

MA: 6 1995

Gold Commission

LOG NO:	MAR 2 9 18995	U
ACTION:		The second second second
*		
FILE NO:		Professional (p. 100)

MATERIALS TESTING PROGRAM WINK PLACER CLAIMS SPANISH MOUNTAIN B.C.

NTS 93A11W CARIBOO MINING DIVISION

WINK #1 record # 308282

WINK #2 record # 308283

WINK #3 record # 308284

WINK #4 record # 315287

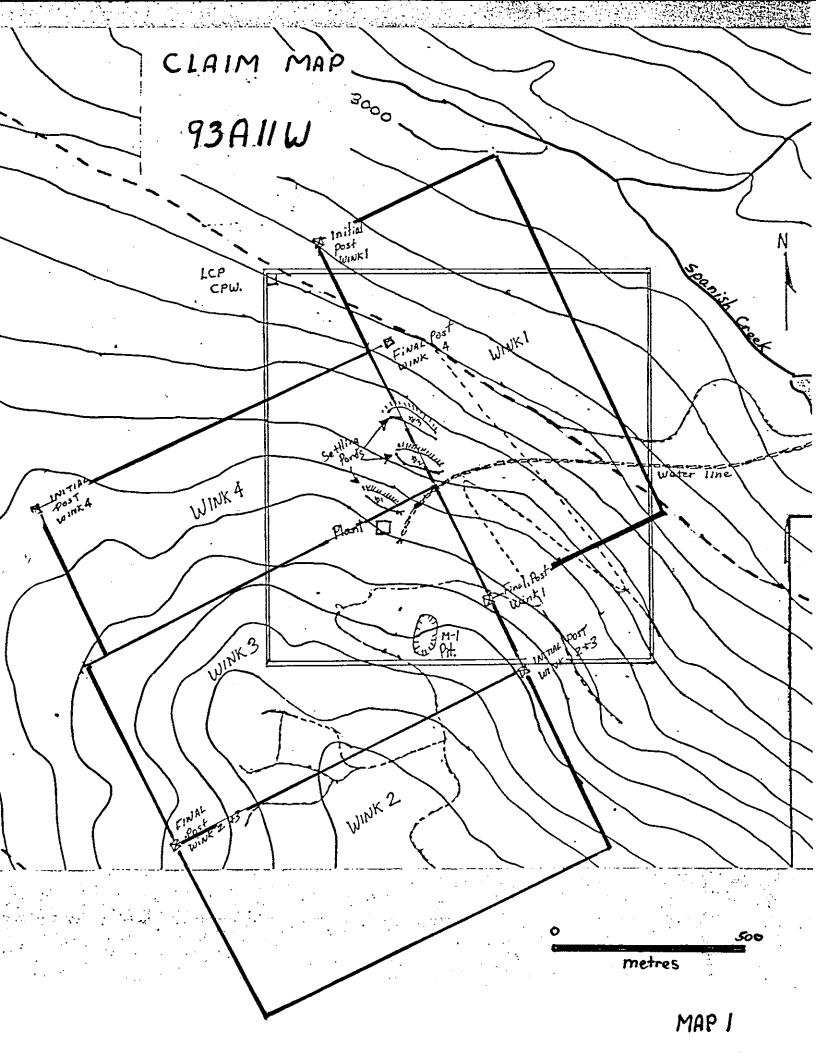
J.W. MORTON P.Geo

FEBRUARY 24 1995

FILMED

GEOLOGICAL BRANCH ASSESSMENT REPORT

23,843


TABLE OF CONTENTS

INTRODUCTION	Pg-1
LOCATION AND PHYSIOGRAPHY	Pg-2
CLAIM MAP	MAP 1
METHODS	Pg-2,3
SAMPLE LOCATION MAP	MAP 2
COSTS	Pg-4
AUTHOR QUALIFICATION	Pg-5
APPENDIX	Geochemical Certificates

