log no:	IMAR 1	3 1995	U
ACTION:			
FILE NO:			

DIAMOND DRILL ASSESSMENT REPORT ON

THE GATAGA PROJECT

BEAR GROUP (BEAR, SI, CUB, and Bob claims)

LIARD/OMINECA MINING DIVISION

57°58'15"N, 125°47'35"W

NTS. 94F/13W & 94K/4W

FILMED

JEOLOGICAL BRANCH ASSESSMENT REPORT

GRAEME EVANS JANUARY ,1995 KAMLOOPS, B.C.

OWNER: TECK EXPLORATION LTD. #600,200 BURRARD ST. VANCOUVER, B.C. V6C 3L9

TABLE OF CONTENTS

	PAGE #
1-INTRODUCTION	1
2-LOCATION & ACCESS	1
3-TOPOGRAPHY AND VEGETATION	1
4-CLAIMS	1
5-PREVIOUS WORK AND HISTORY	2
6-1994 WORK	2
7-GEOLOGY	
7A) REGIONAL GEOLOGY	2
7B) PROPERTY GEOLOGY	3
7C) LITHOLOGY	3
7D) STRUCTURE	5
7E) MINERALIZATION & PALEOSTRUCTURE	5
8-DIAMOND DRILLING	6
9-CONCLUSIONS & RECOMMENDATIONS	6
REFERENCES	7
TABLES	
BEAR CLAIM GROUP	1
B-14 ASSAY RESULTS	After P.6
B-15 ASSAY RESULTS	After P.6
FIGURES	
Fig.1 BEAR PROPERTY LOCATION MAP	After P.1
Fig.2 BEAR CLAIM GROUP	After P.1
Fig.3 BEAR PROPERTY-REGIONAL GEOLOGY	After P.2
Fig.4 BEAR DRILL LOCATION MAP-PLAN	After P.6
Fig.5 CROSS SECTION 5+00N (B-14,B-15)	After P.6

Ĵ

APPENDICES

Appendix 1 STATEMENT OF QUALIFICATIONS

Appendix 2 COST STATEMENT

Appendix 3 DRILL LOGS

Appendix 4 CERTIFICATES OF ANALYSIS

Appendix 5 ANALYTICAL PROCEDURE

1-INTRODUCTION

This report covers the 1994 program of diamond drilling of the Bear claim group. The focus of the program was to test mineralization in the horizon (down dip and along strike) previously outlined by mapping and drilling.

1

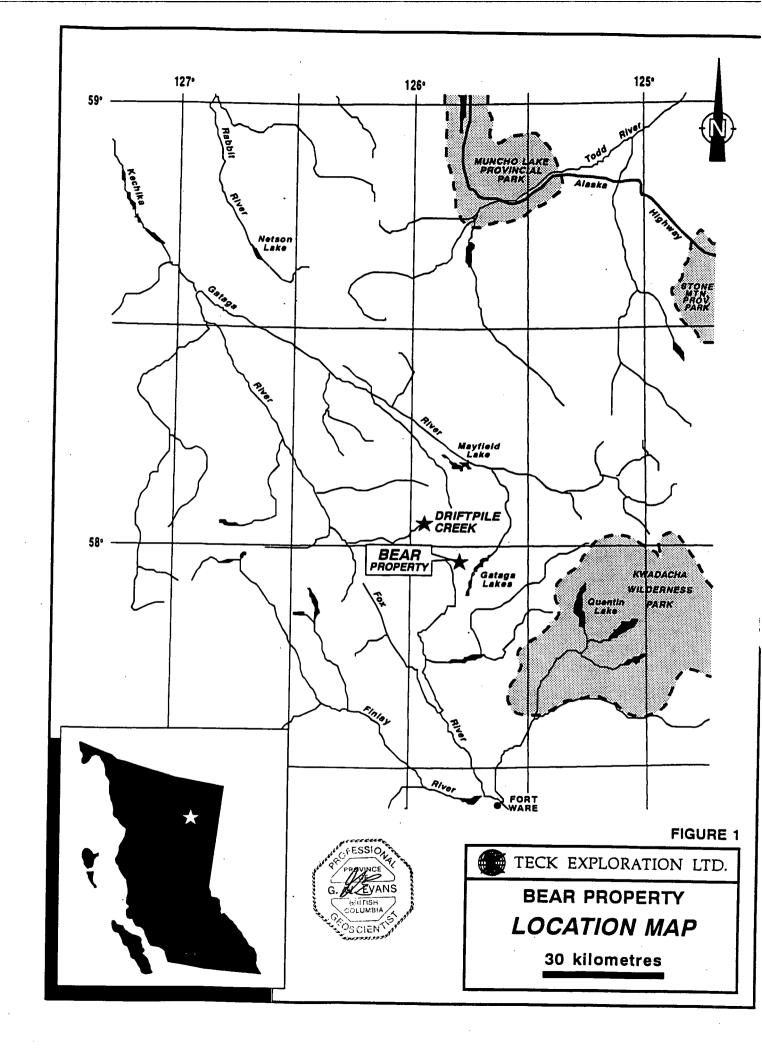
2-LOCATION & ACCESS (Fig.1)

The Bear claim group is located on the northeast side of the northern Rocky Mountain trench within the Muskwa range, the claim LCP's centred at 57 58'15"N and 125 47'35"W. The property lies 5 kilometers northwest of the Gataga Lake chain at the headwaters of the South Gataga river (94F/13W).

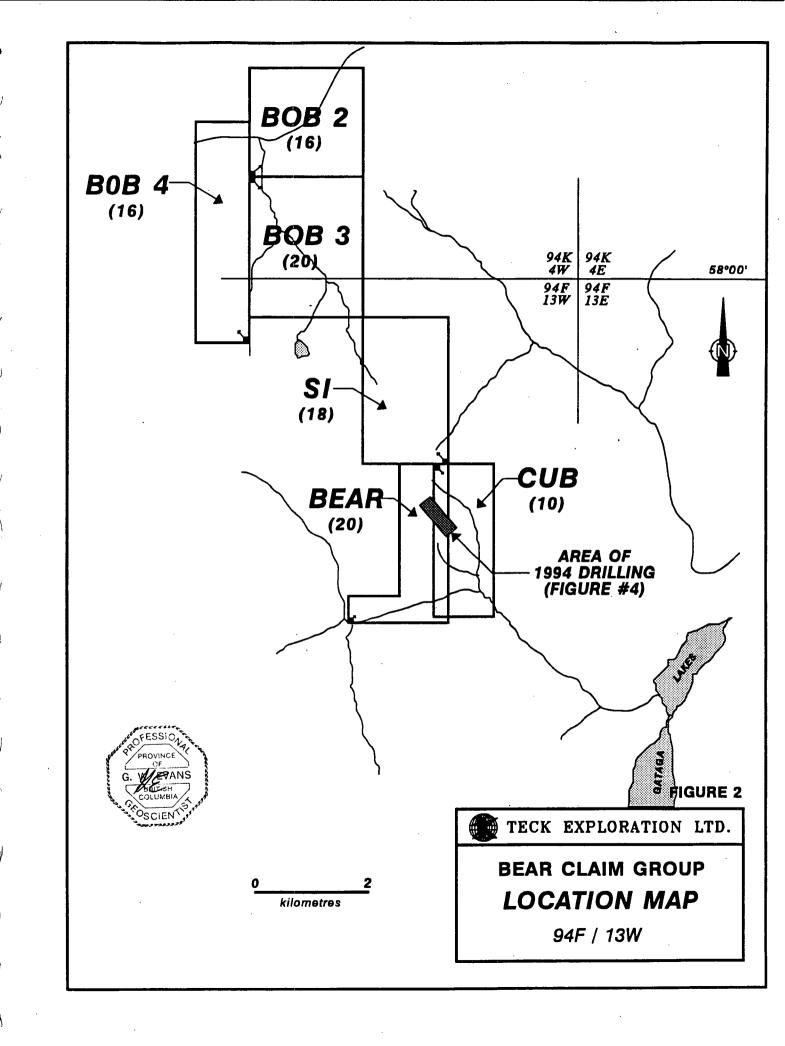
In 1994 access was gained by helicopter from the Driftpile main camp which is located 14 kilometers NW of the property. An existing airstrip at Driftpile will handle fixed wing planes up to Twin Otters in size. These flights originated from Watson Lake (270 Km's NW), Fort Nelson (220 Km's NE) or Fort St John (320 Km's SE). The helicopter service was based at the Driftpile Camp and consisted of a 500D contracted by Northern Mountain Helicopters.

3-TOPOGRAPHY AND VEGETATION

The countryside consists of U-shaped glacial valleys with local precipitous cliffs below old glacially derived hanging valleys. Elevations range from 1200 meters to peaks attaining an elevation of 2082 meters and the treeline is at the 1600 meter elevation. Numerous talus slopes cover much of the valley and hillsides with numerous active snow chutes present. Forest cover consists of alpine spruce and poplar with brushy willow underbrush dominating. Above treeline only minor grasses and scrub persist. The vegetation is typical northern alpine bush hampered by a heavy and long snow cover season (September-May).


