F 1~		
•		

LOG N°	MAR 1	0 1000	
ACT .			
	5 MM241-17 18 - 1 1 1 1 1 1 1	a lite any served and a state of the server	

GEOCHEMICAL AND GEOLOGICAL

ASSESSMENT REPORT

on the

ATAN PROPERTY

ATAN 1 - 8 MINERAL CLAIMS

McDAME AREA

LIARD MINING DIVISION, B.C.

FILMED

GEOLOGICAL BRANCH ASSESSMENT REPORT

NTS: LATITUDE: LONGITUDE: OWNER: OPERATOR: AUTHOR: DATE: 104P/03E 59° 12'04" N 129° 11'54" W W.R. Gilmour Discovery Consultants T.H. Carpenter, P.Geo. November 23, 1994

GOWERNAMEINAT ACCENT RARMI VERNON, BU

TABLE OF CONTENTS

.

SUMMARY	•••••••••••••••••••••••••••••••••••••••	Page	1
LOCATION	AND ACCESS	Page	2
TOPOGRAP	нү	Page	2
PROPERTY	• • • • • • • • • • • • • • • • • • • •	Page	3
HISTORY	• • • • • • • • • • • • • • • • • • • •	Page	4
GENERAL	GEOLOGY	Page	5
WORK COM	PLETED	Page	6
1.	SOIL SAMPLING A) PROGRAM PARAMETERS B) PROGRAM RESULTS		
2.	ROCK SAMPLING A) PROGRAM PARAMETERS B) PROGRAM RESULTS		
CONCLUSI	ONS	Page	8
RECOMMEN	IDATIONS	Page	9
REFERENC	ES	Page	10
STATEMEN	T OF COSTS	Page	11
STATEMEN	T OF QUALIFICATIONS	Page	12

LIST OF ILLUSTRATIONS

FIGURE 1	Location Map	Following Page 2
FIGURE 2	Claim Map (1:50,000)	Following Page 3
FIGURE 3	Geology and Rock Sampling - Cu Values (1:5,000)	In Pocket
FIGURE 4	Soil Sampling - Cu Values (1:5,000)	In Pocket
FIGURE 5	Soil Sampling - As Values (1:5,000)	In Pocket
FIGURE 6	Soil Sampling - Ba Values (1:5,000)) In Pocket
FIGURE 7	Soil Sampling - Pb Values (1:5,000)) In Pocket
FIGURE 8	Soil Sampling - Sb Values (1:5,000)) In Pocket
FIGURE 9	Soil Sampling - Zn Values (1:5,000)) In Pocket

APPENDICES

- APPENDIX 1 Soil Sampling Survey - Analytical Procedures and Results
- APPENDIX 2 Rock Sample Descriptions

.

APPENDIX 3 Rock Samples - Analytical Procedures and Results

SUMMARY

The Atan is a possible "manto" or Mississippi Valley Type deposit comprising barite, lead, zinc, copper and silver mineralization in a limestone-dolomite horizon.

The occurrence is located on the west end of Atan Lake, 33 kilometres east-southeast of Cassiar and 100 kilometres northeast of Dease Lake.

Exploration work has been carried out on the property since 1967. Mineralization has been detected over a strike length of 1.5 kilometres and includes assays of 24 g/tonne Ag, 3.07% zinc over 3.4 metres and 6.8% Pb over 2.7 metres. Twelve metres of barite has been exposed in trenching.

In 1994 a program of soil and rock sampling was carried out on the property.

LOCATION AND ACCESS

The Atan property is centred at latitude 59°12"04'N and longitude 129°11"54' W, 33 km ESE of Cassiar and 2 km NE of McDame Post (Figure 1).

Access to the property can be gained by road 16 kilometres south off the Cassiar-Watson Lake highway.

TOPOGRAPHY

The topography of the property is gentle, with elevations ranging from about 730 metres at Atan Lake to 823 metres at the southeast corner of the claim block.

DWG-615-001

PROPERTY

The Atan property (Figure 2) comprises eight two-post claims, designated Atan 1-8, located by John Beggs on April 3 and April 5, 1994 and recorded in Vernon, B.C. on April 15, 1994.

<u>Claim Name</u>	Record No.	Owner of Record	Anniversary Date
Atan 1	324672	W.R. Gilmour	April 3, 2000
Atan 2	324673	W.R. Gilmour	April 3, 2000
Atan 3	324674	W.R. Gilmour	April 3, 2000
Atan 4	324675	W.R. Gilmour	April 3, 2000
Atan 5	324676	W.R. Gilmour	April 3, 2000
Atan 6	324677	W.R. Gilmour	April 3, 2000
Atan 7	324678	W.R. Gilmour	April 5, 2000
Atan 8	324679	W.R. Gilmour	April 5, 2000

.

The claims are owned by W.R. Gilmour in trust for the Predator Syndicate.

* Pending acceptance of this report.

<u>HISTORY</u>

Mineralization on the Atan property was discovered in 1949. At that time an access road was built and a number of trenches excavated. No further work on the Atan property was reported until 1967 when Dresser Industries carried out ground EM and magnetometer surveys on the "Bill" claims.

In 1970 Dresser also completed a soil sampling program on the claims.

In 1968 Tournigan Mineral Exploration conducted Induced Potential, magnetometer and soil sampling surveys on the "Adair" and "Atan" claims, to the south of the Bill claims. This work was followed in 1973 by linecutting, gravity and topographical surveys.

Esso Resources carried out a diamond drilling program on the Atan claims in 1976.

Tournigan Mineral Exploration completed diamond drilling and geological programs on the "Ski" claims in 1977. These claims were located to the southwest of the "Bill" claims.

The Atan property staked in 1994, covers the mineralized areas of the Ski, Atan and Adair claims.

GENERAL GEOLOGY

The Atan property is underlain by Lower Cambrian Atan Group limestone, argillaceous limestone and dolomite which strike eastsoutheast and dip steeply to the south.

Two zones of mineralization have been defined: the North Zone, located 500 m NW of the west end of Atan Lake, and Barite Hill, which lies 800 m SE of the west end of Atan Lake.

The best described is the North Zone where dolostone has been variably replaced by chert. The chert bodies are in general stratiform but locally cut across stratification.

Mineralization consists of disseminated to globular sphalerite that occurs mainly, but not exclusively, in beds replaced by chert, and massive barite that occurs as fracture fillings and as replacement bodies.

Galena, in minor amounts, occurs with sphalerite in places and as occasional grains although chip sampling in 1949 assayed 6.8% Pb over 2.7 metres and 10.6% Pb over 1.5 metres. Chalcopyrite and tetrahedrite occur along the margins of some barite bodies. Pyrite is a common constituent of the host rocks.

WORK COMPLETED

The work carried out on the property in 1994 comprised soil sampling and rock sampling. The individual surveys are discussed below.

Soil Sampling

a) Program Parameters

One hundred and thirty-five soil samples were collected on the Atan 1-8 claims. Samples were taken at 50 metre intervals along the claim boundaries.

The samples were collected by shovel from the "B" horizon, placed in 9 cm x 25 cm kraft sample bags and sent to Bondar-Clegg Laboratories in North Vancouver, B.C. At Bondar-Clegg analyses were carried out for 27 element ICP. Sample locations are shown on Figures 3-9. Analytical results are contained in Appendix 1.

b) Program Results

Zinc and barium appear to be the most anomalous elements in soil samples. Anomalous values are most prevalent in the area of previous workings but are also found on the northwestern claim boundary, indicating a possible continuation of the mineralization in this direction (Figures 6 & 9). The anomalous barium and zinc values are mirrored by copper and lead in soil (Figures 4 & 7). Note that the barium analysis is only a partial extraction.

Arsenic and antimony values (epithermal indicators), are found in part at previous workings on L15N and L05N (Figures 5 & 8). Arsenic however is much more widespread than antimony as is

evidenced by a string of anomalous arsenic values along L20N. Rock Sampling

a) Program Parameters

Twenty-three rock samples were collected from trenches and roadcuts in and adjacent to mineralized outcrops on the Atan 1-8 claims. The rocks were collected to confirm previous results as well as to determine by ICP analyses the extent of associated mineralization. The sample locations were tied in to claim lines and available geological reports.

The rocks were shipped to Bondar-Clegg and Company Limited in North Vancouver where they were tested by 27 element ICP analysis.