INTRODUCTION Pg-1

An attempt to evaluate the grade and amenability to processing of unconsolidated materials occurring on the Wink placer claims was attempted between June 8 and June 11, 1994. This work was undertaken to augment previous work which has included the sampling and subsequent processing in a jig of three (30 to 40 kilogram) bank run samples and a 50 yard production run. These previous tests had yielded results that ranged from 0.025 to 0.081 oz/Yd Au. evaluation is at best only partially complete owing to a breakdown which occurred in the portable sluice concentrator. The work did, never-the-less, demonstrate that overburden (glacial till) and regolith which occurs between till and definite bedrock are both easily washed and processed using a simple sluicing system. Trenches excavated by Cogema Canada Ltd in 1993 during a bedrock exploration program were inspected with particular attention directed to the unconsolidated overburden and regolith materials. A crosscutting partially ferricrete cemented coarse gravel channel was documented in two of these trenches and interpreted as an elevated Tertiary alluvial channel. The ferricrete cemented material had been previously mapped as bedrock and sampled as such. Results obtained had indicated a grade of 0.105 oz/T (0.158 oz/Yd) and 0.038 oz/T (0.057 oz/Yd) Au over widths of 3 and 1 metres respectively. Several additional large samples (average 20 litres) were obtained of different materials before the Cogema trenches were filled in and reclaimed. These samples have been delivered to a local producing placer mine where they will be processed in a duplex jig early in 1995.

On October 30 the area disturbed by placer mine construction in 1992 and 1993 was grass seeded.

The Wink claims are located on the north side of Spanish Mountain approximately 6 kilometres east of Likely in east-central British Columbia. The placer claims largely overlap the CPW mineral claim which is also owned by Eastfield Resources Ltd. Elevations on the Wink claims vary between 3000 and 4500 feet (915 and 1370 m) with the most prospective area occurring at an elevation of 4000 feet (915 m). The claims are easily reached from Likely by the all weather Spanish Lake road.

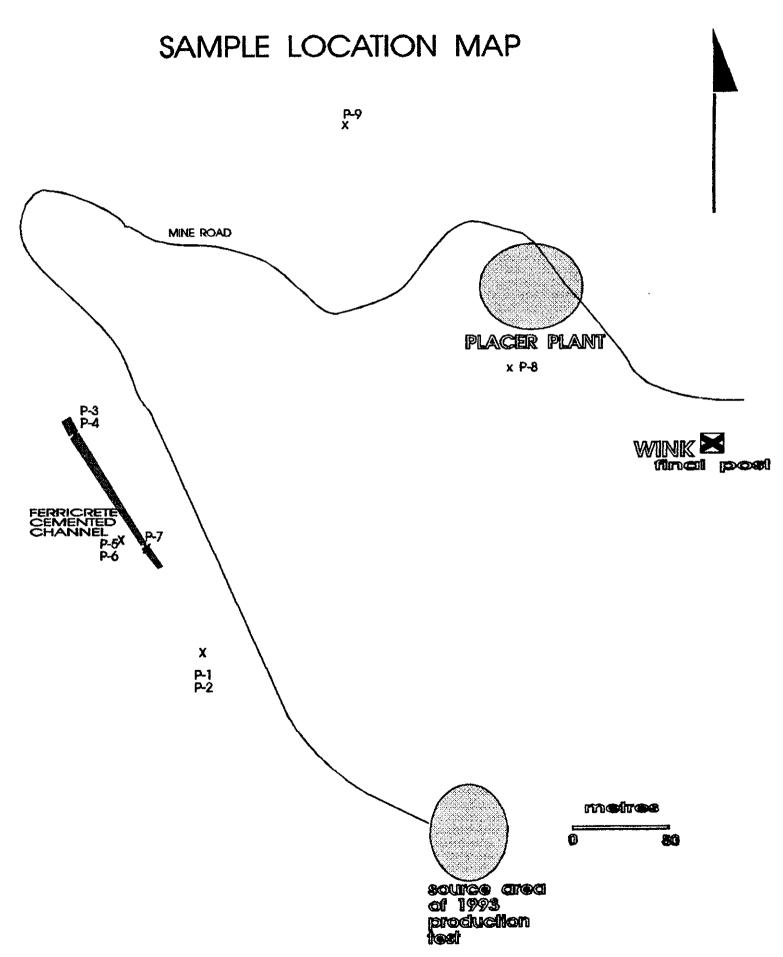
The claims are entirely forested by mature or recently clearcut harvested coniferous species (Douglas-fir,balsam,spruce,cedar and lodgepole pine). Unconsolidated materials consisting of coarse textured till and regolith mantle the property. Present day drainage is limited to immature discontinuous and seasonal streams deriving most of their water from snow melt.

