        | 12     | ő        | 0      | 0    | 0      | 0    | 0    |
|        |     |       |         |             |            |       | 57.61     | 59 13    | 1.55  | \$ 47        | 69     | õ        | ů.     | 0    | 0      | 0    | 0    |
|        |     |       |         |             |            |       | 59.13     | 60.65    | 1.52  | 2.54         | 27     | õ        | ñ      | Ô    | 0      | ñ    | 0    |
|        |     |       |         |             |            |       | 60.65     | 61.87    | 1.22  | 0.24         | 1      | õ        | õ      | a    | 0      | õ    | õ    |
|        |     |       |         |             |            |       |           | 0        | 0     | 0            | 0      | 0        | Õ      | ŏ    | õ      | õ    | ů.   |
|        |     | RE-AL | VALYSIS | OF HOLE     | 83-3 RESUI | TS    |           | 0        | 0     | 0            | 0      | 0        | 0      | 0    | 0<br>0 | 0    | õ    |
|        |     |       | FEET    | FEET        | TAG #      |       | METERS N  | METERS   |       |              |        | •        |        |      | -      | -    | -    |
|        |     |       | 104     | 107.5       | 129338     |       | 31.70     | 32.77    | 1.07  | 0.03         | 0.2    | 2 108    | 134    | 5    | 6      | 0.8  | 81   |
|        |     |       | 107.5   | 110         | 129339     |       | 32.77     | 33.53    | 0.76  | 0.56         | 0.2    | 2 607    | 36     | 4    | 8      | 1.6  | 34   |
|        |     |       | 110     | 115         | 129340     |       | 33.53     | 35.05    | 1.52  | 0.93         | 0.4    | 4 1767   | 55     | 5    | 8      | 1    | 70   |
|        |     |       | 115     | 118         | 129341     |       | 35.05     | 35.97    | 0.91  | 0.19         | 0.4    | 4 251    | 84     | 6    | 2      | 0.4  | 90   |
|        |     |       | 118     | 123         | 129342     |       | 35.97     | 37.49    | 1.52  | 0.03         | 0.3    | 3 26     | 75     | 5    | 2      | 0.4  | 59   |
|        |     |       | 123     | 130         | 129343     |       | 37.49     | 39.62    | 2.13  | 0.03         | 0.3    | 3 27     | 46     | 4    | 2      | 0.2  | 55   |
|        |     |       | 130     | 138         | 129344     |       | 39.62     | 42.06    | 2.44  | 0.73         | 0.6    | 5 2505   | 121    | 6    | 52     | 0.8  | 216  |
|        |     |       | 138     | 145         | 129345     |       | 42.06     | 44.20    | 2.13  | 0.86         | 0.4    | 6848     | 46     | 5    | 26     | 1.6  | 110  |
|        |     |       | 145     | 152         | 129346     |       | 44.20     | 46.33    | 2.13  | 0.05         | 0.2    | 2 226    | 1 57   | 5    | 2      | 0.4  | 66   |
|        |     |       | 152     | 156         | 129347     |       | 46.33     | 47.55    | 1.22  | 1.91         | 0.5    | 5 8597   | 140    | 6    | 84     | 2.2  | 224  |
|        |     |       | 156     | 159         | 129348     |       | 47.55     | 48.46    | 0.91  | 3.9          | 1.1    | 2 28,400 | 249    | 5    | 202    | 6.8  | 734  |
|        |     |       | 159     | 165         | 129349     |       | 48.46     | 50.29    | 1.83  | 0.08         | 0.7    | 535      | 245    | 4    | 14     | 1.2  | 157  |
|        |     |       | 165     | 173         | 129350     |       | 50.29     | 52.73    | 2.44  | 3.06         | 1.4    | 8610     | 263    | 6    | 134    | 3.8  | 429  |
|        |     |       | 173     | 177         | 131601     |       | 52.73     | 53.95    | 1.22  | 1.66         | 0.9    | 6190     | 193    | 3    | 28     | 3.4  | 416  |
|        |     |       | 177     | 179         | 131002     |       | 53.95     | 54.56    | 0.61  | 7.49         | 1.1    | 30,800   | 149    | 19   | 38     | 9    | 1020 |
|        |     |       | 179     | 184         | 131003     |       | 54.56     | 56.08    | 1.52  | 3.7          | 1.4    | 12,500   | 73     | 13   | 24     | 4.4  | 968  |
|        |     |       | 184     | 188         | 131004     |       | 56.08     | 57.30    | 1.22  | 2.8          | 1      | 8186     | 47     | 15   | 18     | 3.4  | 1249 |
|        |     |       | 188     | 196         | 131005     |       | 57.30     | 59.74    | 2.44  | 5.54         | 1.7    | 1744     | 120    | 13   | 28     | 2    | 1832 |
|        |     |       | 196     | 199         | 131006     |       | 59.74     | 60.66    | 0.91  | 1.51         | 0.4    | 6531     | 71     | 14   | 10     | 3.2  | 194  |
|        |     |       | 199     | 201         | 131007     |       | 60.66     | 61.27    | 0.61  | 0.03         | 0.4    | 1 148    | 225    | 3    | 2      | 1.4  | 106  |
| •      |     |       | 201     | 209         | 131008     |       | 61.27     | 63.70    | 2.44  | 0.03         | 0.2    | 2 35     | 213    | 4    | 2      | 0.4  | 46   |

Page 1 DDH 83-4

•

|        |                                                  |             | GEOL      | OGICAL      | DATA          |              | AS    | SAY DAT   | <u>`A</u>    |             |        |
|--------|--------------------------------------------------|-------------|-----------|-------------|---------------|--------------|-------|-----------|--------------|-------------|--------|
| REF NO | DDH                                              | <u>FROM</u> | <u>T0</u> | <u>ROCK</u> | <u>ALTRTN</u> | <u>MINRL</u> | FROM  | <u>TO</u> | <u>WIDTH</u> | <u>GOLD</u> | SILVER |
|        | 83-4                                             | 0           | 7.31      | CASG        |               |              | 35.05 | 38.1      | 3.05         | 0.14        | 0.74   |
|        | 83-4                                             | 7.31        | 38.03     | PLBT        | qt            | ру           | 38.1  | 41.15     | 3.05         | 0.03        | 1.04   |
|        | 83-4                                             | 16.76       | 17        |             | Qt            | Py           | 44.81 | 47.85     | 3.04         | 0.03        | 0.89   |
|        | 83-4                                             | 18.29       | 18.59     |             | Qt            | Ру           | 47.81 | 50.9      | 3.09         | 0.07        | 1.04   |
|        | 83-4                                             | 19.5        | 20.11     |             | Qt            | Py           |       |           |              |             |        |
|        | 83-4                                             | 27.43       | 29.26     |             | QT            | ру           |       |           |              |             |        |
|        | 83-4                                             | 35.05       | 38.03     |             |               | Ру           |       |           |              |             |        |
|        | 83-4                                             | 38.03       | 42.61     | DTFP        | qt            | ру           |       |           |              |             |        |
|        | 83-4                                             | 42.61       | 60.04     | PLBT        | qt            | ру           |       |           |              |             |        |
|        | 83-4                                             | 53.64       | 53.65     | FALT        |               |              |       |           |              |             |        |
|        | 83-4                                             | 60.04       | 64.62     | DTFP        | qt            | ру           |       |           |              |             |        |
|        | 83-4                                             | 64.62       | 71.62     | PLBT        |               |              |       |           |              |             |        |
|        | 83-4 71.62 72.84 DTFP<br>83-4 72.84 82.91 PLBP   |             | DTFP      |             |               |              |       |           |              |             |        |
|        |                                                  |             | qcep      |             |               |              |       |           |              |             |        |
|        | 83-4 72.84 82.91 PLBP q<br>83-4 82.91 87.47 DTHF |             |           |             |               | MgPY         |       |           |              |             |        |

•

.

.

|        |              |               | GEOI      | OGICAL I | DATA                  |            | ASS           | AY DAT    | A     |             |               |                |
|--------|--------------|---------------|-----------|----------|-----------------------|------------|---------------|-----------|-------|-------------|---------------|----------------|
| REF NO | DDH          | FROM          | <u>TO</u> | ROCK     | <u>ALTRIN</u>         | MINRL      | FROM          | <u>TO</u> | WIDTH | <u>GOLD</u> | <u>SILVER</u> | <u>ARSENIC</u> |
|        | 8-4-1        | 0             | 3.04      | CASO     |                       |            | 20.29         | 20.4      | 0.11  | 0.58        | 1             | 1700           |
|        | 84-1         | 3.04          | 20.42     | DTHF     | qc                    | ру         | 26.97         | 27.43     | 0.46  | 0.1         | 0.67          |                |
|        | 8-4-1        | 20.42         | 31.7      | PLBT     | Cavn                  | ру         | 29.18         | 29.87     | 0.69  | 0.1         | 0.67          | 500            |
|        | 84-1         | 23.16         | 23.4      |          | SCQv                  | PY         | 29.87         | 29.95     | 0.08  | 6.45        | 2.1           | 50,900         |
|        | <b>84</b> -1 | 26.21         | 26.5      |          | cavn                  |            | 29.95         | 30.4      | 0.45  | 0.03        | 0.3           | 100            |
|        | 84-1         | 28.34         | 28.95     | DIFP     |                       |            | 33.53         | 34.44     | 0.91  | 1.03        |               | 0              |
|        | 84-1         | 28.95         | 31.7      |          |                       |            | 46.63         | 47.24     | 0.61  | 0.03        |               | Ð              |
|        | 84-1         | 31.7          | 37.49     | DIFP     |                       |            | 47.24         | 47.88     | 0.64  | 0.69        | 0.3           | 2300           |
|        | 84-1         | 32            | 35        |          | C <b>B</b>            |            | 47.88         | 48.46     | 0.58  | 0.1         |               | 0              |
|        | 84-1         | 37.49         | 58.83     | PLBT     | -                     | •          | 49.07         | 49.68     | 0.61  | 0.17        | 0.3           | 500            |
|        | 84-1         | 37.49         | 37.79     |          | QI                    | Py         | 53.64         | 54.41     | 0.77  | 0.03        |               | 0              |
|        | 84-1         | 40.84         | 41.3      |          |                       | PY<br>Du   | 03.23         | 60.14     | 0.91  | 0.1         | <b>A 1</b>    | ()             |
|        | 84-1         | 41.3          | 47.4      |          |                       | PY<br>DV   | 09.8<br>70.64 | 09.93     | 0.15  | 0.1         | 0.3           | 001            |
|        | 84-1         | 47.4          | 48.01     |          | 00110                 | ri         | 14.24         | 107.42    | 0.91  | 0.14        | 0.2           | 100            |
|        | 84-1         | 48.31         | 48.40     |          | 0000                  | Date       | 114.75        | 107.44    | 0.75  | 0.14        | 0.3           | 0              |
|        | 84-1<br>84-1 | 49.07         | 49.00     |          | 00110                 | гуаз       | 114.72        | 120.74    | 0.61  | 0.03        |               | 0              |
|        | 04-1<br>94-1 | 51.02         | 55 47     |          | DTHE                  |            | 137.47        | 137.5     | 0.01  | 0.03        |               | 0              |
|        | 84-1         | 54.86         | 58.83     |          |                       | Ρv         |               |           |       |             |               |                |
|        | 84-1         | 58.83         | 73 76     | OTEP     | ch                    | лу<br>ПУ   |               |           |       |             |               |                |
|        | 84-1         | 66 14         | 70.1      |          | CB                    | <b>r</b> ) |               |           |       |             |               |                |
|        | 84-1         | 70.1          | 70.26     |          | OTca                  |            |               |           |       |             |               |                |
|        | 84-1         | 72.84         | 73.15     |          | ×                     | DV         |               |           |       |             |               |                |
|        | 84-1         | 73.76         | 89.91     | PLBT     | CA.                   | P)         |               |           |       |             |               |                |
|        | 84-1         | 83.52         | 84.12     |          | Ot                    | Pv         |               |           |       |             |               |                |
|        | 8-4-1        | 85.64         | 87.33     |          | <b>X</b> <sup>1</sup> | Py         |               |           |       |             |               |                |
|        | 84-1         | 87.33         | 88.09     |          | Qt                    | PY         |               |           |       |             |               |                |
|        | 54-1         | 89.91         | 99.36     | DTFP     | qt                    |            |               |           |       |             |               |                |
|        | 84-1         | 99.36         | 106.38    | PLBT     | qtep                  |            |               |           |       |             |               |                |
|        | 84-1         | <b>99.9</b> 7 | 99.98     | FALT     |                       |            |               |           |       |             |               |                |
|        | 84-1         | 106.38        | 111.25    | DTFP     |                       | Руср       |               |           |       |             |               |                |
|        | 84-1         | 109.42        | 111.25    |          | Ca                    | PY         |               |           |       |             |               |                |
|        | 84-1         | 111.25        | 118.26    | PLBT     |                       |            |               |           |       |             |               |                |
|        | 84-1         | 111.25        | 113.23    |          |                       | PY         |               |           |       |             |               |                |
|        | 84-1         | 113.23        | 114.6     |          | KFCA                  |            |               |           |       |             |               |                |
|        | 84-1         | 114.6         | 117.2     |          |                       | РҮср       |               |           |       |             |               |                |
|        | 84-1         | 118.26        | 124.97    | DTFP     |                       |            |               |           |       |             |               |                |
|        | 84-1         | 124.05        | 124.97    |          | CBFZ                  |            |               |           |       |             |               |                |
|        | 84-1         | 124.97        | 127.41    | BAST     |                       |            |               |           |       |             |               |                |
|        | 84-1         | 127.41        | 128.93    | DIFP     |                       |            |               |           |       |             |               |                |
|        | 84-1         | 128.6         | 128.93    |          | СЪ                    |            |               |           |       |             |               |                |
|        | 84-1         | 128.93        | 140.21    | PLBT     |                       |            |               |           |       |             |               |                |
|        | 84-1         | 129.54        | 129.85    |          | K.F                   | PY         |               |           |       |             |               |                |
|        | 04-1<br>84-1 | 130.01        | 132.74    |          | QV<br>K(              |            |               |           |       |             |               |                |
|        | 04-1<br>84-1 | 13/.40        | 137.92    |          | К.<br>Сй              | PY         |               |           |       |             |               |                |
|        | 84-1         | 140.21        | 140.21    | FALT     | oT                    | Pv         |               |           |       |             |               |                |
|        | 84-1         | 140.21        | 146.91    | DTFP     | ×.                    | - ,        |               |           |       |             |               |                |
|        | 84-1         | 144.17        | 145.69    |          | Bx                    | Pv         |               |           |       |             |               |                |
|        | 84-1         | 146.91        | 148.43    | BAST     |                       | - ,        |               |           |       |             |               |                |
|        | 84-1         | 148.43        | 158.8     | DIFP     |                       |            |               |           |       |             |               |                |
|        | 84-1         | 158.8         | 161.23    | PLBT     |                       |            |               |           |       |             |               |                |
|        |              |               |           |          |                       |            |               |           |       |             |               |                |

,

|           |         |             | DDH    | 84-2  |        |          |       |      |        |         |
|-----------|---------|-------------|--------|-------|--------|----------|-------|------|--------|---------|
|           |         | GEOLOGICAL  | DATA   |       | AS     | SAY DATA |       |      |        |         |
| REF.NO DE | DH FROM | TO ROCK     | ALTRTN | MINRL | FROM   | TO V     | NIDTH | GOLD | SILVER | ARSENIC |
| 84-2      | 0       | 3.66 CASG   |        |       | 19.2   | 19.66    | 0.46  | 0.03 |        | 0       |
| 84-2      | 3.66    | 4.27 TILL   |        |       | 19.66  | 19.96    | 0.3   | 0.96 | I      | 0       |
| 84-2      | 4.27    | 6.4 DTFP    | qv     |       | 19.96  | 20.26    | 0.3   | 3.36 | 1      | 0       |
| 84-2      | 6.4     | 22.25 DAQP  | ch     | ру    | 20.26  | 20.42    | 0.16  | 0.14 | 2.7    | 0       |
| 84-2      | 12.8    | 12.81 FALT  | СН     |       | 24.54  | 24.84    | 0.3   | 0.21 |        | 0       |
| 84-2      | 12.81   | 22.25 QAQP  | ch     |       | 24.84  | 24.99    | 0.15  | 3 09 | 0.7    | 0       |
| 84-2      | 19.96   | 20.27       | Qtvn   | Py    | 24.99  | 25.3     | 0.31  | 0.03 |        | 0       |
| 84-2      | 22.25   | 28.04 BAST  | QtSw   | pymg  | 26.97  | 27.74    | 0.77  | 0.03 |        |         |
| 84-2      | 24.8    | 25          | QTVN   | PYAS  | 29.94  | 30.63    | 0.69  | 0.34 |        | 270     |
| 84-2      | 27.58   | 28.04       |        | Pymg  | 36.88  | 37.49    | 0.61  | 0.14 |        | 0       |
| 84-2      | 28.04   | 28.58 DAFH  |        |       | 39.01  | 39.93    | 0.92  | 0.27 | 0.3    | 700     |
| 84-2      | 28.58   | 29.95 BAST  | QtSw   | pymg  | 39.93  | 41.3     | 1.37  | 0.03 | 0.3    | 100     |
| 84-2      | 29.94   | 30.63 DTFH  | QtSw   | pyas  | 44.39  | 44.96    | 0.57  | 0.03 | 0.3    | 1100    |
| 84-2      | 30.63   | 33.83 BAST  | QtSw   | py    | 48.01  | 48.31    | 0.3   | 0.03 |        | 0       |
| 84-2      | 33.83   | 37.19       | DTSW   |       | 48.31  | 49.37    | 1.06  | 1.2  | 0.3    | 3800    |
| 84-2      | 36.88   | 37.19       |        | PY    | 49.37  | 49.68    | 0.31  | 0.03 |        | 0       |
| 84-2      | 37.19   | 37.2 FALT   |        | PY    | 51.05  | 51.97    | 0.92  | 0.03 |        | 0       |
| 84-2      | 37 19   | 62.17 BAST  | Сь     | Py    | 57.61  | 58.97    | 1.36  | 0.21 | 0.3    | 200     |
| 84-2      | 38.71   | 41.45       | СВ     | PY    | 58.97  | 59.74    | 0.77  | 0.03 | 0      | 0       |
| 84-2      | 43.89   | 44.81       | СВ     | PY    | 59.74  | 60.35    | 0.61  | 0.03 | 0      | 0       |
| 84-2      | 47.85   | 49.07       |        | PYAs  | 60.35  | 60.66    | 0.31  | 0.03 | 0      | 0       |
| 84-2      | 52.42   | 52.43 FALT  |        |       | 60.66  | 61.57    | 0.91  | 0.03 | 0      | 0       |
| 84-2      | 56.39   | 56.39 FALT  |        |       | 61.57  | 62.19    | 0.62  | 0.03 | 0      | 0       |
| 84-2      | 57.6    | 58.83       | Bx     | Py    | 62.19  | 63.25    | 1.06  | 2.23 | 1.3    | 1400    |
| 84-2      | 62.17   | 65.53 QCVN  |        | PY    | 63.25  | 64.31    | 1.06  | 0.99 | 0.3    | 2000    |
| 84-2      | 65.53   | 65.54 FALT  |        |       | 64.31  | 66.14    | 1.83  | 0.03 | 1      | 100     |
| 84-2      | 65.53   | 73.46 DTFP  | qtca   |       | 74.6   | 74.75    | 0.15  | 0.27 | 0.3    | 300     |
| 84-2      | 65.53   | 68.73       | •      | Ру    | 80.01  | 81.83    | 1.82  | 0.34 | 0.3    | 1500    |
| 84-2      | 73.46   | 81.23 PLBP  | qtca   |       | 81.83  | 82.91    | 1.08  | 0.03 | 0      | 0       |
| 84-2      | 78.49   | 78.94       | -      | PY    | 103.36 | 104.36   | 1     | 1.41 | 0.67   | 8600    |
| 84-2      | 81.23   | 82.75 DTFP  | qt     | ру    | 106.83 | 107.74   | 0.91  | 0.03 | 0      | 0       |
| 84-2      | 82.75   | 83.66 KFVN  |        | PY    | 117.96 | 119.56   | 1.6   | 0.03 | 1.3    | 300     |
| 84-2      | 83.66   | 99.52 PLBT  | qv     |       | 125.27 | 126.19   | 0.92  | 0.03 | 0      | 0       |
| 84-2      | 99.52   | 111.86 DTFP | qv     | ру    | 128.63 | 129.45   | 0.82  | 0.03 | 0.3    | 100     |
| 84-2      | 111.86  | 113.08 BAST | -      | •     |        |          |       |      |        |         |
| 84-2      | 113.08  | 117.96 DTFP | qv     |       |        |          |       |      |        |         |
| 84-2      | 117.97  | 118.11 PLBT | qt     | ру    |        |          |       |      |        |         |
| 84-2      | 118.11  | 119.48 QCSW | -      | Py    |        |          |       |      |        |         |
| 84-2      | 119.48  | 119.53 FALT |        | Py    |        |          |       |      |        |         |
| 84-2      | 119.53  | 129.54 PLBT | qt     | PY    |        |          |       |      |        |         |
| 84-2      | 129.54  | 145.08 DTFP | qv     | ру    |        |          |       |      |        |         |

|        |            |        | <u>GEOLOGICAL</u>     | DATA          |              | AS             | <u>SAY DAT</u> | <u>A</u>     |      |               | ÷       |
|--------|------------|--------|-----------------------|---------------|--------------|----------------|----------------|--------------|------|---------------|---------|
| REF.NO | <u>DDH</u> | FROM   | <u>TO</u> <u>ROCK</u> | <u>ALTRTN</u> | <u>MINRL</u> | FROM           | <u>TO</u>      | <u>WIDTH</u> | GOLD | <u>SILVER</u> | ARSENIC |
|        | 84-3       | 0      | 3.66 CASG             |               |              | 21.48          | 21.95          | 0.47         | 0.03 | 0             | 0       |
|        | 84-3       | 3.66   | 12.19 TILL            |               |              | 28.8           | 30.32          | 1.52         | 0.03 | 1.7           | 100     |
|        | 84-3       | 12.19  | 32 DTFP               |               |              | 40.69          | 41.3           | 0.61         | 0.03 | 0.67          | 100     |
|        | 84-3       | 12.64  | 21.49                 | Qtch          |              | 46.63          | 47.24          | 0.61         | 0.03 | 0             |         |
|        | 84-3       | 21.49  | 21.79                 |               | Py           | 50.6           | 50.9           | 0.3          | 0.03 | 0.3           | 100     |
|        | 84-3       | 28.8   | 30.33                 | QT?           |              | 51.28          | 51.89          | 0.61         | 0.03 | 0.3           | 100     |
|        | 84-3       | 29.56  | 29.57 FALT            |               |              | 56.87          | 57.91          | 1.04         | 0.03 | 0             | 0       |
|        | 84-3       | 32     | 51.51 PLBT            |               | ру           | 98.6           | 99.52          | 0.92         | 0.07 | 0.3           | 100     |
|        | 84-3       | 40.54  | 41.75                 | QC            | Ру           | 100.27         | 101.19         | 0.92         | 0.17 | 0.67          | 300     |
|        | 84-3       | 41.14  | 41.15 FALT            |               |              | 101.19         | 101.8          | 0.61         | 0.03 | 0             | 0       |
|        | 84-3       | 43.58  | 45.7                  | Qt            |              | 103.32         | 104.39         | 1.07         | 0.03 | 0             | 0       |
|        | 84-3       | 50.44  | 50.74                 | QF            | PY           | 104.39         | 105.46         | 1.07         | 0.03 | 0             | 0       |
|        | 84-3       | 51.35  | 51.51                 | Qc            | PY           | 105.46         | 106.07         | 0.61         | 0.17 | 1.3           | 0       |
|        | 84-3       | 51.51  | 53.64 DTFP            |               | ру           | 106.07         | 106.98         | 0.91         | 2.33 | 6.5           | 17,200  |
|        | 84-3       | 53.64  | 95.09 PLBT            |               | ру           | 106.98         | 107.89         | 0.91         | 3.12 | 1.7           | 23,200  |
|        | 84-3       | 53.64  | 55.62                 | qt            | ру           | 1 <b>07.89</b> | 108.81         | 0.92         | 2 16 | 0.3           | 20,400  |
|        | 84-3       | 69.95  | 70.1 DTFH             |               |              | 108.81         | 109.42         | 0.61         | 2.06 | 0.3           | 14,700  |
|        | 84-3       | 94.64  | 95.09                 |               | Ру           | 109.42         | 110.03         | 0.61         | 0.31 | 2.1           | 0       |
|        | 84-3       | 95.09  | 97.84 DTFP            |               | Ру           | 110.03         | 110.33         | 0.3          | 3.15 | 1.3           | 18,600  |
|        | 84-3       | 97.84  | 101.19 PLBT           |               |              | 110.33         | 110.94         | 0.61         | 0.1  | 0.67          | 0       |
|        | 84-3       | 101.19 | 104.24 DTFP           | Qv            | PY           | 110.94         | 111.71         | 0.77         | 0.1  | 0.67          | 0       |
|        | 84-3       | 104.24 | 104.85 BAST           |               |              | 111.71         | 112.47         | 0.76         | 1.2  | 1.3           | 430     |
|        | 84-3       | 104.85 | 104.86 GOUG           |               |              | 112.47         | 113.08         | 0.61         | 0.07 | 0.67          | 0       |
|        | 84-3       | 104.85 | 109.42 QcVN           |               | PYAs         | 113.08         | 113.69         | 0.61         | 0.03 | 0             | 0       |
|        | 84-3       | 109.42 | 116.13 PLBT           | qv            | ру           | 124.35         | 125.27         | 0.92         | 0.03 | 0             | 0       |
|        | 84-3       | 109.42 | 111.71                | QT            | ру           | 133.2          | 134.11         | 0.91         | 0.03 | 0             | 0       |
|        | 84-3       | 111.25 | 111.26 FALT           |               |              |                |                |              |      |               |         |
|        | 84-3       | 111.71 | 116.13 DTFP           | qvep          |              |                |                |              |      |               |         |
|        | 84-3       | 116.13 | 121.31 PLBT           | qv            | ру           |                |                |              |      |               |         |
|        | 84-3       | 121.31 | 129.84 DTFP           | qt            | ру           |                |                |              |      |               |         |
|        | 84-3       | 129.84 | 133.8 PLBT            | -             | py           |                |                |              |      |               |         |

|        |      |        | <u>GEOL</u> | OGICAL | <u>DATA</u>   |              | AS     | <u>SAY DAT</u> | A            |             |               |         |
|--------|------|--------|-------------|--------|---------------|--------------|--------|----------------|--------------|-------------|---------------|---------|
| REF NO | DDH  | FROM   | TO          | ROCK   | <u>ALTRTN</u> | <u>MINRL</u> | FROM   | <u>TO</u>      | <u>WIDTH</u> | <u>GOLD</u> | <u>SILVER</u> | ARSENIC |
|        | 84-4 | 0      | 5.49 (      | CASG   |               |              | 66.75  | 67.36          | 0.61         | 0.03        | 0.67          | 0       |
|        | 84-4 | 5.49   | 19.2        | FILL   |               |              | 67.36  | 67.97          | 0.61         | 0.03        | 0             | 0       |
|        | 84-4 | 19.2   | 41.14 I     | DTFP   | Qt            | ру           | 94.18  | 94,79          | 0.61         | 0.03        | 0.3           | 100     |
|        | 84-4 | 24.84  | 30.63       |        | Cv            |              | 99.66  | 100.89         | 1.23         | 0.1         | 0.3           | 300     |
|        | 84-4 | 41.14  | 57.3 (      | QTDP   | Ca            |              | 101.96 | 102.26         | 0.3          | 0.03        | 0.3           | 100     |
|        | 84-4 | 57.3   | 63.09 I     | DTFP   | Ca            |              | 118.26 | 119.48         | 1.22         | 0.03        | 0.3           | 200     |
|        | 84-4 | 63     | 68.58 I     | DTHF   | Caqt          |              | 119.48 | 120.39         | 0.91         | 1.82        | 0.67          | 3500    |
|        | 84-4 | 68.58  | 70.1 H      | BAST   | Ca            |              | 120.39 | 121.62         | 1.23         | 5.97        | 2.4           | 13,400  |
|        | 84-4 | 70.1   | 89 I        | DTFP   | caqt          |              | 121.62 | 121.92         | 0.3          | 1.2         | 0.67          | 13,600  |
|        | 84-4 | 89     | 111.25 I    | DTHF   | qt            | ру           | 121.92 | 122.83         | 0.91         | 0.07        | 0.4           | 337     |
|        | 84-4 | 111.25 | 118.56 I    | DTFP   | cv            | ру           | 122.83 | 123.29         | 0.46         | 0.03        | 0.1           | 22      |
|        | 84-4 | 118.56 | 123.44 0    | QCVN   |               | ру           | 125.57 | 126.18         | 0.61         | 0.03        | 0.1           | 17      |
|        | 84-4 | 123.44 | 125.27 E    | DTFP   | qt            | ру           | 128.47 | 129.38         | 0.91         | 0.03        | 0.2           | 21      |
|        | 84-4 | 125.27 | 130.45 E    | PLBT   | qt            | ру           | 130.91 | 132.66         | 1.75         | 0.03        | 0.3           | 54      |
|        | 84-4 | 130.45 | 137.16 I    | DTFP   |               |              |        |                |              |             |               |         |

Ŧ

**\*\***\*\*\*

GEOLOGICAL DATA ASSAY DATA <u>DDH</u> <u>FROM</u> ROCK ALTRIN MINRL FROM WIDTH GOLD SILVER ARSENIC TO <u>10</u> 84-5 0 4.87 CASG 18.59 19.5 0.91 0.10 1.7 Û 4.87 22.86 BAST 21.95 22.56 0.61 0.03 0 0 qica 18.59 19.51 Рy 22.56 23.16 0.6 0.03 0 0 23 77 19.51 29.26 PLBT 23.16 0.61 1.10 \$917 CA. Т ру 29.26 39.01 DAPP **C**8 23.77 24.99 1.22 0.03 0 0 34.13 35.36 oc 24.99 26.21 1.22 0.48 0 0 РУ PYas 35.36 39.01 26.21 26.82 0.61 1.37 08 1718 44.2 CARB ΡY 39.01 26.82 27.89 1.07 0 0 0.14 48.76 QTVN 44.2 ca. PΥ 27.89 28.96 1.07 0.03 0 0 50.44 PLBT 48.76 Qc 28.96 29.41 0.45 **py** 1.37 1.1 3445 50.44 53.64 DAPP qc ру 29.41 30.63 1.22 0.03 0 0 65.53 PLBT 53.64 30.63 31.85 1.22 0.07 0 Ð qc ру 65.53 EOH 31.85 33.07 1.22 0.03 0 9 33.07 34.29 1.22 Ð 0.03 0 34.29 35.35 1.06 0.03 0 0 35.35 35.97 0.62 1.54 0 0 31.85\* 35.97 36.57 0.6 2.43 0.4 20 36.57 37.49 0.92 0.72 0.4 20 37.49 38.1 0.61 3.12 2.2 11,848 38.1 39.32 1.22 4.29 3.1 6489 39.32 40.23 0.91 1.20 0.8 3466 40.23 41.14 0.91 0.48 987 1 41.14 42.36 1.22 3.94 3.1 10639 42.36 42.97 0.61 0.34 0.9 718 42.97 1.94 44.91 1.92 1.4 4472 44.91 45.42 0.51 2.78 1.8 34 45.42 45.72 0.3 3.05 3556 2.1 45.72 46.63 0.91 3,94 1013 1.5

46.63

47.54

48.76

51.51

61.72

47.54

48.76

49.99

52.27

62.33

0.91

1.22

1.23

0.76

0.61

7.89

2.71

0.03

0.03

0.03

2.5

1.4

0.67

0

0

1343

3510

0

a

Page 1

DDH 84-5

REF.NO

|        |      |        | GEC    | LOGIÇAL     | DATA          |       | AS    | <u>SAY DAT</u> | A     |      |               |         |
|--------|------|--------|--------|-------------|---------------|-------|-------|----------------|-------|------|---------------|---------|
| REF NO | DDH  | FROM   | TO     | <u>ROCK</u> | <u>ALTRTN</u> | MINRL | FROM  | TQ             | WIDTH | GOLD | <u>SILVER</u> | ARSENIC |
|        | 84-6 | 0      | 4.72   | CASG        |               |       | 8.08  | 8,67           | 0.59  | 0.1  | 0             | 0       |
|        | 84-6 | 4.72   | 9.75   | BAST        | Cq            | ру    | 8,67  | 9.14           | 0.47  | 0.34 | 1             | 0       |
|        | 84-6 | 9.75   | 16.76  | PLBT        | Cq            | ру    | 9.14  | 10.67          | 1.53  | 0.03 | 0             | 0       |
|        | 84-6 | 16,76  | 18.28  | CARB        |               | ру    | 21,79 | 22.71          | 0.92  | 0.03 | 0             | 0       |
|        | 84-6 | 18.28  | 24.08  | BAST        | Qt            | Ру    | 22.71 | 23.01          | 0.3   | 2.88 | 1             | 20,217  |
|        | 84-6 | 24.08  | 28.96  | CARB        |               | PY    | 23.01 | 24.08          | 1.07  | 0.03 | 0             | 0       |
|        | 84-6 | 28,96  | 30.78  | BAST        |               |       | 24.08 | 24.53          | 0.45  | 0.1  | 1             | 0       |
|        | 84-6 | 30.78  | 42.67  | DTFP        | ca            | Ру    | 24.53 | 25.25          | 0.72  | 3.19 | 1.7           | 12,178  |
|        | 84-6 | 33.53  | 36.58  | :           | Qt            |       | 25,25 | 26.37          | 1.12  | 0.9  | 1             | 3450    |
|        | 84-6 | 42.67  | 55.78  | BAST        | cq            | ру    | 26.37 | 27.43          | 1.06  | 3.6  | 0             | 0       |
|        | 84-6 | 55,78  | 58.52  | DTFP        | са            |       | 27.43 | 28,5           | 1.07  | 0.07 | 1             | 0       |
|        | 84-6 | 58.52  | 60.04  | BAST        | ca            |       | 28.5  | 28.95          | 0.45  | 0.24 | 1             | 0       |
|        | 84-6 | 60.04  | 64.01  | DTFP        | ру            |       | 28.95 | 30.17          | 1.22  | 0.14 | 0             | 0       |
|        | 84-6 | 64.01  | 69.19  | BAST        | Ca            | ру    | 30,17 | 31.55          | L.38  | 0.03 | 0             | 0       |
|        | 84-6 | 69.19  | 80,16  | DTFP        |               |       | 31,55 | 31.85          | 0.3   | 2.26 | 1.2           | 4924    |
|        | 84-6 | 77.11  | 77.11  | FALT        |               |       | 31.85 | 32.92          | 1.07  | 0.48 | 1.7           | 0       |
|        | 84-6 | 77.11  | 81.07  | BAST        | Ca            |       | 32.92 | 34.13          | 1.21  | 0.82 | 0.5           | 5310    |
|        | 84-6 | 80.16  | 80.46  | FALT        | Ca            |       | 34.13 | 34.75          | 0.62  | 0.17 | 0             | 0       |
|        | 84-6 | 80.46  | 92.96  | PLBT        | ca            | ру    | 41.45 | 42.06          | 0.61  | 0.07 | 1.7           | 0       |
|        | 84-6 | 92.96  | 98.14  | DTFP        | qv            |       | 42.97 | 43,74          | 0.77  | 0.03 | 0             | 0       |
|        | 84-6 | 98.14  | 100.58 | PLBT        |               |       | 61.26 | 62.48          | 1.22  | 0.03 | 0             | 0       |
|        | 84-6 | 100.58 | 108.81 | DTFP        | qv            | ру    | 62.48 | 63.4           | 0.92  | 0.58 | 0.5           | 1925    |
|        | 84-6 | 108.81 | 108.81 | FALT        |               |       | 63.4  | 63.86          | 0.46  | 1.17 | 0.5           | 3665    |
|        | 84-6 | 108,81 | 112.47 | BAST        |               | ру    | 63.86 | 64.92          | 1.06  | 0.03 | 0             | 0       |
|        | 84-6 | 112.47 | 125.58 | DIFP        |               | ру    | 80.09 | 80.54          | 0.45  | 0.03 | 0.3           | 137     |
|        |      |        |        |             |               |       | 83.67 | 84.43          | 0.76  | 0.03 | 0.1           | 84      |
|        |      |        |        |             |               |       |       |                | 0     | 0    | 0             | 0       |

,

7

|              |             | GEOLOGICAL            | <u>, DATA</u> |       | ASS   | SAY DAI       | <u>`A</u>    |             |               |                |
|--------------|-------------|-----------------------|---------------|-------|-------|---------------|--------------|-------------|---------------|----------------|
| REF.NO DDH   | <u>FROM</u> | <u>TO</u> <u>ROCK</u> | <u>ALTRTN</u> | MINRL | FROM  | <u>TO</u>     | WIDTH        | <u>GOLD</u> | <u>SILVER</u> | <u>ARSENIC</u> |
| 84-7         | 0           | 4.27 CASG             |               |       | 9.75  | 10.36         | 0. <b>61</b> | 0.03        | 0             | 0              |
| 84-7         | 4.27        | 10.06 BAST            | Caqt          | ру    | 10.36 | 10. <b>82</b> | 0.46         | 1.23        | 1.3           | 5065           |
| 84-7         | 10.06       | 11.52 DTFP            | qt            | Ру    | 10.82 | 11.88         | 1.06         | 0.14        | 0             | 0              |
| 84-7         | 11.52       | 25.29 BAST            | СВ            | ру    | 11.88 | 12.95         | 1.07         | 0.21        | 0             | 0              |
| 84-7         | 14.32       | 14.78                 |               | PYAs  | 12.95 | 13.11         | 0.16         | 3.09        | 2.7           | 0              |
| 84-7         | 16.34       | 16.76                 |               | PY    | 13.11 | 14.25         | 1.14         | 0.03        | 0             | 0              |
| 84-7         | 22.25       | 23.62                 |               | PY    | 14.25 | 14.85         | 0.6          | 0.99        | 0.8           | 4979           |
| 84-7         | 25.29       | 35.05 QCVN            | Bx            | PY    | 14.85 | 15.54         | 0. <b>69</b> | 0.14        | 0             | 0              |
| 84-7         | 28.95       | 33.52                 |               | 88    | 15.54 | 16.31         | 0.77         | 0.03        | 0             | 0              |
| <b>84-</b> 7 | 35.05       | 44.65 DTFP            | Ca            | ру    | 16.31 | 16.76         | 0.45         | 0.93        | 1.7           | 0              |
| 84-7         | 36.27       | 36.57                 | QK            | Ру    | 16.76 | 17.68         | 0.92         | 0.03        | 0             | 0              |
|              |             |                       |               |       | 17.68 | 18.28         | 0.6          | 0.03        | 0             | 0              |
|              |             |                       |               |       | 25.6  | 26.21         | 0.61         | 0.14        | 0             | 0              |
|              |             |                       |               |       | 26.21 | 27.28         | 1.07         | 0.75        | 0.5           | 2348           |
|              |             |                       |               |       | 27.28 | 28.5          | 1.22         | 0.03        | 0             | 0              |
|              |             |                       |               |       | 28.5  | 29.1          | 0.6          | 0.03        | 0.5           | 67             |
|              |             |                       |               |       | 29.1  | 29.87         | 0.77         | 0.17        | 0.2           | 401            |
|              |             |                       |               |       | 29.87 | 30.78         | 0. <b>91</b> | 1.92        | 0.7           | 4145           |
|              |             |                       |               |       | 30.78 | 31.54         | 0.76         | 3.15        | 0.7           | 11707          |
|              |             |                       |               |       | 31.54 | 32.16         | 0.62         | 1.51        | 0.9           | 7757           |
|              |             |                       |               |       | 32    | 33.07         | 1.07         | 2.3         | 1.2           | 5571           |
|              |             |                       |               |       | 33.07 | 33.52         | 0.45         | 0.45        | 0.8           | 2022           |
|              |             |                       |               |       | 33.52 | 34.13         | 0.61         | 0.45        | 0             | 0              |
|              |             |                       |               |       | 34.13 | 35.05         | 0.92         | 0.03        | 0             | 0              |
|              |             |                       |               |       |       |               | 0            | 0           |               |                |
|              |             |                       |               |       |       |               | 0            | 0           |               |                |

· · ·

|               |                       |       | <u>GEO</u> | <u>LOGICAL</u> i | <u>DATA</u>   |       | AS     | SAY DAT   | <u>`A</u> |      |               |         |  |
|---------------|-----------------------|-------|------------|------------------|---------------|-------|--------|-----------|-----------|------|---------------|---------|--|
| <u>REF.NO</u> | DDH                   | FROM  | TO         | ROCK             | <u>ALTRTN</u> | MINRL | FROM   | <u>TO</u> | WIDTH     | GOLD | <u>SILVER</u> | ARSENIC |  |
|               | 84-8                  | 0     | 17.98      | CASG             |               |       | 21.64  | 22.09     | 0.45      | 0.03 | 0             | 0       |  |
|               | 84-8                  | 17.98 | 27.43      | DTHF             |               |       | 35,89  | 36.5      | 0.61      | 0.14 | 0.2           | 63      |  |
|               | 84-8                  | 27.43 | 28.95      | BAST             |               |       | 44.04  | 44.5      | 0.46      | 0.03 | 0.1           | 37      |  |
|               | 84-8                  | 28,95 | 29         | FALT             | GGCA          |       | 47.54  | 48,16     | 0.62      | 0.03 | 0             | 0       |  |
|               | 84-8                  | 29    | 44.19      | DTHF             | ca            |       | 55.77  | 56,84     | 1.07      | 0.03 | 0             | 0       |  |
|               | 84-8                  | 36.11 | 36.41      |                  | CV            |       | 56,84  | 57,45     | 0.61      | 0.38 | 0.6           | 4.33    |  |
|               | 84-8                  | 44.19 | 44.49      | FALT             | GGCV          |       | 57.45  | 57.91     | 0.46      | 0.03 | 0             | 0       |  |
|               | 84-8                  | 44.49 | 48.61      | DTHF             | ca            |       | 64.92  | 66,45     | 1.53      | 0.03 | 0.3           | 55      |  |
|               | 84-8                  | 48,61 | 49.07      | FALT             | GGCV          |       | 66.45  | 67.36     | 0.91      | 0.03 | 0.2           | 25      |  |
|               | 84-8                  | 49.07 | 51.81      | DTFP             | qt            | ру    | 69.95  | 70.87     | 0.92      | 0.03 | 0.3           | 44      |  |
|               | 84-8                  | 49.07 | 50.5       |                  | Cq            |       | 70.87  | 71.47     | 0.6       | 1.25 | 1             | 505     |  |
|               | 84-8                  | 50.9  | 51.81      |                  | QCca          |       | 71.47  | 72.54     | 1.07      | 0.27 | 0.5           | 174     |  |
|               | 84-8                  | 51.81 | 53.49      | FALT             | BXQC          |       | 86.25  | 87.17     | 0.92      | 0.3  | 0.7           | 226     |  |
|               | 84-8                  | 53,49 | 65,53      | DTFP             | са            |       | 87.17  | 88.09     | 0.92      | 0.7  | 0.8           | 341     |  |
|               | 84-8                  | 53.49 | 55,77      |                  | SZ            |       | 92.97  | 93.56     | 0,59      | 1.27 | 0.5           | 265     |  |
|               | 84-8                  | 60,96 | 61.26      |                  | GGSZ          |       | 93.56  | 94.79     | 1.23      | 0.03 | 0.3           | 90      |  |
|               | 84-8                  | 65.53 | 69.49      | DTHF             | qt            | ру    | 96.01  | 96.31     | 0.3       | 0.58 | 0.3           | 96      |  |
|               | 84-8                  | 65,53 | 67.81      |                  | ggcv          |       | 96.31  | 97.23     | 0,92      | 3,7  | 0.8           | 486     |  |
|               | 84-8                  | 69.49 | 72.54      | QCVN             |               | Ру    | 97.23  | 97.84     | 0.61      | 0.03 | 0.3           | 24      |  |
|               | 84-8                  | 72.54 | 72.7       | FALT             |               | Ру    | 110.03 | 111.56    | 1.53      | 0.03 | 0.2           | 9       |  |
|               | 84-8                  | 68.25 | 89.91      | DTHF             |               | Ру    |        |           | 0         | 0    | 0             | 0       |  |
|               | 84-8                  | 86.26 | 88.08      | QCVN             |               | Ру    |        |           | 0         | 0    | 0             | 0       |  |
|               | 84-8                  | 88.08 | 95.71      | DTFP             | qt            | ру    |        |           | 0         | 0    | 0             | 0       |  |
|               | 84-8 93.11 94.48      |       |            |                  |               | PY    |        |           | 0         | 0    | 0             | 0       |  |
|               | 84-8                  | 95.71 | 96.48      | QCS₩             |               | PY    |        |           | 0         | 0    | 0             | 0       |  |
|               | 84-8 97.48 97.38 FALT |       |            | FALT             | Qc            | PY    |        |           | 0         | 0    | 0             | 0       |  |
|               | 84-8                  | 97.38 | 113.39     | DTHF             | qt            |       |        |           | 0         | 0    | 0             | 0       |  |
|               | 84-8                  | 97,84 | 110.03     |                  | QScp          |       |        |           | 0         | 0    | 0             | 0       |  |

4

•

.

|               |            |                | GEOLO       | GICAL DATA | ł    |              | AS          | <u>SAY DAT</u> | A     |      |               |         |        |      |      |     |      |
|---------------|------------|----------------|-------------|------------|------|--------------|-------------|----------------|-------|------|---------------|---------|--------|------|------|-----|------|
| <u>REF NO</u> | <u>DDH</u> | FROM           | <u>to</u> B | ROCK AL    | TRIN | <u>MINRL</u> | <u>EROM</u> | <u>TO</u>      | WIDTH | GOLD | <u>SILVER</u> | ARSENIC | COPPER | MOLY | LEAD | ANU | ZINC |
|               | 84-9       | 0              | 0.91 CA     | SG         |      |              | 32.31       | 32.77          | 0.46  | 0.03 | 0.6           | 31      | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 0.91           | 5.79 DT     | HF         |      |              | 54.71       | 55.32          | 0.61  | 0.03 | 0.4           | 2       | 68     | 0    | 0    | 0   | 38   |
|               | 84-9       | 5.79           | 6.09 FA     | LT Ca      |      |              | 111.7       | 112.62         | 0.92  | 0.14 | 1             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 5.79           | 87.48 DT    | HF         |      |              | 112.62      | 113.53         | 0.91  | 0.55 | 1.3           | 138     | 398    | 0    | 0    | 0   | 83   |
|               | 84-9       | 24.38          | 25.91       | Ca         |      |              | 113.53      | 114.45         | 0.92  | 0.03 | 0.6           | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 25 91          | 25.21       | CAC        | v    |              | 114.45      | 115.37         | 0.92  | 0.34 | 0.6           | 0       | 0      | 0    | û    | 0   | 0    |
|               | 84-9       | 25.21          | 30.18       | Ca         |      |              | 115.37      | 116.13         | 0.76  | 0.17 | 0.6           | 138     | 191    | 0    | 0    | 0   | 283  |
|               | 84-9       | 30.18          | 40.23       | Caq        | t    |              | 129.39      | 130.4          | 1.01  | 0.1  | 0.3           | 134     | 94     | 0    | 0    | 0   | 101  |
|               | 84-9       | 40.23          | 40.3        | GOU        | IG   |              | 130.45      | 131            | 0.55  | 0.31 | 0.9           | 337     | 121    | 0    | 0    | 0   | 125  |
|               | 84-9       | 40.3           | 43.89       | CaQ        | n.   |              | 135.03      | 135.6          | 0.57  | 0.24 | 0.7           | 160     | 77     | 0    | 0    | 0   | 89   |
|               | 84-9       | 49,99          | 50.29       | CVq        | jt 👘 |              | 135.64      | 136.7          | 1.06  | 0.03 | 0.7           | 68      | 102    | 0    | 0    | 0   | 72   |
|               | 84-9       | 50.29          | 54.25       | CaQ        | rt.  |              |             |                | 0     | Ú    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 54.25          | 56.38       | SZC        | A    |              |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | \$6. <b>38</b> | 83.82       | CaQ        | n    |              |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 83.82          | 87.48       | CA         |      |              |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 87.48          | 88.39 FA    | LT BXC     | CA   |              |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 88.39          | 93.26 DC    | TT         |      |              |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 93.26          | 93.56 FA    | LT         |      |              |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 93.56          | 96.92 DC    | TT qt      |      |              |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 96.92          | 99.24 FA    | LT GOU     | JG   |              |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 99.24          | 115.52 DT   | HF         |      |              |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 99.24          | 99.54       | Ер         |      |              |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 99.54          | 111.56      | Qtq        | v    |              |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 111.56         | 113.08 SZ   |            | P    | Py .         |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 113.08         | 113.38 DT   | HF         | F    | PΥ           |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 115.52         | 115.87 FA   | LT GG      | P    | Py .         |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 115.87         | 158.5 DT    | HF         |      |              |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |
|               | 84-9       | 121.61         | 121.91      | FZ         | F    | Py           |             |                | 0     | 0    | 0             | 0       | 0      | 0    | 0    | 0   | 0    |

٠

|               |      |       | GEOLOGICAL | <u>, DATA</u> |       | ASS   | SAY DAT | A     |      |        |
|---------------|------|-------|------------|---------------|-------|-------|---------|-------|------|--------|
| <u>REF.NO</u> | DDH  | FROM  | TO ROCK    | <u>ALTRTN</u> | MINRL | FROM  | TO      | WIDTH | GOLD | SILVER |
|               | 87-1 | 0     | 4.88 CASG  |               |       | 4.88  | 5.79    | 0.91  | 0.45 | l      |
|               | 87-1 | 4.88  | 14.33 PLBT | pyqc          |       | 5.79  | 7.47    | 1.68  | 0.1  | 07     |
|               | 87-1 | 14.33 | 17.07 QCBX |               | PY    | 8 53  | 8.99    | 0.46  | 0.07 | 07     |
|               | 87-1 | 17    | 18.59 BAST |               | Ру    | 8.99  | 9.45    | 0.46  | 0.14 | 0.7    |
|               | 87-1 | 18.59 | 22.86 QVBX |               | PYas  | 9.45  | 10.21   | 0.76  | 0.07 | 0.7    |
|               | 87-1 | 22.86 | 26.37 BAST | QT            | Py    | 10.21 | 10.82   | 0.61  | 0.07 | 07     |
|               | 87-1 | 26.37 | 27.13 QVBX |               | PYas  | 13.41 | 13.87   | 0.46  | 0.07 | 0.7    |
|               | 87-1 | 27.13 | 45.42 PLBT |               | popy  | 15.54 | 16.15   | 0.61  | 0.38 | 1      |
|               | 87-1 | 36.58 | 37.19      | BX            | Py    | 16.15 | 16.76   | 0.61  | 0 82 | 21     |
|               | 87-1 | 41.45 | 42.67      | chlo          |       | 16.76 | 17.06   | 0.3   | 0.24 | 1.3    |
|               | 87-1 | 42.98 | 45.42      | QS            | Ру    | 17.06 | 17.83   | 0.77  | 0.07 | 0.7    |
|               | 87-1 | 45.42 | 47.24 QCBX |               | ру    | 17.83 | 18.59   | 0.76  | 0.07 | 0.7    |
|               | 87-1 | 47.24 | 57.3 PLBT  | qc            | ру    | 18.59 | 19.35   | 0.76  | 2.16 | 2.4    |
|               | 87-1 | 57.3  | 59.44 QCBX |               | Py    | 19.35 | 19.66   | 0.31  | 1.1  | 2.1    |
|               | 87-1 | 59.44 | 72.39 PLBT | qc            | py    | 19.66 | 21.34   | 1.68  | 0 41 | 0.7    |
|               | 87-1 | 72.39 | 72.69 FALT | qc            |       | 21.34 | 22.86   | 1.52  | 0.51 | 1      |
|               | 87-1 | 72.69 | 74.37 PLBT | qc            |       | 24.99 | 26.36   | 1.37  | 0.38 | 1      |
|               |      |       |            |               |       | 26.36 | 27.13   | 0.77  | 2.81 | 3.4    |
|               |      |       |            |               |       | 36.42 | 37.18   | 0.76  | 0.07 | 0.7    |
|               |      |       |            |               |       | 42.98 | 43.43   | 0.45  | 0.07 | 0.7    |
|               |      |       |            |               |       | 43.43 | 45.11   | 1.68  | 0.1  | 0.7    |
|               |      |       |            |               |       | 45.11 | 45.42   | 0.31  | 0.07 | 0.7    |
|               |      |       |            |               |       | 45.42 | 46.94   | 1.52  | 0.27 | 1.7    |
|               |      |       |            |               |       | 46.94 | 47.24   | 0.3   | 0.07 | 1.7    |

54.71

55.32

56.23

57

57.3

58.6

58.37

59.43

55.32

56.23

57

57.3

57.6

58.37

59.43

59.74

0.61

0.91

0.77

0.3

0.3

-0.23

1.06

0.31

0

0.21 1 3.43 1.3 0.48 0.7

٠

0.07

0.07

0.07

0.82

1.71

0 0

0.7

0.7

07

0.7

1.7

|        |      |       | <u>GEO</u> | LOGICAL | <u>DATA</u>   |       | AS    | <u>SAY DAT</u> | <u>`A</u> |      |        |
|--------|------|-------|------------|---------|---------------|-------|-------|----------------|-----------|------|--------|
| REF.NO | DDH  | FROM  | <u>T0</u>  | ROCK    | <u>ALTRTN</u> | MINRL | FROM  | TO             | WIDTH     | GOLD | SILVER |
|        | 87-2 | 0     | 6.1        | CASG    |               |       | 6.1   | 8.53           | 2.43      | 0.1  | 0.7    |
|        | 87-2 | 6.1   | 11.58      | PLBT    | qcpy          |       | 8.53  | 9.3            | 0.77      | 0.48 | ì      |
|        | 87-2 | 11.58 | 12.8       | QCBX    | Ру            |       | 9.3   | 10.06          | 0.76      | 0.07 | 07     |
|        | 87-2 | 12.8  | 14.63      | FALT    | CVqt          |       | 10.06 | 10.66          | 0.60      | 0.45 | 07     |
|        | 87-2 | 14.63 | 65.83      | PLBT    | Qc            | ру    | 10.66 | 11.58          | 0.92      | 0.62 | 1      |
|        | 87-2 | 24.54 | 24.84      |         | QC            | PY    | 11.58 | 12.5           | 0.92      | 0.45 | 0.7    |
|        | 87-2 | 26.36 | 26.97      |         | QC            | Ру    | 12.5  | 12.8           | 0.3       | 0.27 | 07     |
|        | 87-2 | 42.36 | 42.66      |         | QT            | PY    | 12.8  | 14.63          | 1.83      | 0.14 | 07     |
|        | 87-2 | 42.77 | 61.72      |         | QC            | Py    | 18.14 | 18.75          | 0.61      | 0.07 | 07     |
|        | 87-2 | 65.23 | 65.83      |         | QC            | Ру    | 19.2  | 19.5           | 0.3       | 0.07 | 0.7    |
|        | 87-2 | 65.83 | 66.29      | QCBX    |               | PY    | 24.54 | 24.84          | 0.3       | 0.07 | 0.7    |
|        | 87-2 | 66.29 | 106.68     | PLBT    |               |       | 26.37 | 26.97          | 0.6       | 0.07 | 0.7    |
|        | 87-2 | 66.29 | 66.7       |         |               | PY    | 42.37 | 42.82          | 0.45      | 0.82 | 1.7    |
|        | 87-2 | 72.39 | 99.7       |         | QC            | Ру    | 45.11 | 45.57          | 0.46      | 0.07 | 0.7    |
|        | 87-2 | 74.68 | 76.2       |         | QC            | ру    | 45.87 | 46.32          | 0.45      | 0.07 | 1      |
|        | 87-2 | 76.2  | 95.85      |         | qc            |       | 46.93 | 47.23          | 0.3       | 0.07 | 0.7    |
|        | 87-2 | 95.85 | 97.08      |         | Qc            | РҮ    | 47.23 | 47.7           | 0.47      | 0.07 | 0.7    |
|        | 87-2 | 99.67 | 106.68     |         | qc            | ру    | 47.7  | 48.15          | 0.45      | 0.07 | 0.7    |
|        |      |       |            |         |               |       | 48.76 | 50.13          | 1.37      | 0.07 | 0.7    |
|        |      |       |            |         |               |       | 51.05 | 51.66          | 0.61      | 0.07 | 0.7    |
|        |      |       |            |         |               |       | 53.49 | 53.95          | 0.46      | 0.07 | 07     |
|        |      |       |            |         |               |       | 55.47 | 55.93          | 0.46      | 0.79 | 1.3    |

55.93

57.3

57.91

58.52

59.28

60.35

61.42

61.72

64.92

65.38

65.84

66.29

72.39

95.6

97.77

57.3

57.91

58.52

59.28

60.35

61.42

61.72

62.03

65.38

65.84

66.29

66.6

73

96.77

**98.07** 

1.37

0.61

0.61

0.76

1.07

1.07

0.3

0.31

0.46

0.46

0.45

0.31

0.61

1.17

0.3

0

0.07

3.84

0.07

0.07

0.07

0.31

0.07

0.07

0 07

0.07

0.69

0.07

0.07

0.07

0.07

•

0

0.7

2.1

0.7

0.7

0.7

0.7

07

0.7

07

0.7

ł

0.7

07

07

0.7

0

.

|        |      |       | GEOLOGICAL        | DATA   |       | AS                | SAY DAT | A     |      |        |
|--------|------|-------|-------------------|--------|-------|-------------------|---------|-------|------|--------|
| REF.NO | DDH  | FROM  | TO ROCK           | ALTRTN | MINRL | FROM              | TO      | WIDTH | GOLD | SILVER |
|        | 87-3 | 0     | 5.48 CASG         |        |       | 17.53             | 17.98   | 0.45  | 0.07 | 0.7    |
|        | 87-3 | 5.48  | 10.05 PLBT        | qc     | ру    | 37.03             | 37 49   | 0.46  | 0.58 | l      |
|        | 87-3 | 10.05 | 12.8 DTFP         |        |       | 44.2              | 44.96   | 0.76  | 0.21 | 0.7    |
|        | 87-3 | 12.8  | 56.38 PLBT        |        |       | 49.23             | 49.99   | 0.76  | 0.31 | 0.7    |
|        | 87-3 | 23.16 | 23.62             | qc     |       | 49.99             | 50.6    | 0.61  | 0.24 | 1.3    |
|        | 87-3 | 26.82 | 29.26             | Qc     |       | 51.66             | 52.73   | 1.07  | 0.45 | 0.7    |
|        | 87-3 | 33.99 | 49.99             | Qc     | ру    | 52.73             | 53.19   | 0.46  | 0.07 | 0.7    |
|        | 87-3 | 49.99 | 50.6              | Qc     | Py    | 53.19             | 53.34   | 0.15  | 0.07 | 0.7    |
|        | 87-3 | 50.6  | 53.19             | QC     | py    | 56.38             | 57      | 0.62  | 0.72 | 13     |
|        | 87-3 | 53.19 | 53.64             | QC     | Py    | 57                | 58.22   | 1.22  | 0.07 | 0.7    |
|        | 87-3 | 53.65 | 56.38             | qc     | •     | 58.22             | 59.13   | 0.91  | 0.07 | 0.7    |
|        | 87-3 | 56.38 | 61.42 QCBX        |        | Ру    | 59.13             | 59.59   | 0.46  | 2.95 | 1      |
|        | 87-3 | 61.42 | 87.93 PLBT        | qc     |       | 59.59             | 60.35   | 0.76  | 0.14 | 0.7    |
|        | 87-3 | 75.13 | 75.74             | QC     | ру    | 60.35             | 61.42   | 1.07  | 0.51 | 0.7    |
|        | 87-3 | 78.18 | 78.48             | FZ     |       | 75.13             | 75.74   | 0.61  | 0.07 | 0.7    |
|        | 87-3 | 83.21 | 86.25             | QC     | ру    | 83.36             | 84.58   | 1.22  | 0.07 | 0.7    |
|        | 87-3 | 86.25 | 87.93             | QC     | Py    | 85.8              | 86.26   | 0.46  | 0.24 | 0.7    |
|        | 87-3 | 87.93 | 89.61 DTFP        | QC     | Py    | 86.28             | 87.93   | 1.65  | 0.38 | 0.7    |
|        | 87-3 | 89.61 | 99.06 PLBT        | qc     | -     | 87.93             | 89.61   | 1.68  | 0.38 | 0.7    |
|        | 87-3 | 89.61 | 91.22             | QC     | Ру    | 89.61             | 90.22   | 0.61  | 0.75 | 1      |
|        | 87-3 | 90.83 | 91.29             |        | PY    | 90.22             | 90.83   | 0.61  | 0.07 | 0.7    |
|        | 87-3 | 91.29 | 92.96             | Qc     | ру    | 90.83             | 91.29   | 0.46  | 0.1  | 1.3    |
|        | 87-3 | 92.96 | 93.26             | QC     | PY    | 91.2 <del>9</del> | 92.96   | 1.67  | 0.07 | 0.7    |
|        | 87-3 | 93.26 | 96.77             | qc     | ру    | 92.96             | 93.57   | 0.61  | 0.07 | 0.7    |
|        | 87-3 | 96.77 | 99.0 <del>6</del> | qc     |       | 96.39             | 96.77   | 0.38  | 0.07 | 0.7    |

DDH 87-03

.

|        |      |       | GEOLOGICAL DATA |        |       | ASSAY DATA |           |       |             |        |
|--------|------|-------|-----------------|--------|-------|------------|-----------|-------|-------------|--------|
| REF NO | DDH  | FROM  | TO ROCK         | ALTRTN | MINRL | FROM       | <u>T0</u> | WIDTH | <u>GOLD</u> | SILVER |
|        | 87-4 | 0     | 6.1 CASG        |        |       | 17.67      | 18.14     | 0.47  | 0.07        | 0.7    |
|        | 87-4 | 6.1   | 7.62 BAST       | qt     |       | 28 8       | 29.87     | 1.07  | 0.07        | 07     |
|        | 87-4 | 7.62  | 17.07 DTFH      | Qcsw   |       | 30.48      | 31.39     | 0.91  | 0.07        | 0.7    |
|        | 87-4 | 11.13 | 11.43           | SZGG   |       | 40.54      | 41        | 0.46  | 0.07        | 0.7    |
|        | 87-4 | 17.07 | 22.71 PLBT      | qcsw   |       | 41         | 41.91     | 0.91  | 1.03        | ł      |
|        | 87-4 | 17.67 | 18.13           |        | ру    | 41.91      | 43.74     | 1.83  | 0 69        | 1.3    |
|        | 87-4 | 22.71 | 27.73 DTFH      | qcsw   |       | 43.74      | 44.65     | 0.91  | 0 82        | }      |
|        | 87-4 | 27.73 | 35.05 PLBT      | clqt   |       | 44.65      | 45.11     | 0.46  | 0.79        | 1      |
|        | 87-4 | 28.8  | 29.87           | qc     | ру    | 45.11      | 45.72     | 0.61  | 0.79        | 1      |
|        | 87-4 | 35.05 | 41 DTFP         | qtsw   |       | 45.72      | 47.54     | 1.82  | 0.51        | 1.3    |
|        | 87-4 | 41    | 43.73 QCSW      |        | PYas  | 47.54      | 48.62     | 1.08  | 0.79        | 1.7    |
|        | 87-4 | 43.73 | 45.72 DTFP      | qc     | ру    | 48.62      | 48.92     | 0.3   | 0.24        | 0.7    |
|        | 87-4 | 45.72 | 69.18 BAST      |        |       | 48.92      | 49.38     | 0.46  | 2.4         | 2.1    |
|        | 87-4 | 45.72 | 49.38           | qt     | ру    | 49.38      | 49.83     | 0.45  | 0.07        | 0.7    |
|        | 87-4 | 59.13 | 69.18           | qc     | ру    |            |           | 0     | 0           | 0      |
|        |      |       |                 |        |       |            |           |       |             |        |

٠

|               |            |       | <b>GEOLOGICA</b> | <u>L DATA</u> |                | AS    | SAY DAT   | <u>`A</u> |             |               |
|---------------|------------|-------|------------------|---------------|----------------|-------|-----------|-----------|-------------|---------------|
| <u>REF.NO</u> | <u>DDH</u> | FROM  | TO ROCI          | <u>ALTRT</u>  | <u>N MINRL</u> | FROM  | <u>T0</u> | WIDTH     | <u>GOLD</u> | <u>SILVER</u> |
|               | 87-5       | 0     | 3.66 CASG        |               |                | 15.54 | 16.15     | 0.61      | 0.07        | 0.7           |
|               | 87-5       | 3.66  | 10.97 PLBT       | qc            |                | 46.48 | 47.7      | 1.22      | 0.07        | 07            |
|               | 87-5       | 7.77  | 8.07             | p             |                | 47.7  | 48.46     | 0.76      | 0.27        | 1.3           |
|               | 87-5       | 10.97 | 12.49 DTFP       |               |                | 48.46 | 49.37     | 0.91      | 0.51        | 0.7           |
|               | 87-5       | 12.49 | 15.54 DTFH       |               | ру             | 49.37 | 50.74     | 1.37      | 0 96        | 0.7           |
|               | 87-5       | 15.54 | 23.46 PLBT       | qc            |                | 50.74 | 51.51     | 0.77      | 0.82        | 1             |
|               | 87-5       | 15.54 | 17.98            |               | ру             | 51.51 | 52.42     | 0.91      | 3.98        | 3.74          |
|               | 87-5       | 23.46 | 24.38 DTFP       |               |                | 52.42 | 53.04     | 0.62      | 1.1         | 1             |
|               | 87-5       | 24.38 | 32.3 BAST        | qc            |                | 53.04 | 54.1      | 1.06      | 3.36        | 2.4           |
|               | 87-5       | 32.3  | 43.89 DTFH       | qt            |                | 54.1  | 54.86     | 0.76      | 1.61        | 1.3           |
|               | 87-5       | 43.89 | 48.46 BAST       | qt            |                | 54.86 | 55.62     | 0.76      | 4.49        | 1             |
|               | 87-5       | 46.48 | 47.7             | qt            | ру             | 55.62 | 57        | 1.38      | 0.14        | 0.7           |
|               | 87-5       | 47.7  | 48.46            | Qt            | Ру             | 57    | 58.37     | 1.37      | 0.07        | 0.7           |
|               | 87-5       | 48.46 | 49.37 DTFP       | QT            | Py             | 58.37 | 59.13     | 0.76      | 0.72        | 0.7           |
|               | 87-5       | 49.37 | 52.43 QTSW       | BX            | PY             | 59.13 | 59.43     | 0.3       | 3.53        | 1.3           |
|               | 87-5       | 52.43 | 54.25 DTFP       | qt            | ру             | 59.43 | 60.04     | 0.61      | 0.07        | 0.7           |
|               | 87-5       | 54.25 | 55.47 FALT       | -             | PYas           |       |           |           |             |               |
|               | 87-5       | 55.47 | 61.87 DTFP       |               |                |       |           |           |             |               |
|               | 87-5       | 57.3  | 57.6             | FZGG          |                |       |           |           |             |               |
|               | 87-5       | 59.13 | 59.43            | QC            | PY             |       |           |           |             |               |
|               | 87-5       | 61.87 | 62.17 BAST       |               |                |       |           |           |             |               |

- ·

.

