RECEIVED
 APR 111995
 Gold Commissioner's Office VANCOUVER, B.C.

ON

THE

BEN ALI GROUP OF CLAIMS
SKEENA MINING DIVISION STEWART B.C.

NTS 104A4W
LONGITUDE: $\mathbf{1 2 9}^{\circ} \mathbf{5 5}^{\prime} \mathbf{0 0}{ }^{\prime \prime} \mathrm{W}$
LATITUDE: 56 ${ }^{\circ} 01^{\prime} 00^{\prime \prime} \mathrm{N}$

For:
PRIME EQUITIES INTERNATIONAL 1100-808 WEST HASTINGS STREET VANCOUVER, B.C.

V6C 2X4

By:
FILMED
John A. Nicholson, P.Geo.
Nicholson \& Associates

> GEOLOGICALERANCE
> ASSESSMENT REPORT

Vancouver, B.C.
March 15, 1995

SUMMARY

During the month of July 1994, Nicholson and Associates undertook 2 days of mapping, rock and silt sampling on the Ben Ali Group of claims. The property is situated 7 km northeast of Stewart B.C. The property is held under option by Prime Equities International from KRL Resources as part of the larger MM Group. Prime Equities International is earning a 50% interest in the MM group of claims by paying $\$ 200,000$ cash to KRL over three years; spending a minimum of $\$ 1,000,000$ on exploration by September 31, 1996, (of which a minimum $\$ 225,000$ is committed in 1994); and by issuing shares of Prime to KRL at a rate of 25,000 upon approval and 25,000 per year for each of the next three years. KRL is entitled to a net smelter return of up to 3% on the property. (Stock Watch news release, February 8th, 1994)

The MM Group was optioned by Prime Equities International to cover favourable volcanic and sedimentary rocks of the Salmon River and Unuk River Formations which could possibly host precious metal deposits similar to American Barrick's Minerals Red Mountain deposit.

Mapping and sampling on the Ben Ali group confirmed the presence of the Ben Ali vein and confirmed the presence of gold mineralization in the area.

Total expenditures that were spent on the group was $\$ 1200.00$
TABLE OF CONTENTS
PAGE
SUMMARY 2
INTRODUCTION 5
LOCATION AND ACCESS 6
PROPERTY STATUS 8
TOPOGRAPHY, VEGETATION, CLIMATE 10
HISTORY 11
REGIONAL GEOLOGY 14
PROPERTY GEOLOGY 19
MINERALIZATION 21
GEOCHEMICAL SAMPLING RESULTS 22
CONCLUSION AND RECOMMENDATIONS 24
STATEMENT OF COSTS 26
REFERENCES 27
CERTIFICATE 29
APPENDIX 1: CLAIM RECORDS 30
APPENDIX 2: ASSAY TECHNIQUES 31
APPENDIX 3: ASSAY SAMPLE RESULTS 32

LIST OF FIGURES

PAGE7
2/ CLAIM MAP 9
3/ PRODUCTION HISTORY 13
4a/ TECTONIC REGIONAL GEOLOGY 15
4b/ REGIONAL GEOLOGY KEY 16
5/ REGIONAL GEOLOGY 18
6/ LOCAL GEOLOGY 20
7/ SAMPLE LOCATION 23

INTRODUCTION

During the month of July, Nicholson and Associates undertook a program of geochemical rock sampling on the BenAli Group which is located 7 km northeast of Stewart, B.C.

A total of 5 silt and 14 rock samples were collected from the property. The program was supervised by the author who mapped and collected samples on the property.

The purpose of the program was to test the property for its bulk tonnage potential outside of the main Ben Ali Vein.

A total of $\$ 1,200.00$ was spent sampling and mapping the property.

LOCATION AND ACCESS

The Ben Ali group of claims which Prime Equities International holds under option from KRL Resources as part of the MM Group of claims, consists of 3 contiguous mining claims. The claims are situated in the Skeena Mining Division, 7 kms . northeast of Stewart, B.C. (figure 1). The claims occur on map sheet NTS 104A/4W near 56 degrees 01 minutes N latitude and 129 degrees 55 minutes W longitude.

Access to the property is presently gained by driving east of Stewart along highway 7. An old logging road located 500 metres past the Trade West sorting ground on the right hand side of the highway provides for easy access to the base of the claim block. Old trials and cut lines which have been constructed by previous operators provide for easy access throughout the property.

PROPERTY STATUS

Prime Equities International has entered into an agreement with KRL Resources whereby Prime Equities International can earn a 50% interest in the MM Group of claims by spending a minimum of $\$ 1,000,000$ on exploration by December 31, 1996, of which a minimum of $\$ 225,000$ is committed in 1994 ; and by issuing 100,000 shares of Prime to KRL at a rate of 25,000 upon approval and 25,000 shares for each of the next three years. KRL is entitled to a net smelter return at various rates up to 3% on the property. The claim group consists of 3 metric units (figure 2)

BEN ALI and BITTER CREEK

Claim Name	Tenure\#	\#of Units	Expiry Date
Sunbeam Fraction	250637	1	Feb 8, 1997*
Ben Ali	251271	1	Jan. 2, 1997
Ben Ali \#2	251272	1	Jan. 2, 1997
	TOTAL UNITS 3		

TOPOGRAPHY, VEGETATION and CLIMATE

The topography on the Ben Ali Group varies from a low of 50 metres to a high of 500 metres. The terrain is typical of the Stewart area and consists of tall stands of over mature spruce and hemlock. Underbrush in the form of slide alder, brambles and ferns are very thick making movement slow and difficult.

Water on the property is plentiful in the form of and creeks which run year round.
The climate on the property is typical coastal weather with heavy precipitation year round. Snowfall and snow coverage is variable and is dependant on the elevation. Snowfall on the property averages between 350 and 500 centimetres. As a result access is limited from mid May to mid October.

HISTORY

The Stewart Camp over the past one hundred years has been a major producer of both precious and base metals. The Stewart Camp has had over 50 producing mines which have produced in excess of 2 million ounces of gold, 50 million ounces of silver, and over 100 million pounds of $\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}$ between 1910 and 1992. Presently there are two active mines in the area both operating on a limited bases.(figure 3)

Activity in the area first began in the late 1800's when placer miners arrived in the valley and started to operate placer mines on various creeks in the area. Subsequent discoveries on Bitter Creek and Glacier Creek led to the staking and granting of several crown granted claims. Several small "High Grade" mines opened up as a result of this staking, but were short lived due the boom/bust economic cycle of the "Roaring 1920's/1930's Great Depression".

On the Ben Ali Group of mineral claims, which forms the southern portion of the property, extensive work has been undertaken. The Ben Ali Mine has had a reported $+5,000$ tons of ore grading $0.6 \mathrm{oz} /$ ton gold which was shipped to the Dunwell mill. (J.W. Young, 1949, BenAli Mine, Portland Canal District, B.C.) The ore was mined from 4 levels of workings which presently are all accessible. Limited work was undertaken on the property after its closure in 1949, when reportedly 3 diamond drill holes were drilled by Hedley Mascot Mines to test the extension of the vein system. One drill hole is reported to have intersected 15 cm . of $5.0 \mathrm{oz} / \mathrm{t} \mathrm{Au}$. The property remained dormant until 1979 when the underground workings were reopened and reassessed. No further work was undertaken on the property until 1987-89 by Rose Spit Resources Inc. which undertook extensive soil sampling, mapping, prospecting and geophysically surveys using VLF-Electromagnetic and Magnetometer surveys.

Adjacent to the MM Group, American Barrick is exploring Red Mountain for precious metals. The newly discovered $\mathrm{Au}-\mathrm{Ag}$ deposit is situated 15 kilometres southsouthwest of the Ben Ali group of claims at the headwaters of Bitter Creek. The deposit, which has drill proven reserves of 2.8 million tons, grading $0.37 \mathrm{oz} /$ ton gold, occurs at a sedimentary - volcanic contact which has been intruded by the Early Jurassic Goldslide and Hillside intrusives with related hornblende feldspar porphyry dykes of varying composition. Mineralization consists mainly of semi-massive to massive, medium to coarse grained pyrite and/or stringer which contain varying amounts of chalcopyrite, pyhrrotite and sphalerite. Gold occurrences in the system is
zoned and higher values are associated with coarse pyrite and lesser chalcopyrite (1-30 metres wide), which is characterized by adjacent pyrrhotite-sphalerite mineral zones (5-25 metres wide). Current reserves are based on extrapolated diamond drill hole data from the Marc and AV zones which are traced horizontally and vertically for about 600 meters (Smit, H. 1994, personal communication).

Westmin Resources is presently operating their Premier Gold Project from development work on the No. 6 level of the Silbak-Premier deposit as well as Tenajon's SB deposit several km . to the north. The Silbak-Premier has a recorded production in excess of 2 million ounces $\mathrm{Au}, 40$ million ounces Ag , and 100 million pounds of $\mathrm{Pb}-\mathrm{Zn}$ from about 5 million tons of ore. Production from two distinct breccia and vein stockwork trends, the Main and West zones, came from ore shoots distributed along a combined strike length of 1,600 meters, but 80% of the production was recovered from within 500 meters of the intersection of these two trends. The intersection area contained the widest ore shoots (up to 20 metres) and those with the highest $\mathrm{Au}-\mathrm{Ag}$ grades (Alldrick, D.J., 1993).