Rock sample descriptions are contained in Appendix 2. Analytical results are listed in Appendix 3.

b) Program Results

Copper appears to be the most anomalous element in the rock samples. Five samples contained >1000 ppm. The maximum value obtained was 15140 ppm in AR-94 023.

This sample also contained the highest zinc value obtained in rocks (1138 ppm), 365 ppm Pb and >50 ppm Ag.

The highest Pb value obtained was >10,000 ppm in AR-94 022.

Six of the 23 samples collected contained anomalous As (to 2997 ppm) and Sb (to >2000 ppm). These anomalous samples are located on the Atan 2 and 5 claims, appear to be located on a NW trending linear and may represent a previously unrecognized epithermal mineralizing system.

CONCLUSIONS

Barite, copper, lead, zinc and silver mineralization in outcrop is located on the Atan 1 to 8 claims at locations 1500 metres apart.

Previous work has defined 6.8% Pb over 2.7 metres in chip samples, 3.07% Zn over 3.4 metres in drill core and 12 metres of barite exposed in a trench exposure.

Rock sampling in 1994 contained 1.5% Cu, >1% Pb, >50 ppm Ag and 0.1% Zn. All anomalous soil and rock values, largely due to the placement of sample lines, correspond to areas of previous trenching and sampling.

Anomalous Sb and As values in rocks and soils appear to indicate the presence of a previously unknown epithermal system on the property.

RECOMMENDATIONS

Additional soil sampling is recommended to delineate mineralization away from previously defined areas. All samples should be tested for gold content as an aid in delineating a possible epithermal system.

A ground EM survey should also be carried out to define structural trends.

A mapping program should be undertaken to map areas of silicification (chert alteration) previously shown to be spatially related to base-metal mineralization.

Respectfully submitted,

T.H. Carpenter, P.Geo

Vernon, B.C.

November 23, 1994

REFERENCES

British Columbia Ministry of Energy, Mines and Petroleum Resources Annual Report. 1949 - pg. A71 - A72 1967 - pg. 26 1968 - pg. 35

.

British Columbia Ministry of Energy, Mines and Petroleum Resources - Geology, Exploration and Mining in British Columbia. 1969 - pg. 43 1970 - pg. 37 1971 - pg. 56 1972 - pg. 561 1973 - pg. 540

British Columbia Ministry of Energy, Mines and Petroleum Resources - Exploration in British Columbia. 1976 - pg. E196 1977 - pg. E244

B.C. MEMPR Assessment Reports #1220, 2592, 4581, 5945, 6438.

STATEMENT OF COSTS

i.	Professional Services		
	K.L. Daughtry, P.Eng. Supervision 0.5 days @ \$450/day	\$ 225.00	
	W.R. Gilmour, P.Geo. Data compilation 0.25 days @ \$400/day	100.00	
	E.D. Harrington, geologist Rock sampling, mapping, travel (Aug 1-6) 5 days @ \$308/day Data compilation 0.5 days @ \$280/day	1540.00 140.00	
	T.H. Carpenter, P.Geo. Report writing 2 days @ \$380/day	760.00	\$ 2765.00
2.	Field Personnel (Aug 1-6)		
	Rick Anctil Soil sampling & travel 5 days @ \$240/day Murray Beenen Soil sampling & travel	1200.00	
	5 days @ \$197/day	985.00	2185.00
3.	Transportation 4x4 Truck		669.62
4.	Lodging & Meals		533.27
5.	Geochemical Analysis a) <u>Soil samples</u> 135 ICP (27 element) @ 4.50 135 prep @ \$1.60 b) <u>Rock samples</u> 23 ICP @ \$4.50 23 prep @ \$4.25	607.50 216.00 103.50 97.75	1024.75
6.	Drafting		250.00
7.	Data compilation, secretarial		300.00
8.	Field supplies & equipment rental		331.93
9.	Printing, data processing, teleph	one, shipping	200.00
10.	G.S.T.		\$ 8259.57
		Total	<u>\$ 8837.74</u>

STATEMENT OF QUALIFICATIONS

I, THOMAS H. CARPENTER of 3902 14th Street, Vernon, B.C., V1T 3V2, DO HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration associated with Discovery Consultants, Vernon, B.C.
- 2. I have been practising my profession for 23 years.
- 3. I am a graduate of the Memorial University of Newfoundland with a Bachelor of Science degree in geology.
- 4. I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- This report is based upon knowledge of the Atan property gained from supervision.
- 6. I hold no interest either directly or indirectly in the Atan property.

H .7

T.H. Carpenter, P.Geo.

Vernon, B.C. November 23, 1994

APPENDIX 1

•

Soil Sampling Survey

Analytical Procedures and Results

/

ANALYTICAL PROCEDURES

Geochemical Analysis

by Bondar-Clegg :

		LOWER		
ELEMEN	IT	DETECTION LIMIT	EXTRACTION	METHOD
A11	Gold	50 ppb	fire econy	stomic charaction
Au Au	Silver	0.2 ppm	UNO2 UCI bot outr	atomic absorption
∧i*	Aluminum		UNO2 UCI bot ovtr	ind, coupled plasma
Ac.	Arconio	0.02 /8 5.0 ppm	HNO3-HCI hot over	ind, coupled plasma
Pot	Barium	5.0 ppm	HNO2 HCI hat outr	ind, coupled plasma
Da ^{rr}	Danum	5.0 ppm		ind. coupled plasma
	Calaium		HINO3-HCI hot extr	ind. coupled plasma
Car C	Calcium	0.05 %	HNU3-HUI hot extr	ind. coupled plasma
Ca	Cadmium	1.0 ppm	HN03-HCI hot extr	ind, coupled plasma
Co*	Cobalt	1.0 ppm	HN03-HCI hot extr	ind, coupled plasma
Cr*	Chromium	1.0 ppm	HNO3-HCI hot extr	ind, coupled plasma
Cu	Copper	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Fe*	lron	0.01 %	HNO3-HCI hot extr	ind. coupled plasma
Hg∎	Mercury	0.010 ppm	HNO3-HCI leach	cold vapour atomic absorption
K*	Potassium	0.05 %	HNO3-HCI hot extr	ind. coupled plasma
La*	Lanthanum	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Mg*	Magnesium	0.05 %	HNO3-HCI hot extr	ind. coupled plasma
Mn*	Manganese	0.01 %	HNO3-HCI hot extr	ind. coupled plasma
Mo*	Molybdenum	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Na*	Sodium	0.05 %	HNO3-HCI hot extr	ind, coupled plasma
Ni*	Nickel	1.0 ppm	HNO3-HCI hot extr	ind, coupled plasma
Pb	Lead	2.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Sb*	Antimony	5.0 ppm	HNO3-HCI hot extr	ind, coupled plasma
Sn*	Tin	20.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Sr*	Strontium	1.0 ppm	HN03-HCI hot extr	ind, coupled plasma
Te*	Tellurium	10.0 ppm	HN03-HCI hot extr	ind, coupled plasma
∨*	Vanadium	1.0 ppm	HN03-HCI hot extr	ind, coupled plasma
w*	Tungsten	10.0 ppm	HN03-HCI hot extr	ind, coupled plasma
Y	Yttrium	1.0 ppm	HNO3-HCI bot extr	ind, coupled plasma
Zn	Zinc	1.0 ppm	HNO3-HCI bot extr	ind coupled plasma
		no ppin		ind, coupled plasma

 Please note: certain mineral forms of those elements above marked with an asterisk will not be soluble in the HNO3/HCI extraction. The ICP data will be low biased.

· Please note: Hg will only be analysed upon request.

`

.

