	LOG NO:	[MAR 2 9 1995	U
	ACTIC:		
•	<u> </u>		
	FILE NO:	and an and a second	
GEOLOGICAL & GEOCH	IEMICAL	ويستبق والمراجع والم	
REPORT			
on			
the			
HUGH CLAIMS			
SKEENA MINING DIV	ISION		
STEWART AREA,			
NTS: 104A/4			
SUB-RECORDER BEOERIED MAR 1 11 1005	'N		
DECEMENT LONGITUDE: 129°3	7'W		
MAR 1 (1 MONT For			
$M(\alpha, b) = \frac{3}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$			
CAMECO CORPORA	TION		
		FILMED	
Ву			
NICHOLS & EO	Gahea I	BRANC	Ħ
NICHOLSON & A S S E S S		REPOR	T
NOVEMBER 10, 19	94	_	T T
^ 7	' () / /	
		sЦr	
		ノ て く	/

SUMMARY

During the months of August and September of 1994, a program of geological mapping and rock/soil sampling was undertaken on the Cornice Mountain property. The work was performed by four climbers/geotechnicians from Nicholson and Associates on a subcontract from Orequest Consultants. A total of 96 mandays at total field costs of \$67,717.50 was spent on the property. The claims are optioned by Cameco Corporation from Trev Corp. Cameco can earn a 70% interest in the claims by making escalating option payments.

The Cornice Mountain property comprises 273 contiguous units, staked as 15 mineral claims (Hugh 1-15 claims), all within the Skeena Mining Division. The property is located approximately 30 km. northeast of Stewart, B.C. The 1994 work program was concentrated on the Hugh 5, 6, 7, 8 claims only.

The program focused on following up on the 1993 mapping/sampling/drill program on the Breccia and Bench zones to further investigate the structure and extent of these mineralized zones. The crew was flown in daily from Highway 37 by helicopter, supplied by VIH helicopters. Accomodations were had in Stewart.

A total of 276 rock and 69 soil samples were collected. Prospecting and geological mapping was performed at 1:5,000 scale on the Hugh 5 - 8 claims.

The rocks underlying the Hugh 5 - 8 claims are Early Jurassic volcanics of the Unuk River formation and middle Jurassic volcanics of the Betty Creek formation. These rocks are unconformably overlain by Middle Jurassic sedimentary rocks of the Salmon River formation. All of these rocks are intruded by a tertiary quartz monzonite plug with related dykes and by various intermediate and felsic porphyritic dykes.

The Breccia and Bench zone area was further sampled and mapped at 1:250 scale. Assay results from similar limestone breccias adjacent to these zones were disappointing. Anomalous samples were erratic, ranging to 329 ppb Au, 15.1 ppm Ag, 3147 ppm Cu, 318 ppm Pb and 25062 ppm Zn.

Two previously unmapped gossans, consisting of quartz-sericite-pyrite altered tuffs were extensively sampled. No significant assays were returned, with highest values of 55 ppb Au, 32.8 ppm Ag, 198 ppm Cu, 2384 ppm Pb and 1517 ppm Zn. These zones are located approximately 600 meters southwest of the Cornice Mountain summit referred to as the Southern Gossan, and 500 meters northwest of the summit referred to as the Western Gossan.

A soil line (L2) at approximately the 7300 foot elevation, just southeast of the Cornice Mountain Summit is anomalous over a 350 meter length (from 2 + 50 W to 6 + 00 W) with assays up to 308 ppb Au, 62.3 ppm Ag, 1349 ppm Cu, 2526 ppm Pb and 6175 ppm Zn.

The remainder of the anomalous samples were taken from mineralized (pyrite, chalcopyrite) quartz veins and pods, occurring sporadically throughout the main east-west trending summit ridge between Cornice Mountain and Entrance Peak (the boundary of the Hugh 5, 6 and Hugh 7, 8 claims). Assays ranged to 300 ppb Au, 237.2 ppm Ag, 15751 ppm Cu, 442 ppm Pb and 2454 ppm Zn, 824 ppm As and 307 ppm Sb.

Mineralization in this summit area and its relation to geology appears to be of a porphyry type deposit, possibly with a hydrothermal overprint. The mineralization in the Bench zone, Breccia zone area seems to be of a hydrothermal (mesothermal or epithermal) origin.

TABLE OF CONTENTS

.

SUMMARY	PAGE 2
INTRODUCTION	6
LOCATION AND ACCESS	7
CLAIM STATUS	9
TOPOGRAPHY, VEGETATION, CLIMATE	11
HISTORY	12
REGIONAL GEOLOGY	15
PROPERTY GEOLOGY	18
STRUCTURAL GEOLOGY	20
MINERALIZATION AND ALTERATION	22
GEOCHEMICAL RESULTS	24
DISCUSSION OF RESULTS	28
CONCLUSION AND RECOMMENDATIONS	30
PROPOSED PHASE ONE BUDGET	32
STATEMENT OF COSTS	33
REFERENCES	34
CERTIFICATE(S)	35
APPENDIX 1: CLAIM STATUS	37
APPENDIX 2: ASSAY TECHNIQUES	38
APPENDIX 3: ASSAY RESULTS/SAMPLE DESCRIPTION	39

LIST OF FIGURES

•

<u>PAGE</u>

.

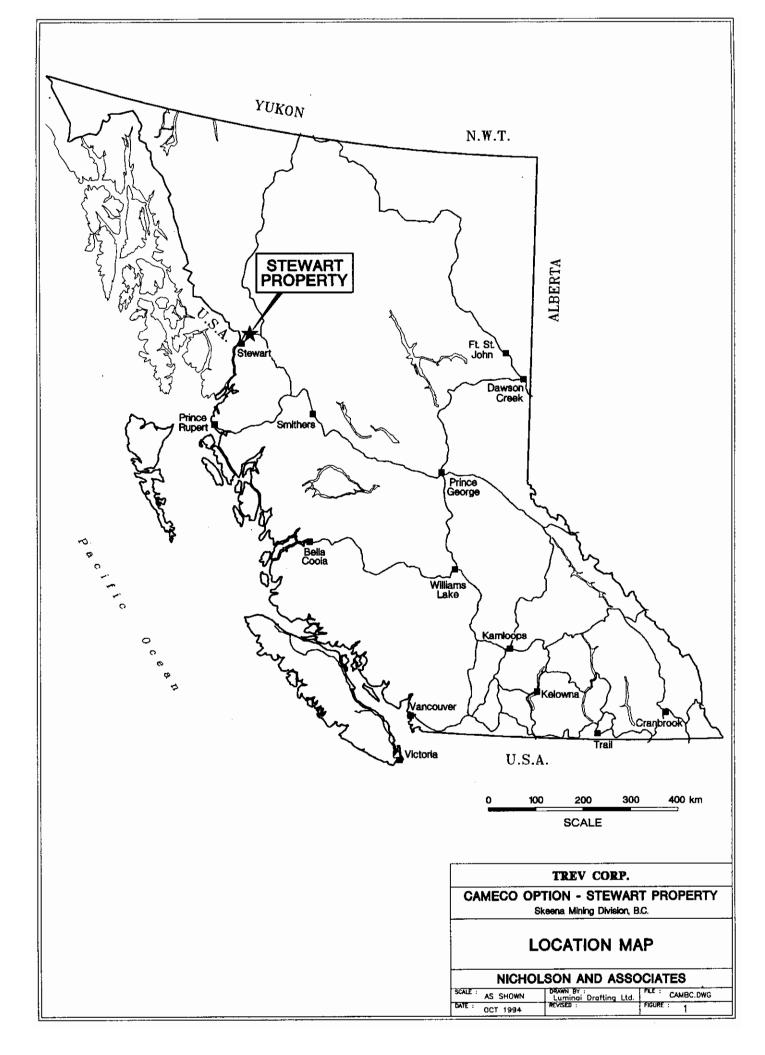
1/ LOCATION MAP	8
2/ CLAIM MAP	10
3/ REGIONAL GEOLOGY	17
4/ PROPERTY GEOLOGY 4a. structural geology	19 21
5/ GEOLOGY (1: 5,000) OF HUGH 5-8 CLAIMS	BACK POCKET
6/ SAMPLE LOCATIONS ON HUGH 5-8 CLAIMS	BACK POCKET
7/ BRECCIA/ BENCH ZONE GEOLOGY & SAMPLE LOC.	BACK POCKET

INTRODUCTION

During the months of August and September, Nicholson and Associates undertook a program of geological mapping, sampling and prospecting on the Hugh Claim Block. The claims which are located on N.T.S. map sheet 104A/4 at a latitude of 56°07' N, longitude, 129°37'W are held under option by Cameco Corporation from Trev Corporation.

Work was directed at following up on showings that had been previously outlined by Geofine in there 1992 - 1993 programs. Work was concentrated in the vicinty of the Breccia Zone, Bench Zone and Copper Zone in an effort to expand upon these known zones of mineralization.

Results from the 1994 program provided mixed results. Results from the Breccia Zone, Bench Zone and Copper Zone returned discouraging results. Results obtained in the area of Cornice Mountain returned anomalous values in Au, Ag, Pb, Zn Sb and As. Several areas of interest were noted. Of particular interest is an area located southwest of Cornice Mountain which shows as a gossanous zone at a volcanic - sedimentary contact.


A follow up program of \$50,000 is being proposed for the 1995 field season to test out this area and other areas of interest on the property.

LOCATION and ACCESS

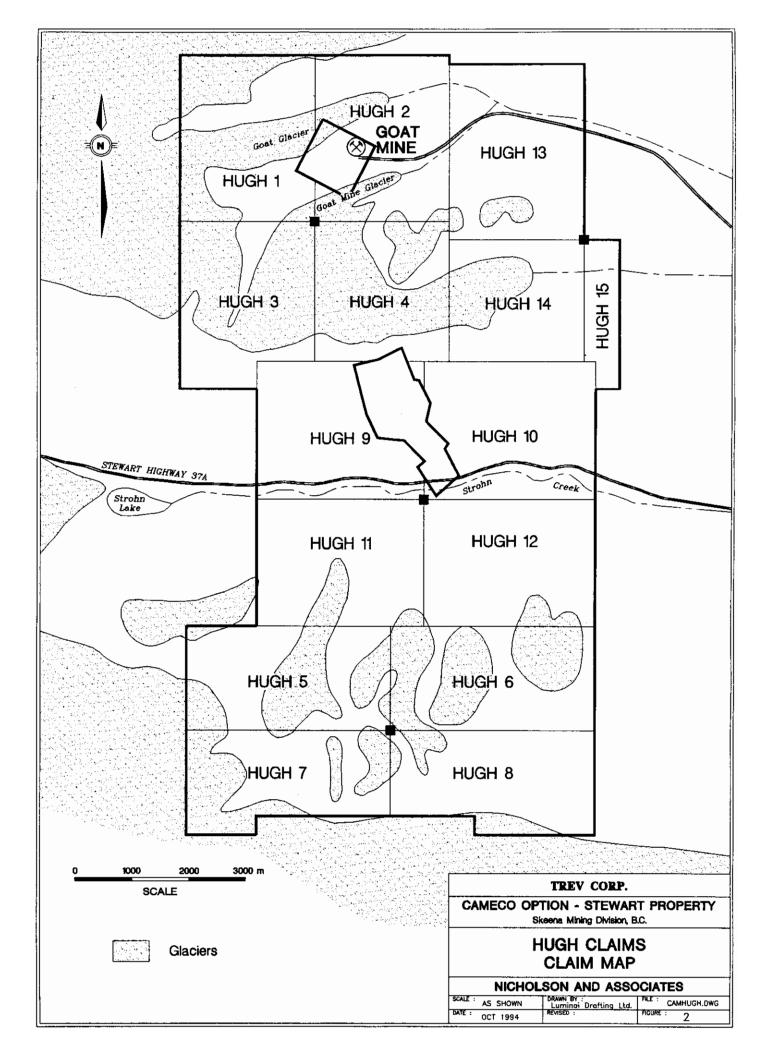
The Hugh claims are located 30 kilometers east of the town of Stewart, B.C. The claims are bisected by Highway 37A. The claims are located on N.T.S. map sheet 104A/4 at latitude 56° 07' N, Longitude 129° 37' W. (figure1)

Access to the property is presently gained by either V.I.H. Helicopters based in Stewart or by Highland Helicopters which is based in the Elsworth logging camp located along Highway 37.

Accomodation at present can be had in either Stewart, or arrangements can be made to stay at the Elsworth logging camp in Elsworth.

CLAIM STATUS

The Hugh Claims are currently held under option by Cameco Corporation from Trev Corp. who can earn a 70% interest in the property by making option payments of \$245,000 and meeting work commitments of 1.5M over a period of 5 years. Trev Corp., would retain a 30% working interset in the property once the option had been exercised.


The Hugh claims which are comprised of 15 mineral claims, were staked on the modified metric grid system. The claims (figure 2) are located on N.T.S. map sheet M104A/4E and comprise of the following claims: (Appendix 1)

Name	Tenure#	Units	На	Staking Date	Present Expiry	Current Expiry*
Hugh 1	252521	20	500	March 13, 1988	March 13, 1999	March 13, 1999
Hugh 2	252522	20	500	March 13, 1988	March 13, 1999	March 13, 1999
Hugh 3	252523	20	500	March 13, 1988	March 13, 1999	March 13, 1999
Hugh 4	252524	20	500	March 13, 1988	March 13, 1999	March 13, 1999
Hugh 5	252525	18	450	March 13, 1988	March 13, 1999	March 13, 2003
Hugh 6	252526	18	450	March 13, 1988	March 13, 1999	March 13, 2003
Hugh 7	252527	18	450	March 13, 1988	March 13, 1999	March 13, 2003
Hugh 8	252528	18	450	March 13, 1988	March 13, 1999	March 13, 2003
Hugh 9	252529	20	500	March 13, 1988	March 13, 1999	March 13, 1999
Hugh 10	252530	20	500	March 13, 1988	March 13, 1999	March 13, 1999
Hugh 11	252531	20	500	March 13, 1988	March 13, 1999	March 13, 1999
Hugh 12	252532	20	500	March 13, 1988	March 13, 1999	March 13, 1999
Hugh 13	309947	20	500	June 9, 1992	June 9, 1999	June 9, 1999
Hugh 14	309948	16	400	June 9, 1992	June 9, 1999	June 9, 1999
Hugh 15	309949	8	125	June 9, 1992	June 9, 1999	June 9, 1999

TOTAL UNITS

273

* after 1994 field expenses have been applied.

TOPOGRAPHY, VEGETATION and CLIMATE

The topography on the Hugh Claim block varies from 425 meters to 2400 meters above sea level. The terrain on the property is very steep and rugged. The property is covered by 20 - 30% ice, while the remainder of the property is covered in snow for 6 - 7 months of the year. Access on the property is limited to ridge tops and talus slopes which are slow to maneuver on. The rest of the property is accessed using mountain climbing equipment only.

Vegetation on the lower reaches of the property consists of a thick tangle of slide alders, bramble berry bushes, devils club and over mature stands of timber. At higher elevations, alpine conditions exist. Vegetation consists of lichens and grasses which are confined to rock ledges, cracks and ridge tops throughout the property.

The climate on the property is typical mountain coastal weather which changes quickly.

Snowfall on the property averages between 500 to 1500 centimeters. Access on the property is therefore limited to the months of mid June thru to the middle of September.

Water on the property is confined to glacial melt and is limited to the summer months only.

EXPLORATION HISTORY

Exploration history in the vicinty of the property dates back to the turn of the century when placer miners were attracted to the area in search of placer gold in local streams and creeks. Eventual placer mining of the creeks led to the discovery of mineralized showings on the nearby creeks of the Del Norte, Nelson, Willoughby and the Bear River

Small high grade operations operated intermintantly on these showings which eventually ceased due to lack of ore and falling metal prices.

Work in the area subsided with the advent of the "dirty thirtys," the outbreak of the world wars and metal prices collapsing.

Exploration in the immediate area started up again in 1959 when the Ken claims were staked to cover favourable gold - silver showings. These showings were eventually put into production which led to the mining of 2000 tons of high grade gold-silver bearing ore being stockpiled and processed on site. Work on the property ceased shortly after the mining of the 2000 tons and only intermittent work on the ground has taken place.

On the immediate claim block, sporadic work was done on showings at lower elevations as is evident by test pits and trenches found on the property.

The most recent work undertaken on the claims was undertaken in 1989-90 by Bond Gold Canada which carried out a helicopter airborne magnetic, electromagnetic and VLF-EM survey over the Hugh Claims.

Follow up work undertaken in 1992-1993 by Geofine Exploration Consultants utilizing Bond Golds results, led to the discovery of several mineralized showings on the property. The most notable of these showings being the Breccia - Bench Zone which returned values of 12.7g/t Au over 9.4 meters. Eventual drilling in the vicinity of the Breccia - Bench Zone returned discouraging results and a re - evaluation of the showings found that the Breccia - Bench Zones were that of a possible dip slope. Other mineralized showings were found on the property, but received only limited follow up work .

In the immediate area, Camnor Resources on their Willoughby Project is exploring a precious metal prospect located at the head waters of Willoughby creek. Camnor undertook an aggressive drill program on the property and outlined several mineralized zones. The zones occur within a sequence of a mineralized volcanic, sedimentary contacts which has been intruded by Early Jurassic Goldslide and Hillside intrusives. Mineralization consists generally of massive pyrrhotite and pyrite with varying amounts of chalcopyrite and sphalerite. The best results which Camnor drilled came from hole W94-15 which returned values of 1.17 oz/ton Au, and 3.03 oz/ton silver over a width of 38.4 feet.

Nearby, Teuton Resources on a regional program, located several new showings on their vast land holdings and Prime Equities International located several new showings on their MM option.

American Barrick on their Red Mountain Au-Ag deposit, continues to explore their property for further tonnage. The deposit, which has drill proven reserves of 2.8 million tons, grading 0.37 oz/ton gold, occurs at a sedimentary - volcanic contact which has been intruded by the Early Jurassic Goldslide and Hillside intrusives with related hornblende feldspar porphyry dykes of varying composition. Mineralization consists mainly of semi-massive to massive, medium to coarse grained pyrite and/or stringer which contain varying amounts of chalcopyrite, pyhrrotite and sphalerite. Gold occurrences in the system is zoned and higher values are associated with coarse pyrite and lesser chalcopyrite (1-30 meters wide), which is characterized by adjacent pyrrhotite-sphalerite mineral zones (5-25 meters wide). Current reserves are based on extrapolated diamond drill hole data from the Marc and AV zones which are traced horizontally and vertically for about 600 meters (Smit, H. 1994, personal communication).

Westmin Resources is presently operating their Premier Gold Project from development work on the No. 6 level of the Silbak-Premier deposit as well as Tenajon's SB deposit several kilometres to the north. The Silbak-Premier has a recorded production in excess of 2 million ounces Au, 40 million ounces Ag, and 100 million pounds of Pb-Zn from about 5 million tons of ore. Production from two distinct breccia and vein stockwork trends, the Main and West zones, came from ore shoots distributed along a combined strike length of 1,600 meters, but 80% of the production was recovered from within 500 meters of the intersection of these two trends. The intersection area contained the widest ore shoots (up to 20 meters) meters) and those with the highest Au-Ag grades (Alldrick, D.J., 1993).

REGIONAL GEOLOGY

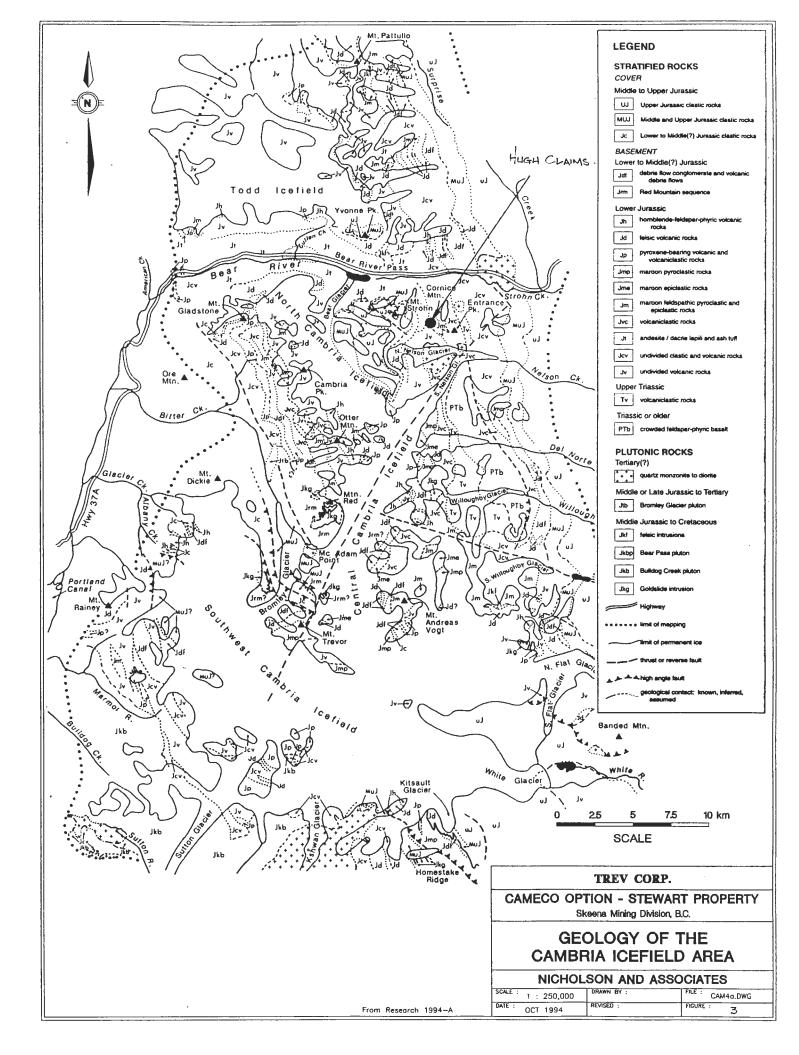
The Hugh Group of claims lie on the eastern extremities of the Stewart Mining camp of the Salmon River map area. The property lies close to the boundary between the Intermontaine Belt and the Coast Plutonic complex of the Canadian Cordillera. The property lies in the southern part of the Stikine Arch, a late Paleozoic to Mesozoic assemblage of volcanic and sedimentary rocks. The Stikine Arch stretches from Anyox to Atlin, and east to Telegraph Creek around the northern edge of the Bowser Basin.

Within the Stikine Arch, Triassic rocks are found only in the Iskut and Unuk River area. Named the Stuhini /Takla Group (Alldrick, 1993) these rocks are dominantly intermediate volcanics and sediments and host several deposits in the area, namely the Snip, Stonehouse, Inel, and Granduc.

Triassic rocks are unconformably to gradationally overlain by the Lower to Middle Jurassic Hazelton Group. Grove (1986) divided the Jurassic Hazelton into four major lithostratigraphic divisions: the Unuk River Formation (Early Jurassic), the Betty Creek and Salmon River Formations (Middle Jurassic), and the Nass Formation (Late Jurassic). Anderson and Thorkelson (1990) do not include the Nass Formation, which includes the Bowser Basin sediments. The Hazelton Group is dominated by island arc volcanics which are the source rocks for much of the Bowser Basin sediments. Anderson and Thorkelson (1990) do recognize a regionally mappable unit (the Mt. Dilworth Formation) between the Betty Creek Formation and the Salmon River Formation.(figure 3)

The Unuk River Formation is characterized by basal pyroclastic flows which are progressively overlain by tuffs, argillites, local andesitic breccia and finally conglomerates with interbedded tuffs, wackes, siltstones and minor carbonate lenses.

The Betty Creek Formation unconformably overlies the Unuk River Formation and is comprised of maroon to green volcanic siltstone, greywacke, conglomerate, breccia, basaltic pillow lavas, andesitic flows and some carbonate lenses.


The Mt. Dilworth Formation, recognized in the Iskut-Unuk River region, consists of tuff breccia, felsic tuff, ash tuff, and argillaceous sediments.

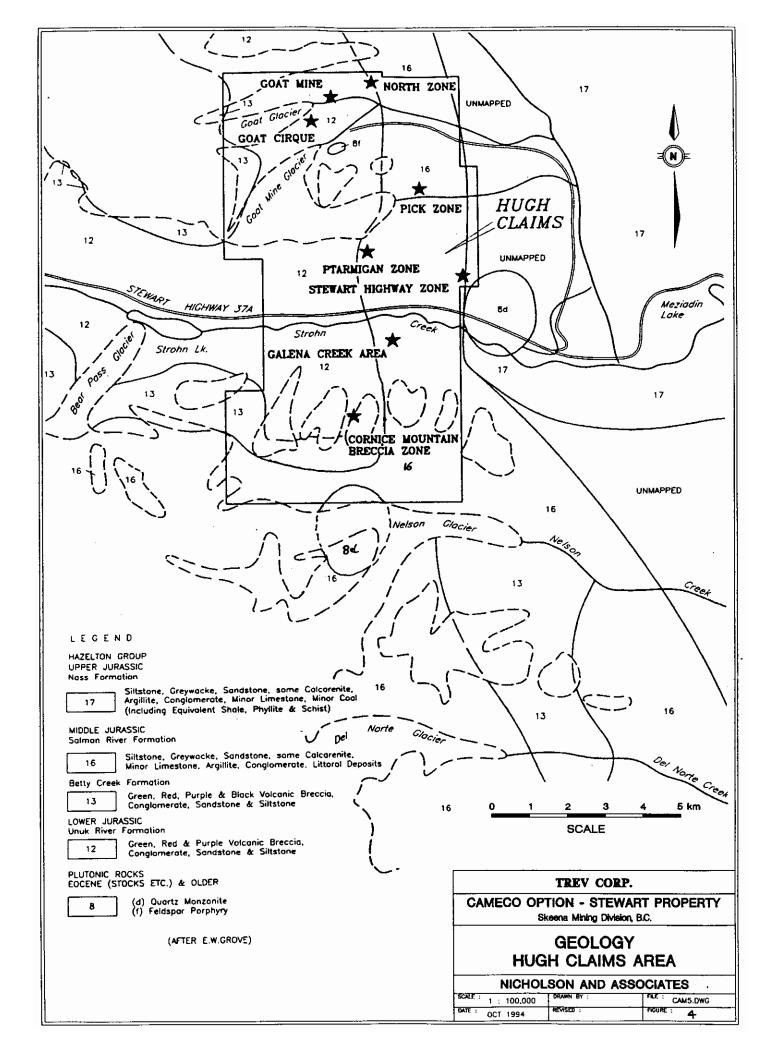
The Salmon River Formation conformably to unconformably overlies the Betty Creek Formation and the Mt. Dilworth Formation. It consists of intensely folded, colour banded siltstones and lithic wackes with locally occurring calcarinite and volcanic components.

At the end of the Middle Jurassic the volcanic complex was uplifted and detritus shed from the Stikine Arch into the adjacent Bowser Basin. The Nass Formation outcrops mainly along the western part of the basin and represents primarily deltaic accumulation of material consisting of conglomerate, and calcareous siltstone.

These volcanics and sedimentary sequences were subsequently intruded by Middle Jurassic to Early Tertiary granitoid intrusions associated with the Coast Plutonic Complex. The intrusions can be an important source for localizing mineralization.

Late stage (Quaternary) basaltic volcanism resulted in deposits of columnar basaltic flows, ash and tephra layers, and cinder cones, that are relatively rare in the southern part of the Stikine Arch. Pleistocene and Recent glaciation has eroded and or covered much of this volcanism.

PROPERTY GEOLOGY (HUGH 5 - 8 CLAIMS)

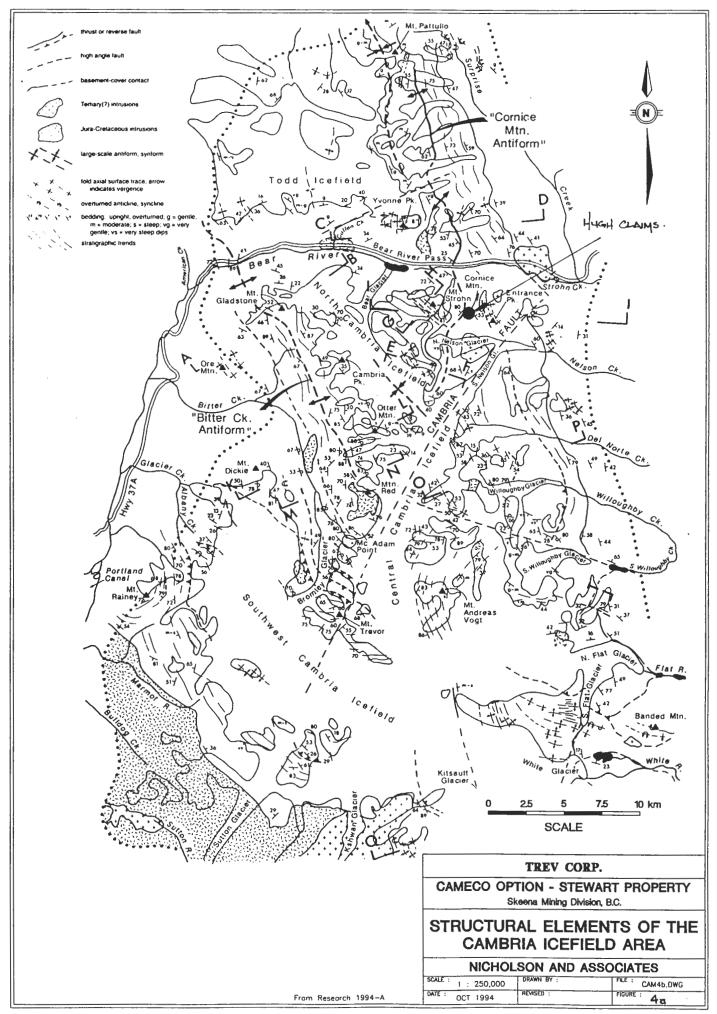

The Hugh 5 - 8 claims are underlain by green, red and purple volcanic breccia and minor conglomerate of the lower Jurassic Unuk River formation which are overlain by intermediate tuffs, flows and flow breccias of the Middle Jurassic Betty Creek Formation. Rocks of the Betty Creek formation include green, tan to buff and purple tuffs (lithic, crystal, lapilli), agglomerates (often calcareous), volcanic breccia, and isolated sedimentary beds (chert conglomerate, siltstone, argillite) as well as buff rhyolitic flows.