Dunwell Mines, located 1000 metres east Ben Ali workings, produced 10,000 ounces $\mathrm{Au}, 330,000$ ounces Ag , and 5 million pounds $\mathrm{Pb}-\mathrm{Zn}$ from 50,000 tons of ore. Quartz-calcite breccia fissure veins contain galena, dark-brown sphalerite, pyrite, chalcopyrite, as well as minor tetrahedrite, argentite, and ruby silver. North-northeast trending, moderate to steep west dipping veins are found along the Portland Canal Fissure zone, hosted by Salmon River Fm. argillaceous graphitic siltstone, which unconformably overlie Unuk River Fm. conglomerates and volcanic breccias and are intruded by augite porphyry and cross-cutting hornblende-granodiorite dyke swarms (Grove, E.W., 1971)..

Prosperity/Porter Idaho Mines produced 2,329,000 ounces of silver from a modest 31,884 tons of ore processed. Production from stopes was generally confined to quartz vein swells and bulges where galena-sphalerite-tetrahedrite-polybasite-native Ag mineralization was concentrated. Oreshoots were generally steeply plunging and appear to be controlled by slight vein flexures (Grove, E.W.,1971).

TAPat is

PRIME EQUITIIS INTERNATIONAL CORP.
BEN ALI/MM GROUP OF CLAMS Skeme Minta Dmation BC.

PAST PRODUCTION STEWART MINING CAMP		
NICHOLSON AND ASSOCLATES		
(urt: osc 1994	Mestio:	пйm:

REGIONAL GEOLOGY

The Ben Ali Group of claims lies within the Stewart Mining camp on the Salmon River map sheet area. The property lies close to the boundary between the Intermontaine Belt and the Coast Plutonic complex of the Canadian Cordillera. The property lies in the southern part of the Stikine Arch, a late Paleozoic to Mesozoic assemblages of volcanic and sedimentary rocks. The Stikine Arch stretches from Anyox to Atlin, and east to Telegraph Creek around the northern edge of the Bowser Basin.(figure 4a/4b Wheeler and McFeely, 1987) reproduces part of the regional geology map. The Ben Ali group of claims is located at the contact between the Unuk River Formation to the west and the Salmon River Formation to the east, both of the Jurassic Hazelton Group. (figure 5) Cutting the formations are the Eocene Bitter Creek granodiorite, Hyder quartz monzonite, and Glacier Creek augite porphyry. As a result of the emplacement of these Eocene stocks and dyke swarms, the Unuk river and Salmon River Formations form a fold/fault complex. The most evident feature of this Eocene fold/fault complex is the Portland Canal Fissure Zone, which attains widths up to 500 metres, strikes northeasterly on the property, and the Portland Canal Dyke Swarms which strikes northwesterly to northerly. (Livegard and Cavey, 1994)

Within the Stikine Arch, Triassic rocks are found only in the Iskut and Unuk River area. Named the Stuhini /Takla Group (Alldrick, 1993) these rocks are dominantly intermediate volcanics and sediments and host several deposits in the area, namely the Snip, Stonehouse, Inel, and Granduc.

Triassic rocks are unconformably to gradationally overlain by the Lower to Middle Jurassic Hazelton Group. Grove (1986) divided the Jurassic Hazelton into four major lithostratigraphic divisions: the Unuk River Formation (Early Jurassic), the Betty Creek and Salmon River Formations (Middle Jurassic), and the Nass Formation (Late Jurassic). Anderson and Thorkelson (1990) do not include the Nass Formation, which includes the Bowser Basin sediments. The Hazelton Group is dominated by island arc volcanics which are the source rocks for much of the Bowser Basin sediments. Anderson and Thorkelson (1990) do recognize a regionally mappable unit (the Mt. Dilworth Formation) between the Betty Creek Formation and the Salmon River Formation.

Figure Tectonic elements of northem Bratish Columbia (modified from Wheeter and McFeely. 1987).

PRIME EQUITIES INTERNATIONAL CORP.
BEN ALI / MM GROUP OF CLAIMS
Skeena Mining Division, B.C.
TECTONIC REGIONAL GEOLOGY

Scail :	AS SHOWN		FILE:
OATE:	SEPT 1994	REVSE :	Ficurt: 4a

Figure Stratigraphy of Stikinis and younger overiap assembiages.

PRIME EQUITIES INTIENATIONAL CORP.		
BEN ALI/MM GROUP OF CLAIMS skemm Mining Divioion BC.		
REGIONAL KEY		
NICHOLSON AND A8SOCIATES		
II: A5 SHomi	wem	
Lawt SEPT 1994	mees:	nome: 4b

The Unuk River Formation is characterized by basal pyroclastic flows that are progressively overlain by tuffs, argillites, local andesitic breccia and finally conglomerates with interbedded tuffs, wackes, siltstones and minor carbonate lenses.

The Betty Creek Formation unconformably overlies the Unuk River Formation and is comprised of maroon to green volcanic siltstone, greywacke, conglomerate, breccia, basaltic pillow lavas, andesitic flows and some carbonate lenses.

The Mt. Dilworth Formation, recognized in the Iskut-Unuk River region, consists of tuff breccia, felsic tuff, ash tuff, and argillaceous sediments.

The Salmon River Formation conformably to unconformably overlies the Betty Creek Formation and the Mt. Dilworth Formation. It consists of intensely folded, colour banded siltstones and lithic wackes with locally occurring calcamite and volcanic components.

At the end of the Middle Jurassic the volcanic complex was uplifted and detritus shed from the Stikine Arch into the adjacent Bowser Basin. The Nass Formation outcrops mainly along the westem part of the basin and represents primarily deltaic accumulation of material consisting of conglomerate, and calcareous siltstone.

These volcanics and sedimentary sequences were subsequently intruded by Middle Jurassic to Early Tertiary granitoid intrusions associated with the Coast Plutonic Complex. The intrusions can be an important source for localizing mineralization.

Late stage (Quaternary) basaltic volcanism resulted in deposits of columnar basaltic flows, ash and tephra layers, and cinder cones, that are relatively rare in the southern part of the Stikine Arch. Pleistocene and Recent glaciation has eroded and or covered much of this volcanism.

SEDIMENTARY AND VOLCANIC ROCKS

QUATERNARY

recent.
 RIVER CHANUTASH, GLACIAL LAKEE SEDIMENTS, TILL. PEA BEACHES, OUTVASA, GLACIAL LSARESG DEPOSITS.
pleistocene and recent
18
basalt flows
Jurassic
LPPER JURASSIC
UPPER JURASSIC
NASS FORMATION
SLITSTONE, GREYWACKE, SANDStone, some calcarenite, argil LITE, CONGLOMERATE, MINOR LIMESTONE, MLNOA
DING EQUIVALENT SHALE, PHYLLITE, AND SCHIST)
middle jurassic
SIDDLE JURASSIC
Salmon river formationSILTSTONE, GREYWACKE, SANDSTONE, SOME CALCARENITE, MINO RHYOLITE, RHYOLITE BRECCIA; CRYSTAL AND LITHIC TUFF bettr creek formation
an brecia (al: andesitic and bas
 TUFF (bl): SILTSTONE (cle) MI)
cLUDES some LAVA (+144) (d)
Lower Jurassic
unuk. river formationgrenn red, and purple volcanic breccia, conglomerat
 INOOR COAL (g)
TRIASSIC
UPPER TRIASSIC
takla group (SILTSTONE, SANDSTONE, CONGLOMERATE (a): VOLCANIC SILT
STONE, SANDSTONE, CONLOMGERATE (D): AND SOME BRECCIA
STONE, SANDSTONE, CONLOMGERATE (b):
CRYTAL AND LITHIC TUFF IdI; LIMESTONE
OLIGOCENE AND YOUNGER
OYKES AND SILLL (SWARMS). DIORITE (a): QUARTZ DIORITE (b):
aUARTZ DIORITE (al); GRANODIOAITE (b); MONZONITE (cl); aUAATZ
COAST PLUTONIC COMPLEX: GRANODIOAITE (la): OUARTZ DIORITE
Ibl; OUARTZ MONZONTTE, SOME GRANITE (Cl) MIGMATITE - AGMA. \square
\qquad
middLe jurassic and younger

Lower Jurassic and younger ?triassic
UPPER TRIASSIC AND YOUNGER ?

METAMORPHIC ROCKSHoRNELLS (a): PMYLLITE, SEMI.SCHIST. SCHIST (b): GNEISS (el):
CATACLASITE, MYLONITE (d): TACTITE (e) SYMBOLS
ADIT
anticline (normal, overturned)
bedoing (hobizontal, inclined, vertical, contoated) + th
boundary monument
contours (Interval 1,000 feet
Fault (defined, approximate)
fault (thrust)
fault movement (apparent)

fold axes, mineral lineation (horizontal, inclined
FOSSIL LOCALITY ©
geological contact (Defined, approximate) ... ---
gLacial striae
gravel, sand, or mud
height in feet above mean sea level 6234^{4}
international boundary \qquad
Joint system IINCLINED, VEPTICAU
marsh
MINING PRop
RIDGE TOP
SCHISTOSITY UINCL
synclime
tunnel

($8=4$

PRIME EQUITIES INTERNATIONAL CORP. BEN ALI/MM GROUP OF CLAIMS

PROPERTY GEOLOGY

During the month of July, 2 days were spent on the Ben Ali Group and was mapped on a 1:5000 scale. The property is largely covered by a thick mat of vegetation with moderate to steep topography. Outcroppings are limited to knolls, gullies and ravines.