Date of Report: 94.10.11

Atan

Soil Sampling Results 1994

Reference: v94-01079.0

Sam	ple ID	Ag ppe	Cu ppm	РЪ рра	Zn ppm	Cd ppm	Mo ppma	As ppm	Sb ppm	Bi ppm	Ni ppm	Co ppm	Cr ppm	Fe X	Mn ppm
BL	2000N	<0.2	17	18		<1.0	·	43			 30	10			575
BL	1950N	(0.2	19	18	52	<1.0	(1	41	(5	(5	30	10	50	2.30	562
BL	1900N	<0.2	13	16	68	<1.0	<1	(5	<5	<5	34	7	65	2.14	24R
BL	1850N	(0.2	23	15	109	<1.0	(1	<5	(5	(5	47	14	77	3.29	1282
BŁ	1800N	<0.2	11	13	95	<1.0	(1	(5	<5	(5	24	11	54	2.29	859
BĿ	1750N	<0.2	10	19	58	<1.0	<1	7	<5	(5	25	9	55	2.30	348
BL	1700N	<0.2	12	11	144	<1.0	<1	<5	<5	<5	35	12	73	3.22	554
BL	1650N	<0.2	24	19	58	(1.0	<1	26	(5	<5	29	8	48	2.12	315
81	1600N	<0.2	15	18	41	<1.0	<1	7	<5	(5	27	7	50	1.99	297
BL	1550N	(0.2	13	16	84	(1.0	<1	< 5	<5	<5	37	10	72	2.68	287
BL	1500N	<0.2	17	18	264	(1.0	<1	<5	<5	<5	34	8	59	2.89	938
BL	1450N	(0.2	9	42	447	<1.0	<1	<5	<5	<5	26	9	65	2.76	642
BL	1400N	<0.2	7	14	282	<1.0	<1	<5	<5	<5	35	10	66	2.88	951
BL	1350N	<0.2	9	15	84	<1.0	<1	<5	<5	<5	33	10	71	3.22	430
BL.	1300N	<0.2	14	9	50	<1.0	<1	<5	<5	<5	39	9	71	2.63	332
8L	1250N	<0.2	22	12	58	<1.0	<1	<5	<5	<5	60	11	103	3.51	317
BL	1200N	<0.2	42	27	106	<1.0	<1	14	<5	<5	53	14	88	3.56	663
BL	1150N	<0.2	35	24	105	<1.0	<1	<5	<5	<5	58	15	92	3.61	668
BL	1100N	<0.2	11	15	141	<1.0	<1	<5	<5	<5	36	12	78	3.51	693
BL	1050N	<0.2	45	14	156	<1.0	<1	<5	<5	<5	46	16	80	3.52	1326
BL	1000N	<0.2	22	12	93	<1.0	<1	<5	<5	<5	81	13	87	3.66	380
BL	0950N	<0.2	16	15	170	<1.0	<1	<5	<5	<5	56	15	91	3.42	1189
BL	0900N	<0.2	21	12	81	<1.0	`∢1	<5	<5	<5	41	14	77	2.65	651
BL	0775N	<0.2	10	13	119	<1.0	<1	<5	<5	<5	37	11	79	3.43	827
BL	0750N	<0.2	12	15	108	<1.0	<1	<5	<5	<5	45	15	74	3.29	774
BL	0700N	<0.2	16	13	60	<1.0	<1	<5	<5	<5	15	9	26	2.11	204
BL	0650N	<0.2	23	18	75	<1.0	<1	<5	<5	<5	24	11	28	2.42	368
BL	0600N	<0.2	12	5	19	<1.0	1	<5	<5	<5	8	3	7	0.31	360
ÐL	0550N	<0.2	5	6	38	<1.0	<1	<5	<5	<5	6	1	10	0.41	61
BL.	0500N	<0.2	24	6	31	<1.0	<1	<5	<5	<5	14	2	18	0.87	138
BL	0450N	<0.2	16	15	99	<1.0	<1	<5	<5	<5	54	13	85	3.67	517
BL.	0400N	<0.2	15	16	164	<1.0	<1	<5	<5	<5	59	15	90	3.95	597
BL	0350N	<0.2	22	17	135	<1.0	<1	<5	<5	<5	57	13	96	4.05	494
BL	0300N	<0.2	16	14	120	<1.0	<1	<5	<5	<5	75	16	96	4.38	684
BL	0250N	<0.2	15	32	190	<1.0	<1	<5	<5	<5	54	15	86	3.55	593
BL	0200N	<0.2	27	19	157	<1.0	<1	<5	<5	<5	61	14	87	3.57	558
BL	0150N	<0.2	23	19	178	<1.0	<1	<5	<5	<5	59	14	90	3.47	505
BL	0100N	<0.2	18	11	117	<1.0	<1	<5	<5	<5	54	11	80	2.91	421
BL	0050N	<0.2	14	16	225	<1.0	<1	<5	<5	<5	35	16	68	2.84	1730
BL.	0000N	(0.2	37	15	136	(1.0	<1	<5	<5	<5	70	12	81	3.04	427

file: \515\50IL_94.wk1

FINAL

Project 615

١

Soil Sampling Results (part 2)

Sa	mple ID	Ba	V	Sr	Y	1.2	Te	C.	11	• •	ш.			
		ppe	ស្ត្រ ន	ppa	ppa	pps	ppa	pp m	pp e	IA X	ng X	Ca X	Na %	K 7.
BL	2000N	202	44	22		19	(10	/20		• • • •		• • • •		
BL	1950N	186	38	23	, 7	17	(10	(20	120	1.11	V.33	0.84	0.02	0.11
BL	1900N	167	56	17	ć	14	(10	(20	(20	1,09	0.58	0.82	0.02	0.13
BL.	1850N	268	7B	17	4 4	17	×10 710	120	(20	1.62	0.69	0.51	0.01	0.09
BL	1800N	229	54	17	2	17	210	(20	(20	2,21	0.62	0.46	0.02	0.10
₿L	1750N	208	53	18	4	22	210	(20	(20	1.3/	0.49	0.43	0.02	0.15
BL	1700N	180	79	16	2	22	/10	(20	120	1.38	0.50	0.47	0.01	0.09
BL	1650N	198	38	28	9	18	(10	(20	(20	1.33	0.45	0.34	0.02	0.07
₿L	1600N	195	42	26	g	25	710	120	(20	1.20	0.55	0.80	0.02	0.14
BL	1550N	312	71	18	ď	2J 0	(10	(20	(20	1.19	0.58	0,60	0.03	0.10
BL	1500N	386	53	12	7	11	210	(20	(20	1.85	0.68	0.42	0.02	0.06
BL	1450N	654	76	12	2	7	210	(20	(20	1.64	0.85	1.13	0.02	0.04
BL	1400N	623	69	16	2	, 0	(10	(20	(20	1.52	0.38	0.35	0.02	0.05
BL.	1350N	239	85	15	2	0	/10	120	(20	1.64	0.46	0.40	0.02	0.08
BL	1300N	162	72	15	2	0 0	/10	(20	(20	1.72	0.43	0.32	0.02	0.08
BL	1250N	189	108	18	5 6	14	(10	(20	(20	1./5	0.55	0.34	0.02	0.08
9L	1200N	336	63	22		25	(10	(20	(20	2.1/	0.79	0.41	0.02	0.10
BL	1150N	333	78	22	7	23	110	(20	(20	2,39	0.96	0.44	0.02	0.27
3L	1100N	194	94	15	2	10	(10	(20	(20	2.56	0.88	0.42	0.02	0.22
BL	1050N	264	97	20	2	0	10	(20	< 20	2,03	0.53	0.31	0.02	0.09
31	1000N	221	94	20	4	8	(10	(20	(20	2.28	0.70	0.46	0.02	0.19
3E	0950N	329	77 00	10	*	10	(10	(20)	<20	2.73	0.67	0.39	0.03	0.11
3	0900N	251	77	17	3	8	(10	(20	(20	2.44	0.70	0.41	0.02	0.11
31	0775N	261	85	2.J 1.4	ა ე	8	<10 (10	(20	{20	2.00	0.70	0.63	0.03	0.17
)	0750N	229	00	14 10	ა ი	8	(10	(20	<20	1.75	0.45	0.29	0.02	0.07
AL .	0700N	215	17	17	<u>১</u>	8	<10	(20	<20	2.14	0.56	0.44	0.02	0.10
1	0650N	192	12	110	2	4	<10 (10	<20	<20	0.58	0.07	0.52	0.01	0.09
1	06000	212	7	120	6	4	(10	(20	<20	0.53	0.34	5.63	0,01	0.07
1	0550N	120	°	120	1	3	(10	(20	<20	0.22	0.26	4.39	0.01	0.02
ĩ	0500N	272	15	10	(1	3	(10	<20	<20	0.20	0.23	2.70	0.02	0.01
1	0450N	222	97	2J 10	5	2	(10	(20	<20	0.60	0.22	2.73	0.02	0.04
1	04000	105	27	17	3	8	(10	(20	<20	2.26	0.57	0.39	0.02	0.09
1	0350N	203	27	10	3	8	<10	<20	<20	2,25	0.64	0.42	0.03	0.08
	0300N	190	197	17	3	3	<10	<20	(20	2.39	0.70	0.37	0.02	0.09
1	02508	221	2/ 90	19	3	/	(10	<20	<20	3.17	0.67	0.37	0.04	0.06
с Г	0200N	221	78	18	3	8	<10	<20	<20	2.39	0.66	0.39	0.02	0.11
ц. 1	0150N	ACC	22	21	3	9	<10	(20	<20	2.55	0.72	0.41	0.02	0.08
ן ן	01000	700 204	32	22	4	9	<10	<20	<20	2,28	0.75	0.52	0.02	0.09
с I	0450N	209	80	19	4	B	<10	<20	<20	1.59	0.52	0.49	0.02	0.09
с (00001	220	78	21	3	9	<10	<20	<20	1.81	0.57	0,48	0.02	0.12
L	VVVVA	239	87	21	4	9	<10	<20	<20	2.24	0.81	0.48	0.02	0.11

.