## DDH 87-05

| <u>GEOLOGICAL DATA</u><br>REF NO DDH FROM TO ROCK ALTRTN |            |       |                       |        |              | AS          | <u>SAY DAT</u> | <u>A</u>     |             |               |
|----------------------------------------------------------|------------|-------|-----------------------|--------|--------------|-------------|----------------|--------------|-------------|---------------|
| <u>REF NO</u>                                            | <u>DDH</u> | FROM  | <u>TO</u> <u>ROCK</u> | ALTRIN | <u>MINRL</u> | <u>FROM</u> | <u>TO</u>      | <u>WIDTH</u> | <u>GOLD</u> | <u>SILVFR</u> |
|                                                          | 87-6       | 0     | 3.66 CASG             |        |              | 46.02       | 46.32          | 0.3          | 0 07        | 0.7           |
|                                                          | 87-6       | 3.66  | 14.94 PLBT            | qc     |              | 46.32       | 49.37          | 3.05         | 0.07        | 6. <b>7</b>   |
|                                                          | 87-6       | 8.99  | 10.67                 |        | ру           | 51.21       | 52.12          | 0.91         | 0.17        | 0.7           |
|                                                          | 87-6       | 14.94 | 24.99 DTFH            | qc     |              | 54.25       | 54.55          | 0.3          | 0.07        | 0.7           |
|                                                          | 87-6       | 24.99 | 28.95 PLBP            | qc     | ру           | 54.55       | 54 86          | 0.31         | 0 07        | 07            |
|                                                          | 87-6       | 28.95 | 35.66 DTFH            | Qt     |              | 54.86       | 55.32          | 0.46         | 0.07        | 0.7           |
|                                                          | 87-6       | 35.66 | 46.93 PLBT            | Qc     |              | 55.32       | 57.3           | 1.98         | 0.07        | 0.7           |
|                                                          | 87-6       | 40.84 | 46.93                 |        | ру           | 57.61       | 58.52          | 0.91         | 0.17        | 0.7           |
|                                                          | 87-6       | 46.93 | 50.99 DTFP            | QT     | Py           |             |                |              |             |               |
|                                                          | 87-6       | 50.99 | 50.6 PLBT             | QT     | Ру           |             |                |              |             |               |
|                                                          | 87-6       | 50.6  | 54.86 DTFP            | qt     |              |             |                |              |             |               |
|                                                          | 87-6       | 53.03 | 54.86                 | QT     | PY           |             |                |              |             |               |
|                                                          | 87-6       | 54.86 | 73.15 DTFP            | qt     |              |             |                |              |             |               |
|                                                          | 87-6       | 54.86 | 57.91                 |        | PY           |             |                |              |             |               |
|                                                          | 87-6       | 63.7  | 64.3                  |        | ру           |             |                |              |             |               |
|                                                          | 87-6       | 71.63 | 72.85                 |        | Ру           |             |                |              |             |               |
|                                                          |            |       |                       |        |              |             |                |              |             |               |

|        |            |       | GEOLOGICAL | <u>, DATA</u> |       | AS    | SAY DAT | <u>'A</u> |      |        |
|--------|------------|-------|------------|---------------|-------|-------|---------|-----------|------|--------|
| REF NO | <u>DDH</u> | FROM  | TO ROCK    | <u>ALTRTN</u> | MINRL | FROM  | TO      | WIDTH     | GOLD | SILVER |
|        | 87-7       | 0     | 1.5 CASG   |               |       | 20.4  | 21.56   | 1.16      | 0.03 | 0.3    |
|        | 87-7       | 1.5   | 2.13 TILL  |               |       | 21.56 | 22.69   | 1.13      | 1.23 | 0.7    |
|        | 87-7       | 2.13  | 13.41 PLBT | qc            |       | 22.69 | 23.75   | 1.06      | 0.58 | 0.3    |
|        | 87-7       | 13.41 | 15.24 DTFP | qc            |       | 23.75 | 25.06   | 1.31      | 0.69 | 0.3    |
|        | 87-7       | 15.24 | 21.48 BAST | qc            |       | 25.06 | 26.19   | 1.13      | 0 72 | 0.3    |
|        | 87-7       | 19.2  | 21.48      | QC            | PY    | 26.19 | 26.28   | 0.09      | 1.23 | 0.3    |
|        | 87-7       | 21.48 | 29.65 QCBX |               | PY    | 26.28 | 26.77   | 0.49      | 0.03 | 0.3    |
|        | 87-7       | 23.86 | 24.99      | QTVN          |       | 26.77 | 27.96   | 1.19      | 0.86 | 0.7    |
|        | 87-7       | 29.65 | 35.66 DTFP |               |       | 27.96 | 29.33   | 1.37      | 1.89 | 0.3    |
|        |            |       |            |               |       | 29.33 | 29 42   | 0.09      | 0.99 | 03     |
|        |            |       |            |               |       |       |         | 0         | 0    | 0      |
|        |            |       |            |               |       |       |         | 0         | Û    | 0      |

|               |      |       | GEOI  | LOGICAL     | <u>DATA</u>   |              | <u>AS</u> | <u>SAY DA</u> | <u>TA</u>    |             |           |              |
|---------------|------|-------|-------|-------------|---------------|--------------|-----------|---------------|--------------|-------------|-----------|--------------|
| <u>REF NO</u> | DDH  | FROM  | TO    | <u>ROCK</u> | <u>ALTRTN</u> | <u>MINRL</u> | FROM      | <u>TO</u>     | <u>WIDTH</u> | <u>GOLD</u> | <u>SI</u> | <u>l.vtr</u> |
|               | 87-8 | 0     | 1.2   | CASG        |               |              |           |               |              | 0           | 0         | 0            |
|               | 87-8 | 1.2   | 2.44  | TILL        |               |              |           |               | I            | 0           | 0         | 0            |
|               | 87-8 | 2.44  | 17.98 | PLBT        | qc            |              |           |               | I            | 0           | 0         | U            |
|               | 87-8 | 17.98 | 24.07 | DTFP        |               | ру           |           |               | I            | 0           | 0         | 0            |
|               | 87-8 | 24.07 | 26.21 | PLBT        |               |              |           |               | I            | 0           | 0         | 0            |
|               | 87-8 | 26.21 | 28.34 | GRDT        |               |              |           |               | ļ            | 0           | 0         | 0            |
|               | 87-8 | 28.34 | 37.49 | PLBT        | qevn          |              |           |               | ļ            | 0           | 0         | 0            |
|               |      |       |       |             |               |              |           |               |              | 0           | 0         | 0            |

.

|        |                  |       | GEOLOGICA  | L DATA |       | AS    | SAY DAT | A     |      |        |
|--------|------------------|-------|------------|--------|-------|-------|---------|-------|------|--------|
| REF NO | DDH              | FROM  | TO ROCK    | ALTRTN | MINRL | FROM  | TO      | WIDTH | GOLD | SILVER |
|        | 87-9             | 0     | 1.52 CASG  |        |       | 29.87 | 30.78   | 0.91  | 0.03 | 0.7    |
|        | 87-9             | 1.52  | 3.35 TILL  |        |       | 30.78 | 32      | 1.22  | 0.03 | 0.3    |
|        | 87- <del>9</del> | 3.35  | 26.82 PLBT | Qc     |       | 32    | 33.52   | 1.52  | 0.03 | 0.3    |
|        | 87-9             | 26.82 | 27.01 GOUG |        |       |       |         |       |      |        |
|        | 87-9             | 27 01 | 28.96 QTBX |        |       |       |         |       |      |        |
|        | 87-9             | 28.96 | 32 QCBX    | PY     |       |       |         |       |      |        |
|        | 87-9             | 32    | 35.05 BAST | QC     | ру    |       |         |       |      |        |

|        |            |       | GEOLOGICAL            | DAT <u>A</u>  |              | AS    | SAY DAT   | A     |             |                |
|--------|------------|-------|-----------------------|---------------|--------------|-------|-----------|-------|-------------|----------------|
| REF.NO | <u>DDH</u> | FROM  | <u>TO</u> <u>ROCK</u> | <u>ALTRTN</u> | <u>MINRL</u> | FROM  | <u>T0</u> | WIDTH | <u>GOLD</u> | <u>SILVE</u> R |
|        | 87-10      | 0     | 1.52 CASG             |               |              | 40.53 | 42.06     | 1.53  | 1.51        | 2.1            |
|        | 87-10      | 1.52  | 2.13 TILL             |               |              | 42.06 | 43.28     | 1.22  | 0.03        | 0.3            |
|        | 87-10      | 2.13  | 14.63 PLBT            | qc            | ру           | 45.72 | 46.78     | 1.06  | 0.34        | 0.7            |
|        | 87-10      | 14.63 | 17.06 DTFP            |               | ру           | 46.78 | 47.85     | 1.07  | 1.85        | 2.1            |
|        | 87-10      | 17.06 | 29.26 PLBT            |               |              | 47.85 | 49.38     | 1.53  | 6.65        | 2.1            |
|        | 87-10      | 26.21 | 29.26                 | QC            |              | 49.38 | 50.9      | 1.52  | 2.47        | 17             |
|        | 87-10      | 29.26 | 35.05 DTFP            | QC            | ру           | 50.9  | 51.97     | 1.07  | 1.78        | 1              |
|        | 87-10      | 35.05 | 40.53 PLBT            |               |              | 51.97 | 52.88     | 0.91  | 0.07        | 0.3            |
|        | 87-10      | 40.53 | 43.28 QTSW            |               | РҮ           | 52.88 | 53.95     | 1.07  | 6.03        | 3              |
|        | 87-10      | 43.28 | 45.72 PLBP            | Qt            | Ру           | 53.95 | 55.47     | 1.52  | 2.26        | 1.7            |
|        | 87-10      | 45.72 | 57.91 QCBX            |               | PY           | 55.47 | 57        | 1.53  | 3.09        | 1              |
|        | 87-10      | 46.93 | 47                    | FALT          |              | 57    | 57.91     | 0.91  | 3.7         | 0.7            |
|        |            |       |                       |               |              |       |           | 0     | 0           | 0              |

|               |       |             | GEOI  | OGICAL      | DATA          |       | ASS  | SAY DA | TA    |      |   |        |
|---------------|-------|-------------|-------|-------------|---------------|-------|------|--------|-------|------|---|--------|
| <u>REF NO</u> | DDH   | <u>FROM</u> | TO    | <u>ROCK</u> | <u>ALTRTN</u> | MINRL | FROM | TO     | WIDTH | GOLD | s | II.VER |
|               | 87-11 | 0           | 1.22  | CASG        |               |       |      |        |       | 0    | 0 | 0      |
|               | 87-11 | 1.22        | 11.58 | PLBT        | qc            | ру    |      |        |       |      |   |        |
|               | 87-11 | 11.58       | 37.8  | DTFP        | qc            | mg    |      |        |       |      |   |        |
|               | 87-11 | 36          | 38.8  |             |               | ру    |      |        |       |      |   |        |
|               | 87-11 | 37 8        | 39.01 | BAST        |               | ру    |      |        |       |      |   |        |
|               | 87-11 | 39.01       | 46.32 | DTFP        | qc            | mg    |      |        |       |      |   |        |
|               | 87-11 | 46.32       | 55.37 | BAST        | qc            |       |      |        |       |      |   |        |
|               | 87-11 | 55.37       | 59.43 | DTFP        |               |       |      |        |       |      |   |        |
|               | 87-11 | 59.43       | 64.92 | BAST        |               |       |      |        |       |      |   |        |
|               | 87-11 | 64.92       | 67.05 | DTFP        |               |       |      |        |       |      |   |        |
|               | 87-11 | 67.05       | 67.05 | FALT        |               |       |      |        |       |      |   |        |
|               | 87-11 | 67.05       | 74.07 | PLBT        |               | ру    |      |        |       |      |   |        |
|               | 87-11 | 74.07       | 89    | DTFP        |               |       |      |        |       |      |   |        |

.

|               |            | <u>GEOLOGICAL DATA</u><br>FROM <u>TO ROCK ALTRT</u> |           |      |               | TA ASSAY DATA |        |           |              |      |        |
|---------------|------------|-----------------------------------------------------|-----------|------|---------------|---------------|--------|-----------|--------------|------|--------|
| <u>REF NO</u> | <u>DDH</u> | FROM                                                | <u>TO</u> | ROCK | <u>ALTRTN</u> | MINRL.        | FROM   | <u>T0</u> | <u>WIDTH</u> | GOLD | SILVER |
|               | 88-1       | 0                                                   | 17.06     | CASG |               |               | 139.6  | 140.2     | 0.6          | 1 82 | 0.3    |
|               | 88-1       | 17.06                                               | 46.02     | DTFP | SC            | ру            | 145.38 | 146.6     | 1.22         | 0.65 | 0.3    |
|               | 88-1       | 46.02                                               | 52.73     | DTFH |               |               |        |           |              |      |        |
|               | 88-1       | 52.73                                               | 54.86     | DTFP |               |               |        |           |              |      |        |
|               | 88-1       | 54.86                                               | 64.61     | DTFH | Scep          |               |        |           |              |      |        |
|               | 88-1       | 64.61                                               | 66.14     | DTFP |               |               |        |           |              |      |        |
|               | 88-1       | 66.14                                               | 67.97     | DTFH |               |               |        |           |              |      |        |
|               | 88-1       | 67.97                                               | 71.62     | DTFP | ep            |               |        |           |              |      |        |
|               | 88-1       | 71.62                                               | 74.67     | DTFH |               |               |        |           |              |      |        |
|               | 88-1       | 74.67                                               | 98.45     | DTFP | ep            |               |        |           |              |      |        |
|               | 88-1       | 98.45                                               | 99.51     | BAST | qc            |               |        |           |              |      |        |
|               | 88-1       | 99.51                                               | 101.5     | DTFH |               |               |        |           |              |      |        |
|               | 88-1       | 101.5                                               | 102.71    | BAST |               |               |        |           |              |      |        |
|               | 88-1       | 102.71                                              | 104.55    | DTFH |               |               |        |           |              |      |        |
|               | 88-1       | 104.55                                              | 109.42    | DTFP |               |               |        |           |              |      |        |
|               | 88-1       | 109.42                                              | 113.08    | DTFH |               |               |        |           |              |      |        |
|               | 88-1       | 113.08                                              | 119.63    | DTFP |               |               |        |           |              |      |        |
|               | 88-1       | 119.63                                              | 124.66    | DTFH |               |               |        |           |              |      |        |
|               | 88-1       | 124.66                                              | 139.6     | DTFH | qtep          | ру            |        |           |              |      |        |
|               | 88-1       | 139 6                                               | 140.21    | QTVN |               | Ру            |        |           |              |      |        |
|               | 88-1       | 140.21                                              | 145.39    | DTFH |               |               |        |           |              |      |        |
|               | 88-1       | 145.39                                              | 146.61    | DTFH | QTBX          | PY            |        |           |              |      |        |
|               | 88-1       | 146.61                                              | 152.7     | DTFH |               |               |        |           |              |      |        |
|               | 88-1       | 152.7                                               | 155.14    | BAST | QT            |               |        |           |              |      |        |
|               | 88-1       | 155.14                                              | 163.37    | DTFP | SC            | mg            |        |           |              |      |        |
|               | 88-1       | 163.37                                              | 167.94    | BAST |               |               |        |           |              |      |        |
|               | 88-1       | 167.94                                              | 168.55    | DTFH |               |               |        |           |              |      |        |
|               | 88-1       | 168.55                                              | 172.67    | BAST |               |               |        |           |              |      |        |
|               | 88-1       | 172.67                                              | 179.52    | DTFH | qtep          | mg            |        |           |              |      |        |
|               | 88-1       | 179.52                                              | 181.35    | BAST |               |               |        |           |              |      |        |
|               | 88-1       | 181.35                                              | 186.84    | DTFP |               | mg            |        |           |              |      |        |

•

. .

|        |      |        | GEOLOG      | ICAL DAT      | <u>A</u>    | AS     | SAY DAT | <u>`A</u> |             |        |
|--------|------|--------|-------------|---------------|-------------|--------|---------|-----------|-------------|--------|
| REF NO | DDH  | FROM   | <u>TO R</u> | <u>OCK AL</u> | TRIN, MINRL | FROM   | TO      | WIDTH     | <u>GOLD</u> | SILVER |
|        | 88-2 | 0      | 13.11 CAS   | SG            | DD11 00-02  | 60.65  | 62.18   | 1.53      | 0.03        | 0.1    |
|        | 88-2 | 13.11  | 39.62 BAS   | ST qc         |             | 67.67  | 67.91   | 0.24      | 3.7         | 2.7    |
|        | 88-2 | 31.39  | 32.91       |               | mg          | 85.95  | 87.48   | 1.53      | 0.27        | 1.3    |
|        | 88-2 | 39.62  | 40.53 DTF   | H             |             | 87.48  | 89      | 1.52      | 0.14        | 1.3    |
|        | 88-2 | 40.53  | 43.58 BAS   | ST            | py          | 114.6  | 115.52  | 0.92      | 1.23        | 17     |
|        | 88-2 | 43.58  | 45.26 DTF   | P             |             | 122.38 | 123.9   | 1.52      | 0.14        | 0.3    |
|        | 88-2 | 45.26  | 63.4 PLB    | T             |             | 137.16 | 138.68  | 1.52      | 0.03        | 1.3    |
|        | 88-2 | 53.34  | 53.55       | QtE           | ip PY       | 144.32 | 145.24  | 0.92      | 0.41        | 2.1    |
|        | 88-2 | 60.66  | 62.18       |               | PY          | 145.69 | 147.22  | 1.53      | 0.79        | 1.7    |
|        | 88-2 | 63.4   | 65.23 SCC   | Ca            | РУ          | 147 22 | 148.74  | 1.52      | 0.1         | 24     |
|        | 88-2 | 65.23  | 85.95 BAS   | ST sc         | ру          | 148.74 | 150.88  | 2.14      | 0.03        | 0.3    |
|        | 88-2 | 67.66  | 67.86       | QC            | PY          | 184.4  | 185.93  | 1.53      | 0.03        | 1.3    |
|        | 88-2 | 72.54  | 73          | QC            |             | 185.93 | 187.45  | 1.52      | 0.03        | 1.7    |
|        | 88-2 | 73     | 85.95       |               | ру          | 187.45 | 188.97  | 1.52      | 0.03        | 1      |
|        | 88-2 | 85.95  | 89 DTF      | 7P            |             | 194.76 | 196.29  | 1.53      | 0.03        | 0.7    |
|        | 88-2 | 85.95  | 87.47       |               | Ру          |        |         |           |             |        |
|        | 88-2 | 89     | 114.6 BAS   | ST qc         |             |        |         |           |             |        |
|        | 88-2 | 114.51 | 115.52 QTS  | SW            | Ру          |        |         |           |             |        |
|        | 88-2 | 115.52 | 122.38 BAS  | ST            |             |        |         |           |             |        |
|        | 88-2 | 122.38 | 123.9 DTF   | P sc          | Ру          |        |         |           |             |        |
|        | 88-2 | 123.9  | 129.54 BAS  | ST            |             |        |         |           |             |        |
|        | 88-2 | 129.54 | 133.5 DTF   | ŦH            |             |        |         |           |             |        |
|        | 88-2 | 133.5  | 135.94 BAS  | ST            |             |        |         |           |             |        |
|        | 88-2 | 135    | 135.94 GOU  | UG Sc         |             |        |         |           |             |        |
|        | 88-2 | 135.94 | 150.88 DTF  | Ή             |             |        |         |           |             |        |
|        | 88-2 | 135.94 | 144.32 BAS  | ST            |             |        |         |           |             |        |
|        | 88-2 | 144.32 | 148.74 QCS  | SW Sc         | Ру          |        |         |           |             |        |
|        | 88-2 | 148.74 | 160.88 QCS  | SW SC         | Ру          |        |         |           |             |        |
|        | 88-2 | 150.88 | 196.29 BAS  | ST qt         | ру          |        |         |           |             |        |
|        | 88-2 | 184.4  | 185.92      |               | Ру          |        |         |           |             |        |
|        | 88-2 | 188.98 | 194.76      |               | Ру          |        |         |           |             |        |

**n** ,

·

•

r...

|        |      |        | <u>GEOLOGICAL</u>     | DATA          |       | ASS         | AY DAT    | A     |      |                |
|--------|------|--------|-----------------------|---------------|-------|-------------|-----------|-------|------|----------------|
| REF NO | DDH  | FROM   | <u>TO</u> <u>ROCK</u> | <u>ALTRTN</u> | MINRL | <u>FROM</u> | <u>TO</u> | WIDTH | GOLD | <u>SIL VER</u> |
|        | 88-3 | 0      | 10.66 CASG            |               |       | 182.57      | 184.1     | 1.53  | 0.82 | 0.3            |
|        | 88-3 | 10.66  | 20.26 DTFP            | ep            |       | 198.12      | 199.64    | 1.52  | 0.03 | 0.3            |
|        | 88-3 | 20.26  | 20.27 FALT            |               |       | 199.64      | 211.17    | 11.53 | 0.03 | 0.3            |
|        | 88-3 | 20.26  | 30.48 PLBT            | qcep          |       | 217.93      | 219.46    | 1.53  | 0.03 | 0.3            |
|        | 88-3 | 30.48  | 30.49 FALT            |               |       | 226 77      | 228.3     | 1 53  | 0.03 | 0.3            |
|        | 88-3 | 30.48  | 38.4 DTFP             | qcep          |       | 228.3       | 229.81    | 1.51  | 0.03 | 0.3            |
|        | 88-3 | 38.4   | 42.97 DTFH            |               | ру    | 229.81      | 231.34    | 1 53  | 0.03 | 0.7            |
|        | 88-3 | 38.4   | 38.7                  |               | PY    | 238.05      | 239.57    | 1.52  | 0.03 | 0.3            |
|        | 88-3 | 38.7   | 44.65 DTFP            |               |       | 239.57      | 241.1     | 1.53  | 0.03 | 0.3            |
|        | 88-3 | 44.65  | 46.02 DTFH            |               |       | 241.1       | 242.62    | 1.52  | 0.03 | 0.3            |
|        | 88-3 | 46.02  | 70.71 DTFP            |               | ру    | 242.62      | 245.36    | 2.74  | 0.03 | 0.3            |
|        | 88-3 | 70.71  | 78.33 BAST            |               |       | 245.36      | 246.88    | 1.52  | 0.03 | 0.3            |
|        | 88-3 | 78.33  | 79.25 DTFP            |               |       | 246.88      | 248.41    | 1.53  | 0.03 | 0.3            |
|        | 88-3 | 79.25  | 80.16 DTFH            |               |       | 248.41      | 249.93    | 1.52  | 0.03 | 0.3            |
|        | 88-3 | 80.16  | 110.64 BAST           |               | mg    | 249.93      | 251.46    | 1.53  | 0.03 | 0.3            |
|        | 88-3 | 109.12 | 109.42                |               | py    | 251.46      | 252.98    | 1.52  | 0.03 | 0.3            |
|        | 88-3 | 109.42 | 120.7 DTFP            |               |       | 252.98      | 254.5     | 1.52  | 0.03 | 0.3            |
|        | 88-3 | 120.7  | 133.81 PLBT           | qt            |       | 254.5       | 256.03    | 1.53  | 0.03 | 0.3            |
|        | 88-3 | 133.81 | 140.06 DTFP           |               |       | 256.03      | 257.56    | 1.53  | 0.03 | 0.3            |
|        | 88-3 | 140.06 | 146.61 PLBT           |               |       |             |           |       |      |                |
|        | 88-3 | 156.67 | 156.97                | QF            | ру    |             |           |       |      |                |
|        | 88-3 | 156.97 | 170.08 BAST           |               |       |             |           |       |      |                |
|        | 88-3 | 170.08 | 177.69 DTFP           |               |       |             |           |       |      |                |
|        | 88-3 | 177.69 | 181.05 BAST           |               |       |             |           |       |      |                |
|        | 88-3 | 181.05 | 184.1 DTFP            |               |       |             |           |       |      |                |
|        | 88-3 | 182.58 | 184.1                 | QT            | Ру    |             |           |       |      |                |
|        | 88-3 | 184.1  | 198.2 BAST            |               | mg    |             |           |       |      |                |
|        | 88-3 | 198.2  | 201.17 QTVN           |               | ру    |             |           |       |      |                |
|        | 88-3 | 201.17 | 248.41 PLBT           | qt            | Ру    |             |           |       |      |                |
|        | 88-3 | 217.93 | 219.45                |               | PY    |             |           |       |      |                |
|        | 88-3 | 245.36 | 248.41                | qt            | РҮ    |             |           |       |      |                |
|        | 88-3 | 248.41 | 256.03 QTDC           |               | Ру    |             |           |       |      |                |
|        | 88-3 | 256.08 | 259.08 BAST           | qt            |       |             |           |       |      |                |
|        | 88-3 | 259.08 | 263.04 DTFH           |               | Mg    |             |           |       |      |                |

....

|        |      |        | GEOLOGICAL            | <u>DATA</u>   |       | ASS    | AY DATA      |        |              |       |
|--------|------|--------|-----------------------|---------------|-------|--------|--------------|--------|--------------|-------|
| REF.NO | DDH  | FROM   | <u>TO</u> <u>ROCK</u> | <u>ALTRTN</u> | MINRL | FROM   | <u>to</u> WI | DTH GC | <u>)LD</u> S | ILVER |
|        | 88-4 | 0      | 4.88 CASG             |               |       | 69.34  | 71.17        | 1.83   | 1.54         | 0.7   |
|        | 88-4 | 4.88   | 6.4 DTFH              |               |       | 91.76  | 92.2         | 0.44   | 0.72         | 0.3   |
|        | 88-4 | 6.4    | 11.58 DTFP            |               |       | 155.45 | 156.06       | 0.61   | 0.34         | 1     |
|        | 88-4 | 11.58  | 25.91 DTFH            | qt            | ру    | 156.06 | 157.58       | 1.52   | 1.71         | 0.3   |
|        | 88-4 | 25.91  | 26.82 BAST            |               |       |        |              |        |              |       |
|        | 88-4 | 26.82  | 27.06 DACT            |               |       |        |              |        |              |       |
|        | 88-4 | 27.06  | 53.95 BAST            |               | mgpy  |        |              |        |              |       |
|        | 88-4 | 53.95  | 54.25 FALT            |               |       |        |              |        |              |       |
|        | 88-4 | 54.25  | 55.47 DTFP            |               |       |        |              |        |              |       |
|        | 88-4 | 55.47  | 69.34 BAST            |               |       |        |              |        |              |       |
|        | 88-4 | 68.56  | 69.34                 | SECA          |       |        |              |        |              |       |
|        | 88-4 | 69.34  | 71.17 QCSW            |               | PY    |        |              |        |              |       |
|        | 88-4 | 71.17  | 87.78 BAST            |               | Py    |        |              |        |              |       |
|        | 88-4 | 87.78  | 91.74 DTFP            | qt            |       |        |              |        |              |       |
|        | 88-4 | 91.74  | 92.2 QTBX             |               | PY    |        |              |        |              |       |
|        | 88-4 | 92.2   | 93.27 DTFP            | qt            |       |        |              |        |              |       |
|        | 88-4 | 93.27  | 100.89 BAST           |               |       |        |              |        |              |       |
|        | 88-4 | 100.89 | 107.9 DTFP            | qt            |       |        |              |        |              |       |
|        | 88-4 | 107.9  | 109.88 BAST           |               |       |        |              |        |              |       |
|        | 88-4 | 109.88 | 111.56 DTFP           |               |       |        |              |        |              |       |
|        | 88-4 | 111.56 | 121.92 BAST           |               |       |        |              |        |              |       |
|        | 88-4 | 121.92 | 126.8 DTFP            |               |       |        |              |        |              |       |
|        | 88-4 | 126.8  | 127.86 BAST           |               |       |        |              |        |              |       |
|        | 88-4 | 127.86 | 130.15 DTFP           | qt            |       |        |              |        |              |       |
|        | 88-4 | 130.15 | 131.83 DTFH           |               | mg    |        |              |        |              |       |
|        | 88-4 | 131.83 | 133.2 BAST            |               |       |        |              |        |              |       |
|        | 88-4 | 133.2  | 137.01 DTFH           |               | mg    |        |              |        |              |       |
|        | 88-4 | 137.01 | 137.62 BAST           |               |       |        |              |        |              |       |
|        | 88-4 | 137.62 | 138.07 DACT           |               |       |        |              |        |              |       |
|        | 88-4 | 138.07 | 140.82 BAST           |               | Mg    |        |              |        |              |       |
|        | 88-4 | 140.82 | 149.96 DTFP           |               | Mg    |        |              |        |              |       |
|        | 88-4 | 149.96 | 151.63 BAST           |               | Mg    |        |              |        |              |       |
|        | 88-4 | 151.63 | 157.58 DTFP           |               |       |        |              |        |              |       |
|        | 88-4 | 155.45 | 156.06                | Qt            | ру    |        |              |        |              |       |
|        | 88-4 | 157.58 | 157.59 FALT           |               |       |        |              |        |              |       |
|        | 88-4 | 157.59 | 158.8 DTFP            |               |       |        |              |        |              |       |
|        | 88-4 | 158.8  | 164.29 BAST           |               |       |        |              |        |              |       |
|        | 88-4 | 164.29 | 167.33 DTFP           |               |       |        |              |        |              |       |
|        | 88-4 | 167.33 | 210.17 BAST           |               |       |        |              |        |              |       |

-

,

.

|        |      |        | <u>GEO</u> | LOGICAL | DATA   | TA ASSAY DATA |        |        |       |             |        |
|--------|------|--------|------------|---------|--------|---------------|--------|--------|-------|-------------|--------|
| REF NO | DDH  | FROM   | TO         | ROCK    | ALTRTN | MINRI.        | FROM   | TO     | WIDTH | <u>GOLD</u> | SILVFR |
|        | 88-5 | 0      | 6.1        | CASG    |        |               | 217.93 | 218.54 | 0.61  | 0.27        | 03     |
|        | 88-5 | 6.1    | 9.45       | DTFH    |        |               |        |        |       |             |        |
|        | 88-5 | 9.45   | 14.33      | DTFP    |        |               |        |        |       |             |        |
|        | 88-5 | 14.33  | 28.04      | DTFH    |        | Mg            |        |        |       |             |        |
|        | 88-5 | 28.04  | 38.4       | BAST    | Qc     |               |        |        |       |             |        |
|        | 88-5 | 38.4   | 41.14      | DTFP    |        |               |        |        |       |             |        |
|        | 88-5 | 41.14  | 42.37      | BAST    |        |               |        |        |       |             |        |
|        | 88-5 | 42.37  | 48.46      | DTFP    | Qc     |               |        |        |       |             |        |
|        | 88-5 | 48.46  | 51.51      | BAST    |        |               |        |        |       |             |        |
|        | 88-5 | 51.51  | 52.73      | DTFP    |        |               |        |        |       |             |        |
|        | 88-5 | 52.82  | 58.83      | BAST    |        |               |        |        |       |             |        |
|        | 88-5 | 58.83  | 60.96      | CARB    |        |               |        |        |       |             |        |
|        | 88-5 | 60.96  | 108.81     | PLBT    | Qcep   |               |        |        |       |             |        |
|        | 88-5 | 103.93 | 104.1      |         |        | ру            |        |        |       |             |        |
|        | 88-5 | 108.81 | 118.72     | DTFH    | qt     | mg            |        |        |       |             |        |
|        | 88-5 | 118.72 | 128.02     | BAST    | Qc     |               |        |        |       |             |        |
|        | 88-5 | 128.02 | 130.15     | CARB    | qc     |               |        |        |       |             |        |
|        | 88-5 | 130.15 | 138.68     | BAST    | Qc     | mg            |        |        |       |             |        |
|        | 88-5 | 138.68 | 140.82     | DTFP    |        | Mg            |        |        |       |             |        |
|        | 88-5 | 140.82 | 152.7      | BAST    |        | руро          |        |        |       |             |        |
|        | 88-5 | 152.7  | 154.83     | DTFP    |        |               |        |        |       |             |        |
|        | 88-5 | 154.83 | 157.28     | BAST    |        | mg            |        |        |       |             |        |
|        | 88-5 | 157.28 | 159.41     | DTFP    |        |               |        |        |       |             |        |
|        | 88-5 | 159.41 | 160.62     | BAST    |        |               |        |        |       |             |        |
|        | 88-5 | 160.62 | 163.37     | DTFP    |        |               |        |        |       |             |        |
|        | 88-5 | 163.37 | 173.12     | BAST    |        | ру            |        |        |       |             |        |
|        | 88-5 | 173.12 | 183.48     | DTFH    |        | mg            |        |        |       |             |        |
|        | 88-5 | 183.48 | 197.66     | PLBT    | Qc     |               |        |        |       |             |        |
|        | 88-5 | 197.66 | 203        | DTFH    |        |               |        |        |       |             |        |
|        | 88-5 | 203    | 207.11     | BAST    |        | ру            |        |        |       |             |        |
|        | 88-5 | 207.11 | 207.26     | DACT    |        |               |        |        |       |             |        |
|        | 88-5 | 207.26 | 217.93     | BAST    |        |               |        |        |       |             |        |
|        | 88-5 | 217.54 | 218.54     | CARB    |        | Py            |        |        |       |             |        |
|        | 88-5 | 218.54 | 225.86     | BAST    |        |               |        |        |       |             |        |
|        | 88-5 | 218.54 | 219.46     |         | Qc     |               |        |        |       |             |        |

|               |                  |        | GEOL              | OGICAL      | DATA          |       | AS          | SAY DAT       | A     |      |               |
|---------------|------------------|--------|-------------------|-------------|---------------|-------|-------------|---------------|-------|------|---------------|
| <u>REF NO</u> | <u>DDH</u>       | FROM   | <u>T0</u>         | <u>ROCK</u> | <u>ALTRTN</u> | MINRL | <u>FROM</u> | <u>T0</u>     | WIDTH | GOLD | <u>SILVER</u> |
|               | 88-6             | 0      | 4.57 (            | CASG        |               |       | 42.39       | 43.59         | 1.2   | 0.03 | 0.3           |
|               | 88-6             | 4.57   | 10.97 1           | PLBT        | qtep          |       | 53.64       | 54. <u>25</u> | 0.61  | 0.1  | 1             |
|               | 88-6             | 10.97  | 11.43 1           | DACT        |               |       | 57.3        | 58.06         | 0.76  | 2.43 | l             |
|               | 88-6             | 11.43  | 20.73 1           | PLBT        | qtep          |       | 102.26      | 103.33        | 1.07  | 0.03 | 03            |
|               | 88-6             | 20.73  | 24.69 1           | DTFP        |               |       | 103.33      | 104.24        | 0.91  | 2.43 | 0.3           |
|               | 88-6             | 24.69  | 26.21 1           | PLBT        |               |       | 136.24      | 137.77        | 1.53  | 0.45 | 0.7           |
|               | 88-6             | 26.21  | 28.04 I           | DTFP        |               |       | 137.77      | 139.29        | 1.52  | 0.14 | 07            |
|               | 88-6             | 28.04  | 32 I              | BAST        |               |       | 139.29      | 140.82        | 1.53  | 0.62 | 1.3           |
|               | 88-6             | 32     | 32 I              | FALT        |               |       | 140.82      | 142.04        | 1.22  | 0.17 | 0.7           |
|               | 88-6             | 32     | 34.44 ]           | BAST        |               |       | 142.04      | 142.8         | 0.76  | 0.34 | 0.3           |
|               | 88-6             | 34.44  | 36.42 (           | CARB        |               |       | 154.23      | 155.6         | 1.37  | 1.51 | 1             |
| :             | 88-6             | 36.42  | 37.34 1           | BAST        |               |       | 155.6       | 156.7         | 1.1   | 1.47 | 1             |
|               | 88-6             | 37.34  | 38.1 (            | CARB        |               |       |             |               |       |      |               |
|               | 88-6             | 38.1   | 38.71 (           | GRDR        |               |       |             |               |       |      |               |
|               | 88-6             | 38.71  | 41.45 1           | PLBT        | qt            | ру    |             |               |       |      |               |
|               | 88-6             | 41.45  | 42.36 I           | DTFP        |               |       |             |               |       |      |               |
|               | 88-6             | 42.36  | 43.59 1           | BAST        |               | PY    |             |               |       |      |               |
|               | 88-6             | 43.59  | 45.42 (           | GRDR        |               |       |             |               |       |      |               |
|               | 88-6             | 45.42  | 55.02 1           | PLBT        | Qcep          |       |             |               |       |      |               |
| 1             | 88-6             | 53.64  | 54.25             |             | QC            | PY    |             |               |       |      |               |
|               | 88-6             | 55.02  | 81.38 1           | DTFP        |               |       |             |               |       |      |               |
| :             | 88-6             | 57.3   | 58.06             |             | QC            | PY    |             |               |       |      |               |
|               | 88-6             | 81.38  | 83.21 1           | PLBT        | Qcep          |       |             |               |       |      |               |
|               | 88-6             | 83.21  | 84.43 1           | DTFP        |               |       |             |               |       |      |               |
|               | 88-6             | 84.43  | <b>86.87</b> ]    | PLBT        | Qcep          |       |             |               |       |      |               |
|               | 88-6             | 86.87  | <b>89.31</b> ]    | DTFP        |               |       |             |               |       |      |               |
|               | 88-6             | 89.31  | 95.86 I           | PLBT        | Qcep          |       |             |               |       |      |               |
|               | 88-6             | 95.86  | 102.26 1          | DTFP        |               |       |             |               |       |      |               |
|               | 88-6             | 102.26 | 105 1             | BAST        | ер            | ру    |             |               |       |      |               |
|               | 88-6             | 102.26 | 103.32            |             |               | PY    |             |               |       |      |               |
|               | 88-6             | 103.32 | 104.24            |             |               | Ру    |             |               |       |      |               |
|               | 88-6             | 105    | 105.91            | DTFP        |               |       |             |               |       |      |               |
|               | 88-6             | 105.91 | 109.11            | BAST        |               |       |             |               |       |      |               |
|               | 88- <del>6</del> | 109.11 | 109.42            | DTFP        |               |       |             |               |       |      |               |
|               | 88-6             | 109.42 | 110.19            | PLBT        |               |       |             |               |       |      |               |
|               | 88-6             | 110.19 | 120.7 1           | DTFP        |               |       |             |               |       |      |               |
|               | 88-6             | 120.7  | 128.17 I          | PLBT        | ep            | ру    |             |               |       |      |               |
|               | 88-6             | 128.17 | 134.11            | DTFH        |               |       |             |               |       |      |               |
|               | 88-6             | 134.11 | 136.25 I          | BAST        |               |       |             |               |       |      |               |
|               | 88-6             | 136.25 | 142.8             |             | QC            | PY    |             |               |       |      |               |
|               | 88-6             | 137    | 137.01            | FALT        |               |       |             |               |       |      |               |
|               | 88-6             | 137.76 | 139.94            |             |               | Ру    |             |               |       |      |               |
|               | 88-6             | 139.94 | 142.8             |             |               | ру    |             |               |       |      |               |
|               | 88-6             | 142.8  | 144.17            | BAST        |               |       |             |               |       |      |               |
|               | 88-6             | 144.17 | 152.1             | DTFP        |               |       |             |               |       |      |               |
|               | 88-6             | 152.1  | 154.23            | BAST        | QC            |       |             |               |       |      |               |
|               | 88-6             | 154.23 | 155.6 (           | QCSW        |               | Ру    |             |               |       |      |               |
|               | 88-6             | 155.6  | 16 <b>7.3</b> 4 1 | BAST        | Qc            |       |             |               |       |      |               |
|               | 88-6             | 167.34 | 167.64            | DTFP        |               |       |             |               |       |      |               |

**\_** .

|               |      |                  | GEOI   | LOGICAL | <u>DATA</u>   |       | ASSAY DATA |        |       |      |        |
|---------------|------|------------------|--------|---------|---------------|-------|------------|--------|-------|------|--------|
| <u>REF NO</u> | DDH  | FROM             | TO     | ROCK    | <u>ALTRTN</u> | MINRL | FROM       | TO     | WIDTH | GOLD | SILVER |
|               | 88-7 | 0                | 7.62   | CASG    |               |       | 94.79      | 95.4   | 0.61  | 0.03 | 0.3    |
|               | 88-7 | 7.62             | 8.84   | BAST    |               |       | 123.44     | 123.9  | 0.46  | 0.72 | 0.3    |
|               | 88-7 | 8.84             | 17.06  | DTFP    |               |       | 123.9      | 125.27 | 1.37  | 0.82 | 0.7    |
|               | 88-7 | 17.06            | 45.72  | BAST    | qc            |       | 125.27     | 126.19 | 0.92  | 1.2  | 0.3    |
|               | 88-7 | 39 01            | 39.31  |         | QTBX          |       | 126.19     | 126.49 | 0.3   | 0.24 | 1      |
|               | 88-7 | 45.72            | 47.24  | DTFP    |               |       | 140.36     | 141.88 | 1.52  | 1.92 | 0.3    |
|               | 88-7 | 47.24            | 56.08  | PLBT    | qtep          |       | 141.88     | 143.41 | 1.53  | 0.32 | 0.3    |
|               | 88-7 | 56.08            | 57.91  | DTFP    | Se            |       | 143.41     | 144.32 | 0.91  | 1.54 | 0.3    |
|               | 88-7 | 57.91            | 64.61  | BAST    | seca          |       | 147.22     | 147.27 | 0.05  | 1.92 | 0.3    |
|               | 88-7 | 64.61            | 68.88  | DTFP    | se            |       |            |        |       |      |        |
|               | 88-7 | 68.88            | 81.07  | PLBT    | cxqc          | po    |            |        |       |      |        |
|               | 88-7 | 81.07            | 83.06  | DTFP    |               |       |            |        |       |      |        |
|               | 88-7 | 83.06            | 84.58  | PLBT    |               |       |            |        |       |      |        |
|               | 88-7 | 84.58            | 89     | DTFP    |               |       |            |        |       |      |        |
|               | 88-7 | 89               | 99.4   | PLBT    |               | руро  |            |        |       |      |        |
|               | 88-7 | 94.79            | 95.4   | SZ      |               | PY    |            |        |       |      |        |
|               | 88-7 | <del>99</del> .4 | 104.85 | DTFH    | Seqt          |       |            |        |       |      |        |
|               | 88-7 | 104.85           | 109.58 | DTFP    | Qt            |       |            |        |       |      |        |
|               | 88-7 | 109.58           | 113.38 | PLBT    |               |       |            |        |       |      |        |
|               | 88-7 | 113.38           | 118.11 | DTFP    | QC            |       |            |        |       |      |        |
|               | 88-7 | 118.11           | 123.45 | BAST    | SeQc          | ру    |            |        |       |      |        |
|               | 88-7 | 123.45           | 125.27 | QTSW    |               | mg    |            |        |       |      |        |
|               | 88-7 | 125.27           | 126.28 | QTBX    |               |       |            |        |       |      |        |
|               | 88-7 | 126.28           | 126.49 |         | SECA          |       |            |        |       |      |        |
|               | 88-7 | 126.49           | 136.86 | PLBT    |               |       |            |        |       |      |        |
|               | 88-7 | 136.86           | 147.27 | DTFP    |               |       |            |        |       |      |        |
|               | 88-7 | 140.36           | 144 32 |         | avca          | 0V    |            |        |       |      |        |

|        |      |        | <u>GEOI</u> | OGICAL      | DATA          |       | AS     | SAY DAT | ľ <b>A</b> |      |        |
|--------|------|--------|-------------|-------------|---------------|-------|--------|---------|------------|------|--------|
| REF.NO | DDH  | FROM   | <u>TO</u>   | <u>ROCK</u> | <u>ALTRTN</u> | MINRL | FROM   | TO      | WIDTH      | GOLD | SILVER |
|        | 88-8 | 0      | 7.62        | CASG        |               |       | 41.91  | 42.36   | 0.45       | 0.27 | 0.3    |
|        | 88-8 | 7.62   | 41.91       | PLBT        | qcep          | ру    | 42.82  | 43.28   | 0.46       | 1.17 | 0.3    |
|        | 88-8 | 37.19  | 37.64       |             | Scqc          |       | 46.94  | 48.15   | 1.21       | 0.38 | 0.3    |
|        | 88-8 | 37.64  | 39.16       |             | qc            |       | 48.46  | 49.37   | 0.91       | 0.69 | 0      |
|        | 88-8 | 39.16  | 39.47       |             | Scqc          |       | 54.56  | 55.02   | 0.46       | 1.23 | 0.3    |
|        | 88-8 | 39.47  | 41.91       |             | qc            |       | 66.29  | 67.81   | 1.52       | 0.03 | 0.3    |
|        | 88-8 | 41.91  | 43.28       | QTBX        |               | Ру    | 67.81  | 69.35   | 1.54       | 0.03 | 0.3    |
|        | 88-8 | 42.36  | 42.82       | BAST        |               |       | 69.35  | 71.01   | 1.66       | 0.03 | 0.3    |
|        | 88-8 | 42.82  | 43.28       | QCBX        |               | Ру    | 92.65  | 93.27   | 0.62       | 0.82 | 0.3    |
|        | 88-8 | 43.28  | 46.93       | PLBT        |               |       | 102.72 | 103.2   | 0.48       | 1.34 | 07     |
|        | 8-88 | 46.28  | 49.37       | QCVN        |               | Ру    | 107.59 | 107.9   | 0.31       | 1 99 | 03     |
|        | 88-8 | 49.37  | 54.56       | BAST        |               |       | 158.5  | 159.26  | 0.76       | 2.37 | 07     |
|        | 88-8 | 52.57  | 54.56       |             | ScCa          |       |        |         |            |      |        |
|        | 88-8 | 54.56  | 55.01       | QTVN        |               | Ру    |        |         |            |      |        |
|        | 88-8 | 55.01  | 81.69       | BAST        |               |       |        |         |            |      |        |
|        | 88-8 | 64.61  | 65.83       |             | Scca          |       |        |         |            |      |        |
|        | 88-8 | 65.83  | 81.69       | BAST        |               |       |        |         |            |      |        |
|        | 88-8 | 66.15  | 71.02       |             |               | PY    |        |         |            |      |        |
|        | 88-8 | 71.02  | 81.69       |             |               | Ру    |        |         |            |      |        |
|        | 88-8 | 81.69  | 87.47       | DTFP        | qt            |       |        |         |            |      |        |
|        | 88-8 | 87.47  | 90.22       | BAST        | CARB          |       |        |         |            |      |        |
|        | 88-8 | 90.22  | 91.59       | DTFP        |               |       |        |         |            |      |        |
|        | 88-8 | 91.59  | 92.66       | BAST        |               |       |        |         |            |      |        |
|        | 88-8 | 92.66  | 93.27       | QTBX        |               | Ру    |        |         |            |      |        |
|        | 88-8 | 93.27  | 94.79       | BAST        |               |       |        |         |            |      |        |
|        | 88-8 | 94.79  | 95.71       | DTFP        |               |       |        |         |            |      |        |
|        | 88-8 | 95.71  | 102.71      | BAST        | CARB          |       |        |         |            |      |        |
|        | 88-8 | 102.71 | 103.01      | QTVN        |               | Ру    |        |         |            |      |        |
|        | 88-8 | 103.01 | 118.57      | DTFP        |               |       |        |         |            |      |        |
|        | 88-8 | 118.57 | 130.14      | BAST        |               |       |        |         |            |      |        |
|        | 88-8 | 130.14 | 153.62      | DTFP        | qt            |       |        |         |            |      |        |
|        | 88-8 | 153.62 | 158.5       | BAST        |               |       |        |         |            |      |        |
|        | 88-8 | 158.5  | 159.25      | QTVN        |               | Py    |        |         |            |      |        |
|        | 88-8 | 159.25 | 164.9       | BAST        | ScCA          |       |        |         |            |      |        |
|        | 88-8 | 164.9  | 169.77      | DTFP        |               | mg    |        |         |            |      |        |
|        | 88-8 | 169.77 | 175.56      | BAST        | qcep          |       |        |         |            |      |        |

-

~

,

|               |                  |       | <u>GEOL</u> | OGICAL      | <u>DATA</u> |       | ASSAY DATA |           |              |      |        |
|---------------|------------------|-------|-------------|-------------|-------------|-------|------------|-----------|--------------|------|--------|
| <u>REF.NO</u> | DDH              | FROM  | <u>T0</u>   | <u>ROCK</u> | ALTRTN      | MINRL | FROM       | <u>T0</u> | <u>WIDTH</u> | GOLD | SILVER |
|               | 88-9             | 0     | 3.05        | CASG        |             |       | 83.21      | 84.73     | 1.52         | 0.03 | 0.3    |
|               | 88-9             | 3.05  | 53.34       | PLBT        |             |       | 84.73      | 86.25     | 1.52         | 0.03 | 0.3    |
|               | 88-9             | 11.58 | 13.41       |             | ScQc        |       | 86.25      | 87.78     | 1.53         | 0.03 | 0.3    |
|               | 88-9             | 13.41 | 14.32       |             | qcep        |       | 87.78      | 89.3      | 1.52         | 0.03 | 0.3    |
|               | 88-9             | 14.32 | 14.93       |             | ScQc        |       |            |           |              |      |        |
|               | 88-9             | 14.93 | 17.68       |             | qcep        |       |            |           |              |      |        |
|               | 88-9             | 17.68 | 19.2        |             | qcep        |       |            |           |              |      |        |
|               | 88-9             | 19.2  | 53.34       |             | qc          | ру    |            |           |              |      |        |
|               | 88-9             | 53.34 | 54.56       | DTFP        |             |       |            |           |              |      |        |
|               | 88- <del>9</del> | 54.56 | 153.31      | PLBT        |             |       |            |           |              |      |        |
|               | 88-9             | 57.91 | 58.82       |             | Scca        |       |            |           |              |      |        |
|               | 88-9             | 58.82 | 84.73       |             |             | ру    |            |           |              |      |        |
|               | 88-9             | 84.73 | 89.3        |             |             | PY    |            |           |              |      |        |

