RECEIVED
APR 1 3 1995
Gold Commissioners Offica VANCOUVER, B.C.

LOUINS	MAY 0 3 1995	11
ACTION:		¥ger" Armonik, at a, i saan y, geit avkin stratych i anneyder
FILE NO:		

GEOCHEMICAL REPORT

RS # 1 GROUP

Latitude:

56°30'N

130°05'W

Longitude:

Skeena Mining Division

Owner/Operator: Tenajon Resources Corp. 860 - 625 Howe Street Vancouver, B.C. V6C 2T6

> Report By: D.A. Visagie, P. Geo. Senior Geologist International Northair Mines Ltd.

FILMED

Date: April 6, 1995

UEOLOGICAL BRANCH ASSESSMENT REPORT

23.8/4

TABLE OF CONTENTS

1.	Introduction	1
2.	Location and Access	1
3.	Physiography, Vegetation, Climate	1
4.	Claim Status	4
5.	Property History	4
6.	Regional Geology	4
7.	Property Geology and Mineralization	7
8.	1994 Work Program	7
9.	Sampling Procedure	8
10.	Sample Analysis	8
11.	Results	11
12.	Summary and Conclusion	11
13.	Reccomendations	11
14.	Cost Statement	12
15.	Statement of Qualifications	13
	List of Figures	
1. 2. 3. 4. 5. 6.	Property location Surface Map Claim Map Regional Geology Sample Location Assay Results (Au)	2 3 5 6 9 10
	Appendicies	
1. 2.	Rock Chip Sample Description Assay Results	14 15

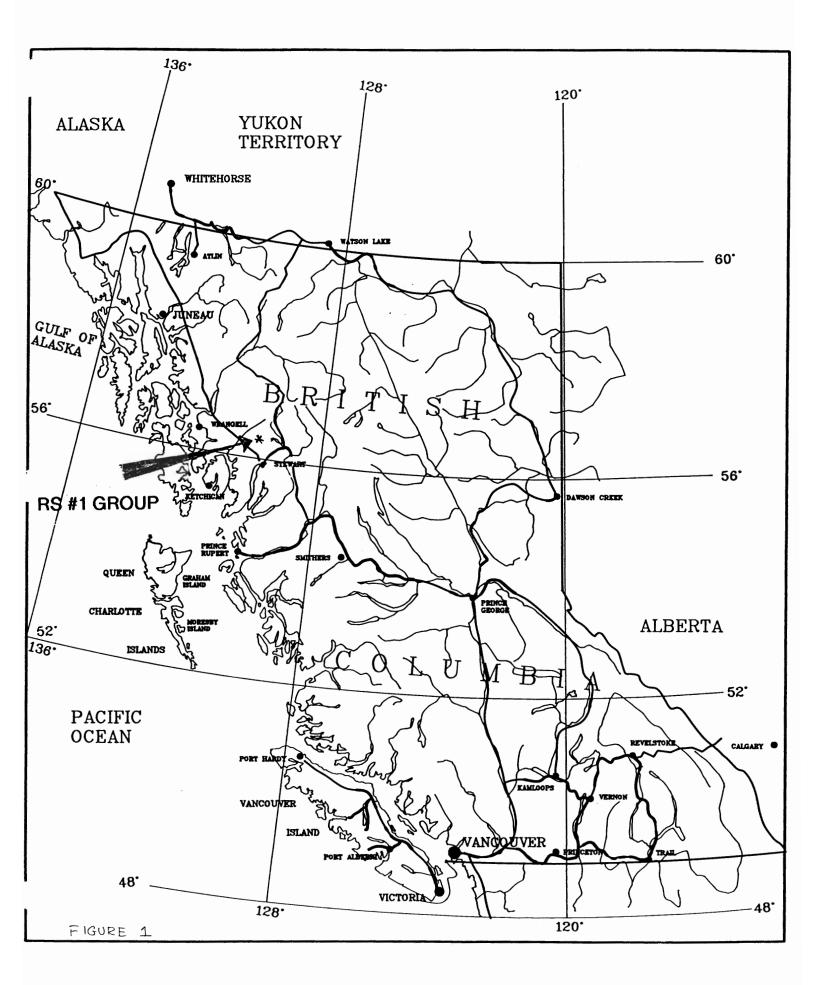
Assay Results 2.