4-CLAIMS (Fig.2)

The Bear claim group is located in Liard & Omineca Mining Division and consists of 100 contiguous units. The property is owned by Teck Exploration Ltd. of Vancouver with pertinent data on the following table:


Claim Name	Record #	No. of Units	Expiry Date
Bear	237950	20	July 11, 2000
SI	221913	18	Dec 10, 2000
Cub	318715	10	June 27, 2000
Bob 2	221707	16	April 28, 2000
Bob 3	221708	20	April 28, 2000
Bob 4	221709	16	April 28, 2000

BEAR CLAIM GROUP

* date pending acceptance of this report

Ì

5-PREVIOUS WORK AND HISTORY

1970- Geophoto Surveys conducted a reconnaisance stream sediment survey in the region.

1973-74 Canex-Placer investigated stream sediment anomalies with initial prospecting which discovered mineralized float in Driftpile Creek, and was later staked.

1974-75 Canex-Placer conducted geological mapping, soil sampling, hand trenching and an E.M survey in the Driftpile area.

1976- Castlemaine conducted further stream sediment sampling in the region around the Canex-Placer property.

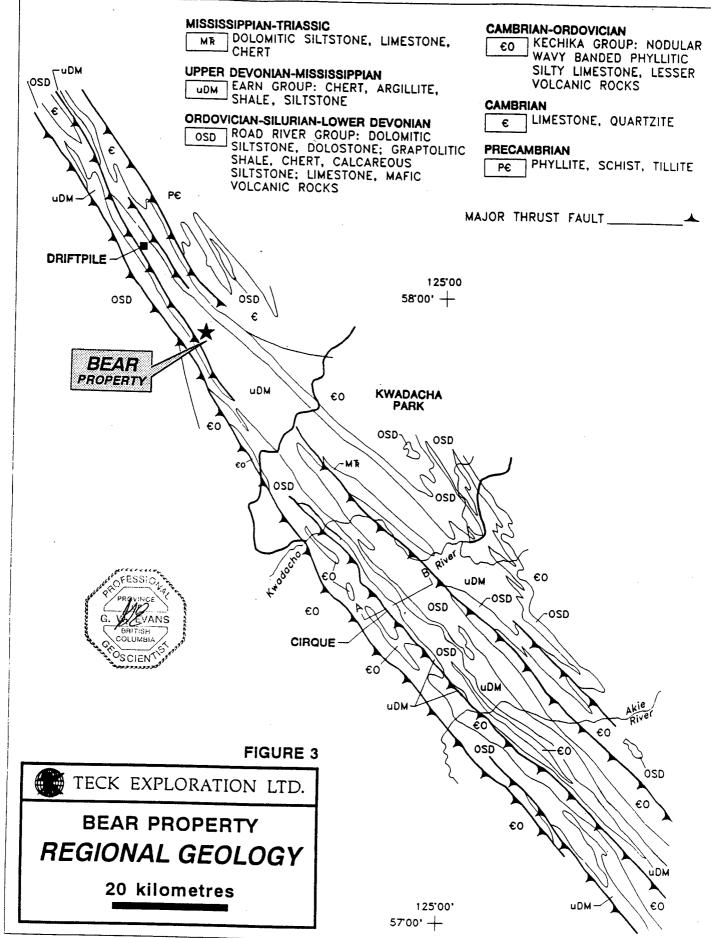
1977-The Gataga Joint Venture was formed to follow up these extensive anomalies on unstaked ground. Work consisted of extensive soil sampling and regional geologic mapping. During this phase the Bear claim was staked to cover anomalies over a weakly mineralized zone, which was hand trenched.

1979- The SI claims were added to protect favorable stratigraphy with soil anomalies.

1980- The main showing on the Bear claim was tested with 5 diamond drill holes for a total of 818 meters.

1981- 2 diamond drill holes tested mineralization on the Bear property (total of 325.5 meters).

1993- Two weeks of mapping and sampling by Teck Exploration.


6-1994 WORK

A total of eight NQ diamond drill holes were completed for a total of (1808 m's). For the purposes of this report due to claim expiry dates only the last two holes B-14,15 (436.2 m's) are used for this report.

7-GEOLOGY

A) REGIONAL GEOLOGY (Fig.3)

The property is located within the northwest trending Kechika Trough which is a southerly extension of the Selwyn basin into northeast B.C.. This trough preserves a thick succession of Paleozoic basinal facies clastic rocks formed within sub-basins due to rifting along a generally passive continental margin. These basins are a portion of the westward prograding clastic wedge outboard of the carbonate shelf. Strata consists of Ordivician-Devonian sediments in a 180 kilometer long complex fold and thrust belt. Basement rocks consist of Proterozoic metamorphosed sediments of the Windemere Group. Within the basin the basal sequence is composed of the Cambrian-Ordovician Kechika Group which consists dominantly of limestone with lesser mudstones and shales. This is overlain by Ordovician to early Devonian Road River Group consisting of siltstones, shales and limestones. In turn this is overlain by the upper Devonian-Mississippian Earn Group composed of cherts, shales and siltstones. The uppermost sequence of the succession is a Mississippian-Triassic package consisting of limestones, siltstones and cherts. In the Gataga district the mineralization is dominant within the Gunsteel Formation which is part of the Earn Group.

AFTER MacINTYRE, 1983

Within these sub-basins large sedimentary exhalative barite and sulphide-barite deposits occur. The most signifigant deposits to date are hosted within the mid-late Devonian Gunsteel Formation. The Gunsteel Formation is dominated by black anoxic shales with varying amounts of carbonate, graphite and silica. The largest deposit to date is the Cirque deposit which lies 50 km's SE of the Bear property in similar Gunsteel stratigraphy. Reserves stand at 38.5 million tons grading 8.0% Zn, 2.2% Pb and 47.2g/t Ag within a mixed sulphide-barite stratiform deposit. The Driftpile property lies 15 km's NW of the Bear property and is being actively explored at the same time as the Bear group. Mineralization at Driftpile consist of stratiform sulphide lenses with some barite within the Gunsteel Formation.

B-PROPERTY GEOLOGY

The Bear property consists of a thick sequence of unmetamorphosed upper Devonian Gunsteel Formation striking northwest and influenced by northeast directed folding and thrusting. The Gunsteel Fm. on the property is bounded on the west by the large Waldemar thrust which thrusts lower Devonian Besa River Fm. units over the upper Devonian Gunsteel sequence. The Gunsteel is largely controlled on the property by a large doubly plunging antiformal structure and subsidiary folds. This northwest trending structure can be traced accross the length of the property and varies from a broad open fold to a tighter overturned fold when adjacent the Waldemar thrust. Numerous small thrust sheets and small scale folds (both F1 and F2) complicate the structure which is often difficult to correlate due to the lack of recognizable stratigraphy.

The Gunsteel Fm. stratigraphic sequence in the area of the Bear property is uncertain due to the complex structure and lack of distinctive stratigraphy. The Gunsteel formation (several groups would call much of this sequence Warneford) is dominated by black shales, siltstones, mudstones and turbidites in a sequence at least 500-800 meters thick. The most distinctive packge in the sequence is the anoxic section which contains the mineralization. This sequence consists of a sequence believed to be 200-300 meters thick consisting of a basal sequence of graphitic shales and cherts overlain by the sulphide and baritic horizons which in turn are overlain by concretionary and nodular shales. The Gunsteel Formation is generally a recessive sequence and the sulphide mineralization is particularly recessive and is only outlined by ferrocrete zones and barite beds on the surface.

C-LITHOLOGY

The following descriptions of lithologies correspond to the drill sections described later in this report and are specific to the mineralized sequence encountered in the drilling.

HANGINGWALL SEQUENCE (Upper stratigraphic section)

Unit 1 Well Laminated Turbidite

This turbidite sequence consists of non-siliceous siltites and shales with bedding ranging from 0.5 cm to 10.0 cm laminae. This sequence appears to be the youngest sequence encountered in the 94 drilling.

Unit 2 Nodular Shale

Compositionally the same as unit 1 this unit has distinctive (0.3-10.0 cm) carbonate cocretions +/pyrite and (0.3-0.8 cm) pyrite nodules. This unit stratigraphically overlies the proximal turbidites and offers a good regional mapping tool.

MINERALIZED SEQUENCE

Unit 3 Proximal Turbidite

This unit stratigraphically lies immediately above and grades into the "transition zone" sequence. Again this unit is a non-siliceous siltite which contains 4-10% 1-5 cm. carbonate concretions, occasional Iron carbonate laminations, 5-10% pyrite laminations \pm - carb. concretions, and sometimes 5+% (0.1-1.0 cm) barite laminations.

Unit 4 Transition Zone

The "transition zone" is hosted within nonsiliceous siltites and marks the end of massive mineralization grading outwards into mineralized intervals with siltite interbeds. The transition zone contains 15-50% pyrite laminations (concentration and bed thickness increase as you approach the massive sulphides) and disseminations. Within this zone there can also be 5-20% barite laminations ranging in thickness from 1-40 mm. Another distinctive feature to the transition zone is the presence of 5-20% (1-10 cm. dia.) carbonate concretions grading into complexly folded carbonate beds proximal to the massive mineralization. Minor amounts of disseminated sphalerite and galena are present generally associated with pyrite and carbonate concretions.