٠

|               |            |        | <u>GEOL</u> | OGICAL | <u>DATA</u>   |       | ASSAY DATA |        |              |      |        |  |
|---------------|------------|--------|-------------|--------|---------------|-------|------------|--------|--------------|------|--------|--|
| <u>REF NO</u> | <u>DDH</u> | FROM   | <u>TO</u>   | ROCK   | <u>ALTRTN</u> | MINRL | FROM       | TO     | <u>WIDTH</u> | GOLD | SILVER |  |
|               | 88-10      | 0      | 9.14 (      | CASG   |               |       | 16.15      | 17.68  | 1.53         | 0.03 | 0.3    |  |
|               | 88-10      | 9.14   | 64.01 E     | BAST   |               |       | 17.68      | 19.2   | 1.52         | 0.03 | 0.7    |  |
|               | 88-10      | 11.58  | 12.8        |        |               | Ру    | 19.2       | 20.73  | 1.53         | 0.03 | 0.3    |  |
|               | 88-10      | 16.15  | 25.29       |        |               | PY    | 20.73      | 22.25  | 1.52         | 0,03 | 0.3    |  |
|               | 88-10      | 25.29  | 64 01       |        |               | Py    | 22.25      | 23.77  | 1.52         | 0.03 | 0.3    |  |
|               | 88-10      | 64.01  | 80.16 I     | OTFP   | qc            | mg    | 23.77      | 25.29  | 1.52         | 0.03 | 0.3    |  |
|               | 88-10      | 80.16  | 117.04 H    | PLBT   |               |       | 160.32     | 161.85 | 1.53         | 0.03 | 0.3    |  |
|               | 88-10      | 117.04 | 119.79 I    | DTFP   |               |       |            |        |              |      |        |  |
|               | 88-10      | 119.79 | 155.14 H    | BAST   |               |       |            |        |              |      |        |  |
|               | 88-10      | 137.46 | 139.6       |        |               | mg    |            |        |              |      |        |  |
|               | 88-10      | 142.65 | 155.14      |        |               | mg    |            |        |              |      |        |  |
|               | 88-10      | 155.14 | 155.3 I     | DCIT   |               |       |            |        |              |      |        |  |
|               | 88-10      | 155.3  | 158.8 I     | DTFH   |               |       |            |        |              |      |        |  |
|               | 88-10      | 158.8  | 159.72 I    | DTFP   |               |       |            |        |              |      |        |  |
|               | 88-10      | 159.72 | 168.09 F    | PLBT   |               |       |            |        |              |      |        |  |
|               | 88-10      | 159.72 | 161.85      |        |               | PY    |            |        |              |      |        |  |
|               | 88-10      | 168.1  | 170.99 I    | DTFH   |               | mg    |            |        |              |      |        |  |
|               | 88-10      | 170.99 | 171 91 H    | BAST   |               |       |            |        |              |      |        |  |
|               | 88-10      | 171.91 | 179.83 I    | DTFH   |               | mg    |            |        |              |      |        |  |

**n** .

|        |            |        | GEOLOGICAL DATA |             |               |       | ASSAY DATA |           |       |      |        |
|--------|------------|--------|-----------------|-------------|---------------|-------|------------|-----------|-------|------|--------|
| REF NO | <u>DDH</u> | FROM   | <u>T0</u>       | <u>ROCK</u> | <u>ALTRTN</u> | MINRL | FROM       | <u>T0</u> | WIDTH | GOLD | SILVER |
|        | 88-11      | 0      | 10.06           | CASG        |               |       | 24.38      | 25.3      | 0.92  | 0.86 | 2.1    |
|        | 88-11      | 10.06  | 11.58           | DTFP        |               |       | 26.67      | 27.74     | 1.07  | 2.57 | 1.3    |
|        | 88-11      | 11.58  | 12.19           | PLBT        |               | Ру    | 30.17      | 31.7      | 1.53  | 0.03 | 0.3    |
|        | 88-11      | 12.19  | 17.53           | DTFP        |               | Py    | 36.88      | 38.4      | 1.52  | 0.03 | 0.3    |
|        | 88-11      | 17.53  | 17.98           | BAST        |               |       | 47.24      | 48.77     | 1.53  | 0.03 | 0.3    |
|        | 88-11      | 17.98  | 19.81           | DTFP        |               |       | 61.56      | 62.18     | 0.62  | 0.03 | 0.3    |
|        | 88-11      | 19.81  | 26.67           | BAST        |               |       | 62.18      | 63.09     | 0.91  | 0.58 | 0.3    |
|        | 88-11      | 24.38  | 25.3            | CARB        | Sc            | Ру    | 63.09      | 64.46     | 1.37  | 0.62 | 0.3    |
|        | 88-11      | 26.67  | 27.74           | QTVN        |               | Ру    | 64.46      | 65.83     | 1.37  | 1.51 | 0.7    |
|        | 88-11      | 27.74  | 31.7 1          | BAST        |               |       | 65.83      | 67.21     | 1.38  | 0.99 | 0.3    |
|        | 88-11      | 30.17  | 31.7            |             |               | Py    | 71.32      | 72.04     | 0.72  | 0.21 | 0.3    |
|        | 88-11      | 31.7   | 36.88           | DTFP        |               |       | 82.6       | 83.82     | 1.22  | 0.14 | 2.1    |
|        | 88-11      | 36.88  | 48.77           | BAST        |               |       | 83.82      | 85.34     | 1.52  | 0.99 | 0.7    |
|        | 88-11      | 36.88  | 38.4            |             |               | PY    |            |           |       |      |        |
|        | 88-11      | 47.24  | 48.77           |             |               | Py    |            |           |       |      |        |
|        | 88-11      | 48.77  | 59.28           | DTFP        |               |       |            |           |       |      |        |
|        | 88-11      | 59.28  | 60.35           | BAST        |               | Ру    |            |           |       |      |        |
|        | 88-11      | 60.35  | 61.56           | DTFP        |               |       |            |           |       |      |        |
|        | 88-11      | 61.56  | 67.21           | QVBX        |               | Ру    |            |           |       |      |        |
|        | 88-11      | 67.21  | 72.85           | DTFP        |               |       |            |           |       |      |        |
|        | 88-11      | 67.21  | 71.32           |             |               | ру    |            |           |       |      |        |
|        | 88-11      | 72.85  | 83.82           | PLBT        | qc            |       |            |           |       |      |        |
|        | 88-11      | 82.6   | 83.82           |             | Scqc          |       |            |           |       |      |        |
|        | 88-11      | 83.82  | 85.34           | QCBX        |               | Ру    |            |           |       |      |        |
|        | 88-11      | 85.34  | 86.87           | DTFP        |               |       |            |           |       |      |        |
|        | 88-11      | 86.87  | 99.67           | PLBT        | qtep          |       |            |           |       |      |        |
|        | 88-11      | 99.67  | 105.77          | BAST        |               | руро  |            |           |       |      |        |
|        | 88.11      | 105 77 | 144 17          | RAST        | 0c            | Ρv    |            |           |       |      |        |

|        |            |        | DATA          |            | ASSAY DATA    |       |        |        |       |      |        |
|--------|------------|--------|---------------|------------|---------------|-------|--------|--------|-------|------|--------|
| REF NO | <u>DDH</u> | FROM   | TO            | ROCK       | <u>ALTRTN</u> | MINRL | FROM   | TO     | WIDTH | GOLD | SILVER |
|        | 88-12      | 7.01   | 14.02         | 14.02 DTFP |               |       | 33.98  | 34.44  | 0.46  | 0.89 | 0.3    |
|        | 88-12      | 14.02  | 16.61         | BAST       |               |       | 36.27  | 37.33  | 1.06  | 2.37 | 0.3    |
|        | 88-12      | 16.61  | 21.95         | 21.95 DTFP |               |       | 109.12 | 110.34 | 1.22  | 1.23 | 0.3    |
|        | 88-12      | 21.95  | 41.45         | BAST       | qt            |       | 110.34 | 112.17 | 1.83  | 0.07 | 2.4    |
|        | 88-12      | 31.69  | 33.22         |            | Scca          |       |        |        |       |      |        |
|        | 88-12      | 33.99  | 37.34         |            | qtsw          |       |        |        |       |      |        |
|        | 88-12      | 33.99  | 34.44         |            | Scca          | Ру    |        |        |       |      |        |
|        | 88-12      | 36.27  | 37.34         |            | QTsw          | Ру    |        |        |       |      |        |
|        | 88-12      | 41.45  | 46.33         | DTFP       | qc            |       |        |        |       |      |        |
|        | 88-12      | 46.33  | 54.55         | BAST       |               |       |        |        |       |      |        |
|        | 88-12      | 54.55  | 63.09         | DTFP       | scqt          |       |        |        |       |      |        |
|        | 88-12      | 62.64  | 63.09         |            | Scca          |       |        |        |       |      |        |
|        | 88-12      | 63.09  | 75.29         | PLBT       |               | руро  |        |        |       |      |        |
|        | 88-12      | 75.29  | 80.77         | DTFP       |               |       |        |        |       |      |        |
|        | 88-12      | 80.16  | 80.77         |            | Scca          |       |        |        |       |      |        |
|        | 88-12      | 80.77  | 89            | PLBT       |               |       |        |        |       |      |        |
|        | 88-12      | 89     | 96.93         | DTFP       | \$Ç.          |       |        |        |       |      |        |
|        | 88-12      | 96.93  | <b>98</b> .14 | PLBT       |               |       |        |        |       |      |        |
|        | 88-12      | 98.14  | <b>98.76</b>  | DTFP       |               |       |        |        |       |      |        |
|        | 88-12      | 98.76  | 109.11        | BAST       |               |       |        |        |       |      |        |
|        | 88-12      | 109.11 | 110.34        | QCBX       |               | PY    |        |        |       |      |        |
|        | 88-12      | 110.34 | 110.8         | FALT       |               |       |        |        |       |      |        |
|        | 88-12      | 110.8  | 118.11        | PLBT       | qc            |       |        |        |       |      |        |
|        | 88-12      | 112.17 | 112.17        |            | SccA          |       |        |        |       |      |        |
|        | 88-12      | 118.11 | 120.85        | DTFP       |               |       |        |        |       |      |        |

|        |       |        |             | AS     | SAY DAT | Ά                |              |       |      |               |
|--------|-------|--------|-------------|--------|---------|------------------|--------------|-------|------|---------------|
| REF.NO | DDH   | FROM   | TO ROCK     | ALTRTN | MINRL   | FROM             | TO           | WIDTH | GOLD | <u>SILVER</u> |
|        | 88-13 | 0      | 6.4 CASG    |        |         | 49.68            | 50.13        | 0.45  | 0.07 | 0.3           |
|        | 88-13 | 6.4    | 7.93 BAST   |        |         | 50.13            | 51.21        | 1.08  | 3.22 | 0.3           |
|        | 88-13 | 7.93   | 8.53 DTFP   |        |         | 52.21            | 52.73        | 0.52  | 2.5  | 0.3           |
|        | 88-13 | 8.53   | 17.67 BAST  |        |         | 52.73            | 53.34        | 0.61  | 0.03 | 1             |
|        | 88-13 | 17.67  | 20.73 DTFP  |        |         | 72.23            | 73.45        | 1.22  | 0.93 | 0.3           |
|        | 88-13 | 20.73  | 22.25 BAST  |        |         | 73.45            | 74.37        | 0.92  | 1.23 | 0.3           |
|        | 88-13 | 22.25  | 25.3 GRDR   |        |         | 74.37            | 75.13        | 0.76  | 0.18 | 0.3           |
|        | 88-13 | 25.3   | 26.52 DTFP  |        |         | 75.13            | 76.2         | 1.07  | 0.1  | 0.3           |
|        | 88-13 | 26.52  | 30.02 GRDR  | qtcx   |         | 76.2             | 77.88        | 1.68  | 0.03 | 2.1           |
|        | 88-13 | 30.02  | 31.24 DTFP  |        |         | 95.55            | 97.23        | 1.68  | 0.72 | 0.3           |
|        | 88-13 | 31.24  | 43.28 PLBT  |        |         | 97.23            | <b>98</b> .6 | 1.37  | 0.48 | 0.3           |
|        | 88-13 | 39.01  | 39.01 FALT  |        |         | 98.6             | 99.7         | 1.1   | 0.14 | 0.3           |
|        | 88-13 | 40.53  | 40.53 FALT  |        |         | <del>99</del> .7 | 100.89       | 1.19  | 0.38 | 0.3           |
|        | 88-13 | 43.28  | 46.02 DTFP  |        |         | 100.89           | 101.19       | 0.3   | 0.51 | 0.3           |
|        | 88-13 | 46.02  | 50.14 BAST  | qc     |         | 101.19           | 101.8        | 0.61  | 0.69 | 1.3           |
|        | 88-13 | 49.68  | 50.14       | Scca   | ру      | 101.8            | 102.72       | 0.92  | 0.82 | 0.3           |
|        | 88-13 | 50.14  | 52.73 QTBX  |        | PY      | 102.72           | 104.24       | 1.52  | 1.78 | 0.7           |
|        | 88-13 | 52.73  | 63 PLBT     |        |         | 104.24           | 105.31       | 1.07  | 2.02 | 0.7           |
|        | 88-13 | 52.73  | 53.34       | Scca   |         | 105.31           | 106.68       | 1.37  | 0.48 | 0.3           |
|        | 88-13 | 63.09  | 67.36 DTFP  |        |         | 107.9            | 109.12       | 1.22  | 0.03 | 0.7           |
|        | 88-13 | 67.36  | 69.8 PLBT   |        |         | 113.39           | 114.6        | 1.21  | 0.03 | 0.7           |
|        | 88-13 | 69.8   | 72.23 GRDR  | qc     |         | 114.6            | 115.82       | 1.22  | 0.75 | 0.3           |
|        | 88-13 | 72.23  | 77.88 QCBX  | •      | Py      | 144.17           | 144.78       | 0.61  | 0.69 | 0.3           |
|        | 88-13 | 74.37  | 75.13       |        | PY      |                  |              |       |      |               |
|        | 88-13 | 77.88  | 80.46 BAST  | Qtcx   |         |                  |              |       |      |               |
|        | 88-13 | 80.46  | 84.58 DTFP  |        |         |                  |              |       |      |               |
|        | 88-13 | 84.58  | 95.55 BAST  | Qt     |         |                  |              |       |      |               |
|        | 88-13 | 95.55  | 98.6 QTBX   |        | Ру      |                  |              |       |      |               |
|        | 88-13 | 98.6   | 105.31 QTSW |        | PY      |                  |              |       |      |               |
|        | 88-13 | 105.31 | 106.68 QTBX |        |         |                  |              |       |      |               |
|        | 88-13 | 106.68 | 107.9 BAST  |        |         |                  |              |       |      |               |
|        | 88-13 | 106.99 | 107.9       | Sc     |         |                  |              |       |      |               |
|        | 88-13 | 106.68 | 109.11 QCSW |        |         |                  |              |       |      |               |
|        | 88-13 | 109.11 | 118.57 BAST |        |         |                  |              |       |      |               |
|        | 88-13 | 113.39 | 115.82      | ScQ    |         |                  |              |       |      |               |
|        | 88-13 | 115.82 | 116.43      | Sc     |         |                  |              |       |      |               |
|        | 88-13 | 116.43 | 118.57 BAST |        |         |                  |              |       |      |               |
|        | 88-13 | 118.57 | 124.36 DTFP |        |         |                  |              |       |      |               |
|        | 88-13 | 124.36 | 131.82 BAST |        |         |                  |              |       |      |               |
|        | 88-13 | 131.82 | 135.48 DTFP |        |         |                  |              |       |      |               |
|        | 88-13 | 135.48 | 148.44 BAST |        |         |                  |              |       |      |               |
|        | 88-13 | 144.17 | 144.78      | Qtep   |         |                  |              |       |      |               |
|        | 88-13 | 148.44 | 148.72 DTFP |        |         |                  |              |       |      |               |

•

|        |       |       | GEOI      | LOGICAL | DATA          |       | ASSAY DATA |           |              |      |        |
|--------|-------|-------|-----------|---------|---------------|-------|------------|-----------|--------------|------|--------|
| REF.NO | DDH   | FROM  | <u>T0</u> | ROCK    | <u>ALTRTN</u> | MINRL | FROM       | <u>T0</u> | <u>WIDTH</u> | GOLD | SILVER |
|        | 88-14 | 0     | 7.31      | CASG    |               |       | 59.43      | 60.05     | 0.62         | 0.14 | 4.5    |
|        | 88-14 | 7.31  | 19.2      | BAST    |               |       | 60.5       | 61.56     | 1.06         | 1.85 | 2.7    |
|        | 88-14 | 19.2  | 19.66     | GRDR    |               |       | 61.56      | 62.78     | 1.22         | 0.03 | 1.7    |
|        | 88-14 | 19.66 | 20.11     | BAST    |               |       | 62.78      | 63.55     | 0.77         | 0.03 | 0.3    |
|        | 88-14 | 20.11 | 20.73     | GRDR    |               |       | 63.55      | 64.92     | 1.37         | 0.03 | 1.3    |
|        | 88-14 | 20.73 | 24.68     | PLBT    |               |       | 64.92      | 66.29     | 1.37         | 0.17 | 1.7    |
|        | 88-14 | 21.79 | 22.09     |         | Seqc          |       | 67.36      | 67.97     | 0.61         | 0.03 | 0.3    |
|        | 88-14 | 24.68 | 29.11     | DTFP    |               |       | 69.19      | 69.79     | 0.6          | 0.1  | 1.3    |
|        | 88-14 | 29.11 | 38.86     | PLBT    | qcep          |       | 69.79      | 71.32     | 1.53         | 0.38 | 0.3    |
|        | 88-14 | 38.86 | 41.3      | DTFP    |               |       | 71.32      | 71.93     | 0.61         | 0.17 | 1      |
|        | 88-14 | 41.3  | 42.67     | BAST    |               |       | 71.93      | 72.23     | 0.3          | 8.74 | 4.1    |
|        | 88-14 | 42.67 | 57.45     | DTFP    |               |       | 72.23      | 72.84     | 0.61         | 0.93 | 0.3    |
|        | 88-14 | 57.45 | 59.43     | BAST    |               |       | 74.52      | 75.59     | 1.07         | 0.27 | 0.3    |
|        | 88-14 | 59.43 | 60.05     | QCSW    |               | PY    | 75.59      | 77.11     | 1.52         | 0.31 | 0.3    |
|        | 88-14 | 60.05 | 60.5      | DTFP    |               |       | 77.11      | 78.63     | 1.52         | 0.45 | 2.7    |
|        | 88-14 | 60.5  | 61.42     | QCBX    |               | PY    | 78.63      | 80.16     | 1.53         | 0.93 | 3.1    |
|        | 88-14 | 61.42 | 61.57     | FALT    |               |       |            |           |              |      |        |
|        | 88-14 | 61.57 | 63.55     | DTFP    |               |       |            |           |              |      |        |
|        | 88-14 | 63.55 | 66.29     | QCBX    |               | ру    |            |           |              |      |        |
|        | 88-14 | 64.92 | 66.29     |         |               | PY    |            |           |              |      |        |
|        | 88-14 | 66.29 | 69.79     | BAST    |               |       |            |           |              |      |        |
|        | 88-14 | 67.36 | 67.97     |         | Scca          | Ру    |            |           |              |      |        |
|        | 88-14 | 69.18 | 69.79     |         | ScCa          | PY    |            |           |              |      |        |
|        | 88-14 | 69.79 | 71.93     | DTFP    |               |       |            |           |              |      |        |
|        | 88-14 | 71.93 | 77.11     | BAST    |               |       |            |           |              |      |        |
|        | 88-14 | 71.93 | 72.84     |         | ScCa          | PY    |            |           |              |      |        |
|        | 88-14 | 73.15 | 73.91     |         | ScCa          | Ру    |            |           |              |      |        |
|        | 88-14 | 77.11 | 80.16     | DTFP    | qt            | Py    |            |           |              |      |        |
DDH 88-15

-

.

|        |       |              | <u>GEOI</u> | .OGICAL     | DATA   |       | AS     | <u>SAY DAT</u>    | A     |      |        |
|--------|-------|--------------|-------------|-------------|--------|-------|--------|-------------------|-------|------|--------|
| REF NO | DDH   | FROM         | <u>TO</u>   | <u>ROCK</u> | ALTRTN | MINRL | FROM   | <u>T</u> <b>O</b> | WIDTH | GOLD | SILVER |
|        | 88-15 | 0            | 3.36        | CASG        |        |       | 99.97  | 101.5             | 1.53  | 0.03 | 0.7    |
|        | 88-15 | 3.36         | 6.1         | DTFP        |        |       | 101.5  | 103.02            | 1.52  | 0.14 | 0.3    |
|        | 88-15 | 6.1          | 30.93       | PLBT        | qtca   |       | 103.02 | 104.24            | 1.22  | 0.69 | 1      |
|        | 88-15 | 30.93        | 36.11       | DTFP        | qt     |       | 104.24 | 105.16            | 0.92  | 0.31 | 0.3    |
|        | 88-15 | 36.11        | 41.45       | PLBT        | qtep   |       | 105.16 | 106.68            | 1.52  | 0.48 | 1.3    |
|        | 88-15 | 41.45        | 53.97       | DTFP        | qt     |       | 106.68 | 108.5             | 1.82  | 0.48 | 1      |
|        | 88-15 | 53.97        | 62.78       | PLBT        | qcep   |       | 108.5  | 109.11            | 0.61  | 0.03 | 0.3    |
|        | 88-15 | 62.78        | 83.82       | DTFP        |        |       | 109.11 | 110.64            | 1.53  | 0.1  | 0.7    |
|        | 88-15 | 83.82        | 86.41       | PLBT        |        |       | 110.64 | 111.86            | 1.22  | 0.03 | 1      |
|        | 88-15 | 86.41        | 87.47       | DTFP        | scab   |       | 111.86 | 113.69            | 1.83  | 0.03 | 1      |
|        | 88-15 | 87.47        | 94.48       | BAST        |        |       | 114.45 | 114.45            | 0     | 0.03 | 1.7    |
|        | 88-15 | <b>94.48</b> | 98.14       | DTFP        |        |       | 114.45 | 117.95            | 3.5   | 0.03 | 0.7    |
|        | 88-15 | 98.14        | 101.49      | BAST        |        |       | 117.95 | 119.63            | 1.68  | 0.03 | 0.7    |
|        | 88-15 | 101.49       | 103.02      | QCBX        |        | PY    | 119.63 | 120.86            | 1.23  | 0.03 | 0.3    |
|        | 88-15 | 103.02       | 105.15      | QTBX        |        | ру    |        |                   |       |      |        |
|        | 88-15 | 105.15       | 108.51      | QCBX        |        | ру    |        |                   |       |      |        |
|        | 88-15 | 108.51       | 109.12      | BAST        |        |       |        |                   |       |      |        |
|        | 88-15 | 109.12       | 114.45      | QCSW        |        | ру    |        |                   |       |      |        |
|        | 88-15 | 114.45       | 120.86      | BAST        |        |       |        |                   |       |      |        |
|        | 88-15 | 114.45       | 119.36      |             |        | ру    |        |                   |       |      |        |
|        | 88-15 | 120.86       | 124.86      | DTFP        | sc     |       |        |                   |       |      |        |

DDH 88A16

|               |       |       | <u>GEOL</u>     | GEOLOGICAL DATA |               |       | ASS   | SAY DAT   | <u>A</u> |      |        |
|---------------|-------|-------|-----------------|-----------------|---------------|-------|-------|-----------|----------|------|--------|
| <u>REF NO</u> | DDH   | FROM  | <u>TO</u>       | <u>ROCK</u>     | <u>ALTRTN</u> | MINRL | FROM  | <u>TO</u> | WIDTH    | GOLD | SILVER |
|               | 88A16 | 0     | 3.05            | CASG            |               |       | 42.36 | 42.97     | 0.61     | 0.17 | 0.3    |
|               | 88A16 | 3.05  | 5,18            | PLBT            |               |       |       |           |          |      |        |
|               | 88A16 | 5.18  | 8.22            | DTFP            | qt            |       |       |           |          |      |        |
|               | 88A16 | 8.22  | 12.04           | PLBT            |               |       |       |           |          |      |        |
|               | 88A16 | 12.04 | 14.93           | DTFP            | Qt            |       |       |           |          |      |        |
|               | 88A16 | 14.93 | 34.13           | BAST            |               |       |       |           |          |      |        |
|               | 88A16 | 34.13 | <b>37</b> .49 I | DTFP            |               |       |       |           |          |      |        |
|               | 88A16 | 37.49 | 42.36           | BAST            | scq           |       |       |           |          |      |        |
|               | 88A16 | 41.15 | 41.45           |                 | Scc           |       |       |           |          |      |        |
|               | 88A16 | 42.36 | 42,36           | FALT            |               |       |       |           |          |      |        |
|               | 88A16 | 42.36 | 43,43           | QCSW            |               | ру    |       |           |          |      |        |
|               | 88A16 | 43.43 | 46.63           | BAST            |               |       |       |           |          |      |        |

## DDH 88-16

|        |       |       | GEO   | LOGICAL | DATA   |       | <u>AS</u> | SAY DA    | TA           |      |            |      |
|--------|-------|-------|-------|---------|--------|-------|-----------|-----------|--------------|------|------------|------|
| REF.NO | DDH   | FROM  | TO    | ROCK    | ALTRIN | MINRL | FROM      | <u>T0</u> | <u>WIDTH</u> | GOLD | <u>S()</u> | LVER |
|        | 88-16 | 0     | 5.48  | CASG    |        |       |           |           | I            | 0    | 0          | 0    |
|        | 88-16 | 5.48  | 7.01  | PLBT    |        |       |           |           |              |      |            |      |
|        | 88-16 | 7.01  | 10.36 | DTFP    |        |       |           |           |              |      |            |      |
|        | 88-16 | 10.36 | 18.14 | PLBT    | QC     |       |           |           |              |      |            |      |
|        | 88-16 | 18.14 | 18.89 | DTFP    |        |       |           |           |              |      |            |      |
|        | 88-16 | 18.89 | 29.13 | BAST    | qt     |       |           |           |              |      |            |      |

•

## Page 1

| DDH | 88-1 | 7 |
|-----|------|---|
|-----|------|---|

|        |            |                | GEOLOGICAL  | DATA   |              | ASS   | AY DAT | Ά     |      |        |
|--------|------------|----------------|-------------|--------|--------------|-------|--------|-------|------|--------|
| REF.NO | <u>DDH</u> | FROM           | TO ROCK     | ALTRTN | <u>MINRL</u> | FROM  | TO     | WIDTH | GOLD | SILVER |
|        | 88-17      | 0              | 4.57 CASG   |        |              | 4.57  | 5.49   | 0.92  | 0.48 | 0.3    |
|        | 88-17      | 4.57           | 11.28 BAST  | ScCa   | РҮ           | 5.49  | 7.01   | 1.52  | 0.14 | 0.3    |
|        | 88-17      | 7.01           | 11.28       |        |              | 55.16 | 57.3   | 2.14  | 0.55 | 0.3    |
|        | 88-17      | 11.28          | 12.8 GRDR   |        |              |       |        |       |      |        |
|        | 88-17      | 12.8           | 20.42 BAST  |        |              |       |        |       |      |        |
|        | 88-17      | 20.42          | 34.44 DTFP  |        |              |       |        |       |      |        |
|        | 88-17      | 34.44          | 49.07 BAST  | qc     |              |       |        |       |      |        |
|        | 88-17      | 49.07          | 49.53 GRDR  | -      |              |       |        |       |      |        |
|        | 88-17      | 49.53          | 57.3 DTFP   |        |              |       |        |       |      |        |
|        | 88-17      | 55.16          | 57.3        |        | ру           |       |        |       |      |        |
|        | 88-17      | 57.3           | 58.82 BAST  |        |              |       |        |       |      |        |
|        | 88-17      | 58.82          | 59.13 GRDR  |        |              |       |        |       |      |        |
|        | 88-17      | 59.13          | 63.7 DTFP   | qt     |              |       |        |       |      |        |
|        | 88-17      | 63.7           | 64.31 GRDR  |        |              |       |        |       |      |        |
|        | 88-17      | 64.31          | 74.52 PLBT  | ер     |              |       |        |       |      |        |
|        | 88-17      | 74.52          | 74.98 GRDR  |        |              |       |        |       |      |        |
|        | 88-17      | 74.27          | 77.27 DTFP  |        |              |       |        |       |      |        |
|        | 88-17      | 77.27          | 79.25 BAST  | qc     |              |       |        |       |      |        |
|        | 88-17      | 79.25          | 79.55 DACT  |        |              |       |        |       |      |        |
|        | 88-17      | 79.55          | 87.78 PLBT  |        | mg           |       |        |       |      |        |
|        | 88-17      | 87.78          | 92.35 DTFP  |        |              |       |        |       |      |        |
|        | 88-17      | 92.35          | 97.38 PLBT  | qt     |              |       |        |       |      |        |
|        | 88-17      | 97.38          | 100.58 DTFP |        |              |       |        |       |      |        |
|        | 88-17      | 100.58         | 103.63 PLBT |        |              |       |        |       |      |        |
|        | 88-17      | 103.63         | 105.46 DTFP |        |              |       |        |       |      |        |
|        | 88-17      | 105.46         | 115.82 PLBT |        |              |       |        |       |      |        |
|        | 88-17      | 115.82         | 116.74 DTFP |        |              |       |        |       |      |        |
|        | 88-17      | 116.74         | 118.87 PLBT |        |              |       |        |       |      |        |
|        | 88-17      | 118.87         | 126.8 DTFP  | Scqc   |              |       |        |       |      |        |
|        | 88-17      | 125.27         | 126.8       | SCQt   |              |       |        |       |      |        |
|        | 88-17      | 126.8          | 131.06 PLBT |        |              |       |        |       |      |        |
|        | 88-17      | 130.45         | 131.06      | Scqc   |              |       |        |       |      |        |
|        | 88-17      | 131.06         | 149.05 DTFP | qt     |              |       |        |       |      |        |
|        | 88-17      | 135.79         | 138.99      | ScQv   |              |       |        |       |      |        |
|        | 88-17      | 138.99         | 143.56 DTFP |        |              |       |        |       |      |        |
|        | 88-17      | 143.56         | 146.92 BAST |        |              |       |        |       |      |        |
|        | 88-17      | 146.9 <b>2</b> | 149.05 DTFP |        |              |       |        |       |      |        |
|        | 88-17      | 149.05         | 155.75 BAST |        | ру           |       |        |       |      |        |
|        | 88-17      | 155.14         | 155.75      |        | Ру           |       |        |       |      |        |
|        | 88-17      | 155.75         | 157.89 DTFP |        |              |       |        |       |      |        |
|        | 88-17      | 157.89         | 170.38 BAST |        |              |       |        |       |      |        |

•

|               | _                 | GEOLO | GICAL DATA     |              |       |       | _     |       |             |               |         |        |      |      |             |      |
|---------------|-------------------|-------|----------------|--------------|-------|-------|-------|-------|-------------|---------------|---------|--------|------|------|-------------|------|
| <u>REF.NO</u> | DDH               | FROM  | <u>TO UNIT</u> | <u>ALTRN</u> | MINRL | FROM  | TO    | WIDTH | <u>GOLD</u> | <u>SILVER</u> | ARSENIC | COPPER | MOLY | LEAD | <u>AN11</u> | ZINC |
| 122601 9      | 94-01             | 0     | 8.22 CASG      | ~            |       | 19.44 | 19.75 | 0.31  | 0.05        | 0.3           | 925     | 220    | 6    | 28   | 0.2         | 198  |
| 122602 9      | 94-01             | 8.22  | 21.49 BAST     | Cx           |       | 19.75 | 19.79 | 0.04  | 2.39        | 3.1           | 5204    | 575    | 19   | 56   | 0.2         | 146  |
| 122603 9      | <del>)</del> 4-01 | 8.22  | 13.72          | qovn         |       | 19.79 | 20.11 | 0.32  | 0.08        | 0.8           | 317     | 218    | 3    | 8    | 0.6         | 105  |
| 122604 9      | 74-01             | 19.75 | 19.8           | QV           | PY    | 22.14 | 23.25 | 1.11  | 0.03        | 0.3           | 41      | 210    | 6    | 6    | 0.2         | 58   |
| 122605 9      | 94-01             | 21.49 | 21.97 DTFP     |              | РУ    | 23.25 | 24    | 0.75  | 0.05        | 0.2           | 85      | 214    | 7    | 6    | 0.6         | 65   |
| 122606 9      | 94-01             | 21.97 | 23.44 BAST     | Cx           |       | 24    | 24.99 | 0.99  | 0.06        | 0.1           | 26      | 174    | 5    | 4    | 0.4         | 38   |
| 122607 9      | 94-01             | 23.44 | 23.88 SZ       | QCvn         |       | 24.99 | 25.54 | 0,55  | 0.17        | 1.6           | 412     | 521    | 7    | 12   | 0.4         | 54   |
| 122608 9      | 94-01             | 23.88 | 30.23 BAST     |              |       | 25.54 | 25.93 | 0.39  | 1.58        | 1.2           | 10200   | 219    | 4    | 24   | 2.8         | 85   |
| 122609 9      | 94-01             | 23.88 | 24.07          | qtqv         | ру    | 25.93 | 26.85 | 0.92  | 0.29        | 0.9           | 3517    | 176    | 6    | 10   | 1.4         | 110  |
| 122610 9      | 94-01             | 24.99 | 25.39          | SCCA         | ру    | 29.83 | 30.23 | 0.4   | 1.41        | 1.4           | 8185    | 203    | 2    | 28   | 0.3         | 198  |
| 122611 \$     | 94-01             | 25.39 | 25.94          | qevn         | Ру    | 30.23 | 30.29 | 0.06  | 2.43        | 1.2           | 9279    | 156    | 4    | 36   | 4.6         | 30   |
| 122612 9      | 94-01             | 25.94 | 26.85          | SCCA         | РУ    | 30.29 | 31.02 | 0.73  | 0.45        | 1             | 3530    | 244    | 1    | 12   | 1.4         | 107  |
| 131127 9      | 94-01             | 26.85 | 29.87          | qcca         |       | 31.02 | 32    | 0.98  | 0.03        | 0.2           | 1       | 217    | 2    | 2    | 0.4         | 47   |
| 131128 9      | <del>74</del> -01 | 29.87 | 30.23          | SCCA         | ру    | 32    | 33.5  | 1.5   | 0.03        | 0.2           | 1       | 211    | 1    | 2    | 0.4         | 41   |
| 131129 9      | 94-01             | 30.23 | 30.29 QCVN     |              | pyas  | 33.5  | 34.8  | 1.3   | 0.03        | 0.2           | 1       | 173    | 1    | 2    | 0.4         | 32   |
| 131130 9      | 94-01             | 30.29 | 35 23 BAST     |              |       | 34.8  | 35.2  | 0.4   | 0.12        | 0.6           | 3170    | 327    | l    | 2    | 2           | 65   |
| 131131 9      | 94-01             | 30.29 | 31.02          | SC           |       | 35.2  | 35.4  | 0.2   | 0.03        | 0.2           | 166     | 171    | 1    | 2    | 0.6         | 47   |
| 131132 9      | 94-01             | 34.89 | 35.23          | SC           | PY    | 35.4  | 36    | 0.6   | 0.03        | 0.2           | 86      | 107    | l    | 2    | 0.6         | 58   |
| 122613 9      | 94-01             | 35.23 | 42.34 DTFH     | SoCh         |       | 44.9  | 45.2  | 0.3   | 0.1         | 0.2           | 125     | 169    | 7    | 4    | 0.6         | 36   |
| 122614 9      | 94-01             | 35.23 | 38.4           | SC           |       | 55.75 | 56.75 | 1     | 0.12        | 0.1           | 64      | 355    | 3    | 4    | 0.4         | 44   |
| 122615 9      | 94-01             | 42.34 | 46.32 BAST     |              | ng    | 56.75 | 57.7  | 0.95  | 0.32        | 0.5           | 492     | 168    | 2    | 16   | 0.8         | 100  |
| 122616 9      | 94-01             | 44.19 | 44.9           | ScCv         |       | 57.7  | 58.7  | 1     | 0.06        | 0.1           | 41      | 162    | 2    | 4    | 0.6         | 34   |
| 122617 9      | 94-01             | 44.9  | 46.32          | qt           | ру    | 58.7  | 60.05 | 1.35  | 0.05        | 0.1           | 21      | 151    | 2    | 4    | 0.4         | 38   |
| 122618 9      | 94-01             | 46.32 | 51 95 DTFP     |              |       | 60.05 | 60.7  | 0.65  | 0.04        | 0.1           | 12      | 95     | 5    | 2    | 0.4         | 43   |
| 122619 9      | 94-01             | 46.32 | 49.56          | qcep         |       | 60.7  | 61.7  | 1     | 0.04        | 0.1           | 21      | 137    | 2    | 4    | 0.4         | 38   |
| 122620 9      | 94-01             | 49.4  | 50.05          | Sc           |       | 61.7  | 62.95 | 1.25  | 0.04        | 0.2           | 22      | 168    | 4    | 2    | 0.4         | 47   |
| 122621 9      | 94-01             | 50.05 | 50.1           | 4cvo         | ру    | 62.95 | 64.5  | 1.55  | 0.04        | 0.1           | 25      | 191    | 2    | 2    | 0.2         | 38   |
| 122622 9      | 94-01             | 50.1  | 51.95          | Sc           |       | 64.5  | 65.55 | 1.05  | 0.04        | 0.2           | 20      | 224    | 5    | 2    | 0.2         | 30   |
| 122623 9      | 94-01             | 51.95 | 57.2 BAST      | qeva         |       | 65.55 | 66.35 | 0.8   | 0.04        | 0.2           | 23      | 219    | 2    | 2    | 0.4         | 38   |
| 122624 9      | 94-01             | 57.2  | 57.37 FALT     | Ca           | ру    | 66.35 | 67.8  | 1.45  | 0.04        | 0.1           | 14      | 340    | 3    | 4    | 0.4         | 35   |
| 122625 9      | 94-01             | 57.37 | 60.05 BAST     | qevn         |       | 67.8  | 69.55 | 1.75  | 0.04        | 0.1           | 21      | 282    | 3    | 2    | 0.4         | 42   |
| 122626 9      | 4-01              | 60.05 | 60.7 DTHP      | Chqt         | ру    | 69.55 | 70.9  | 1.35  | 0.04        | 0.1           | 18      | 225    | 4    | 4    | 0.4         | 39   |
| 122627 9      | 94-01             | 60.7  | 62.95 BAST     | Scqv         | ру    | 70.9  | 71.9  | 1     | 0.04        | 0.1           | 12      | 90     | 6    | 4    | 0.4         | 36   |
| 122628 9      | 94-01             | 62.95 | 65.55 DTHF     |              | рy    | 71.9  | 73.35 | 1.45  | 0.04        | 0.1           | 12      | 45     | 4    | 2    | 0.2         | 52   |
| 122629 9      | 94-01             | 65.55 | 66.35 PLBT     | Cxqt         |       | 73.35 | 74.5  | 1.15  | 0.03        | 0.1           | 16      | 110    | 6    | 6    | 0.2         | 43   |
| 122630 9      | 94-01             | 66.35 | 69.55 DTFH     | qt           | руср  | 74.5  | 75.29 | 0.79  | 0.04        | 0.1           | 11      | 18     | 8    | 4    | 0.2         | 59   |
| 122631 9      | 94-01             | 67.8  | 69.1           | qevn         | Руср  | 75.29 | 76.4  | 1.11  | 0.03        | 0.1           | 30      | 196    | 5    | 2    | 0.4         | 39   |
| 122632 9      | 4-01              | 69.55 | 71.9 BAST      | Qt           |       | 76.4  | 78.1  | 1.7   | 0.03        | 0.2           | 21      | 53     | 3    | 2    | 0.4         | 43   |
| 122633 9      | 94-01             | 70.9  | 71.9           | epqt         | ру    | 78.1  | 79.2  | 1.1   | 0.03        | 0.2           | 39      | 80     | 2    | 6    | 0.4         | 54   |
| 122634 9      | <del>)</del> 4-01 | 71.9  | 73.35 DTHF     | qv           | Py    | 79.2  | 80.05 | 0.85  | 0.03        | 0.2           | 80      | 72     | 1    | 6    | 0.4         | 57   |
| 122635 9      | 94-01             | 73.35 | 73.5 BAST      | qt           |       | 80.05 | 81.1  | 1.05  | 0.03        | 0.1           | 93      | 134    | 2    | 8    | 0.6         | 68   |
| 122636 9      | 94-01             | 73.5  | 73.9 DAFP      | qcep         | ру    | 81.1  | 82.25 | 1.15  | 0.03        | 0.2           | 65      | 55     | 2    | 4    | 0.6         | 69   |
| 122637 9      | 94-01             | 73.9  | 76.4 BAST      | qt           |       | 82.25 | 82.75 | 0.5   | 0.03        | 0.2           | 123     | 50     | 1    | 10   | 0.6         | 61   |
| 122638 9      | 94-01             | 76.4  | 77.4 DTFH      | ch           | ру    | 82.75 | 83.1  | 0.35  | 0.11        | 0.5           | 249     | 63     | 1    | 10   | 0.8         | 72   |
| 122639 9      | 94-01             | 77.4  | 78.1 DTHP      |              | ру    | 83.1  | 84.95 | 1.85  | 0.58        | 0.6           | 1706    | 62     | 3    | 16   | 1.2         | 64   |
| 122640 9      | 94-01             | 78.1  | 79.2           | Sc           | py    | 84.95 | 86.9  | 1.95  | 0.04        | 0.3           | 162     | 26     | 6    | 6    | 0.6         | 58   |
| 122641 9      | 94-01             | 79.2  | 79.65 DTFH     | SCCA         | PY    | 86.9  | 88.9  | 2     | 0.04        | 0.2           | 20      | 72     | 8    | 4    | 0.4         | 57   |
| 122642 9      | 94-01             | 79.65 | 79.9 DAFP      | SCCA         | Ру    | 88.9  | 89.9  | 1     | 0.03        | 0.2           | 10      | 183    | 2    | 4    | 0.4         | 54   |
| 122643 9      | 94-01             | 79.9  | 82.25 DTFH     | SCCA         | py    | 89.9  | 90.95 | 1.05  | 0.03        | 0.1           | 17      | 75     | 7    | 4    | 0.4         | 72   |

· • • • •

Ą

|               |       | GEOLO | GICAL DATA     |              |              |       |       |       |             |        |         |        |      |      |      |      |
|---------------|-------|-------|----------------|--------------|--------------|-------|-------|-------|-------------|--------|---------|--------|------|------|------|------|
| <u>REF NO</u> | DDH   | FROM  | <u>TO UNIT</u> | <u>ALTRN</u> | <u>MINRL</u> | FROM  | TQ    | WIDTH | <u>GOLD</u> | SILVER | ARSENIC | COPPER | MOLY | LEAD | ANTI | ZINC |
| 122644 9      | 94-01 | 8     | 81.05 FALT     | CA           |              | 90.95 | 92    | 1.05  | 0.22        | 0.4    | 43      | 188    | 3    | 4    | 0.4  | 51   |
| 122645 9      | 94-01 | 81.05 | 81.8 DTFH      | CAev         |              | 94.6  | 95.4  | 0.8   | 0.03        | 0.3    | 15      | 181    | 7    | 8    | 0.4  | 98   |
| 122646 9      | 94-01 | 82.25 | 82.75 QCBX     |              | Ру           | 95.4  | 95.65 | 0.25  | 0.03        | 0.3    | 19      | 61     | 4    | 6    | 0.6  | 86   |
| 122647 9      | 94-01 | 82.75 | 83.1 DTFH      | SCCA         | ру           | 95.65 | 96.1  | 0.45  | 0.03        | 0.2    | 13      | 180    | 3    | 4    | 0.4  | 56   |
| 122648 9      | 94-01 | 83.1  | 84.95 QCBX     |              | ру           | 96.1  | 96.63 | 0.53  | 0.03        | 0.2    | 16      | 57     | 6    | 4    | 0.4  | 58   |
| 9             | 94-01 | 84.95 | 86.9 CABX      |              | ру           |       |       |       |             |        |         |        |      |      |      |      |
| 9             | 94-01 | 86.9  | 88.9 DTFH      | chca         | ру           |       |       |       |             |        |         |        |      |      |      |      |
| 9             | 94-01 | 88.9  | 89.9 BAST      | qtev         | pymg         |       |       |       |             |        |         |        |      |      |      |      |
| 9             | 94-01 | 89.9  | 90.95 DTFH     | SCqv         | ру           |       |       |       |             |        |         |        |      |      |      |      |
| 5             | 94-01 | 90.95 | 96.1 PLBT      | qtep         | ру           |       |       |       |             |        |         |        |      |      |      |      |
| 9             | 94-01 | 96.1  | 96.63 DTFH     | Scqt         | ру           |       |       |       |             |        |         |        |      |      |      |      |
|               |       |       |                |              |              |       |       |       |             |        |         |        |      |      |      |      |

|               |       |       | GEOLOGICAL ] | DATA   |       | AS    | SAY DAT. | A     | 0.2793 | 0.2653 | 710.3333       | 140.3056 | 5.1111 | 8.7778      | 0.8781       | 125.3750   |
|---------------|-------|-------|--------------|--------|-------|-------|----------|-------|--------|--------|----------------|----------|--------|-------------|--------------|------------|
| <u>REF.NO</u> | DDH   | FROM  | TO ROCK      | ALTRIN | MINRL | FROM  | TO       | WIDTH | GOLD   | SILVER | <b>ARSENIC</b> | COPPER   | MOLY   | <u>LEAD</u> | <u>ANT</u> I | ZINC       |
| 122649        | 94-02 | 0     | 7.92 CASG    |        |       | 8.23  | 9        | 0.77  | 0.03   | 0.2    | 22             | 154      | 5      | 4           | 0.8          | 61         |
| 122650        | 94-02 | 7.92  | 16.2 PLBT    | Cxqt   |       | 9     | 9.3      | 0.3   | 0.03   | 0.2    | 20             | 137      | 7      | 4           | 0.6          | 47         |
| 122651        | 94-02 | 9.3   | 10           | SZ     | Ру    | 9.3   | 10.25    | 0.95  | 0.03   | 0.2    | 34             | 206      | 4      | 6           | 0.6          | 44         |
| 122652        | 94-02 | 10.25 | 10.5         | PZQC   | Ру    | 10.25 | 10.5     | 0.25  | 0.03   | 0.2    | 38             | 266      | 8      | 4           | 0.6          | 747        |
| 122653        | 94-02 | 11.35 | 11.6         | QtCH   | Руср  | 10.5  | 11.35    | 0.85  | 0.03   | 0.3    | 25             | 96       | 4      | 6           | 0.4          | 63         |
| 122654        | 94-02 | 11.6  | 12.5         | Qt     |       | 11.35 | 11.6     | 0.25  | 0.03   | 0.2    | 22             | 69       | 4      | 4           | 0.6          | 63         |
| 122655        | 94-02 | 12.5  | 13.15        | QV     | Py    | 11.6  | 12.5     | 0.9   | 0.03   | 0.3    | 34             | 132      | 4      | 6           | 0.4          | 60         |
| 122656        | 94-02 | 13.25 | 14.25        | QCSW   | Py    | 12.5  | 13.25    | 0.75  | 0.03   | 0.2    | 25             | 172      | 5      | 4           | 0.4          | 43         |
| 122657        | 94-02 | 14.25 | 16.2         | Cxqt   |       | 13.25 | 14.25    | 1     | 0.17   | 0.3    | 47             | 194      | 3      | 6           | 0.6          | 82         |
| 122658        | 94-02 | 16.2  | 16.3 QTVN    | Ca     | Ру    | 14.25 | 14.8     | 0.55  | 0.03   | 0.2    | 43             | 200      | 4      | 2           | 0.4          | 66         |
| 122659        | 94-02 | 16.3  | 20.67 BAST   | Ca     | Ру    | 14.8  | 16.2     | 1.4   | 0.03   | 0.2    | 63             | 184      | 5      | 4           | 0.4          | 67         |
| 122660        | 94-02 | 16.3  | 17.5         | QtSc   |       | 16.2  | 16.3     | 0.1   | 1.08   | 1      | 2882           | 195      | 8      | 26          | 2.4          | 72         |
| 122661        | 94-02 | 19.5  | 20.67        | QtSc   |       | 16.3  | 17.5     | 1.2   | 0.03   | 0.2    | 63             | 224      | 4      | 6           | 0.6          | 70         |
| 122662        | 94-02 | 20.67 | 21.15 DTFP   | Sc     | Ру    | 17.5  | 18.65    | 1.15  | 0.03   | 0.1    | 26             | 212      | 3      | 4           | 0.4          | 48         |
| 122663        | 94-02 | 21.15 | 21.27 QCVN   | BXSC   | ру    | 18.65 | 20.42    | 1.77  | 0.03   | 0.1    | 23             | 213      | 5      | 4           | 0.4          | 46         |
| 122664        | 94-02 | 21.27 | 24 DTFP      | ARGL   | ру    | 20.42 | 21.15    | 0.73  | 0.03   | 0.2    | 93             | 248      | 3      | 2           | 0.4          | 36         |
| 122665        | 94-02 | 24    | 26.32 BAST   | qtca   |       | 21.15 | 21.3     | 0.15  | 0.03   | 0.2    | 33             | 121      | 2      | 6           | 0.4          | 54         |
| 122666        | 94-02 | 26.32 | 26.4 QCVN    | SC     | PY    | 21.3  | 22       | 0.7   | 0.03   | 0.1    | 24             | 188      | 4      | 2           | 0.4          | 42         |
| 122667        | 94-02 | 26.4  | 31.25 BAST   | qevn   | ру    | 22    | 23       | 1     | 0.03   | 0.1    | 20             | 331      | 5      | 4           | 0.4          | 40         |
| 122668        | 94-02 | 31.25 | 31.3 QCVN    |        | Ру    | 23    | 24.1     | 1.1   | 0.03   | 0.2    | 22             | 180      | 2      | 4           | 0.4          | 31         |
| 122669        | 94-02 | 31.3  | 32.05 DTFP   | SCCh   | ру    | 24.1  | 25       | 0.9   | 1.41   | 0.2    | 5115           | 169      | 4      | 14          | 0.2          | 72         |
| 122670        | 94-02 | 32    | 32.15 QCVN   | BX     | Py    | 25    | 26.32    | 1.32  | 0.04   | 0.1    | 162            | 213      | 2      | 6           | 0.6          | 47         |
| 122671        | 94-02 | 32.15 | 34.95 PLBT   |        |       | 26.32 | 26.4     | 0.08  | 0.07   | 0.1    | 332            | 36       | 6      | 8           | 0.6          | 46         |
| 122672        | 94-02 | 32.15 | 32.45        | Sc     | Pyas  | 26.4  | 28       | 1.6   | 0.03   | 0.1    | 86             | 215      | 5      | 6           | 0.6          | 52         |
| 122673        | 94-02 | 33.95 | 34.35        | Sc     | pyes  | 28    | 29.5     | 1.5   | 0.17   | 0.2    | 130            | 202      | 6      | 4           | 0.6          | 51         |
| 122674        | 94-02 | 34.35 | 34.37        | qvca   | Ру    | 29.5  | 31.3     | 1.8   | 0.06   | 0.1    | 151            | 184      | 7      | 4           | 0.8          | 73         |
| 122675        | 94-02 | 34.37 | 34.5         | Se     | pyas  | 31.3  | 32.05    | 0.75  | 0.03   | 0.1    | 230            | 75       | 6      | 4           | 0.6          | 85         |
| 122676        | 94-02 | 34.5  | 34.95        | SC     |       | 32.05 | 32.3     | 0.25  | 3.23   | 0.3    | 17,700         | 72       | 7      | 20          | 7            | 191        |
| 122677        | 94-02 | 34.95 | 39.2 DTFH    | Sech   | ру    | 32.3  | 32.5     | 0.2   | 0.15   | 0.4    | 3096           | 201      | 3      | 10          | 2.2          | 128        |
| 122678        | 94-02 | 35.35 | 38.7         | qevn   | ру    | 32.5  | 33.95    | 1.45  | 0.03   | 0.2    | 235            | 176      | 4      | 6           | 0.8          | 52         |
| 122679        | 94-02 | 39.2  | 39.95 BAST   | qtSc   | ру    | 33.95 | 34.35    | 0.4   | 0.45   | 0.9    | 1270           | 202      | 6      | 26          | 1.6          | 114        |
| 122680        | 94-02 | 39.95 | 40.95 DAFP   | Qtca   | ру    | 34.35 | 34.55    | 0.2   | 0.28   | 0.6    | 1739           | 152      | 4      | 14          | 1.6          | 76         |
| 122681        | 94-02 | 40.95 | 42.3 DTFH    |        | ру    | 35.55 | 35.95    | 0.4   | 0.03   | 0.2    | 60             | 138      | 1      | 8           | 0.4          | 33         |
| 122682        | 94-02 | 41.3  | 42.3         | SCCa   | pyas  | 34.95 | 35.66    | 0.71  | 0.07   | 0.6    | 1796           | 178      | 7      | 10          | 1.4          | 54         |
| 122683        | 94-02 | 42.3  | 43.52 BAST   | qt     | ру    | 35.66 | 37.1     | 1.44  | 0.14   | 0.3    | 949            | 144      | 5      | 10          | 1            | 53         |
| 122684        | 94-02 | 43.52 | 43.6 QCBX    |        | ру    | 37.1  | 38.2     | 1.1   | 0.07   | 0.4    | 637            | 64       | 6      | 14          | 0.8          | <b>7</b> 0 |
| 122685        | 94-02 | 43.6  | 55.5 DTFH    | ch     | ру    | 38.2  | 39.25    | 1.05  | 0.26   | 0.3    | 1775           | 72       | 2      | 10          | 1.2          | 82         |
| 122686        | 94-02 | 45    | 45.5         | SC     | pyas  | 39.25 | 40.05    | 0.8   | 0.03   | 0.3    | 220            | 142      | 5      | 10          | 0.6          | 46         |
| 122687        | 94-02 | 55.5  | 55.65 DAFP   | scqt   | ру    | 40.05 | 40.65    | 0.6   | 1.14   | 0.5    | 3055           | 90       | 5      | 16          | 1.8          | 54         |
| 122688        | 94-02 | 55.65 | 56.25 QTVN   |        | ру    | 40.65 | 41.3     | 0.65  | 0.03   | 0.1    | 251            | 34       | 7      | 6           | 0.6          | 38         |
| 122689        | 94-02 | 56.25 | 58.3 QTBX    |        | PY    | 41.3  | 42.3     | 1     | 0.16   | 0.3    | 1830           | 42       | 3      | 12          | 1.4          | 89         |
| 122690        | 94-02 | 58.3  | 59.05 FALT   |        | PY    | 42.3  | 43.4     | 1.1   | 0.03   | 0.1    | 121            | 161      | 5      | 6           | 0.6          | 50         |
| 122691        | 94-02 | 59.05 | 60.25 QTSW   |        | PY    | 43.4  | 43.8     | 0.4   | 0.03   | 0.2    | 36             | 60       | 3      | 2           | 0.6          | 48         |
| 122692        | 94-02 | 60.25 | 62.05 BAST   |        | ру    | 43.8  | 45       | 1.2   | 0.08   | 0.2    | 49             | 72       | 8      | 6           | 0.4          | 42         |
| 122693        | 94-02 | 60.25 | 60.95        | SCqC   | ру    | 45    | 46.2     | 1.2   | 0.04   | 0.1    | 41             | 76       | 1      | 6           | 0.4          | 44         |
| 122694        | 94-02 | 62.05 | 62.9 QTBX    |        | PYas  | 46.2  | 47.65    | 1.45  | 0.08   | 0.2    | 168            | 62       | 6      | 8           | 0.6          | 63         |
| 122695        | 94-02 | 62.9  | 66.43 BAST   |        |       | 47.65 | 48.9     | 1.25  | 0.03   | 0.1    | 34             | 64       | 6      | 6           | 0.4          | 47         |
| 122696        | 94-02 | 66.43 | 70.43 DTFP   | chqv   | ру    | 48,9  | 50.1     | 1.2   | 0.03   | 0.1    | 20             | 50       | 6      | 10          | 0.4          | 45         |

|               |       |       | GEOLOGICA            | <u>L DATA</u> |              | AS    | SAY DAT | Ά            | 0.2793 | 0.2653        | 710.3333 | 140.3056      | 5.1111 | 8.7778      | 0.8781 | 125.3750 |
|---------------|-------|-------|----------------------|---------------|--------------|-------|---------|--------------|--------|---------------|----------|---------------|--------|-------------|--------|----------|
| <u>REF.NO</u> | DDH   | FROM  | <u>TO</u> <u>ROC</u> | ALTRTN        | <u>MINRL</u> | FROM  | TO      | <u>WIDTH</u> | GOLD   | <u>SILVER</u> | ARSENIC  | <u>COPPER</u> | MOLY   | <u>LEAD</u> | ANII   | ZINC     |
| 122697 9      | 94-02 | 70.43 | 77.4 PLBT            | chqv          |              | 50.1  | 51.45   | 1.35         | 0.03   | 0.1           | 17       | 58            | 5      | 6           | 0.4    | 40       |
| 122698 9      | 94-02 | 77.4  | 78.1 DTFP            | ch            |              | 51.45 | 52.8    | 1.35         | 0.03   | 0.1           | 16       | 62            | 6      | 4           | 0.4    | 42       |
| 122699 9      | 94-02 | 78.1  | 83.51 BAST           | qtsc          | ру           | 52.8  | 54.2    | 1.4          | 0.05   | 0.2           | 34       | 93            | 10     | 4           | 0.4    | 55       |
| 122700 9      | 94-02 | 78.1  | 78.95                | SCQT          |              | 54.2  | 55.35   | 1.15         | 0.03   | 0.1           | 25       | 52            | 4      | 6           | 0.4    | 43       |
| 122701 9      | 94-02 | 80.15 | 80.35 SZ             | Câ            | ру           | 55.35 | 55.95   | 0.6          | 0.09   | 0.3           | 335      | 58            | 7      | 18          | 1      | 60       |
| 122702 9      | 94-02 | 80.35 | 83.51                | C <b>A</b>    |              | 55.95 | 56.45   | 0.5          | 0.03   | l             | 965      | 66            | 10     | 26          | 5      | 1020     |
| 122703 9      | 94-02 | 83.51 | 83.77 DTFP           | qtqv          | ру           | 56.45 | 58.1    | 1.65         | 0.15   | 0.9           | 436      | 80            | 10     | 20          | 1.2    | 82       |
| 122704 9      | 94-02 | 83.77 | 84.58 BAST           | qt            |              | 58.1  | 58.3    | 0.2          | 1.46   | 0.1           | 108      | 10            | 4      | 20          | 0.6    | 35       |
| 122705 9      | 94-02 | 84.45 | 84.58                | ebse          |              | 58.3  | 59.05   | 0.75         | 3.66   | 0.8           | 1247     | 140           | 12     | 24          | 4.6    | 1333     |
| 122706 9      | 94-02 | 84.58 | 84.67 FALT           | qebx          | Ру           | 59.05 | 60.25   | 1.2          | 3.1    | 1             | 1406     | 58            | 10     | 32          | 2      | 1743     |
| 122707 9      | 94-02 | 84.67 | 85.55 DTFH           | Casc          | ру           | 60.25 | 60.95   | 0.7          | 0.04   | 0.6           | 121      | 176           | 1      | 12          | 1      | 110      |
| 122708 9      | 94-02 | 85.55 | 87.75 BAST           | qeva          |              | 60.95 | 62.05   | 1.1          | 0.03   | 0.2           | 24       | 168           | 6      | 4           | 0.6    | 61       |
| 122709 9      | 94-02 | 87.75 | 90.53 DTFH           | SC            | ру           | 62.05 | 62.95   | 0.9          | 0.63   | 0.6           | 1312     | 286           | 3      | 30          | 1.2    | 231      |
| 122710        |       |       |                      |               |              | 62.95 | 64.5    | 1.55         | 0.49   | 0.1           | 63       | 204           | 6      | 4           | 0.4    | 42       |
| 122711        |       |       |                      |               |              | 75.28 | 75.45   | 0.17         | 0.03   | 0.1           | 37       | 188           | 8      | 6           | 0.4    | 49       |
| 122712        |       |       |                      |               |              | 75.45 | 78.1    | 2.65         | 0.03   | 0.1           | 9        | 70            | 1      | 4           | 0.02   | 44       |
| 122713        |       |       |                      |               |              | 78.1  | 79      | 0.9          | 0.03   | 0.1           | 20       | 197           | 5      | 6           | 0.2    | 55       |
| 122714        |       |       |                      |               |              | 79    | 80.1    | 1.1          | 0.03   | 0.1           | 9        | 171           | 3      | 4           | 0.4    | 39       |
| 122715        |       |       |                      |               |              | 80.1  | 80.42   | 0.32         | 0.03   | 0.1           | 13       | 209           | 7      | 6           | 0.2    | 51       |
| 122716        |       |       |                      |               |              | B0.42 | 82.1    | 1.68         | 0.03   | 0.1           | 11       | 190           | 3      | 6           | 0.2    | 45       |
| 122717        |       |       |                      |               |              | 82.1  | 83.45   | 1.35         | 0.03   | 0.1           | 20       | 129           | 7      | 4           | 0.2    | 56       |
| 122718        |       |       |                      |               |              | 83.45 | 84.43   | 0.98         | 0.03   | 0.1           | 13       | 164           | 3      | 6           | 0.6    | 42       |
| 122719        |       |       |                      |               |              | 84.43 | 85.55   | 1.12         | 0.03   | 0.1           | 17       | 46            | 8      | 6           | 0.2    | 88       |
| 122720        |       |       |                      |               |              | 85.55 | 86.6    | 1.05         | 0.03   | 0.1           | 39       | 159           | 4      | 4           | 0.2    | 34       |