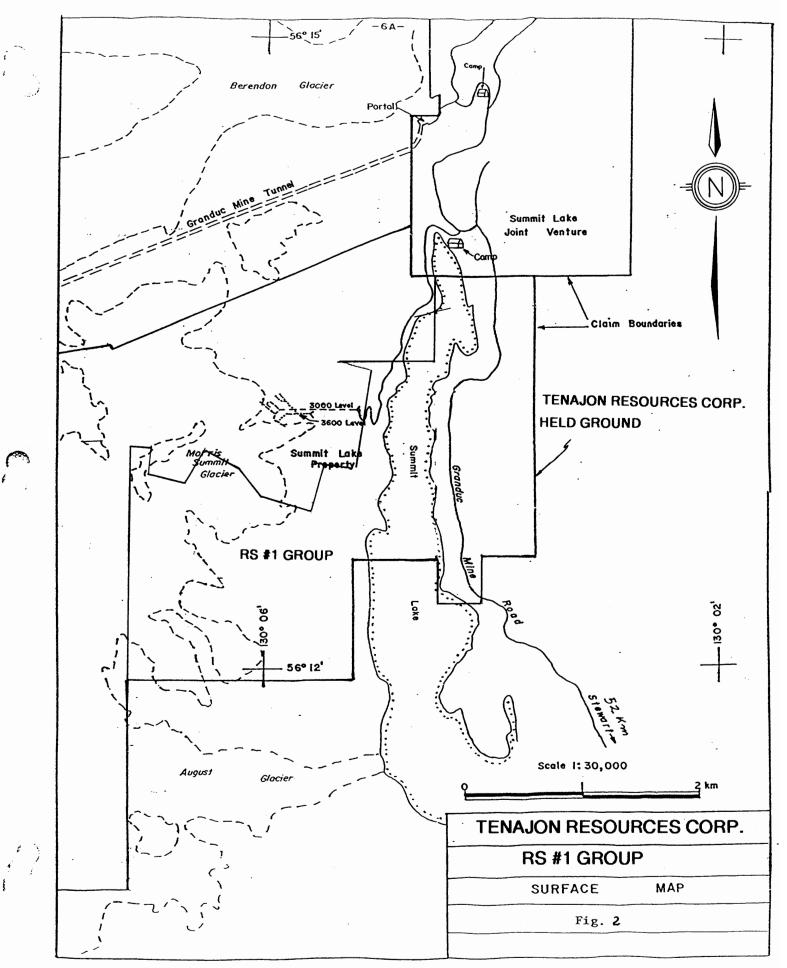
-

1.0 INTRODUCTION

Tenajon Resources Corps.' RS #1 Group of claims is located immediately adjacent to the formerly producing Summit Lake Gold Mine. The claims occur within the Stewart gold camp being located approximately 50 km north of Stewart, northwestern B.C. Mapping indicates that the property is underlain by Lower Jurassic Hazelton Group andesitic flows and tuffs that have been intruded by granodiorite. Exploration, dating back to 1928, resulted in the discovery of several shear hosted quartz veins in which gold associated with pyrrhotite occurs. The most significant of these, the Main Zone, was mined from 1981 to 1985 by Scottie Gold Mines Limited. Since 1985 various programs have been completed to locate additional ore. The purpose of the 1994 program was to locate, through water, silt and soil sampling areas that are geochemically similar to the Main Zone. Between July 1 and October 15, 1994 7 man-days were spent collecting samples. As a result 21 soil, 6 silt, 3 rock and 4 water samples were collected and sent for analysis. Total cost of the program is calculated to be \$8292.82

2.0 LOCATION AND ACCESS (Figures 1 and 2)


The property is located approximately 50 km north of Stewart, northwestern B.C. Access to the property is by gravel road from Stewart.


The property is centred at latitude 56°30'N longitude 130°05'W occurring on NTS sheet 104 B/1.

3.0 PHYSIOGRAPHY, VEGETATION AND CLIMATE

The RS #1 Group is located at the north end of Morris Lake. It overlies Morris Lake and includes portions of the east and west valley walls. Topography of the area is typical of the Stewart area being very rugged with property elevations ranging from 850 to 2000 metres. The property occurs within a glaciated U-shaped valley. Valley walls are steep with slopes ranging from 25 to 45 degrees. Glaciers occur at the higher elevations on the western side of the property. With the exception of the valley floor outcrop is plentiful. The Sidehills are covered with heavy alpine vegetation consisting of slide alder, scrub hemlock and heather.

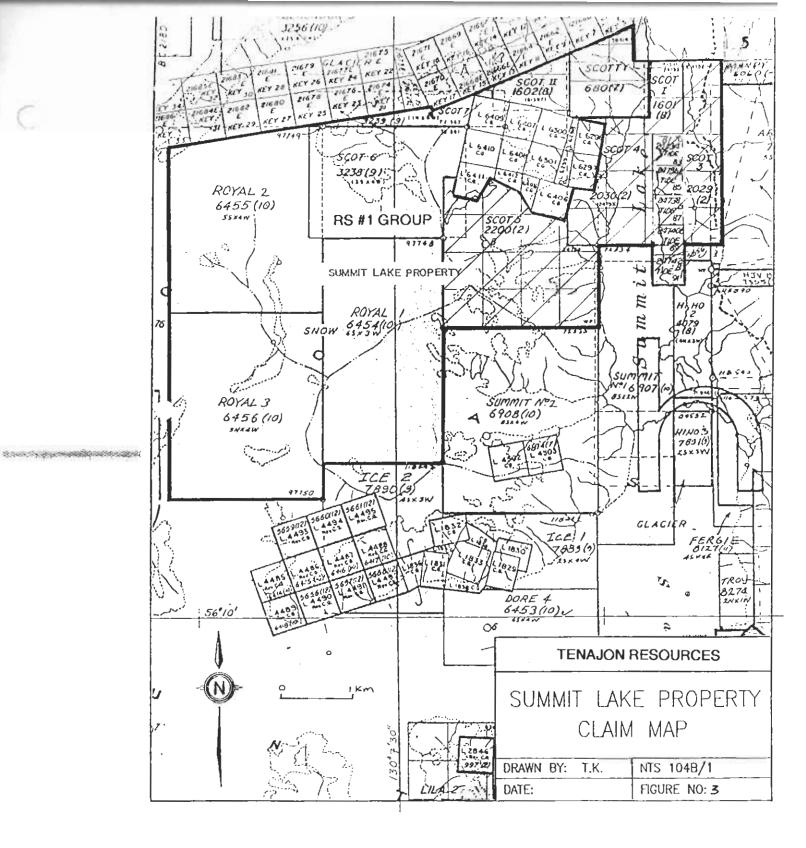
Weather is typical of the northern Coast Mountains with heavy snowfall occurring in the winter while summers tend to be cool and wet.