Unit 5 Massive Sulphides (Py > Ba)

Massive sulphides are the upper stratigraphic interval of the mineralized portion and consist of 60-90% 1mm pyrite laminations. The lower portion of this unit is gradational with baritic mineralization and can contain up to 30% barite laminations which decrease upwards to 1-3% barite content. Occasional 1cm shale interbeds are presnt. The stratigraphic upper portions of this unit contain varying amounts of carbonate concretions ranging in size from (1-20 mm dia.) and from 5-30% content. Disseminations and laminations (1-10mm) of pale galena and sphalerite are common in this unit in amounts from 1-10%.

Unit 6 Massive Barite w/ Sulphides (Ba > Py)

This is the basal section of the mineralization and is characterized by a high barite content and to date contains the highest Pb and Zn values. Typically this unit contains 50-80 % well laminated (1mm) barite with 10 - 40% sulphide laminations. All bedding within this unit are extremely laminar with mineral composition varying dramatically on a 1mm scale. Galena and sphalerite occur as disseminations within both pyrite and barite and from 1-10mm discrete laminations. This unit contains no interstitial carbonate.

FOOTWALL SEQUENCE (Lower stratigraphic sequence)

Unit 7 Pyrite Laminated Chert

This unit is believed to stratigraphically directly underlie the mineralized horizon. This unit consists of laminated chert and graphitic shale with 20-40% pyrite laminations. This unit contains variable amounts of disseminated sp and ga within the pyrite laminations.

Unit 8 Chert w/ Carbonate Interbeds

This unit is a distinctive marker horizon dominated by dark siliceous cherts with minor graphitic shale laminations. The characteristic feature is the presence of 5-10% 5-100 cm pale cream colored siltites with a high interstitial carbonate component.

Unit 9 Cryptic Pyrite Laminated Chert

A distinctive unit with black-green graphitic cherts containing 5-15% (0.5-1.0mm) laminations and minor disseminations of pyrite.

Unit 10 Laminated Chert w/ Radiolarian Beds

This unit is thick monotonous beds of dark black-green cherts with minor 1-50 cm. graphitic shale interbeds. Occasional 1-10cm beds contain signifigant amounts of radiolarians (5-10%).

Unit 11 Siliceous Shale w/ Graphitic Beds

This unit appears to be the lower portion of the Gunsteel Fm. and consists of siliceous to cherty black shales with 40+% graphitic shale beds with thicknesses of 5-200 cm. This unit is well laminated and contains occasional 0.5-1.0 cm. pyrite laminations.

D. STRUCTURE

The property is dominated by thrust faulting and related (F1) folding due to Mesozoic compression in a northeast direction. Northwest penetrative cleavage with related shortening is developed throughout the region related to this event. It is very probable that there are numerous thrust faults within the property but the Waldemar fault along the western side of the property is the only visible thrust fault. A prominent fault scarp forms along the moderate to steeply west dipping thrust which thrusts lower Devonian Besa River sandstones and conglomerates over the Gunsteel Fm. Numerous subsidiary thrust faults can be seen in the drill section below the Mt. Waldemar thrust and these displace and disect the mineralization (see fig.5). A large doubly plunging antiform is the most signifigant structure present over the length of the property. This structure can be traced over the length of the property and plunges shallowly north (5-10 degrees) in the northern portion and shallowly south (5-15 degrees) near the Bear showings and is as much as 800 meters across. All drilling in 1994 was on the west side of this antiform on an overturned section of mineralized "Gunsteel stratigraphy". In general folding is quite open within folds from 10-600 meters in width which range from symmetric to asymmetric (see fig.5). Structures become isoclinal and overturned near the Waldemar thrust on all scales including the large antiform while above the thrust assymetric overturned folds appear common. High angle normal faults are common and are likely related to the fold and thrusting. Later F2 folds with cleavage trending east to northeast overprint earlier folds and locally warp the F1 folds over widths of 10-100 meters in width. These folds develop kink and relatively tight assymetric folds which only locally disrupt the regional trends.

E. MINERALIZATION & PALEOSTRUCTURE

A general stratigraphic section within the mineralized sequence appears to consist of a basal sequence of mineralized cherts and graphitic shales overlain by massive sulphides and massive barite which in turn is overlain by nodular and concretionary shales. In the area of the drilling this sequence appears overturned and appears to contradict the regional structure indicating a large scale antiform. Either the entire sequence is overturned or a smaller scale synform or thrust slice overturns the area that has been drilled.

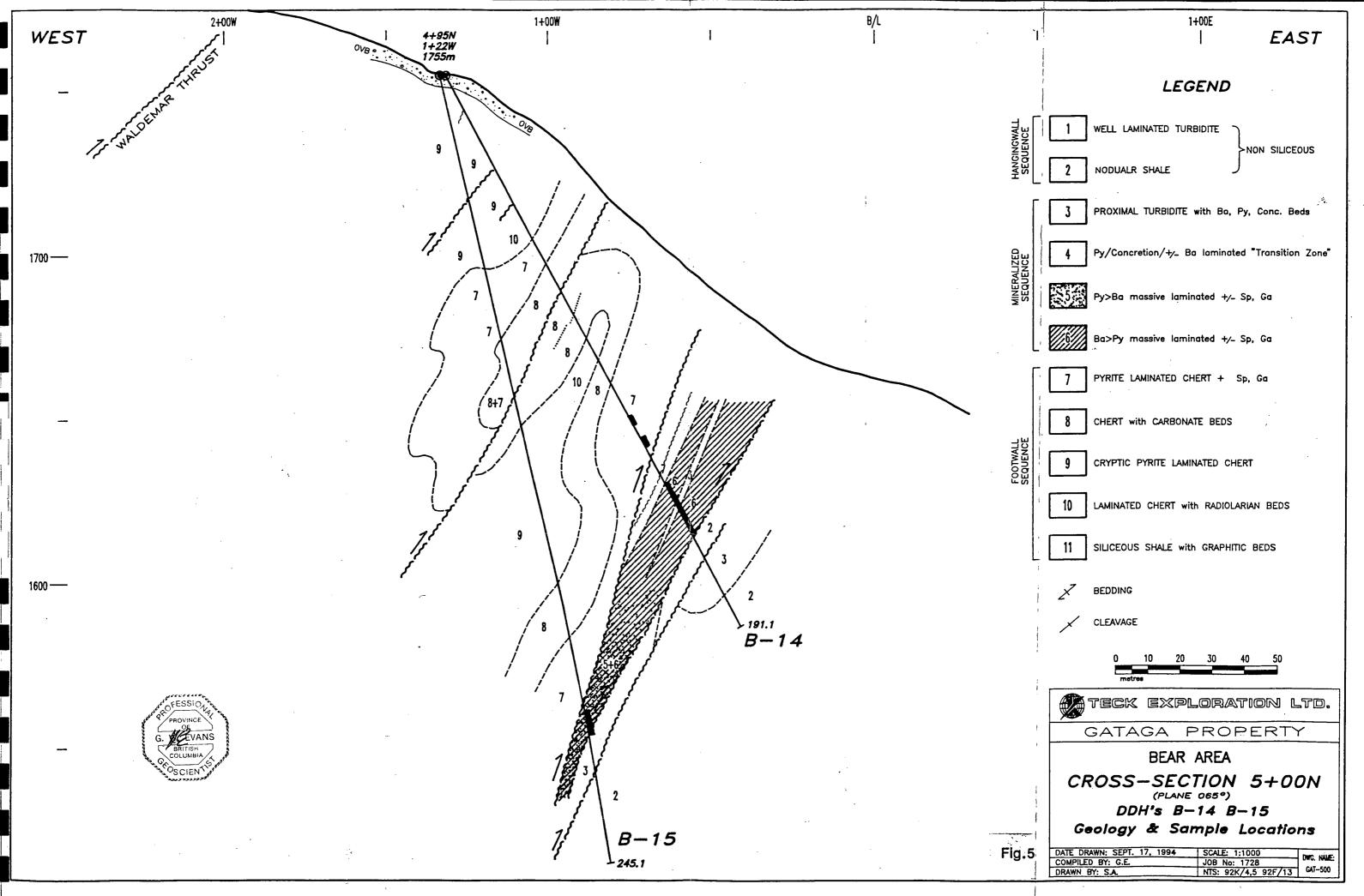
The mineralized sequence in the area of the drilling consists of the following sequence. A basal section of black cherts, siliceous shales and graphitic shales in this area appears at least 100+ meters in true thickness. This sequence contains occasional pyrite laminations and disseminated galena and sphalerite veinlets which increase in frequency as you approach the mineralization. The

entire section is anomalous in Pb, Zn and Ag and is likely the analogous footwall sequence to Cirque and other occurences in the Kechika trough. The mineralized zone consists of mineralized barite at the base and grades into more massive pyrite with interstitial carbonate at the top over true thicknesses of 10-25 meters. Both barite and massive pyrite contain values in Pb, Zn and Ag. The mineralization is in turn overlain by graphitic and siliceous shales with signifigant laminated pyrite (+/- carbonate and barite beds) known as the "transition zone" in a section of approximately 10-30 meters in thickness. Overlying this sequence is a section of black shales with carbonate +/- barite and pyrite concretions which grade upwards from 1-10cm in diameter to small 0.5cm carbonate/pyrite nodules over a vertical distance of approximately 50-70 meters. This sequence is typical to that seen at Driftpile and eventually grades upwards into well laminated turbidites.