٩

· ·

**`**1

|                |       |       | GEOLOGICAL | DATA   |              | AS    | SAY DAT   | A     |      |        |         |               |      |      |      |            |
|----------------|-------|-------|------------|--------|--------------|-------|-----------|-------|------|--------|---------|---------------|------|------|------|------------|
| <u>REF.NO</u>  | DDH   | FROM  | TO ROCK    | ALTRTN | <u>MINRL</u> | FROM  | <u>TO</u> | WIDTH | GOLD | SILVER | ARSENIC | <u>COPPER</u> | MOLY | LEAD | ANTI | ZINC       |
| 122721         | 94-03 | 0     | 5.49 CASG  |        |              | 21    | 22.45     | 1.45  | 0.03 | 0.1    | 98      | 208           | 3    | 6    | 0.1  | 48         |
| 122722         | 94-03 | 5.49  | 6.25 TILL  |        |              | 22.45 | 23.05     | 0.6   | 0.62 | 1      | 1916    | 250           | 3    | 24   | 2.4  | 70         |
| 122723         | 94-03 | 6.25  | 13.25 PLBT | qt     |              | 23.05 | 24.05     | 1     | 0.03 | 0.1    | 56      | 194           | 5    | 8    | 0.4  | 54         |
| 122724         | 94-03 | 13.25 | 13.35 DAFP |        |              | 24.05 | 25.75     | 1.7   | 0.03 | 0.1    | 37      | 172           | 4    | 2    | 0.4  | 44         |
| 122725         | 94-03 | 13.35 | 14.95 PLBT |        |              | 25.75 | 25.95     | 0.2   | 1.54 | 0.7    | 14,800  | 220           | 5    | 20   | 86   | 69         |
| 122726         | 94-03 | 13.35 | 13.6       | qt     |              | 25.95 | 26.95     | 1     | 0.65 | 0.6    | 6420    | 186           | 5    | 14   | 4    | 134        |
|                | 94-03 | 13.9  | 14 FALT    | QCVN   |              |       |           |       |      |        |         |               |      |      |      |            |
| 122727         | 94-03 | 14.95 | 15.7 DTFH  | qt     | ру           | 28.6  | 29.6      | 1     | 0.04 | 0.1    | 135     | 156           | 7    | 8    | 06   | <b>5</b> 1 |
| 122728         | 94-03 | 15.7  | 16.8 BAST  | qt     |              | 29.6  | 30        | 0.4   | 0.26 | 0.1    | 2504    | 83            | 2    | 10   | 1.4  | 72         |
| 122729         | 94-03 | 16.8  | 17.25 DTFH | chqt   | ру           | 30    | 31        | 1     | 0.03 | 0.1    | 81      | 66            | 6    | 8    | 0.6  | 48         |
| 122730         | 94-03 | 17.25 | 18.85 BAST | ch     |              | 37.1  | 38.1      | 1     | 0.03 | 0.1    | 27      | 60            | 2    | 6    | 0.2  | 35         |
| 122731         | 94-03 | 18.85 | 19.98 QCSW |        | Ру           | 38.1  | 38.5      | 0.4   | 0.55 | 0.8    | 4001    | 174           | 2    | 66   | 2.6  | 277        |
| 122732         | 94-03 | 19.98 | 22.45 BAST | ch     |              | 38.5  | 39.5      | 1     | 0.03 | 0,1    | 141     | 111           | 4    | 4    | 0.6  | 44         |
| 122733         | 94-03 | 22.45 | 23 DTFH    | dcam   | ру           | 39.5  | 39.75     | 0.25  | 0.03 | 0.1    | 115     | 61            | 4    | 10   | 0.4  | 48         |
| 122734         | 94-03 | 23    | 25.75 BAST | сh     |              | 39.75 | 40.75     | 1     | 0.03 | 0.1    | 42      | 77            | 3    | 4    | 0.4  | 59         |
| 122735         | 94-03 | 25.75 | 25.92 QCBX |        | PY           | 40.75 | 43.9      | 3.15  | 0.03 | 0.1    | 65      | 185           | 4    | 4    | 0.6  | 72         |
| 122736         | 94-03 | 25.92 | 26.55 DTFP | SCQt   |              | 43.9  | 44.15     | 0.25  | 0.77 | 0.2    | 1559    | 175           | 3    | 70   | 1.6  | 137        |
| 122737         | 94-03 | 26.55 | 28.8 BAST  | ChSc   |              | 44.15 | 45.8      | 1.65  | 0.03 | 0.1    | 35      | 168           | 2    | 4    | 1.2  | 44         |
| 122738         | 94-03 | 26.55 | 26.9       | QTBX   | руро         | 45.8  | 46.05     | 0.25  | 0.03 | 0.8    | 410     | 133           | 8    | 22   | 0.4  | 69         |
| 122739         | 94-03 | 28.7  | 28.95      | QTBX   | Ру           | 46.05 | 47.05     | 1     | 0.03 | 0.1    | 36      | 148           | 6    | 6    | 0.4  | 60         |
| 122740         | 94-03 | 28.95 | 29.4 DTHP  | Sech   |              | 51.8  | 52.8      | 1     | 0.03 | 0.1    | 28      | 230           | 4    | 4    | 0.6  | 50         |
| 122741         | 94-03 | 29.4  | 29.55 BAST | chsc   |              | 52.8  | 53.7      | 0.9   | 0.18 | 0.1    | 317     | 137           | 9    | 14   | 1.4  | 432        |
| 122742         | 94-03 | 29.55 | 33.96 DTFH | qtsc   |              | 53.7  | 54.3      | 0.6   | 0.37 | 0.6    | 1276    | 146           | 6    | 18   | 1.2  | 331        |
| 122743         | 94-03 | 29.65 | 29.9       | qevn   | ру           | 54.3  | 54.65     | 0.35  | 0.35 | 0.5    | 575     | 104           | 8    | 18   | 1.2  | 70         |
| 122744         | 94-03 | 30.8  | 30.88      | QCVN   |              | 54.65 | 55.4      | 0.75  | 0.23 | 0.1    | 362     | 40            | 1    | 24   | 0.6  | 44         |
| 122745         | 94-03 | 32.8  | 33.85      | qevn   | hm           | 55.4  | 57        | 1.6   | 0.03 | 0.1    | 56      | 174           | 6    | 8    | 0.6  | 80         |
| 122746         | 94-03 | 33.96 | 36.15 DTFP | Scqv   |              | 57    | 58.65     | 1.65  | 0.03 | 0.1    | 13      | 102           | 7    | 8    | 1.4  | 60         |
| 12274 <b>7</b> | 94-03 | 36.15 | 38.42 DTFH | ScqC   | han i        | 58.65 | 60.1      | 1.45  | 0.03 | 0.1    | 61      | 84            | 3    | 6    | 0.8  | 65         |
| 122748         | 94-03 | 38.42 | 39.1 BAST  | SCQv   | ру           | 60,1  | 60.53     | 0.43  | 0.03 | 0.1    | 53      | 10            | 3    | 8    | 0.4  | 85         |
| 122749         | 94-03 | 39.1  | 39.55 DTFP | Sc     |              | 60.53 | 61.65     | 1.12  | 0.03 | 0.2    | 14      | 37            | 5    | 6    | 0.4  | 97         |
| 122750         | 94-03 | 39.55 | 39.7 DTHP  | qt     | ру           | 68.2  | 69.25     | 1.05  | 0.03 | 0.2    | 35      | 75            | 5    | 6    | 0.6  | 42         |
| 122751         | 94-03 | 39.7  | 40.32 BAST | ch     |              | 69.25 | 69.9      | 0.65  | 0.03 | 0.1    | 14      | 50            | 9    | 6    | 0.4  | 44         |
| 122752         | 94-03 | 40.32 | 40.45 DAHF |        |              | 69.9  | 70.2      | 0.3   | 0.03 | 0.2    | 50      | 93            | 8    | 8    | 0.4  | 45         |
| 122753         | 94-03 | 40.45 | 43.1 BAST  | ch     |              | 70.2  | 71.4      | 1.2   | 0.03 | 0.1    | 15      | 101           | 8    | 6    | 0.4  | 48         |
| 122754         | 94-03 | 43.1  | 43.3 QCSW  |        |              | 71.4  | 72.4      | 1     | 0.03 | 0.2    | 14      | 104           | 6    | 6    | 0.2  | 39         |
| 122755         | 94-03 | 43.3  | 45.95 BAST | ch     | ру           | 79.2  | 80.2      | 1     | 0.03 | 0.1    | 12      | 94            | 6    | 6    | 0.2  | 41         |
| 122756         | 94-03 | 44    | 44.03      | QCSW   | Ру           | 80.2  | 81.95     | 1.75  | 0.03 | 0.1    | 25      | 188           | 7    | 10   | 0.6  | 60         |
| 122757         | 94-03 | 45.95 | 46.03 QTBX | ру     |              | 81.95 | 82.75     | 0.8   | 0.03 | 0.1    | 14      | 133           | 3    | 8    | 0.4  | 48         |
| 122758         | 94-03 | 46.03 | 46.35 DTHP | SC     |              | 82.75 | 84.43     | 1.68  | 0.04 | 0.1    | 28      | 112           | 8    | 10   | 0.6  | 118        |
| 122759         | 94-03 | 46.35 | 47.3 BAST  | ch     |              | 86.3  | 96.7      | 10.4  | 0.03 | 0.1    | 12      | 198           | 3    | 6    | 0.4  | 50         |
| 122760         | 94-03 | 47.3  | 47.45 DTFP | ch     | ру           | 92.15 | 92.6      | 0.45  | 0.03 | 0.1    | 16      | 76            | 5    | 8    | 0.4  | 76         |
|                | 94-03 | 47.45 | 50.15 BAST | ch     |              |       |           |       |      |        |         |               |      |      |      |            |
|                | 94-03 | 50.15 | 52.55 DTFH | ch     | ру           |       |           |       |      |        |         |               |      |      |      |            |
|                | 94-03 | 52.55 | 52.9 BAST  | ch     |              |       |           |       |      |        |         |               |      |      |      |            |
|                | 94-03 | 52.9  | 53.7 DTFH  | qcsw   | рy           |       |           |       |      |        |         |               |      |      |      |            |
|                | 94-03 | 53.7  | 54.3 BAST  | qcsw   | Ру           |       |           |       |      |        |         |               |      |      |      |            |
|                | 94-03 | 54.3  | 54.95 DTSW | 3C     | ру           |       |           |       |      |        |         |               |      |      |      |            |
|                | 94-03 | 54.95 | 55.4 CAVN  |        | Py           |       |           |       |      |        |         |               |      |      |      |            |

- · · · ·

|               |            |       | <u>GEOLOGICAL</u> | DATA   |       | 4    | ASSAY DA  | TA    |      |        |                |      |      |      |      |
|---------------|------------|-------|-------------------|--------|-------|------|-----------|-------|------|--------|----------------|------|------|------|------|
| <u>REF.NO</u> | <u>DDH</u> | FROM  | TO ROCK           | ALTRIN | MINRL | FROM | <u>T0</u> | WIDTH | GOLD | SILVER | ARSENIC COPPER | MOLY | LEAD | ANTI | ZINC |
|               | 94-03      | 55.4  | 56.4 BAST         | SC     |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 56.4  | 56.7 DTFH         |        |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 56.7  | 57.2 BAST         | sc     |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 57.2  | 57.55 DTFH        |        |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 57.55 | 58.7 BAST         |        |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 57.55 | 58                | SC     |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 58    | 58.7              | Sc     |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 58.7  | 60.05 DTFH        | SCqv   |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 60.05 | 60.1 FALT         |        |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 60.1  | 60.53 DTSW        | CASW   | Py    |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 60.53 | 61.65 DTFP        | SCCV   | ру    |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 60.53 | 60.92             | Casw   |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 61.65 | 80.2 DTFH         |        |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 61.65 | 72.2              | caab   |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 68.2  | 69.25             | SZ     |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 70.05 | 70.13             | SZ     |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 80.2  | 80.95 DTFZ        | QCSW   | PY    |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 80.95 | 81.95 BTFZ        | QCSW   | PY    |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 81.95 | 82.8 BAST         | Sc     | pying |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 82.8  | 84.2 QCBX         |        | PY    |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 84.2  | 90.15 BAST        | qcsw   |       |      |           |       |      |        |                |      |      |      |      |
|               | 94-03      | 90.15 | 93.57 DTHF        | qcsw   |       |      |           |       |      |        |                |      |      |      |      |

| 9 | 4 | - | O | 4 |
|---|---|---|---|---|
|   |   |   |   |   |

|                    |                | GEOLOGICAI               | DATA     |              | AS         | SAY DAT       | Α     |                 |                |          |        |      |         |             |      |
|--------------------|----------------|--------------------------|----------|--------------|------------|---------------|-------|-----------------|----------------|----------|--------|------|---------|-------------|------|
| <u>REF.NO</u> DDH  | FROM           | <u>TO</u> <u>ROCK</u>    | ALTRIN   | <u>MINRL</u> | FROM       | TO            | WIDTH | <u>GQLD</u>     | <u>SILVER</u>  | ARSENIC  | COPPER | MOLY | LEAD    | <u>ANII</u> | ZINC |
| 122923 94-04       | 0              | 6.7 CASG                 |          |              | 13.38      | 13.67         | 0.29  | 0.1             | L 0.]          | . 756    | 105    | 4    | 10      | 1.2         | 7    |
| 131119 94-04       | 6.7            | 12 PLBT                  | CX       |              | 21.5       | 22            | 0.5   | 0.03            | <b>3</b> 0.1   | . 1      | 107    | 2    | 2       | 0.4         | 4    |
| 131120 94-04       | 9.11           | 9.3                      | scqt     |              | 22         | 22.5          | 0.5   | 0.0:            | \$U.]          | . 1      | 123    | 4    | 2       | 0.4         | 4    |
| 131121 94-04       | 10.2           | 10.67                    | Seqv     | РУ           | 22.5       | 23.5          | 1     | 0.0:            | 5 U.I          | 44       | 71     | 1    | 2       | 0.2         | 5    |
| 131122 94-04       | 11.65          | 11.68                    | QISW     |              | 23.5       | 24.2          | 0.7   | 0.0             | \$0.]<br>-     | . 1      | 157    | 4    | 2       | 0.4         | 6    |
| 131123 94-04       | 12             | 12.52 DIOT               | qt       | ру           | 24.2       | 24.15         | 0.55  | 0.0             | \$0.]          | . 1      | 247    | 1    | 2       | 0.4         | 6    |
| 131124 94-04       | 12.52          | 12.8 BAST                |          |              | 24.75      | 25.5          | 0.75  | 0.0             | 3 0.]          | . 1      | 79     | 3    | 2       | 0.2         | 3    |
| 122924 94-04       | 12.6           | 13 DIFP                  |          |              | 28.6       | 29.2          | 0.6   | 0.01            | S 0.2          | 658      | 254    | 2    | 12      | 0.8         | 5    |
| 122925 94-04       | 13             | 13.42 BAST               | cxqt     |              | 33.75      | 54.49         | 0.74  | 0.0             | 5 O.]          | . 23     | 68     | 6    | 2       | 0.6         | 3    |
| 122926 94-04       | 13.42          | 13.67 QCVN               | qevn     | ру           | 34.49      | 35            | 0.51  | 0.81            | 8 0.2          | 3752     | 83     | 4    | 12      | 3.4         | 5    |
| 122927 94-04       | 13.67          | 16.45 BAST               | qtsc     | ру           | 35         | 35.5          | 0.5   | 0.0             | 90.1           | . 640    | 82     | 2    | 2       | 1.2         | 6    |
| 122928 94-04       | 16.45          | 16.77 DIFH               | ch       | РУ           | 25.5       | 36            | 10.5  | 0.03            | 5 0.2          | 374      | 74     | 2    | 6       | 0.8         | 5    |
| 122929 94-04       | 16.77          | 21.68 BAST               | qtca     | ру           | 36         | 36.37         | 0.37  | 0.1             | / 0.2          | 1304     | 51     | 2    | 6       | 1.8         | 6    |
| 122930 94-04       | 21.68          | 22.5 DTFH                | chca     |              | 36.37      | 36.87         | 0.5   | 0.04            | <b>4</b> 0.1   | . 34     | 136    | 1    | 6       | 0.6         | 4    |
| 122931 94-04       | 22.5           | 24.75 BAST               | qevn     | ру           | 36.87      | 37.37         | 0.5   | 0.0             | 3 Q. ]         | . 94     | 133    | 1    | 2       | 0.8         | 8    |
| 122932 94-04       | 24.75          | 25.52 DIFP               | çavd     |              | 37.37      | 37.87         | 0.5   | 0.1             | L 0.1          | 33       | 192    | 2    | 12      | 0.8         | 9    |
| 122933 94-04       | 25.52          | 26.88 BAST               | dcam     | ру           | 40.9       | 41.4          | 0.5   | 0.1             | 1 0.1          | . 44     | 174    | 4    | 4       | 0.6         | 6    |
| 122934 94-04       | 26.88          | 27.3 DIFP                | qcsw     |              | 41.4       | 41.9          | U. 3  | 0.0.            | 5 O.I          | 87       | 183    | 3    | 2       | 0.6         | 6    |
| 122935 94-04       | 27.3           | 29.46 BAST               | ch       |              | 42.5       | 43            | 0.3   | 0.0             | 5 U.]          | . 22     | 461    | 3    | 8       | 0.6         | 7    |
| 122936 94-04       | 28.72          | 28.92                    | CABX     | Ру           | 43         | 45.5          | 0.5   | 0.0             | 5 0.1          | 26       | 213    | 1    | 8       | 0.6         | 6    |
| 122937 94-04       | 28.92          | 29.46                    | CX       | ру           | 43.5       | 44            | 0.2   | 0.04            | a U.J          | 31       | 151    | 4    | 0       | Ų.6         | 0    |
| 122938 94-04       | 29.46          | 30.5 DTHF                | CD       | ру           | 50.3       | 51.5          | 1     | 0.03            | 5 U.3          | 17       | 79     | 3    | 10      | 0.6         | 6    |
| 122939 94-04       | 30.5           | 30.78 BAST               |          |              | 51.3       | 52.5          | 1     | 0.8             | / 0.3          | 5627     | 127    | 3    | 12      | 4.8         | 7    |
| 122940 94-04       | 30.78          | JLS DIHF                 | ¢D       | <b>100</b>   | 52.5       | 35.5          | L L   | . 0.2           | L U.4          | 1894     | 143    | 3    | 12      | 1.8         | 8    |
| 122941 94-04       | 31.5           | 32.13 BAST               | caep     |              | 55.5       | 34.5          | 1     | 1.68            | S I.(          | 15,100   | 354    | 3    | 28      | 8.2         | 12   |
| 122942 94-04       | 32.13          | 32.9 DIHF                | ерся     |              | 54.3       | 33.3          | 1     |                 | 9 I.I          | 5289     | 329    | 1    | 20      | 4.4         | 11   |
| 122943 94-04       | 32.9           | 33.15 BAS1               | epvn     |              | 33.5       | 20            | U, /  | 5.25            | 9 1.1          | 26,000   | 119    | 6    | 40      | 14.8        | 20   |
| 122944 94-04       | 33.15          | 33.34 DIHF               |          |              | 20         | 51            | 1     | . 1.24          | 1 I            | 2217     | 231    | 3    | 148     | 3.4         | 41   |
| 122945 94-04       | 33.34          | 33.75 BASI               |          |              | 57         | 36<br>6 0 0   | 1     | 0.9             | 6 U.S          | 2832     | 260    |      | 298     | 3.4         | 90   |
| 122952 94-04       | 33.73          | 36.37 DIHF               | 8000     | D- 4 C       | 35         | 20.0          | 0.8   | 1 U.7.          | 1 0.5          | 4397     | 280    | 0    | 330     | 4           | 70   |
| 122946 94-04       | 34.49          | 33.4                     | SUQU     | ryao         | 36.6       | 39.3          | 0.0   |                 | 3 .            | . 11,000 | 191    | 0    | 124     | 20.2        | 10   |
| 122947 94-04       | 30,4           | 30.37<br>33.00 DACT      | 50       | pyas         | 39.3       | 00<br>60.2    | 0.7   | 0.0             | 3 U.J<br>D 04  | 127      | 157    | 3    | 0<br>27 | 1.0         | 10   |
| 122948 94-04       | 30.37          | 37.96 DASI<br>39.05 DTUE | SC       | ру           | 60<br>60 2 | 60.5          | 0.5   | 1.6             | 2 U.U<br>1 1 1 | 10 100   | 237    | 1    | 32      | ر<br>م      | 21   |
| 122949 94-04       | 37.76          | 42 04 DAST               | dreb     | -            | 60.3       | 60.9<br>61 1  | 0.0   | 2.0             | 1 1.i<br>1 1 - |          | 307    | 2    | 56      | ).4<br>70   | 31   |
| 122930 94-04       | 38.03          | 43.74 DASI<br>40.07 DTUE | cirqu    | ру           | 60.9       | 62.1          | 0.2   | , 3.4)<br>0.3/  | i 1.4<br>4 0.3 | 10,100   | 02     | 0    | 12      | 1.0         | 270  |
| 122931 94-04       | 43.24          | 49.07 Dinr               | qevu     |              | 61.1       | 62.1          | 1     | 0.24            | + V.:<br>> 0:  | £0,600   | 75     | 0.04 | 0.07    | 0.6         | 0.40 |
| 131123 24-04       | 44.54          | 48.3                     | Sech     |              | 87.4       | 87.9          | 0.4   | . 0.0.          | 2 0.1<br>2 0.1 | . ,      | 120    | 0.00 | 0.02    | 0.0         | 0.42 |
| 122733 54-04       | 40.3           | 40.07                    | SCen     |              | 87.9       | 84 3          | 0.4   | 0.0.            | 3 0.1<br>2 0.1 |          | 20     | 10   | 12      | 0.0         | 6    |
| 122724 24-04       | 40.7           | 47.07<br>\$0.39 DAST     | abab     | <u></u>      | 04.0       | 04.3          | 1     | ່ 0.0.<br>ຄ.ກ   | 3 0.1<br>3 0.1 | נו<br>פר | - 110  | 17   | · *     | 0.0<br>0.6  | ~    |
| 122333 34-04       | 49.07          | 52 23 DTEU               | çıscu    | Py           | 95.1       | 96.5          | م ر   | . 0.0.<br>1 0.0 | 2 01           | 10       | 140    | ,    | л<br>А  | 0.0         | 9    |
| 04 04              | 50.28          | 50.51 0111               | <b>.</b> |              | 20.1       | <b>J0</b> . J | 0.4   | 0.0.            | <b>J</b> 0.1   |          | 140    | 2    | -       | 0.0         | ,    |
| 94-04<br>04 04     | 50.25          | 50.05<br>\$1.4           | Seca     | he           |            |               |       |                 |                |          |        |      |         |             |      |
| 94-04              | 50.05<br>\$1.4 | 53.13                    | SCca     |              |            |               |       |                 |                |          |        |      |         |             |      |
| , 74-04<br>, Q4_04 | 52.21          | 55.15<br>55.4 RAST       | SCca     | PJ<br>nvAS   |            |               |       |                 |                |          |        |      |         |             |      |
| <br>04_04          | 5.51           | SA DADI<br>SA ATRY       | PY       | 61.00        |            |               |       |                 |                |          |        |      |         |             |      |
| 94-04              | 56             | 59 H RAST                | * *      |              |            |               |       |                 |                |          |        |      |         |             |      |
| 71.01              | 20             |                          | 0.001/   |              |            |               |       |                 |                |          |        |      |         |             |      |

94.04

|               |       |       | <u>GEOL</u>     | OGICAL I    | DATA          |       | <u>A</u> | SSAY DA   | TA    |      |               |         |        |      |      |      |             |
|---------------|-------|-------|-----------------|-------------|---------------|-------|----------|-----------|-------|------|---------------|---------|--------|------|------|------|-------------|
| <u>REF.NO</u> | DDH   | FROM  | <u>T0</u>       | <u>ROCK</u> | <u>ALTRTN</u> | MINRL | FROM     | <u>10</u> | WIDTH | GOLD | <u>SILVER</u> | ARSENIC | COPPER | MOLY | LEAD | ANTI | <u>ZINC</u> |
|               | 94-04 | 56.5  | 59.11           |             | QCSW          | PyAs  |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 59.11 | 59.3            | QCVN        |               |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 59.3  | 60.15           | DTHF        | SCCX          | Ру    |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 60.15 | 60.94           | BAST        | SCCx          | Ру    |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 60.94 | 61.08           | QTVN        |               | PyZn  |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 61.08 | 62.96           | DTHF        | S¢            |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 62.96 | 63.66           | PLBT        | chsc          |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 63.66 | 64.13           | DTHF        | qc            |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 64    | 64.53 ]         | BAST        | qфру          |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 64.53 | 65.41           | DTHF        | ch            |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 65.41 | 65.47           | FALT        | chca          |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 65.47 | <b>69.75</b> ]  | BAST        | qupy          |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 69.75 | 73.03           | DTHF        |               |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 69.75 | 70              |             | QCSW          | ру    |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 70    | 73.03           |             | qcsw          | ру    |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 73.03 | 78.52           | BAST        | qtqv          | руро  |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 78.52 | 80.41           | DTHF        | qt            |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 80.41 | 82.41           | PLBT        | qtch          |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 82.41 | 82.68           | QCBX        | CAQT          |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 82.68 | 86.57           | PLBT        | qtch          |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 83.87 | 84.3            |             | qcsw          |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 86.57 | <b>8</b> 9.59 ] | DTHF        | chep          |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 89.59 | 90.3 [          | PLBT        | qcsw          |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 90.3  | 96.12           | DTHF        | q¢sw          |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 96.12 | 103.02          | BAST        | chqt          |       |          |           |       |      |               |         |        |      |      |      |             |
|               | 94-04 | 96.12 | 96.37           |             | CASC          |       |          |           |       |      |               |         |        |      |      |      |             |

•

· · · · ·

|               |       |         | GEOLOGICAL | DATA   |              | AS          | SAY DATA | <u>l</u> |      |               |                   |        |      |             |      |             |
|---------------|-------|---------|------------|--------|--------------|-------------|----------|----------|------|---------------|-------------------|--------|------|-------------|------|-------------|
| <u>REF.NO</u> | DDH   | FROM    | TO ROCK    | ALTRTN | <u>MINRL</u> | <u>FROM</u> | TO Y     | WIDTH    | GOID | <u>SILVER</u> | <b>ARSENIC</b>    | COPPER | MOLY | <u>LEAD</u> | ANTI | <u>ZINC</u> |
| 131061        | 94-05 | 0       | 19.51 CASG |        |              | 31.05       | 32.45    | 1.4      | 0.03 | 0.1           | . 70              | 147    | 3    | 2           | 0.8  | 90          |
| 131062        | 94-05 | 19.51   | 21.35 TILL |        |              | 32.45       | 33.7     | 1.25     | 0.03 | 0.1           | 2                 | 94     | 3    | 2           | 0.4  | 61          |
| 131063        | 94-05 | 21.35   | 21.55 DTHP | СНер   | ру           | 33.7        | 34.2     | 0.5      | 0.03 | 0.1           | ι <b>2</b>        | 176    | 1    | 2           | 0.4  | 68          |
| 131064        | 94-05 | 21.55   | 22.51 GBBR | Chev   |              | 34.2        | 35.2     | 1        | 0.03 | 0.1           | 2                 | 95     | 4    | 2           | 0.6  | 46          |
| 131065        | 94-05 | 22.51   | 24.05 DTFP | ScCh   |              | 35.2        | 36.3     | 1.1      | 0.03 | 0.1           | ı 2               | 147    | 1    | 2           | 0.6  | 58          |
| 131066        | 94-05 | 24.05   | 24.58 DTSW | CHev   |              | 36.3        | 37.7     | 1.4      | 0.03 | 0.1           | 49                | 240    | 1    | 2           | 0.4  | 183         |
| 131067        | 94-05 | 24.58   | 25.9 DTFH  | CHca   |              | 37.7        | 38.71    | 1.01     | 0.03 | 0.1           | 2                 | 157    | 1    | 2           | 0.2  | 49          |
| 131068        | 94-05 | 25.9    | 26.68 DTSW | CaSw   |              | 38.71       | 39.55    | 0.84     | 0.03 | 0.1           | ı 2               | 489    | 3    | 2           | 0.2  | 44          |
|               | 94-05 | 26.68   | 27.9 DTHP  | CH     |              |             |          | 0        |      |               |                   |        |      |             |      |             |
| 131069        | 94-05 | 27.9    | 28.18 DTFH | ep     |              | 68.3        | 68.52    | 0.22     | 0.03 | 0.1           | 1 2               | 167    | 2    | 2           | 0.6  | 55          |
|               | 94-05 | 28.18   | 30.4 DTHF  | ChCa   |              |             |          | 0        |      |               |                   |        |      |             |      |             |
| 131070        | 94-05 | 30.4    | 32.85 DTFH |        |              | 79          | 79.25    | 0.25     | 0.07 | 0.1           | 10                | 97     | 1    | 2           | 1    | 101         |
|               | 94-05 | 32.85   | 33.1 DTHP  |        |              |             |          | 0        |      |               |                   |        |      |             |      |             |
| 131071        | 94-05 | 33.1    | 35.7 FALT  |        |              | 86.25       | 86.9     | 0.65     | 0.06 | 0.1           | 1136              | 215    | 1    | 2           | 1.2  | 67          |
| 131072        | 94-05 | 35.7    | 37.7 DTHF  | Chsc   |              | 86.9        | 87.05    | 0.15     | 0.48 | 0.4           | 2.343             | 105    | 17   | 244         | 1.8  | 346         |
| 131073        | 94-05 | 37.7    | 40 DTSW    | cach   |              | 87.05       | 87.6     | 0.55     | 0.03 | 0.1           | 1148              | 153    | 2    | 2           | 1    | 53          |
|               | 94-05 | 40      | 41.63 BAST | cach   |              |             |          | 0        |      |               |                   |        |      |             |      |             |
| 131074        | 94-05 | 41.63   | 41.88 DTHP | Ch     | Ру           | 89.9        | 91       | 1.1      | 0.12 | 0.1           | 616               | 166    | 1    | 2           | 0.8  | 50          |
| 131075        | 94-05 | 41.88   | 48.52 DTFH | Chqc   | mg           | 91          | 91.6     | 0.6      | 1.72 | 0.2           | 2 18,200          | 119    | 1    | 42          | 10.8 | 177         |
| 131076        | 94-05 | 48.52   | 50.52 DTHP | Ch     | Ру           | 91.6        | 91.8     | 0.2      | 6.23 | 0.5           | i 46, <b>8</b> 00 | 41     | 12   | 196         | 23.8 | 241         |
| 131077        | 94-05 | 50.52   | 55.14 DTFH |        |              | 81.8        | 92.7     | 10.9     | 0.23 | 0.1           | 4199              | 214    | ł    | 2           | 4.4  | 55          |
|               | 94-05 | 51.71   | 55.14      | BX     |              |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 55.14   | 58.33 BAST |        | ру           |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 58.33   | 60.04 DTFP | qcep   |              |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 60.04   | 60.6 BAST  | qcep   |              |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 60.6    | 61.9 DTSW  | qcep   |              |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 61.9    | 65.26 BAST | qcep   |              |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 62.1    | 63         | cvsw   |              |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 65.26   | 65.82 DTFH | qtep   |              |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 65.82   | 83.33 BAST | qv     | ру           |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 68.35   | 68.6       | ScCa   |              |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 68.44   | 68.5       | QTBX   |              |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 78.65   | 79.25      | CaBx   |              |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 83.3    | 84.02 DTFP | qtex   | pymg         |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 84.02   | 87.96 BAST |        |              |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 85.48   | 85.84      | CvCh   |              |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 86.93   | 87.04      | QTBX   | Ру           |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 87.96   | 89.62 DTFP | BCQC   | ру           |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 89.62   | 99.67 BAST | qv     | ру           |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 89.62   | 90.02      | Casc   | ру           |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 91.02   | 91.2       | QTBX   | PY           |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 91.65   | 91.7       | QIBX   | PyAS         |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 91.75   | 91.8       | QcSw   | pyAs         |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 91.8    | 92.6       | ScCa   | ру           |             |          |          |      |               |                   |        |      |             |      |             |
|               | 94-05 | 99.67 E | OH         |        |              |             |          |          |      |               |                   |        |      |             |      |             |

|              |        | GEOLOGICAL            | <u>DATA</u> |       | AS          | SAY DATA  | <u>\</u> |      |        |         |               |      |      |             |            |
|--------------|--------|-----------------------|-------------|-------|-------------|-----------|----------|------|--------|---------|---------------|------|------|-------------|------------|
| REF.NO DDH   | FROM   | <u>TO</u> <u>ROCK</u> | ALTRIN      | MINRL | <u>FROM</u> | <u>TO</u> | WIDTH    | GOLD | SILVER | ARSENIC | <u>COPPER</u> | MOLY | LEAD | <u>ANTI</u> | ZINC       |
| 131078 94-06 | 0      | 4.88 CASG             |             |       | 16.25       | 16.75     | 0.5      | 0.03 | 0.1    | 82      | 297           | 3    | 10   | 0.6         | 116        |
| 131079 94-06 | 4.88   | 16.1 BAST             | çhqv        |       | 16.75       | 17.38     | 0.63     | 0.1  | 0.1    | 842     | 205           | 4    | 2    | 0.8         | 53         |
| 131080 94-06 | 16.1   | 16.61 DTFH            | ch          |       | 17.38       | 18.1      | 0,72     | 0.03 | 0.1    | . 8     | 211           | 1    | 2    | 0.6         | 83         |
| 131081 94-06 | 16.61  | 29.23 BAST            |             |       | 18.1        | 18.6      | 0.5      | 0.03 | 0.1    | 16      | 87            | 1    | 2    | 0.2         | 34         |
| 131082 94-06 | 16.75  | 17.38                 | qtbx        |       | 66.9        | 67.4      | 0.5      | 0.03 | 0.1    | l 10    | 39            | 3    | 8    | 0.4         | 62         |
| 131083 94-06 | 17.38  | 18.1                  | ch          | Р     | 67.4        | 67.6      | 0.2      | 0.03 | 0.     | l 68    | 43            | 7    | 6    | 0.2         | <b>7</b> 7 |
| 131084 94-06 | 29.23  | 30.2 DTFH             | qevn        |       | 67.6        | 68.1      | 0.5      | 0.03 | 0.1    | 1 2     | 240           | 2    | 4    | 0.4         | 61         |
| 131085 94-06 | 30.2   | 33.22 BAST            | chqv        |       | 78.3        | 79.3      | 1        | 0.03 | 0.1    | l 1     | 104           | 3    | 2    | 0.4         | 66         |
| 131086 94-06 | 33.22  | 35.7 DTHF             | ch          |       | 79.3        | 80.3      | 1        | 0.03 | 0.1    | l 2     | 326           | 1    | 2    | 0.4         | 48         |
| 131087 94-06 | 35.7   | 38.53 DTHP            | ch          | mg    | 80.3        | 81.3      | 1        | 0.03 | 0.1    | l 21    | 43            | 4    | 2    | 0.4         | 54         |
| 131088 94-06 | 38.53  | 41.46 BAST            | qv          | ру    | 81.3        | 82.3      | 1        | 0.03 | 0.1    | L 68    | 115           | 2    | 2    | 0.8         | 70         |
| 131089 94-06 | 41.46  | 41.58 DTHF            |             | ру    | 82.3        | 83.3      | 1        | 0.5  | 0.4    | i 991   | 218           | 5    | 6    | 0.4         | 54         |
| 131090 94-06 | 41.58  | 43.38 BAST            | qv          | ру    | 83.3        | 84.3      | 1        | 0.03 | 0.1    | l 272   | 126           | 3    | 2    | 0.8         | 46         |
| 131091 94-06 | 43.38  | 43.66 DTFP            | qv          | ру    | 84.3        | 85.3      | 1        | 0.03 | 0.1    | l 4     | 157           | 2    | 2    | 0.6         | 52         |
| 131092 94-06 | 43.66  | 46.2 BAST             | qv          | ру    | 109.5       | 110.1     | 0.6      | 0.03 | 0.1    | 1 2     | 99            | 6    | 2    | 0.4         | 39         |
| 131093 94-06 | 46.2   | 47.02 DTFH            | -           |       | 110.1       | 111.1     | 1        | 0.03 | 0.1    | 49      | 126           | 2    | 2    | 1           | 76         |
| 131094 94-06 | 47.02  | 56.19 BAST            | qcch        |       | 111.1       | 112.1     | 1        | 0.03 | 0.1    | i 83    | 77            | 1    | 2    | 1           | 67         |
| 131095 94-06 | 56.19  | 56.51 DTFH            |             |       | 112.1       | 112.3     | 0.2      | 0.91 | 0.2    | 2 842   | 60            | 7    | 6    | 2.2         | 88         |
| 131096 94-06 | 56.51  | 66.91 BAST            |             |       | 112.3       | 113.3     | 1        | 0.03 | 0.1    | 1 32    | 115           | 3    | 2    | 1.6         | 65         |
| 131097 94-06 | 60.77  | 66.91                 | qevn        |       | 113.3       | 113.5     | 0.2      | 0.47 | 0.6    | 5 453   | 230           | 2    | 6    | 1.8         | 103        |
| 131098 94-06 | 66.91  | 67.73 DTHP            | qtep        | ру    | 113.5       | 114.5     | 1        | 0.03 | 0.1    | l 2     | 154           | 3    | 2    | 1.2         | 117        |
| 131099 94-06 | 67.73  | 70.7 BAST             |             |       | 114.5       | 115.2     | 0.7      | 0.03 | 0.1    | 1       | 280           | 1    | 2    | 1           | 123        |
| 131100 94-06 | 70.7   | 73.23 DTHP            | qcsw        | ру    | 115.2       | 115.9     | 0.7      | 0.03 | 0.1    | 1 1     | 239           | 1    | 2    | 1           | 90         |
| 131101 94-06 | 73.23  | 78.49 BAST            | ch          | ру    | 115.9       | 116.1     | 0.2      | 0.03 | 0.1    | 1 73    | 78            | 2    | 2    | 1.8         | 64         |
| 131102 94-06 | 78.49  | 84.61 DTHP            |             | ру    | 116.1       | 117       | 0.9      | 0.03 | 0.1    | 12      | 103           | 3    | 2    | 1           | 67         |
| 131103 94-06 | 79.4   | 82.35                 | qcsw        | ру    | 117         | 117.8     | 0.8      | 0.09 | 0.1    | 225     | 136           | 3    | 2    | 1           | 63         |
| 131104 94-06 | 82.35  | 83.1 FALT             |             | Ру    | 117.8       | 118.1     | 0.3      | 0.03 | 1.2    | 2 95    | 70            | 5    | 2    | 1.4         | 55         |
| 131105 94-06 | 83.1   | 84.61 DTHP            | qcsw        | py    | 118.1       | 119.1     | 1        | 0.03 | 0.1    | 70      | 85            | 2    | 2    | 1           | 68         |
| 131106 94-06 | 84.61  | 87.66 BAST            | qcsw        | py    | 119.1       | 119.8     | 0.7      | 0.03 | 0.1    | L 158   | 94            | 4    | 2    | 1           | 59         |
| 131107 94-06 | 87.66  | 88.41 DTHP            | -           | mg    | 119.8       | 120.3     | 0.5      | 0.03 | 0.1    | 1 2     | 100           | 3    | 2    | 0.4         | 40         |
| 131108 94-06 | 88,41  | 89.11 DTFH            |             | таg   | 121.5       | 122       | 0.5      | 0.03 | 0.1    | 1 1     | 63            | 5    | 2    | 0.2         | 51         |
| 131109 94-06 | 89.11  | 94.58 DTHP            |             | ற்ற   | 122         | 122.3     | 0.3      | 0.03 | 0.1    | ı 2     | 28            | 3    | 2    | 0.4         | 72         |
| 131110 94-06 | 94.58  | 95.62 BAST            |             | mghm  | 122.3       | 123.8     | 1.5      | 0.03 | 0.1    | 1 2     | 187           | 1    | 2    | 0.4         | 58         |
| 131111 94-06 | 95.62  | 95.92 DTFH            |             | mghm  | 150.4       | 150.9     | 0.5      | 0.03 | 0.1    | 1 2     | 19            | 4    | 2    | 0.2         | 45         |
| 131112 94-06 | 95.92  | 97.66 DTHF            | eppy        | ср    | 150.9       | 151.1     | 0.2      | 0.03 | 0.1    | 2       | 215           | 1    | 2    | 0.4         | 75         |
| 131113 94-06 | 97.66  | 100.45 BAST           | pymg        |       | 151.1       | 152.1     | 1        | 0.03 | 0.1    | 2       | 204           | 2    | 2    | 0.4         | 56         |
| 131114 94-06 | 100.45 | 106.42 DTFH           | qcep        |       | 152.1       | 153.1     | 1        | 0.03 | 0.1    | 1       | 109           | 7    | 2    | 0.4         | 48         |
| 131115 94-06 | 106.42 | 106.71 DTFP           |             | тg    | 153.1       | 154.1     | 1        | 0.03 | 0.1    | 1       | 99            | 2    | 2    | 0.2         | 58         |
| 131116 94-06 | 106.71 | 106.84 DTFH           |             | -     | 154.1       | 155       | 0.9      | 0.03 | 0.1    | 1       | 192           | 1    | 2    | 0.2         | 46         |
| 131117 94-06 | 106.84 | 112.85 DTHF           |             | тış   | 155         | 155.6     | 0.6      | 0.03 | 0.1    | 2       | 175           | 1    | 2    | 0.6         | 71         |
| 131118 94-06 | 109.85 | 110.8                 | Scev        | han   | 155.6       | 156       | 0.4      | 0.03 | 0.1    | 1 27    | 248           | 2    | 2    | 0.4         | 50         |
| 94-06        | 110.8  | 112.85                | qcsw        | ру    |             |           |          |      |        |         |               |      |      |             |            |
| 94-06        | 112.19 | 112.21                | QCBX        | PY    |             |           |          |      |        |         |               |      |      |             |            |
| 94-06        | 112.85 | 115.92 BAST           | qcsw        | PV    |             |           |          |      |        |         |               |      |      |             |            |
| 94-06        | 113.38 | 113.44                | QCSW        | Py    |             |           |          |      |        |         |               |      |      |             |            |
| 94-06        | 115.92 | 116 FALT              | QCVN        | -     |             |           |          |      |        |         |               |      |      |             |            |

|               |            |              | <u>GEOLOGICAL</u> | DATA   |              | 1    | ASSAY DA  | TA    |      |        |                |      |      |      |      |
|---------------|------------|--------------|-------------------|--------|--------------|------|-----------|-------|------|--------|----------------|------|------|------|------|
| <u>REF NO</u> | <u>DDH</u> | <u>FROM</u>  | TO ROCK           | ALTRIN | <u>MINRL</u> | FROM | <u>T0</u> | WIDTH | GOLD | SILVER | ARSENIC COPPER | MOLY | LEAD | ANTI | ZINC |
|               | 94-06      | 116          | 117.8 DTFH        | SC     | hm           |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | <b>317.8</b> | 118.1 FALT        | CBSC   |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 118.1        | 122.3 DTFH        |        |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 118.1        | 119.74            | ScCx   |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 119.74       | 121               | ٩v     |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 121          | 122               | epvn   | mg           |      |           |       |      |        |                |      | •    |      |      |
|               | 94-06      | 122          | 122.3             | QtCx   |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 122.3        | 129.61 DTFP       | ep     |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 129.61       | 129.97 BAST       |        |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 129.97       | 131.44 DTFH       | ep     | mg           |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 131.44       | 140.49 BAST       | qcep   |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 140.49       | 142.92 DTHP       | ch     | mg           |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 141.8        | 142               | qtex   |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 142.92       | 144.49 DTFP       |        |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 144.49       | 145.97 DTHP       |        | ру           |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 145.97       | 150.95 BAST       | qc     | ру           |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 150.95       | 154.27 DTHP       | chqt   | ру           |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 154.27       | 163.25 BAST       |        | pymg         |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 155.14       | 155.58            | qcsw   | Py           |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 163.25       | 164.12 DTHF       | chqt   | ру           |      |           |       |      |        |                |      |      |      |      |
|               | 94-06      | 164.12       | 166.73 BAST       | qtca   | mg           |      |           |       |      |        |                |      |      |      |      |

|               |               |       | <u>GEOLOGICAL</u>     | <u>DATA</u>   |              | AS    | SAY DATA    |              |      |               |         |        |      |      |             |      |
|---------------|---------------|-------|-----------------------|---------------|--------------|-------|-------------|--------------|------|---------------|---------|--------|------|------|-------------|------|
| <u>REF.NO</u> | DDH           | FROM  | <u>to</u> <u>Rock</u> | <u>ALTRTN</u> | <u>MINRL</u> | FROM  | <u>to</u> y | VIDTH        | GOLD | <u>SILVER</u> | ARSENIC | COPPER | MOLY | LEAD | <u>AN11</u> | ZINC |
| 126894        | 94-07         | 0     | 7.62 CASG             |               |              | 7.62  | 8.3         | 0. <b>68</b> | 0.03 | 0.1           | 10      | 206    | 4    | 2    | 0.2         | 55   |
| 126895        | 94-07         | 7.62  | 14.69 PLBT            |               |              | 8.3   | 9.3         | 1            | 0.03 | 0.1           | 20      | 226    | 7    | 2    | 0.2         | 48   |
| 126896        | 94-07         | 11.3  | 11.9                  | ScC           |              | 9.3   | 10.3        | 1            | 0.03 | 0.1           | 23      | 156    | 3    | 2    | 0.4         | 57   |
| 126897        | 94-07         | 14.69 | 14.88 DTFH            | Qt            |              | 10.3  | 11.3        | 1            | 0.03 | 0.2           | 210     | 226    | 4    | 2    | 0.6         | 17   |
| 126898        | 94-07         | 14.88 | 15.09 BAST            |               |              | 11.3  | 11.9        | 0.6          | 0.03 | 2.1           | 54      | 1346   | 12   | 18   | 0. <b>6</b> | 129  |
| 126899        | 94-07         | 15.09 | 16.55 DTFH            | ch            | ру           | 11.9  | 13.1        | 1.2          | 0.03 | 0.1           | 79      | 150    | 3    | 12   | 0.2         | 48   |
| 126900        | 94-07         | 16.55 | 16.85 DTFP            | chca          |              | 13.1  | 14.33       | 1.23         | 0.03 | 0.1           | 29      | 156    | 2    | 12   | 0. <b>2</b> | 57   |
| 126901        | 94-07         | 16.85 | 19.35 BAST            | scca          |              | 14.33 | 14.6        | 0.27         | 0.03 | 0.1           | 18      | 133    | 2    | 6    | 0.2         | 35   |
| 126902        | 94-07         | 19.35 | 20.1 DTFH             | ch            | ру           | 14.6  | 14.8        | 0. <b>2</b>  | 0.03 | 0.1           | 22      | 168    | 5    | 12   | 0.2         | 29   |
| 126903        | 94-07         | 20.1  | 20.58 BAST            | Qtex          | руро         | 14.8  | 15.1        | 0.3          | 0.03 | 0.1           | 36      | 163    | 3    | 4    | 0.2         | 30   |
| 126904        | <b>94-</b> 07 | 20.58 | 24.9 DTFH             | qcsw          | РУ           | 15.1  | 16.1        | 1            | 0.03 | 0.1           | 16      | 73     | Э    | 8 <  | <,2         | 24   |
| 126905        | <b>94-</b> 07 | 24.9  | 28.17 BAST            |               |              | 19.1  | 20.1        | 1            | 0.03 | 0.1           | 16      | 69     | 5    | 4 <  | <,2         | 23   |
| 126906        | 94-07         | 25    | 25.5                  | qcsw          | ру           | 20.1  | 20.6        | 0.5          | 0.03 | 0.1           | 18      | 201    | 4    | 8    | 0.2         | 32   |
| 126907        | 94-07         | 26.2  | 28.17                 | qcsw          | ру           | 20.6  | 21.6        | 1            | 0.03 | 0.1           | 20      | 37     | 5    | 6    | 0.2         | 36   |
| 126908        | 94-07         | 28.17 | 28.4 DAFH             |               |              | 21.6  | 24.85       | 3.25         | 0.03 | 0.1           | 11      | 51     | 2    | 6    | 0.2         | 42   |
| 126909        | 94-07         | 28.4  | 39.7 BAST             |               |              | 24.85 | 25.5        | 0.65         | 0.03 | 0.1           | 26      | 168    | 4    | 14   | 0.2         | 73   |
| 126910        | 94-07         | 28.4  | 29.25                 | qcsw          | ру           | 25.5  | 26.52       | 1.02         | 0.03 | 0.1           | 9       | 187    | 3    | 6    | 0.2         | 31   |
| 126911        | 94-07         | 29.25 | 29.3                  | qcsw          |              | 26.52 | 27.6        | 1.08         | 0.03 | 0.1           | 11      | 199    | 3    | 4    | 0.2         | 32   |
| 126912        | 94-07         | 29.3  | 32.8                  | Seqe          |              | 27.6  | 29.1        | 1.5          | 0.03 | 0.1           | 15      | 166    | 3    | 4    | 0.2         | 35   |
| 126913        | 94-07         | 32.8  | 36.3                  | ch            | PY           | 29.1  | 29.35       | 0.25         | 0.03 | 0.1           | 1161    | 162    | 3    | 8    | 5.8         | 70   |
| 126914        | 94-07         | 36.3  | 36.5                  | Qcsw          | Ру           | 29.35 | 30.35       | 1            | 0.03 | 0.1           | 12      | 188    | 7    | 6    | 0.2         | 31   |
| 126915        | 94-07         | 37.2  | 37.6                  | Cx            |              | 35.3  | 36.3        | 1            | 0.03 | 0.1           | 9       | 193    | 1    | 2    | 0.2         | 50   |
| 126916        | 94-07         | 39.7  | 44.3 DTFH             | Seqe          |              | 36.3  | 36.47       | 0.17         | 0.03 | 0.1           | 19      | 194    | 5    | 2    | 1.2         | 56   |
| 126917        | 94-07         | 44.3  | 45.6 BAST             | qcsw          | ру           | 36.47 | 37.47       | 1            | 0.03 | 0.1           | 10      | 208    | 3    | 2    | 0.2         | 50   |
| 126918        | 94-07         | 45.6  | 46.18 DTFP            |               |              | 39.95 | 40.95       | 1            | 0.03 | 0.1           | 10      | 38     | 5    | 6    | 0.2         | 31   |
| 126919        | 94-07         | 46.18 | 47.6 BAST             | qt            | ру           | 40.95 | 41.58       | 0.63         | 0.03 | 0.1           | 4       | 77     | 3    | 2    | 0.2         | 58   |
| 126920        | 94-07         | 47.6  | 47.63 POVN            |               | РҮср         | 41.58 | 42.58       | 1            | 0.03 | 0.1           | 13      | 40     | 6    | 4    | 0.2         | 37   |
| 126921        | 94-07         | 47.63 | 48 DTFH               | Sech          |              | 46.55 | 47.55       | 1            | 0.03 | 0.1           | 15      | 160    | 2    | 4    | 0.2         | 48   |
| 126922        | 94-07         | 48    | 49 BAST               | Sech          | popy         | 47.55 | 48.05       | 0.5          | 0.03 | 0.1           | 12      | 91     | 6    | 4    | 0.2         | 29   |
| 126923        | <b>94-</b> 07 | 49    | 49.53 DTFP            | S¢            |              | 48.05 | 49.2        | 1.15         | 0.03 | 0.1           | 2       | 102    | 4    | 2    | 0.2         | 53   |
| 126924        | 94-07         | 49.53 | 50.42 BAST            | qtsw          |              | 49.2  | 50.21       | £.01         | 0.03 | 0.1           | 15      | 152    | 1    | 4    | 0.2         | 34   |
| 126925        | 94-07         | 50.42 | 50.5 QTBX             |               | ру           | 50.21 | 50.62       | 0.41         | 0.03 | 0.1           | 35      | 226    | 6    | 2    | 0.4         | 69   |
| 126926        | 94-07         | 50.5  | 51.4 BAST             | qcsw          | ру           | 50.62 | 51.55       | 0.93         | 0.03 | 0.1           | 8       | 136    | 5    | 2    | 0.2         | 33   |
| 126927        | 94-07         | 51.4  | 51.5 DTFP             |               |              | 51.55 | 52.9        | 1.35         | 0.03 | 0.1           | 7       | 187    | 2    | 2    | 0.4         | 34   |
| 126928        | 94-07         | 51.4  | 54.8 BAST             | qcsw          | РУ           | 52.9  | 53.9        | 1            | 0.03 | 0.1           | 9       | 596    | 4    | 2    | 1           | 48   |
| 126929        | 94-07         | 52.95 | 53.8                  | Ch            | Руср         | 53.9  | 54.8        | 0.9          | 0.03 | 0.1           | 4       | 149    | 2    | 2    | 0.6         | 40   |
| 126930        | 94-07         | 54.8  | 56 DTFH               | SeCh          | ptpo         | 54.8  | 56.05       | 1.25         | 0.03 | 0.1           | 4       | 107    | 7    | 2    | 0.2         | 26   |
| 126931        | 94-07         | 56    | 63.5 BAST             | qtqv          | ру           | 56.05 | 57          | 0.95         | 0.03 | 0.1           | 5       | 159    | 4    | 2    | 0.2         | 37   |
| 126932        | 94-07         | 63.25 | 63.5                  | SCca          | PY           | 62.3  | 63.3        | 1            | 0.03 | 0.]           | 60      | 245    | 7    | 4    | 0.8         | 85   |
| 126933        | 94-07         | 63.5  | 64.3 QTVN             |               | PY           | 63.3  | 63.5        | 0.2          | 0.35 | 1.8           | 1998    | 47     | 2    | 34   | 18.6        | 62   |
| 126984        | 94-07         | 64.3  | 65.15 QCBX            |               | Ру           | 63.5  | 64.32       | 0.82         | 9.93 | 3.6           | 13,100  | 365    | 12   | 120  | 0.8         | 112  |
| 126934        | 94-07         | 65.15 | 66.45 BAST            | cxch          |              | 64.32 | 65.2        | 0.88         | 2.73 | 1.3           | 9876    | 198    | 4    | 36   | 10.8        | 54   |
| 126935        | 94-07         | 65.15 | 65.4                  | Scca          |              | 65.2  | 66.45       | 1.25         | 0.03 | 0.1           | 271     | 246    | 4    | 2    | 1.2         | 75   |
| 126936        | 94-07         | 66.2  | 66.45                 | Scca          |              | 66.45 | 66.96       | 0.51         | 4.03 | 0.9           | 17,300  | 134    | 5    | 30   | 7           | 60   |
| 126937        | 94-07         | 66.45 | 66.9 QTBX             |               | PYas         | 66.96 | 67.76       | 0.8          | 0.03 | 0.1           | 804     | 195    | 5    | 2    | l           | 61   |
| 126938        | 94-07         | 66.9  | 67.85 BAST            | chca          | ру           | 67.76 | 68.2        | 0.44         | 1.12 | 0.8           | 4826    | 198    | 2    | 8    | 1.8         | 71   |
| 126939        | 94-07         | 67.85 | 73.85 D'I'FH          |               |              | 68.2  | 69.19       | 0.99         | 0.03 | 0.1           | 35      | 82     | 5    | 2    | 0.2         | 39   |