FINAL

Date of Report: 94.10.11

Atan

Soil Sampling Results 1994

Reference: v94-01079.0

====	*******	==================	.=======												======
Samp	le ID	Ag ppm	Cu ppa	Pb ppm	Zn ppæ	Cd ppm	No Dom	As Dom	Sb	Bi Dom	Ni DD®	Co nom	Cr DDe	Fe	Ma
											FF-	FF			
L ()	500E	(0.2	12	11	64	{1.0	ci.	(5	75	(5	51	٥	77	2 0 2	740
LÓ	450F	(0.2	11	9	41	<1.0	71	25	<10	25	20	נ ר	40	2.00	346
L O	400E	(0.2	16	20	98	<1.0	<u>{</u> 1	(5 (5	\J (5	<5 (5	30 75	14	07 07	2110	000 205
LO	350E	(0.2	23	15	145	<1.0	(1	(5 (5	(5	25	75	19	24 00	0./0 9.50	675
L O	300E	(0.2	13	12	95	(1.0	<1 (1	(5	(u (5	25	45	10	0)	0.J0 0.10	045 045
LO	250F	(0.2	24	15	112	(1.0	71	<5 <5	\5 /5	(5	Q1	12	60	2.10	61K
LO	200E	(0.2	13	14	78	<1.0	21 	(5	(J /5	/5	55	1.J	77 04	J.00 9 54	417 200
LÖ	150E	(0.2	14	24	89	(1.0	<1	25	25	25	55	17	04	2.27	300 744
LO	100F	(0.2	130	167	1079	(1.0	<u>(1</u>	<5 <5	\J /5	\J /5	20	13	52	3.32	799
LO	050E	(0.2	581	60	62	(1.0		<5	(5	(5	52	4	00	4.03	4237
LO	050₩	(0.2	60	17	153	(1.0	(1	\\ (5	\J /5	/5	90	20	106	7.17	1000
LO	100W	(0.2	37	18	236	<1.0	<1	(5	<5 (5	() ()	61	19	100	2.03	2444
LQ	150W	(0.2	29	15	199	(1.0	(1	<5	(5 (5	<5 (5	65	19	01	3.00 2.50	2999
L 0	2001	(0.2	24	16	146	(1.0	4	(5	() ()	25	63	17	00	2.30	1120
LO	250W	(0.2	62	14	105	(1.0	<1	(5	(5 (5	<5 (5	93	14	119	3.40	1130
L 0	300W	(0.2	32	15	85	(1.0	a	<5	(5	(5	62	11	02	2,00	700
L 0	350W	(0.2	45	14	92	<1.0	(1	(5	<s< td=""><td><5 <5</td><td>66</td><td>14</td><td>95</td><td>2.04</td><td>741</td></s<>	<5 <5	66	14	95	2.04	741
L 0	400W	<0.2	20	11	56	<1.0	<1	<5	<5	<5	69	11	96	2.89	393
ι5	350E	(0.2	17	17	185	<1 N	a	7 2	/5	/5	47	1.4	07	0 TO	1007
Ε.5	300F	(0.2	14	20	142	(1.0	71	<5	25	10 72	30	19	07	3.70	1507
1.5	250F	(0.2	78	50	278	(1.0	21	(J (5	\J /5	(5	32	12	10	3.44	1044
L S	200F	(0.2	351	31	£43	<1.0 <1.0		109	(J 62	\J /S	30 92	7	73 02	J.00 4 15	1944
15	150E	(0.2	26	17	95	(1.0	21	/5	/5	\J /5	30 50	12	00	9.2J 2.45	017
1.5	100F	(0.2	4	(2	7	(1.0	(1	25	(5	25	1	11	20	0.4J 0.00	303 0
15	050F	(0.2	5	4	32	<1.0	21	\U /5	(3)	/5	1	1	5	0.00	0
L 5	050₩	(0.2	18	16	153	<1.0		(5	<5	72	42	1	75	2 22	1056
ί5	1008	(0.2	14	14	133	(1.0	<1 <1	<5 <5	(5	/5	41	10	73	0.00 0.41	1330
L S	1500	(0.2	13	15	187	<1.0		<5 <5	(5	 <5 	79	15	70 07	2 00	723
L 5	2000	(0.2	15	12	144	(1.0	- 21	(0 (5	<5	25	53 6d	10	03 Ø1	2.00	200
ί.5	2500	(0.7	13	12	121	(1.0		<u> </u>	(5	/5	45	14	79	0.JZ 3.55	570
L 5	3000	(0.2	12	14	105	(1.0	71	(5 (5	\J /5	(J /5	70	11	70	0.00	3/3
L S	3501	(0.2	11	12	82	<1.0		(5	\u0 /5	/5	20	12	70	3.1/	217
1.5	400	(0.2	13	14	102	(1.0	71	25	\J /5	(5	20	12	73	0.00	328
L 5	450	(0.2	16	17	76	(1.0	21	15	\J /5	\J /5	30 A7	17	70 07	3.3∠ 2.54	444
15	500	(0.2	10 R	14	103	(1.0	21	(J /5	\J /5	\J /5	יד רכ	10	0 / כד	3.31 7.15	J23
	MAAU	• V I L	U	17	103	1110	11	10	71	٦,	33	10	13	3.13	434
L10	500E	<0.2	12	12	112	<1.0	<1	<5	<5	<5	40	11	73	3.15	992
L10	450E	<0.2	15	12	49	<1.0	<1	<5	<5	<5	54	9	82	3.10	265

Project 615

Soil Sampling Results (part 2)