8-DIAMOND DRILLING (see Fig. 4 & 5)

From July 13-20th, 1994 Advanced Drilling completed two NQ diamond drill holes (B-94-14,15) for a total of 436.2 m's of drilling. These holes were part of an eight hole program (see fig.4) and cover the NW end of present drilling (see fig.5 (5+00W)).


Both holes intersected the Footwall sequence of graphitic cherts which are strongly folded and faulted by subsidiary thrust faults to the adjacent overlying Mt. Waldemar thrust fault. These cherts contain varying amounts of pyrite from 2-30% in content and in B-14 small intervals contain values of up to 2.05% Zn, 0.80% Pb and 7.4 g/t Ag over 3.0 m's (119.5-122.5 m's) perhaps reflecting a seperate mineralized horizon stratigraphically below the main mineralized horizon. A slightly distal (low Pb values and presence of more carbonate concretions) main mineralized zone was encountered in B-14. This zone was quite typical and consisted of well laminated pyrite and barite over an interval from 142.10- 159.70 m's (17.6 m's) and the best Pb and Zn grades were an interval from 151.2-157.2 m's (6.0 m's) which graded 5.28% Zn, 0.11% Pb and 1.6 g/t Ag which is clearly subeconomic. Mineralization was then truncated by a lower thrust fault and the hole went into distal Hangingwall non-siliceous shales.


B-15 displays a common problem on the Bear property where the main mineralized horizon appears to be a focus for disruptions by thrust faults. In the case of B-15 an interval of strong faulting from 198.4- 205.4 m's disrupts the mineralized horizon with only fragments of Ba and Py preserved with no signifigant values. Once through the thrust the hole again continued in distal Hangingwall non-siliceous shales.

9-CONCLUSIONS & RECOMMENDATIONS

Drilling on section 5+00W confirms the mineralization remains open to the NW. A recognizable sequence of rocktypes hosting mineralization can now be recognized and in the area of the 1994 drilling appears overturned. The sequence consists of a basal "Footwall" sequence of graphitic cherts with varying amounts of pyrite disseminations and laminations. At the break into non-siliceous shales and turbidites the main mineralized zone occurs. This interval of 15-20 meters in thickness consists of well laminated pyrite and barite (Sed-ex style) mineralization with varying amounts of laminated sphalerite and galena which in section 5+00W are subeconomic. The upper part of the sequence encountered in the lower portions of the holes consists of non-siliceous shales and turbidites. In section 5+00W subsidiary thrust faults below the Mt. Waldemar thrust dissect and displace the mineralized horizon and must be accounte for in future drilling.

Mineralization is open both along strike and down dip and further drilling is warranted. The most promising direction appears down dip away from dissecting thrust faults.

B-14 ASSAY RESULTS

FROM (m)	TO (m)	WIDTH (m)	Zn %	Pb %	Ba %	Ag g/t	#
118.00	119.50	1.50	0.44	0.08	0.13	1.2	7074
119.50	121.00	1.50	1.76	0.70	0.11	8.5	7075
121.00	122.50	1.50	2.35	0.91	0.11	6.3	7076
		•					
125.50	127.00	1.50	0.61	0.33	0.18	4.0	7077
127.00	128.50	1.50	0.55	0.71	0.13	6.4	7078
142.10	143.80	1.70	0.72	0.39	26.70	5.2	7079
143.80	145.30	1.50	0.04	0.03	6.39	3.3	7080
145.30	146.80	1.50	0.17	0.01	1.42	3.0	7081
146.80	148.30	1.50	0.19	0.02	2.82	2.1	7082
148.30	149.80	1.50	0.48	0.01	10.70	1.5	7083
149.80	151.20	1.50	0.56	0.01	20.20	1.1	7084
151.20	152.70	1.50	6.52	0.09	38.30	0.9	7085
152.70	154.20	1.50	6.84	0.12	22.70	2.1	7086
154.20	155.70	1.50	1.89	0.07	10.50	1.5	7087
155.70	157.20	1.50	5.86	0.14	25.70	2.0	7088
157.20	158.70	1.50	1.70	0.14	13.50	1.6	7089
158.70	159.70	1.00	2.94	0.41	15.60	2.4	7090

B-15 ASSAY RESULTS

FROM (m)	TO (m)	WIDTH (m)	Zn %	Pb %	Ba %	Ag g∕t	#
198.40	199.90	1.50	0.17	0.46	4.33	5.6	7091
199.90	201.40	1.50	0.55	0.49	3.31	4.4	7092
201.40	202.90	1.50	0.24	0.05	4.02	2.0	7093
202.90	204.30	1.40	0.39	0.06	3.64	2.0	7094
204.30	204.70	0.40	0.11	0.04	2.58	2.5	7095
204.70	205.40	0.70	2.27	0.19	8.50	5.1	7096

10-REFERENCES

R.C. Carne

Summry Report 1977-82 Exploration by Gataga Joint Venture in the Gataga River Area, In House Report by Archer Cathro and Associates, Dec., 1983.

R.C. Carne and R.J. Cathro

Sedimentary exhalative (sedex) zinc-lead-silver deposits, northern Canadian Cordillera CIM Bulletin Vol.75 No.840 April, 1982.

G.Evans

Geological and Rock Sample Assessment Report on the Gataga Project , Bear Group , Assessment Report #?, November 1993.

M.W. Insley

Sedimentology and Geochemistry of the Driftpile Ba-Fe-Zn-Pb Mineralisation, Northeastern British Columbia, Canada , Ph.D. University of London, 1990.

D.G. Macintyre

Geology and Stratiform Barite-Sulphide Deposits of the Gataga district, Northeast British Columbia, Mineralogical Assoc. of Canada, Short Course in Sediment-hosted stratiform lead-zinc deposits, May, 1983.

D.G. Macintyre

Geological Setting and Genesis of Sedimentary Exhalative Barite and Barite-Sulphide Deposits, Gataga District, Northeastern British Columbia, Explor. Mining Geol Vol.1 No.1 pp1-20, 1992.

APPENDIX 1

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

- I, Graeme Evans, do certify that:
- 1) I am a geologist and have practiced my profession for the last thirteen years .
- 2) I graduated from the University of British Columbia , Vancouver , British Columbia with a Bachelor of Science degree in Geology (1983).
- 3) I am a member in good standing with the APEGBC as a professional geoscientist.
- 4) I was actively involved and supervised the Bear diamond drill program and authored the report herein.
- 5) All data contained in this report and conclusions drawn from it are true and accurate to the best of my knowledge.
- 6) I hold no personal interest, direct or indirect in the Bear property which is the subject of this report .

Humm home

Graeme Evans BSc (PGeol) Project Geologist February , 1995

APPENDIX 2

COST STATEMENT

·

COST STATEMENT

1. CONTRACT COSTS

Advanced Drilling Ltd., Surrey B.C. July 13-20, 1994 Two Diamond Drill Holes (B-14,B-15) A. Footage Costs i) Overburden -70 ft. @ \$17.45/ft. \$ 1221.15 ii) Besdrock NQ core -1364 ft. @ \$16.95/ft. \$ 23119.80 **B.** Acid Tests 3 @ \$100/test \$ 300.00 C. Man Hours 119 man hours @ \$35/hr \$ 4165.00 D. Consumables Additives (mud and grease) Both holes \$ 1428.00 2. ANALYTICAL Min-En Labs, North Vancouver, B.C. Drill Core Samples, Analyzed for Assay Pb, Zn, Ba, Ag and 30 elem. ICP 23 Samples @ \$28.35/Sample \$ 652.05 3. GEOLOGY Includes Core Logging, Sampling and Supervision A. G.Evans (Geologist) July 13-22, 10 days @ \$290/day \$ 2900.00 B. H.Stewart (Geological Engineer) July 13-22, 10 days @ \$220/day \$ 2200.00 4. BOARD Camp Cost July 13-22 30 man days @ \$25/man day 750.00 \$

5. HELICOPTER

H-500D contracted from Northern Mtn. Helicopters @ \$650/hr. rate + \$96/hr. fuel (128I/hr.) =\$746/hr