METHODS

A portable sluice (Panomatic Gold Panning Machine) was set up at a low spot where snow runoff water was still present. The sluice consists of a two tray expanded metal riffle box on top of a rubber mat. The trays have a combined length of 1.6 metres and a width of 20 cm. A small gasoline engine is attached to the sluice by an eccentric pulley which causes the sluice trays to vibrate. The trays have a wing nut on one end which allows the slope of the trays to be adjusted. Water is introduced to the unit either via an engine powered pump or by a direct gravity connection. Samples (in our case approximately 20 kg) are poured into the top end of the unit and are washed until material coarser than the expanded metal has worked it's way through the system. The unit is then shut off, the water flow interrupted, the expanded metal removed and the material caught in the rubber mat retained.

A problem with the gasoline engine was encountered in this test and it was decided to bypass the engine and manually shake the sluice tables to obtain a similar effect. Unfortunately this proved to be physically exhausting and prevented any realistic optimization of the slope of the trays or the velocity of water flow. Results of grade are therefore only comparable between samples and are not an indication of what could be expected if optimization of these parameters was completed. It is anticipated that the additional samples that were obtained in 1994 and which will be processed in a cleanup jig in early 1995 will give a more empirical indication of grade. These samples will also enable the comparative data obtained from this test to infer what materials deserve more exhaustive testing. The results of the sluicing test are as follows (sample locations are indicated on The Sample Location Map):

SAMPLE NAME	SAMPLE WEIGHT *1 gms	CONCENTRATE WEIGHT *2 gms	CONCENTRATE GRADE oz/T	DILUTED GRADE *3 oz/YD	DEPTH
94-P-1	22,700	1,357	0.006	0.001	2m
94-P-2	21,300	356	0.021	0.001	2m
94-P-3	20,800	610 *4	0.076	0.003	3m
94-P-4	21,400	398 *4	0.147	0.004	3m
94-P-5	20,000	1459	0.025	0.003	2m
94-P-6	22,500	617	0.045	0.003	2m
94-P-7	19,300	823 *4	0.024	0.002	2.5m
94-P-8	21,600	961	0.076	0.005	
94-P-9	22,200	1304	0.106	0.009	1m
C fine *5		650	0.060		barrel 1993
C coarse		928	0.349		barrel 1993


^{*1} bank sample

^{*2} from rubber mat

^{*3} assuming 1 YD weighs 1.5 tons

^{*4} ferricrete cemented- will require crushing

^{*5 45} gallon barrel of fine light coloured concentrate at 1993 placer test site.
*6 45 gallon barrel of coarse dark coloured concentrate at 1993 placer test site.

COSTS	Pg-4	
J.W.Morton P.Geo June 8-11, October 30, 1994 4 days @ \$300	\$1200	
John Campbell June 8-11, 1994 2 days @ \$150	\$300	
Jim Green June 8-11, 1994 2 days @ \$150	\$300	
Vehicle Costs 4 days @ \$60	\$240	
Food	\$100	
Fuel	\$150	
Analytical Costs	\$407	
Grass Seed	<u>\$65</u>	
TOTAL	\$2762	

- I, J.W.Morton of the city of North Vancouver B.C. certify the following:
- 1. I graduated from Carleton University Ottawa in 1971 with a B.Sc in Geology.
- 2. I graduated from the University of British Columbia in 1976 with a M.Sc in Soil Science.
- 3. I am a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. I supervised the work described in this report.

Dated this 24th day of February 1995.