3 **3** 

`

|               |       |        | <u>GEOLOGICAL</u> | DATA        |              | <u>AS</u> | SAY DAT   | A            |      |                 |                |        |        |             |             |             |
|---------------|-------|--------|-------------------|-------------|--------------|-----------|-----------|--------------|------|-----------------|----------------|--------|--------|-------------|-------------|-------------|
| <u>REF NO</u> | DDH   | FROM   | <u>TO ROCK</u>    | ALTRIN      | <u>MINRL</u> | FROM      | <u>T0</u> | <u>WIDTH</u> | GOLD | SILVER          | <b>ARSENIC</b> | COPPER | MOLY   | <u>LEAD</u> | ANTI        | <u>Z1NC</u> |
| 126940        | 94-07 | 67.85  | 68.25             | ScQt        |              | 70.3      | 71.4      | 1.1          | 0.06 | 0.1             | 731            | 83     | 3      | 2           | 0.6         | 50          |
| 126941        | 94-07 | 69.25  | 69.8              | ScCa        |              | 71.4      | 71.7      | 0.3          | 0,78 | 0.2             | 7577           | 163    | 4      | 10          | 3           | 53          |
| 126942        | 94-07 | 71.2   | 71.8              | SCqv        | ру           | 71.7      | 72.7      | 1            | 0.03 | 0.1             | 84             | 75     | 6      | 2           | 0.6         | 48          |
| 126943        | 94-07 | 73.85  | 76.35 BAST        | qt          | ру           | 75.5      | 76.3      | 0.8          | 0.03 | 0.1             | 40             | 126    | 4      | 2           | 0.6         | 71          |
| 126944        | 94-07 | 76.35  | 78.4 QCSW         | SC          | Ру           | 76.3      | 76.5      | 0.2          | 1.82 | 0.8             | 1458           | 166    | 5      | 22          | 1.8         | 73          |
| 126945        | 94-07 | 78.4   | 79.35 BAST        | SCQC        | ру           | 76.5      | 78.4      | 1.9          | 0.78 | 0.5             | 2217           | 209    | 8      | 180         | 1.8         | 381         |
| 126946        | 94-07 | 79.35  | 87.15 DTFH        | ch          | ру           | 78.4      | 79.35     | 0.95         | 0.03 | 0.1             | 155            | 206    | 4      | 6           | 1           | 86          |
| 126947        | 94-07 | 79.35  | 81.7              | Scqv        |              | 79.35     | 80.65     | 1.3          | 0.03 | 0.1             | 62             | 10     | 6      | 2           | 0.4         | 58          |
| 126948        | 94-07 | 82.5   | 83.2              | qevn        |              | 80.65     | 81.75     | 1.1          | 0.03 | 0. L            | 44             | 104    | 6      | 2           | 0.4         | 68          |
| 126949        | 94-07 | 87.15  | 92.25 BAST        | ch          | pysw         | 81.75     | 82.45     | 0.7          | 0.03 | 0.1             | 14             | 73     | 5      | 2           | 0.2         | 52          |
| 126950        | 94-07 | 92.25  | 93.45 DTFH        | Ch          | ру           | 82.45     | 83.15     | 0.7          | 0.03 | 0.1             | 33             | 70     | 6      | 2           | 0.4         | 46          |
| 126951        | 94-07 | 93.45  | 102.72 BAST       | chqc        | Ру           | 83.15     | 84.05     | 0.9          | 0.03 | 0.1             | 12             | 74     | 4      | 2           | 0.2         | 38          |
| 126952        | 94-07 | 98.4   | 98.75             | Secx        |              | 88.3      | 89.9      | 1.6          | 0.03 | 0.1             | 19             | 268    | 4      | 2           | 0.4         | 38          |
| 126953        | 94-07 | 102.72 | 104.65 QTBX       |             | Рурь         | 91.6      | 92.05     | 0.45         | 0.03 | 0.1             | . 10           | 359    | 5      | 2           | 0.6         | 34          |
| 126954        | 94-07 | 104.65 | 111.45 DTFH       |             |              | 98.4      | 98.75     | 0.35         | 0.03 | 0.1             | 216            | 241    | 4      | 2           | 0.6         | 167         |
| 126955        | 94-07 | 104.65 | 107.45            | qcsw        | pyas         | 101.72    | 102.72    | 1            | 0.03 | 0.1             | 28             | 182    | 4      | 2           | 0.6         | 39          |
| 126956        | 94-07 | 107.45 | 108.82            | Sc          |              | 102.72    | 103.11    | 0.39         | 0.79 | 1.2             | 688            | 566    | 25     | 23          | 1.2         | 99          |
| 126957        | 94-07 | 111.45 | 111.49 QTVN       |             | ру           | 103.11    | 104.72    | 1.61         | 0.49 | 1.1             | 220            | 90     | 13     | 425         | 0. <b>6</b> | 470         |
| 126958        | 94-07 | 111.49 | 114.55 BAST       | qcsw        |              | 104.72    | 105.65    | 0.93         | 0.03 | 0.1             | 151            | 72     | 6      | 6           | <b>0.4</b>  | 58          |
| 126959        | 94-07 | 114.45 | 114.95 FALT       | <b>QCBX</b> | Py           | 105.65    | 106.7     | 1.05         | 0.6  | 0.1             | 3813           | 78     | 4      | 10          | 1.2         | 43          |
| 126960        | 94-07 | 114.95 | 115.95 DTHF       | Scep        | py           | 106.7     | 107.45    | 0.75         | 0.03 | 0.1             | 682            | 34     | 5      | 4           | 0.6         | 55          |
| 126961        | 94-07 | 115.95 | 117.98 BAST       | SCCA        | py           | 107.45    | 108.82    | 1.37         | 0.03 | 0.1             | 706            | 33     | 5      | 2           | 0.6         | 56          |
| 126962        | 94-07 | 117.98 | 119.92 DAOP       | ScCA        | руср         | 111.3     | 111.7     | 0.4          | 0.03 | 0.1             | 163            | 37     | 6      | 6           | 0,4         | 112         |
| 126963        | 94-07 | 119.92 | 120.95 BAST       | Secx        | pyas         | 111.7     | 112.9     | 1.2          | 0.03 | 0.1             | 26             | 218    | 6      | 6           | 0.6         | 56          |
| 126964        | 94-07 | 120.95 | 121.17 DAQP       | sege        | pyas         | 112.8     | 114.7     | 1.9          | 0.07 | 0.2             | 64             | 194    | 4      | 4           | 0.8         | 84          |
| 126965        | 94-07 | 121.17 | 121.55 BAST       | •           |              | 114.7     | 114.98    | 0.28         | 0.71 | 0.4             | 318            | 15     | 3      | 16          | 3.4         | 67          |
| 126966        | 94-07 | 121.55 | 121.7 DAOP        |             |              | 114.98    | 115.95    | 0.97         | 0.03 | 0.1             | 38             | 5      | 3      | 2           | 0.8         | 42          |
| 126967        | 94-07 | 121.7  | 131.05 BAST       |             |              | 115.95    | 116.55    | 0.6          | 0.57 | 0. <del>6</del> | 768            | 165    | 2      | 88          | 2           | 250         |
| 126968        | 94-07 | 124.3  | 127.9             | ScCa        | DV           | 116.55    | 117.95    | 1.4          | 0.03 | 0.1             | 43             | 13     | 2      | 2           | 0.6         | 60          |
| 126969        | 94-07 | 127.9  | 128.5             | ov          | PY           | 117.95    | 119       | 1.05         | 0.03 | 1.2             | 159            | 630    | 5      | 126         | 0.8         | 314         |
| 126970        | 94-07 | 128.5  | 130.6             | ScCa        | DV           | 119       | 119.92    | 0.92         | 0.2  | 0.1             | 270            | 34     | 2      | 4           | 0.6         | 85          |
| 126971        | 94-07 | 131.05 | 131.55 FALT       | SCav        | РҮср         | 119.92    | 320.95    | 1.03         | 0.17 | 0.2             | 531            | 40     | 2      | 4           | 0.8         | 104         |
| 126972        | 94-07 | 131.55 | 132.2 BAST        | •           | •            | 120.95    | 122.3     | 1.35         | 0.14 | 0.1             | 128            | 42     | 1      | 2           | 0.6         | 96          |
| 126973        |       |        |                   |             |              | 122.3     | 123.6     | 1.3          | 0.03 | 0.1             | 11             | 49     | 1      | 2           | 0.4         | 57          |
| 126974        |       |        |                   |             |              | 123.6     | 124.4     | 0.8          | 0.03 | 0.1             | 40             | 110    | 5      | 2           | 0.4         | 68          |
| 126975        |       |        |                   |             |              | 124.4     | 125.5     | 1.1          | 0.03 | 0 2             | . 82           | 423    | 1      | 2           | 0.6         | 124         |
| 126976        |       |        |                   |             |              | 125.5     | 126.95    | 1.45         | 0.09 | 0.1             | 155            | 21     | 2      | 12          | 0.8         | 117         |
| 126977        |       |        |                   |             |              | 126.95    | 127.9     | 0.95         | 0.33 | 03              | 1795           | 116    | 1      | 20          | 1.4         | 117         |
| 126978        |       |        |                   |             |              | 127.9     | 128.5     | 0.6          | 1.04 | 0.6             | 805            | 180    | 2      | 52          | 1.4         | 363         |
| 126979        |       |        |                   |             |              | 128.5     | 129 75    | 1.25         | 0.03 | 0.0             | 145            | 156    | 1      | ~~<br>8     | 1           | 123         |
| 126980        |       |        |                   |             |              | 129 75    | 130 67    | 0.97         | 0.87 | 03              | 1016           | 164    | 2      | 14          | . 14        | 112         |
| 126981        |       |        |                   |             |              | 130.67    | 131.07    | 04           | 0.06 | 0.5             | 114            | 203    |        | 6           | 1           | 94          |
| 126987        |       |        |                   |             |              | 131 07    | 131 6     | 0.53         | 043  | 0.1             | 210            | 96     | ~<br>1 | 24          | 14          | 162         |
| 126983        |       |        |                   |             |              | 131.6     | 132.55    | 0.05         | 0.45 | 0.1             | 10             | 121    | ,      | 27          | 0.6         | 57          |
| 100707        |       |        |                   |             |              |           |           | v.),         | v.vJ | V. 1            | 17             | 121    | -      | -           | 0.0         |             |

| EF.NO         DCBI         DFOM         TO         NOLD         DEM         TO         NULL         AUSDE         AUSDE         DEM         DEM <thdem< th="">         DEM         DEM         <thd< th=""><th></th><th></th><th></th><th>GEOLOGICAL</th><th>DATA</th><th></th><th>AS</th><th>SAY DATA</th><th>ł</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thd<></thdem<>                                                                                                                                                   |          |                 |               | GEOLOGICAL               | DATA          |            | AS    | SAY DATA      | ł            |       |               |                                         |        |        |        |             |          |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|---------------|--------------------------|---------------|------------|-------|---------------|--------------|-------|---------------|-----------------------------------------|--------|--------|--------|-------------|----------|---------|
| Dissols M-G8         0         9.14         1.15         Descent M-G8         0.11         3.13         20.1         4         2         0.2         3.1         0           Dissols M-G8         Dissol                                                                                                                                                     | EF NO    | DDH             | FROM          | TO ROCK                  | ALTRIN        | MINRL      | FROM  | <u>T0</u>     | <u>WIDTH</u> | GOLD  | <u>SILVER</u> | ARSENIC                                 | COPPER | MOLY   | LEAD   | <u>ANTI</u> | ZINC     | MERCURY |
| 12908         M468         0.11         11.97         LAS         11.28         12.3         10.0         0.01         0.1         3         201         2         6.2         60         0           12908         H468         1.13         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03         1.03                                                                                                                                                                                                                                                                                                                                                           | 129005 9 | 4-08            | 0             | 9.14 CASG                |               |            | 10.3  | 11.28         | 0.98         | 0.03  | 0.3           | 33                                      | 203    | 4      | 2      | 0.2         | 51       | 0       |
| 12400         1442         11.57         14.27         15.1         12.3         1         0.01         0.3         0.41         195         4         2         0.2         83         0           12400         14.48         DT2T         Ch         Py         158         0.5         0.03         0.1         150         16         190         6         2         0.2         130         0           12500         14.48         DT2T         Ch         Py         158         15         0.03         0.1         154         154         15         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154         154                                                                                                                                                                                                                                                                                                                                                                                                     | 129006 9 | 4-08            | 9.14          | 13.97 BAST               | ch            |            | 11.28 | 12.3          | 1.02         | 0.03  | 0.1           | 43                                      | 203    | 3      | 2      | 0.2         | 60       | 0       |
| 12908         94-08         1.2.2         1.5         18.4.3         0.7         0.7         0.7         1.6         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7 <t< th=""><th>129007 9</th><th>4-08</th><th>13.97</th><th>14.27 DTFP</th><th>ch</th><th></th><th>12.3</th><th>13.3</th><th>1</th><th>0.03</th><th>0.3</th><th>44</th><th>185</th><th>4</th><th>2</th><th>0.2</th><th>83</th><th>0</th></t<>                                                                                                                                         | 129007 9 | 4-08            | 13.97         | 14.27 DTFP               | ch            |            | 12.3  | 13.3          | 1            | 0.03  | 0.3           | 44                                      | 185    | 4      | 2      | 0.2         | 83       | 0       |
| 12:800         84-08         15.1         15.8         0.3         0.3         0.1         16         198         6         2         0.2         18         0           12:801         14:48         12:301         11:12         0.1         112         6         2         12:01         14:0         11:0         16:0         12:01         14:0         11:0         16:0         12:01         14:0         12:01         14:0         12:01         14:0         12:01         14:0         12:01         14:0         12:01         14:0         12:01         14:0         12:01         14:0         12:01         14:0         12:01         14:0         12:01         14:0         12:01         14:0         12:01         14:0         15:0         14:0         15:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0         14:0                                                                                                                                                                                                                                                                                                                                                  | 129008 9 | 4-08            | 14.27         | 15.3 BAST                | CX            | Py         | 14.8  | 15.3          | 0.5          | 0.03  | 0.1           | 30                                      | 190    | 6      | 2      | 0.2         | 45       | 0       |
| 12800         44-30         184.4         20.35         DATS         Seet         py         13.8         16.8         1.4         0.04         0.1         16         11.2         6         3         4         0.2         13         0           12901         44-63         21.53         25.57         DATS                                                                                                                                                                                                                                                                                                                                                             | 129009 9 | 4-08            | 15.3          | 18.43 DTFH               | Ch            | Ру         | 15.3  | 15.8          | 0.5          | 0.03  | 0.1           | 16                                      | 198    | 6      | 2      | 0.2         | 38       | 0       |
| 12901         14-43         20.3         21.3         12.3         13.5         17.6         0.8         0.03         0.1         17.4         82.0         3         4         0.2         33         0           12301         44.60         23.73         26.73         AST         17.4         18.4         40.03         0.1         13.4         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0         12.0                                                                                                                                                                                                                                                                                                                                                         | 129010 9 | 4-08            | 18.43         | 20.95 BAST               | Scqt          | FY         | 15.8  | 16.8          | 1            | 0.04  | 0.1           | 16                                      | 112    | 6      | 2      | 0.2         | 33       | 0       |
| 12902         144         2.5         2.5         2.5         2.5         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.7         2.7         2.6         2.6         2.7         2.7         2.6         2.6         2.7         2.7         2.7         2.6         2.6         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7 </th <th>129011 9</th> <th>4-08</th> <th>20.95</th> <th>21.5 DTFH</th> <th>ch</th> <th>Ру</th> <th>16.8</th> <th>17.6</th> <th>0.8</th> <th>0.03</th> <th>0.1</th> <th>17</th> <th>86</th> <th>3</th> <th>4</th> <th>0.2</th> <th>33</th> <th>0</th>                                                                                                                           | 129011 9 | 4-08            | 20.95         | 21.5 DTFH                | ch            | Ру         | 16.8  | 17.6          | 0.8          | 0.03  | 0.1           | 17                                      | 86     | 3      | 4      | 0.2         | 33       | 0       |
| 12901         34-36         20.5         26.7         MAX         197         NAX         197         0.0         0.01         0.01         0.01         64         2         0.02         72         0.0           129015         34-468         30.7         31.5         D.15         0.01         0.01         180         249         6         2         0.2         76         0           129015         34-488         30.7         31.5         D.35         D.05         0.01         180         249         6         2         0.2         2.6         0           129016         34-488         34.7         D.5         D.3         0.03         0.1         10         114         5         4         0.2         2.6         0           129016         44-68         36.7         7.7         15         D.5         1.5         0.3         0.01         0.1         1.6         1.5         4         2         0.2         6.6         0           129021         44-68         38.9         41.1         1.5         0.5         5.6         0         0.01         0.2         1.5         1.5         0.5         1.5         0.5                                                                                                                                                                                                                                                                                                                                                                                                                          | 129012 9 | 4-08            | 21.5          | 26.5 BAST                | deam          | ру         | 17.6  | 18.4          | 0.8          | 0.03  | 0.1           | 314                                     | 92     | 8      | 2      | 0.2         | 39       | 0       |
| 12901         94-08         20.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         10.7         <                                                                                                                                                                                                                                                                                                                                      | 129013 9 | 4-08            | 26.5          | 26.75 ANHP               | scch          | PY         | 18.4  | 19            | 0.0          | 0.03  | 0.1           | . 54                                    | 160    | 4      | 2      | 0.2         | 72       | U       |
| 12903         94-96         30.0         130         130         0.01         190         200         6         2         0.2         78         0           129016         94-68         33.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6                                                                                                                                                                                                                                                                                                                                                           | 129014 9 | 44-086          | 26.75         | 30.7 DFHP                | caep          | ру         | 19    | 20.5          | 1.3          | 1.72  | 0.4           | 13,300                                  | 143    | 0      | 2      | 0.6         | 90       | 0       |
| 13,10, 7+06         33,2         53,22         Acta         py         1.3         1.2         0.03         0.01         0.1         1.0         3         2         0.2         4         1.0         3         2         0.2         4         0         3         2         0.2         4         0         0         0         1         10         15         4         2         0.2         4         0           12301         94-00         3.45         0.55         S         2         0.2         4         0         0         0         1         10         15         4         2         0.2         6         0           12902         94-06         35.1         36.7         75.6         0.9         0.01         0.1         18         12         4         2         0.2         68         0           12902         94-06         39.9         41.43         14.7         84.7         0.4         0.03         0.1         21         15         16         4         2         0.2         68         0.0           12902         94-06         41.41         41.47         84.7         84.7         84.7         84.7                                                                                                                                                                                                                                                                                                                                                                                                                                | 120015 9 | 14-U8<br>M 09   | 30.7          | 13.0 DA31                | quex          | PY<br>     | 31.2  | 31.35         | 0.15         | 0.03  | 0.1           | . 190                                   | 289    | 0<br>4 | 2      | 0.2         | /0       | 0       |
| L2M1, PAOB         J3.4.         D.6.7         D.6.7 <thd.7< th="">         D.6.7         <thd.7< th=""> <thd< th=""><td>129010 2</td><th>A1-08</th><td>33.0</td><td>33,82 AND<br/>37 46 DAST</td><td>1000</td><td>ру</td><td>31.32</td><td>12</td><td>0.03</td><td>0.03</td><td>0.2</td><td>; 54</td><td>1/0</td><td>,<br/>,</td><td>2</td><td>0.2</td><td>42</td><td>0</td></thd<></thd.7<></thd.7<> | 129010 2 | A1-08           | 33.0          | 33,82 AND<br>37 46 DAST  | 1000          | ру         | 31.32 | 12            | 0.03         | 0.03  | 0.2           | ; 54                                    | 1/0    | ,<br>, | 2      | 0.2         | 42       | 0       |
| Lace         Lace <thlace< th="">         Lace         Lace         <thl< th=""><td>129017 7</td><th>~</th><td>33.64</td><td>30.43 DA31</td><td>deer<br/>Soco</td><td></td><td>32</td><td>34.4</td><td>1.2</td><td>0.03</td><td>0.1</td><td>. 10</td><td>127</td><td>4</td><td>2</td><td>0.2</td><td>40</td><td>0</td></thl<></thlace<>                                                                   | 129017 7 | ~               | 33.64         | 30.43 DA31               | deer<br>Soco  |            | 32    | 34.4          | 1.2          | 0.03  | 0.1           | . 10                                    | 127    | 4      | 2      | 0.2         | 40       | 0       |
| Ladie Areas         Join Guart         Join G                                                                                                                                                      | 129018 7 | ~~              | 34.3<br>16.45 | 34.7<br>36.7 OC9V        | SCCA          |            | 31.1  | 2,2C<br>0 E E | 1.5          | 0.03  | 0.1           | . 10                                    | 140    | 1      | 4      | 0.2         | 32       | 0       |
| 15000         9103         16271         9107         9007         913         143         147         0.4         0.0         0.3         153         153         14         2         0.2         600         0.0           13022         94068         38,71         39.9         QTEX         SCCA         PYAs         147         35.6         0.01         0.1         18         123         4         2         0.2         68         0           13022         94068         39.9         40.1         SCCA         PYAs         34.7         0.3         0.01         0.2         24         1         2         0.2         68         0           13025         94068         40.1         41.75         A4.7         1         7.9         0.3         0.01         0.2         29         204         4         2         0.2         48         0         1         0.0         1         12         31         31         31         31         31         31         31         31         31         31         31         31         31         11         0.01         0.1         20         1         0         1         30         4                                                                                                                                                                                                                                                                                                                                                                                                                       | 129019 9 |                 | 30.45         | 17 14 BAST               | DCCR<br>DCCR  | P.Y        | 33.0  | 34.3          | 0.4          | 0.03  | 0.1           | . 11<br>วัล                             | 150    | 4      | 2      | 0.2         | 40       | 0       |
| 13022         94-02         38,71         39,9         0170x         35,6         0.03         0.01         100         1.02         4         2         0.2         56         0           13902         94-06         39,9         41.43         DTPH         35,6         36,4         0.63         0.03         0.2         24         115         4         2         0.2         65         0           13902         94-04         40.1         41.43         eeqt         py         36,7         37.15         0.43         0.03         0.2         29         204         5         4         0.2         63         0           12902         94-04         41.13         41.75         bAST         9         37.95         38.71         0.76         0.03         0.1         22         34         6         0.2         0.71         0         1         30         0         1         30         0.64         1.34         0.1         1         30         0.1         20         20         1         0         1         30         1         0.0         1         30         1         20         2         1         0         1         30 </th <td>129020 9</td> <th></th> <td>37.15</td> <td>38.71 DTFH</td> <td>SCca</td> <td><b>M</b>4</td> <td>34.3</td> <td>14.7</td> <td>0.4</td> <td>0.03</td> <td>0.1</td> <td>105</td> <td>139</td> <td>4</td> <td>2</td> <td>0.2</td> <td>80</td> <td>0<br/>0</td>                                                                                                                                              | 129020 9 |                 | 37.15         | 38.71 DTFH               | SCca          | <b>M</b> 4 | 34.3  | 14.7          | 0.4          | 0.03  | 0.1           | 105                                     | 139    | 4      | 2      | 0.2         | 80       | 0<br>0  |
| 13932       94-08       35.5       1.13       5.6       3.64       0.03       0.02       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 129021 9 | M-08            | 38.71         | 10 9 OTBX                | SCCA          | P7<br>PVAc | 34.7  | 15.6          | 0.4          | 0.03  | 0.5           | 103                                     | 123    | 4      | ,      | 0.2         | 58       | õ       |
| 13969         30.5         41.1         SCCa         56.4         36.7         0.03         0.03         0.2         20         4         2         0.2         68         0           129025 94-06         41.41         41.75         9.85T         qf         77.15         17.95         0.45         0.03         0.1         21         53         4         2         0.2         48         0           129025 94-06         41.71         43.3 DTFH         77.95         18.71         19.75         0.76         0.03         0.1         21         51         4         2         0.2         48         0           129025 94-06         41.73         43.3 DCtA         39.3         0.53         6.47         7.1         14         14.700         82         14         20         1         30         0           129015 94-06         41.3         46.65         Scat         Py         40.1         41.1         1         0.03         0.1         38         67         10         2         0.2         29         9         1         129015 94-04         48.62         48.7         0.7         0.01         0.1         13         30         4         2 </th <td>129023 9</td> <th>4-08</th> <td>39.9</td> <td>41 43 DTFH</td> <td></td> <td></td> <td>35.6</td> <td>36.4</td> <td>0.8</td> <td>0.03</td> <td>0.2</td> <td>24</td> <td>135</td> <td>4</td> <td>2</td> <td>0.2</td> <td>65</td> <td>õ</td>                                                                                                                                            | 129023 9 | 4-08            | 39.9          | 41 43 DTFH               |               |            | 35.6  | 36.4          | 0.8          | 0.03  | 0.2           | 24                                      | 135    | 4      | 2      | 0.2         | 65       | õ       |
| 13903         94-08         40.1         41.3         rec         py         36.7         97.15         0.03         0.2         29         204         5         4         0.2         63         0           12902         94-08         41.35         41.75         MST         qr         37.95         18.71         0.76         0.03         0.1         21         35         4         2         0.2         45         0           12902         94-08         41.75         43.3         SCCa         38.71         19.35         0.64         13.47         72.1         8         100         0.6         157         0           12903         94-08         43.3         44.65         BAST         39.9         0.55         4.77         1.4         14.700         82.14         20.2         1.30         0           12903         94-08         43.3         44.52         Scap         Py         41.1         1         0.03         0.1         38         6         2         0.2         71         0           12903         94-08         48.7         79.4         A4.35         44.7         94.44         94.11         1.0.03         0.1                                                                                                                                                                                                                                                                                                                                                                                                            | 129024 9 | 4-08            | 39.9          | 40.1                     | SCC           |            | 36.4  | 36.7          | 0.3          | 0.03  | 0.3           | 42                                      | 207    | 4      | 2      | 0.2         | 68       | Ő       |
| 12902 94-08       41.41       41.75       41.31       41.75       43.3       0.71       1715       1775       1871       0.76       0.03       0.1       122       41       6       2       0.2       48       0         12902 94-08       41.75       43.3       3DTFH       7795       1871       0.76       0.03       0.1       122       41       6       2       0.2       48       0         12902 94-08       42.5       43.3       3CCa       39.3       0.55       4.77       1.4       147.00       82       14       20       1       30       0         12901 94-08       43.3       44.65       SCq       Py       40.1       41.1       1       0.03       0.1       38       67       10       2       0.2       71       0         12901 94-08       48.52       48.7       70 VN       VCep       42.1       41.0       0.03       0.1       13       50       4       2       0.2       40       0         12901 94-08       48.52       48.7       70 VN       VCep       42.1       41.5       0.03       0.1       13       10       2       0.2       2.0       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 129025 9 | 4-08            | 40.1          | 41,43                    | seat          | σV         | 36.7  | 37.15         | 0.45         | 0.03  | 0.2           | 29                                      | 204    | 5      | 4      | 0.2         | 63       | Ō       |
| 129029       94-08       41.75       41.35       THH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 129026 9 | 4-08            | 41.43         | 41.75 BAST               | of.           | ••         | 37.15 | 37.95         | 0.8          | 0.03  | 0.1           | 21                                      | 53     | 4      | 2      | 0.2         | 48       | 0       |
| 12902 94-08       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75       41.75                                                                                                                                                                                                                                                                                                                                                                                      | 129027 9 | 4-08            | 41.75         | 43.3 DTFH                | •             |            | 37.95 | 38.71         | 0.76         | 0.03  | 0.1           | 22                                      | 41     | 6      | 2      | 0.2         | 45       | 0       |
| 12903       94-08       42.5       43.3       SCCa       33.9       39.9       0.55       4.77       1.4       14/700       82       14       20       1       30       0         129019       94-08       43.3       48.65       BAST       SCap       Py       40.1       0.1       0.03       0.1       38       67       10       22       0.2       43       0         129019       94-08       44.35       48.62       Scapt       Py       41.1       42.1       1.0.03       0.1       20       93       6       2       0.2       43       0         129019       94-06       48.62       48.7       75.84       BAST       43.5       0.44       0.03       0.1       13       30       4       2.0       0.2       43       0         129019       94-06       45.7       49.05       Sca       Py       43.3       45.0       0.03       0.1       15       180       2       0.2       0.2       63       0         129019       94-08       60.7       64.09       58.4       Reg       Py       46.2       0.2       0.1       10       11       10       0.2 <td>129028 9</td> <th>4-08</th> <td>41.75</td> <td>42.5 Sc</td> <td></td> <td></td> <td>38.71</td> <td>39.35</td> <td>0.64</td> <td>15,49</td> <td>7.2</td> <td>3205</td> <td>721</td> <td>8</td> <td>100</td> <td>0.6</td> <td>157</td> <td>0</td>                                                                                                                                                                                                                                                     | 129028 9 | 4-08            | 41.75         | 42.5 Sc                  |               |            | 38.71 | 39.35         | 0.64         | 15,49 | 7.2           | 3205                                    | 721    | 8      | 100    | 0.6         | 157      | 0       |
| 12908       43.3       46.66       BAST       ····       39.9       40.1       0.2       0.19       0.3       447       46.6       7       2       0.2       71       0         129013       94.08       41.3       44.35       SCqp       Py       40.1       41.1       1       0.00       0.1       38       67       10       2       0.2       39       0         129013       94.08       48.52       48.7       QTVN       VGrp       42.1       43.2       1.1       0.03       0.1       13       30       4       2       0.2       40       0         129013       94.08       48.7       49.05       SS.       Pya       43.3       44.36       0.46       0.03       0.1       47       35       6       2       0.2       6.3       0         129015       94.08       49.05       SS.4       acqv       py       46.3       46.5       0.7       0.03       0.1       11       130       3       2       0.2       6.3       0       1290199409       49.06       6.66       70.70       11       10.03       0.2       37       468       0.2       34       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 129029 9 | 4-08            | 42.5          | 43.3 SCCa                |               |            | 39.35 | 39.9          | 0.55         | 4.77  | 1.4           | 14,700                                  | 82     | 14     | 20     | 1           | 30       | 0       |
| 12001       94-06       43.3       44.35       85.62       Scopt       py       40.1       41.1       1       0.03       0.1       188       67       10       2       0.2       39       0         120012       24068       44.85       44.85       48.62       70 TVN       VGep       42.1       43.2       1.1       0.03       0.1       13       30       4       2       0.2       43.0       0         120013       94-06       48.7       75.4       BAST       *       43.2       43.9       0.7       0.01       0.1       64       100       7       4       0.2       7.3       0         120015       94-06       49.05       55.4       ecq       py       44.36       45.3       0.94       0.03       0.1       11       110       3       2       0.2       6.3       0         129017       94-08       60.76       64.09       BAST       ecq       py       46       46.2       0.2       0.01       138       127       4       2       0.2       63       0         129018       94-08       66.76       71.18       BAST       ecq       py       48.2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129030 9 | 4-08            | 43.3          | 48.66 BAST               |               |            | 39.9  | 40.1          | 0.2          | 0.19  | 0.3           | 487                                     | 46     | 7      | 2      | 0.2         | 71       | 0       |
| 12903       294-08       44.35       48.62       Seqt       py       41.1       42.1       1       0.03       0.1       20       93       6       2       0.2       43       0         12903       94-08       48.62       48.7       TVN       VOup       42.1       43.2       1.1       0.01       0.1       13       30       4       2       0.2       40       0         129015       94-08       48.7       49.05       SC       Pya       43.3       44.3       0.45       0.03       0.1       47       36       6       2       0.2       63       0         129015       94-08       59.4       60.76       DTFH       Secat       Py       4.6       45.2       0.2       0.03       0.1       11       130       3       2       0.2       8.3       0         129018       94-08       60.76       66.87       feb.96       BAST       seque       Py       4.6       47.3       1.1       0.03       0.1       7       220       6       8       0.2       3.4       0         129018       94-08       66.87       68.96       BAST       gtch       Pyp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 129031 9 | 4-08            | 43.3          | 44.35                    | SCqc          | Ру         | 40.1  | 41.1          | 1            | 0.03  | 0.1           | 38                                      | 67     | 10     | 2      | 0.2         | 39       | Û       |
| 12903       94-08       48.62       48.7       OTY       V Gep       42.1       43.2       1.1       0.03       0.1       13       30       4       2       0.2       40       0         129035       94-06       48.7       58.4       BAST       C       Pya       43.9       0.7       0.03       0.1       64       190       7       4       0.2       73       0         129035       94-06       48.7       49.05       S8.4       eeqv       py       44.36       0.64       0.03       0.1       17       130       3       2       0.2       63       0         129037       94-06       60.76       61.09       BAST       eeqv       Py       46       46.2       0.2       0.03       0.1       138       127       4       2       0.2       63       0         129049       94-06       66.87       DTFH       Seca       46.2       0.32       0.04       0.2       37       408       5       8       0.2       42       0         129049       94-08       73.15       DTFH       SCCa       pypo       48.62       0.32       0.04       0.2       37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 129032 9 | 4-08            | 44.35         | 48.62                    | Scqt          | PY         | 41.1  | 42.1          | 1            | 0.03  | 0.1           | 20                                      | 93     | 6      | 2      | 0.2         | 43       | 0       |
| 129014 94-08       48.7       48.7       58.4 BAST       41.2       43.9       0.7       0.01       64       190       7       4       0.2       73       0         129015 94-08       48.7       49.05       SC       Pyma       43.9       43.9       0.46       0.03       0.1       47       36       6       2       0.2       91       0         129015 94-08       49.05       S8.4       reqv       Py       44.6       0.7       0.03       0.1       115       180       2       2       0.2       63       0         129019 94-08       60.76       60.96 BAST       reqv       Py       46       46.2       0.2       0.01       0.1       18       120       0       0.2       68       8       0.2       43       0         129019 94-08       66.87       66.87       DTFH       Seca       46.2       47.3       1.1       0.01       0.1       7       20       6       8       0.2       43       0         129049 94-08       71.56       72.11       BAST       etcx       py       48.62       48.7       0.08       40.6       93.3       1815       191       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 129033 9 | 4-08            | 48.62         | 48.7 QTVN                |               | VGep       | 42.1  | 43.2          | 1.1          | 0.03  | 0.1           | . 13                                    | 30     | 4      | 2      | 0.2         | 40       | 0       |
| 120015       94-06       48,7       49,05       SC       Pyma       43,9       44,36       0.46       0.03       0.1       47       16       6       2       0.2       91       0         129016       94-06       49.05       58.4       maqv       py       44.36       0.94       0.03       0.1       15       180       2       2       0.2       63       0         129017       94-08       60.76       64.09       BAST       maqv       Py       46       46.2       0.2       0.01       11       130       3       2       0.2       63       0         129019       94-08       66.87       66.87       DTFH       Scca       Pyp       46.3       48.2       0.03       0.1       7       220       6       8       0.2       44       0         129049       94-08       66.87       68.96       BAST       qtc       98.7       0.08       420.6       93.3       1815       191       16       12       0.2       75       0         129049       94-08       73.95       74.22       DTFH       gtc       48.7       49.1       0.4       0.7       0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 129034 9 | 4-08            | 48.7          | 58.4 BAST                |               |            | 43.2  | 43.9          | 0.7          | 0.03  | 0,1           | 64                                      | 190    | 7      | 4      | 0.2         | 73       | 0       |
| 120016 94-08       49.05       58.4       reqv       py       44.36       45.3       0.94       0.03       0.1       15       180       2       2       0.2       63       0         120017 94-08       59.4       60.76       OTPH       Seca       Py       45.3       46       0.7       0.03       0.1       11       130       3       2       0.2       54       0         120019 94-08       66.07       66.97       DTFH       Seca       Py       46.2       47.3       1.1       0.03       0.1       7       200       6       8       0.2       346       0         120040 94-08       66.87       67.5       DTFH       Seca       py       48.6       0.48       0.2       37       408       5       8       0.2       47       0         129049 94-08       71.56       72.11       BAST       qtex       py       48.62       48.7       0.08       42.06       93.3       1815       191       16       12       0.2       75       0         129049 94-08       73.15       74.2       Scea       91       50.1       1.1       1.6       11       180       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 129035 9 | 4-08            | 48.7          | 49.05                    | SC            | Pyas       | 43.9  | 44.36         | 0.46         | 0.03  | 0.1           | 47                                      | 36     | 6      | 2      | 0.2         | 91       | 0       |
| 120017       94-08       59.4       60.76       0.76       0.77       4.6       4.6       0.7       0.03       0.1       11       130       3       2       0.2       54       0         120308       94-08       66.76       64.09       66.87       DTFH       Seca       46.2       47.3       1.1       0.03       0.2       10       161       5       10       0.2       46       0         12004       94-08       66.87       66.87       68.96       BAST       etch       Popy       43.3       48.3       1       0.03       0.1       7       220       6       8       0.2       44       0         12904       94-08       68.96       71.56       DTFH       Scca       pypo       48.62       48.7       0.08       420.6       93.3       1815       191       16       12       0.2       75       0         129043       94-08       73.15       74.22       DTFH       etcx       48.7       49.1       0.4       0.72       0.3       37       164       8       12       0.2       47       0         129044       94-08       73.55       74.22       DTFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 129036 9 | 4-08            | 49.05         | 58.4                     | scqv          | ру         | 44.36 | 45.3          | 0.94         | 0.03  | 0.1           | . 15                                    | 180    | 2      | 2      | 0.2         | 63       | 0       |
| 12008       94-08       60.76       64.09       BAST       eqv       Py       46       46.2       0.03       0.1       38       127       4       2       0.2       83       0         129019       94-08       66.07       DTFH       Scca       46.2       47.3       1.1       0.03       0.1       7       220       6       8       0.2       34       0         129049       94-08       66.87       67.156       DTFH       SCca       pypo       48.3       48.62       0.32       0.04       0.2       37       408       5       8       0.2       42       0         129049       94-08       71.56       71.11       BAST       qtcx       py       48.62       0.32       0.04       0.2       37       408       5       8       0.2       42       0         129049       94-08       73.95       74.22       DTFH       qtcx       pypo       40.1       1       1.16       0.1       11       180       4       8       0.2       47       0         129049       94-08       76.13       78.52       DTFH       Scca       51.5       52.9       1.4       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129037 9 | 4-08            | 59.4          | 60.76 DTFH               | Scen          | Ру         | 45.3  | 46            | 0.7          | 0.03  | 0.1           | 11                                      | 130    | 3      | 2      | 0.2         | 54       | 0       |
| 120019       94.08       64.09       66.87       66.87       68.96       DTFH       Scea       46.2       47.3       1.1       0.03       0.2       10       161       5       10       0.2       46       0         129040       94.08       66.87       68.96       71.56       DTFH       SCca       pypo       48.3       48.62       0.32       0.04       0.2       37       408       5       8       0.2       42       0         129042       94.08       71.56       72.11       BAST       qtex       pypo       48.62       48.7       0.08       420.6       93.3       1815       191       16       12       0.2       75       0         129043       94.08       73.95       74.22       DC3       BAST       qtex       48.7       49.1       0.4       0.72       0.3       37       164       8       12       0.2       47       0         129044       94.08       76.13       78.52       DTFH       scca       91       50.1       1       1.16       0.1       11       180       4       8       0.2       43       0         129044       94.08       76.13 </th <td>129038 9</td> <th>4-08</th> <td>60.76</td> <td>64.09 BAST</td> <td>scqv</td> <td>Ру</td> <td>46</td> <td>46.2</td> <td>0.2</td> <td>0.03</td> <td>0.1</td> <td>38</td> <td>127</td> <td>4</td> <td>2</td> <td>0.2</td> <td>83</td> <td>0</td>                                                                                                                                                                                                                                        | 129038 9 | 4-08            | 60.76         | 64.09 BAST               | scqv          | Ру         | 46    | 46.2          | 0.2          | 0.03  | 0.1           | 38                                      | 127    | 4      | 2      | 0.2         | 83       | 0       |
| 129040       94-08       66.87       68.96       BAST       qtch       Popy       47.3       48.3       1       0.01       7       220       6       8       0.2       34       0         129041       94-08       68.96       71.56       DTFH       SCCa       pypo       48.3       48.62       0.32       0.04       0.2       37       408       5       8       0.2       42       0         129043       94-08       71.56       DTFH       gtcx       py       48.62       48.7       0.08       420.6       93.3       1815       191       16       12       0.2       75       0         129043       94-08       73.95       74.22       Scca       49.1       50.1       1.1       1.16       0.1       11       180       4       8       0.2       47       0         129045       74.08       76.13       78.52       DTFH       gtcx       pypo       50.1       51.1       1       0.03       0.1       6       152       3       6       0.2       44       0         129047       94.08       76.13       78.52       DTFH       51.5       52.9       1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 129039 9 | 4-08            | 64.09         | 66.87 DTFH               | Scca          | _          | 46.2  | 47.3          | 1.1          | 0.03  | 0.2           | 10                                      | 161    | 5      | 10     | 0.2         | 46       | 0       |
| 129041       94.08       68.96       71.56       DTH       SCCa       pypo       48.62       0.32       0.04       0.2       37       408       5       8       0.2       42       0         129042       94-08       71.56       72.11       BAST       qtex       pypo       48.62       48.7       0.08       420.6       93.3       1815       191       16       12       0.2       75       0         129042       94-08       73.95       74.22       Scca       49.1       50.1       1       1.16       0.1       11       180       4       8       0.2       47       0         129043       94-08       76.13       78.52       DTFH       gtex       970       50.1       51.1       1       0.03       0.1       6       152       3       6       0.2       43       0         129049       76.13       77       Scca       51.1       51.5       0.4       0.03       0.1       17       148       6       8       0.2       53       0         129049       94-08       76.13       77.852       SCqu       py       51.3       53.4       0.1       0.03 <t< th=""><td>129040 9</td><th>4-08</th><td>66,87</td><td>68.96 BAST</td><td>qtch</td><td>Рору</td><td>47.3</td><td>48.3</td><td>1</td><td>0.03</td><td>0.1</td><td>7</td><td>220</td><td>6</td><td>8</td><td>0.2</td><td>34</td><td>0</td></t<>                                                                                                                                                                                                                                                          | 129040 9 | 4-08            | 66,87         | 68.96 BAST               | qtch          | Рору       | 47.3  | 48.3          | 1            | 0.03  | 0.1           | 7                                       | 220    | 6      | 8      | 0.2         | 34       | 0       |
| 129042       94-08       72.10       74.22       DTFH       qtex       99.       48.7       99.1       0.08       420.6       99.3       1815       191       16       12       0.2       75       0         129043       94-08       73.95       74.22       DTFH       qtex       99.1       50.1       1       1.16       0.1       11       180       4       8       0.2       47       0         129044       94-08       73.95       74.22       76.13       BAST       qtex       pypo       50.1       51.1       1       0.03       0.1       6       197       4       6       0.2       44       0         129046       94-08       76.13       78.52       DTFH       51.1       51.5       0.4       0.03       0.1       17       148       6       8       0.2       43       0         129047       94-08       76.13       77       R5.2       SCqv       py       52.9       53.3       0.4       0.03       0.1       17       148       6       8       0.2       42       0         129049       94-08       78.52       79.07       QCSW       PY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 129041 9 | 4-08            | 68.96         | 71.56 DIFH               | SCC           | рур∘       | 48.3  | 48.62         | 0.32         | 0.04  | 0.2           | 37                                      | 408    | 5      | 8      | 0.2         | 42       | U       |
| 129043       94-08       72,11       74,22       D1PH       qtcx       48.7       49.1       0.4       0.72       0.3       37       164       8       12       0.2       50       0         129044       94-08       73.95       74.22       Scca       49.1       50.1       1       1.16       0.1       11       180       4       8       0.2       47       0         129045       94-08       74.22       76.13       BAST       qtx       pypo       50.1       51.1       1       1.0       0.3       0.1       6       197       4       6       0.2       44       0         129045       94-08       76.13       78.52       DTFH       51.5       52.9       1.4       0.03       0.1       17       148       6       8       0.2       43       0         129047       94-08       76.13       77       78.52       SCqv       py       52.9       53.3       0.4       0.03       0.1       16       180       4       8       0.2       48       0         129049       94-08       78.52       79.07       QCSW       PY       53.3       54.58       1.18 <td>129042 9</td> <th>44-085</th> <td>/1.56</td> <td>72.11 BASI</td> <td>qtcx</td> <td>ру</td> <td>48.62</td> <td>48.7</td> <td>0.08</td> <td>420.0</td> <td>93.3</td> <td>1812</td> <td>191</td> <td>01</td> <td>12</td> <td>0.2</td> <td>/3</td> <td>0</td>                                                                                                                                                                                                                                           | 129042 9 | 44-085          | /1.56         | 72.11 BASI               | qtcx          | ру         | 48.62 | 48.7          | 0.08         | 420.0 | 93.3          | 1812                                    | 191    | 01     | 12     | 0.2         | /3       | 0       |
| 12904       94-08       73.93       74.22       3cca       49.1       90.1       1       1.16       0.1       11       180       4       6       0.2       47       0         129045       94-08       76.13       BAST       qtex       pypo       50.1       51.1       1       0.03       0.1       6       197       4       6       0.2       44       0         129046       94-08       76.13       76.13       DTFH       51.1       51.5       52.9       1.4       0.03       0.1       17       148       6       8       0.2       43       0         129049       94-08       76.13       77       Scca       51.5       52.9       1.4       0.03       0.1       17       148       6       8       0.2       43       0         129049       94-08       78.52       79.07       QCSW       PY       53.3       53.4       0.1       0.03       0.1       131       153       4       8       0.2       58       0         129049       94-08       78.52       79.07       QCSW       PY       53.4       54.58       1.18       0.01       31       131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 129043 9 | 4-08            | 72.11         | 74.22 DIFE               | quex          |            | 48.7  | 49.1          | 0.4          | 0.72  | U.U           | 57                                      | 104    | 8      | 12     | 0.2         | JU<br>47 | 0       |
| 129045       94-08       76.13       78.52       DTFH       51.1       51.1       51.5       52.9       1.4       0.03       0.1       6       152       3       6       0.2       43       0         129045       94-08       76.13       77       Seca       51.1       51.5       52.9       1.4       0.03       0.1       17       148       6       8       0.2       43       0         129045       94-08       76       78.52       SCqv       py       52.9       53.3       0.4       0.03       0.1       17       148       6       8       0.2       42       0         129049       94-08       77       78.52       SCqv       py       52.9       53.3       0.4       0.03       0.1       16       180       4       8       0.2       42       0         129049       94-08       78.52       79.07       QCSW       PY       53.3       53.4       0.1       0.03       0.1       31       153       4       8       0.2       49       0         129051       94-08       81.8       82.25       QCBX       ASPy       54.58       54.7       0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120044 9 | 4-08            | 73.90         | /4.44<br>76.17 DAST      | SCCL          |            | 49.1  | 51.1          | 1            | 1.10  | 0.1           | . 11                                    | 180    | 4      | •      | 0.2         | 47       | 0       |
| 12904       94-08       76.13       76.13       76.13       77       Seca       51.1       51.3       52.9       1.4       0.03       0.1       17       148       6       8       0.2       53       0         129047       94-08       77       78.52       SCqv       py       52.9       53.3       0.4       0.03       0.1       17       148       6       8       0.2       53       0         129049       94-08       77       78.52       SCqv       py       53.3       0.4       0.03       0.1       7       205       4       4       0.2       42       0         129049       94-08       78.52       79.07       QCSW       PY       53.3       53.4       0.1       0.03       0.1       16       180       4       8       0.2       48       0         129051       94-08       79.07       81.8       DTFH       SCqv       py       53.4       54.58       1.18       0.03       0.1       31       153       4       8       0.2       49       0         129051       94-08       81.8       82.25       83.3       QCSW       PYAs       58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120046-0 | ~4-000<br>M_012 | 74.44         | 70.13 DASI<br>79.43 DTEU | drex          | руро       | 50.1  | 51.1          | 0.4          | 0.03  | 0.1           | 0                                       | 157    | 4      | 0<br>A | 0.2         | 44       | 0       |
| 12904       94-06       77       78.52       SCqv       py       52.9       53.3       0.4       0.03       0.1       7       205       4       4       0.2       42       0         129048       94-06       77       78.52       SCqv       py       53.3       0.4       0.03       0.1       7       205       4       4       0.2       42       0         129049       94-06       78.52       79.07       QCSW       PY       53.3       53.4       0.1       0.03       0.1       16       180       4       4       0.2       42       0         129059       94-06       79.07       81.8       DTFH       SCqv       py       53.4       54.58       1.18       0.03       0.1       31       153       4       8       0.2       49       0         129051       94-08       81.8       82.25       QCBX       ASPy       54.58       54.7       0.12       0.17       0.2       192       102       4       16       0.2       40       0         129051       94-08       83.3       84.2       QCBX       PYAs       58       58.7       1       0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 129047 9 |                 | 76.13         | 10.02 DITH<br>17         | Seco          |            | 51.1  | 52.0          | 14           | 0.05  | 0.1           | 17                                      | 149    | 6      | 8      | 0.2         | 42       | õ       |
| 129049       94-08       78.52       79.07       QCSW       PY       53.3       53.4       0.10       0.03       0.11       16       180       4       8       0.2       58       0         129049       94-08       78.52       79.07       QCSW       PY       53.3       53.4       0.1       0.03       0.1       16       180       4       8       0.2       58       0         129050       94-08       79.07       81.8       DTFH       SCqv       py       53.4       54.58       1.18       0.03       0.1       31       153       4       8       0.2       58       0         129051       94-08       81.8       82.25       QCBX       ASPy       54.58       54.7       0.12       0.17       0.2       192       102       4       16       0.2       49       0         129052       94-08       82.25       83.3       QCSW       PYA#       54.7       55.7       1       0.06       0.1       5       226       4       4       0.2       40       0         129053       94-08       83.3       84.2       QCBX       PyA#       58       58       0.03<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129049 9 |                 | 70.13<br>77   | 79 57                    | SCav          | 83/        | 52.9  | 51.3          | 0.4          | 0.03  | 0.1           | 7                                       | 205    | 4      | 4      | 0.2         | 42       | õ       |
| 12905       94-08       79.07       81.8       DTFH       SCqv       py       53.4       54.7       0.1       10       11       153       4       8       0.2       49       0         129050       94-08       81.8       DTFH       SCqv       py       53.4       54.58       1.18       0.01       0.1       31       153       4       8       0.2       49       0         129051       94-08       81.8       82.25       QCBX       ASPy       54.58       54.7       0.17       0.2       192       102       4       16       0.2       40       0         129052       94-08       82.25       83.3       QCBX       PYA#       54.7       55.7       1       0.06       0.1       5       226       4       4       0.2       40       0         129053       94-08       83.3       84.2       QCBX       PyA#       58       58.8       0.8       0.03       0.1       6       146       6       6       0.2       35       0         129054       94-08       84.2       85.71       DTFH       QCBX       Py       64       65       1       0.03 <t< th=""><td>129040 9</td><th></th><td>78 52</td><td>79.07 OCSW</td><td>Sequ</td><td>PY<br/>PY</td><td>51.3</td><td>53.5</td><td>01</td><td>0.03</td><td>0.1</td><td>16</td><td>180</td><td>4</td><td>8</td><td>0.2</td><td>58</td><td>õ</td></t<>                                                                                                                                                                                                                                                                | 129040 9 |                 | 78 52         | 79.07 OCSW               | Sequ          | PY<br>PY   | 51.3  | 53.5          | 01           | 0.03  | 0.1           | 16                                      | 180    | 4      | 8      | 0.2         | 58       | õ       |
| 129051       94-08       81.8       92.25       QCBX       ASP       54.58       54.7       0.12       0.17       0.2       192       102       4       16       0.2       90       0         129051       94-08       81.8       92.25       QCBX       ASP       54.78       55.7       1       0.06       0.1       5       226       4       4       0.2       40       0         129052       94-08       82.25       83.3       QCSW       PYA#       54.7       55.7       1       0.06       0.1       5       226       4       4       0.2       40       0         129053       94-08       83.3       84.2       QCBX       PyA#       58       58.8       0.8       0.03       0.1       6       146       6       6       0.2       35       0         129054       94-08       83.3       84.2       85.71       DTFH       QCBX       Py       64       65       1       0.03       0.1       9       56       6       8       0.2       58       0         129055       94-08       85.71       86.26       BAST       QCBX       Py       65       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 129050 9 | 4-08            | 79.07         | 81.8 DTFH                | SCav          | DV         | 51.4  | 54 58         | 1.18         | 0.01  | 0.1           | 10                                      | 160    | 4      | 8<br>8 | 0.2         | 49       | õ       |
| 129052       94-08       82.25       83.3       QCSW       PYAs       54.7       55.7       1       0.06       0.1       5       226       4       4       0.2       40       0         129052       94-08       82.25       83.3       QCSW       PYAs       54.7       55.7       1       0.06       0.1       5       226       4       4       0.2       40       0         129053       94-08       83.3       84.2       QCBX       PyAs       58       58.8       0.8       0.03       0.1       6       146       6       6       0.2       40       0         129054       94-08       84.2       85.71       DTFH       QCBX       Py       64       65       1       0.03       0.1       9       56       6       8       0.2       58       0         129055       94-08       85.71       86.26       BAST       QCBX       Py       65       66       1       0.03       0.1       10       21       5       8       0.2       56       0         129055       94-08       86.26       86.42       QTBX       PyAS       66       67       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 129051 9 | 4-08            | 81.8          | 82.25 OCBX               | ~~ <b>4</b> , | 87<br>ASPv | 54 58 | 54 7          | 0.12         | 0.17  | 0.2           | 197                                     | 107    | 4      | 16     | 0.2         | 90       | õ       |
| 129053 94-08       83.3       84.2       QCBX       PyAs       58       58.8       0.8       0.03       0.1       6       146       6       6       0.2       35       0         129053 94-08       84.2       85.71       DTFH       QCBX       Py       64       65       1       0.03       0.1       6       146       6       6       0.2       35       0         129055 94-08       85.71       86.26       BAST       QCBX       Py       65       66       1       0.03       0.1       9       56       6       8       0.2       58       0         129055 94-08       85.71       86.26       BAST       QCBX       Py       65       66       1       0.03       0.1       10       21       5       8       0.2       56       0         129056 94-08       86.26       86.42       QTBX       PyAS       66       67       1       0.03       0.1       10       21       5       8       0.2       39       0         129057 94-08       86.42       87       FALT       QCBX       Pyas       67       68       1       0.03       0.1       13 <td< th=""><td>129052.9</td><th>4-08</th><td>82.25</td><td>83.3 OCSW</td><td></td><td>PYA:</td><td>54.7</td><td>55.7</td><td>1</td><td>0.06</td><td>01</td><td>5</td><td>226</td><td>4</td><td>4</td><td>0.2</td><td>40</td><td>0</td></td<>                                                                                                                                                                                                                                                                        | 129052.9 | 4-08            | 82.25         | 83.3 OCSW                |               | PYA:       | 54.7  | 55.7          | 1            | 0.06  | 01            | 5                                       | 226    | 4      | 4      | 0.2         | 40       | 0       |
| 129054 94-08       84.2       85.71       DCTH       QCBX       Py       64       65       1       0.03       0.1       9       56       6       8       0.2       58       0         129055 94-08       85.71       86.26       BAST       QCBX       Py       65       66       1       0.03       0.1       9       56       6       8       0.2       58       0         129055 94-08       85.71       86.26       BAST       QCBX       Py       65       66       1       0.03       0.1       10       21       5       8       0.2       56       0         129056 94-08       86.26       86.42       QTBX       PyAS       66       67       1       0.03       0.2       9       96       6       6       0.2       39       0         129057 94-08       86.42       87       FALT       QCBX       Pyas       67       68       1       0.03       0.1       13       214       4       6       0.2       43       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 129053 9 | 4-08            | 83.3          | 84.2 OCBX                |               | PvAs       | 58    | 58.8          | 0.8          | 0.03  | 01            | . , , , , , , , , , , , , , , , , , , , | 146    | 6      | 6      | 0.2         | 35       | 0       |
| 129055 94-08       85.71       86.26       BAST       QCBX       Py       65       66       1       0.03       0.1       10       21       5       8       0.2       56       0         129055 94-08       86.26       86.42       QTBX       PyAS       66       67       1       0.03       0.2       9       96       6       6       0.2       39       0         129057 94-08       86.42       87       FALT       QCBX       Pyas       67       68       1       0.03       0.1       13       214       4       6       0.2       43       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 129054 9 | 4-08            | 84.2          | 85.71 DTFH               | OCBX          | Pv         | 64    | 65            | 1            | 0.03  | 0.1           | ĝ                                       | 56     | 6      | 8      | 0.2         | 58       | 0       |
| 129056         94-08         86.26         86.42         QTBX         PyAS         66         67         1         0.03         0.2         9         96         6         6         0.2         39         0           129056         94-08         86.42         87         FALT         QCBX         Pyas         67         68         1         0.03         0.1         13         214         4         6         0.2         43         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 129055 9 | 4-08            | 85.71         | 86.26 BAST               | OCBX          | Pv         | 65    | 66            | 1            | 0.03  | 0.1           | 10                                      | 21     | 5      | 8      | 0.2         | 56       | 0       |
| 129057 94-08 86.42 87 FALT QCBX Pyas 67 68 1 0.03 0.1 13 214 4 6 0.2 43 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 129056 9 | 4-08            | 86.26         | 86.42 OTBX               |               | PVAS       | 66    | 67            | 1            | 0.03  | 0.2           | 9                                       | 96     | 6      | 6      | 0.2         | 39       | 0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129057 9 | 4-08            | 86.42         | 87 FALT                  | QCBX          | Pyas       | 67    | 68            | 1            | 0.03  | 0.1           | 13                                      | 214    | 4      | 6      | 0.2         | 43       | 0       |