Lower reaches of the property are covered in alluvium making mapping difficult. Outcroppings observed on the property consisted mainly of Hyder Creek Monzonite and Unuk River Formation Andesite and tuffaceous flows.(figure 6)

MINERALIZATION

The most evident form of mineralization found on the property is pyrite. Pyrite appears abundant throughout the property.

Pyrite in all instances occurs as fine to medium grained disseminations and also occurs as narrow wispy stringers within both andesitic and sedimentary rock units.

Chalcopyrite occurs primarily as disseminations and as stringers.
Galena and Sphalerite occurs as massive inclusions.
Arsenopyrite is present as medium to coarse grained disseminations, masses and or as streaks in quartz veins.

Tetrahedrite/freibergite is present in most of the quartz veins as irregular blebs and streaks.

Quartz-sulphide mineralization which return elevated $\mathrm{Au}-\mathrm{Ag}$ values contains trace amounts of electrum.

GEOCHEMICAL SAMPLING RESULTS

During the month of July a total of 5 silt samples and 14 rock samples were collected by crews of Nicholson \& Associates.(figure 7)

Silt samples taken were placed into a labelled kraft sample bag. Location sites were marked with pink- glo flagging tape which was marked with black felt pen markers. All samples obtained were later allowed to dry and shipped of dry. Rock samples obtained from the property were all placed into individually labelled plastic sample bags. Sample sites were marked with pink - glo flagging which had corresponding sample numbers marked on the flags.

Silt and rock samples were sent to XRAL Laboratories in Don Mills, Ontario.
All samples were analyzed for 32 element by Induced Coupled Plasma analyser (I.C.P.) with an FA finish for gold. (see Appendix 2 for analysis technique)

Silt samples which were obtained throughout the property returned elevated results.
In the area of the Ben Ali showings, creeks returned elevated $\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}-\mathrm{Au}-\mathrm{As}$ values. These results are listed bellow:

SAMPLE \# Cu_ppm Pb ppm Zn ppm Ag_ppm Au ppb As ppm

TGS 001	64	430	861	1.3	555	934
TGS 003	40	200	636	0.1	132	346
TGS 004	2,160	488	3,500	13.4	1,160	8
TGS 005	76	130	376	0.1	75	160

Rock samples which were obtained from the property returned several encouraging results. Several of these areas of interest were in areas of known mineral occurrences on the property which are described as follows: (Appendix 3)

Four levels of underground development consisting of a 96 metre drift (No. 4 level), a collapsed 12 metre adit (No. 3 level), collapsed 25 metre adit (No. 2 level), and a $35 \times 20 \times 2$ metre glory hole, follows a northwest trending, steeply dipping quartzbreccia sulphide vein hosted by a shear zone within the Hyder quartz monzonite. The
following samples were obtained from the main vein and adjacent wall rock:
SAMPLE \# WIDTH Cu ppm Zn ppm Pb ppm Asppm Au ppb As ppm

AGR 004	48 CM.	19	296	79	21.2	2,380	153
AGR 005	200 CM.	12	30	50	4.3	2,370	17
AGR 007	200 CM.	44	48	125	9.0	1,780	10
AGR 010	GRAB	6,550	1,540	7,760	204.5	76,400	187

A parallel vein located 60 metres southwest of the main vein assayed:
SAMPLE \# WIDTH Cu ppm Zn ppm Pb ppm Ag ppm Au ppb As ppm

AGR 011	25	CM.	265	77	255	16.3	2,450
AGR 014	30 CM.	441	387	1,710	17.2	1,910	46

CONCLUSION AND RECOMMENDATIONS

Sampling and mapping undertaken in the vicinity of the Ben Ali vein system appears to have limited the bulk tonnage potential of the vein.

Stream silt samples obtained from the various creeks that drained the Ben Ali vein system, returned elevated values in both gold, silver, copper and arsenic. The samples obtained were taken from streams that cut across the Ben Ali vein. This would account for the elevated numbers that were obtained. Samples taken outside of the drainage pattern elsewhere throughout the property were less than encouraging. This would conclude that the system appears to be limited in size and not as wide spread as had hoped.

The Ben Ali vein system observed on surface appears to be limited in width with the size of the vein ranging from 30 cm . up to 2 metres. Gold values obtained from the vein appear to be relatively consistent in the 2000-3000 ppb range with elevated silver and arsenic values. The vein appears to be fissure controlled which would account for the pinching and swelling nature that the vein exhibits. At present the length of the vein is unknown and has not been fully tested.

The surrounding wall rock is relatively unaltered as was seen along the exposed length of the vein.

Therefore, it is being recommended that a MAG - V.L.F. program be undertaken. The program would be orientated to test the strike length of the vein and other related vein fissures which may occur in the vicinity of the Ben Ali vein.

Anticipated cost of this program is $\$ 15,000$.

PROPOSED PHASE 1 BUDGET

Geophysical Surveys Mag, VLF-EM \$8,000
Grid Establishment \$ 3,000
Camp, room and board \$ 2,000
Consulting, report \$ 2,000
SUBTOTAL$\mathbf{\$ 1 5 , 0 0 0}$

Contingent on the results of Phase 1, a second phase of trenching and drilling will be recommended.

STATEMENT OF COSTS

Personnel

Andres Kikauka \quad P.Geol.	2 days @ $\$ 300 /$ day	$\$ 600.00$	
Tim Woods		2 days @ $\$ 265 /$ day	$\$ 530.00$
John A. Nicholson P.Geol.	1 day @ $\$ 300 /$ day	$\$ 300.00$	

Equipment Rental
(1) Ford X-tra cab 4×42 days @ \$75/day $\$ 150.00$

Assays

5 silt samples @ \$20/sample $\$ 100.00$
14 rock samples @ \$20/sample $\$ 280.00$
Room and Board 2 man days @ \$35/day $\$ 70.00$
Field Supplies $\quad \$ 25.00$
Miscellaneous $\quad \$ 100.00$
Report Writing $\quad \$ 300.00$

TOTAL EXPENDITURES $\mathbf{\$ 2 , 4 5 5 . 0 0}$

Province of British Columbia

 Ministry of Energy, Mines and Petroleum Resources mineral resources division - titles baanchMineral Tenure Act
Sections 25, 26 \& 27
STATEMENT OF WORK - CASH PAYMENT
Indicate type of title MINHAAL
Mining Division SKEENA

PLEASE PRINT Clearly

John A Nretoison	
600675 vasi Hastinus si	
Vancouva B.6.	
6821845	V6B-1N2
lient Number	119688

STATE THAT: (NOTE: if only paying cash in lieu or lease rentid, turn to reveree and complete columns G to d and Q to T.)

Tenure No.(s) $250637,251271,251272$
Work was done Irom SULY_, 1, \qquad , 1994 , to \qquad 31 1994 -
and was done in compliance with Section 50 of the Mineral Tenure Act and
Section 19(3) of the Regulation YES X NO WORK PERMIT No. SMI-94-01006290-124

TYPE OF WORK

PHYSICAL: Work such as trencres, open cuts, acits, pits, ahafts, rectamation, and construction of roads and trails. Delails as required under section 13 of the Regulations, inchucing the map and coss statement must be given on or attiched to this statemem.
PROSPECTING: Detaits as required under section 9 of the Requiations must be subrnitted in a lechnical report. Prospecting work can only be ctained once by the same owner of the ground, and onty during the fivet three years of ownership.
GEOLOGICAL, GEOPHYSICAL, GEOCHEMMCAL. DPILLING: Detaits must be submitted in a lechnical report conforming to sections 5 through 8 (as appropriate) of the Requatations.
PORTABLE ASSESSMENT CREDIT (PAC) WITHOPAWAL: A maximum of 30\% of the approved value of geological, geophysical, geocherncel andor driwing wotk on this stalement may be withdrawn from the owner's or operator's PAC account and adted to the work velue on this statement.
Note: Where required, the ascessment report muet be received within ninety days of the earibet due anniversary date on this staternent.