Samp	le ID	Ba ppm	V PPm	Sr ppm	Y ppm	La ppm	Те ррм	Sn ppa	₩ pp#	A1 X	Mg %	Ca X	Na Z	K X
										···				
L 0	500E	158	77	17	4	6	<10	<20	<20	1.73	0.64	0.49	0.02	0.09
L 0	450E	193	65	17	4	9	<10	〈 20	<20	1.45	0.42	0.45	0.02	0.09
L 0	400E	238	89	19	3	8	<10	<20	<20	2.36	0.60	0,42	0.02	0.09
L 0	350E	220	83	20	4	8	<10	<20	<20	2.42	0.63	0.38	0.03	0,08
ι0	300E	215	90	17	3	7	<10	<20	<20	1.75	0.57	0.44	0.02	0.06
L 0	250E	220	95	16	3	7	<10	<20	<20	2.57	0.72	0.36	0.02	0.09
L ()	200E	180	91	18	3	6	<10	<20	<20	2.28	0.59	0.37	0.03	0.07
L 0	150E	366	92	16	3	7	<10	<20	<20	2.06	0.56	0.40	0.02	0.08
L 0	100E	1534	32	18	9	10	<10	<20	<20	1.29	0.88	2,29	0.02	0.05
L 0	050E	1403	71	18	16	21	<10	<20	<20	1.96	0.59	0.62	0.02	0.10
L 0	050W	557	96	26	8	13	<10	<20	<20	2.64	0.95	0.56	0.03	0.24
L 0	100W	562	83	32	4	9	<10	<20	<20	2.38	0.75	0.80	0.03	0.13
L 0	150W	279	91	20	4	9	<10	<20	<20	2.87	0.82	0.45	0.03	0.11
L 0	200W	363	85	31	4	13	<10	<20	<20	2.91	0.92	0.52	0.02	0.17
L 0	250W	295	93	38	10	17	<10	<20	<20	2.96	1.27	0.60	0.03	0.21
L 0	300W	233	79	29	5	12	<10	<20	<20	2.24	1.00	0.56	0.02	0.14
L 0	350₩	306	74	36	9	16	<10	<20	<20	2.08	1.06	0.65	0.04	0.12
L 0	400W	201	78	26	8	17	<10	<20	<20	1.20	1.15	0.68	0.04	0.08
ί5	350E	492	97	18	3	3	<10	<20	<20	2.36	0.62	0.43	0.02	0.12
L 5	300E	652	90	15	3	8	<10	<20	<20	1.77	0.40	0.37	0.02	0.10
L 5	250E	751	60	15	33	20	<10	<20	<20	2.11	0.88	1.10	0.03	0.06
L 5	200E	>2000	96	39	3	- 9	<10	<20	<20	3.09	0.61	0.39	0.02	0.05
L 5	150E	776	94	16	3	9	<10	<20	<20	3.13	0.76	0.39	0.03	0.08
L 5	100E	154	2	24	<1	2	<10	<20	<20	0.03	0.16	1.65	<0.01	<0.01
L 5	050E	143	5	74	<1	3	<10	<20	<20	0.15	0.22	3.07	0.02	0.03
L 5	050W	297	84	24	3	9	<10	<20	<20	2.22	0.54	0.45	0.02	0.12
L 5	100W	265	88	23	2	9	<10	<20	<20	1.94	0.51	0.44	0.02	0.10
ί5	150W	254	97	19	3	10	<10	<20	<20	2.11	0.45	0.35	0.02	0.10
ι5	200W	208	86	15	3	9	<10	<20	<20	2.47	0.51	0.28	0.02	0.10
L 5	250W	217	94	17	2	9	<10	<20	<20	2.26	0.49	0.37	0.02	0.10
L 5	300W	242	89	17	2	9	<10	<20	<20	2.03	0.48	0.32	0.02	0.07
L 5	350W	262	92	15	2	8	<10	<20	<20	2.04	0.41	0.31	0.02	0,05
L 5	400W	213	88	23	3	8	<10	<20	<20	2.15	0.44	0.43	0.02	0.07
L 5	450W	253	85	20	3	8	<10	<20	<20	2.43	0.52	0.37	0.02	0.07
L 5	500W	220	77	19	2	8	<10	<20	<20	1.81	0.35	0.39	0,02	0.08
L10	500E	220	69	15	3	10	<10	{20	<20	2.01	0.43	0.40	0.02	0.06
L10	450E	219	83	20	3	10	<10	<20	(20	2.18	0.56	0.44	0.02	0.06

Date of Report: 94.10.11

Atan

Soil Sampling Results 1994

Reference: v94-01079.0

Samp	le ID	Ag	Cu	Ръ	Zn	Cď	Mo	As	Sb	Bi	Ni	Co	Cr	Fe	- Mn
		ppm	ppn	ppm	bbe	ppm	ppa	ppa	ppm	ppm	ppa	ppæ	ppm	7.	ppm
1 1 0	4005	/^ ^				(1.0		/5		·		40			
	400E 250E	(0.2	11	93	142	(1.0		() (E	() (5	() /5	41	10	71	3.91	14/8
110	33VC 200E	(0.2	0	12	10	(1.0	17	() ()	(J) /E	(a) (F)	28	8 15	/1	3.03	210
110	2505	(0.2	13	17	120	(1.0	<1 / L	() /5	(3)	(3	4/ 55	10	84	3./1	881
110	2005	10.2	10	12	115	(1.0	11	(Q) /E	() (5	() (5	23	12	83 70	3.65 7.00	823
	1505	10.2	20	12	110	(1.0	<u> </u>	() /5	() /5	 		13	/b 00	3.29	1048
110	1000	/0.2	23	10	150	(1.0	×1 71	(3	(J /5	()	81	10	100	4.00	428
1 10	1000	10.2	20	10	152	21.0			(J /5	(3	70	14	102	3.33	409
	0300	(0.2	17	12	144	(1.0	1	() (5	\J /5	(J /5	13	10	101	3.81 2.25	002
	1000	10.2	20	17	144	71.0	1	()	\J /5	\J /8	55	13	60	3.30	373
110	1504	(0.2	20	10	140	(1.0	21	\J /5	\J /5	()	23	14	80	5.45	1123
1 10	2001	20.2	21	17	172	71.0	21	\J \S	(J /5	\J /5	0/ 70	19	00	0.0/ 0.00	1045
110	2504	(0.2	2.3	1.0	155	71.0	71	\J /5	\J /5	\J /5	72	10	71 07	3.30	1243
1 10	2008	(0.2	25	15	109	(1.0	1	13	13	13	55 7	19	07	3.32 3.03	1372
110	2500	20.2	12	10	147	χ1.υ /1 Δ	21	\J /5	\J /5	\J /5	۲۴/ 27	15	00	2.03	0/L 1/0/L
110	4000	20.2	11	14	197	<1.V	71	\J 25	15	10	37	15	07	3.17	1424
110	4500	(0.2	12	17	176	/1.0	71	\J /5	13	\J /5	41	10	0/	3.27	1242
	5000	20.2	14	10	1/0	<1.0 Z1 0	21	\J /5	\J /5	10	40	10	0V 00	3.10	1343
610	JVVN	1012	10	10	115	11.0	~1	13	13	13	40	12	00	3.30	010
L15	500E	<0.2	14	17	37	(1.0	<1	6	<5	<5	30	8	51	1.90	303
L15	450E	<0.2	16	19	41	<1.0	<1	19	<5	<5	32	8	51	1.91	278
L15	400E	<0.2	23	21	64	<1.0	<1	9	<5	<5	37	10	61	2.33	417
L15	350E	<0.2	20	23	73	<1.0	<1	15	<5	<5	35	11	61	2.42	471
L15	300E	<0.2	16	16	52	<1.0	<1	8	<5	<5	30	8	49	1.94	358
L15	250E	<0.2	16	10	37	<1.0	<1	20	<5	<5	31	7	44	1.79	273
L15	200E	<0.2	22	21	83	<1.0	<1	13	<5	<5	33	10	56	2.21	394
L15	150E	<0.2	18	23	40	<1.0	<1	<5	<5	<5	29	7	46	1.75	264
L15	100E	<0.2	154	946	380	<1.0	<1	43	28	<5	28	8	67	3.64	1228
L15	050E	<0.2	22	92	157	<1.0	<1	<5	<5	<5	40	10	83	3.28	547
L15	050W	<0.2	15	19	254	<1.0	<1	<5	<5	<5	41	12	77	2.69	610
L15	100W	<0.2	466	2719	6378	6.3	3	151	70	<5	53	16	67	2.48	328
L15	150W	<0.2	18	31	146	<1.0	<1	<5	<5	<5	61	12	79	2.92	706
L15	200W	<0.2	6	8	50	<1.0	<1	<5	<5	<5	38	7	53	2.17	297
L15	250₩	<0.2	10	15	158	<1.0	<1	<5	<5	<5	33	15	52	3.36	1460
L15	300W	<0.2	13	14	191	<1.0	1>	<5	<5	<5	48	15	59	3.51	747
L15	350W	<0.2	24	16	191	<1.0	<1	<5	<5	<5	34	16	54	3.53	1225
L15	400W	<0.2	13	14	174	<1.0	<1	<5	<5	<5	56	16	61	3.65	900
L15	450W	<0.2	28	19	135	<1.0	<1	<5	<5	<5	90	17	67	4.11	676
L15	500W	<0.2	25	10	99	<1.0	<1	<5	<5	<5	71	14	68	3.58	639

page 3

Project 615

,

Soil Sampling Results (part 2)