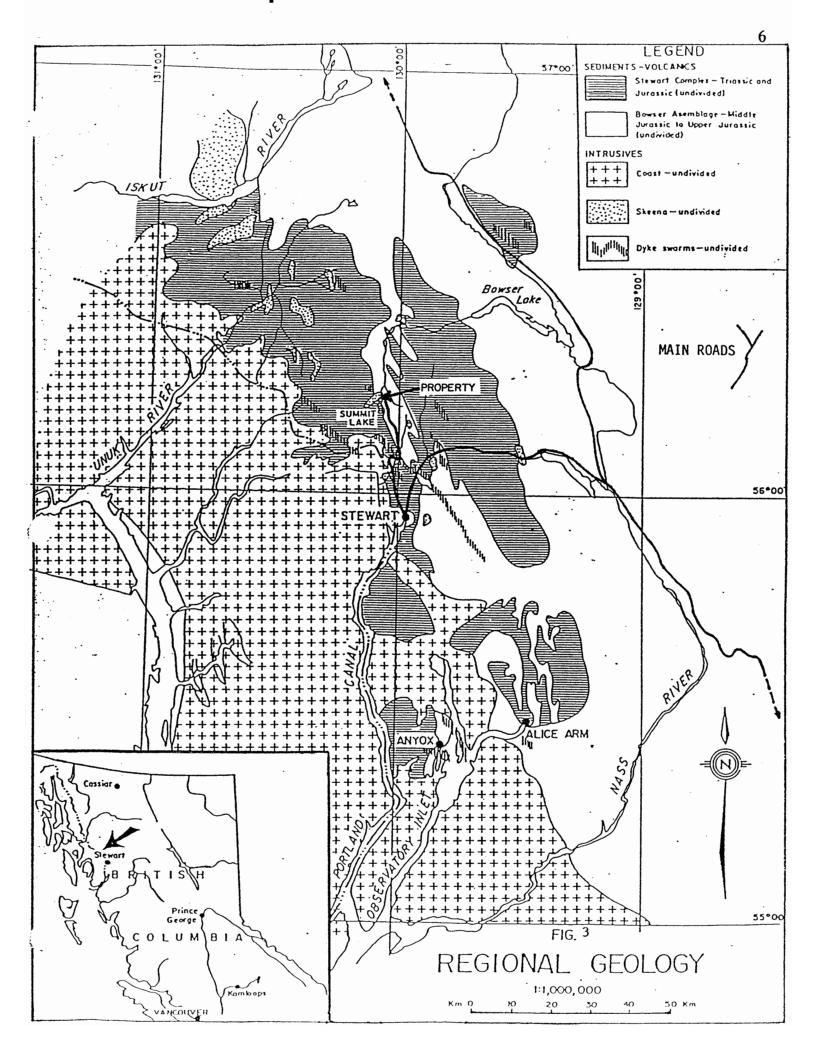
4.0 CLAIM STATUS (Figure 3)

The RS #1 Group consists of the following claims:

Claim	Record No.	Units	Expiry Date
Scot 3	250850	5	Feb 13, 1996
Scot 4	250851	15	Feb 13, 1996
Scot 5	250855	16	Feb 25, 1996
Tide 83	255019	1	Feb 27, 1996
Tide 85	255020	1	Feb 27, 1996
Tide 87	255021	1	Feb 27, 1996
Tide 89	255022	1	Feb 27, 1996
Tide 91	255023	1	Feb 27, 1996

All of the claims occur within the Skeena Mining Division.


5.0 PROPERTY HISTORY


The property has been intermittently evaluated since 1928 when gold was located on the adjacent Salmon Gold (Summit Lake Gold Mine) prospect. Mining, completed between October 1981 and February 1985 by Scottie Gold Mines Ltd., resulted in the milling of 203,504 tons averaging 0.468 opt Au. In 1985 the mine was shut down due to high interest costs. Since then limited exploration has been completed in the area with the purpose of locating additional reserves.

6.0 REGIONAL GEOLOGY (Figure 4)

The property occurs within what Grove (1986) has termed the Stewart Complex. This complex, situated within the Intermontaine Belt on the western edge of Stikinia terrain is immediately adjacent to the eastern margin of the Coast Plutonic Complex. Stikinia terrain, composed primarily of Upper Triassic to Middle Jurassic Hazelton Group rocks consisting of partially subaerial, differentiated andesitic to dacitic calc-alkaline volcanics, coeval intrusions and interbedded sediments is thought to represent an island arc sequence that extends 150 km from south of Stewart near Anyox, north to the Iskut River. This belt is highly mineralized throughout and hosts several major occurrences and mines including Anyox, Premier, Red Mountain and Eskay Creek.

Middle to Late Jurassic Bowser Group sediments consisting mainly of chert pebble conglomerate and siltstone unconformably overlie Hazelton Group rocks to the northeast while to the southwest Upper Triassic to Lower Jurassic Texas Creek Granodiorite plutons intrude Hazelton Group rocks. Cretaceous-Tertiary granodiorite and quartz monzonite of the Coast Range Plutonic Complex and variably composed dyke swarms intrude all other rocks.

7.0 PROPERTY GEOLOGY AND MINERALIZATION

The property is underlain by steeply dipping Hazelton Group andesitic flows and tuffs along with intercalated sediments that have been intruded by hornblende quartz monzonite and granodiorite. Mapping by Grove indicates that a north-south striking syncline passes just east of Summit Lake with another north-south synclinal structure passing to the west. In addition an east-west striking syncline passes just north of the Berendon Glacier paralleling the trend of the granodiorite and the trend of the major showings. Faulting is pronounced on the property being in part largely related to the emplacement of the Summit Lake stock. However the north trending moderately west dipping Morris Fault which passes through the property is unrelated to the others being post mineral.

Alteration consists primarily of the propylitization of andesites. Where the alteration is intense as near the stock contact or within the ore zones, epidote and chlorite replace the matrix of the andesite lapilli tuff.

Pyrrhotite, pyrite and trace amounts of chalcopyrite are associated with intense alteration while fracture-coated and disseminated pyrite are pervasive throughout the area.