On the east margin of the 1994 work area (in the Hugh 6 & 8 claims), these rocks are unconformably (Grove 1986) overlain by sedimentary rocks of the Middle Jurassic Salmon River formation, occupying the western flanks of Entrance Peak. Rocks of this unit include argillite, siltstone, greywacke, chert conglomerate and minor limestone. The Betty Creek, Salmon River contact runs in a north-south direction through the lowest part of the ridge between Cornice Mountain and Entrance Peak. (figure 4)

All of the above-mentioned rocks are crosscut by two generations of intrusions. The earlier set of dykes are of late Jurassic age. These are coarse grained granodiorite and quartz monzonite as well as quartz porphyry dykes, ranging in width from 0.5 to 3 meters.

The later and predominant set of dykes are Eocene to Tertiary feldspar hornblende and feldspar biotite porphyries, as well as several narrow mafic dykes (lamprophyre and dioritic feldspar-hornblende porphyry), originating from a large intrusion occupying the south and central Hugh 8 claim. These dykes range in width from 0.5 meters to 5 meters, have sharp, well defined contacts, occasionally with chilled margins and are relatively unaltered.

The map unit numbers in the geology map legends have been changed from those of the previous maps produced by Geofine in order to create more consistency between the 1:250 Breccia / Bench zone map and the 1:5000 geology map of the Hugh 5-8 claims. Units have also been switched to follow a chronological sequence in relative ages as they are interpreted at this time.



STRUCTURAL GEOLOGY

The volcanic and sedimentary rocks of the Betty Creek formation and the Unuk River Formation dip moderate to steep towards the north-northeast, occupying all of the Hugh 5-8 claims. There is no evidence of significant folding in this area, although C.J. Greig (1994) on a current regional program, indicates a North-South trending syncline between Cornice and Entrance Peaks. The older (Jurassic) quartz monzonite and granodiorite dykes generally trend steeply north-northwest to northnortheast (320 to 040 degrees). The younger (tertiary) feldspar porphyritic dykes are generally oriented the same (330 to 040 degrees). In the northern part of the Hugh 8 claim, these dykes run in a north-northeasterly trend (350 to 020 degrees) directly from a large quartz monzonite plug.

A broad 800 metre wide zone of strong schistosity runs in a northerly direction through the ridge between Entrance Peak and Cornice Mountain. Schistosity within this zone trends northwest, dipping steeply (64 - 80 degrees) towards the northeast. Although the rocks in this zone appear as chlorite/biotite schists (intermediate tuff protolith) and sericite schists (felsic dyke protoliths), the original textures are still visible and are mapped as the protolithic rocks. This zone of schistosity narrows towards the north as it changes toward a northwesterly trend, on strike with the quartz-sericite-pyrite schist (alteration zone) adjacent to the Bench zone and Breccia zone. It appears that there is structural continuity between these zones.

The Hugh 5-8 claims are extensively faulted and fractured. At least two events of faulting occurred in this area. The earlier occurred between the late Jurassic and early Tertiary (before Tertiary dyke intrusions) as these dykes crosscut faults without offsets. The second event is a low angle set of thrust faults, where a package of rhyolitic rocks have been thrusted overtop of the intermediate tuffs of the Cornice Mountian summit area. The mineralized quartz-calcite stockwork seems to be related to this event. The low angle thrust faults trend approximately 140/35 NE. A third set of faults offset the tertiary to eocene dykes, trending north south, with a steep (70 - 90) westerly dip. The wallrocks of these faults are intensely fractured with quartz-calcite infilling. These faults could possibly be a third event of tectonism, if not the same event as the thrust faults.

MINERALIZATION AND ALTERATION

Mineralization on the Hugh 5-8 claims occurs in two assemblages:

1) Brecciated limestone with coarse pyrite and lesser sphalerite with traces of galena and chalcopyrite in a quartz carbonate (calcite-ankerite-limonite-sericite) matrix supporting silicified angular clasts to 200mm. Type 1 mineralization occurs adjacent to strong limonite-jarosite-chlorite rich gossan zones, however the Brecca and Bench Zones are characterized by very weak gossan development.

2) Stockwork of quartz and quartz-calcite veins occur with 1 - 5% disseminated pyrite, 1 - 5% chalcopyrite and 1 - 2% chalcocite. These veins range in width form 1cm to 15cm. These veins are scattered throughout the Cornice Mountain summit area and in the zone of schistosity. The wallrocks surrounding these veins are typically stained with limonite, malachite and minor azurite.

Alteration in the work area occurs in five assemblages:

- 1. Zones of silicification with or without mineralization.
- 2. quartz sericite pyrite alteration.
- 3. carbonate alteration (calcite ankerite limonite)
- 4. propylitic.
- 5. bleaching (oxidation).

1. Zones of silicification are common on the Hugh 5-8 claims. These zones are often adjacent to quartz porphyry dykes. The wallrocks of these dykes are siliceous and contain an abundance of quartz and calcite veins, (5 - 25%) usually as infilling within tension gashes. Epidote is often present as well. Locally, quartz calcite stringers are mineralized with up to 5% pyrite, 5% chalcopyrite and 1 - 2% chalcocite with limonite and malachite - azurite staining.

2. Quartz - sericite - pyrite alteration occurs in several broad zones within the work area. These zones are usually foliated and show as gossans (from limonite, jarosite, goethite and alunite). Quartz and/or calcite stringers up to 1cm. in width range from 3 - 10% in abundance. Disseminated pyrite (3 - 15%) occurs in both the altered rocks and within the quartz (calcite) stringers. Isolated nodules of massive pyrite, up to 3cm. in width, are common. Melanterite (iron sulphate) blooms are found in

weathered pockets and alcoves.

3. Carbonate alteration is widespread throughout the mapped area. It is strongest in the faulted zones of the Breccia - Bench zone and in volcanic breccias and agglomerates south of the Cornice Mountain summit. Stringers up to 1cm. wide of white to dark grey calcite and ankerite up to 10%, in abundance occurs as fracture and open space infilling. Rocks in carbonate altered zones weather orange to brown to black, from oxide minerals such as pyrolusite and limonite.

4. Propylitic alteration zones occur as small isolated areas of dense fracturing and quartz, chlorite, calcite veining. Chlorite is the dominant alteration mineral with lesser hematite, epidote, calcite stringers and disseminated pyrite (up to 5%). Vuggy quartz - chlorite - calcite stringers are typical with rare chalcopyrite and malachite. Pyrolusite and minor limonite is common on weathered surfaces.

5. Bleaching in the project area is widespread and increases with amount of fracturing of the rocks. Mafics and pyrite are replaced by limonite, jarosite and goethite.

GEOCHEMISTRY

A total of 276 rock and 69 soil samples were collected from the Hugh 5 - 8 claims All samples were sent to ACME Analytical Labs and analysed by I.C.P. for 30 elements plus an AA for Au. (Appendix 2)

Soil samples obtained were talus fines samples, as at the elevation of these claims, soils are poorly developed. All soil samples were placed in brown kraft sample bags which were marked on the outside with black felt pen. Sample location sites were marked with orange glow flagging tape and sample numbers were put on the flagging tape with a black felt pen.

Rock chip sampling was concentrated on the Breccia and Bench zone area, the Copper Zone extension, the Cornice Mountain summit area and in two strong quartz - sericite - pyrite altered areas. All rock samples were placed into plastic sample bags. Sample tags were placed in each bag and sample sites were marked with orange or pink - orange spray paint.

Both soil and rock samples were placed in white rice bags and were sent via bus to ACME Analytical Laboratories in Vancouver.

Breccia and Bench zones

Discovered in 1992, the Breccia Zone returned assay values up to 6.78 g/t Au and 2.24% Zn across 14.5 metres. The Bench Zone, located 50 metres SW of the Breccia Zone, gave assay results up to 11.1 g/t Au across 6.0 metres (Geofine 1992). Additional sampling along nearby cliff faces failed to produce similar results. However, 25 metres above the Bench Zone, sample line 94ACR028 to 030 returned:

<u>Width</u>	<u>ppb Au</u>	<u>ppm Ag</u>	<u>ppm Cu</u>	<u>ppm Pb</u>	<u>ppm Zn</u>
4.5m	173	9.9	1679	300	17,658

This new zone consists of silicified volcanic clasts (10 - 100mm) in a quartz - calcite matrix with minor ankerite - sericite - pyrite - sphalerite - chalcopyrite. Extensive sampling (94ACR026 to 054) on the cliff face above the Bench and Breccia zones failed to indentify continuity of the Au - Zn - Cu bearing

mineralization.

In the 1994 program, extensive rock chip sampling was undertaken in the Southwest extension of the Copper Zone, returning low assay values. The best results came from sample 94MCR001, which was taken from a siliceous rhyolite breccia which returned the following results:

<u>Width</u>	<u>ppb Au</u>	<u>ppm Ag</u>	<u>ppm Cu</u>	<u>ppm Pb</u>	<u>ppm Zn</u>
2.0 m	225	6.1	713	638	30

The Copper Zone is part of a dip-slope surface expression of a major east-west trending fault, dipping 065 N. Two crossfaults (the Copper Zone extension) have been systemtically sampled at 25m intervals. No significant assay results were returned. Highest values ranged up to 16 ppb Au, 16.8 ppm Ag, 2155 ppm Cu, 70 ppm Pb, and 162 ppm Zn in an area of fracturing and with trace amounts of chalcopyrite mineralization at the southwestern limit of one of these faults.

Little Cornice Zone

This zone consists of an area 200m x 300m of intermediate tuffs and rhyolite which is centered on the low angle thrust fault, 400 metres east of the Cornice Mountain summit. A stockwork of mineralized (0.5% cpy, 1-3% py and 0-2% chalcocite) quartz (calcite) veins is widely scattered throughout this zone. The stockwork is densest adjacent to a quartz prophyry dyke, 5 metres wide trending 052/73 SE immediatley below the thrust fault. Some of the better results were as follows:

Sample #	Width	Description	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
94ACR002	1.0m	Felsic tuff with 3% cpy Carbonate, sericite altered. Malachite staining	175	41.4	11191	55	294
94ACR005	1.0m	Felsic tuff with 2% cpy Carbonate, sericite altered. Malachite staining.	25	12.8	7923	29	227

Sample #	Width	Description	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
94ACR009	1.0m	Felsic tuff with 1% cpy Carbonate, sericite altered, Malachite staining.	57	33.0	6266	82	372
94MCR026	1.2m	Quartz porphyry dyke	75	9.7	817	20	118
94MCR027	1.5m	Intermediate ash tuff (siliceous) with quartz veins, 5% cpy. Malachite staining.	67	14.1	15751	442	787
94MCR053	2.0m	Rhyolite dyke, sil., with quartz veins. Malachite staining.	241	0.9	79	11	30
94MCR054	2.0m	Intmdt. lapilli tuff, quartz veins with intmdt. lapilli tuff, quartz veins with 1% cpy. Malachite staining.	300	237.2	2356	50	2454
94MCR056	1.2m	Rhyolite dyke with 3% quartz stringers, 1% cpy. Malachite staining.	68	0.7	65	8	30

Ten (10) soils were collected in this area. Three of these returned high gold values. Results are as follows:

	Au	Ag	Cu	Pb	Zn
<u>Sample</u>	<u>ppb</u>	<u>ppm</u>	<u>ppm</u>	<u>ppm</u>	<u>ppm</u>
L2 0+00 W	242	1.8	318	44	252
L2 0+25 W	118	1.6	332	47	262
L2 0+50 W	150	3.3	398	96	224

This 50 meter long anomaly occurs between the thrust fault and mineralized veins described above.

Summit Zone

The Summit Zone consists of a multi element anomalous zone in soil over a distance of 350 meters. This anomaly stretches from 2 + 50 W to 6 + 00 W on soil line L2, returning high Au, Ag, Cu, Pb, Zn, As, Sb. It is located at the 7300 foot elevation just southeast of the Cornice Mountain Summit. Assay results were as follows:

Sample #	Au ppb	Ag <u>ppm</u>	Cu <u>ppm</u>	Pb ppm	Zn <u>ppm</u>	As <u>ppm</u>	Sb ppm
L2 2+50 W	18	12.9	883	195	523	210	92
L2 2+75 W	24	12.6	615	320	848	141	55
L2 3+00 W	52	21.4	251	1273	1919	251	56
L2 3+25 W	74	7.7	472	355	794	342	48
L2 3+50 W	308	11.3	440	610	920	579	66
L2 3+75 W	21	10.4	250	422	728	192	65
L2 4+00 W	34	30.2	1349	2526	3225	824	307
L2 4+25 W	141	62.3	890	1978	6175	633	246
L2 4+50 W	87	35.9	48 0	1 8 01	3744	361	87
L2 4+75 W	8	2.8	107	246	848	61	25
L2 5+00 W	44	19.5	988	428	702	388	102
L2 5+25 W	42	19.8	1168	441	802	496	107
L2 5+50 W	63	5.3	527	193	532	121	38
L2 5+75 W	59	3.5	473	44	213	136	34
L2 6+00 W	73	4.8	452	89	401	259	59

Western and Southern Gossans

Extensive rock chip sampling was done on two large gossanous areas, referred to as the Western Gossan, located 500 metres NW of the Cornice Mountain summit and the Southern Gossan, located 600 metres southwest of the summit.

On the Western Gossan, a total of 18 rock samples were collected. Results ranged up to 23 ppb Au, 14.6 ppm Ag, 34 ppm Cu, 951 ppm Pb and 190 ppm Zn. Sample 94MCR079, a 0.5 metre chip across a siliceous siltstone with 1% chalcopyrite returned 31 ppb Au, 37.2 ppm Ag, 4341 ppm Cu, 41 ppm Pb and 345 ppm Zn. This sample was collected adjacent to a small shear 150 metres north of the Western Gossan.

On the Southerrn Gossan, a total of 33 rock chips were collected. Sample 94JCR034, returned anomalous values of 48 ppb Au, 32.8 ppm Ag, 198 ppm Cu, 2384 ppm Pb and 1517 ppm Zn over a 1.0 meter continuous chip.

DISCUSSION OF RESULTS

During the 1994 program, an extensive sampling program was performed on both structural and lithologic continuation of the Breccia - Bench Zones, and on the Copper Zone extension.

The continuation on surface of these zones appears to be limited in size and potential. It appears that the surface expression of the Breccia Zone and the chip samples collected from it in 1992 and 1993 were taken over a dipsloped zone of a thin tabular mineralized area. The only possible remaining scenario for an orebody of economic size would be a plug shaped zone of mineralization plunging towards the west, straight into the slope. Orebodies of the nearby Red Mountain deposit are of similar morphology. The 1993 drill holes could have missed this possible plug by drilling underneath and over top of it.

One suggested method of confirming this would be, redrilling hole T93-01 and performing a down-hole Pulse-EM geophysics survey to test for adjacent mineralization, as the surface of the Breccia Zone is too steep to set up a drill on the zone itself.

A similar survey could be done for the Bench Zone.

The Copper Zone is a dipslope expression of a major east-west trending fault, dipping 065 degrees towards the north, which dissects the entire Breccia - Bench -Copper zone nunatak. The zone of strong foliation across the glacier to the southeast narrows down towards and on strike with this major fault. They are believed to be related to the same tectonic event.

The strong continuous multi element anomaly on line 2 suggests the presence of either an undiscovered mineral occurrance at surface, or of a more widespread mineralization similar to the erratic occurrance of mineralized veins and stringers towards the northeast in the Little Cornice zone.

An intrusive quartz monzonite plug below the sedimentary and volcanic rocks with related dykes, stockwork veining with copper mineralization and local pyritic zones suggest that mineralization on the Hugh 5-8 claims are of a porphyry type deposit. Porphyry type alteration such as phyllic (quartz-sericite - pyrite) and propylitic

(chlorite - calcite - epidote - pyrite) are prominent on these claims. The presence of minor galena and anomalous arsenic - antimony suggest a possible epithermal or mesothermal overprint in this area. This hydrothermal type of mineralization is more prominent in the Breccia and Bench Zones, and in the Summit Zone soil anomaly.

Although the quartz monzonite intrusion at the edge of the Nelson glacier is not a moly positive stock, it is associated with a pyrrhotite rich halo similar to that of the nearby Red Mountain deposit. Erratic occurrances of chalcopyrite mineralization and elevated assays of Au, Cu and Zn, also similar to Red Mountain (although not zoned) suggest that there is a possibility of a deepseated deposit in the area between the summit of Cornice Mountain and the quartz monzonite plug.

CONCLUSION AND RECOMMENDATIONS

An extensive sampling and mapping (1:5,000 scale) program on the Hugh 5-8 claims has led to a better understanding of the nature and extent of the Breccia, Bench, and Copper Zones, and their relation to local geology.

The claims are underlain by Jurrassic intermediate volcanics, rhyolites and sedimentary rocks, intruded by Tertiary and Eocene intermediate and felsic dykes. Extensive faulting and fracturing has occurred in 2 or 3 different periods.

Porphyry type mineralization and alteration on the property appears to be related to the second period of faulting and to the quartz monzonite plug with related dykes. Mineralization consists of Au, Cu, Ag and Zn in quartz calcite stockwork. Locally elevated Sb and As, mostly in the area of the Summit zone indicates a possible overprint of hydrothermal type mineralization.

Mineralization in the Breccia and Bench Zones appear to be of mesothermal or epithermal in origin.

The 1994 program has not been able to substantiate the extent of the three main target zones (the Breccia, Bench and Copper Zones), nor did it duplicate similar grades from samples taken during the 1992 and 1993 programs. These zones appear too small for economic development. However redrilling holes into the Breccia and Bench Zones for down hole Pulse - EM geophysics should be considered to investigate the possibility of a plug shaped mineralized zone plunging towards the west-northwest, directly into the cliff face.

The source of a 350 meter long multielement soil anomaly up to 308 ppb Au, 62.3 ppm Ag, 1349 ppm Cu, 2526 ppm Pb, 6175 ppm Zn, 824 ppm As and 307 ppm Sb, should be investigated through detailed mapping, sampling and geophysics (Mag/VLF).

Additional VLF/EM geophysics should be performed in the area of strong schistosity on the broad ridge between Cornice Mountain and Entrance Peak, to test for mineralization at depth.

Two linear gossans southwest from the Southern Gossan should be sampled and

mapped. One of these gossans is located in the vicinity of the contact between volcanic and sedimentary rocks. This same type of contact hosts the Au/Ag ore deposit at nearby Red Mountain.

In case of favourable results, this phase should be followed up by a drill program consisting of deep holes, as mineralization appears to be deep seated.

PROPOSED PHASE 1 BUDGET

Geological mapping/ sampling Geologist and two assistants, 14 days @ \$900/d	ay \$ 12,600
Geochemical survey 200 samples @ \$20 per sample	\$ 4,000
Trenching	\$ 2,000
Equipment rental	\$ 4,000
Helicopter support 20 hours @ \$ 825 per hour	\$ 16,500
Room and board @\$ 45 per manday	\$ 2,000
Travel, miscellaneous	\$ 2,000
Consulting, report	\$ 3,000
Subtotal	\$ 46,100
Contingency (10%)	\$ 5,400
Total estimated phase 1 (sa	\$ 50,710 (§ 50,000

Contingent on the results of Phase 1, a second phase of drilling and geophysics will be recommended.

STATEMENT OF COSTS

<u>Personnel</u>

•		
J. Nicholson	31 days @ \$300/day	\$9300.00
A. Kikauka	13 days @ \$300/day	\$3900.00
M. van Wermeskerke	- Ç	\$5700.00
T.Woods	12 days @ \$265/day	\$3180.00
D.Cosgrove	15 days @ \$265/day	\$3975.00
A.Wilkins	6 days @ \$300/day	\$1800.00
<u>Transportation</u>		
Helicopter 19.7 hou	ırs @ \$825/hr	\$16252.50
Equipment Rentals		
(1) FORD Xtra cab 4	x4 1 month @ \$1700/month	\$1700.00
(1) Hilti Portable Roc	k Drill 31 days @ \$30/day	\$ 930.00
(3) Handheld Radios	89 days @ \$10/day	\$ 890.00
Assays 34	15 samples @ \$20/sample	\$6900.00
Room and Board 89	9 days @ \$35/man/day	\$3115.00
Field Supplies		\$ 600.00
Communications		\$ 475.00
<u>Mob/demob</u>		\$2000.00
<u>Report Writing</u>		\$7000.00
Total Expenditures		<u>\$67717.50</u>

REFERENCES

Alldrick, D.J. (1983): Salmon River Project, Stewart, B.C., Geological Fieldwork 1982, B.C. Min.E.M.P.Res., Paper 1983-1, pages 182-195.

Alldrick, D.J. (1984): Geological Setting of Precious Metal Deposits in the Stewart Area; Geological Fieldwork 1983, B.C. Min.E.M.P.Res., Paper 1984-1 pages 149-164.

Anderson, R.G., Thorkelson, J. (1990): Mesozoic Stratigraphy and Setting of the Mineral Deposits in the Iskut River Area, Northwest B.C., Part E, Current Research, Paper 90-1F, G.S.C. pages 131-139.

Grove, E.W. (1971): Geology and Mineral Deposits of the Stewart Area, B.C.Min.E.M.P.Res., Bulletin 63, 152 pages.

Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk River- Salmon River- Anyox Area, Bulletin 63, 152 pages.

Greig, C.G., Anderson, R.G., Daubeny, P.H., Bull, K.F. (1994): Geology of the Cambria Icefield: regional setting for the Red Mountain gold deposit, Northwest B.C.; in Current Research 1994-A; G.S.C. page 45-56.

Kennedy, D.R. (1993): Assessment Report on the Hugh and Pam Claims: Phase 3A Detailed Follow-up and Phase 3B Drill Programs, Skeena Mining Division, for Cameco Corporation.

CERTIFICATE

I, John A Nicholson, do herby certify that:

1. I am a consulting geologist with offices at 606 - 675 West Hastings Stree, Vancouver, B.C.

2. I am a graduate of the University of British Columbia with a Bachelor of Science, Geology (Honours).

3. I have had 14 years of combined experience in Cordillera base and precious metals, (Canada and United States) and precious and massive sulfide depsits within shield rocks (Canada).

4. I am a member of Professional Engineers and Geoscientists of British Columbia, member #19933.

5. I personally supervised work carried out on the Hugh Claim Block Cornice Mountain Project.

6. I have no direct or indirect interest in the property or securites in Trev Corporation or Cameco Corporation, nor do I anticipate any.

7. I authorize the use of this report for public financing.

November 10, 1994 Vancouver, B.C.

CERTIFICATE

I, Marcus T. van Wermeskerken of 128 Saltair lane, Saltspring Island, BC, V8K 1Y5 do hereby declare that:

- I am a consulting geologist employed by Nicholson & Associates.

- I am a graduate (1987) of the University of British Columbia with a Bachelor of Science (Geology)

- I am a member of the Professional Engineers and Geoscientists of British Columbia, member # 19385

- The data that was used for this report came from field observations, published and unpublished information.

- I have no direct or indirect interests in the securities or holdings of Trev Corporation or Cameco Corporation nor do I anticipate any.

- I authorize the use of this report for public financing.

Vermeskerken, P.Geo Márcus T. 1 ...

CERTIFICATE

I, Andris Kikauka, Box 370, Brackendale, B.C., V0N 1H0 do hereby declare that:

-In 1980, I recieved Hons.B.Sc. from the faculty of Geological Sciences, Brock University, St.Catharines, Ontario, Canada

-I am a professional cosulting geologist with 14 years combined experience in Cordillera base and precious metal mineral deposits (North and South America) as well as base, precious, and radioactive mineral deposits in shield cratons (Canada, Guyana)

- I am a member in good standing of the British Columbia Association of Professional Engineers and Geoscientists, Member # 18,275

- I am a Fellow in good standing of the Geological Association of Canada, Member # 5,771

- The data that was used for this report came from field notes, published, and unpublished information

- I have no direct or indirect interest in the securities or holdings of Trev Corp.

- I authorize the use of this report for purposes of public financing.

A. Kikonka

Andris Kikauka, P.Geo.

APPENDIX 2 Assay Technique

.

.

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 TO P3 ROCK P4 SOIL AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE.

•...

.

APPENDIX 3

,

.

Assay Results Sample Descriptions

1R6 NOS VA TD VER GEOCHEMICAL ANALYSIS CERTIFICATE Orequest Consultants Ltd. PROJECT CORNICE MTN File # 94-2879

SAMPLE#	Mo ppm	Cu ppm	Pb pom	2n ppm	Ag ppin p			Hin Dom		As ppn ;					Cd ppm (Sb Dom o			Ca %		La Ppm j			Ba ppm	Ti X Pf		A(X	Na		H AL	 ++ opb
94ACR-001	3	12	6	7	.5	7	2	485	.51	3	<5	<2	8	42	<.2	6	42	2	.90	.086	25	5	<.01	53<.	01	3	. 18 .	01 .	19	3	5
94ACR-002		11191	55	294		46		359	1.67	68 14	<5	<2	5	27	8.4	13	21	5		.020	14	5		39<.			.25<.			6	75
94ACR-003	3	179 704	17 13	63	.5 3.8	8	3	45	.86 .64	37	<5 <5	<2	4 5	13 12	1.0	7	<2	-		.036	14	3	. D1	48<.			.27 .			:1	8
94ACR-004 94ACR-005		7923	29	227		10 29		208 363	1.15	57	3	<2 <2	3	26	.4 5.1	3 7	<2 12	5		.046	15 10	6 5	.01	46<. 44<.			.33<.			2	1
ANTE- ACC		1963	29	221	14.0	27	37	202	1.15	21	\$3	12	2	20	2.1	,	14	4	• 20	.037	ĨŪ	2	.01	44<,	01	6	.27<.	01.4	~	5	25
94ACR-006	3	2492	27	130	7.5	13	15	232	.75	33	<5	<2	6	11	.6	5	7	4	. 19	.041	19	3	.01	40<.	01	7	.28 .	01 .:	25	2	20
94ACR-007	3	609	10	42	5.0	6	4	546	. 85	9	<5	<2	8	41	.4	4	<2	6	1.20	.141	61	4	. 02	51<.	01	4	.34 .	01 .:	26 <	:1	22
94ACR-008	6	8055	28	271	42.5	27	18	775	2.07	57	<5	<2	4	24	3.7	8	2	7		.030	36	3	. 02	53<.	01	6	.30<.	01 .:	27	2	108
94ACR-009	5	6307	80	371	32.9	35	32	540	2.05	78	<5	<2	4	14	2.6	12	<2	6	.57	.026	14	3	.01	59<.	01	5	.24<.	01 .:	22	2	61
RE 94ACR-009	5	6224	83	372	33.0	33	31	544	2.04	77	<5	<2	4	14	2.5	12	<2	5	.56	.027	14	3	.01	58<.	01	4	.24<.	01 .3	21	5	53
94ACR-010	5	6701	16	75	9.9	14	15	472	1.47	59	<5	<2	3	22	1.0	9	<2	4	.82	.026	14	7	. 02	54<.	01	4	.25<.	01	10	5	6
94ACR-011	13	88	27	6	2.4	3	4	28	3.43	48	<5	<2	- Ă	-4	<.2	15	2	15		.014	10	ż	.02				.29<.			2	11
94ACR-012	3	154	24	83	1.9	5	11	700	10.18	19	<5	<2	5	15	<.2	6	5	55	.32	.058	14	3		155 .			.94<.			1	4
94ACR-013	8	156	351	229	3.2	5	9	244	13.50	121	<5	<2	6	B	<.2	27	9	5	.17	.053	24	2	.08	72<.	01 .		.21<.		• •	Ŷ.	33
94ACR-014	6	53	54	359	.7	21	78	1264	3.46	99	<5	<2	3	22	.5	8	<2	25	. 82	.090	12	3	. 14	83.	03	9	.53 .	02 .:	32 •	c1	13
94ACR-015	<1	6	22	76	.5	3	8	1651	4.01	3	<5	<2	z	88	<.2	<2	2	22	4.42	. 068	15	2	.55	37.	02	4	.20 .	02 .	16	3	2
94ACR-016	2	16	13	8	.5	5	3	382	.67	ž	<5	<2	ž	32	<.2	6	<2	Ĩ.		.037	12	-	<.01					Di .		ŝ	<1
94ACR-017	1 ī	36	7	21	<.1	13	9	1482	3.78	Å.	<5	<2	<2	210	<.2	<2	<2	17	6.14		6	ž		_		-	.24			3	4
94ACR-018	5	15	30	31	.1	14		1048	4.19	28	Ś	<ž			<.2	6	2	25		.076	12	ž	. 17				.45 .			-	2
94ACR-019	3	1734	20	38	9.1	8	4	76	.63	20	<5	<2	7	16	.3	6	<2	5		.026	28		<,01		_		.22<.	• • • •		4	9
94ACR-020	2	1273	20	Q1	2.2	11	7	238	.68	52	<5	≺2	6	9	1.2	8	<2	5	.21	.037	23	4	<.01	54<.	61	5	.21<.	n 1	10	2	2
94ACR-021	10	42		69	1.2	3	7	1415	6.62		<5	<2		134	.2	õ	4	31	3.96		3			72 .			.46 .			ĩ	8
94ACR - 022	20	35		50	2.1	6			10.02		6	<2	2	34	<.2	ź	7	23		.069	2	6		11<.			.05 .			(1	7
94ACR-023	3	129		62	.6	8		2104	3.96	37	<Š	<2		120	.2	7	2	23	3.53		12	ž		117<			.33 .			3	10
94ACR-024	3	17		26	.1	7		1439	2.89	40	<5	<2	<2	173	<.2	8	2	8	4.78	.092	10	2	.06				.28			<1	5
94ACR-025	3	325	14	45	.7	10	12	1964	3.04	67	<5	<2	٦	228	.3	17	3	12	8.29	. 062	7	3	38	60<.	01	4	. 29	ns :	22	5	25
94ACR-026		33		26	.7	19		1904	7.67	100	13	<2	-	204	.3	8	4		10.13		ź	ž	.72			-	.22<			ś	27
94ACR-027	2	45		109	.9	12	• •	2162	4.43	91	20	<2		251	.6	17	4		12.06		-	-	1.04			ž	.20<			ś	41
94ACR-028	14		312	9075	4.4	- Ģ		2849	2.28	83	15	2			54.9	12	2		12.48			-	1.41	÷ •			.23				106
94ACR-029	8			25062		21		2002	3.44	143	<5	<2				51	6	7			4	-	1.30			ž	.21<				214
94ACR-030	1	1289	268	18836	10 1	9	15	1790	3.15	86	<5	<2	2	100	133.7	96	<2	6	7.12	051	4	т	1 63	47<	01	3	-26	61	20	<1	200
94ACR-031	2	66		243	.4	5		1254	6.47	215	~5	~2	-	107	1.0		4		5.09					100<		-	.27				
94ACR-032		43		182	.8	5		1972	4.41	12	<5	<2	-	147	.6	2	4		5.71			-		131			.62			3	115 11
94ACR-032	2	69		104	.1	5		1925	2.66	27		<2		140		6	2		6.53					96		3	.41			3	24
94ACR-034	3		33	83	1_9	5			17.52		~5			119			13		4.17					75 7 8<			15				200
STANDARD C/AU-R	19	55	39	124	7 3	73	31	1037	3,96	40	14	٨	37	52	19.0	17	22	61	40	003	60	63	00	183	28	22 .	1 20	D4	16	• 1	
	<u> </u>																				·								10	<u> </u>	434
	ICP -	.500	GRAN	I SAMPI	LE IS	DIGE	STED	VITE	SNL 3	3-1-2	HCL -	- HNO3	5-1121	TA C	95 DE0	G. C	FOR	ONE	ROUR	AND 1	S DTI	UTE	DT C	10 ML	NITH		TEP				

JCP - .500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 NCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR NN FE SR CA P LA CR HG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES 1F CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000)PPB

AU** ANALYSIS BY FA/ICP FROM 10 GH SAMPLE. Samples beginning #RE! are duplicate samples. - SAMPLE TYPE: ROCK ept 6/94

DATE RECEIVED: AUG 26 1994 DATE REPORT MAILED:

ORI

LAF

54.5

ALE.