TYPE OF WOAK	VALUE OF WORK			
(Specity Physical (inckude devails), Proepecting, Geological, etc.)	Physical	'Prospecting	$\begin{gathered} \text {-Geological. } \\ \text { efc. } \end{gathered}$	
GEOLOGICAL			600.00	
GEOCHEMICAL			600.00	
Kipis to millow				
TOTALS	A +	B +	C 1200.00	D
PAC WITHDPAWAL - Maximum 30\% of Vakue in Box C Only			E $\quad \rightarrow$	E
from account(s) of __			TOTAL	F1200 00
	Transter arn and complet	ount in Box F as required.	lo reverse sic	of form

F 1200.00 IWISH TO APPLY $\frac{1200}{}$ TOTAL VALUE FROM BOX FAS FOLLOWS:

K	L	M	N	0	P
WORK TO	PPLLED		AMOR	NEW	Exazs
value	YEARS	Recording Fees		EXPIRY DATE	creprac
400.00	2	20.00		F338,1997	
40060	2	20.00		SAW 2, 1997	
400.00	2	20.00		JAN 2, 1997	
$\frac{1200.00}{\text { Tolkiow }}$		$\begin{aligned} & 60.00 \\ & \text { TOHALOFME } \end{aligned}$			

Cash Payment

1. The undersigned Applicant, hereby acknowiedgs and undersiand inatilis an oftence to knownngly make a a alse statement or provide false intormation under the Mineral Tenure Act Iturther acknowiedge and undersiand that and the exploration and development has not beeen periormed. as alleged in this Statement of Work - Cash Payment, then the work reported on this slatement win be cancelled and the subject mineral clam(s) may as a resulh, forleit to and vest back to the Province
fleme focianm
sorative of Apocicent

REFERENCES

Alldrick, D.J. (1983): Salmon River Project, Stewart, B.C., Geological Fieldwork 1982, B.C. Min.E.M.P.Res., Paper 1983-1, pages 182-195.

Alldrick, D.J. (1984): Geological Setting of Precious Metal Deposits in the Stewart Area; Geological Fieldwork 1983, B.C.Min.E.M.P.Res., Paper 1984-1 pages 149-164.

Alldrick, D.J., Gabites, J.E., Godwin, C.I. (1987): Lead Isotope Data from the Stewart Mining Camp, Geological Fieldwork 1986, B.C. Min.E.M.P.Res., Paper 1987-1, pages 93-102.

Alldrick, D.J. (1993): Geology and Metallogeny of the Stewart Mining Camp, Northwest British Columbia, B.C.Min.E.M.P.Res., Bulletin \# 85

Anderson, R.G., Thorkelson, J. (1990): Mesozoic Stratigraphy and Setting of Mineral Deposits in the Iskut River Area, Northwest B.C., Part E, Current Research, Paper 901F, G.S.C. pages 131-139.

Cavey, G. (1987): Report on the Stewart Area Property of Kingdom Res. Ltd., Stewart, B.C.

Di Spirito, F. (1988): Geological, Geophysical, and Geochemical Report on the Ben Ali Property for Rose Spit Res., B.C.Min.E.M.P.Res. Assessment Report \# 16,633

Grove, E.W. (1971): Geology and Mineral Deposits of the Stewart Area, B.C.Min.E.M.P.Res.,Bulletin 58, 229 pages.

Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk R.-Salmon R.- Anyox Area, Bulletin 63, 152 pages

Greig, C.G., Anderson, R.G., Daubeny, P.H., Bull, K.F. (1994): Geology of the Cambria Icefield: regional setting for the Red Mountain gold deposit, Northwest B.C.; in Current Research 1994-A; G.S.C. page 45-56.

Hanson, G. (1935): Portland Canal Area, B.C., G.S.C. Memoir 175, 179 pages.

Harris, C.R. (1981): Report on the MM 100 Claim for Kingdom Res.
Hopper, D. (1980): Prospecting Report for Assessment Purposes on the MM 100.
Little, (1935): Report on the Stewart Central Area, Bitter Creek, Stewart, B.C.
Livgard, E., Nicholson, G.E. (1994): Report on the Javorsky Option Claims, Bitter Creek and Ben Ali Group, Skeena Mining Division, for KRL Resource Corp.

Pritchard, R.A. (1990): DIGHEM III Survey for KRL Res. Corp., Stewart, B.C., Report \# 1088.

CERTIFICATE

I, John A. Nicholson, do herby certify that:

1. I am a consulting geologist with offices at 606-675 West Hastings Street, Vancouver, British Columbia.
2. I am a graduate of the University of British Columbia with a Bachelor of Science, Geology (Honours).
3. I am a member of the Professional Engineers and Geoscientists of British Columbia, member \# 19933.
4. I supervised work carried out on the Ben Ali Group of mineral claims.
5. Data that was used in this report came from field notes and published and unpublished reports.
6. I have no direct or indirect interest in the property or securities in KRL Resources
7. I authorize the use of this report for public financing.

APPENDIX 1 CLAIM RECORDS

Tenure \#	251272	Old Tenure \#: 19	5065	Tenure	Sub-Type: claim
Mining Div.	SKEENA			Map \#	103P13W-E
Termination		Date:		Tag	:

:URRENT OWNERS
Client \# Name \% Interest
113058 JAVORSKY, DAVID 100.0000

C'LAIM DETAILS

Claim Name Issued Locator
: REFER TO LOT TABLE
: 1986/JAN/02 Good To: 1995/JAN/02
Claim Type : RCG 999999 MATS CONVERSION

OTS

District	Lot	Lot Name
6	4470	BEN ALI NO 2

NOTE :
Mineral Tenure events recorded prior to June 1, 1991
, are NOT stored on the MiDA system; please refer to manual records located in the Gold Commissioner's office.

CLAIM APPLIC.
Event \# : 2050936 Recorded: 1986/JAN/02
Submitter: 999999 MATS CONVERSION
Comments : MATS conversion
.OTICE TO GROUP
Event \# : 3041861
Recorded: 1993/SEP/23
Effective: 1993/SEP/23
Submitter: 113058 JAVORSKY, DAVID
Comments : N/G BEN ALI MINE

ORK STATEMENT
Event \# : 3008480 Recorded: 1991/OCT/18
Effective: 1991/OCT/18
Submitter: 113058 JAVORSKY, DAVID
Comments :
Work Start Date : 1991/09/13 Work Stop Date : 1991/10/10
Old Good To Date: 1992/01/02 New Good To Date: 1994/01/02
Work Types:
PHYSICAL
Event \# : 3045203 Recorded: 1993/DEC/09
Effective: 1993/DEC/09
Submitter: 126610 TERRY, MARK A.
Comments :
Work Start Date : 1993/10/15 Work Stop Date : 1993/10/18

;OTS

District 6

Lot
4283

Lot Name
BEN ALI

NOTE: Mineral Tenure events recorded prior to June 1, 1991 are NOT stored on the MiDA system; please refer to manual records located in the Gold Commissioner's office.

TENURE EVENTS

CLAIM APPLIC.
Event \# : 2050935 Recorded: 1986/JAN/02 Effective: 1991/JUN/22
Submitter: 999999 MATS CONVERSION
Comments : MATS conversion
.JOTICE TO GROUP
Event \# : 3041861 Recorded: 1993/SEP/23
Effective: 1993/SEP/23
Submitter: 113058 JAVORSKY, DAVID
Comments : N/G BEN ALI MINE

NORK STATEMENT
Event \# : 3008480
Recorded: 1991/OCT/18
Effective: 1991/OCT/18
Submitter: 113058 JAVORSKY, DAVID
Comments :
Work Start Date : 1991/09/13 Work Stop Date : 1991/10/10
Old Good To Date: 1992/01/02 New Good To Date: 1994/01/02
Work Types:
PHYSICAL
Event \# : 3045203 Recorded: 1993/DEC/09 Effective: 1993/DEC/09
Submitter: 126610 TERRY, MARK A.
Comments :
Work Start Date : 1993/10/15 Work Stop Date : 1993/10/18

Tenure \#	250637
Mining Div.	
Termination : SKEENA	

Old Tenure \#: 19
1019
Date:

Tenure	Sub-Type: claim
Map \#	: $104 \mathrm{~A} 04 \mathrm{~W}-\mathrm{D}$
Tag \#	$:$

Map 104A04W-D Tag \# :
:URRENT OWNERS
Client \# Name \% Interest
113058 JAVORSKY, DAVID 100.0000

CLAIM DETAILS

Claim Name
Issued : 1979/FEB/08 Good TO: 1995/FEB/08
Locator : 999999 MATS CONVERSION

Claim Type : RCG
 Area : l unit

,OTS
District Lot Lot Name
64469 SUNBEAM FR

NOTE: Mineral Tenure events recorded prior to June 1, 1991
are NOT stored on the MiDA system; please refer to manual

TENURE EVENTS

CLAIM APPLIC.
Event \# : 2050301 Recorded: 1979/FEB/08 Effective: 1991/JUN/22
Submitter: 999999 MATS CONVERSION
Comments : MATS conversion

NOTICE TO GROUP
Event \# : 3041861 Recorded: 1993/SEP/23 Effective: 1993/SEP/23
Submitter: 113058 JAVORSKY, DAVID
Comments : N/G BEN ALI MINE

IORK STATEMENT
Event \# : 3008480 Recorded: 1991/OCT/18 Effective: 1991/OCT/18
Submitter: 113058 JAVORSKY, DAVID
Comments :
Work Start Date : 1991/09/13 Work Stop Date : 1991/10/10
Old Good To Date: 1992/02/08 New Good To Date: 1994/02/08
Work Types:
PHYSICAL
Event \# : 3045203
Recorded: 1993/DEC/09
Effective: 1993/DEC/09
Submitter: 126610 TERRY, MARK A.
Comments :
Work Start Date : 1993/10/15 Work Stop Date : 1993/10/18

APPENDIX 2

ASSAY TECHNIQUES

Description:

A quarter gram sample is digested with $\mathbf{2 m l}$ of nitric acid for onc half bour in a water bath, then 1 ml of hydrochloric acid is added and the digestion contimes for another 2 hours. Test tubes are shaken at regular intervals.