8.0 1994 WORK PROGRAM

The purpose of the 1994 work program was to compare the geochemistry of soil, silt, and rock chip samples from the vicinity of the Summit Lake Gold Mine with those located on the RS #1 Group. In addition water samples were collected from various areas to compare with those emanating from the existing workings.

During the 1994 program a total of 32 soil, 8 silt, 3 rock were sent to Eco-Tech Labs, Kamloops B.C. for gold and 30-element I.C.P. analysis. Of the samples all of the rock, 6 of the silt and 21 of the soil occur on the RS # 1 Group of claims. In addition 8 water samples, of which 4 occur on the property were sent to Analytical Service Laboratories (ASL) for analysis.

The crew completing the sampling were based at either Newhawk Gold Mines' Brucejack campsite or at Camnor Resources Willoughby campsite. The following is a listing of the crew and days worked.

Dave Visagie	Senior Geologist	September 30, 1994
Barry McDonough	Geologist	September 30, 1994
Tim Kirby	Technician	August 25 <i>,</i> 1994
		September 30, 1994

Not included in the above are 1 day travel time assigned to each person for the project.

9.0 SAMPLING PROCEDURE

All soil samples were taken at varios distances from the B horizon, at depths ranging from 10-30 centimetres, using a mattock or rock hammer, stored in kraft paper bags and sent for analysis.

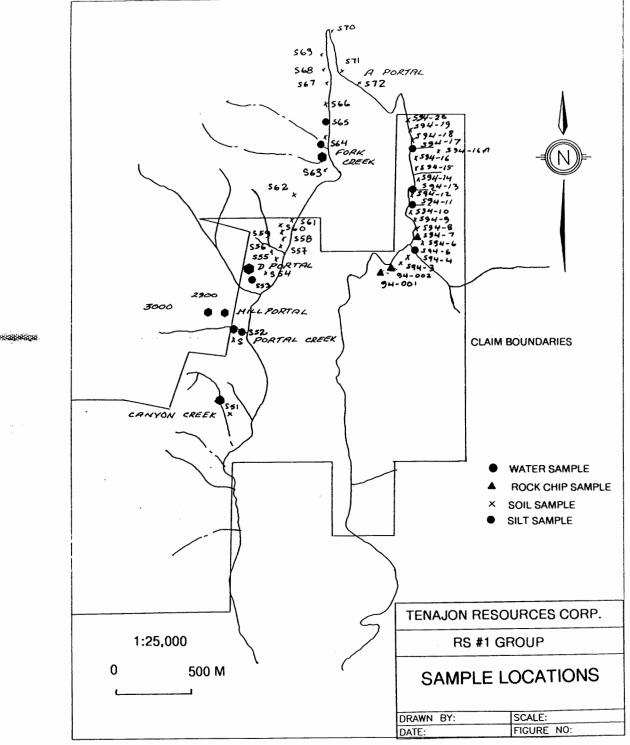
Silt samples were taken from active streams, stored in kraft paper bags, dried, then sent for analysis.

Two kilogram representative rock chip samples were taken of selected outcrops, using a hammer, stored in plastic bags, identified and described then sent for analysis.

Water samples were taken from selected sites, prepared and stored in sample bottles, labelled, refrigerated then sent for analysis.

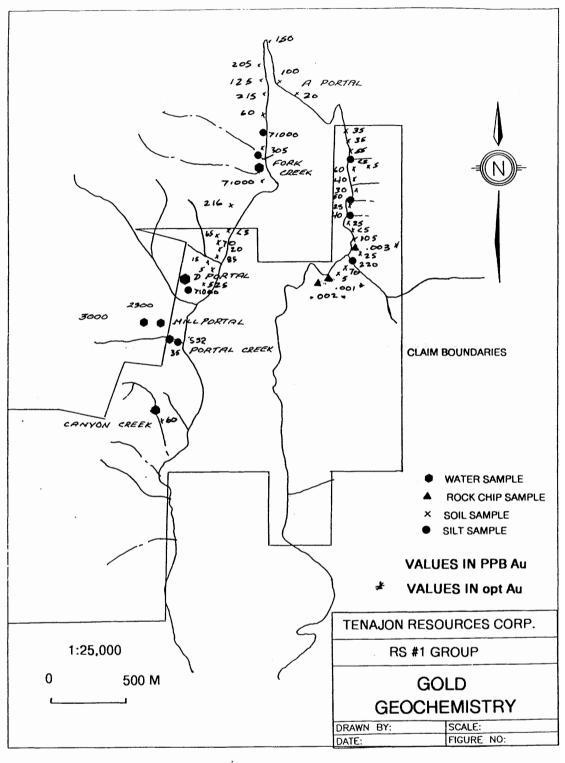
All sample locations are plotted on figure 5.

10.0 SAMPLE ANALYSIS


All soil, rock and silt samples were initially dried then sent for analysis at Eco-Tech Labs, Kamloops, B.C. The following is an outline of the procedure used for the preparation and analysis of the samples:

Samples dried (if necessary), crushed or sieved to pulp size and pulverized to approximately -140 mesh.

For the 30 element I.C.P. analysis, a 10 gram sample is digested with 3 ml of 3:1:3 nitric acid to hydrochloric acid to water at 90°C for 1.5 hours. The sample is then diluted to 20 mls with demineralized water and analyzed. The leach is partial for Al, B, Ba, Ca, Cr, Fe, K, Mg, Mn, Na Sb, Ti, U and W.


For gold determination by atomic absorption a 10 gram sample that has been ignited overnight at 600° C is digested with hot dilute aqua regia and the clear solution obtained is extracted with Methyl Isobutyl Ketone (MIBK). Gold is determined in the MIBK extract by atomic absorption using a background detection (detection limit 5 ppb).