July 13-20 29.5 hrs @ \$746/hr

6. REPORT

4 days drafting (S.Archibald) @ \$200/day

5 days writing (G.Evans) @ \$290/day

\$ 22007.00

\$ 800.00

\$ 1450.00

TOTAL COST

\$ 60,993.00

APPENDIX 3

-

DRILL LOGS

						· _						······		_						وسبغاغاري	
	•	ГЕСК ЕХР	PLORATIONS					_	но	LE No).	<u>B-a</u>	<u> </u>	4			· P/	AGE	1 (or 4	
COMPAN PROJEC	DIAMOND DRILL LOG DIAMOND DRILL LOG CLAIM Bear/Cub CLAIM Bear CORD Goid N C 3 NORTHING 4495N CLAIM CLAICH CORD GOID BA CLAIM CLAICH CORD GOID BA CLAIM CLAIM CLAICH CORD GOID BA CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM				<u>Cub</u> 55 m ² 5 m2 8 95 N	35°.	DATE : COLLAI : COMPLE : LOGGEI LOGGED BY : CORE SIZE :	ETED JAL		DEP 0 180	TH -(AZ. 975°	DE CA W/	PTH SING ATERL	OF C REMA	INING : ENGTH		e		
DEPTH metres) FROM	APHIC APHIC	SCRIPTION	:		RECOVERY	STRUC ANGLES		ALTERA	TION	METALLI		SA	MPL	E DA	ATA			RES	ULTS		
то	GR				REC			Bedding				SAMPLE NO.	FROM	то	LENGTH						
0-5.2	01	REURDE	2			·												<u> </u>			
2-43.4	CRY	PTCTLAMU		•		FAULT 9.9-12.8m		20,5m-3	8 to CA	3-4 % vfgr											
		graditic, a	nod siliceous			670 TRCDN.				Some pylla	ms										<u> </u>
	-33.7	<u>-U43,4 He</u> <u>s nadiolaria</u>	coming more sili	eeolg				29.0m - 41	°to CA	2% 1-200 p											
	Gee	S V001010V10	M DROM			FAULT		37.0m - 42	th CA	2 10 1-Zan p	7-1		——								
						₽28°њСА		41.0m - 38°	to CA												
						smaph zones															
3.4-46.5	Stra	g Graphitic	Fault Zone			FLT 120-0															
6.3-580	LAM	NATED PY-	RADIOLARIAN CH	IEKT			· · · · · · · · · · · · · · · · · · ·														
		_												_		(
	Icm	ords chord	2.00m	·				51.5mr - 45	th CA	-290 py lav	∽								 		
	13	h Snast the radiolarian	n beas							· v											
30-65.4	CRY	TIC PYRITE	LAMINATED C	HERT		·		61.5m - 45°	to ca	3-4%5mm	~										
		ng blue-w	hite origle coat	<u>ing</u>						py lan	-+										
										····											

		TECK EXPLORATIONS LIMIT				HOLE No	<u>B-94 - 14</u>						PA	GE 2	_	or y	
DEPTH (metres)	GRAPHIC	DESCRIPTION	RECOVERY	STRUC		ALTERATION	METALLIC MINERALS (%)		SAMPL	E DAT	Γ Α			RE	SULTS		
rom to	GRA	DESCHUPTION				bedding		SAMPLE NO.	FROM	то	LENGTH						
.4-73,2		PURITE RADIOLARIAN LAM. CHERT		722-73.3 Thrust F	-												
		- gren chest w 3-470 lon on lam - \$70 1-2 cm majiplarjan Heats		Threat E	wH2	68.0m - 38° to CA								L	[
		- \$78 1-2 cm radiolarian Herts		ļ		Evenence antiform			L								
		- occas. 10cm carb rich bed				clear - 18° to CA			L		ļ		 		ļ	 	+-
3.2-92.6		ODV and a Data wat I Adve that the start	<u> </u>	├				L			 			 	└──	┟	₋
2:2-76	<u> </u>	CRYPTIC PYRITE LAMINATED CHERT		<u> </u>		700 2201 00		ļ			 	 		┨			┢╌
		- 3-470-, Sum on lams - 1-290-1-200 de nodules				75.0m-23° to CA		——				ļ				 	╞
		- 1-2 10 - 1-2 cm 'dl nodules		t		80.5m-52° to CA				· · · · ·	 	<u>├</u>					┢
		- occas 1-2 cm my de madialamian													-	_──	╋
		Oed V		<u>├</u>		Evergence antiform							<u> </u>	┣	<u> </u>		+
-6-107.9		WELL LAND CUEPT . P + Pad Lung				<u> </u>										┨────	┢
		WELL LAM CHERT MY By + Rad looms - every 1-3cm a It give the wet loom wy valicolarians - lod loom - ang 3-4 20 py lave 45mm and				96.0m-45°to CA							<u> </u>				┢╌
		we well interviewe to lot have				TIDAVAL- TO TO UN											┝
		-and 3-49- an love 444 man and		[1030m -47° to CA					·		┨────			╂───	┢╴
		acces Icm of nodule															╆╌
		-occas 10-20 an carb righ bed															1-
																<u> </u>	┢──
7.9-127.9		R-ST-GA LAM. CHERT															┢╌
		- aug. 10-15% 3-5mm of lam				110.0-47° to OA											
		- aug. 10-15% 3-5mm of lam					······································					<u> </u>					t
		occas dissen shaa avains				113.0 -05° to CA		7074	118.0	119.5	1.5						1-
		$(t_0 4 \%)$				small Sfold		7075	112.5	121.0	ι. S						
		-occas 3-4cm carb concretion				0			121.0								\square
						115.0-45° to CA											
		112,5-114.0															Г
	<u></u>	119.3 - 122.0				125.0-33° to Ch											Γ
		30% py lams by 2-5% dissem				clean - 08° to CA											Γ
		sp-ap growing				vergence E-Domiti											Г
		<u> </u>							125.5								Γ
		· · · · · · · · · · · · · · · · · · ·						7078	127.0	1285	1.5						

-.

and a second second

*

)	TECK EXPLORATIONS LIMIT				HOLE No	<u>R-94-14</u>						PAC	3E 3	•	of 4	ł
DEPTH (metres) ROM	GRAPHIC	DESCRIPTION	RECOVERY	STRUC		ALTERATION	METALLIC MINERALS (%)		SAMP	LEDAT	A			RE	SULTS		
то	9 E B	DESCRIPTION	HECO			bedding		SAMFLE NO.	FROM	то	LENGT	•					
27.8-		WELL LAM. PURITE CHERT						+			+	+					┣──
142.6		-very well law chert 3-Simon		134.4-	135.0m	·-		+									
·		to 8-25% on Jaminations		intense	wash fam						<u> </u>	+					
		to 8-25% pr Jaminations				137.0m - 52° to CA		1	<u> </u>	<u> </u>		+				<u> </u>	
		- trace bay ed ca dissem +		139.0-139			······································	+				<u> </u>		-		<u> </u>	+
		kminations 120		interne a	ad fault							+	{				
					J			t	<u> </u>	t		┼┤				<u> </u>	
								<u> </u>			h	┢					
2.5-		Lam. Ba and Shale. -4070 Lam Ba (Green),										┟╌┈┟					
143.9		-40% Lam Ba (Gren),				143.9-41 to CA		7079	14- 1	1112 0	130	╂───┤					
		-2590 and 25% that lave +3-	i.			clean 08° to CA	· · · · · · · · · · · · · · · · · · ·	1077	172.1	142'9	1.10						
		-10% ligh carb concer to spige										┣━┨					<u> </u>
		disson										╞──┦					
												{{					
3.9-		Massive Pu wy Carb Congretions							1100			┣──┦					
48.2		-50% Ufor oh w/ 30-40%					· · · · · · · · · · · · · · · · · · ·	7080	192.2	1.0-2	1.50	┟───┟					
		Massive Ry w/ Carb Concretions -509. Ufarl oh w/ 30-409. and (1-3,02) for concretions	1					7082	192.2	146.8	1.50						
		+ 15% Icm chert lams							176.8	149.2	1.20	┠───┦					
		- occas locm ba lams	•					.									
8.2-		Black Lam Chert wy Ba Lama				149.0m - 45° to CA		7083		tile of	1.60	┣┣					
51.2		black lan chert w/ 30%				clean B° to CA		7083				├					
		ba lams and 10% large (3-5m)				vorg. E-> antitorm		7064	13.8	121.2	1.40		+			·	
		courb concretions only 2-392				The support						┝──╄					
		ph lams										└── -					
					· · · · · ·							┝	<u> </u>				
1.2-		Massive Lang Ba-Py				151.5-39 to CA		70	e. al			 -					
9.3		- massive section Bd > Purat .				To UA		7085	121.2	152.7	1.20						
		top avading to Rus Ra At Lace				157.9-40°to CA		7086	2.4	54.2	1.20						
		-5-18% km Carb. concretions				DU TO VA		7087	54.Z	55.7	1.50						
·		Toccas 3-10% sp.ga lams						7088									
		Here and a						7089									
		· · · · · · · · · · · · · · · · · · ·						7090	58.7	59.7	1.00						
	+									- 1						T	