SIGNED BY ... MANTE ... D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

PL (604 3-31

Page 1

TALIOUS

٦

÷.,

•

1 · .

. .

...

:

AA

Orequest Consultants Ltd. PROJECT CORNICE MTN FILE # 94-2879

...

Page 2

44

•...

÷.

ACHE ANALITYSCAL									_																					NE HOLLY	TE DUNC
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	2n ppm	Ag ppm	N1 ppm	Co ppm	Nn ppm	Fe X	As ppm	U ppm	Au ppin	Th ppm	Sr ppm	Cd ppm	\$b pp∎	Bi ppm	V ppm	Ca X	P X	ta ppm	Cr ppm	Ng X	8a ppin	Ti X	B ppm	۸۱ ۲	Ha X	K X	N more	Au## ppb
44CR-035	4	702	17	90	1.2	12	17	828	5. 1A	136	<5	<2	6	142	.5	43	4	8	5.32	.066	5	1	2.69	32	<.01	2	.24	.01	. 18	<1	202
4ACR-036	2	20	8	27	.3	2		1100		48	-š	<2	Š	95	<.2	4	<2	š	4.59		8	i 1	.79		<.01	5	.26	.01	. 18	3	42
4ACR-037	3	90	6	46	.1			1477		117	-5	<2	ĩ	91	.2	43	~2	6	3.95		ā		1.42		<.01	6	.24	.01	.17	ž	299
4ACR-038	3	118	31	61	.6	ģ		1230		466	<5	<2	4	96	.2	112	2	- Ģ	4.22		6		1.25		<.01	3	.23	.01	. 19	4	329
4ACR-039	3	180	18	39	.4	10		2149		54	<5	<2	8	156	<.2	6	6	8	8.38		7	1	.67		<.01	<2		<.01	. 20	2	16
4ACR-040	2	24	10	9	<.1	5	8	1086	1.71	12	<5	<2	4	76	<.2	3	<2	7	3.34	.081	11	1	.08	130	.01	8	.39	.01	.33	2	<1
ACR-041	3	17	9	49	<.1	3	8	2322	2.10	35	<5	<2	6	164	<.2	2	<2	9	7.23	.062	11	1	2.82	91	<.01	6	.27	.01	.20	3	Ś
4ACR-042	- Ť	391	9	75	.6	7		3791		83	<5	<2	7	177	<.2	<2	Ž	14		.077	14		4.68		<.01	5	.29	.01	.23	ž	ৰ
E 94ACR-042	1	379	11	71	.6	7	11	3674	4.00	77	<5	<2	5	171	.3	<2	3	13	7.47	.074	13	2	4.55	133	<.01	4	-28	.01	.23	4	<1
4ACR-043	1	71	8	64	<.1	6	11	3613	3.80	:42	<5	<2	8	186	<.2	<2	<2	11	8.63	.068	10		3.25		<.01	5	.24	.01	.20	ż	<1
4ACR-044	2	30	12	32	.1	8	13	3105	3.99	. 14	<5	<2	6	131	<.2	3	<2	9	9.19	.063	18	2	1.08	127	<.01	4	.27	. 02	.20	3	<1
4ACR-045	2	16	8	19	<.1	10	16	2554	4.20	30	<5	<2	4	128	<.2	<2	5	9	7.24	.065	9	2	.64	57	<.01	3	.24	.01	.20	6	B
4ACR-046	4	67	48	78	.5	8	10	2194	2.04	27	<5	<2	10	207	1.0	4	<2	7	9.81	.053	8	1	.36		<.01	3	.26	.01	, 18	ž	ă
4ACR-047	2	5	4	28	<.1	5	6	2381	2.53	14	<5	<2	9	180	<.2	<2	2	7	8.17	.048	11	1	1.48		<.01	5	.25	.02	.19	3	<1
4ACR-048	1	5	<2	26	<,1	3		1652		5	<5	<2	4	107	<.2	<2	<2	10	5.12	.059	15	2	.80	182	<.01	6	.31	.02	- 22	3	3
4ACR-049	<1	4	11	36	<.1	2	7	2011	1.96	12	<5	<2	6	207	<.2	<2	<2	13	10,08	.087	12	2	5.45	201	<.01	5	.27	.02	.20	2	8
4ACR-050	2	26	12	26	<.1	6	10	1257	1.40	34	<5	<2	3	136	<.2	4	<2	9	5.33	.075	9	3	.77		<.01	6	.37	.01	.28	÷1	13
4ACR-051	1	6	9	10	.1	6	7	1226	1.74	21	<5	<2	3	95	<.2	5	<2	5	4.50	.066	7	1	.05	67	<.01	4	. 28	.01	.23	3	8
4ACR-052	2	74	24	120	<.1	8	9	2350	2.66	20	<5	<2	4	87	.6	<2	<2	7	4.06	.071	8	3	2.04		<.01	5	.31	.01	.22	<1	38
4ACR-053	9	69	82	197	.4	8	9	1784	2.04	17	<5	<2	5	132	1.0	3	<2	7	4.95	.082	10	2	.51	94	<.01	4	.30	.02	.23	<1	3
44CR-054	1	75	732	5138	20.2	7	12	2568	3.83	21	<5	<2	6	62	48.9	9	2	9	3.05	.031	7	2	. 11	67	< .0 1	4	.24	<.01	.21	<1	22
4ACR-055	3	45	14	46	.7	22	27	1217	2.86	36	<5	<2	4	170	<.2	6	<2	14	5.01	.119	8	1	. 09	36	<.01	3	.27	.01	.18	<1	7
4ACR-056	2	390	9	64	1.9	5	- 14	1361	4.21	7	<5	<2	6	47	.2	<2	5	22	2.13	.091	19	3	.32	101	.01	4	.87	.01	.35	<1	5
4ACR-057	2	3260	24	87	22.7	225	700	629	2.04	862	<5	<2	2	54	.2	42	11	7	1.63	. 108	11	14	.07	47	.01	7	.30	.01	. 19	Ż	7
4ACR - 058	1	6	9	484	<.1	11	21	1248	3.72	34	<5	<2	7	205	.3	<2	<2	34	3.98	. 102	20	3	2.25	46	.0 1	4	.78	.02	.20	<1	<1
4ACR-059	<1	768	12	48	1.2	4	22	4712	6.21	4	13	<2	10	208	.2	<2	3	34	11.50	,046	15	2	6.91	34	<.01	6	.33	.01	. 22	3	2
4ACR-060	3	31	6	- 14	.1	6	- 11	842	1.44	45	<5	<2	- 4	- 36	<.2	10	<2	7	1.08	.037	10	- 3	. 05	- 39	.01	7	.34	<.01	. 29	2	<1
4ACR-061	5	263	8	- 32	1.3	6	13	2530	3.10	8	<5	<2	5	110	<.2	2	- 11	26	6.58	. 157	10	1	.31	- 54	.05	7	.51	.01	.40	1	12
94TCR-001	3	88	210	104	.3	11	22	2620	4.71	130	<5	<2	6	184	<.2	70	<2	18	7.66	.065	7	Ż	1.55	89	<.01	- 4	.53	.01	. 23	<1	25
941CR-002	1	27	15	84	<.1	7	25	1883	4.43	67	<5	<2	6	202	<.2	<2	<2	25	6.00	.099	8	2	.87	107	.01	5	.55	.02	.30	<1	7
941CR-003	4	21	15	115	<.1	6	13	1843	3.08	34	<5	<2	5	90		<2	<2	11	3.52	.074	10	2	.58	112	.01	5	.35	.02	. 29	<1	7
941CR-004	4	6	5	31	<.1	- 4	7	1043	1.55	16	<5	<2	7	52	<.2	<2	<2	8	1,81	.064	21	4	.21	107	.01	4	.44	.03	.28	<1	<1
94TCR-005	4	10	- 4	41	<.1	- 5	8	3417	2.30	17	<5	< 2	8	63	<.2	4	<2	8			19	3	.20	131	.01	5	.46	.03	.31	3	7
94TCR-006	3	7	39	148	<.1	4	7	1722	2.32	19	<5	<2	10	76	.3	2	<2	10	3.42	.064	20	2	.32	133	.01	6	.36	.03	. 25	्रत	Ż
94TCR-007	4	11	10	86	< .1	6	9	1472	2.62	102	<5	<2	9	26	<.2	<2	<2	7	1.72	.071	22	2	.13	139	.01	4	.51	.03	.36	<1	7
STANDARD C/AU-R	20	60	43	133	6.9	75	32	1095	4.16	40	21	5	40	52	17.0	14	22	63	.50	.093	41	61	.91	186	.09	34	1.97	67	. 17	4 1	669

ft

Orequest Consultants Ltd. PROJECT CORNICE MTN FILE # 94-2879

Page 3

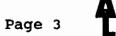
ADME ANALYTICAL																														NE HUNLY	INCAL
SAMPLE#	Mo	Cu ppm	РЬ ррм	Zn ppm	Ag ppm	₩i ppm	Co ppm	Hin ppm	Fe X	As ppm	U PPM	Au ppm	Th	Sr ppm	Cd ppm	Sb ppm	Bi ppn	V ppin	Ca X	P X	La ppm	Cr ppm	Ng X	Ba ppm	Ti X	B. PPM	Al X	Na X	K X		Au** ppb
94TCR-008 94TCR-009 94TCR-010 94TCR-011 94TCR-012	4 3 1 1	9 14 48 19 28	7 3 46 23 6	83 65 108 144 110	<.1 <.1 .8 .1 .2	4 4 13 6 8	8	2256 797	2.33	24 17 69 20 163	\$ 5 5 5 5 5 5 5 5	88888	8 9 5 4 3	26 16 112 81 110	<.2 <.2 .2 .3 .2	2 2 7 4 3	\$\$\$\$ \$	6 16 13	1.69 .86 6.09 1.99 2.35	.064 .108 .106	21 28 10 11 12	2 2 2 2 4	.10 .15 .22 .23 .45	125 128 126 183 121	.01 .02 .01 .02 .03	11 7 9 9 5	.35 .58 .44 .63 .89	.03 .03 .01 .03 .02	.21 .25 .33 .37 .23	v v v v v v v v v v	10 2 26 6 94
94TCR-013 94TCR-014 94TCR-015 94TCR-015 94TCR-016 94TCR-017	67222	32 33 21 36 30	73 40 17 4	280 344 71 84 89	.2 .1 .2 .1	22 16 9 14 16	19 14 14	1222 1356 1577 1495 1434	2.60 2.30 2.79	37 31 22 18 24	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	~~~~~	6 6 8 6 7	99 120 181 139 182	.8 1.0 <.2 <.2	7 6 4 2 4	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	12 10 20		.088	14 10 12 15 16	6 4 2 9 11	.25 .35 .41 .56 .73	176 127 118 169 174	.03 .02 .02 .03 .04	-	.65 .74 .69 1.01 1.20	.03 .02 .02 .02 .02	.39 .27 .26 .34 .38	त त त त त	7 9 2 5 5
94TCR-018 94TCR-019 94TCR-020 94TCR-021 94TCR-022	2 2 1 <1 <1	44 17 223 5 7	12 6 70 5 51	125 17 69 34 162	.2 .2 16.8 .1 .7	36 7 5 3 6	8 13 10	1358 1043 2271 2708 4074	1.64 1.43 7.63	45 12 26 10 11	5 5 6 5 5 5 5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	53643	253 21 82 54 76	.3 <.2 .7 <.2 <.2	3 5 30 <2 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 7 33	5.62 1.62 8.57 2.70 3.15	.042 .055 .136	12 17 16 14 11	23 5 3 3 3	.68 .03 .05 .36 .26	63 62	.04 <.01 <.01 .01 <.01	5 7 8 14 11	1.20 .33 .22 .53 .35	<.01	.28 .26 .19 .39 .30	<1 <1 <1 <1	3 <1 7 8 <1
94TCR-023 94TCR-024 94TCR-025 94TCR-026 RE 94TCR-026	1 1 1 1 1 1	16 7 7 7 7	7 10 9 5 <2	37 29 121 35 35	.2 .1 .3 <.1 .1	4 3 8 5 3	8 19 13	2050 1775 2159 3659 3680	3.89 6.78 7.06	9 48 22 12 13	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5	5 2 3 3 4	24 35 38 42 43	<.2 <.2 <.2 <.2 <.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	37 25	1.68 .95 2,81	.101 .146 .127	19 14 16 17 16	3 2 2 1 2	.06 .10 .33 .29 .29	64	<.01 <.01 <.01 .03 .03	10 10 12 9 10	.30 .39 .76 .32 .32		.25 .29 .40 .31 .32	1 1 1 1 2	7 2 2 1 2
94TCR - 027 94TCR - 028 94TCR - 029 94TCR - 030 94TCR - 031	1 1 1 1 1 1 1	51 2155 304 14 30	6 7 13 5 7		<.1 1.8 3.0 .1 <.1	5 5 12 11	8 22 15	1004 2484 1200 1332 1959	3.31 2.38	20 11 45 25 24	5 5 5 5 5 5 5 5 5	\$ \$ \$ \$ \$ \$ \$	2 7 3 2 3	20 75 48 66 24	<.2 <.2 <.2 <.2 <.2 <.2	3 2 6 3	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15 14 15	8.27	.084	21 24 16 10 10	4 2 3 5 5	.04 .07 .03 .03 .07	57 41 56 51 58	.01 .01 <.01 .01 .04	8 6 6 9	-29	.01 <.01 .01 <.01 .01	.22 .22 .25 .20 .33	<1 2 1 <1 1	10 6 3 4 6
941CR-032 941CR-033 941CR-034 941CR-035 941CR-035	2 1 1 1 2	38 12845 83 21 128	12 2 7 8 7	11 37 11 18 22	<.1 <.1	8 5 5 4 8	6 4 5	1948 1598 1309	3.53	32 12 13 4 21		\$\$\$\$\$ \$	2 2 2 2 3	37 24	<.2	6 <2 <2 <2 6	<2 <2	24 30 44	2.92	.065	10 10 17 19 10	3 3 4 3 3	.04 .23 .18 .27 .04	42 51 46 56 67	.01 .03 .04 .09 <.01	8 10 12 9	.24 .41 .39 .71 .20	.01 <.01 .01 .01	.24 .36 .35 .60 .19	<1 3 1 1	9 16 <1 7 <1
94 TCR - 037 94 TCR - 038 94 TCR - 039 94 TCR - 040 94 TCR - 041	1 1 4 2 1	18 10 16 6607 235	5 12 25	9 58	<.1 <.1 11.0	8 7 6 11 5	11 6 11	2498	3.56 3.66 3.85 2.15 1.51	22 24 38 19 28	<5 <5 <5	<2 <2 <2	<2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	78 40	<.2 <.2 .4	2 <2 8 6 43	<2 <2	59 17 15	3.79	.090	14 10 9 15 45	4 4 3 5 4	.06 .28 .04 .02 .03		.03 .91 .01 <.01 <.01	10 6 8 8 6		<.01 <.01 .01 .01 .01	.25 .22 .22 .28 .21	1 1 3 1 1	3 10 8 12 6
STANDARD C/AU-R	19	56	38	125	7.0	72	32	1043	3.96	42	15	B	37	53	19.0	13	19	62	.49	.092	40	61	.92	183	.08	34	1.88	.06	.17	9	473

Orequest Consultants Ltd. PROJECT CORNICE MTN FILE # 94-2879 Page 4 ACRE AND THEA No Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi Са P La Cr Ng Be Ti B AL κ W ALMA ٧ Na SAMPLE# x X ppm % ppm ۲. X ppm ppm 2 X . tobur obur bour obur obur obur obur ppm ppb 5 <2 146 <.2 5 28 <.2 9 4.12 .094 S .04 42 <.01 3 .14 <.01 . 14 <1 4 1270 1.50 13 <5 <2 5 2 B 16 94TCR-042 -1 5 1 10 4 2.34 28 <.2 <2 24 2.31 .095 43 .05 6 .55 <.01 .45 7 5 1341 5.05 5 <5 <2 <2 22 <1 4 941CR-043 <1 41 6 18 .1 2 24 <.2 48 .05 25 .2 5 7 1362 4.31 7 <5 <2 4 <2 21 1.88 .105 19 8 .46 <.01 .36 1 2 11 8 941CR-044 <1 35 14 2354 5.53 2 43 <.2 <2 22 2.40 .138 9 .21 62 .03 7 .35 <.01 .29 <1 5 7 19 <5 <2 3 1 10 94108-045 1 17 .1 63 .03 7 .35 <.01 2 43 <.2 <2 <2 22 2.37 .137 10 .21 .29 <1 7 RE 94TCR-045 <1 17 11 34 .2 5 14 2332 5.48 18 <5 2 <1

٢

AMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	B	AL	Na	K		Au*
24JCR-001	2 ppm	ррт 43	ppm 9	ppm 32	ւթթա .2	ppm 6	ppm 1	ррт 122	.94	ppm 6	ppm <5	ppm <2	ppm 7	ppm 7	ppm <.2	ppm 7	ppm	ppm 9	× 17	% .048	27	ppm 5	.05	ppm 63	×	ppm	× .53	×	*	ppm	PP
4JCR-003	2	43	8	35	.3	7	ż	255	.89	10	<5	~2	6	7	.2	2	<2 <2	6		.048	27 24	4	.02	51	.02 .01	9 7	.55	.02 .01	.41	ź	
4JCR-004	2	34	4	39	.1	5	1	81	1.06	13	<5	<2	6	24	.2	3	<2	5		.032	26	4	.02	62	.01	8	.41	.01	.34	1	;
94JCR-005 94JCR-006	3	85 218	5 7	28 24	.2 .3	7 7	1 1	67 96	.96. 1.19	9 24	<5 <5	<2 <2	7 7	17 16	.7 .4	3 4	<2 <2	7 6		.029 .038	29 24	6 6	.02 .02	79 76	.01 .01	8 6	.42 .42	.01 .01	.41 .36	1	!
4JCR-007	2	392	5	38	.3	6	2	163	.67	18	<5	<2	6	7	.6	3	<2	6		.042	24	5	.02	63	.01	8	.42	.01	.33	2	
E 94JCR-007		411 22	6	38 33	.3	6	2	164	.67	18	<5	<2	6	7	.7	5	<2	7		.044	24	5	.02	64	.01	8	.42	.01	.35	2	
04JCR-008 04JCR-009	2	279	19	دد 87	.2 2.5	6 6	1	943 813	1.72	222 78	<5 <5	<2 <2	8 7	28 21	.5 1.7	2	<2 <2	4		.079	31 25	4 5	.04 .04	61 51	.04 .02	3 3	.36 .33	.01 .01	.29 .25	1	
4JCR-010	2	357	88	213	7.6	8	8	198	.66	41	<5	<2	6	8	2.9	33	<2	4		.037	21	5	.01		<.01	5	.29	.01	.27	<1	
4JCR-011	3	62	24	49	3.9	8 7	2	402	.72	64	<5	<2	6	15	.8	9	2	4		.039	18	7	.01		<.01	7	.31		.26	2	
4JCR-012 4JCR-013	23	2250 38	9 8	27 56	1.7	7	6	2691 908	1.76	26 29	5 <5	<2 <2	<2 5	120 19	.7 .7	3	<2 <2	8	11.40	.082	13 20	3 5	.09 .05		.01 <.01	4		<.01 <.01	.09 .25	1	
4JCR-014	4	51	24	59	.9	7	4	367	1.70	23	< 5	<2	6	10	.7	6	<2	6		.042	23	ś	.03		<.01	7		<.01	.25	<1	
4JCR-015	3	61	14	28	.8	8	7	675	1.60	34	<5	<2	7	10	.4	5	<2	5	.54	.043	23	4	.02	63	<.01	7	.35	<.01	.25	2	
4JCR-016 4JCR-017	2	41 42	15 97	54 107	2.0 1.6	6	8 9	1307	1.86	98 75	<5 <5	<2 <2	777	51	.8	5	<2	6	1.28		23	3	.04		<.01	7		<.01	.24	1	
4JCR-018	4	52	27	76	2.0	8	15	909 324	1.83	35 25	<5	<2	6	16 14	1.1	10	2 <2	4		.040	21 19	5	.03 .08		<.01 <.01	7		<.01 <.01	.25 .26	<1 <1	
4JCR-019	3	63	22	109	2.1	7	11	467	.89	25	<5	<2	6	18	1.0	7	<2	6		.042	21	4	.03		<.01	ģ	.43		.29	1	
4JCR-020	5	95	25	49	5.4	10	8	360	1.13	26	<5	<2	7	26	.5	11	<2	5	-42	.102	25	6	.02	77	<.01	8	.40	<.01	.32	2	
4JCR-021	4 2	566 54	17 7	67	16.1	12 5	13 5	785 336	1.19	66	<5 <5	<2 <2	7	25 11	1.1	90	<2	6		.053	29	5	.07		<.01	7		<.01	.30	<1	
24JCR-022 24JCR-023	6	16	8	108 6	.5 .6	9	2	330 76	5.22 1.98	119 18	<5	<2 <2	4 3	4	.8 2.>	4	2 <2	62 12		.056	12 9	6	.27	107	06 <.01		1.13		.90 .26	<1 1	
4JCR-024	4	34	13	20	.8	6	2	98	2.73	39	<5	<2	2	10	.4	8	<2	10		.017	Ś	Ś	.01		<.01	_	.14		.20	i	
4JCR-025	5	36	30	32	1.5	7	10	114	6.09	124	<5	<2	2	10	.4	17	<2	9	.35	.019	4	4	.01	17	<.01	<2	.15	<.01	. 19	1	
24JCR-026 24JCR-027	12	41 32	27 12	130 122	1.3	7	2 2	55 105	4.26 3.36	106 46	<5 <5	<2 <2	3	18 8	.4 .8	10	<2 3	11 82		.076	16	6 8	.02 .18	60	.01	3	.27	.01	-46	<1	1
4JCR-028	12	175	17	200	2.1	8	11	348	4.38	74	<5	<2	4	22	1.1	8	~2	82		.066	16 10	7	. 10	93 80	.05 .06	2		<.01 <.01	.59 .65	2	•
4JCR-029	19	21	40	43	1.9	10	1	46	4.67	73	<5	<2	4	13	<.2	9	<2	43		.044	10	8	.06	60	.02	ž	.34	.01	.52	i	
4JCR-030	10	14	80	26	3.0	4	<1	36	2.93	89	<5	<2	2	8	.3	13	<2	18	.01	.023	10	4	.01	78	<.01	2	.12	<.01	.33	1	
4JCR-031	4	9	88	20	2.5	4	1	38	1.69	36	<5	<2	2	8	<.2	11	2	14		.018	7	5	<.01	125	<.01	2	.14	<.01	.28	1	
24JCR-032 24JCR-033	7	14	96 55	17	4.6	7 3	1		1.60	30 38	<5	<2 <2	3		<.2	19	<2	23		.015	13	8	.01	103		4		<.01		1	
4JCR-034			2384			5		63	2.54 10.20	168	<5	<2		11 9		2 46	<2 <2	9 62		.109 .077	31 14	4	.09 .05	90 73				<.01 .01			
94JCR-035			195			9	3	173	2.91	43	<5	<2	<2	28	2.0	13	2	16		.056	5	9			<.01			<.01		<1	
TANDARD C/AU-R	19	57	38	124	7.0	75	32	1024	3.96	40	17	7	36	47	19.1	14	19	61	.50	.093	40	61	.89	188	.08	33	1.88	.05	.14	10	4
		THI		CH IS	5 PART	IAL F	OR MN	FES	D WITH R CA P	LAC	RMG	BA TI	BW	AND L	IMITE	D FOR	NA K	AND	AL.		5 DILU	TED T	0 10	ML WI	TH WA	TER.					