•

|              |        | GEOLOGICAL     | DATA   |              | AS            | SAY DATA     | 4          |      |                |         |                                       |        |         |             |          |         |
|--------------|--------|----------------|--------|--------------|---------------|--------------|------------|------|----------------|---------|---------------------------------------|--------|---------|-------------|----------|---------|
| REF.NO DDB   | FROM   | <u>TO ROCK</u> | ALTRIN | <u>MINRL</u> | FROM          | <u>TO</u>    | WIDTH      | GOLD | <u>SIL VER</u> | ARSENIC | COPPER                                | MOLY   | LEAD    | <u>ANTI</u> | ZINC     | MERCURY |
| 129058 94-08 | 87     | 94.74 BAST     |        |              | 68            | 69           | 1          | 0.03 | 0.2            | 16      | 192                                   | 6      | 6       | 0.2         | 58       | 0       |
| 129059 94-08 | 87     | 88.6           | QCSW   | PY           | 69            | 69.7         | 0.7        | 0.03 | 0.1            | 10      | 190                                   | 5      | 8       | 0.2         | 44       | 0       |
| 129060 94-08 | 88.6   | 94.74          | scac   | Ру           | 69.7          | 70.38        | 0.68       | 0.03 | 0.1            | 19      | 180                                   | 6      | 8       | 0.2         | 45       | 0       |
| 129061 94-08 | 94.74  | 94.94 QCBX     |        | PY           | 70.38         | 70.74        | 0.36       | 0.03 | 0.2            | . 39    | 111                                   | 8      | 4       | 0.2         | 52       | 0       |
| 129062 94-08 | 94.94  | 95.3           | SCca   |              | 70.74         | 71.6         | 0.86       | 0.08 | 0.1            | 11      | 158                                   | 8      | 4       | 0.2         | 51       | 0       |
| 129063 94-08 | 96.76  | 98.61 DTFH     | \$Cqv  | ру           | 71.6          | 72.1         | 0.5        | 0.03 | 0.1            | 10      | 156                                   | 5      | 6       | 0.2         | 43       | 0       |
| 129064 94-08 | 98.61  | 101.27 BAST    | cach   | ру           | 72.1          | 73           | 0.9        | 0.03 | 0.1            | 9       | 88                                    | 6      | 4       | 0.2         | 39       | 0       |
| 129065 94-08 | 101.27 | 102.2 DTFH     | ch     |              | 73            | 74           | 1          | 0.03 | 0.1            | 6       | 63                                    | 8      | 4       | 0.2         | 42       | 0       |
| 129066 94-08 | 102.2  | 109.2 BAST     | _      |              | 74            | 75           | 1          | 0.03 | 0.1            | 21      | 165                                   | 5      | 10      | 0.2         | 63       | 0       |
| 129067 94-08 | 102.2  | 107            | qtch   |              | 75            | 76           | 1          | 0.03 | 0.1            | 16      | 176                                   | 3      | 6       | 0.2         | 63       | 0       |
| 129068 94-08 | 107    | 108.35         | SCC.   |              | 76            | 76.6         | 0.6        | 0.04 | 0.1            | 12      | 128                                   | 4      | 6       | 0.2         | 43       | 0       |
| 129069 94-08 | 108.35 | 109.2          | ScCe   | ру           | 76.6          | 71           | 0.4        | 0.12 | 0.1            | 77      | 94                                    | 6      | 8       | 0.2         | 38       | U<br>Q  |
| 129070 94-08 | 109.2  | 109.8 DIFH     | SCCA   |              | 77            | 77.6         | 0.6        | 0.04 | 0.2            | 776     | 81                                    | ,      | 30      | 0.2         | 00       | Ű       |
| 129071 94-08 | 109.8  | 111.89 BASI    | 3cc4   | PY           | //.0          | /8.4         | 0.8        | 1.01 | 0.4            | 104     | /2                                    | ,      | 12      | 0.2         | 24       | 0       |
| 129072 94-08 | 111.89 | 115.52 DIFE    | ncdt   | PY<br>DVAC   | 78.4          | 79.05        | 0.03       | 1.91 | 0.5            | 2902    | 80                                    | 0      | 22      | 0.2         | 23       | 0       |
| 129073 94-08 | 114.05 | 114.7          | QIVN   | FIAD         | 79.03         | 9.8          | 0.75       | 0.17 | 0.2            | 043     | 134                                   | 2      | 10      | 0.2         | 00       | U<br>O  |
| 129074       |        |                |        |              | /7.8<br>90.45 | 80.33        | 0.75       | 0.00 | 0.1            | 100     | /4                                    | 0<br>4 | 0       | 0.2         | 40       | 0       |
| 129073       |        |                |        |              | 81.7          | 01.£<br>91.9 | 0.05       | 0.10 | 0.1            | 222     | /6                                    | ,      | 6<br>14 | 0.2         | 44       | 0       |
| 129070       |        |                |        |              | 91.2<br>91.9  | 97.75        | 0.45       | 4.02 | 1.2            |         | · 118                                 | 11     | 14      | 0.2         | 30       | 0       |
| 129078       |        |                |        |              | 82.25         | 83           | 0.75       | 3 24 | 1 3            | 11,000  | 20                                    | 12     | 24      | 0.0         | 43       | õ       |
| 129079       |        |                |        |              | 83            | 83.45        | 0.45       | 2.44 | 0.9            | 13,600  | 16                                    | 17     | 16      | 0.6         | 17       | õ       |
| 129080       |        |                |        |              | 83.45         | 84.2         | 0.75       | 1.45 | 0.6            | 8822    | 9                                     | 11     | 10      | 0.4         | 10       | 0       |
| 129081       |        |                |        |              | 84.2          | 84.8         | 0.6        | 0.39 | 0.3            | 753     | 21                                    | 12     | 14      | 0.2         | 40       | 0       |
| 129082       |        |                |        |              | 84.8          | 85.5         | 0.7        | 2.09 | 0.5            | 5546    | 37                                    | 7      | 20      | 0.2         | 39       | 0       |
| 129083       |        |                |        |              | 85.5          | 85,7         | 0.2        | 1.51 | 0.2            | 5800    | 19                                    | 12     | 22      | 0.2         | 38       | 0       |
| 129084       |        |                |        |              | 85.7          | 85.9         | 0.2        | 1.99 | 1.1            | 6603    | 20                                    | 14     | 20      | 0.4         | 23       | 0       |
| 129085       |        |                |        |              | 85.9          | 86.25        | 0.35       | 5.67 | 1.3            | 9149    | 85                                    | 14     | 42      | 0.6         | 45       | 0       |
| 129086       |        |                |        |              | 86.25         | 86.45        | 0.2        | 3.51 | 1.1            | 13,000  | 114                                   | 12     | 134     | 1.4         | 672      | Û       |
| 129087       |        |                |        |              | 86.45         | 87           | 0.55       | 1.2  | 0.6            | 2841    | 28                                    | 7      | 22      | 0.8         | 33       | 0       |
| 129088       |        |                |        |              | 87            | 87.5         | 0.5        | 0.2  | 0.5            | 583     | 110                                   | 3      | 222     | 1.4         | 86       | 0       |
| 129089       |        |                |        |              | 87.5          | 88           | 0.5        | 1.13 | 0.7            | 3992    | 133                                   | 6      | 32      | 0.6         | 75       | 0       |
| 129090       |        |                |        |              | 88            | 88.3         | 0.3        | 0.08 | 1.1            | 468     | 298                                   | 8      | 26      | 0.2         | 75       | 0       |
| 129091       |        |                |        |              | 88.3          | 88.6         | 0.3        | 0.04 | 0.8            | 198     | 291                                   | 8      | 22      | 0.2         | 84       | 0       |
| 129092       |        |                |        |              | 88.6          | 89.6         | 1          | 0.03 | 0.1            | 68      | 163                                   | 3      | 8       | 0.2         | 63       | 0       |
| 129093       |        |                |        |              | 89.6          | 90.6         | 1          | 0.03 | 0.1            | 46      | 189                                   | 3      | 4       | 0.2         | 75       | 0       |
| 129094       |        |                |        |              | 93            | 94           | 1          | 0.03 | 0.1            | 43      | 212                                   | 5      | 2       | 0.2         | 71       | 0       |
| 129095       |        |                |        |              | 94            | 94.74        | 0.74       | 0.03 | 0.4            | 37      | 247                                   | 5      | 14      | 0.2         | 104      | 0       |
| 129096       |        |                |        |              | 94.74         | 94.94        | 0.2        | 0.25 | 0.5            | 404     | 92                                    | 7      | 24      | 0.2         | 104      | 0       |
| 129097       |        |                |        |              | 94.94         | 95.3         | 0.36       | 0.03 | 0.2            | 187     | 153                                   | 1      | 10      | 0.6         | 110      | 0       |
| 129098       |        |                |        |              | 95.3          | 96.5         | 1.2        | 0.03 | 0.1            | 47      | 237                                   | 3      | 8       | 0,2         | 60       | 0       |
| 129099       |        |                |        |              | 90.5          | 97.1         | 0.0        | 0.03 | 0.1            | 115     | 117                                   | 2      | 10      | 0.2         | /3       | 0       |
| 129100       |        |                |        |              | 97.1          | 98           | 0.9        | 0.03 | 0.1            | /2      |                                       | 4      | 4       | 0.2         | 54<br>40 | 0       |
| 129101       |        |                |        |              | >76<br>0.0 ∡  | 98.0<br>00.2 | 0.0        | 0.03 | 0.1            | 110     | y y y y y y y y y y y y y y y y y y y | ر<br>۲ | 8       | 0.2         | 40       | 0       |
| 129102       |        |                |        |              | 98.0          | 100.2        | 0.0        | 0.03 | 0.1            | 120     | 203                                   | ,<br>, | 10      | 0.2         | 74       | 0       |
| 129103       |        |                |        |              | 106.2         | 100.2        | 0 e /      | 0.03 | 0.1            | 20      | 134                                   | 4      | 10<br>K | 0.2         | 20<br>90 | 0<br>0  |
| 129104       |        |                |        |              | 100.2         | 107 7        | 0.8<br>0.7 | 0.03 | 0.1            | 1000    | 134                                   | 4<br>K | 20      | 0.2         | 144      | 0<br>0  |
| 129106       |        |                |        |              | 107 7         | 109.1        | 0.4        | 0.18 | 0.0            | 704     | 100                                   | 7      | 16      | 0.2<br>0.4  | 104      | õ       |
| 129107       |        |                |        |              | 107.7         | 108.1        | 0.2        | 0.15 | 0.7            | 6371    | 71                                    | ,<br>1 | 19      | 0.4         | 95       | õ       |
| 129108       |        |                |        |              | 108.3         | 109.2        | 0.9        | 0.03 | 01             | 261     | 192                                   | •      | 8       | 0.2         | 95       | Õ       |
| 129109       |        |                |        |              | 109.2         | 109.8        | 0.6        | 0.03 | 0.1            | 30      | 29                                    | 5      | 8       | 0.2         | 57       | 0       |
| 129110       |        |                |        |              | 112.5         | 113.5        | 1          | 0.03 | 0.2            | 41      | 58                                    | 7      | 6       | 0.2         | 64       | 0       |

|        |     |      | GEOI      | LOGICAL I | DATA          |              | AS     | SAY DAT | A            |             |        |         |               |      |      |      |      |         |
|--------|-----|------|-----------|-----------|---------------|--------------|--------|---------|--------------|-------------|--------|---------|---------------|------|------|------|------|---------|
| REF NO | DDH | FROM | <u>TO</u> | ROCK      | <u>ALTRTN</u> | <u>MINRL</u> | FROM   | ΤŌ      | <u>WIDTH</u> | <u>GOLD</u> | SILVER | ARSENIC | <u>COPPER</u> | MOLY | LEAD | ANTI | ZINC | MERCURY |
| 129111 |     |      |           |           |               |              | 113.5  | 114.5   | 1            | 0.03        | 0.1    | 19      | 50            | 4    | 8    | 0,2  | 44   | 0       |
| 129112 |     |      |           |           |               |              | 114.5  | 114.65  | 0.15         | 0.11        | 0.1    | 1950    | 37            | 5    | 8    | 0.2  | 61   | 0       |
| 129113 |     |      |           |           |               |              | 114.65 | 114.7   | 0.05         | 4.84        | 1.2    | 4896    | 177           | 12   | 36   | 0.4  | 59   | 0       |
| 129114 |     |      |           |           |               |              | 114.7  | 114.85  | 0.15         | 0.03        | 0.1    | 466     | 44            | 6    | 6    | 0.2  | 48   | 0       |
| 129115 |     |      |           |           |               |              | 114.85 | 115.52  | 0.67         | 0.44        | 0.4    | 779     | 100           | 6    | 18   | 0.2  | 175  | 0       |
|        |     |      |           |           |               |              |        |         | 0            |             |        |         |               |      |      |      |      |         |
|        |     |      |           |           |               |              |        |         | 0            |             |        |         |               |      |      |      |      |         |
|        |     |      |           |           |               |              |        |         | 0            |             |        |         |               |      |      |      |      |         |
|        |     |      |           |           |               |              |        |         | 0            |             |        |         |               |      |      |      |      |         |
|        |     |      |           |           |               |              |        |         | 0            |             |        |         |               |      |      |      |      |         |

.

|               |                |       | GEOLOGICAL               | DATA          |              | AS             | SAY DATA       | A     |      |            |               |               |        |          |          |            |
|---------------|----------------|-------|--------------------------|---------------|--------------|----------------|----------------|-------|------|------------|---------------|---------------|--------|----------|----------|------------|
| <u>REF NO</u> | DDH            | FROM  | TO <u>ROCK</u>           | <u>ALTRTN</u> | <u>MINRL</u> | FROM           | <u>T0</u>      | WIDTH | GOLD | SILVER     | ARSENIC       | <u>COPPER</u> | MOLY   | LEAD     | ANTI     | ZINC       |
| 126985        | 94-09          | 0     | 7.32 CASG                |               |              | 7.32           | 7.99           | 0.67  | 0.03 | 0.1        | 27            | 135           | 6      | 2        | 0.4      | 60         |
| 126986        | 94-09          | 7.32  | 14.72 PLBT               | scqv          |              | 7.99           | 8.17           | 0.18  | 0.03 | 0.1        | 91            | 100           | 4      | 6        | 1        | 71         |
| 126987        | 94-09          | 14.72 | 15.55 DTFH               | ch            | ру           | 8.17           | 9.17           | 1     | 0.03 | 0.2        | 70            | 189           | 1      | 2        | 0.6      | 60         |
| 126988        | 94-09          | 15.55 | 16.5 BAST                | deam          | ру           | 19.85          | 20.53          | 0.68  | 0.03 | 0.1        | 77            | 153           | 6      | 6        | 0.2      | 44         |
| 126989        | 94-09          | 16.5  | 18.98 DTFH               | qcsw          | ру           | 20.53          | 20.73          | 0.2   | 0.2  | 0.4        | 6589          | 130           | 6      | 4        | 2.6      | 82         |
| 126990        | 94-09          | 18.98 | 21.1 BAST                | qcsw          | ру           | 20.73          | 21.73          | 1     | 0.03 | 0.1        | 52            | 134           | 5      | 2        | 0.4      | 32         |
| 126991        | 94-09          | 21.53 | 20.6                     | QCSW          | Py           | 25.95          | 26.25          | 0.3   | 0.03 | 0.1        | 23            | 125           | 6      | 2        | 0.2      | 35         |
| 126992        | 94-09          | 21.1  | 21.41 DTHF               | Scch          | ру           | 31             | 31.95          | 0.95  | 0.03 | 0.1        | 14            | 19            | 7      | 2        | 0.2      | 34         |
| 126993        | 94-09          | 21.41 | 25.04 BAST               | qcsw          | PY           | 31.95          | 32.62          | 0.67  | 0.03 | 0.1        | 43            | 208           | 4      | 2        | 0.6      | 48         |
| 126994        | 94-09          | 25.04 | 25.45 ANHF               | scch          | ру           | 32.62          | 33.47          | 0.85  | 0.03 | 0.1        | 42            | 216           | 6      | 2        | 0.6      | 62         |
| 126995        | 94-09          | 25.45 | 26 BAST                  | ch            | ••           | 33.47          | 33.8           | 0.33  | 0.03 | 0.1        | 36            | 124           | 5      | 2        | 0.8      | 58         |
| 126996        | 94-09          | 26    | 27.05 ANHF               | qcsw          | DV           | 38             | 38.95          | 0.95  | 0.03 | 0.1        | 28            | 109           | 7      | 2        | 0.2      | 44         |
| 126997        | 94-09          | 26    | 26.2                     | ocsw          | Pv           | 38.95          | 39.7           | 0.75  | 0.1  | 0.2        | 2603          | 38            | 3      | 2        | 1.2      | 57         |
| 126998        | 94-09          | 27.05 | 27.42 BAST               | ch            | - •          | 39.7           | 40.55          | 0.85  | 3.64 | 1.8        | 6685          | 264           | 8      | 39       | 7.2      | 56         |
| 126999        | 94-09          | 27.42 | 31.95 DTFH               | acsw          | DV           | 40.55          | 41.85          | 1.3   | 5.02 | 2.6        | 2383          | 336           | 2      | 38       | 6.2      | 58         |
| 127000        | 94-09          | 31.95 | 39.75 PLBT               | desw          | r)<br>DV     | 41.85          | 42.6           | 0.75  | 0.06 | 0.3        | 82            | 54            | 4      | 2        | 0.8      | 48         |
| 128601        | 94-09          | 31.95 | 32.55                    | Scac          | pypb         | 42.6           | 43.85          | 1.25  | 0.03 | 0.2        | 19            | 44            | 2      | 2        | 0.4      | 38         |
| 128602        | 94-09          | 33.5  | 33.62                    | OCBX          | pypb         | 43.85          | 45.1           | 1.25  | 0.01 | 0.1        | 8             | 82            | 7      | 2        | 0.4      | 37         |
| 128603        | 94-09          | 37.75 | 38 35 DTFP               | ch            | r.r.         | 45.1           | 45.9           | 0.8   | 0.03 | 0.1        | 18            | 27            | 7      | 2        | 0.4      | 48         |
| 128604        | 94-09          | 38.35 | 38.75 ANFP               | ch            |              | 45.9           | 46.67          | 0.77  | 0.03 | 01         | 34            | 23            | 4      | 2        | 0.4      | 55         |
| 128605        | 94-09          | 38.75 | 397 DTFP                 | ch            |              | 46.67          | 47.5           | 0.83  | 0.03 | A I        | 8             | 174           | ,      | 2        | 0.4      | 41         |
| 128606        | 94-09          | 30    | 39.7                     | SC            | nw.          | 47.5           | 497            | 2.2   | 0.04 | 0.1<br>0.1 | 87            | 233           | 3      | 2        | 0.6      | 63         |
| 128607        | 94-09          | 397   | 40 34 OCBX               | 50            | PJ<br>PYAs   | 497            | 50.1           | 0.4   | 2.62 |            | 1015          | 483           | ģ      | 16       | 1.6      | 76         |
| 128608        | 94-09          | 40 34 | 40.65 DTEH               | SC            | Puas         | 50.1           | \$1.1          | 1     | 0.02 | 01         | 10,5          | 224           | 4      | 2        | 0.4      | 42         |
| 128609        | 94-09          | 40.54 | 41.85 OCBY               | 50            | PV           | 54.2           | 54.7           | 0.5   | 0.03 | 0.1        | 15            | 157           | 4      | 2        | 0.4      | 52         |
| 128610        | 94-09          | 40.05 | 46.62 DTEH               | 0000          |              | 58.15          | 58.8           | 0.65  | 0.03 | 0.1        | 1/1           | 121           | 7      | 2        | 0.4      | 63         |
| 128611        | 94-07          | 41.05 | 40.02 171111             | SC            | Py<br>PV     | 70.3           | 80.25          | 1.05  | 0.03 | 0.1        | . 143<br>50   | 340           | ,<br>, | ÷        | 4.V      | 41         |
| 120011        | 04.00          | 41.83 | 41.04                    | SCon          | py<br>m      | 90.35<br>90.35 | 80.35          | 1.03  | 1.03 | 1 1        | 2724          | 24)           | 5      | 458      | 0.0      | 1442       |
| 120012        | 94-09          | 45.1  | 40.02<br>40.75 DAST      | CCA           | hà           | 80.33          | 86.75          | 0.4   | 1.02 | 0.1        | , 3734<br>114 | 190           | 4      | 0.00     | ,<br>( 8 | 1442<br>64 |
| 120013        | 04 00          | 40.02 | 49.75 00.51              | QCarr         | pycp         | 95.7           | 94 09          | 0.79  | 0.03 | 0.1        | 1147          | 180           | 4      | 48       | 2.0      | 179        |
| 120014        | 74-07<br>04 00 | 49.43 | 47.73<br>50.04 ()("D.Y   | QCSW          | DV and       | 65.7<br>95.09  | 00.70          | 0.20  | 1.42 | 0.0        | 4794          | 67            | 2      | 40<br>23 | 2.2      | 120        |
| 128012        | 94-09          | 49.75 | 30.04 QCBA               |               | Ртср         | 87.78<br>86.5  | 80.2           | 0.22  | 1.1/ | 0.4        | 4/84          | 41            | 8      | 32       | 2        | 00<br>71   |
| 128010        | 94-09          | 50.04 | 00.39 BADI               | dcsm          | py<br>DV     | 00.2<br>96 76  | 00.73<br>97.36 | 0.55  | 0.07 | 0.2        | 123           | 32            | 14     | 0<br>(   | 0.4      | 01         |
| 128017        | 94-09          | 24.43 | 24.0                     | CH<br>Surt    | P I          | 00.13          | 67.30          | 0.01  | 0.21 | 0.2        |               | 44            | 3      | 6        | 0.0      | 21         |
| 128018        | 94-09          | 60.39 | 63.38 D1FH               | Sedi          |              | 87.30          | 00 76          | 0.04  | 0.03 | 0.1        | 51            | 151           | 4      | 0        | 0.4      | 40         |
| 120019        | 94-09          | 03.38 | 08.79 DADI<br>21.36 DEED | deam          | РУ           | 00<br>00 15    | 00.33          | 0.33  | 0.34 | 0.3        | 38/           | 149           | 4      | 10       | 1.2      | 01         |
| 128620        | 94-09          | 68.79 | 71.20 DIFHI              | e.            |              | 88.32          | 87.42          | 1.07  | 0.34 | 0.0        | 484           | 130           | 12     | 10       | 0.8      | 40         |
| 128621        | 94-09          | /1.26 | 72.01 DTFH2              | 20            |              | 89.42          | 90.03          | 0.01  | 0.70 | 0.0        | 1534          | 200           | 3      | 18       | 1.4      | 100        |
| 128622        | 94-09          | 72.01 | 73.16 DIFHI              |               |              | 90.03          | 91.33          | 1.52  | 0.81 | 0.7        | 1194          | 132           | 10     | 12       | 1.0      | 88         |
| 128623        | 94-09          | 71.16 | 74.65 DTFH2              |               |              | 91.35          | 92.34          | 0.99  | 1.61 | 0.6        | 5602          | 62            | . 13   | 20       | 17.4     | 24         |
| 131039        | 94-09          | 74.65 | 75.3 DTFH1               |               |              | 92,34          | 93.0           | 1.20  | 0.36 | 1          | 633           | 163           | 1      | 82       | 1.8      | 240        |
| 128624        | 94-09          | 75.3  | 77.85 DTFH2              |               |              | 93.6           | 95.35          | 1.75  | 0.03 | 0.1        | 56            | 301           | 5      | 2        | 1.2      | 51         |
| 128625        | 94-09          | 77.85 | 78.91 DTFH1              |               |              | 95.35          | 96.5           | 1.15  | 0.43 | 0.6        | 1048          | 385           | 7      | 14       | 2        | 75         |
| 128626        | 94-09          | 78.91 | 80.4 PLBT                |               | ру           | 95.5           | 97.7           | 2.2   | 0.18 | 0.9        | 352           | 401           | 5      | 8        | 1.6      | 75         |
| 128627        | 94-09          | 80.2  | 80.4                     | SCqc          | ру           | 97,7           | 99.5           | 1.8   | 0.03 | 0.1        | 28            | 223           | 5      | 6        | 0.8      | 70         |
| 128628        | 94-09          | 80.4  | 80.59 QCBX               |               | PYAs         | 99.5           | 100.15         | 0.65  | 0.37 | 0.7        | 1005          | 289           | 4      | 14       | 1.4      | 98         |
| 128629        | 94-09          | 80.59 | 86 PLBT                  | ycsw          | ру           | 100.15         | 101.3          | 1.15  | 0.06 | 0.2        | 375           | 164           | 3      | 10       | 1.4      | 97         |

|        |       |               | <u>GEOL</u> | OGICAL ]    | DATA          |       | AS     | SAY DAT   | Δ     |             |        |         |        |      |      |      |      |
|--------|-------|---------------|-------------|-------------|---------------|-------|--------|-----------|-------|-------------|--------|---------|--------|------|------|------|------|
| REF.NO | DDH   | FROM          | <u>T0</u>   | <u>ROCK</u> | <u>ALTRTN</u> | MINRL | FROM   | <u>T0</u> | WIDTH | <u>GOLD</u> | SILVER | ARSENIC | COPPER | MOLY | LEAD | ANTI | ZINC |
| 128630 | 94-09 | 85.5          | 85.7        |             | SC            | ру    | 101.3  | 101.75    | 0.45  | 3.17        | 1.1    | 4345    | 202    | 12   | 22   | 3.2  | 89   |
| 128631 | 94-09 | 85.7          | 86          |             | casw          | Ру    | 101.75 | 103.1     | 1.35  | 0.24        | 0.2    | 1068    | 155    | 3    | 10   | 1.2  | 78   |
| 128632 | 94-09 | 86            | 86.75 (     | QTBX        | SC            | PyAs  | 103.1  | 104.3     | 1.2   | 0.28        | 0.2    | 779     | 223    | 7    | 2    | 1    | 83   |
| 128633 | 94-09 | 86.75         | 87.36 I     | )TFH        | SCCA          | Ру    | 104.3  | 106.3     | 2     | 0.03        | 0.1    | 61      | 84     | 7    | 2    | 0.4  | 57   |
| 128634 | 94-09 | 87.36         | 87.42 E     | 3AST        | qt            |       | 106.3  | 107.05    | 0.75  | 0.03        | 0.5    | 201     | 306    | 8    | 8    | 1.2  | 102  |
| 128635 | 94-09 | 87.9          | 88.42       |             | SCca          | Ру    | 107.05 | 108.7     | 1.65  | 0.4         | 0.1    | 1426    | 64     | 6    | 4    | 0.8  | 65   |
| 128636 | 94-09 | 88.42         | 89.4 (      | QTBX        | Ca            | PyAs  | 108.7  | 110.25    | 1.55  | 1.09        | 0.6    | 3482    | 96     | 11   | 17   | 1.4  | 50   |
| 128637 | 94-09 | 89.4          | 90.03 E     | BAST        | qcsw          | pyas  | 110.25 | 111.05    | 0.8   | 2.07        | 0.7    | 11,700  | 103    | 8    | 16   | 4 44 | 76   |
| 128638 | 94-09 | 90.03         | 91.45 (     | QCSW        |               | Ру    | 111.05 | 111.35    | 0.3   | 4.02        | 0.9    | 23,900  | 76     | 10   | 18   | 1    | 35   |
| 128639 | 94-09 | 91. <b>45</b> | 92.34 (     | )TVN        |               | PyAS  | 111.35 | 112.25    | 0.9   | 0.32        | 0.7    | 567     | 173    | 6    | 24   | 0.2  | 104  |
| 128640 | 94-09 | 92.34         | 93.6 Q      | 2CSW        | Scca          | РУ    | 112.25 | 113.25    | 1     | 0.03        | 0.2    | 93      | 99     | 5    | 2    | 0.2  | 47   |
| 128641 | 94-09 | 93.6          | 95.4 E      | 3AST        | scca          | РУ    | 116.9  | 117.9     | 1     | 0.03        | 0.1    | 91      | 74     | 3    | 2    | 0.2  | 59   |
| 128642 | 94-09 | 95.4          | 96.5 Q      | QCSW        | SC            | Ру    | 117.9  | 118.59    | 0.69  | 0.08        | 0.2    | 786     | 52     | 6    | 2    | 0.2  | 66   |
| 128643 | 94-09 | 96.5          | 99.5 P      | PLBT        | qeva          | ру    | 118.59 | 120.12    | 1.53  | 1.77        | 0.7    | 4524    | 123    | 5    | 14   | 0.2  | 75   |
| 128644 | 94-09 | 99.5          | 100.1 (     | QCSW        | SCCA          | Ру    | 120.12 | 121.55    | 1.43  | 5.81        | 2.6    | 8147    | 239    | 17   | 36   | 0.4  | 110  |
| 128645 | 94-09 | 100.1         | 103.65 E    | BAST        |               |       | 121.55 | 122.55    | 1     | 0.18        | 0.1    | 626     | 105    | 4    | 2    | 0.2  | 94   |
| 128646 | 94-09 | 100.1         | 103.1       |             | SCCB          | PY    | 122.55 | 123.5     | 0.95  | 0.03        | 0.1    | 38      | 83     | 9    | 2    | 0.2  | 62   |
| 128647 | 94-09 | 101.39        | 101.63      |             | QCBX          | PY    | 123.5  | 124.05    | 0.55  | 0.56        | 0.1    | 3045    | 72     | 6    | 6    | 0.2  | 55   |
| 128648 | 94-09 | 103.65        | 104 I       | )THF        | SCCH          | ру    | 124.05 | 125.35    | 1.3   | 0.03        | 0.1    | 28      | 93     | 7    | 2    | 0.2  | 64   |
| 128649 | 94-09 | 104           | 106.5 E     | 3AST        | SCCH          | ру    | 125.35 | 126.05    | 0.7   | 0.17        | 0.1    | 1218    | 93     | 5    | 2    | 0.2  | 91   |
| 128650 | 94-09 | 106.5         | 107.05 Q    | 2CSW        | SCCA          | PYzn  | 126.05 | 126.9     | 0.85  | 1.77        | 0.3    | 6616    | 3      | 8    | 16   | 0.2  | 69   |
| 129001 | 94-09 | 107.05        | 107.05 F    | FALT        |               |       | 126.9  | 127.9     | 1     | 1.42        | 1.3    | 6602    | 44     | 6    | 16   | 2.2  | 95   |
| 129002 | 94-09 | 107.05        | 108.75 I    | JIFH        | QCSW          | PY    | 127.9  | 129.25    | 1.35  | 0.16        | 0.2    | 1055    | 28     | 5    | 4    | 0.2  | 92   |
| 129003 | 94-09 | 108.75        | 111.05 🤇    | QCSW        | SC            | PY    | 129.25 | 130.5     | 1.25  | 0.03        | 0.2    | 53      | 18     | 3    | 4    | 0.2  | 49   |
| 129004 | 94-09 | 111.05        | 111.35 (    | QTBX        |               | PY    | 130.5  | 131.7     | 1.2   | 0.03        | 0.2    | 27      | 29     | 6    | 2    | 0.2  | 63   |
|        | 94-09 | 111.35        | 112.01 E    | BAST        | SCCa          | Ру    |        |           |       |             |        |         |        |      |      |      |      |
|        | 94-09 | 112.01        | 117.8 I     | OTFH        | qevn          | ру    |        |           |       |             |        |         |        |      |      |      |      |
|        | 94-09 | 117.8         | 118.3 I     | )TFP        | SCQC          | ру    |        |           |       |             |        |         |        |      |      |      |      |
|        | 94-09 | 118.3         | 118.59 I    | OTFH        | SCQC          | ру    |        |           |       |             |        |         |        |      |      |      |      |
|        | 94-09 | 118.59        | 120.12 (    | QCSW        | SCCA          | ру    |        |           |       |             |        |         |        |      |      |      |      |
|        | 94-09 | 120.12        | 121.55 (    | <b>СВХ</b>  |               | PyAs  |        |           |       |             |        |         |        |      |      |      |      |
|        | 94-09 | 121.55        | 121.85 E    | BAST        | SC            | ру    |        |           |       |             |        |         |        |      |      |      |      |
|        | 94-09 | 121.85        | 126.1 I     | DTFH        | Sc            |       |        |           |       |             |        |         |        |      |      |      |      |
|        | 94-09 | 126.1         | 126.75 (    | QCBX        |               | PyAS  |        |           |       |             |        |         |        |      |      |      |      |
|        | 94-09 | 126.75        | 132.5 E     | BAST        | Seqe          | pyas  |        |           |       |             |        |         |        |      |      |      |      |
|        | 94-09 | 132.5         | 132.9 [     | DTFP        |               |       |        |           |       |             |        |         |        |      |      |      |      |
|        | 94-09 | 132.9         | 135.03 E    | BAST        | qesw          | роср  |        |           |       |             |        |         |        |      |      |      |      |

|               |            |       | <u>GEOLOGICAL</u>     | DATA   |       | <u>AS</u> | SAY DATA | •     |             |               |                |        |      |      |      |      |
|---------------|------------|-------|-----------------------|--------|-------|-----------|----------|-------|-------------|---------------|----------------|--------|------|------|------|------|
| <u>REF.NO</u> | <u>DDH</u> | FROM  | <u>TO</u> <u>ROCK</u> | ALTRIN | MINRL | FROM      | TO       | NIDTH | <u>Gold</u> | <u>SILVER</u> | <b>ARSENIC</b> | COPPER | MOLY | LEAD | ANTI | ZINC |
| 129116 9      | 94-10      | 0     | 9.25 CASG             |        |       | 13.35     | 13.85    | 0.5   | 0.03        | 0.1           | 35             | 184    | 4    | 8    | 0.2  | 47   |
| 129117        | 94-10      | 9.25  | 9.75 TTLL             |        |       | 13.85     | 14.2     | 0.35  | 0.13        | 0.2           | 1484           | 104    | 5    | 12   | 0.2  | 75   |
| 129118        | 94-10      | 9.75  | 12 BAST               | qt     |       | 14.2      | 14.7     | 0.5   | 0.03        | 0.1           | 32             | 93     | 6    | 4    | 0.2  | 33   |
| 129119        | 94-10      | 12    | 12.25 DTFP            |        |       | 24.2      | 24.73    | 0.53  | 0.03        | 0.2           | 34             | 296    | 4    | 10   | 0.2  | 46   |
| 129120        | 94-10      | 12.25 | 13.6 BAST             |        | ру    | 24.73     | 24.9     | 0.17  | 0.03        | 0.1           | 45             | 45     | 6    | 6    | 0.2  | 45   |
| 129121        | 94-10      | 13.6  | 14.72 DTFH            |        |       | 24.9      | 25.1     | 0.2   | 0.03        | 0.1           | 43             | 24     | 6    | 8    | 0.2  | 52   |
| 129122        | 94-10      | 13.85 | 14.2                  | SCca   |       | 25.1      | 25.6     | 0.5   | 0.03        | 0.1           | 9              | 40     | 6    | 6    | 0.2  | 43   |
| 129123        | 94-10      | 14.1  | 14.16                 | QTBX   | Pyss  | 31        | 32       | 1     | 0.03        | 0.1           | 19             | 194    | 4    | 8    | 0.2  | 46   |
| 129124        | 94-10      | 14.72 | 14.94 DTHF            |        |       | 32        | 32.2     | 0.2   | 0.03        | 0.2           | 129            | 206    | 3    | 12   | 0.2  | 95   |
| 129125 9      | 94-10      | 14.94 | 15.37 DTFH            |        |       | 32.2      | 32.4     | 0.2   | 2.21        | 1.4           | 3843           | 220    | 5    | 36   | 1.2  | 85   |
| 129126        | 94-10      | 15.37 | 16.26 BAST            | qtcx   | ру    | 32.4      | 32.54    | 0.14  | 4.54        | 2.7           | 6377           | 142    | 6    | 42   | 2    | 52   |
| 129127        | 94-10      | 16.26 | 16.92 DTFH            |        | ру    | 32.54     | 32.8     | 0.26  | 4.72        | 1.9           | 16,400         | 88     | 5    | 41   | 2    | 39   |
| 129128        | 94-10      | 16.92 | 19.73 BAST            | qtcx   | ру    | 32.8      | 33.1     | 0.3   | 0.18        | 0.8           | 445            | 210    | 4    | 24   | 0.4  | 108  |
| 129129        | 94-10      | 19.73 | 19.96 DTFP            |        | ру    | 33.1      | 33.36    | 0.26  | 30.09       | 15.2          | 843            | 18     | 8    | 14   | 0.2  | 49   |
| 129130        | 94-10      | 19.96 | 20.32 BAST            | qtcx   | ру    | 33.36     | 33.6     | 0.24  | 0.57        | 0.6           | 1002           | 129    | 2    | 22   | 0.2  | 102  |
| 129131        | 94-10      | 20.32 | 21.15 DTHP            | SC .   | ру    | 33.6      | 34.7     | 1.1   | 0.03        | 0.1           | 49             | 133    | 3    | 6    | 0.2  | 50   |
| 129132        | 94-10      | 21.15 | 22.2 BAST             | qtcx   | ру    | 34.7      | 35.7     | 1     | 0.03        | 0.1           | 34             | 66     | 4    | 10   | 0.2  | 40   |
| 129133        | 94-10      | 22.2  | 22.56 DTFP            | qtaw   | ру    | 35.7      | 36       | 0.3   | 0.03        | 0.1           | 33             | 176    | 4    | 8    | 0.2  | 51   |
| 129134 9      | 94-10      | 22.56 | 24.73 BAST            | acqt   | Py    | 36        | 36.6     | 0.6   | 0.03        | 0.1           | 11             | 113    | 4    | 8    | 0.2  | 40   |
| 129135 9      | 94-10      | 24.73 | 24.86 QCBX            |        |       | 36.6      | 37.2     | 0.6   | 0.03        | 0.1           | 1226           | 109    | 4    | 6    | 0.2  | 42   |
| 129136 9      | 94-10      | 24.86 | 29.23 DTFP            |        |       | 40        | 41       | 1     | 0.11        | 0.1           | 13             | 60     | 4    | 8    | 0.2  | 56   |
| 129137 9      | 94-10      | 25.05 | 25.05                 | SCCA   |       | 41        | 41.25    | 0.25  | 0.03        | 0.2           | 65             | 89     | 3    | 10   | 0.2  | 79   |
| 129138 9      | 94-10      | 29.23 | 29.99 ANFP            |        |       | 41.25     | 41.4     | 0.15  | 0.03        | 0.4           | 55             | 138    | 6    | 16   | 0.2  | 79   |
| 129139 9      | 94-10      | 29.99 | 32.2 BAST             |        | РУ    | 41.4      | 41.53    | 0.13  | 0.03        | 0.1           | 52             | 56     | 11   | 8    | 0.2  | 74   |
| 129140 9      | 94-10      | 32.2  | 32.8 QCBX             |        | РуАв  | 41.53     | 41.64    | 0.11  | 0.03        | 0.1           | 110            | 137    | 2    | 14   | 0.2  | 92   |
| 129141        | 94-10      | 32.8  | 33.1 BAST             | SCCA   | РУ    | 41.64     | 42.1     | 0.46  | 0.03        | 0.1           | 60             | 139    | L    | 10   | 0.2  | 99   |
| 129142 9      | 94-10      | 33.1  | 33.36 QTBX            |        | РУ    | 42.1      | 42.8     | 0.7   | 0.03        | 0.1           | 17             | 55     | 5    | 12   | 02   | 52   |
| 129143        | 94-10      | 33.36 | 34.7 BAST             |        |       | 42.8      | 43.8     | 1     | 0.03        | 0.1           | 17             | 135    | 3    | 8    | 0.2  | 66   |
| 129144        | 94-10      | 33.36 | 34.14                 | SCCA   |       | 43.8      | 44.4     | 0.6   | 0.03        | 0.1           | 24             | 267    | 2    | 10   | 0.2  | 61   |
| 129145        | 94-10      | 34.17 | 34.7                  | Ch     |       | 44.4      | 44.9     | 0.5   | 0.03        | 0.1           | 17             | 217    | 1    | 8    | 0.2  | 55   |
| 129146        | 94-10      | 34.7  | 35.73 ANHP            | chac   |       | 46        | 46.5     | 0.5   | 0.03        | 0.1           | 53             | 94     | 2    | 18   | 0.2  | 59   |
| 129147        | 94-10      | 35.73 | 35.99 BAST            | qt     |       | 46.5      | 47       | 0.5   | 0.03        | 0.1           | 19             | 170    | 1    | 10   | 0.2  | 66   |
| 129148        | 94-10      | 35.99 | 36.56 ANHP            | chsc   |       | 47        | 47.5     | 0.5   | 0.03        | 0.1           | 17             | 120    | 1    | 6    | 0.2  | 65   |
| 129149        | 94-10      | 36.56 | 41.17 DTHF            | qtsw   |       | 47.5      | 48       | 0.5   | 28.02       | 1.1           | 49             | 103    | 5    | 4    | 0.2  | 68   |
| 129150        | 94-10      | 36.56 | 37.1                  | SCC    |       | 48        | 48.4     | 0.4   | 0.03        | 0.1           | 85             | 156    | 1    | 10   | 0.2  | 80   |
| 129151        | 94-10      | 40.4  | 40.6                  | Scqv   |       | 48.4      | 48.8     | 0.4   | 0.04        | 0.1           | 249            | 87     | 1    | 12   | 0.2  | 80   |
| 129152        | 94-10      | 41.17 | 41.64 BAST            | SCCA   | ру    | 48.8      | 49.6     | 0.8   | 0.03        | 0.1           | 18             | 171    | 1    | 6    | 0.2  | 63   |
| 129153 9      | 94-10      | 41.64 | 42.1 QCBX             |        | РУ    | 49.6      | 50.2     | 0.6   | 0.03        | 0.1           | 12             | 154    | 4    | 2    | 0.2  | 51   |
| 129154 9      | 94-10      | 42.1  | 42.77 DTFH            | SCCA   | РУ    | 50.2      | 50.3     | 0.1   | 0.03        | 0.1           | 39             | 202    | 4    | 2    | 0.2  | 72   |
| 129155 9      | 94-10      | 42.77 | 57.28 PLBT            |        | РУ    | 50.3      | 51.4     | 1.1   | 0.03        | 0.1           | 11             | 176    | 3    | 2    | 0.2  | 49   |
| 129156        | 94-10      | 42.77 | 44.5                  | QcSw   |       | 51.4      | 51.5     | 0.1   | 0.03        | 0.1           | 9              | 190    | 4    | 2    | 0.2  | 46   |
| 129157        | 94-10      | 44.5  | 44.65                 | QCVN   |       | 51.5      | 52       | 0.5   | 0.03        | 0.1           | 4              | 243    | 6    | 2    | 0.2  | 44   |
| 129158        | 94-10      | 44.5  | 50.8                  | QcSw   |       | 63        | 64       | 1     | 0.03        | 0.1           | 7              | 222    | 4    | 2    | 0.2  | 57   |
| 129159        | 94-10      | 50.8  | 57.28                 | qtch   |       | 64        | 64.4     | 0.4   | 0.03        | 0.1           | 24             | 106    | 4    | 2    | 0.2  | 57   |
| 129160 9      | 94-10      | 57.28 | 59.62 DTFH            | qcac   |       | 64.4      | 64.65    | 0.25  | 0.04        | 0.2           | 226            | 55     | 5    | 6    | 0.2  | 68   |
| 129161 9      | 94-10      | 59.62 | 64.4 PLBT             | qcsc   | руср  | 64.65     | 65.23    | 0.58  | 0.03        | 0.2           | 98             | 34     | 6    | 2    | 0.2  | 35   |
| 129162 9      | 94-10      | 64.4  | 65.23 DTHP            | qcsc   |       | 65.23     | 65.4     | 0.17  | 0.03        | 0.1           | 17             | 49     | 6    | 2    | 0.2  | 31   |
| 129163        | 94-10      | 64.4  | 64.7                  | ScCa   | Азру  | 65.4      | 66       | 0.6   | 0.03        | 0.1           | 10             | 107    | 4    | 2    | 0.2  | 48   |

, . •

|               |       |        | GEOI         | LOGICAL       | DATA          |       | AS    | SAY DATA     | ł            |             |               |         |        |      |             |      |      |
|---------------|-------|--------|--------------|---------------|---------------|-------|-------|--------------|--------------|-------------|---------------|---------|--------|------|-------------|------|------|
| <u>REF.NO</u> | DDH   | FROM   | TO           | ROCK          | <u>ALTRTN</u> | MINRL | FROM  | TO           | <u>WIDTH</u> | <u>GOLD</u> | <u>SILVER</u> | ARSENIC | COPPER | MOLY | <u>LEAD</u> | ANTI | ZINC |
| 129164        | 94-10 | 65.23  | 65.39        | ANFP          | ScCa          |       | 66    | 66.75        | 0.75         | 0.04        | 0.4           | 43      | 353    | 5    | 2           | 0.2  | 84   |
| 129165        | 94-10 | 65.39  | 65.23        | DTHP          | qcsc          |       | 66.75 | 67.7         | 0.95         | 0.03        | 0.1           | 13      | 190    | 4    | 2           | 0.2  | 56   |
| 129166        | 94-10 | 65.23  | 67.38        | BAST          | qtsc          |       | 67.7  | 67.9         | 0.2          | 0.03        | 0.2           | 153     | 81     | 6    | 4           | 0.2  | 50   |
| 129167        | 94-10 | 67.38  | 67.75        | DTFH          | ScCa          |       | 67.9  | 68.1         | 0.2          | 0.03        | 0.1           | 931     | 26     | 4    | 4           | 0.2  | 33   |
| 129168        | 94-10 | 67.75  | 67.86        | ANFP          | QCSC          |       | 68.1  | 68.8         | 0.7          | 0.03        | 0.1           | 66      | 80     | 4    | 2           | 0.2  | 53   |
| 129169        | 94-10 | 67,86  | 68.83        | DTFH          | ScCn          |       | 68.8  | 69.1         | 0.3          | 0.03        | 0.1           | 36      | 129    | 3    | 2           | 0.2  | 62   |
| 129170        | 94-10 | 68.83  | 69.2         | BAST          | ScCa          | pyes  | 69.1  | 69.76        | 0.66         | 0.18        | 0.3           | 509     | 60     | 6    | 6           | 0.2  | 56   |
| 129171        | 94-10 | 69.2   | 69.76        | DTFH          | SCCA          | ру    | 69.76 | 70.04        | 0.28         | 0.94        | 0.7           | 473     | 15     | 8    | 8           | 0.2  | 10   |
| 129172        | 94-10 | 69.76  | 70.04        | QCBX          |               | pyas  | 70.04 | 70.2         | 0.16         | 1.31        | 0.3           | 1070    | 18     | 8    | 18          | 0.2  | 18   |
| 129173        | 94-10 | 70.04  | 70.21        | QTBX          |               | Py    | 70.2  | 70.6         | 0.4          | 1.58        | 1.2           | 1510    | 150    | 4    | 44          | 0.2  | 86   |
| 129174        | 94-10 | 70.21  | 72           | d <b>tf</b> # | SCCA          | ру    | 70.6  | 71.3         | 0.7          | 0.66        | 0.9           | 1126    | 166    | 6    | 19          | 0.2  | 73   |
| 129175        | 94-10 | 72     | 72.5         | QTBX          |               | PyAS  | 71.3  | 72           | 0.7          | 0.18        | 0.6           | 1074    | 74     | 5    | 4           | 0.4  | 70   |
| 129176        | 94-10 | 72.5   | 74.22        | DTFH          | ScCa          | РУ    | 72    | 72.4         | 0.4          | 1.74        | 0.5           | 8010    | 42     | 19   | 24          | 1    | 32   |
| 129177        | 94-10 | 74.22  | 76.9         | BAST          | qtch          |       | 72.4  | 72.7         | 0.3          | 1.47        | 0.6           | 13,800  | 82     | 9    | 16          | 2    | 58   |
| 129178        | 94-10 | 76.9   | 77.57        | BAST          | SCCA          |       | 72.7  | 73.4         | 0.7          | 0.12        | 0.3           | 776     | 75     | 7    | 10          | 0.6  | 53   |
| 129179        | 94-10 | 77.57  | 79.22        | DTFH          | SCC           |       | 73.4  | 74.2         | 0.8          | 0.17        | 0.2           | 653     | 86     | 4    | 2           | 0.2  | 49   |
| 129180        | 94-10 | 79.22  | 79.95        | BAST          | SCCA          |       | 74.2  | 74.7         | 0.5          | 0.03        | 0.1           | 45      | 172    | 10   | 2           | 0.2  | 60   |
| 129181        | 94-10 | 79.95  | 80.47        | DTFH          | SCCA          |       | 76.4  | 76.9         | 0.5          | 0.03        | 0.1           | 24      | 170    | 5    | 2           | 0.2  | 65   |
| 129182        | 94-10 | 80.47  | 89.61        | BAST          |               |       | 76.9  | 77.3         | 0.4          | 0.39        | 0.7           | 1492    | 190    | 5    | 12          | 0.2  | 101  |
| 129183        | 94-10 | 80.47  | 80.7         |               | SCCA          |       | 77.3  | 77.4         | 0.1          | 0.17        | 0.8           | 164     | 56     | 5    | 22          | 0.2  | 163  |
| 129184        | 94-10 | 81.13  | 81.9         |               | SCCA          |       | 77.4  | 78.1         | 0.7          | 0.21        | 0.2           | 530     | 93     | 4    | 22          | 0.2  | 126  |
| 129185        | 94-10 | 82.2   | <b>83</b> .9 |               | QcSw          |       | 78.1  | <b>79</b> .1 | 1            | 0.03        | 0.1           | 47      | 54     | 6    | 2           | 0.2  | 66   |
| 129186        | 94-10 | 86.1   | 87           |               | QCcx          |       | 79.1  | 80.1         | 1            | 0.03        | 0.3           | 72      | 66     | 6    | 2           | 0.2  | 86   |
| 129187        | 94-10 | 87     | 88.8         |               | SCqv          | pyas  | 80.1  | 81.1         | 1            | 0.03        | 0.2           | 51      | 102    | 7    | 2           | 0.2  | 60   |
| 129188        | 94-10 | 89     | 89.3         |               | SCCA          |       | 81.1  | 82.1         | 1            | 0.03        | 0.7           | 82      | 126    | 6    | 2           | 0.2  | 79   |
| 129189        | 94-10 | 89.3   | 89.73        | QCBX          |               |       | 82.1  | 83.1         | 1            | 0.03        | 0.6           | 112     | 149    | 2    | 26          | 0.2  | 129  |
| 129190        | 94-10 | 89.73  | 91.19        | ANFP          | qvsc          |       | 83.1  | 84.1         | 1            | 0.04        | 0.4           | 107     | 179    | 4    | 2           | 0.2  | 95   |
| 129191        | 94-10 | 91.19  | 91.3         | BAST          | SCCA          |       | 84.1  | 85.1         | 1            | 0.03        | 0.1           | 6       | 137    | 2    | 2           | 0.2  | 34   |
| 129192        | 94-10 | 91.3   | 91.42        | QTVN          |               | Py    | 85.1  | 86.1         | 1            | 0.03        | 0.1           | 19      | 126    | 4    | 2           | 0.2  | 45   |
| 129193        | 94-10 | 91.42  | 101.83       | BAST          |               | РУ    | 86.1  | 87.1         | 1            | 0.03        | 0.2           | 62      | 102    | 3    | 2           | 2    | 58   |
| 129194        | 94-10 | 91.42  | 91.53        |               | SCCA          |       | 87.1  | 88.1         | 1            | 0.18        | 0.4           | 1416    | 110    | 2    | 2           | 0.4  | 66   |
| 129195        | 94-10 | 95.7   | 99.2         |               | QcSw          |       | 88.1  | 88.8         | 0.7          | 1.7         | 1             | 3508    | 96     | 5    | 12          | 1.2  | 77   |
| 129196        | 94-10 | 101.83 | 103.22       | DTFH          | qtsw          | РУ    | 88.8  | 89.3         | 0.5          | 0.6         | 0.1           | 163     | 78     | 2    | 2           | 1    | 59   |
| 129197        | 94-10 | 103.22 | 103.7        | BAST          | SCCB          |       | 89.3  | 89.73        | 0.43         | 2.68        | 0.6           | 7738    | 65     | 3    | 14          | 2.4  | 148  |
| 129198        | 94-10 | 103.7  | 105.42       | DTFH          | scqv          |       | 89.73 | 90.5         | 0.77         | 0.03        | 0.1           | 33      | 3      | 3    | 2           | 3.2  | 29   |
| 129199        | 94-10 | 105.42 | 110.65       | DTFH2         |               |       | 90.5  | 91           | 0.5          | 0.03        | 0.1           | 770     | 46     | 4    | 2           | 1.8  | 168  |
| 129200        | 94-10 | 110.65 | 110.95       | DTFHI         |               |       | 91    | 91.3         | 0.3          | 0.03        | 0.1           | 69      | 4      | 2    | 2           | 1.6  | 49   |
| 129201        |       |        |              |               |               |       | 91.3  | 91.45        | 0.15         | 3.28        | 1.2           | 10,200  | 177    | 4    | 12          | 3.2  | 195  |
| 129202        |       |        |              |               |               |       | 91.45 | 92           | 0.55         | 0.08        | 0.1           | 266     | 104    | 2    | 2           | 2    | 40   |
| 129203        |       |        |              |               |               |       | 102.5 | 103          | 0.5          | 0.03        | 0.1           | 58      | 9      | 4    | 2           | 0.8  | 33   |
| 129204        |       |        |              |               |               |       | 103   | 103.4        | 0.4          | 0.03        | 0.2           | 1034    | 147    | 3    | 12          | 0.8  | 80   |
| 129205        |       |        |              |               |               |       | 103.4 | 103.8        | 0.4          | 0.03        | 0.1           | 193     | 112    | 4    | 2           | 0.8  | 52   |
| 129206        |       |        |              |               |               |       | 103.8 | 104.3        | 0.5          | 0.03        | 0.1           | 16      | 51     | 4    | 2           | 0.4  | 32   |

,

|               |        | GEG         | DLOGICAL | DATA          |              | <u>AS:</u> | SAY DAT   | A     |      |        |                |            |      |      |      |      |
|---------------|--------|-------------|----------|---------------|--------------|------------|-----------|-------|------|--------|----------------|------------|------|------|------|------|
| REF.NO DDI    | H FROM | <u>TO</u>   | ROCK     | <u>ALTRTN</u> | <u>MINRL</u> | FROM       | <u>T0</u> | WIDTH | GOLD | SILVER | <b>ARSENIC</b> | COPPER     | MOLY | LEAD | ANII | ZINC |
| 129207 94-11  |        | 0 9.7       | 5 CASG   |               |              | 27.2       | 27.7      | 0.5   | 0.03 | 0.1    | 7              | 37         | 4    | 2    | 0.4  | 48   |
| 129208 94-11  | 9.1    | 75 14.3     | 7 TILL   |               |              | 27.7       | 28.7      | 1     | 0.03 | 0.1    | 14             | 51         | 3    | 2    | 0.4  | 45   |
| 129209 94-11  | 14     | .7 16.4     | 7 DTHP   | Շհ            | mg           | 28.7       | 29.7      | 1     | 0.03 | 0.1    | 6              | 224        | 2    | 2    | 0.2  | 53   |
| 129210 94-11  | 16.4   | 17 16.5     | 5 FALT   | CHqı          | руср         | 29.7       | 30.7      | 1     | 0.03 | 0.1    | 4              | 48         | 2    | 2    | 0.2  | 39   |
| 129211 94-11  | 16     | .5 18.45    | DTHF     | qtex          | pyng         | 30.7       | 31.7      | 1     | 0.03 | 0.1    | 5              | 49         | 3    | 2    | 0.2  | 48   |
| 129212 94-11  | 18.4   | 45 27.3     | DTFH     | qeex          | ру           | 31.7       | 32.7      | 1     | 0.03 | 0.1    | 7              | 31         | 2    | 2    | 0.2  | 49   |
| 129213 94-11  | 27     | .7 33.23    | SZ .     | CHqc          |              | 32.7       | 33.23     | 0.53  | 0.03 | 0.1    | 11             | 58         | 2    | 2    | 0.2  | 64   |
| 129214 94-11  | 27     | 7 28.6      | 5        | qcsw          |              | 33.23      | 33.7      | 0.47  | 0.03 | 0.1    | 4              | 33         | 1    | 2    | 0.4  | 34   |
| 129215 94-11  | 28.0   | 55 31.45    | 5        | CHqc          | ру           | 44.65      | 45.15     | 0.5   | 0.03 | 0.1    | 1              | 13         | 3    | 2    | 0.2  | 36   |
| 129216 94-11  | 33.2   | 23 33.3     | DTHP     | CHQc          |              | 45.15      | 45.35     | 0.2   | 0.04 | 0.1    | 34             | 207        | 19   | 2    | 0.2  | 31   |
| 129217 94-11  | 33     | .3 34.1     | DTFP     | chąc          |              | 45.35      | 45.85     | 0.5   | 0.03 | 0.1    | 6              | 44         | 5    | 2    | 0.2  | 30   |
| 129218 94-11  | 34     | .7 35.15    | 5 DTHP   | CHqv          | mg           | 47.2       | 47.7      | 0.5   | 0.03 | 0.1    | 7              | 21         | 6    | 2    | 0.2  | 33   |
| 129219 94-11  | 35.    | 15 39       | ) DTFP   | Ch            | ру           | 47.7       | 47.9      | 0.2   | 0.03 | 0.1    | 6              | 72         | 6    | 4    | 0.2  | 19   |
| 129220 94-11  | :      | <b>62.2</b> | DTHP     | 1CH           | mg           | 47.9       | 48.4      | 0.5   | 0.03 | 0.1    | 10             | 48         | 39   | 2    | 0.2  | 25   |
| 129221 94-11  | 45     | .2 45.28    | 3        | qesw          | Ру           | 62.3       | 62.8      | 0.5   | 0.03 | 0.1    | 8              | 40         | 5    | 2    | 0.2  | 29   |
| 129222 94-11  | 47.1   | 85 47.9     | •        | qtsw          |              | 62.8       | 63        | 0.2   | 0.03 | 0.1    | 42             | 35         | 17   | 2    | 0.2  | 47   |
| 129223 94-11  | 52.6   | 57 55.81    | 7        | Seqc          |              | 63         | 63.5      | 0.5   | 0.03 | 0.1    | 7              | 57         | 5    | 2    | 0.2  | 29   |
| 129224 94-11  | 62.3   | 21 68.2     | DTHP     | 2Ch           | mg           | 69.6       | 70.1      | 0.5   | 0.03 | 0.1    | 10             | 53         | 4    | 2    | 0.2  | 46   |
| 129225 94-11  | 68     | .2 75.95    | DTFH     | chạc          |              | 70.1       | 70.3      | 0.2   | 0.03 | 0.1    | 49             | 51         | 2    | 4    | 0.2  | 35   |
| 129226 94-11  | 70.3   | 22 70.26    | 5        | QTBX          | ру           | 70.3       | 70.8      | 0.5   | 0.03 | 0.1    | 5              | 46         | 7    | 2    | 0.2  | 35   |
| 129227 94-11  |        | 72 72.57    | 7        | Qt            |              | 85.4       | 85.9      | 0.5   | 0.03 | 0.1    | 13             | 38         | 5    | 2    | 0.2  | 35   |
| 129228 94-11  | 72.5   | 57 74.6     | i        | Seqv          |              | 85.9       | 86.1      | 0.2   | 0.03 | 0.1    | 46             | 43         | 4    | 2    | 0.2  | 39   |
| 129229 94-11  | 75.    | 95 92.95    | DTHF     | l gcsw        | mg           | 86.1       | 86.6      | 0.5   | 0.03 | 0.1    | 56             | 7 <b>7</b> | 4    | 2    | 02   | 47   |
| 129230 94-11  | 92.5   | 95 93.8     | B DTHF   | 2             |              | 89.5       | 90        | 0.5   | 0.03 | 0.1    | 14             | 66         | 5    | 2    | 0.2  | 45   |
| 129231 94-11  | 93     | .8 105.58   | B DTHF   | l fech        | mg           | 90         | 90.2      | 0.2   | 0.03 | 0.1    | 103            | 42         | 4    | 2    | 0.2  | 65   |
| 129232 94-11  | 100    | .2 102.2    | 2        | Scca          | ру           | 90.2       | 90.7      | 0.5   | 0.03 | 0.1    | 18             | 55         | 4    | 2    | 0.2  | 43   |
| 129233 94-11  | 102    | .2 102.75   | 5        | SC            | tum          | 99.7       | 100.2     | 0.5   | 0.03 | 0.1    | 10             | 43         | 6    | 2    | 0.2  | 32   |
| 129234 94-11  | 102.1  | 75 105.4    | Ļ        | Scce          |              | 100.2      | 101.1     | 0.9   | 0.03 | 0.2    | 46             | 75         | 5    | 8    | 1    | 59   |
| 129235 94-11  | 105    | .4 105.58   | 3        | SCca          |              | 101.1      | 102       | 0.9   | 0.03 | 0.1    | 44             | 68         | 6    | 4    | 0.6  | 63   |
| 129236 94-11  | 105.5  | 58 105.73   | 7 SZ     | QCSW          | pyas         | 102        | 102.9     | 0.9   | 0.03 | 0.1    | 9              | 110        | 5    | 8    | 0.4  | 50   |
| 129237 94-11  | 105.1  | 77 106.8    | 3 DTHF   | SCca          | ру           | 102.9      | 103.4     | 0.5   | 0.03 | 0.1    | 9              | 94         | 4    | 2    | 0.4  | 48   |
| 129238 94-11  | 106    | .8 107.05   | 5 SZ     | QCSW          | PY           | 105        | 105.55    | 0.55  | 0.03 | 0,3    | 46             | 135        | 4    | 2    | 0.2  | 52   |
| 129239 94-11  | 107.   | 05 107.94   | DTHF     | SCca          | ру           | 105.55     | 105.8     | 0.25  | 0.07 | 1.2    | 937            | 210        | 5    | 18   | 16   | 57   |
| 129240 94-11  | 107.5  | 94 108.02   | 2 FALT   | CBSW          |              | 105.8      | 106.7     | 0.9   | 0.14 | 0.8    | 245            | 166        | 4    | 14   | 3.6  | 85   |
| 129241 94-11  | 108.   | 02 108.24   | QTBX     | SCQT          | PYAS         | 106.7      | 107.15    | 0.45  | 0.15 | 0.8    | 178            | 49         | 9    | 8    | 1    | 67   |
| 129242 94-11  | 108.2  | 24 110.07   | DTHP     |               |              | 107.15     | 107.94    | 0.79  | 0.03 | 0.3    | 103            | 55         | 4    | 2    | 0.6  | 83   |
| 129243 94-11  | 108.2  | 24 108.57   | 7        | SCCA          |              | 107.94     | 108.24    | 0.3   | 4.56 | 2.3    | 17,700         | 116        | 11   | 534  | 8.6  | 698  |
| 129244 94-11  | 108.3  | 57 109.5    | 5        | CHCa          | mg           | 108.24     | 108.6     | 0.36  | 0.12 | 0.1    | 912            | 59         | 5    | 24   | 2.8  | 108  |
| 129245 94-11  | 109    | .5 109.8    | 3        | SCCA          | mg           | 108.6      | 109.1     | 0.5   | 0.03 | 0.1    | 54             | 65         | 4    | 2    | 0.6  | 52   |
| 129246 94-11  | 110.0  | 07 111.3    | DTFP     | qvep          | Mg           | 113.35     | 113.85    | 0.5   | 0.03 | 0.3    | 73             | 343        | 3    | 6    | 0.4  | 54   |
| 129247 94-11  | 111    | .3 113.79   | BAST     | qcsw          | РУ           | 113.85     | 114.05    | 0.2   | 2.39 | 1.2    | 9228           | 123        | 6    | 232  | 3    | 468  |
| 129248 94-11  | 113.1  | 79 114.3    | DTHF     | SCCA          | PYas         | 114.05     | 114.7     | 0.65  | 0.14 | 0.2    | 1365           | 280        | 3    | 14   | 1.6  | 77   |
| 129249 94-11  | 114    | .1 115.2    | 2 BAST   |               |              | 114.7      | 114.95    | 0.25  | 3.03 | 2.3    | 18,200         | 206        | 6    | 346  | 9.6  | 944  |
| ,129250 94-11 | 114    | .1 114.0    | 5        | qcsw          | ру           | 114.95     | 115.45    | 0.5   | 0.09 | 0.4    | 313            | 93         | 4    | 52   | 2.2  | 191  |
| 129251 94-11  | 114    | .6 115.2    | <u>)</u> | SC            |              | 115.45     | 116.37    | 0.92  | 0.03 | 0.2    | 86             | 142        | 5    | 6    | 0.4  | 60   |
| 129252 94-11  | 114.1  | 72 114.9    | 3        | QCBX          | pyas         | 116.37     | 116.7     | 0.33  | 0.83 | 0.6    | 1750           | 50         | 2    | 12   | 3.8  | 95   |
|               |        |             |          |               |              |            |           |       |      |        |                |            |      |      |      |      |

|               |       |        | GEOLOGICAL            | DATA   |       | AS     | SAY DAT | Ά            |      |        |                |        |      |      |      |      |
|---------------|-------|--------|-----------------------|--------|-------|--------|---------|--------------|------|--------|----------------|--------|------|------|------|------|
| <u>REF NO</u> | DDH   | FROM   | <u>TO</u> <u>ROCK</u> | ALTRTN | MINRL | FROM   | TO      | <u>WIDTH</u> | GOLD | SILVER | <u>ARSENIC</u> | COPPER | MOLY | LEAD | ANTI | ZINC |
| 129253        | 94-11 | 115.2  | 116.37 DTSW           | qcsw   |       | 116.7  | 117.4   | 0.7          | 0.11 | 0.2    | 371            | 90     | 4    | 6    | 1.2  | 86   |
| 129254        | 94-11 | 116.37 | 116.63 FALT           | CHQc   |       | 117.4  | 118.2   | 0.8          | 0.01 | 0.1    | 74             | 63     | 3    | 2    | 0.4  | 52   |
| 129255        | 94-11 | 116.63 | 118.2 DTFH            |        |       | 118.2  | 118.3   | 0.1          | 1.66 | 0.6    | 11,800         | 64     | 3    | 32   | 5.6  | 49   |
| 129256        | 94-11 | 116.63 | 117.5                 | Sc     |       | 118.3  | 118.7   | 0.4          | 0.03 | 0.1    | 178            | 74     | 5    | 8    | 1.4  | 84   |
| 129257        | 94-11 | 117.5  | 118.2                 | QcCx   |       | 118.7  | 119     | 0.3          | 2.94 | 1.2    | 17,000         | 65     | 4    | 78   | 7    | 183  |
| 129258        | 94-11 | 118.2  | 118.3 FALT            | СЬВх   | ру    | 119    | 119.4   | 0.4          | 3.65 | 1      | 10,000         | 150    | 5    | 366  | 7.2  | 943  |
| 129259        | 94-11 | 118.3  | 119.08 DTHP           | Sc     |       | 119.4  | 119.9   | 0.5          | 0.05 | 1.3    | 239            | 85     | 5    | 16   | 1.6  | 81   |
| 129260        | 94-11 | 118.77 | 119.08                | QcSw   | РУ    | 119.9  | 120.6   | 0.7          | 0.03 | 0.1    | 64             | 65     | 2    | 2    | 12   | 54   |
| 129261        | 94-11 | 119.08 | 119.4 QCBX            | SCQT   | PyAs  | 120.6  | 121.3   | 0.7          | 0.18 | 0.2    | 334            | 71     | 7    | 6    | 0.2  | 78   |
| 129262        | 94-11 | 119.4  | 119.7 DTHP            | QcSw   | ру    | 121.3  | 121.8   | 0.5          | 0.03 | 0.1    | 208            | 93     | 3    | 2    | 0.4  | 63   |
| 129263        | 94-11 | 119.7  | 121.87 DTFH           | SCCA   | hmmg  | 121.8  | 122.1   | 0.3          | 2.68 | 1.4    | 7358           | 163    | 4    | 104  | 3.4  | 296  |
| 129264        | 94-11 | 120.87 | 121.87                | qcsw   | pyas  | 122.1  | 122.4   | 0.3          | 0.21 | 0.6    | 726            | 140    | 4    | 20   | 1.2  | 95   |
| 129265        | 94-11 | 121.87 | 122.07 QCSW           | qtca   | pyas  | 122.4  | 122.5   | 0.1          | 4.06 | 2.4    | 7953           | 293    | 9    | 332  | 4.4  | 973  |
| 129266        | 94-11 | 122.07 | 123.1 BAST            | QcSw   | pyas  | 122.5  | 122.8   | 0.3          | 0.11 | 0.3    | 1781           | 100    | 4    | 14   | 1.6  | 78   |
| 129267        | 94-11 | 123.1  | 123.54 QTBX           | QTSC   | PyAs  | 122.8  | 123.1   | 0.3          | 1.17 | 1.7    | 7665           | 250    | 4    | 160  | 3.6  | 329  |
| 129268        | 94-11 | 123.54 | 123.8 DTHP            | Ca     |       | 123.1  | 123.53  | 0.43         | 3.04 | 1.2    | 17,400         | 94     | 6    | 120  | 9.6  | 440  |
| 129269        | 94-11 | 123.8  | 124.4 FALT            | CHqc   |       | 123.53 | 124     | 0.47         | 0.03 | 0.1    | 141            | 35     | 4    | 2    | 2.2  | 45   |
| 129270        | 94-11 | 124.4  | 135.94 DTSW           | Chqc   | mg    | 124    | 124.5   | 0.5          | 0.03 | 0.1    | 50             | 57     | 4    | 2    | 0.4  | 29   |
| 129271        |       |        |                       |        |       | 124.5  | 125     | 0.5          | 0.03 | 0.1    | 38             | 214    | 5    | 2    | 1.4  | 44   |
|               |       |        |                       |        |       |        |         |              |      | 0      | 0              | 0      | 0    | 0    | 0    | 0    |