		TECK EXPLORATIONS LIMIT	ED			HOLE No	<u> </u>						PA	GE 4	6	of Y	
DEPTH (metres)	HC		VERY	STRU	CTURE VEINS	ALTERATION	METALLIC MINERALS (%)	5	SAMPL	E DAT	Γ A			RE	SULTS		
FROM	GRAPHIC	DESCRIPTION	RECOVERY					SAMFLE NO	FROM	то	LENGTH						
59.3-		Now-SILICEOUS SHALE- FILTITE - non silic. well lawinated -wy strong white-blue exides - occas I Fe-Carb lam. A nodules, and 1-3 cm carb donc.		Broad Fe	utt						1						
169.2		-non silic, well laminated.		Zone	10-30						1.						
		-we strong white-blue exides		to CA				<u> </u>									
		- pecas Fe-Carb lam. A		1			······································			1	1						
		nodules, and 1-3 on carlo donce		1											<u> </u>		
		-		1							t	t	1				·····
69.2-		Now-Siliceons SHALE w. Ba Lams -1090 grading down to 290 well Hedded blobby ba						 			<u> </u>	<u> </u>	1				
182.8		-10% avading down to 2%				171.0 - 45° to CA					<u> </u>	t					
		well Hedded blebby ha				240	· · · · · · · · · · · · · · · · · · ·									$ \neg \neg \uparrow$	
		- mas 1-3 an and rath concretion		1		Ever antiform - availing suggest type down have					<u> </u>		t	<u>├</u> ──			
		- occas 1-3 on and calls concretion - 2-39 Ph-carb lans - 1-2 90 Ph lams		1		Lamaline sumert		<u> </u>			1		t	İ	 	r	
		-1-7 90 Put Jama		1		the ddy while							<u> </u>			[!	
				<u> </u>			•				<u> </u>			<u> </u>	<u> </u>	<u>├───</u> ┦	
				1	1	180.0 - 48° to CA											
				<u> </u>								┣					
82.8-		NONT SILICEONS SHALE		185.4 Fo	UP	<u> </u>					<u> </u>		<u> </u>		·	i	
191.Im		distral HW sequence		40° to C4													
EOH		ASIAI IN SUMMER SILL															
<u>~n_</u>		- poorly law my occas 3-4cm	.	╂────							<u>├</u> -	h	──			 	
		PAME UCONEVENION DONA TE-CANE							· · · ·							<u> </u>	
		lam		╂────	<u> </u>							┠───	<u> </u>			 	
				ł									 				
+				{											<u> </u>		
				<u> </u>							 					<u> </u>	
			<u> </u>	<u> </u>							 	ļ	<u> </u>				
				┠	<u>├</u>		· ·				 			<u> </u>	 		L
				<u> </u>							<u> </u>		<u> </u>			j	
——				}	}	·					<u> </u>					⊢	
				<u> </u>	<u>_</u>						<u> </u>		 			I	
				<u> </u>	}			 			 		 			j]	
ł		······		 							L			L]	
ł				<u> </u>							L		L	L			
				<u> </u>													
				<u> </u>	ļ												

					· · · · · · · · · · · · · · · · · · ·						-					-	-	
		TECK EXPLORATIONS	LIMITED				HOL	E No.	<u>_B-</u>	94-1!	5					l of	2	
COMPA PROJEC	NY . CT	ND DRILL LOG Advanced Drilling GATAGA - 1728 Y Bear	NTS CLAIM ELEVATION GRID COOR NORTHING EASTING	17: 17: 0. Gr 4+°	Cub 55m rid N-33 15N	: 5°	ATE : COLLARED JUNE : COMPLETED JUNE : LOGGED DGGED BY : G. EVANS DRE SIZE : NOL	<u>120</u> 94 <u>0</u> 12094 <u>52</u> <u>79</u>	ртн м -7 7/ -7 7/ -7	75° 07 79° 1	<u>75</u> °	DE CA WA	NGTH PTH OI SING RI TERLIN OBLEM	F OVI EMAINI IE LE# IS :	B : _8. NG : NG TH :			
DEPTH (metres)	APHIC			/ERY	STRUC		ALTERATION	METALLIC MINERALS (%		MPLE	DA	ATA		F	RESUI	LTS		Í
FROM TO	GRAP	DESCRIPTION		RECOVERY	ANGLES	VLIIIO		Bedding	SAMPLE NO.	FROM	то	LENGTH						
0-8.1		Overburden							ļ									
8.1-40.8		LAMINATED RI-RAD CHERT -silic. chert w 1-390 py lamin Som radiolarian balls ope	ations		24.0-26.5	Strong		18.0-24°to CA										
		50m radiolarian balls eve -occas amoeboids (silica ad) - rave dissem sp grains	y loom		27.0-32.5 W graph			36.0-37° to CA										
10.8-74.0		CRIPTIC PURITE LAM. CHERT -2-390 - Smm py bons, 190 - S		-		<u>a</u> a		48.0-47° to CP 54.0-63° to CP										
1 hul A		pyrite nodules, Voceas Icm py	erval larus		82.0-83D			60.0-23°to CA 70.0-48°to CA								=	=	
71.0- IHA		PYRITE-RADIOLARIAN LAM. CH - Matrix, cryptic by law chert w rad. beds ((+2) chy) every 100	/		FH Q 30°	to dA		77.0-25° to el										
		- 1-29g 5-10mm on Jams -rove dissem sol - 71-98.0 m blue-whit oxides.		<u> </u>	102.0-103.0 Fit@ 250			88.0-56° to CA 94.0-47° to CA 104.0-48° to CA						·				
		-87.0-1149 minor interstitial	- Comp					110.0-54°to CA	· · · · ·									
					1			6	1		1		1			1		

)	TECK EXPLORATIONS LIMIT	TED			HOLE No	0. <u> </u>						PA	GE Z	<u> </u>	12	
DEPTH (metres)	GRAPHIC		VERY	STRUC	VEINS	ALTERATION	METALLIC MINERALS (%)	5	SAMPL	E DAT	Ά			RES	SULTS		
FROM TO	GRM	DESCRIPTION	RECOVERY			Bedding		SAMFLE NO.	FROM	то	LENGTH						
114.9- 172.0	· ·	CRYPTIC PYRITE LAM. CHERT - QUEVODE 490 - Smm DU QUAS - VEN STRICEOUS W/ OCCODE OM				124.0-23° t. ca 124.0-22° t. ca											
		- 1162.6-163.6 carb bed - 0162.6-163.6 carb bed - occas cholcedony anaphoid - 162.0-172.0 interstitial carb				140.0-37° to CA 151.0-40° to CA 158.0-30° to CA											
172.0-		-162.0-172.0 interstitial carb	 .	190.4-	197 0	166.0-47° to CA close, 08° to CA 178.0-37° to CA						 					
20055 198.4		ten py-vad lains even 10cm. -177.64178.5 Care with bed - blue-whit oxide coating on		Intense 54º to CA	Faulte	1905-82° to CA 193.0-37° to CA 5 type footing											
198.4-		INTERVAL STRONALY FAULTED PY-BA ZONE		Strong	Feut	204.4-70° to CA		7091	195.4	199.9	1.50						
205.4		-strong graph fault zone w/25+130721, 1210 cm py > ba lam. fragments		Q 240	to CA			7097 7093 7094	201.प 202.9	202.9 204.5	1.50						
		2410% sp. gl. lams 2410% sp. gl. lams 204,3-204.7 lam ba>py beat w/2-3% sp. lams						7095 7096	204.7	209.7 205.4	<u>0.40</u> 0.70						
205.4- 245.1m EDH	 	NON-SILICEOUS SHALE-SILTITE distal "HW" sequence -2-3 to by to care hods 2-Smm		209.9 a graph fa 1489 to	10cm alt (*	211.0-37° to CA											
		- Occas blebby ba lam and 2.90 lam FE-lland Jams - becomes more distal w/ 1555.04 and FE-Carb bins-		217.4 a	20cm	224.0-05 to CA grading - toos Hownhole											
		tess on and te-Carb binsi- donichale!		145.94		240.0-28° to CA											

APPENDIX 4

CERTIFICATES OF ANALYSIS

.

TRECIAL OTS A LIMETAL ENVIRONMENTS

Assay Certificate

مده من قور رو

ompany:	TECK EXPLORATION LTD
project:	1728
Min:	Fred Daley

Date: AUG-22-94 Copy 1. TECK Exploration, Kamloops, B.C.

We hereby certify the following Assay of 24 core samples submitted AUG-02-94 by Graeme Evans.

Samp Le Numbe r	Ag g/tonne	Ag oz/ton	Ba %	Pb %	Zn %	
07060	1.3	.04	. 39	1.60	. 56	
07061	1.7	. 05	. 15	4.11	.53	
07062	1.7	. 05	7.68	. 05	.43	
07063	2.0	. 06	12.70	. 12	.91	
07064	5.0	. 15	7.62	. 12	.23	
07065	2.9	. 08	5.23	. 16	. 40	
07 066	2.0	. 06	2.57	. 09	. 19	
07067	2.4	. 07	3.32	. 05	.26	
37068	1.4	. 04	3.90	. 05	. 38	
07069	3.7	. 11	7.38	. 05	. 67	
07070	2.4	.07	5.22	.08	. 43	
07071	2.2	. 06	3.27	. 16	. 56	
07072	2.3	. 07	14.20	. 04	.51	
17073	1.7	. 05	1.68	. 03	. 43	
)7074 B-14	1.2	. 04	. 13	. 08	. 44	
07075	8.5	. 25	. 11	. 70	1.76	
07076 🗤	6.3	. 18	. 11	.91	2.35	
07077	4.0	. 12	. 18	. 33	.61	
07 078	6.4	. 19	. 13	.71	. 55	-
07079	5.2	. 15	26.70	. 39	.72	
07080	3.3	. 10	6.39	.03	.04	
07081	3.0	. 09	1.42	. 01	17	
07082	2.1	. 06	2.82	. 02	. 19	
07083	1.5	. 04	10.70	.01	. 48	,

Certified by

MIN-EN LABORATORIES

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

4V-0754-RA1

TRANSFORMED

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

4V-0754-RA2

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

Company:	TECK EXPLORATION LTD
Project:	1728
\ttn:	Fred Daley

Date: AUG-22-94

copy 1. TECK Exploration, Kamloops, B.C.