All water analysis were completed by Analytical Service Laboratories (ASL Labs), Vancouver, B.C. The analysis, according to ASL were carried out in accordance with procedures described in "Standard Methods for the Examination of Water and Wastewater" 18th Edition published by the American Public Health Association, 1992. The procedure involve a variety of instrumental analyses including atomic emission spectrophotometry (ICP) and atomic absorption spectrophotometry (AA) to obtain the required detection limit for each element. Base metals and silver were analyzed however gold is not.

.

_

- CARGE CONTRACTOR CONTRACTOR

11.0 RESULTS

The gold assay results for the soil, silt and rock chip samples are plotted on figure 6.

Silt samples collected from the property returned variably anomalous values with samples located near the workings, on the west side of the property returning values in excess of 1000 ppb Au. Silt samples taken from the east side of the property returned much lower assays with the maximum value being 220 ppb Au. Soil samples taken from the western half of the property returned elevated values with maximum values of > 1000 ppb Au occurring in the vicinity of the workings. Overall the values on the western side of the property are higher than those from the eastern. Excluding samples taken from the vicinity workings sample values vary from <5 to 115 ppb Au whereas values from the eastern half range from 5 to 105 ppb Au. A review of the ICP data indicates that in general high gold values are associated with samples in which elevated base metal values occur. All of the rock chip sample returned insignificant gold values.

Water samples collected from the western side of the property show that samples taken from waters emanating from the workings are anomalous in As, Cd, Ca, Mg, Mo and Zn in comparison to those from elsewhere on the property. In addition the pH is slightly higher while the amount of total dissolved solids is much higher. This is to be expected as previous reports indicate that the gold at the Summit Lake Mine is composed of massive, fine grained, pyrrhotite in which minor scattered knots or blebs of quartz, calcite and chlorite occur. The immediate margins of the zone consist of overprinted swarms of quartz-carbonate veins and veinlets hosting accessory to minor pyrrhotite, pyrite, sphalerite and galena.

12.0 SUMMARY AND CONCLUSIONS

Four man-days were spent collecting soil, silt, rock and water samples from the RS# 1 Group located 50 Km north of Stewart, B.C. Samples were collected from various portions of the property and compared to those taken in the vicinity of the workings. Results indicate that soil and in particular silt samples collected from the vicinity of the old workings are gold and base metal anomalous. One silt sample taken on the eastern side of the property contains similar geochemistry and could be indicating the presence of a mineralized structure not previously located. Water samples collected from the mine workings are anomalous in As, Cd, Ca, Mg, Mo and Zn when compared to those collected elsewhere. This trend reflects the nature of the mineralized zones at the Summit Lake Gold Mine.

13.0 RECOMMENDATIONS

It is recommended that prospective ground in the area be sampled as the mineralized zones at the Summit Lake Gold Mine have an identifiable geochemical signature. In particular a stream sample, located on the east side of the valley that assayed 220 ppb Au should be investigated.

14.0 COST STATEMENT

1.	Labour (includes travel time)			
	Dave Visagie Tim Kirby Barry McDonough	2 days @ 315 3 days @ 250 2 days @ 275		\$1930.00
2.	Room and Board			700.00
	7 man days @ 100/man	day		
3.	Transportation			2662.00
	i) Truck rental (includes fur 3 days @ 100/day =		300.00	
	ii) Airfares Vancouver to Si 2 people @ 178 X 4 =	nithers return	712.00	
	iii) Helicopter August 25th T. Kirby: 1 (Brucejack Lake - Tide La Sept. 29th T. Kirby, B. N	ake return @ 750/hr) AcDonough 1.0 hr	900.00	
	(Brucejack Lake - Tide La Demob. @ 750/hr)	ake Airstrip	750.00	
4.	Consummables			100.00
	includes flagging, equip containers etc.	oment rental water b	oottles, ice	
5.	Freight Water samples via CP Air Soil and rock chip samp Stewart			100.00
6.	Sampling			1446.93
	7 silt, 21 soil, 3 rock 3 rock prep @ 3.50 27 soil and silt prep @ 1 30 gold geochem. @ 8.5 27 I.C.P analysis @ 5.50 4 water analysis @ 250.	50/sample)	10.50 29.70 255.00 148.50 1003.23	
8.	Report			<u>600.00</u>
	Sub t Mana TOTA	igement @ 10%		7538.93 <u>753.89</u> \$8292.82

15.0 STATEMENT OF QUALIFICATIONS

I, D.A. Visagie of 860 - 625 Howe Street, Vancouver, British Columbia, do hereby declare that:

- 1. I graduated from the Universidy of British Columbia with a Bachelor of Science Degree, majoring in Geology, in 1976.
- 2. I am a registered member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 3. I have been steadily employed in the mining industry since 1976 and have been employed by International Northair Mines Ltd. as Senior Geologist since January 1990.

Dated at Vancouver, British Columbia, this $\angle \bigcirc$ day of April, 1995.

Alican

D.A. Visagie, P.Geo Senior Geologist

						u di Ref			You work					·	
northar Group	SAMPLE DESCRIPTION	4						Project	Teng	jon 7	?s≠/	6.00	,2	Sampler	B Madonaush
Date	Sample No.	Туре	Claim	Locatio Northing	n Fasting	Zone	From (m)	Sample Da To (m)		Cu	Assay Data			Alteration	Sample Description
Septadau	354-00	Rock	refer	+0				Greb							Ot carb vern in int vole to pyr
				~	"										
	594-002	Kock						Breb							" " debris flow
	594-007	Rock	· ·		"			Grad							Gossanous int vole.
							·]								
			- 4												
										[l	
											<u> </u>				· · · · · · · · · · · · · · · · · · ·
							┨────	<u> </u>		╢────				╢	
															· · · · · · · · · · · · · · · · · · ·
			1												
]	1		J		1][

ECO-TECH KAM.