.

|               |       |       | GEOLOGICAL            | DATA          |              | AS    | SAY DATA | 7     |      |        |                |        |      |      |      |      |
|---------------|-------|-------|-----------------------|---------------|--------------|-------|----------|-------|------|--------|----------------|--------|------|------|------|------|
| <u>REF.NO</u> | DDH   | FROM  | <u>to</u> <u>rock</u> | <u>ALTRTN</u> | <u>MINRL</u> | FROM  | TO       | WIDTH | GOLD | SILVER | <u>ARSENIC</u> | COPPER | MOLY | LEAD | ANTI | ZINC |
| 129272        | 94-12 | 0     | 14.63 CASG            |               |              | 21    | 21.5     | 0.5   | 0.03 | 0.2    | 34             | 106    | 5    | 4    | 0.6  | 65   |
| 129273        | 94-12 | 14.63 | 15.8 TILL             |               |              | 21.5  | 22.5     | 1     | 0.03 | 0.1    | 15             | 69     | 6    | 2    | 0.2  | 64   |
| 129274        | 94-12 | 15.8  | 17.3 DTHP             | qtex          |              | 22.5  | 23.5     | 1     | 0.03 | 0.1    | 17             | 102    | 4    | 2    | 0.2  | 68   |
| 129275        | 94-12 | 17.3  | 20.6 DTFP             | qcsw          | рy           | 23.5  | 24.5     | 1     | 0.03 | 0.2    | 19             | 111    | 5    | 2    | 0.2  | 89   |
| 129276        | 94-12 | 20.6  | 21.1 DTFH             | Chex          |              | 24.5  | 25.5     | 1     | 0.03 | 0.1    | 32             | 158    | 4    | 2    | 0.2  | 61   |
| 129277        | 94-12 | 21.1  | 23.6 SZ               | chep          | mg           | 25.5  | 26       | 0.5   | 0.03 | 0.1    | 42             | 112    | 2    | 2    | 0.2  | 49   |
| 129278        | 94-12 | 21.45 | 23.6                  | qcCx          | РУ           | 32.3  | 33.1     | 0.8   | 0.03 | 0.3    | 26             | 208    | 19   | 2    | 0.2  | 29   |
| 129279        | 94-12 | 23.6  | 24.35 GOUG            | caBX          |              | 49.87 | 50.02    | 0.15  | 0.21 | 1.1    | 634            | 61     | 6    | 28   | 0.4  | 39   |
| 129280        | 94-12 | 24.35 | 24.97 DTHP            | CHCa          |              | 55.59 | 55.88    | 0.29  | 0.2  | 0.6    | 567            | 93     | 9    | 8    | 0.6  | 84   |
| 129281        | 94-12 | 24.97 | 25.08 FALT            |               |              | 64.82 | 65.62    | 0.8   | 0.03 | 0.3    | 75             | 68     | 7    | 2    | 1.2  | 58   |
| 129282        | 94-12 | 25.08 | 25.4 DTHP             | CHCa          |              | 65.62 | 65.83    | 0.21  | 1.02 | 1.6    | 1198           | 156    | 9    | 60   | 2.6  | 129  |
| 129283        | 94-12 | 25.4  | 32.3 DTFP             | qcep          | mg           | 65.83 | 66.37    | 0.54  | 0.03 | 0.1    | 542            | 69     | 4    | 6    | 3.4  | 57   |
| 129284        | 94-12 | 25.73 | 26.15                 | cbBx          | ру           | 67.37 | 68.76    | 1.39  | 0.03 | 0.1    | 103            | 101    | 4    | 8    | 1.2  | 62   |
| 129285        | 94-12 | 37.3  | 33.1 DAQP             | ch            | ру           | 68.76 | 69.76    | 1     | 0.03 | 0.1    | 22             | 61     | 4    | 2    | 0.2  | 46   |
| 129286        | 94-12 | 33.1  | 35.14 DTFP            |               | •••          | 80.35 | 81.35    | 1     | 0.03 | 0.1    | 113            | 162    | 6    | 2    | 0.2  | 61   |
| 129287        | 94-12 | 33.1  | 33.5                  | Cheb          | ру           | 81.35 | 82.15    | 0.8   | 0.28 | 0.3    | 646            | 45     | 13   | 6    | 0.6  | 100  |
| 129288        | 94-12 | 35.14 | 35.17 FALT            | QcSw          |              | 82.15 | 83.82    | 1.67  | 0.5  | 0.4    | 2841           | 146    | 9    | 10   | 0.8  | 147  |
| 129289        | 94-12 | 35.17 | 35.92 DTFP            | Cheb          | ру           | 83.82 | 84.92    | 1.1   | 0.32 | 0.3    | 2396           | 115    | 11   | 16   | 0.8  | 82   |
| 129290        | 94-12 | 35.92 | 55.59 DTHP            | qeva          | py           | 84.92 | 86.32    | 1.4   | 0.35 | 0.1    | 1171           | 89     | 15   | 22   | 0.8  | 72   |
| 129291        | 94-12 | 49.92 | 49.98                 | QCVN          | Py           | 86.32 | 86.98    | 0.66  | 0.7  | 1      | 1954           | 187    | 15   | 22   | 1    | 302  |
| 129292        | 94-12 | 55.59 | 55.98 DTFH            | l gcch        | -            | 86.98 | 87.15    | 0.17  | 2.98 | 1.6    | 22,000         | 129    | 10   | 34   | 6    | 222  |
| 129293        | 94-12 | 55.7  | 55.74                 | QTVN          | Py           | 87.15 | 88.22    | 1.07  | 0.93 | 0.6    | 4607           | 123    | 15   | 18   | 2.6  | 157  |
| 129294        | 94-12 | 58.58 | 58.6                  | OTVN          | PY           | 88.22 | 89.63    | 1.41  | 7.2  | 3.2    | 33,200         | 544    | 13   | 76   | 12.6 | 679  |
| 129295        | 94-12 | 60.72 | 60.79                 | FPVN          |              | 89.63 | 89.86    | 0.23  | 0.71 | 1.2    | 4359           | 227    | 4    | 28   | 3.6  | 188  |
| 129296        | 94-12 | 60.79 | 65.65 DTFH            | 2 ch          |              | 89.86 | 90.86    | 1     | 0.03 | 0.1    | 110            | 142    | 4    | 2    | 0.8  | 92   |
|               | 94-12 | 65.4  | 65.65                 | Sc            |              |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 65.65 | 65.81 QTSW            |               | PY           |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 65.81 | 67.37 DTFH            |               | 2            |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 65.81 | 66.1                  | Sc            |              |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 67.37 | 68.76 DTHF            | otsc          | mgcp         |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 68.76 | 71.7 DTHF             | 2 qtep        | 01           |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 71.7  | 73.1 DTFH             | • •           |              |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 73.1  | 79.8 DTHF             | 2 qtep        | mg           |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 7     | 80.55 DCFH            | S¢            | •            |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 80.55 | 81.35 DTHF            | SC            |              |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 81.35 | 88.28 QCSW            | SCqc          | PY           |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 86.98 | 87.15                 | QTBX          | PYAS         |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 88.2  | 89.63 QTBX            | •             | PYAs         |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 89.63 | 89.86 FALT            | cavn          | PY           |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 89.86 | 93.6 BAST             | sege          |              |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 89.86 | 90.1                  | SC            |              |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 92.96 | 93.03                 | QCBX          |              |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 93.45 | 93.6                  |               | PyHM         |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 93.6  | 94.27 DTFH            | Ch            | hm           |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 94.27 | 94.85 BAST            |               |              |       |          |       |      |        |                |        |      |      |      |      |
|               | 94-12 | 94.85 | 95.5 ANHF             |               |              |       |          |       |      |        |                |        |      |      |      |      |

7

|               |       |        | GEOL      | OGICAL I    | <u>DATA</u>   |              | A    | SSAY DA   | TA    |      |        |                |      |      |      |      |
|---------------|-------|--------|-----------|-------------|---------------|--------------|------|-----------|-------|------|--------|----------------|------|------|------|------|
| <u>REF.NO</u> | DDH   | FROM   | <u>T0</u> | <u>ROCK</u> | <u>ALTRTN</u> | <u>MINRL</u> | FROM | <u>TO</u> | WIDTH | GOLD | SILVER | ARSENIC COPPER | MOLY | LEAD | ANTI | ZINC |
|               | 94-12 | 95.5   | 96.45 E   | BAST        |               |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-12 | 96.45  | 98.77 I   | DTHF        | 2             | mghm         |      |           |       |      |        |                |      |      |      |      |
|               | 94-12 | 98.77  | 99.14 F   | PLBT        |               |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-12 | 99.14  | 100.05 A  | ANFP        |               |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-12 | 100.05 | 100.35 I  | DTHF        |               |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-12 | 100.35 | 101.15 E  | BAST        |               |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-12 | 101.15 | 106.36 I  | DTSW        |               |              |      |           |       |      |        |                |      |      |      |      |
|               | 94-12 | 106.36 | 107.4 A   | ANFH        | sw            | ру           |      |           |       |      |        |                |      |      |      |      |
|               | 94-12 | 107.4  | 107.9 I   | DTHF        |               |              |      |           |       |      |        |                |      |      |      |      |

.

and the second second

|        |            |        | GEOLOGICAL  | DATA   |              | AS     | SAY DATA    |       |      |               |         |        |      |      |      |            |
|--------|------------|--------|-------------|--------|--------------|--------|-------------|-------|------|---------------|---------|--------|------|------|------|------------|
| REF.NO | <u>DDH</u> | FROM   | TO ROCK     | ALTRTN | MINRL        | FROM   | <u>TO</u> V | VIDTH | GOLD | <u>SILVER</u> | ARSENIC | COPPER | MOLY | LEAD | ANTI | ZINC       |
| 129301 | 94-13      | 0      | 14.63 CASG  |        |              | 100.2  | 100.7       | 0.5   | 0.08 | 0.2           | 626     | 94     | 2    | 2    | 2    | 55         |
| 129302 | 94-13      | 14.63  | 14.8 TILL   |        |              | 100.7  | 100.95      | 0.25  | 1.03 | 0.6           | 12,200  | 142    | 4    | 14   | 2.8  | 65         |
| 129303 | 94-13      | 14.8   | 15.1 DTHP   | Chqc   |              | 100.95 | 101.45      | 0.5   | 0.03 | 0.1           | 102     | 120    | 5    | 2    | 0.6  | 35         |
| 129304 | 94-13      | 15.1   | 15.35 ANHP  |        |              | 106.3  | 106.8       | 0.5   | 0.04 | 0.1           | 42      | 111    | 7    | 2    | 0.2  | 46         |
| 129305 | 94-13      | 15.35  | 16.9 DTHP   | Chqc   |              | 106.8  | 107.2       | 0.4   | 0.1  | 0.4           | 639     | 78     | 6    | 14   | 0.4  | 46         |
| 129306 | 94-13      | 16.9   | 17.05 SZ    | Ch     |              | 107.2  | 107.7       | 0.5   | 0.03 | 0.1           | 25      | 82     | 6    | 2    | 0.2  | 46         |
| 129307 | 94-13      | 17.05  | 18.8 BAST   |        |              | 112.8  | 113.3       | 0.5   | 0.03 | 0.2           | 32      | 66     | 6    | 2    | 0.2  | 46         |
| 129308 | 94-13      | 18.8   | 19.95 DTHP  |        |              | 113.3  | 113.8       | 0.5   | 0.03 | 0.2           | 143     | 116    | 5    | 2    | 0.2  | 75         |
| 129309 | 94-13      | 19.95  | 20.35 ANFP  | QcSw   |              | 113.8  | 114.3       | 0.5   | 0.03 | 0.2           | 37      | 168    | 6    | 2    | 0.2  | 66         |
| 129310 | 94-13      | 20.35  | 20.96 DTHP  |        |              | 115.25 | 115.75      | 0.5   | 0.03 | 0.1           | 26      | 148    | 6    | 2    | 0.2  | 71         |
| 129311 | 94-13      | 20.96  | 21.25 ANHP  | Ch     | 1um          | 115.75 | 115.9       | 0.15  | 0.3  | 0.3           | 274     | 276    | 3    | 12   | 0.2  | 127        |
| 129312 | 94-13      | 21.25  | 28.75 DTFH  | Sc     |              | 115.9  | 116.05      | 0.15  | 0.09 | 0.1           | 60      | 50     | 9    | 4    | 0.2  | 66         |
| 129313 | 94-13      | 25.6   | 28.75       | qcsw   |              | 116.05 | 116.3       | 0.25  | 0.39 | 0.4           | 201     | 116    | 4    | 10   | 0.2  | 155        |
| 129314 | 94-13      | 28.75  | 29.3 DCTT   | qccx   | ру           | 116.3  | 117         | 0.7   | 0.03 | 0.1           | 2.1     | 69     | 6    | 2    | 0.2  | 53         |
| 129315 | 94-13      | 29.3   | 30.75 DTFH  | Ch     |              | 117    | 117.65      | 0.65  | 0.03 | 0.1           | 24      | 71     | 4    | 2    | 0.2  | 40         |
| 129316 | 94-13      | 30.75  | 30.8 GOUG   | CH     |              | 117.65 | 117.9       | 0.25  | 0.5  | 0.5           | 624     | 134    | 5    | 6    | 0.2  | 463        |
| 129317 | 94-13      | 30.8   | 31.95 SZ    | QcSw   | РУ           | 117.9  | 118.4       | 0.5   | 0.03 | 0.1           | 12      | 59     | 4    | 2    | 0.2  | 64         |
| 129318 | 94-13      | 31.95  | 35.55 FALT  | CHQv   | руро         | 121    | 121.5       | 0.5   | 0.03 | 0.1           | 35      | 199    | 3    | 2    | 0.2  | 66         |
| 129319 | 94-13      | 35.55  | 36.55 SZ    | CHCa   |              | 121.5  | 122.1       | 0.6   | 0.04 | 0.4           | 200     | 119    | 5    | 2    | 0.2  | <b>8</b> 6 |
| 129320 | 94-13      | 36.55  | 48.88 DTHP  | Ch     |              | 122.1  | 123.1       | 1     | 0.03 | 0.2           | 37      | 124    | 4    | 2    | 0.2  | 69         |
| 129321 | 94-13      | 36.55  | 40.3        | CHca   |              | 123.1  | 124.1       | 1     | 0.52 | 0.2           | 136     | 60     | 6    | 8    | 0.2  | 110        |
| 129322 | 94-13      | 48.88  | 49.25 DTFP  |        |              | 124.1  | 124.6       | 0.5   | 0.07 | 0.1           | 37      | 79     | 3    | 2    | 0.2  | 55         |
| 129323 | 94-13      | 49.25  | 68.65 DTHP  | Ch     |              | 125.55 | 126.05      | 0.5   | 0.03 | 0.1           | 64      | 78     | 6    | 2    | 0.2  | 64         |
| 129324 | 94-13      | 52.2   | 52.5        | QeVn   |              | 126.05 | 126.25      | 0.2   | 0.1  | 0.1           | 86      | 29     | 7    | 2    | 0.2  | 91         |
| 129325 | 94-13      | 68.65  | 77.43 DTFP  |        |              | 126.25 | 126.75      | 0.5   | 0.03 | 0.2           | 29      | 169    | 3    | 2    | 0.2  | 83         |
| 129326 | 94-13      | 72.66  | 72.77       | QCBX   |              | 126.75 | 127.12      | 0.37  | 0.39 | 0.3           | 639     | 160    | 4    | 22   | 0.2  | 117        |
| 129327 | 94-13      | 77.43  | 84.9 DTHP1  |        |              | 120.95 | 130.45      | 9.5   | 0.03 | 0.1           | 51      | 57     | 5    | 2    | 0.2  | 45         |
| 129328 | 94-13      | 84.9   | 85.4 DTHP2  | Chep   |              | 130.45 | 131.15      | 0.7   | 0.33 | 0.2           | 1235    | 98     | 6    | 6    | 0.2  | 79         |
| 129329 | 94-13      | 85.4   | 87.1 DTHF   | ер     | mg           | 131.15 | 131.65      | 0.5   | 0.08 | 0.3           | 1291    | 155    | 6    | 2    | 0.2  | 103        |
| 129330 | 94-13      | 87.1   | 90.75 DTHP2 | •      | U U          | 132.4  | 132.9       | 0.5   | 0.03 | 0.1           | 28      | 133    | 2    | 2    | 0.2  | 48         |
| 129331 | 94-13      | 90.75  | 94.54 DTHP1 | Ер     |              | 132.9  | 133.4       | 0.5   | 0.03 | 0.2           | 114     | 100    | 5    | 2    | 0.2  | 95         |
| 129332 | 94-13      | 94.54  | 95.02 DTHP2 | •      |              | 133.4  | 134         | 0.6   | 1.24 | 0.2           | 56      | 40     | 3    | 48   | 0.4  | 159        |
| 129333 | 94-13      | 95.02  | 95.7 DTFP   |        | mg           | 134    | 134.5       | 0.5   | 0.03 | 0.1           | 94      | 46     | 7    | 2    | 0.2  | 35         |
| 129334 | 94-13      | 95.7   | 98.72 DTHP2 |        | ·            | 142    | 142.5       | 0.5   | 0.03 | 0.1           | 54      | 65     | 3    | 4    | 0.2  | 51         |
| 129335 | 94-13      | 98.72  | 100.6 DTFP  | cheb   |              | 142.5  | 142.7       | 0.2   | 1.17 | 0.3           | 9796    | 46     | 12   | 124  | 0.4  | 223        |
| 129336 | 94-13      | 100.6  | 102.68 DTHP | Chsc   | Mg           | 142.7  | 143.2       | 0.5   | 0.03 | 0.1           | 63      | 52     | 7    | 8    | 0.2  | 45         |
| 129337 | 94-13      | 102.68 | 103.7 DTFP  | epvn   | Ũ            | 143.2  | 143.7       | 0.5   | 0.36 | 0.1           | 1315    | 36     | 8    | 34   | 0.2  | 103        |
| 131126 | 94-13      | 103.7  | 121.36 DTHP | acsw   |              | 143.7  | 144.7       | 1     | 0.03 | 0.1           | - 5     | 71     | 6    | 2    | 0.2  | 27         |
|        | 94-13      | 106.66 | 107.27      | ScCa   | DV           |        |             |       |      |               |         |        |      |      |      |            |
|        | 94-13      | 110.88 | 112.5       | Chsc   | hmov         |        |             |       |      |               |         |        |      |      |      |            |
|        | 94-13      | 113.05 | 113.85      | atsw   | DV           |        |             |       |      |               |         |        |      |      |      |            |
|        | 94-13      | 115.1  | 116.06      | atav   | DV           |        |             |       |      |               |         |        |      |      |      |            |
|        | 94-13      | 117.65 | 117.96      | SCCA   | £.)          |        |             |       |      |               |         |        |      |      |      |            |
| 1      | 94-13      | 120.3  | 121.36      | ScCa   |              |        |             |       |      |               |         |        |      |      |      |            |
| •      | 94-13      | 121.55 | 122.06 FALT | acex   | DVas         |        |             |       |      |               |         |        |      |      |      |            |
|        | 94-13      | 122.06 | 122.69 DACT | Chsc   | <i>; ; :</i> |        |             |       |      |               |         |        |      |      |      |            |
|        |            |        |             |        |              |        |             |       |      |               |         |        |      |      |      |            |

.

|               |            |        | GEOI      | LOGICAL I   | DATA          |              | Α    | SSAY DA   | TA    |      |        |           |        |      |      |      |      |
|---------------|------------|--------|-----------|-------------|---------------|--------------|------|-----------|-------|------|--------|-----------|--------|------|------|------|------|
| <u>REF NO</u> | <u>DDH</u> | FROM   | <u>T0</u> | <u>ROCK</u> | <u>ALTRTN</u> | <u>MINRL</u> | FROM | <u>TO</u> | WIDTH | GOLD | SILVER | ARSENIC ( | COPPER | MOLY | LEAD | ANTI | ZINC |
|               | 94-13      | 122.69 | 124.18    | DTHP        | scqc          | hmpy         |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 124.18 | 124.74    | DACT        | qesw          |              |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 124.74 | 126.25    | DTFH        | Scca          | hm           |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 126.25 | 128.9     | DTHP2       | Chca          | шy           |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 128.9  | 130.5     | DTHP1       | Chca          | bm           |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 130.5  | 131.13    | FALT        | QcSw          | pyas         |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 131.13 | 133.3     | DTHPI       |               |              |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 131.13 | 131.54    |             | ScCa          |              |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 133.3  | 134.07    | SZ          | QcSw          | Pyas         |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 134.07 | 134.93    | DTHP        | Ch            | HM           |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 134.93 | 142.18    | DTSW        | qeva          | Мдру         |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 142.18 | 143.48    | DTHF        |               | mg           |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 142.3  | 148.53    |             | ScCa          | _            |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 143.48 | 143.78    |             | SCCa          | ру           |      |           |       |      |        |           |        |      |      |      |      |
|               | 94-13      | 145    | 148.53    |             | qcsw          |              |      |           |       |      |        |           |        |      |      |      |      |

.

- - - - **- - - - - - - - - - - - - -**

|                |               |                | GEOLOGICAL  | DATA   |              | AS    | <u>SAY DAT/</u> | <b>Ą</b> |      |               |                |        |             |             |             |      |
|----------------|---------------|----------------|-------------|--------|--------------|-------|-----------------|----------|------|---------------|----------------|--------|-------------|-------------|-------------|------|
| <u>REF.NO</u>  | DDH           | FROM           | TO ROCK     | ALTRIN | <u>MINRL</u> | FROM  | <u>TO</u>       | WIDTH    | GOLD | <u>SILVER</u> | <b>ARSENIC</b> | COPPER | <u>MOLY</u> | <u>LEAD</u> | ANTI        | ZINC |
| 131009         | 94-14         | 0              | 9.75 CASG   |        |              | 37.8  | 38.3            | 0.5      | 0.03 | 0.1           | 25             | 247    | 2           | 2           | 0.4         | 63   |
| 131010         | 94-14         | 9.75           | 10 TILL     |        |              | 38.3  | 38.5            | 0.2      | 0.03 | 0.1           | 42             | 100    | 1           | 2           | 0.8         | 71   |
| 131011         | 94-14         | 10             | 35.04 PLBT  |        | руро         | 38.5  | 38.9            | 0.4      | 0.03 | 0.1           | 2              | 36     | 5           | 2           | 0.2         | 49   |
| 131012         | 94-14         | 17.5           | 17.83       | SCCA   |              | 38.9  | 39.1            | 0.2      | 0.1  | 0.2           | 4371           | 43     | 4           | 2           | 1.2         | 62   |
| 131013         | 94-14         | 35.04          | 36.69 DTFP  | qtep   |              | 39.1  | 39.6            | 0.5      | 0.03 | 0.1           | 57             | 71     | 4           | 2           | 2.6         | 48   |
| 131014         | 94-14         | 36.69          | 38.56 BAST  | qttp   | pymg         | 66.5  | 67              | 0.5      | 0.03 | 0.1           | 25             | 169    | 2           | 2           | 0.6         | 56   |
| 131015         | 94-14         | 38.56          | 39.6 DTHF   |        |              | 67    | 67.3            | 0.3      | 1.06 | 1.4           | 5434           | 346    | 4           | 4           | 2.6         | 117  |
| 131016         | 94-14         | 38.94          | 39.05       | QtSw   | Ру           | 67.3  | 67.8            | 0.5      | 0.03 | 0.1           | 75             | 215    | 3           | 2           | 0. <b>6</b> | 46   |
| 131017         | 94-14         | 39.05          | 39.6        | qtsw   |              | 69.1  | 69.6            | 0.5      | 0.03 | 0.1           | 2              | 250    | 1           | 2           | 0.4         | 69   |
| 131018         | 94-14         | 39.6           | 45 PLBT     | qt     | pymg         | 69.6  | 69.85           | 0.25     | 0.05 | 0.3           | 56             | 164    | 5           | 2           | 0.4         | 128  |
| 131019         | 94-14         | 45             | 46.02 DTHP  |        |              | 69.85 | 70.35           | 0.5      | 0.03 | 0.1           | 10             | 114    | 1           | 2           | 0.4         | 68   |
| 131020         | 94-14         | 46.02          | 46.4 DTFH   |        | mg           | 82.2  | 82.7            | 0.5      | 0.03 | 0.2           | 4              | 141    | 1           | 2           | 0.4         | 49   |
| 131021         | 94-14         | 46.4           | 47.02 DTHP  | sech   | ру           | 82.7  | 82.9            | 0.2      | 2.12 | 0.6           | 169            | 109    | 1           | 2           | 0.4         | 321  |
| 131022         | 94-14         | 47.02          | 51.08 DTHP  | qcch   |              | 82.9  | 83.6            | 0.7      | 0.03 | 0.1           | 2              | 86     | 1           | 2           | 0.2         | 40   |
| 131023         | 94-14         | 51.08          | 52.62 DTFH  |        | ру           | 83.6  | 84.3            | 0.7      | 0.03 | 0.4           | 425            | 233    | 1           | 2           | 1.4         | 57   |
| 131024         | 94-14         | 52.62          | 55.48 BAST  | qt     | ру           | 84.3  | 84.48           | 0.18     | 0.1  | 0.9           | 241            | 188    | 2           | 4           | 0.6         | 64   |
| 131025         | 94-14         | 55.48          | 57.37 DTHP  |        | mg           | 84.48 | 85.1            | 0.62     | 1.19 | 1.2           | 1475           | 69     | 10          | 16          | 1           | 376  |
| 131026         | 94-14         | 55.48          | 61.84 DTFH  |        |              | 85.1  | 85,18           | 0.08     | 1.33 | 2.3           | 1773           | 243    | 4           | 16          | 11.2        | 87   |
| 131027         | 94-14         | 61.84          | 75.27 BAST  |        | pyMg         | 85.18 | 85.7            | 0.52     | 1.11 | 0.4           | 5940           | 29     | 13          | 6           | 4.8         | 66   |
| 1310 <b>28</b> | 94-14         | 65.5           | 67.15       | chSc   |              | 85.7  | 86,25           | 0.55     | 3.38 | 0.8           | 28,900         | 47     | 15          | 12          | 9.8         | 592  |
| 131029         | 94-14         | 67.15          | 76.2        | QCVN   | PY           | 86.25 | 86.7            | 0.45     | 3.52 | 1             | 40,100         | 57     | 7           | 19          | 8           | 165  |
| 131030         | 94-14         | 76.2           | 75.27       | qcsw   |              | 86.7  | 87              | 0.3      | 2.12 | 0.8           | 32,100         | 46     | 14          | 16          | 5.8         | 69   |
| 131031         | 94-14         | 75.27          | 78.08 DTHP  | Chsc   |              | 87    | 88              | 1        | 0.58 | 0.9           | 992            | 162    | 1           | 8           | 1.6         | 130  |
| 131032         | 94-14         | 78.08          | 81.72 BAST  | qcsw   | ру           | 88    | 89              | 1        | 0.08 | 0.6           | 469            | 203    | 2           | 2           | 0.6         | 72   |
| 131033         | 94-14         | 81.72          | 82.17 DTFH  | scch   |              | 89    | 90              | 1        | 0.03 | 0.1           | 59             | 128    | 6           | 2           | 0.4         | 40   |
| 131034         | 94-14         | 82.17          | 83.89 BAST  | qcvn   | ру           | 91.6  | 92.1            | 0.5      | 3.37 | 0.2           | 12             | 61     | 4           | 2           | 0.4         | 58   |
| 131035         | 94-14         | 82.65          | 82.85       | QcSw   | ру           | 92.1  | 92.6            | 0.5      | 0.75 | 0.8           | 1676           | 131    | 5           | 11          | 0.6         | 802  |
| 131036         | <b>94-</b> 14 | 83.65          | 83.89       | SCCA   |              | 92.6  | 93.1            | 0.5      | 0.09 | 0.2           | 368            | 92     | 2           | 2           | 0.2         | 63   |
| 131037         | 94-14         | 83.89          | 84.37 DTFH  | SCCA   | py           | 93.1  | 94.1            | 1        | 1.42 | 0.7           | 3612           | 101    | 1           | 16          | 0.8         | 205  |
| 131038         | 94-14         | 84.37          | 84.48 FALT  | QCSW   |              | 94.1  | 94.6            | 0.5      | 0.03 | 0,1           | 97             | 120    | 3           | 2           | 0.2         | 47   |
|                | 94-14         | 84.48          | 85.01 QTBX  | -      | Pyas         |       |                 |          |      |               |                |        |             |             |             |      |
|                | 94-14         | 85.01          | 85.18 FALT  | SCCR   | py           |       |                 |          |      |               |                |        |             |             |             |      |
|                | 94-14         | 85.18          | 87 QTBX     |        | PyAS         |       |                 |          |      |               |                |        |             |             |             |      |
|                | 94-14         | 87             | 89.9 BAST   |        |              |       |                 |          |      |               |                |        |             |             |             |      |
|                | 94-14         | 87             | 89          | SCCa   |              |       |                 |          |      |               |                |        |             |             |             |      |
|                | 94-14         | 89             | 89.9        | sech   |              |       |                 |          |      |               |                |        |             |             |             |      |
|                | 94-14         | 89.9           | 90.68 DTFH  | ch     | mg           |       |                 |          |      |               |                |        |             |             |             |      |
|                | 94-14         | 90.68          | 90.9 BAST   |        | -            |       |                 |          |      |               |                |        |             |             |             |      |
|                | 94-14         | 90.9           | 94.75 DTHP  | chsc   | mg           |       |                 |          |      |               |                |        |             |             |             |      |
|                | 94-14         | 92.1           | 92.6        | QcSw   | PYAS         |       |                 |          |      |               |                |        |             |             |             |      |
|                | 94-14         | 93.05          | 94.15       | QcSw   | PyAS         |       |                 |          |      |               |                |        |             |             |             |      |
|                | 94-14         | 94.75          | 100.86 DTFH | qtsw   | Py           |       |                 |          |      |               |                |        |             |             |             |      |
|                | 94-14         | 100. <b>86</b> | 105.16 DTFP | схор   | -            |       |                 |          |      |               |                |        |             |             |             |      |
|                |               |                |             |        |              |       |                 |          |      |               |                |        |             |             |             |      |

•

· 1

|               |            |       | GEOLOGICAL           | DATA     |            | <u>AS</u>   | <u>SAY DAT.</u> | <u>A</u>     |      |               |              |             |      |             |            |      |
|---------------|------------|-------|----------------------|----------|------------|-------------|-----------------|--------------|------|---------------|--------------|-------------|------|-------------|------------|------|
| <u>REF.NO</u> | <u>DDH</u> | FROM  | <u>TO ROCK</u>       | ALTRIN   | MINRL      | <u>FROM</u> | <u>T0</u>       | <u>WIDTH</u> | GOLD | <u>SILVER</u> | ARSENIC      | COPPER      | MOLY | <u>LEAD</u> | ANTI       | ZINC |
| 131040        | 94-15      | 0     | 9.75 CASG            |          |            | 38.8        | 39.8            | 1            | 0.03 | 0.1           | 91           | 440         | 1    | 2           | 0.4        | 49   |
| 131041        | 94-15      | 9.75  | 10 TIL               |          |            | 39.8        | 40.4            | 0.6          | 0.03 | 0.2           | 110          | 1054        | 1    | 2           | 0.2        | 44   |
| 131042        | 94-15      | 10    | 10.8 PLBT            | qtch     | ру         | 40.4        | 41.4            | 1            | 0.03 | 0.1           | 2            | 77          | 6    | 2           | 0.2        | 37   |
| 131043        | 94-15      | 10.8  |                      |          |            | 45.25       | 40.20           | 1            | 0.03 | 0.4           | 844          | 403         | 1    | 2           | 0.6        | 62   |
| 131044        | 94-15      | 10.9  | 24.3 PLDI            | qtcn     | ру         | 61.45       | 02.45           | 1            | 0.05 | 0.2           | . <u>952</u> | 211         | 1    | 2           | 0.2        | 66   |
| 131045        | 94-15      | 24.3  | 24.43 UAUP           | atab     |            | 62.43       | 02.D3           | 1.26         | P.C  | 5.1           | 210000       | 164         | 12   | 42          | 2.8        | 140  |
| 131040        | 99-15      | 24.43 | 33.0 FLD1            | chee     | ру         | 62.03       | 65 3            | 1.32         | 0.03 | 0.0           | V 200<br>14  | 104         | 3    | 2           | 8.U<br>0.4 | 44   |
| 131049        | 94-15      | 356   | 36.85 DTRH           | 0.000    |            | 65.2        | 65.6            | 1.2<br>0.4   | 0.03 | 1.0           | بەر .<br>111 | 247         | 1    | 2           | P.V<br>0.6 | 05   |
| 131040        | 94-15      | 36.85 | 37.05 BAST           | acch     | ΡY         | 65.6        | 66.6            | 1            | 0.1  | 0.2           | · 14         | 188         | 1    | 2           | 0.0<br>1 A | 90   |
| 131050        | 94-15      | 37.05 | 37.08 DTHF           | OcSw     | ••         | 76 1        | 77.1            | 1            | 0.03 | 0.1           | 22           | 148         | 2    | 2           | 0.4        | 66   |
| 131051        | 94-15      | 37.08 | 37.25 DAOP           | ScCh     |            | 77.1        | 77.41           | 0.31         | 0.29 | 1.4           | 2212         | 166         | 3    | 2           | 2.8        | 56   |
| 131052        | 94-15      | 36.25 | 38.15 DTHF           | QcSw     |            | 77.41       | 77.84           | 0.43         | 3.97 | 1             | 28,000       | 22          | 9    | 26          | 7          | 72   |
| 131053        | 94-15      | 38.15 | 40.38 BAST           | chac     | ρy         | 77.84       | 79              | 1.16         | 2.54 | 0.8           | 14,400       | 94          | 10   | 16          | 3          | 255  |
| 131054        | 94-15      | 40.38 | 41.6 DAQP            | qfvn     |            | 79          | 80.05           | 1.05         | 1.42 | 3             | 5479         | 93          | 9    | 20          | 1.2        | 404  |
| 131055        | 94-15      | 41.6  | 44.8 DTFH            | acqc     |            | 80.05       | 81.3            | 1.25         | 3.41 | 1.2           | 20,600       | 58          | 19   | 54          | 3.2        | 544  |
| 131056        | 94-15      | 44.8  | 46.55 PLBT           | ch       |            | 81.3        | 82.05           | 0.75         | 2.22 | 1.1           | 11,100       | 62          | 13   | 24          | 1.8        | 253  |
| 131057        | 94-15      | 45.3  | 45.9                 | qcsw     |            | 82.05       | 83,51           | 1.46         | 1.69 | 1.2           | 13,300       | 140         | 8    | 64          | 2.6        | 278  |
| 131058        | 94-15      | 46.55 | 46.8 DTHP            | Chac     | ру         | 83.51       | 83.75           | 0.24         | 0.43 | 0.6           | 3223         | 19 <b>9</b> | 2    | 14          | L.4        | 112  |
| 131059        | 94-15      | 46.8  | 49.38 PLBT           | qcep     |            | 83.75       | 83.98           | 0.23         | 3.03 | 1.8           | 18,800       | 173         | 4    | 228         | 3.6        | 401  |
| 131060        | 94-15      | 49.38 | 50.06 DTFH           | SCCE     |            | 83.98       | 84.55           | 0.57         | 0.03 | 0.1           | 344          | 221         | 1    | 2           | 0.6        | 67   |
|               | 94-15      | 50.06 | 53.25 PLBT           | deeb     |            |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 51    | 52.2                 | dcsm     | руср       |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 53.25 | 60 DTHF              | qcep     | mghe       |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 60    | 67.42 BAST           | qtac     |            |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 62.49 | 62.53                | QTBX     | PYAS       |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 62.53 | 63.95                | QCSW     | Ру         |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 65.25 | 65.65                | QcSw     | PY         |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 67.42 | 67.59 ANFP           |          |            |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 07.39 | /1.08 BASI           | ~        | 6-         |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 09.7  | 09./3<br>23 6 INTINE | QI<br>Ch | Cp<br>bows |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 71.08 | 73.6 DIEF            | SCo.     | nens       |             |                 |              |      |               |              |             |      |             |            |      |
|               | 04.15      | 73.1  | 75.65<br>75.47 BAST  | 0000     | руср       |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94.15      | 75.05 | 25.97 DTHP           | acest    | 1967       |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94.15      | 75 97 | 764 ANFP             | ц<br>СХ  | 23         |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94.15      | 76.4  | 77 1 BAST            | 00599    |            |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 76.9  | 11.1                 | SC       |            |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 77.1  | 77.41 FALT           | OCBX     |            |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 77.41 | 77.77 OTBX           | •        | PvAS       |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 77.77 | 80.85 QCSW           | SCCA     | PVAS       |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 80.85 | 81.3 QCBX            |          | PyAS       |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 81.3  | 82.05 QCSW           | SCCA     | PyAS       |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 82.05 | 83.47 DTHP           | chSc     | mg         |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 83.47 | 85.03 BAST           | ChCa     | -          |             |                 |              |      |               |              |             |      |             |            |      |
|               | 94-15      | 83.88 | 83.9                 | QCBX     | PYAS       |             |                 |              |      |               |              |             |      |             |            |      |
| -             | 94-15      | 85.03 | 86.56 DTHF           | chsc     | Mg         |             |                 |              |      |               |              |             |      |             |            |      |

|               |          |              |              | GEC            | LOGICAL    | DATA           |              | AS    | SAY DATA  | 4           |      |               |                |        |        |        |      |          |         |
|---------------|----------|--------------|--------------|----------------|------------|----------------|--------------|-------|-----------|-------------|------|---------------|----------------|--------|--------|--------|------|----------|---------|
| <u>REF.NO</u> |          | DDH          | FROM         | <u>T0</u>      | ROCK       | <u>ALTRTN</u>  | <u>MINRL</u> | FROM  | <u>T0</u> | WIDTH       | GOLD | <u>SILVER</u> | <u>ARSENIC</u> | COPPER | MOLY   | LEAD   | ANTI | ZINC     | MERCURY |
| 122761        | SS       | 94-1         | 0            | 12.19          | CASG       |                |              | 12.19 | 12.9      | 0.71        | 0.03 | 0.1           | 20             | 202    | 6      | 4      | 0.2  | 193      | 105     |
| 122762        | SS       | 94-1         | 12.19        | 30.7           | BAST       | qt             | ру           | 12.9  | 14.45     | 1.55        | 0.04 | 0.2           | 54             | 169    | 5      | 8      | 0.6  | 64       | 25      |
| 122763        | SS       | 94-1         | 12.19        | 12.9           |            | Bx             | Ру           | 14.45 | 15.65     | 1.2         | 0.04 |               |                |        |        |        |      |          |         |
| 122764        | SS       | 94-1         | 15.8         | 16.72          |            | QCBX           | Py           | 15.65 | 16.58     | 0.93        | 0.03 | 0.1           | 169            | 31     | 8      | 10     | 1    | 61       | 45      |
| 122765        | SS       | 94-1         | 16.72        | 17.7           |            | ScQv           |              | 16.58 | 16.72     | 0.14        | 0.03 | 0.1           | 40             | 190    | 6      | 4      | 0.6  | 88       | 20      |
| 122766        | SS       | 94-1         | 27.2         | 28.25          |            | ScCb           | Ру           | 16.72 | 17.7      | 0.98        | 0.03 | 0.1           | 22             | 98     | 6      | 8      | 0.4  | 81       | 30      |
| 122767        | SS       | 94-1         | 30.7         | 31.2           | QTBX       | SC             | Py           | 17.7  | 18.7      | 1           | 0.03 | 0.1           | 19             | 160    | 4      | 10     | 0.4  | 104      | 45      |
| 122768        | S        | 94-1         | 31.2         | 32.58          | BAST       | ScCb           | Py           | 25.8  | 26.8      | 1           | 0.03 | 0.1           | 15             | 193    | 5      | 6      | 0.4  | 44       | 30      |
| 122769        | SS       | 94-1         | 32.58        | 32.87          | QTBX       | SC             | Py           | 26.8  | 28.3      | 1.5         | 0.03 | 0.2           | 9              | 174    | L      | 6      | 0.2  | 48       | 35      |
| 122770        | S        | 94-1         | 32.87        | 34.35          | DTFH       | Ch             |              | 28.3  | 29.45     | 1.15        | 0.03 | 0.1           | 10             | 201    | 3      | 8      | 0.4  | 72       | 50      |
| 122771        | SS       | 94-1         | 34.35        | 44.15          | PLBT       | qtsw           |              | 29.45 | 30.7      | . 1.25      | 0.06 | 0.2           | 18             | 227    | 6      | 6      | 0.2  | 55       | 40      |
| 122772        | SS       | 94-1         | 41.05        | 41.13          |            | QCBX           | PY           | 30.7  | 31.25     | 0.55        | 0.1  | 0.1           | 12             | 156    | 3      | 4      | 0.4  | 78       | 40      |
| 122773        | \$5      | 94-1         | 41.4         | 41.47          |            | QTVN           | PY           | 31.25 | 32.58     | 1.33        | 0.03 | 0.2           | 54             | 116    | 4      | 6      | 0.4  | 214      | 130     |
| 122774        | SS       | 94-1         | 44.51        | 50.2           | DTFH       | qcCh           |              | 32.58 | 32.9      | 0.32        | 0.03 | 0.1           | 14             | 134    | 4      | 6      | 0.2  | 60       | 25      |
| 122775        | SS       | 94-1         | 44.9         | 45.6           |            | QtSw           |              | 32.9  | 33.9      | 1           | 0.03 | 0.2           | 35             | 69     | 5      | 4      | 0.4  | 74       | 30      |
| 122776        | SS       | 94-1         | 47.4         | 47.49          |            | QTBX           | РУ           | 40.9  | 41.5      | 0.6         | 0.03 | 0.1           | 16             | 82     | 3      | 4      | 0.2  | 46       | 30      |
| 122777        | \$9      | 94-1         | 47.95        | 48.05          |            | QTBX           | ру           | 44.9  | 45.6      | 0.7         | 0.05 | 0.1           | 13             | 110    | 5      | 6      | 0.4  | 82       | 45      |
| 122778        | SS       | 94-1         | 48.05        | 50.2           |            | QtBx           | ру           | 47.35 | 47.49     | 0.14        | 0.03 | 0.1           | 19             | 48     | 8      | 6      | 0.4  | 106      | 35      |
| 122779        | SS       | 94-1         | 50.2         | 51.29          | BAST       | qtCx           |              | 47.49 | 47.95     | 0.46        | 0.03 | 0.1           | 12             | 12     | 6      | 6      | 0.2  | 88       | 35      |
| 122780        | SS       | 94-1         | 51.29        | 58.4           | DTFP       | qtsw           | ру           | 47.95 | 48.03     | 0.08        | 0.07 | 0.1           | 6              | 188    | 2      | 4      | 0.4  | 80       | 35      |
| 122781        | SS       | 94-1         | 58.4         | 60.05          | BAST       | ch             |              | 48.03 | 49.2      | 1.17        | 0.03 | 0.1           | 9              | 31     | 10     | 4      | 0.2  | 75       | 60      |
| 122782        | SS       | 94-1         | 58.6         | 59.55          |            | QtSw           | PY           | 49.2  | 50.25     | 1.05        | 0.03 | 0.1           | 7              | 10     | 4      | 6      | 0.2  | 90       | 35      |
| 122783        | SS       | 94-1         | 60.05        | 61.8           | QTSW       |                | ру           | 50.25 | 51.4      | 1.15        | 0.03 | 0.1           | 12             | 21     | 6      | 6      | 0.2  | 92       | 30      |
| 122784        | SS       | 94-1         | 61.8         | 62.05          | BAST       |                |              | 57.17 | 58.2      | 1.03        | 0.13 | 0.1           | 6              | 145    | 3      | 6      | 0.4  | 74       | 25      |
| 122785        | 55       | 94-1         | 62.05        | 62.7           | FALT       | QcBx           | РУ           | 58.2  | 59.7      | 1.5         | 0.03 | 0.1           | 6              | 14     | 4      | 6      | 0.2  | 61       | 20      |
| 122786        | - 55     | 94-1         | 62.7         | 63.1           | QCBX       |                |              | 59.7  | 60.55     | 0.85        | 0.03 | 0.2           | 28             | 488    | 3      | 8      | 0.4  | 122      | 85      |
| 122787        | 55       | 94-l         | 63.1         | 66.3           | BAST       | QcBx           |              | 60.55 | 62.05     | 1.5         | 0.03 | 0.1           | 20             | 156    | 6      | 8      | 0.4  | 116      | 35      |
| 122788        | 55       | ¥4-1         | 66.3         | 66.62          | QCSW       |                | hmPy         | 62.05 | 62.7      | 0.65        | 0.03 | 0.2           | 33             | 495    | 8      | 12     | 0.8  | 99       | 145     |
| 122/89        | 25       | 94-l         | 00.02        | 68.05          | QCBX       | CABX           | PY           | 62.7  | 63.15     | 0.45        | 0.05 | 0.1           | 75             | 79     | 2      | 10     | 0.8  | 53       | 190     |
| 122/90        | 55       | 94-1         | 67.13        | 07.41          | T) 4 (217) |                | PYCP         | 63.15 | 64.2      | 1.05        | 0.03 | 0.1           | 31             | 301    | 3      | 6      | 0.6  | 103      | 75      |
| 122/91        | 22       | 94-1         | 68.05        | /2.15          | BASI       | desa           |              | 04.2  | 65.5      | 1.3         | 0.03 | 0.1           | 13             | 226    | 2      | 4      | 0.4  | 94       | 70      |
| 122/92        | 22       | 94-1         | /1.5         | /2.15          | OTOV       | SCQV           | py<br>DV     | 65.5  | 00.2      | 0.7         | 0.03 | 0,1           | 23             | 174    | 8      | 4      | 0.6  | 11       | 75      |
| 122793        | 22       | 99-1<br>04 1 | 72.15        | /2.5           | QIBX       |                | FI           | 00.2  | 60.00     | 0.35        | 0.03 | 0.1           | 118            | 142    | 2      | 6      | 1.2  | 48       | 80      |
| 122/94        | යා<br>දෙ | 94-1<br>94 1 | 72.5         | 90<br>7 7 7 7  | DADI       | 0.0            |              | 67.12 | 67.12     | 0.57        | 0.03 | 0.2           | 0/             | 1/0    | 2      | 4      | 0.8  | 15       | 150     |
| 122795        | 33       | 74-1<br>04 1 | 743          | 73.3           |            | QCCX           |              | 67.12 | 69.05     | 0.5         | 3.90 | 2.5           | 30             | 20,300 | 2      | 4      | 1.4  | 20       | 190     |
| 122790        | 00       | 94-1<br>94 1 | 74.5         | 74.73<br>90.65 |            | Qeaw           |              | 67.42 | 69.03     | 0.03        | 0.11 | 0.2           | 42             | 412    | 4      | 0      | 0.0  | 43       | 180     |
| 122709        | 90       | 74-1<br>04 1 | 80.3<br>00.9 | 01.19          |            | ()~Sm<br>()~Sm | Da.          | 69.75 | 20        | 1.25        | 0.03 | 0.1           | 23             | 179    | 2      | 0      | 0.8  | 92       | 30      |
| 122790        | 90       | 54-1<br>54_1 | 90.8         | 30             |            | ()cSw          | 1 y          | 70    | 21.15     | 1.15        | 0.03 | 0.1           | 12             | 470    | 5      | 4      | 0.2  | 40       | 45      |
| 122799        | 50       | 54.1         | 92.36        | 96 72          | OCSW       | SCOT           | Puen         | 71 15 | 22.15     | 1.15        | 0.03 | 0.1           | 10             | 246    | 4      | 6      | 0.4  | 01<br>01 | 25      |
| 122800        | 80       | 54-1<br>54-1 | 96 72        | 121.25         | PAST       | ACCUL<br>ACCUL | rycp         | 72.15 | 72.13     | 1 15        | 0.03 | 0.1           | 13             | 176    | 4      | 6      | 0.4  | 51       | 145     |
| 122802        | 90       | 34-1         | 90.72        | 00.15          | DASI       | ScOu           | цВ           | 233   | 73.5      | 1.15        | 0.07 | 0.1           | 14             | 191    | ч<br>э | 0      | 0.4  | 36       | 75      |
| 122802        | 80       | 04-1         | 108.4        | 108.0          |            | OcSw           | Mm           | 90.81 | 013       | 4<br>0 h fi | 0.03 | 0.1           | 20             | 101    | 2      | 0<br>9 | 0.4  | 119      | 30      |
| 122804        | SC       | 94-1         | 114.85       | 1151           |            | Ann.           | TV           | 94.9  | 050       | 0,49        | 0.03 | 0.1           | 12             | 202    | 2      | 0<br>A | 0.4  | 62       | 35      |
| 122805        | S        | 94-1         | 1186         | 119.1          |            | ntav           | ¥3           | 95.9  | 96.5      | 0.6         | 0.05 | 0.1           | 15             | 194    | 3      | 4      | 0.4  | 90       | 30      |
| .122806       | 59       | 94-1         | 1191         | 119.65         |            | OCCV           | hm           | 96.5  | 96.7      | 0.0         | 0.55 | 0.1           | 120            | 105    | 4      | 10     | 0.4  | 68       | 45      |
| 122807        | S        | 94-1         | 121 35       | 121.75         |            | SCCA           |              | 96.7  | 97.45     | 0.75        | 0.09 | 0.1           | 42             | 183    | Å      | 6      | 0.4  | 114      | 40      |
| 122808        | S        | 94-1         | 121.75       | 121.9          | OCBX       | CACh           | HMmv         | 97.45 | 99.04     | 16          | 0.03 | 0.1           | 11             | 105    | 3      | 6      | 0.4  | 94       | 30      |
|               |          |              |              |                |            |                |              |       |           |             | 0.02 |               | **             | * 17   |        | v      |      |          |         |

|              |       |        | <u>GEOLOGICAL</u> | DATA          |              | AS     | <u>SAY DAT</u> | A     | FP5   |               |         |               |      |      |      |             |         |
|--------------|-------|--------|-------------------|---------------|--------------|--------|----------------|-------|-------|---------------|---------|---------------|------|------|------|-------------|---------|
| REF.NO DI    | DH FI | RQM    | <u>TO ROCK</u>    | <u>ALTRTN</u> | <u>MINRL</u> | FROM   | TO             | WIDTH | GOLD  | <u>SILVER</u> | ARSENIC | <u>COPPER</u> | MOLY | LEAD | ANTI | <u>ZINC</u> | MERCURY |
| 122809 S94-1 | l     | 121.9  | 123.45 BAST       | ScCa          |              | 99.05  | 99.35          | 0.3   | 0.06  | 0.1           | 13      | 162           | 1    | 6    | 0.14 | 88          | 0       |
| 122810 S94-1 | 1     | 123.45 | 123.75 FALT       | BXQC          | Pyhm         | 99.35  | 100.35         | 1     | 0.02  | 0.1           | 3       | 194           | 6    | 6    | 0.1  | 72          | 0       |
| 122896 S94-1 | 1     | 123.75 | 124.85 BAST       | qevn          |              | 108.4  | 108.9          | 0.5   | 0.005 | 0.1           | 17      | 135           | 2    | 6    | 0.1  | 82          | 10      |
| 122897 S94-1 | 1     | 124.85 | 129.15 DAFP       | scep          | ру           | 118    | 119.05         | 1.05  | 0.005 | 0.1           | 1       | 201           | 3    | 4    | 0.1  | 43          | 40      |
| 122898 S94-1 | L     | 124.85 | 125.9             | qtsw          | ру           | 119.05 | 119.8          | 0.75  | 0.005 | 0.1           | 10      | 166           | 2    | 4    | 0.1  | 92          | 20      |
| 122899 S94-1 | l –   | 125.9  | 127.4             | Seqe          |              | 119.8  | 121.3          | 1.5   | 0.005 | 0.1           | 2       | 195           | 2    | 4    | 0.1  | 41          | 10      |
| 122900 S94-1 | l     | 129.15 | 144.7 BAST        | qcvn          |              | 121.3  | 121.75         | 0.45  | 0.005 | 0.1           | 8       | 149           | 1    | 6    | 0.05 | 96          | 25      |
| 122901 S94-1 | l     | 133.3  | 133.75            | QvCh          | ру           | 121.75 | 121.9          | 0.15  | 0.04  | 0.1           | 32      | 27            | 1    | 6    | 0.1  | 77          | 110     |
| 122902 S94-1 | l     | 139.53 | 139.58            | QTBX          |              | 121.9  | 123.45         | 1.55  | 0.005 | 0.1           | 17      | 190           | 1    | 8    | 0.12 | 118         | 65      |
| 122903 S94-1 | l     | 141.2  | 141.55            | QvSc          | ру           | 123.45 | 123.75         | 0.3   | 0.005 | 0.1           | 21      | 33            | 1    | 6    | 0.1  | 122         | 70      |
| 122904 S94-1 | 1     | 142.6  | 143.5             | CHCa          | ру           | 123.75 | 124.75         | 1     | 0.005 | 0.1           | 9       | 134           | 2    | 4    | 0.1  | 72          | 10      |
| 122905 S94-1 | 1     | 144.7  | 146.95 DTSW       | Sc            | ру           | 124.75 | 125.9          | 1.15  | 0.005 | 0.1           | 11      | 54            | 1    | 4    | 0.1  | 82          | 10      |
| 122906 S94-1 | l     | 146.95 | 150.23 BAST       | sech          |              | 125.9  | 126.85         | 0.95  | 0.005 | 0.1           | 11      | 69            | 1    | 4    | 0.1  | 67          | 25      |
| 122907 S94-1 | l     | 150.23 | 150.5 DAFP        |               |              | 126.85 | 127.65         | 0.8   | 0.005 | 0.1           | 14      | 77            | 1    | 4    | 0.1  | 79          | 25      |
| 122908 S94-1 | l     | 150.5  | 152.93 BAST       |               |              | 127.65 | 128.65         | 1     | 0.005 | 0.1           | 9       | 64            | 1    | 4    | 0.1  | 60          | 5       |
| 122909 S94-1 | l     | 152.93 | 153.2 DAFP        | 9C            | РУ           | 133.25 | 133.85         | 0.6   | 0.005 | 0.1           | 1       | 214           | 1    | 6    | 0.1  | 116         | 10      |
| 122910 S94-1 | l     | 153.2  | 156.3 BAST        | Scqv          | ру           | 135.35 | 136            | 0.65  | 0.005 | 0.1           | 6       | 163           | 1    | 6    | 0.1  | 105         | 15      |
| 122911 S94-1 | l –   | 156.3  | 156.55 DAFH       | qcsw          |              | 138.2  | 139.3          | 1.1   | 0.005 | 0.1           | 19      | 231           | 1    | 2    | 0.1  | 53          | 15      |
| 122912 S94-1 | L     | 156.55 | 178.7 BAST        | dc.am         | РУ           | 139.3  | 139.75         | 0.45  | 0.005 | 0.1           | 20      | 289           | 1    | 6    | 0.1  | 58          | 20      |
| 122913 S94-1 | l     | 167    | 173.2             |               | Ру           | 139.75 | 140.25         | 0.5   | 0.005 | 0.1           | 22      | 296           | 1    | 6    | 0.1  | 41          | 85      |
| 122914 S94-1 | 1     | 168.8  | 171.24            | scch          |              | 142.6  | 143.5          | 0.9   | 0.005 | 0.1           | 9       | 160           | 1    | 6    | 0.1  | 99          | 10      |
| 122915 S94-1 | l I   | 171.24 | 171.5             | QtSw          |              | 143.5  | 144.5          | 1     | 0.005 | 0.1           | 4       | 202           | 1    | 4    | 0.1  | 38          | 10      |
| 122916 S94-1 | l     | 171.5  | 173               | scch          | ру           | 152.4  | 153.2          | 0.8   | 0.005 | 0.1           | 4       | 139           | 1    | 4    | 0.1  | 66          | 35      |
| 122917 S94-1 | l     | 178.7  | 181.97 DTFH       | qvep          | ру           | 153.2  | 153.86         | 0.66  | 0.005 | 0.1           | 23      | 580           | 1    | 8    | 0.1  | 104         | 5       |
| 122918       |       |        |                   |               |              | 153.86 | 154.9          | 1.04  | 0.005 | 0.1           | 2       | 201           | 1    | 6    | 0.1  | 55          | 15      |
| 122919       |       |        |                   |               |              | 170    | 171.2          | 1.2   | 0.005 | 0.1           | 6       | 117           | 1    | 6    | 0.1  | 52          | 25      |
| 122920       |       |        |                   |               |              | 171.2  | 171.55         | 0.35  | 0.005 | 0.1           | 4       | 33            | 1    | 6    | 0.1  | 78          | 90      |
| 122921       |       |        |                   |               |              | 171.55 | 172.55         | 1     | 0.005 | 0.1           | 9       | 106           | 1    | 6    | 0.1  | 59          | 35      |
| 122922       |       |        |                   |               |              | 178.35 | 178.7          | 0.35  | 0.005 | 0.1           | 9       | 143           | 1    | 6    | 0.1  | 72          | 5       |