J.W.Morton P.Geo

W. MORTON

APPENDIX

CERTIFICATE OF ANALYSIS iPL 94F1302

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Eastfield Re	sources Ltd.
--------------	--------------

Out: Jun 23, 1994 Project: Spanish Mountain In: Jun 13, 1994 Shipper: Bill Morton

Shipment:

Msg: Au(BLEG) ICP(AqR)30

Document Distribution -

1 Eastfield Resources Ltd EN RT CC IN FX 1 2 2 2 1 110 - 325 Howe St Vancouver DL 3D 5D BT BL 0 0 0 1 0 BC V6C 1Z7 Ph: 604/681-7913 ATT: Bill Morton

Pulp Storage: Analytical Summary

11 Samples

ID=C027300

Raw Storage:

0=RC Ct 0= Pulp 11=Other 0= Core 0= Rock 03Mon/Dis -- 12Mon/Dis

[023808:57:39:49062394] Mon=Month Dis=Discard Rtn=Return Arc=Archive

	_r Analy	zt i o	2 I c	'ıımmı	2777							 	
	## Code			Limit		linits	Des	crin	tion	Element	##		
	## COOE	hod	11010		High	011103	000	,c, ,p		2 700			
EN RT CC IN FX	01 802P	Spec	Wt	See Da		G	Wei	oht.	(2 Decimal)	Wt	01		
1 2 2 2 1	02 361P	FAGr							irav 1/2 Assay Tor		02		
DL 3D 5D BT BL	03 721P	ICP	Ag	0.1	100		Ag			Silver	03		
0 0 0 1 0	04 711P	ICP	Cu		20000		Cu			Copper	04		
0 0 0 1 0	05 714P	ICP	Pb		20000		Pb			Lead	05		
Ph: 604/681-7913	03 /146	10	FD		20000	PPIII	10	101		Loud	00		
Fx: 604/681-9855	06 730P	ICP	Zn	1	20000	nnm	Zn	TCP		Zinc	06		
12.004/001 3000	07 703P	ICP	As	5	9999			ICP	5 ppm	Arsenic	07		
	08 702P	ICP	Sb	5	9999		Sb		о рр	Antimony	08		
	09 732P	ICP	Hg	3	9999		Hg			Mercury	09		
	10 717P	ICP	Mo	1	9999		Мо			Molydenum	10		
	10 /1/	10,	1.0	•	2223	phi	110	10.		no ijeciidii	10		
	11 747P	ICP	m	10	999	nom	TI	TCP	10 ppm	Thallium	11		
	12 705P	ICP	Вi	2	999		Вi		, o pp	Bismuth	12		
	13 707P	ICP	Cd	0.1	100		Cd			Cadmium	13		
	14 710P	ICP	Co	1	999		Co			Cobalt	14		
	15 718P	ICP	Ni	i	999		Ni			Nickel	15		
	1.0 / .0.	10.		•	333	PP	.,,						
	16 704P	ICP	Ва	2	9999	maa	Ba	ICP		Barium	16		
	17 727P	ICP	W	5	999		W			Tungsten	17		
	18 709P	ICu	Cr	1	9999		Cr			Chromium	18		
	19 729P	ICP	V	2	999		V			Vanadium	19		
	20 716P	ICP	Mn	1	9999		Mo			Manganese	20		
		101	***		3330	PP							
	21 713P	ICP	La	2	9999	com	La	ICP		Lanthanum	21		
	22 723P	ICP	Sr	ī	9999		Sr			Strontium	22		
	23 731P	ICP	Zr	i	999		Zr			Zirconium	23		
	24 736P	ICP	Sc	1	99		Sc			Scandium	24		
	25 726P	ICP	Ti	-	1.00		Ti			Titanium	25		
	100,	10,	• •	0.01		,,,	•	20.		7 1 0 47 1 4 11			
	26 701P	ICP	Αī	0.01	9.99	%	A1	TCP		Aluminum	26		
	27 708P	ICP	Ca	0.01	9.99		Ca			Calcium	27		
	28 712P	ICP	Fe		9.99		Fе			Iron	28		
	29 715P	ICP	Mq	0.01	9.99		Mg			Magnesium	29		
	30 720P	ICP	''S		9.99		K			Potassium	30		
	30 /20	101		0.01	5.55	/•		701.		, Q (4235 TOIL)	30		
	31 722P	ICP	Na	0.01	5.00	7.	Na	TCP		Sodium	31		
	32 719P	ICP	P					ICP		Phosphorus	32		
	" / ' '	100	Г	0.01	5.00	/6	•	201		, 1103p1101 US	J.		