We hereby certify the following Assay of 13 core samples submitted AUG-02-94 by Graeme Evans.

್ ಎ. <u>ಕನ್ನಿ ಕ</u>ರ್ಷಕ್ರಿ ಕ್ರೀತ್ರಗರ

Sample Number	Ag g/tonne	Ag oz/ton	Ba %	Pb %	Zn %	
()7084	1.1	.03	20.20	.01	.56	
07085	.9	.03	38.30	.09	6.52	
07086	2.1	. 06	22.70	. 12	6.84	
()7 087	1.5	. 04	10.50	.07	1.89	
07088 🛉	2.0	. 06	25.70	. 14	5.86	
07089	1.6	.05	13.50	. 14	1.70	
<u>()7090 B-14</u>	2.4	. 07	15.60	. 41	2.94	
07091 B-15	5.6	. 16	4.33	. 46	. 17	
07092	4.4	. 13	3.31	. 49	. 55	
07093	2.0	. 06	4.02	. 05	.24	
07094	2.0	.06	3.64	.06	.39	
07095	2.5	. 07	2.58	.04	.11	
07096	5.1	. 15	8.50	. 19	2.27	

Certified by

MIN-EN LABORATORIES

COMP: TECK EXPLORATION LTD

PROJ: 1728

MIN-EN LABS - ICP REPORT

/

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 TEL:(604)980-5814 FAX:(604)980-9621

FILE NO: 4V-0754-RJ1+2

ATTN: Fred Daley

DATE: 94/08/18 * * (ACT:F31)

										IELIC	004) 980	- 101-	4 FA	X:(60	4) 900	- 702									* *	(ACT:F3
SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA CD % PPM	CO PPM	CU PPM	FE %	K %		MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM	SB SR PPM PPM	TH TI PPM %	V PPM	ZN		N W CR
07060 07061 07062 07063 07064	1.3 1.2 .1 .5 1.4	.20 .27 .26 .46 .22	26 9 1 1	6 29 17 67 51	152 482 84 46 8	.6 .6 .6 .9 .1		.69 33.1	4 3 9 4 10	46 48 65 43 24	1.57 1.54 2.41 3.25 >15.00	.11 .15 .10 .20 .10	5	.04 .04 .10 .10 .04	93 55 2487 770 888	24 29 15 17 4	.01 .01 .01 .01 .01	54 54 43 53 79	230 350 430 440 180	>10000 >10000 437 826 855	15 50 36 26 5 613 7 222 1 13	1 .01 2 .01 1 .01 1 .01 1 .01	29.4 86.4 46.4 86.1 50.4	5181 4671 3755 8343	1 1 1 1	1 8 161 3 6 121 1 12 105 1 4 72
07065 07066 07067 07068 07068 07069	.1 .1 .1 .1 .2	.29 .35 .42 .41 .34	1 1 1 1	48 73 80 69 42	16 11 23 27 16	.9 .7 1.0 1.1 .9	1 2 1 1 4 3 4 2 3 2	.53 1.9 .84 .1 .00 3.3 .05 12.0	7855	20 21 24 26 26	10.12 11.35 5.30 3.87 6.66	.13 .16 .19 .19 .19	33	.11 .05 .10 .08	1929 1146 1919 1488 1595	10 11 16 20 14	.01 .01 .01 .01 .01	68 67 56 64 60	300 360 420 440 370	1158 722 385 392 367	1 126 1 132 5 387 4 202 1 106	1 .01 1 .01 1 .01 1 .01 2 .01 1 .01	73.0 69.5 60.7 54.7 84.3	2136 3528 1659 2380 3555 5701	1 1	<u>3 1 62</u> 1 4 63 1 4 74 1 4 59 1 4 66 1 3 53
07070 07071 07072 07073 07074 8-14	.7 1.0 1 3	.32 .37 .32 .59 .45	1 5 1 1	22 37 10 69 44	65 51 53 59 261	.7 .8 .7 .8	3 2 4 2 3 1 3 1	.25 18.6 .24 25.5 .46 17.4	44344	27 28 22 33 30	2.30 2.41 2.73 2.76 2.21	.14 .16 .11 .24 .26	23657	.13 .40 .13		20 19 13 11 19	.01 .01 .01 .01 .01	53 58 43 50 49	450 530 360 560 510	655 1284 287 243 590	4 309 7 423 4 113 8 180 7 60	1 .01 3 .01 1 .01 3 .01 3 .01 3 .01	44.4 60.1 69.9 87.0 95.1	3496 5152 4420 3907 4158	1 1 1 1	1 5 80 1 5 77 1 5 84 1 5 61 3 7 117
07075 07076 07077 07078 07079	6.9 5.9 3.4 6.2 2.5	.44 .41 .53 .66 .20	1 30 1 1	61 64 69 93 1	127 65 247 158 79	.9 1.0 1.2 1.5 .6	6	.67 87.6 .52 >100.0 .73 36.4 .39 36.8 .80 44.3	5 6 3 4 2	33 34 30 39 11	4.17 5.05 1.94 2.45 1.99	.25 .23 .30 .35 .10	6 6 8 11 1	.10 .09 .10 .11 .05	138 136 161 92 950	16 26 18 24 6	.01 .01 .01 .01 .01	53 64 43 50 23	470 500 510 550 210	5511 8357 2964 6971 2890	10 141 15 89 10 76 16 56 3 150	2 .01 3 .01 3 .01	127.3 94.5 159.0 175.9 65.9	>10000	1 1 1 2 1 1 1 1 1	1 5 87 3 5 132 6 78 2 8 117
07080 07081 07082 07083 07084	.1 .1 .1 .1 .1	.31 .41 .42 .48 .20	1 1 1 1 1	48 96 86 90 1	29 27 27 228 178	.8 .9 .9 .5	32 43 53 42 11	.40 1.6 .35 3.9 .72 15.7	4 5 4 3 2	24 29 28 16 16	5.30 5.35 4.27 1.14 1.07	.14 .19 .19 .21 .09	45562	.09 .14	2393 2778 2816 2027 471	10 12 15 14 11	.01 .01 .01 .01 .01	54 62 56 41 34	440 540 490 510 370	244 192 201 201 135	1 200 4 383 7 337 10 487 1 209	1 .01 1 .01 1 .01	87.6 98.9 86.9 106.9 45.8	356 1552 1672 4398 4701	1 1 1 1	5 66 5 73 6 88 5 70 3 48
07085 07086 07087 07088 07089	.1 .1 .1 .1	.03 .08 .30 .08 .29	1 1 1 1	22 42 30 42 29	19 15 26 17 47	.7 .9 .6 1.0 .9	32	04 >100.0 03 >100.0 99 43.9 79 >100.0 40 47.7	5 7 4 8 4	4 7 19 7 18	5.85 10.05 5.01 11.34 3.01	.01 .03 .12 .03 .12	1 1 3 1 2	.03	880 1813 648 1327 1237	9 6 10 5 12	.01 .01 .01 .01 .01	33 56 49 53 43	160 260 410 220 390	791 944 590 1182 1234	4 49 1 14 1 121 1 40 6 308	1 .01 1 .01 1 .01 1 .01 1 .01 1 .01	25.8 78.3 29.8	>10000 >10000 >10000 >10000 >10000 >10000	1 34 1 14 1 3 1 3	9 19 4 52 6 16
07090 07091 B-15 07092 07093 07094	.1 2.7 1.5 .1 .1	.26 .33 .34 .54 .16	1 1 1 1	54 22 22 67 1	12 62 49 49 77	1.2 .6 .8 1.0 .6		.27 3.9	8 3 4 5 3	17 25 22 33 22	10.83 2.49 3.26 3.02 1.99	.10 .13 .14 .22 .09	3 2 3 1	.06 .10 .08 .15 .08	662	9 14 14 15 7	.01 .01 .01 .01 .01	60 46 47 57 36	330 420 430 600 440	3670 3936 4001 479 522	1 54 5 321 4 89 5 384 2 198	1 .01 1 .01 1 .01 2 .01 1 .01	53.6 65.8 74.8 76.5 25.0	>10000 1570 4814 2478 3040	1 2	5 76 4 65 6 95
07095 07096	.1 .8	.28 .15	1 1	14 28	56 15	.9 .9	1 1 1 2	.21 .7 .12 71.1	4 8	30 19	3.20 12.31	. 14 . 08	2 1	.17 .05	542 1036	10 5	.01 .01	48 64	460 270	329 1510	2 215 1 17	1 .01 1 .01	40.6 38.5	1087 >10000	1 1	5 86
																		<u>-</u>			<u></u>					
						······································																				
																			<u></u>							
)		1							

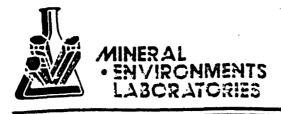
COMP: TECK EXPLORATION LTD

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 TEL:(604)980-5814 FAX:(604)980-9621

FILE NO: 4V-0754-RJ1+2 DATE: 94/08/18

ATTN: Fred Daley


PROJ: 1728

* * (ACT:F31)