Orequest Consultants Ltd. PROJECT CORNICE MTN FILE # 94-2952



Page 2

ACHE ANALYTICAL																														HE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	TÍ X	B ppm	Al %	Na %	ĸ X		Au** ppb
94JCR-036 94JCR-037 94JCR-038 94JCR-039 94JCR-040	20 20 19 32 20	19 26 36 21 23	34 73 302 91 38	90 56 112 104 35	1.8 3.7 7.6 4.7 2.9	1 8 7 6	7 4 4 5 5	120 65 194	2.98	106 72 69 82 124	5 5 5 5 5 5	~~~~~ ~~~~~	3 2 2 2 2 2 2 2 2 2	24 15 11 20 25	.7 .5 .3 <.2	21 19 38 22 20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14 15 13 19 18	.12	.033 .042 .063	5 5 6 4 5	7	<.01 .01 <.01 .02 .02	55 65	<.01 <.01 <.01 <.01 .01	~~~~	.21	.01 .01 <.01 .01 <.01	.23 .23 .22 .23 .25	2 2 1 2	15 11 19 15 16
94JCR-041 94JCR-042 94JCR-043 94JCR-044 94JCR-045	23 34 29 30 27	21 30 18 64 83	33 28 22 6 6	44 16 8 113 80	3.0 1.7 1.0 .7 .6	3 9 5 2 15	5 5 4 10 10		5.02 3.71 5.23	54 47 34 33 51	\$ \$ \$ 6 5	8 8 8 8 8 8 8 8 8 8	2 2 2 2 5 5	66 6 3 8 10	.6 <.2 .2 <.2 1.4	19 28 26 15 17	2 5 7 8 <2	15 16 14 67 51	.02 .18	.069 .022 .016 .046 .038	6 5 15 15	6 9 6 9 10	.02 .01 .01 .25 .23	31	<.01 <.01 <.01 .04 .02	5 4 3 5 5	.19 .20 .18 .78 .62		.23 .23 .21 .50 .39	2 1 1 <1 1	5 7 9 12 14
94JCR-046 94JCR-047 RE 94JCR-047 94JCR-048 94JCR-049	777	7160 4122 4176 2564 85	251 151 150 23 12	1356 584 585 303 33	153.7 29.0 28.4 11.6 1.0	18 14 15 30 9	20 14 13 24 10	2197 451 445 560 504	1.25 1.25	791 157 154 70 33	21 10 10 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 8 8 7 7	10	34.0 12.4 13.1 5.0 .5	313 11 10 9 6	31 10 6 2 5	25 4 6 5	.41 .40	.024 .058 .059 .034 .038	37 41 42 28 32	5 5 6 5	.08 .01 .02 .02 .02	51	.01 <.01 <.01 <.01 .01	4 9 8 10		.01 .01 .01 <.01 <.01	.23 .25 .26 .29 .30	<1 1 1 1	70 37 27 13 7
94JCR-050 94JCR-051 94MCR-001 94MCR-002 94MCR-003	5 7 5 4 5	47 418 713 45 13	7 18 638 21 23	424 130 30 634 47	.3 1.8 6.1 .1 .2	4 6 7 7	11	985 1229 810 1360 808	1.51 4.26 2.87	11 44 74 3 31	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 7 7 9 7	21 57 23 18 53	3.2 1.1 .7 1.5 .2	10 25 10 8 31	<2 6 11 2 <2	5 7 3	.51 1.70 2.20 1.11 1.43	.047 .059 .056	34 26 29 27 16	4 5 4 3 5	.11 .04 .02 .07 .19	153 89	.05 <.01 <.01 <.01 <.01	9 8 4 6 10	.72 .35 .23 .30 .29	<.01 <.01 .01 .02 .03	.40 .30 .25 .23 .25	<1 1 3 <1 1	12 5 225 11 30
94MCR-005 94MCR-006 94MCR-007 94MCR-008 94MCR-009	1 4 3 23	33 48 47 9 48	7 5 15 13 18	43 67 57 72 7	.1 .3 .6 1.7	9 9 <1 6 1		1938 1867 433 440 47	5.68 4.88	9 8 52 13 267	জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 7 2 4 5	162 140 25 16 44	.4 .7 <.2 .4 <.2	3 <2 4 8 37	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				15 11 16 16 14	4 1	.44 1.63 1.08 .03 .01	60	.03 .01 <.01 <.01 <.01			.01 .02 .02 <.01 <.01	.37 .28 .21 .31 .55	1 <1 <1 1 <1	10 7 9 5 55
94MCR-010 94MCR-011 94MCR-012 94MCR-013 94MCR-014	2 5 8 25 19	67 27 12 15 15	7 10 6 14 10	45 14 10 9 11	.3 1.2 .6 .8 .5	8 9 2 7 6	11 14 4 5	60 37 37	3.12 4.47 2.08 1.26 1.99	62 160 114 76 123	5 5 5 5 5 5 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9 3 2 2 2	38 7 4 3 5	.2 .5 .2 <.2 <.2	6 15 11 23 21	8 <2 <2 <2 <2	9 26 12 17 19	.09 .02 .03	.064 .040 .015 .008 .010	13 9 15 16 12	6 7 5 9	.21 .03 .01 .01 .01	151 58 67 76 102	.01 .02 <.01 .01 .01	2 7 4 10 9	.23 .29	.02 <.01 .01 <.01 <.01	.33 .39 .29 .31 .34	2 2 1 1	10 5 12 3 <1
94MCR-015 94MCR-016 94MCR-017A 94MCR-017B 94MCR-018	32 14 6 <1 4	62 31 129 39 52	9 14 18 2 10	50 30 64 106 32	.5 .9 .6 .8	6 9 7 4 4			9.64	282 217 105 23 113		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2 2 2 3	11 13 12 25 14	.3 <.2 <.2 <.2 <.4	28 24 24 3 15	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~	36 24 55 234 90	.23 .35 1.94	.047 .031 .088 .110 .125	8 9 10 12 19	7 6 10 12 7	.06 .03 .08 .61 .23	58 55 51 232 156	.04 .03 .06 .29 .13		5.13		.44 .35 .51 2.77 1.09	2 2 <1 <1 <1	<1 <1 3 1 3
STANDARD C/AU-R	20	60	38	136	7.4	70	32	1078	4.09	40	22	7	40	52	18.7	15	17	61	.51	.093	41	61	.92	188	.09	38	.94	.07	.17	11	471

Orequest Consultants Ltd. PROJECT CORNICE MTN FILE # 94-2952

ACHE ANALYTICAL																												_			ACINE	ANALYTICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	8i	v	Ca	Ρ	La	Cr	Mg	Ba		B	AL	Na	ĸ	Ψ.	Au**	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	*	ppm	ppn	%	ppm	۳.	ppm	*	X	*	ppm	ppb	
94MCR-019	4	279	3	36	2	4	7	710	2.46	3	<5	<2	5	41	<.2	<2	<2	7	1 21	.011	4	4	.23	83	01	τ	.86	01	12	2	103	
94MCR-020	11	6	10	10		ž	2	332	.36	13	<5	<2	13		<.2	_	<2	<2				4		103<		5	.30			1	28	
94HCR-020	2		10	30		5	2	393	1.47	<2	<5	<2	3	59	<.2	~2	_	12		.019		6	.26	50<		ź	.54			ż	<1	
94HCR-021	7	5351		10	9.9	ġ	40	1009	3.77	28	<5	~2	-	•••	1.0	22	3	2				4	.08			~	.13<			<1	120	
94MCR-022	5	43	26	39	.2	5	3	725	.97	20	<5	~2			.3		-	~2		.005	-	6	.02	74<		3	.23			1	13	
94HCR-025	2	43	20	39	.2	2	3	125	.97	'	10	~2	12	34		12	~2	~2	.30	.005	15	0	.02	14		5	.25	.04	. 13		13	
RE 94MCR-023	5	41	25	37	.1	6	2	716	.96	6	<5	<2	11	33	.2	<2	<2	<2	.29	.005	13	6	.02	73<	.01	3	.23	.04	. 16	1	12	
94MCR-024	<1	645	6	21	.6	3	12	1760	3.04	<2	<5	<2	<2	51	<.2	<2	<2	16	3.81	.114	7	1	.20	126	.02	3	.47	.02	.17	1	7	
94ACR-062	2	68	2164	9126	27.6	- 5	9	1719	3.81	12	<5	<2	<2	110	99.8	36	<2	11	3.85	.080	9	2	.73	49	.01	4	.40	.01	.24	2	23	
94ACR-063	1	13	206	419	1.2	5	8	1549	3.41	9	<5	<2	<2	81	3.8	<2	<2	28	3.39	, 126	10	3	.77	54	.04	4	.40	.01	.24	<1	1	
94ACR-064	4	21	16	74	.3	7	10	1586	3.23	8	<5	<2	2	53	<.2	4	<2	18	2.53	.066	9	3	.44	46	.02	7	.46	.01	.29	<1	3	
																						_										
94ACR-065	2	218		65	.8	- 3	-		1.82	17	<5	<2			<.2	2	_		5.11			2	.09	62	•	4	.30<			1	<1	
94ACR-066	2	30	-	- 44	.3	- 4	- 3		.78	9	<5	<2	4	35		<2	_	5				-	.04	58<		7	.37			1	2	
94ACR-067	<1	6		107	.2	3	-	1798	4.02	10	<5	<2	<2		<.2		<2		4.56				1.13	32		5	.31			<1	<1	
94ACR-068	1	- 4	10	88	<.1	- 4	-	1599	2.60	6	<5	<2			<.2				3.15					62		- 4	.30<			1	2	
94ACR-069	<1	5	3	67	.1	4	8	2466	6.33	<2	<5	<2	<2	205	<.2	<2	<2	16	6.19	.074	6	1 3	2.37	35<	.01	4	.47<	.01	.21	<1	<1	
94ACR-070	2	375	2246	2735	14.2	4	31	1448	4.15	52	<5	<2	<2	14	73.9	3	14	5	.58	.063	12	2	.08	54	-01	3	.22	.01	.22	1	23	
94ACR-071	<1	19		64		4		2825	6.41	15	<5	<2	<2		.9	<2		-	2.03			1	.24	67		6	.51<			<1		
94ACR-072	1	ii		75	<.1	8	-	3862		3	<5	<2	<2		.4	ž	_					3	.48	54<	.01	Ĵ	.41<	01	.26	<1	<1	
94ACR-073	1	ंद	Ă	43	.1	2		2261		<2	<5	<2	<2		.2	_	_		5.98		-	-	1.13		.02	5	.80<			1	<1	
94ACR-074	1	10	16	23	.3	š	-	2657		20	<5	<2	<2	75	.3	4	<2		6.08		-	1	.08		.01	8	.31<			1	<1	
	1.					-	•	2007	••••				-			•	-			••••		•				-				·		
94ACR-075	1	13	5	120	.2	4	10	2412	7.23	4	<5	<2	<2	59	.3	<2	<2	17	4.56	.110	13	1	.69	58	.02	3	1.28<	.01	.22	<1	<1	
94ACR-076	1	7	32	112	.6	4	10	2103	4.69	7	<5	<2	<2	81	.9	<2	<2	27	4.92	.090	7	2	.72	57	.01	- 4	.58<	.01	. 19	<1	1	
94ACR-077	1	66	7	3280	.7	5	15	2096	5.11	12	<5	<2	<2	70	2.8	3	<2	18	3.29	.109	5	2	.39	53	.02	6	.40<	.01	.21	1	<1	
94ACR-078	4	11	8	69	.2	7	9	2003	4.06	12	<5	<2	2	53	.3	2	<2	16	5.24	.102	10	2	.29	59	.01	3	.28<	.01	. 19	<1	3	
94ACR-079	3	24	16	55	2.0	13	22	610	14.07	117	<5	<2	<2	45	.7	17	<2	7	1.20	.025	<2	3	.08	12<	.01	<2	.22<	.01	.17	1	88	
94ACR-080	5	18025	5	88	7.8	10	16	2154	6.09	26	<5	<2	<2	66	2.1	5	5	11	5.88	.083	11	1	.41	40	.01	<2	.44<	.01	.12	<1	148	
94ACR-081	3	361	137	464	3.1	12	7	5705	5.48	90	<5	<2	<2	373	4.4	13	<2	17	17.91	.026	11	1	3.55	132<	.01	<2	.14<	.01	.06	1	26	
94ACR-082	5	724	18	222	3.2	9	11	3053	5.75	49	<5	<2	<2	440	2.3	10	<2	16	15.83	.035	5	1	3.34	91<	.01	<2	.12<	.01	.05	1	103	
STANDARD C/AU-R	19	61	38	128	7.3	72	31	1058	3.96	42	22	8	36	46	19.0	15	19	62	.52	.090	40	62	.92	177	.09	34	1.88	.06	.15	10	483	
																														~~~~		



Orequest Consultants Ltd. PROJECT CORNICE MTN FILE # 94-2952

**£**£

Page 4

														<u> </u>																	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Ρ	La	Cr	Mg	Ba	Ti	8	AL	Na	ĸ	W /	\u**
	ppm	ppm	X	ppm	ppm	ppm	ppm	ppm	ppm	ррп	ppm	ррп	X	*	ppm	ppm	X	ppm	X	ppm	*	*	X	ppm	ppb						
94MCS-004	<1	111	35	302	.3	14	30 3	738 8	.57	326	<5	<2	6	. 13	<.2	12	<2	63	.10	.096	29	3	.40	132	.07	3	1.22	<.01	.37	<1	48
STANDARD C/AU-S	19	56	41	126	6.9	73	31 1	042 3	.96	42	15	7	38	53	19.0	15	21	62	.49	-092	40	59	.93	183	.08	34	1.88	.06	. 15	10	53

Sample type: SOIL.

<b>££</b>			or	eque	<u>əst</u>	Con					. P t., Ve						<u>MTN</u> nitted				94 olson	-30	93	P	age	1					
MPLE#	No ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B	AL %	Na X	к %	W ppm	Au' Pf
MCR-045	3	5	6	25	<.1	3	5		2.60	26	<5	<2	6	35	<.2	17	<2		1.21 1.13		19 14	3	.23 .20	72 107	<.01	6	.45 .29	.03 .04	.31	<1 1	
MCR-046 MCR-047	24	5	25 16	22 22	.4	3	25		3.97	93 85	<5 <5	<2 <2	4	49 85	<.2 <.2	34 53	<2 <2		2.84		8	1	.20		<.01	6	.29	.04	.28	1	
MCR-048	Ž	4	8	51	.ż	ž	-	1509		10	<5	~2	8	61	<.2	11	4		2.34		27	i,	.47		<.01	8	.39	.03	.29	<1	
MCR-049	3	8	14	44	<.1	4		1248		87	<5	<2	5	80	<.2	54	<2		2.32		12	<1	.37		<.01	7	.37	.02	.28	<1	
MCR-050	3	5	16	35	.3	3	4	605	5.88	190	<5	<2	6	46	<.2	87	<2	4	1.14		18	5	.10	101		6	.35	.02	.28	2	
MCR-051	14	13	11	18	.3	5	6		5.35	133	<5	<2	6	27	<.2	58	<2	4		.054	19	4	.03	103		7	.45	.02	.30	1	
ICR-052	4	180	33	133	4.4	2	10		1.02	46	<5	<2	6	13	1.1	22	<2	5		.047	36	3	.03		<.01	~2	.41	.01	.32	<1	
ICR-053	3	79	11	30 2454	.9	38	6 8		2.37	11 59	<5 <5	<2 <2	78	22 15	.2 26.4	9 712	<2 4	4		.097	35 51	2	.04 .03		<.01 <.01	5 <2	.49 .42	.01 .01	.42	2	
ICR-054	°	2356	20	2474	231.2	0	•	304	1.55	39		~2	0	15	20.4	112	4	0	.44	.000	51	4	.05	00		~2		.01	.29	٤	•
ICR-055	4	448	16	295	4.8	10	2		1.07	19	<5	<2	10	22	5.7	13	3	5		.085	47	1	.06		<.01	3	.35	.01	.28	<1	
ICR-056	3	85	8	30	.7	2	7		2.72	25	<5 <5	<2 <2	9 10	18 18	.2	10 9	<2 <2	2		.074 .084	<b>38</b> 40	3	_04 _12	80 76	.01 .04	<2 5	.48 .59	.01 .01	.32 .60	1 <1	
4CR-057 4CR-058	3	87 29	11 11	100 34	1.7	6		1015 1049		6 17	<5	<2	6	45	.2	6	<2	-	2.22		24	5	.17	52	.01	9	.97	.01	.52	<1	
ICR-059	4	106	58	55	3.1	13	12		1.99	67	<5	<2	7	17	.2	10	<2	5		.042	21	4	.02		<.01	8	.58	.01	.55	1	
CR-060	5	70	23	89	1.3	6	6	490	1.62	31	<5	<2	7	13	.8	9	<2	10	.40	.047	26	8	.04	69	.01	8	.56	.01	.54	<1	
CR-061	17	13	20	11	.8	4	1		1.96	24	<5	<2	5	17	<.2	12	<2	16			32	7	.01		<.01	2	.22	.01	.32	1	
MCR - 062	14	14	17	8	.7	3	1	45	1.73	20	<5	<2	5	12	<.2	12	<2	14		.018	25	6	.01		<.01	<2	.21		.24	<1	
MCR-063	10	11	22	10	.8	6	1		1.15	21	<5	<2	5	16	<.2	12	<2	14		.018	24	7	.01		<.01	<2		.01	.29	1	
1CR-064	15	13	25	12	1.2	3	1	55	1.57	33	<5	<2	3	10	.2	18	<2	15	.01	.018	17	3	.01	99	<.01	<2	.27	<.01	.25	1	
ICR-065	11	18	24	18	1.3	4	2	126	2.47	53	<5	<2	4	5	.2	22	2	18		.010	23	8	.01		<.01	4	.24	<.01	.23	2	
MCR-066	32	24	53	16	3.6	7	2		4.05	123	<5	<2	<2	6	.2	49	<2	23			11	10	.01		<.01		.17		.15	1	
MCR-067	27	26	56	40	3.2	5	2		3.10	101	<5	<2	2	20	.3	32	<2	30			17	9	.01		<.01			<.01	.27	2	
94MCR-067 MCR-068	27	25 34	56 56	39 190	3.3 1.2	5	27		2.98	96 54	<5 <5	<2 <2	3 3	19 55	.4 2.8	32 32	2 <2	29 43	.03 .05	.016 .078	17 24	9	.01 .03	120	<.01 <.01	5 4	.23 .61	.01 .01	.26 .62	2 <1	
400-040		21	50	22	3.3		2	110	3.28	95	<5	<2	2	7	.4	43	<2	27	02	.015	12	11	.01	71	<.01	2	.23	.01	.22	1	
4CR-069 4CR-070	44	11	30	14	1.1	8	1		1.67	33	ँड	~2	5	35	.2	11	~2	16		.038	13		<.01	116		<2	.19	.01	.29	1	
MCR-071	18	19	42	31	1.7	3	ż		2.43	37	<5	<2	3	37	.3	13	~2	23		.044	14	7	.01	133		<2	.25	.01	.52	1	
MCR-072	23	11	282	22	2.9	7	1		2.13	40	<5	<2	3	35	.3	13	<2	21			9	11	.01		<.01	<2	.21	.01	.60	1	
ICR-073	72	19	<b>9</b> 51	38	14.6	4	3	97	4.83	119	<5	<2	<2	53	.9	40	<2	32	.02	.075	6	5	.01	46	<.01	2	.30	.01	.84	2	
ICR-074	33	14	97	19	3.6	8	1		2.42	42	<5	<2	2	13	.2	19	<2	26		.033	8	13	.01		<.01		.27	.01	.46	1	
ICR-075	38	13	46	- 9	1.7	3	2		3.76		<5	<2	2	41	<.2	21	<2	26		.127	2	7			<.01		.21	.01	.74	2	
MCR-076	9	13	27		1.4		1	53	1.33	14	<5	<2	6			11	<2	15	.04	.037	25			65				.01		1	
MCR-077 MCR-078	9	18 15	24	37 70	.3 1.1	5 3	2	67	2.60	29	<5 <5	<2	4	10 25	<.2 .2	14	<2 <2				22 21		.01 .05					<.01 .01		1 <1	
ANDARD C/AU-R	17	58	38	128	6.7	70	33	1044	3.96	43	14	7	35	51	17.9	14	17	60	.52	.091	40	62	.91	182	.08	33	1.88	.07	. 15	12	
ANDARD C/AU-R	17	ICP THIS ASS/	50 5 LEAC	00 GRA CH IS	6.7 M SAMP PARTIA DED FO CORE	PLE IS	DIGE MN E	STED E SR	WITH CAP E SAMP	3ML 3 LA CR PLES 1	5-1-2 R MG E LF CU	HCL-H IA TI P8 ZN	INO3-I BW/	120 A1	r 95 C Imited Ag >	EG. C FOR 30 PF	FOR NAK M&A	one h And A .u > 1	IOUR /	AND IS		ted t	0 10	ML WI			1.88	.07	.15	12	

**£**£

Orequest Consultants Ltd. PROJECT CORNICE MTN. FILE # 94-3093



Page 2

ACHE ANALTTICAL																														ACRE ANAL	LITTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au	Th ppm	Sr ppm	Cd	Sb ppm	Bi ppm	V ppm	Ca X	PX	La ppm	Cr ppm	Mg	Ba ppm	Ti X	B	AL X	Na X	ĸ		Au** ppb
	- PP-M	FF		<b>FF</b> -11	66.0			FF			FF			FF	FF	FF					FF			PPm		FF					
94MCR-079	24	4341	41	345	37.2	7	8	225 1	.57	53	5	<2	9	45	1.9	6	11	8	. 16	.077	31	3	.02	119	<.01	2	.56	<.01	.30	<1	31
94DCR-009	33	28	3	24	.4	3	5	39 2	.86	88	<5	<2	3	40	.6	21	4	21	.21	.086	6	4	.02	26	<.01	5	.29	.01	.33	<1	1
94DCR-010	36	19	15	28	.9	14	11	67 3		115	<5	<2	3	56	4	32	<2	29		.183	7	Ĺ.	.02		<.01	ō		<.01	.33	1	13
94DCR-011	28	60	11	54	5	16	12	106 4		99	<5	<2	4	66		30	<2	36		.304	÷	5	.03		<.01	6			.35	<1	
94DCR-012	26	34		25		11	8		.73	98	<5	~2	7	31		32	2	22		.099	É	2	.02		<.01		.28	.01	.30		<1
9406K-012	20	34	7	27	.4		0	DU 4	.75	70	• • •	~2	3	31	.8	26	2	22	.00	.099	2	2	.02	13		•	.20	.01	.30	<1	×1
94DCR-013	12	15	23	25	.6	14	11	785	.91	135	<5	<2	4	50	.8	34	<2	30	.36	. 193	6	3	.02	10	<.01	9	.32	<.01	.28	<1	11
94DCR-014	41	11	79	44	2.9	6	3	37 3		83	<5	<2	रं	16	.5	14	<2	19		.077	7	5	.02	16	.01	7		<.01	.31	1	30
94DCR-015	30	35	127	556	2.8	7	7	498 3		80	<5	~2	ž	49	5.6	18	2	23		.118	10	ź	.15		<.01	ó		<.01	.25	<1	11
94DCR-015	10	28	695	719	5.7	ź	2	325 2		77	<5	~2	2	60	7.5	21	~2	23		.128	12	7	.11		<.01	1		<.01	.32	<1	
	1 19					3	4				-	_	3				_					2	.02							<u></u>	6
94DCR-017	1	14	27	30	1.4	12	4	63 2	. (0	44	<5	<2	2	16	.4	12	<2	16	.10	.074	0	0	.02	43	<.01	6	.19	<.01	.25	1	8
94DCR-018	48	40	27	36	2.6	11	9	127 4	. 17	312	<5	<2	4	18	.6	10	6	17	.18	.090	8	5	.07	32	.02	4	.30	.01	.26	1	41
94JCR-054	5	40	42	184	2.4	4	Ś		.88	57	<5	<2	5	11	.4	7	<2	3		.052	21	ž	.01	142		<2		< 01	.23	<1	20
94JCR-055	i i	25	37	84	7	7	5	205 2		32	Ś	<2	é	23	<.2	<b>'</b>	2	24		.085	17	õ	.05	80	.04	7	.38		.27	<1	<1
94JCR-056	16	54	19		4.2	2	2	32 1			<5	~2	1	39	<.2	É	~2	- 7		.074	23		.02	133	.01	2		<.01	.33		-
				66		2	40			66	_		4			2						-				-				<1	14
94JCR-057	9	72	35	508	•	3	10	618 3	./3	194	5	<2	6	67	2.4	8	0	16	.16	.097	29	2	.05	108	.01	6	.91	<.01	.32	<1	3
RE 94JCR-057	9	74	35	511	.7	4	10	622 3	.74	194	<5	<2	5	67	2.2	6	7	16	. 16	.099	29	2	.05	110	.01	7	.92	<.01	.31	<1	<1
94JCR-058	3	22	21	306	.4	5	5	174 3		27	<5	<2	ś	29	.2	ž	<2	32		.078	22	6	.15		.07	Ś		<.01	.43	<1	1
STANDARD C/AU-R	19	58	41	125	7.0	73	31	1056 3		44	20	6	38		18.4	19	19	62		.093	40	62	.94	182	.08	34	1.88		.15	11	497
STANDARD C/AU-R	17	- 00		125	1.0	13	21	1030 3	.70		20	0	20		10.4	17	17	02	. 30	.093	40	50	. 74	102	.00	- 34	1.00	.00	. 15	11	471