In house standards and previously analysed samples are run to monitor proper digestion procedures. Syntheric standards are used to calibrate the instrument.

Limitations:

The nitric aqua regia extraction will not completely extract difficultly soluble clements such as $\mathrm{Ba}, \mathrm{Cr}, \mathrm{Sb}, \mathrm{Sn}, \mathrm{Ta}, \mathrm{W}, \mathrm{V}$ and Zr . The multi-acid extraction (Mcthod code $80-1$) will ensure better cxtraction, though some refractory minerais may remain incompletely attacked. Volatile elements such as As may be lost from solution in the multi-acid attack.

Elements:

A	0.01\%	Fe	0.01\%	Na	0.01\%
Sb	5ppm	Pb	2ppm	Sr	. 5 ppm
As	5ppm	Li	1 ppm	Ag	. 1 ppm
Ba	1ppm	Mg	.01\%	Sn	10ppm
Be	.5ppm	Mn	.01\%	Ti	.01\%
Bi	3 ppm	Mo	1 ppm	w	10ppra
Cd	1ppon	Ni	1 ppm	V	2ppm
Ca	.01\%	P	.01\%	\boldsymbol{Y}	.1ppm
Cr	1ppm	K	.01\%	$\mathrm{Z}^{\text {r }}$. 5 ppm
Co	1 ppm	Sc	.5pprn	$\mathbf{Z n}$.Sppra
Cu	.5ppm				

Prepared by Approved by Date

Issuc:
Rev. 0
Decermber 19/91
Part
Page 1

$$
\text { X-Ray Fluorescence Spectrometry - } 27 \text { Elements - Pressed Pellet }
$$

Description:

At least 5 g of sample is required for the analysis of one or all of the above elements. A pellet is loaded into the holder of the automatic sample changer of a Philips PW1400 wavclength dispersive X-ray spectrometer. The 40 mm diameter sample pellets are loaded six to a tray with a towl of 10 trays.

Elements are run in an inert nitrogen atmosphere employing a thodium tube which also serves as an interril standard for some clements. For differcnt combinutions of requested elements various standard reference materials are inserted with these samples to verify calibration. Calibration is programmed into the instrument and inter-element corrections are applied to neccssary analyte elements. Commonly requested element combinations are programmed to be determined individually or in groups.

Limitations:

This procedure is not suitable for mineralized materials. The presence of percentage levels of any element except the usual major rock constituents will have a adverse cffect on the calibration.

The maximum concentration reported by these procedures is generally 5000 pprn. Analysis for clements with concentrations higher than 5000 pprn should be analysed by one of our assay procedures. The assay procedure involves a pomssium pyrosulfatc fusion of the sample followed by the preparation of a pressed disk. The pyrosulfate fusion produces a very homogencous sample material with a uniform grain sizc. The fusion also saturates any matrix impact from the sample with the overwhelming marrix of the pyrosulfate flux itself thas allowing for synthetic standard calibrations. Internal standards are also used for assay grade malysis. This procedure is cssential to produce the accuracy and precision requiremonts nceded for assay grade analysis.

Elements:

Sb	3 ppra	P\%	2 ppm	71	5 ppm
As	3 ppm	Mo	2 ppm	Th	2 ppm
Ba	20 ppon	Nb	2 ppm	Sn	5 ppm
Bi	3 ppm	Ni	2 ppm	Ti	5 ppm
Cl	50 ppm	Rb	2 ppm	W	5 ppon
Co	2 ppm	Sc	3 ppm	U	2 ppm
Cu	2 ppm	Sr	2 ppm	Y	2 ppm
Ga	3 ppm	S	50 ppm	Z	3 ppm
Fe	3 ppm	TA	5 ppm	Zn	2 ppm

\qquad

Geochemical Gold, Piatinum and Palladium by Lead Fire Assay Assay Gind, Platinum, Palledium and Silver by Lead Fire Assay

Our quality control inctudes the following procedures:

1. The cleaner sample which was crushed before the samples is analysed along with the samples.
2. A standard reference sample doped with cobelt and copper is run with cach tray. The position of this standard is varied systematically from one tray to the next. This serves as a check to identify each batch through to the final cupclation and as a monitor of the final measurement of gold content.
3. Every tenth sample is run in duplicate. The second run is made at a different time from the first.
4. anomalous samples are repeared.

The routine involves weighing of a 15 or 30 gram aliquor of sample on a top loader electronic balance to_+_ 0.01 grams tolerance. This is added to a assay crucible which has been pre-charged with $100-200$ grams of flux. A fixed amount of reducing agent is then added to ensure production of a $30-50 \mathrm{gram}$ lead buuton during fusion. Finally for gold assays five milligrams of silver is added and the sample and flux are mixed together.

The fusion is carried out a an average tempcrature of about 1000 degrees celsius for about 1 hour. Melts are poured and when the slag has cooled the lead bullons are recovered, deslagged, and placed in preheated cupels in the cupellation furnace. Cupellation takes about I hour and is carried out at about 960 degrees celsius. The silver bead recovered after cupellation can bc treated in several ways to determine the gold content as indicated below.

1. Plasma spectromerry: Requires digestion of the bead with aqua regia followed by measurement of the gold content in the solution. Platinum and palladium may also be determined on this solution (XRAL Group 02-1).
2. Neutron activation analysis: This requires only an irradiation of the bead followed by measurement of the gold content by gamma spoctromery. It is normally used for the analysis of gold only.
3. For high grade samples the gold can be pared from the silver and weighed as per the classical echnique.

Atomic absorption is scldom used as the sensitivity is not quite adequate for the low levels required for geochemical applications.

Silver analyses follow the same path as gold sampics except that the final measurement is always gravimetric and no silver is added to the pot.

Elements:

Au to 1 ppb detection limit

Prepared by	Approved by	Date

APPENDIX 3

ASSAY SAMPLE RESULTS

ROCK SAMPLE DESCRIPTION RECORD								
			Location: Stewart			Operator:		
Sample No.	Location	Description	Analytical Results					
			Au	Ag	$\mathbf{P b}$	$\mathbf{Z n}$	Cu	As
	BEN ALI CK.		ppb/g/t	ppm	ppm/\%	ppm/\%	ppm/\%	ppm
94AGR001	0+60E 0+00S	180 cm chp channel, qtz. monzonite wall rock 5% frac. fill py.	344	2.6	18	59.8	8.7	14
94AGR002	$0+60 \mathrm{E} 0+00 \mathrm{~S}$	40 cm . chip channel, NW trending qtz. vein, 20\% py 1-5 mm . blebs.	432	4.0	86	38.2	40.4	30
94AGR003	$1+08 \mathrm{E} 0+07 \mathrm{~S}$	180 cm , chip channel, qtz. monzonite wall rock, 5% frac. fill py.	40	1.0	9	165	19.6	4
94AG004	$1+30 \mathrm{E} 0+09 \mathrm{~S}$	48 cm . chip channel, NW trending qtz. vein, 20\% py 1-6 mm . blebs.	2380	21.2	296	78.8	18.6	153
94AGR005	1+30E 0+09S	200 cm . chip channel, qtz. monzonite wall rock, 3% frac. fill py. several $0.5-3.0 \mathrm{~cm}$. qtz. veins along fractures.	$\frac{3470}{.11 \mathrm{~g} / \mathrm{t}}$	4.3	30	49.9	11.5	17
94AGR006	$1+30 \mathrm{E} 0+09 \mathrm{~S}$	28 cm . chip channel, WNW trending qtz. vein, 20\% py.	184	10.2	31	105	216	20
94AGR007	$1+30 \mathrm{E} 0+09 \mathrm{~S}$	200 cm chip channel, qtz. monzonite wall rock, 3% frac. fill py.	$\frac{1780}{1.77 \mathrm{~g} / \mathrm{t}}$	9.0	48	125	43.8	10