CERTIFICATE OF ASSAY ETS3128

NEWHAWK GOLD MINES #860-625 HOWE STREET VANCOUVER, B.C. V6C 2T6

Attention: Fred Hewett

3 ROCK samples received October 4, 1994 Sample Submitted : D, Visagie

Sample run date: October 13, 1994

		Au	Au	Ag*	Ag*
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)
1	S94-001	0.06	0.002		
2	S94002	0.04	0.001		
3	S94007	0.09	0.003		

QC/DATA:

Resplit:

R/S2	S94002	0.06	0.002
Standard:	STD94-G	3.40	0.099
Blank:	-	<.03	<.001

• = Results to follow

These are preliminary results and are subject to change.

NOTE Average values are reported where repeat assays are performed. Screened "Metallic Assays" are performed on sample resplits screened to -140 mesh.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

15

XLS/Newhawk8

14-Oct-94

Oct-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm uniess otherwise reported

NEWHAWK GOLD MINES ETK 94-851 #860-625 HOWE STREET VANCOUVER, B.C. V6C 2T6

Attention: Fred Hewett

36 SOIL and 4 SILT samples received October 13, 1994 Sample run date: October 24, 1994

generalita de tra

Et #.	Tag #	Au ppb	Ag	AI %	As	Ba	BI Ca	%	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	S94-003	5	0.8	2.39	155	115	<5 0	.56	4	36	49	158	6.86	<10	1.60	1876	<1	<.01	48	1620	100	20	<20	26	0.06	<10	116	<10	4	215
2	S94-004	70	1.0	2.35	145	95	<5 0	.44	2	48	50	232	7.63	<10	1.56	1753	<1	<.01	40	1530	96	10	<20	17	0.08	<10	134	<10	2	195
3	S94-005	220	2.4	* 1.64	140	75	<50	.71	3	54	30	3349	7.05	<10	1.09	1259	<1	<.01	28	1470	92	10	<20	24	0.06	<10	86	<10	<1	376
4	S94-006	25	1.2	2.53	110	75	<5 0	.12	<1	79	26	385	9.90	<10	1.26	3799	<1	<.01	25 ⁻	1930	80	15	<20	4	0.07	<10	75	<10	11	175
5	S94-008	105	1.0	2.38	165	120	<5 0	.65	3	36	48	175	6.87	<10	1.60	1679	<1	<.01	49	1660	108	25	<20	32	0.06	<10	115	<10	4	236
6	S94-009	<5	0.4	1.99	95	100	<5 0	.46	3	31	40	155	7.01	<10	1.48	1313	2	<.01	37	1930	76	15	<20	17	0.04	<10	97	<10	,6	171
7	S94-010	25	1.2	2.44	155	125		.61	3	36	50	165	6.81	<10	1.64	1690	1	<.01	52	1620	102	20	<20	29	0.06	<10	117	<10	4	231
8	S94-011	40	0,4	1.80	75	55	<5 0	.29	1	21	61	219	4.67	<10	1.28	869	<1	<.01	72	1030	34	15	<20	16	0.01	<10	48	<10	1	151
9	S94-012	25	1.0	2.30	180	120	<5 0	.53	4	38	53	148	6.55	<10	1.50	2001	<1	<.01	66	1600	96	25	<20	28	0.04	<10	96	<10	5	227
10	S94-013 (Silt)	50	1.0	2.51	155	135	<5 0	.62	4	39	54	173	6.66	<10	1.64	1972	1	<.01	62	1490	102	25	<20	42	0.04	<10	109	<10	5	254
					400	400			~		45		5.04	-10	4 40	4004			50	4540		~	-00	07	0.04	-10	97	-10		400
11	S94-014	30	1.0	2.08	130	100		.57	3	33	45	213	5.94	<10	1.42	1824	<1	<.01	50	1540	82	20	<20	27 24	0.04 0.05	<10	101	<10 <10	4	199
12	S94-015	40	1.2	2.00	150	95		.56	3	31	41	161	6.01	<10	1.41	1438	<1	<.01	40	1610	92	20	<20		0.06	<10			4	201
13	S94-016	5	1.2	2.56	155	135		.64	3	38	53	164	7.02	<10	1.71	2227	<1	<.01	56	1580	104	15	<20	35		<10	120	<10	4	243
14	S94-016 A	60	1.0	2.10	150	105		.62	3	32	42	165	6.04	<10	1.46	1522	<1	<.01	43	1590	86	20	<20	29	0.05	<10	105	<10	4	200
15	S94-017 (Silt)	<5	<.2	1.76	30	45	<50	.33	1	20	60	183	4.48	<10	1.38	717	<1	<.01	66	1060	26	15	<20	15	0.02	<10	60	<10	<1	133
16	S94-018	55	0.4	1.74	75	85	<5 1	.22	1	28	33	182	5.57	<10	1.41	1050	<1	<.01	35	1580	42	20	<20	39	0.05	<10	106	<10	з	128
17	S94-019	35	1.0	2.37	160	130	< 50	.60	3	35	48	158	6.70	<10	1.64	1692	<1	<.01	47	1500	114	15	<20	27	0.06	<10	117	<10	4	247
18	S94-020	35	1.0	2.51	165	115	<5 0	.60	3	38	54	159	6.73	<10	1.66	1616	<1	<.01	51	1500	102	20	<20	27	0.05	<10	115	<10	4	225
19	S-051	60	0.8	1.69	210	40	<5 0	.83	3	27	19	162	5.82	<10	1.26	728	<1	<.01	9	1300	84	20	<20	22	0.04	<10	103	<10	<1	187
20	S-052	35	2.0	1.23	160	60	<5 0	.36	2	14	10	118	3.86	<10	0.81	724	5	<.01	5	870	96	10	<20	10	0.03	<10	57	<10	1	165
21	S-053	>1000	15.8	1.76	3170	70	<5 2	.23	44	305	11	1185	> 15	<10	1.27	1365	6	<.01	25	1070	926	40	<20	31	0.02	· <1 0	118	<10	<1	2459
22	S-054	535	1.2	2.05	135	45		.39	4	34	21	206	7.36	<10	1.37	949	2	<.01	12	1250	74	15	<20	10	0.08	<10	108	<10	<1	268
23	S-055	5	<.2	2.58	105	45		.19	2	58	19	336	13.00	<10	1.10	1092	<1	<.01	16	2420	52	10	<20	6	0.19	<10	153	<10	<1	90
24	S-056	115	1.0	3.34	145	65		.29	3	59	65	323	12.30	<10	1.22	1234	1	<.01	30	1880	238	15	<20	9	0.09	<10	142	<10	<1	196
25	S-057	85	1.6	2.91	120	90		.44	3	47	72	280	10.40	<10	1.61	1824	<1	<.01	42	1590	120	15	<20	18	0.08	<10	135	<10	1	197
20	0.001	~		2.01	.20	50	- 0			-1		200							-						0.00				•	