-	Cu ppm	Pb						YJ NC	we St	., Ya						<u>MTN</u> nitted			.e # Nicho		-30	64	F	age	1					
-		ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	Al %	Na X	K X	¥ ppm	Au**
4	9373 817 15751 183 1163	20	970 118 787 118 103	15.4 9.7 114.1 1.1 3.2	17 6 9 7 5			.72 1.93 1.72	83 48 331 59 83	6 <5 7 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 6 7 5	22	8.7 1.5 18.6 .7 1.1	15	4 <2 10 <2 <2	5 3	1.66	.043 .042	32 56 12 24 16	7 4 4 3	.02 .02 .01 .04 .12	63	<.01 <.01 <.01 .01 .01	8 7 7 10 9		.01 .01 .01 <.01 <.01	.27 .27 .22 .32 .26	1 1 <1 <1 1	14 75 67 2
3 2 2 2 2 2	95 32 44 29 50	12 5 7 11 5	27 51 19 19 54	.9 .1 .2 .3 .2	2 8 4 7 5	9 9	2012 983 965	3.17 2.75 4.28	53 10 20 26 40	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	13 228 15 25 50	.2 <.2 <.2 <.2 <.2	16 2 <2 3 4	~~~~		3.51 .31 .63	.074 .110 .105	6 3 6 5 7	1 5 2 3	.08 .88 .05 .17 .31	28 100 65	<.01 <.01 .01	5 4 5 5 5	.38 .44 .46 .47 .63	.03 .03 .03 .02 .03	.18 .08 .19 .19 .22	1 1 2 1 1	30 4 4 11 8
1 1 1 2	73 75 59 30 8	16 8 7 8 7	131 51 51 33 20	.2 .3 .1 <.1	5 4 7 5 3	8 11	1476 1665	3.10 3.88	31 13 33 27 2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30 52 55 63 46	.9 <.2 <.2 .2 <.2	8888 8	~~~~~	17 18 14	1.67 1.50 1.94	.111 .114 .117	6 6 5 5 4	2 1 3 1 3	.29 .49 .51 .44 .15	70 69 75	<.01 <.01 <.01	5 4 4 4 4	.85 .86 .89 .58 .29	.03 .02 .02 .02 .02	.17 .21 .20 .21 .16	1 <1 1 1	13 32 11 12 5
4 4 1 2	671 691 27 71 103	12 13 8 15 9	71 71 13 41 64	1.4 1.5 .3 .4 .3	4 5 2 5 7	12 <1 10	966 45 1910	1.74 .58 4.94	15 17 9 36 25	5 5 5 5 5 5 5 5	~~~~~	Q Q 7 Q Q	98 99 5 84 86	.4 .6 <.2 <.2	\$\$\$\$\$	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9 <2 18	1.51 .02 3.05	.114 .003 .102	6 7 20 5 7	2 3 1 3	.25 .25 .01 .55 .67	107 57	.01	6 5 3 2	.50 .50 .27 .53 .94	.02 .02 .01 .03 .03	.26 .27 .19 .14 .13	1 <1 1 2 <1	157 147 43 19 7
2 4 2 2 1	75 72 64 39 62	7 7 4 2 4	56 48 77 83 100	.3 .6 .4 .3 .5	8 53 12 11 8	12 9 9	444 343 1335	4.07 4.51 4.75	27 60 22 11 <2	5 5 5 5 5 5 5 5 5 5 5 5 5	~~~~~	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	75 19 16 143 52	<.2 <.2 <.2 <.2 <.2	\$\$\$\$\$	~~~~	36 39 35	.43 .35 4.85	.099 .081 .081	8 6 7 6 6	4	1.06			3 3 <2	1.39 2.12 1.98	.02 .02 .01 .01 .01	.19 .15 .17 .10 .10	1 1 1 <1	7 7 9 2 7
10 6 16 16 4	58 58 68 70 30	11 12 46 10 8	39 43 39 70 16	.8 1.1 3.3 .3 .3	86 84 70 37 5	16 20	1359 1323	3.67 4.02	44 79 98 46 14	5 5 5 5 5 5 5 5	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	105 161 55 19 16	<.2 <.2 .2 <.2 <.2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~~~~~	26 19	2.84 1.70 .51	.104 .079 .072	4 6 4 11 23	28 14 9 14 4	.49 .83 .31 .90 .02	62 69 61	<.01 <.01 .01	3 ' 3	1.21 .54 1.73	.02 .02 .02 .01 <.01	. 14 . 13 . 12 . 13 . 26	2 2 1 2	9 <1 12 12 7
3 3 3 19		8 9 10 38	23 95 132 132	.2 .3 .3 6.8	6 5 3 72	7	1106 922	2.46 2.94	8 104 4 42	<5 <5 <5 18	<2 <2 <2 7	5 9 7 35	15 27 25 50	<.2 .3 .6 17.6	<2 <2 3 14	<2 <2 <2 19	5 5 5 61	.82 .85	.080	17 34 25 40	5 3 2 59	.02 .14 .17 .91	61 60	.02 .01	5 5 3 33	.28 .50 .55 1.88	.01 .01 .01 .06	.21 .31 .26 .15	<1 <1 <1 13	2 70 7 463
	THIS ASSA - SA	LEAC Y REC MPLE	H IS OMMEN TYPE:	PARTIA DED FO P1 RO	L FOR R ROCI CK P2 F/ are	MN F KAND TO P	E SR CORE 2 SOI	CAP SAMPI L Sam	LA CR LES I AU**	MG BA F CU F Analy	A TI I P <b>B ZN</b> (SIS I	B W AI As > By Fa,	ND LI 1%, /ICP	MITED AG > FROM	FOR 30 PP 10 GM	NA KA M&A Sampi	AND A U > 1 LE.	L. 000 P	P <b>B</b>											
5	2222 11212 44212 24221 10616164 33319	2 32 2 44 2 29 2 50 1 73 1 75 2 59 1 30 2 8 4 671 4 691 2 27 1 71 2 103 2 75 4 72 2 64 2 39 1 62 10 58 6 58 16 68 16 68 16 70 4 30 3 24 3 72 19 56 ICP THIS ASSA - SA Samp	2 32 5 2 44 7 2 29 11 2 50 5 1 73 16 1 75 8 2 59 7 1 30 8 2 8 7 4 671 12 4 691 13 2 27 8 1 71 15 2 103 9 2 75 7 4 72 7 2 64 4 2 39 <2 1 62 4 10 58 11 6 58 12 16 68 46 16 70 10 4 30 8 3 24 8 3 84 9 3 72 10 19 56 38 ICP50 THIS LEAC ASSAY REC - SAMPLE	2 32 5 51 2 44 7 19 2 29 11 19 2 50 5 54 1 73 16 131 1 75 8 51 2 59 7 51 1 30 8 33 2 8 7 20 4 671 12 71 4 691 13 71 2 27 8 13 1 71 15 41 2 103 9 64 2 75 7 56 4 72 7 48 2 64 4 77 2 39 <2 83 1 62 4 100 10 58 11 39 6 58 12 43 16 68 46 39 16 70 10 70 4 30 8 16 3 24 8 23 3 84 9 95 3 72 10 132 19 56 38 132 ICP500 GRA THIS LEACH IS ASSAY RECOMMEN - SAMPLE TYPE: Samples beginn	2 32 5 51 .1 2 44 7 19 .2 2 29 11 19 .3 2 50 5 54 .2 1 73 16 131 .2 1 75 8 51 .3 2 59 7 51 .3 1 30 8 33 .1 2 8 7 20 <.1 4 671 12 71 1.4 4 691 13 71 1.5 2 27 8 13 .3 1 71 15 41 .4 2 103 9 64 .3 2 75 7 56 .3 4 72 7 48 .6 2 64 4 77 .4 2 39 <2 83 .3 1 62 4 100 .5 10 58 11 39 .8 6 58 12 43 1.1 16 68 46 39 3.3 16 70 10 70 .3 4 30 8 16 .3 3 24 8 23 .2 3 84 9 95 .3 3 72 10 132 .3 19 56 38 132 6.8 ICP500 GRAM SAMP THIS LEACH IS PARTIA ASSAY RECOMMENDED FO - SAMPLE TYPE: P1 RO Samples beginping (R	2 32 5 51 .1 8 2 44 7 19 .2 4 2 29 11 19 .3 7 2 50 5 54 .2 5 1 73 16 131 .2 5 1 75 8 51 .3 4 2 59 7 51 .3 7 1 30 8 33 .1 5 2 8 7 20 <.1 3 4 671 12 71 1.4 4 4 691 13 71 1.5 5 2 27 8 13 .3 2 1 71 15 41 .4 5 2 103 9 64 .3 7 2 75 7 56 .3 8 4 72 7 48 .6 53 2 64 4 77 .4 12 2 39 <2 83 .3 11 1 62 4 100 .5 8 10 58 11 39 .8 86 6 58 12 43 1.1 84 16 68 46 39 3.3 70 16 70 10 70 .3 37 4 30 8 16 .3 5 3 24 8 23 .2 6 3 84 9 95 .3 5 3 72 10 132 .3 3 19 56 38 132 6.8 72 ICP500 GRAM SAMPLE IS THIS LEACH IS PARTIAL FOR ASSAY RECOMMENDED FOR ROCI - SAMPLE TYPE: P1 ROCK P2 Samples beginning (PE' and	2 32 5 51 .1 8 9 2 44 7 19 .2 4 9 2 29 11 19 .3 7 10 2 50 5 54 .2 5 7 1 73 16 131 .2 5 10 1 75 8 51 .3 4 8 2 59 7 51 .3 7 11 1 30 8 33 .1 5 10 2 8 7 20 <.1 3 1 4 671 12 71 1.4 4 13 4 691 13 71 1.5 5 12 2 27 8 13 .3 2 <1 1 71 15 41 .4 5 10 2 103 9 64 .3 7 14 2 75 7 56 .3 8 15 4 72 7 48 .6 53 12 2 64 4 77 .4 12 9 2 39 <2 83 .3 11 9 1 62 4 100 .5 8 10 10 58 11 39 .8 86 19 6 58 12 43 1.1 84 16 16 68 46 39 3.3 70 20 16 70 10 70 .3 37 17 4 30 8 16 .3 5 4 3 24 8 23 .2 6 2 3 84 9 95 .3 5 7 3 72 10 132 .3 3 7 19 56 38 132 6.8 72 32 ICP500 GRAM SAMPLE IS DIGE THIS LEACH IS PARTIAL FOR MN F ASSAY RECOMMENDED FOR ROCK AND - SAMPLE TYPE: P1 ROCK P2 TO P Samples beginning (PE' are dwo	2       32       5       51       .1       8       9       2012         2       44       7       19       .2       4       9       983         2       29       11       19       .3       7       10       965         2       50       5       54       .2       5       7       918         1       73       16       131       .2       5       10       737         1       75       8       51       .3       4       8       1476         2       59       7       51       .3       7       11       1665         1       30       8       33       .1       5       10       1800         2       8       7       20       <.1	2       32       5       51       .1       8       9       2012       3.17         2       44       7       19       .2       4       9       983       2.75         2       29       11       19       .3       7       10       965       4.28         2       50       5       54       .2       5       7       918       3.29         1       73       16       131       .2       5       10       737       4.04         1       75       8       51       .3       4       8       1476       3.10         2       59       7       51       .3       7       11       1665       3.88         1       30       8       33       .1       5       10       100       .62         2       8       7       20       <.1	2       32       5       51       .1       8       9       2012       3.17       10         2       44       7       19       .2       4       9       983       2.75       20         2       29       11       19       .3       7       10       965       4.28       26         2       50       5       54       .2       5       7       918       3.29       40         1       73       16       131       .2       5       10       737       4.04       31         1       75       8       51       .3       7       11       1665       3.88       33         1       30       8       33       .1       5       10       1800       3.62       27         2       8       7       20       <.1	2 32 5 51 .1 8 9 2012 3.17 10 <5 2 44 7 19 .2 4 9 983 2.75 20 $<5$ 2 29 11 19 .3 7 10 965 4.28 26 $<5$ 2 50 5 54 .2 5 7 918 3.29 40 $<5$ 1 73 16 131 .2 5 10 737 4.04 31 $<5$ 1 75 8 51 .3 4 8 1476 3.10 13 $<5$ 1 75 8 51 .3 7 11 1665 3.88 33 $<5$ 1 30 8 33 .1 5 10 1800 3.62 27 $<5$ 2 8 7 20 <.1 3 1 780 .97 2 $<5$ 4 671 12 71 1.4 4 13 959 1.73 15 $<5$ 4 691 13 71 1.5 5 12 966 1.74 17 $<5$ 2 27 8 13 .3 2 <1 45 .58 9 5 1 71 15 41 .4 5 10 1910 4.94 36 $<5$ 2 103 9 64 .3 7 14 1806 4.38 25 $<5$ 2 75 7 56 .3 8 15 2456 3.93 27 $<5$ 4 72 7 48 .6 53 12 444 4.07 60 $<5$ 2 64 4 77 .4 12 9 343 4.51 22 $<5$ 2 78 13 .3 11 9 1335 4.75 11 $<5$ 1 62 4 100 .5 8 10 746 5.09 $<2$ $<5$ 1 58 11 39 .8 86 19 1088 4.10 44 $<5$ 6 58 12 43 1.1 84 16 1359 3.67 79 $<5$ 16 68 46 39 3.3 70 20 1323 4.02 98 $<5$ 10 58 11 39 .8 86 19 1088 4.10 44 $<5$ 6 58 12 43 1.1 84 16 1359 3.67 79 $<5$ 16 68 46 39 3.3 70 20 1323 4.02 98 $<5$ 16 70 10 70 .3 37 17 467 3.93 46 $<5$ 3 24 8 23 .2 6 2 461 .96 8 $<5$ 3 24 8 23 .2 6 2 461 .96 8 $<5$ 3 24 8 23 .2 6 2 461 .96 8 $<5$ 3 24 8 23 .2 6 2 461 .96 8 $<5$ 3 24 8 23 .2 6 2 461 .96 8 $<5$ 3 24 8 23 .2 6 2 461 .96 8 $<5$ 3 24 8 23 .2 6 2 461 .96 8 $<5$ 3 24 8 23 .2 6 2 461 .96 8 $<5$ 3 24 8 23 .2 6 2 461 .96 8 $<5$ 3 24 8 23 .2 6 2 461 .96 8 $<5$ 3 72 10 132 .3 3 7 922 2.94 4 $<5$ 19 56 38 132 6.8 72 32 1036 3.96 42 18 1CP500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 I THIS LEACH IS PARTIAL FOR NN FE SR CA P LA CR MG B/ ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU I - SAMPLE TYPE: P1 ROCK P2 TO P2 SOIL AU** ANALY Samples beinging RE / are duplicate samplas	2 32 5 51 .1 8 9 2012 3.17 10 <5 <2 2 44 7 19 .2 4 9 983 2.75 20 <5 <2 2 29 11 19 .3 7 10 965 4.28 26 <5 <2 2 50 5 54 .2 5 7 918 3.29 40 <5 <2 1 73 16 131 .2 5 10 737 4.04 31 <5 <2 1 75 8 51 .3 4 8 1476 3.10 13 <5 <2 1 75 8 51 .3 7 11 1665 3.88 33 <5 <2 1 30 8 33 .1 5 10 1800 3.62 27 <5 <2 2 8 7 20 <.1 3 1 780 9.97 2 <5 <2 4 671 12 71 1.4 4 13 959 1.73 15 <5 <2 2 8 7 20 <.1 3 1 780 9.97 2 <5 <2 1 71 15 41 .4 5 10 1910 4.94 36 <5 <2 1 73 9 66 .3 8 15 2456 3.93 27 <5 <2 2 103 9 66 .3 7 14 1806 4.38 25 <5 <2 2 75 7 56 .3 8 15 2456 3.93 27 <5 <2 2 75 7 56 .3 8 15 2456 3.93 27 <5 <2 2 64 4 77 .4 12 9 343 4.51 22 <5 <2 2 39 <2 83 .3 11 9 1335 4.75 11 <5 <2 2 39 <2 83 .3 11 9 1335 4.75 11 <5 <2 1 62 4 100 .5 8 10 746 5.09 <2 <5 <2 1 62 4 100 .5 8 10 746 5.09 <2 <5 <2 1 62 4 100 .5 8 10 746 5.09 <2 <5 <2 1 62 4 100 .5 8 10 746 5.09 <2 <5 <2 1 62 4 100 .5 8 10 746 5.09 <2 <5 <2 1 62 4 100 .5 8 10 746 5.09 <2 <5 <2 1 62 4 100 .3 37 17 467 3.93 4.6 <5 <2 1 62 4 100 .5 8 10 746 5.09 <2 <5 <2 1 62 4 100 .3 37 17 467 3.93 4.6 <5 <2 1 62 4 100 .5 8 10 746 5.09 <2 <5 <2 1 63 8 16 .3 5 7 1106 2.46 104 <5 <2 3 24 8 23 .2 6 2 461 .96 8 <5 <2 3 84 9 95 .3 5 7 1106 2.46 104 <5 <2 3 24 8 23 .2 6 2 461 .96 8 <5 <2 3 24 8 23 .2 6 2 461 .96 8 <5 <2 3 24 8 23 .2 6 2 461 .96 8 <5 <2 3 84 9 95 .3 5 7 1106 2.46 104 <5 <2 3 24 8 23 .2 6 2 461 .96 8 <5 <2 3 84 9 95 .3 5 7 1106 2.46 104 <5 <2 3 84 9 95 .3 5 7 1106 2.46 104 <5 <2 3 84 9 95 .3 5 7 1106 2.46 104 <5 <2 3 84 9 95 .3 5 7 1106 2.46 104 <5 <2 3 84 9 95 .3 5 7 1106 2.46 104 <5 <2 3 84 9 95 .3 5 7 1106 2.46 104 <5 <2 3 84 9 95 .3 5 7 1106 2.46 104 <5 <2 3 84 9 95 .3 5 7 1106 2.46 104 <5 <2 3 84 9 95 .3 5 7 1106 2.46 104 <5 <2 3 84 9 95 .3 5 7 1106 2.46 104 <5 <2 3 84 9 95 .3 5 7 106 2.46 104 <5 <2 3 84 9 95 .3 5 7 106 2.46 104 <5 <2 3 84 9 95 .3 5 7 106 2.46 104 <5 <2 3 84 9 95 .3 5 7 106 2.46 104 <5 <2 3 84 9 95 .3 5 7 106 2.46 104 <5 <2 3 84 9 95 .3 5 7 106 2.46 104 <5 <2 3 84 9 95 .3 5 7 106 2.46 104 <5 <2 3 84 9 95 .3 5 7 106 2	2 32 5 51 .1 8 9 2012 3.17 10 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 44 7 19 .2 4 9 983 2.75 20 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 29 11 19 .3 7 10 965 4.28 26 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 50 5 54 .2 5 7 918 3.29 40 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 75 8 51 .3 4 8 1476 3.10 13 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 75 8 51 .3 4 8 1476 3.10 13 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 30 8 33 .1 5 10 1800 3.62 27 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 8 7 20 $\cdot$ 1 3 1 711 1665 3.88 33 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 8 7 20 $\cdot$ 1 3 1 780 .97 2 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 6671 12 71 1.4 4 13 959 1.73 15 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 7 8 13 .3 2 $\cdot$ 1 45 .58 9 5 $\cdot$ 2 7 1 71 15 41 .4 5 10 1910 4.94 36 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 103 9 64 .3 7 14 1806 4.38 25 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 75 7 56 .3 8 15 2466 3.93 27 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 75 7 56 .3 8 15 2466 3.93 27 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 39 $\cdot$ 2 83 .3 11 9 1335 4.75 11 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 39 $\cdot$ 2 83 .3 11 9 1335 4.75 11 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 39 $\cdot$ 2 83 .3 11 9 1335 4.75 11 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 2 39 $\cdot$ 2 83 .3 11 9 1335 4.75 11 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 62 4 100 .5 8 10 746 5.09 $\cdot$ 2 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 62 4 100 .5 8 10 746 5.09 $\cdot$ 2 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 62 4 100 .5 8 10 746 5.09 $\cdot$ 2 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 62 4 100 .5 8 10 746 5.09 $\cdot$ 2 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 62 4 100 .5 8 10 746 5.09 $\cdot$ 2 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 62 4 100 .5 8 10 746 5.09 $\cdot$ 2 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 62 4 100 .5 8 10 746 5.09 $\cdot$ 2 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 62 4 100 .5 8 10 746 5.09 $\cdot$ 2 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 62 4 100 .5 8 10 746 5.09 $\cdot$ 2 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 62 4 100 .5 8 10 746 5.09 $\cdot$ 2 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 62 8 11 39 $\cdot$ 3 5 7 1106 2.46 104 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 62 8 12 43 1.1 84 16 1359 3.67 79 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 62 8 12 43 1.1 84 16 1359 3.67 79 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 63 8 16 $\cdot$ 3 5 4 194 $\cdot$ 77 14 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 67 10 170 3 3 37 17 467 3.93 4.6 5 $\cdot$ 2 $\cdot$ 2 1 67 10 132 $\cdot$ 3 3 7 7 1106 2.46 104 $\cdot$ 5 $\cdot$ 2 $\cdot$ 2 1 7 50 38 132 $\cdot$ 8 86 72 32 1036 3.96 42 18 7 35 1 CP500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HNO3-H THIS LEACH IS PARTIAL FOR NN FE SR CA P LA CR MG BA TI B W A ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS $\cdot$ 3 SAMPLE TYPE: P1 ROCK P2 TO P2 SOIL AV* AWALYSIS BY FA 3 SAMPLE TYPE: P1 ROCK P2 TO P2 SOIL AV* AWALYSIS BY FA	2 32 5 51 .1 8 9 2012 3.17 10 .5 $<2 < 228$ 2 44 7 19 .2 4 9 983 2.75 20 $<5 < 2 < 2$ 15 2 29 11 19 .3 7 10 965 4.28 26 $<5 < 2 < 2$ 25 2 50 5 54 .2 5 7 918 3.29 40 $<5 < 2 < 2$ 50 1 73 16 131 .2 5 10 737 4.04 31 $<5 < 2 < 2$ 50 1 75 8 51 .3 4 8 1476 3.10 13 $<5 < 2 < 2$ 52 2 59 7 51 .3 7 11 1665 3.88 33 $<5 < 2 < 2$ 55 1 30 8 33 .1 5 10 1800 3.62 27 $<5 < 2 < 2$ 63 2 8 7 20 $<1$ 3 1 780 .97 2 $<5 < 2 < 2$ 64 4 671 12 71 1.4 4 13 959 1.73 15 $<5 < 2 < 2$ 98 4 691 13 71 1.5 5 12 966 1.74 17 $<5 < 2 < 2$ 98 4 691 13 71 1.5 5 12 966 1.74 17 $<5 < 2 < 2$ 98 4 691 13 71 1.5 5 12 966 1.74 17 $<5 < 2 < 2$ 88 2 75 7 56 .3 8 15 2456 3.93 27 $<5 < 2 < 2$ 86 2 75 7 56 .3 8 15 2456 3.93 27 $<5 < 2 < 2$ 16 2 64 4 77 .4 12 9 343 4.51 22 $<5 < 2 < 2$ 16 2 64 4 77 .4 12 9 343 4.51 22 $<5 < 2 < 2$ 16 3 9 $<2$ 83 .3 11 9 1335 4.75 11 $<5 < 2 < 2$ 16 3 9 $<2$ 83 .3 11 9 108 4.99 $<2 < 5 < 2 < 2$ 16 3 9 $<2$ 83 .3 11 9 1035 4.75 11 $<5 < 2 < 2$ 16 3 9 $<2$ 83 .3 11 9 1035 4.75 11 $<5 < 2 < 2$ 16 3 9 $<2$ 83 .3 11 9 1385 4.75 11 $<5 < 2 < 2$ 16 3 9 $<2$ 83 .3 11 9 1385 4.75 11 $<5 < 2 < 2$ 16 3 9 $<2$ 83 .3 11 9 1385 4.75 11 $<5 < 2 < 2$ 16 3 9 $<2$ 83 .3 11 9 1082 4.02 98 $< 5 < 2 < 2$ 52 3 10 58 11 39 .8 86 19 1088 4.10 44 $<5 < 2 < 2$ 16 3 8 16 .3 5 4 194 .77 14 $<5 < 2 < 2$ 16 3 8 16 .3 5 4 194 .77 14 $<5 < 2 < 2$ 16 3 24 8 23 .2 6 2 461 .96 8 $<5 < 2 < 2$ 19 4 30 8 16 .3 5 4 194 .77 14 $<5 < 2 < 5$ 15 3 84 9 95 .3 5 7 1106 2.46 104 $<5 < 2 < 2$ 19 4 30 8 16 .3 5 4 194 .77 14 $<5 < 2 < 5$ 15 3 84 9 95 .3 5 7 1106 2.46 104 $<5 < 2 < 2$ 19 4 30 8 16 .3 5 4 194 .77 14 $<5 < 2 < 5$ 15 3 84 9 95 .3 5 7 1106 2.46 104 $<5 < 2 < 2$ 19 4 30 8 16 .3 5 4 194 .77 14 $<5 < 2 < 18 7 35 50$ 1 CP500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LI ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, $\sim$ SAMPLE TYPE: PI ROCK P2 TO P2 SOIL AW* ANALYSIS BY FA/ICP Somples benioning (FF) are diving i care samples	2 32 5 51 .1 8 9 2012 3.17 10 $<5 <2 <2 228 <.2 2 2 44 7 19 .2 4 9 983 2.75 20 <5 <2 <2 25 <.2 2 5 5 5 4 .2 5 7 918 3.29 40 <5 <2 <2 50 <.2 <2 50 <.2 <2 50 <.2 <2 50 <.2 <2 50 <.2 <2 50 <.2 <2 50 <.2 <2 50 <.2 <2 50 <.2 <2 50 <.2 <2 50 <.2 <2 50 <.2 <2 <2 50 <.2 <2 50 <.2 <2 <2 50 <.2 <2 <2 <2 50 <.2 <2 <2 50 <.2 <2 <2 <2 50 <.2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2$	2 32 5 51 .1 8 9 2012 3.17 10 $<5 <2 <2 228 <.2 2 2 44 7 19 .2 4 9 983 2.75 20 <5 <2 <2 25 <.2 32 50 5 54 .2 5 7 918 3.29 40 <5 <2 <2 55 <.2 <2 41 73 16 131 .2 5 10 737 4.04 31 <5 <2 <2 50 <.2 41 75 8 51 .3 4 8 1476 3.10 13 <5 <2 <2 55 <.2 <2 25 <.2 33 0 8 33 .1 5 10 1800 3.62 27 <5 <2 <2 63 .2 <2 44 671 12 71 1.4 4 13 959 1.73 15 <5 <2 <2 98 .4 <2  2 8 7 20 <.1 3 1 780 .97 2 <5 <2 <2 64 <.2 <2  1 75 8 51 .3 7 11 1665 3.88 33 <5 <2 <2 98 .4 <2  4 671 12 71 1.4 5 10 1800 3.62 27 <5 <2 <2 63 .2 <2  2 8 7 20 <.1 3 1 780 .97 2 <5 <2 <2 84 <.2 <2  1 71 15 41 .4 5 10 1910 4.94 36 <5 <2 <2 98 .4 <2  2 8 7 20 <.1 3 1 780 4.97 2 <5 <2 <2 84 <.2 <2  2 7 8 13 .3 2 <1 45 .58 9 5 <2 7 5 <.2 <2 84 <.2 <2  1 71 15 41 .4 5 10 1910 4.94 36 <5 <2 <2 84 <.2 <2  2 64 4 77 .4 12 9 343 4.51 22 <5 <2 2 105 <.2 <2  4 62 2 103 9 64 .3 7 14 1806 4.38 25 <5 <2 <2 84 <.2 <2  2 64 4 77 .4 12 9 343 4.51 22 <5 <2 2 143 <.2 <2  2 64 4 77 .4 12 9 343 4.51 22 <5 <2 2 143 <.2 <2  1 62 4 100 .5 8 10 746 5.09 <2 <5 <2 <2 166 <.2 <2  2 103 8 13 .3 7 10 1880 4.38 25 <5 <2 <2 166 <.2 <2  2 39 <2 83 .3 11 9 1335 4.75 11 <5 <2 <2 105 <.2 <2  2 64 4 77 .4 12 9 343 4.51 22 <5 <2 <2 163 <.2 <2  2 64 4 77 .4 12 9 343 4.51 22 <5 <2 <2 164 <.2 <2  2 103 8 10 746 5.09 <2 <5 <2 <2 2 163 <.2 <2  2 4 30 8 16 .3 5 4 194 .77 14 <5 <2 2 105 <.2 <2  3 8 4 9 9 5 .3 5 7 1106 2.46 104 44 <5 <2 2 195 <.2 <2  3 8 4 9 9 5 .3 5 7 1106 2.46 104 45 <2 <2 105 <.2 <2  3 8 4 9 9 5 .3 5 7 1106 2.46 104 4 <5 <2 9 27 .3 <2  3 72 10 132 .3 3 7 02 01323 4.02 98 <5 <2 <2 5 5 .2 <2  3 72 10 132 .3 3 7 02 01323 4.02 98 <5 <2 5 2 .2 <2  3 72 10 132 .3 3 7 022 01323 4.02 98 <5 <2 5 2 .2 <2  3 72 10 132 .3 3 7 022 01323 4.02 98 <5 <2 5 2 .5 2 <2 <2  3 72 10 132 .3 3 7 022 01323 4.02 98 <5 <2 5 2 .5 2 <2  3 72 10 132 .3 3 7 022 2.94 4 <5 <2 7 25 .6 3 3  19 56 38 132 6.8 72 32 1036 3.96 42 18 7 35 50 17.6 14   1CP500 GRAM SAMPLE 15 DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C THIS LEACH IS PARTIAL FOR MN$	2 32 5 51 .1 8 9 2012 3.17 10 <5 $<2$ 2 228 <2 2 $<2$ 2 2 44 7 19 .2 4 9 983 2.75 20 <5 $<2$ <2 15 <2 $<2$ 2 2 29 11 19 .3 7 10 965 4.28 26 <5 $<2$ <2 25 <2 3 .2 2 50 5 54 .2 5 7 918 3.29 40 <5 $<2$ <2 50 <2 4 $<2$ 1 73 16 131 .2 5 10 737 4.04 31 <5 $<2$ <2 30 .9 2 <2 1 75 8 51 .3 4 8 1476 3.10 13 <5 $<2$ <2 55 <2 2 $<2$ <2 $<2$ <2 $<2$ <2 2 59 7 51 .3 7 11 1665 3.88 33 $<5$ <2 $<2$ 55 <2 $<2$ <2 $<2$ <2 $<2$ <2 2 8 7 20 <1 3 1 1600 3.62 27 $<5$ <2 $<2$ 66 $<2$ <2 98 .4 <2 <2 2 8 7 20 <1 3 1 780 .97 2 <5 $<2$ <2 98 .4 <2 <2 2 2 27 8 13 .3 2 1 45 .58 9 5 $<2$ 7 5 $<2$ 2 86 $<2$ 2 2 99 .6 $<2$ 2 2 1 11 5 41 .4 5 10 1800 4.36 $<25$ $<2$ 2 86 $<2$ 2 99 .6 $<2$ 2 2 2 2 75 7 56 .3 8 15 2466 1.74 17 $<5$ $<2$ 2 86 $<2$ 2 99 .6 $<2$ 2 2 2 103 9 64 .3 7 14 1806 4.38 25 $<5$ $<2$ 2 86 $.4$ $<2$ 2 2 2 64 4 77 4 8 .6 53 12 444 4.07 60 $<5$ $<2$ 2 19 $<2$ 2 $<2$ $<2$ 2 2 64 4 77 7 4 8 .6 53 12 444 4.07 60 $<5$ $<2$ 2 19 $<2$ 2 $<2$ $<2$ 2 2 64 4 77 7 4 8 .6 53 12 444 4.07 60 $<5$ $<2$ 2 19 $<2$ 2 $<2$ $<2$ 2 2 64 4 77 7 4 8 .6 53 12 444 4.07 60 $<5$ $<2$ 2 19 $<2$ $<2$ $<2$ 2 2 64 4 77 7 4 8 .6 53 12 444 4.07 60 $<5$ $<2$ 2 19 $<2$ $<2$ $<2$ $<2$ $<2$ $<2$ $<2$ $<2$	2 $32$ $5$ $51$ $.1$ $8$ $92012$ $3.17$ $10$ $.5$ $.2$ $.2$ $228$ $.2$ $2$ $.2$ $.2$ $.2$ $.33$ 2 $.44$ 7 $19$ $.2$ 4 9 983 2.75 20 $.5$ $.2$ $.2$ $.2$ $.25$ $.2$ $.2$ $.2$ $.2$ $.213$ 2 $.2911$ $19$ $.3$ 7 $10$ 965 4.28 26 $.5$ $.2$ $.2$ $.25$ $.2$ $.2$ $.2$ $.213$ 2 $.50$ $.5$ $.54$ $.2$ $.2$ $.5$ $.7$ 918 $3.29$ 40 $.5$ $.2$ $.2$ $.25$ $.2$ $.2$ $.2$ $.2$ $.13$ 1 $.75$ $.8$ $.51$ $.3$ 4 $.81476$ $3.10$ $.13$ $.5$ $.2$ $.2$ $.25$ $.2$ $.2$ $.2$ $.2$ $.214$ 1 $.75$ $.8$ $.51$ $.3$ 4 $.81476$ $3.10$ $.13$ $.5$ $.2$ $.2$ $.25$ $.2$ $.2$ $.2$ $.2$ $.2$ $.214$ 1 $.75$ $.8$ $.51$ $.3$ 4 $.81476$ $3.10$ $.13$ $.5$ $.2$ $.2$ $.25$ $.2$ $.2$ $.2$ $.2$ $.214$ 2 $.25$ $.2$ $.2$ $.2$ $.2$ $.2$ $.214$ 1 $.75$ $.8$ $.51$ $.3$ $.1$ $.5$ $.10$ $.1800$ $3.62$ $.27$ $.5$ $.2$ $.2$ $.26$ $.2$ $.2$ $.2$ $.214$ 2 $.8$ 7 $.20$ $1$ $.3$ $.1$ $.5$ $.10$ $.1800$ $.3.62$ $.27$ $.5$ $.2$ $.2$ $.26$ $.2$ $.2$ $.2$ $.214$ 2 $.8$ 7 $.20$ $1$ $.3$ $.1$ $.5$ $.10$ $.1800$ $.3.62$ $.27$ $.5$ $.2$ $.2$ $.26$ $.2$ $.2$ $.2$ $.214$ 2 $.27$ $.21$ $.3$ $.1$ $.5$ $.10$ $.1800$ $.3.62$ $.27$ $.5$ $.2$ $.2$ $.26$ $.46$ $.2$ $.2$ $.2$ $.214$ 2 $.8$ 7 $.20$ $.1$ $.3$ $.1$ $.5$ $.10$ $.190$ $.977$ $.2$ $.5$ $.2$ $.22$ $.26$ $.23$ $.22$ $.22$ $.214$ 2 $.7$ $.8$ $.7$ $.20$ $.21$ $.3$ $.1$ $.5$ $.20$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.29$ $.6$ $.2$ $.2$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.23$ $.22$ $.23$ $.23$ $.2$ $.23$ $.24$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$ $.23$	2 32 5 51 .1 8 9 2012 3.17 10 $<5 <2 <2 228 <.2 2 <2 13 3.51$ 2 44 7 19 .2 4 9 983 2.75 20 $<5 <2 <2 228 <.2 2 <2 11 .31$ 2 29 11 19 .3 7 10 965 4.28 26 $<5 <2 <2 225 <.2 3 <2 11 .31$ 2 50 5 54 .2 5 7 918 3.29 40 $<5 <2 <2 25 <.2 3 <2 14 .60$ 1 75 8 51 .3 4 8 1476 3.10 13 $<5 <2 <2 30 .9 2 <2 14 .60$ 1 75 8 51 .3 4 8 1476 3.10 13 $<5 <2 <2 30 .9 2 <2 14 .60$ 1 75 8 51 .3 4 8 1476 3.10 13 $<5 <2 <2 30 .9 2 <2 14 .60$ 1 30 8 33 .1 5 10 1800 3.62 27 $<5 <2 <2 63 .2 <2 <2 2 17 1.67$ 1 30 8 33 .1 5 10 1800 3.62 27 $<5 <2 <2 63 .2 <2 <2 2 18 1.50$ 1 30 8 33 .1 5 10 1800 3.62 27 $<5 <2 <2 63 .2 <2 <2 18 1.50$ 4 671 12 71 1.4 4 13 959 1.73 15 $<5 <2 <2 98 .4 <2 2 9 1.52$ 4 691 13 71 1.5 5 12 966 1.74 17 $<5 <2 <2 98 .4 <2 2 9 1.52$ 4 691 13 71 1.5 5 12 966 1.74 17 $<5 <2 <2 98 .4 <2 2 9 1.52$ 2 103 9 64 .3 7 14 1806 4.38 25 $<5 <2 <2 88 .4 <2 2 2 <2 18 3.05$ 2 103 9 64 .3 7 14 1806 4.38 25 $<5 <2 <2 88 .4 <2 2 2 <2 18 3.05$ 2 103 9 64 .3 7 14 1806 4.38 25 $<5 <2 <2 19 9 .2 <2 <2 18 2.14$ 2 75 7 56 .3 8 15 2456 3.93 27 $<5 <2 <2 2 16 <.2 <2 2 2 12 2.98$ 4 77 4 12 9 343 4.51 12 2 $<5 <2 <2 16 <.2 <2 2 35 4.85$ 1 62 4 100 .5 8 10 746 5.09 $<2 <2 2 19 9 <.2 <2 <2 35 4.85$ 1 62 4 100 .5 8 10 746 5.09 $<2 <2 2 19 9 <.2 <2 <2 35 4.85$ 1 62 4 100 .5 8 8 10 746 5.09 $<5 <2 <2 19 9 <.2 <2 <2 35 4.85$ 1 62 4 100 .5 8 8 10 746 5.09 $<5 <2 <2 19 9 <.2 <2 <2 35 4.85$ 1 62 4 100 .5 8 8 10 746 5.09 $<5 <2 <2 19 9 <.2 <2 <2 2 35 4.85$ 1 62 4 100 .5 8 8 10 746 5.09 $<5 <2 <2 19 9 <.2 <2 <2 2 35 4.85$ 1 62 4 100 .5 8 8 10 746 5.09 $<5 <2 <2 19 9 <.2 <2 <2 2 5 5.25 .2  3 2 46 1.72 19 3 3 5 7 1106 2.46 104 <5 <2 2 2 19 5 <.2 <2 <2 2 5 5.263 24 8 23 .2 6 2 461 .77 14 <5 <2 6 15 <.2 <2 2 2 5 5.26 .2  3 2 4 6 1.72 10 1322 .3 3 7 0 20 1323 4.02 98 <5 <2 <2 5 5 .2 <2 2 <2 2 5 1.823 72 10 1322 .3 3 7 02 20 323 4.02 98 <5 <2 <2 5 15 <.2 <2 <2 2 5 .263 24 8 23 .2 6 2 461 .96 8 <5 <2 5 15 <.2 <2 <2 5 .26  3 24 8 23 .2 6 2 461 .96 8 <5 <2 5 15 <.2 <2 5 .2 5 .2 2  3 72 .0 132 .3 3 7 020 2.2 94 4 <5 <2 7 7 $	2 $32$ $5$ $51$ $.1$ $8$ $92012$ $3.17$ $10$ $.5$ $.2$ $.2$ $228$ $.2$ $.2$ $.2$ $.2$ $13$ $.3.51$ $.074$ 2 $44$ 7 19 $.2$ $4$ 9 983 $_{2.75}$ 20 $.5$ $.2$ $.2$ $.25$ $.2$ $.2$ $.2$ $.2$ $.211$ $.31$ $.10$ 2 29 11 19 $.3$ 7 10 965 $4.28$ 26 $.52$ $.2$ $.25$ $.2$ $.2$ $.2$ $.2$ $.213$ $.63$ $.105$ 2 $50$ $5$ $54$ $.2$ $5$ 7 918 $3.29$ $40$ $.5$ $.2$ $.2$ $.25$ $.2$ $.2$ $.2$ $.2$ $.2$ $.11$ $.31$ $.10$ 1 75 8 $51$ $.3$ $.4$ 8 1476 $3.10$ $13$ $.5$ $.2$ $.2$ $.20$ $.2$ $.4$ $.2$ $.215$ $.92$ $.112$ 1 75 8 $.51$ $.3$ $.4$ 8 1476 $3.10$ $13$ $.5$ $.2$ $.2$ $.25$ $.2$ $.2$ $.2$ $.2$ $.2$ $.214$ $.60$ $.117$ 1 $.75$ 8 $.51$ $.3$ $.4$ 8 1476 $3.10$ $13$ $.5$ $.2$ $.2$ $.25$ $.2$ $.2$ $.2$ $.2$ $.2$ $.214$ $.60$ $.117$ 2 $.59$ $.51$ $.3$ $.7$ 11 1665 $3.88$ $33$ $.5$ $.2$ $.2$ $.25$ $.2$ $.2$ $.2$ $.2$ $.2$ $.2$ $.18$ $1.50$ $.114$ 1 $.30$ 8 $.33$ $.1$ $.5$ 10 1800 $3.62$ 27 $.5$ $.2$ $.2$ $.26$ $.2$ $.2$ $.2$ $.2$ $.2$ $.14$ $1.94$ $.117$ 2 $.8$ $.7$ 20 $1$ $.3$ 1 780 $.97$ $.2$ $.5$ $.2$ $.2$ $.26$ $.2$ $.2$ $.2$ $.2$ $.14$ $.194$ $.117$ 2 $.8$ $.7$ 20 $1$ $.3$ 1 780 $.97$ $.2$ $.5$ $.2$ $.2$ $.28$ $.4$ $.2$ $.2$ 9 $1.52$ $.114$ 4 $.691$ $13$ 71 $1.5$ $.51$ $2.966$ $1.74$ $17$ $.5$ $.2$ $.2$ $.28$ $.4$ $.2$ $.2$ 9 $1.52$ $.114$ 4 $.691$ $13$ 71 $1.5$ $.51$ $2.966$ $1.74$ $17$ $.5$ $.2$ $.2$ $.28$ $.4$ $.2$ $.2$ 9 $1.52$ $.114$ 4 $.691$ $13$ 71 $1.5$ $.51$ $2.966$ $1.74$ $17$ $.5$ $.2$ $.2$ $.286$ $.4$ $.2$ $.2$ $.2$ $.21$ $2.141$ $.109$ $.173$ $15$ $.5$ $.2$ $.2$ $.286$ $.4$ $.2$ $.2$ $.2$ $.21$ $.2102$ $.003$ $.171$ $.114$ $.277$ $.2$ $.2$ $.2$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$ $.22$	2 32 5 51 .1 8 9 2012 3.17 10 $<5 <2 228 <2 2 <2 2 <2 2 3 3.51 07 3 32 44 7 19 .2 4 9 983 2.75 20 <5 <2 <2 215 <2 <2 2 <2 11 .31 .110 6 2 29 11 19 .2 4 9 983 2.75 20 <5 <2 <2 215 <2 3 <2 13 .63 .105 52 50 5 54 .2 5 7 918 3.29 40 <5 <2 <2 25 <2 3 <2 13 .63 .105 52 50 5 54 .2 5 7 918 3.29 40 <5 <2 <2 25 <2 2 <2 <2 2 <2 11 .31 .110 61 75 16 131 .2 5 10 737 4.04 31 <5 <2 <2 30 .9 2 <2 4 <2 15 .92 .112 71 73 16 131 .2 5 10 737 4.04 31 <5 <2 <2 55 <2 <2 <2 <2 2 <2 2 <2 11 .161 .11 6 2 59 7 51 .3 7 11 1665 3.88 33 <5 <2 <2 55 <2 <2 <2 <2 <2 2 <2 11 .191 .11 6 2 59 7 51 .3 7 11 1665 3.88 33 <5 <2 <2 6 5 <2 <2 <2 <2 <2 2 <2 18 1.50 .114 5 1 30 8 33 .1 5 10 1800 3.62 27 <5 <2 <2 6 6 <2 <2 <2 <2 2 <2 18 1.50 .114 5 1 30 8 33 .1 5 110 1800 3.62 27 <5 <2 <2 6 46 <2 <2 2 <2 <2 18 1.50 .114 5 1 30 8 33 .1 5 12 966 1.74 17 <5 <2 <2 98 .4 <2 <2 9 1.51 .114 7 2 8 17 .20 <13 3 71 1.5 5 12 966 1.74 17 <5 <2 <2 98 .4 <2 <2 9 1.51 .114 72 77 8 13 .3 2 2 1 45 .58 9 5 <2 <2 84 <.2 <2 <2 <2 18 3.05 .102 5 2 103 9 64 .3 7 14 1806 4.38 25 <5 <2 <2 84 <.2 <2 <2 2 <2 18 3.05 .102 5 2 103 9 64 .3 7 14 1806 4.38 25 <5 <2 <2 19 <2 2 <2 12 .98 .114 8 4 77 4 4 12 9 343 4.51 22 <5 <2 <2 19 <2 2 <2 14 2.98 .114 8 4 77 4 4 12 9 343 4.51 22 <5 <2 <2 19 <2 2 <2 35 4.63 .099 6 2 64 4 77 4 12 9 343 4.51 22 <5 <2 <2 19 <2 2 <2 35 4.63 .099 62 64 4 77 4 12 9 343 4.51 22 <5 <2 <2 16 <2 2 <2 35 4.63 .099 64 66 63 9 3.3 7 10 746 5.09 <2 <2 55 .2 <2 <2 2 <2 2 35 4.85 .081 71 58 11 39 .8 86 19 1088 4.10 44 <5 <2 <2 105 <2 <2 <2 2 35 4.85 .081 71 6 66 64 39 3.3 7 17 467 3.93 46 <5 <2 <2 19 <2 <2 <2 2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <2 5 5 .2 <2 <$	2 $32$ $5$ $51$ $.1$ $8$ $9$ $2012$ $3.17$ $10$ $.5$ $.2$ $.2$ $.2$ $228$ $.2$ $.2$ $.2$ $.2$ $.11$ $.31$ $.110$ $.6$ $.2$ $.2$ $.2$ $.9$ $11$ $.91$ $.2$ $.4$ $.9$ $.983$ $2.75$ $.20$ $.5$ $.2$ $.2$ $.2$ $.2$ $.2$ $.2$ $.2$ $.2$	2 32 5 51 1 1 8 6 2012 3.17 10 -5 -2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 32 5 51 .1 8 92012 3.17 10 .5 $.2 228 .22 228 .22 2 2 13 .53 1074 3 5 88 28 28 24 4 7 19 .2 4 9 983 2.75 20 .5 .2 2 2 215 .2 3 .2 11 .51 .10 6 2 .05 100 52 29 11 19 .3 7 10 965 4.28 26 .5 .2 2 2 25 .2 3 .2 13 .63 .105 5 2 .17 6 52 .50 5 54 .2 5 7 918 3.29 40 .5 .2 25 .2 3 .2 3 .2 13 .63 .105 5 2 .17 6 7 7 3 .31 79 18 .29 40 .5 .2 2 25 .2 2 3 .2 1 7 1.65 .105 5 2 .17 7 3 .31 79 11 73 16 131 .2 5 10 737 4.04 31 .5 .2 2 2 5 .2 2 3 .2 2 4 .2 15 .92 .112 7 3 .31 79 11 75 8 51 .3 4 8 1476 3.10 13 .5 .2 2 .2 2 .5 2 .2 2 .2 2 .2 4 .2 11 .51 .11 6 2 .29 63 17 75 1 .3 7 11 1665 3.88 33 .5 .2 2 .2 2 .5 .2 2 .2 2 .2 14 1.96 .111 6 1 .49 70 12 59 7 51 .3 7 11 1600 3.62 27 .5 .2 2 .2 2 .2 2 .2 14 1.96 .111 5 1 .44 75 10 1900 3.62 27 .5 .2 2 .2 2 .2 4 .2 .2 11 1.50 .114 5 3 .51 69 130 0 8 33 .1 5 10 1800 3.62 27 .5 .2 2 .2 4 6 .2 2 .2 14 1.96 .117 5 1 .44 75 2 8 7 20 .1 3 1 780 .97 2 .5 .2 .2 2 .2 46 .2 2 .9 1.52 .114 6 2 .25 102 4 601 13 71 1.5 12 .966 1.74 17 .5 .2 .2 9 .6 .2 2 .9 1.51 .114 7 3 .25 104 2 .27 8 13 .3 2 .2 14 5 .55 9 5 .2 .2 .2 .2 .2 .2 .2 .2 10 .20 .20 3 .0 3 .01 107 1 71 15 41 .4 5 10 1910 4.94 36 .5 .5 .2 .2 2 8 4 .2 .2 2 .2 1.51 .114 6 2 .25 102 2 17 5 .3 7 14 1006 4.38 25 .5 .2 .2 .2 8 4 .2 .2 .2 .2 18 3.05 .102 5 1 .55 57 11 .55 17 .966 1.74 17 .5 .2 .2 .2 .2 18 .3.05 .102 5 1 .55 57 12 103 9 .44 .77 .48 .6 53 12 2.44 .407 60 .5 .42 .2 19 .2 .2 .2 .2 .2 .14 .190 7 3 .67 73 .67 75 1 .62 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2$	2 32 5 51 1 1 8 9 2012 3.17 10 $< 5 < 2 < 2 228 < 2 2 < 2 13 3.51 072 3 5 88 28 < 01 2 4 7 19 .2 4 9 983 2.75 20 < 5 < 2 < 2 2 15 < 2 < 2 13 3.51 072 3 5 .88 28 < 01 2 99 11 19 .3 7 10 965 4.28 26 < 5 < 2 < 2 2 5 < 2 2 < 2 2 3 < 2 13 .51 072 3 .51 072 3 5 .88 28 < 01 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < $	2 32 5 51 .1 8 9 2012 3.17 10 $<5 <2 <2 228 <2 2 <2 13 3.51 .07 3 5 .88 28 <.01 4 2 44 9 993 2.75 20 <5 <2 <2 228 <2 25 <2 2 <2 13 3.51 .074 3 5 .88 28 <.01 4 5 .01 5 2 29 11 19 .2 4 9 993 2.75 20 <5 <2 <2 2 25 <2 2 3 <2 13 3.51 .074 3 .95 10 6 5 2 .17 65 .01 5 2 29 11 19 .2 5 10 .965 4.28 26 <5 <2 <2 2 5 <2 2 3 <2 13 .63 .105 5 2 .117 6 .01 5 5 2 .17 65 .01 5 5 2 .17 65 .01 5 5 2 .17 65 .01 5 5 2 .17 65 .01 5 10 .01 10 .965 4.28 26 <5 <2 <2 5 0 <2 4 <2 15 .92 .112 7 3 .31 79 <.01 5 1 .73 16 131 .2 5 10 .737 4.04 31 <5 <2 <2 5 0 <2 4 <2 5 2 <2 <2 <2 4 4 .60 .117 6 2 .29 63 <.01 4 .49 70 <.01 4 .13 0 .116 5 1 .3 4 .8 1476 3.10 13 <5 <2 <2 5 5 <2 <2 <2 <2 <2 <2 <2 4 1 1.67 .111 6 1 .49 70 <.01 4 .13 0 .14 5 3 .51 69 <.01 4 .13 0 .114 5 3 .51 69 <.01 4 .13 0 .114 5 3 .51 69 <.01 4 .13 0 .18 3 .33 1 .5 10 100 3.62 2.7 <5 <2 <2 5 5 <2 <2 <2 <1 14 1.94 .117 5 1 1.44 75 .01 4 .13 0 .103 .55 <2 <2 0 .90 .2 <2 4 16 1.90 .117 5 1 .44 .75 <.01 4 .28 7 .20 .01 4 .13 0 .114 5 3 .51 69 <.01 4 .13 0 .114 5 3 .15 60 <.01 4 .13 0 .114 5 3 .15 60 <.01 4 .13 0 .117 5 1 1.26 .114 6 1 .29 70 <.01 4 .13 0 .118 .5 1 .25 .114 6 1 .25 102 .01 6 .14 .194 .117 5 1 .14 .47 .5 .14 .47 .5 .01 4 .28 7 .20 .03 .20 .03 .20 .03 .01 107 <.01 5 .17 115 .41 .4 5 10 .1910 .94 .54 .58 9 5 .42 7 5 .2 .2 .2 .2 .2 .20 .003 20 3 .01 107 <.01 5 .17 115 .41 .4 5 10 .1910 .94 .56 .58 .9 5 .42 .7 5 .2 .2 .2 .2 .2 .2 .2 .00 .03 20 3 .01 107 <.01 5 .2 .103 9 .64 .3 7 14 .1806 4.38 25 .5 .42 .2 .2 .16 .42 .2 .2 .2 .2 .2 .2 .2 .00 .3 .01 107 <.01 5 .2 .103 9 .64 .3 7 14 .1806 4.38 25 .5 .42 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .103 .01 .107 <.01 3 .2 .103 9 .64 .3 7 14 .1806 4.38 25 .5 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 $	2 32 5 51 .1 8 9 2012 3.17 10 -5 -2 2 22 8 -2 2 2 13 3.51 074 3 5 88 28 -01 4 44 4 44 7 19 .2 4 9 983 2.75 20 -5 -2 2 25 -2 3 -2 13 .31 .110 6 2 0.05 10 -01 5 .46 2 29 11 19 .3 7 10 965 4.28 26 -5 -2 2 25 -2 3 -2 13 .63 .105 5 2 .17 7 5 .01 5 .47 2 50 5 5 4 .2 5 7 918 3.29 40 -5 -2 2 50 -2 4 2 11 .31 .110 6 2 0.05 10 -01 5 .46 1 73 16 131 .2 5 10 737 4.04 31 -5 -2 2 25 -2 2 5 -2 2 4 4 .60 .117 6 2 .29 63 -01 5 .85 1 73 16 131 .2 5 10 737 4.04 31 -5 -2 2 25 -2 2 2 2 -2 2 2 14 .60 .117 6 2 .29 63 -01 5 .85 1 73 16 131 .2 5 10 737 4.04 31 -5 -2 2 25 -2 2 2 2 2 2 2 2 2 2 2 14 .60 .117 6 1 2 .29 63 -01 5 .85 1 73 16 131 .2 5 10 737 4.04 31 -5 -2 2 25 -2 2 2 2 2 2 2 2 2 2 2 18 1.50 .114 5 3 .51 69 -01 4 .86 2 59 7 51 .3 7 11 1665 3.88 33 -5 -2 2 2 55 -2 2 2 2 2 2 14 1.94 .117 5 1 .44 7 5 .01 4 .58 2 8 7 20 -1 3 1 780 .97 2 -5 -2 2 68 .4 -2 2 9 1.52 .114 6 1 .49 .117 7 1 2 71 1.4 4 13 959 1.73 15 -5 2 2 98 .4 -2 2 9 1.52 .114 6 2 .25 102 .01 6 .50 2 27 8 13 .3 2 -1 45 .58 9 5 .2 7 5 .2 2 2 46 .2 2 9 1.52 .114 6 2 .25 104 .01 5 .50 2 27 8 13 .3 2 -1 45 .58 9 5 .2 7 5 .2 2 2 42 .2 2 .2 .00 .32 0 3 .01 107 .01 5 .27 7 1 71 15 41 .4 5 10 190 4.94 35 -5 2 7 5 .2 2 2 42 .2 2 .20 .003 20 3 .01 107 .01 5 .27 1 71 15 41 .4 5 50 11 90 4.94 5 .58 9 5 .2 7 5 .2 2 2 42 .2 2 .20 .003 20 3 .01 107 .01 5 .27 1 71 15 41 .4 5 10 190 4.94 5 .55 -2 2 18 .2 2 .2 2 .2 2 .20 .003 20 3 .01 107 .01 5 .27 2 103 9 64 .3 7 14 1806 4.38 25 -5 -2 2 2 16 .2 2 .2 2 .2 2 .2 2 .003 20 3 .01 107 .01 2 .94 2 75 7 56 .3 8 15 2456 3.93 27 -5 -2 2 2 19 .2 2 .2 2 .2 2 .2 2 .01 6 .14 .29 1 62 4 100 .5 8 10 746 5.09 -2 2 .5 .2 2 .2 2 .2 2 .2 2 .2 .03 .00 1 7 4 .106 118 .02 3 .2 .19 2 46 4 77 7 4 4 .6 5 3 12 444 .07 6 -5 +2 2 .2 163 .2 .2 2 .2 2 .2 .2 .2 .2 .2 .2 .2 .2 .2	2 32 5 51 .1 8 9 2012 3.17 10 45 42 22 8 4.2 2 42 13 3.51 0.74 3 5 .88 28 <01 4 4.44 03 22 9 11 19 .3 7 10 965 4.28 26 45 42 42 15 .2 2 42 11 3.1 .10 62 .0.57 100 <01 5 .46 0.3 2 29 11 19 .3 7 10 965 4.28 26 45 42 42 15 .2 2 42 11 .45 .11 6 2 .0.57 10 <05 .47 .02 2 50 5 54 .2 5 7 918 3.29 40 45 42 42 50 <.2 4 42 15 .92 .112 7 3 .31 79 <0.01 5 .67 .03 1 75 8 51 .3 4 8 1476 3.10 13 45 42 42 50 <.2 4 42 15 .92 .112 7 3 .31 79 <0.01 5 .65 .03 1 75 8 51 .3 4 8 1476 3.10 13 45 42 42 55 2.2 2 42 42 11 4.00 .117 6 2 .2.9 6 3 <0.01 5 .85 .03 1 75 8 51 .3 4 8 1476 3.10 13 45 42 42 55 2.2 2 42 42 11 4.00 .117 6 1 .49 70 <.01 4 .86 .02 1 30 8 33 .1 5 10 1800 3.62 27 45 42 45 55 42 42 55 <.2 4 42 11 4.04 .117 6 1 .49 70 <.01 4 .86 .02 1 30 8 33 .1 5 10 1800 3.62 27 45 42 42 55 <.2 42 42 14 1.94 .117 5 1 .44 75 <.01 4 .88 .02 1 30 8 33 .1 5 10 1800 3.62 27 45 42 42 98 .4 42 42 9 152 .114 6 2 .25 102 .01 6 .86 <.01 4 .29 .01 4 .89 .02 1 30 8 33 .1 5 10 1800 3.62 27 45 42 42 99 .6 42 2 9 1.51 .114 7 3 .25 104 .01 4 .59 .02 .01 4 .59 .02 14 .59 .114 7 3 .25 104 .01 5 .50 .02 2 8 7 20 <.13 1 780 .97 7 2 45 42 42 98 .4 42 2 2 9 1.51 .114 7 3 .25 104 .01 4 .59 .02 .01 4 .59 .02 .01 1 7.1 15 5 12 966 1.74 17 45 42 42 99 .6 42 2 9 1.51 .114 7 3 .25 104 .01 4 .59 .00 .22 103 9 64 .3 7 14 1806 4.38 25 45 42 42 7 5 .2 42 42 18 3.05 .102 5 1 .55 57 .01 3 .53 .03 .02 2 27 6 43 .02 .03 3 .01 107 <.01 5 .50 .02 42 77 48 6.5 37 3 12 444 4.07 60 45 42 2 91 5.2 .114 8 2 .69 106 .01 4 .64 .03 12 .00 .03 2 40 .03 3 .01 107 <.01 5 .27 .01 1 7 .07 3 .01 2 .94 .03 .00 .02 2 .24 .01 .03 9 64 .4 77 .4 6 .5 53 12 .444 .07 60 45 42 2 .2 95 .22 42 .24 .14 .100 7 357 73 <.01 2 .94 .03 .00 .02 2 .24 .01 .00 .03 3 .01 107 <.01 5 .27 .01 1 1 .5 .5 .27 .01 3 .53 .03 .03 .01 107 <.01 5 .27 .00 1 .03 .00 .02 2 .24 .01 .03 .00 .02 2 .24 .01 .03 .00 .02 2 .24 .01 .03 .00 .02 2 .24 .01 .00 .03 .00 .03 .00 .01 4 .4 .03 .00 .02 .00 .03 .00 107 <.01 5 .27 .00 .03 .00 .03 .00 .00 .00 .00 .00 .00	2 32 5 51 .1 8 9 2012 3.17 10 c5 $\cdot 2$ c2 28 $\cdot 2$ 2 2 $\cdot 2$ 13 3.51 074 3 5 .88 28 $\cdot 201$ 4 .44 .03 08 24 .03 0.8 24 .03 .01 $\cdot 4$ .44 .03 0.8 .08 .24 .04 .05 .01 $\cdot 4$ .44 .03 0.8 .08 .24 .04 .05 .01 $\cdot 4$ .44 .03 0.8 .08 .04 .04 .05 .01 $\cdot 4$ .44 .03 0.8 .04 .04 .04 .05 .01 $\cdot 4$ .44 .03 0.8 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04	2 32 5 51 .1 8 9 2012 3.17 10 45 42 228 42 228 42 22 42 41 .33 .51 .074 3 5 .88 28 4.01 4 .44 .03 .08 1 2 44 7 19 .2 4 9 98 2.75 20 45 42 42 15 42 42 11 .33 .110 6 2 .05 100 401 5 .63 .01 5 .47 .02 .19 1 2 50 5 54 .2 5 7 918 .329 40 45 42 25 .2 42 42 15 .92 .112 7 3 .31 77 4.01 5 .63 .03 .22 1 1 73 16 131 .2 5 10 737 4.04 31 45 42 42 .25 .2 42 42 15 .92 .112 7 3 .31 77 4.01 5 .63 .03 .22 1 1 75 16 131 .2 5 10 737 4.04 31 45 42 42 .25 .2 42 42 15 .92 .112 7 3 .31 77 4.01 4 .86 .02 .17 1 1 75 8 51 .3 4 8 1476 3.10 13 45 42 45 25 42 .2 42 42 18 .150 .114 5 3 .51 69 4.01 4 .86 .02 .17 1 1 75 8 51 .3 4 18 1476 3.10 13 45 42 45 .55 .2 42 42 18 .150 .114 5 3 .51 69 4.01 4 .86 .02 .17 1 1 30 8 33 .1 5 10 1800 3.62 27 45 42 42 .25 42 .22 42 18 .150 .114 5 3 .51 69 .01 4 .86 .02 .21 4 1 30 8 33 .1 5 10 1800 3.62 27 45 42 42 .26 .22 42 42 18 .150 .114 5 3 .51 69 .01 4 .58 .02 .21 1 2 8 7 20 <1 3 1 780 .07 7 2 45 42 42 .28 .24 .22 42 .14 1.94 .117 5 1 .44 .75 .01 4 .58 .02 .21 1 2 8 7 20 <1 3 1 780 .07 7 2 45 42 42 .29 8 .6 42 42 9 1.52 .114 6 2 .25 102 .01 6 .50 .02 .26 1 4 661 13 71 1.5 5 12 966 1.74 17 45 42 42 .99 .6 42 2 9 1.52 .114 6 358 50 .01 4 .28 .00 .27 .01 .16 1 1 71 15 41 .4 5 10 1910 4.94 .36 45 42 42 .28 .42 .22 42 .20 .003 20 .01 30.01 107 .01 5 .50 .02 .27 .01 .19 1 1 71 15 41 .4 5 10 1910 4.94 .36 45 42 .22 .21 .24 .10 .97 7 3 .67 73 .01 2 .96 .03 .13 .4 2 103 9 64 .3 7 14 1806 4.38 25 45 .22 .22 19 .6 .22 .29 .153 .114 7 3 .25 104 .01 5 .50 .02 .27 .01 .19 1 1 71 15 41 .4 5 10 1910 4.94 .36 45 42 .23 .24 .24 .24 .24 .10 .109 7 3 .67 73 .01 2 .96 .03 .13 .4 2 75 7 56 .3 8 152 .66 3.93 27 45 .22 .22 19 .6 .22 .29 1.55 .114 7 0 .25 105 .01 2 .90 .13 .13 .1 2 75 7 56 .3 8 152 .646 .77 60 45 42 .29 19 .6 .22 .29 .101 10 7 3 .67 73 .01 2 .96 .03 .13 .4 2 75 7 56 .3 8 152 .444 .07 60 45 42 .23 .24 .24 .24 .24 .10 .109 7 3 .67 73 .01 2 .96 .03 .13 .4 2 75 7 56 .3 8 152 .444 .07 60 45 42 .23 .24 .24 .24 .24 .14 .109 7 3 .67 .73 .50 .02 .22 .20 .11 .1 1 62 4 100 .5 8 10 746 5.09 42 5 .5 .2 .22 .24 .24 .24 .24 .