ROCK SAMPLE DESCRIPTION RECORD								
			Location: Stewart			Operator:		
Sample No.	Location	Description	Analytical Results					
			Au	Ag	Pb	$\mathbf{Z n}$	Cu	As
	BEN ALI CK.		ppb/g/t	ppm	ppm $/ \%$	ppm/\%	ppm/\%	ppm
94AGR008	$2+39 \mathrm{E} 0+04 \mathrm{~S}$	65 cm chip channel, NW trending qtz. vein, 8\% py. at portal No. 4 level	62	5.0	42	49.9	58.2	9
94AGR009	$3+40 \mathrm{E} 0+08 \mathrm{~S}$	180 cm . chip channel, qtz. monzonite wallrock, 5% py.	174	9.5	578	835	456	22
94AGR010	$3+40 \mathrm{E} 0+08 \mathrm{~S}$	GRAB, NW trending qtz. vein from glory hole stope 25% py 3\% sp 1\% cp.	$\frac{76400}{68.6 \mathrm{~g} / \mathrm{t}}$	$\frac{46.9}{204.5}$	$\frac{1540}{.15 \%}$	$\frac{7760}{.79 \%}$	$\frac{6550}{.66 \%}$	187
94AGR011	$3+25 \mathrm{E} 0+68 \mathrm{~S}$	25 cm . chip channel 8\% py. in qtz. monzonite	$\begin{gathered} \underline{2450} \\ 1.57 \mathrm{~g} / \mathrm{t} \\ \hline \end{gathered}$	16.3	77	255	265	67
94 AGR012	$\begin{aligned} & \text { Shagri-La grid } \\ & \text { L6+50E } \\ & 2+00 S \end{aligned}$	35 cm . chip channel, bleached felsic rock, 1% py. trace cp. mal barite	54	2.4	16	479	457	22
94AGR013	$\begin{aligned} & L 7+00 E \\ & 1+20 S \end{aligned}$	12 cm. chip channel, altered volcanics $1-3 \mathrm{~cm}$. qtz. veinlets, 5% pyo. trace cp. 3% chlorite.	36	$<.1$	8	60.7	104	11
94AGR014	$\begin{aligned} & 11+00 \mathrm{E} \\ & 2+50 \mathrm{~N} \end{aligned}$	30 cm . chip channel, Altered qtz. monzonite, 5% chlorite, 8% py. 8% qtz. as veins.	$\frac{1910}{1.9 \mathrm{~g} / \mathrm{t}}$	17.2	387	1710	441	46

$A U-1 A T$ PPE $A U-1 A T ~ G / H T ~$	BE PPH	HA \%	HG \%	AL \%	P \%	I \%	CA \%	SC PPH
FiDCP	FA	ICP						
1	0.03	0.5	0.01	0.01	0.01	0.01	0.01	0.01

94AG2001	344	--	1.0	. 04	. 22	. 58	. 04	. 24	. 08	$<.5$
9^4GROO2	432	-	. 9	. 04	. 05	. 22	. 01	. 16	. 02	$<.5$
.G8003	40	--	1.0	. 05	. 42	. 96	. 07	. 35	.17	1.0
-xGR004	2380	2.66	1.5	. 03	<. 01	. 13	<. 01	. 14	$<.01$	$<.5$
948GR005	2370	. 11	1.1	. 04	. 24	. 83	. 05	. 33	. 13	$<.5$
94AGR006	184	--	1.0	. 04	. 32	. 98	. 05	. 33	. 18	$<.5$
34AGR007	1780	1.77	. 9	. 05	. 34	. 85	. 05	. 29	. 12	. 6
941GROO8	62	-	. 5	. 04	. 03	. 21	$<.01$. 18	. 03	$<.5$
94AGR009	174	--	1.2	. 04	. 40	. 96	. 06	. 34	. 15	. 9
34AGRO10	76400	68.6	2.6	. 03	<. 01	. 11	$<.01$. 12	<. 01	$<.5$
3sAGRO11	2450	1.57	1.5	. 03	. 25	. 76	. 04	. 35	. 06	$<.5$
34גGR012	54	--	. 6	. 09	. 12	. 34	. 06	. 02	. 70	. 6
94iGRO13	36	--	1.7	. 32	. 47	3.61	. 06	. 48	2.14	2.7
94igRO14	1910	1.80	1.4	104.	26	75	05	33	29	<, 5
34AB2001	299	--	1.5	. 04	. 84	. 87	. 06	.17	. 15	$\leqslant .5$
34iARR002	165	--	2.8	. 06	1.89	2.47	. 20	. 44	. 61	12.5
94abR003	2820	2.59	8.4	. 03	. 11	. 21	. 01	. 06	. 02	$<.5$
94ABR004	2350	2.32	4.1	. 04	. 50	. 67	. 05	. 20	. 11	$<.5$
34iBR005	2100	2.17	6.3	. 04	. 17	. 33	. 03	. 11	. 07	$<.5$
34ARR001	2430	2.25	1.8	. 04	. 50	. 64	. 03	. 07	. 06	2.2
$34 \&{ }^{\text {a }}$ 002	1610	1.84	4.9	. 03	. 14	. 30	. 04	. 10	. 27	<. 5
94AHR003	5530	4.76	5.4	. 03	. 17	. 38	. 05	. 14	. 24	$<.5$
94AHR004	322	--	1.8	. 03	. 36	. 63	. 07	. 25	1.15	1.0
94aH8005	875	--	3.7	. 03	. 13	. 46	. 13	. 25	. 31	$<.5$
34AHR006	252	--	1.8	. 03	. 46	. 90	. 12	\because	. 48	1.5
94JHR036A	12	--	1.9	. 06	1.64	2.01	. 10	$\therefore 1$. 65	5.4
94JRR037A	36	--	1.9	. 06	2.41	2.36	. 14	, iv	1.22	5.5
34JHR038A	9	--	1.8	. 05	1.18	1.51	. 12	. 19	1.42	7.4
34JHR039:	4	--	1.2	. 05	1.50	1.74	. 07	. 06	. 31	3.5
34JRRO40\&	3	--	1.8	. 05	1.60	2.34	. 12	. 21	. 63	5.9
94JHRO41:	346	--	2.9	. 63	1.97	2.19	. 15	. 26	2.50	6.2
94JRR042:	3	--	2.1	. 06	1.43	2.44	. 12	. 07	. 50	6.6
34JHRO43i	7980	6.97	7.1	. 03	. 38	. 37	<. 01	. 03	. 39	$<.5$
94JHRO44X	45640	5.11	3.3	. 04	. 66	. 94	. 09	. 16	. 58	1.4
94 JRR084	- 26	-	1.7	. 05	1.63	1.31	. 12	. 05	. 25	4.7
94BDR087	12	--	1.6	. 40	. 39	3.29	. 05	. 24	2.12	1.7
* ' PDR 090	8	--	1.5	. 20	. 44	1.42	. 08	. 18	. 91	1.0
D8091	5	--	. 7	. 14	. 12	. 72	. 03	. 06	2.85	$<.5$
943DR.093	4	--	1.0	. 13	. 17	. 88	. 05	. 04	1.24	$<.5$
94BDR094	4	--	<. 5	. 04	. 02	. 20	<. 01	. 02	. 68	$<.5$
94BDR095	<1	--	1.4	. 43	1.21	3.25	. 09	. 73	1.47	4.0
34 BDR 097	31	--	1.5	. 22	. 79	1.65	. 08	. 26	. 82	7.2
34BD2098	2	--	1.4	. 33	. 59	2.46	. 07	. 33	1.45	3.1
$948 D 8099$	36	--	. 6	. 03	. 07	. 19	. 01	. 10	. 60	$<.5$
94BDR100	8	--	1.8	. 06	1.33	1.55	.15	. 09	. 24	3.7
94BDR101	12	--	1.7	. 05	1.26	1.36	. 11	. 06	. 31	7.5
34BDR102	50	--	2.9	. 04	2.63	2.81	. 12	. 12	. 22	$9 . 亏$
948DR103	92	--	2.2	. 04	. 82	1.42	. 12	. 26	1.23	1.3
94BDR104	48	--	5.3	. 04	2.16	2.42	. 16	. 07	19	8.3
$348 D R 106$	640	--	3.1	. 04	3.21	3.75	. 17	. 07	. 37	15.7
948TR003	22	--	1.0	. 05	. 84	1.27	. 08	. 20	1.68	1.0
94BTR005	11	--	1.1	. 04	1.27	. 54	. 20	. 39	3.47	3.4
$948 T R 007$	33	--	1.6	. 04	1.23	1.93	. 16	. 28	1.26	2.4
94BTR008	2	--	2.4	. 05	1.52	2.08	. 20	. 38	3.99	7.4
94BTR010	2	--	. 7	. 06	. 76	. 57	. 17	. 41	3.76	5.1
$94 B T R 022$	<1	--	2.3	. 07	3.52	4.39	. 09	06	. 55	4.0
94BTR023	4	--	1.3	. 05	1.36	1.65	. 21	. 43	1.52	3.4
94BTH024	<1	--	1.8	. 04	2.98	3.59	. 09	. 06	. 45	2.5
94BTR025	165	--	2.7	. 23	3.24	5.70	. 08	2.78	1.46	27.9
94BTR026	30	--	1.9	22	2.31	4.09	. 93	1.97	- \div	13.2
94BTR030	14	--	. 9	. 09	. 83	1.41	.09	. 96)	4.2
94BTH033	14	--	. 9	. 21	. 43	: 42	. 02	. 25	7.02	1.8
94 HDR122	486	--	. 9	. 04	. 02	. 14	. 02	. 16	. 03	. 7
94 HDR 123	4980	4.74	4.1	. 05	. 01	. 06	$<.01$. 05	. 02	$<.5$
94AGR015	521	--	1.8	. 04	. 12	. 35	. 03	. 20	. 04	$<.5$
94AGR016	47000	64.4	3.9	. 04	$<.01$. 04	<.0:	. 66	is	$<.5$
94xGRO17	2480	1.97	2.0	. 04	<. 01	. 07	<. 01	. 09	$<.01$	$<.5$
94BDR023	16	--	2.1	. 25	. 98	2.89	. 14	. 87	1.40	5.7
94BDR024	4	--	1.6	. 04	. 30	. 54	. 08	. 30	2.58	3.8
94BDR025	4	--	. 5	. 07	. 01	. 13	$<.01$. 07	. 09	$<.5$
94BDR026	<1	--	<. 5	. 08	. 02	. 12	$<.01$. 05	. 05	$<.5$
'8DR027	<1	--	. 5	. 06	. 02	. 14	<01	. 06	. 04	$<.5$
. $48 D 802{ }^{-}$	9	--	. 5	. 08	. 12	. 35	$\therefore 0$. 03	$\pm .01$	$<.5$
348DR036*	79	--	2.4	. 09	. 37	. 82	. 06	. 28	. 66	. 9
$94 \mathrm{BDR037}$	6	--	. 8	. 55	1.50	. 29	. 13	. 11	9.87	1.9
94BDR038	10	--	1.7	¢f	. 67	$1 .: 0$.10	. 13	. 33	1.3
$948 D R 039$	17	--	1.1	$\therefore 4$. 56	. 30	. 13	. 22	. 47	1.2
$948 D 2040$	16	--	1.9	$\because 4$	3.15	3.55	. 12	. 1	4.35	6.6
Э4BDR041	35	--	1.4	. 24	1.65	: 33	$\therefore 0$:?	4.75	4.4
94EDR042	24	--	$1 .:$	34	$\therefore .39$. $¢$:2	:?	$\pm .32$	2.:

SAHPLE	II \% ICP 0.01	V PPH ICP 2	$\begin{gathered} \text { CR PPH } \\ \text { ICP } \\ 1 \end{gathered}$	$\begin{gathered} \text { HI PPH } \\ \text { ICP } \\ 2.00 \end{gathered}$	$\begin{gathered} \text { FE \% } \\ \text { ICP } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { CO PP: } \\ \text { ICP } \\ 1 \end{gathered}$	HI PPH ICP 1	$\begin{gathered} \text { CU \% } \\ \text { XRF } \\ 0.01 \end{gathered}$	$\begin{gathered} C U P P H \\ \text { ICP } \\ 0.5 \end{gathered}$	2\% \% XBF 0.01
94BDR055	<. 01	22	33	1070	3.41	11	84	--	60.5	--
94BDE059	--	--	--	--	--	--	--	--	--	--
949DR069	$<.01$	15	30	614	22.9	80	10	--	2090	
$\cdots .08073$	--	--	--	--	--	--	--	--	--	-
- - DR082	. 09	683	80	793	12.0	80	273	--	436	--
94BDR086	--	--	--	--	--	--	--	--	--	-
94 JBR053	$<.01$	60	30	463	4.84	22	33	--	411	--
94582057	--	--	--	--	--	--	-	--	--	--
94JE2063	. 16	197	72	612	9.02	30	51	--	570	-
94 JB2069	--	--	--	--	--	--	--	--	--	
94 JBR076	. 29	146	58	439	4.75	21	54	--	240	--
94abR2006	--	-	--	--	--	--	--	--	--	
94 JHR 086	.10	211	114	651	6.07	17	20	--	167	--
94HDR110	--	-	--	--	--	--	--	--	--	
94 HDE116	. 05	82	69	492	3.30	11	10	--	46.8	--
SAHPLE	$\begin{gathered} \text { ZI PPH } \\ \text { ICP } \end{gathered}$	$\begin{gathered} \text { AS PPH } \\ \text { ICP } \end{gathered}$	SR PPH ICP	\mathbf{Y} PPM ICP	$\begin{gathered} \text { 2A PPH } \\ \text { ICP } \end{gathered}$	$\begin{gathered} \text { HO PPH } \\ \text { ICP } \end{gathered}$	$\begin{gathered} 2 G \mathrm{G} / \mathrm{HT} \\ \mathrm{FA} \end{gathered}$	$A G P P A$ ICP	CD PPH ICP	$\begin{gathered} \text { SI PPH } \\ \text { ICP } \end{gathered}$
	0.5	3	0.5	0.1	0.5	1	3.0	0.1	1	10
94igR001	59.8	14	6.9	1.8	$<.5$	5	--	2.6	<1	<10
94igR002	38.2	30	1.2	1.3	<. 5	7	--	4.0	<1	<10
94AGR003	165	4	9.8	3.7	$<.5$	5	--	1.0	<1	<10
94agroos	78.8	153	. 9	1.2	<. 6	37	--	21.2	<1	<10
94EGR005	49.9	17	5.3	2.4	<. 5	15	--	4.3	<1	<10
94AGR006	105	20	7.7	3.7	<. 5	5	-	10.2	<1	<10
94AGROOT	125	10	7.5	2.9	<. 5	3	--	9.0	<1	<10
94AGR008	49.9	9	1.0	1.5	< 5	2	--	5.0	<1	<10
94AGR009	835	22	3.8	4.0	<. 5	7	--	9.5	1	<10
94AGRO10	7760	187	< 5	1.1	$<.5$	2	204.6	46.9	85	<10
94agR011	255	67	1.9	1.4	< 6	1	--	16.3	<1	<10
94162012	479	22	7.5	7.5	<. 5	4	--	2.4	5	<10
94agroi3	60.7	12	294	5.4	$<.5$	2	--	$<.1$	<1	<10
94¢GR014	1710	46	6.2	3.3	<, 5	15	--	17.2	12	≤ 10
94iBROO1	13200	282	3.4	5.5	<. 5	3	--	23.4	340	<10
$94 \mathrm{ARB202}$	10700	256	20.8	7.2	$<.6$	3	--	27.8	256	<10
94iBR003	429	176000	<. 5	1.5	<. 5	<1	252.5	37.4	<1	<10
-182004	2430	76600	3.9	2.5	$<.5$	5	239.1	33.8	43	<10
3 O 005	4380	4210	2.0	2.8	$<.5$		2215.7	66.9	121	<10
- $\triangle \pm$ HROO1	14900	2710	3.3	1.5	<. 5		1) 47.8	30.8	364	<10
94148002	63600	23700	17.0	3.0	<. 5	1	L 149.2	51.8	1470	<10
94ifR003	1260	249000	12.1	2.8	< 6	<1	37.2	51.5	19	<10
94ihR 004	747	1510	51.9	5.1	<. 5	5	--	8.3	16	<10
94AHRO05	2730	1600	17.5	4.7	< .5	1	--	26.3	53	<10
94îHR006	1670	1020	25.4	4.4	$<.5$	3	--	14.9	36	<10
94JHB036i	144	78	17.8	7.8	< 5	4	--	2.4	<1	<10
94 JHR037:	80.8	52	19.5	6.8	$<.5$	5	--	1.0	<1	<10
943AR038i	249	84	56.7	9.4	<. 5	4	--	1.6	<1	<10
94JHR039\%	48.1	39	11.1	5.2	< 5	3	--	1.9	<1	<10
94 JHRO40i	1080	32	29.1	6.9	<. 5	3	--	1.5	6	<10
94 JHR041A	10600	10900	95.5	7.7	< 5	2	--	17.9	342	<10
94JHR042A	5260	101	17.9	5.6	<. 5		+18-	4.5	51	<10
94JHRO43ネ̇	7.720	36600	8.9	2.8	<. 5		2284.4	83.8	239	<10
94 JHR044A	11600	31200	28.1	5.1	<. 5		2316.0	54.2	353	<10
94 JBR084	232	277	7.6	8.2	< .5	2	--	3.5	<1	<10
948DR087	60.7	47	104	4.4	<. 5	1	--	1.2	<1	<10
94BDR090	36.6	88	69.6	5.0	< 5	18	--	$<.1$	<1	<10
94BDR091	144	44	71.6	4.0	$<.5$	5	--	1.7	<	<10
94BDR093	36.1	17	29.4	4.8	$<.5$	7	--	1.6	<!	<10
94BDR094	12.7	16	4.8	2.8	< 5	17	--	. 9	<1	<10
94BDR095	42.9	9	139	5.4	< 5	5	--	. 9	<1	<1c)
94BDR097	90.2	21	68.3	5.6	$<.5$	5	--	2.9	<1	(1)
94BDR098	26.5	11	115	5.2	$<.5$	2	--	. 6	$\bigcirc 1$	<10
94EDR099	11.6	43	20.1	1.7	< 5	10	--	. 2	<1	<10
94BDR100	50.0	7	10.7	9.2	$<.5$	11	--	. 7	<1	<10
94BDR101	50.1	50	9.7	10.8	$<.5$	8	--	23	<1	<10
94BDR102	47.7	37	10.3	4.7	$<.5$	7	--	2.6	<1	<10
94EDR103	69.2	51	77.3	5.1	< 5	10	--	4.0	<1	<10
94EDR104	30.7	65	7.8	6.9	$<.5$	3		3.5	<	<10
94 DDR 106	42700	320	22.7	7.1	$<.5$		$\{85.6$	30.5	304	<10
948TR003	209	15	40.0	4.2	$<.5$		$2--$	2.5	<1	<10
948 TR005	349	12	142	7.6	$<.5$		\cdots	1.3	<1	$\bigcirc 10$
3 TR007	54700	234	29.7	5.3	< 5	3	--	10.9	540	<13
. 8 TR008	383	16	98.3	8.1	<. 5	<1	--	1.9	<1	<10
94BTR010	1210	152	89.7	$\varepsilon .6$	$<.5$	2	--	2.0	13	<10
$948 T \mathrm{O} 022$	190	18	15.1	11.3	$<.5$	2	--	. 3	<1	<10
$94 \mathrm{BTR023}$	104	<3	27.5	4.9	$<.5$	<1	--	$<.1$	<1	10
94BTR024	99.9	10	12.6	11.3	<. 5	<1	--	. 3	<1	<10
$948 T 8025$ $= \pm=-7 \sim$	2600	62	44.4 6.	5.6 $=$	<5	4	--	$: 5$ 7	41	<10