Page 1

NEWHAWK GO' MINES ETK 94-851

Eco-Tech Laboratories Ltd.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Et #.	īag #	Аи ррь	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe ‰	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	~	Y	Zn
26	S-058	205	1.6	2.63	150	95	<5	0.44	З	60	44	270	8.91	<10	1.51	1836	3	<.01	42	1650	120	15	<20	19	0.08	<10	131	<10	4	202
27	S-059	70	1.0	2.49	140	90	<5	0.57	2	36	43	220	7.58	<10	1.47	1429	2	<.01	40	1830	96	20	<20	26	0.05	<10	126	<10	3	192
28	S-060	65	3.4	2.61	75	55	<5	0.37	2	52	22	1165	10.50	<10	1.78	1441	13	<.01	15	1360	82	15	<20	9	0.04	<10	163	<10	<1	147
29	S-061	<5	1.0	2.65	160	130	<5	0.64	3	40	51	213	7.36	<10	1.72	1764	7	<.01	52	1560	116	15	<20	31	0.06	<10	126	<10	4	254
30	S-062	210	1.6	2.18	165	100	<5	0.58	4	38	42	238	6.81	<10	1.46	2290	<1	<.01	40	1660	100	20	<20	25	0.06	<10	117	<10	4	224
31	S-063	>1000	18.6	1.81	1785	115	<5	0.11	10	51	24	653	> 15	<10	0,79	7295	<1	<.01	14	880	1060	5	<20	5	0.05	<10	97	<10	<1	1065
32	S-064	305	11.0	1.63	3395	60	<5	3.03	47	302	11	1003	> 15	<10	1.21	1287	8	<.01	27	1000	864	50	<20	32	0.01	<10	103	<10		2639
33	S-065	>1000	7.4	2.25	2330	50	<5	2.97	26	201	20	690	> 15	<10	1.69	1681	6	<.01	18	1290	852	35	<20	31	0.02	<10	147	<10		1474
34	S-066	260	25.8	2.17	235	65	<5	0.24	2	37	39	870	12.20	<10	1.23	1361	2	<.01	22	1600	192	15	<20	8	80.0	<10	152	<10	<1	164
35	S-067	215	2.2	2.06	250	45	<5	0.64	6	39	25	343	7.59	<10	1.63	1116	10	<.01	14	1970	84	20	<20	8	0 .04	<10	130	<10	<1	395
36	S-068	125	2.2	3.52	310	75	<5	0.24	4	62	38	403	9.37	<10	1.00	1191	2	<.01	22	1960	440	10	<20	10	0.06	<10	135	<10	8	257
37	S-069	205	1.8	2.57	235	95	<5	0.54	8	55	47	305	8.79	<10	1.62	1630	8	<.01	43	1630	128	15	<20	20	0.06	<10	131	<10	2	485
38	S-070	450	1.6	2.47	310	80	<5	0.40	2	64	47	385	> 15	<10	1.12	1447	9	<.01	23	1530	44	10	<20	23	0.06	<10	105	<10	<1	103
39	S-071	100	1.0	4.53	85	80	<5	0.18	3	140	46	697	14.10	<10	0.94	2516	15	<.01	30	2860	66	<5	<20	8	0.11	<10	151	<10	25	227
40	S-072	20	0.6	4.87	90	85	<5	0,34	3	100	40	360	13,70	<10	1.51	2282	3	<.01	21	1880	36	<5	<20	4	0.06	<10	20 8	<10	7	111
QC DATA Repeat:																÷													,	
1	S94-003	10	0.8	2.40	145	110	<5	0.58	з	36	49	159	6.92	<10	1.59	1868	<1	<.01	46	1630	94	20	<20	27	0.07	<10	116	<10	4	2 12
39	\$-071	-	1.0	4.49	85	80	<5	0.18	3	137	45	680	14.00	<10	0.94	2476	15	<.01	32	2770	62	<5	<20	8	0.11	<10	150	<10	23	223
Standard:		125	1.2	1.78	75	155	<5	1.88	<1	18	64	83	3.74	<10	0.84	649	<1	<.01	24	660	22	5	<20	57	0.07	<10	76	<10	4	76
		-	1.0	1.80	70	155	<5	1.90	1	20	66	90	3.81	<10	0.84	661	<1	<.01	22	680	22	25	<20	60	0.07	<10	77	<10	4	76

XLS/Newhawk8 df/864

Page 2

ŝ.