ACHE AMALYTICA

Orequest Consultants Ltd. PROJECT CORNICE MTN. FILE # 94-3064

**4**4

Page 2

SAMPLE#	No ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Mn ppm		As ppm			Th ppm	-	Cd ppm	Sb ppm	8i ppm	V ppm	Ca %			Cr ppm	Mg %	Ba ppm	Ti X	B ppm	AL %	Na %	K X	₩. ppm	Au** ppb
LINE 1 4+50W	1	42	•••	107	.4	7			6.22	14	<5	<2	4	•••	<.2	2			.99		10		1.81		.21				.75	<u></u> 1	
LINE 1 4+25W	1	59	3		.1	15	16	2017	5.30	10	<5	<2	2	67	<.2	<2	<2	117	.93	.121	10	22	1.54	522	.17	3 2	2.63	.07	.78	<1	
LINE 1 4+00W	1	50	5		.3	3		2008		10	<5	<2	3		<.2	<2			.70		14		.92		.11		1.79	.06		<1	
LINE 1 3+75W	2	100	7		.3	74		1708		17	<5	<2	3		1.0	<2			1.19		6			448	.30		4.50	.17		2	8
LINE 1 3+50W	1	56	10	115	.3	7	10	2074	5.48	16	<5	<2	3	67	<.2	<2	<2	89	1.04	.151	14	11	1.18	445	.13	8.	2.18	.06	.01	<1	26
LINE 1 3+25W	1	52		141		9		1993		12	<5	<2	4		<.2	<2			.84		13			383			2.47			<1	31
LINE 1 3+00W	4	225		220	.2	17		3182		8	<5	<2	4	81		<2			1.52		9		1.96		.22			.05		1	
LINE 1 2+75W	2	78		155 175	.2	6		1638 1455		20 8	<5 <5	<2 <2	3 5		<.2 <.2				1.14		12 11		1.60		.15		3.30 3.97	.04		1 3	
LINE 1 2+50W LINE 1 2+25W		75 167	<2		.2 1.0	9 17		1634		7	- <5	<2		33 78	<.2	<2 <2			.39		12			311			3.36	-02 -02		2	
LINE I E'EJW	U	107	~	101	1.0			1034	0.27	ſ	~	~6	-			~	~L	164	,	. 104	12	10	1.44	317	.20				1.00	2	10
LINE 1 2+00W		119		190				1336		14	<5	<2	4	58	<.2	<2			.47		9			326				.04		3	
RE LINE 1 2+00W		119		192	1.1	25		1355		10	-5	<2	5	57	<.2	<2			.47		9		1.73		.26			-04		2	33
LINE 1 1+75W LINE 1 1+50W	10 9	123 81	-	193 118	.7 .4	29 10		1698 1028		13 7	<5 <5	<2 <2	4	77 77	<.2 <.2	<2 <2			.50 .29		9 8		1.72	350	.26			.05 .03		5 4	35 20
LINE 1 1+25W	11	50		113	.1	7		621		3	5	<2	4	28	<.2	<2		144		.038	8			206			2.68	.01		5	
					• •	·				•	-	_	•			-					Ū									-	
LINE 1 1+00W	10			91	.2	1		857		2	<5	<2	5		<.2	<2				.107	10			244				.02		17	
LINE 1 0+75W	18			101	.1	8		935		6	<5 -	<2	5		<.2	<2			.37		10			225			2.25	.03		4	
LINE 1 0+50W LINE 1 0+25W		134 121	-	143 100	.3 <.1	19 8		1217 956		7 <2	<5 6	<2 <2	45		<.2 <.2	<2 <2		123 175		.098	12 11		1.56		.31 .40		3.26 2.23	.06 .03		4	9
LINE 1 0+00W		239	-	222	.3	-		1981		16	<5	~2	4	72	.3	<2			.83		9			364				.14		1	
			_		_						_	_	_			_															
LINE 1 0+25E		160		159	.1	52		1320		10	<5	<2	4		<.2	<2			.46		10			340				.09		4	9
LINE 1 0+50E LINE 1 0+75E		163 156	7	97 164	.2 .3			740	5.69	4 13	ত	<2 <2	3	19 37		<2 <2	<2 <2	122		.110	10 11		1.58		.31 .30		2.17	.04		23	2
LINE 1 1+00E		151		201	.2			1467		11	ঁ	~2	ž	52		<2		125		.117	10		1.84		.28			.12		1	7
LINE 1 1+25E		152	9		.3			1602		17	<5	<2	4	54	.6	<2		129		.122	9		1.86		.28		3.81	.15		<1	6
				47/	-	~~		4004					-						- /									•		_	
LINE 1 1+50E LINE 1 1+75E	21 23	104 102		176 132	.3 .3			1201 903	5.02	14 9	<5 <5	<2 <2	3 3		<.2 <.2	<2 <2			.54	.115	10 9		1.35		.21 .23		2.17	.06 .05	.62	2	9
LINE 1 2+00E	20	94		167	.1	49			4.52	15	ঁ	~2	4		<.2	~2		- <del>7</del> 5 90		.1099	10			185	.23			.05	.68 .62	<1	-
LINE 1 2+25E	16	86		186	.3				4.82	16	<5	<2	4	25	.6	2	3	96		.119	11		1.22		.23		2.01	.05		Ż	17
LINE 1 2+50E	11	112	12	245	.2			937		12	<\$	<2	3	41	.9	<2	<2	123		.103	9		1.53		.29		2.67	.09	.91	2	32
LINE 1 2+75E		110	51	228	Ę	101	12	1151	4.78	19	<5	<2	2	116	1 7	<2	-2	122	1.51	122	7	84	1.87	23/	.26	~ ~	<b>z</b> 5/.	. 19	75	<1	18
LINE 1 3+00E		115		242	.7				4.90	14	ँ	~2		115		3			1.53		7		2.03		.28					<1	. –
LINE 2 6+00W		452	89	401		10			15.19		<5	~2		165		59			.17		12		.22	66	.09		1.19	.02		<	23
LINE 2 5+75W	59	473		213	3.5	4	30	2746	15.41	136	7	<2	4	94	<.2	34	<2	83	.03	.263	14	3	. 19	84	.08		1.17	.01		<1	
LINE 2 5+50W	63	527	193	532	5.3	9	40	4570	15.95	121	6	<2	5	46	3.4	38	<2	92	.17	.208	17	3	.26	283	.10	15	1.59	.01	.95	<1	12
STANDARD C/AU-S	-	43	70	170	75	76	72	1080	4.09	43	10	7	41	52	18 R	15	73	50	51	00/	6	<b>41</b>	02	100	00	٦.	1 0/.	07	17	12	46