CERTIFICATE OF ANALYSIS iPL 94F1302

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Client: Eastfield Resources Ltd

Project: Spanish Mountain 11 Sand

Barred Conc Dark Coarse R 928.36 0.349 4.8

iPL: 94F1302

80 39

187 149

Out: Jun 23, 1994 In: Jun 13, 1994 Page 1 of 1 [023808:57:44:49062394] Section 1 of 2 Certified BC Assayer: David Chiu

< 119 < < 1.8 21 69 95 < 60 20 915 17 15 6 1 < 0.44 0.15 4.79

Sample Name		₩t 9	Au oz/st	Ag ppm	Cu ppm	[°] РЬ	Zn ppm	As ppm	Sb ppm	Hg ppm	Мо ррп	T1 ppm :	Bi ppm	Cd	Co M		Ва И		V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti Z	Al Z	Ca %	Fe %
94-P-1	Ŕ	1357.30	0.006		:	98722					<u> </u>				62	<u> </u>				لوسارات			~	'	4			
94-P-2	Ŕ	356.00				4444					7722				🤔	<u> </u>								:				
94-P-3	Ŕ	610.22	0.076								**************************************					<u> </u>				i jaja liikulia. Liikulia Liikulia liikulia								
94-P-4	Ŕ	398.34	0.147		:			_							<u>S</u>	<u> </u>				\$ 5.				:	11.			
94-P-5	Ŗ	1459.35	0.025		`			_							3					77.22				'	101			
94-P-6	Ŕ	617.52	0.045					_		_	**************************************				=	<u> </u>				<u> </u>				:	122			
94P7	Ŕ	823.92		_			~~								<u></u>	<u> </u>				información in i <u>mpo</u> in incident				:	errobbs St. ood			
94P-8	Ŕ	961.24	0.076	_	`	100		_			7722				🖺	<u> </u>			_	S 122				}	2. <u>2. 14</u>			
94-P-9	Ŕ	1304.10	0.106	_				_				_			2	<u> </u>				-12					- <u></u>			
Barred Conc Fine Light	ŧχ	649.98	0.060	0.5	106	10	99	105	<	<	5	<	<	0.7	22 3	30 16	54	< 65	24	720	7	21	2	1 (0.01	0.94	0.23	5.19

CERTIFICATE OF ANALYSIS iPL 94F1302

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Client: Eastfield Resources Ltd

Project: Spanish Mountain 11 Sand

iPL: 94F1302

Out: Jun 23, 1994 In: Jun 13, 1994 Page 1 of 1 [023808:57:49:49062394]

Section 2 of 2

Certified BC Assayer: David Chiu

	Sample Name		Mg Z	K Z	Na Z		
	94-P-1	Ŕ					
1	94-P-2	Ŕ					
İ	94_P-3	Ŕ					
ļ	94-P-4	Ŕ					
١	94-P-5	X X X X X X					
Į							
	94-P-6	Ŕ					•
١	94-P-7	K K K K					
1	94-P-8	Ŕ					
١	94-P-9		_			_	
	Barred Conc Fine Light	Ŕ	0.31	0.16	0.03	0.10	
ĺ	_	***					
١	Barred Conc Dark Coarse	Ŕ	0.12	0.12	0.02	0.08	

Min Limit
Max Reported*
Method

0.01 0.01 0.01 0.01 9.99 9.99 5.00 5.00 ICP ICP ICP ICP

—=No Test : Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefine. m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898