BEN ALI

X-RAY ASSAY LABORATORES 09-AEg-94 EEPORT ----- YCREDDER 19204 EAOE \&

SAMPLE	$\underset{i}{\text { IR }}$	$\begin{gathered} \text { HI PYH } \\ \text { ICP } \\ 2.00 \end{gathered}$	$\begin{gathered} \text { FE } y \\ 1 C P \\ 0.01 \end{gathered}$	$\begin{array}{cc} C O \\ I C P \\ 1 \end{array}$	$\begin{gathered} \mathrm{HI} \mathrm{PPH} \\ \mathrm{ICP} \\ \mathrm{I} \end{gathered}$	$\begin{gathered} \text { CU PPH } \\ \text { ICP } \\ 0.6 \end{gathered}$	$\begin{gathered} \text { 2\# PPH } \\ \text { ICP } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { AS } \mathrm{PY} \\ \mathrm{ICH} \\ 3 \end{gathered}$	$\begin{gathered} \text { 5R PPH } \\ \text { ICP } \\ 0.5 \end{gathered}$	
04 OTS 047	33	549	2.80	\bigcirc	18	48.8	193	12	21.9	
92 BTS 048	28	689	1.29	5	5	69.0	75.1	6	23.9	
94 BTS 049	16	1380	1.66	4	4	20.7	43.3	6	20.9	
94 BTS 050	98	1670	4.09	17	20	88.2	218	189	25.7	
94 ABS 001	89	2160	5.37	29	10	106	181	79	46.8	
94 AES 002	26	2210	3.14	16	15	56.5	112	28	9.8	
94 ass 003	10	1470	3.12	16	\bigcirc	49.1	83.5	17	16.9	
94 ABS 004	51	1510	8.01	18	25	82.2	171	63	30.3	
04 ABS 006	48	1210	3.64	14	21	69.4	145	45	31.6	
04-765 005	36	1270	3.50	14	28	63.9	861	634	49.2	
94 T6S 002	40	1260	3.06	13	20	88.1	518	409	56.2	
91 T0S 003	32	1220	2.72	11	22	39.8	630	346	42.2	BEN ALI
94705004	10	3170	4.05	22	<1	2160	3600	6	23.2	
91 T0S 005	15	1860	3.73	18	20	75.8	376	160	26.5	
$510+6018500 \mathrm{E}$	20	1420	3.62	25	2	239	1530	49	25.8	
610+001 3+25E	27	3140	3.40	67	24	68.5	748	435	48.6	
L10+001 3+50E	20	4280	6.16	33	45	169	1710	1280	40.8	
[10+0015 346E	31	736	5.38	10	10	46.1	201	521	10.8	
6104001 4100E	26	530	6.20	8	41	40.0	200	262	27.3	
L30400] $4+25 E$	7	3600	7.47	81	7	148	671	127	80.2	
L104001 4160 E	8	543	2.65	9	2	18.6	95.5	17	8.0	
110+001 4175E	12	53.0	6.45	2	41	16.4	29.3	13	. 8	
L150+00\% 5400E	<1	23.0	. 23	4	<1	2.1	0.2	C3	1.9	
L10+002 $6+2 \mathrm{EE}$	16	86.0	6.84	3	<	23.3	61.1	93	3.1	
$210+001$ E4508	23	2330	6.50	29	9	33.0	116	83	44.3	
L10+001 6+762	22	398	3.88	10	\bigcirc	48.7	286	308	26.6	
L10+001 6+00E	8	182	3.04	6	1	10.4	136	18	29.8	
L10+008 6+26E	28	564	6.67	0	8	30.1	253	410	49.6	
L10+001 6+50E	14	196	4.21	3	2	11.3	32.4	18	2.7	
L10+001 6+75E	1	153	. 59	<1	<1	1.1	11.8	5	20.8	
[10+001 7+COE	17	117	3.16	3	<1	1.1	20.9	<3	27.4	
2104001 7425E	12	1200	2.71	14	17	36.4	147	93	93.5	
L10+003 74808	22	935	4.51	10	6	38.6	176	935	41.0	
120+001 $7+$ Y5E	11	1360	6.22	8	<1	37.6	363	82	2.3	
L1040011 8+00E	31	2070	6.43	22	13	82.5	259	446	26.0	
L10+001 8+26E	41	2340	5.80	98	48	101	630	69\%	47.3	
L10+0018 8+50z	41	271	6.48	7	7	47.2	135	477	16.0	
L10+001 8+76E	37	278	6.01	8	18	67.8	260	31.	18.0	
L10+001 9-002	38	218	4.87	6	3	18.8	45.8	238	8.1	
L10+001 9+25E	36	2070	1.92	28	59	107	1090	800	69.5	
-104001 9+602	19	2070	4.32	23	122	118	204	38	54.5	
110400Y 9+768	43	2730	4.84	23	63	150	2420	5640	45.3	
$110+008$ 10+008	37	4370	7.67	46	158	308	1360	376	67.0	
$127+003$ 179601	\bigcirc	89.0	1.27	5	5	28.2	29.3	6	2.6	
L27400s 17475\%	28	171	6.02	6	5	23.8	43.1	18	2.3	
L27+00S $18+00 \mathrm{~W}$	28	680	B.83	9	8	43.2	81.0	59	1.8	
L27+00S 18+25\%	54	447	5.46	10	12	42.1	46.8	47	8.8	
1274003 18+60\%	26	926	3.60	12	1	4.2	37.3	87	3.0	
L27+003 18.75\%	22	427	6.16	4	2	24.3	24.2	21	3.0	
L27+005 $19+008$	8	84.0	. 83	3	<1	8.2	11.4	10	2.1	
127+005 19426\%	23	480	3.74	6	5	28.5	23.5	10	6.2	
L27+00s 19+604	74	430	6.84	11	20	72.7	60.5	172	8.3	
L27+00S 192764	45	2460	6.60	24	12	162	1568	350	7.4	
127+00S 20426\%	168	23900	3.44	108	343	192	1590	22	43.9	
L27+00S $20+50 \mathrm{H}$	20	609	4.61	7	8	22.8	63.7	16	3.0	
L27+00S 20+78K	38	481	4.73	12	19	42.7	129	48	2.2	
1.27+00S $21+0012$	34	635	4.60	12	23	67.4	42.0	98	6.7	
L27+005 21425 K	36	267	4.61	8	6	61.7	50.2	17	7.2	
La7+00S 21-60N	34	150	3.86	9	11	62.8	32.3	84	7.0	
L27-005 $21+76 \mathrm{~K}$	25	366	4.08	11	8	45.8	38.7	14	3.4	
L27+00S $22+$ U0W	45	342	6.67	10	6	61.4	61.2	388	5.9	
127400S 22+254	85	629	8.29	28	10	112	61.:	78	7.6	
2274005 22+5014	27	81.0	3.66	9	7	15.9	41.7	12	10.0	
L28-005 17+60\%	39	1570	6.81	16	9	73.7	86.3	22	3.7	
L28-005 17+75\%	28	123	7.60	7	6	38.9	46.6	34	1.6	
228+005 18+008	20	204	5.78	6	2	26.1	23.5	27	2.2	
$228400518+258$	33	368	5.20	8	18	88.3	58.4	23	2.1	
228+005 18+60\%	26	1010	3 - 0	8	<1	17.:	21.4	13	3.3	
L28+0C5 195\%	31	218	3.26	5	11	2!.1	26.1	16	6.2	
L28429 - 0.00 K	13	63.0	1.37	4	3	12.0	15.3	19	3.1	
228-005 : $9+2 \mathrm{6k}$	27	486	4.76	9	8	58.9	85.0	41	7.0	
L28003s 19+6ics	72	2080	4.45	37	28	104	215	69	6.8	
L28900S 19, 76 K	46	2240	E. 80	16	7	55,6	61.8	32	2.9	
L28400S 20-25k	7	91.0	1.36	6	2	14.4	22.3	34	2.4	
L28+005 20.50 W	22	4900	2.18	10	135	112	815	9	116	
L28+00s 20.75 i	42	17400	3.75	20	470	313	3180	19	41.4	
L28+00S 21.00\%	29	186	4.20	5	12	29.2	41.0	34	3.7	
L284009 $2+25 k$	16	261	2.81	5	8	23.1	132	88	5.0	
128+00S $21+50 \mathrm{i}$	52	179	1.99	6	6	10.3	17.4	<3	10.2	
L204008 21,75i	8	69.0	1.10	4	<1	21.6	62.9	; 5	8.8	

BEN ALI

BEN ALI