Samo	le ID	Ba	v	Sr	Y	12	Te	Sn	L	۵1	Ħп	٢a	Na	v
		ppa	ppa	ppm	ppm	ppa	ppa	ppa	ppa	1	ž	<u>%</u>	ž	X.
L10	400E	257	59	34	15	18	<10	<20	<20	1.99	0.37	1.13	0.02	0.06
L10	350E	277	80	21	3	9	(10	(20	(20	1.56	0.41	0.44	0.01	0.08
L10	300E	247	97	17	3	8	<10	<20	(20	2.05	0.50	0.37	0.02	0.08
L10	250E	242	88	20	3	9	<10	<20	<20	2.04	0.53	0.39	0.02	0.09
Ľ10	200E	288	76	18	3	9	<10	<20	<20	2.12	0.50	0.39	0.02	0.11
L10	150E	211	110	21	4	8	<10	<20	<20	2.99	0.75	0.46	0.03	0.10
L10	100E	284	103	17	4	9	<10	<20	<20	3.05	0.66	0.34	0.03	0.08
L10	050E	263	102	20	4	11	<10	<20	<20	2.69	0.71	0.46	0.03	0.12
L10	050W	298	100	23	3	8	<10	<20	<20	2.37	0.75	0.56	0.02	0.15
L10	100W	320	88	19	3	8	<10	<20	<20	2,28	0.61	0.46	0.02	0.10
L10	1500	207	89	16	4	9	<10	<20	<20	2.54	0.68	0.36	0.02	0.10
L10	200W	357	90	23	4	9	<10	<20	<20	2.53	0.78	0.54	0.03	0.15
L10	250¥	351	87	20	3	9	<10	(20	(20	2.40	0.64	0.44	0.02	0.12
L10	300N	238	81	25	5	13	<10	<20	<20	2.43	0.75	0.43	0.02	0.13
L10	350W	332	82	24	3	10	<10	<20	<20	2.10	0.51	0.46	0.02	0,10
L10	400¥	246	91	21	3	11	<10	<20	<20	1.98	0.54	0.46	0.02	0.10
L10	450W	315	91	24	3	10	<10	<20	<20	2.02	0.55	0.47	0.02	0.11
L10	500¥	267	112	24	2	8	<10	<20	<20	2.13	0.55	0.54	0.02	0.11
L15	500E	146	40	21	8	21	<10	<20	<20	0.96	0.53	0.56	0.02	0.09
L15	450E	149	40	20	8	21	<10	<20	<20	1.03	0.55	0.52	0.02	0.12
L15	400E	204	50	23	9	23	<10	<20	<20	1.38	0.68	0.54	0.02	0.14
L15	350E	199	49	19	7	21	<10	<20	<20	1.35	0.63	0.48	0.02	0.17
L15	300E	170	41	18	8	20	<10	<20	<20	1.01	0.54	0.53	0.02	0.12
L15	250E	137	37	16	9	19	<10	<20	<20	0.85	0.49	0.45	0.02	0.09
L15	200E	301	45	21	8	22	<10	<20	<20	1.41	0.55	0.54	0.02	0.15
L15	150E	186	38	21	8	22	<10	<20	<20	0.94	0.50	0.53	0.02	0.09
L15	100E	1838	53	27	12	14	<10	<20	<20	1.31	0.60	1.00	0.02	0.03
L15	050E	650	74	17	7	15	<10	<20	<20	1.88	0.51	0.50	0.03	0.07
L15	0501	373	77	19	4	10	<10	<20	<20	1.59	0.58	0.49	0.02	0.08
L15	1000	392	53	20	9	14	10	<20	<20	1.24	0.74	0.58	0.03	0.09
L15	150W	344	77	21	4	11	<10	<20	<20	2.01	0.53	0.45	0.02	0.10
L15	200W	194	66	18	4	10	<10	<20	<20	1.44	0.42	0.48	0.02	0.08
L15	250W	242	79	17	2	9	<10	<20	<20	1.51	0.43	0.36	0.02	0.11
L15	300W	230	89	16	3	9	<10	<20	<20	2.01	0.58	0.37	0.02	0.09
L15	350W	245	88	17	2	9	<10	<20	<20	1.69	0.42	0.37	0.02	0.08
L15	400W	248	94	16	3	10	<10	<20	<20	2.21	0.60	0.35	0.02	0.08
L15	450W	198	94	17	4	11	11	<20	<20	2.53	0.67	0.38	0.03	0.10
L15	500W	267	8B	15	4	10	<10	(20	<20	2.73	0.76	0.35	0.02	0.09

.

FINAL

Date of Report: 94.10.11 Project 615

Atan

Soil Sampling Results 1994

Reference: v94-01079.0

====:			==25555		======	=======			======	1285237		=2=====	******		======
Sampl	e ID	Ag	Cu	የb	Zn	Cd	Mo	As	Sb	8i	Ni	Co	Cr	Fe	Mn
		ppm	ppa	ppa	ppm	ppa	bbw	ppa	ppe	ppm	ppm	ppm	ppæ	ĩ.	ppm
L20	500E	<0.2	9	12	53	<1.0	<1	19	<5	<5	22	9	35	2.04	367
L20	450E	<0.2	12	14	72	<1.0	<1	25	<5	<5	29	11	41	2.37	628
L20	400E	<0.2	8	14	49	<1.0	<1	20	<5	<5	26	8	40	2.09	441
L20	350E	<0.2	11	16	48	<1.0	<1	43	<5	<5	28	10	41	2.23	483
L20	300E	<0.2	9	16	107	<1.0	<1	9	<5	<5	25	11	38	2.29	655
L20	250E	<0.2	5	11	44	<1.0	<1	6	<5	<5	13	7	28	1.67	316
L20	200E	<0.2	15	10	47	<1.0	<1	41	<5	<5	26	8	26	1.69	454
L20	150E	<0.2	20	16	52	<1.0	<1	44	<5	<5	33	9	37	2.05	506
L20	100E	<0.2	18	14	58	<1.0	<1	51	<5	<5	34	11	38	2.27	584
L20	050E	<0.2	19	14	58	<1.0	<1	55	<5	<5	34	11	37	2.24	592
L20	050W	<0.2	7	10	30	<1.0	<1	41	<5	<5	21	7	25	1.51	290
L20	100W	<0.2	2	6	26	<1.0	<1	70	<5	<5	6	5	10	3.91	9042
L20	150W	<0.2	22	59	67	<1.0	<1	<5	<5	<5	39	10	52	2.38	471
L20	200W	<0.2	8	14	119	<1.0	<1	<5	<5	<5	25	t5	51	2.91	935
L20	250₩	<0.2	9	10	136	<1.0	<1	<5	<5	<5	46	12	56	3.05	634
L20	300W	<0.2	12	15	133	<1.0	<1	<5	<5	<5	49	12	56	2.94	713
L20	350W	<0.2	7	8	101	<1.0	<1	<5	<5	<5	39	11	56	2.86	573
L20	400W	<0.2	11	31	183	<1.0	<1	<5	<5	<5	41	9	54	3.15	518
L20	450W	<0.2	11	39	50	<1.0	<1	<5	<5	<5	34	8	49	2.10	278
L20	500W	<0.2	7	22	112	<1.0	۲۱	<5	<5	<5	23	9	46	2.38	506
Stat	istics:														
	n =	135													
	Min :	(0.2	2	<2	7	<1.0	<1	<5	<5	<5	1	<1	2	0.08	8
	Max :	<0.2	581	2719	6378	6.3	3	151	70	<5	99	20	119	5.88	3042
25	5% ile :	<0.2	12	12	62	<1.0	<1	<5	<5	<5	31	9	53	2.38	417
50	% ile :	<0.2	16	15	108	<1.0	<1	<5	<5	<5	40	12	74	3.17	592
75	5% ile :	(0.2	22	18	153	<1.0	<1	<5	<5	<5	55	14	85	3.54	827
95	5% ile ;	<0.2	60	43	264	<1.0	<1	43	<5	<5	77	16	97	4.00	1478

page 4

FINAL

Project 615

Soil Sampling Results (part 2)