Orequest Consultants Ltd. PROJECT CORNICE MTN. FILE # 94-3064

Page 3

SAMPLE#	1	Cu ppm		Zn ppm	-	Ni ppm		Mn ppm					⊺h S pprnpp							-	Cr M ppm	•		⊺i E %ppn		l Νε Κ, 9			Au** ppb
	+					··		.,		· ·		<u> </u>				- <u>··</u>						'							
LINE 2 5+25W									11.39 4																				42
LINE 2 5+00W									10.85 3												5.1						1.03		
LINE 2 4+75W									6.14												4.0						.28	-	8
LINE 2 4+50W									11.99 3																5 1.2	4 .01	.83	<1	87
LINE 2 4+25W	16	890	1978	6175	62.3	35	68	18692	14.58 (	533	16	<2	8 16	6 73.	7 246	o <2	19	.20	.085	27	4.0	9	135.	01 3	.7	8.01	.57	<1	141
LINE 2 4+00W									12.54 8																3 1.0			<1	34
LINE 2 3+75W	10	250	422	728	10.4	18	30	6213	10.32	192	<5	<2	98	5 7.	) 65	; 3	18	. 14	.088	28	5.0	8 3	208 .	01 <2	2.5	0.01	.61	<1	
LINE 2 3+50W	9	440	610	920	11.3	15	28	4869	7.74	579	<5	<2	11 4	0 11.	) 66	5 <2	16	.13	.066	40	9.1	0 2	264 .	01 7	· .5	4<.01	.21	<1	308
LINE 2 3+25W									10.50 3																			<1	
LINE 2 3+00W									8.17																2.7			<1	52
LINE 2 2+75W	13	615	320	848	12.6	14	32	5857	10.12	141	<5	<2	7 2	5 9.	5 55	i <2	29	.17	.047	31	3.2	1	169 .	02 <2	2 1.0	4 .01	.54	<1	24
LINE 2 2+50W		883							15.57																		.24		18
LINE 2 2+25W		651		278					11.19																				
LINE 2 2+00W		564		344					13.09																				
LINE 2 1+75W		764		371					9.80																				
LINE 2 1+50W	17	494	47	320	1.6	31	58	14328	11.12	48	5	<2	97	9	3 51	<2	20	.23	.052	28	18.2	3 (	618 .	02 7	7 1.0	4 .01	.23	<1	13
LINE 2 1+25W		137	•••	171					4.38																				6
LINE 2 1+00W		29		224					2.61																				10
LINE 2 0+75W		252		195					8.44																				
LINE 2 0+50W		398		224					6.06																		.15		
LINE 2 0+25W	5	332	47	262	1.6	15	39	5576	9.72	69	<5	<2	55	1 1.	0 17	< <2	55	.41	.137	24	10.2	9	283.	05 5	5 1.2	4.01	.76	<1	118
LINE 2 0+00W		318							9.83																				
LINE 3 3+00N									17.92																				6
RE LINE 3 3+00N									18.04																				3
LINE 3 2+75N									19.97																		.59		-
LINE 3 2+50N	14	688	469	1525	33.2	30	54	5871	16.75	165	<5	<2	5 4	6 16.	9	5 2	33	.17	. 163	32	5 .1	6	241 -	01 3	7 1.2	6.0	.25	<1	27
LINE 3 2+25N									14.32																		.90		7
LINE 3 2+00N		164	48	153	2.0	12	23	2223	13.78	98	<5	~2	4 18	2	5 50	2	28	.21	.152	19	1 1								
LINE 3 1+75N									15.99																		.33		
LINE 3 1+50N				814					17.63																		.76		18
LINE 3 1+25N	24	608	108	560	5 0	77	60	5430	18.87	112	5	-2	5 3	0.3	1 50		105	00	177	26	20 7		202	08	724	τ. 	1.79	<1	25
LINE 3 1+25M				314					20.16																		.38		
		468		267					18.66																		1 1.04		
LINE 3 0+75N		400																											
LINE 3 0+50N				82			_		16.59																				
LINE 3 0+25N	24	165	94	111	5.1		7	242	12.23	272	0	<2	4 10	· · ·	2 110	2> 1	19	.02	.200	19	ο.	2	49.	00 1	•••	0.0	1.01	<1	54
STANDARD C/AU-S	19	58	38	122	7.1	71	31	1049	3.96	39	17	8	36 5	2 18.	1 1	5 16	61	.52	.091	40	61 .9	21	184.	08 3	7 1.8	8.07	7.16	12	51

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

#### LITTLE CORNICE ZONE

94ACR001-1.0 m. chip. Carbonate altered rhyolite, 2% py. 5, 0.5, 12, 6, 7

94ACR002-1.0 m. chip. Carbonate-sericite altered rhyodacitic lapilli tuff, 3% cpy., Mn oxides and siderite on fractures,

#### 75, 41.4, 11191, 55, 294

94ACR003-1.0 m. chip. Same as above, trace cpy., minor mal.on fractures 8, 0.5, 179, 17, 63

94ACR004- 1.0 m. chip. Same as above 1, 1.3, 704, 13, 43

94ACR005-1.0 m. chip. Same as above, 2% cpy. 25, 12.8, 7923, 29, 227

94ACR006-1.0 m. chip. Same as above. 20, 7.5, 2492, 27, 130

94ACR007-1.0 m. chip. Same as above, trace cpy., mal. along fractures 22, 5.0, 609, 10, 42

94ACR008-1.0 m. chip. Quartz-sericite-chlorite altered rhyolitic lapilli tuff, 1% cpy. 108, 42.5, 8055, 28, 271

94ACR009-1.0 m. chip. Same as above 61, 32.9, 6307, 80, 371

<u>CORNICE MOUNTAIN ZONE</u>

94ACR010- GRAB Carbonate-siderite altered rhyolitic lappilli tuff
1% cpy., mal. as fracture coatings
6, 9.9, 6701, 16, 75

#### Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

- 94ACR011- GRAB. Quartz-sericite-pyrite, (20% py.) 11, 2.4, 88, 27, 6
- 94ACR012- GRAB. Same as above 4, 1.9, 154, 24, 83

### **COPPER ZONE**

- 94ACR013- GRAB. Quartz-sericite-pyrite, (5% py.) 33, 3.2, 156, 351, 229
- 94ACR014- GRAB. Quartz-carbonate altered felsic lapilli tuff 13, 0.7, 53, 54, 359
- 94ACR015-1.0 m. chip. Same as above 2, 0.5, 6, 22, 76

### **<u>RIDGE BETWEEN COPPER AND LITTLE CORNICE ZONES</u>**

- 94ACR016- GRAB. Quartz-carbonate-pyrite altered, brecciated tuff 1, 0.5, 16, 13, 8
- 94ACR017- FLOAT. Quartz-carbonate altered andesitic, minor po. 1, 0.1, 36, 7, 21
- 94ACR018- GRAB. Quartz-sericite-pyrite altered felsic tuff. 2, 0.1, 15, 30, 31

### LITTLE CORNICE ZONE

94ACR019- FLOAT. Rhyolitic lapilli tuff, sheeted quartz veins with fine grained diss. cpy.

9, 9.1, 1734, 20, 38

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

- 94ACR020- FLOAT Same as above 2, 2.2, 1273, 20, 91
- 94ACR021-1.0 m.chip. Quartz-sericite-pyrite (15% py.) altered well foliated andesite 8, 1.2, 42, 14, 69
- 94ACR022-1.0 m. chip. Sericite-quartz-pyrite altered andesite 7, 2.1, 35, 32, 50

#### **GULLEY BETWEEN COPPER AND BENCH ZONES**

- 94ACR023- GRAB. Sericite-quartz-carbonate altered tuff, 5% po. 10, 0.6, 129, 11, 62
- 94ACR024-0.6 m. chip. Same as above 5, 0.1, 17, 15, 26
- 94ACR025-1.5 m. chip. Ankerite-sericite altered limestone/tuff contact 25, 0.7, 325, 14, 45

#### <u>BENCH ZONE</u>

94ACR026- 0.3 m. chip. Carbonate breccia with sericite-siderite alteration, calcite seam 130/68 NE

27, 0.7, 33, 30, 26

94ACR027-1.5 m. chip. Same as above 41, 0.9, 45, 18, 109

94ACR028-1.5 m. chip. Calcite-sericite-siderite-pyrite altered breccia 106, 4.4, 602, 312, 9075

94ACR029-1.5 m. chip. Same as above, 3-5% sph. 214, 15.1, 3147, 318, 25062

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94ACR030-1.5 m. chip. Same as ACR029. 200, 10.1, 1288, 268, 18836

94ACR031-1.5 m. chip. Same as above 115, 0.4, 66, 30, 243

94ACR032-1.5 m. chip. Calcite-sericite-siderite-pyrite altered breccia 11, 0.8, 43, 14, 182

#### **BENCH ZONE**

94ACR033- 2.0 m. chip. Carbonate-sericite-siderite-pyrite altered breccia. 24, 0.1, 69, 7, 104

94ACR034-1.3 m. chip. Carbonate breccia, 20% py., heavy sericite and siderite alteration.

200, 1.9, 102, 33, 83

94ACR035-1.3 m. chip. Same as above. 202, 1.2, 702, 17, 90

94ACR036-1.0 m. chip. Carbonate breccia, 5% py., siderite-sericite alteration. 42, 0.3, 20, 8, 27

94ACR037-1.0 m. chip. Same as above. 299, 0.1, 90, 6, 46

94ACR039-2.0 m. chip. Carbonate breccia, 12% py., siderite-sericite alteration. 16, 0.4, 180, 18, 39

94ACR040-2.0 m. chip. Carbonate breccia, 5% py., siderite-sericite alteration. 1, 0.1, 30, 12, 32

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94ACR041- 2.0 m. chip. Same as ACR040. 5, 0.1, 17, 9, 49

94ACR042-2.0 m. chip. Same as above. 1, 0.6, 379, 11, 71

94ACR043- 2.0 m. chip. Same as above. 1, 0.1, 71, 8, 64

94ACR044- 2.0 m. chip. Same as above. 1, 0.1, 30, 12, 32

94ACR045- 2.0 m. chip. Same as above. 8, 0.1, 16, 8, 19

94ACR046-1.5 m. chip.Same as above. 8, 0.5, 67, 48, 78

94ACR047-1.3 m. chip. Same as above. 1, 0.1, 5, 4, 28

94ACR048- 2.0 m. chip. Same as above. 3, 0.1, 5, 2, 26

94ACR049- 2.0 m. chip. Same as above. 8, 0.1, 4, 11, 36

94ACR050- 2.0 m. chip. Same as above. 13, 0.1, 26, 12, 26

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

#### <u>BENCH ZONE</u>

94ACR051-1.0 m. chip. Carbonate breccia, 5-8% py., siderite-sericite alteration pervasive throughout.

8, 0.1, 6, 9, 10

94ACR052-1.5 m. chip. Same as above. 38, 0.1, 74, 24, 120

94ACR053-1.5 m. chip. Same as above. 3, 0.4, 69, 82, 197

#### SOUTWEST ZONE

94ACR054-0.5m. chip. Sericite-Mn oxide alteration in tuff, distinct orange weathering, trace-1% sph. and gal.

22, 28.2, 75, 752, 5138

94ACR055- 0.6 m. chip. Zone of 0.1-3.0 cm. wide calcite-py. veins. 7, 0.7, 45, 14, 46

94ACR056- 0.4 m. chip. Same as above, minor chlorite. 5, 1.9, 390, 9, 66

94ACR057- 0.3 m. chip. Zone of 0.1-0.8 cm. wide calcite-py.-cpy. veinlets 7, 22.7, 5260, 24, 87

94ACR058-0.6 m. chip. Siderite-Mn oxide altered chloritic tuff, trace sph. 1, 0.1, 6, 9, 484

### FAULT GULLEY, SOUTHWEST OF COPPER ZONE

94ACR059- 0.2 m. chip. Zone of 0.1-2.0 cm. wide qtz.-py.-cpy. veinlets. 2, 0.2, 768, 12, 48

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94ACR060- 0.5 m. chip. Siderite-sericite-Mn oxide altered tuff. 1, 0.1, 31, 6, 14

94ACR061-0.3 m. chip. Silicified rhyolite, 5% py., trace cpy. 12, 1.3, 263, 8, 32

94ACR062-1.0 m. chip. Bleached, silicified andesite in fault gulley, 3-5% sph., py.and gal. assoc. with qtz.-carb. veinlets 23, 27.6, 68, 2164, 9126

94ACR063-1.0 m. chip. Bleached, silicified andesite in fault gulley, 3% diss. py., trace sph., gal.

1, 1.2, 13, 206, 419

94ACR064-1.0 m. chip. Same as above. 3, 0.3, 21, 16, 74

94ACR065-1.0 m. chip. Same as above, trace cpy. 1, 0.8, 218, 15, 65

94ACR066-1.5 m. chip. Same as above. 2, 0.3, 30, 7, 44

#### FAULT GULLEY SOUTHWEST OF COPPER ZONE

94ACR067-2.0 m. chip. Bleached, silicified andesite in fault gulley, 3% diss. py., 5% qtz. as veinlets

1, 0.2, 6, 22, 107

94ACR068-1.5 m. chip. Same as above. 2, 0.1, 4, 10, 88

94ACR069-1.0 m. chip. Same as above. 1, 0.1, 5, 3, 67

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

- 94ACR070- 0.2 m. chip. Zone of sheeted qtz. veinlets, 3% py., trace-2% sph., gal. 23, 14.2, 375, 2246, 2735
- 94ACR071- 2.2 m. chip. Zone of 0.1-1.0 cm. wide limonitic qtz.-cal.veinlets. 1, 0.2, 19, 21, 64
- 94ACR072- 2.0 m. chip. Same as above. 1, 0.1, 11, 6, 75
- 94ACR073-1.3 m. chip. Same as above. 1, 0.1, 3, 6, 43
- 94ACR074-1.7 m. chip. Same as above. 1, 0.3, 10, 16, 23
- 94ACR075-1.0 m. chip. Quartz-carb. altered silicified, bleached andesite. 1, 0.2, 13, 5, 120
- 94ACR076-1.5 m. chip. Same as above. 1. 0.6, 7, 32, 112
- 94ACR077- 3.0 m. chip. Same as above, trace sph. 1, 0.7, 66, 7, 3280
- 94ACR078-1.0 m. chip. Brecciated intermediate tuff, 3% py. 3, 0.2, 11, 8, 69

94ACR079- 0.7 m. chip. Andesite breccia, 0.2 m. wide lens of massive py., 10% cal., 5% chlorite.

88, 2.0, 24, 16, 55

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

# **RIDGE BETWEEN BENCH AND COPPER ZONES**

94ACR080-1.0 m. chip. Same as above, trace-1% cpy. 148, 7.8, 18025, 5, 88

94ACR081- GRAB Calcite vein, 15% py. as 2-6 mm. grains in chloritic, fractured andesite.

26, 3.1, 361, 137, 464

94ACR082-0.8 m. chip. Zone of 1-5 cm.wide calcite veining, 2-10 mm. py. grains in sheared andesite adjacent to strong limonite-jarosite.

103, 3.2, 724, 18, 222

# **RIDGE BETWEEN COPPER AND BENCH ZONES**

94MCR001- 2.0 m. chip. Silicified carbonate breccia, 3-5% py. Strong limonitejarosite, trace-1% cpy.

225, 6.1, 713, 638, 30

94MCR002- 1.0 m. chip. Quartz-sericite-pyrite altered tuff, schistose, melanterite exposed on weathered surface.

11, 0.1, 45, 21, 634

94MCR003-1.2 m. chip. Same as above. 30, 0.2, 13, 23, 47

# LITTLE CORNICE ZONE

94MCS004- Soil at pyritic andesite-rhyolite contact 48, 0.3, 111, 35, 302

94MCR005- GRAB. Biotite-chlorite schist subcrop on NW fault trend, 5% calcite veinlets, minor siderite-limonite

10, 0.1, 33, 7, 43

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94MCR006- GRAB Same as MCR005. 7, 0.3, 48, 5, 67

### **<u>RIDGE SOUTHEAST OF LITTLE CORNICE ZONE</u>**

94MCR007-2.2 m. chip. Quartz-sericite-py. schist (foliated tuff). 9, 0.3, 47, 15, 57

### **LITTLE CORNICE ZONE**

94MCR008- GRAB. Silicified feldspar-hornblende porphyry, 2% py. 5, 0.6, 9, 13, 72

### SOUTHERN GOSSAN ZONE

94MCR009-0.9 m. chip. Silicified breccia, 2 mm. qtz. veinlets, abundant limonite, jarosite, and goethite.

55, 1.7, 48, 18, 7

94MCR010-1.0 m. chip. Same as above. 10, 0.3, 67, 7, 45

94MCR011-2.3 m. chip. Quartz-sericite-pyrite altered feldspar porphyry . 5, 1.2, 27, 10, 14

94MCR012-1.5 m. chip. Same as above. 12, 0.6, 12, 6, 10

94MCR013- 2.3 m. chip. Same as above. 3, 0.8, 15, 14, 9

94MCR014-1.7 m. chip. Same as above. 1, 0.5, 15, 10, 11

#### Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94MCR015-3.4m. chip. Silicified lapilli tuff, minor pyrite and Zn oxide on fractures, abundant limonite and goethite.

1, 0.5, 62, 9, 50

# SOUTHERN GOSSAN ZONE

94MCR016-2.4 m. chip. Silicified lapilli tuff, minor py. and Zn oxide on fractures, abundant limonite and goethite.

1, 0.9, 31, 14, 30

94MCR017-2.0 m. chip. Foliated flow breccia? calcite matrix, 1-2% py. abundant Mn oxide.

3, 0.9, 129, 18, 64

# **RIDGE EAST OF LITTLE CORNICE ZONE**

94MCR018- 1.6 m. chip. Foliated lapilli tuff, limonitic. 3, 0.8, 52, 10, 32

94MCR019- GRAB. Chlorite-sericite schist, 5% qtz.-chlorite veinlets, trace cpy. 103, 0.2, 179, 3, 36

94MCR020-1.0 m. chip. Quartz-sericite schist, minor limonite-hematite. 28, 0.1, 6, 10, 10

94MCR021- GRAB. Brecciated feldspar porphyry, 25% qtz.-cal. matrix. 1, 0.1, 8, 5, 30

94MCR022- 1.2 m. chip. Zone of qtz.-cal.-py.-cpy. malachite staining, and strong limonitic weathered surface.

120, 9.9, 5351, 6, 18

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94MCR023-0.3 m. chip. Quartz vein along contact with rhyolite dyke, 2% py., minor limonite and hematite.

13, 0.2, 43, 26, 39

94MCR024-1.0 m. Zone of qtz.-cal. veinlets in schist (foliated lapilli tuff), trace-1% malachite as fracture coatings

7, 0.6, 645, 6, 21

### LITTLE CORNICE ZONE

94MCR025-0.6 X 0.9 m. panel Contact between rhyolite and dacitic lapilli tuff, 3-5% cpy., abundant malachite staining as fracture coatings.

14, 15.4, 9373, 58, 970

94MCR026-1.2 m. chip. Altered country rock of above vein zone. 75, 4.7, 817, 20, 118

94MCR027-1.5 m. chip. Siliceous ash tuff with qtz.-carb.-py.-cpy. veinlets to 3.0 cm. width, minor chalcocite, Mn oxide, malachite, azurite staining pervasive. 67, 114.1, 15751, 442, 787

94MCR028- 2.0 m. chip. Silicified, foliated ash tuff, Qtz.stringers, trace cpy. 2, 1.1, 183, 7, 118

94MCR029-2.0 m. chip. Zone of qtz. veining in siliceous ash tuff, minor limonite, Mn oxide, trace-1% py.-cpy.

6, 3.2, 1163, 18, 103

### **<u>RIDGE SOUTHWEST OF BRECCIA ZONE</u>**

94MCR030-1.4 m. chip. Quartz-sericite-pyrite (10% py.), abundant limonite, jarosite. 30, 0.9, 95, 12, 27

94MCR031-1.3 m. chip. Same as above, minor carbonate. 4, 0.1, 32, 5, 51

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

- 94MCR032-1.0 m. chip. Qtz.-cal. veinlets to 2 cm. in schist (foliated lapilli tuff). 4, 0.2, 44, 7, 19
- 94MCR033-1.0 m. chip. Same as above. 11, 0.3, 29, 11, 19
- 94MCR034-1.4 m. chip. Qtz.-sericite-py., abundant limonite, jarosite. 8, 0.2, 50, 5, 54
- 94MCR035-1.0 m. chip. Same as above. 13, 0.2, 73, 16, 131

94MCR036-2.0 m. chip. Qtz.-sericite-chlorite schist (foliated lapilli tuff), 3% diss.py., Mn oxide stain as fracture coatings. 32, 0.3, 75, 8, 51

94MCR037- 2.0 m. chip. Same as above. 11, 0.3, 59, 7, 51

94MCR038- 2.0 m. chip. Same as above. 12, 0.1, 30, 8, 33

- 94MCR039-0.2 m. chip. Qtz.-cal. vein, minor chlorite. 5, 0.1, 8, 7, 20
- 94MCR040-0.7 m. chip. Zone of qtz.veinlets to 10 cm. wide, 10% py. trace-1% cpy. 152, 1.5, 681, 13, 71

94MCR041- 6.0 m. chip. Qtz.-sericite-py. altered rhyolite dyke, 20% qtz, as veinlets up to 10 cm. wide, abundant limonite, jarosite, goethite. 43, 0.3, 103, 9, 64

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94MCR042- 4.0 m. chip. Zone of qtz.-py veins to 20 cm. width with 40% py. in intermediate lapilli tuff.

19, 0.4, 71, 15, 41

94MCR043- 2.0 m. chip. Same as above, increased carbonate and Mn oxide. 7, 0.3, 103, 9, 64

94MCR044- 2.0 m. chip. Same as above. 7, 0.3, 75, 7, 56

### SOUTHEAST OF COPPER ZONE

94MCR045-2.0 m. chip. Sheared rhyolite, 3-5% carbonate stringers, 0.6m. wide qtz.py. zone.

8, 0.1, 5, 6, 25

94MCR046- 3.2 m. chip. Qtz.-rhyolite-py. breccia, Qtz. veinlets up to 2 cm., abundant limonite, jarosite, goethite, melanterite.

12, 0.4, 5, 25, 22

94MCR047-1.1 m. chip. Same as above. 8, 0.1, 7, 16, 22

94MCR048-1.0 m. chip. Qtz.-sericite-schist, 5% qtz. stringers, abundant limonite, goethite, jarosite on weathered surface.

3, 0.2, 4, 8, 51

94MCR049- 1.2 m. chip. Same as above. 10, 0.1, 8, 14, 44

94MCR050-1.0 m. chip. Same as above. 10, 0.3, 5, 16, 35

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94MCR051-0.3 m. chip. Siliceous rhyolite, 1% py. 8, 0.3, 13, 11, 18

### LITTLE CORNICE ZONE

94MCR052-1.8 m. chip. Silicified rhyolite, 5% qtz. stringers. 3, 4.4, 180, 33, 133

94MCR053- 2.0 m. chip. Same as above, increased fracturing. 241, 0.9, 79, 11, 30

94MCR054- 2.0 m. chip. Contact zone of rhyolite/int.lapilli tuff, 1% cpy. in qtz.stringers, mal. stain as fracture coatings. 300, 237.2, 2356, 50, 2454

94MCR055- 2.0 m. chip. Same as above. 17, 4.8, 448, 16, 295

94MCR056-1.2 m. chip. Same as above. 68, 0.7, 85, 8, 30

94MCR057-2.4 m. chip. Hangingwall of rhyolite dyke, 3% quartz as veinlets. 12, 1.7, 87, 11, 100

94MCR058- 2.0 m. chip. Fault breccia, bleached, limonitic matrix. 10, 0.5, 29, 11, 34

94MCR059- GRAB. Quartz vein, 10-15% py. 10, 3.1, 106, 58, 55

94MCR060-2.1 m. chip. Low angle shear zone in rhyolite with qtz.-py. veinlets. 10, 3.1, 106, 58, 55

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

#### WEST RIDGE GOSSAN ZONE

94MCR061- 2.0 m. chip. Silicified feldspar porphyry, qtz. stringers, 5% diss. py., abundant jarosite, limonite.

8, 0.8, 13, 20, 11

94MCR062- 2.0 m.chip. Silicified feldspar porphyry, qtz. stringers, 5% diss. py., abundant jarosite, limonite.

2, 0.7, 14, 17, 8

94MCR063- 2.0 m. chip. Same as above. 2, 0.8, 11, 22, 10

94MCR064-1.5 m. chip. Same as above. 9, 1.2, 13, 25, 12

94MCR065-1.5 m. chip. Same as above. 1, 1.3, 18, 24, 18

94MCR066-1.4 m. chip.Fault zone, in silicified feldspar porphyry, qtz.-py. pods to 20 cm. width.

2, 3.6, 24, 53, 16

94MCR067-1.7 m. chip. Same as above. 2, 3.2, 26, 56, 40

94MCR068- 2.0 m. chip. Same as above. 6, 1.2, 34, 56, 190

94MCR069- 2.0 m. chip. Same as above. 8, 3.3, 21, 50, 22

94MCR070- 2.0 m. chip. Same as above. 10, 1.1, 11, 30, 14

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94MCR071-2.0 m. chip. Same as above, increased fracturing. 11, 1.7, 19, 42, 31

94MCR072-2.0 m. chip. Same as above. 10, 2.9, 11, 282, 22

94MCR073- 2.0 m. chip. Same as above. 19, 14.6, 19, 951, 38

94MCR074-2.0 m. chip. Same as above. 23, 3.6, 14, 97, 19

94MCR075- 2.0 m. chip. Same as above. 19, 1.7, 13, 46, 9

94MCR076-1.8 m. chip. Same as above, decreased py. 8, 1.4, 13, 27, 34

94MCR077- 1.8 m. chip. Same as above. 4, 0.3, 18, 7, 37

#### WEST RIDGE GOSSAN ZONE

94MCR078-2.0 m. chip. Fault zone in silicified feldspar porphyry, qtz.py. pods and lenses up to 20 cm. width.

1, 1.1, 15, 24, 70

94MCR079-0.5 m. chip. Siliceous siltstone, wallrock of fault zone, 1% cpy., malachite as fracture coatings.

31, 37.2, 4341, 41, 345

Au ppb, Ag ppm, Cu ppm, PB ppm, Zn ppm

#### SOUTHEAST OF LITTLE CORNICE ZONE

94DCR001-1.5 m chip. Silicified lapilli tuff, trace-1% py. limonite staining as fracture coatings.