•

х **х** 

|               |               |             | GEOLOGICAL DATA       |        |           | ASSAY DATA PPD |             |              |      |     |      |                |        |      |      |      |      |
|---------------|---------------|-------------|-----------------------|--------|-----------|----------------|-------------|--------------|------|-----|------|----------------|--------|------|------|------|------|
| <u>REF.NO</u> | <u>DDH</u>    | <u>FROM</u> | <u>TO</u> <u>ROCK</u> | ALTRTN | MINRL     | FROM           | <u>TO</u> V | <u>VIDTH</u> | GOLD | SIL | VER  | <b>ARSENIC</b> | COPPER | MOLY | LEAD | ANTI | ZINC |
| 122811 S      | 394-2         | 0           | 10.36 CASG            |        |           | 11.27          | 13.1        | 1.83         |      | 60  | 0.01 | 5              | 113    | 0.1  | 6    | 0.04 | 80   |
| 122812 S      | 594-2         | 10.36       | 13.1 BAST             | qcsw   |           | 13.1           | 13.75       | 0.65         |      | 80  | 0.01 | 25             | 177    | 5    | 4    | 0.2  | 120  |
| 122813 S      | 594-2         | 13.1        | 13.75 QCSW            | CBSc   | Hm        | 13.75          | 14.1        | 0.35         |      | 60  | 0.01 | 57             | 32     | 1    | 6    | 0.17 | 52   |
| 122814 S      | 194- <u>2</u> | 13.75       | 14 QCBX               | CBSc   | HM        | 14.1           | 15.05       | 0.95         |      | 25  | 0.01 | 22             | 118    | 2    | 4    | 0.2  | 180  |
| 122815 S      | 94-2          | 14          | 18.8 BAST             |        |           | 15.05          | 16.4        | 1.35         |      | 25  | 0.1  | 2              | 62     | 4    | 4    | 0.2  | 80   |
| 122816 S      | 94-2          | 14          | 15                    | ScSw   |           | 16.4           | 17.37       | 0.97         |      | 10  | 0.01 | 6              | 32     | 3    | · 4  | 0.27 | 84   |
| 122817 S      | i94-2         | 17.9        | 18.8                  | CaSc   |           | 17.37          | 18.75       | 1.38         |      | 10  | 0.01 | 4              | 93     | 2    | 4    | 0.16 | 72   |
| 122818 S      | 94-2          | 18.8        | 19.55 QCSW            | СВер   | HM        | 18.75          | 20.05       | 1.3          |      | 25  | 0.01 | 1              | 156    | 2    | 6    | 0.16 | 71   |
| 122819 S      | 694-2         | 19.55       | 33.15 BAST            | qcsw   |           | 20.05          | 21.05       | 1            |      | 15  | 0.1  | 2              | 180    | 2    | 4    | 0.1  | 51   |
| 122820 S      | 194-2         | 25.2        | 25.5                  | qtbx   |           | 24.2           | 25.2        | 1            |      | 15  | 0.01 | 5              | 210    | 2    | 6    | 0.1  | 55   |
| 122821 S      | 94- <u>2</u>  | 28.9        | 29.45                 | SC     |           | 25.2           | 25.45       | 0.25         |      | 45  | 0.01 | 6              | 204    | 3    | 6    | 0.21 | 95   |
| 122822 S      | 94-2          | 33.15       | 34.1 QCSW             |        | PY        | 25.45          | 26.52       | 1.07         |      | 30  | 0.01 | 8              | 215    | 2    | 4    | 0.11 | 61   |
| 122823 S      | 94-2          | 34.1        | 46 BAST               | qcsw   |           | 28.4           | 29.45       | 1.05         |      | 15  | 0.01 | 19             | 209    | 5    | 4    | 0.08 | 90   |
| 122824 S      | 94-2          | 35.7        | 35.9                  | QcSw   | Ру        | 32.15          | 33.15       | 1            |      | 20  | 0.01 | 9              | 161    | 1    | 6    | 0.09 | 91   |
| 122825 S      | 94-2          | 45.25       | 45.4                  | QTBX   | ру        | 33.15          | 34.1        | 0.95         |      | 20  | 0.01 | 27             | 83     | 4    | 4    | 0.08 | 320  |
| 122826 S      | 94-2          | 46          | 49.35 DTFP            | scqt   | py        | 34.1           | 34.85       | 0.75         |      | 55  | 0.01 | 16             | 97     | 2    | 4    | 0.19 | 96   |
| 122827 S      | 94-2          | 49.35       | 50.83 PLBT            | qtsw   | pymg      | 34.85          | 35.7        | 0.85         |      | 60  | 0.01 | 9              | 108    | 2    | 4    | 0.04 | 92   |
| 122828 S      | 94-2          | 50.83       | 52.85 DTHP            | qtsw   | py        | 35.7           | 35.9        | 0.2          |      | 15  | 0.01 | 25             | 168    | 2    | 6    | 0.16 | 103  |
| 122829 S      | 94-2          | 52.85       | 55.45 PLBT            | qtsw   |           | 35.9           | 36.75       | 0.85         |      | 15  | 0.01 | 4              | 222    | 1    | 4    | 0.1  | 58   |
| 122830 S      | 94-2          | 55.45       | 60.85 DTFH            | scqt   |           | 44.25          | 45.25       | 1            |      | 20  | 0.01 | 2              | 162    | 1    | 4    | 0.05 | 80   |
| 122831 S      | 94-2          | 57.2        | 58                    | qtsw   |           | 45.25          | 45.45       | 0.2          | 1    | 45  | 0.1  | 6              | 280    | 4    | 6    | 0.03 | 92   |
| 122832 S      | 94-2          | 60.1        | 60.85                 | qtsw   |           | 45.45          | 46.25       | 0.8          |      | 20  | 0.01 | 1              | 100    | 4    | 4    | 0.1  | 76   |
| 122833 S      | 94-2          | 60.85       | 62.1 OTBX             | ĊВ     | PY        | 54.75          | 55.65       | 0.9          |      | 30  | 0.01 | 10             | 130    | 2    | 6    | 0.06 | 105  |
| 122834 S      | 94-2          | 62.1        | 67.14 BAST            | gcsw   | mg        | 55.65          | 57.05       | 1.4          |      | 10  | 0.01 | 1              | 43     | 1    | 4    | 0.06 | 84   |
| 122835 S      | 94-2          | 67.14       | 69.05 OTBX            | •      | PŸ        | 57.05          | 58.05       | 1            |      | 5   | 0.01 | 1              | 16     | 2    | 4    | 0.01 | 88   |
| 122836 S      | 94-2          | 69.05       | 69.55 FALT            |        | DV        | 59.8           | 60.85       | 1.05         |      | 5   | 0.01 | 45             | 20     | 3    | 2    | 0.01 | 91   |
| 122837 S      | 94-2          | 69.55       | 70.9 OCSW             | CBSC   | ev<br>ov  | 60.85          | 62.1        | 1.25         |      | 10  | 0.01 | 9              | 31     | 3    | 6    | 0.02 | 64   |
| 122838 S      | 94-2          | 70.9        | 71.45 FALT            |        | DV VO     | 62.1           | 63.09       | 0.99         |      | 10  | 0.01 | 8              | 160    | 5    | 2    | 0.33 | 93   |
| 122839 S      | 94-2          | 71.45       | 71.8 OCBX             |        | pvCp      | 66.14          | 67.14       | 1            |      | 10  | 0.01 | 10             | 162    | 4    | 2    | 0.1  | 68   |
| 122840 S      | 94-2          | 71.8        | 72.05 BAST            | ScCH   | F) - F    | 67.14          | 69.05       | 1.91         |      | 5   | 0.01 | 10             | 43     | 1    | 4    | 0.09 | 101  |
| 122841 S      | 94-2          | 72.05       | 73.05 OCSW            |        | oven      | 69.05          | 69.55       | 0.5          |      | 90  | 0.3  | 69             | 70     | 2    | 6    | 0.7  | 89   |
| 122842 S      | 94-2          | 73.05       | 73.17 OCBX            | CA     | СРРҮ      | 69.55          | 70.9        | 1.35         |      | 5   | 0.01 | 17             | 159    | 1    | 8    | 0.26 | 94   |
| 122843 S      | 94-2          | 73.17       | 73.62 BAST            | CaSw   | DV        | 70.9           | 71.45       | 0.55         |      | 15  | 0.01 | 14             | 365    | 4    | - 6  | 0.53 | 101  |
| 122844 S      | 94-2          | 73.62       | 76.82 OCSW            | CB     | nYcn      | 71.45          | 71.8        | 0.35         |      | 10  | 0.3  | 4              | 1624   | 1    | 4    | 0.42 | 107  |
| 122845 S      | 94-2          | 76.82       | 83.8 BAST             | acsw   | ma        | 71.8           | 72.05       | 0.25         |      | 45  | 0.01 | 10             | 165    | 1    | 6    | 0.36 | 84   |
| 122846 S      | 94-2          | 76.82       | 17.7                  | Chsc   | DV        | 72.05          | 73.05       | 1            |      | 55  | 0.01 | 12             | 515    | 1    | 4    | 0.18 | 102  |
| 122847 S      | 94-2          | 77.85       | 78.4                  | atBx   | r J       | 73.05          | 73.17       | 0.12         |      | 5   | 0.9  | 43             | \$\$45 | 1    | 8    | 0.13 | 131  |
| 122848 S      | 94-2          | 81.38       | 82.5                  | CBSw   | ov        | 73.17          | 73.62       | 0.45         | 1    | 10  | 0.01 | 3              | 250    | 1    | 6    | 0.22 | 92   |
| 122849 S      | 94-2          | 83.8        | 83.91 OCBX            | Ch     | Pv        | 73.62          | 74.8        | 1.18         | _    | 15  | 0.01 | 62             | 19     | 4    | 10   | 0.31 | 124  |
| 122850 S      | 94-2          | 83.91       | 122.75 PLBT           | acvn   | - y<br>mg | 74.8           | 76.1        | 1.3          |      | 5   | 0.01 | 9              | 118    | i    | 8    | 0.17 | 104  |
| 122851 S      | 94-2          | 91.1        | 92.2                  | CaSw   |           | 76.1           | 76.85       | 0.75         |      | 10  | 01   | 17             | 143    | 2    | 8    | 0.23 | 74   |
| 122852 S      | 94-2          | 111.65      | 111.85                | OcBr   | cn        | 76.85          | 77 83       | 0.98         |      | 60  | 0.01 | 10             | 183    | - 3  | 6    | 0.11 | 80   |
| 122853 S      | 94-2          | 111.95      | 112.55                | CaVn   | PYCP      | 77.83          | 78.5        | 0.67         |      | 5   | 03   | 8              | 161    | 1    | 8    | 0.22 | 81   |
| 122854 S      | 94-2          | 122.75      | 123.55 OCBX           |        | PvHm      | 78.5           | 79.6        | 11           |      | 5   | 01   | 4              | 178    | 1    | 10   | 01   | 56   |
| 122855 S      | 94-2          | 123.55      | 124.55 BAST           | CAOt   | HMoy      | 79.6           | 80.35       | 0.75         |      | 10  | 0.01 | 8              | 197    | 2    | 4    | 0.1  | 62   |
| 122856 S      | 94-2          | 124.55      | 127.15 OCSW           |        | HMp       | 80.35          | 81.38       | 1.03         |      | 5   | 0.01 | 2              | 176    | 1    | 4    | 0.1  | 70   |
|               |               |             | · · · · · ·           |        |           |                |             |              |      |     |      | -              |        | -    | •    |      |      |

| GEOLOGICAL DATA |       |        |                 |      |        | ASSAY DATA PP5 |               |        |       |          |               |         |        |      |      |              |      |
|-----------------|-------|--------|-----------------|------|--------|----------------|---------------|--------|-------|----------|---------------|---------|--------|------|------|--------------|------|
| REF.NO          | DDH   | FROM   | <u>T0</u>       | ROCK | ALTRTN | MINRL          | FROM          | TO     | WIDTH | GOLD     | <u>SILVER</u> | ARSENIC | COPPER | MOLY | LEAD | ANTI         | ZINC |
| 122857          | S94-2 | 124.9  | 125.2           |      | QTBX   |                | 81.38         | 82.55  | 1.17  | · •      | 5 0.01        | 1       | 162    | 1    | 4    | 0.1          | 83   |
| 122858          | S94-2 | 127.15 | 128.95          | BAST | CASc   | ру             | 82.55         | 83.8   | 1.25  | 5        | 5 0.01        | 1       | 173    | 1    | 4    | 0.04         | 62   |
| 122859          | S94-2 | 128.95 | 129.9           | QCSW | CB     | НМру           | 83.8          | 83.91  | 0.11  | 5        | 5 0.01        | 9       | 29     | 2    | 4    | 0.1          | 109  |
| 122860          | S94-2 | 129.9  | 144.9           | BAST | SCCV   |                | 83.91         | 85     | 1.09  |          | 5 0.2         |         | 7 200  | 4    | 4    | 0.02         | 38   |
| 122861          | S94-2 | 130.5  | 123             |      | Cv     |                | 91.05         | 92.5   | 1.45  | -        | 5 0.01        |         | 5 162  | 2    | 4    | 0.02         | 45   |
| 122862          | S94-2 | 134.25 | 139.65          |      | Cbqv   | ру             | 96.02         | 97.62  | 1.6   |          | 5 0.01        | . 2     | 2 210  | 1    | 4    | 0.02         | 47   |
| 122863          | S94-2 | 141.4  | 144.4           |      | ChCA   |                | 97.62         | 97,78  | 0.16  |          | 5 0.01        | 4       | 134    | 2    | 2    | 0.05         | 86   |
| 122864          | S94-2 | 144.9  | 145.4           | FALT | QcBx   | pyhm           | 97. <b>78</b> | 99.2   | 1.42  | 5        | 5 0.01        | 7       | 7 207  | 3    | 2    | 0.02         | 40   |
| 122865          | S94-2 | 145.4  | <b>171.77</b> ] | PLBT |        |                | 99.2          | 99.3   | 0.1   | 4        | 5 0.01        | 1       | 140    | 1    | 4    | 0.02         | 89   |
| 122866          | S94-2 | 145.4  | 146.3           |      | ChCa   |                | 99.3          | 99.45  | 0.15  | 9        | 5 0.1         | . 2     | 2 201  | 2    | 2    | 0.02         | 41   |
| 122867          | S94-2 | 168.35 | 168.95          |      | Sc     | Руср           | 106.6         | 107.1  | 0.5   | 9        | 5 0.01        | . 6     | 5 198  | 3    | 4    | 0.02         | 48   |
| 122868          | S94-2 | 169.6  | 171.77          |      | QcSw   | PYPO           | 107.1         | 107.35 | 0.25  | 4        | 5 0.01        |         | 5 152  | 1    | 2    | 0.02         | 76   |
| 122869          | S94-2 | 171.77 | 171.9 ]         | DTHF | QcSw   |                | 107.35        | 108.15 | 0.8   |          | 5 0.01        | . 12    | 2 178  | 2    | 4    | 0.02         | 54   |
| 122870          | S94-2 | 171.9  | 191.11          | PLBT |        |                | 110.65        | 111.65 | 1     | 5        | 5 0.1         | 8       | 3 189  | 3    | 2    | 0.02         | 52   |
| 122871          | S94-2 | 181.65 | 181.95 (        | QcVn | ру     |                | 111.65        | 112.6  | 0.95  | \$       | 5 0.01        | 11      | 122    | 1    | 4    | 0.02         | 78   |
| 122872          |       |        |                 |      |        |                | 112.6         | 113.1  | 0.5   |          | 5 0.01        |         | 5 145  | 2    | 2    | 0.0 <u>2</u> | 50   |
| 122873          |       |        |                 |      |        |                | 121.7         | 122.7  | 1     | 9        | 5 0,1         | 11      | £ 200  | 2    | 4    | 0.02         | 44   |
| 122874          |       |        |                 |      |        |                | 122.7         | 123.65 | 0.95  | 21       | 5 0.1         | 30      | ) 66   | 2    | 2    | 0.03         | 80   |
| 122875          |       |        |                 |      |        |                | 123.65        | 124.45 | 0.8   | -        | 5 0.01        | . 18    | 3 156  | 2    | 2    | 0.06         | 137  |
| 122876          |       |        |                 |      |        |                | 124.45        | 125.25 | 0.8   | <u> </u> | 5 0.01        | . 3     | 68     | 4    | 4    | 0.04         | 110  |
| 122877          |       |        |                 |      |        |                | 125.25        | 125.95 | 0.7   | 45       | 5 0.01        |         | 5 149  | 2    | 4    | 0.05         | 98   |
| 122878          |       |        |                 |      |        |                | 125.95        | 127.25 | 1.3   | 5        | 5 0.01        | 9       | 9 151  | 4    | 4    | 0.02         | 120  |
| 122879          |       |        |                 |      |        |                | 127.25        | 128.75 | 1.5   | 5        | 5 0.01        | . \$    | 127    | 1    | 4    | 0.15         | 132  |
| 122880          |       |        |                 |      |        |                | 128.75        | 130    | 1.25  | 5        | 5 0.01        | 4       | 138    | 2    | 2    | 0.08         | 106  |
| 122881          |       |        |                 |      |        |                | 130           | 131    | 1     | 5        | 5 0.01        | 4       | 188    | 2    | 2    | 0.04         | 72   |
| 122882          |       |        |                 |      |        |                | 131           | 132.3  | 1.3   | 5        | 5 0.01        | 1       | 8 174  | 7    | 2    | 0.05         | 75   |
| 122883          |       |        |                 |      |        |                | 138.6         | 139.15 | 0.55  | 5        | 5 0.01        | . 11    | 177    | 1    | 4    | 0.08         | 76   |
| 122884          |       |        |                 |      |        |                | 139.15        | 139.68 | 0.53  | <u>-</u> | 5 0.01        | 11      | 7 112  | 4    | 2    | 0.1          | 87   |
| 122885          |       |        |                 |      |        |                | 140.9         | 141.7  | 0.8   | 1        | 5 0.01        | . 9     | 0 177  | 3    | 4    | 0.11         | 72   |
| 122886          |       |        |                 |      |        |                | 141.7         | 143    | 1.3   | 5        | 5 0.01        | . 8     | 3 171  | 3    | 4    | 0.14         | 106  |
| 122887          |       |        |                 |      |        |                | 143           | 144.8  | 1.8   | 30       | ) 0.01        | . 15    | 5 142  | 1    | 6    | 0.06         | 112  |
| 122888          |       |        |                 |      |        |                | 144.8         | 145.4  | 0.6   | 10       | ) 0.01        | 11      | 7 94   | 5    | 6    | 0.1          | 113  |
| 122889          |       |        |                 |      |        |                | 145.4         | 146.25 | 0.85  |          | 5 0.01        |         | 173    | 1    | 4    | 0.13         | 76   |
| 122890          |       |        |                 |      |        |                | 168.25        | 169.1  | 0.85  | 65       | 5 0.01        | 43      | 333    | 5    | 4    | 0.21         | 210  |
| 122891          |       |        |                 |      |        |                | 169.1         | 169.6  | 0.5   | 9        | 5 0.01        | 36      | 5 88   | 5    | 6    | 0.02         | 50   |
| 122892          |       |        |                 |      |        |                | 169.6         | 171.4  | 1.8   | 5        | 5 0.01        | 17      | 106    | 2    | 4    | 0.02         | 49   |
| 122893          |       |        |                 |      |        |                | 171.4         | 171.9  | 0.5   | 15       | 5 0.01        | 25      | 202    | 2    | 4    | 0.02         | 73   |
| 122894          |       |        |                 |      |        |                | 171.9         | 172.3  | 0.4   | 5        | 5 0.01        | 15      | 5 88   | 2    | 4    | 0.02         | 48   |
## DDHS94-03

•

|                |       |             | <u>GEOLOGICAL</u>     | DATA   |       | AS    | SAY DATA           |       |           | PPM           | ALL            | VALUES | ,    |      |             |      |
|----------------|-------|-------------|-----------------------|--------|-------|-------|--------------------|-------|-----------|---------------|----------------|--------|------|------|-------------|------|
| <b>LEF, NO</b> | DDH   | <u>FROM</u> | <u>to</u> <u>rock</u> | ALTRIN | MINRL | FROM  | <u>TO</u> <u>V</u> | VIDTH | <u>പോ</u> | <u>SILVER</u> | <u>ARSENIC</u> | COPPER | MOLY | LEAD | <u>ANT1</u> | ZINC |
| 122957         | S94-3 | 0           | 4.88 CASG             |        |       | 8.4   | 9                  | 0.6   | 0.005     | 0.1           | 15             | 171    | 1    | 2    | 0.4         | 110  |
| 122958         | S94-3 | 4.88        | 26.36 PLBT            | chqv   |       | 13.5  | 14.3               | 0.8   | 0.01      | 0.1           | 13             | 213    | 1    | 2    | 0.6         | 83   |
| 122959         | S94-3 | 7.68        | 7.96                  | CabX   |       | 14.3  | 15.3               | 1     | 0.005     | 0.1           | 11             | 158    | 2    | 6    | 0.4         | 98   |
| 12 <b>2960</b> | S94-3 | 8.4         | 8.9                   | CBVN   | HM    | 15.3  | 16.2               | 0.9   | 0.005     | 0.1           | 18             | 172    | 3    | 2    | 0.6         | 80   |
| 122961         | S94-3 | 12.6        | 12.7                  | QtSw   | ру    | 17.5  | 18.1               | 0.6   | 0.005     | 0.1           | 18             | 179    | 6    | 12   | 0.4         | 98   |
| 122962         | S94-3 | 14.33       | 16.2                  | QtCb   |       | 19.8  | 20.4               | 0.6   | 0.47      | 0.1           | 1212           | 197    | 6    | 8    | 1.2         | 115  |
| 122963         | S94-3 | 19.92       | 20.42                 | ScCb   |       | 20.4  | 21.5               | 1.1   | 0.005     | 0.1           | 12             | 229    | 3    | 8    | 0.6         | 51   |
| 122964         | S94-3 | 24.4        | 24,8                  | CbSc   | hm    | 28.5  | 29.4               | 0.9   | 0.005     | 0.1           | 19             | 240    | 4    | 8    | 0.4         | 76   |
| 122965         | S94-3 | 25.1        | 25.6                  | QtCt   | Ру    | 29.4  | 29.87              | 0.47  | 0.005     | 0.1           | 19             | 273    | 8    | 8    | 0.6         | 82   |
| 122966         | S94-3 | 26.36       | 27.84 DTFP            | scep   |       | 29.87 | 30.87              | 1     | 0.005     | 0.1           | 13             | 211    | 3    | 8    | 0.4         | 62   |
| 122967         | S94-3 | 27.84       | 61.55 PLBT            | ch     |       | 33.1  | 34.1               | 1     | 0.005     | 0.1           | 15             | 188    | 1    | 2    | 0.4         | 86   |
| 122968         | S94-3 | 28.68       | 28.8                  | СьСь   | Ру    | 34.1  | 35.1               | 1     | 0.005     | 0.1           | 18             | 204    | 2    | 2    | 0.4         | 102  |
| 122969         | S94-3 | 28.8        | 29.6                  | QcSw   | Py    | 35.1  | 36.2               | 1.1   | 0.005     | 0.1           | 12             | 207    | 1    | 2    | 0.4         | 80   |
| 122970         | S94-3 | 33.18       | 33.4                  | CBVN   |       | 36.2  | 37.2               | 1     | 0.005     | 0.1           | 13             | 239    | 4    | 2    | 0.4         | 82   |
| 122971         | S94-3 | 34.5        | 34.8                  | CbSc   |       | 37.2  | 37.5               | 0.3   | 0.16      | 0.1           | 105            | 70     | 8    | 20   | 0.6         | 85   |
| 122972         | S94-3 | 37.25       | 37.41                 | QCBX   | Han   | 37.5  | 38.5               | 1     | 0.005     | 0.1           | 9              | 191    | 6    | 2    | 0.6         | 77   |
| 122973         | S94-3 | 38.65       | 39.25                 | CbSc   |       | 38.5  | 39.25              | 0.75  | 0.005     | 0.1           | 16             | 257    | 8    | 2    | 0.8         | 119  |
| 122974         | S94-3 | 40.2        | 40.4                  | ScCb   |       | 39.25 | 40.2               | 0.95  | 0.005     | 0.1           | 8              | 172    | 4    | 2    | 0.4         | 73   |
| 122975         | S94-3 | 40.6        | 40.91                 | CbSc   |       | 40.2  | 41                 | 0.8   | 0.005     | 0.1           | 15             | 219    | 7    | 2    | 0.6         | 100  |
| 122976         | S94-3 | 42.65       | 42.8                  | CbSc   |       | 41    | 42.2               | 1.2   | 0.005     | 0.1           | 11             | 198    | 9    | 2    | 0.4         | 61   |
| 122977         | S94-3 | 43.4        | 45.33                 | CbSc   | hm    | 42.2  | 43.4               | 1.2   | 0.02      | 0.1           | 27             | 139    | 7    | 2    | 0.6         | 92   |
| 122978         | S94-3 | 44.1        | 44.32                 | QcBx   |       | 43.4  | 43.8               | 0.4   | 0.005     | 0.1           | 14             | 194    | 5    | 2    | 0.4         | 73   |
| 122979         | S94-3 | 49.5        | 50                    | cbsc   |       | 43.8  | 44.5               | 0.7   | 0.005     | 0.1           | 34             | 162    | 8    | 2    | 0.8         | 133  |
| 122980         | S94-3 | 50          | 51.02                 | CbSc   |       | 44.5  | 45                 | 0.5   | 0.02      | 0.1           | 28             | 163    | 10   | 2    | 0.8         | 143  |
| 122981         | S94-3 | 51.02       | 59                    | CaSW   |       | 45    | 45.8               | 0.8   | 0.005     | 0.1           | 17             | 178    | 2    | 2    | 0.4         | 90   |
| 122982         | S94-3 | 51.2        | 51.9                  | Сьвя   |       | 45.8  | 46.8               | 1     | 0.005     | 0.1           | 12             | 230    | 4    | 2    | 0.4         | 81   |
| 122983         | S94-3 | 53.67       | 53.9                  | СаВх   |       | 46.8  | 47.8               | 1     | 0.005     | 0.1           | 22             | 204    | 6    | 2    | 0.4         | 103  |
| 122984         | S94-3 | 61.55       | 62.22 DTFP            | qcs₩   |       | 49    | 50                 | 1     | 0.01      | 0.1           | 18             | 170    | 4    | 2    | 0.4         | 75   |
| 122985         | S94-3 | 62.22       | 77.38 PLBT            | cbch   |       | 50    | 51                 | 1     | 0.005     | 0.1           | 15             | 135    | 6    | 2    | 0.6         | 104  |
| 122986         | S94-3 | 72.33       | 72.51                 | QcVn   |       | 51    | 52                 | 1     | 0.005     | 0.1           | 21             | 210    | 7    | 2    | 0.6         | 95   |
| 122987         | S94-3 | 72.51       | 74.44                 | ScCh   |       | 52    | 53                 | 1     | 0.005     | 0.1           | 27             | 225    | 6    | 2    | 0.4         | 80   |
| 122988         | S94-3 | 74.44       | 74.6                  | CBVN   | ру    | 53    | 54                 | 1     | 0.005     | 0.1           | 14             | 196    | 6    | 2    | 0.4         | 67   |
| 122989         | S94-3 | 74.6        | 75.15                 | ScCh   |       | 55.4  | 56.1               | 0.7   | 0.01      | 0.1           | 20             | 132    | 7    | 2    | 0.4         | 75   |
| 122990         | S94-3 | 75.15       | 75.67                 | QcSw   |       | 72.2  | 72.6               | 0.4   | 0.01      | 0.1           | 20             | 143    | 8    | 2    | 0.4         | 89   |
| 122991         | S94-3 | 75.67       | 76.59                 | qcsw   |       | 72.6  | 73.6               | 1     | 0.005     | 0.1           | 17             | 186    | 6    | 2    | 0.2         | 48   |
| 122992         | S94-3 | 76.59       | 76.8                  | QcVN   |       | 74.5  | 75.1               | 0.6   | 0.005     | 0.1           | 20             | 150    | 6    | 2    | 0.2         | 42   |
| 122993         | S94-3 | 77.38       | 80.6 DTHF             | qcsW   | ру    | 75.1  | 75.7               | 0.6   | 0.2       | 0.1           | 99             | 240    | 15   | 4    | 0.4         | 100  |
| 122994         | S94-3 | 80.6        | 101.8 PLBT            | cbch   |       | 75.7  | 76.4               | 0.7   | 0.005     | 0.1           | 39             | 191    | 3    | 2    | 0.2         | 39   |
| 122995         | S94-3 | 100.97      | 101.35                | CBCH   |       | 76.4  | 77.4               | 1     | 0.005     | 0.1           | 25             | i 187  | 9    | 2    | 0.4         | 111  |
| 122996         | S94-3 | 101.8       | 104 FALT              | qcBX   | ру    | 77.4  | 78.4               | 1     | 0.005     | 0.1           | 19             | 56     | 8    | 2    | 0.2         | 73   |
| 122997         | S94-3 | 104         | 106.5 PLBT            | qcsw   | • -   | 87.8  | 88.3               | 0.5   | 0.1       | 0.1           | 17             | 200    | 8    | 2    | 0.2         | 56   |
| 122998         | S94-3 | 106.5       | 107.75 FALT           | qcBX   | Ру    | 90.3  | 91.4               | 1.1   | 0.1       | 0.1           | 23             | 223    | 7    | 2    | 0.2         | 45   |
| 122999         | S94-3 | 107.75      | 158.1 PLBT            | ch     | -     | 100   | 101                | 1     | 0.005     | 0.1           | 10             | 137    | 4    | 2    | 0.2         | 49   |
| 123000         | S94-3 | 107.75      | 113                   | qcs₩   |       | 101   | 102                | 1     | 0.005     | 0.1           | 15             | 98     | 4    | 10   | 0.2         | 38   |
| 126851         | S94-3 | 120         | 130.1                 | qcsw   |       | 102   | 103                | 1     | 0.005     | 0.1           | 15             | 5 173  | 4    | 4    | 0.4         | 84   |
| 126852         | S94-3 | 130.1       | 131.15                | CbSc   | ру    | 103   | 104                | 1     | 0.005     | 0.1           | 20             | 127    | 5    | 10   | 0.2         | 72   |
| 126853         | S94-3 | 131.15      | 137.4                 | qcsw   |       | 104   | 105                | 1     | 0.005     | 0.1           | 14             | 160    | 2    | 8    | 0.2         | 68   |
| 126854         | S94-3 | 137.4       | 138.1                 | CbSc   | ру    | 105   | 106                | 1     | 0.005     | 0.1           | 14             | 161    | 4    | 6    | 0.2         | 65   |
| 126855         | S94-3 | 138.1       | 141.9                 | qcsw   |       | 106   | 107                | 1     | 0.005     | 0.1           | 10             | 1.50   | 4    | 6    | 0.2         | 70   |
| 126856         | S94-3 | L41.9       | 142.34                | QCBX   |       | 107   | 108                | 1     | 0.005     | 0.1           | 16             | 209    | 3    | 6    | 0.2         | 73   |

ASSAY DATA GEOLOGICAL DATA REF.NO DDH FROM TO ROCK ALTRIN MINRL FROM WIDTH GOLD SILVER ARSENIC COPPER MOLY ANTI TO LEAD ZINC 126857 S94-3 147.92 142.34 d¢s₩ 108 109 1 0.005 0.1 6 178 1 4 0.2 60 126858 S94-3 147.92 148.02 CABX 109 110 1 0.01 0.1 213 8 10 0.2 53 ру 4 126859 S94-3 148.02 120.7 121.3 0.6 0.005 158.1 0.1 5 176 10 0.2 qcsw mg 4 88 126860 S94-3 158.1 158.5 OCBX 122 122.8 0.8 0.005 0.1 8 137 2 6 0.2 67 126861 S94-3 158.5 165.1 DTHF Chca 124.1 124.4 0.3 0.005 0.1 7 205 2 0.2 4 33 126862 S94-3 OCSW 164.5 165.1 130.1 131.2 1.1 0.005 0.1 148 8 0.2 14 6 96 126863 \$94-3 165.1 165.3 BAST OCSW mg 137.4 138.2 0.8 0.03 0.1 22 373 2 22 0.4 316 MgCp 126864 S94-3 165.3 165.87 DTHF 138.2 139.1 0.9 qc 0.06 0.1 12 229 3 4 0.2 65 OCCX 126865 \$94-3 165.87 166.16 BAST 147.8 148.1 0.3 0.03 110 5 8 0.1 16 0.2 91 126866 594-3 166.16 166.6 FALT OCSW PY 152.2 152.6 0.4 0.005 0.1 11 128 3 16 02 78 126867 S94-3 166.6 167.2 BAST OcBr 154.6 155.6 ł 0.005 0.1 17 1.59 2 0.2 67 4 126868 S94-3 167.2 173.78 DTHP 155.6 156.7 QCSW 1.1 0.01 0.1 16 153 2 6 Ū.2 47 126869 S94-3 173.78 174.32 BAST ch 158 158.5 0.5 0.005 0.1 13 128 4 6 0.4 87 174.32 174.75 DTHP 158.5 126870 S94-3 159.5 1 0.1 20 62 5 QCED 0.01 4 0.4 69 174.75 215.49 PLBT 159.5 126871 S94-3 160.5 1 11 137 qcsw 0.06 0.1 2 2 0.2 78 126872 S94-3 177.3 177.4 OCVN 160.5 161.5 1 0.03 0.t 13 123 3 4 0.2 54 py 126873 S94-3 180.77 180.87 OCVN **PYCp** 164.3 165.3 1 0.005 0.1 12 102 70 1 6 0.2 191.95 126874 S94-3 182.17 165.3 166 0.7 0.09 8 1692 28 Chqt 1.1 3 0.4 140 126875 S94-3 182.17 182.2 FALT 166 166.3 0.3 0.005 0.1 11 576 6 18 0.2 86 126876 S94-3 182.2 182.85 QTBX 166.3 167.3 1 0.005 0.1 10 1 82 8 0.2 51 4 126877 S94-3 190.93 190.97 FALT QCBX 167.3 168.3 1 0.005 1.2 14 370 3 4 0.2 394 126878 S94-3 191.07 191.44 сp 168.3 169.3 1 0.005 0.1 13 149 3 R 0.2 56 126879 S94-3 213.5 214.78 Close hm 177.2 177.5 0.3 0.005 0.1 13 10 77 140 2 0.4 OTVN 126880 \$94-3 214.78 214.83 180.7 181 0.3 0.28 0.1 10 55 5 10 0.2 71 126881 S94-3 214.78 215.1 ScCh 181 182 1 0.02 0.1 12 56 0.2 54 3 4 126882 182 183 1 0.005 0.1 10 124 4 8 0.2 50 126883 183 184 1 0.005 0.1 47 6 142 2 4 0.2 126884 190.85 191.05 0.2 0.005 0.1 137 0.2 70 5 1 6 126885 191.05 191.55 0.5 0.005 0.1 9 195 4 6 0.2 32 126886 199.1 199.7 0.6 0.005 0.1 39 4 125 3 4 0.2 126887 205 205.4 0.4 0.005 0.1 8 178 8 0.2 56 1 126888 207.8 208.8 1 0.005 1.0 9 1 87 5 8 0.2 62 126889 212.5 213.5 53 1 0.005 0.1 10 188 4 0.2 1 126890 213.5 214.4 0.9 0.005 0.1 6 216 18 0.2 67 4 126891 214.4 214.85 0.45 0.005 78 0.1 18 5 10 0.2 66 126892 214.85 215.1 0.25 0.005 0.1 138 87 11 4 10 0.2 126893 215.1 215.49 0.39 0.005 0.1 8 183 5 0.1 37 б

DDHS94-03











| ,                |            |                       | L.C.GETTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                |            |                       | Particular and willing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |            |                       | And a second sec                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I                |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |            | · • • · · · · · · · · | A T AND ALT AND AND A AN                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  |            |                       | Control of the start - Wildow - Administrative<br>Control of the Start - Control of the Administrative<br>Control of the Start - Manager Control of the<br>Control of the St                                                                                                                                                                                                                                                                                                                                |
| i<br>            |            |                       | A construction of the second s                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>15</b> 0.0 IL | . <b>.</b> |                       | A CASE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1                |            |                       | <ul> <li>County a constraint of anticipal<br/>states of anticipal</li></ul> |
|                  |            |                       | <ul> <li>Bernardian Bernardian Bernardia</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                |
| I                |            |                       | A CALL WARNER CONTRACT TO A CONTRACT OF A CO                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  |            |                       | points<br>San marine i pris Asia pris devenari anna a<br>Althoris contra y actual anna i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  |            |                       | And a second sec                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



|         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 1002530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | ARDANI<br>PARTADE NO 4704<br>PARTADE NO 4704<br>MAY 6,440<br>ST 8004 - 2010 1000 100 XAVI 80002<br>ST 8004 - 2010 1000 100 XAVI 80002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | Altert Mit Structure (D. Alter<br>Anti-Altert Mit Structure)<br>Anti-Altert Mit Structure<br>Anti-Altert Mit                                                     |
|         | erkille - Guerres Annihit<br>anites - anisation<br>anites - anisations<br>built - anisations<br>built - anistation<br>built - anistation |
|         | And there is but a state of the                                                                                                                                                                                                           |
| N50.0 A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | <ul> <li>Terito statutation at accred</li> <li>Status Carrier</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | A Contract of Cont                                                                                                                                                                                                           |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | Ebelliu<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | <ul> <li>A strain of the s</li></ul>                                                                                                                                                                                                     |
|         | Part Autority                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |













|        | TAY | III.TRES                                                                                    |
|--------|-----|---------------------------------------------------------------------------------------------|
|        |     | MIL 2 0 394<br>MIL 2 0 394<br>MIL CH SATL CH SESCRIPTION                                    |
|        |     | N SO LEO J. LINDINGER P.Geo.<br>CONSULTING GEOLOGIST                                        |
| 0.0 EL |     | DALMATIAN RESOURCES LTD.<br>TAY PROJECT<br>TAY MAIN (EAST) ZONE<br>1994 PHASE 1<br>DRILLING |
|        |     | SECTION 9145E<br>ASSAYS AND MINERALIZATION<br>INTERPRETED GEOLOGY AND ALTERATION            |
|        |     | DECKED APPROVED SCALE 1:250<br>ONLE ADE 16/94                                               |
|        |     | FIGURE 802.<br>93-06 (W209)45-2                                                             |











| 1         |  |                                                                       |
|-----------|--|-----------------------------------------------------------------------|
|           |  | MEINES                                                                |
|           |  | REV DATE DR DESCRIPTION                                               |
| 6.0 TL    |  | CONSULTING GEOLOGIST<br>DALMATIAN RESOURCES LTD.<br>TAY PROJECT       |
|           |  | TAY MAIN (EAST) ZONE<br>1994 PHASE I<br>DRILLING<br>SECTION 9055E     |
|           |  | GEOLOGY AND ALTERATION                                                |
| 1 0.000 · |  | APPROVED<br>SCALE 1:250<br>DATE JUNE 16/91<br>FEI GURE 8H2<br>M259055 |





|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stee                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REV DATE OR DESCRIPTION                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEO J. LINDINGER P.Geo.<br>CONSULTING GEOLOGIST          |
| 0.0 £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DALMATIAN RESOURCES LTD.<br>TAY PROJECT                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1994 PHASE I<br>DRILLING<br>SECTION 9040E                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GEOLOGY AND ALTERATION                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | APPROVED<br>SCALE 1250<br>DATE AINE 16/34<br>FUELDEE BEL |
| 5 PARTIN TRANSPORTANCE AND THE STATE OF THE | A sublement of the local state of the second s | 177259040 ×                                              |





|              | 3 | METRES                                                                    |
|--------------|---|---------------------------------------------------------------------------|
|              |   |                                                                           |
|              |   | REV DATE DR DESCRIPTION<br>LEO J. LINDINGER P.Geo.                        |
| AST EL       |   | DALMATIAN RESOURCES LTD.<br>TAY PROJECT<br>TAY MAIN (FAST) ZONE           |
|              |   | 1994 PHASE I<br>DRILLING<br>SECTION 9025E                                 |
|              |   | GEOLOGY AND ALTERATION                                                    |
| * <b>199</b> |   | APPROVED<br>SCALE 1250<br>DATE JUNE 18/94<br>FIGURE 851<br>93-05 TH259025 |

















|      |        |      |           |        |          | £4.5                              |                            | 7-10-11                                 |
|------|--------|------|-----------|--------|----------|-----------------------------------|----------------------------|-----------------------------------------|
|      |        |      |           |        | 85       | 30.201<br>DATE                    | 334<br>08<br>611           | DESCRIPTION                             |
|      |        |      |           |        |          | LEO J<br>CONS                     | , LIN                      | DINGER P.Geo.                           |
| ga n |        |      |           |        | D        | ALMATI                            | AN F                       | RESOURCES LTD<br>PROJECT<br>(EAST) ZONE |
|      |        |      | ~ 영제에 도망한 |        | 10       | SE                                | 1994<br>DR<br>CTIO         | PHASE I<br>ILLING<br>N 8955E            |
|      |        |      |           |        | RC<br>RA | GEOLO<br>LOGIST L<br>AN A<br>DAED | GY A                       | ND ALTERATION                           |
|      | A 8005 | 1000 |           | X 9556 | 2100 3   | ROVED<br>LE L<br>Fr               | 1250<br>LINE 18/<br>I G U, | RE BNI                                  |



|        |       | MET THE                                                         |
|--------|-------|-----------------------------------------------------------------|
|        |       |                                                                 |
|        |       |                                                                 |
|        |       | 10 2 0 1994                                                     |
|        |       |                                                                 |
|        |       | REV CH ERECORPTION                                              |
|        |       | LEO J. LINDINGER P.Geo.<br>CONSULTING GEOLOGIST                 |
| 0.0 EL |       | DALMATIAN RESOURCES LTD.<br>TAY PROJECT<br>TAY MAIN (EAST) ZONE |
|        |       | 1994 PHASE I<br>DRILLING                                        |
|        |       | SECTION 8955E<br>ASSAYS AND MINERALIZATION                      |
| -      |       | INTERPRETED GEOLOGY AND ALTERATION                              |
|        |       | DECKED                                                          |
| N-056  | W 000 | APTROVED SCIENTSH                                               |
| Ť      |       | FIGURE BN2                                                      |
|        |       | 93-06; 16758955-2 ***                                           |

|          |   | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |   | LEGENIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |   | Alterest<br>Alterest product<br>Alterest product<br>Alterest product<br>Alterest attack willow, stand your south memory<br>attack attack attack and the south memory<br>attack attack attack and the<br>south attack attack and the<br>south attack attack attacks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |   | APP TRAT - Authors amount     BY APT - Authors amount     BY APT - Authors amount     BY APT - AUTOMOTIVE                                                                                                                                                                                                                                |
|          |   | UPPER TABLES AND SOLDS<br>SHEEDLIGE SADAT<br>ANNUALTERS TOMATION<br>NET INVELTO - UNDERLIGE<br>ALT INVELTOR SOLD<br>STATE OF AND SOLD<br>ST |
| T50.0 EL |   | Alter Built: TELEVON     Suff: -OMBERIE 423     Suff: -OMBERIE 423     Suff: -OMBERIE 423     Suff: -OMBERIE 5000000     Suff: -OMBERIE 5000000     Suff: -ELEVIN 423     S                                                                                                                                                                                                                            |
|          |   | P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (P) (P)     P. (P) (P)       P. (P) (P)     P. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | - | STORE AND BELLES                                                                                                                                                                                                                       |
|          |   | TIME with real - street, amount washing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



|          |    |   | LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|----|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |    |   | Partment<br>National an anti-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |    |   | Surrice, Silacit<br>why automa<br>and allow-within, plotto Vital steve algores<br>by italia NJ - incorrectional<br>Report and contactor and/or steven<br>silact anticipat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |    |   | UKB         Secondarity           Time         TomAT           NUT         TomAT           NUT         TomAT           Soft         TomAT           Tom         TomAT           Tom         TomAT           Tom         TomAT           Tom         TomAT           Tom         TomAT           TomAT <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |    |   | <br>grv() filozof, ald 10.00<br>controlled and<br>controlled integrate<br>controlled integrate<br>controlled integrate<br>controlled integrated<br>controlled integrated<br>contro                                                                                                                                                                                       |
| 150.0 EL |    |   | - DESCRIPT, WE WINNE<br>WEXTER DOUL DANS 2008<br>WEXTER DOUL DANS 2008<br>WINTER ST<br>WINTER ST |
|          |    |   | <ul> <li>Thereas, emission and encloses</li> <li>Allow and a set of the second second</li></ul>                                                                                                                                                                                                                                                                                                                                                                           |
|          |    | - | <br>STREAM - AN ADDREAM - ANY ADDREAM -                                                                                                                                                                                                                                                                                                                                                                          |
|          | B. |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| A CONTRACT OF A |     |            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | LEGENO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 우 같은 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A Contraction of the second seco                                                                                                                                                                                                                                            |     |            |   | Automatical and Million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | THE REAL STREET STREET THE REAL PARTY STREET                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104 | ः अस्य कृत |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | A Constant - And Constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | 447 AGEST - ELEPHI POINTEL<br>447 AGEST - ADRIELING MARKOR<br>247 2011 - ELEPHI AGENORY<br>247 2011 - ELEPHI - ADRIELING FORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | Ser Set - Weater Weater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | WHEN TRADEC ALL 9.300<br>KINSLOATE DEDUR<br>ANTRALTED: //PRAIMER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | STREET BALL STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | ALLE COLOUIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 190.0 TL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |            |   | Construction of the second sec                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | CONTRAL AND CONTRA                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | Culture Outril antonia (accent, field<br>Culture Outril antonia (accent, field<br>Culture Outril antonia (accent, field<br>Culture Outril antonia (accent), field<br>All No. 4 (accent), field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | dr. ye Statistical analog scolart, was     with the statistical analog scolart, and     with the statistical analog scolart, analog scol                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            | × | E. S. a. Unstatute antick access, and<br>S. S. a. Scillary at antick access, and<br>S. S. a. Antick access and access and<br>S. S. a. Antick access and access and<br>access and access and access and<br>access access and access and<br>access access and access and<br>access access access and<br>access access access and<br>access access access access and<br>access access access access access access access access<br>access access access access access access access access access<br>access access access<br>access access a |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | All the second s                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | · ·        | - | BLAVE BECK STUDY ACCOUNT, Viet<br>SCTS, W SECONDA STUDY ACCOUNT, Viet<br>COS Case - HE REST W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | 2500.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |            |   | A THE DOLL FROM THE AMERICAN AND A THE AMERICAN AND A THE AMERICAN AND A THE AMERICAN AMERICA                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | where we will have a more writer and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |   | NUMPER SAME ISS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | I          |   | e finalment en anti-statistica d'april d'arante d'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |





|          |                 |     | LEGENO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|-----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | ► 3 # 111<br>17 |     | Americani<br>Americani 40 Maziri<br>Marco Samit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                 |     | Res States<br>Res States |
|          | <br>•           |     | ARE ARE - MUNICIPALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |                 | 75. | Vertra messe and south<br>Vertra                                                                                                                                                                                                                                                                                                                                                                                                 |
| 150.0 +1 |                 |     | Interface and second<br>Interface and second                                                                                                                                                                                                                                                                                                                                                                                     |
|          |                 |     | Alternitik weinernitikk for seinertii<br>C. Outer Court History Second Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                 |     | Picking         Picking <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                 | (8) | UNEDJ<br>ANDOGA UDDIC- 2014CL APPEDIACL CTH<br>ANDOGA CODICT - 2014CL APPEDIACL CTH<br>ANDOGA CODICT - 2014EL APPEDIACL CTH<br>AND ALL - 2014EL APPEDIACL AREAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | •               |     | VUTUNT SKOR 304<br>I and ATURADDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



|        |      |            | METRES                                                                                      |
|--------|------|------------|---------------------------------------------------------------------------------------------|
|        | 18 H |            | 86,2094                                                                                     |
|        | 1    |            | HEN DATE DESCRIPTION<br>LEO J. LINDINGER P.Geo.<br>CONSULTING GEOLOGIST                     |
| 0.0 EL |      | A REALESS  | DALMATIAN RESOURCES LTD.<br>TAY PROJECT<br>TAY MAIN (EAST) ZONE<br>1994 PHASE I<br>DBILLING |
|        |      | N RESERVEN | SECTION 8890E<br>GEOLOGY AND ALTERATION                                                     |
|        | ĸ    |            | GEOLDGEST LULL<br>DRAWN MEE DRWTING<br>OHETINED<br>APPROVED<br>SCALE 11:250                 |
|        |      | 102<br>1   | DAIT JULY 15/94<br>FIGURE BQ1<br>193-05 TM256690                                            |

|           | 1 | LICENU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |   | USERVICE<br>TUSTONOM NE NETOT<br>USERVICE STRAFT<br>ANY AUTOR STRAFT<br>NE EATH TL - INSTRACTOR<br>USERVICE STRAFT AND CONTINUES OF THE NEW YEROOD<br>USERVICE STRAFT AND CONTINUES OF THE NEW YEROOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ·         |   | Control of the second sec      |
| <b></b> . |   | UPPUF Institut and ALCOP<br>Institution (COURT<br>Constitution (COURT)<br>Constitution (COURT)<br>Constitution (COURT)<br>Constitution (COURT)<br>Constitution (COURT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 150.0 (EL |   | SillexTuell and Proves       BIDOR     14,1     14,1     2041       SVDS2     But     BitAll     2041       SVDS2     But     BitAll     2041       SVDS2     But     BitAll     2041       SVDS2     But     BitAll     2041       SVDS2     BitAll     BitAll     2041       SVDS2     BitAll     BitAll     2041       SVDS3     BitAll     BitAll     1000       SVDS3     BitAll     BitAll     1000       SVDS3     BitAll     BitAll     1000       SVDS3     BitAll     BitAll     1000       SVDS3     BitAll     1000     1000       SVDS3     BitAll     1000     1000       SVDS3     BitAll     1000     1000       SVD3     BitAll     1000     1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           |   | NUMBER WEIGHLICHE BEI WEIGHLICH           NYMMER WEIGHLICHE BEI WEIGHLICH         NYMMER STREAM (AND STR                                                           |
|           |   | there is a second of the second secon |


|         |   | LEGEND<br>vertiever<br>Austrodet war wordt<br>Salardae Stimolett<br>Salardae Standae<br>Salardae Stimolett<br>Salardae Standae<br>Salardae Stimolett<br>Salardae Standae<br>Salardae Standae<br>Salardae Standae<br>Salardae Standae<br>Salardae Standae<br>Salardae Standae<br>Salardae Standae<br>Salardae Standae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salardae<br>Salard |
|---------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |   | Image   Sacit   - Statefit   Monetaria     Image   Sacit   - Microsoft   Monetaria     Image   Monetaria   - Monetaria   Monetaria     Image   Monetaria   - Monetaria   Monetaria     Image   Monetaria   - Monetaria   Monetaria     Image   Monetaria   Monetaria   Monetaria     Image   Monetaria   Monetaria   Monetaria     Image   Monetaria   Monetaria </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 150.0 E |   | Attention, without dates any working                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |   | Or, To, Iva       OLUTIT       Without, Works, Works, Works, Works, Olump, Works, Olump, Works, Olump, Works, Olump, Works, W                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |   | <pre>Million dealers still / million still / million dealers still / million s</pre>                                                                                                                                                                                                                                                                                                                                                                         |
|         | • | WINDER - MARKEN AND AND AND AND AND AND AND AND AND AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |







































|       |   |   |   |       | VETRES                                          |  |  |
|-------|---|---|---|-------|-------------------------------------------------|--|--|
|       |   |   |   |       |                                                 |  |  |
|       |   |   |   |       | INEL 2 0 MM<br>INEL 247E DH<br>CH DESCRIPTION   |  |  |
| 0.0 8 |   |   |   | 51 O  | LEO J. LINDINGER P.Geo.<br>CONSULTING GEOLOGIST |  |  |
|       |   |   |   |       | DALMATIAN RESOURCES LTD.<br>TAY PROJECT         |  |  |
|       |   |   |   | SMEN  | 1994 PHASE I<br>DRILLING                        |  |  |
|       |   |   |   | N BEC | SECTION ALA<br>GEOLOGY AND ALTERATION           |  |  |
|       |   |   |   |       | CEDLOGIST LUL<br>DRAWN ABLE DRATING<br>CHECKED  |  |  |
| ~     | 3 | S | 2 | 2     | APPROVED<br>SCALE 1:500<br>DATE JUNE 16/94      |  |  |
|       |   |   |   |       | FIGURE IDA1                                     |  |  |



|      |   |         |   |   |             | METRES                                        |                                                             |  |
|------|---|---------|---|---|-------------|-----------------------------------------------|-------------------------------------------------------------|--|
|      |   |         |   |   |             | JUL 2 0 1994<br>N DATE CH                     | DESCRIPTION                                                 |  |
| 20 E |   |         |   |   |             | LEO J. LIN<br>CONSULTIN<br>DALMATIAN I<br>TAY | IDINGER P.Goo.<br>NG GEOLOGIST<br>RESOURCES LTD.<br>PROJECT |  |
|      |   |         |   |   | N           | 1994<br>DF                                    | PHASE I                                                     |  |
|      |   |         |   |   |             | SECTIO<br>ASSAYS AND<br>INTERPRETED GEOL      | N A A<br>MINERALIZATION                                     |  |
|      |   |         |   |   |             | TOLOGIST LUU<br>Karn kæle draft<br>Heckeli    | BE FLINESHVER                                               |  |
|      | 2 | 5<br>24 | 3 | 2 | 2<br>2<br>3 | ATE JUNE 1500<br>FIGUI                        | 194 OSCIEN                                                  |  |
| 1    |   |         | 4 |   | 1           | 93-06                                         | SLIDEA A-2                                                  |  |