====			======				======		======	=======			=======	
Samp	le ID	Ba	۷	Sr	Y	La	Te	Sn	N	A1	Mg	Ca	Na	ĸ
		ppe	op∎	ppm	ppm	ppm	ppm	ppm	рря	X	ž	7,	X	X.
L20	500E	122	45	12	5	18	<10	<20	<20	0.86	0.51	0.50	0.02	0.12
L20	450E	205	48	14	7	22	<10	<20	<20	1.03	0.57	0.63	0.02	0.14
L20	400E	129	47	14	5	17	<10	<20	<20	0.94	0.54	0.51	0.02	0.11
L20	350E	151	47	16	6	19	<10	<20	<20	1.05	0.60	0.51	0.02	0.13
L20	300E	220	45	11	5	16	<10	<20	<20	1.07	0.55	0.60	0.01	0.14
L20	250E	101	41	9	4	18	<10	<20	<20	0.69	0.31	0.35	0.01	0.10
L20	200E	142	26	22	5	10	<10	<20	<20	0.66	1.27	2.39	0.01	0.07
L20	150E	169	38	22	7	15	<10	<20	<20	0.95	0.89	1.23	0.02	0.11
L20	100E	155	39	19	9	17	<10	<20	<20	0.99	0.62	0.85	0.02	0.12
L20	050E	178	40	22	8	19	<10	<20	<20	0.99	0.85	1.23	0.02	0.12
L20	050W	123	30	15	5	13	<10	<20	<20	0.64	1.39	2.03	0.02	0.06
L20	100W	691	9	98	<1	2	<10	<20	<20	0.15	0.37	3.23	0.05	0.02
L20	150W	608	66	19	5	11	<10	<20	<20	1.32	0.69	0.46	0.02	0.14
L20	200W	375	83	15	3	9	<10	<20	<20	1.42	0.42	0.35	0.02	0.07
L20	250W	473	81	20	3	9	<10	<20	<20	1.75	0.62	0.51	0.02	0.10
L20	300W	463	75	17	4	9	<10	<20	<20	1.66	0.61	0.48	0.02	0.10
L20	350W	235	81	15	3	8	<10	<20	(20	1.59	0.64	0.45	0.02	0.07
L20	400W	159	71	13	9	12	<10	<20	<20	1.69	0.72	0.55	0.02	0.05
L20	450₩	398	68	16	4	9	<10	<20	<20	1.33	0.64	0.47	0.02	0.05
L20	500W	572	79	15	3	9	<10	<20	<20	1.33	0.45	0.42	0.02	0.04
Stat	istics:													
	n =	135												
	Min :	>2000	2	9	<1	2	<10	<20	<20	0.03	0.07	0.28	<0.01	<0.01
	Max :	1838	112	120	33	25	11	<20	<20	3.17	1.39	5.63	0.05	0.27
25	X ile :	198	53	17	3	8	<10	<20	<20	1.33	0.50	0.39	0.02	0.07
50	% ile :	239	79	19	4	9	<10	<20	<20	1.96	0.58	0,46	0.02	0.09
75	5% ile :	312	91	22	5	14	<10	<20	<20	2.28	0.70	0.56	0.02	0.11
95	i% ile :	652	99	38	9	21	<10	<20	<20	2.87	0.95	2.29	0.03	0.17
75 95	5% ile : 5% ile :	312 652	91 99	22 38	5 9	14 21	<10 <10	<20 <20	<20 <20	2.2B 2.87	0.70 0.95	0.56 2.29	0.02 0.03	0.11 0.17

page 4a

-

Date of Report: 94.10.11

Atan

Soil Sampling Results 1994

Refe	erence:	v94-01079.	0					=======						=======	
Saaq	ole ID	Ag ppm	Cu ppm	Pb ppm	Zn pp n	Cd ppm	Mo ppa	As ppa	Sb ppm	Bi ppm	Ni ppm	Ço pp#	Cr ppm	Fe X	Hn ppm
Dupi	licates:														
BL	0450N	<0.2	17	14	101	<1.0	(1	<5	<5	<5	54	13	84	3.61	515
ÐL	1400N	<0.2	8	17	306	<1.0	<1	<5	<5	<5	39	11	73	3.00	1021
L 0	350E	<0.2	23	15	143	<1.0	<1	` ₹5	<5	<5	70	15	88	3.51	632
L 5	300E	<0.2	13	25	144	<1.0	2	<5	<5	<5	35	13	76	3.58	1548
L10	450E	<0.2	13	6	48	<1.0	<1	<5	<5	<5	51	9	60	2.79	251
L15	300E	<0.2	13	10	49	<1.0	< 1	10	<5	<5	28	7	35	1.82	335
L20	300E	<0.2	10	16	101	<1.0	2	12	<5	<5	26	12	44	2.29	643

page 5

FINAL

Project 615

Soil Sampling Results (part 2)

===:		========	======	======	======		======	=======	******			.=======	.======	======
Samı	ole ID	Ba ppn	V ppm	Sr ppm	¥ ppm≞	La ppm	Te ppm	Sn ppæ	₩ ppæ	A1 %	Mg %	Ca 7	Na %	K X
Dupl	icates:													
BL	0450N	234	97	20	3	9	<10	<20	<20	2.33	0.57	0.39	0.02	0.09
8L	1400N	646	73	18	3	9	<10	<20	<20	1.70	0.48	0.44	0.02	0.08
L 0	350E	222	82	21	4	9	<10	<20	<20	2.39	0.63	0.38	0.03	0.08
L 5	300E	619	90	16	3	9	<10	<20	<20	1.73	0.39	0.38	0.02	0.09
L10	450E	203	77	17	3	9	<10	<20	<20	1.97	0.55	0.40	0.02	0.06
L15	300E	152	37	15	7	18	<10	<20	<20	0.91	0.51	0.49	0.02	0.11
L20	300E	224	49	11	5	15	11	<20	<20	1.09	0.62	0.57	0.02	0.14

page 5a

APPENDIX 2

.

Rock Sample Descriptions

APPENDIX 2

Rock Sample Descriptions

White - buff quartzite, fine grained to AR-94-001 Chip sugary texture. Disseminated hematite blebs \leq 1 mm. AR-94-002 Float GPS Loc 6. Dark grey to black chert. Fractured and healed with dolomite. Azurite stain. Very minor silvery disseminated material. AR-94-003 Chip GPS Loc 6. Chert. Dark grey. Well fractured and healed. Vuqqy. Light grey dolomite with barite lense. AR-94-004 Chip AR-94-005 Chip Barite. AR-94-006 Chip Dolomite/Chert. Buff. Sugary euhedral quartz on bedding plane. Weak effervescence. AR-94-007 Chip Dark grey chert. AR-94-008 Float Dark grey chert breccia. Healed with quartz. AR-94-009 Chip Dark grey chert breccia healed with quartz and calcite. Trace disseminated pyrite. Malachite stain. Trends 095°/dip 45°S. AR-94-010 Chip Mineralized fracture (125°/75°S). Dark grey brecciated chert. Strong malachite stain. Vuggy euhedral quartz. GPS Loc 10 N 59° 11.678' W 129° 11.247' AR-94-011 Chip Light grey limestone. Barite appears to be interbedded with AR-94-012 Chip limestone (305°/50°S). GPS Loc 10 N 59° 11.660' W 129° 11.140' (Note: Poor Satellite Geometry).

AR-94-013	Chip	Light grey dolomite with barite stringers.
AR-94-014	Chip	Medium grey chert (?) replacement. Strongly effervescent locally. Appears brecciated.
AR-94-015	0.5W Chip	Dark grey chert breccia with strong malachite and azurite stain. Disseminated sulphide ≤ .5% (very minor). Calcite stringers.
AR-94-016	Chip	Irregular quartz vein in chert. Vuggy euhedral quartz. Locally hematized.
AR-94-017	Chip	Barite vein in dolomite/chert. Azurite staining. Irregular vein ≤ 10cm.
AR-94-018	Chip	Buff dolomite. M.gr. Weak effervescence along fractures. Irregular quartz blebs and some euhedral quartz.
AR-94-019	Chip	Light grey dolomite (chert?) with irregular quartz stringers. Medium brown calcite skins on fractures.
AR-94-020	Chip	Dark grey. Dolomite/Chert with irregular quartz veins ≤ 1cm.
AR-94-021	Chip	Azurite and trace malachite in dolomite at contact with barite.
AR-94-022	Chip	As above on east side of barite outcrop.
AR-94-023	Float	Sulphide (chalco?) in dolomite near a barite contact. Sulphides appear to be deposited at barite/rx contact. Azurite and malachite.

•

APPENDIX 3

.