7, 0.6, 72, 7, 48

94DCR002-1.0 m. chip. Calcite stringers in rhyolite, 1% py. 9, 0.4, 64, 4, 77

94DCR003- 1.0 m. chip. Same as above. 2, 0.3, 39, 4, 83

94DCR004- 1.0 m. chip. Same as above. 7, 0.5, 62, 4, 100

94DCR005-0.5 m. chip. Shear zone in lapilli tuff, calcite stringers, 1% py., abundant limonite staining.
9, 0.8, 58, 11, 39

94DCR006-1.0 m. chip. Lapilli tuff breccia, limonite staining, 1% py. 1, 1.1, 58, 12, 43

94DCR007-0.5 m. chip. Same as above. 12, 3.3, 68, 46, 39

94DCR008- GRAB. Calcite stringers, 1% py. 12, 0.3, 70, 10, 70

#### SOUTHWEST OF CORNICE SUMMIT ZONE

94DCR009-1.0 m. chip. 1-3% py. in ash tuff, limonite staining. 1, 0.4, 28, 3, 24

Au ppb, Ag ppm, Cu ppm Pb ppm, Zn ppm

SOUTHWEST OF CORNICE SUMMIT ZONE

94DCR010- 1.0 m. chip. Same as above. 13, 0.9, 19, 15, 28

94DCR011- 1.0 m. Same as above. 1, 0.5, 60, 11, 54

94DCR012- 1.4 m. chip. Same as above. 1, 0.4, 34, 9, 25

94DCR013-1.2 m. chip. Same as above. 11, 0.6, 15, 23, 25

94DCR014- 1.0 m. chip. Same as above. 30, 2.9, 11, 79, 44

#### WEST OF CORNICE SUMMIT ZONE

94DCR015-1.0 m. chip. 1-3% py. in ash tuff, limonite staining. 11, 2.8, 35, 127, 556

94DCR016-1.3 m. chip. Same as above. 6, 5.7, 28, 695, 719

94DCR017- 1.5 m. chip. Same as above. 8, 1.4, 14, 27, 30

94DCR018- 1.0 m. chip. Same as above. 41, 2.6. 40, 27, 36

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

#### **BENCH ZONE**

94TCR001-2.0 m. chip. Carbonatized, silicified, pyritic intermediate tuffs, continuous contour sample line adjacent to Bench Zone.

25, 0.3, 88, 210, 104

94TCR002- 2.0 m. chip. Same as above. 7, 0.1, 27, 15, 84

94TCR003- 2.0 m. chip. Same as above, increased limonite, Mn oxide. 7, 0.1, 21, 15, 115

94TCR004- 2.0 m. chip. Same as above. 1, 0.1, 6, 5, 31

94TCR005- 2.0 m. chip. Same as above. 7, 0.1, 10, 4, 41

94TCR006- 2.0 m. chip. Same as above. 2, 0.1, 7, 39, 148

94TCR007- 2.0 m. chip. Same as above. 7, 0.1, 11, 10, 86

94TCR008- 2.0 m. chip. Same as above. 10, 0.1, 9, 7, 83

94TCR009- 2.0 m. chip. Same as above. 2, 0.1, 14, 3, 65

94TCR010- 2.0 m. chip. Same as above. 26, 0.6, 48, 46, 108

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94TCR021- 2.0 m. chip. Same as TCR019. 8, 0.1, 5, 5, 34

94TCR022- 2.0 m. chip. Same as above. 1, 0.7, 7, 51, 162

94TCR023- 2.0 m. chip. Same as above. 7, 0.2, 16, 7, 37

94TCR024- 2.0 m. chip. Same as above. 2, 0.1, 7, 10, 29

94TCR025- 2.0 m. chip. Same as above. 2, 0.3, 7, 9, 121

94TCR026- 2.0 m. chip. Same as above. 1, 0.1, 7, 5, 35

94TCR027- 2.0 m. chip. Same as above. 10, 0.1, 51, 6, 27

94TCR028- 2.0 m. chip. Same as above, mal. stain as fracture coatings. 6, 1.8, 2155, 7, 20

94TCR029- 2.0 m. chip. Same as above. 3, 3.0, 314, 13, 20

#### <u>SOUTHWEST ZONE</u>

94TCR030- 2.0 m. chip. Carbonatized, pyritic, silicified int./felsic tuffs, continuous contour sample line adjacent to helipad at the SW extension of the Copper Zone.
4, 0.1, 14, 5, 15

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm 94TCR031-2.0 m. chip. Same as above. 6, 0.1, 30, 7, 15 94TCR032- 2.0 m. chip. Same as above. 9, 0.1, 38, 12, 11 94TCR033-2.0 m. chip. Same as above, malachite as fracture coatings zone of tension gash qtz.veinlets. 16, 3.9, 12845, 2, 37 94TCR034- 2.0 m. chip. Carbonatized, pyritic, silicified int./felsic tuffs, 1-2 mm. calcite veinlets. 1, 0.1, 83, 7, 11 94TCR035-2.0 m. chip. Same as above. 7, 0.1, 128, 7, 22 94TCR036- 2.0 m. chip. Same as above. 1, 0.1, 128, 7, 22 94TCR037- 2.0 m. chip. Same as above. 3, 0.1, 18, 7, 19 94TCR038-2.0 m. chip. Same as above. 10, 0.3, 10, 5, 25 94TCR039- 2.0 m. chip. Same as above. 8, 0.1, 16, 12, 9 94TCR040- 2.0 m. chip. Same as above, malachite staining as fracture coatings. 12, 11.0, 6607, 25, 58 94TCR041-2.0 m. chip. Same as above. 6, 0.4, 238, 100, 26

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94TCR042- 2.0 m. chip. Same as above. 16, 0.1, 10, 4, 5

94TCR043- 2.0 m. chip. Same as above. 4, 0.1, 41, 6, 18

94TCR044- 2.0 m. chip. Same as above. 2, 0.2, 11, 8, 25

94TCR045- 2.0 m. chip. Same as above. 10, 0.1, 17, 5, 34

#### <u>LITTLE CORNICE ZONE</u>

94JCR001-1.5 m. chip. Carbonatized, pyritic, silicified andesitic tuff. 2, 0.2, 43, 9, 32

94JCR002-1.5 m. chip. Same as above, increased qtz. no assay

94JCR003-1.5 m. chip. Same as above, decreased qtz. 4, 0.3, 43, 8, 35

94JCR004-1.5 m. chip. Same as above. 2, 0.1, 34, 4, 39

94JCR005-1.5 m. chip. Same as above. 1, 0.2, 85, 5, 28

94JCR006-1.5 m. chip. Same as above, increased qtz. 5, 0.3, 218, 7, 24

94JCR007-1.5 m. chip. Same as above, trace-1% mal. as fracture coating 4, 0.3, 392, 5, 38

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

- 94TCR042- 2.0 m. chip. Same as above. 16, 0.1, 10, 4, 5
- 94TCR043- 2.0 m. chip. Same as above. 4, 0.1, 41, 6, 18
- 94TCR044- 2.0 m. chip. Same as above. 2, 0.2, 11, 8, 25
- 94TCR045- 2.0 m. chip. Same as above. 10, 0.1, 17, 5, 34

#### <u>LITTLE CORNICE ZONE</u>

- 94JCR001-1.5 m. chip. Carbonatized, pyritic, silicified andesitic tuff. 2, 0.2, 43, 9, 32
- 94JCR002- 1.5 m. chip. Same as above, increased qtz. no assay
- 94JCR003-1.5 m. chip. Same as above, decreased qtz. 4, 0.3, 43, 8, 35
- 94JCR004-1.5 m. chip. Same as above. 2, 0.1, 34, 4, 39

94JCR005-1.5 m. chip. Same as above. 1, 0.2, 85, 5, 28

- 94JCR006-1.5 m. chip. Same as above, increased qtz. 5, 0.3, 218, 7, 24
- 94JCR007-1.5 m. chip. Same as above, trace-1% malachite as fracture coating 4, 0.3, 392, 5, 38

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94JCR008-1.5 m. chip Carbonatized, pyritic, silicified andesite tuff 7, 0.2, 22, 5, 33

94JCR009-1.5 m. chip. Same as above, increased qtz. 3, 2.5, 279, 19, 87

94JCR010-1.5 m. chip. Carbonatized, pyritic andesite, trace-0.5% py., po., cpy., gal. as blebs in qtz. stringers. 9, 7.6, 357, 88, 7.6

94JCR011- 1.5 m. chip. Pyritic, silicified stockwork in andesite. 5, 3.9, 62, 24, 49

94JCR012- 0.5 m. chip. Rhyolite/andesite contact, fractured, silicified, pyritic, trace-2% cpy., mal. on fracture coatings.
7, 1.7, 2250, 9, 27

94JCR013-1.0 m. chip. chip.Carbonatized, silicified, pyritic rhyolite. 3 0.4, 38, 8, 56

94JCR014-1.0 m.chip. Same as above, abundant jarosite and Mn oxide. 7, 0.9, 51, 24, 59

94JCR015-2.0 m. chip. Carbonatized, silicified, pyritic tuff. 5, 0.8, 61, 14, 28

94JCR016- 2.0 m. chip. Same as above. 4, 2.0, 41, 15, 54

#### LITTLE CORNICE ZONE

94JCR017- 1.5m.chip. Sheared, pyritic, silicified rhyolite/andesite contact zone, weakly brecciated.

5, 1.6, 42, 97, 107

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

- 94JCR018-1.5 m. chip. Same as above. 1, 2.0, 52, 27, 76
- 94JCR019-1.5 m. chip. Same as above, increased limonite. 5, 2.1, 63, 22, 109
- 94JCR020- 2.0 m. chip. Carbonatized, silicified, pyritic rhyolite breccia 5, 5.4, 95, 25, 49
- 94JCR021- 1.0 m. chip. Same as above, increased fracturing. 7, 16.1, 566, 17, 67

#### SOUTHERN GOSSAN ZONE

- 94JCR022- 1.0 m. chip. Silicified breccia dyke/andesite contact zone, 5, 0.5, 54, 7, 108
- 94JCR023-1.0 m. chip. Same as above 1, 0.6, 16, 8, 6
- 94JCR024-1.0 m. chip. Carbonatized, silicified, pyritic andesite. 7, 0.8, 34, 13, 20
- 94JCR025-1.0 m. chip. Same as above. 1, 1.5, 36, 30, 32

94JCR026-1.0 m. chip. Silicified, carbonatized, fractured lapilli tuff. 16, 1.3, 41, 27, 130

94JCR027- 1.0 m. chip. Quartz breccia dyke, 20% epidote, limonite as fracture coatings. 1, 0.9, 32, 12, 122

94JCR028- 1.0 m. chip. Same as above. 7, 2.1, 175, 17, 200

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94JCR029-1.1 m. chip. Silicified, carbonatized lapilli tuff. 2, 1.9, 21, 40, 43

94JCR030-1.0 m. chip. Same as above. 9, 3.0, 14, 80, 26

94JCR031-1.0 m. chip. Same as above. 3, 2.5, 9, 88, 20

94JCR032-1.0 m. chip. Same as above, increased limonite and jarosite. 4, 4.6, 14, 96, 17

94JCR033- 1.0 m. chip. Same as above. 1, 1.1, 21, 55, 188

#### SOUTHERN GOSSAN ZONE

94JCR034- 1.0 m. chip. Carbonatized, silicified lapilli tuff, py.vein to 5 cm. width, trace-1% diss. po., abundant hematite, limonite,
48, 32.8, 198, 2384, 1517

94JCR035-1.0 m. chip. Bleached, fractured, limonitic andesitic breccia. 7, 3.2, 18, 195, 174

94JCR036- 1.0 m. chip. Same as above. 15, 1.8, 19, 34, 90

94JCR037-1.0 m. chip. Same as above, increased qtz.. 11, 3.7, 26, 73, 56

94JCR038-1.0 m. chip. Same as above. 19, 7.6, 36, 302, 112

94JCR039- 1.0 m. chip. Same as above. 15, 4.7, 21, 91, 104

Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

94JCR040-1.0 m. chip. Same as above. 16, 2.9, 23, 38, 35

94JCR041- 1.0 m. chip. Same as above. 5, 3.0, 21, 33, 44

94JCR042-1.5 m. chip. Brecciated, limonitic andesite flow. 7, 1.7, 30, 28, 16

94JCR043-1.5 m. chip. Same as above. 9, 1.0, 18, 22, 8

94JCR044-2.0 m. chip. Silicified, limonitic andesite flow. 12, 0.7, 64, 6, 113

94JCR045- 2.0 m. chip. Same as above. 14, 0.6, 83, 6, 80

#### LITTLE CORNICE ZONE

94JCR046- 0.5 m. chip.Sheared, limonitic, rhyolite/andesite contact zone, shallow dipping fault zone, trace-3% py., cpy.

70, 153.7, 7160, 251, 1356

94JCR047-1.0 m. chip. Same as above, trace-1% py., cpy. 37, 29.0, 4122, 151, 584

94JCR048-1.0 m. chip. Carbonatized, pyritic quartz-carbonate breccia. 13, 11.6, 2564, 23, 303

94JCR049-1.0 m. chip. Carbonatized, silicified, pyritic rhyolite 7, 1.0, 85, 12, 33

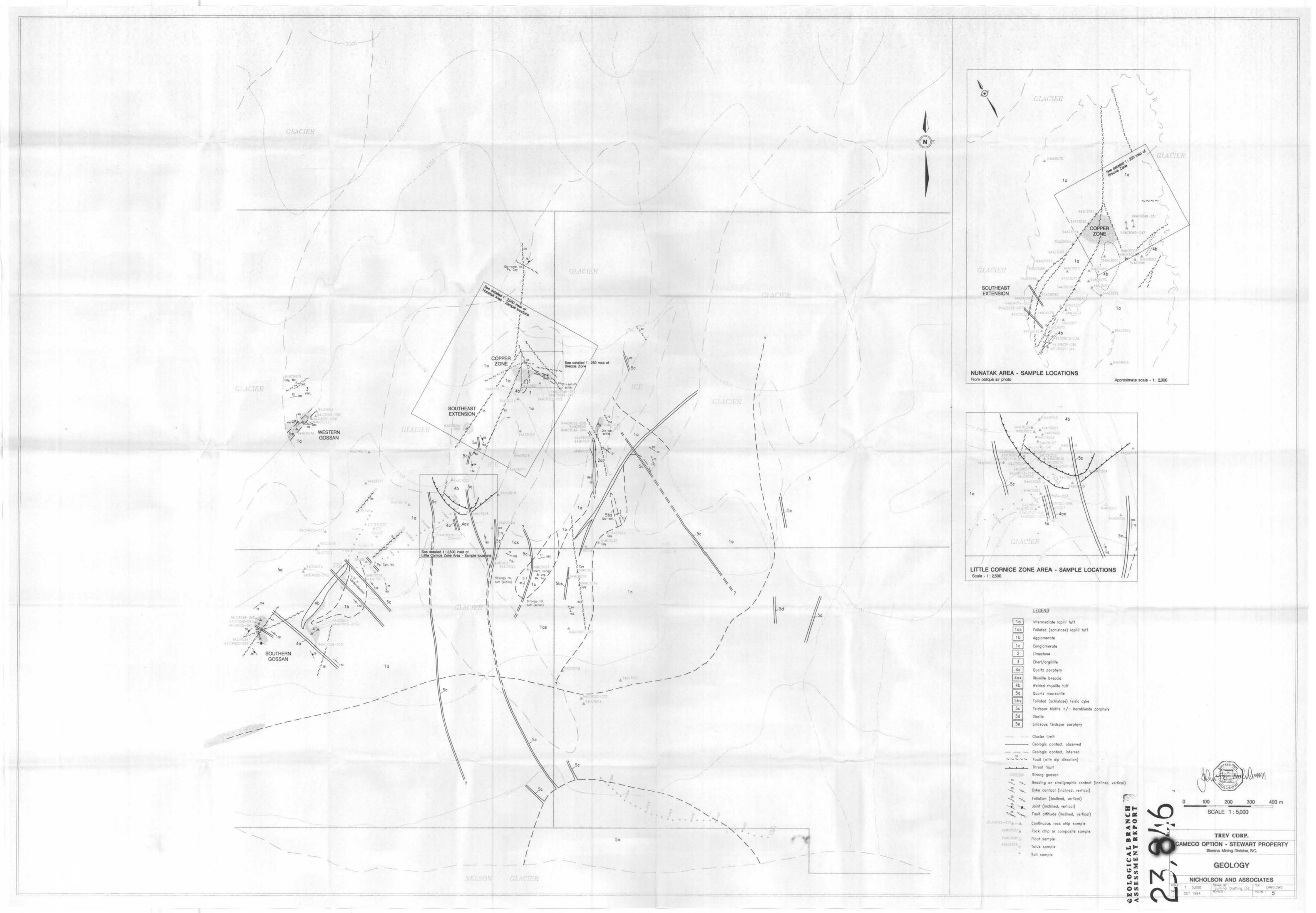
Au ppb, Ag ppm, Cu ppm, Pb ppm, Zn ppm

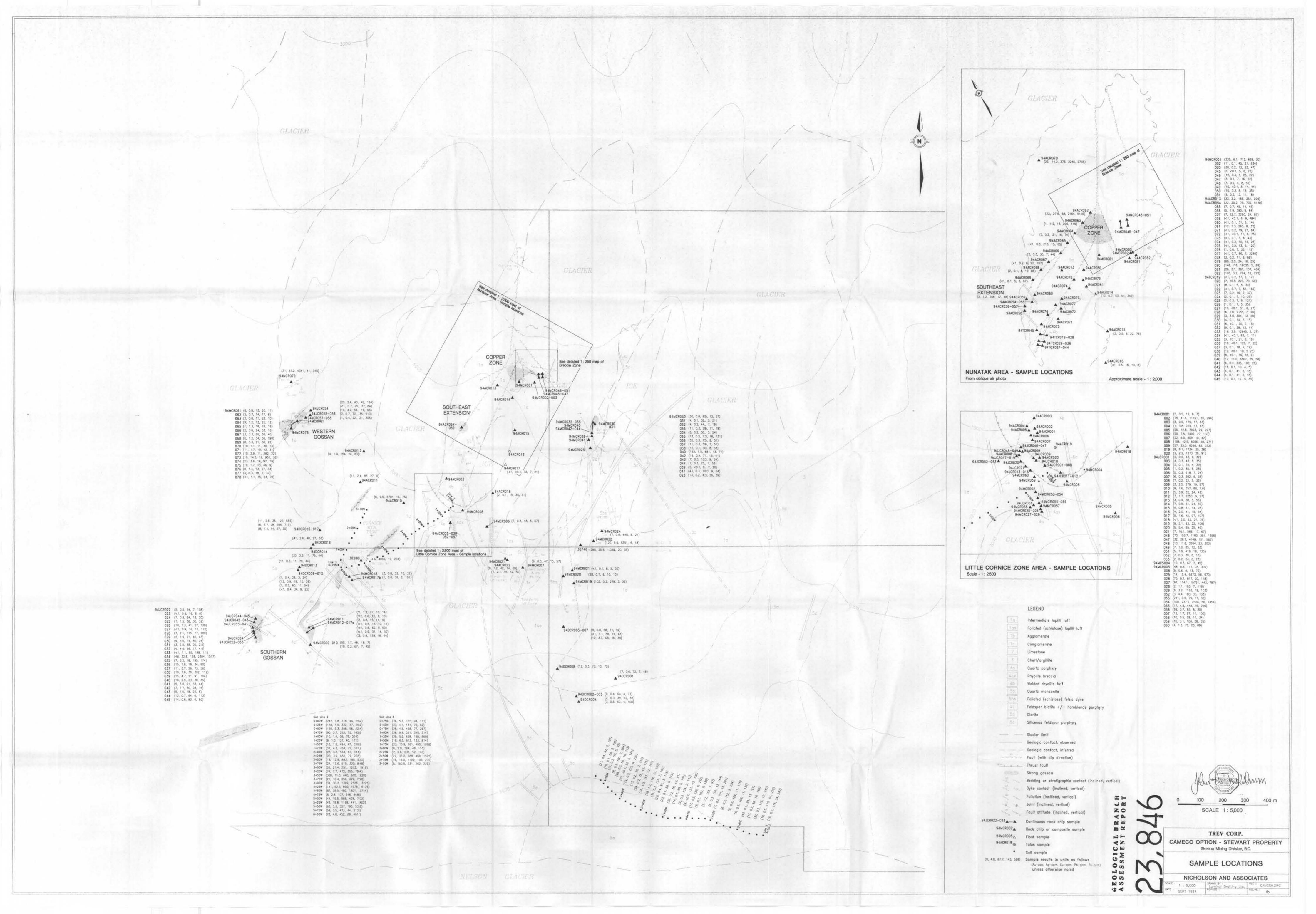
LITTLE CORNICE ZONE

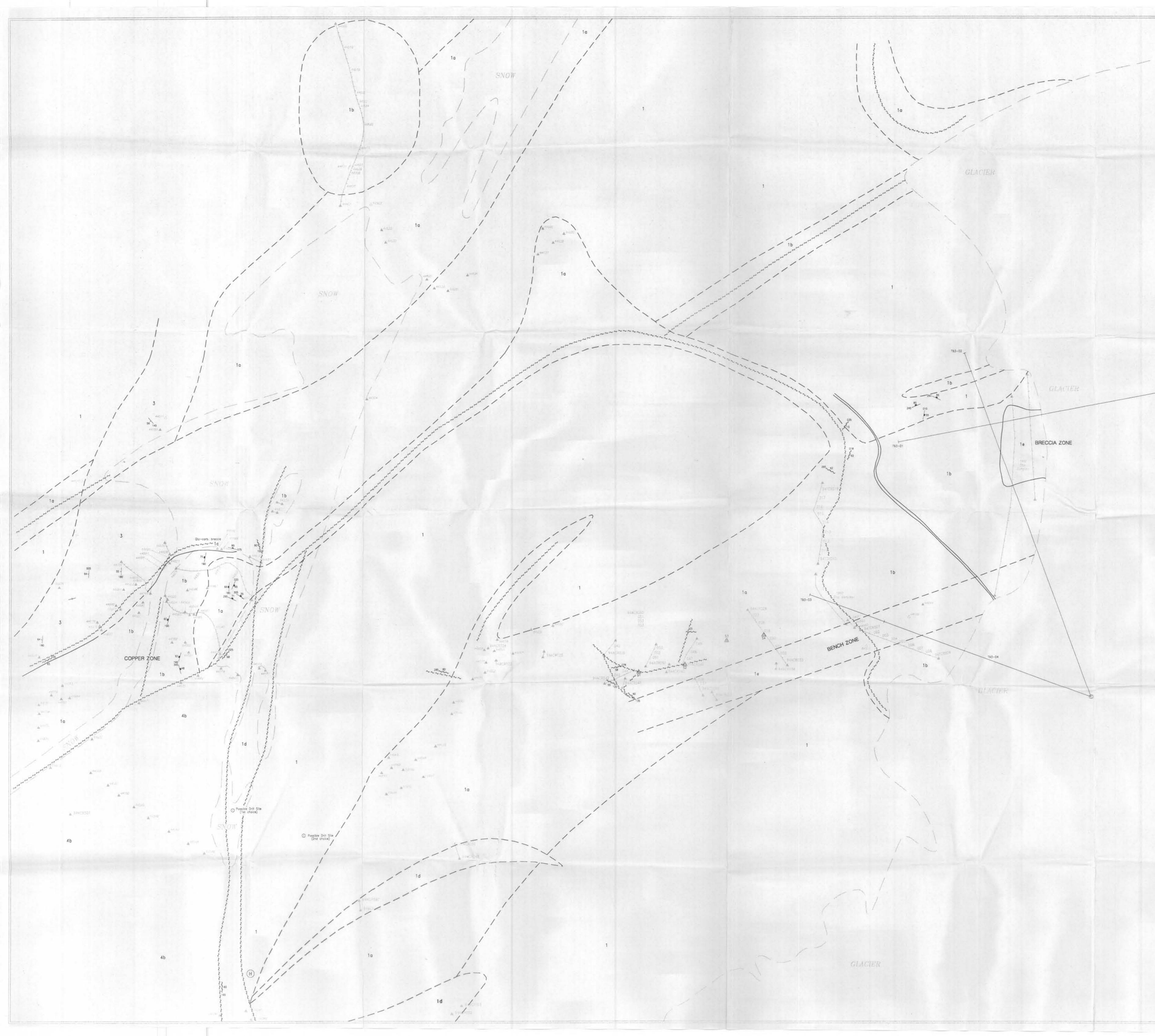
94JCR050- 1.0 m. chip. Sheared andesite, abundant Mn oxide. 12, 0.3, 47, 7, 424

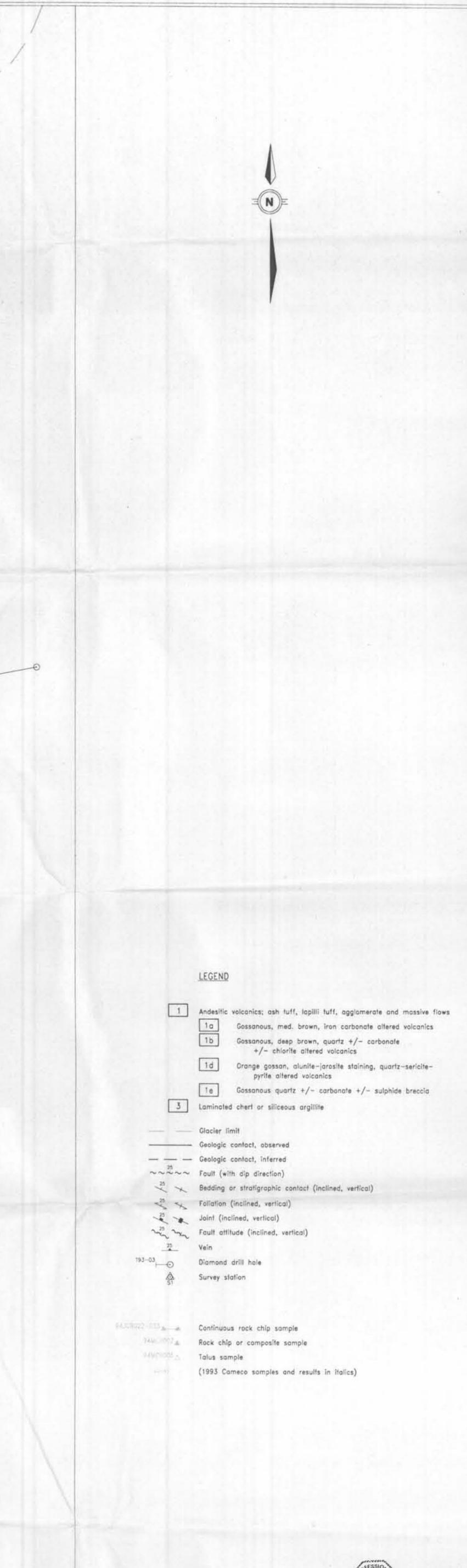
94JCR051-1.0 m. chip. Fractured, silicified andesite, qtz. stringers. 5, 1.8, 418, 18, 130

94JCR052-1.5 m. chip. Quartz stockwork veining in rhyolite. 7, 0.3, 30, 8, 16


94JCR053- GRAB Silicified, brecciated andesite, fracture filling py., po., cpy.
2, 0.2, 24, 8, 23
94JCR054- 1.0 m. chip. Limonitic, carbonatized andesite tuff, abundant Mn oxide, trace-2% py.and cpy.
20, 2.4, 40, 42, 184


94JCR055-1.0 m. chip. Silicified, pyritic andesite. 1, 0.7, 25, 37, 84


94JCR056-1.5 m. chip. Fractured, limonitic cherty argillite. 14, 4.2, 54, 19, 66


94JCR057-1.0 m. chip. Sheared lapilli tuff. 2, 0.7, 72, 35, 510

94JCR058-1.5 m. chip. Limonitic tuff breccia. 1, 0.4, 22, 21, 306









5 10 15 20 m SCALE 1:250

BRANCH

LOGICAL

S

4

 $\infty$ 

N

N ASS

-

TREV CORP. CAMECO OPTION - STEWART PROPERTY Skeena Mining Division, B.C.

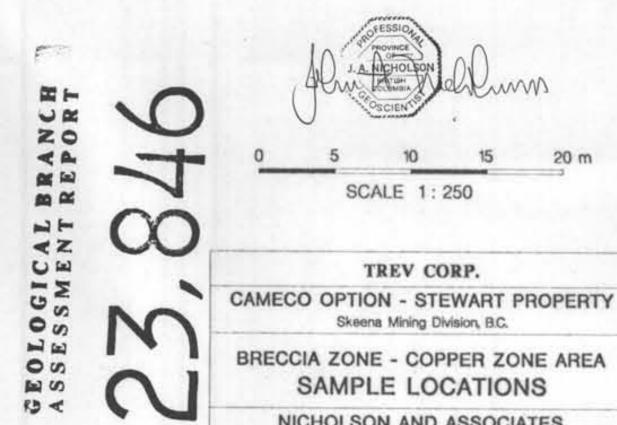
BRECCIA ZONE - COPPER ZONE AREA GEOLOGY

NICHOLSON AND ASSOCIATES



# LEGEND

Gossanous, med. brown, iron carbonate altered volcanics Gossanous, deep brown, quartz +/- carbonate +/- chlorite altered volcanics	Andesitic	volcanics; ash tuff, lapilli tuff, agglomerate and massive fl
and the second se	1.a.	Gossanous, med. brown, iron carbonate altered volcanics
	76	


Orange gossan, alunite-jarosite staining, quartz-sericitepyrite altered volcanics -Gossanous quartz +/- carbonate +/- sulphide breccia

Laminated chert or siliceous argillite

# ---- Glacier limit

	Construction of the second sec
	Geologic contact, observed
	Geologic contact, inferred
Same.	Fault (with dip direction)
24	Bedding or stratigraphic confact (inclined, vertical)
3 m	Foliation (inclined, vertical)
2. 2	Joint (inclined, vertical)
the me	Fault attitude (inclined, vertical)
2	Vein
93	Diamond drill hole
A	Survey station

94JCR022-033 Continuous rock chip sample 94MCR002 Rock chip or composite sample 94MCR005 Talus sample ##551 (1993 Cameco samples and results in italics) (8, 4.8, 67.7, 143, 566) Sample results in units as follows (Au-opb, Ag-ppm, Cu-ppm, Pb-ppm, Zn-ppm) unless otherwise noted



NICHOLSON AND ASSOCIATES SCALE : 1 : 250 DRAWN BY : Luminal Drafting Ltd. THE : CAMBSA.DWG DAVE : OCT 1954 REVISED : TOURE 70