									·		166.4	004 / 700	- 101		X:(00	4 / 700	- 902 1												- (ACT:F31
SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA X	CD PPM	CO PPM	CU PPM	FE %	K %	L I PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SR PPM I		11 %	V PPM	ZN			W CR
07060 07061 07062 07063 07064	1.3 1.2 .1 .5 1.4	.20 .27 .26 .46 .22	26 9 1 1	6 29 17 67 51	152 482 84 46 8	.6 .6 .6 .9 .1	3	.48 .26 2.97 1.69 1.69	43.1 44.3 16.6 33.1 .1	4 3 9 4 10	46 48 65 43 24	1.57 1.54 2.41 3.25 >15.00	.11 .15 .10 .20 .10	2 5	.04	93 55 2487 770 888	24 29 15 17 4	.01 .01 .01 .01 .01	54 54 43 53 79		>10000 >10000 437 826 855	15 36 5	50 26 613 222 13	1 2 1 1	.01 .01 .01 .01 .01	29.4 86.4 46.4 86.1 50.4	5181 4671 3755 8343 2136	1 1 1	1 8 1 1 43	8 161 6 121 12 105 4 72 1 62
07065 07066 07067 07068 07069	.1 .1 .1 .2	.29 .35 .42 .41 .34	1 1 1 1	48 73 80 69 42	16 11 23 27 16	.9 .7 1.0 1.1 .9	1 4 4	2.53 1.84 3.00 2.05 2.62	1.9 .1 3.3 12.0 16.9	7 8 5 5 5	20 21 24 26 26	10.12 11.35 5.30 3.87 6.66	.13 .16 .19 .19 .19	3 4 3	.05 .10 .08	1929 1146 1919 1488 1595	10 11 16 20 14	.01 .01 .01 .01 .01	68 67 56 64 60	300 360 420 440 370	1158 722 385 392 367	1 5 4	126 132 387 202 106	1	.01 .01 .01 .01 .01	73.0 69.5 60.7 54.7 84.3	3528 1659 2380 3555 5701	1 1 1	1 1 1 1	4 63 4 74 4 59 4 66 3 53
07070 07071 07072 07073 07074	.7 1.0 1.3 .1 .9	.32 .37 .32 .59 .45	1 5 1 1	22 37 10 69 44	65 51 53 59 261	.7 .8 .7 .8 .9	4 3 3 3	2.25 2.24 1.46 1.67 .36	18.6 25.5 17.4 3.6 22.9	44344	27 28 22 33 30	2.30 2.41 2.73 2.76 2.21	.14 .16 .11 .24 .26	3 6 5	.40 .13	1195 1230 538 1095 125	20 19 13 11 19	.01 .01 .01 .01 .01	53 58 43 50 49	450 530 360 560 510	655 1284 287 243 590	7 4	309 423 113 180 60	3 1 3	.01 .01 .01 .01 .01	44.4 60.1 69.9 87.0 95.1	3496 5152 4420 3907 4158	1	1 1 1 8	5 80 5 77 5 84 5 61 7 117
07075 07076 07077 07078 07079	6.9 5.9 3.4 6.2 2.5	.44 .41 .53 .66 .20	1 30 1 1	61 64 69 93 1	127 65 247 158 79	.9 1.0 1.2 1.5 .6		.67 .52 .73 .39 1.80	87.6 >100.0 36.4 36.8 44.3	56342	33 34 30 39 11	4.17 5.05 1.94 2.45 1.99	.25 .23 .30 .35 .10	8 11 1	.10 .09 .10 .11 .05	138 136 161 92 950	16 26 18 24 6	.01 .01 .01 .01 .01	53 64 43 50 23	470 500 510 550 210	5511 8357 2964 6971 2890	3	89 76 56 150	3 3 4 1	.01 .01 .01 .01	94.5 159.0 175.9 65.9	>10000 >10000 5880 5966 5543	1 1 1 1	11 28 1 12 1	5 87 5 132 6 78 8 117 3 42
07080 07081 07082 07083 07084	.1 .1 .1 .1	.31 .41 .42 .48 .20	1 1 1 1	48 96 86 90 1	29 27 27 228 178	.8 .8 .9 .9 .5	4 5 4 1	2.89 3.40 3.35 2.72 1.78	.1 1.6 3.9 15.7 14.9	45432	24 29 28 16 16	5.30 5.35 4.27 1.14 1.07	.14 .19 .19 .21 .09	5 5 6	.09 .14 .11 .05	2393 2778 2816 2027 471	10 12 15 14 11	.01 .01 .01 .01 .01	54 62 56 41 34	440 540 490 510 370	244 192 201 201 135	4 7 10 1	209	1 1 2 1	.01	87.6 98.9 86.9 106.9 45.8	356 1552 1672 4398 4701	1	1 1 1	5 66 5 73 6 88 5 70 3 48
07085 07086 07087 07088 07089	.1 .1 .1	.03 .08 .30 .08 .29	1 1 1 1	22 42 30 42 29	19 15 26 17 47	.7 .9 .6 1.0 .9	3 1 1 4	2.03 > .99 1.79 > 2.40	>100.0 >100.0 43.9 >100.0 	57484	4 7 19 7 18	5.85 10.05 5.01 11.34 3.01	.01 .03 .12 .03 .12	3 1 2	.05 .03 .11	880 1813 648 1327 1237	9 6 10 5 12	.01 .01 .01 .01 .01	33 56 49 53 43	160 260 410 220 390	791 944 590 1182 1234	1	49 14 121 40 308	1 1 1	.01 .01 .01 .01 .01	25.8 78.3 29.8 61.2	>10000 >10000 >10000 >10000 >10000 >10000	1	34 14 35 1	62 10 9 19 4 52 6 16 4 45
07090 07091 07092 07093 07094	.1 2.7 1.5 .1 .1	.26 .33 .34 .54 .16	1 1 1 1	54 22 22 67 1	12 62 49 49 77	1.2 .6 .8 1.0 .6	1 1 1 1	2.44 1.89 2.27 1.97	>100.0 4.0 14.3 3.9 7.4	8 3 4 5 3	17 25 22 33 22	10.83 2.49 3.26 3.02 1.99	.10 .13 .14 .22 .09	3 2 3 1	.10 .08 .15 .08	1262 1092 662 1212 818	9 14 14 15 7	.01 .01 .01 .01 .01	60 46 47 57 36	330 420 430 600 440	3670 3936 4001 479 522	4 5 2	54 321 89 384 198	1 1 2	.01 .01 .01 .01 .01	53.6 65.8 74.8 76.5 25.0	>10000 1570 4814 2478 3040	1 1 1	22 1 1 1	4 30 5 76 4 65 6 95 3 63
07095 07096	.1 .8	.28 .15	1	14 28	56 15	.9 .9	1	1.21 2.12	71.1	4 8	30 19	3.20 12.31	.14 .08		.17 .05	542 1036	10 5	.01 .01	48 64	460 270	329 1510	2	215 17		.01 .01	40.6 38.5	1087 >10000	1	1 10	5 86 2 39
											,																			
		(-						

APPENDIX 5

ANALYTICAL PROCEDURE

٦

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR 31 ELEMENT TRACE ICP

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vancouver, using the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.

0.5 gram of the sample is digested for 2 hours with an aqua regia mixture.

After cooling samples are diluted to standard volume. The solutions are analyzed by computer Jarrell Ash ICP (Inductively Coupled Plasma Spectrometers). Reports are formatted and printed using a laser printer.

OFFICE AND LABORATORIES: 705 WEST FIFTEENTH STREET, NORTH VANCOUVER, BC. CANADA V7M 112 PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9621

Division of Assayers Corp. Ltd.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK:

PROCEDURE FOR Ba ASSAY

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to - 1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 gram sub-sample (in accordance with Gy's statistical rules.) This sup-sample is then pulverized on a ring pulverizer to 95% - 150 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

Samples are weighed and fused at 1200 C with lithium metaborate prior to being dissolved in nitric acid. The resulting solutions are analyzed by ICP. The CANMET standards are employed as check standards with each set of 24 samples. Reports are formatted and printed using a laser printer.

OFFICE AND LABORATORIES: 705 WEST FIFTEENTH STREET. NORTH VANCOUVER, BC. CANADA V7M 1T2 PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9621

Ag, Cu, Pb, Zn, Ni, AND Co ASSAY PRODEDURE

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The -1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to -1/8 mesh. The whole sample is then riffled on a Jones Riffle down to a statistically representative 500 gram sub-sample (in accordance with Gy's statistical rules.) This sub-sample is then pulverized in a ring pulverizer to 95% minus 140, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

A 0.200 to 2.000 gram sub-sample is weighed from the pulp bag for analysis. Each batch of 70 assays has a natural standard and a reagent blank included. The samples are digested using a HNO3 - KClO3 mixture and when reaction subsides, HCL is added before it is placed on a hotiplate to digest. After digestion is complete the flasks are cooled, diluted to volume and mixed.

The resulting solutions are analyzed on an atomic absorption spectrometer using the appropriate standard sets. The natural standard digested along with this set must be within 2 standard deviations of it's known or the whole set is re-assayed. If any of the assays are >1% they are re-assayed at a lower weight. 10% of samples are assayed in duplicate.

OFFICE AND LABORATORIES: 705 WEST FIFTEENTH STREET, NORTH VANCOUVER, BC. CANADA V7M 1T2 PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9621