Rock Samples

Analytical Procedures and Results

Geochemical Analysis

by Bondar-Clegg :

		LOWER		
ELEMEN	т	DETECTION LIMIT	EXTRACTION	METHOD
Au	Gold	5.0 ррb	fire-assay	atomic absorption
Ag	Silver	0.2 ppm	HNO3-HCI hot extr	ind. coupled plasma
Al*	Aluminum	0.02 %	HNO3-HCI hot extr	ind. coupled plasma
As	Arsenic	5.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Ba*	Barium	5.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Bi	Bismuth	5.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Ca*	Calcium	0.05 %	HNO3-HCI hot extr	ind. coupled plasma
Cd	Cadmium	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Co*	Cobalt	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Cr*	Chromium	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Cu	Copper	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Fe*	Iron	0.01 %	HNO3-HCI hot extr	ind. coupled plasma
Hg∎	Mercury	0.010 ppm	HNO3-HCI leach	cold vapour atomic absorption
K*	Potassium	0.05 %	HNO3-HCI hot extr	ind. coupled plasma
La*	Lanthanum	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Mg*	Magnesium	0.05 %	HNO3-HCI hot extr	ind. coupled plasma
Mn*	Manganese	0.01 %	HN03-HCI hot extr	ind. coupled plasma
Mo*	Molybdenum	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Na*	Sodium	0.05 %	HNO3-HCI hot extr	ind. coupled plasma
Ni*	Nickel	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Pb	Lead	2.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Sb*	Antimony	5.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Sn*	Tin	20.0 ppm	HNO3-HCI hot extr	ind, coupled plasma
Sr*	Strontium	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Te*	Tellurium	10.0 ppm	HNO3-HCI hot extr	ind, coupled plasma
V*	Vanadium	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
W*	Tungsten	10.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Y	Yttrium	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma
Zn	Zinc	1.0 ppm	HNO3-HCI hot extr	ind. coupled plasma

 Please note: certain mineral forms of those elements above marked with an asterisk will not be soluble in the HNO3/HCi extraction. The ICP data will be low biased.

· Please note: Hg will only be analysed upon request.

Date of Report: 94.10.11 Project 615

Atan

Rock Sampling Results 1994

Reference: v94-01079.0

=======================			=======	******	======		======		======	======		======	*=====	======
Sample ID	Ag	Ca	ዖዕ	ไก	Cd	Mo	As	Sb	Bi	Ni	Co	Cr	Fe	Mn
·	ppm	₿ ₽ ₽ ₽	ppa	bbw	ppa	ppm	bbw	թթտ	ppm	ppm	ppa	p p ត	%	ppm
AR-94 001	<0.2	3	<2	10	<1.0	12	<5	<5	<5	10	2	188	1.08	474
AR-94 002	<0.2	311	<2	93	<1.0	3	124	25	<5	10	<1	116	0.50	164
AR-94 003	(0.2	8	24	67	<1.0	5	14	<5	<5	7	1	73	0.55	173
AR-94 004	<0.2	63	6	69	<1.0	<1	29	<5	<5	5	3	8	0.76	318
AR-94 005	(0.2	10	<2	4	<1.0	₹1	<5	<5	<5	<1	<1	3	0.03	15
AR-94 006	<0.2	11	5	16	<1.0	<1	<5	<5	<5	1	<1	14	1.38	650
AR-94 007	<0.2	21	7	8	<1.0	10	12	<5	<5	9	<1	151	0.71	254
AR-94 008	(0,2	6	4	8	<1.0	<1	(5	<5	<5	3	<1	17	1.18	547
AR-94 009	<0.2	875	4	65	<1.0	18	9	<5	<5	16	<1	277	0.29	65
AR-94 010	1.3	12326	94	36	<1.0	4	36	<5	27	26	2	151	1.02	89
AR-94 011	<0.2	118	6	23	<1.0	<1	<5	<5	<5	<1	<1	4	0,18	80
AR-94 012	<0.2	20	31	5	<1.0	<1	<5	<5	<5	<1	<1	3	0.02	8
AR-94 013	0,2	29	22	11	<1.0	<1	<5	<5	<5	3	<1	12	0.86	413
AR-94 014	<0.2	12	4	13	<1.0	<1	<5	<5	<5	2	<1	17	0.48	243
AR-94 015	27.8	12415	167	819	19.1	6	2997	>2000	32	<1	2	131	0.58	85
AR-94 016	0.3	108	7	25	<1.0	6	35	26	<5	11	1	156	0.71	131
AR-94 017	1.4	740	35	26	<1.0	4	151	74	<5	<1	<1	4	0.71	304
AR-94 018	0.4	25	6	7	<1.0	7	10	<5	<5	<1	<1	<1	1.47	653
AR-94 019	0.5	25	2	19	<1.0	7	18	<5	<5	<1	<1	4	0.91	378
AR-94 020	<0.2	22	7	15	<1.0	6	10	<5	<5	14	<1	237	0.29	35
AR-94 021	2.3	1809	30	91	<1.0	7	549	230	<5	<1	1	78	1.03	310
AR-94 022	13.0	3106	>10000	122	3.0	7	965	348	<5	2	1	3	1.01	442
AR-94 023	>50 . 0	15140	365	113B	13.1	7	1967	>2000	<5	<1	2	<1	1.38	488
Duplicates:														
AR-94 003	(0.2	7	24	68	(1.0	5	16	<5	<5	8	1	79	0.58	182
AR-94 023	>50.0	14496	390	1090	11.7	7	1865	>2000	<5	<1	2	<1	1.34	472

{ile: \615\ROCK_94.wk1

FINAL

Project 615

Rock Sampling Results (part 3)

Sample ID	Ba	۷	Sr	Y	La	Te	Sn	W	Al	Mg	Ca	Na	ĸ
	рра	ppa	obe 	ppm	ppa	០៦៧	рра	ppa	7.	7.	Χ.	X	Χ.
AR-94 001	30	5	2	1>	<1	<10	<20	<20	0.07	0.02	0.03	<0.01	0.02
AR-94 002	1031	4	47	<1	2	<10	<20	<20	0.02	2,27	4.16	<0.01	<0.01
AR-94 003	39	7	35	<1	3	<10	<20	<20	0.04	2.71	6.81	0.01	0.02
AR-94 004	428	8	194	<1	3	<10	<20	<20	0.02	1.10	>10.00	0.02	<0.01
AR-94 005	479	2	1759	<1	<1	<10	<20	<20	<0.01	0.26	0.36	<0.01	<0.01
AR-94 006	887	7	132	<1	4	11	<20	<20	0.02	1.89	>10.00	0.01	<0.01
AR-94 007	1565	5	46	<1	3	<10	<20	<20	0.05	2.22	4.35	<0.01	0.02
AR-94 00B	99	8	41	<1	4	<10	<20	<20	0.02	2.13	>10.00	0.01	<0.01
AR-94 009	1948	3	10	<1	<1	<10	<20	<20	0.02	0.26	0,45	0.01	<0.01
AR-94 010	208	3	<1	<1	<1	12	<20	<20	0.03	0.69	0.99	<0.01	<0.01
AR-94 011	1288	9	224	<1	4	<10	<20	<20	0.05	2.56	>10.00	<0.01	0,01
AR-94 012	>2000	2	218	<1	<1	<10	<20	<20	<0.01	0.25	0.93	0.01	<0.01
AR-94 013	886	8	185	<1	3	12	<20	<20	0.02	1.65	>10.00	0.01	<0.01
AR-94 014	532	7	15	<1	3	<10	<20	<20	0.02	2,57	8,86	0.01	<0.01
AR-94 015	63	<1	18	< i	2	14	<20	<20	0.02	1.93	3.06	<0.01	<0.01
AR-94 016	187	4	15	<1	<1	<10	<20	<20	0.04	1.40	3.08	<0.01	0.01
AR-94 017	359	<1	561	1	1>	<10	<20	<20	0.02	5.34	>10.00	0.01	<0.01
AR-94 018	378	<1	56	2	<1	<10	<20	<20	<0.01	6.60	>10.00	0.02	<0.01
AR-94 019	406	1	87	<1	<1	<10	<20	<20	0.04	7.07	>10.00	0.01	<0.01
AR-94 020	300	2	6	<1	<1	<10	<20	<20	0.05	0.15	0.32	<0.01	0.02
AR-94 021	615	<1	99	2	<1	<10	<20	<20	0.03	2.92	7.63	<0.01	0.01
AR-94 022	58	<1	193	2	<1	<10	<20	<20	0.02	5.97	>10.00	<0.01	<0.01
AR-94 023	44	<1	225	2	<1	<10	<20	60	<0.01	6.03	>10.00	<0.01	<0.01
Duplicates:													
10-04 002	05	7	26	11	2	10	100	/ 24	0.05	2 02	7 67	0.04	0.0
NK-24 003	30	1	ან იეე	1/	3 /1	10	(20	<20 60	20.00	2.03 5 of	7.03	0.01	10.0
AK-34 023	20	17	443	2	(1	<10	< 20	27	<0.01	3.92	210.00	(0.01	- KV.

page la

.