MBE

.

RESULTS OF ANALYSIS - Water

File No. E4343

			Site A Canyon Creek 94 09 30	Site B Portal Creek 94 09 30	Site C Fork Creek 94 09 30
Physical Tes	sts				
Conductivit			79.3	42.0	52.1
	olved Solids		47	23	29
Hardness	CaCO3		35.3	18.3	22.3
pH	1 1 6 11 1		7.51	7.21	7.22
Total Suspe	ended Solids		3	1	<1
Dissolved Ar	nions				
Alkalinity	- Total	CaCO3	19.6	11.1	13.9
Chloride	Cl		<0.5	<0.5	<0.5
Sulphate	SO4		15.4	6.3	8.3
Total Metals	8				
Arsenic	T-As		0.0008	0.0019	0.0011
Cadmium	T-Cd		0.0109	<0.0002	<0.0002
Calcium	T-Ca		13.9	7.04	8.65
Copper	T-Cu		<0.001	<0.001	<0.001
Iron	T-Fe		0.062	<0.030	<0.030
Lead	T-Pb		<0.001	<0.001	<0.001
Magnesium	T-Mg		0.390	0.204	0.187
Mercury	T-Hg		<0.00001	<0.00001	<0.00001
Molybdenum	T-Mo		0.001	0.002	0.003
Silver	T-Ag		<0.0001	<0.0001	<0.0001
Zinc	T-Zn		<0.005	<0.005	<0.005
Dissolved Me	tals				
Arsenic	D-As		0.0007	0.0017	0.0010
Cadmium	D-Cd		<0.0002	<0.0002	<0.0002
Calcium	D-Ca		13.5	7.02	8.65
Copper	D-Cu		<0.001	<0.001	<0.001
Iron	D-Fe		<0.030	<0.030	<0.030
Lead	D-Pb		<0.001	<0.001	<0.001
Magnesium	D-Mg		0.370	0.182	0.173
Molybdenum			<0.001	0.002	0.003
Silver	D- A g		<0.0001	<0.0001	<0.0001
Zinc	D- Zn		<0.005	<0.005	<0.005

Results are expressed as milligrams per litre except for pH and Conductivity (umhos/cm). < = Less than the detection limit indicated.

RESULTS OF ANALYSIS - Water

.

•			C Portal	D Portal	Mill Portal	2900 Portal	3000 Portal
			94 08 25 13:15	94 08 25 13:05	94 08 25 13:00	94 08 25 12:45	94 08 25 12:30
Physical Tests							
Conductivit	y umhos/cm		157	173	221	243	226
Total Dissolved Solids		100	108	146	162	144	
Hardness	CaCO3		80.2	73.9	104	114	92.7
pH			7.80	7.65	7.92	7.79	7.71
Total Suspe	ended Solids		3	2	6	3	3
Dissolved Anions							
Alkalinity		CaCO3	50.5	39.0	56.4	54.1	42.1
Chloride	Cl		<0.5	<0.5	<0.5	0.5	<0.5
Sulphate	S04		24.9	41.9	52.6	63.4	63.3
Total Metals							
Arsenic	r-As		0.0050	0.0062	0.0076	0.0044	0.0064
Cadmium	T-Cd		<0.0002	0.0002	0.0003	0.0002	0.0003
Calcium	T-Ca		30.6	27.6	40.1	43.3	34.5
Copper	T-Cu		0.002	0.001	0.002	<0.001	<0.001
Iron	T-Fe		<0.030	<0.030	0.052	<0.030	<0.030
Lead	T-Pb		<0.001	<0.001	0.001	<0.001	<0.001
Magnesium	T-Mg		0.927	1.21	1.22	1.38	1.62
Mercury	T-Hq	•	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Molybdenum	T-Mo		0.004	0.006	0.004	0.003	0.009
Silver	T-Ag		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
				0 000	0.014	0.015	0 001
Zinc	T-Zn		0.009	0.023	0.014	0.015	0.021
Dissolved Metals							
Arsenic	D-As		0.0050	0.0062	0.0068	0.0044	0.0064
Cadmium	D-Cd		<0.0002	<0.0002	0.0002	<0.0002	0.0003
Calcium	D-Ca		30.6	27.6	39.8	43.2	34.5
Copper	D-Cu		0.001	<0.001	0.001	<0.001	<0.001
Iron	D-Fe		<0.030	<0.030	0.038	<0.030	<0.030
Lead	D-Pb		<0.001	<0.001	<0.001	<0.001	<0.001
Magnesium	D-Mg		0.927	1.20	1.20	1.37	1.62
Molybdenum	D-Mo		0.004	0.006	0.004	0.003	0.009
Silver	D-Ag		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Zinc	D-Zn		0.009	0.019	0.014	0.012	0.021

< = Less than the detection limit indicated. Results are expressed as milligrams per litre except for pH and Conductivity (umhos/cm).

METHODOLOGY

File No. E4343

Samples were analyzed by methods acceptable to the appropriate regulatory agency. Outlines of the methodologies utilized are as follows:

Conventional Parameters in Water

These analyses are carried out in accordance with procedures described in "Standard Methods for the Examination of Water and Wastewater" 18th Ed. published by the American Public Health Association, 1992. Further details are available on request.

Metals in Water

These analyses are carried out in accordance with procedures described in "Standard Methods for the Examination of Water and Wastewater" 18th Edition published by the American Public Health Association, 1992. The procedures involve a variety of instrumental analyses including atomic emission spectrophotometry (ICP) and atomic absorption spectrophotometry (AA) to obtain the required detection limit for each element. Specific details are available on request.

End of Report